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Abstract 

Chronic treatment of rats (to induce pulmonary hypertension, PHT) for 14 days 

increased cGMP-inhibited, cAMP specific phosphodiesterase (PDE3), and cGMP 

binding, cGMP specific phosphodiesterase (PDE5) activities in selected branches of the 

pulmonary artery (MacLean et a/., 1997). The objective of this study was to establish 

the molecular basis for these changes in both animal and cell models of PHT, and also 

to investigate the effect the PDE3 inhibitor SKF94836, and the PDE5 inhibitor 

sildenafil, on isolated pulmonary arteries from normoxic and hypoxic rats. 

It was shown that PDE3AIB gene transcription was increased in the mam, first, 

intrapulmonary and resistance pulmonary arteries. Transcript and protein levels of 

PDE5A2 in the main and first branch pulmonary aIieries (PAs) were also increased by 

chronic hypoxia. In addition, the expression of PDE3A was increased in cultured 

human pulmonary smooth muscle cells (hP ASMC) maintained under chronic hypoxic 

conditions for 14 days, and this may be mediated via a protein kinase A-dependent 

mechanism. The treatment of cells with 8-Br-cAMP mimicked chronic hypoxia, 

inducing increased PDE3A expression, while treatment with the protein kinase A 

selective inhibitor, H8 peptide, abolished chronic hypoxia-induced expression of 

PDE3A. Finally, the treatment of cultured hPASMC, with the inhibitor of NF-K13 

degradation Tosyl-Leucyl-Chloro-Ketone (TLCK, 100IlM), substantially reduced PDE5 

transcript levels, suggesting a role for this transcription factor in the regulation ofPDE5 

gene expression. This is of interest because NF-K13 is activated by hypoxia (Muraoka et 

aI., 2000; Aziz et a/., 1997). Taken together, our results show that phenotypic changes 

in the expression of PDE3 and PDE5 might provide an explanation for some of the 

changes in vascular reactivity of pulmonary vessels from rats with PHT. 

Both SKF94836 (PDE3 inhibitor), and sildenafil (PDE5 inhibitor) were effective in 

producing a concentration-dependent relaxation in isolated PAs. The magnitude of the 

response to both SKF94836 and sildenafil were dependent on the preconstrictor used, 

(PE, 5-HT, or ET -1) the branch of the P A studied, and the presence of an intact 

endothelium. Hypoxia did not attenuate the maximum relaxation achieved by 3 x 10-sM 

SKF94836 or 3 x 1O-5M sildenafil, providing evidence for the use of these inhibitors in 

the clinical treatment ofPHT. 
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It has previously been rep0l1ed that the inhibitory y subunit of retinal cGMP PDE 

(PDEy1l2) is expressed in non-retinal cells, and is involved in stimulating the p42/p44 

mitogen-activated protein kinase (MAPK) by growth factors and G-protein coupled 

receptor agonists (unpublished data from the lab, Wan et a/., 2001, Tate et a/., 1998 

Tate et a/., 2001). The possible role of PDEyll2 in modulating chronic hypoxic 

dependent mitogenic signalling pathways in both animal, and cell models of PHT was 

investigated. 

The presence ofPDEyll2 was demonstrated in rat PAs and in hPASMC, and the protein 

levels were shown to increase following hypoxic exposure. The increased expression of 

PDEyl/2 with hypoxia was most marked in the resistance vessels that characteristically 

show the greatest remodelling with PHT. In both models of PHT the increase in 

PDEy1l2 with hypoxia was correlated with an enhanced activation of p42/p44 MAPK. 

These studies identified a hypoxic-dependent change in the phenotypic expression of an 

intermediate protein regulating mitogenic signalling in pulmonary arteries in both the 

rat and the human. This may have a significant effect in the future investigations of 

arterial remodelling in PHT. 
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Chapter 1. Introduction 

1.1. Pulmonary Circulation 

The pUlmonary circulation is connected in series with the systemic circulation forming a 

continuous circuit. Blood is pumped :Ii'om the right ventricle to the left side of the heart 

via the pulmonary circulation, while simultaneously the left ventricle pumps blood 

through the systemic circulation back to the right side of the heart. The main functions 

of the pulmonary circulation are: to allow the rapid uptake of oxygen for metabolic 

processes within the body and to remove carbon dioxide; to form a barrier between the 

external and internal environment (airlblood interface) to block foreign bodies, thrombi, 

air bubbles or fat particles; and also to act as a reservoir to store blood to allow the rapid 

readjustment of the circulation (for reviews ofthe pulmonary circulation see Barnes and 

Liu, 1995; Ganong, 1995; Levick, 1996). 

Although the systemic and pulmonary vascular systems are superficially similar, 

important differences and adaptations are summarised in table 1.1, and are outlined 

throughout the text below. Essentially resistance is low throughout the pulmonary 

circulation, which is approximately one eighth of the resistance of the systemic 

circulation. Pulmonary arterial pressure (PAP) averages about 24/9mmHg with a mean 

arterial pressure of 15mmHg, much lower than the average arterial pressure in the 

systemic circulation, which is 120/80mmHg. A low-pressure gradient of around 

7mmHg exists in the pulmonary circulation compared with a gradient of about 

90mmHg in the systemic circulation. Unlike the systemic circulation, the normal 

pulmonary circulation, due to the low resistance and low pressure, is virtually 

maximally dilated at all times. 

1.1.1. The pulmonary arterial tree 

In the human pulmonary circulation there is approximately 17 or more orders of 

branching of the pulmonary artery (P A), which provides a route for the flow of 

deoxygenated blood into and around the entire lung (Singhal et al., 1973). The PAs are 

shorter, thinner, and more distensible and have larger diameters than their systemic 

counterparts. These characteristics give the pulmonary arterial tree a high degree of 

compliance, which maintains a low-pressure environment and allows the pulmonary 
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vasculature to accommodate the entire stroke volume output of the right ventricle. 

Additionally, the thin walls of the P A gives them a capacitance function, allowing them 

to act as a variable blood reservoir, i.e. act as a transient source of blood from the left 

ventricle when output begins to increase, for example at the start of exercise. 

The pulmonary arterial bed is more complex than the systemic, with regional 

differences in structure between branches (see figure 1.1). The branching of the 

pulmonary arterial system closely parallels that of the bronchial system. The mainstem 

bronchi give off lateral branches, which divide and subdivide to form bronchioles and in 

turn alveolar ducts. Gaseous interchange between air and blood may occur in all 

divisions beyond the bronchioles. Likewise, the main pulmonary artery divides and 

subdivides like the branches of a tree. The main and first branch PAs, known 

collectively as the conduit or elastic PAs, comprise of a number of elastic laminae. As 

branching continues, transition from an elastic PA (>lmm i.d.) to a muscular walled 

structure (lOOllm-1mm i.d.) occurs. Muscular PAs consist of increased smooth muscle, 

which reduces with further branching to form the partially muscular P As. Additional 

branching results in the further loss of smooth muscle leading to the formation of the 

non-muscular PAs, then finally the pulmonary arterioles «lOOllm i.d.). The difference 

in structure of each individual branch of the pulmonary arterial tree is thought to 

determine its function. For example, due to the many elastic laminae, the conduit PAs 

can accommodate stroke volume and recoil during diastole to maintain peripheral flow 

and the compliance of the circulation. However, the smaller PAs (resistance vessels 

lOOllm-1mm i.d.), due to increased muscularisation, appear to be the main site in the 

pulmonary circulation of resistance to flow (Singhal et al., 1973; Sasaki et al., 1995). 

1.1.2 The structure of pulmonary arteries 

The varying presence of three layers of different cells; the intimae layer of endothelial 

cells, the medial layer of smooth muscle cells, and the outer adventitial layer of 

fibroblasts, achieve the structural and functional heterogeneity of PAs. Additionally, in 

each branch of the P A the medial layer consists of diverse populations of mature, 

intermediate, and immature smooth muscle cells, which are present in differing 

proportions in specific branches of the P A. Each smooth muscle cell has different 

vasoconstrictor/vasodilator, proliferative and matrix producing ability, due to 

expressing different cytoskeletal and contractile proteins, ion channels, and receptors 
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(Frid et ai., 1997; Sasaki et ai., 1995; Michelakis, 1997, MacLean et ai., 1994a/b). As 

the phenotype of puhnonary vascular smooth muscle is different throughout the 

puhnonary arterial tree, ligand-receptor interaction and response to stimuli may be 

regionally different (Meyrick and Reid, 1978; Frid et ai., 1997; Sasaki et ai., 1995). 

Due to the complexity of the puhnonary circulation it is always important to know 

which branch of the puhnonary arterial tree is being studied to allow the COITect 

interpretation of experimental data. 

The endothelium of the P A acts as a barrier preventing the passage of fluid, proteins and 

other blood components from the vessel lumen into the airspace. The endothelial cells, 

as in the systemic circulation, perform non-respiratory functions and have a role in 

controlling vascular tone. Endothelial cells have the ability to release both 

vasoconstrictor and vasodilator agents (Barnes and Liu, 1995). Changes in the 

endothelial layer may therefore have profound effects on the ability of the P A to 

respond to stimuli. 

Elastic--.Muscular --'Partially muscular --+. Non muscular 
(mature smooth muscle cells) 

(intermediate smooth muscle cells) 

Terminal Bronchiole Acinus 

Figure 1.1 Muscularisation in the pulmonary arteries 

(immature smooth muscle 
cells - pericytes) 

With branching of the puhnonary artery, transition from an elastic PA (> 1mm i.d.) to a 

muscular walled structure (100Ilm-1mm i.d.) occurs. Smooth muscle reduces to form 

the partially muscular PAs. Additional branching results in the further loss of smooth 

muscle leading to the formation of the non-muscular PAs, and puhnonary arterioles 

«lOOllm i.d.). 

I: 
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1.1.3. Control of the pulmonary circulation 

The pulmonary circulation is known to be a low resistance, low pressure circulation 

which is highly compliant. The control of the pulmonary circulation is predominately 

passive, influenced by lung volume or gravitational force that alter the distribution of 

pulmonary blood flow. In fact, there appears to be no baroreceptors comparable with 

those in the systemic circulation (regulation of the pulmonary vascualture is reviewed 

by Barnes and Liu, 1995). Despite the overall regulation of pUlmonary blood flow 

being largely passive, the pulmonary circulation is also known to be under a degree of 

active regulation. Active factors such as autonomic nerves, humoral factors, and gasses 

all alter pulmonary vascular resistance and tone. The pulmonary vascular bed is 

supplied with sympathetic and parasympathetic nerve fibres. In fact, sympathetic nerve 

stimulation has been shown to increase pulmonary vascular resistance (PVR) by up to 

70%, decrease compliance, and thereby increasing pulmonary arterial pressure (PAP, 

Kadowitz et al., 1975; Piene 1976). Human pulmonary arteries are innervated and 

controlled by adrenergic, cholinergic, and nonadrenergic, noncholinergic nerves 

(NANC, Barnes and Liu, 1995). The increase in PVR as a result of sympathetic nerve 

stimulation appears to be mediated primarily by al-adrenoreceptors (Hyman, 1986). In 

contrast, ~-adrenoreceptors have been shown to regulate vasodilation in response to 

sympathetic nerve stimulation (Hyman et al., 1981). Cholinergic innervation seems to 

be less important in maintaining low pulmonary vascular tone, as blockade does not 

alter basal PAP or PVR (Murray et al., 1986). However, human PAs have been shown 

to relax in response to acetlycholine, when an intact endothelium is present (Greenberg 

et al., 1987). Additionally, in precontracted pulmonary arteries, electrical field 

stimulation initiates a frequency-dependent relaxation that is unaltered by adrenergic 

orland cholinergic antagonists, indicating the presence of NANC nerves in the 

pulmonary circulation (Liu et ai., 1992a). Although NANC mediated vasodilation has 

been demonstrated in vitro, it has not been shown to occur in vivo, therefore its role in 

controlling pulmonary vascular tone requires further investigation. Active factors, 

although having a role in physiological conditions, are thought to be of particularly 

importance under pathological conditions where tone is altered (Fishman, 1985). 

Many naturally occurring substances will selectively affect the vasomotor tone of PAs. 

Pulmonary vasoconstrictors include, thromboxane A2, a-adrenergic agonists, 

angiotensin II, thrombin, angiotensin, prostaglandins, neuropeptides, and leukotrienes. 

5 



In contrast, ~-adrenergic agonists (e.g. isoproterenol), prostacyclin, nitric oxide, 

acetylcholine, bradykinin and dopamine are pulmonary vasodilators. Some vasoactive 

agents such as 5-hydroxytryptamine (5-HT), endothelin (ET) and histamine have 

different vasoactive effects depending on the level of pre-existing pulmonary vascular 

tone, for example causing pulmonary vasoconstriction when tone is low or pulmonary 

vasodilation when tone is high (for reviews see Fishman, 1985; Barnes and Lui, 1995). 

In general the maintenance of the low pulmonary vascular tone in the pulmonary 

circulation appears to be due to a fine balance between vasoconstrictor/co-mitogens and 

vasodilator/antiproliferative mediators (Barnes and Liu, 1995). A number of the 

pulmonary vasoactive agents will be discussed below in more detail. 

The pulmonary circulation is strongly influenced by respiratory gases. The systemic 

and pulmonary circulations differ dramatically in their response to changes in oxygen. 

Hypoxia is known to be one of the most potent pulmonary vasoconstrictors, whereas the 

systemic circulation dilates on exposure to low levels of oxygen (Fishman, 1976; 

Dumas et at., 1999). Short-term exposure of the pulmonary circulation to low oxygen 

both in vitro and in vivo elicits a vasoconstrictor response that is totally reversible upon 

return to normal oxygen concentrations (Voelkel, 1986). A role of the pulmonary 

circulation is to match perfusion to ventilation in order to meet the varying demands of 

the living organism. Hypoxic pulmonary vasoconstriction is thought to be an inherent 

property of the lung, developed as a protective mechanism to divert blood from poorly 

ventilated alveoli to maintain or improve ventilation/perfusion relationships. In fact, the 

foetus relies on hypoxic pulmonary vasoconstriction to keep the pulmonary circulation 

closed, therefore allowing blood to be diverted through the ductus arteriosus. Hypoxic 

pulmonary vasoconstriction has been shown not to depend on substantial sympathetic 

innervation of the pulmonary vasculature as it occurs in isolated PArings and isolated 

lung (Karamsetty et at., 1996). Chronic hypoxia in the pulmonary circulation can cause 

right ventricular failure, and a decrease in pulmonary blood flow that may lead to the 

development of pulmonary hypertension (Fishman, 1985, Voelkel, 1986; Vender, 1994; 

Rabinovitch et at., 1979). Pulmonary hypertension (PHT) is the disease state that is the 

basis for this study. 
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SYSTEMIC CIRCULATION PULMONARY CIRCULATION 

Serves many tissues Serves only one tissue (lung) 

Variable requirements Single function 

Many controls Little control, no autoregulation 

High pressure gradient Low pressure gradient 

High resistance Low resistance (one eighth of 

systemic) 

Long hydrostatic columns Short hydrostatic columns 

Vasodilator response to hypoxia Vasoconstrictor response to hypoxia 

Table 1.1: Differences between the systemic and pulmonary circulations 

The systemic circulation and pulmonary circulation differ in a number of 

characteristics. These differences are summarised in the table above and may be related 

to the differences in the function and organisation of both the vascular systems. 
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1.2. Pulmonary Hypertension 

Pulmonary hypertension (PHT) is known as abnormally high blood pressure in the 

arteries of the lung (reviewed by Rubin, 1997; Archer and Rich, 2000, Fishman, 1998; 

Vender et ai., 1994; Rabinovitch, 1997; Veyssier-Belot and Cacoub, 1999; Dumas et 

al., 1999). When the mean pulmonary arterial pressure (PAP) is greater than 25mmHg. 

at rest or 30mmHg. during exercise, this is evidence of the presence of PHT (Fishman, 

1998). Primary PHT (PPHT) is a relatively rare disorder, with an estimated incidence 

of2-3 per million per year (Gaine and Rubin, 1998). The female/male ratio for PPHT is 

approximately 2:1, suggesting women may be more predisposed than men (Gaine and 

Rubin, 1998). All forms of PHT are difficult to both diagnose and manage, as early 

symptoms including fatigue and dyspnoea, dizzy spells and fainting are common for 

many respiratory disorders. Assessment of PHT is usually made using 

electrocardiograms, echocardiograms, pulmonary function tests, perfusion lung scans, 

or right heart catheterisation to evaluate the ability of right side of the heart to pump 

blood. 

PHT is difficult to control and still presently incurable, usually leading to death. 

Current medical and surgical treatments for patients with PHT include anticoagulants, 

vasodilators and lung, or heart and lung transplantation (reviewed by Klings and Faber, 

1999; Wanstall and Jeffery, 1998; Archer and Rich, 2000). Presently used vasodilators 

for the long-term therapy of PHT are calcium channel blockers, intravenous 

prostacyclin, and inhaled nitric oxide (NO), and more recently the dual endothelin 

receptor-blocking agent Bosentan (Tracleer®). The goal of vasodilators is to reduce the 

pressure and resistance in the PAs to increase the cardiac output, without reducing the 

systemic blood pressure. However, the limiting factor for therapeutic approaches to 

PHT appears to be the relative lack of specificity of drugs for the pulmonary circulation. 

Vasodilators shown to be effective in the pulmonary circulation tend to also be as 

effective in the systemic circulation, causing systemic hypotension. Present and 

possible novel drugs for the management of PHT will be outlined in more detail 

throughout, when discussing the drug target of interest. For the future successful 

treatment of PHT it is important to understand fully the physiology, pathophysiology 

and the triggers ofthe disease. 
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1.2.1 Classification of pulmonary hypertension 

The World health Organisation recently classified PHT as either pulmonary arterial 

hypertension (P AH) or pulmonary venous hypertension (PVH). PHT is subdivided into 

primary pulmonary hypertension (PPH) or secondary pulmonary arterial hypertension 

(reviewed by Rubin, 1997; Fishman, 1998; Vender et aI., 1994; Rabinovitch, 1997; 

Veyssier-Belot and Cacoub, 1999; Dumas et at., 1999; Jeffery and Wanstall, 2001; 

Archer and Rich, 2000). Secondary P AH occurs secondary as a serious complication of 

disorders such as HIV/AIDS infection, chronic obstructive pulmonary disease (COPD), 

pregnancy, Raynauds disease (vasospastic disorder), connective tissue diseases such as 

erythematosus and scleroderma, chronic pulmonary thromboembolism, cirrhosis of the 

liver, congenital heart disease or left ventricular failure. Additionally, a wide variety of 

stimuli can trigger the development of secondary P AH; including anorexic agents such 

as fenfluramine, dexfenfluramine and aminorex, long-term cocaine inhalation, and as 

mentioned above hypoxia. A genetic predisposition is thought to contribute to the 

susceptibility of individuals in developing PHT in response to some of the triggers 

mentioned above (reviewed by Archer and Rich, 2000, see below). 

Abnormal vascular development or remodelling before birth can lead to persistent PHT 

of the newborn (PPHN) , which has been shown to be responsible for a significant 

number of neonatal deaths occurring from 0-3 days old (Gersony, 1973; and reviewed 

by Weinberger et at., 2001). Normally the transition from foetus to neonate results in 

an increase in pulmonary blood flow accompanied with a decrease in PAP and 

pulmonary vascular resistance (PVR) to allow the lung to function as the organ of gas 

exchange. PPHN develops when PVR and PAP does not decrease with the initiation of 

ventilation and oxygenation at birth. Neonates can develop PHT secondary to 

diaphragmatic hernia, or meconium distress, pulmonary hypoplasia or severe under 

development of the lung. 

If the underlying cause of PHT cannot be identified it is called primary or idiopathic 

PHT (PPHT, Rubin, 1997; Archer and Rich, 2000). PPHT is thought to be a genetic 

disorder that may be the result of a sporadic or familial mutation. Genome wide 

research has shown there to be a link between PPHT and markers on chromosome 2q33 

(Nichols et at., 1997; Deng et at., 2000). Furthermore, using micro satellite linkage 

marker analysis, a number of groups have identified that heterozygous mutations of the 
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gene encoding type II bone morphogenic protein receptor (BMPR2) appears to underlie 

familial PPHT, and has shown to occur in ~26% cases of sporadic PPHT (Deng et ai., 

2000; Machado et ai., 2001, Thomson et ai., 2000; Lane et ai., 2000). Currently 46 

unique BMPR2 mutations have been identified, which may be useful for the screening 

and early detection of PPHT. These mutations include frameshifts, partial deletions, 

mis-sense, and splice-site mutations (Machado et ai., 2001). Bone morphogenic 

proteins are a group of cytokines within the transforming growth factor-~ superfamily 

(TGF-~), which regulate growth, differentiation and apoptosis in various cell lines 

including epithelial cells (Sakou, 1998). It can be hypothesised that BMPR2 mutations 

may lead to PHT by disrupting the growth inhibitory effects of TGF-~ members on 

vascular smooth muscle. 

Furthermore, gene nncroarray technology has allowed the analysis of the gene 

expression profile of patients with PPHT to be compared to that from normal lung tissue 

(Geraci et ai., 2000; Golpon et ai., 2000). The expression of a total of 307 genes were 

found to be altered in the PPHT lung compared to the normal lung tissue. 133 of these 

genes were upregulated whereas 174 were down regulated in PPHT (Geraci et ai., 

2000). Basically, an imbalance of genes involved in cell proliferation and apoptosis 

was observed in patients with PPHT. Genes encoding ribosomal, mitochondrial and 

cytoskeletal proteins, ion channels, enzymes, transcription factors and genes related to 

cyclin dependent kinases were differentially expressed with the development of PHT. 

Undoubtedly these gene mutations may have a role in pathogenesis ofPHT. 

1.2.2 Models of PHT 

Due to the lack of lung tissue from patients with early stages of PHT, most data 

concerning the disease is drawn from animal models (reviewed by Jeffery and Wanstall, 

2001). One of the most commonly utilised models of PHT is the chronic hypoxic rat 

(Hunter et ai., 1974; Rabinovitch et ai., 1979). In order to mimic the etiology of 

hypoxia induced PHT male Wistar rats are exposed to low oxygen by reducing the 

atmospheric pressure in a purposed built chamber (Hypoxic Hypobaric model). As the 

atmospheric pressure decreases, this leads to the decrease of the partial pressure of the 

gaseous components of air, and hence decreases the partial pressure of O2 (p02) to a 

level that reduces inspired O2 to ~ 10%. Low p02 has been shown to have a direct effect 

on the walls of the pulmonary artery (PA) of the rat lung. After 3 days of hypoxia, there 

10 



has seen to be elevated PAP, right ventricular hypertrophy and polycythemia. 

Furthermore, after 14 days of hypoxia, hypertrophy of the P A was noted (Wanstall et 

al., 1992, Vender, 1994). Chronic hypoxia leads to PHT and right ventricular 

hypertrophy, which is associated with pulmonary vascular remodelling. The chronic 

hypoxic rat is the model for PHT used throughout this study. 

PHT and right ventricular hypertrophy is also commonly induced by a single 

subcutaneous injection of mono crotaline (105mg/kg), a plant toxinpyrolizine alkaloid, 

to rats (MCT-treated rat model ofPHT). MCT is converted to dehydromonocrotaline in 

the liver, which in turn is highly toxic to the pulmonary circulation (Meyrick et al., 

1980; Fishman, 1985; Dogrell et al., 1998). A single injection of MCT in the rat can 

cause epithelial proliferation of the small PAs resulting in PHT and right ventricular 

hypertrophy (Dogrell et al., 1998). Other widely used animal models for PHT include 

the fawn hooded rats, which have a hereditary tendency to develop idiopathic PHT 

(Stelzner et al., 1992). In addition, the continuous infusion of perfused rabbit or lamb 

lungs with the stable thromboxane analogue A2 mimetic, U46619, establishes stable 

PHT (Rimar and Gillis 1995; Schermuly et al., 2000; Ichinose et al., 1 995a/b). PHT 

can also be surgically produced in fetal lambs (Hanson et al., 1998b). Assessment of 

PHT in each model is characterised by hypertrophy and hyperplasia of the vascular 

smooth muscle (Hunter, et al., 1974, Leach et al., 1977). The remodelling is very 

similar among these models despite differences in the initiating mechanism. 

In addition to animal models, cellular models are useful to study the mechanisms 

involved in hypoxia or ischemia. In cell culture conditions the extracellular 

environment can be easily manipulated to mimic conditions that are thought to occur in 

vivo. Through the use of cell cultures, more in-depth studies of the mechanisms 

involved in hypoxic injury can be more easily carried out. Hypoxia has been proposed 

to have a direct effect on smooth muscle cells (SMC). Studies have shown hypoxia can 

contract isolated pulmonary artery smooth muscle cells (P ASMC) in culture (Murray et 

al., 1990a). Prolonged hypoxia of 1-2 weeks can stimulate the proliferation ofPASMC 

from human distal pulmonary arteries if cultered at low density (Yang et al., 2002). 

However, many studies have also shown that serum-induced proliferation of PASMC 

can be inhibited under hypoxic conditions (Xiao, 1993; Yang et al., 2002). Animal and 

cellular models are both helpful in understanding the disease and answering questions 

surrounding the disease. In this study the chronic hypoxic rat model will be utilised in 
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parallel with a hypoxic cell model for PHT, using human pulmonary artery smooth 

muscle cells (hP ASMC). 

1.2.3 Pathology of PHT 

Characteristics of PHT include abnormal vasoconstriction, pulmonary vascular 

remodelling and thrombosis in situ (reviewed by Jeffery and Wanstall, 2001; 

Rabinovitch, 1997; Meyrick and Reid, 1983). The pathology of PHT is characterised 

by the disturbance of the three layers of the P A. The classical remodelling seen with 

PHT includes, medial hypertrophy (increased wall thickness of the P A), significant 

muscularisation of the partially muscular and non-muscular peripheral PAs, advential 

hardening due to increased collagen and elastin, and right ventricular hypertrophy 

(Rabinovitch, 1997; Cowan et at., 2000). Remodelling is frequently studied by 

removing lung tissue, fixing it in paraffin, staining it with haematoxylin-eosin and 

elastin (van Giesen), and viewing it directly by light microscopy. Remodelling can be 

quantified by counting the number of vessels «50llm diameter) with a double elastic 

lamina and expressed as a % of the vessels examined. 

A further feature of some forms of PHT, inparticular PPHT, is the formation of 

neointima and plexiform lesions that can be characterised using immune histology and 

in situ hybridisation technology (Voelkel et at., 1997a). These appear usually on the 

resistance vessels, and comprise of a group of capillary-like channels separated by a 

matrix of proliferating cells and atypical endothelial cells. Plexiform lesions are widely 

used as a marker for PHT. 

As outlined in section 1.1 there is marked heterogeneity in the endothelial, smooth 

muscle and fibroblast populations at specific locations within the pulmonary arterial 

tree. Each heterogeneous population of smooth muscle cells express different 

cytoskeletal and contractile proteins and channels. It is understood that in response to 

hypoxia there is a redistribution of smooth muscle cell phenotype, which can alter the 

proliferative and matrix producing abilities of each P A, thereby modifY their response to 

vasoactive agents (Frid et at., 1997). For example, increased matrix production reduces 

the compliance of the conduit PAs, which are thought to be the cause of increased right 

ventricular hypertrophy (Zuckerman et at 1991). In contrast, the increased 

muscularisation of the resistance vessels appears to be a major factor in the increased 
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resistance seen with PHT (Singhal et al., 1973). Although resistance vessels are 

particularly sensitive to hypoxic stimuli, it is however likely that increased smooth 

muscle anywhere in the pulmonary circulation would increase the tone in response to 

hypoxia (Voelkel and Tuder, 2000). For example, in the CH large elastic P A there is an 

increase in endogenous tone (MacLean et al., 1995; MacLean et al., 1996; MacLean et 

al., 1998a). The increased vascular tone of the pulmonary circulation in response to 

PHT appears to play a pivotal role in increasing its sensitivity to vasoactive mediators 

i.e. serotonin and ET-1 (MacLean, 1999a). 

The endothelium is thought to playa crucial role in the pathogenesis of the PHT, 

influencing both vasoconstriction and structural remodelling (Dinh-Xuan et al., 1991). 

In conduit PAs from CH, and MCT rat's, diminished endothelium-dependent relaxation 

and a decrease in acetylcholine-induced vasodilation have been established (Wanstall 

and O'Donnell, 1992; Oka et al., 1993; Adnot et al., 1991, MacLean et al., 1995; 

MacLean et al., 1996; MacLean et al., 1998a). Furthermore, it has been demonstrated 

that endothelium-dependent vasodilators fail to relax pulmonary arterial strips isolated 

from MCT rats (Mathew et al., 1995). Electron and light microscopy have both 

demonstrated alterations in the vascular endothelium in CH and MCT, showing 

increased density of micro filament bundles, increased density of rough endoplasmic 

reticulum and cell swelling (Rabinovitch, 1979). It is important to point out, that 

although endothelium-dependent relaxation is reduced in rat conduit PAs after hypoxia, 

it has however been reported to be increased in the resistance vessels from the CH 

(Adnot et al., 1991; MacLean et al., 1995; MacLean and McCulloch, 1998). 

Decreased endothelium-dependent relaxation has been reported in patients with both 

PPHT and with PHT secondary to chronic obstructive lung disease (Dinh-Xuan et al., 

1991; 1993). It is possible that dysfunctional endothelium alters the release of 

endothelium-dependent factors such as prostacyclin, nitric oxide, endothelin, or 5-HT 

(Barnes and Lui, 1995). The endothelium dysfunction associated with PHT is also 

suspected to make patients sensitive to vasoactive agents. For example, endothelium 

removal was shown to potentiate the response to 5-HT and a-adrenoceptor agonists in 

human, rat, and bovine conduit PAs (MacLean et al., 1994a; MacLean et al., 1993a, 

Adnot et al., 1991). As PHT is linked to a degree of endothelial dysfunction it would be 

beneficial if therapies for the disease still acted as effectively when endothelium is 

damaged. 
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1.2.4 Possible mediators of PHT 

PHT appears to be the consequence of an elevation of pulmonary vascular tone and a 

thickening of the pulmonary vascular wall. 

remodelling IS thought to be due 

The abnormal tone and vascular 

to an imbalance between the 

vasoconstrictor/vasodilator actions of endogenous mediators, and changes in their 

mitogenic/anti-mitogenic effects (reviewed by Fishman, 1998; MacLean, 1999a1b). 

Signal transduction plays a pivotal role in co-ordinating cellular functions, and reviews 

have suggested a variety of intercellular and intracellular messengers that appear to be 

possible mediators of PHT (reviewed by Jeffery and Wanstall, 2001; Archer and Rich 

2000). It is possible that PHT is a result of synergy between a number of different 

signal transduction pathways, and the resulting 'cross-talk' augments the extent of 

vascular change. Therefore, manipulating various signal transduction pathways may 

allow more effective management of PHT. In the following section an outline of 

important mediators thought to be implicated in the physiology, and pathophysiology of 

PHT will be discussed. 

1.2.4.1 The role of GPCRs in PHT. 

Many circulating mediators and hormones act on the pUlmonary circulation via mUltiple 

cell surface or intracellular receptors. Cell surface receptors include G-protein coupled 

receptor (7-transmembrane helical domain receptors), tyrosine-kinase receptors (RTKs), 

and ion channel linked receptors. GPCRs are heterotrimeric structures comprising of a 

guanine nucleotide-binding a subunit, and a complex of tightly associated p and y 

subunits (for review see Marinissen and Gutkind, 2001; Hakonarson and Grunstein, 

1998). On activation of the G-protein, guanosine diphosphate (GDP) is released in 

exchange for guanosine triphosphate (GTP) causing a conformational change resulting 

in dissociation of GTP-a from py. GTP-a is then free to diffuse in the membrane and 

associate with various enzymes and ion channels. Additionally, the GTPase activity of 

the a-subunit hydrolyses GTP to GDP terminating the process. Evidence also exists 

suggesting the py-complex may be involved in signal transmission to the effector 

proteins. For example, in the regulation of mitogen activated protein kinases (Luttrell et 

at., 1997; Daub et at., 1997). 
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G-proteins are classified according to the a-subunit. The main classes of G-protein 

including Gus, Gui, Guq, and Gu12. Each class of G-protein leads to the 

activation/inactivation of various signalling pathways. Effector molecules include 

adenylyl and guanylyl cyclase, phospholipase A2 (PLA2), phospholipase C (PLC), ion 

channels and phosphoinositiole 3-kinase (P13Ks). GPCR agonist can control the 

production of second messengers, such, as the cyclic nucleotides, diacylglycerol 

(DAG), inositol (1,4, 5)-triphosphate (IP3), phosphatidyl inositol (3,4, 5)-trisphosphate, 

and phosphatidic acid, and also stimulate an increase in intracellular calcium. 

Activation of G proteins have been speculated to be critical in the early response to 

hypoxia, and the subsequent modulation of ion channel activity and cell depolarisation 

in various cell types (Mironov and Richter, 2000, Kobayashi et al., 1998, Feldkamp et 

al., 1999, Wenzlaff et al., 1998). It has been demonstrated that Guilo is utilized for 

growth, and subpopulations of smooth muscle cells specifically with Guilo proliferate in 

response to hypoxia (Frid et al., 1998). Additionally, vasoactive agents such as al

adrenoceptor agonists, endothelin-1 (ET-1), and 5-hydroxytryptamine (5-HT), which act 

via specific types of GPCRs, are reported to have a role in the development of PHT 

(reviewed by MacLean, 1999a/b/c; Jeffery and Wanstall, 2001; Archer and Rich 2000, 

see figure 1.1). Evidence for the role of some well characterised GPCRs and their 

ligands in PHT will be discussed below. 
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Figure 1.2 Signalling pathways of specific GPCRs thought to have a role 

in the development of PHT 

In response to hypoxiaiPHT vasoactive agents such as ul-adrenoceptor agonists 

(norepinephrine), endothelin- l (ET-l), and 5-hydroxytryptamine (5-HT), which act via 

specific G-protein coupled receptors (GPCRs), are increased. GPCRs coupled to Gai 

induce vasoconstriction by negatively coupling to adenylyl cyclase (AC), thereby 

decreasing cAMP. In contrast, GUq/l1 dependent GPCR agonists lead to the increased 

production of phospholipase C (PLC), which in turn generates diacylgycerol (DAG) and 

inositol triphosphate (IP3). IP3 releases calcium from internal stores, whereas DAG 

activates protein kinase C (PKC). PKC can phosphorylate mitogen activated protein 

kinase (MAPK) and nuclear factor KB (NF-KB) which are known to have a role in 

cellular proliferation (expanded in text). Figure is adapted from Sundeep, 1999; 

MacLean, 1999. 

I ~ 
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1.2.4.1.1 The role of adrenoreceptors in PHT 

Sympathetic stimulation causes changes in pulmonary vascular resistance mediated via 

GPCRs, namely the a- and l3-adrenoreceptors (reviewed by Barnes and Liu, 1995; 

Bevan, 1989). The pulmonary vasculature expresses both a- and l3-adrenoreceptors, 

which have been shown to regulate vasoconstriction and vasodilation respectively 

(Bevan, 1989). It is currently known that three subtypes of l3-adrenoreceptor (131, 132, 

and 133), and two subtypes of a-adrenoreceptors (al and a2) exist. Using molecular 

techniques a-adrenoreceptors can be further classified into aIA-, alB, alC-receptors and 

a2A-, a2B-, a2C-, and a2D- (Strasser et al., 1992). 

The a-adrenergic receptors regulate the increase in PVR and decrease in compliance 

that occur during sympathetic stimulation of the pulmonary circulation (Kadwitz et al., 

1975, 1976). In the intact and perfused lung, stimulation of the sympathetic nerves has 

been show to induce a frequency-dependent increase in perfusion pressure and PVR 

(Kadowitz and Hyman, 1973; Kadowitz et al., 1976). This increase in perfusion 

pressure and PVR could be blocked by a-adrenoreceptor antagonists (Hyman and 

Katwitz, 1985). Furthermore, Hyman (1986), demonstrated that it appears to be the al

adrenoreceptors that primarily mediate the vasoconstrictive action of sympathetic nerve 

stimulation. In parallel, in both the pulmonary vascular bed and in isolated PAs, 13-

adrenoreceptors regulate vasodilation in response to sympathetic nerve stimulation and 

an increase in circulating catecholamines (Hyman et al., 1981). This is thought to occur 

as inhibition of l3-adrenoreceptors enhances the vasoconstrictor response to sympathetic 

nerve stimulation (Hyman et al., 1981). Furthermore, by regulating DNA and protein 

synthesis, both a- and l3-adrenoreceptors have been shown to have a role in smooth 

muscle proliferation (Nakaki et al., 1990). These authors demonstrated that al

adrenoreceptor stimulation increased DNA synthesis, while stimulation of the 13-

adrenoreceptors inhibited this process. 

Agonists for a-adrenoreceptors such as noradrenaline, and phenylephrine (PE) are 

thought to mediate pulmonary vasoconstriction primarily through increasing the levels 

of free calcium. By coupling to specific G proteins (Gaq, Gall or Ga13), al

adrenoreceptors activate phospholipase C (PLC), which in turn generates diacylgycerol 

(DAG) and inositol triphosphate (IP3). IP3 binds to receptors on the endoplasmic 
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reticulum, which releases calcium from internal stores, whereas DAG activates protein 

kinase C (PKC). PKC can subsequently phosphorylate several protein kinases and 

activate transcription factors known to have a role in cellular proliferation, such as 

mitogen activated protein kinase (MAPK) and nuclear factor KB (Clemens, 1992, see 

figure 1.2). Furthermore, the blockage of potassium channels by stimulation of al

adrenoreceptors can also lead to an influx of calcium through voltage-dependent 

channels due to membrane depolarisation (Takizawa et al., 1996). 

The possible role of al-adrenoreceptor in PHT has been intensively studied (reviewed 

by Sundeep, 1999). Eckhart et al. (1996), showed hypoxia increased the de-novo 

synthesis of al-adrenoreceptors in smooth muscle cells both in vivo and in vitro. 

Upregulation of a l-adrenoreceptors were also seen in the PAs of the CH (Jianming et 

al., 1991). Furthermore, hypoxic exposure has been shown to increase the circulating 

levels of norepinephrine, a potent agonist for al-adrenorecepetors (Mardon et al., 1998). 

The increase in a l-adrenoreceptors with hypoxia may serve to induce vasoconstriction 

in the resistance vessels, redistributing blood flow to improve the ventilation/perfusion 

ratio. 

Antagonists for a l-adrenoreceptors were among the first drugs used as therapy for PHT 

(Sundeep, 1999). Studies by Brutsaert (1964), and Porcelli and Bergofsky (1973), 

demonstrated that al-adrenoreceptor blockers could either abolish or attenuate hypoxia

induced PHT. Furthermore, the selective at-blocker bunazosin can reduce the 

development of PHT and right ventricular hypertrophy in MCT (Inoue et al., 1994). 

Unfortunately, due to their short half-life and intolerable systemic side effects of al

adrenoreceptor antagonists, they are no longer popular clinically (Cohen and Kronzon, 

1981; Pickering et al., 1982). 

1.2.4.1.2 The role of endothelin-1 in PHT 

Endothelin (ET) is a 21 amino-acid polypeptide, produced by endothelial cells 

(reviewed by Rubanyi and Polokoff, 1994; Inoue et al., 1989, Yanigasawa et al., 1988). 

Three structurally similar ETs have been characterised namely, ET-1, ET-2 and ET-3, 

which are encoded by different genes. Molecular cloning has identified endothelins act 

via two endothelin receptor subtypes ETA (selective for ET-1 over ET-3), and ETB (non 

selective, Miller et al., 1993). 

I. 
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In the lung both ET-l and ET-3 are abundantly expressed providing further evidence for 

a role in the pulmonary vasculature (Firth et al., 1992). ET -1 is formed from 

preproendothelin-l, a 212-amino acid precursor, which is cleaved by an endopeptidase 

to form proendothelin-l (big ET-l), a 38 amino acid peptide. This 38 amino acid 

peptide is then converted to the biologically active ET -1, catalysed by endothelin 

converting enzyme (reviewed by Inoue et al., 1989, Yanigasawa et al., 1988). ET-l has 

a multifactorial action mediated by the two ET receptors (reviewed by MacLean et al., 

1998b). ET-l, via the ETA receptor has been shown to cause a concentration-dependent 

contraction in PAs and veins in vitro and increase PVR in vivo (reviewed by Zamora et 

al., 1993; MacLean et al., 1998b). The ETA selective antagonist BQ-123 has been 

shown to inhibit ET -1 induced contraction in human P As, whereas the ET B selective 

agonist, sarafotoxin, has been shown to have no effect (Buchan et al., 1994). To initiate 

smooth muscle contraction ET-l activates specific GPCRs in a similar manner to Ul

adrenoreceptor agonists (see figure 1.2). ET-l, through activation ofPLC, leads to the 

production of IP3 and DAG and stimulates the release of calcium from intracellular 

stores, and the activation of PKC. In parallel, binding of ET -1 to ET B receptors has 

been shown to cause pulmonary vasodilation, possibly by mediating the release of NO, 

prostacyclin or activating adensine triphosphate (ATP)-gated potassium channels 

(Eddahibi et al., 1991). 

Evidence also exists for the contribution of ET B receptors in ET -1 mediated 

vasoconstriction in both rat and human small PAs (MacLean et al., 1994b; McCulloch 

et al., 1998). MacLean and co-workers demonstrated that ET-l mediated 

vasoconstriction in the large elastic PAs of the rat was blocked by the ETA receptor 

antagonist FR 139317. In contrast, the response in the resistance vessels appeared to be 

due to "atypical" ET B receptors. The ET -1 response in the resistance vessels could be 

mimicked by the ET B receptor agonist sarafotoxin S6, and blocked only by a mixed 

ETAIETB antagonist SB 209670 (Sato et al., 1995; MacLean et al., 1994b). In human 

PAs, a similar heterogeneity in the distribution of ET receptors is evident (McCulloch et 

al., 1998). Additionally, both ETA and ETB have been demonstrated to be co-expressed 

and both have a role in vasoconstriction in the large elastic arteries and the small 

muscular arteries in the rabbit (Fukuroda et al., 1994; Docherty and MacLean, 1998). 

Together, theses results demonstrate clear differences exist in ET receptor distribution 

between species and between branches of the pulmonary arterial tree, hence caution 

must be taken when interpreting experimental data. 
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In addition to being a potent vasoconstrictor, ET-1 has been shown to stimulate DNA 

synthesis and proliferation via ETA receptors in P ASMC and puhnonary fibroblasts. 

(Janakidevi et at., 1992; Zamora et at., 1993; reviewed MacLean et at., 1998b). ET-l 

has been shown to increase the incorporation of eH]-thymidine in bovine P ASMC up to 

140% over controls, providing evidence of its a co-mitogen action in P ASMC (Hassoun 

et at., 1992). In fact, increased growth of P ASMC from fawn hooded rats has been 

attributed to their increased ET -1 levels (Zamora et at., 1996). Due to the puhnonary 

vasoconstrictor and proliferative actions of ET -1, an increase in its circulating levels 

may contribute in part to the increased tone and remodelling observed with PHT 

(reviewed by MacLean, 1998b). 

Lungs from the chronic hypoxic rat model of PHT exhibit both increased expression of 

ET-1 and the ETA receptor (Li et at., 1994). With hypoxia there has also been shown to 

be an increase in ETA mediated vasoconstriction in the large and small PAs of the CH, 

the latter due to redistribution of ETA receptors into these vessels (MacLean et at., 1995; 

MacLean et at., 1994b). Consistent with these results, ET-1 levels have been shown to 

be elevated in patients with both primary and secondary PHT (Stewart et at., 1991; 

Cody et at., 1992). These results would suggest that a common pathophysiological 

feature ofPHT, regardless of the etiology, is an increase in the circulating levels ofET-

1. 

Researchers have also investigated the possible benefits of ET receptor antagonists in 

the treatment of PHT. For example, BQ-123 (ETA selective antagonist), SB 217242 

(ET A/ET B non-selective antagonist) and bosentan (ET NET B non-selective antagonist) 

have all been shown to reverse and/or prevent vascular remodelling and the increase in 

puhnonary arterial pressure elicited by hypoxia in rats (DiCarlo et at., 1995; Chen et at., 

1995, Underwood et at., 1998 and reviewed by MacLean et at., 1998b). Importantly 

bosentan (Tracleer®), a dual endothelin-receptor antagonist (ET NET B)' is presently 

used as a frontline treatment in PPHT. A double blind, placebo-controlled trial has 

shown bosentan can increase the exercise capacity and the haemodynamics of patients 

with PHT (Channick et at., 2001). Thus a drug that reduces the 

vasoconstrictive/proliferative actions of ET -1 appears of advantage in controlling PHT. 
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1.2.4.1.3. The role of 5-Hydroxytryptamine in PHT 

A further possible mediator of pulmonary vasoconstrictor is 5-hydroxytryptamine (5-

HT, also known as serotonin, reviewed MacLean et at., 2000). 5-HT is produced as a 

derivative of the amino acid tryptophan, and is released and acts locally. Recent 

evidence suggests there are at least 17 genetically different 5-HT receptors including 5-

HT1A-F, 5HT2A-C, 5-HT3 and 5-HT4 (reviewed by Hoyer et at., 2001; MacLean, 

1999b/c). In the pulmonary circulation the vasoconstrictive effect of 5-HT is mediated 

via 5-HTIB/lD and 5-HT2A receptors depending on the level of pre-existing tone and the 

species (reviewed by Zifa and Fillion, 1992, Morecroft and MacLean, 1998). In the 

absence of tone, the vasoconstrictive effect of 5-HT in bovine and rat PAs has been 

shown to be mediated via 5-HT2A, whereas in the presence of tone, 5-HT elicits 

contraction via 5-HTlBIlD receptors (MacLean et at, 1994a; MacLean et at., 1996). 

However, in human elastic and muscular PAs it is the 5-HTlB receptor that mediates 

vasoconstriction, even in the absence of tone (MacLean et at., 1996; MacLean et at., 

1999b/c). 5-HT acting on 5-HTIB/lD receptors induces contraction via a Gai dependent 

mechanism, decreasing cAMP by negatively coupling to adenylyl cyclase. In parallel, 

contraction via 5-HT2A receptors occurs through a Gaq dependent pathway, leading to 

the hydrolysis of IP3 and DAG from PLC and the subsequent increase in intracellular 

calcium and activation ofPKC (Summner and Humphrey, 1990, see figure 1.2). 5-HT 

has also been shown to have co-mitogenic effects in P ASMC (Eddahibi et at, 1999; Lee 

et at., 1994). These authors showed internalisation of 5-HT appears to be essential for 

its mitogenic effects. 

The role of 5-HT in PHT was first proposed when patients taking anoregixens, such as 

fenfluramine and phentermine, were seen to develop PHT (Abenhaim et at., 1996). 

Anorexigens have been shown to act by inhibiting 5-HT reuptake, stimulating the 

release of platelet 5-HT, and preventing 5-HT clearance by inhibiting monoamine 

oxidase (Seiler et at., 1976; Buczko et at., 1975). Administration of anoregixens 

increase the circulating level of 5-HT, and therefore prolong its vasoconstrictive effects. 

Plasma levels of 5-HT have been found to be elevated in patients using appetite 

suppressants, providing further evidence for a role for 5-HT in the development ofPHT 

(Herve et at., 1995). Additionally, circulating levels of 5-HT were shown to increase 

from 1-2nmollL to about 30nmol/L with PPHT (Anderson et at., 1987). In fact, in 

response to hypoxia, 5-HT is released from pulmonary neuroendocrine cells and 
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neuroepithelial bodies in the airway (Johnson and Georgieff, 1989). As with ET -1, 

evidence would suggest that increased 5-HT may have a role in the increased 

vasoconstriction and vascular remodelling associated with PHT (Reviewed by 

MacLean, 1999b/c). 

5-HT sensitivity is also enhanced in the PAs from CH, MCT-treated rats, and from 

patients with PPHT (MacLean et al., 1996; Eddahibi et al., 1997; Brink: et al., 1988). 

The augmented response to 5-HT with PHT appears to be linked to an increase in 5-

HTlB-like receptor stimulation, which has been suggested to be related to a combination 

of increased tone and changes in cyclic nucleotide levels observed in these vessels. 

Sweeney et al., 1995, demonstrated that a decrease in cGMP through NO inhibition 

enhanced the response to sumatriptan (5-HT1-like agonist), while in parallel, an increase 

in cGMP inhibited the ability of 5-HT to constrict PAs. More importantly, increasing 

the tone in PAs from control rats resulted in the "uncovering" of 5HT lB/lD-mediated 

vasoconstriction to 5-HT (MacLean et al., 1996). These results would suggest changes 

in cyclic nucleotide concentrations and tone m the P A are important m the 

pathophysiology of PHT, and alter the response of vasoactive mediators m the 

pulmonary circulation. 

Unfortunately the 5-HT antagonist ketanserin has not been successful in the treatment 

of PHT, due to adverse effects on the systemic circulation (Herve et al., 1995). 

MacLean et aI, 1996, have shown that ketaserin (5-HT2A specific antagonist) 

competitively antagonised 5-HT vasoconstriction in the PAs from both control and CH. 

However, ketanserin has also been shown to competitively antagonise 5-HT mediated 

vasoconstriction via 5-HT2A receptors in the systemic circulation, which may explain its 

detrimental side-effects (Arneklo-Nobin et al., 1988). Since a role of 5HTlD/lB 

receptors in 5-HT mediated vasoconstriction appears to be uncovered in isolated human 

and rat PAs with PHT, this suggests a 5-HTlB/lD-receptor antagonist may be more 

effective as a treatment. 

1.2.4.2 The role of growth factors in PHT 

Growth factors are a group of polypeptides and proteins than regulate cell function by 

interacting with receptors on the membrane of the cell. Well-characterised growth 

factors include nerve growth factor (NGF) , epidermal growth factor (EGF), platelet 

derived growth factor (PDGF), vascular endothelial growth factor (VEGF) and insulin 
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like growth factor-1 (IGF-1). Growth factors commonly trigger intracellular pathways 

via tyrosine kinase receptors (RTKs). Characteristically, when these ligands bind to 

RTKs, the tyrosine kinase autophosphorylates the receptor, leading to the stimulation of 

several mitogen activated protein kinases (MAPK, Marshall 1995, Van Biesen et at., 

1995). The pathway initiated by the phosphorylation of the RTK and the activation of 

MAPK has a direct role in the activation oftranscription factors in the nucleus that alter 

gene expression. Evidence for the involvement of growth factors, MAPKs and a wide 

number of transcription factors in pUlmonary vasoconstriction and in PHT will be 

outlined below. 

Growth factors are widely known to have a role in cell division and differentiation. 

Therefore, increased production of growth factors may have a role in the arterial 

remodelling observed in the PAs with PHT. For example, both PDGF and bFGF have 

been demonstrated to cause proliferation of rat PASMC (Rothman et at., 1994). A 

number of growth factors andlor their mRNA have been shown to be elevated in PHT 

(reviewed Voelkel et at., 1997). PDGF-A and PDGF-B (Arcot et at., 1993; Katayose et 

at., 1993), VEGF (Turder et at., 1995, Christou et at., 1998), TGF-B (Acrot et at., 

1993), bFGF (Arcot et at., 1995), IGF-1 (Perkett et at., 1992), and EGF (Gillespie et at., 

1989a) have all been shown to be increased with PHT. Upregulation ofVEGF has in 

fact been associated with the development of plexiform lesions (Archer and Rich, 

2000). 

Xiao (1993), suggested that the proliferation of smooth muscle in PAs seen in response 

to hypoxia may be due to the increased secretion of growth factors from endothelial 

cells. This was concluded from their observations that hypoxic endothelial cells 

conditioned medium stimulated proliferation of P ASMC, promoting them to enter the 

cell cycle and increase 3H-thymidine incorporation into DNA. Increased expression of 

both PDGF-A and -B mRNA have been shown to occur in lungs as early as 3 days 

following hypoxic exposure, and remain elevated for the entire 3 weeks of the study 

(Katayose et at., 1993; Li et at., 1995). PDGF has also been shown to be a mediator in 

hypoxia-induced cell activation and cytokine release in human lung. For example, 

PDGF is involved in hypoxia-dependent expression of inflammatory cytokines, such as 

IL-6 and IL-8 in human pulmonary fibroblasts (Tamm et at., 1998). Furthermore, the 

gene encoding VEGF is abundantly expressed in lung tissue induced by short- and long

term hypoxia (Voelkel et at., 1996). The hypoxic upregulation of VEGF and PDGF 
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mRNA has been shown to correlate with the activation of p42/p44 MAPK and p38 

MAPK (Jin et at., 2000). These results suggest growth factors may have a role in the 

remodelling of the P A through the regulation of MAPK cascades. 

1.2.4.3 The role of MAPK in PHT 

MAPK cascades are activated not only by growth factors but also by a diverse array of 

stimuli including GPCR agonists, cytokines, neurotransmitters, hormones, and cellular 

stress (reviewed by Marshall, 1995; Van Biesen et at., 1995; Seger and Krebs, 1995; 

Wildmann et at., 1999). Agents such as ET, thromboxane A2, prostaglandin H2, 

prostaglandin F2, thrombin, norepinephrine and acetylcholine have all been shown to 

activate these kinases. MAPK can be split into subfamilies based on their structure and 

function. The best characterised of the MAPK signalling molecules include the 

serine/theronine p42/p44 mitogen-activated protein kinase (p42/p44 MAPK or 

extracellular regulated kinases, ERK1/2), the c-Jun N-terminal kinases also known as 

stress activated protein kinases (JNKs/SAPKs), and the p38-MAPKs (Kolch, 2000; 

Widmann et at., 1999; Seger and Krebs, 1995). The activation of p42/p44 MAPK has 

been associated with proliferation and differentiation, in contrast JNKs and p38 MAPK 

appear to be more involved in cellular response to stress such as cytotoxic insults and 

the pro inflammatory cytokines TNF-a and IL-l (Orsini et at., 1999). The general 

sequence of activation for MAPK is; MAPK kinase kinase (MAPKKK) phosphorylates 

and activates MAPK kinase (MAPKK) , which in turn activates MAPK. Specific 

MAPKKK, and MAPKK and upstream mediators have been characterised to induce 

each MAPK subfamily (see figure 1.3). 
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Figure 1.3 MAPK cascades 

Above shows a schematic diagram of the mitogen activated protein kinase (MAPK) 

cascade. Three specific MAPK signalling cascades are represented above, which 

culminate in the activation of p42/p44 MAPK, JNK, and p38 MAPK. Active MAPK 

can translocate to the nucleus and regulate transcription through its action on 

transcription factors. 



Due to association of the p42/p44 MAPK pathway with proliferation this section will 

focus on its regulation and possible role in the remodelling of the PA with PHT. The 

p42/p44 MAPK pathway can be initiated by the autophosphorylation of the RTK 

leading to the binding of the adapter protein Shc (SH2 domain-containing a2-collagen 

related). This adapter protein is then phosphorylated itself allowing binding of a further 

adapter protein namely Grb2 (Growth factor receptor bound protein 2). The SH3 

domain of Grb2 allows the constitutive binding of the guanine nucleotide exchange 

factor Sos (Son of Sevenless) leading to exchange of Ras-GDP for GTP at the plasma 

membrane. Activation of Ras, which is a regulatory GTPase, can then lead to the 

recruitment of Raf-1 to the plasma membrane through its interaction with its amino

terminal domain. Raf-1 (MAPKKK) is then phosphorylated, which in tum may 

phosphorylate MEK (MAPKK). MEK once activated phosphorylates p42/p44 MAPK. 

Downstream effectors of p42/p44 MAPK include transcription factors such as Elk-1 and 

c-Myc, cytoplasmic proteins such as cytosolic phospholipase A2 (cPLA2), and protein 

kinases such as p90 ribosomal S6 kinase (Seger and Krebs, 1995). 

Recent studies have also suggested that GPCRs can mediate growth and differentiation 

through activation ofp42/p44 MAPK (Daub et al., 1996; Herrlich et al., 1998). Classic 

GPCRs, such as ET-1, have been shown to increase smooth muscle proliferation due to 

MAPK activation, and the subsequent phosphorylation of transcription factors 

(Yamboliev et al., 1998). It is understood that several different mechanisms may exist 

for the interaction of GPCRs and the p42/p44 MAPK pathway (reviewed by Gutkind, 

1998; Murga et al., 1999; and Gudermann et al., 2000). Stimulation of GPCRs have 

been shown to induce tyrosine phosphorylation of the adapter protein Shc, formation of 

the Shc/Grb2 complex, and in tum activation of the MAPK pathway, once thought to be 

specific for RTKs (Bonfini et al., 1996; Chen et al., 1996; Van Biesen et al., 1995; 

Daub et al., 1997). 

The mechanism by which G-proteins activate p42/p44 MAPK is thought to be attributed 

to py subunit involvement in addition to a-subunit associated coupling (Lopez, 1998; 

Daub et al., 1997). RTK transactivation has been demonstrated to occur in response to 

stimulation of GPCRs (such as ET receptors), through the release of py and subsequent 

activation and tyrosine phosphorylation of RTKs (Luttrell et al., 1997; Daub et al., 

1996; Daub et al., 1997). Conway et al. (1999), demonstrated that PDGFRs utilise the 

Gai-coupled receptors to regulate c-Src. This was suggested as addition of pertussis 
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toxin led to an approximate 40-50% decrease in the activation of c-Src and p42/p44 

MAPK by PDGF. Das et ai. (2001), presented further evidence demonstrating that 

pertussis toxin-sensitive G proteins are essential upstream signalling components of 

proliferation and activation of MAPK in response to hypoxia in PAs. These authors 

demonstrated that hypoxia-induced and serum-stimulated activation of p42/p44 MAPK 

and JNK, and increase in DNA synthesis were all markedly attenuated by pertussis 

toxin. 

Activation of Gai has also been suggested to modulate p42/p44 MAPK, through 

inhibition of adenylyl cyclase and subsequent decrease in cAMP and protein kinase A 

(PKA). PKA has been shown to phosphorylate Raf-1 kinase. Therefore increased PKA 

activity could prevent p42/p44 MAPK activation in certain cell types (Cook and 

McCormick, 1993). Additionally, Gaq/11 have been shown to activate p42/p44 MAPK 

through the production of DAG and stimulation of calcium and the subsequent 

activation of PLC~ and protein kinase (PKC). For example, in the heart, p42/p44 

MAPK is activated by GPCR agonists, such as a-adrenergic receptor agonists, AngII, 

and ET-1, leading to activation of the PLC cascade and ultimately the activation ofPKC 

(Choukroun et ai, 1998; Yamazaki et ai., 1999). PKC has been shown to phosphorylate 

and activate Raf-1 in vitro and in NIH3T3 cell clones (Kolch et ai., 1993, Widmann et 

ai., 1999). Furthermore, the activation of PKC has also been implicated in growth 

factor mediated proliferation ofPASMC (Dempsey et ai., 1991). 

Receptor internalisation is also thought to playa major role in the activation of MAPK 

via both RTKs and GPCRs. Cell receptor internalisation requires the fission of clathrin

coated vesicles from the plasma membrane into the cytosol, which is also known as 

endocytosis. Internalisation of receptors requires ~-arrestins, which have been shown to 

serve as clathrin adaptors targeting agonist-occupied GPCRs to clathrin coated pits, and 

the GTPase activity of dynamin II (Daaka et ai., 1998). Binding of GTP, and the 

conversion of GTP to GDP leads to the assembly of dynamin II at the neck of clathrin 

coated pits, which is essential for vesicle budding (Damke et ai., 1994; Takei et ai., 

1996). Dynamin II promotes endocytosis and pinching off of clathrin-coated endocytic 

vesicles, causing relocalisation of the receptor complex, bringing them closer to the 

machinery involved in activating the MAPK pathways. Activation of p42/p44 MAPK 

by GPCR agonists such as lysophosphatidic acid (LPA) , and RTK agonists such as 

EGF, NGF, PDGF and IGF-1 is dependent on endocytosis and internalisation of the 
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receptor (Daaka et at., 1998; Vieira et at., 1996; Rakhit et at., 2000, Alderton et at., 

2001a/b). 

Substantial evidence exits for the activation of MAPKs in response to hypoxia. In 

endothelial cells it has been documented that hypoxia induces phosphorylation, nuclear 

translocation and activation p42/p44 MAPK (Minet et at., 2000). In addition to the 

p42/p44 MAPK pathway mediating hypoxic responses, JNK and p38 pathways have 

been implicated in the cellular response to low oxygen (Seko et a!., 1997, Scott et at., 

1998, Jin et at., 2000, Das et at., 2001). Hypoxia has been shown to stimulate p42/p44 

MAPK, JNK, and p38 MAPK in the PA from rat (Jin et at., 2000). These authors 

showed an increase p42/p44 MAPK, JNK and p38 MAPK tyrosine phosphorylation and 

activities with hypoxia in the main and first branch P A from male Sprague-Dawley rats. 

JNK activation peaked at day 1, and p42/p44 MAPK and p38 MAPK activation peaked 

after 7 days of hypoxia. Furthermore, hypoxia stimulates both p38 MAPK and p42/p44 

MAPK in fibroblasts derived from the PAs, but not from the aorta of CH (Welsh et at., 

2001). These authors suggested that the fibroblasts from the PA of CH appeared to 

have undergone a phenotypic switch, which causes them to exhibit enhanced 

proliferative responses compared to fibroblasts derived from the PA of normoxic rats. 

Of particular interest, variable patterns of activation of ERK, JNK, and p38 MAPK in 

response to hypoxia have been documented depending on the cell type and the 

conditions under which the experiments are conducted. Studies such as those by Jin et 

al., 2000, Das et at., 2001, Scott et al., 1998, all show the transient activation of 

p42/p44 MAPK, JNK, and p38 MAPK in response to hypoxia. For example, Scott et 

at. (1998), demonstrated that hypoxic stimulation of P A cells is mediated by activation 

of stress-activated protein kinases, with particular strong multi-phasic activation of the 

p38 MAPK pathway. These results may be due to cells responding and adapting to 

changes in oxygen concentrations. 

1.2.4.4. The role of MAPK phosphatases in PHT 

The duration and magnitude of MAPK can be regulated at different levels, in particular 

a major point of regulation occurs at the level of MAPK itself MAPK phosphatases 

(MKPs) are known to dephosphorylate the threonine and tyrosine residues of MAPKs 

both in vitro and in vivo, thereby deactivating them (for review see Keyes, 1995, 2000; 

Haneda et at., 1999). Currently 9 MKPs have been identified by PCR, or by searching 
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gene databases (Haneda et al., 1999; Camps et al., 1998). Multiple families exist to 

selectively dephosphorylate and inactivate particular MAPK isoforrns. Some MKPs are 

tissue specific, however MKP-1 and MKP-2 are widely distributed and dephosphoylate 

p42/p44 MAPK, JNK, and p38 MAPK to various degrees (Chu et al., 1996). 

MKPs can be induced by environmental stimuli, such as mitogens, heat shock and 

oxidative stress (reviewed by Keyse, 1995, 2000; Haneda et al., 1999; Fanklin and Kaft, 

1997; Hirsch and Stork, 1997). Evidence also exists suggesting MKPs are induced in 

response to hypoxic stimuli. Northern and Western blot analyses verified that MKP-1 

mRNA and protein levels were dramatically up-regulated by hypoxia in PC12 cells 

(Seta et al., 2001). Furthermore, Laderoute et al., 1999 demonstrated that the transient 

increase in MAPK activity induced by hypoxia, is correlated with both the 

transcriptional activation of MKP-1, and the enhanced protein expression of MKP-l. 

MKP-1 has been suggested to be a hypoxic response gene. The promoter region for the 

human MPK-1 gene contains cis-acting elements for AP-1 and CREB transcription 

factors, both of which are targets for JNKs and p38, and both shown to be increased 

with hypoxia (Kwak et al., 1994; Kyriakis, 1994). 

These results suggest that increased MKPs may explain the transient increase in MAPK 

activation induced by hypoxia even though the stimulus was not removed. Consistent 

with this theory, MKPs are induced in response to a robust stimulation of MAPK, 

suggesting they participate in the negative feedback control ofMAPK activity (Alessi et 

al., 1993; Sun et al., 1993; Ward et al., 1994). These authors suggested that the 

upregulation of MKP may have a protective role in hypoxic cells, preventing apoptosis 

that is known to occur in response to prolonged MAPK activation. MKP may in fact 

therefore contribute to the net increased growth and remodelling of PAin response to 

hypoxia. 

1.2.4.5 The role of transcription factors in PHT 

Transcription factors are the main targets for MAPK (reviewed by Faller, 1999; Angel 

and Karin, 1991). Sustained phosphorylation of specific Thr-X-Tyt motifs, activates 

MAPK allowing it translocate to the nucleus where they catalyses the phosphorylation 

of various transcription factors. In the nucleus the transcription factors bind to the 

regulatory domains of their target genes and activate/prevent transcription. 

Transcription factors activated by members of the MAPK family include; the early 
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growth response-l transcription factor (Egr-l), the hypoxia-inducible transcription 

factor-l (HIF-l), nuclear factor-KB (NF-KB), and the transcription factor Elk-I. These 

transcription factors in turn control the activation of genes encoding growth factors and 

other mediators (reviewed by, see Faller, 1999). For example, Elk-l regulates members 

of the transcription activator protein-l (AP-l) family. AP-l is composed of the Fos 

family (c-Fos, Fos-B, Fra-l and Fra-2) and the Jun family (c-Jun, JunB, and JunD). 

MAPK has been shown to regulate AP-l dependent transcription directly by both the 

de-novo synthesis Jun and Fos and/or by controlling their transactivation function 

(Karin et at., 1997). 

The cellular response to hypoxia appears to involve the activation of a number of 

transcription factors, perhaps as a molecular mechanism for adaptation (reviewed by 

Faller, 1999). Egr-l is upregulated by hypoxia through the PKCa-mediated activation 

of the RasIRaflMAPK cascade in cultured monocytes and bovine aortic endothelial cells 

(Yan et at., 1999; Lo et at., 2001). In fact, c-fos gene expression is known to be ''turned 

on" by hypoxia via the p42/p44 MAPK pathway (Muller et at., 1997). Additionally, 

PDGF, via MAPK activation, induces the expression of a variety of immediate-early 

genes involved in increasing DNA synthesis, including c-fos, c-jun, and jun-B 

(Rothman et at., 1994). Both PDGF-A and -B have been shown to be involved in 

hypoxic pulmonary remodelling (Katayose et at., 1993). Therefore, the PDGF

dependent upregulation of transcription may be important in smooth muscle 

hypertrophy in the pulmonary circulation. 

Central to the hypoxic induced response of the pulmonary circulation also appears to be 

the induction of the hypoxic response element, known as hypoxic-inducible factor-l 

(HIF-l, Faller 1999, Richard et at., 1999). HIF-l is a heterodimeric transcription factor, 

which is stabilised post-translationally in response to hypoxia. The stabilised HIF-I 

binds to the hypoxic response element (HRE) in the promoter of numerous genes 

upregulating their expression. Both HIF-l mRNA and protein are rapidly induced by 

hypoxia in a variety of cell types, including pulmonary artery endothelial cells (Palmer 

et at., 1998). These authors demonstrated that the induction ofHIF-l is required for the 

hypoxic induction of type II nitric oxide synthase (NOS) gene expression. Furthermore, 

it was shown mutation or deletion of HIF-l binding sites abolished the hypoxic 

induction of type II NOS. 
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The p42/p44 MAPK pathway is known to phosphorylate the HIF-la carboxyl-terminal 

domain and enhance the transcriptional activity ofHIF-l (Richard et at., 1999). In tum 

HIF-l induces the expression of various genes encoding VEGF, PDGF, S-HT and ET-l, 

and erythropoietin (reviewed by Minet et at., 2001; Semenza, 1996a; Lee et at., 1997). 

Therefore, secretion of VEGF could be involved in an auto regulatory feedback loop 

through MAPK activation and HIF-l phosphorylation (Minet et at., 2001). It has been 

suggested that the upregulation of growth factors by HIF -1 occurs to stimulate the 

growth of new capillaries and red blood cell production, improving local oxygen 

delivery, and the oxygen carrying capacity of erythropoietin (Semenza, 1996b). 

1.2.4.6 Role of NF-KB in PHT 

Another transcription factor that is activated in response to inflammatory cytokines, 

mitogens, viral proteins and stress, is nuclear factor-kappaB (NF-KB). PKA, Caesin 

kinase II and MAPK have all been implicated in the phoshorylation of NF-KB 

(Makarvo, 2000; Shulze-Osthoff, 1997; Sibenlist et at., 1994; Thanos and Maniatis, 

1995). NF-KB is the collective name for members of the ReI family of ubiquitous, 

dimeric transcription factors (reviewed by Makarov, 2000, Baldwin, 1996; Ghosh et at., 

1998). Members of the ReI family include RelA (p6S), RelB, c-Rel, NF-KBI (pSOIlOS) 

and NF-KB2 (pS21100), which can exist as homo- and heterodimers. Each ReI protein 

contains a ReI homology domain (RHD) , which allows dimer formation, nuclear 

translocation, sequence-specific DNA recognition and interaction with IKB proteins. In 

mammals, the most commonly inducible form ofNF-KB is pSO/p6S. 

In unstimulated cells NF-KB is found inactive in the cytoplasm bound with the 

inhibitory proteins IKB. Exposure to stimuli results in phosphorylation of Ser 32 and 

Ser 36 of IKBa, ubiquitination, and the subsequent degradation of IKBa by the 26S 

proteasome. The enzymes controlling these processes are, IKB kinase (IKK), IKB 

ubiquitin ligase, and 26S proteasome respectively (reviewed by Karin, 2000; Li et at., 

1998; O'Connell et at., 1998). The degradation of IKB results in the translocation of 

NF-KB to the nucleus where it can activate the transcription of a number of genes. In 

fact, more than ISO NF-KB responsive genes have been identified, including genes that 

encode for cytokines, mitogens, growth factors and adhesion molecules, (reviewed by 

PaW, 1999; Sibenlist et at., 1994; Thanos and Maniatis, 1995; Makarov, 2000, Baldwin, 
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1996; Ghosh et ai., 1998). Genes induced in response to stress or inflammation in the 

pulmonary circulation, such as TNFa, IL-l~, IL-6, IL-8, inducible nitric oxide synthase 

(iNOS) and cyclo-oxygenase-2 (COX-2), all contain NF-KB binding sites in their 

promoter region (Faller 1999; PaW, 1999; Sibenlist et ai., 1994; Kim et ai., 1998). 

Evidence exists for a possible role ofNF-KB in PHT. Aziz et ai. (1997), demonstrated 

that NF-KB activation could be induced by oxidative stress. Importantly, NF-KB has 

also been shown to modulate proliferation, branching, and morphogenesis in lung 

epithelium, therefore inhibition of NF-KB may reduce the remodelling seen with PHT 

(Muraoka et aI., 2000). In addition iNOS, which has a 5' flanking region containing a 

consensus sequence that binds to NF-KB, is unregulated by hypoxia (Xie et ai., 1993). 

Increased de novo expression of iNOS mRNA and protein expression has been noted in 

whole lung extracts and in large and small P A from rats and mice with chronic hypoxia 

induced PHT (Carville et ai., 1997; Le Cras 1996; Palmer et ai., 1998; Xue et ai., 1996; 

Kinnula et ai., 1995). The transcription of COX-2, which can also be regulated by NF

KB, has been reported to be increased more than 3-fold in isolated perfused lungs 

exposed to hypoxia (Childa and Voelkel, 1998). Together this data implicates NF-KB in 

the response of the pulmonary circulation to hypoxia, and possibly in the remodelling 

seen with PHT. 

Anti-inflammatory drugs such as antioxidants, non-steriod anti-inflammatory drugs 

(NSAIDs), and immunosuppressants can all inhibit NF-KB (Epinat and Gilmore, 1999; 

Wissink et ai., 1998). The most commonly used NF-KB inhibitors are glucocorticoids, 

which are thought to act by either increasing the expression ofIKB, or by inhibiting the 

transactivation of the NF-KB Rel A subunit (Karin, 1998; Markarov, 2000). These 

drugs however only inhibit NF-KB in a non-specific manner, acting on many other 

inflammatory mediators. More specific NF-KB inhibitors have been designed. For 

example, a peptide inhibitor capable of penetrating the nucleus and inhibiting NF-KB 

localisation has been described (Lin et ai., 1995). However, knockout animals have 

shown that altering NF-KB directly impaired or even prevented the development of 

normal immune function. Loss ofNF-KBl, NF-KB2, c-Rel and RelB in knockout mice 

all caused defects in the activation of T and B cells, and decreased the immune response 

to pathogens (Gerondakis et ai., 1999). Due to the wide role of NF-KB in cell 
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regulation throughout the body, adverse side effects may limit its use as a therapeutic 

target in PHT. 

1.2.4.7 The role of calcium and potassium channels in PHT 

The ion channels known to play pivotal roles in determining pulmonary vascular tone 

are calcium (Ca2+) and potassium (K+), although a small amount of evidence does exist 

for a role of chloride, or sodium (reviewed by Reeve et al., 1997). Importantly chronic 

hypoxia alters the membrane potential of rat P ASMC from main and small PAs (Suzuki 

and Twarog et ai., 1982). Activation of Ca2+ gated channels can result in membrane 

depolarisation and the subsequent contraction of SMC. A number of intracellular 

pathways act be elevating intracellular calcium. For example, an increase in 

intracellular calcium can be mediated by GPCR agonists, such as ET-1 and 5-HT 

through stimulation of IP3. In smooth muscle Ca2+ binds to calmodulin and activates 

calmodulin-dependent myosin light chain kinase, which catalyses the phosphorylation 

of myosin, allowing binding to actin, leading to contraction. Hypoxia has been shown 

to cause calcium influx through L-type voltage gated calcium channels (Premkumar et 

ai.,2000). The increase in intracellular calcium that occurs during hypoxia may suggest 

a number of calcium-dependent protein kinases and phosphatases are regulated 

including CAM-Kinase (Kilbourne et ai., 1992; Sheng et ai., 1990). An elevation in 

intracellular calcium may also have a possible role in cellular proliferation, as evidence 

suggests that C~+ controls the activation of PKC and MAPK. PKC activation has been 

shown to cause proliferation and mediate some of the effects of specific growth factors 

such as PDGF in PASMC (Dempsey et ai., 1991, 1990). Additionally, Conrad and co

workers, demonstrated that inhibitors of the calcium-calmodulin pathway inhibited 

p42/p44 MAPK activation in hypoxia-treated PC12 cells (Conrad et ai., 1999). 

Increased calcium may therefore contribute to both increased tone and remodelling 

throughout the pulmonary circulation of patients with PHT. 

Ca2+ channel antagonists have been shown to prevent DNA synthesis and proliferation 

in response to growth factors in both rat and human VSMC (Kataoka et ai., 1997). The 

L- and T -type Ca2+ channel antagonist tetrandine (lC50, 10-30IlM) exerts an 

antiprolferative effect against a range of mitogenic stimuli such as PDGF and IL-1a in 

rat P ASMC in vitro (Wang et ai., 2000). Hypoxia-induced pulmonary vasoconstriction 

is also attenuated by the calcium channel blocker verapamil, and enhanced by calcium 
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channel openers such as, BAY K 8644 (McMurtry et at., 1980). Blocking of Ca2+ 

channels leads to hyperpolarisation and vasodilation. High doses of calcium 

antagonists, such as nifedipine (30-120mg per day) and diltiazem (120-720mg per day) 

are both successful treatments for PHT (Rich and Kaufinann, 1991). Inhibition of 

calcium channels by nifedipine has been shown to decrease PAP by more than 20% in 

two thirds of individuals with high PAP (Antezana et at., 1998). Major adverse effects 

of calcium channel blockers are decreased cardiac output due to negative inotropic 

effects, reduced systemic blood pressure and salt and water retention (Rich and 

Kaufinann, 1991). 

K+ channels are present on airway smooth muscle and their activation results in 

hyperpolarisation and relaxation. Several types of K+ channels have been classified in 

the pulmonary circulation according to their pharmacological, kinetic, and physiological 

characteristics; voltage-gated (Kv), inward rectifying (Kir), and calcium sensitive (Kca) 

channels (reviewed by Reeve et at., 1997). Patch clamp studies suggest that K+ 

channels are differently distributed throughout the pulmonary arterial tree. K+ channels 

are tonically active, which allows a slow efflux of K+ along their 

intracellular/extracellular concentration gradient. Inhibition of Kv channels result in 

accumulation of positively charged potassium ions, raising membrane potential, 

activating voltage gated calcium channels, increasing cytosolic calcium, and resulting in 

vasoconstriction. 

Evidence suggests that the activity of voltage-sensitive K+ channels may have a role in 

determining pulmonary vascular tone in PHT. In fact, the increase in tone seen with 

PHT has been suggested to be due to previously observed inactivation of K+ channels 

(Ospenko et at., 1998; McCulloch et at., 1999). Studies have shown K+ channels are 

inactivated in hypoxia, and dysfunctional in P ASMC of patients with PPHT (Osipenko 

et at., 1998; Weir et at., 1998; Yuan et at., 1998; Post et at., 1992). Hypoxia induced 

pulmonary vasoconstriction has been shown to involve the inhibition of the voltage 

operated Kv channels in PASMC (Weir et at., 1995; Post et at., 1992). Exposure 

P ASMC to hypoxia decreased K+ through voltage gated K+ channels (KV) , decreased 

membrane potential, and increased intracellular Ca2+ and myosin light chain 

phosphorylation, all causing contraction. In patients with PPHT Kv (type 1.5) mRNA is 

reduced in PASMCs, which was associated with inhibition of potassium current, 

membrane depolarisation, and elevation in calcium channel activity (Yuan et at., 1998). 

I: 
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Kca channels have also been shown to be associated with contraction, and playa role in 

regulating pulmonary vascular tone, as they are inhibited in response to hypoxia (Peng 

et at., 1996; Post et at, 1992). 

Potassium channel opening drugs are effective pulmonary vasodilators both in vitro and 

in vivo in a variety of animal species (reviewed by Weir et at., 1998). The hypoxic 

decrease in outward potassium current and increase in inward calcium current, has been 

shown by patch clamping in cultured VSMC from PAs, to be blocked by the K + 

channel opener cromakalin and enhanced by the potassium channel blocker 

glibenclamide (Yuan et at., 1992). The pulmonary vasorelaxant effects of potassium 

channel opening drugs are dependent on the vasoconstrictor/spasmogen used to contract 

the preparations and are enhanced in preparations with PHT (Wanstall, 1996) 

1.2.5 The role of cyclic nucleotide dependent pathways in PHT 

1.2.5 1 The role of nitric oxide in PHT 

Pulmonary blood flow is influenced by several local factors, which act via cyclic 

nucleotide dependent pathways (see figure 1.4), such as eicosanoids, and the 

endothelium-derived relaxation factor (nitric oxide). Nitric oxide (NO) is a well

characterised endogenous endothelium-dependent vasodilator, which is known to have a 

role in the regulation of pulmonary vascular tone (reviewed by see Hampl and Herget, 

2000). NO is synthesised in endothelial cells during the conversion of the semi

essential amino acid L-arginine to L-citrulline, catalysed by nitric oxide synthase 

(NOS). There are at least three known isoforms of NOS; neuronal (nNOS), inducible 

(iNOS), and endothelial (eNOS). Endothelial NOS is expressed constitutively, although 

can be also modulated by factors such as shear stress and changes in intracellular Ca2+ 

(Barnes and Belvisi, 1993). The abundant expression of eNOS has been reported in the 

main PAs, whereas it is virtually absent from the small PAs (Xue et at., 1994). 

Inducible NOS tends to be generated by proflammatory cytokines, for example, during 

airway inflammation and is regulated at the transcriptional level. Inducible NOS is 

expressed in many different cell types, and produces high levels of NO. Studies have 

shown that the basal formation of NO is due to the presence of the inducible 

Ca2+/calmodulin-independent NOS (iNOS) isoform in VSMCs (Busse and Mulsch, 

1990, Beasley et at., 1991; Nunokawa et at., 1993). Neuronal NOS is constitutively 

expressed associated with central and peripheral neurons. In addition, nNOS has also 
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been shown to be present in epithelial and VSMCs, including P ASMC (Sherman et at., 

1999). Altered production of NO may be responsible for the development of a variety 

of diverse pathological events in mammalian organs. 

Most of the biological effects of NO are mediated through its receptor protein, soluble 

guanylyl cyclase, which catalyses the conversion of guanosine triphosphate (GTP) into 

cyclic-guanosine monophosphate (cGMP) in smooth muscle cells. Increasing cGMP 

can, in turn, regulate the activation of protein kinase G (PKG). PKG reduces the 

intracellular Ca2+ concentration by inhibiting voltage and receptor operated calcium 

channels. Therefore NO prevents release of Ca2+ from the sarcoplasmic reticulum, 

resulting in the uncoupling of the contractile apparatus (Rembold, 1991). Additionally, 

PKG activation can also lead to PKG-dependent hyperpolarisation of the membrane by 

activating K+ channels. In addition, cGMP reduces vascular tone and causes smooth 

muscle relaxation by activating myosin light chain phosphatase (Rembold, 1991). It has 

also been suggested that NO can regulate pulmonary vasodilation by direct activation of 

K+ channels or by modulating expression and activity of angiotensin II receptors 

(reviewed by Weinberger et at., 1999). 

As the NO/cGMP pathway appears to playa key role in maintaining low vascular tone 

in the pulmonary circulation it is possible that altered NO production may occur with 

the development of PHT. However, this is still relatively controversial and it has not 

been resolved as to whether NO production or NOS expression is increased or 

decreased in the pulmonary circulation under hypoxic conditions. Discrepancies may 

be due to experimental models used, differences in NOS cofactor availability, natural 

history of PHT, hypoxic modulation of NOS enzyme activity, or responsiveness of the 

pulmonary vasculature to NO. Evidence for a role of both increased or decreased NO in 

PHT will be outlined in the sections below. 

Inadequate local NO production has been implicated as part of the disease process of 

PHT. Endothelial NO production in rat main PA is attenuated by acute and chronic 

hypoxia (Shaul et at., 1993). A subsequent decrease in [cGMP]i occurs in the main PA 

from CH, which is assumed to be the result of decreased endothelial NO production 

(Shaul et at., 1993; MacLean et at., 1996). These results in conjunction with the known 

loss of endothelial-dependent relaxation suggest a low availability of bioactive NO in 

CH rats. Likewise, reduced levels of NOS have also been shown in the pulmonary 
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vasculature of patients with PPHT (Giaid and Saleh, 1995). Additionally, PAs from 

patients with hypoxic lung disease have impaired release of endothelial NO on 

stimulation (Dinh-Xuan et at., 1991). These studies suggest NO therapy might be 

beneficial in the treatment ofPHT. 

In contrast, a number of groups have demonstrated that lung NO production is enhanced 

with PHT (Archer et at., 1998; Forrest et at., 1999). In the PAs of CH, NOS mRNA 

and protein have both been demonstrated to be upregulated, suggesting an increase in 

endothelial NO release (Le Cras et at., 1996, Resta et at., 1997). De novo 

mRNAiprotein expression of iNOS has also been demonstrated in P A CH (Carville et 

at., 1997). For example, pulmonary NO production has been shown to be increased 

from the lungs of CH, and an increase in the de-novo expression and activity of NOS 

has been observed in the large PA from CH (Isaacson et at., 1994, Xue et at., 1994; Le 

Cras et at., 1996, Resta et at., 1997). Likewise, Shaul and co-workers reported NOS 

activity in whole lung homogenates, measured as eH]-arginine to eH]-citrulline 

conversion, doubled in rats with CH induced PHT compared with normoxic (Shaul et 

at., 1995). Increased NOS appeared to correlate with the onset of increased muscularity 

in the small resistance PAs (Xue et at., 1996). 

It has been suggested that the increased levels of NO observed with prolonged hypoxia 

may be toxic to the pulmonary circulation. High concentrations of NO react with 

reactive oxygen species (ROS) i.e. superoxide, to form cytotoxic substances such as 

peroxynitrite. ROS are produced in response to injury in the lung hence high 

concentrations of NO and ROS may contribute to the remodelling associated with PHT 

(Kinnula et at., 1995). Additionally, prolonged exposure to NO is known to 

downregulate PKG (Soff et at., 1997). PKG is known to be involved in converting 

vascular smooth muscle from a dedifferentiated "synthetic" phenotype to a more 

contractile-like morphology (Boerth et at., 1997). Therefore, NO-induced 

downregulation of PKG would promote the synthetic phenotype, which is a known 

feature of the vascular wall remodelling of pulmonary hypertension (Boerth et at., 

1997). The effect of NO in the pulmonary circulation may therefore be dependent on 

the levels of PKG. Taken together all these studies suggest the initial response of 

pulmonary circulation to hypoxia may be to increase NO, possibly in an attempt to 

restore normal tone. However prolonged hypoxic insult may increase NO production to 

a level at which the adverse effects of NO are dominant. 
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Despite the controversial role of NO it has still been possible to use it in the treatment of 

PHT. NO has been shown to attenuate ET-l induced pulmonary arterial 

vasoconstriction (Lang and Lewis, 1991). Additionally, gene transfer studies have 

demonstrated that increased eNOS in the lung in vivo selectively reduces the increase in 

pulmonary vascular resistance in response to both ET-l, and hypoxia (Bivalacque et at., 

1999). Horstman and co-workers also demonstrated low doses of NO can attenuate the 

remodelling seen with PHT in both newborn and adult rats (Horstman et at., 1998). 

Inhaled NO has in fact been shown to be successful as a therapy for some types of PHT, 

such as those that are short term and reversible i.e. heart/lung perioperative PHT 

(Frostell et at., 1991; Clark et at., 2000). Although inhaled NO improves oxygenation, 

long-term benefits are not seen due to its short action, and its potential to be a 

pulmonary irritant (Weinberger et at., 2001; Troncy et at, 1997; Zapol et at., 1994). 

1.2.5.2 The role of prostacyclin in PHT 

Arachodonic acid is metabolised through the cycloxygenase and lypoxygenase 

pathways to form prostaglandins and leukotrienes. Metabolites of arachodonic acid 

such as prostacyclin (PGh) and thromboxane (TxA2) have been reported to exhibit 

vasoactive effects in the pulmonary circulation (reviewed by Christman, 1998; Terragno 

and Terragno, 1979). In endothelial cells PGh synthase predominates and directs 

metabolism toward prostacyclin. Binding of PGh in nanomolar concentrations to 

prostacyclin receptors causes elevation of intracellular cyclic adenosine monophosphate 

(cAMP) in smooth muscle by activating adenylyl cyclases (see figure 1.4). PGh has 

been shown to be a very potent vasodilator in the pulmonary arterial bed (Shaul et at., 

1991). The vasodilatory properties of PGh are well established and PGh has been 

shown to decreases DNA synthesis in vascular smooth muscle cells (Shirotani et at., 

1991). Prostacylin is known to reduce PVR and attenuate vascular smooth muscle 

proliferation through signal transduction via ligand binding to its receptor. 

Thromboxane on the other hand is a potent vasoconstrictor, which has also be reported 

to act as a growth factor by activating PKC, suggesting a role regulating proliferation 

(Ko et at., 1997). Abnormal eicosanoid production would therefore alter pulmonary 

vascular tone. 

It has been suggested that endothelial dysfunction associated with PHT may alter 

eicosanoid synthesis. However, in common with NO, workers have reported PGh 
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levels to be both increased and decreased in response to hypoxia. Martin et al. (1992), 

measured eicosaniod production in cultured bovine pulmonary endothelial cells during 

constant flow and pressure perfusion at two oxygen tensions (Hypoxic 4% O2, 5% CO2, 

91 % N2: norrnoxia 21 % O2, 5% CO2, 74% N2). These authors found production ofthe 

stable metabolite of prostacyclin, 6-keto PGF1u, was increased during hypoxia 

(normoxia 291 ±-27 vs. hypoxia 395 ± -35 ng/rnin/gm protein), whereas thromboxane 

and total leukotriene production did not change. Likewise, Peterson and co-workers 

found PGF1u was increased with the onset of PHT from 31 ± 3 to 842 ± 367 pg/rnl 

(Peterson et ai., 1982). Additionally, PGIz has been shown to be increased 2.7 fold after 

7 days of hypoxia (Shaul et ai., 1991). ET-1, of which levels are increased with PHT, 

can induce the production of prostacyclin in rat lung (Barnard et ai., 1991). 

Vasodilatory prostaglandins have been shown to promote rather than inhibit bovine 

PASMC proliferation (Pasricha et ai., 1992). These studies suggest in response to 

hypoxia the pulmonary circulation increases PGh, possibly in an attempt to restore 

normal tone. 

In contrast, the synthesis of PGIz was significantly decreased in the distal PAs of 

neonatal calves exposed to hypoxia (Badesch et ai., 1989). Patients with severe PHT 

have reduced PGIz and PGIz receptor expression, which has been suggested to be 

involved in the remodelling of the PAs (Hoshikawa et ai., 2001; Tuder et ai., 1999). 

Transgenic mice over-expressing PGIz synthase were found to be protected from 

pulmonary smooth muscle hypertrophy and PHT following exposure to chronic hypoxia 

(Geraci et ai., 1999). PGIz and its analogues inhibited DNA synthesis and cell 

proliferation in distal human P ASMCs, whereas proximal human PASMCs were 

comparatively unresponsive (Wharton et ai., 2000). These authors suggested regional 

heterogeneity and variation in receptor expression might contribute to the contrasting 

actions of PGIz. Together the findings outlined in this section would suggest that PGIz 

would be a good candidate for therapeutic use in PHT . 

Long term intravenous infusion of PGIz or its stable analogues, have been a major 

advance in the therapy of PHT, prolonging survival and delaying the need for lung 

transplantation. In rabbits with experimental PHT, evoked by the continuous infusion 

of the stable thromboxane mimetic U45519, nebulized prostacylin (56ng/kg.rnin) 

reduced the increase in PAP by approximately 30% (Schermuly et ai., 1999). 

Additionally PGIz and its stable analogues, such as iloprost, have been shown to inhibit 
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DNA synthesis and smooth muscle proliferation in the distal PAs through the 

stimulation of cAMP (Wharton et at., 2000). Long-term continuous intravenous PGIz 

improves oxygenation and reduces the PAP in PHT patients (McLaughlin et at., 1998; 

Barst et at., 1996). Although producing both beneficial acute effects and long-term 

hemodynamic responses, the dosage of PGIz required to sustain these effects increases 

with time as tolerance develops (Barst et at., 1996). 

1.2.5.3 The role of cyclic nucleotides in PHT 

Many of the vasoactive compounds outlined above exert all or some their biological 

actions by directly or indirectly regulating cyclic nucleotides (see figure 1.4). Cyclic 

nucleotides, adenosine 3', 5' cyclic monophosphate (cAMP) and guanosine 3', 5' cyclic 

monophosphate, are key second messengers involved in a multitude of cellular events 

including determining vascular tone and reactivity (reviewed by Schwede et at., 2000; 

Schmidt et at., 1993; Koyama et at., 2001). Adenylyl cyclase (AC) and guanylyl 

cyclase (GC) catalyse the formation of cAMP and cGMP respectively, whereas specific 

families of phosphodiesterases (PDE) catalyse their hydrolysis. The main target for 

cAMP is protein kinase A (PKA). However, cAMP can also act directly on cyclic 

nucleotide gated channels, cAMP regulated guanine nucleotide exchange factors 

(cAMP-GEFs), phosphodiesterases (PDEs) or EPACs (Schwede et at., 2000; Kwasaski 

et at., 1998). In parallel, cGMP has been shown to regulate protein kinase G (PKG), 

cGMP-gated channels, and PDEs (De Rooij et at., 1998; Kwasaki et at., 1998). 

Stimulation of PKA and PKG each results in the phosphorylation of a number of 

downstream targets, regulating cellular processes and gene expression (Francis and 

Corbin 1994). The activation of both cyclic nucleotides also appears to be dependent on 

compartmentalisation of the signals, and feedback mechanisms that are present at many 

points of the pathways (Scott et at., 2000: Conti et at., 1995). In general, stimulation of 

cAMP and/or cGMP would lead to wide spread relaxation of smooth muscle, while 

conversely inhibition would lead to the contraction of smooth muscle. Indeed, both 

cAMP and cGMP have been shown to have key roles in the control of pulmonary 

vascular tone (Murray, 1990; Della Frazia et at., 1997; Koyama et at., 2001). 
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Figure 1.4 Schematic representation of cyclic nucleotide dependent 

pathways 

Adenylyl cyclase (AC) and guanylyl cyclase (GC) catalyse the formation of cAMP and 

cGMP in response to stimuli such as prostacyclin and nitric oxide. In contrast, specific 

families of phosphodiesterases (PDE) catalyse their hydrolysis to their corresponding 

5'nucleotide metabolite. The balance of the cyclases and the phosphodiesterases 

regulate cyclic nucleotide levels. The main targets for cAMP and cGMP are protein 

kinase A (PKA) and protein kinase G (PKG) respectively. Stimulation of the protein 

kinases results in the phosphorylation of a number of downstream targets, regulating 

cellular processes and gene expression, which can down regulate the contractile 

apparatus and cause vasodilation of the smooth muscle. Figure adapted from 

Manganiello et al. (1995). 
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An increase in either cGMP and/or cAMP can inhibit VSMC proliferation (reviewed by 

Southgate and Newby, 1990; Cornwell et at., 1994; and Grosser et at., 1995). The 

cAMP membrane permeable analogue, 8Br-cAMP, reduced the percentage of cells in 

the S phase of the cell cycle after serum stimulation, by preventing progression of the 

cell cycle from GO/G1 (Kronemann et at., 1999; Hamad et at., 1999b). It has been 

suggested that cAMP, via PKA activation, attenuates proliferation by antagonising 

mitogenic pathways in SMCs (Graves et at., 1993; Bornfeldt and Krebs, 1999; Bonisch 

et at., 1998; Zucker et at., 1998). PKA is known to phosphorylate Raf-l on serine 43 

and serine 621 thereby inhibiting p42/p44 MAPK activation (Wu et at., 1993; Hafuer et 

at., 1994). Additionally, the inhibition of the PI3K pathway by cAMP may be 

responsible for its antiproliferative action (Graves et at., 1995). 

It has also been shown that cGMP attenuates cellular proliferation. However, cGMP is 

apparently not as effective in controlling proliferation as cAMP (Kariya et at., 1989; 

Southgate and Newby, 1990; Cornwell et at., 1994; Yu et at., 1997; Garg and Hassid, 

1989). It has been suggested that cGMP, unlike cAMP, does not block but delays the 

Gl/S transition in SMCs (Fukumoto et at., 1999). cGMP via the activation ofPKG and 

inhibition of Raf-1 has also been shown to reduce the activation of p42/p44 MAPK (Yu 

et at., 1997). PKG has been reported to inhibit the proliferation ofPASMC (Chiche et 

at., 1998). Since PKG is known to be downregulated with the subculture of SMC, 

evidence exists that high concentrations of cGMP may activate PKA to inhibit cellular 

proliferation (Cornwell et at., 1994; Cornwell and Lincoln, 1989). Natriuretic peptides, 

which regulate cGMP production, have been shown to be upregulated with PHT. 

Levels of natriuretic peptides, which bind to and activate the particulate transmembrane 

receptors that contain intracellular guanylyl cyclase domains, are increased in PHT 

(Zhao et at., 1999). Furthermore, the atrial natriuretic peptide (ANP, a member of the 

natriuretic peptide family) is also increased in both human primary and secondary PHT 

(Morice et at., 1990). 

The abnormal tone and remodelling seen in all forms of PHT may therefore be due to 

defects in pulmonary vasodilatory pathways that regulate cyclic nucleotide 

concentrations. In the CH decreased intracellular concentrations of both cGMP and 

cAMP have been reported in the main, first branch and intrapulmonary arteries, 

however not in the resistance vessels (MacLean et at., 1996). Likewise, Shaul et at. 

(1993), also demonstrated that chronic hypoxia in the rat resulted in a decrease in 
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[cGMP]i in the main P A. Variations in the phenotype of vascular smooth muscle cells 

in the pulmonary resistance vessels compared with those in the larger elastic PAs may 

explain the differences in cyclic nucleotide levels between these branches (Meyrick and 

Reid, 1978; Sasaki et al., 1995). In contrast, Cohen and co-workers, found a nine fold 

increase in cGMP from isolated lung perfusate from CH compared to controls (Cohen et 

al., 1996). Variations in results may, in part, be due to the net effect of the time the 

tissue was harvested and how the tissue was handled. The latter study suggests that the 

normal response to PHT may be an initial increase in the production of cyclic 

nucleotides, possibly in an attempt to restore normal tone. However, desensitisation of 

the cyclic nucleotide pathways may occur after prolonged exposure to hypoxia, which 

would explain the increased vasoconstriction seen with PHT. The response to the cyclic 

nucleotides appears to depend on the strength and duration of the signal. The increase 

tone in the pulmonary circulation in response to hypoxia may be due to decreased 

production of cyclic nucleotides, increased hydrolysis of cyclic nucleotides, or impaired 

signal transduction distal to cyclic nucleotide formation and hydrolysis. 

Despite the controversy, many of the current treatments outlined for PHT act by 

increasing cGMP and cAMP levels. Major mediators of cGMP/cAMP production such 

as NO and PGh, as outlined in the sections above, are used to control PHT. 

Subcutaneous injections of 90mg/kg SCH 34826 twice a day, which elevates ANP and 

therefore cGMP, significantly prevented hypoxia induced pulmonary vascular 

remodelling and right ventricular hypertrophy (Stewart et al., 1992). In addition, cAMP 

analogues have been shown to prevent the development of PHT and relax pulmonary 

vessels (Farrukh et al., 1987). Stimulation with forskolin or a cAMP analogue inhibits 

proliferation induced by PDGF-BB and serum in distal human PASMC (Wharton et al., 

2000). 

1.2.5.4. The role of the cAMP response element binding protein (CREB) 

The cAMP pathway may provide the means of integrating a plethora of different 

signalling systems. In addition to increasing vasodilation and attenuating proliferation, 

cAMP can also potentially alter gene expression. cAMP modulates gene expression by 

the PKA mediated activation of the cAMP response element binding protein (CREB, 

reviewed by Shaywitz and Greenberg, 1999; Yamamoto et al., 1988; Gonzalez and 

Montminy, 1989; Montminy, 1997; Roesler, 1999). CREB is a member of a large 
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family of transcription factors, which is phosphorylated on serine 133 by PKA to allow 

the transcriptional activation of genes with cis-regulatory cAMP-sensitive DNA 

elements (cAMP responsive elements, CREs). MAPK, Ca2+/calmodulin-dependent 

protein kinases (CaMKs), and PKC are also known to phosphorylate CREB at this 

particular residue. Moreover phosphorylation of CREB regulates expression of CRE 

containing genes such as c-fos, and somatostatin. CREB initiates gene expression that 

is known to persist long after the original stimulating cAMP has been degraded 

(Shywitz and Greenberg, 1999; Hai and Hartman, 2001, Mayr and Montminy, 2001). It 

has therefore been speculated that activation of CREB-mediated protein synthesis is a 

mechanism of transforming short-term effects of cAMP into long-term durable changes 

in the cell (Schwartz, 2001). 

Hypoxia has been shown to initiate CREB serine phosphorylation, ubiquitination, and 

degradation (in vitro and in vivo). Mild hypoxia leads to the phosphorylation of CREB 

at the PKA phosphorylation site Ser133, resulting in the transcriptional activation of a 

number of genes (Beitner-Johnson and Millhom, 1999). Taylor et ai. (2000) 

demonstrated a time-dependent repression of protein phosphatase-I, a serine 

phosphatase important in CREB dephosphorylation and inactivation, from epithelial 

cells of rat exposed to hypoxia. Childa and Voelkel, 1996, proposed that the shear 

stress and the hypoxic induction of PGh synthesis leads to the PKA activation of CREB 

via increased cAMP. These authors suggested the stimulation of CREB may be 

responsible for the increased COX-2 previously observed in the lung tissue from rats 

exposed to hypoxia. In addition the phosphorylation of CREB at Ser 133 has also been 

reported to be critical for growth factor induction of c-fos transcription (Ginty et ai, 

1994; Bonni et ai., 1995). Thus, these authors suggested that the growth factor 

mediated phosphorylation of CREB may supersede that mediated by PKA, thereby 

stimulating cell growth. CREB may therefore provide a possible further mechanism for 

hypoxic induced transcription. Further identification of CREB target genes would be 

important in understanding the possible molecular mechanisms involved in response to 

hypoxia of the pulmonary circulation. 

1.2.5.5. The role of adenylyl cyclase and guanylyl cyclase in PHT 

Intracellular levels of the cyclic nucleotides are determined by a balance of formation 

by the cyclases and degradation by the phosphodiesterases (PDEs). Adenylyl cyclase 
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(AC), and guanylyl cyclase (GC) catalyse the formation of cAMP and cGMP 

respectively. AC is activated by various extracellular stimuli mediated by receptors and 

their interaction with G-proteins. Adenylyl cyclases (AC), of which ten are currently 

identified, catalyse the formation of cAMP from adenosine triphosphate (ATP, 

reviewed by Hurley, 1998; Houslay and Milligan, 1997; Bently and Beavo, 1992). 

Each family of ACs have different tissue distributions and different glycosylation and 

regulatory properties (Deffer et al., 2000). All isoforms are activated by the Gas 

subunit of the heterotrimeric G protein, however specific isoforms are regulated by a 

variety of other protein regulators such as Gai, G~y, protein kinases (PKA, PKC and 

calmodulin kinase), phosphatases, calcium, and Ca2+/CaM. The lung has been shown to 

express substantial levels of the two isoforms AC-6 and AC-8 (Hanoune et al., 1997; 

Jourdan et al., 2001). AC-6 is inhibited by low concentrations of calcium, PKA and by 

Gai, and G~y, allowing tight regulation of agonist-stimulated cAMP levels. In contrast, 

AC-8 activity is stimulated by calcium through calmodulin binding. Regulation of 

smooth muscle contraction, by AC-8 is not dependent on endogenous agonists but on 

intracellular calcium. These isoforms would be attractive targets in the treatment of 

PHT, as they may be limiting factors in cAMP production in the lung. 

The formation of cGMP from guanosine triphosphate (GTP) is catalysed by guanylyl 

cyclases (GCs). Two families of GC exist, soluble (cytosolic) forms activated by NO 

donors, and particulate (membrane-bound) forms activated by natriuretic peptides 

(Hamad et al., 1997; Lucas et al., 2000; Bently and Beavo, 1992). Hormones, bacterial 

toxins, free radicals, calcium, and adenine nucleotides also regulate both families of 

GCs. Hamad et al., 1999 demonstrated that both the soluble and particulate GCs are 

present in cultured hP ASMC. Positive regulation of both GC and AC, would increase 

cAMP and cGMP, promoting smooth muscle relaxation. 

The control of cyclic nucleotide levels in smooth muscle is critical in determining 

pulmonary vascular tone and reactivity, therefore changes in levels of either AC or GC 

may be responsible for the altered tone seen with PHT. In fact, soluble GC mRNA, 

protein, and enzyme activity have all been shown to be upregulated during the 

development of hypoxia-induced PHT in rats (Li et al., 1999a). Additionally, Hamad et 

al. (1999b), demonstrated that the activation of soluble GC by NO donors, and the 

particulate GC by ANP both inhibit the proliferation of HASMCs in response to serum 

and thrombin. It has also suggested that desensitisation of guanylyl cyclase may occur 
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in response to an increase in PAP, due to the release of eNOS and the subsequent 

prolonged over production of NO (Wanstall et al., 1992). However, Shaul et al. (1990), 

have shown that adenylyl cyclase activity is unaltered by hypoxia, even though there is 

an attenuated relaxation to forskolin. As adenylyl cyclase activity appears to be 

unaltered with PHT, the increased hydrolyses of cyclic nucleotide may explain the 

reduced relaxation to forskolin. 

1.3 Phosphodiesterases 

1.3.1 Introduction to phosphodiesterases 

AC and GC catalyse the formation of cAMP and cGMP respectively, whereas 

phosphodiesterases (PDEs) catalyse the hydrolysis of these 3', 5'-cyclic nucleotides at 

their 3'-phosphoester bond, to form the corresponding 5'nucleotide metabolite (5'AMP 

and 5'GMP). There are presently eleven families of cyclic nucleotide 

phosphodiesterases with distinctive substrate specificities, regulatory characteristics, 

molecular sequences, tissue distribution and susceptibility to specific inhibitors 

(reviewed by Thompson, 1991; Beavo, 1995: Soderling et al., 1998, 1999; Corbin and 

Francis, 1999; Fawcett et al., 2000; Conti, 2000; Soderling and Beavo 2000; Yuasa et 

al., 2000; Koyama et al., 2001). In addition, most PDE families contain several distinct 

gene products with several different splice variants often expressed in a specific tissue, 

cellular or even subcellular manner. Some PDE families hydrolyse both cAMP and 

cGMP (PDE 1, 2, 3, 10, 11), others are highly specific for cAMP (PDE4, 7, 8), and 

some families are specific for the hydrolyse of cGMP (PDE5, 6, 9). Due to their central 

role in smooth muscle tone a variety of tissue specific PDE inhibitors are available. 

PDEs have already become an attractive target for drug development in a range of 

disorders such as asthma and thrombosis (reviewed by Thompson 1991). 

The basic molecular structure of all PDEs is shown in figure 1.5. All mammalian PDEs 

are dirneric and each contains three functional domains, a conserved catalytic domain of 

~270 amino acids, a regulatory N-terminus and a C-terminus. Protein-protein 

interaction domains, and phosphorylation domains exist at the N-terminus (i.e. for PKA, 

PKG, MAPK and CaMK), giving each family distinctive regulatory characteristics and 

allowing them to be subject to short-term allosteric action by endogenous activators or 

inhibitors. For example, a calmodulin binding domain is present in PDEI allowing it to 
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be regulated by calcium concentrations, non-catayltic cGMP binding sites (GAF) are 

present in PDE2, 5, 6, 10, and 11, and phosphorylation site for various kinases are 

present in PDEl, 3, 4, 5, 6 and 7 (Conti et at., 1995, see below for further details on 

specific PDEs). Within the catalytic domain there is ~30% amino acid identity between 

PDE families and ~80% identity between isoforms of the same family (Manganiello, 

1995). The Zn2
+ binding motifs located in the catalytic domain, which almost extends 

into the C-terminus of each enzyme, appears to be essential for the hydrolysis of the 

cyclic nucleotides (Corbin and Francis, 1999). The C-terminus has been suggested to 

contain domains to allow dimerisation. 

The exact cellular and subcellular localisation of PDEs are thought to be important in 

the compartmentalisation of cAMP/cGMP signalling responses (Houslay and Milligan, 

1997). It has been suggested that the targeting domains identified in most PDEs 

contribute to the association of isoforms to the membrane and subcellular 

compartments. For example, PDE3 contains a domain with six transmembrane helices 

that target the enzyme to the endoplasmic reticullum (Conti, 2000). The presence of 

two highly conserved regions, called upstream coding region 1 (UCRl) and UCR2, in 

the N-terminus of PDE4 are thought to be involved in targeting specific isoforms to the 

plasma membrane. The so called "short forms" of PDE4, such as PDE4Dl and 4D2, 

lack UCRI and are therefore found solely in the cytosol. However, the "long forms" of 

PDE4, for example PDE4D3, PDE4D4, and PDE4D5, exhibit both UCRI and UCR2 in 

the N-terminal domain, targeting them to both the cytosolic and particulate fractions 

(Bolger et at., 1997). Compartmentalisation may provide a mechanism by which PDEs 

selectively alter specific cAMP/cGMP pools and regulate distinct signalling pathways. 

Chini et at., 1997, showed PDE4 in mesangial cells regulates a cAMP pool that 

activates PKA involved m the inhibition of the production of reactive oxygen 

metabolites, while PDE3 regulates a cAMP pool that suppresses cell proliferation. 

Molecular cloning, biochemical and pharmacological analysis have allowed the 

understanding of PDEs to expand. Below summarises the major characteristics of the 

eleven currently known PDE families. 
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Figure 1.5 The basic molecular structure of PDEs 
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PDEs are known to possess a conserved catalytic domain proximal to the carboxyl 

terminus and regulatory domains or motifs near the amino terminus. 

1.3.1.1 PDE1 

Currently three genes encode PDEI (PDEIA, PDEIB, and PDEIC), which is known to 

hydrolyse both cAMP and cGMP (Kakkar et ai., 1999). PDEI has been found in high 

concentrations in the brain, lung, and heart. PDEIA and PDEIB hydrolyse cGMP more 

efficiently than cAMP, whereas PDEIC hydrolyses cAMP and cGMP with equal 

efficiency (Beavo, 1995). The PDEIA gene encodes the previously characterised 58kDa 

lung isoform (Sharma and Wang 1986). The kinetic constants for PDEIA (Km) are for 

cAMP in the range of 34-40IlM, and for cGMP in the range of 2-31lM (Beavo, 1995). 

The presence of calcium/calmodulin (Ca2+ICaM) binding sites allows PDEI to be 

activated and regulated by Ca2+ concentrations, hence it is often referred to as the 

Ca2+ICaM-dependent PDE. Activation of PDEI by calcium could therefore lead to an 

increase in cAMP/cGMP degradation, providing a mechanism for "cross-talk" between 

these second messengers. In addition, it has been demonstrated that CaM kinase II, 

PKC and PKA can also phosphorylate PDE1, thereby controlling its regulation by 

decreasing the affinity of the enzyme for CaM (Spence et ai., 1995; Sharma and Wang, 

1986). Therefore, a cell can regulate the amplitude and duration of either cAMP or 

cGMP, depending on the affinity of the PDEI isoform expressed for Ca2+ICaM and on 

the phosphorylation state of the enzyme. Rybalkin et ai., 2002 have shown that PDEIC 

activity is required for maximal proliferation of human SMC. These authors showed 

that although PDEIC is absent in intact human aorta, it was readily detected in both 

cultured SMCs ii-om the same donor, and in proliferating human SMCs in foetal aorta in 

vivo. It may be possible that the PDEIC is induced in the SMCs of the pulmonary 
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artery when they stimulated to proliferate in response to hypoxia. A commonly used 

potent PDE1 inhibitor is vinpocetine (Thompson, 1991, Kakkar et al., 1999). 

1.3.1.2. PDE2 

PDE2 is known as the cGMP-stimulated PDE. The enzyme is expressed as at least 

three splice variants. PDE2 can be membrane bound or cytoplasmic, with both forms 

hydrolysing cAMP and cGMP with positive cooperative kinetics. cGMP is the 

preferred allosteric effector and substrate for PDE2 (Manganiello et al., 1995). 

Upstream of the conserved catalytic domain in the N-terminal, PDE2, like PDE5, 

PDE6, PDElO, and PDEll contains a further conserved region with two internal repeat 

sequences forming two homologous noncatalytic cGMP-binding sites. The cGMP

binding domain in PDE2, 5, and 6 share a conserved N(KJR)XnFX3DE motif 

(McAllister-Lucas et al., 1994). The cGMP-binding domains in the N-terminal of all 

these PDEs, which are also conserved across a wide variety of proteins, are referred to 

as the GAF domain (cGMP binding and stimulated phosphodiesterases, Anabaena 

adenylyl cyclases and Escherichia coli, Aravind and Ponting, 1997). In the case of 

PDE2, cGMP binding to these non-catalytic binding domains increase the affinity of the 

catalytic site, increasing its activity under basal substrate conditions. For example, 

stimulation of PDE2 activity by increased cGMP would lead to a subsequent decrease in 

the normal levels of cAMP. Hence, PDE2, which is known to be abundant in the 

adrenal cortex and in areas of the brain, is a target for crosstalk between cAMP and 

cGMP. EHNA (erthro-9-[2-hydroxy-3-nonyl]adenine) has been reported to be a 

specific inhibitor for this cGMP-stimulated PDE (Michie et al., 1996). 

1.3.1.3. PDE3 

PDE3 has a high affinity for both cAMP and cGMP, with Km values of ~O.1-0.8~M 

(Manganiello et al., 1995). However, binding of cGMP to its active sites is known to 

inhibit PDE3 activity, therefore preventing cAMP hydrolysis. For example, in human 

atrial SMC it has been demonstrated that nitrovasodilators through releasing NO and 

increasing cGMP concentrations, inhibit PDE3, and increase [cAMP]i (Kirstein et al., 

1995). Hence, PDE3 is known as the cGMP-inhibited, cAMP-specific PDE. Two 

genes, PDE3A and PDE3B, have been isolated from human tissue (Manganiello et al., 

1995). PDE3A and PDE3B have very similar kinetic and regulatory properties and 
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contain the same C-terminal domain (Soderling et ai., 1998; Doberman et ai., 1997). 

The hydrophobic N-terminus, made up of ~200 amino acids containing six 

transmembrane helices, are however different between the two isoforms and appear to 

be responsible for association with the membrane (Soderling et ai., 1998a; Kenan et ai., 

2000). PDE3A has historically been thought of as the cardiovascular PDE3 (Meacci et 

ai., 1992), whereas PDE3B is often referred as adipocyte PDE3. Indeed PDE3B was 

originally cloned from rat adipocytes (Dergerman et ai., 1997, Taira et ai., 1993). 

Therefore, the differential tissue expression of PDE3A compared with PDE3B was 

initially thought to be one of the defining characteristics between the two sub-types 

(Reinhardt et ai., 1995). However, both PDE3A and PDE3B are expressed in rat aortic 

smooth muscle cells, and human aortic smooth muscle cells (Lui and Maurice, 1998, 

Palmer and Maurice, 2000). 

PDE3 also contains a consensus sites for phosphorylation by PKA and PKB. Two 

phosphoylation sites on PDE3 have been identified using site directed mutagenesis, 

namely Ser302, and Ser273 (Degerman et ai., 1997). Adenylyl cyclases activators have 

been shown to stimulate PDE3 activity through an accumulation of cAMP and a 

subsequent increase in PKA (Gettys et ai., 1987). PKA has been shown to 

phosphoylate and activate PDE3 from platelets, heart, and aortic smooth muscle (Grant 

et ai., 1988; Rascon et ai., 1992). This suggests that PDE3 activation has a role in 

mediating negative feedback control of PKA systems, and thereby desensitisation of the 

cAMP signal. Desensitisation of PDE3 and also PDE4 has been shown to occur 

following chronic exposure to a cAMP elevating stimulus (Conti et ai., 1995). In 

addition, PDE3B is regulated by one or more insulin-dependent kinase (Lopez-Aparicio 

et ai., 1992). The overall effect of insulin appears to be to antagonise the actions of 

adenylyl cyclase activation and to inhibit cAMP-stimulated lipolysis. The antilipolytic 

effects of insulin are dependent on the rapid reduction of cAMP via phosphorylation of 

PDE3B (Manganiello et ai., 1992; Gettys et ai., 1988). 

A number of highly selective inhibitors exist for PDE3, which include SKF94838, 

siguazodan, cilostamide, and milrinone (Thompson 1991). PDE3 inhibitors such as 

milrinone and cilostamide are positive inotropes, vasodilators and inhibitors of platelet 

aggregation (Beavo, 1995; Degerman et ai., 1997). 
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1.3.1.4. PDE4 

PDE4, which is one of the most extensively studied PDE families. PDE4 is a cAMP

specific PDE with relatively high affinity for cAMP (Km < 2/-LM) and is sensitive to 

inhibition by rolipram. PDE4 has at least four genes PDE4A, PDE4B, PDE4C, and 

PDE4D with over 18 isoforms as a result of alternative mRNA splicing (reviewed by 

Houslay et ai., 1998; Beavo, 1995). A characteristic feature ofPDE4 is the presence of 

conserved domains known as UCRI and UCR2 at the N-terminus. Alternative mRNA 

splicing produces long (containing both UCRI and UCR2) and short (containing only 

UCR2) isoforms. 

As with PDE3, PDE4 is also phosphorylated by PKA, therefore providing feedback 

regulation of cAMP (reviewed Manganiello et ai., 1995). Prolonged stimulation of 

cAMP has been shown to increase the mRNA and activity of PDE4, in particular 

PDE4D, suggesting regulation at the level of transcription (Swinnen et ai., 1989; Sette 

and Conti, 1996). Long-term upregulation of cAMP-PDE activity would therefore lead 

to the reduced potency of activators of adenylyl cyclase. In addition to regulation by 

PKA, the p42 MAPK has also recently been shown to regulate specific isoforms of 

PDE4 (Hoffinann et ai., 1999; MacKenzie et ai., 2000; Baillie et ai., 2000). p42 MAPK 

has the ability to either increase or decrease cAMP levels dependent upon the pattern of 

the cAMP-specific PDE (PDE4) isozyme expression. MAPK has been shown to 

increase cAMP levels in the cell by phosphorylating PDE4B, PDE4C and PDE4D3 

(long forms of PDE4) at a single site (Ser579), and inhibiting their activity (Hoffinann 

et ai., 1999; Baillie et ai., 2000). In contrast, PDE4B2 and PDE4Dl (short forms of 

PDE4) are both activated by C-terminal phosphorylation by p42 MAPK (MacKenzie et 

ai., 2000; Baillie et at., 2000). 

Inhibitors ofPDE4 include rolipram, imidazolidinone (Thompson, 1991). As PDE4 has 

been characterised in a number of inflammatory cells, inhibitors have been shown to 

have significant anti-inflammatory effects in both animal models of asthma and 

clinically to treat asthma (Tenor et at., 1996; Banner and Page, 1995, Murray et at., 

1991; Doherty, 1999). 
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1.3.1.S. PDES 

PDE5 has been characterised as the cGMP-binding, cGMP-specific PDE, and has been 

identified as the main cGMP-binding protein in the lung (Francis et at., 1990; Thomas 

et at., 1990). Three variants of PDE5A have been isolated and characterised (Kotera et 

at., 1999; Loughney et at., 1998; Lin et at., 2000). PDE5 isoforms possess unique N

terminal sequences and have different tissue expression. For example PDE5A3 has 

only been found in human penile cavernosum, whereas PDE5A1 and PDE5A2 are co

expressed in vascular smooth muscle (Kotera et at., 1999; Lin et at., 2000; Murthy, 

2001). 

PDE5 is composed of two allosteric cGMP-binding domains, one catalytic domain, and 

a phosphorylation site for PKA and PKG (Corbin and Francis, 1999; Thomas et at., 

1990; McAllister-Lucas et at., 1993). Additionally, PDE5 contains two or more zinc 

atoms per monomer that bind with high affinity (Km = ~0.5f.lM), and appear necessary 

for catalysis (Francis et at., 1994). When the allosteric cGMP binding sites ofPDE5 are 

occupied by substrate, PKA and PKG can then phosphorylate a specific serine residue 

(Ser92) on PDE5 (Thomas et at., 1990). In fact, it has been suggested binding of cGMP 

to the regulatory subunit changes the configuration of the PDE5 allowing it to be 

phosphorylated by cAMP and cGMP dependent kinases (Francis et at., 1990). Burns et 

at., 1992, demonstrated in guinea pig lung PDE5 activity could be stimulated in the 

presence of the catalytic subunit of PKA and ATP. These authors also reversed this 

activation of PDE5 by addition of phosphatases. In addition, the phosphorylation of the 

Ser92 site on PDE5 by PKA or PKG has been shown by Corbin et at., 2000 to increase 

the activity ofPDE5 by 50-70%. These results indicate PDE5 can be phosphorylated by 

PKAandPKG. 

It is possible that the phosphorylation of PDE5 by PKG could be involved in the 

negative feedback regulation of cGMP levels. Increased cGMP has been suggested to 

occupy the catalytic sites of PDE5, which subsequently leads to the occupation of the 

GAF domain, inducing phosphorylation and activation of PDE5 by PKG. Activation of 

PDE5 subsequently lowers [cGMP]i (evidence by Corbin et at., 2000; Turko et at., 

1998; Thomas et at., 1990; Venkatesh et at., 2001). It is difficult to study this proposed 

negative feedback regulation in intact cells, as few reliable PKG inhibitors, due to the 

possible involvement of PKA, and the fact cGMP analogues may bind to both the 

52 



catalytic, and GAF domains directly. Wyatt et al. (1998), have shown that treatment of 

rASMC with ANP results in an increase in cGMP levels, an increased incorporation of 

phosphate into immunoprecipitated PDE5, and is associated with an increase in PDE5 

activity in the immunoprecipitate. Studies by Murthy (2001), also demonstrated that the 

generation of cAMP can lead to the PKA-dependent activation of PDE5 and attenuation 

of cGMP levels. 

A large number of specific PDE5 inhibitors exist. The order of potency of common 

PDE inhibitors for PDE5 is sildenafil> zaprinast> dipyridamole> IBMX> cilostamide> 

theophylline> caffeine> rolipram (Thomas et al., 1990; Ballard et al., 1998). 

1.3.1.6 PDE6 

PDE6 is a key element in the proposed cyclic nucleotide cascade of vision, and is only 

known to be found in the photoreceptors of the eye, hence it is referred to as the 

photoreceptor PDE. PDE6 has high affinity for cGMP but low affinity cAMP, and is a 

cGMP-specific PDE. PDE6 shares common structural and functional properties with 

PDE5. Both PDE5 and PDE6 display a high degree of identity (45-48%) between the 

catalytic domain, posses both catalytic and non-catalytic cGMP binding sites (GAF), 

hydrolyse cGMP better than cAMP, and are both sensitive to a common set of 

competitive inhibitors. (McAllister-Lucas et al., 1993; Gillespie and Beavo, 1989; 

Turko et al., 1999; Gonzalez, 1999). PDE6 is a a~Y2 heterotetramer, where a, and ~ are 

the catalytic sites for cGMP hydrolysis and yare the protein inhibitors of the enzyme. 

Rod and cone PDE6 exist, which despite physiological differences, are both activated in 

the same manner in the visual transduction pathway (Gillespie, 1990). 

The phototransduction cascade involves rhodopsin (GPCR), G-protein receptor coupled 

kinase (GRK) and ~-arrestin, which resembles signalling by growth factors and GPCRs 

in mammalian cell systems (Stryer, 1991). Photo excitation of rhodopsin results in the 

GDP-GTP cyclical activation of the G-protein transducin (Ta~y, see figure 1.6). 

Activated transducin (Ta-GTP), dissociates from T~y and binds to the inhibitory y 

subunits of PDE6, thereby removing their inhibitory effect. Activation of PDE6a~ 

leads to the hydrolysis of cGMP to 5'GMP resulting in the closure of cGMP-gated 

Na+/Ca2+ channels on the plasma membrane. A decrease in Na+ and Ca2+ into the cells 

results in hyperpolarisation and ultimately a decrease in neurotransmitter release 
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(review by Yafitz and Hurley, 1994). The occupancy state of the noncatalytic sites on 

PDE determines whether y remains bound to activated PDE or dissociates from the 

holoenzyme, and may be relevant to light adaptation in photoreceptor cells (Norton et 

al.,2000). 
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Rhodopsin ~ ~ Rhodopsin * 

®+~~ 
GDP GTP 

cGMP .. 5'GMP 

~[ Hyperpolarisation 

Figure 1.6 Schematic representation of the phototransduction cascade 

The light activation of rhodopsin leads to the activation of the G-protein, transducin (T), 

in the photo receptors. Activated transducin (Ta-GTP), dissociates from TPy and binds 

to the inhibitory y subunits of PDE6. PDE6ap leads to the hydrolysis of cGMP to 

5'GMP resulting in hyperpolarisation of the cells (review by Yafitz and Hurley, 1994). 



1.3.1.7. PDE7 

PDE7 is a high affinity cAMP-specific PDE (low Km of ~0.2 JlM), which is rolipram 

insensitive. High concentrations of PDE7 can be found in skeletal muscle, kidney and 

brain (Michaeli et al., 1993). PDE7 is closely related to PDE4 in that it is unaffected by 

cGMP, and specifically hydrolyses cAMP. Two splice variants have been identified, 

PDE7 A and PDE7B. In fact, Takashi and co-workers only recently identified PDE7B 

in human, with high levels in the striatum (Takashi et al., 2000). PDE7 appears to have 

a role in T cell activation. CD3- and CD28-dependent induction of PDE7 is required 

for T cell activation (Li et al., 1999b). These authors also showed that treating T-cells 

with antisense oligonucleotides specific to PDE7 reduced proliferation, and prevented 

interleukin-2 production by 80%. PDE7 may therefore be a useful target for the 

treatment T -cell-mediated pathologies, such as allergies and/or rheumatoid arthritis, 

however presently no specific inhibitors are readily available (Solderling and Beavo, 

2000). 

1.3.1.8. PDE8 

PDE8 is a cAMP-specific (low Km of ~70nM), IBMX-insensitive PDE (Lava, 1985, 

Soderling et al., 1998b; Solderling and Beavo 2000). Lava (1985), reported PDE8 to be 

the first example of a PDE that cannot be inhibited by the non-selective inhibitor IBMX. 

Two subfamilies exist namely PDE8A and PDE8B. Expression of PDE8A is high in 

testis, eye, and liver, whereas PDE8B expression appears to be high in the thyroid 

gland, brain, and kidney (Soderling et al., 1998b; Hayashi et al., 1998). PDE8 contains 

a single PAS domain (for Per, ARNT, and Sim proteins for which was originally 

identified) at the N-terminus (Soderling et al., 1998b). PAS domains contain a small 

number of conserved amino acids within a sequence of about 90 residues, and are 

thought to act as an environmental sensor in many proteins. Fix L, haemoglobin that 

acts as an oxygen sensor, and the transcription factor HIF-l both contain PAS domains 

(Perutz et aI., 1999; Gothie et aI., 2000). In these proteins the PAS domains are thought 

to be involved in the mechanism by which cells sense and respond to changes in 

oxygen. The PAS domain in PDE8 may serve to mediate protein-protein interactions 

that regulate subcellular distributions, or have a regulatory/sensory function similar to 

Fix Land HIF-l (Soderling and Beavo, 2000). The role of PAS domains in PDE8 
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activation still requires to be elucidated. No highly specific inhibitors are available for 

PDE8, or any ofthe following more recently discovered PDEs. 

1.3.1.9. PDE9 

PDE9 is a cGMP-specific enzyme (low Km of ~O.07,...,M). It was originally cloned and 

characterised by Soderling et at., 1998. In common with PDE8 the enzyme is 

insensitive to inhibition by IBMX. Alternative splice variants of PDE9 have been 

identified, although there functions are currently unknown (Guipponi et at., 1998). 

PDE9 is expressed in small intestinal smooth muscle, kidney, lung, brain, testis and 

skeletal muscle (Soderling et at., 1998). No highly specific PDE9 inhibitors are yet 

available. 

1.3.1.10 PDE10 

PDEI0 hydrolyses both cAMP and cGMP (Km ~O.05,...,M and ~3,...,M respectively). The 

Vmax for cAMP hydrolyses by PDEIO is five fold lower than for cGMP. These kinetics 

suggest cGMP hydrolyses by PDEI0 can be inhibited by a low concentration of cAMP. 

Therefore, the enzyme has been designated as the cAMP-inhibited, cGMP-specific PDE 

(Fujishige et at., 1999; Solderling et at., 1999). PDEI0, unlike PDE8 and PDE9, is 

sensitive to inhibition by IBMX. Two alternatively spliced transcripts of PDEI0 have 

been characterised, namely PDEI0Al and PDEI0A2 (Kotera et at., 1999). Fusjishige 

et at., 1999 cloned and characterised PDEI0A using bioinformatics and found the 

primary structure to be analogous to other cGMP binding PDEs, such as PDE2, PDE5 

and PDE6. Unlike the other cGMP-specific PDEs, the GAF domain in PDEI0 is 

thought to have a function in addition to cGMP binding. This has been suggested as 

binding studies have shown the dissociation constant for cGMP binding is greater than 

9,...,M, which is higher than in vivo concentrations of cGMP will ever reach in most cells 

(Soderling et at., 1999). 

1.3.1.11 PDE11 

Fawcett et at., 1999, cloned and characterised the most recently identified PDE, 

PDEllA. PDEllA can catalyses the hydrolysis of both cAMP and cGMP. PDEllA 

and its slice variants carry distinct GAF sequences in their N-terminal region. The 

enzyme is therefore related to other human genes for GAF-PDE such as PDE5A, and 
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PDE6A-C (Yuasa et al., 2001). PDEll appears to be abundant in the prostate and also 

found in the testes, thyroid gland, and liver (Yuasa et al., 2000). 

1.3.1.12 POE inhibitors in the systemic circulation 

Modulation of PDE function in cells is critical for maintaining cyclic nucleotide levels 

within a narrow rate limiting range of concentrations. The variation in distribution and 

physiological function of PDEs between tissues make them excellent pharmacological 

targets. In fact, PDE inhibitors have been shown to alter the contractile tone of various 

types of smooth muscle, including vascular smooth muscle, corpus cavemosal smooth 

muscle, and bronchial smooth muscle (reviewed by Polson and Strada, 1996; Corbin 

and Francis; Trophy, 1998). The functional consequence of selective PDE inhibition in 

a number of systemic arteries will be outlined below. 

The effect of PDE inhibition has been widely studied in the systemic arteries. In 

vascular smooth muscle the main PDE isoforms present are PDE3, PDE4, and PDE5, 

and relatively selective inhibitors for these enzymes are available and have been 

extensively studied (Polson and Strada, 1996). PDE 3 inhibitors such as amrinone and 

cilostazol have both been shown to markedly relax precontracted rat aortic rings in a 

concentration-dependent manner. These responses were found to be partly dependent 

on the presence of an intact endothelium, as on removal of the endothelium the 

concentration-dependent relaxation curve was shifted to the right (Nakamura et al., 

2001; Van der Zypp et al., 2000). Additionally, relaxation of rat aortic smooth muscle 

induced by isoprenaline has been shown to be potentiated by the PDE3 inhibitor 

cilostamide (lOOnM), which correlated with an increase in cAMP levels (Delpy et al., 

1996). The relaxation of the aorta and the increase in cAMP levels as a result of PDE3 

inhibition was greater if the endothelium was intact (Delpy et al., 1996). PDE3 

inhibitors also posses antiplatelet, antiproliferative, and thrombolytic activities, 

suggesting they may be useful in treating cardiovascular disease and minimising 

restenosis seen after angioplasty (Indolfi et al., 1997; Wang et al., 2000). In fact, the 

first clinically used PDE inhibitor was amrinone for use in heart failure. Short-term use 

of PDE3 inhibitors such as amrinone, and milrinone were shown to increase cardiac 

index and stroke volume index, with a corresponding decrease in right atrial and 

pulmonary capillary wedge pressure, indicating an improvement in ventricular function 

(Benotti et al., 1978; Baim et al., 1983). However, in long-term clinical trials the 

58 



hemodynamic improvements seen early in therapy were not sustained, and an increase 

in mortality was observed (Uretsky et al., 1990; Packer et al., 1991) 

In parallel, both PDE4 (rolipram) and PDE5 (zaprinast and DMPPO) inhibitors produce 

endothelium-dependent relaxations in precontracted aortic rings (Konas et aI., 1991; Yu 

et aI., 1995; Delpy et aI., 1996; Kukovetz et aI., 1979: Delpy and Le Monnier de 

Gouville, 1996). The endothelium-dependent relaxations produced by specific PDE4 

and PDE5 inhibitors were inhibited by L-NMMA (inhibitor of the L-arginine-NO 

pathway) and by methylene blue (soluble guanylate cyclase inhibitor), suggesting 

vasorelaxations induced by these inhibitors are mediated by the endothelium-derived 

relaxing factor nitric oxide. Komas et al. (1991), also demonstrated that selective 

inhibition of PDE4 by denbufylline and rolipram relaxed rat aortic rings better in the 

presence than in the absence of a functional endothelium, and showed the biosynthesis 

and release of endothelium-derived relaxing factor was necessary for their effect. The 

PDE5 inhibitor E4021 dilates precontracted porcine large coronary artery in both the 

presence and absence of the endothelium. E4021 and was shown to be ~ 1 00 times more 

potent then zaprinast, and more effective if an intact endothelium was present. E4021 

caused a significant increase in [CGMP]i levels in these endothelium-denuded porcine 

coronary artery, however had no effect on [cAMPJi. These authors also demonstrated 

that E4021 induced a dose-dependent dilation of epicardial coronary artery in conscious 

pigs (Saeki et aI., 1995). Additionally, it has been shown that the PDE5 inhibitor 

MBCQ evokes a concentration-dependent relaxation in phenylephrine precontracted 

endothelium-intact resistance systemic arteries (Samson et aI., 2001). This 

concentration-dependent relaxation was potentiated significantly in the presence of the 

nitric oxide donor DEA NONOate (0.001nM-1~tM), and attenuated significantly in the 

presence of the soluble guanylyl cyclase inhibitor, ODQ (3 ~M). The highly selective 

PDE5 inhibitor, sildenafil (10"7_1 0"4M), also significantly relaxed rat aorta and human 

coronary artery, which appeared to be due to an increase in cGMP levels and inhibition 

of the Ca2+-dependent cascade for contraction (Medina et al., 2000; Machida et aI., 

2002). It is important to note, that for the maximal effect of any of the PDE inhibitors 

to be observed in systemic arteries, an intact endothelium is required. 

In airway smooth muscle selective inhibitors of both PDE3 and PDE4 partially reverse 

spontaneous tone in human isolated bronchi (Rabe et aI., 1993; Cortijo et al., 1993). 

These results are consistent with the presence of large amounts of both PDE3 and PDE4 
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in airway smooth muscle. Additionally, a combination of PDE3 and PDE4 or dual 

PDE3/PDE4 inhibitors such as zardaverine, have been shown to produce an even 

greater bronchorelaxant (Schudt et al., 1991; Trophy et al., 1993). In vivo PDE4 

inhibitors have been shown to reverse bronchospasm induced by histamine, leukotiene 

D4, or carbachol (Raeburn and Karlsson, 1997). It has been suggested by these authors 

and others, that an increase in basal cAMP might be required to see the full 

bronchorelaxant activity of both PDE3 and PDE4 inhibitors. As PDE 4 inhibitors are 

also known to reduce inflammatory and immunomodulatory responses, these data 

together suggest they may have a possible role in the treatment of asthma (Piaz and 

Giovannoni, 2000). 

Widespread attention has recently focused on the relaxation of corpus cavernosum 

smooth muscle by PDE inhibitors (in particular PDE5 inhibitors) for the effective 

treatment of male impotence. In human corpus cavernosum in vitro the PDE5 inhibitor, 

sildenafil, was shown to enhance NO-dependent relaxation in a concentration

dependent manner, and was shown to be 240-fold more potent than the early PDE5 

inhibitor zaprinast (Ballard et al., 1998). More importantly, following sexual 

stimulation, sildenafil has been shown to enhance NO-stimulated cGMP-mediated 

smooth muscle relaxation, increasing blood flow to the penis, improving penile 

erection. Likewise, in rabbit, sildenafil and zaprinast both either alone or m 

combination with sodium nitroprusside, relax the corpus cavernosum and mcrease 

cGMP production, however do not alter cAMP levels (Jeremy et al., 1997). In fact, 

sildenafil citrate (Viagra®) is currently used to treat male erectile dysfunction 

(Moreland et al., 1999; Boolell et al., 1996; Ballard et al., 1998; Goldstein et al., 1998; 

Corbin and Francis, 1999; Medina et al., 2000). Due to the development of new highly 

selective PDE inhibitors, such as sildenafil, new and promising therapeutic applications 

have been suggested, for example in the treatment of pulmonary hypertension. 

1.3.2. The role of PDEs in PHT 

Modulation of PDE function in cells is critical for maintaining cyclic nucleotide levels 

within a narrow rate limiting range of concentrations. Increased PDE activity would 

reduce the level of cyclic nucleotides, and thereby decrease the ability of agents that act 

through raising cAMP/cGMP to relax SMC. The decrease cyclic nucleotide 

concentrations and the increased tone seen previously with PHT by MacLean et al. 
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(1996), may therefore be a result of increased PDE activity. The lung is known to 

express all PDEs, with the exception of PDE6 (Rabe et al., 1994; Polson and Strada, 

1996; Dent et al., 1994; Soderling and Beavo 2000; Yuasa et al., 2000; Koyama et al., 

2001). Therefore, the control of cyclic nucleotides in the PA may be dependent on the 

activities of several different PDE isoforms. The employment of selective 

(monoselective) PDE inhibitors in biochemical and functional studies has helped to 

further identifY the possible roles of some of the PDE families in PHT. Using fast 

protein liquid chromatography Rabe et al. (1994) revealed the presence of high levels of 

a zaprinast sensitive PDE5, a Ca2+/calmodulin stimulated PDE1, a cGMP-inhibited 

cAMP-specific PDE3, and a cAMP-specific rolipram sensitive PDE4. Additionally, 

these authors demonstrated that specific inhibitors for PDE3, PDE4, and PDE5 all 

relaxed isolated preconstricted human PAs (Rabe et al., 1994). 

MacLean et al., 1997 reported an increase in both total cAMP and total cGMP PDE 

activity in the main, first branch, and intrapulmonary vessels from the CH, providing 

evidence for a role of PDEs in PHT. Furthermore, using specific inhibitors in the PDE 

assay, these authors determined how the activity of each PDE family studied was 

altered with chronic hypoxia. In the main, first branch and intrapulmonary arteries there 

was an increase in cilostamide-sensitive PDE3 activity. Additionally, in the majority of 

vessels studied, an increase in zaprinast-inhibited PDE5 activity was observed. No 

change was observed in PDE2 activity in any of the vessels studied, PDE1 was 

observed to only increase in the main PA, whereas PDE4 was found to decrease in the 

resistance vessels. These studies suggest that changes in cyclic nucleotide levels in CH 

appear to be associated, in most part, to increased PDE3 and PDE5 activity. The 

molecular mechanisms that may underlie the hypoxic-dependent increase in PDE3 and 

PDE5 activity in the PAs has not yet been established. Below will discuss further 

evidence for the role ofPDE3 and PDE5 in PHT. 

1.3.2.1. The role of PDE3 in PHT 

As outlined above PDE3 is known as the cGMP-inhibited cAMP-specific PDE, of 

which two subfamilies, PDE3A and PDE3B, have been identified in rASMC and 

hASMCs (Lui and Maurice, 1997; Palmer and Maurice, 2000). Commonly used 

specific PDE3 inhibitors include milrinone, amrinone, and cilostamide. Furthermore, 

compounds such as SKF94120, SKF94836, and Org 9935 are 30-100 fold selective for 
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PDE3, and used at appropriate concentrations are tools to assess the functional 

importance ofPDE3 (Reeves et ai., 1987; Murray et ai., 1991; Shahid et ai., 1991). A 

role of PDE3 is seen in response to cell proliferation, as exposure of SMC to hypoxia 

resulted in a time-dependent decrease in cAMP, which correlated with increased PDE3 

activity (Pinsky et ai., 1993). In addition, PDE3 inhibitors have been shown to 

attenuate serum-stimulated proliferation in rASMC (Pan et ai., 1994). The PDE3 

inhibitor SKF94836 has been shown to reduce serum stimulated DNA synthesis and 

proliferation by 30% in SMC, and enhance the antiproliferative effect of the cAMP 

elevating agent forskolin (Souness et ai., 1992). Additionally, Billington et ai., 1999, 

showed that siguazodan (PDE3 inhibitor) inhibited both eH]-thymidine incorporation 

and the increase in cell number induced by PDGF-BB (20ng/ml). 

Functional studies have shown PDE3 inhibitors could be useful in the treatment ofPHT. 

Both milrinone (0.01-156~M) and SCA40 (0.01-31~M) have been shown to be 

effective in relaxing preconstricted PAs. However, importantly both PDE3 inhibitors 

remained potent in the PAs from CH (Jeffery and Wanstall, 1998). In a similar study, 

SCA40 reversed the preconstriction induced by phenylephrine in the main and 

intrapulmonary PAs, and was 4.9-fold more potent in the hypoxic PAs than in the 

control PAs (Crilley et ai., 1998). Clarke et ai. (1991), showed inhibition of PDE3 by 

amrinone reduces PVR in isolated perfused lung. Milrinone has been shown to 

significantly decrease the mean PAP and PVR in the hypoxic dog, and in early clinical 

trials to lower the pulmonary capillary pressure in patients with heart failure. (Kato et 

ai., 1998; Baim et ai., 1983, Jaski et ai., 1985). Furthermore, cilostamide has been 

shown to attenuate both acute and chronic hypoxia induced PHT (Phillips et ai., 2000). 

PDE3 inhibition has also been show to improve agonist-induced relaxation of PAs from 

CH. Wagner et ai. (1997), demonstrated that a combination of the PDE3 inhibitor 

milrinone, and the PDE4 inhibitor rolipram, significantly reduced the magnitude of the 

contractile response to U46619 in PAs from CH. 

PDE3 inhibitors are also known to have positive inotropic and vasodilatory actions in 

the systemic circulation, which would unfortunately lead to harmful side effects when 

treating PHT (Beavo, 1995). It may be possible that co-administration with other PDE 

inhibitors or pulmonary vasodilators would allow the use of subthreshold doses (which 

under clinical conditions do not have other cardiovascular side effects e.g. inotropy) of 

PDE3 inhibitors in the treatment ofPHT. 
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1.3.2.2. The role of PDE5 in PHT 

PDE5 has been characterised as the cGMP-binding, cGMP-specific PDE, and has been 

identified as the main cGMP-binding protein in the lung (Francis et al., 1990; Thomas 

et al., 1990). PDE5 was first purified from rat lung using sequential chromatography on 

DEAE-cellulose, blue sephrose CL-6B, zinc chelate adsorption and HPLC-TSK DEAE 

5PW (Francis and Corbin, 1988). The predicted molecular weight of PDE5 from the 

open reading frame (ORF) of isolated cDNA was 99kDa (McAllister et al., 1993). 

PDE5 has been cloned not only from rat (PDE5Al and PDE5A2), but also from human 

(PDE5Al, and PDE5A2) lung tissue (Kotera et al., 1999; Loughney et al., 1998). The 

molecular weight of PDE5Al and PDE5A2 from lung tissue, are 98kDa and 93kDa 

respectively. 

PDE5 has been shown to have a role in modulating normal pulmonary vascular tone at 

birth. At birth there is known to be a dramatic increase in pulmonary blood flow and a 

decrease in PVR. Sanchez et al. (1998), demonstrated this decrease in PVR in both 

ovine and mice lungs could be correlated with a decrease in PDE5 activity, protein and 

mRNA. These results would suggest that a low level of PDE5 activity may playa role 

in controlling the low basal tone in the adult pulmonary circulation. With respect to 

PHT, increased PDE5 activity has been reported not only in the PAs of CH, but also in 

the lung from the ovine foetal model of PHT (MacLean et al., 1997; Hanson et al., 

1998b). Hanson et al. (1998b), demonstrated that the increased PDE5 activity seen in 

pulmonary hypertensive animals compared with control animals may be due to an 

increase in the phosphorylation of PDE5. These results are consistent with findings by 

Black et al. (2001), showing PDE5 protein expression is increased in lambs with PHT, 

induced by aorta-pulmonary vascular graft replacement. Increase PDE5 would explain 

the impaired responsiveness to cGMP-dependent vasodilators such as SNP, and the 

decrease in cGMP in the conduit PAs from CH (Oka, 2001, MacLean et al., 1998a). 

It can be hypothesized that PDE5 inhibitors would increase cGMP levels in the lung and 

help to prevent the development of hypoxia-induced PHT. In fact, various PDE5 

inhibitors have been shown to be effective pulmonary vasodilators. PDE inhibitors act 

by competing with cGMP to bind to the catalytic site, but not the allosteric sites, of 

PDE5 (Francis et al., 1990; Corbin and Francis, 1999). In conscious rats previously 

exposed to chronic hypoxia, i.v. DMPPO (1flM) caused a dose dependent decrease in 
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PAP with no corresponding change in the systemic artery pressure or cardiac output 

(Eddahibi et at., 1998). Chronic treatment with DMPPO during the 2 weeks of hypoxia 

reduced the muscularisation of the PA at the level ofthe alveolar wall and alveolar duct, 

preventing the development of pulmonary vascular remodelling (Eddahibi et at., 1998). 

Additionally, Jeffery and Wanstall (1998), demonstrated, like milrinone, zaprinast 

(0.2~M-625~M) was also effective at relaxing main PA from CH in a concentration 

dependent manner. Importantly zaprinast remained potent in rats with established PHT 

(4 weeks). Inhaled zaprinast has also been shown to selectively dilate the pulmonary 

circulation in lambs with U46619-induced PHT, and to enhance to pulmonary 

vasodilatory effects of inhaled NO (McMahon et at., 1993; Ichinose, 1995a; Ichinose et 

at., 1995b; Steinhom et at., 2000). 

Previous studies have shown that the PDE5 inhibitors such as zaprinast or dipyridamole 

lack specificity and potency. For example, zaprinast also inhibits at least one other 

isoform, PDE1, and requires prolonged periods of incubation to elevate cGMP levels 

(Murray et at., 1991). Dypyridamole is also an adenosine reuptake inhibitor, which 

may result in misinterpretation of results (Zeigler et at., 1995). E4021 and E4010 are 

new more selective PDE5 inhibitors with no detectable effects on PDE1, PDE3 or 

PDE4. E4010 has been shown to improve mortality in MCT-induced pulmonary 

hypertensive rats by 84.4% (Kodama and Adachi, 1999). These authors demonstrated 

that rats treated chronically with 0.1% E4010 in their diet showed reduced right 

ventricular hypertrophy and increased plasma cGMP levels, compared to rats treated 

with vehicle. Likewise, in the CH a single oral dose of 1.0mg/kg E4010 attenuated the 

development of hypoxia-induced PHT, reducing the increase in PAP and reducing the 

characteristically right ventricular hypertrophy and increased medial wall thickness, 

with no significant systemic side-effects (Hanasato et at., 1999). 

Furthermore, Cohen et at., 1996, demonstrated that E4201, caused a dose-dependent 

inhibition of hypoxic vasoconstriction in isolated perfused lungs from chronically 

hypoxic treated rats. In PHT rat lungs, E4021 increased intracellular cGMP 3-fold and 

reduced hypoxic vasoconstriction by 58 ± 2% (Cohen et at., 1996). E4021 also reduced 

PAP in conscious PHT rats by 12.6 ± 3.7%, with importantly no systemic effects 

(Cohen et at., 1996). In MCT -treated rats, oral administration of the PDE5 inhibitor 

E4021 (lOOmg/kg/day) reduced the immunoreactivities of ET-1 and endothelial NOS, 

and reduced right ventricular overload and medial thickening (Takahashi et at., 1998; 
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1996). These authors showed myofibril diameter, medial thickness and smooth muscle 

were significantly lower on treatment with E4021, demonstrating a role for increased 

PDE5 in smooth muscle proliferation in PHT. Together these studies suggest a positive 

role for PDE5 inhibitors in the treatment ofPHT. 

Another newly developed and potent PDE5 inhibitor is sildenafil (1-[4-ethoxy-3-(6,7-

dihydro-1-methyl-7 -oxo-3-propyl-1-H -pyrazo 10 [3, 4-d]pyrimidin-5-yl)phenylsulfonyl]-

4-methyl-piperazine). Sildenafil has been shown to have high affinity for PDE5 and 

PDE6 with the respective inhibition constants of Ki of ~3.5 and 33nM (Ballard et al., 

1998). The order of potency of sildenafil compared to some commonly known PDE5 

inhibitors is sildenafil (most potent) > zaprinast > dipyridamole> IBMX > cilostamide 

> theophyylline > caffeine> rolipram (Thomas et aI, 1990; Ballard et aI, 1998). 

Sildenafil, like most PDE5 inhibitors, stimulates cGMP binding to the allosteric sites of 

PDE5 by interacting at the catalytic site of this enzyme, however does not compete with 

cGMP. Illarion and co-workers concluded that residues such as TYR602, HIS607, 

HIS643, and ASP754 appear important for the interaction of sildenafil with PDE5 

(Illarion et al., 1999). As outlined previously sildenafil citrate (Viagra®) is currently 

used to treat male erectile dysfunction (Moreland et al., 1999; Boolell et al., 1996; 

Ballard et al., 1998; Goldstein et al., 1998; Corbin and Francis, 1999; Medina et al., 

2000). 

These studies opened up the possibility that this new PDE inhibitor may be effective in 

the treatment of PHT (Sanjay et al., 2000). Osinski et al. (2001), demonstrated that 

sildenafil has an antimitogenic effect on SMC, which was significantly potentiated 

when administered in combination with organic nitrates. Zhao et al. (2001), examined 

the effect of sildenafil on hypoxia-induced PHT in mice and healthy human volunteers. 

PHT was induced in healthy male volunteers by breathing in low oxygen causing a 56% 

increase in blood pressure in the P A. Sildenafil (100mg) inhibited the hypoxic rise in 

PAP without significantly affecting the systemic circulation. The reduction in PAP was 

reproduced in isolated mouse lung. Additionally, sildenafil attenuated the increase in 

PAP, RV hypertrophy, and remodelling in mice chronically exposed to hypoxia (Zhao 

et al., 2001). Both these results were consistent with increases in plasma cGMP levels, 

and show a role for PDE5 inhibition by sildenafil in the treatment of PHT. 

Furthermore, in a randomised controlled trial, sildenafil caused selective pulmonary 
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vasodilation and improved gas exchange in individuals with PHT secondary to lung 

fibrosis (Ghofrani et al., 2002). 

Interestingly from clinical trials with sildenafil only transient mild or moderate side 

effects were seen. A clinical trial by Goldstein et al., (1998), found the main side 

effects to be headache, flushing, dyspepsia, rhinitis and visual disturbances. Although 

Sampson et al., 1999, did show expression of PDE5 mRNA and protein in systemic 

resistance arteries, sildenafil is only a modest vasodilator in these vessels causing only a 

small decrease in systemic arterial pressure and a mild reduction in preload and 

afterload. Together, these results suggest sildenafil might be extremely beneficial in the 

treatment of PHT, as it appears to be pulmonary specific. In addition, researchers have 

now begun to develop PDE5 inhibitors that are even more selective than sildenafil, such 

as vardenafil hydrochloride, which may reduce PAP with even fewer unwanted side

effects (Bischoff et al., 2001). 

1.3.3. The role of POEy in PHT 

As outlined in 1.3.1.6 the activity ofPDE6 is regulated through its interaction with the 

inhibitory subunit PDEy. In photoreceptors Py is known to inhibit PDE6 activation, 

thereby inhibiting cGMP hydrolysis. Each step of the GTP-hydrolytic cycle of 

transducin is closely related to molecular state of PDEy (Morrison et al., 1987). Two 

functionally similar PDEy exist, PDEy1 (rod) and PDEy2 (cone), differing in their 

amino-terminal regions and their location in the retina (Hamilton and Hurley, 1990). 

The carboxyl-terminal domains, which are essential for the inhibitory action against 

PDE6 and for stimulating transducin GTPase, are almost identical (Brown, 1992; Lipkin 

et al., 1990; Skiba et al., 1995, Slepak et aI., 1995). Furthermore, as a result of a 41 

base pair deletion, two isoforms of PDEy2 exist, namely long PDEy2 and short PDEy2. 

It is thought the two forms of PDEy2 may be important at different stages of 

development, or in different cell types. PDEy is phosphorylated by several kinases 

including p42/p44 MAPK, PKC, PKA and PDEy kinase (Hayashi et al., 1991; 

Udovichenko et al., 1994; Xu et al., 1998). 

It has recently been suggested that PDEy may have a wider role in mammalian cells 

other than photoreceptors. Evidence for a role of PDEy other than in the retina is the 

expression of PDEy1 in lung, kidney, testes, liver, heart, airway smooth muscle and 
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HEK 293 cells, and its absence in all these tissues from PDEyl knockout lllice 

(unpublished data from the lab, Wan et al., 2001, Tate et al., 1998; Tate et al., 2001). 

The presence of PDEy throughout the body cannot however be explained by its 

association with PDE6, as PDE6 is only found in the eye. Hence it was suggested that 

as PDE5 shares common structural and functional properties with PDE6, PDE5 may 

have its own PDEy subunits controlling its regulation. Both PDE5 and PDE6 display a 

high degree of identity (45-48%) between the catalytic domain, posses cGMP binding 

sites, hydrolyse cGMP better than cAMP, and are both sensitive to a common set of 

competitive inhibitors. (McAllister-Lucas et al., 1993; Gillespie and Beavo, 1989; 

Turko et al., 1999; Gonzalez, 1999). These authors also demonstrated PDE5 contains a 

region that has some homology with the sites in the PDE6 catalytic domain subunits 

(residues 481-540) and 479-538 in PDE6a~ that interact with the polycationic region of 

Py. In fact, Lochhead et al., 1997 identified two small molecular mass proteins termed 

p14 and p18 in guinea-pig airway smooth muscle cells and mouse lung (where PDE5 is 

the major cGMP binding protein, Burns et al., 1992), which cross-reacted with 

antibodies raised to the polycationic mid-region and C-terminal region of PDEy. 

p14/p18 was shown to form a complex with PDE5, as PDE activity was 

immunoprecipitated using antibodies against the PDEy subunit. Furthermore, 

recombinant PDEy and a peptide corresponding to amino acids 24-46 of PDEy have 

been shown to modulate PDE5 activity by preventing its activation by PKA in a 

concentration-dependent manner (Tate et al., 1998, and Lochhead et al., 1997). It was 

suggested that PDEy may, through its possible interaction with PDE5, govern the 

duration and kinetics of cGMP signalling in mammalian cells. It is possible that the 

binding of PDEy to PDE-5 may be altered under hypoxic conditions, explaining the 

increase in PDE5 activity observed in PA ofCH (MacLean et al., 1997). 

In addition, PDEy has been shown to stimulate the proteolysis of PDE5 by caspase-3 

and caspase-8 in vitro (Frame et al., 2001). In both in vitro and in intact cells, Frame et 

al., 2001 demonstrated that caspasel, 3, 6, 7, 8, and 11 all cleave PDE5Al, reducing its 

hydrolysing activity. In the presence of PDEyl, caspase-3 induced an approximately 

80% reduction in the activation of the partially purified preparation of PDE5Al. As 

caspases (cystinoaspartic acid specific proteases) are important mediators of apoptosis 

this study suggests that under conditions of cellular stress, PDEy may promote cleavage 

of PDE5 by caspase-3, inducing apoptosis. PDE inactivation through a subsequent 
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increase in cGMP has been shown to regulate apoptosis via the nitric oxide pathway. 

Nitric oxide has been shown to induce apoptosis in cardiomyocytes and endothelial 

cells via a cGMP-dependent pathway (Shen et at., 1998; Shimojo et at., 1999). 

Therefore, it may be that caspases exert their apoptotic action by inhibiting PDE5A1, 

thereby increasing cGMP concentrations. It is possible that under stress PDEy may 

promote cleavage ofPDE5A1 by caspase-3, prolonging cGMP-mediated cell signalling. 

Recently a wider role for Py in signal transduction has been suggested. As PDEy is an 

important link between rhodopsin activated transducin and cGMP gated channels, it was 

proposed that PDEy1 and PDEy2 maybe expressed in other tissues where they regulate 

other receptor-G-protein-mediated pathways, such as p42/p44 MAPK. A role for PDEy 

in regulating EGF- and thrombin mediated activation of p42/p44 MAPK has been 

recently identified in HEK293 cells (Wan et at., 2001). These authors demonstrated 

that the EGF- and thrombin dependent activation of p42/p44 MAPK was prevented in 

human embryonic kidney (HEK) 293 cells transfected with anti-sense rod PDEy, 

however augmented in HEK293 cells over expressing recombinant rod and cone PDEy. 

Data also suggested that phosphorylation of the Thr-62 in rod PDEy by GRK2 (G

protein-coupled receptor kinase 2) is required for the increase in p42/p44 MAPK 

activation following EGF and thrombin stimulation. This was based on evidence 

showing the over-expression of recombinant GRK2 and/or recombinant PDEy increased 

the activation of p42/p44 MAPK by both EGF and thrombin. Furthermore, a GRK2 

resistant rod Py mutant prevented the increase in the EGF- and thrombin-dependent 

activation ofp42/p44 MAPK, acting as a dominant negative. 

The formation of a complex between PDEy and dynamin II induced by EGF and 

thrombin was also suggested. Thrombin was shown to stimulate the association of 

endogenous PDEy1 with dynamin II, which may be required for the endocytosis of 

receptor signal complexes leading to the activation of p42/p44 MAPK and cell 

proliferation (Wan et at., 2001). This interaction was increased in rod PDEy and GRK-

2 transfected cells. Dynamin II is known to interact with proteins containing SH3 

binding sites. Rod PDEy contains a SH3 binding site at 20PVTPRKGPP28, providing 

further evidence that it may interact with dynamin II via a SH3 domain containing 

protein. PDEy was therefore speculated to be a GTPase activating protein, that interacts 

with dynamin II to promote the "pinching off" of endocytic vesicles, bringing activated 

I 
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MEK closer to p42/p44 MAPK in the cytosol, leading to its phosphorylation and 

subsequent activation. 

As PDEy may have a role as an intermediate in p42/p44 MAPK signalling, it may be 

that changes in its expression have a profound effect on cellular proliferation in PAin 

response to hypoxia. Therefore it would be of interest to investigate the expression of 

PDEy1l2 in rat PA and hP ASMC, and to determine the effect of chronic hypoxia. 

1.4. AIMS 

The aim was to further investigate the possible roles of PDE5 and PDE3 in PHT. 

Initially the main objective was to establish the molecular mechanisms that may 

underlie the hypoxic-dependent increase in PDE3 and PDE5 activity in the PAs. As 

chronic hypoxia can also induce the activation of the NF-KB, a further aim was to 

investigate ifPDE3 or PDE5 may be under control ofthis pathway. 

Additionally, the vasorelaxant properties of the PDE3 inhibitor SKF94836, and the 

PDE5 inhibitor sildenafil, in the P A was evaluated. Furthermore, the aim was to 

determine if the vasorelaxant effects are dependent on the endothelium, the nature of the 

preconstrictor, and the size of the PA. It was also necessary to investigate if both 

inhibitors are still effective in the PAs from CH. 

Also, as PDEy is expressed in non-retinal tissue, and appears to have a role in the 

p42/p44 MAPK pathway, or modulating PDE5 activity, the final aim was to investigate 

whether PDEy1l2 is expressed in rat PA and hP ASMC, and to determine the effect of 

chronic hypoxia. These novel studies were intended to show a possible wider role of 

PDEy in signal transduction and PHT. Completion of all these objectives are hoped to 

further elucidate pathways involved in the response to hypoxia in order to highlight 

possible novel targets for treatments ofPHT. 
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CHAPTER 2 

MATERIALS AND METHODS 



Chapter 2. Materials and Methods 

2.1. Materials 

Unless otherwise stated, all reagents were obtained from Sigma chemical company 

(UK.), or BDH (UK.). 

Anachem (UK.) 

30% (w/v) Acrylamidelbis (29: 1). 

Amersham Pharmacia Biotech (UK.) 

DNA Polymerase Mix (dNTPS), GFX™ PCR and Gel Purification Kit, 

Hybond™ECL nvI Nitrocellulose Membrane. 

Amersham International p.1.c. (UK.) 

3H-cAMP and 3HcGMP (37mCi/mmol, 1850kBq/mmol) 

BD Transduction Laboratories (UK.) 

Anti-phospho-p42/p44 MAPK, and Anti-total (p42) MAPK Antibodies 

BIO-RAD (UK.) 

BIO-RAD Protein Assay Reagent, Mini-Protean II Electrophoresis cell, Trans Blot cell 

Bio Wittaker (UK.) 

Human Pulmonary Artery Smooth Muscle Cells (hP ASMC), Smooth Muscle Cell 

Growth Medium (SmGM-2 bulletkit system) 

Calbiochem-Novabiochem (UK.) 

Anti-Phosphodiesterase 5 Antibody. 
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Clonetech laboratories Inc (USA) 

Rat Glyeraldehyde-3-Phosphate Dehydrogenase (G3PDH) Control Amplimer Set. 

Dr. R. Cote (University of New Hampshire, USA) 

Anti-PDEy Antibody raised to the C-Tenninal Domain of Photoreceptor PDEy. 

Eastman Kodak Company (UK.) 

Kodak Digital Camera, Kodak Digital Science ™ ID Image Analysis Software. 

GalaxoSmithkline (U.K.) 

SKF94836 (PDE3 inhibitor, M.W. 270) 

H.A. West (UK.) 

Kodak LX24 Developer and Kodak Industrex Fixer. 

Helena Biosciences (UK.) 

Phoenix thermal cycler. 

Life Technologies (UK.) 

DNase I Amplification Grade, Oligo dt(18), Primers (PDE3A, PDE3B, PDE5A, PDEy), 

Superscript II Reverse Transcriptase, Taq Polymerase, 100bp DNA Ladder, All general 

cell culture materials. 

PE-Applied Biosystems (UK.) 

BigDye Dye Terminator Cycle Sequencing Kit. 

Pharmacia Biotech. (UK.) 

Genequant II, RNAIDNA Calculator. 
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Pfizer (U.K.) 

Sildenafil (PDE5 inhibitor, M.W. 430) 

Qiagen (U.K.) 

QIA Shredder, RNeasy Total RNA Isolation Kit. 

Royal Hallamshire Hospital, Sheffield (U.K.) 

Hypobaric chamber. 

RS Biotech. (U.K.) 

Galaxy CO2 incubator - Oxygen Control. 

Scottish Antibody Production Unit (U.K.) 

Horseradish peroxidase-linked Anti-rabbit IgG, and Anti-mouse IgG. 

2.2. Methods 

2.2.1. Models of Pulmonary Hypertension 

2.2.1.1. Animal model - Hypoxic/Hypobaric Rat 

In order to mimic the etiology of hypoxia induced pulmonaIY hypertension (PHT), male 

Wistar rats (specific pathogen free) were exposed to low oxygen by reducing the 

atmospheric pressure in a purposed built chamber (Hypoxic Hypobaric model). The 

hypoxic hypobaric chamber is designed and manufactured by the Royal Hallamshire 

Hospital, Sheffield, and can hold two standard rat cages each with a maximum of four 

rats. As the atmospheric pressure decreases, this leads to the decrease of the partial 

pressure of the gaseous components of air, and hence decreases the partial pressure of 

O2 (p02) inspired. The pressure within the chamber was decreased to 550mbar, this 

reduced the inspired p02 to approximately 11 OmmHg (~1O% equivalent). The chamber 

was ventilated with air at approximately 451min-1
, and initially depressurised slowly 
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over a period of two days. Every three days, when the animals required fresh water and 

food, the chamber was gradually taken up to atmospheric pressure over two hours. 

Following cleaning of the cages, the pressure in the chamber was then returned to 

550mbar again over two hours. Age matched controls were maintained under 

normoxic/normobaric room conditions (20% v/v oxygen) for two weeks. 

In both the control and hypoxic animal studies, male Wi star rats were 28-30 days of age 

at the start of all experiments. All animals were maintained at 21-22oC on a twelve hour 

light-dark cycle, and allowed free access to standard food and water. After the two 

weeks, the average weight of both the control and hypoxic rats was approximately 200g 

(see figure 3.3.1). 

2.2.1.1.1. Sacrifice and dissection 

All animals were killed via an overdose of sodium pentabarbitone (60mg/kg-1 i.p.). 

After weighing, the heart and lungs were carefully dissected free and placed in cold 

Krebs. Using a microscope the main pulmonary aliery (4-5mm, i.d.), first branch 

pulmonary artery (2-3mm, i.d.), intrapulmonary (0.2-2mm, i.d.), and resistance vessels 

(100-300Ilm, i.d.) were removed and cleaned of adherent tissue. Pulmonary arteries 

were then either kept in cold gassed Krebs-Heinslet solution [118.4mM NaCI, 25mM 

NaHC03, 47mM KCI, 1.2mM KH2P04, 1.2mM MgS04, 2.5mM CaCh, 11mM, pH 7.4] 

at 4°C (for no more than 24hrs) for use in organ bath experiments (2.2.4.), or transferred 

directly into liquid nitrogen then stored at -80°C to allow protein and RNA extraction at 

a later date (2.2.2, or 2.2.3.). 

2.2.1.1.2. Assessment of pulmonary hypertension 

PulmonalY hypertension is characterised by right ventricular hypertrophy (Hunter, et 

aI., 1974, Leach et aI., 1977). The ratio of right ventricular weight (RV) to total 

ventricular weight (TV) was used as an index of right ventricular hypertrophy in this 

study (Hunter, et aI., 1974). After the removal of the pulmonary arteries, the heart was 

dissected free from the remaining lung lobes, atria, and remaining vessels. The right 

ventricle (R V) was then cut from the septum and left ventricle, blotted and weighed. 

The left ventricle (LV) was incised to remove any blood clots, then together with the 

septum blotted, and both weighed with the right ventricle to give total ventricular 

weight (TV, See figure 3.3.2). 
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Measure of PHT = RV weight/TV weight 

2.2.1.2. Cellular model - hPASMC 

As cells are more amenable for biochemical analysis a cellular model was designed to 

try and mimic any changes that had been seen with hypoxia in the animal model. 

Human pulmonary artery smooth muscle cells (hP ASMC) were obtained from Clonetics 

(Biowhittaker). 

On receipt, the clyopreserved hPASMC [In SmGM-2 supplemented with 10% v/v fetal 

bovine serum, and 10% dimethyl sulfoxide (DMSO)], were immediately transferred 

into liquid nitrogen storage. Each vial of cryopreserved cells came with a certificate of 

analysis showing seeding efficiency, number of cells per ampule (guaranteed to contain 

~ SOO,OOO viable cells) and donor information. The growth medium was smooth muscle 

growth medium (SmGM), which had been optimised for the proliferation of smooth 

muscle cells (BioWhittaker). The SmGM was prepared using smooth muscle basal 

medium (SmBM, SOOml), and the addition of the following single-use aliquots; O.Sml of 

O.Sllg/ml human recombinant epidermal growth factor, 1ml of 1llg/ml human 

recombinant fibroblast growth factor, O.Sml of Smg/ml insulin, 2Sml foetal bovine 

serum, and O.Sml each of SOmg/ml gentamicin, and SOIlg/ml amphotericin-B (SmGM-2 

bullet kit). On removal from liquid nitrogen, cells were seeded into T-2S flasks (growth 

area of 2Scm2) at the recommended seeding density of 3S00cells/cm2 using the 

following calculations: 

Max. area that can be plated = No. of cells availablelRecommended seeding density 

Max. no. flasks set up = Max. Surface area that can be plated/Growth area of flask 

The growth medium was always added to flasks prewarmed at 1ml SmGM-2 for every 

Scm2 surface area of the flask, this increased to 2ml per Scm2 surface area as confluency 

was reached. The day after seeding, in order to remove residual DMSO and unattached 

cells, the growth medium was changed, then every third day thereafter. All cells were 

initially kept in a RS Biotech-Galaxy CO2 incubator set at S%C02, 9S%air, humidified 

incubator set 37°e. The cultures were regularly examined microscopically for any signs 

of stress such as detachment, rounding-up or atypical morphology. 
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The cells were checked daily until 70-90% confluency had been reached, at which time 

each flask was split 1:3. The cells arrived at passage three (P3) and were used in each 

experiment before or at P8, as human cell systems have a finite lifespan ;'1 vitro. 

For RNA or protein extraction, control/treated cells were washed with sterile phosphate 

buffered saline (PBS, 10mM KH2P04, 10mM K2HP04, 0.9% w/v NaCl), then two 

protocols were followed as in section 2.2.2.1, and 2.2.3.1 respectively. 

2.2.1.2.1. Passage of hPASMC by Trypsination 

Cells were passaged at 70%-90%, as over confluence resulted in irreversible contact 

inhibition (BioWhittaker). In order to subculture the hPASMC, filter sterilised trypsin 

[2.125g NaCl, O.lg KCI, 0.288g Na2HP04, 0.05g KH2P04, 0.25g Trypsin (lO%w/v), 

0.45g Glucose, 0.0626g EDTA, pH7.2 in 250ml dH20] was used to detach cells from 

flasks by proteolytic and collagenolytic enzyme degradation. After removing the 

medium, cells were washed with 5mBM (serum free media), to allow quicker and more 

effective trypsination. On removal of the serum free medium, 1-2 ml (for T -75, all 

volumes were adjusted accordingly flask size) of trypsin was added to each flask, which 

were returned to the incubator for 4-5 minutes. Complete cell detachment was checked 

by examination under the microscope. The trypsin was then neutralised with at least an 

equal volume of SmGM-2, after which the cells were pipetted into centrifuge tubes and 

centrifuged at 750rpm for 2% minutes. Once the supernatant had been aspirated off, the 

pellet was resuspended on addition of approximately 3ml SmGM-2. Iml from each 

centrifuge tube was then transferred into a T -7 5 flask containing 9ml of prewarmed 

5mBM, then returned to the incubator. The medium was always changed the day after 

trypsination to remove residual trypsin and non-attached cells. 70-90% confluence was 

usually achieved after 7-10 days. During this study cells were used at or before passage 

8 (P8). 

2.2.1.2.2. Hypoxic hPASMC Model 

In order to mimic the animal model as closely as possible, the cells, were maintained in 

10% O2. After changing the media following passage, flasks were split into two groups. 

Half the flasks were returned to the normoxic incubator (2.2.1.2.), and half were 

transferred to the hypoxic incubator (RS Biotech - Galaxy CO2 incubator oxygen 

control, 10% O2, 5%C02, balanced N2, humidified, set 37°C). Initially cells were 
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grown 111 the hypoxic incubator for 24 hours to 2 weeks to determine optimal 

conditions. At all times the hypoxic cells were treated identically to the control cells i.e. 

fed every three days and passaged when 70 - 90% confluent. 

2.2.1.2.3 Addition of Drugs to hPASMC. 

In order to explain some of the hypoxic dependent changes, and to determine cellular 

signalling pathways involved, chosen inhibitors and stimulators were added to the cells 

in culture. Table 2.1 shows the drugs added, the concentrations that they were used at, 

how frequently they were added to cells, and whether the drugs were added to the cells 

in serum free medium. All drugs were dissolved in dH20. Before each experiment, 

cells were quiescent [this refers to growing the cells for 24 hours in serum free media 

(SmBM)]. 
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DRUG FINAL NUMBER OF MEDIUM DRUGS 

CON CENTRA TION ADDITIONS AND WERE ADDED 

PERIOD OF TO 

INCUBATION 

8-BI'-cAMP 100~ One addition for SmGM 

24hours when fresh 

medium was added. 

TLCK 100~ Replaced every SmGM 

three days for two 

weeks, on addition 

of new medium. 

H8 50~LM Replaced every SmGM 

three days for two 

weeks, on addition 

of fresh medium. 

EGF 50ng/ml One addition for 5mBM 

5minutes 

PDGF lOng/ml One addition for 5mBM 

5mimltes 

Table 2.1. Drugs used to treat hPASMC 

Table of the drugs added to hP ASMC cells, the final concentration in the flask, the 

period of incubation, and the medium the cells were growing in when exposed to each 

drug. The abbreviations used are: 8-Br-cAMP, 8-Bromoadenosine 3'5'-Cyclic 

Monophosphate; TLCK, Na-p-Tosyl-L-Lysine Chloro-Methyl Ketone; H8, N-[2-

(Methylamino )ethyl]-5-isoquinolinesulfonamide 2HCI]; EGF, Epidermal Growth 

Factor; PDGF, Platelet Derived Growth Factor; SmGM, smooth muscle growth 

medium; 5mBM, serum free smooth muscle basal medium. 



2.2.2. Molecular Analysis 

2.2.2.1. RNA isolation from rat pulmonary artery and hPASMC 

RNase free equipment was used at all time. For isolation of RNA from rat pulmonary 

arterial branches, the tissue was initially ground to a fine powder in liquid nitrogen with 

a mortar and pestle. 600111 buffer RNeasy lysis buffer (containing 14.5M ~

mercaptoethanol) was then added according to manufacturers guidelines (Qiagen), and 

the tissue homogenised by passing the lysate through a 25 gauge (G) needle five times. 

For isolation of RNA from hPASMC, initially the medium was aspirated and the cells 

washed with sterile PBS. The hP ASMC were scraped in 600111 of RNeasy lysis buffer 

(containing 14.5M ~-mercaptoethanol), then passed through a 25G syringe needle five 

times. 

Both the tissue and celllysates were then pipetted onto QIAshredder (Qiagen) columns 

sitting in 2ml collection tubes and centrifuged at maximum speed (12,000rpm). Total 

RNA was extracted according to the RNeasy protocol instruction (Qiagen). In order to 

prevent potential contamination £i'om genomic DNA, an incubation step with 4 units of 

DNase at 37DC for 15 minutes followed by a second RNA extraction (clean up protocol, 

Qiagen) were included. Total RNA was eluted in RNase free H20 and stored at _20De. 

To determine the concentration and purity of RNA the absorbency was measured at 

260nm (A260) and 280nm (A280) in a spectrophotometer (genequant II). The RNA 

was only used if a yield of 251lg of RNA per ml or greater was achieved, with a ratio 

between 1.5 and 2 (ratio between the absorbency values at 260 and 280nm gives an 

estimate of RNA purity). 

2.2.2.2. Reverse Transcription Reaction 

First strand synthesis was carried out in each reaction using Illg total RNA catalysed by 

the enzyme superscript II reverse transcriptase (200units). The reaction was primed 

using 500ng of 0Iigo(dt)18, in a final volume of 20111. The reverse transcription mixture 

also contained 200llM dNTP, 1 x first-strand buffer [50mM Tris-HC1(pH 8.3), 75mM 

KC1, 3mM MgCh, life technologies], and ImM DTT. First strand synthesis was carried 
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out for 90 minutes at 42°C, then inactivated at 70°C for 15 minutes. One fifth of the 

cDNA was used as a template in subsequent PCRs. Each time first strand synthesis was 

performed, a separate reaction was carried out minus reverse transcriptase (-RT), in 

order to establish a lack of genomic DNA. 

2.2.2.3. Polymerase Chain Reaction - Semi Quantitative 

The polymerase chain reaction (PCR) allows the amplification of specific DNA 

sequences in vitro by the simultaneous primer extension of complementary strands of 

DNA. PCR amplifications were performed using gene specific forward and reverse 

primers (see below for sequences). Primers were all designed to Genebank sequences 

for each product of interest, and all primers were checked in Genebank to exclude the 

possibility of sequence homology with other genes. The PDE3A and PDE3B primers 

were designed to amplifY regions corresponding to 3011-3415 and 2902-3201 in human 

PDE3A and PDE3B respectively. The PDE5A primers were designed to amplifY 2338-

2637 in bovine PDE5A. 

Primers: 

PDE3A sense, 5' -CTG GCC AAC CTT CAG GAA TC-3' 

PDE3 A antisense, 5' -GCC TCT TGG TTT CCC TTT CTC-3' 

PDE3B sense, 5'-AAT CTT GGT CTG CCC ATC AGT CC-3' 

PDE3B antisense, 5'-TTC AGT GAG GTG GTG CAT TAG CTG-3' 

PDE5A sense, 5'-CGA TGC TGA TGA CAG CTT GTG ATC-3' 

PDE5A antisense, 5' -CAA GAG CTT GCC ATT TCT GCC-3' 

PDEyl sense (Y00746 Forward), 5' -ATG AAC CTG GAG CCA CCC-3' 

PDEyl antisense (Y00746 Reverse), 5'-GCT CAC ATA GCA GGG ATC AGA-3' 

PDEyl antisense (C-terminal reverse), 5' -AAT GAT GCC ATA CTG GGC CAG-3' 

PDEy2 sense, 5' -CGG GAT CCC GCC ACC ATG AGC GAC AGC CCT TGC C-3' 

PDEy2 antisense, 5'-ccc AAG CTT GGG TCC TCA GAT GAT CCC GAA CTG-3' 
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G3PDH sense, 5'-TGAAGG TCG GTG TCAACG GATTTG GC-3' 

G3PDH antisense, 5' -CAT GTA GGC CAT GAG GTC CAC CAC-3' 

Amplification was pelformed in a 50111 volume PCR mixture containing: PCR reaction 

buffer (lOmM Tris-HCL, 50mM KCI), 1.5mM MgCh, 0.2mM dNTP mix, 11lM of each 

primer, 200ng of cDNA and 2.5 units of Taq DNA polymerase (heat stable enzyme that 

synthesises DNA from single-stranded templates in the presence of primers). Equal 

loading of cDNA was confirmed using rat glyceraldehyde-3-phosphate dehydrogenase 

(G3PDH) specific primers in the reaction mixture. Mineral oil was added over each 

sample to prevent evaporation during denaturation. The reaction was progranmled in a 

Phoenix thermal cycler as follows: initial denaturation for 5 minutes at 95°C, 15-35 

cycles of amplification (each cycle consisted of denaturation for 30 seconds at 95°C, 

annealing for 30 seconds at 50°C , and extension for 1 minute 40 seconds at nOC), a 

final extension of 10 minutes at 65°C, and storage at 4°C. RT-PCR conditions that 

yielded linear amplification rates were used to obtain results for each gene transcript 

studied. 

The amplification products were analysed by agarose gel electrophoresis. An agarose 

gel containing 1% agarose, and 0.51lg/ml ethidium bromide in Tris-Borate-EDTA 

[(TBE) working solution 0.045M Tris-Borate O.OOlM EDTA] was initially prepared in 

a Mini Q apparatus (Bioscience services), allowed to set, then covered with TBE buffer 

on removal of the combs. 15111 of each PCR product were mixed with 3111 of gel 

loading buffer (50% v/v glycerol, 0.05% w/v bromophenol blue, 0.05% w/v xylene 

cyanol). All 18~ll of the samples were then loaded into the wells, along side lOll1 of 100 

bp DNA ladder [consisting of 15 blunt ended fragments between 100 and 1500bp in 

multiples of 100bp and an additional fragment at 2072 bp, (life technologies)]. 

Electrophoresis was at 70 volts for ~ 1 hour, then the amplified DNA bands were 

visualized with a U. V. transilluminator and photographed using a Kodak Digital camera 

and Kodak Digital Science ID image analysis software (Eastman Kodak Company). 

2.2.2.4. Sequence Analysis 

In order to verify the sequence of each product, the amplified DNA bands were excised 

from the agarose gel and purified using the GFX ™ PCR gel band purification kit 

(Amersham Phannacia Biotech). The purified amplicons were sequenced, in both 
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directions using the specific forward and reverse plimers for the expected product, on a 

PE-Applied Biosystems Division Model 373A automated DNA sequencer and a 

BigDye Dye terminator cycle sequencing kit. Sequencing was carried out by the 

molecular biology facility at the University of Strathclyde. 

2.2.3. Biochemical Analysis 

2.2.3.1. Protein isolation from rat pulmonary artery and human pulmonary 

smooth muscle cells 

To isolate protein from both tissue and cells, the homogenisation buffer isotonic sucrose 

solution (I.S.S.) was used with composition: 0.25M sucrose, 10mM Tris Hel, ImM 

EDT1\, O.lmM phenylmethylsulphonyl fluoride (PMSF) and 2mM benzamidine, pH 

7.4. The P A branches were initially ground to a fine powder in liquid nitrogen using a 

mortar and pestle, then homogenised by adding 500111 I.S.S. and passing through a 25G 

syringe needle five times. 

After the removal of the media, cells were washed with sterile PBS, then scraped in 

600 III I. S. S. per T -75 flask. To shear the cells, the lysate was passed five times through 

a 25G syringe needle. Both the homogenised tissue and cells were centrifuged for 2 

minutes at 12,000 rpm, and only the supernatant used in subsequent experiments. 

2.2.3.2. Protein Assay 

Protein content of each sample was determined using the BIO-RAD micro protein assay 

system (Bradford, 1976). 10111 of sample was added to 200111 BIO-RAD reagent and 

800111 dH20. Protein content was estimated by measuring the A595 of each sample 

using a spectrophotometer (Jenway, 6105 UV./VIS.), then comparing the values against 

a standard curve previously constructed using a range of known bovine serum albumin 

(BSA) concentrations. In order to add equal amounts of each protein sample, I.S.S. was 

added to dilute samples with higher protein concentrations. 

2.2.3.3 50S-polyacrylamide gel electrophoresis 

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-P AGE) is a rapid 

method for quantifying, comparing, and characterising proteins. Electrophoresis was 
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carried out following the method described by Laemmli, (1970). Samples were 

prepared by adding equal volumes of sample buffer [62.5mM, Tris/HCL (pH 6.7), 0.6M 

mercaptoethanol, 12.5% glycerol (v/v), 1.25% SDS (w/v) and 0.02% (w/v) 

bromophenol blue]. Before loading, each sample was boiled for ~5minutes to ensure 

disruption of the disulphide bonds and denaturing of the proteins. 

Acrylamide gels were cast in BIO-RAD mini-protean units (10 x 7cm). Initially 

separating gels were prepared, containing a final concentration of 12 or 14% acrylamide 

[components of separating gel: 12114% acrylamide, 0.375M Tris base (pHS.S), 0.1% 

(w/v) SDS, 0.05% (w/v) ammonium persulphate, 0.05% (v/v) TEMED, and dH20] 

depending on the size of the protein of interest. After setting, a 6% acrylamide stacking 

gel [components of stacking gel: 6% acylamide, 0.125M Tris base (pH6. 7), 0.1 % (w/v) 

SDS, 0.05% (w/v) ammonium persulphate, 0.1 % (v/v) TEMED, and dH20] was poured 

on top and a ten welled comb inserted. The gels were then added into the 

electrophoresis equipment, afterwhich the combs were removed, and the upper and 

lower chambers were filled with electrophoresis running buffer (0.21M glycine, 3.5M 

SDS, and 25mM Tris base). The samples and molecular weight standards were loaded 

using a hamilton syringe. The gels were then run at a constant voltage of 200 

voltsl1mA until the dye front was at the bottom. 

The molecular weight standards (101l1 added to each gel) were prestained SDS-PAGE 

molecular weight markers (a2-macroglobulin: 230kDa, ~-glactosidase: 135kDa, 

fructose-6-phosphate: 97kDa, pyruvate kinase: 7SkDa, fumarose: 57.5kDa, lactic 

dehydrogenase: 3S.5kDa, and triosephosphate isomerase: 33.5kDa). These molecular 

weight markers were used to estimate the molecular weights of the unknown protein. 

The above molecular weights given for the molecular weight markers are the apparent 

molecular weights for each protein when run on SDS-PAGE, and not the native 

molecular weights. 

2.2.3.4. Transfer of proteins to a nitrocellulose membrane 

Proteins from the gel were then transferred to nitrocellulose using BIO-RAD trans blot 

apparatus following the procedure described by Towbin et aI., (1979). The transblotting 

sandwich was assembled (sponge, blotting paper, gel, nitrocellulose membrane, blotting 

paper, sponge), all of which had been previously soaked in transfer buffer (0.21M 
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glycine and 2SmM Tris Base in 20% (v/v) methanol). The side with the gel was 

positioned nearest the negatively charged terminal, allowing the proteins (negatively 

charged) to transfer onto the nitrocellulose membrane. The transfer unit was immersed 

in transfer buffer then ran for at least 60 minutes at 100 volts/0.6mA. 

2.2.3.5. Western blotting 

Following the transfer of proteins the nitrocellulose was incubated in blocking buffer 

for 2-3 hours to prevent non-specific binding. On removal of the blocker the primary 

antibody was added overnight, after which the membrane was washed 3 x 10 minutes in 

washing buffer. A horseradish peroxidase (HRP)-linked secondary antibody was added 

for 1 hour, which was followed by 3 x 10minute washes in washing buffer. All stages of 

the protocol are carried out on an orbital shaker to ensure equal coverage and washing 

of the membrane. Table 2.2 shows specific conditions for all the antibodies used. 

Immunoreactive bands were detected using an enhanced chemiluminesence detection 

kit (ECL). ECL allows the detection of specific antigens that are attached to HRP

antibodies (directly or indirectly) by emitting light which can be detected by exposure to 

x-ray film. After removing excess washing buffer, equal volumes of ECL detection 

reagents 1 (2.SmM luminol, 1.1mM p-coumaric acid, O.IM Tris base, pHS.S) and 2 

(0.02% hydrogen peroxide, O.IM Tris base, pHS.S) were mixed to give a final volume 

of 12Smllcm2 on the membrane. The mixed ECL reagents were applied for 1 minute 

onto the side of the membrane onto which the protein was electro-blotted. After 

removing surplus ECL reagents the membrane was placed in an autoradiographic 

cassette then covered with sparkle film. In a dark room under safety lights, the 

membrane was exposed to X-ray film for 1-10 minutes depending on the intensity of the 

signal. The film was then developed and fixed, using Kodak GBX developer and Kodak 

GBX fixer (made to manufactures instructions) to visualise immunoreactive bands. 

2.2.3.6. Reprobing of nitrocellulose blots 

Nitrocellulose membranes were regularly reprobed with new antibody. This involved 

incubating the blot with stripping buffer (100mM /3-mercaptoethanol, 2%SDS, 62. SmM 

Tris HCI, pH 6.7) at 70°C for 1 hour with gentle agitation. The membranes were then 

washed 3 x 10 minutes in the wash buffer for the new antibody (table 2.2), which was 

subsequently applied as in 2.2.3.S. 
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1° Antibody Wash Buffer Blocker 2° Antibody 

Anti-PDE5 PBS/O.l%Tween 5% milk (w/v) in Anti rabbit IgG 

(1 :2000) in 5% (v/v)lO.00 I%Thiomerosol TPBS, room (1 :2000) in 5% 

milk (w/v) in (w/v) (TPBS) temperature milk (w/v) in 

TPBS, 4°c TPBS, room 

temperature 

Anti-PDEy PBS/0.05% Igepal CA-630 3 % gelatin in Anti-rabbit IgG 

(1:10000) in 1% (v/v)IO.001 % Thiomerisol PBS, 37°C (1 :2000) in 1 % 

gelatin (w/v) in (w/v) (IPBS) gelatin (w/v) in 

IPBS, 37°C IPBS, 37°C 

Anti-phospho TBS/O.l%Tween 5% milk in Anti-rabbit IgG 

p42/p44 MAPK, (v/v)lO.OOI % Thiomerosol TTBS, room (1 :2000) in 5% 

(1:1000) in 3% (w/v) (TTBS) temperature milk (w/v) in 

BSA (w/v) in TTBS, room 

TTBS, 4°c temperature 

Anti-P42 MAPK TBS/0.1 % Tween 5% milk in ~A.l1ti-mouse IgG 

(1:1000) in 3% (v/v)/O. 00 1 %Thiomerosol TTBS, room (1 :2000) in 5% 

BSA (w/v) in (w/v) (TTBS) temperature milk (w/v) in 

TTBS, 4°c TTBS, room 

temperature 

Table 2.2. Specific conditions for all the antibodies used, following 2.2.3.5 

The abbreviations used are: PDE, Phosphodiesterase; MAPK, Mitogen Activated 

Protein Kinase; PBS, Phosphate Buffered Saline (1 OmM KH2P04, 10mM K2HP04, 

0.9% w/v NaCl); TPBS, PBS/O.l%Tween (v/v)/O.OOl%Thiomerosol (w.lv); NPBS, 

PBS/0.05% Igepal CA-630 (v/v)/O.OOl%Thiomerisol (w/v); TBS, Tris Buffered Saline 

(lOMm Tris base, 100Mm NaCl, pH7.6); TTBS, TBS/0.1%Tween 

(v/v)/O.OOl % Thiomerosol (w.lv) 



2.2.3.7. Phosphodiesterase Assay 

The assay of PDE activity was by the two-step radiotracer method usmg 0.5~LM 

eH]cAMP or CH]cGMP according to Thompson W.I, and Appleman M.M., (1971). 

This assay monitors the conversion of CH]cGMP/CH]cAMP into 3H-guanosinePH

adenosine. Samples were prepared as in 2.2.3.1, in I.S.S. for both the tissue and cells, 

and equalised for protein. On ice, 25~1 of sample was added to 25~1 I.S.S. and 50~13H

cAMP/cGMP working stock (50~1 1850kBq 3H-cAMPPH-cGMP in 10mls of l~M 

cGMP (unlabelled cAMP/cGMP, 10mM Tris Base, 5mM MgCh, pH 7.4). Blanks only 

contained 50~1 I.S.S, and 50~1 and 50~1 3H-cAMP/cGMP working stock. Each tube 

contained 9.25kBq of labelled cyclic nucleotide. All tubes were incubated at 30°C for 

10 minutes over which activity is linear, then boiled for 2 minutes and allowed to cool 

on ice again to terminate the reaction. 25~Ll of a Img/ml snake venom (Hannah 

ophiophaglfs) was then added to each sample to convert 3H-AMPPH-GMP to 3H_ 

adenosine/guanosine respectively. After an incubation of 10 minutes, 400~Ll Dowex 

was added. Samples were then vortexed every five minutes for a period of 15minutes, 

then centrifuged for 2minutes at 12,000 rpm. 150~1 supernatant was added to 2ml 

scintillant, which was then counted (Wallac, 1209 Rackbeta, Liquid Scintillation 

Counter, programme 1 - 3H, 60 seconds). In every experiment each assay was done in 

triplicate. Specific activity was expressed as pmol/minimg. 

In order to measure the relative contribution of PDE3 activity to total PDE activity, 

1O~M SKF94836 in DMSO was added into the assay. Experiments were controlled by 

adding 1 ~l of the vehicle (DMSO) into parallel samples that had not been treated with 

inhibitor. These controls were necessary to show a true effect of the inhibitors. 
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2.2.4. Pharmacological Analysis 

2.2.4.1. 10ml Organ Bath Set-up for isolated main and first branch 

pulmonary artery 

The mam and first branch pulmonary arteries (P A) were dissected as described in 

section 2.2.1, afterwhich each branch was cut into two equal size rings (~2-5mm). 

Standard organ bath procedures were used. Figure 2.2 shows a schematic diagram of 

the organ bath set up. Each P A was suspended by two wire supports. The top wire 

support (hook shaped) was then connected by thread to a force displacement transducer, 

while the bottom wire suppoli, which was attached to a glass rod, was clamped in place. 

The isometric force transducer was connected via an amplifier to Mac lab (Chart V3.5, 

MacLab Data Acquisition System, Version 8E, AD Instruments Pty Ltd, Australia), a 

computer based data handling system which recorded vessel contraction/relaxation as in 

a pen chart recorder. The rings were mounted 10ml organ baths containing modified 

Krebs-Heinslet solution (Krebs) as described in 2.2.l. continuously oxygenated with 

16% O2, 5% CO2, and 79% N2, and maintained at 37°C. These conditions were used to 

mimic the internal environment of the pulmonary artery as closely as possible. 

Rings were placed under a resting tension of l.5g, which was maintained throughout all 

experiments. A tension of l.5g is set, as it is known to be the optimal tension to 

produce a maximal contraction to 50mM potassium chloride (KCl) in control P A, and 

can be said to mimic the in vivo tension. Initially all P A were equilibrated for 45 

minutes after which each vessel was contracted with 50mM potassium chloride (KCl). 

50mM KCI has previously been demonstrated to produce a maximum contractile 

response (MacLean et aI., 1994a). These authors demonstrated that higher 

concentrations of KCI resulted in a decrease in contractile response. After washing with 

Krebs, an additional 50mM KCI was always added to each bath to ensure maximal 

contraction had been achieved by the first addition of KCl. After a further equilibration 

period of approximately 45 minutes following washing, endothelium function was 

always checked. Functional endothelium was assessed by the ability of 10-6M 

acetylcholine (ACh) to significantly relax PA rings pre-contracted with 1O-6M 

phenylepherine (PE). In selected experiments the endothelium was removed by gently 

rubbing the luminal smface of the rings with ridged forceps. When no response was 
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achieved with 10-6M ACh, the vessels were considered to be denude of functional 

endothelium. 

2.2.4.2. Preconstrictors 

Before commencing protocols, each vessel was washed and allowed to return to resting 

tension. Cumulative concentration response curves (CCRCs) were constructed for PE 

(10-9 -1 0-5M), 5-HT (10-9_1 0-5M), ET -1 (1 0-11_1O-7M) in half log steps for both the main 

and first branch pulmonary artery. The periods between additions were dictated by the 

time taken for the responses to stabilise, which was usually 5 minutes. In further 

experiments a concentration of each vasoconstrictor was used that resulted 111 a 

sustainable contraction that was approximately 90-100% of the maximum KCI 

response. 

2.2.4.3. Effect of PDE3 and PDE5 inhibitors on preconstrictor responses 

Both the PDE5 inhibitor sildenafil, and the PDE3 inhibitor SKF94836 were stored at a 

stock concentration of 1O-2M in 1% DMSO. CCRes were constructed using the PDE5 

inhibitor sildenafil (1O-9_10-5M in 1% DMSO), and the PDE3 inhibitor SKF94836 (10-9
_ 

1O-5M in 1% DMSO) in halflog steps for each of the three preconstrictor agents, in the 

main and first branch pulmonary artery from both control (+1- endothelium) and 

hypoxic animals. Additions of both inhibitors only commenced once a stable plateau 

had been reached for the preconstrictor used. In all experiments, in order to show the 

true effect of the inhibitors, one half of the branch was always used as a time control 

where only l%DMSO was added in to the bath (final concentration 0.01% DMSO). 
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Figure 2.2. 10ml organ bath experimental apparatus 

Diagrammatic representation of the 10ml organ bath experimental apparatus for the 

pharmacological analysis of isolated main and first branch pulmonary arteries (not to 

scale). 

88 



2.2.5. Data Analysis 

In all analyses comparisons between two groups of data were made using Student's t

test for paired or unpaired data where appropriate. The statistic software package prism 

(Graphpad Prism, San Diego, CA, USA) was used to handle raw data, where *P<0.05 

was considered to be statistically significant. RT-PCR and Western blotting results 

were quantified by densitometry using a Bio RAD imaging densitometer (Model G.S.-

690) in conjunction with Molecular Analyst Software, Version 2.1 (Bio Rad 

laboratories (U.S.). Optical densities were expressed as arbitrary units. In all 

experiments "n" either indicates the number of different animals used or number of 

different populations of cultured cells. 

In the organ bath experiments all data were expressed as percentage of the reference 

response to 50mM KCI in each vessel. Each point is the mean ± s.e.1TI. Statistical 

comparisons of the means of groups of data were made by use of Student's t-test for 

paired or unpaired data where appropriate. A level of probability of P<O. 05 was taken to 

indicate statistical significance. As above, n equals the number of different animals 

used. 

To take into account a possible effect of the vehicle (DMSO), the response of the PA to 

DMSO alone was subsequently subtracted from the parallel response to the PDE 

inhibitor. These calculations allowed results to be obtained that could only be 

attributable to the PDE inhibitors. 
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CHAPTER 3 

EVALUATION OF PDE3 AND PDE51N MODELS OF 

PHT 



Chapter 3 - Evaluation of PDE3 and PDE5 in models of 

pulmonary hypertension 

3. 1. Introduction 

Pulmonary hypertension (PHT) is a disease associated with increased vascular 

resistance and pulmonary vascular remodelling, and is characterised as abnormally high 

blood pressure in the arteries of the lung (reviewed by Rubin, 1997; Archer and Rich, 

2000, Fishman, 1998; Vender et a!., 1994; Rabinovitch, 1996; Veyssier-Belot and 

Cacoub, 1999; Dumas et aI., 1999). PHT can occur as a primary illness (PPHT), 

thought to be the result of a sporadic or familial mutation, or more frequently secondary 

as a serious complication of disorders such as mv / AIDS infection, chronic obstructive 

pulmonary disease (COPD), pregnancy, Raynauds disease (vasospastic disorder), 

connective tissue diseases such as erythematosus and scleroderma, chronic pulmonary 

thromboembolism, cirrhosis of the liver, congenital heart disease or left ventricular 

failure. Exposure to low oxygen results in pulmonmy vascular remodelling and 

increased pulmonary m1erial vasoreactivity associated with PHT; therefore the chronic 

hypoxic rat is used as a reliable model (Hunter et a!., 1974; Rabinovitch et aI., 1979, 

Voelkel and Tuder, 2000). The mechanisms involved in the development and 

maintenance of PHT are still not fully understood. It is however thought that defects in 

pulmonary vasodilatory, vasocontractile and/or proliferative pathways may account for 

the abnormal vascular tone and increased proliferation seen in all forms ofPHT. 

The second messengers cyclic adenosine monophosphate (cAMP), and cyclic guanosine 

monophosphate (cGMP) have been shown to play key roles in the control of pulmonary 

vascular tone (Mun-ay et a!., 1990b). cAMP and cGMP relax smooth muscle through 

the activation of protein kinase A (PKA) and protein kinase G (PKG) respectively, 

which in turn phosphorylate key contractile proteins and specific types of K", cr, and 

Ca2
+ channels (Hakonarson and Gruinstein, 1998). Fut1hermore, cGMP and/or cAMP 

both control smooth muscle proliferation (reviewed by Southgate and Newby, 1990; 

Cornwell et aI., 1994; and Grosser et aI., 1995). It has been suggested that cAMP and 

cGMP, via the activation of PKA and PKG respectively, attenuates proliferation by 

ant agonising mitogenic pathways through inhibition of Raf-1 (Graves et a!., 1993; 

Bornfeldt and Krebs, 1999; Bonisch et aI., 1998; Zucker et aI., 1998; Yu et aI., 1997). 
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Cyclic nucleotide levels are reduced in vessels from rats chronically ( 14 days) exposed 

to hypoxia (MacLean et aI., 1996). This may explain the reduced sensitivity to agents 

such as nitric oxide in promoting relaxation of pre-contracted pulmonary vessels in CH 

and in patients with PHT (MacLean et al., 1996). 

Intracellular cAMP/cGMP are regulated by adenylyllguanylyl cyclase and the 

phosphodiesterases. Phosphodiesterases (PDEs), of which eleven are currently 

identified, catalyse the hydrolysis of both cAMP and cGMP. PDEs reduce the 

intracellular concentrations of the cyclic nucleotides, hence determine the size and 

duration of vasodilatory and proliferative stimuli (Kauffma et aI, 1987). Each of the 11 

PDE families have differing tissue distribution, regulatory properties, amino acid 

sequences, and kinetic characteristics (reviewed by Thompson, 1991; Beavo et aI., 

1994; Beavo, 1995: Soderling et al., 1998, 1999; Corbin and Francis, 1999; Fawcett et 

al., 2000; Conti, 2000; Soderling and Beavo 2000; Yuasa et af., 2000; Koyama et af., 

2001). It has been reported that cAMP and cGMP PDE activity is elevated in 

pulmonary arteries (PA) from chronic hypoxic rats (CH), most significantly PDE3 and 

PDE5 (MacLean et al., 1997). 

PDE3 is a cGMP inhibited cAMP, specific PDE, which is expressed as two isoforms, 

PDE3A and PDE3B. An increase in PDE3 leads to a decrease in cAMP, preventing the 

threshold activation needed to activate PKA, thereby reducing the ability of smooth 

muscle to vasodilate. PDE3 has been repolied to have a role in the pulmonary 

circulation, as Wagner et al. (1997,) reported that the inhibition ofPDE3 potentiated ~

adrenergic agonist receptor-mediated and forskolin-mediated relaxation in pulmonary 

atierial rings. The activity of PDE3 is increased in main, first branch, and 

intrapulmonary arteries from rats maintained under chronic hypoxic conditions 

(MacLean et al., 1997). 

PDE5 is important in the pulmonary circulation due to being the major cGMP specific 

binding protein in the lung (Francis et al., 1980; Thomas et al., 1990). Three sub-types 

exist termed PDE5Al PDE5A2 and PDE5A3. Functional studies have shown the 

potential of PDE5 to modulate the pulmonary circulation. Zeigler at af. (1995), showed 

that zaprinast, a potent PDE5 inhibitor, can vasodilate the pulmonary circulation. 

FUlihermore, Cohen et af. (1996), demonstrated that the PDE5 inhibitor E-4201, 

inhibited hypoxic vasoconstriction in isolated perfused lungs from chronically hypoxic 
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treated rats in a dose-dependant manner. Inhibition of PDE5 has been reported to 

enhance nitric oxide-stimulated, cGMP-mediated, smooth muscle relaxation, increasing 

blood flow in the pulmonary circulation (McMahon et aI., 1993; Ichinose et aI, 1995a; 

Ichinose et aI., 1995b; Black et aI., 2001). PDE5 activity is increased in the first branch 

and intrapulmonary artery from rats maintained under chronic hypoxic conditions 

(MacLean et aI., 1997). 

The molecular mechanisms regulating these two PDEs in hypoxic conditions have 

however not yet been detailed. Hypoxic-dependant changes in PDE activity may be due 

to the de-novo synthesis of the enzyme or via post-translational modifications e.g. 

phosphorylation, or association with regulatory proteins. The limiting factor in 

developing new treatments for PHT may be that the molecular and cellular pathogenesis 

of the condition is poorly understood. Therefore, the aim of these experiments was to 

establish the molecular mechanism that underlie the hypoxic changes in PDE3 and 

PDE5 activity by applying semi-quantitative RT-PCR and quantitative Western blotting 

analysis to rat pulmonaty arterial branch homogenates. It was also intended to develop 

a cellular model of PHT, using human pulmonary smooth muscle cells (hP ASMC), and 

to further elucidate the pathways involved in any hypoxic induced changes that were 

observed. 

3.2 Materials and Methods 

3.2.1 Materials 

All reagents, unless otherwise stated, were obtained from Sigma chemical company 

(U.K), or BDH (UK). Cell culture supplies were from life Technologies (UK). 

RNeasy total RNA isolation kit and QIA shredder were £I'om Qiagen (UK). 

Superscript II reverse transcriptase, DNase I Amplification Grade, Oligo dt (18), Taq 

Polymerase, and primers were from Life Technologies (UK). DNA Polymerase Mix 

(dNTPS), GFX ™ PCR and Gel Purification Kit, Hybond™ECL ™ nitrocellulose 

membranes were from Amersham Pharmacia Biotech (UK). Rat glyeraldehyde-3-

phosphate dehydrogenase (G3PDH) control amplimer set was fi'om Clonetech 

laboratories Inc (USA). BigDye Dye terminator cycle sequencing kit was from PE

Applied Biosystems (UK). Anti-phosphodiesterase 5 antibody from Calbiochem

Novabiochem (UK). PDE3 inhibitor SKF94836 (M.W. 270) was from 
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GalaxoSmithkline (UK.). 3H-cAMP and 3HcGMP (37mCilmmol, 1850kBq/mmol) 

both from Amersham International p.1.c. (UK.). 

3.2.2 Animal Studies - Chronic Hypoxic Rat 

Male Wistar rats of 28-30 days old (at start of experiment) were housed in a specially 

designed perspex hypobaric chamber (Royal Hallamshire Hospital, Sheffield). The 

pressure within the chamber was decreased to 550mbar; this reduced the inspired p02 to 

approximately 1l0mmHg (~1O% equivalent). The temperature of the chamber was 

maintained at 21_22°C and the chamber was ventilated with air at ~451 min-i. Animals 

were maintained in these hypoxic/hypobaric conditions for 14 days. Age-matched 

controls were housed under normoxic/normobatic room conditions (20% v/v oxygen). 

Following sacrifice the right ventricle of the heart was dissected free of the septum and 

left ventricle and these were blotted and weighed. PHT was assessed by measuring the 

ratio of right ventricle (RV)/total ventricular (TV) weight. This is a well-established 

index of the degree of PHT in the rats (Hunter, et aI., 1974). Pulmonary arteries were 

then dissected and taken for biochemical analysis. 

3.2.3 Cell Culture 

Human pulmonary artery smooth muscle cells (BioWittaker, UK., from main and first 

branch P A) were maintained in smooth muscle cell growth medium (SmGM-2 bulletkit 

system, BioWittaker, u.K.). Following passage, flasks were split into two groups. Half 

the flasks were returned to the normoxic incubator (RS Biotech - Galaxy CO2 incubator 

set at 5%C02, 95% air, humidified, set 37°C), and half were transferred to the hypoxic 

incubator (RS Biotech - Galaxy CO2 - oxygen control incubator 10% O2, 5% CO2, 

balanced N2, humidified, set 37°C). Cells were grown in the hypoxic incubator for 24 

hours to 2 weeks to determine optimal conditions. 

3.2.4 Homogenate preparation 

To isolate protein from both tissue and cells, the homogenisation buffer isotonic sucrose 

solution (l.S.S.) was used with composition: 0.25M sucrose, 10mM Tris HCI, 1mM 

EDTA, O.lmM phenylmethylsulphonyl fluoride (PM SF) and 2mM benzamidine, pH 

7.4. The P A branches were initially ground to a fine powder in liquid nitrogen using a 

mortar and pestle, then homogenised by adding 500~ll I.s.s. and passing through a 25G 
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synnge needle five times. After the removal of the media, cells were washed with 

sterile PBS, and then scraped in 600l-tl I.S.S. per T-7S flask. To shear the cells, the 

lysate was passed five times through a 2SG syringe needle. Both the homogenised 

tissue and cells were centrifuged for 2 minutes at 12,000 rpm, and only the supernatant 

used in subsequent experiments. 

3.2.5 Total RNA extraction 

For isolation of RNA, rat pulmonaty arterial branches were ground to a fine powder in 

liquid nitrogen with a mOliar and pestle. 600111 buffer RNeasy lysis buffer was added 

according to manufacturers guidelines (Qiagen), and the tissue was then homogenised 

by passing the lysate through a 2SG syringe needle five times. For isolation of RNA 

from hP ASMC, the medium was aspirated and the cells washed with sterile PBS. The 

hP ASMC were scraped in 600l-tl of RNeasy lysis buffer, then passed through a 2SG 

syringe five times. Both the tissue and cell lysates were then pipetted onto a 

QIAshredder (Qiagen). Total RNA was extracted according to the RNeasy protocol 

instruction (Qiagen). To prevent potential contamination from genomic DNA, an 

incubation step with 4 units of DNase at 37°C for IS minutes followed by a second 

RNA extraction (clean up protocol, Qiagen) were included. Total RNA was eluted in 

RNase free H20 and stored at - 20Ge. 

3.2.6 RT-PCR 

First strand synthesis was carried out using Illg total RNA catalysed by the enzyme 

superscript II reverse transcriptase. The reaction was primed using SOOng of oligo 

(dt)lS. This mixture was heated to 70°C for 10 minutes and quick chilled on ice. The 

reverse transcriptase reaction was incubated at 42°C for 90 minutes and terminated at 

70°C for IS minutes. 

The PCR was carried out using the following protocol: initial denaturation for S minutes 

at 9SoC, 1S-3 S cycles of amplification (each cycle consisted of denaturation for 30 

seconds at 9SoC, annealing for 30 seconds at SOoC, and extension for 1 minute 40 

seconds at nGC), a final extension of 10 minutes at 6SoC, and storage at 4°e. 
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RT-PCR with specific with specific forward and reverse oligonucleotide primers were 

used to amplify PDE transcripts. The PDE3A forward primer was 5' -CTG GCC AAC CTT 

CAG GAA TC-3' and the reverse primer was 5'-GCC TCT TGG TTT CCC TTT CTC-3'. The 

PDE3B forward primer was 5'-AAT CIT GGT CTG CCC ATC AGT CC-3' and the reverse 

primer was 5'-TTC AGT GAG GTG GTG CAT TAG CTG-3'. The PDE5A forward primer 

was 5'-CGA TGC TGA TGA CAG CTT GTG ATC-3' and the reverse primer was 5'-CAA GAG 

CTT GCC ATT TCT GCC-3'. The glyceraldehyde-3-phosphate dehydrogenase (G3PDH) 

forward primer was, 5'-TGA AGG TCG GTG TCA ACG GAT TTG GC-3' and the reverse 

primer was, 5'-CAT GTA GGC CAT GAG GTC CAC CAC-3'. The PDE3A and PDE3B 

primers were designed to amplify regions corresponding to 3011-3415 and 2902-3201 

in human PDE3A and PDE3B respectively. The PDE5A primers were designed to 

amplify 2338-2637 in bovine PDE5A. 

3.2.8. Sequence analysis 

The purified amplicons were sequenced, in both directions, on aPE-Applied 

Biosystems Division Model 373A automated DNA sequencer using the PCR primers 

and a BigDye terminator cycle sequencing kit. 

3.2.9 PDE Assay 

The assay of PDE activity was by the two-step radiotracer method using 0.5 ~lM eH] 

cAMP or CH] cGMP according to Thompson and Appleman, 1971. 

3.2.10 Western Blotting 

Nitrocellulose sheets were blocked in 5% non-dried milk (w/v) in PBS plus 0.1% 

Tween-20 (v/v) and 0.001% thimerisol (w/v) at 4°C for 1 hour. The nitrocellulose 

sheets were incubated overnight at 4°C in blocking solution containing anti-PDE5 

antibodies. After this time, the nitrocellulose sheets were washed in PBS plus 0.1% 

Tween-20 (v/v). Detection of immunoreactivity was by incubating nitrocellulose sheets 

for 2 hours at 37°C with a reporter HRP-linked ant-rabbit antibody in blocker. After 

washing the blots again as described above, to remove excess reporter antibody, 

immunoreactive bands were detected using an enhanced chemiluminesence detection 

kit. 
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3.2.11 Quantification 

RT -PCR and Western blotting results were quantified by densitometry (linear range of 

optical density between 0-1 arbitrary unit). 

3.2.12 Statistics 

In all analysis comparisons between two groups of data were made using Student's {

test for paired or unpaired data where appropriate. The statistical software package 

Prism (Graphpad Prism, San Diego, CA, USA) was used to handle raw data, where 

*P<0.05 was considered to be statistically significant. In all experiments "n" either 

indicates the number of different animals used, or number of difterent populations of 

cultured cells. 

3.3 Results 

3.3.1 Chronic Hypoxic rat (CH) 

The exposure of male Wi star rats to 10% 02 for 2 weeks resulted in a significant 

decrease (P<0.05) in body weight from 221.3g ± 2.6 to 199.7g ± 2.4 (11=80, P<0.05, 

Student's t-test) as seen in figure 3.3.1. This is not unexpected due to a loss of appetite 

that occurs in the Wi star rats when they are initially exposed to hypoxia. Although the 

CH were slightly lighter, they always appeared healthy throughout the 2 weeks in 

reduced oxygen, and showed no apparent signs of anxiety, excess aggressive behaviour 

or change in social interaction. 

The development of PHT was characterised by right ventricular hypertrophy. The ratio 

of right ventricular weight (RV) to total ventricular weight (TV) was used as an index of 

right ventricular hypertrophy. RV/TV ratios were 0.202 ± 0.001 and 0.336 ± 0.006 for 

normoxic and hypoxic rats respectively (figure 3.3.2, n=80, P<0.05, Student's t-test). 

As the RV lTV ratio is significantly increased with hypoxia this confirmed that right 

ventricular hypertrophy had occurred, and hence pulmonary hypertension had 

developed in the rats exposed to hypoxia for 2 weeks. Throughout this study "hypoxic" 

refers to rats subjected to 14 days of chronic hypoxia. 
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3.3.2 Linear amplification of PDE3A, PDE3B, PDE5A, and G3PDH 

transcripts by RT -peR 

In order to perform semi-quantitative RT -PCR, each gene transcript of interest had to be 

amplified at various cycle lengths (conditions as in 2.2.2.4). A cycle length at which all 

the transcripts did not show maximal amplification, was used in all subsequent reactions 

(e.g. linear amplification conditions was used). Non-maximal amplification allows any 

changes in transcript to be detected. At 25 cycles none of the transcripts showed 

maximal amplification (figure 3.3.3). Hence, 25 cycles were used in all subsequent RT

PCR reactions. First branch pulmonary arteries were used in these experiments, as 

more were readily available. 
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Figure 3.3.1. The effect of chronic hypoxia on mean Wistar rat weight 
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As in 2.2.1.1, Wistar rats were maintained under hypoxic conditions (p02 of 

~110mmHg [~10% equivalent]) for 2 weeks (hypoxic). Age match controls were 

housed in normoxiclnormobaric room conditions also for 2 weeks (control). All 

animals were weighed before dissection. Data are expressed in the above histogram as 

mean weight in grams ± s.e.m (n=80). * Denotes the data are significantly different 

(P<0.05, by Student's t-test) 
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Figure 3.3.2. The effect of chronic hypoxia on right ventricular 

hypertrophy 

Pulmonary hypertension is characterised by the ratio of right ventricular weight (R V) to 

total ventricular weight (TV), which is an index of right ventricular hypertrophy (see 

2.2.l.l.2.). The data in the histogram above are expressed as the ratio of RV/TV ± 

s.e.m (n=80) from Wistar rats maintained under normoxic (control) and chronic hypoxic 

conditions (hypoxic). * Denotes the data are significantly different (P<0.05, by 

Student's t-test) 



101 

A) PDE 3A, 405bp 

20 25 30 35 

B) PDE 3B, 300bp 

20 25 30 35 

----C) PDE 5A, 300bp 

20 25 30 35 

D) G3PDH, 983bp 

20 25 30 35 

Cycle length 

Figure 3.3.3. RT -peR of the linear amplification of PDE3A, PDE3B, PDE5A, 

and G3PDH transcripts in rat control first branch pulmonary arteries 

RT-PCR amplification using specific primers, as described in 2.2.2.4, of: (A) PDE3A, 

405bp; (B) PDE3B, 300bp; (C) PDE5A, 300bp; and (D) G3PDH, 983bp from control 

rat first branch pulmonary arteries. 1 ~tg total RNA/sample was used as a template for 

cDNA synthesis, of which one fifth was used for each RT-PCR. Each reaction was 

carried out using 20, 25, 30, and 35 cycles of amplification. Above is a representative 

result of 3 individual experiments, quantified by densitometry. 
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3.3.3 Effect of hypoxia on PDE3A, 38 transcript levels in rat PA 

Figures 3.3.3 and 3.3.4 show the RT-PCR amplification (25 cycles) ofPDE3A (405bp 

product) and PDE3B (300bp product) from the main PA, first branch PA, 

intrapulmonary P A and resistance vessels of both normoxic and hypoxic rats. With 

chronic hypoxia it can clearly be seen from figure 3.3.4 that both PDE3A and PDE3B 

transcript increased in all of the pulmonary arterial branches studied. The % increase in 

PDE3A and PDE3B transcripts in hypoxic versus normoxic rats were: main branch, 

PDE3A, 32. ± 10%; PDE3B, 44 ± 11%; first branch, PDE3A, 75 ± 18%; PDE3B, 78 ± 

16%; intrapulmonary, PDE3A, 86% ± 4%; PDE3B, 37 ± 12%; resistance vessels, 

PDE3A, 90 ± 21%; PDE3B, 48 ± 4%, (n=4, P<0.05 versus normoxic animals, Student's 

t-test ). 

Data can also be expressed as a ratio of G3PDH. The PD3A1G3PDH transcript ratio in 

normoxic and hypoxic animals respectively were: main branch, 1.03 ± 0.02, 1.47 ± 

0.08; first branch, 1.01 ± 0.04, 1.92 ± 0.11; intrapulmonary, 1.03 ± 0.05, 2.07 ± 0.2; 

resistance vessels, 0.91 ± 0.03; 1.92 ± 0.2 (n=4, P<0.05 versus normoxic animals, 

Student's t-test). The PD3B/G3PDH transcript ratio in normoxic and hypoxic animals 

respectively were: main branch, 1.02 ± 0.04, 1.6 ± 0.1; first branch, 1 ± 0.08, 1.95 ± 

0.09; intrapulmonary, 1.01 ± 0.06, 1.52 ± 0.11; resistance vessels, 0.99 ± 0.05; 1.2 ± 

0.02 (n=4, P<0.05 versus normoxic animals, Student's t-test). Alignment of the PDE3A 

(405bp) and PDE3B (300bp) with the corresponding human PDE3A and PDE3B (either 

from the published sequence or the sequence obtained experimentally using the 

hPASMC) can be seen in figures 3.3.8 and 3.3.9, revealed 90% and 92% similarity in 

their nucleotide sequences respectively. The enhanced transcription of both PDE3AIB 

seen with chronic hypoxia in all the P A branches may explain the increased PDE3 

activity that had previously been shown to occur under hypoxic conditions in these 

vessels (MacLean et aI., 1997). 
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Figure 3.3.4. RT -peR of PDE3A and PDE3B transcripts from control and 

hypoxic rat pulmonary arterial branches 

RT-PCR with specific primers, as described in 2.2.2.4, for (A) PDE3A and (B) PDE3B 

from main, first branch, intrapulmonary, and resistance vessels from Wistar rats 

maintained under normoxic (-) and chronic hypoxic (+H) conditions. 1 Ilg total 

RNA/sample was used as a template for cDNA synthesis, of which one fifth was used 

for each RT -PCR. Above is a representative result of 4 individual experiments, 

quantified by densitometry. 
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3.3.4 Effect of hypoxia on PDE5A transcript and protein levels in rat PA 

A product of 300bp was amplified (2S cycles) from the mam, first branch, 

intrapulmonary and resistance vessels by RT -PCR using PDESA specific primers, 

therefore confirming its expression (figures 3.3.3 and 3.3.SA). The PDESA primers 

used are common for all PDESA subtypes. Chronic hypoxia only enhanced the PDESA 

transcript in the main and first branch PAs, increasing 13S ± 24% and ISO ± 11% 

respectively (n=4, P<O.OS versus normoxic animals, Student's t-test). In contrast, no 

change in PDESA transcript was seen in the intrapulmonary or resistance vessels with 

chronic hypoxia. The % change in the PDESA transcript in hypoxic versus nOI"moxic 

rats in the intrapulmonary and resistance vessels were non significant: -1 ± S%, and -3 

± S% respectively (n=4, P<O.OS versus normoxic animals, Student's t-test). The 

PDSAlG3PDH transcript ratio in normoxic and hypoxic animals respectively were: 

main branch, 1 ± 0.02, 1.4 ± 0.04; first branch, 1.01 ± O.OS, 1.6S ± O.OS (n=4, P<O.OS 

versus normoxic animals, Student's t-test). The PDSAlG3PDH transcript ratio in 

normoxic and hypoxic animals respectively were: intrapulmonary, 1.02 ± 0.04, 1.01 ± 

O.OS; resistance vessels, 0.97 ± 0.04; 0.98 ± 0.11 (n=4, NS verslls normoxic animals, 

Student's t-test). Alignment of the PDESA (300bp) with the corresponding bovine and 

human PDESA (either from the published bovine sequence or the sequence obtained 

experimentally using the hP ASMC) can be seen in figure 3.3.10, all revealed 92% 

similarity in their nucleotide sequences. 

As protein levels may not cOITespond with changes in mRNA levels, and antibodies for 

PDESA are commercially available (Calbiochem-Novabiochem), Western blotting was 

carried out as using homogenates from the main, first branch, intrapulmonary and 

resistance vessels. PDESA2 (Mr=93kDa) was expressed in both the main pulmonary 

artery and the first branch pulmonary artery (figure 3.3.6A). The levels ofPDESA2 in 

the first branch pulmonary artery were consistently low, and barely detectable unless 

Western blots were heavily over-expressed. The percentage increase in PDESA2 

protein expression was 94 ± 22% in the main PA, and 176 ± 17% in the first branch PA 

(n=3, P<O.OS verSllS normoxic animals, Student's I-test). These results suggest that the 

increased PDES activity that was observed in the first branch P A by MacLean et al. 

(1997), maybe due to increased protein expression of PDESA2 as a result of increased 

mRNA transcription. MacLean et al. (1997), did not repOIi a significant increase in 



105 

PDE5 activity with hypoxia in the main P A, which does not correlate with the increased 

PDE5A transcript and protein shown in these experiments. 

PDE5A2 and the slightly heavier isoform PDE5A1 (Mr=98kDa) were both detected by 

Western blot in the intrapulmonary and resistance vessel homogenates (figure 3.3.6B

C). The % change in both the PDE5A1 and PDE5A2 protein expression in the 

intrapulmonary (-4 ± 3, -2 ± 3) and resistance vessels were (4 ± 4, 1 ± 8) respectively 

(n=3, NS, versus normoxic animals, Student's t-test). Chronic hypoxia did not 

modulated PDE5A1IPDE5A2 protein vessels in the intrapulmonary and resistance 

vessels. Therefore, the hypoxic dependent increase in PDE activity in the 

intrapulmonary arteries seen by MacLean et al. (1997), cannot be explained by 

increases in either PDE5A protein or mRNA. 

3.3.5 Controls in all RT -PCR reactions 

3.3.5.1 Effect of hypoxia on G3PDH transcript levels in rat PA 

Glyceraldehyde-3-phosphate dehydrogenase (G3PDH) is a glycolytic enzyme, which 

was used as an internal control for RT -PCR to verifY the loading of equal total RNA. A 

product of 983bp was amplified (25 cycles) from the main, fIrst branch, intrapulmonary 

and resistance vessels by RT-PCR using G3PDH specific primers, confirming its 

expression. No change in G3PDH transcript level was observed under normoxic and 

hypoxic conditions from each vessel studied (figure 3.3.5B). The percentage change in 

G3PDH transcripts from hypoxic versus normoxic rats were: main branch, -1 ± 2%; 

first branch, -1 ± 1%; intrapulmonary arteries, -1 ± 1%; resistance vessels; 3 ± 6% (n=4, 

NS verslIs normoxic animals, Student's t-test). As no significant differences could be 

seen in the levels of G3PDH this confirms that equal amounts of total RNA had been 

used for the amplification of the PDE3A13B and PDE5 transcripts. 

3.3.5.2 Verify removal of genomic DNA 

In order to verifY that the results obtained usmg RT-PCR are not due 

contamination/cross-over of genomic DNA, a negative control was included during 

DNA synthesis. This involved a separate cDNA reaction containing RNA and all other 

reagents except the reverse transcriptase. PCR reactions using this minus reverse 

transcriptase control as a template were always run in parallel with RT -PCR reactions 
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using the experimental cDNA samples. The generation of a peR product from this 

negative control indicated the presence of genomic DNA contamination. If genomic 

DNA was found in the "minus reverse transcriptase" peR, the parallel RT -peR results 

were discarded. 
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Figure 3.3.5 RT -peR of PDE5A and G3PDH transcripts from control and 

hypoxic rat pulmonary arterial branches 

RT-PCR with specific primers as described in 2.2.2.4, for (A) PDE5A and (B) G3PDH 

from main, first branch, intrapulmonary, and resistance vessels from Wistar rats 

maintained under normoxic (-) and chronic hypoxic (+H) conditions. 1 ~g total 

RNA/sample was used as a template for cDNA synthesis, of which one fifth was used 

for each RT -PCR. Above is a representative result of 4 individual experiments, 

quantified by densitometry 
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Figure 3.3.6. Western blot analysis of PDE5A from control and hypoxic rat 

pulmonary arterial branches 

Western blot analysis using an anti-PDE5A antibody, as described in 2.2.3.3-2.2.3.5, 

showing the expression level of PDE5A 1 and PDE5A2 in homogenates from main, first 

branch, intrapulmonary and resistance vessels from rat maintained under normoxic (-) 

and chronic hypoxic (+H) conditions. lOflg protein/sample were loaded onto SDS

P AGE. Above is a representative result of 3 individual experiments, quantified by 

densitometry . 
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3.3.6 Development of a model of PHT using cultured human pulmonary 

smooth muscle cells (hPASMCs) 

Development of a cellular model allows easier biochemical manipulation and analysis. 

Initially, gene transcripts of interest were subjected to various cycle lengths (conditions 

as in 2.2.2.4) to show linear amplification. Cycle lengths showing linear amplification, 

were used in all subsequent reactions. From figure 3.3.7 it can be seen that none of the 

transcripts show maximal amplification at 25 cycles, hence this cycle length was used in 

all subsequent RT-PCR. 

As with the all RT-PCRs performed, parallel reactions for the housekeeping gene 

G3PDH verified equal loading of total mRNA. Negative control reactions in which 

reverse transcriptase was omitted were also performed to ensure that the R T -PCR 

product was the result of the amplification of the cDNA template. If contamination of 

genomic DNA was found in the PCR reaction of the negative control, the corresponding 

R T -PCR results were not used. 

Figure 3.3.7 shows that hPASMC express PDE3A, PDE3B, PDE5A and G3PDH. 

hP ASMC were subjected to 10% O2 for 6hours, 24 hours, 3 days, 7 days, and 14 days. 

As seen from figure 3.3.11 no significant differences were observed in any of the 

transcripts, after 6 hours, 24 hours, 3 days, and 7 days (densitometry not shown). 

However, after 14 days of sustained hypoxia PDE3A, but not PDE3B, PDE5A or 

G3PDH transcript level increased (figure 3.3.12). The percentage increase in PDE3A 

transcript in chronic hypoxic versus normoxic hPASMC was 90 ± 12% (n=3, P<0.05 

versus norm oxic hPASMC, Student's t-test). The PD3NG3PDH transcript ratio in 

normoxic and hypoxic hPASMC respectively were: 1.01 ± 0.06,2 ± 0.1 (n=3, P<0.05 

versus normoxic, Student's I-test). The corresponding changes in PDE3B, PDE5A, and 

G3PDH transcript levels with chronic hypoxia versus normoxia in hP ASMC were 0 ± 

4%,0 ± 1% and -2 ± 1% respectively (n=3, NS, versus normoxic hPASMC, Student's 

I-test). For PDE3B and PDE5A, the ratios to G3PDH were: PDE3B/G3PDH, 1.01 ± 

0.05% and 1 ± 0.07%, PDE5NG3PDH, 1 ± 0.03 and 0.99 ± 0.05 respectively (n=3, NS, 

versus normoxic hPASMC, Student's t-test). Alignment of the PDE3A, PDE3B, and 

PDE5A (300bp) with the corresponding published sequence to which the primers were 

designed against and the rat P A sequence ( obtained experimentally) can be seen in 
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figures 3.3.8,3.3.9, and 3.3.10, all revealed :2:90% similarity 111 their nucleotide 

sequences. 

The increase in PDE3A transcript levels with hypoxia could be correlated with an ~ 1. S 

fold increase in total cAMP PDE activity, measured in tissue homogenates at O. SIlM 

cAMP (47 ± 7%, n=3, P<O.OS versus normoxic hPASMC, Student's I-test, figure 

3.3.14A). On the addition of SKF94836 (IOIlM) to the PDE assay, the increased total 

cAMP PDE activity was substantially reduced to IS ± 2S% (n=3, P<O.OS versus 

normoxic hPASMC, Student's t-test, figure 3.3.14A). Figure 3.3.14 shows there a 2.S7 

fold increase in SKF94836 sensitive PDE3 activity in response to chronic hypoxia 

(control versus hypoxic: 7.9 ± 2.S pmol min mg-1 protein versus 20.3 ± 1.4 pmol min 

mg-1 protein, n=3, P<O.OS, versus' normoxic hPASMC, Student's I-test, figure 3.3.14B). 

Data showing that chronic hypoxia has no effect on PDE3B transcript levels suggests 

that the increase in PDE activity is attributed to PDE3A, since it was substantially 

reduced by addition of the PDE3-selective inhibitor SKF94836 (lOIlM) to the PDE 

assay. The Ki for PDE3 inhibition by, SKF94836, is approximately 21lM (Murray et 

aI., 1990). 10llM was used to ensure complete inhibition ofPDE3. It is accepted that at 

this concentration SKF94836 is highly selective for PDE3. 

Not only was PDESA transcript unaffected with chronic hypoxia, neither was protein 

expression (figure 3.3.13) or cGMP PDE activity, measured at O.SIlM cGMP (figure 

3.3 .IS). Western blot analysis, showed that the PDES A2 isoform was expressed in 

hP ASMCs, however chronic hypoxic exposure resulted in no significant increase in 

PDESA2 protein (2 ± 3%, n=3, NS versus normoxic hPASMC, Student's I-test). The 

cGMP PDE activity measured at O.SIlM cGMP (2.2.3.7) was also unaltered in hPASMC 

treated with chronic hypoxia (9.9 ± 11.1%, 11=4, NS versus normoxic hPASMC, 

Student's I-test, figure 3.3.1S). High variability in the cGMP PDE activity 

measurements is shown by the large standard error. 
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A) PDE 3A, 405bp 

20 25 30 35 

B) PDE 3B, 300bp 

20 25 30 35 

C) PDE 5A, 300bp 

20 25 30 35 

D) G3PDH, 983bp 

20 25 30 35 

Cycle length 

Figure 3.3.7. RT-PCR of the linear amplification of PDE3A, PDE3B, PDE5A, 

and G3PDH transcripts in hPASMC 

RT-PCR amplification using specific primers, as described in 2.2.2.4, of: (A) PDE3A, 

405bp; (B) PDE3B, 300bp; (C) PDE5A, 300bp; and (D) G3PDH, 983bp from control 

hPASMC. l~g total RNA/sample was used as a template for cDNA synthesis, of which 

one fifth was used for each RT-PCR. Each reaction was carried out using 20, 25, 30, 

and 35 cycles of amplification. Above is a representative result of 3 individual 

experiments, quantified by densitometry. 



HSPDE3A: 
hPASMC 
Rat 

T CTGGCCAACCTTCAGGAATCCTTCATCTCTCACATTGTGGGGCC 
CTGGCCAACCTTCAGGAATCCTTCATCTCTCACATTGTGGGGCC 
CTGGCCAACCTTCAGGAATCCTCCATCTCTCACATTGTGGGGCC 
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TACTGCCAAATAACTCAGCACCTC TACAGAACCA GATGTGG 
TACTGCCA£~TAACTCAGCACCTC TACAGAACC GATGTGG 
TACTGCCAAATAACTCAGCACCTC ACAGAACC GATGTGG 
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CAGGCTATCAAGGAAGAAGAAGAAGAGAAAGGGAAACCAAGAGGC 
CAGGCTATCAAGGAAGAAGAAGAAGAGAAAGGGAAACCAAGAGGC 
CAGGCTATCAAGGAAGAAGAAGAAGAGAAAGGGAAACCAAGAGG 

Figure 3.3.8.PDE3A cDNA sequence 
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PDE3A cDNA sequence from rat pulmonary arteries and cultured human pulmonary 

smooth muscle cells aligned with corresponding human PDE3A to which the primers 

were designed to (using the primers as in 2.2.2.4). The conserved amino acids across all 

three sequences are shaded black. 
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Figure 3.3.9.PDE3B cDNA sequence 
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PDE3B cDNA sequence from rat pulmonary arteries and cultured human pulmonary 

smooth muscle cells aligned with corresponding human PDE3B to which the primers 

were designed to (using the primers as in 2.2.2.4). The conserved amino acids across all 

three sequences are shaded black. 
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Figure 3.3.10 PDE5A cDNA sequence 
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PDE5A cDNA sequence from rat pulmonary arteries and cultured human pulmonary 

smooth muscle cells aligned with corresponding bovine PDE5A to which the primers 

were designed to (using the primers as in 2.2.2.4). The conserved amino acids across all 

three sequences are shaded black. 
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Figure 3.3.11 RT -PCR of PDE3A, PDE3B, PDE5A, and G3PDH transcripts 

in hPASMC exposed to hypoxia (10% 02) or normoxia for 6 hours, 24 

hours, 3 days, and 7 days 

RT -PCR amplification using specific pruners as described in 2.2.2.4. of: PDE3A, 

405bp; PDE3B, 300bp; PDE5A, 300bp; and G3PDH, 983bp from hPASMC 

maintained under normoxic (-) and chronic hypoxic (+H) conditions for (A) 6 hours, 

(B) 24 hours, (C) 3 days, or (D) 7 days. l~g total RNA/sample was used as a template 

for cDNA synthesis, of which one fifth was used for each RT -PCR. Above is a 

representative result of 3 individual experiments, quantified by densitometry. 
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Figure 3.3.12 RT -PCR of PDE3A, PDE3B, PDE5A, and G3PDH transcripts 

in hPASMC exposed to hypoxia (10% 02) or normoxia for 14 days 

RT -PCR amplification using specific primers, as described in 2.2.2.4. of: (A) PDE3A, 

405bp; (B) PDE3B, 300bp; (C) PDE5A, 300bp; and (D) G3PDH, 983bp from hP ASMC 

maintained under normoxic (-) and chronic hypoxic (+H) conditions for 14 days. 1 ~lg 

total RNA/sample was used as a template for cDNA synthesis, of which one fifth was 

used for each RT -PCR. Above is a representative result of 3 individual experiments, 

quantified by densitometry. 
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Figure 3.3.13 Western blot analysis of PDE5A from control and hypoxic 

hPASMC 

Western blot analysis using an anti-PDE5A antibody, as described in 2.2.3.3, showing 

the expression level of PDE5A1 and PDE5A2 in homogenates from hP ASMC 

maintained under normoxic (-) and chronic hypoxic (+H) conditions for 14 days. 1 O~lg 

protein/sample were loaded onto SDS-PAGE. Above is a representative result of 3 

individual experiments, quantified by densitometry. 
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Figure 3.3.14 Total cAMP PDE activity in the presence and absence of 

SKF94836 from hPASMC after prolonged exposure to hypoxia 

A) Histogram showing the increase in cAMP activity (PDE assay described in 2.2.3.7), 

in the presence and absence of the PDE3 inhibitor lO~tM SKF94836, in cells treated 

with normoxic (control) and hypoxic (hypoxic) conditions. B) Histogram showing the 

hypoxic-dependant increase in SKF94836-sensitive PDE3 activity. All results are 

means ± s.d, expressed as pmol/min/mg, * denotes the data are significantly different 

(n=3 separate cell preparations, P<O.05, by Student's t-test). 
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Figure 3.3.15 Total cGMP PDE activity from hPASMC after prolonged 

exposure to hypoxia 

Histogram showing the increase in cGMP activity (PDE assay described in 2.2.3.7), in 

cells treated with normoxic (control) and hypoxic (hypoxic) conditions. Results are 

means ± s.d, expressed as pmollmin/mg (n=3 separate cell preparations, NS, by 

Student's t-test). 
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3.3.7 Pathways involved in the regulation of PDE3A1B and PDE5A 

3.3.7.1 Role of the cAMP pathway in regulating PDE3A1B and PDE5A 

The mechanism underlying the hypoxic-dependant increase in PDE3A expression in the 

hP ASMCs was investigated. The membrane permeable analogue of cAMP, 8-Br

cAMP and the protein kinase A (PKA) inhibitor H-8 were both used to study the role of 

the cAMP pathway in regulating PDE3A expression in hP ASMC. Basal cAMP levels 

in most cells are roughly 111M, and the threshold activation for PKA is approximately 

10~tM (Houslay and Milligan, 1997), therefore 100~tM 8-Br-cAMP is an appropriate 

concentration to activate PKA. hP ASMC were initially treated with 100llM 8-Br

cAMP for 24 hours. Figure 3.3.16 shows that 8-Br -cAMP mimics the effect of hypoxia 

by increasing PDE3A transcript level (SO ± 8%, n=3, P<O.OS versus control hPASMC, 

Student's t-test), but not PDE3B (3 ± 2%, n=3, NS versus control hP ASMC, Student's 

I-test), PDESA (0 ± 2%,0 ± 2%, n=3, NS versus control hPASMC, Student's t-test), or 

G3PDH (0 ± 2%, n=3, NS versus control hPASMC, Student's t-test). The ratios to 

G3PDH were: PDE3A1G3PDH, 0.99 ± 0.03% and I.S ± 0.06%; PDE3B/G3PDH, 0.99 ± 

0.04% and 1 ± 0.02%; PDESAlG3PDH, 0.98 ± 0.07% and 0.98 ± 0.11 %, respectively 

(n=3, Br-cAMP treated versus control hPASMC, P<O.OS for PDE3A1G3PDH only, 

Student's t-test). 

An increase in total cAMP PDE activity by 95 ± 42% (n=3, P<0.05 versus control 

hPASMC, Student's t-test), which was reduced by 10IlM SKF94836 to 7 ± 15% (n=3, 

P<0.05 versus normoxic hPASMC, Student's t-test) was also seen with the treatment of 

cells with 8-Br-cAMP (figure 3.3.17 A). The increase in PDE3A transcript was 

therefore correlated with a 1.8 fold increase in total cAMP PDE activity measured at 

0.5~tM cAMP, which was completely ablated by addition of the type-selective PDE3 

inhibitor, SKF94836, to the PDE assay. There was a 2.41 fold increase in SKF94836-

sensitive PDE3 activity in response to Br-cAMP (control versus Br-cAMP-treated, 9.8 ± 

0.3 pmol min mg-1 protein versus 23.6 ± 1 pmol min mg-1 protein, n=3, P<0.05, versus 

control hPASMC, Student's t-test, figure 3.3.17B). As Br-cAMP has no effect on 

PDE3B transcript levels and as SKF94836 abolishes the increase in PDE activity, this 

suggests that the increase in response to Br-cAMP can be attributed to PDE3A. 
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To further investigate the cAMP pathway 50~M H8 peptide (N-[2-

(Methyl amino )ethyl]-5-isoquinolinesulfonamide. 2HCL) was added to the cells under 

nOt"moxic and hypoxic culture conditions for 2 weeks. H8 peptide attenuated the 

hypoxic dependent increase in PDE3A transcript (figure 3.3 .17). The % change in 

PDE3A transcript levels versus normoxic treated cells were: hypoxic, 80 ± 15%; H8 

peptide/normoxic, 18 ± 7%; H8 peptide/hypoxic, -18% ± 8% (n=3, P<0.05 for hypoxic 

versus normoxic hPASMC, Student's I-test). The PDE3A1G3PDH transcript ratios 

were: control, 1 ± 0.09%; hypoxic, 1.84 ± 0.12%; control1H8 peptide, 1.11 ± 0.15%; 

hypoxiclH8 peptide, 0.92 ± 0.1% (n=3, P<0.05 for hypoxic verslis nonnoxic hPASMC, 

Student's t-test). H8 peptide however had no significant effect on PDE3B, PDE5A, or 

G3PDH (see figure 3.3.18, densitometry not shown). These results suggest the cAMP 

pathway may have a role in regulating PDE3A expression, leading to the de-novo 

synthesis ofPDE3A protein. 
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+ BrcAMP 

D) G3PDH, 983bp 
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Figure 3.3.16 RT -peR of PDE3A, PDE3S, PDE5A, and G3PDH transcripts 

in hPASMC treated with 100llM 8-Sr-cAMP for 24 hours 

RT-PCR amplification using specific primers, as described in 2.2.2.4, of: (A) PDE3A, 

405bp; (B) PDE3B, 300bp; (C) PDE5A, 300bp; and (D) G3PDH, 983bp from hPASMC 

treated with vehicle (-) or lOOIlM 8-Br-cAMP (+ Br cAMP) for 24 hours. 11lg total 

RNA/sample was used as a template for cDNA synthesis, of which one fifth was used 

for each RT -PCR. Above is a representative result of 3 individual experiments, 

quantified by densitometry. 
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Figure 3.3.17 Total cAMP POE activity in the presence and absence of 

SKF94836 from hPASMC after 24-hour exposure to 8-Br-cAMP 

A) Histogram showing the increase in cAMP activity (PDE assay described in 2.2.3.7), 

in the presence and absence of the PDE3 inhibitor 10J-lM SKF94836, in cells treated 

with vehicle (control) and lOOJ-lM 8-Br-cAMP for 24 hours (8 Br-cAMP). B) 

Histogram showing the increase in SKF94836-sensitive PDE3 activity in cells treated 

with lOOJ-lM Br-cAMP for 24h. All results are means ± s.d, expressed as pmol/min/mg, 

* denotes the data are significantly different (n=3 separate cell preparations, P<O.05, by 

Student's I-test). 
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Figure 3.3.18 RT-PCR of PDE3A, PDE3B, PDE5A, and G3PDH transcripts 

in control and hypoxic hPASMC treated with 50JlM H8 peptide for 14 days 

RT -PCR amplification using specitIc primers, as described in 2.2.2.4, of: (A) PDE3A, 

405bp; (B) PDE3B, 300bp; (C) PDE5A, 300bp; and (D) G3PDH, 983bp from control( -) 

and chronic hypoxic (+H) hP ASMC treated with 50llM H8 peptide for 14 days. 1 ~lg 

total RNA/sample was used as a template for cDNA synthesis, of which one fifth was 

used for each RT-PCR. Above is a representative result of 3 individual experiments, 

quantified by densitometry. 
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3.3.7.2 Role of the NF-KB pathway in regulating PDE3A1B and PDE5A 

Nuclear factor-kappa B (NF-KB) is a transcription factor, which has been shown to be 

induced by stress responses and inflammation (reviewed by Makarov, 2000, Balwin, 

1996; Ghosh et aI., 1998). It was theretore thought appropriate to investigate the 

inhibition of NF -KE in regulating the hypoxic-dependant increase in PDE expression. 

Normoxic and hypoxic hP ASMC were treated chronically with 100~lM Na-p-tosyl-L

lysine chloromethyl ketone (TLCK), an inhibitor of IKE degradation. TLCK inhibits 

trypsin-like serine proteinases and blocks interferon- and LPS-induced NF-KE

dependent nitric oxide synthase induction with an ECso = 80~M (Schini-Kerth et aI., 

1997). TLCK (100~lM, 14 days) had no significant effect on PDE3A transcript and the 

increase observed with hypoxia was maintained (figure 3.3.19). The corresponding % 

changes in PDE3A transcript levels versus normoxic cells were: hypoxic 87 ± 3%; 

TLCK/normoxic, 2 ± 7%; TLCKlhypoxic, 95 ± 9% (n=3, P<0.05 for hypoxic and 

TLCKlhypoxic versus normoxic hPASMC, Student's t-test). The PDE3A1G3PDH 

transcript ratios were: control, 1 ± 0.03%; hypoxic, 2.04 ± 0.06%; control/TLCK, 1.02 ± 

0.05%; hypoxic/TLCK, 2.1 ± 0.1% (n=3, P<0.05 for normoxic/TLCK and 

hypoxic/TLCK versus normoxic hPASMC, Student's t-test). PDE3B or G3PDH 

transcript levels were not significantly affected by the addition of TLCK (figure 3.2.20). 

The changes in PDE3B and G3PDH were: PDE3B, hypoxic 4 ± 5%; TLCKlnormoxic, 2 

± 3%; TLCK/hypoxic, 3 ± 5%; G3PDH, hypoxic -1 ± 1 %; TLCKlnormoxic, 1 ± 1 %; 

TLCK/hypoxic, -2 ± 1% (n=3, NS versus normoxic hPASMC, Student's t-test). The 

PDE3A1G3PDH transcript ratios were: control, 1.01 ± 0.06%; hypoxic, 0.99 ± 0.03%; 

controllTLCK, 1 ± 0.02%; hypoxic/TLCK, 0.98 ± 0.1% (n=3, NS, versus normoxic 

hPASMC, Student's I-test). 

In contrast, TLCK substantially reduced the basal levels of PDE5A transcript in both 

the hypoxic and norm oxic treated hPASMC (figure 3.3.20A). The % changes in 

PDE5A transcript levels versus normoxic cells were: hypoxic -4 ± 3%; 

TLCK/normoxic, -42 ± 7%; TLCKlhypoxic, -44 ± 9% (11=3, P<0.05 for 

TLCKlnormoxic and TLCKlhypoxic versus normoxic hPASMC, Student's t-test). The 

PDE5A1G3PDH transcript ratios were: control, 1.02 ± 0.03%; hypoxic, 0.98 ± 0.05%; 

controllTLCK, 0.58 ± 0.05%; hypoxic/TLCK, 0.59 ± 0.1% (n=3, P<0.05 tor 

normoxic/TLCK and hypoxic/TLCK verslls normoxic hPASMC, Student's t-test). 
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There was also a correlation between the reduction in PDE5 transcript seen in cells 

treated with TLCK, with a reduction in PDE5A2 protein expression detected on 

Western blots (figure 3.2.20B). The TLCK-dependant changes in PDE5A2 expression 

in hP ASMC lysates were: hypoxic 2 ± 3%; TLCKlnormoxic, -22 ± 7%; TLCKlhypoxic, 

-29 ± 9% (11=3, P<O.05 for TLCK/normoxic and TLCK/hypoxic versus normoxic 

hPASMC, Student's t-test). 
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Figure 3.3.19 RT -PCR of PDE3A, PDE3B, and G3PDH transcripts in control 

and hypoxic hPASMC treated with 100JlM TLCK for 14 days 

RT -PCR amplitlcation using specitIc primers, as described in 2.2.2.4, of: (A) PDE3A, 

405bp; (B) PDE3B, 300bp; and (C) G3PDH, 983bp from control (-) and hypoxic (+H) 

hP ASMC treated with 1 OO~LM Na-p-tosyl-L-Iysine chloromethyl ketone (TLCK) for 14 

days. l~lg total RNA/sample was used as a template for cDNA synthesis, of which one 

tlfth was used for each RT-PCR. Above is a representative result of 3 individual 

experiments, quantitled by densitometry. 
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Figure 3.3.20 RT -PCR of PDE5A transcript and Western blotting of PDE5A 

protein from control and hypoxic hPASMC treated with 100f.!M TLCK for 14 

days 

(A) RT-PCR amplification using specific primers, as described in 2.2.2.4, of PDE5A, 

300bp, from control and hypoxic hPASMC treated with lOOIlM Na-p-tosyl-L-Iysine 

chloromethyl ketone (TLCK) for 14 days. lllg total RNA/sample was used to make 

cDNA, of which one fifth was used for each RT-PCR. (B) Western blot (2.2.3.5) with 

anti-PDE5 antibodies showing the expression of PDE5A2 in homogenates from control 

(-) and hypoxic (+H) hP ASMC treated with lOOIlM TLCK for 14 days. 1 O~lg 

protein/sample were loaded onto SDS-PAGE. Above is a representative result of 3 

individual experiments, quantified by densitometry. 
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3.4 Discussion 

These experiments aimed to provide a molecular mechanism to explain the increased 

PDE3 and PDE5 activity, and the subsequent decrease in cyclic nucleotides previously 

observed in the branches of the pulmonary arteries from the chronic hypoxic rats 

(MacLean et al., 1997; MacLean et al., 1996) 

3.4.1. Mechanism of the increased PDE3 activity seen in the PAs from CH 

rats 

PDE3 activity is increased in the main, fIrst branch and intrapulmonary vessels from 

rats maintained under chronic hypoxia for 14 days (MacLean et al., 1997). It can be 

concluded from these studies that the increased PDE3 activity in these PAs appears, in 

part, to be accounted for by the increase in the de-novo synthesis of both PDE3A and 

PDE3B from their respective genes. This is in agreement with Wagner et al. (1997), 

who also reported that PDE3A transcript was increased in the tlrst branch from hypoxic 

treated rats compared with controls. Surprisingly, both PDE3A and PDE3B transcripts 

were both seen to increase in the resistance vessels from the CH rat, even though in the 

previous study by MacLean et al. (1997), no increase in PDE3 activity was observed. It 

may be that the increased transcript is not translated into a corresponding PDE3 AlB 

protein in the resistance vessels, or that PDE3 represents a small fraction of the total 

activity in these vessels and, therefore the increase in PDE3 activity is too small to 

detect. It may also be possible that variations in translation efficiency or protein 

turnover may render RT -PCR results misleading. 

An interesting observation is the presence of both PDE3A and PDE3B transcripts in the 

PAs. The PDE3 family includes two genes, PDE3A and PDE3B, whose products 

possess similar kinetic and regulatOlY properties (Dergerman et al., 1996). PDE3A has 

historically been thought of as the cardiovascular PDE3 (Meacci et al., 1992), whereas 

PDE3B is often referred as adipocyte PDE3 as it was cloned from rat adipocytes 

(Dergerman et al., 1996, Taira et al., 1993). The differential tissue expression of 

PDE3A, compared with PDE3B, was initially thought to be one of the defining 

characteristics between the two sub-types (Reinhardt et al., 1995). However, PDE3A 

and PDE3B expression have both shown to be expressed in rat aortic smooth muscle 

cells (rASMC) and human aortic smooth muscle cells (hASMC) (Lui and Maurice, 
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1998, Palmer and Maurice, 2000). Together with the results presented, the co

expression of both PDE3A and PDE3B in blood vessels from both the systemic and 

pulmonary circulation has now clearly been shown. 

The results from the current study may also offer an explanation to why PDE3 

inhibitors reduce pulmonary vasoconstriction in models of PHT. PDE3 inhibitors may 

be effective in the pulmonary circulation, as they inhibit a target that appears to playa 

significant role in altering vasoactive responsiveness. Inhibition of increased PDE3A1B 

expression may account for why cilostamide, the PDE3 inhibitor, attenuated acute and 

chronic hypoxia induced PHT (Phillips et aI., 2000), or why PDE3 inhibitors amplifY 

the vasodilatory response in the pulmonary circulation to prostacyclin (Schermuly ei aI., 

1999). Furthermore, PDE3 inhibition has also been shown to inhibit serum-stimulated 

CH] thymidine incorporation and proliferation of rat vascular smooth muscle celis, 

showing that the increase PDE3 transcript and activity may also have a role in the P A 

remodelling seen with PHT (Pan et aI., 1994; Polson and Strada, 1996). Inhibition of 

PDE3 would increase cAMP, which via PKA activation, attenuates proliferation by 

inhibiting p42/p44 MAPK activation (Graves et aI., 1993; Bornfeldt and Krebs, 1999; 

Bonisch et aI., 1998). 

3.4.2 Regulation of the hypoxic-induced increase in PDE3A activity 

Another major finding of this study was that PDE3A transcript levels increased in 

cultured hP ASMC maintained under chronic hypoxic conditions for 14 days. The 

PASMCs are derived from human main and first branch PA (Clonetics). The increase 

in PDE3A transcript was associated with a substantial increase in PDE3 activity in these 

cultured cells. In accordance with this, it has previously been observed that exposure of 

cultured vascular smooth muscle cells to hypoxia resulted in a time-dependant increase 

of the soluble fractions ofPDE3 and 4 activity (Pinsky et aI, 1993). 

Further experiments usmg this cellular model showed that the hypoxic-dependant 

increase in PDE3A expressIOn was mediated via a cAMP-dependant mechanism. 

Hypoxia was mimicked by exposing the cells to 8-Br-cAMP (a membrane permeable 

analogue of cAMP, with reduced metabolic turnover by PDEs), and ablated by 

chronically treating hP ASMC with the PKA inhibitor, H8 peptide. Similarly, it has 

been reported that 8-Br-cAMP augments both PDE3 transcript and ORG 9935-

inhibitable PDE activity (PDE3 inhibitor) in human T lymphocytes (Seybold el al., 
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1998). As 8-Br-cAMP increases PDE3A expreSSIOn, and H8 peptide reduces the 

hypoxic-dependant increase, a role for cAMPIPKA pathway in the up-regulation of 

PDE3A can be proposed. 

The results presented in this study suggest cAMP may be initially increased in response 

to hypoxia in the pulmonary circulation. An initial increase in the production of cyclic 

nucleotides, may be an attempt of the pulmonalY circulation to restore normal tone. 

Evidence for an increase in cAMP also stems from reports that prostacyclin (PGh), a 

known activator of cAMP, is also increased in response of the pulmonary circulation to 

hypoxia (Peterson et aI., 1982; Shaul et aI., 1991; Martin et aI., 1992). However, 

desensitisation of the cyclic nucleotide pathways may occur after prolonged exposure to 

hypoxia, which would explain the increased vasoconstriction seen with PHT. Excess 

cAMP may result in desensitisation (accumulated after 2 weeks), possibly through the 

activation of PK~ which may subsequently induce the de-novo synthesis of PDE3A. 

The increase in PDE3 expression would then result in a time-dependant decrease in the 

intracellular concentration of cAMP, which would explain results by MacLean et aI., 

(1996), who demonstrated reduced cAMP in response to chronic hypoxia (14 days). In 

fact, it has been reported that prolonged exposure of cells to cAMP analogues, or 

stimuli that activate adenylyl cyclase, and raise intracellular cAMP levels, elicit a 

variety of adaptive responses that subsequently down regulate cAMP-mediated signal 

transduction (Gettys et aI., 1987; Moon et aI., 2002). One mechanism for such 

desensitisation proposed by Moon et aI., 2002, was the up-regulation of PDE activity, 

which would allow the tight regulation of cAMP. A similar negative feedback control 

of cAMP involving the PKA phosphorylation of PDE3 has also previously been 

demonstrated (Corbin et aI., 1985, Degerman et aI., 1997). These authors proposed that 

PKA acts directly on multi-phosphorylation sites of PDE3A, to increase transcription, 

and subsequently increased PDE activity (Corbin et aI., 1985, Degerman et aI., 1997). 

The PDE3 family may therefore provide a route for prolonged elevated cAMP to 

subsequently attenuate the cAMP signalling process. 

PKA may also have a more indirect role in the increase in PDE3 activity. It is possible 

that PKA may increase PDE3A transcript indirectly through activation of the cAMP 

response element binding protein (CREB). CREB is a member of a large family of 

transcription factors, which is phosphorylated by PKA via a specific phosphorylation on 

serine 133 (reviewed by Shaywitz and Greenberg, 1999; Yamamoto et aI., 1988; 
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Gonzalez and Montminy, 1989; Montminy, 1997; Roesler, 2000). Upon 

phosphorylation, CREB initiates gene expression that is known to persist long after the 

original stimulating cAMP that has been degraded. It is therefore been speculated that 

activation of CREB-mediated protein synthesis is a mechanism of transforming short

term effects of cAMP into long-term durable changes of the cell (Schwartz, 2001). This 

model may explain the increased PDE3A transcript that is repOlted, even though the 

initial increase in cAMP is diminished (seen in the CH, MacLean et al., 1996). In fact, 

hypoxia has been shown to lead to the phosphOlylation of CREB at the PKA 

phosphorylation site Serl33, inducing transcription of a number of genes (Beitner

Johnson and Millhorn, 1998; Childa and Voelkel, 1996). A schematic diagram of the 

proposed model of the cAMP pathway in regulating the increased PDE3 expreSSIOn 

with hypoxia is depicted in figure 3.4.1. 

The possible role of PKG cannot be excluded as it is also inhibited by H8 peptide, 

although at much higher concentration. Therefore, a role for PKG in the increased 

PDE3A transcript cannot presently be excluded. Future studies should include the 

chronic treatment of hypoxic hP ASMC with more specific PKG inhibitors such as Rp-

8-pCPT-cGMPS a membrane permeant inhibitor of PKG, or KT5823, to exclude the 

possible effect of PKG. Studies by Fouty et al. (1999), have however shown that 

inhibition of PKG has no effect on hypoxic pulmonary vasoconstriction, suggesting it 

may not have a central role. Additionally, H8 peptide also inhibits myosin light chain 

kinase (MLCK) and PKC. However, the involvement of MLCK can be excluded as 

elevation of cAMP via PK~ as seen in this study would inhibit this enzyme (Higashi et 

al., 1983). These studies demonstrated that elevated cAMP leads to an increase PDE 

expressIon. Thus, if MLCK was involved, its inhibition by H8 peptide should lead to an 

increase in PDE3~ and not reduced as observed. As there is no evidence that PKA 

directly mediates PKC activity, PKC can also be excluded. 
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Figure 3.4.1 Proposed model of the increased PDE3 transcript and activity 

with chronic hypoxia 

Above shows a schematic diagram showing the proposed theory for negative feedback 

of the cAMP pathway in response to chronic hypoxia. On exposure to hypoxia it is 

anticipated that an increase in cAMP would be observed, possibly through increased 

prostacyclin. This increase in cAMP would induce the activation of cAMP-specific 

phosphodiesterases, which would catalyse its hydrolysis. Results indicate a role for 

protein kinase A (PKA) , which after a threshold level of cAMP is reached 

(accumulation after 2 weeks) is activated, increasing the transcription of PDE3. PKA 

could phosphorylate PDE3 directly to increase activity, or indirectly by activating the 

cAMP response element (CRE), which induces transcription through the 

phosphorylation of the cAMP response element binding protein (CREB). Increasing 

PDE3 activity would then result in a corresponding reduction in cAMP levels. This 

feedback pathway appears to allow increased cAMP in response to hypoxia to 

subsequently attenuate the cAMP pathway. 
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3.4.3 Mechanism of the increased PDE5 activity seen in the PAs from CH 

rats 

PDE5 activity is increased in the first branch and intrapulmonary artery fi'om rats 

maintained under chronic hypoxic conditions (MacLean et aI., 1997). The increased 

PDE5 activity previously observed in the first branch P A by MacLean et al. (1997), can 

now be explained by the increased transcript and de novo synthesis of PDE5A2. These 

results are consistent with previous findings by Black et al. (2001), showing PDE5 

protein expression is increased in lambs with PHT, induced by aorta-pulmonary 

vascular graft replacement. Although increased PDE5 activity was not observed in the 

main pulmonary artery by MacLean et al. (1997), increased transcript and 

corresponding PDE5A2 protein levels were found in these aI1eries from the CH. It may 

be that in the main branch, PDE5 represents a smaller fraction of the total cGMP PDE 

hydrolysing activity, and that a significant increase in PDE5 activity may be difficult to 

detect using the pharmacological approach by MacLean et at. (1997), where selective 

PDE inhibitors were used in the assay to identifY the activity of each PDE in the 

homogenates studied. These results may suggest that RT -PCR and Western blotting are 

more sensitive than the PDE assays employed. Alternatively, it is possible that PDE5 is 

subject to additional regulation III response to hypoxia, which might explain the 

discrepancies between results. For instance, phosphorylation of PDE5 by PKA 

markedly increases its activity, however reduces the sensitivity of PDE5 to inhibition by 

zaprinast (Burns et aI., 1992). Hence, it may be that PDE5 in the main branch is 

insensitive to inhibition by zaprinast, the PDE5 inhibitor used in the assay by MacLean 

et al. (1997). 

As postulated with the cAMP pathway, the increased PDE5 expression in the main and 

first branch PAs may be due to a negative feedback pathway activated by an initial 

increase in cGMP in response to hypoxia. This hypothesis appears plausible, as the 

formation of NO, which exerts most of its biological effects via cGMP production in 

smooth muscle cells, is actually enhanced in lungs with the development of PHT 

(Archer et aI., 1996; Forrest et aI., 1999; Isaacson et aI., 1994, Xue et aI., 1994; Le Cras 

et aI., 1998; Le Cras et aI., 1996, Resta et aI., 1997). Increases in cellular cGMP levels 

have been shown to activate PDE5 both by activating PKG, and by binding to the 

allosteric sites of PDE5, increasing phosphorylation (Corbin et aI., 2000; Turko et aI., 

1998; Thomas et aI., 1990; Venkatesh et aI., 2001). Venkatesh et al. (2001), concluded 
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that cGMP elevation would cause increase sequestration of cGMP by PDE5, resulting in 

dampening of the cGMP signal and rendering it unavailable to target proteins, such as 

PKG. The increase in PDE5 expression would therefore explain the reduced cGMP 

levels in CH rats (14 days, MacLean et aI., 1996). 

Cross-talk between the cGMP and the cAMP pathways in these vessels may be 

possible, as PDE5 is activated not only by PKG, but also by PKA in smooth muscle 

(Burns et aI., 1992, Corbin et aI., 2000, Murthy, 2001). Therefore, the proposed 

increase in PKA in response to the hypoxic-induced elevation in cAMP, may contribute 

not only to the activation ofPDE3, but also tor the increase in PDE5 in these branches. 

Thus, when both cyclic nucleotides are present, cAMP could enhance the breakdown of 

cGMP via the PKA-dependant activation of PDE5 (Murphy et aI., 2001 a/b). The 

subsequent decrease in cGMP could then reduce its inhibitory action over PDE3, 

thereby leading to an increase in PDE3 activity. 

PDE5A1 nor PDE5A2 protein or transcript levels were not however significantly 

altered with hypoxia in either the intrapulmonary or resistance vessels. As increases in 

transcript or protein were not detected, therefore the hypoxic-dependant increase in 

PDE5 activity cannot be explained by changes in the expression of PDE5A1 or 

PDE5A2. The observed changes in PDE5 activity in the intrapulmonary artery may be 

due to post-translational modifications, such as increased phosphorylation. This seems 

feasible, as Hanson et aI., (1998) showed that increased PDE5 activity in the ovine 

model of PHT was correlated with increased phosphorylation of the enzyme. Future 

studies could use specific antibodies for the phophorylated form of PDE5 to investigate 

this hypothesis. 

The increased expression of PDE5 in the main and first branch P A may explain why the 

PDE5 inhibitors E-40 1 0 and E-4021 cause selective pulmonary vasodilation, and 

attenuate the increase in pulmonary arterial pressure (P AP), right ventricular 

hypertrophy, and pulmonary arterial remodelling seen in rat models of PHT (Takahashi 

et aI., 1996, Hanasato et aI., 1999). PDE5 inhibitors would specifically inhibit PDE5, 

which appear to be an important target in pulmonary vasoreactivity, to increase cGMP 

levels in pulmonary vascular smooth muscle, promoting relaxation. In fact long-term 

administration of E401 0 improved the survival of pulmonary hypertensive rats 

(Kodama and Adachi, 1999). Furthermore, a number of groups have shown that 
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PDE5A inhibitors potentiate the vasodilatOlY effects of inhaled NO (Ishihara et al., 

1998, Ohnishi et al., 1999). The results of this study are in fact timely in the light of 

recent studies showing that the PDE5 inhibitor sildenafil inhibits acute hypoxia-induced 

PHT in humans (Zhao et aI., 2001; Ghofrani et aI., 2002; Sanjay et al., 2000). Together 

these results show evidence tor using selective PDE5 inhibitors in the treatment ofPHT 

3.4.4 Difference in PDE5 expression between the proximal and distal 

pulmonary artery 

Previously it has been reported that in the PAs from CH rats and from patients with 

PHT, endothelium-dependant relaxation is decreased in the conduit (main and first 

branch) PAs, however increased in the resistance vessels (MacLean et aI., 1995; 

MacLean and McCulloch, 1998; Dinh-Xuan, et al., 1991). Oka, et al. (2001), also 

reported that ACh- and nitroprusside-induced relaxation via a NO/cGMP mediated 

pathways were only impaired in the larger PAs, but not in the smaller vessels from CH. 

Consistent with this, cGMP levels are decreased in the main and first branch P A, but 

unchanged in the resistance vessels from CH (MacLean et al., 1996; Oka, et al., 2001). 

As endothelial NO synthase is known to be increased in both the large and small P A 

from CH (Le Cras et aI., 1996), this current study can therefore provide a molecular 

mechanism to explain these previous results. The increased POE5 activity is increased 

in the large PAs through synthesis of PDE5A2 protein, which can account for the 

decrease in cGMP, and the subsequent decrease in acetylcholine-induced relaxation. In 

parallel, PDE5 levels were unchanged in the resistance vessels, which would preserve 

the ability of ACh to induce vasodilation. In fact, due to increased levels of guanylyl 

cyclase in these vessels, ACh-induced relaxation could even be enhanced (Li et al., 

1999a). 

Additionally, the PDE5 inhibitor sildenafil has been shown to selectively vasodilate the 

large PAs, but not the resistance vessels (Oka et aI., 2001). Sildenafil has been shown 

in mice to protect against the development ofPHT (Zhao et aI., 2001). The remodelling 

seen in the pulmonary circulation with PHT, is more significant in the intrapulmonary 

and resistance vessels (distal), which are also the main site of resistance to flow. The 

role of the large PAis to maintain peripheral flow by dilating to accommodate stroke 

volume then recoiling during diastole. Pulsatile load is increased with PHT, due to the 

decreased compliance of the large P A. Reduced pulmonary artery compliance has been 
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speculated to be as important as increased resistance 111 elevating right ventricular 

afterload (Milnor et aI., 1969). These results suggest that the anti-pulmonary 

hypertensive effects of PDE5 inhibitors such as sildenafil are due to increasing the 

compliance of the large PA, thereby preventing right ventricular hypertrophy. 

3.4.5 Regulation of PDE5-Role of the NF-KB pathway 

Although an increase in PDE3 transcript and activity were both seen with chronic 

hypoxia in the hP ASMC, no changes were detected in PDE5 transcript, protein, or 

activity. As the hP ASMC are derived from human main and first branch P A the reason 

for this difference is not known. However, it may be that PDE5 is unaltered in the 

cellular model with hypoxia due, to the relative difference in PKG content. As outlined 

above it is possible that PDE5A2 expression may be regulated by cGMP and PKG 

under chronic hypoxia. It is well known that PKG expression is attenuated when 

vascular smooth muscle cells are cultured (Cornwell et aI., 1994; Cornwell and Lincoln, 

1989). Therefore, the inability of chronic hypoxia to modulate the expression of 

PDE5A2 in cultured hPASMC may be the due to the absence ofPKG. 

In response to stress stimuli, the ubiquitous, dimeric transcription factor nuclear factor

kappa B (NF-KB) is known to be activated controlling the transcription of genes 

encoding for growth factors and other mediators that can influence vasodilation and 

proliferation (reviewed by Makarvo, 2000; Shulze-Osthoff, 1997; Sibenlist et at., 1994; 

Thanos and Maniatis, 1995 Faller 1999). It was of particular interest to investigate NF

KB in hypoxia, as the promoter region of PDE3A13B genes contain transcriptional sites 

for NF-KB, and it is controlled by the intracellular redox state (Wattanapitayakul and 

Bauer, 2001). However, the chronic treatment of hPASMC with the NF-KB inhibitor 

Na-p-tosyl-L-Iysine chloromethyl ketone (a selective inhibitor of trypsin-like serine 

proteases, TLCK), which prevents IKB degradation, had no significant effect on basal 

PDE3A or the hypoxic-dependant increased PDE3A transcript. 

The final finding of this study was that the chronic treatment of normoxic/hypoxic 

hP ASMC with TLCK reduced the basal expression of PDE5A. These results therefore 

suggest that NF-KB may have a role in controlling pulmonaty vascular tone. While 

TLCK also inhibits other proteases, these do not have specificity against transcription 

factors, such as NF-KB that could alter PDE5 expression. NF-KB could directly control 
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transcription of PDE5, suggesting that the PDE5 gene may have NF-KB binding sites in 

its promoter region. However, it is also possible that NF-KB acts through a more 

indirect method involving inducible nitric oxide (iNO), to reduce PDE5 expression. 

Inducible NOS is present in the vasculature and contributes to nitric oxide production 

(NO). NF-KB is known to regulate iNOS, as it is well established that the 5' flanking 

region of the iNOS gene contains a consensus sequence that binds to NF-KB (Xie et al., 

1993). Additionally, TLCK can prevent the LPS-inducible expression of the iNOS gene 

in rat alveolar macrophages, and also by preventing the transcription of the iNOS gene, 

inhibit NO production (Griscavage and Ignarro, 1995; Schini-Kerth et al., 1997). NF

KB may therefore control iNOS, which in turn regulates vascular tone through the action 

of NO and cGMP. Through the activation of soluble guanylyl cyclase, and the 

subsequent activation of protein kinase G (PKG) , NO can increase intracellular cGMP 

levels, which in turn may govern PDE5 expression. Thus, a decrease in NOS would 

decrease cGMP, therefore decreasing PDE5. These results together suggest that NF-KB 

may control iNOS expression, which may in turn regulate NO, cGMP, PKG, and 

consequentially PDE5 levels. It can therefore be proposed that increased PDE5 

expression with hypoxia may, in part, be due to the activation ofNF-KB. 

Evidence for changes in the components of the NF-KB/PDE5 pathway and there 

importance in hypoxia can be taken from the following studies. With respect to a role 

for NF-KB in PHT, NF-KB activation has been associated with the stimulated oxidative 

stress, which is related to mono crotaline-induced PHT (Aziz et aI., 1997). Furthermore, 

treatment of spontaneously hypertensive rats with the NF-KB inhibitor, 

pyrrolidinedithiocarbamate (PDTC) and the iNOS inhibitor, amino guanidine, reduced 

the development of hypertension and improved the reduced vascular responses to ACh 

(Hong et aI., 2000). NF-KB has also been shown to modulate proliferation, branching, 

and morphogenesis in lung epithelium (Muraoka et aI., 2000), therefore inhibition may 

reduce the remodelling seen with PHT. 

Following on from this, increased de novo expressIOn of iNOS mRNA and protein 

expression has been noted in whole lung extracts and in large and small P A from rats 

and mice with chronic hypoxia induced-PHT (Carville et aI., 1997; Le Cras 1996; 

Palmer et aI., 1998; Xue et aI., 1996; Kinnula et aI., 1995). Additionally, shear stress, 

of which hypoxia may be a stimulant, is a potent inductor of iNOS expression in smooth 

muscle cells, which is in part mediated by NF-KB (Gosgnach et aI., 2000). Increased 
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iNOS with hypoxia would induce the formation of increased NO. Increased NO has 

also been shown to have a significant role in PHT (Le Cras et a/., 1996). Studies in 

animal models support the hypothesis that NO production may be increased with the 

development of PHT, possible through increased nitric oxide synthase expression 

(Shaul et a/., 1995). Isaacson et a/., 1994, measured the NO oxidation product nitrite in 

lung perfusate of rats as an index of NO production, and found an increase from O.4nM 

in normotensive to 24.3nM in pulmonary hypertensive rats. Finally, cGMP production 

has been shown to be initially increased in the CH in response to hypoxia, which could 

explain the subsequent increase in PDE5 activity (Li el a/., 1999). The increase in 

PDE5 activity would explain the net decrease in intracellular cGMP levels in the PAs 

from the CH after 14 days (MacLean et a/., 1996). 

Together these findings suggest that inhibiting NF-KB could be a potential new strategy 

to reduce PDE5 activity indirectly, possibly by improving the vasodilatory action of 

agents such as nitrates or even PDE5 inhibitors in patients with PHT. Anti

inflammatory drugs such [non-steroid anti-inflammatory drugs (NSAIDs), 

immunosuppressants] and glucocorticoids can all inhibit NF-KB (Epinat and Gilmore, 

1999; Wissink et al., 1998). However, these drugs are non-specific for NF-KB and also 

inhibit a number of other important inflammatory mediators. Additionally, due to the 

wide role of NF-KB in cell regulation, adverse side effects could limit the use of more 

specific NF-KB inhibitors as a therapeutic target in PHT. Potential future work would 

be to administer TLCK chronically to the CH, in order to prevent the development of 

PHT. 

3.4.6 Conclusion 

Together these results suggest that phenotypic changes in PDE3 and PDE5 expression 

could account at least in part for the reduced sensitivity of P A to vasodilators. The 

increase in PDE3 and PDE5 expression with hypoxia would accelerate the rate of 

cAMP and cGMP degradation, blunting the relaxant effects of agents such as 

isoprenaline and nitric oxide. These data provide a molecular mechanism of why PDE3 

and PDE5 inhibitors exert favourable effects. 



CHAPTER 4 

EFFECT OF PDE3 AND PDE5 INHIBITORS ON 

ISOLATED PULMONARY ARTERIAL RINGS 



141 

Chapter 4 -- Effect of PDE3 and PDE5 inhibitors on 

isolated pulmonary arterial rings 

4. 1 Introduction 

The relaxation of smooth muscle via the elevation of cAMP and/or cGMP is well 

known and understood (reviewed by Schwede et aI., 2000; Schmidt et aI., 1993; 

Koyama et aI., 2001). An increase in cAMP and cGMP can be achieved by inhibiting 

phosphodiesterases (PDEs), the enzymes responsible for their conversion to their 

corresponding 5' -monophosphate inactive counterparts. The high diversity of PDE 

families, such as in their tissue distribution, and functional roles, make these enzymes 

likely targets for therapeutic application (reviewed by Thompson, 1991; Beavo et al., 

1994; Beavo, 1995: Soderling et aI., 1998, 1999; Corbin and Francis, 1999; Fawcett et 

al., 2000; Conti, 2000; Soderling and Beavo 2000; Yuasa et al., 2000; Koyama et al., 

2001). Due to the rapid development of pharmacological and biochemical research in 

the field of PDEs, family-specific inhibitors for many of the PDEs are presently 

available. 

In human pulmonary arteries (PAs), PDE 1, 3, 4, and 5 are present in the cytosolic and 

particulate phases of the homogenised tissue (Rabe et al., 1994). MacLean et aI, 

(1997), reported that the activity of both cAMP and cGMP-PDEs are increased in the 

PA branches from chronic hypoxic rats (CH). The most significant increases in activity 

with hypoxia were associated with PDE1, PDE3 and PDE5 (MacLean et aI., 1997). 

Results from chapter 3 show increased transcript levels for PDE3 and PDE5 in both the 

main and first PA from CH. Together, these studies suggest a possible therapeutic 

application of PDE3 and PDE5 inhibitors in PHT. Studies outlined below give further 

evidence for examining the functional consequence of selective PDE3 and PDE5 

inhibitors in isolated conduit PArings. 

PDE3 is known as the cAMP-specific, cGMP-inhibited PDE. Two genes encode for the 

PDE3 family, namely PDE3A and PDE3B. Commonly used PDE3 inhibitors include 

milrinone, amrinone, and cilostamide. Clarke et al. (1991), showed that inhibition of 

PDE3 by amrinone reduced pulmonary vascular resistance (PVR) in isolated perfused 

lung. Also, the PDE3 inhibitor SCA40 has been shown to relax main and 

intrapulmonary PAs precontracted with phenylephrine (PE, Crilley et aI., 1998). 
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SCA40 reversed the vasoconstriction induced by PE, and was 4.9-fold more potent in 

the PAs from the CH than from the control. These studies suggest PDE3 inhibitors may 

be useful in treating PHT. The pulmonary vasodilatory ability of SKF94836 [2-cyano-

1-methyl-3- [4-(-methyl-6-oxo-l, 4,5,6-tetrahydropyridazine-3-yl) phenyl] guanidine], a 

new potent PDE3 inhibitor (Ki = 1-3~M, Murray et al., 1991; Souness et al., 1992), was 

investigated in this study. 

PDE5 is the main cGMP PDE in the lung (Francis et aI., 1980; Thomas et al., 1990). 

Drugs such as zaprinast, dipyridamole, and DMPPO are commonly used specific 

inhibitors of PDE5. These inhibitors act by competing with cGMP to bind to the 

catalytic sites, but not the allosteric sites, of PDE5 (Francis et aI., 1990; Corbin and 

Francis, 1999). Not surprisingly, due to the high concentration of PDE5 in the lung, 

PDE5 inhibitors such as zaprinast have been shown to reduce PVR in both isolated 

lungs and in the pulmonary circulation of foetal animals (McMahon et aI., 1993; 

Ichinose, 1995a; Ichinose et aI., 1995b; Jeffery and Wanstall, 1998; Black et al., 2001). 

In addition, DMPPO and the potent PDE5 inhibitor E401 0 have both been shown to 

attenuate the development of pulmonary vascular remodelling when administered 

chronically to chronic hypoxic rats, with no significant systemic effects (Eddahibi et al., 

1998; Hanasato et aI., 1999; Kodama and Adachi, 1999). These studies suggest a 

positive role for PDE5 inhibitors in the treatment ofPHT. 

A recently developed, highly specific PDE5 inhibitor is sildenafil, Ki of ~ 3. 5nM 

(Ballard et al., 1998). Sildenafil citrate (Viagra®) is currently successfully used to treat 

male impotence at doses of 50mg to 100mg (reviewed by Moreland et al., 1999). 

Following sexual stimulation sildenafil has been shown to enhance NO-mediated 

smooth muscle relaxation in blood vessels, thereby improving penile erection by 

increasing blood flow (Boolell et al., 1996; Ballard et al., 1998; Stief et al., 1998). The 

order of potency of sildenafil compared to some commonly known PDE5 inhibitors is; 

sildenafil (most potent) > zaprinast > dipyridamole > mMX > cilostamide > 

theophylline> caffeine (Thomas et al., 1990; Ballard et aI., 1998). The clinical use of 

sildenafil opened up the possibility that this new potent PDE5 inhibitor may be effective 

in the treatment of PHT. In fact, Zhao et al. (2001), investigated the effects of sildenafil 

on hypoxia-induced PHT in mice and healthy human volunteers. These authors found 

that 100mg of sildenafil inhibited the hypoxic rise in PAPin human subjects. In 

addition, sildenafil was shown to attenuate the increase in RV hypertrophy and 
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remodelling in mIce chronically exposed to hypoxia. Furthermore, a randomised 

controlled trial showed sildenafil caused selective pulmonary vasodilation and improved 

gas exchange in individuals with PHT secondary to lung fibrosis (Ghofrani et a/., 2002). 

Sildenafil was the PDE5 inhibitor used throughout the following investigation. 

The action of vasodilators in the pulmonary circulation is dependent on the type of 

vasoconstrictor, and the size of the PA used (Plane and Garland 1996; Frid et aI., 1997; 

Wanstall, 1996). Several factors are considered to be mediators or modulators of the 

hypoxia-induced vasoconstriction associated with PHT. In this study three well

characterised pulmonary vasoconstrictors with differing mechanisms of action were 

used to study the effects of the PDE3 and PDE5 inhibitors. These were the G-protein 

coupled receptor (GPCR) agonists, phenylephrine (PE), 5-hydroxytryptamine (5-HT), 

and endothelin-l (ET -1), of which brief outlines of their mode of action and evidence of 

a role in PHT are given below. 

Sympathetic stimulation causes changes in pulmonary vascular resistance, mediated via 

noradrenaline and a- and ~-adrenoreceptors (reviewed by Barnes and Liu et a/., 1995; 

Bevan, 1989). The al-adrenoreceptors appear to mediate both the vasoconstrictive and 

proliferative actions of sympathetic nerve stimulation in the pulmonary circulation 

(Hyman, 1986; Nakaki et a/., 1990). PE is a commonly used al-adrenoreceptor 

ligand/agonist known to vasoconstrict isolated PArings. Vasoconstriction of vascular 

smooth muscle by activation of al-adrenoreceptors is believed to occur through 

coupling to phospholipase C (PLC), leading to an increase in the release of intracellular 

calcium and activation of protein kinase C (PKC), mediated by diacylgycerol (DAG) 

and inositol trisphosphate (IP3). An increase in al-adrenoreceptor activation occurs in 

response to hypoxic induced PHT (Sundeep, 1999; Eckhart et a/., 1996; Mardon et a/., 

1998). 

ET -1, a 21 amino acid peptide, is also known to be a potent vasoconstrictor in large 

P As, and to increase pulmonary vascular resistance (for review, see MacLean, 1998b; 

MacLean, 1999a). ET -1 has a multifactorial action in the pulmonary circulation 

mediated by the two ET receptors. ET -1, acting via ETA receptors, has been shown to 

cause a concentration-dependent contraction in the conduit PAs of the rat (MacLean et 

a/., 1998b). In parallel, evidence exists for the role of ETB receptors in the ET-l 

induced vasoconstriction in both rat and human small PAs (MacLean et a/., 1994b; 
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McCulloch et al., 1998). ET-1, in common with ul-adrenoreceptors-agonists, initiates 

smooth muscle contraction via induction of phospholipase C (PLC) and subsequent 

generation of the second messengers inositol trisphosphate (InsP3) and diacylgycerol 

(DAG). In the lung both ET -1 and ET -3 are abundantly expressed providing further 

evidence for a role in the control of pulmonary tone (Firth et al., 1992). 

ET-1 has been implicated in the development ofPHT (for review, see MacLean, 1998; 

MacLean, 1999b). This is supported by Griaid et aI, 1993 who showed an increased 

expression ofET-1 mRNA in patients with both primary and secondary PHT. Also, an 

increase in ET -1 concentration, and ET -1, ETA receptor and ET B receptor mRNA has 

been observed in the lungs from CH (Li et aI., 1994). In fact, a common 

pathophysiological feature of PHT, regardless of the etiology, appears to be an increase 

in the circulating levels ofET-1 (MacLean, 1998b, Stewart et al., 1993). Additionally, 

ET -1 has been shown not only to be a potent pulmonary vasoconstrictor, but to also 

stimulate DNA synthesis and proliferation ofPASMC (Janakidevi et aI., 1992). Hence 

increased levels may not only lead to the increased tone but also the increased 

remodelling seen with PHT. Therefore inhibition ofET-1 would be of therapeutic value 

in the treatment of PHT. In fact, bosentan (Tracleer®), which is presently used in the 

treatment ofPHT, is a dual endothelin-receptor antagonist (ETAIETB). 

Another potent vasoconstrictor in the pulmonary circulation is 5-HT (also known as 

serotonin). Recent evidence would suggest there are at least 17 genetically different 5-

HT receptors (reviewed by, Hoyer et al., 2001; MacLean, 1999b). These include 5-

HT1A-F, 5HT2A-C, 5-HT3 and 5-HT4 (MacLean et aI., 1999b). In the pulmonary 

circulation the vasoconstrictive effect of 5-HT appears to be mediated via 5-HT lBllD and 

5-HT2A receptors depending on the level of pre-existing tone and the species 

(More croft and MacLean, 1998). 5-HT induces vasoconstriction via 5-HTlB/lD 

receptors through a Gai dependent pathway leading to the inhibition of adenylyl 

cyclase, and a subsequent decrease in cAMP. In parallel, 5-HT initiates 

vasoconstriction via the 5-HT 2A receptors through a Gaq dependent pathway, leading to 

the hydrolysis of IP3 and DAG from PLC, and a subsequent increase in intracellular 

calcium and activation ofPKC (Sumnner and Humphrey, 1990). 

As with ET -1, increased 5-HT is thought to have a role in the increased tone and 

vascular remodelling associated with all forms of PHT (for review, see MacLean, 
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1999b/c). Circulating levels of 5-HT were shown to increase from 1-2nmollL to about 

30nmolIL in PPHT (Anderson et al., 1987). Herve et af. (1995), reported an increase in 

plasma 5-HT levels in PPHT. Furthermore, platelet and plasma 5-HT levels are 

increased in PHT that is secondary to anorexigen intake (Herve et af., 1995). Eddahibi 

et al., 1999, demonstrated that 5-HT also has a co-mitogenic action on pulmonary 

vascular smooth muscle cells. Together these studies would suggest a role for 5-HT in 

the development ofPHT. 

The aim of this study was to investigate the effect of SKF94836 (PDE3 inhibitor), and 

sildenafil (PDE5 inhibitor) on PE, ET -1, and 5-HT mediated vasoconstriction in both 

the main and first branch P A of control and hypoxic rats. In addition the vasodilatory 

effects of the PDE inhibitors will be assed in endothelium-denude P A. 

4.2 Materials and Methods 

4.2.1 Materials 

All reagents, unless otherwise stated, were obtained from Sigma chemical company 

(UK.), or BDH (UK.). PDE3 inhibitor SKF94836 (M.W. 270) was from 

GalaxoSmithkline (UK.). PDE5 inhibitor sildenafil (M.W. 430) was from Pfizer 

(UK.). 

4.2.2 Animal Studies - Chronic Hypoxic Rat 

Male Wistar rats of 28-30 days old (at start of experiment) were housed in a specially 

designed perspex hypobaric chamber (Royal Hallamshire Hospital, Sheffield). The 

pressure within the chamber was decreased to 550mbar, this reduced the inspired p02 to 

approximately 110mmHg (~1 0% equivalent). The temperature of the chamber was 

maintained at 21_22
0 

C and the chamber was ventilated with air at approximately 451 

min-I. Animals were maintained in these hypoxic/hypobaric conditions for 14 days. 

Age-matched controls were housed under normoxic/normobaric room conditions (20% 

v/v oxygen). Following sacrifice the right ventricle of the heart was dissected free of 

the septum and left ventricle and these were blotted and weighed. PHT was assessed by 

measuring the ratio of right ventricle (R V)/total ventricular (TV) weight. This is a well

established index of the degree of PHT in the rats (Hunter, et al., 1974). Pulmonary 

arteries were dissected out then either kept in cold gassed Krebs-Heinslet (Krebs) 
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solution [118.4mM NaCl, 25mM NaHC03, 47mM KCl, 1.2mM KH2P04, 1.2mM 

MgS04, 2.5mM CaCh, 11mM, pH 7.4] at 4°C (for no more than 24hrs) for use in organ 

bath experiments. 

4.2.3 10ml Organ Bath Set-up for isolated main and first branch pulmonary 

artery 

Standard organ bath procedures were used. Each P A was suspended by two wire 

supports. The top wire support (hook shaped) was then connected by thread to a force 

displacement transducer, while the bottom wire support, which was attached to a glass 

rod, was clamped in place. The isometric force transducer was connected via an 

amplifier to Mac lab (Chart V3.5, MacLab Data Acquisition System, Version 8E, AD 

Instruments Pty Ltd, Australia), a computer based data handling system which recorded 

vessel contraction/relaxation as in a pen chart recorder. The rings were mounted in 

10ml organ baths containing Krebs as and continuously oxygenated with 16% O2, 5% 

CO2, and 79% N2, at 37°C. 

Rings were placed under a resting tension of 1. 5g, which was maintained throughout all 

experiments. A tension of 1.5g was set, as it is known to be the optimal tension to 

produce a maximal contraction to 50mM potassium chloride (KCI) in control P A, and 

can be said to mimic the in vivo tension. Initially all PA were equilibrated for 45 

minutes after which each vessel was contracted with 50mM potassium chloride (KCI). 

After washing with Krebs, this procedure was repeated to ensure maximal contraction. 

After a further equilibration period of approximately 45 minutes, endothelium function 

was checked. Functional endothelium was assessed by the ability of 10-6M 

acetylcholine (ACh) to significantly relax PA rings pre-contracted with 1O-6M 

phenylepherine (PE). In selected experiments the endothelium was removed by gently 

rubbing the luminal surface of the rings with ridged forceps. When no response was 

achieved with 10-6M ACh the vessels were considered to be denude of functional 

endothelium. 

4.2.4 Preconstrictors 

Cumulative concentration response curves (CCRCs) were constructed for PE (10-9-10-

5M), 5-HT (10-9 _1O-5M), and ET -1 (10-11-1 0-7M) in half log steps for both the main and 

first branch. The periods between additions were dictated by the time taken for the 
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responses to stabilise, which was usually 5 minutes. In further experiments a 

concentration of each vasoconstrictor was used that consistently produced contractions 

with a magnitude similar to that of 50mM KCI in the PArings. 

4.2.5 Effect of PDE3 and PDE5 inhibitors on preconstrictor responses 

Both the PDE5 inhibitor sildenafil, and the PDE3 inhibitor SKF94836 were stored at a 

stock concentration of 1O-2M in 1% DMSO. CCRCs were constructed using the PDE5 

inhibitor sildenafil (10-9 _1O-5M in 1 % DMSO), and the PDE3 inhibitor SKF94836 (10-9
-

10-sM in 1 % DMSO) in half log steps for each of the three preconstrictor agents. 

CCRCs were carried out for each PDE inhibitor in the main and first branch pulmonary 

artery from both control (+/-endothelium) and hypoxic animals. Additions of both 

inhibitors only commenced once a stable plateau had been reached for the preconstrictor 

used. In all experiments, in order to show the true effect of the inhibitors, one half of 

the branch was always used as a time control where only 1 % DMSO was added in to the 

bath (final concentration 0.01 % DMSO). 

4.2.6 Data Analysis 

EC so values could generally not be calculated for each individual CCRC as a maximum 

plateau was not reached, even on the addition of the stock concentration of each 

inhibitor. Therefore throughout this study the maximum relaxation in response to the 

PDE inhibitor (3 x 1O-5M for both SKF94836 and sildenafil) were compared between 

groups (the efficacy). All data were expressed as percentage of the reference response to 

50mM KCI in each vessel. Each point is the mean ± s.e.m. Statistical comparisons of 

the means of groups of data were made by use of Student's t-test for paired or unpaired 

data where appropriate. Student's t-test was used to compare the maximum response of 

each PDE inhibitor between control/control endothelium-denuded and control/hypoxic 

P A. A level of probability of P<0.05 was taken to indicate statistical significance. As 

above, "n" equals the number of different animals used. 

To take into account a possible effect of the vehicle (DMSO), the response of the PA to 

DMSO alone was subsequently subtracted from the parallel response to the PDE 

inhibitor. These calculations allowed results to be obtained for relaxations that could 

only be attributable to the PDE inhibitors. 
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4.3 Results 

4.3.1 The Chronic Hypoxic rat (CH) 

The animals used throughout these experiments correspond to the results in 3.2.1 and 

figures 3.3.1 and 3.3.2. The exposure of male Wistar rats to 10% O2 for 2 weeks 

resulted in a significant decrease (P<0.05) in body weight from 221.3g ± 2.6 to 199.7g ± 

2.4 (n=80, P<0.05, Student's t-test, see figure 3.3.1). 

RV lTV ratio was significantly increased with hypoxia, confirming that right ventricular 

hypertrophy had occurred (figure 3.3.2). RV/TV ratios were 0.202 ± 0.001 and 0.336 ± 

0.006 for normoxic and hypoxic rats respectively (n=80, P<0.05, Student's t-test, see 

figure 3.2.2). There was a 66.3% increase in the RV/TV ratio in CH compared to 

control rats, indicating the development of severe PHT in the rats used throughout the 

study. 

4.3.2 Optimising PE, 5-HT, ET-1 and ACh concentrations 

Age matched controls were used to optimise the concentrations of vasoconstrictors used 

throughout this study, as more were readily available. 

Before each experiment the response to 50mM potassium chloride (KCl) was 

determined. This provided a control, to show firstly the integrity of the tissue, and 

secondly to allow direct comparison of the response of each precontractile agent (by 

expressing data as a % of the reference response to 50mM KCl). 50mM KCl was used, 

as this concentration is known to produce a maximal contractile response in this 

preparation, as higher concentrations have been shown to result in a decrease in 

response (MacLean et al., 1994b). KCl causes contraction of smooth muscle by 

depolarising the membrane, resulting in the stimulation of L-type voltage operated Ca2-r 

channels. Hence, KCl acts directly on smooth muscle, not involving receptor activation. 

Figure 4.3.1A1B and 4.2.3A show the cumulative concentration response curves 

(CCRC) constructed for phenylephrine (PE, 1 x 1O-9M to 3 x 1O-4M, figure 4.1A), 5-

hydroxtryptamine (5-HT, 1 x 1O-9M to 3 x 1O-5M, figure 4.3.1B), and endothelin-l (ET-

1, 1 x lO-13M to 3 x 1O-8M, figure 4.3.2A). PE, ET-l and 5-HT all produced 

concentration-dependent contractions in both the main and first branch pulmonary 
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arteries (P A). The CCRCs produced by each of the preconstrictors were not 

significantly different in the main versus the first branch pulmonary artery (figure 

4.3.1AIB and 4.2.3A). The concentrations of each preconstrictor that produced 90-

100% (a sustainable and reproducible contraction) of the reference KCI response were 

extrapolated from the CCRCs. These concentrations were as follows; PE, 1 x 10-6M; 

ET-l, 3 x 10-9M; and 5-HT, 3 x 10-sM. These concentrations were used in each 

subsequent experiment to produce a level of active tension in both P A branches before 

the addition of the PDE inhibitor. 

Each P A was shown to have intact functioning endothelium before commencing the 

experimental protocol. This was determined by the ability of the endothelium

dependent agonist acetylcholine (ACh) to cause significant relaxation of the PA after 

preconstriction with 111M PE. In order to determine the optimal concentration of ACh 

to use in all subsequent experiments, a CCRC to ACh (ACh, 1 x 10-9M to 3 x 10-4M) 

was constructed in both control main and first branch P A preconstricted with 111M PE. 

In both the control main and first branch P A, ACh caused a similar concentration

dependent relaxation (figure 4.3.2B). From figure 4.3.2B, it can be seen that 1 x 1O-6M 

ACh produced a significant sustainable relaxation, approximately 50% of the reference 

KCI response in both the main and first branch. Therefore, 1 x 10-6M ACh was used in 

all subsequent experiments to indicate the presence of a functional endothelium. 

4.3.3 Response of hypoxic and endothelium-denuded main and first 

branch pulmonary arteries to PE, ET -1, and 5-HT 

Initially, it was required to investigate whether hypoxia or removal of the endothelium 

altered the response of the PAs to each preconstrictor. Figures 4.3.3 and 4.3.19 show 

the level of preconstriction produced in the control, hypoxic and endothelium-denuded 

(A) main and (B) first branch PAs used in the SKF94836 and the sildenafil studies 

respectively. It can be seen in figure 4.3 and 4.19 that the maximum response to 1 x 10-

6M PE in the main P A, and also in the first branch PAs, were not significantly different 

when comparing the control, hypoxic, and endothelium-denuded vessels (data not listed, 

n=5 for all, NS). Likewise, it can be seen from figures 4.3.3 and 4.3.19 that the 

responses to 3 x lO-9M ET -1 were not significantly different when comparing the 

control, hypoxic, or endothelium-denuded conduit PAs (data not listed, n=5 for all, NS). 
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In contrast, the magnitude of the contraction induced by 3 x 10"5M 5-HT increased 

significantly in both the main and first branch PAs from CH compared to those from the 

control, and those that were endothelium-denuded (figures 4.3.3 and 4.3.19). The 

response to 3 x 1O"5M 5-HT, as a % of the reference KCI, were as follows in the main 

PAs in the SK94836 study: main control; 96.4 ± 5.5%; main PA endothelium-denuded; 

94.7 ± 4.8%, main P A hypoxic; 115 ± 7.1 % (n=5, P<O. 05, hypoxic versus control 

with/without endothelium, Student's I-test, figure 4.3.3). In parallel, the response to 3 x 

1O"5M 5-HT in the first branch, as a % of the reference KCI, were as follows: first 

branch PAs used in the SKF94836 study: first branch PA control; 95.9 ± 4.2% (n=5); 

first branch PA endothelium-denuded; 97.6 ± 4.4% (n=5), first branch PA hypoxic; 

115.1 ± 9.9% (n=5, P<0.05, hypoxic versus control with/without endothelium, Student's 

t-test, figure 4.3.3). Likewise, the response to 3 x lO"sM 5-HT, as a % of the reference 

KCI, were as follows in the main PAs used in the sildenafil study (figure 4.3.19): main 

control; 91.8 ± 7.5%; main PA endothelium-denuded; 91.5 ± 4.5%, main PA hypoxic; 

113 ± 7.3% (n=5, P<0.05, hypoxic versus control with/without endothelium, Student's 

t-test). Again in parallel, the response to 3 x lO"sM 5-HT in the first branch, as a % of 

the reference KCI, were as follows: first branch PAs used in the sildenafil study (figure 

4.3.19): control; 92.8 ± 5.8% (n=5); first branch PA endothelium-denuded; 93.2 ± 5.4% 

(n=5), first branch PA hypoxic; 111.7 ± 4.8% (n=5, P<0.05, hypoxic versus control 

with/without endothelium, Student's t-test). 

These results suggest chronic hypoxia enhances the maximum response to and therefore 

sensitivity to 5-HT in the branches of the pulmonary circulation studied. In fact, the 

maximum response to 5-HT has previously been shown to be enhanced in PAs obtained 

from both the mono crotaline-induced and hypoxia-induced models of PHT (Wanstall 

and Donnell, 1990; MacLean et af., 1996). MacLean et af. (1996), found exposure to 

chronic hypoxia increased the sensitivity (pECso) of the main and first branch PA to 5-

HT from 5.0 ± 0.2 to 6.4 ± 0.2, and 5.3 ± 0.1 to 6.3 ± 0.2, respectively 

4.3.4 Response of hypoxic and endothelium-denuded main and first 

branch pulmonary arteries to ACh 

Figures 4.3.4 and 4.3.20 compare the response to IIlM ACh in the main and first branch 

P As used in both the SKF94836 and sildenafil studies. Exposure to chronic hypoxia 

markedly attenuated the response of IIlM ACh in both the main and first branch PAs. 
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The maximum relaxant response to l/lM ACh in the main and first branch PAs used in 

the SKF94836 study (figure 4.3.4), as % reversal of KCI induced contraction, were as 

follows: main PA control 50.1 ± 4.1% (n=15); main PA hypoxic 3l.8 ± 2.8% (n=15 

P<0.05, Student-t test); first branch PA control 54.6 ± 3.6% (n=15); first branch PA 

hypoxic 33.9 ± 3.2% (n=15 P<0.05, Student-t test). Likewise, the maximum relaxation 

to l/lM ACh in the main and first branch PAs used in the sildenafil study (figure 

4.3.20), as % reversal of KCI induced contraction, were as follows: main PA control 

47.9 ± 3.6% (n=15); main PA hypoxic 33.5 ± 3.6% (n=15 P<0.05, Student-t test); first 

branch PA control 50.8 ± 4.0% (n=15); first branch PA hypoxic 34.4 ± 4.6% (n=15 

P<0.05, Student-t test). These results show the response to ACh is attenuated with 

hypoxia in the vessels studied. 

To investigate the effect of endothelal dysfunction, the endothelium was removed by 

gently rubbing the lumen of the P A with forceps. The ability of 1 x 10-6M ACh to relax 

preconstricted PAs was abolished on removal of the vascular endothelium (data not 

shown). Hence, PAs in this study were classified as endothelium-denuded if they did 

not significantly relax in response to 1 x 10-6M ACh. 
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Figure 4.3.1. CCRC to PE and 5-HT in rat control main and first branch 

pulmonary artery 

Cumulative concentration response curves to A) phenylephrine (PE), and B) 5-

hydroxytryptamine, in main (III) and first branch pulmonary arteries (A..). Data are 

expressed as percentage of the response to 50mM KCI. Each point represents mean ± 

s.e.m., where n = number of different animals. 



A) 

B) 

150 

..J 
U 100 ---------------------
~ 
>< 
~ 
'#. 50 

O+---~r_._~~~~--~--L-~--~ 

-13 

100 

..J 75 
U 
~ 

-12 -11 -10 

[E1]LogM 

>< 
~ 50 ------------

25 

-9 -8 -7 

O+---~----~----r_--~----~--~ 

-9 -8 -7 -6 -5 -4 -3 

[ACH]LogM 

153 

---Main (n=5) 
--...- First Branch (n=5) 

-Main (n=5) 
--...- First Branch (n=5) 

Figure 4.3.2. CCRC to ET -1 and ACh in rat control main and first branch 

pulmonary artery 

Cumulative concentration response curves to A) endothelin-1 (ET -1) and B) 

acetylcholine (ACh) in main (III) and first branch pulmonary arteries ("'). To construct 

the CCRC for ACh tone was raised in each vessel with 1 ~tM PE. Data are expressed as 

percentage of the response to 50mM KCl. Each point represents mean ± s.e.m,. where n 

= number of different animals. 
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Figure 4.3.3 Maximum response to 1 x 10-6M PE, 3 x 10-9M ET-1 and 3 x 10-

5M 5-HT in rat control, endothelium-denuded and hypoxic A) main and 8) 

first branch pulmonary arteries 

Maximum response to 1 x 10-6M phenylephrine (PE), 3 x 10-9M endothelin-1 (ET -1 ) 

and 3 x 1O-5M 5-hydroxytryptamine (5-HT) in control, endothelium-denuded (-endo) 

and hypoxic rat A) main and B) first branch (FB) pulmonary arteries. Data are 

expressed as percentage of the response to 50mM KCl, mean ± s.e.m,. where n=5 for 

all, (n = number of different animals). Data in the above figure represent those vessels 

in the SKF94838 study. 
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Figure 4.3.4. Maximum relaxation to 1 x 10-6M ACh in rat control and 

hypoxic main and first branch pulmonary arteries 

Maximum relaxation to 1 x lO-6M acetylcholine (ACh) in control and hypoxic rat main 

and first branch (FB) pulmonary arteries precontracted with IJlM phenylephrine. Data 

are expressed as percentage of the response to 50mM KCI, mean ± s.e.m,. where n=15 

for all, (n = number of different animals), and * denotes significance (P<O.05). The data 

in the above figure represent those vessels used in the SKF94838 study. 
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4.3.5 Vehicle DMSO 

The vehicle for both SKF94836 and sildenafil in this study was dimethyl sulfoxide 

(DMSO). Therefore, in each experiment the response of the PA to DMSO alone over 

time was investigated (as a control). In every experiment the vehicle DMSO 

demonstrated a significant drop in tension in the PA (see figures 4.3.5A-4.3.34A). 

These results may account for the effect of the vehicle DMSO, or merely a drop in 

tension due to time. A time control with no DMSO could not also have been included 

as each P A could merely be cut into two equal sized rings. The effect of DMSO 

appeared dependent on the preconstrictor used, and differed when comparing the 

control, hypoxic and the endothelium-denuded PAs (data not listed, illustrated on 

figures 4.3.4A-4.3.34A). The DMSO alone control was always subtracted from the 

parallel measured response to the PDE inhibitor from the same tissue. This allowed the 

effects attributable to the PDE inhibitor alone to be obtained (see figures 4.3.5B-

4.3.34B). Each figure (4.3.5 to 4.3.34) includes the possible effects of DMSO (top 

section, A), merely to demonstrate how the results may have been misinterpreted if this 

control had not been included. 

4.3.6 Effect of the PDE3 inhibitor SKF94836 in control, hypoxic and 

endothelium-denuded main and first branch PA 

The effect of the selective PDE3 inhibitor, SKF94836, on the active tone developed in 

response to three different preconstrictors was investigated. Cumulative concentration

response curves for SKF94836 (1 x 1O-9M to 3 x 1O-5M) were performed in control, 

endothelium-denuded, and hypoxic main, and first branch PAs (figures 4.3.5-4.3.18). 

The PAs were precontracted with either 1 x 1O-6M PE, 3 x lO-sM 5-HT, or 3 x 1O-9M 

ET -1 and any changes in responsiveness of vessels were observed. ECso values could 

generally not be calculated for each individual CCRC, as a maximum plateau was not 

reached. Throughout this study the maximum relaxation in response to 3 x 10-5M 

SKF94836 (maximum concentration that could be added to the bath) was compared 

between groups. Therefore the maximal efficacy of the drug in each group was 

compared. Data are expressed throughout as % relaxation to the reference response to 

KCI (mean ± s.e.m). Statistical comparisons of the means of groups of data (maximum 

response) were made by use of Students t-test for paired or unpaired data where 
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appropriate. A level of probability of P<0.05 was taken to indicate statistical 

significance. 

4.3.6.1 Preconstricted with 1 x 10-6M PE 

SKF94836 (1 x 1O-9M to 3 x 1O-5M) produced a small but concentration-dependent 

relaxation in control main and first branch PAs preconstricted with 1 x 10-6M PE 

(figures 4.3.5B and 4.3.6B). The highest concentration of SKF94836 (3 x 10-5M) that 

could be added did not completely relax either the main or first branch control PAs. 

The maximum relaxation achieved by 3 x 1O-5M SKF94836 in the main and first branch 

control PAs precontracted with 1 x 1O-6M PE were; 16.8 ± 6.6% and 20.3 ± 5.1 % 

respectively (% relaxation of reference Kel, figures 4.3.5B, 4.3.6B). 

In control endothelium-denuded PAs precontracted with 1 x 10-6M PE the response of 

SKF94836 was dependent on the PA branch studied. In the main PA it can be seen 

removal of the endothelium had no significant effect on the maximum relaxation 

produced by 3 x 1O-5M SKF94836 when compared to control (figure 4.3.5B). The 

maximum relaxation achieved by SKF94836 in the main control and endothelium

denuded PA precontracted with 1 x 1O-6M PE, were: control, 16.8 ± 6.6% (n=8), 

endothelium-denuded, 7.98 ± 8.9% (n=6, NS, control versus endothelium-denuded, 

Student's t-test). In contrast, in the first branch P A preconstricted with 1 x 1O-6M PE, 

removal of the endothelium significantly reduced the relaxant effect of SKF94836 

(figure 4.3.6B). The maximum relaxation achieved by 3 x 1O-5M SKF94836 in the 

control and endothelium-denuded first branch P A preconstricted with 1 x 10-6M PE, 

were: control, 20.3 ± 5.1 % (n=8), endothelium-denuded, 5.49 ± 7.3% (n=5, P<0.05, 

control versus endothelium-denuded, Student's t-test). The data presented here suggests 

that when tone is raised by 1 x 10-6M PE, the PDE3 inhibitor SKF94836 causes a 

significant dose-dependent relaxation of isolated P As, predominantly through an 

endothelium-independent effect in the main branch, however through an endothelium

dependent effect in the first branch PAs. 

Furthermore, SKF94836 (1 x 10-9M to 3 x 10-5M) caused a markedly enhanced 

concentration-dependent relaxation in both main and first branch hypoxic PAs 

preconstricted with 1 x 1O-6M PE (figures 4.3.7B and 4.3.8B). In the main PA, 

preconstricted with 1 x 10-6M PE, hypoxia increased the maximum relaxation produced 
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by 3 x 1O-5M SKF94836 when compared to control (figure 4.3.7B). The maximum 

relaxation achieved by 3 x 10-5M SKF94836 were: control 16.8 ± 6.6% (n=8), hypoxic 

79 ± 4.6% (n=6, P<0.05, control versus hypoxic, Student's t-test). Similarly, in the first 

branch PAs preconstricted with 1 x 10-6M PE, hypoxia increased the relaxant effect of 

SKF94836. The maximum relaxation achieved by 3 x 1O-5M SKF94836 seen in figure 

4.3.8B was: control 20.3 ± 5.1% (n=8), hypoxic 85.1 ± 7.9% (n=6, P<0.05, control 

verslIs hypoxic, Student's t-test). These results suggest that hypoxia uncovers a 

significantly greater response to SKF94836 in both the main and first branch PA 

preconstricted with 1 x 10-6M PE. 

4.3.6.2 Preconstricted with 3 x 10-5M 5-HT 

After the addition of 3 x 1O-5M 5-HT, cumulative concentration-response curves for 

SKF94836 (1 x 1O-9M to 3 x 10-5M) were performed in control, endothelium-denuded, 

and hypoxic main and first branch PAs. (Figures 4.3.9B-4.3.12B). As above the 

maximum relaxation in response to 3 x 10-5M SKF94836 (efficacy) was compared 

between groups. 

SKF94836 (1 x 1O-9M to 3 x 10-5M) produced a small concentration-dependent 

relaxation in control main and first branch PAs preconstricted with 3 x 10-5M 5-HT 

(figure 4.3.9B-4.3.10B). The maximum relaxation achieved by 3 x 1O-5M SKF94836 in 

the main and first branch control PAs preconstricted with 3 x 10-5M 5-HT was 29.9 ± 

5.3%, and 40.3 ± 9.5%, respectively (% relaxation of reference KCl). 

In control endothelium-denuded PAs precontracted with 3 x 10-5M 5-HT the response 

of SKF94836 was again dependent on the PA branch studied. In the main PA it can be 

seen removal of the endothelium had no significant effect on the maximum relaxation 

produced by 3 x 1O-5M SKF94836 when compared to control (figure 4.3.9B). The 

maximum relaxation achieved by SKF94836 in the main control and endothelium

denuded main PA precontracted with 3 x 1O-5M 5-HT, were: control, 29.9 ± 5.3% (n=5), 

endothelium-denude 16.52 ± 8.9% (n=5, NS, control versus endothelium-denuded). In 

contrast, in the first branch PA preconstricted with 3 x 10-5M 5-HT, removal of the 

endothelium significantly abolished the effect of SKF94836 (figure 4.3.10B). The 

maximum relaxation achieved by 3 x 10-5M SKF94836 in the control and endothelium

denuded first branch PA preconstricted with 3 x 10-5M 5-HT, were: control 40.3 ± 
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9.54% (n=7), endothelium-denude -10.8 ± 8.2% (n=5, P<0.05, control versus 

endothelium-denuded control). The data presented here suggests that when tone is 

raised by 3 x 10-5M 5-HT, the PDE3 inhibitor SKF94836 causes a significant dose

dependent relaxation of isolated P As, predominantly through an endothelium

independent effect in the main branch, however through an endothelium-dependent 

effect in the first branch PAs. 

SKF94836 (1 x 1O-9M to 3 x 10-5M) caused a greatly enhanced concentration-dependent 

relaxation in both main and first branch hypoxic PAs preconstricted with 3 x 1O-5M 5-

HT (figures 4.3.11B and 4.3.12B). In the main PA preconstricted with 3 x 1O-5M 5-HT 

it can be seen from figure 4.3.11B that hypoxia potentiates the maximum relaxation 

produced by 3 x 10-5M SKF94836 when compared to control. The maximum relaxation 

achieved by 3 x 1O-5M SKF94836 was: control 29.9 ± 5.3% (n=5), hypoxic 83.9 ± 8.1 % 

(n=5, P<0.05, control versus hypoxic). Similarly, in the first branch PAs preconstricted 

with 3 x 10-5M 5-HT, hypoxia increased the relaxant effect of SKF94836 (figure 

4.3.12B). The maximum relaxation achieved by 3 x 10-5M SKF94836 was: control 40.3 

± 9.5% (n=7), hypoxic 88.5 ± 5.9% (n=5, P<0.05, control versus hypoxic control). 

These results suggest that hypoxia uncovers a significantly greater response to 

SKF94836 in both the main and first branch PA preconstricted with 5-HT. 

4.3.6.3 Preconstricted with 3 x 10-9M ET-1 

After the addition of 3 x 10-9M ET -1, cumulative concentration-response curves for 

SKF94836 (1 x 1O-9M to 3 x 10-5M) were performed in control, endothelium-denuded, 

and hypoxic main and first branch PAs. (Figures 4.3.13B-4.3.16B). As above the 

maximum relaxation in response to 3 x 10-5M SKF94836 (efficacy) was compared 

between groups. 

SKF94836 (1 x 1O-9M to 3 x 10-5M) produced a small concentration-dependent 

relaxation in control main and first branch PAs preconstricted with 3 x 10-9M ET-1 

(figure 4.3.13B-4.3.14B). The maximum relaxation achieved by 3 x 10-5M SKF94836 

in the main and first branch control PAs precontracted with 3 x 1O-9M ET -1 was, 19.9 ± 

2.6%, and 39.9 ± 3.15%, respectively (% relaxation of reference KCI). 
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In control endothelium-denuded PAs precontracted with 3 x 10-9M ET -1 the response of 

SKF94836 was, as with the other preconstrictors, dependent on the PA branch studied. 

In the main P A it can be seen from figure 4.3 .13B that removal of the endothelium had 

no significant effect on the maximum relaxation produced by 3 x 1O-5M SKF94836 

when compared to control. The maximum relaxation achieved by SKF94836 in the 

main control and endothelium-denuded main P A precontracted with 3 x 10-9M ET -1, 

was: control 19.9 ± 2.6% (n=7), endothelium-denuded 20.9 ± 8.9%(n=5, NS, control 

versus endothelium-denuded). In contrast, in the first branch PA preconstricted with 3 x 

10-9M ET -1, removal of the endothelium significantly reduced the relaxatory effect of 

SK.F94836 (figure 4.3.14B). The maximum relaxation achieved by 3 x 1O-5M 

SKF94836 in the control and endothelium-denuded first branch P A preconstricted with 

3 x 1O-9M ET-1, were: control 39.9 ± 3.15% (n=7), endothelium-denuded, 20.4 ± 7.3% 

(n=5, P<0.05, control versus endothelium-denuded). The data presented here suggests 

that when tone is raised by 3 x 1O-9M ET -1, the PDE3 inhibitor SKF94836 causes a 

significant dose-dependent relaxation of isolated P As, predominantly through an 

endothelium-independent effect in the main branch, however possibly through a more 

endothelium-dependent effect in the first branch PAs. Although, unlike the response 

seen in the PE and 5-HT precontracted first branch PAs, when active tension developed 

in response to ET -1 in the first branch, the response to SKF94836 was not abolished but 

merely attenuated. 

SFK94836 (1 x 1O-9M to 3 x 10-5M) caused a markedly enhanced concentration

dependent relaxation in both main and first branch hypoxic PAs preconstricted with 3 x 

1O-9M ET-1 (figures 4.3.15B and 4.3.16B). In the main PA preconstricted with 3 x 10-

9M ET -1 it can be seen hypoxia potentiates the maximum relaxation produced by 3 x 

1O-5M SKF94836 when compared to control (figure 4.3.15B). The maximum relaxation 

achieved by 3 x 1O-5M SKF94836 was: control 19.9 ± 2.6% (n=7), hypoxic 52.2 ± 7.5% 

(n=5, P<0.05, control versus hypoxic). Similarly, in the first branch PAs preconstricted 

with 3 x 10-9M ET -1, hypoxia very substantially increased the relaxant effect of 

SKF94836 (figure 4.3.16B). The maximum relaxation achieved by 3 x 1O-5M 

SKF94836 was: control 39.9 ± 3.1% (n=7), hypoxic 220.9 ± 22.4% (n=5, P<0.05, 

control versus hypoxic). These results suggest that hypoxia uncovers a significantly 

greater response to SKF94836 in both the main and first branch PA preconstricted with 

ET-l. 
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4.3.7 Comparison of the effects of the PDE3 inhibitor SKF94836 with each 

preconstrictor 

Figures 4.3.17 and 4.3.18 show the comparison of the relaxant effects of SKF94836 

between each preconstrictor in the control and hypoxic main and first branch PAs 

respectively. In the control main P A the efficacy of SKF94836 was not dependent on 

the preconstrictor. The rank order of SKF94836 for each preconstrictor in the main 

branch was 5-HT=ET-1=PE (% relaxation of reference KCl: 29.9 ± 5.3%, 19.9 ± 2.6%, 

16.8 ± 6.6% respectively, where = signifies an equal relaxant effect of SKF94836, 

figure 4.3.17A). In parallel, in the hypoxic main PA the maximum relaxation induced 

by SKF94836 was dependent on the preconstrictor. The level of relaxation induced by 

SKF94836 was significantly greater when the tone was raised with either 5-HT or PE, 

than when the tone was raised with ET -1. The order of efficacy of 3 x 1O-5M SKF9836 

for each preconstrictor in the hypoxic main branch was 5-HT=PE>ET-1 (% relaxation 

of reference KCl: 83.9 ± 8.1%,79 ± 4.6%,52.2 ± 7.5% respectively, where> signifies a 

greater maximum relaxation with SKF94836, and = signifies an equal relaxant effect of 

SKF94836, figure 4.3.17B). It can be noted that the preconstrictor-dependent relaxation 

induced by SKF94836 alters with hypoxia. 

Similarly, in the control first branch P A, the efficacy of SKF94836 was also dependent 

on the preconstrictor. The level of relaxation induced by SKF94836 was significantly 

greater when the tone was raised with either 5-HT or ET-1 than when the tone was 

raised with PE. The order of efficacy of 3 x 10-5M SKF94836 for each preconstrictor in 

the first branch was 5-HT=ET-1>PE (% relaxation of reference KCl: 40.3 ± 9.5%,39.9 

± 3.15%, 20.3 ± 5.1% respectively, where> signifies a greater maximum relaxation 

with SKF94836, and signifies an equal relaxant effect of SKF94836, figure 4.3.18A). 

Similarly, in the hypoxic main P A the maximum relaxation induced by SKF94836 was 

dependent on the preconstrictor. The order of efficacy of 3 x 10-5M SKF9836 for each 

preconstrictor in the hypoxic first branch was ET-1>5-HT=PE (% relaxation of 

reference KCl: 220.9 ± 22.4%, 88.47 ± 5.97%, 85.07 ± 7.89% respectively, where> 

signifies a greater maximum relaxation with SKF94836, and = signifies an equal 

relaxant effect of SKF94836, figure 4.3.18B). Again it can be noted that the 

preconstrictor dependent relaxation induced by SKF94836 in the first branch alters with 

hypoxia. 
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Figure 4.3.5. CCRC to SKF94836 in rat control and endothelium-denuded 

main pulmonary artery preconstricted with 1 x 10-6M PE 

A) Cumulative concentration response curves to the PDE3 inhibitor SKF94836 and 

DMSO in control (III and 0 respectively) and endothelium-denuded (-endo; .A.. and 6. 

respectively) main pulmonary artery preconstricted with 1 x 1O-6M phenylephrine (PE). 

B) Cumulative concentration response curves to the PDE3 inhibitor SKF94836 alone, 

subtracting the effect of DMSO, in control (III) and endothelium-denuded (- endo, .A..) 

main pulmonary artery preconstricted with 1 x lO-6M phenylephrine (PE) as in A. Data 

are expressed as percentage relaxation to the response to SOmM KCl. Each point 

represents mean ± s.e.m,. where n = number of different animals. 
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Figure 4.3.6. CCRC to SKF94836 in rat control and endothelium-denuded 

first branch pulmonary artery preconstricted with 1 x 10-6M PE 

A) Cumulative concentration response curves to the PDE3 inhibitor SKF94836 and 

DMSO in control (II1II and 0 respectively) and endothelium-denuded (-endo; ..... and l:::. 

respectively) first branch pulmonary artery preconstricted with 1 x 1O-6M phenylephrine 

(PE). B) Cumulative concentration response curves to the PDE3 inhibitor SKF94836 

alone, subtracting the effect ofDMSO, in control (II1II) and endothelium-denuded (- endo, 

..... ) first branch pulmonaIY artery preconstricted with 1 x lO-6M phenylephrine (PE) as 

in A. Data are expressed as percentage relaxation to the response to 50mM KCl. Each 

point represents mean ± s.e.m,. where n number of different animals and * denotes 

significance (P<O.05) between maximum relaxation. 
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Figure 4.3.7. CCRC to SKF94836 in rat control and hypoxic main 

pulmonary artery preconstricted with 1 x 10-6M PE 

A) Cumulative concentration response curves to the PDE3 inhibitor SKF94836 and 

DMSO in control (II1II and D respectively) and hypoxic (e and 0 respectively) main 

pulmonary artery preconstricted with 1 x 1O-6M phenylephrine (PE). B) Cumulative 

concentration response curves to the PDE3 inhibitor SKF94836 alone, subtracting the 

effect of DMSO, in control (II1II) and hypoxic (e) main pulmonary artery preconstricted 

with 1 x lO-6M phenylephrine (PE) as in A. Data are expressed as percentage relaxation 

to the response to 50mM KCI. Each point represents mean ± s.e.m,. where n = number 

of different animals and * denotes significance (P<O.05) between maximum relaxation. 
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Figure 4.3.8. CCRC to SKF94836 in rat control and hypoxic first branch 

pulmonary artery preconstricted with 1 x 10-6M PE 

A) Cumulative concentration response curves to the PDE3 inhibitor SKF94836 and 

DMSO in control (II and 0 respectively) and hypoxic (e and 0 respectively) first 

branch pulmonary artery preconstricted with 1 x 1O-6M phenylephrine (PE). B) 

Cumulative concentration response curves to the PDE3 inhibitor SKF94836 alone, 

subtracting the effect ofDMSO, in control (II) and hypoxic (e) first branch pulmonary 

artery preconstricted with 1 x 10-6M phenylephrine (PE) as in A. Data are expressed as 

percentage relaxation to the response to 50mM KCl. Each point represents mean ± 

s.e.m,. where n = number of different animals and * denotes significance (P<O.05) 

between maximum relaxation. 



166 

A) 

150 
-- Control (n=5) 

125 --.- -endo (n=5) 
s:::: 
0 -D- DMSO Control (n=5) 
m 100 
>< ---fr- DMSO -endo (n=5) 
ctS 75 Q) 

c::: 
~ 0 

50 

25 

0 
-10 -9 -8 -7 -6 -5 -4 

[SKF94836] LogM 

B) Minus possible effects of the vehicle DMSO 

40 
-- Control (n=5) 

s:::: 30 --.- -endo (n=5) 
0 

1ii 20 >< 
ctS 

Q) 
c::: 10 
~ 0 

0 

-10+---~----~-=--~---r----.----. 

-10 -9 -8 -7 -6 -5 -4 

[SKF94836]LogM 

Figure 4.3.9. CCRC to SKF94836 in rat control and endothelium-denuded 

main pulmonary artery preconstricted with 3 x 10-5M 5-HT 

A) Cumulative concentration response curves to the PDE3 inhibitor SKF94836 and 

DMSO in control (II and 0 respectively) and endothelium-denuded (-endo; ... and £::,. 

respectively) mam pulmonary artery preconstricted with 3 x 10-5M 5-

hydroxytryptamine (5-HT). B) Cumulative concentration response curves to the PDE3 

inhibitor SKF94836 alone, subtracting the effect of DMSO, in control (II) and 

endothelium-denuded (- endo, ... ) main pulmonary artery preconstricted with 3 x lO-sM 

5-hydroxytryptamine (5-HT) as in A. Data are expressed as percentage relaxation to the 

response to 50mM KCl. Each point represents mean ± s.e.m,. where n = number of 

different animals. 
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Figure 4.3.10. CCRC to SKF94836 in rat control and endothelium-denuded 

first branch pulmonary artery preconstricted with 3 x 10-5M 5-HT 

A) Cumulative concentration response curves to the PDE3 inhibitor SKF94836 and 

DMSO in control (II and 0 respectively) and endothelium-denuded (-endo; ... and ,6. 

respectively) first branch pulmonary artery preconstricted with 3 x lO-5M 5-

hydroxytryptamine (5-HT). B) Cumulative concentration response curves to the PDE3 

inhibitor SKF94836 alone, subtracting the effect of DMSO, in control (II) and 

endothelium-denuded (- endo, ... ) first branch pulmonary artery preconstricted with 3 x 

1O-5M 5-hydroxytryptamine (5-HT) as in A. Data are expressed as percentage 

relaxation to the response to 50mM KCl. Each point represents mean ± s.e.m,. where n 

= number of different animals and * denotes significance (P<O.05) between maximum 

relaxation. 
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Figure 4.3.11. CCRC to SKF94836 in rat control and hypoxic main 

pulmonary artery preconstricted with 3 x 10-5M 5-HT 

A) Cumulative concentration response curves to the PDE3 inhibitor SKF94836 and 

DMSO in control (II and 0 respectively) and hypoxic (8 and 0 respectively) main 

pulmonary artery preconstricted with 3 x 1O-5M 5-hydroxytryptamine (5-HT). B) 

Cumulative concentration response curves to the PDE3 inhibitor SKF94836 alone, 

subtracting the effect ofDMSO, in control (II) and hypoxic (8) main pulmonary artery 

preconstricted with 3 x 1O-5M 5-hydroxytryptamine (5-HT) as in A. Data are expressed 

as percentage relaxation to the response to 50mM KCl. Each point represents mean ± 

s.e.m,. where n number of different animals and * denotes significance (P<O.05) 

between maximum relaxation. 
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Figure 4.3.12. CCRC to SKF94836 in rat control and hypoxic first branch 

pulmonary artery preconstricted with 3 x 10-5M 5-HT 

A) Cumulative concentration response curves to the PDE3 inhibitor SKF94836 and 

DMSO in control (II and 0 respectively) and hypoxic (e and 0 respectively) first 

branch pulmonary artery preconstricted with 3 x 1O-5M 5-hydroxytryptamine (5-HT). 

B) Cumulative concentration response curves to the PDE3 inhibitor SKF94836 alone, 

subtracting the effect ofDMSO, in control (II) and hypoxic (e) first branch pulmonary 

m1ery preconstricted with 3 x 1O-5M 5-hydroxytryptamine (5-HT) as in A. Data are 

expressed as percentage relaxation to the response to 50mM KCI. Each point represents 

mean ± s. e.m,. where n = number of different animals and * denotes significance 

(P<O.05) between maximum relaxation. 
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Figure 4.3.13. CCRe to SKF94836 in rat control and endothelium-denuded 

main pulmonary artery preconstricted with 3 x 10-9M ET-1 

A) Cumulative concentration response curves to the PDE3 inhibitor SKF94836 and 

DMSO in control (III and 0 respectively) and endothelium-denuded (-endo; • and £:,. 

respectively) main pulmonary artery preconstricted with 3 x 1O-9M endothelin-l (ET-l). 

B) Cumulative concentration response curves to the PDE3 inhibitor SKF94836 alone, 

subtracting the effect of DMSO, in control (III) and endothelium-denuded (- endo, .) 

main pulmonary artery preconstricted with 3 x lO-9M endothelin-l (ET) as in A. Data 

are expressed as percentage relaxation to the response to 50mM KCl. Each point 

represents mean ± s.e.m,. where n = number of different animals. 
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Figure 4.3.14. CCRC to SKF94836 in rat control and endothelium-denuded 

first branch pulmonary artery preconstricted with 3 x 10-9M ET-1 

A) Cumulative concentration response curves to the PDE3 inhibitor SKF94836 and 

DMSO in control (III and D respectively) and endothelium-denuded (-endo; .... and b,. 

respectively) first branch pulmonary artery preconstricted with 3 x 1O-9M endothelin-1 

(ET-1). B) Cumulative concentration response curves to the PDE3 inhibitor SKF94836 

alone, subtracting the effect ofDMSO, in control (III) and endothelium-denuded (- endo, 

.... ) first branch pulmonary art elY preconstricted with 3 x 10-9M endothelin-1 (ET -1) as 

in A. Data are expressed as percentage relaxation to the response to 50mM KCl. Each 

point represents mean ± s.e.m,. where n = number of different animals and * denotes 

significance (P<O.05) between maximum relaxation. 
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Figure 4.3.15. CCRC to SKF94836 in rat control and hypoxic main 

pulmonary artery preconstricted with 3 x 10-9M ET-1 

A) Cumulative concentration response curves to the PDE3 inhibitor SKF94836 and 

DMSO in control (II1II and 0 respectively) and hypoxic (CD and 0 respectively) main 

pulmonary artery preconstricted with 3 x 1O-9M endothelin-l (ET-I). B) Cumulative 

concentration response curves to the PDE3 inhibitor SKF94836 alone, subtracting the 

effect of DMSO, in control (II1II) and hypoxic (CD) main pulmonary artery preconstricted 

with 3 x lO-9M endothelin-l (ET -1) as in A. Data are expressed as percentage 

relaxation to the response to 50mM KCl. Each point represents mean ± s.e.m,. where n 

= number of different animals and * denotes significance (P<O.05) between maximum 

relaxation. 
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Figure 4.3.16. CCRC to SKF94836 in rat control and hypoxic first branch 

pulmonary artery preconstricted with 3 x 10-9M ET-1 

A) Cumulative concentration response curves to the PDE3 inhibitor SKF94836 and 

DMSO in control (II and 0 respectively) and hypoxic (8 and 0 respectively) first 

branch pulmonary artery preconstricted with 3 x 1O"9M endothelin-l (ET -1). B) 

Cumulative concentration response curves to the PDE3 inhibitor SKF94836 alone, 

subtracting the effect ofDMSO, in control (II) and hypoxic (8) first branch pulmonary 

artery preconstricted with 3 x 10"9M endothelin-1 (ET -1) as in A. Data are expressed as 

percentage relaxation to the response to 50mM KCl. Each point represents mean ± 

s.e.m,. where n = number of different animals and * denotes significance (P<O.05) 

between maximum relaxation. 
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----- PE Control (n=8) 
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Figure 4.3.17. CCRC to 5KF94836 (minus effect DM50) in rat control and 

hypoxic main pulmonary artery preconstricted with 1 x 10-6M PE, 3 x 10-
5
M 

5-HT and 3 x 10-9M ET-1 

Cumulative concentration response curves to the PDE3 inhibitor SKF94836 in A) 

control and B) hypoxic main pulmonary artery preconstricted with 1 xlO-
6
M 

phenylephrine (PE, _), 3 x 1O-5M S-hydroxytryptamine (S-HT, .) and 3 x 1O-9M 

endothelin-l (ET-l, A). In each CCRC the effect of the vehicle DMSO has been 

subtracted. Data are expressed as percentage relaxation to the response to SOmM KCl. 

Each point represents mean ± s.e.m,. where n = number of different animals and * 

denotes significance (P<O.OS) between maximum relaxation. 
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Figure 4.3.18. CCRC to 5KF94836 (minus effect DMSO) in rat control and 

hypoxic first branch pulmonary artery preconstricted with 1 x 10-
6
M PE, 3 

x 10-5M 5-HT and 3 x 10-9M ET-1 

Cumulative concentration response curves to the PDE3 inhibitor SKF94836 in A) 

control and B) hypoxic first branch pulmonary artery preconstricted with 1 xlO-
6
M 

phenylephrine (PE, l1li), 3 x 1O-5M 5-hydroxytryptamine (5-HT, e) and 3 x 1O-9M 

endothelin-l (ET-l, A.). In each CCRC the effect of the vehicle DMSO has been 

subtracted. Data are expressed as percentage relaxation to the response to 50mM KCl. 

Each point represents mean ± s.e.m,. where n = number of different animals and * 

denotes significance (P<O.05) between maximum relaxation. 
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4.3.8 Effect of the PDE5 inhibitor sildenafil in control, hypoxic and 

endothelium-denuded main and first branch PA 

In these sets of experiments, the effect of the selective PDE5 inhibitor sildenafil on the 

tone elicited by three different preconstrictors was investigated. Cumulative 

concentration-response curves for sildenafil (1 x 1O-9M to 3 x 10-sM) were performed in 

control, endothelium-denuded, and hypoxic main and first branch P As (figures 4.3.21-

4.3.34). The PAs were precontracted with either 1 x 1O-6M PE, 3 x lO-sM 5-HT, or 3 x 

10-9M ET -1 and any changes in responsiveness of vessels were observed. Again ECso 

values could generally not be calculated for each individual CCRC as a maXImum 

plateau was not reached. Throughout this study the maximum relaxation in response to 

3 x 10-sM sildenafil (maximum concentration that could be added to the bath) was 

compared between groups. Therefore the maximal efficacy of the drug in each group 

was compared. Data are expressed throughout as % relaxation to the reference response 

to KCI (mean ± s.e.m). Statistical comparisons of the means of groups of data 

(maximum response) were made by use of Students t-test for paired or unpaired data 

where appropriate. A level of probability of P<0.05 was taken to indicate statistical 

significance. 

4.3.8.1 Preconstricted with 1 x 10-6M PE 

Sildenafil (1 x 1O-9M to 3 x 10-sM) produced a concentration-dependent relaxation in 

control main and first branch PAs preconstricted with 1 x 10-6M PE (figures 4.3.21B 

and 4.3.22B). The maximum concentration of sildenafil (3 x 10-sM) did not completely 

relax these main or first branch control PAs. Maximum relaxation achieved by 3 x 10-

5M sildenafil in the main and first branch control PAs precontracted with 1 x 10-6M PE 

were 45.3 ± 5.2%, and 38 ± 2.5%, respectively (% relaxation of reference KCI, figures 

4.3.21B and 4.3.22B). 

Sildenafil (1 x 1O-9M to 3 x 10-sM) caused a concentration-dependent relaxation in 

control endothelium-denuded main PAs precontracted with 1 x 10-6M PE (figure 

4.3.21B and 4.3.22B). In the main PA it can be seen removal of the endothelium had no 

significant effect on the maximum relaxation produced by 3 x 10-sM sildenafil when 

compared to control. The maximum relaxation achieved by sildenafil in the main 

control and endothelium-denuded main P A precontracted with 1 x 10-6M PE, were: 
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control 45.3 ± 5.2% (n=5), endothelium-denuded 40.1 ± 9.2% (n=6, NS, control verslIs 

endothelium-denuded, Student's t-test, figure 4.3.21B). Likewise, in the first branch PA 

preconstricted with 1 x 10-6M PE, removal of the endothelium also had no significant 

effect on the maximum relaxation produced by 3 x 10-5M sildenafil. The maximum 

relaxation achieved by 3 x 10-sM sildenafil in the control and endothelium-denuded first 

branch PA pre constricted with 1 x 1O-6M PE, were: control, 38 ± 2.5% (n=5), 

endothelium-denuded 42.2 ± 5.8% (n=5, NS, control versus endothelium-denuded, 

Student's t-test, figure 4.3.22B). These results suggest that when 1 x 1O-6M PE raises 

tone, the PDE5 inhibitor sildenafil has a significant endothelium-independent 

vasodilatory effect in both the main and first branch control PAs. 

In addition, sildenafil (1 x 1O-9M to 3 x lO-sM) caused a concentration-dependent 

relaxation in both main and first branch hypoxic PAs preconstricted with 1 x 10-6M PE 

(figure 4.3.23B and 4.3.24B). In the main PA preconstricted with 1 x 1O-6M PE it can 

be seen in figure 4.3.23B that hypoxia potentiates the maximum relaxation produced by 

3 x 10-5M sildenafil when compared to control. The maximum relaxation achieved by 3 

x 1O-5M sildenafil were: control 45.3 ± 5.2% (n=5), hypoxic 74.4 ± 5.6% (n=5, P<0.05, 

control verslIs hypoxic, Student's I-test). Likewise, in the first branch PAs 

preconstricted with 1 x 10-6M PE, hypoxia increased the relaxant effect of 3 x 10-5M 

sildenafil (figure 4.3.24B). The maximum relaxation achieved by 3 x 1O-5M sildenafil 

in the first branch PAs were: control 16.8 ± 6.6% (n=5), hypoxic 58.7 ± 10% (n=5, 

P<0.05, control versus hypoxic, Student's I-test). These data suggests that hypoxia 

appears to potentiate the response to 3 x 10-sM sildenafil in both the main and first 

branch P A preconstricted with 1 x 10-6M PE. However, it is important to note that 

hypoxia does not significantly potentiate the response to sildenafil when the 

concentration of sildenafil ~ 1 x 10-5M. 

4.3.8.2 Preconstricted with 3 x 10-5M 5-HT 

Sildenafil (1 x 1O-9M to 3 x 10-5M) produced a concentration-dependent relaxation in 

control PAs preconstricted with 3 x 1O-5M 5-HT (figures 4.3.25B and 4.3.26B). The 

maximum concentration of sildenafil (3 x 10-5M) did not completely relax the main or 

first branch control PAs. Maximum relaxation achieved by 3 x 10-5M sildenafil in main 

and first branch control PAs precontracted with 3 x 1O-5M 5-HT was 33.7 ± 4.9%, and 

32.3 ± 3.4%, respectively (% relaxation of reference KCI, figure 4.3.25B and 4.3.26B). 
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Sildenafil (1 x 1O-9M to 3 x 10-sM) caused a concentration-dependent relaxation in 

control endothelium-denuded main PAs precontracted with 3 x 1O-5M 5-HT. In the 

main P A it can be seen removal of the endothelium had no significant effect on the 

maximum relaxation produced by 3 x 1O-5M sildenafil when compared to control (figure 

4.3.25B). The maximum relaxation achieved by sildenafil in the main control and 

endothelium-denuded main PA precontracted with 3 x 10-sM 5-HT, were: control 33.7 ± 

4.9% (n=7), endothelium-denuded 25.6 ± 5.3% (n=6, NS, control versus endothelium

denuded). In parallel, in the first branch PA preconstricted with 3 x 1O-5M 5-HT, 

removal of the endothelium also had no significant effect on the maximum relaxation 

produced by 3 x 1O-5M sildenafil (figure 4.3.26B). The maximum relaxation achieved 

by 3 x 10-5M sildenafil in the control and endothelium-denuded first branch P A 

preconstricted with 3 x 1O-5M 5-HT, were: control 32.3 ± 3.4% (n=5), endothelium

denude 30.5 ± 5.3% (n=5, NS, control versus endothelium-denuded). These results 

suggest that when tone is raised by 3 x 10-5M 5-HT the PDE5 inhibitor sildenafil has a 

significant endothelium-independent vasodilatory effect in both the main and first 

branch PAs. 

In addition, sildenafil (1 x 1O-9M to 3 x 10-5M) caused a concentration-dependent 

relaxation in both main and first branch hypoxic PAs preconstricted with 3 x 10-5M 5-

HT (figures 4.3.27B and 4.3.28B). In the main PA preconstricted with 3 x 1O-5M 5-HT, 

it can be seen in figure 4.3.27B, that hypoxia potentiates the maximum relaxation 

produced by 3 x 10-5M sildenafil when compared to control. The maximum relaxation 

achieved by 3 x 10-5M sildenafil in the main PAs were: control 33.7 ± 4.9% (n=7), 

hypoxic 77.6 ± 7.7% (n=6, P<0.05, control versus hypoxic, Student's t-test). Likewise, 

in the first branch PAs preconstricted with 3 x lO-sM 5-HT, hypoxia increased the 

relaxant effect of 3 x lO-sM sildenafil (figure 4.3.28B). The maximum relaxation 

achieved by 3 x 10-sM sildenafil in the first branch PAs were: control 29.9 ± 5.3% 

(n=5), hypoxic 58.8 ± 5.3% (n=6, P<0.05, control versus hypoxic, Student's t-test). 

These data suggests that hypoxia appears to potentiate the response to 3 x 10-sM 

sildenafil in both the main and first branch PA preconstricted with 3 x lO-sM 5-HT. 

Again, it is important to note that hypoxia does not significantly potentiate the response 

to sildenafil when the concentration of sildenafil sIx 10-sM. 
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4.3.8.3 Preconstricted with 3 x 10-9M ET-1 

Sildenafil (1 x 1O-9M to 3 x IO-5M) produced a concentration-dependent relaxation in 

control PAs preconstricted with 3 x 1O-9M ET-I (figures 4.3.29B and 4.3.30B). The 

maximum concentration of sildenafil (3 x IO-5M) did not completely relax the main or 

first branch control PAs. Maximum relaxation achieved by 3 x 10-5M sildenafil in main 

and first branch control PAs precontracted with 3 x 1O-9M ET -1 was 18.2 ± 5.1 % and 

18.1 ± 4.6%, respectively (% relaxation of reference KCI, figures 4.3.29B and 4.3.30B). 

Sildenafil (1 x 10-9M to 3 x 10-5M) caused a concentration-dependent relaxation in 

control endothelium-denuded main PAs precontracted with 3 x IO-9M ET -1. In the 

main PA it can be seen from figures 4.3.29B that removal of the endothelium had no 

significant effect on the maximum relaxation produced by 3 x IO-5M sildenafil, when 

compared to control. The maximum relaxation achieved by sildenafil in the main 

control and endothelium-denuded main P A precontracted with 3 x 1O-9M ET -1, were: 

control 18.2 ± 5.1% (n=5), endothelium-denuded 15.2 ± 5.9% (n=7, NS, control versus 

endothelium-denuded). In parallel, in the first branch P A preconstricted with 3 x 10-9M 

ET -1, removal of the endothelium also had no significant effect on the maximum 

relaxation produced by 3 x 1O-5M sildenafil (figure 4.3.30B). The maximum relaxation 

achieved by 3 x 10-5M sildenafil in the control and endothelium-denuded first branch 

PA preconstricted with 3 x 1O-9M ET-l, were: control 18.1 ± 4.6% (n=6), endothelium

denuded 23.7 ± 7.3% (n=7, NS, control versus endothelium-denuded). These data 

suggests that when tone is raised by 3 x 10-9M ET -1, the PDE5 inhibitor sildenafil has a 

significant endothelium-independent vasodilatory effect in both the main and first 

branch PAs. 

In addition, sildenafil (1 x 10-9M to 3 x 10-5M) caused a concentration-dependent 

relaxation in both main and first branch hypoxic PAs preconstricted with 3 x IO-9M ET-

1 (figures 4.3 .3IB and 4.3.32B). In the main PA preconstricted with 3 x 1O-9M ET -1, it 

can be seen from figure 4.3.3IB, hypoxia potentiates the maximum relaxation produced 

by 3 x IO-5M sildenafil when compared to control. The maximum relaxation achieved 

by 3 x 1O-5M sildenafil in the main PAs were: control 18.2 ± 5.1% (n=5), hypoxic 37.2 

± 5.5% (n=5, P<O.05, control versus hypoxic). Likewise, in the first branch PAs 

preconstricted with 3 x 1O-9M ET-I, hypoxia increased the relaxant effect of 3 x 1O-5M 

sildenafil (figure 4.3.32B). The maximum relaxation achieved by 3 x 1O-5M sildenafil 
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in the first branch PAs were: control 18.1 ± 4.6%, (n=6), hypoxic 64.2 ± 11.5% (n=5, 

P<O.05, control versus hypoxic). These results suggest that hypoxia appears to 

potentiate the response to sildenafil in both the main and first branch P A preconstricted 

with 3 x 10-9M ET -1. Once more, it is important to note that hypoxia does not 

significantly potentiate the response to sildenafil when the concentration of sildenafil s 

1 x 10-6M. 

4.3.9 Comparison of the effects of the PDE5 inhibitor sildenafil with each 

preconstrictor 

Figures 4.3.33 and 4.3.34 show the companson of the relaxant effects of sildenafil 

between each preconstrictor used in the control and hypoxic main and first branch PAs 

respectively. In the control main P A the efficacy of sildenafil was dependent on the 

preconstrictor. The rank order of efficacy of sildenafil for each preconstrictor in the 

main branch was PE>5HT>ET-l (% relaxation of reference KCl: 45.3 ± 5.2%, 33.7 ± 

4.9%, 18.2 ± 5.1% respectively, where> signifies a greater maximum relaxation with 

sildenafil, figure 4.3.33A). Likewise, in the hypoxic main PA the maximum relaxation 

induced by sildenafil was dependent on the preconstrictor. The level of relaxation 

induced by sildenafil was significantly greater when the tone was raised with either 5-

HT or PE, than when the tone was raised with ET -1. The order of efficacy of 3 x 10-5M 

sildenafil for each preconstrictor in the hypoxic main branch was 5-HT=PE>ET -1 (% 

relaxation of reference KCI: 77.6 ± 7.7%,74.4 ± 5.6%,37.2 ± 5.5% respectively, where 

> signifies a greater maximum relaxation with sildenafil, and = signifies an equal 

relaxant effect of sildenafil, figure 4.3.33B). It can be noted that the preconstrictor 

dependent relaxation induced by sildenafil alters with hypoxia. Hypoxia only 

significantly potentiated the relaxatory response to 3 x 10-5M sildenafil in the first 

branch P A, and not to any lower concentrations of the PDE5 inhibitor, irrespective of 

the preconstrictor used. 

Similarly, in the control first branch P A, the efficacy of sildenafil was also dependent 

on the preconstrictor. The level of relaxation induced by sildenafil was significantly 

greater when the tone was raised with either PE or 5-HT than when the tone was raised 

with ET -1. The order of efficacy of 3 x 10-5M sildenafil for each preconstrictor in the 

first branch PA was PE=5-HT>ET-l (% relaxation of reference KCl: 38 ± 2.5%,32.3 ± 

3.4%, 18.1 ± 4.6% respectively, where> signifies a greater maximum relaxation with 



181 

sildenafil, and = signifies an equal relaxant effect of sildenafil, figure 4.3.34B). In 

parallel, in the hypoxic main P A the maximum relaxation induced by sildenafil was not 

dependent on the preconstrictor. The order of efficacy of 3 x 10-5M sildenafil for each 

preconstrictor in the hypoxic first branch PA was ET -1 =5-HT=PE (% relaxation of 

reference KCl: 64.2 ± 11.5%, 58.8 ± 5.3%, 58.7 ± 10% respectively, where = signifies 

an equal relaxant effect of sildenafil, figure 4.3.34B). It can be noted that the 

preconstrictor dependent relaxation induced by sildenafil in the first branch becomes a 

preconstrictor independent response with hypoxia. Hypoxia only significantly 

potentiated the relaxatory response to 3 x 10-5M sildenafil in the first branch P A, and 

not to any lower concentrations of the PDE5 inhibitor, irrespective of the preconstrictor 

used. 

4.3.10 SKF94836 versus sildenafil 

Both treatment with SKF94836 or sildenafil significantly reduced the active tension 

developed in response to each preconstrictor in both the control and hypoxic conduit 

P As studied. The maximal efficacy is the greatest attainable response of the inhibitors, 

and is compared throughout this study. The maximum relaxation of both PDE 

inhibitors (3 x 10-5M) was increased in the hypoxic vessels compared to the controls. In 

general, a similar pattern of relaxation occurred in response to SKF94836 and sildenafil 

in the control, endothelium-denuded and hypoxic main PAs. However, in general 

hypoxia only potentiated the relaxation observed in response to 3 x 10-5M sildenafil, 

whereas hypoxia potentiated the relaxatory response to SKF94836 at lower 

concentrations (~3 x 10-5M). The main difference seen in the main PA occurred in the 

control and endothelium-denude vessels preconstricted with 1 x 1O-6M PE. Sildenafil 

(produced a significantly greater degree of relaxation in the control main P A 

preconstricted with 1 x 1O-6M PE, compared to SKF94836 (45.3 ± 5.2%, 16.8 ± 6.6% 

respectively, % relaxation of reference KCI, P<0.05, Student's I-test, figures 4.3.5B and 

4.3.21B). Likewise, the maximum relaxation produced by sildenafil was greater than 

SKF94836 in the main P A denude of endothelium and preconstricted with 1 x 10-6M PE 

(40.1 ± 9.2%,7.9 ± 8.9% respectively, % relaxation of reference KCI, P<0.05, Student's 

t-test, figures 4.3.5B and 4.3.21B). In contrast, however both sildenafil (3 x 10-5M) and 

SKF94836 (3 x 10-5M) had a similar efficacy in the hypoxic main PA pre constricted 

with 1 x 1O-6M PE (74.4 ± 5.6%, 79 ± 4.6% respectively, % relaxation of reference KCI, 

NS, Student's t-test, figures 4.3.7B and 4.3.23B). 
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The major variations in the efficacy of the two inhibitors were seen in the first branch 

PAs. In the first branch PA SKF94836 acted in an endothelium-dependent manner. 

Removal of the endothelium attenuated or even prevented the vasorelaxatory effects of 

SKF94836 on the active tension developed in the first branch PA (figures 4.3.6B, 

4.3. lOB, 4.3.14B). The maximum relaxation achieved by SKF94836 was: PE, first 

branch PA control 20.3 ± 5.1% (n=8), endothelium-denuded 5.49 ± 7.3% (n=5, P<0.05, 

control versus endothelium-denuded, Student's t-test); 5-HT, first branch PA control 

40.3 ± 9.54 (n=7) , endothelium-denuded -10.8 ± 8.2% (n=5, P<0.05, control versus 

endothelium-denuded; ET-1, first branch PA control 39.9 ± 3.15% (n=7), endothelium

denuded 20.4 ± 7.3% (n=5, P<0.05, control versus endothelium-denuded). In contrast, 

sildenafil was as effective on removal of the endothelium in the first branch P A as it 

was in the control first branch (figures 4.3.22B, 4.3.26B, 4.3.30B). The maximum 

relaxation achieved by sildenafil was: PE, first branch PA control 38 ± 2.5% (n=5), 

endothelium-denude 42.2 ± 5.8% (n=5, NS, control versus endothelium-denuded, 

Student's t-test); 5-HT, first branch PA control 32.3 ± 3.4% (n=5), endothelium

denuded 30.5 ± 5.3% (n=5, NS, control versus endothelium-denuded); ET-1, first 

branch PA control 18.1 ± 4.6% (n=6), endothelium-denuded 23.7 ± 7.3% (n=7, NS, 

control versus endothelium-denuded). 

Furthermore, in the first branch PA the maximum relaxation produced by SKF94836 (3 

x 10-5M) was generally significantly greater than that produced by sildenafil (3 x 10-

5M). In particular the maximum relaxation induced by SKF94836 was approximately 

three fold greater than the relaxation produced by sildenafil in the first branch 

preconstricted with 3 x 1O-9M ET-1 (220.9 ± 22.4%, 64.2 ± 11.5% respectively, % 

relaxation of reference KCI, P<0.05, Student's t-test, figures 4.3.16B and 4.3.32B). 

The efficacy of both the PDE3 and PDE5 inhibitors was dependent on the preconstrictor 

used, the branch of the P A studied and was altered with hypoxia. The response of the 

PDE3 inhibitor SKF94836 was dependent on the presence of an intact endothelium in 

the first branch. 
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A) MainPA 

PE Control ET Control 5-HT Control PE -ENDO ET -ENDO 5-HT -ENDO PE Hypoxic ET Hypoxic 5-HT Hypoxic 

B) First Branch PA 

PE Control ET Control 5-HT Control PE -ENDO ET -ENDO 5-HT -ENDO PE Hypoxic ET Hypoxic 5-HT Hypoxic 

Figure 4.3.19. Maximum response to 1 x 10-6M PE, 3 x 10-9M ET -1 and 3 x 

10-5M 5-HT in rat control, endothelium-denuded and hypoxic rat A) main 

and 8) first branch pulmonary arteries 

Maximum response to 1 x 10-6M phenylephrine (PE), 3 x 10-
9
M endothelin-1 (ET -1) 

and 3 x 1O-5M 5-hydroxytryptamine (5-HT) in control, endothelium-denuded (-endo) 

and hypoxic rat A) main and B) first branch pulmonary arteries. Data are expressed as 

percentage of the response to 50mM KCI, mean ± s.e.m,. where n= 5 for all (n = 

number of different animals), and * denotes significance (P<O.05) when comparing 

hypoxic versus control with/without endothelium in 3 x 10-
5
M 5-HT precontacted 

vessels. The data in the above figure represents those vessels in the sildenafil study. 
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Figure 4.3.20. Maximum relaxation to 1 x 10-6M ACh in rat control and 

hypoxic rat main and first branch pulmonary arteries 

Maximum relaxation to 1 x lO-6M acetlycholine (ACh) in control and hypoxic rat main 

and first branch (FB) pulmonary arteries precontracted with l!lM phenylephrine. Data 

are expressed as percentage of the response to 50mM KCI, mean ± s.e.m,. where n=15 

for all (n = number of different animals), and * denotes significance (P<O.05). The data 

in the above figure represents those vessels used in the sildenafil study. 
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Figure 4.3.21. CCRC to sildenafil in rat control and endothelium-denuded 

main pulmonary artery preconstricted with 1 x 10-6M PE 

A) Cumulative concentration response curves to the PDES inhibitor sildenafil and 

DMSO in control (II1II and 0 respectively) and endothelium-denuded (-endo; .A and L 

respectively) main pulmonary artery preconstricted with 1 x lO-GM phenylephrine (PE). 

B) Cumulative concentration response curves to the PDES inhibitor sildenafil alone, 

subtracting the effect of DMSO, in control (II1II) and endothelium-denuded (- endo, .A) 

main pulmonary artery preconstricted with 1 x lO-GM phenylephrine (PE) as in A. Data 

are expressed as percentage relaxation to the response to SOmM KCI. Each point 

represents mean ± s.e.m,. where n = number of different animals. 
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Figure 4.3.22. CCRC to sildenafil in rat control and endothelium-denuded 

first branch pulmonary artery preconstricted with 1 x 10-6M PE 

A) Cumulative concentration response curves to the PDE5 inhibitor sildenafil and 

DMSO in control (III and 0 respectively) and endothelium-denuded (-endo; A and ,6. 

respectively) first branch pulmonary artery preconstricted with 1 x lO-6M phenylephrine 

(PE). B) Cumulative concentration response curves to the PDE5 inhibitor sildenafil 

alone, subtracting the effect ofDMSO, in control (III) and endothelium-denuded (- endo, 

A) first branch pulmonary artery preconstricted with 1 x 10-
6
M phenylephrine (PE) as 

in A. Data are expressed as percentage relaxation to the response to 50mM KCl. Each 

point represents mean ± s.e.m,. where n = number of different animals. 



A) 

c: 
.2 -C'G x 

C'G 
Cii 
0:= 
~ Q 

125 

100 

75 

50 

25 

0 
-10 -9 -8 -7 -6 

[Siidenafil]LogM 

-5 

B) Minus the possible effect of vehicle DMSO 

100 

c: 75 
.2 
i;i 

50 >< 
ctI 

CiS 
0:: 25 
~ 0 

0 

-25 
-10 -9 -8 -7 -6 

[Sildenafil] Log M 

187 

- Conlrol (n=5) 

-- Hypoxic (n=5) 
---0-- DMSO (n=5) 

---0- Hypoxic DMSO (n=5) 

-4 

-- control (n=5) 

--- Hypoxic (n=6) 

-5 -4 

Figure 4.3.23. CCRC to sildenafil in rat control and hypoxic main 

pulmonary artery preconstricted with 1 x 10-6M PE 

A) Cumulative concentration response curves to the PDE5 inhibitor sildenafil and 

DMSO in control (II1II and 0 respectively) and hypoxic (. and 0 respectively) main 

pulmonary artery preconstricted with 1 x 1O-6M phenylephrine (PE). B) Cumulative 

concentration response curves to the PDE5 inhibitor sildenafil alone, subtracting the 

effect of DMSO, in control (II1II) and hypoxic (.) main pulmonary artery preconstricted 

with 1 x 10-6M phenylephrine (PE) as in A. Data are expressed as percentage relaxation 

to the response to 50mM KCl. Each point represents mean ± s.e.m,. where n = number 

of different animals and * denotes significance (P<O.05) between maximum relaxation. 
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Figure 4.3.24. CCRC to sildenafil in rat control and hypoxic first branch 

pulmonary artery preconstricted with 1 x 10-6M PE 

A) Cumulative concentration response curves to the PDE5 inhibitor sildenafil and 

DMSO in control (II1II and 0 respectively) and hypoxic (8 and 0 respectively) first 

branch pulmonary artery preconstricted with I x IO-
6
M phenylephrine (PE). B) 

Cumulative concentration response curves to the PDE5 inhibitor sildenafil alone, 

subtracting the effect ofDMSO, in control (II1II) and hypoxic (8) first branch pulmonary 

artery preconstricted with I x IO-6M phenylephrine (PE) as in A. Data are expressed as 

percentage relaxation to the response to 50mM KCl. Each point represents mean ± 

s.e.m,. where n = number of different animals and * denotes significance (P<O.05) 

between maximum relaxation. 
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Figure 4.3.25. CCRC to sildenafil in rat control and endothelium-denuded 

main pulmonary artery preconstricted with 3 x 10-5M 5-HT 

A) Cumulative concentration response curves to the PDE5 inhibitor sildenafil and 

DMSO in control (II1II and 0 respectively) and endothelium-denuded (-endo; .... and ,6. 

respectively) mam pulmonary artery preconstricted with 3 x 1O-
5
M 5-

hydroxytryptamine (5-HT). B) Cumulative concentration response curves to the PDE5 

inhibitor sildenafil alone, subtracting the effect of DMSO, in control (II1II) and 

endothelium-denuded (- endo, .... ) main pulmonary artery preconstricted with 3 x 1O-5M 

5-hydroxytryptamine (5-HT) as in A. Data are expressed as percentage relaxation to the 

response to 50mM KCl. Each point represents mean ± s.e.m,. where n = number of 

different animals. 



A) 150 

125 

.2 100 -CIS 
>< 
CIS 75 a; 

0::: 
~ " 50 

25 

0 
-10 -9 -8 -7 -6 -5 -4 

[Sildenafil] LogM 

B) Minus the possible effects of the vehicle DMSO 

50 

40 
c::: 
.2 
'tU 30 
>< 
ctI 

Ci> 20 
0::: 
~ 10 

o 

---- control (n=5) 
~ - endo (n=5) 

-0- DMSO (n=5) 

--Ir- -endo DMSO (n=5) 

--- control (n=5) 
---.k- -endo (n=5) 

-10~--~----~----~--~----~--~ 

-10 -9 -8 -7 -6 -5 -4 

[Siidenafil]LogM 

190 

Figure 4.3.26. CCRC to sildenafil in rat control and endothelium-denuded 

first branch pulmonary artery preconstricted with 3 x 10-5M 5-HT 

A) Cumulative concentration response curves to the PDE5 inhibitor sildenafil and 

DMSO in control (III and 0 respectively) and endothelium-denuded (-endo; .. and 6. 

respectively) first branch pulmonary artery preconstricted with 3 x 1O-5M 5-

hydroxytryptamine (5-HT). B) Cumulative concentration response curves to the PDE5 

inhibitor sildenafil alone, subtracting the effect of DMSO, in control (III) and 

endothelium-denuded (- endo, .. ) first branch pulmonary artery preconstricted with 3 x 

lO-5M 5-hydroxytryptamine (5-HT) as in A. Data are expressed as percentage 

relaxation to the response to 50mM KCl. Each point represents mean ± s.e.m,. where n 

= number of different animals. 
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Figure 4.3.27. CCRC to sildenafil in rat control and hypoxic main 

pulmonary artery preconstricted with 3 x 10-5M 5-HT 

A) Cumulative concentration response curves to the PDE5 inhibitor sildenafil and 

DMSO in control (II and 0 respectively) and hypoxic (. and 0 respectively) main 

pulmonary artery preconstricted with 3 x 1O-5M 5-hydroxytryptamine (5-HT). B) 

Cumulative concentration response curves to the PDE5 inhibitor sildenafil alone, 

subtracting the effect ofDMSO, in control (II) and hypoxic (.) main pulmonary artery 

preconstricted with 3 x 1O-5M 5-hydroxytryptamine (5-HT) as in A. Data are expressed 

as percentage relaxation to the response to 50mM KCl. Each point represents mean ± 

s.e.m,. where n = number of different animals and * denotes significance (P<O.05) 

between maximum relaxation. 



192 

A) 

125 

100 

t: 
.2 -- control (n=5) 

1ti 75 
>< 
n:l 
1ii 
0::: 
~ 

50 
Q 

----- Hypoxic (n=6) 
---D-- DMSO (n=5) 

-0--- Hypoxic DMSO (n=6) 

25 

0 
-10 -9 -8 -7 -6 -5 -4 

[SildenafillLog M 

B) Minus the possible effect ofthe vehicle DMSO 

75 
-- control (n= 5) 

t: 50 .2 
«i 
>< 

} -- Hypoxic (n=6) 

ItS 25 (i) 
I:k:: 
~ 0 a 

-25+-----.----.----.-----.----.----· 
-10 -9 -8 -7 -6 -5 -4 

[Sildenafil] Log M 

Figure 4.3.28. CCRC to sildenafil in rat control and hypoxic first branch 

pulmonary artery preconstricted with 3 x 10-5M 5-HT 

A) Cumulative concentration response curves to the PDE5 inhibitor sildenafil and 

DMSO in control (II and D respectively) and hypoxic (Gt and 0 respectively) first 

branch pulmonary artery preconstricted with 3 x 1O-5M 5-hydroxytryptamine (5-HT). 

B) Cumulative concentration response curves to the PDE5 inhibitor sildenafil alone, 

subtracting the effect ofDMSO, in control (II) and hypoxic (Gt) first branch pulmonary 

artery preconstricted with 3 x 1O-5M 5-hydroxytryptamine (5-HT) as in A. Data are 

expressed as percentage relaxation to the response to 50mM KCl. Each point represents 

mean ± s.e.m,. where n = number of different animals and * denotes significance 

(P<O.05) between maximum relaxation. 
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Figure 4.3.29. CCRC to sildenafil in rat control and endothelium-denuded 

main pulmonary artery preconstricted with 3 x 10-9M ET-1 

A) Cumulative concentration response curves to the PDES inhibitor sildenafil and 

DMSO in control (III and 0 respectively) and endothelium-denuded (-endo; • and 6. 

respectively) main pulmonary artery preconstricted with 3 x 10-
9
M endothelin-1 (ET -1). 

B) Cumulative concentration response curves to the PDES inhibitor sildenafil alone, 

subtracting the effect of DMSO, in control (III) and endothelium-denuded (- endo, .) 

main pulmonary artery preconstricted with 3 x 10-9M endothelin-l (ET -1) as in A. Data 

are expressed as percentage relaxation to the response to SOmM KCl. Each point 

represents mean ± s.e.m,. where n = number of different animals. 
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Figure 4.3.30. CCRC to sildenafil in rat control and endothelium-denuded 

first branch pulmonary artery preconstricted with 3 x 10-
9M ET-1 

A) Cumulative concentration response curves to the PDE5 inhibitor sildenafil and 

DMSO in control (II and 0 respectively) and endothelium-denuded (-endo; A and !:::. 

respectively) first branch pulmonary artery preconstricted with 3 x lO-9M endothelin-l 

(ET-l). B) Cumulative concentration response curves to the PDE5 inhibitor sildenafil 

alone, subtracting the effect ofDMSO, in control (II) and endothelium-denuded (- endo, 

A) first branch pulmonary artery preconstricted with 3 x lO-9M endothelin-l (ET -1) as 

in A. Data are expressed as percentage relaxation to the response to 50mM KCl. Each 

point represents mean ± s.e.m,. where n = number of different animals. 
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Figure 4.3.31. CCRC to sildenafil in rat control and hypoxic main 

pulmonary artery preconstricted with 3 x 10-9M ET-1 

A) Cumulative concentration response curves to the PDE5 inhibitor sildenafil and 

DMSO in control (III and 0 respectively) and hypoxic (et and 0 respectively) main 

pulmonary artery preconstricted with 3 x lO-9M endothelin-l (ET -1). B) Cumulative 

concentration response curves to the PDE5 inhibitor sildenafil alone, subtracting the 

effect of DMSO, in control (III) and hypoxic (et) main pulmonary artery preconstricted 

with 3 x lO-9M endothelin-l (ET -1) as in A. Data are expressed as percentage 

relaxation to the response to 50mM KCl. Each point represents mean ± s.e.m,. where n 

number of different animals and * denotes significance (P<O.05) between maximum 

relaxation. 
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Figure 4.3.32. CCRC to sildenafil in rat control and hypoxic first branch 

pulmonary artery preconstricted with 3 x 10-9M ET-1 

A) Cumulative concentration response curves to the PDE5 inhibitor sildenafil and 

DMSO in control (II1II and D respectively) and hypoxic (_ and 0 respectively) first 

branch pulmonary artery preconstricted with 3 x 10-9M endothelin-1 (ET -1). B) 

Cumulative concentration response curves to the PDE5 inhibitor sildenafil alone, 

subtracting the effect ofDMSO, in control (II1II) and hypoxic (_) first branch pulmonary 

artery preconstricted with 3 x 10-9M endothelin-1 (ET -1) as in A. Data are expressed as 

percentage relaxation to the response to 50mM KCl. Each point represents mean ± 

s.e.m,. where n = number of different animals and * denotes significance (P<O.05) 

between maximum relaxation. 
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A) 

Figure 4.3.33. CCRC to sildenafil in rat control and hypoxic main 

pulmonary artery preconstricted with 1 x 10-6M PE, 3 x 10-5M 5-HT and 3 x 

10-9M ET-1 

Cumulative concentration response curves to the PDE5 inhibitor sildenafil in A) control 

and B) hypoxic main pulmonary artery preconstricted with 1 xIO-6M phenylephrine 

(PE, _), 3 x 1O-5M 5-hydroxytryptamine (5-HT, e) and 3 x 1O-9M endothelin-I (ET-I, 

A.). In each CCRC the effect of the vehicle DMSO has been subtracted. Data are 

expressed as percentage relaxation to the response to 50mM KCl. Each point represents 

mean ± s.e.m,. where n = number of different animals and * denotes significance 

(P<O.05) between maximum relaxation. 
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Figure 4.3.34. CCRC to sildenafil in rat control and hypoxic first branch 

pulmonary artery preconstricted with 1 x 10-6M PE, 3 x 10-5M 5-HT and 3 x 

10-9M ET-1 

Cumulative concentration response curves to the PDE5 inhibitor sildenafil in A) control 

and B) hypoxic first branch pulmonary artery preconstricted with 1 xlO-6M 

phenylephrine (PE, II), 3 x 1O-5M 5-hydroxytryptamine (5-HT, .) and 3 x 1O-9M 

endothelin-l (ET-l, ..... ). In each CCRC the effect of the vehicle DMSO has been 

subtracted. Data are expressed as percentage relaxation to the response to 50mM KCI. 

Each point represents mean ± s.e.m,. where n = number of different animals and * 

denotes significance (P<O.05) between maximum relaxation .. 
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4.4 Discussion 

The purpose of this investigation was to determine the effect of SKF94836 (PDE3 

inhibitor), and sildenafil (PDE5 inhibitor) on PE, ET -1, and 5-HT mediated 

vasoconstriction in both the main and first branch P A of control and hypoxic rats. In 

addition, the vasodilatory effects of each of the PDE inhibitors were assed III 

endothelium-denuded conduit PAs. 

4.4.1 Response of hypoxic and endothelium-denuded main and first 

branch pulmonary arteries to PE, ET -1, 5-HT, ACh 

PE, ET -1 and 5-HT all produced concentration-dependent contractions in isolated main 

and first branch PAs. ET -1, and the a l-adrenoreceptors-agonist PE both initiate smooth 

muscle contraction by binding to the appropriate receptors and leading to the induction 

of phospholipase C (PLC), and subsequent generation of the second messengers inositol 

trisphosphate (InsP3) and diacylgycerol (DAG). Production ofInsP3 and DAG results in 

the release of intracellular calcium, and activation of protein kinase C (PKC), leading to 

vasoconstriction. In parallel, 5-HT, via the 5-HT2A receptor, can also lead to the 

formation of IP3 and DAG by PLC. However, 5-HT can also induce vasoconstriction 

by binding to 5-HT lB/lD receptors, and leading to the inhibition of adenylyl cyclase, and 

a subsequent decrease in cAMP. The maximum vasoconstriction induced by either PE 

or ET -1, were not significantly different when comparing responses in the control, 

hypoxic and endothelium-denuded main and first branch PAs. MacLean et a/. (1995), 

also showed responses to ET -1 were not increased in CH rat capacitance PAs. 

However, chronic hypoxia enhanced the maximum response to 5-HT in both the main 

and first branch PAs. Similar increased sensitivity to 5-HT was observed in rats with 

monocrotaline induced PHT, in the CH, and in the pulmonary arteries of patients with 

PPHT (MacLean et a/., 1996; Brink et a/., 1988). These authors suggested such 

hypersensitivity might be due to increased plasma 5-HT, or receptor upregulation with 

the development of PHT. In fact, increased circulating levels of 5-HT have been 

reported in PPHT and in PHT that is secondary to anorexigen intake (Anderson et al., 

1987; Herve et al., 1995). 

Additionally, the endothelium-dependent relaxation induced by acetylcholine (ACh) 

was attenuated in both the main and first branch P A from the CH. ACh acts on vascular 
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endothelial cells to release nitric oxide, which relaxes smooth muscle. These results are 

consistent with previous reports in which endothelium-dependent relaxation by receptor 

agonists are impaired in the PA from the CH (Wanstall and O'Donnel, 1992; Oka et aI., 

1988; Adnot et aI., 1991, MacLean et aI., 1995; MacLean et aI., 1996; MacLean et aI., 

1998a; McCulloch et aI., 1995; Altiere et al., 1985, Ito et aI., 1998; Mathew et aI., 

1995). The vascular endothelium in the P A from chronic hypoxic and MCT -treated 

rats, have actually been shown to have an increased density of microfilament bundles, 

an increased density of rough endoplasmic reticulum, and cell swelling (Rabinovitch, 

1996). These alterations in the structure ofthe endothelium with hypoxia are thought to 

lead in part to the reduced responsiveness of endothelium-dependent agonist. 

Additionally, it can be hypothesised that the impaired endothelium-dependent relaxation 

in the conduit P A associated with hypoxia may be due to the decrease in NO production 

and/or the decrease in cGMP production observed in these vessels (Shaul et aI., 1993; 

MacLean et aI., 1996). 

4.4.2 Effect of the PDE3 inhibitor SKF94836 and PDE5 inhibitor sildenafil 

in control main and first branch PA 

It was established in age-match control rats, that inhibition of PDE3 activity by 

SKF94836 and inhibition of PDE5 activity by sildenafil, caused a dose-dependent 

relaxation in the main and first branch PAs preconstricted with 1 x 10-6M PE, 3 x 10-5M 

5-HT and 3 x 10-9M ET-l. Inhibiting PDE3 activity by SKF94836 and PDE5 activity 

by sildenafil would increase cAMP and cGMP respectively, thereby activating signal 

transduction pathways controlled by these cyclic nucleotides that initiate relaxation. 

Also, there is the potential for "crosstalk" between cAMP and cGMP in the vasoactive 

effects of the PDE inhibitors. For example, sildenafil may indirectly inhibit PDE3 

(cGMP-inhibited, cAMP-specific PDE), due to increasing the circulating levels of 

cGMP as a result ofPDE5 inhibition. 

The stock concentration of SKF94836 (3 x 1O-5M) or sildenafil (3 x 10-5M) did not 

completely relax the control main or first PAs. In fact, the relaxation induced by 

SKF94836 and sildenafil appeared somewhat disappointing, however other 

investigators have also found this to be true for selected PDE inhibitor. For example, 

Wagner et al. (1997), found the treatment ofPA rings from rats with l/-l.M milrinone did 

not significantly reduce the active tension developed in response to U46619 in the main 
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P A. Even in primary cultures of smooth muscle cells Kim et al. (2000), demonstrated 

that sildenafil could only produce a small change in intracellular cGMP levels. 

The smaller than anticipated vasodilatory effects of both the PDE inhibitors may be due 

to the low inherent tone that is present in the control PAs (Jeffery and Wanstall, 1998). 

Under resting tension there is little tonic release of vasoactive agents such as NO, which 

would lead to a low basal level of cyclic nucleotides (target for PDE inhibitors). 

However, both PDE3 and PDE5 did initiate a significant relaxation in precontracted 

control main and first branch PAs, therefore these results still enforce a role for 

cAMP/cGMP-controlled pathways in the regulation of the pulmonary vasculature. 

Both PDE3 and PDE5 inhibitors have been show to relax systemic arteries. 

Precontracted rat aorta has been shown to relax in a concentration-dependent manner in 

response to an array of PDE3 inhibitors including cilostamide, amrinone, cilostazol 

(Nakamura et aI., 2001; Van der Zypp et aI., 2000; Delpy et aI., 1996). Additionally, 

PDE5 inhibitors such as E4021, DMPPO, zaprinast, and sildenafil all relax systemic 

arteries in a concentration-dependent manner. As in the P A, sildenafil and zaprinast (at 

concentrations 1 x 10-7
_ 3 x 10-6M) only had a small relaxant effect on U46619 

precontracted coronary arteries (Medina et aI., 2000). These authors found sildenafil 

only had a highly significant relaxant etlect when used at the highest concentrations (3 

x 10-5M). PDE5 inhibitors were shown to induce relaxation by increasing intracellular 

cGMP. 

In general both PDE3 and PDE5 inllibitors are only very effective in relaxing systemic 

arteries if smooth muscle inhibitors such as NO donor sodium nitroprusside (SNP) or 

isoprenaline are present. Sildenafil has been shown to amplifY the relaxation induced 

by SNP in human coronary arteries by enhancing cGMP levels (Medina et aI., 2000). 

These authors found sildenafil (1 x 10-6M) enhanced the sodium nitroprusside induced 

relaxation in coronary arteries by approximately 8 times. These results indicate the 

action of sildenafil in the coronary artery is dependent on the pre-existing activation of 

the NO-cGMP pathway. Such findings in the systemic circulation could be relevant in 

understanding the action of PDE in the pulmonary artery. The role of the cAMP and 

cGMP pathways in the effect of SKF94836 and sildenafil will be discussed in more 

detail in section 4.4.4. 
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4.4.3. Action of the PDE3 inhibitor SKF94836 and PDE5 inhibitor sildenafil 

in control main and first branch PA on removal of the endothelium 

Endothelial control is known to be important in both the systemic and pulmonary 

vasculature. A decrease in endothelium-dependent relaxation was reported to occur in 

the conduit PAs from CH in this study. It was therefore important to investigate if the 

response to either SKF94836 or sildenafil is attenuated if an intact endothelium is not 

present, as this may reduce their effectiveness as a therapy for PHT. Sildenafil was 

shown to act in an endothelium-independent manner in both the main and first branch 

PAs preconstricted with either PE, 5-HT, or ET-l. No significant difference was seen 

in the efficacy of sildenafil on removal of the endothelium compared to control main 

and first branch PAs. In contrast, SKF94836 acted in both an endothelium-dependent 

and endothelium-independent manner depending on the P A branch studied. In the main 

P A, in common with sildenafil, the efficacy of SKF94836 was not significantly 

different on removal of the endothelium, when compared to the control P A. However, 

the efficacy of SKF94836 was attenuated or even abolished on removal of the 

endothelium in the first branch control PAs. Therefore, these results show SKF94836 

acts in an endothelium-dependent manner in the first branch P A. 

MacLean et al. (1994), showed that the removal of the endothelium in the conduit PAs, 

although abolishing the action of ACh, had no significant effect on either cGMP or 

cAMP basal levels. These authors suggested that the main site of basal cyclic 

nucleotide generation, in the conduit PAs, was the vascular smooth muscle. Therefore, 

PDE inhibitors that target cyclic nucleotides may not necessarily require an intact 

endothelium. This may explain the endothelium-independent action of sildenafil in the 

main and first branch PAs. In fact, the endothelium-independent action of sildenafil in 

the conduit PAs is of advantage in the treatment of PHT, as it potency and efficacy 

would not be reduced in patients where the endothelium is known to be damaged (Dinh

Xuan et aI., 1991: 1993). 

SKF94836 has a site dependent effect on removal of the endothelium. The pulmonary 

circulation is composed of a heterogeneous population of smooth muscle cells, 

expressing different cytoskeletal and contractile proteins, channels and receptors (Frid 

et al., 1997). Regional differences in the response of each branch of the PA to 

vasoactive agents are therefore likely. These results suggest that the major pathways 
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involved in the regulation of cAMP may differ between branches of the P A tree. It may 

be that the generation of cAMP in the first branch compared to that in the main branch 

is more dependent or sensitive to agents released from the endothelium. This does not 

eliminate the possibility of SKF94836 as a therapy for PHT, but may merely suggest for 

its optimal effect fully functional endothelium is required. SFK94836 may still be 

useful in some forms of PHT where endothelium function is not severely impaired. For 

example, the P A from CH and MCT -treated rats all have reduced yet still functioning 

endothelium, as they responded to ACh (see figures 4.3.4 and 4.3.20). 

Removal of the endothelium in systemic arteries has been shown to attenuate the 

response of both PDE3 and PDE5 inhibitors (Deply et aI., 1996; Saeki et aI., 1995). For 

the maximal effect of PDE inhibitors to be observed in systemic arteries, an intact 

endothelium appears necessary. For example, cilostazol induced the relaxation of the 

thoracic aorta precontracted with phenylephrine in a concentration-dependent manner. 

On removal of the endothelium the concentration-dependent relaxation was shifted to 

the right, suggesting the response was in part endothelium-dependent (Nakamura et aI., 

2001). Removal of the endothelium in the systemic arteries is known to be 

accompanied by decrease in the basal levels of cyclic nucleotides, in particular cGMP 

(Schini et aI., 1989). PDE inhibitors have been shown to increase the intracellular 

levels of cAMP/cGMP even in the endothelium-denuded arteries (Delpy et aI., 1996). 

The PDE5 inhibitor E4021 caused a significant increase in intracellular cGMP in 

endothelium-denuded coronary artery, but had no effect on cAMP (Saeki et aI., 1995). 

In both the pulmonary and systemic arteries PDE3 and PDE5 inhibitors have both an 

endothelium-dependent component of relaxation and an endothelium-independent 

component of relaxation. This is evident as even on removal of the endothelium, 

relaxation is generally attenuated and not completely abolished, suggesting PDE 

inhibitors act directly on smooth muscle. 

4.4.4. Action of the PDE3 inhibitor SKF94836 and PDE5 inhibitor sildenafil 

in hypoxic main and first branch PAs 

Development of PHT can be accompanied by a change in responsiveness of some 

vasodilators. Altered response to vasodilators associated with hypoxia may be due to 

the associated hypertrophy of the PA, endothelial dysfunction, and/or an indirect result 

of increased PAP. Both SKF94836 and sildenatll produced a concentration-dependent 
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relaxation in both main and first branch PAs preconstricted with either PE, 5 -HT, E T -1. 

The efficacy of both SKF94836 and sildenafil increased significantly in the main and 

first branch PAs from CH At low concentrations (1 x 1O-9M to 3 x 10-6M) the relaxant 

effect of sildenafil was not significantly potentiated in the hypoxic main and first PAs. 

Relaxation at the highest concentration of sildenafil used (3 x 10-5M), was increased in 

P As from the chronic hypoxic rat. Increased relaxation as a result of hypoxic exposure 

was particularly evident with SKF94836, which induced over 200% relaxation in ET-l 

preconsticted first branch PAs (discussed below in section 4.4.5). It may be that the 

increase in maximum relaxation induced by each PDE inhibitor is due to increased 

inherent tone, which is known to be present in the conduit PAs from CH (MacLean et 

al, 1995; MacLean et aT., 1996; MacLean et aT., 1997). Increase responsiveness of the 

PDE inhibitors in the PAs of CH may also be due to changes in the phenotype of 

vascular smooth muscle cells in the larger pulmonary arteries, that is known to occur on 

the onset ofPHT (Meyrick and Reid, 1978; Sasaki et aI., 1995). 

Inhibition of PDE activity would have a greater significant effect if the rate of cAMP 

and cGMP production, or the levels of PDEs themselves were increased. The increased 

efficacy of SKF94836 (3 x 10-5M) and sildenafil (3 x 10-5M) with hypoxia may be due 

to the increased PDE activity in the PAs from CH, both of which have been observed. 

Both an increase in PDE3 and PDE5 activity occurs in response to hypoxia (MacLean et 

aT., 1997). In fact, chapter 3 demonstrates that in both the main and first branch PAs the 

increase in PDE3 activity correlates with an increase in the de-novo synthesis of PDE3. 

Likewise, there is an increase in transcript and protein levels of PDE5 associated with 

chronic hypoxic exposure in the main and first branch PAs (chapter 3). Both PDE 

inhibitors would attenuate the increase in PDE activity associated with hypoxia, 

increasing the intracellular levels of both cyclic nucleotides, leading to relaxation of the 

smooth muscle of the P A. 

Interestingly, vasoactive agents that are known to modulate the levels of cyclic 

nucleotides have previously been shown to be increased with the development of PHT. 

For example, reports suggest that NO production is increased in PHT possibly due to 

increased NOS expression (Shaul et al., 1995; Isaacson et al., 1994, Xue et aI., 1994; Le 

Cras et al., 1998; Le Cras et al., 1996, Resta et al., 1997). Also, the atrial natriuretic 

peptide (ANP), is increased in human primary and secondary PHT (Morice et aT., 1990; 

Zhao et aT., 1999). Both an increase NO and an increase in ANP with the development 
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of hypoxia would increase cGMP in the PAs. However, the increase in PDE5 activity 

also associated with hypoxia may mask the increase in cGMP in response to NO or 

ANP, by increasing its degradation. PDE5 inhibition by sildenafil would attenuate any 

increase in PDE5 activity, thereby uncovering the increase in circulating levels of 

cGMP. Inhibition of PDE5 activity may be more effective if the basal rate of cGMP 

production was increased. Together this hypothesis may explain why sildenafil has a 

higher efficacy in the hypoxic PAs compared to the control. Evidence for such an 

interaction between the effectiveness of PDE5 inhibitors and increased basal cGMP 

production, can be seen in studies by Kim et al. (2000). These authors showed that 

incubation with sildenafil in combination with the NO donor sodium nitroprusside 

(SNP) produced a marked increase in cGMP, significantly greater than sildenafil alone. 

Likewise, functional studies showed sildenafil (10-1 OOOuM) had little effect on 

phenylephrine-induced tone in smooth muscle from human corpus cavernosum tissue 

(Ballard et aI., 1998). However, sildenafil (10-1000uM) significantly enhanced the 

amplitude and duration of electrical field stimulation-induced, nitric oxide dependent 

relaxation of this preconsticted smooth muscle (Ballard et aI., 1998). The transient, 

frequency-dependent relaxation induced by electrical field stimulation in smooth muscle 

from corpus cavernosum and PAs is thought to be mediated via the stimulation of 

NANC nerves and involve nitric oxide (Liu et al., 1992b). NANC mediated electrical 

field stimulation-induced relaxation is inhibited by the nitric oxide synthase inhibitor L

NAME, and has been shown to be accompanied by an elevation in tissue cGMP 

concentration (Liu et aI., 1992b). 

In common with sildenafil, the increased responsiveness to SK.F94836 in hypoxic PAs, 

may be due increased basal cAMP that may occur in response to hypoxia. Prostacyclin, 

which is known to increase cAMP accumulation by mediating adenylyl cyclase activity, 

production and synthesis, has been shown to be increased 2.7 fold after 7 days of 

hypoxia (Shaul et aI., 1991). The stable metabolite of prostacyclin, 6-keto

prostaglandin F 1 alpha, has also been seen to increase with the onset of PHT from 31 ± 

3 to 842 ± 367 pg/ml (Peterson et al., 1982; Martin et aI., 1992). These results suggest 

cAMP production can be increased with hypoxia, however the increase in PDE3 activity 

would increase its degradation. PDE3 inhibition by SK.F94836 would inhibit any 

increase in PDE3 activity, thereby increasing the circulating levels of cAMP, increasing 

relaxation. Such a hypothesis may explain the increased efficacy of SKF94836 with 

hypoxia. 
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As the efficacy of SKF94836 and sildenafil were not attenuated but potentiated in the 

CH, this suggests that both PDE3 and PDE5 inhibitors may be useful as vasodilators in 

the pulmonary circulation of patients with PHT. The observation from chapter 3 can be 

linked to the results presented in this chapter, in that increased de-novo synthesis of 

PDE3 and PDE5 with hypoxia, may explain why SKF94836 and sildenafil are so 

effective in relaxing the conduit PAs from the CH. 

4.4.5. Vasoconstrictor-dependent response to SKF94836 and sildenafil in 

the main and first branch PAs 

In both the control and hypoxic PAs, SKF94836 and sildenafil produced a 

concentration-dependent relaxation irrespective of the preconstrictor used (1 x 1O-6M 

PE, 3 x 10-5M 5-HT and 3 x 10-9M ET -1). The action of vasodilators has previously 

been shown to be dependent on the type of preconstriction (Plane and Garland 1996). 

The results presented here show the efficacy of SKF94836 and sildenafil can vary 

depending on the preconstrictor used to increase tone in the same P A. In general, a 

similar pattern of relaxation occurred in response to SKF94836 and sildenafil in the 

control, endothelium-denuded and hypoxic main PAs. Differences in the efficacy of 

each PDE inhibitor, may be due to the diverse signalling pathways involved in the 

action of each preconstrictor, and their response to altered cyclic nucleotide levels. 

The most dramatic increase in the efficacy between the PDE inhibitors was seen in the 

hypoxic first branch P A preconstricted with 3 x 10-9M ET -1. SKF94836 resulted in a 

relaxation that was more than 2-fold greater than in first branch hypoxic PAs 

preconstricted with either PE, or 5-HT. It is possible that this may due to increased 

sensitivity of ET -1 that has been documented to occur in the first branch PAs in 

response to hypoxia (Mullaney et af., 1998). A significant increase in ET-1 sensitivity 

was not observed in this present study, which may merely be due to the smaller n 

numbers. However, this would not explain why in the first branch P A the maximum 

relaxation produced by SKF94836 was approximately three fold greater than the 

relaxation produced by sildenafil in the first branch preconstricted with 3 x 10-9M ET -1. 

In the lungs of the CH there is an increase in ET-l concentrations, and ET-l, ETA 

receptor and ETB receptor mRNA (Li et al., 1994). The addition ofET-1 in the CH 

has been shown to result in a rise in cAMP levels in the first branch PAs (Mullaney et 

at., 1998). This was thought to be due to the downregulation and redistribution of the 
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inhibitory ET -1 receptor, as a result of the increased circulating levels of ET -1 with 

hypoxia. It is possible that SKF94836 acts synergistically with increased cAMP 

induced by both preconstricting the PAs with ET -1, and with the increased ET -1 that 

has been shown to occur with hypoxia, leading to the significantly larger degree of 

relaxation that was observed. As ET -1 is increased in patients with primary and 

secondary PHT (Giaid et aI, 1993), these results suggest SKF94836 as a possible 

therapy. 

4.4.6 Effect of DMSO 

The importance of controlling for the potential effects of the vehicle of the drug was 

highlighted in this study. Dimethyl Sulfoxide (DMSO) alone, the vehicle for both 

SKF94836 and sildenafil, caused a concentration-dependent relaxation in both the main 

and first branch control, hypoxic, and endothelial denude PAs. Without subtracting the 

relaxation seen with DMSO, both PDE inhibitors appeared to produce a much greater 

relaxation in the P A studied. It is possible the relaxation may merely be due to a drop in 

tension due to time, however McAuley et al. (2001), have also observed an effect of 

DMSO. These authors found the relaxation to sildenafil was enhanced in the presence 

of DMSO. Other investigators found increasing concentrations of DMSO (0.1% v/v) 

induced an endothelium-independent relaxation in precontrated porcine and rabbit P A 

(Lawrence et al., 1998; Murtha et al., 1999). The effect does not appear to be selective 

to the pulmonary circulation as DMSO also decreases systemic vascular resistance and 

was shown to relax coronary arteries (Hameroff et aI., 1981; Lawrence et al., 1998). 

DMSO scavenges hydroxyl radicals, is an organic solvent, and an antioxidant. It has 

been suggested that reactive oxygen species (ROS) may play both a physiological and 

pathophysiological role in vascular homeostasis. Studies have shown the production of 

reactive oxygen species can lead to vasoconstriction (Jones et al., 1997; Rhoades et aI., 

1990). It can be hypothesised that by scavenging hydroxyl radicals, DMSO may cause 

relaxation. Also, DMSO has been shown to inhibit tension and ATP hydrolysis in 

skeletal muscle myofibrils, which may occur in the isolated PAs (Mariano et aI., 2001). 

Lawrence et al. (1998), studied the possible cardiovascular effects of drug vehicles. 

These authors found the least active solvent to be methanol. If possible it may be of 

advantage to repeat some of the experiments using methanol as the vehicle, to confirm 
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the degree of relaxation seen by the PDE inhibitors is not due to a synergistic action 

withDMSO. 

4.4.7. Possible therapeutic potential of PDE3 inhibitors 

Further evidence exists enforcing a role for the therapeutic use of PDE3 inhibitors in 

PHT. The PDE3 inhibitor SCA40 has been demonstrated to relax main and intralobar 

PA precontacted with PE (Crilley et al., 1998). Milrinone has been shown to 

significantly decrease the mean PAP and PVR in the hypoxic dog, and in early clinical 

trials to lower the pulmonary capillary pressure in patients with heart failure. (Kato et 

aI., 1998; Bairn et al., 1983, Jaski et aI., 1985). Additionally, PDE3 inhibitors have also 

been shown to inhibit airway smooth muscle proliferation. Billington et al. (1999), 

showed that siguazodan (PDE3 inhibitor) inhibited both eH] thymidine incorporation 

and the increase in cell number induced by PDGF-BB (20ng/ml). 

However, one major concern of the use of PDE3 inhibitors in the therapy of PHT is 

their likely side effects, especially in the cardiovascular system. Unfortunately PDE3 

inhibitors have been shown to induce positive inotropism and vasodilation in the 

systemic circulation (Nicholson et aI., 1995). In long term clinical trials with PDE3 

inhibitors the hemodynamic improvements seen early in therapy were typically not 

sustained, and an increase in mortality of about 40% after several months of treatment 

was observed (Uretsky et al., 1990, Parker et al., 1991). Relevant to this study, 

SKF94836 does have inotrope/vasodilator activity with sustained duration in vivo in the 

systemic circulation in both cats and dogs (Gristwood et al., 1988). This demonstrates 

that SKF94836 is not selective for the pulmonary circulation, as systemic vascular 

resistance declined in a corresponding manner. 

The lack of selectivity of PDE3 inhibitors for the pulmonary circulation does not 

completely rule them out in the treatment of PHT. It may be possible that co

administration with other PDE inhibitors would allow the use of subthreshold doses, 

which under clinical conditions do not have cardiovascular side effects. Wagner et al., 

(1997), demonstrated that the co-application of subthreshold doses ofPDE3 (milrinone) 

and PDE4 (rolipram) inhibitors enhanced isoproterenol and forskolin-induced relaxation 

of isolated P A from CH. In addition, the greatest amplification of the pulmonary 

vasodilator effect of PGI2 was achieved using the dual-selective PDE3IPDE4 inhibitors 

zardaverine and tolafentrine (Schermuly et al., 1999). Co-administration of PDE3 and 
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PDE4 inhibitors also demonstrated a synergistic action III attenuating cellular 

proliferation in cultured vascular SMCs (Pan et al., 1994). 

A close interaction between cAMP and cGMP mediated vasorelaxant effects have 

always been thought to occur. It has been postulated that the inhibition ofPDE5 would 

lead to vasorelaxation by increasing cGMP, which can subsequently further inhibit 

PDE3, potentiating the cAMP-mediated vasorelaxation. Clarke et aI., (1994) 

demonstrated such a synergistic effect, "a low dose" of milrinone (O.l7!-lM) yielded a 

4.6 ± 2.4% reduction of elevated PVR, and a "low dose" of dipyridamole (O.06IJ.M) 

yielded a 8.2 ± 2.8% reduction of elevated PVR. Administration of both the "low 

doses" of milrinone and dipyridamole yielded a 41.9 ± 7.3% reduction of elevated PVR. 

This data supports a synergistic and not merely additive effect of the co-application of 

PDE3 and PDE5 inhibitors to reduce elevated PVR. This is of clinical significance, as 

patients with PHT would benefit from such a combination of a marked reduction of 

PVR with a far smaller reduction in SVR. 

4.4.8. Possible therapeutic potential of PDE5 inhibitors 

These results have demonstrated that sildenafil can relax isolated preconstricted main 

and first branch PAs. There is a great deal of literature that shows PDE5 inhibitors may 

be useful in the treatment of PHT. Several other researchers have reported the efficacy 

of PDE5 inhibitors as pulmonary vasodilators in animal models of PHT. PDE5 

inhibitors such as DMPPO, zaprinast, and dipyridamole have all been shown to induce 

selective vasodilation of the pulmonary vascular bed, and also found to protect against 

the development of pulmonary vascular remodelling (Eddahibi et aI, 1998, Ichinose et 

al., 1995b, Thebaud et aI., 1999, Hanson et al., 1998). More specific PDE5 inhibitors 

such as E4010 have also been shown to improve mortality in MCT-induced pulmonary 

hypertensive rats (Kodama and Adachi, 1999). In this particular study it was shown 

that rats treated chronically with O. 1 % E401 0 in their diet showed reduced right 

ventricular hypertrophy and increased plasma cGMP levels compared to rats treated 

with vehicle. Likewise in the CH a single oral dose of 1.0mg/kg E4010 caused a long

lasting reduction in PAP, with no significant systemic side effects on SAP, cardiac 

output, and heart rate (Hanasato et al., 1999). 
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Together these studies suggest PDE5 inhibitors would be useful in treating PHT, but 

PDE inhibitors such as E4021 and E40 1 0 although more selective are not yet available 

for humans. Sildenafil citrate (Viagra®) has already however been successfully 

launched by Pfizer in 1998 for the treatment of male erectile dysfunction (Boolell et aI., 

1996). Zhao et al. (2001), examined the effect of sildenafil on hypoxia-induced PHT in 

mice and healthy human volunteers. They found in humans 100mg of sildenafil 

inhibited the hypoxic rise in PAP without significantly effecting the systemic 

circulation. This result was reproduced in isolated mouse lung, where sildenafil 

attenuated the increase RV hypertrophy and remodelling in mice chronically exposed to 

hypoxia. 

There is an unresolved debate concerning potential side effects of sildenafil. A clinical 

trial by Goldstein et al. (1994), found the main side effects to be headache, flushing, 

dyspepsia, rhinitis and visual disturbances. The transient visual disturbances may be 

caused by nonselective inhibition of other PDEs such as PDE6, which is structurally 

closely related. A further placebo-controlled and open-label phase 2/3 trial including 

men with ischemic heart disease did not show an increase in myocardial infarction or 

serious cardiovascular events in patients treated with sildenafil versus placebo (Kloner, 

2000). Together, these studies show sildenafil would appear to be extremely beneficial 

as a treatment for PHT. In addition, researchers have developed PDE5 inhibitors that 

are more selective than sildenafil, such as vardenafil hydrochloride, which may be even 

better in reducing PAP with fewer unwanted side-effects (Bischoff et aI., 2001). 

4.4.9. Conclusion 

These results demonstrate that both SKF94836 and sildenafil are effective pulmonary 

vasodilators in isolated main and first branch PAs. It may be that PDE inhibitors block 

the development of hypoxic pulmonary vasoconstriction by increasing the intracellular 

levels of cyclic nucleotides. As SKF94836 and sildenafil inhibited the vasoconstriction 

induced by PE, 5-HT, and ET-1, and hypoxia did not attenuate the relaxation, this 

provides evidence for the use of these inhibitors in the clinical treatment ofPHT. 

The magnitude of the response to both SKF94836 and sildenafil were dependent on the 

preconstrictor used, the branch of the P A studied, the presence of an intact endothelium, 

and enhanced by the vehicle DMSO. These results reinforce that caution must be taken 
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when interpreting the responsiveness of the pulmonary vasculature to inhibitors, and 

when comparing data from various studies. Caution must also be taken in generalising 

the response seen in the main and first branch PAs would occur in the whole lung 

orland in the resistance vessels. Further studies would intend to define whether the 

effect observed in isolated P A segments in vitro is also seen in the entire pulmonary 

vasculature in vivo. For example, to further assess the role of PDE5 on pulmonary 

vascular tone and development of PHT, sildenafil could be administered to rats in their 

drinking water from the first day of the hypoxic exposure. PDE-5 inhibition by 

sildenafil would be expected to reduce the development of PHT. In addition, these 

results suggest it plausible to examine the functional consequence of co-administration 

of SKF94836 and sildenafil in isolated PA rings. It is proposed that PDE3 and PDE5 

inhibitors may act synergistically to reduce pulmonary arterial vasoconstriction, leading 

to a new approach in the treatment ofPHT. 
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Chapter 5: The role of PDEy in chronic hypoxia 

5.1 Introduction 

PulmonalY hypertension (PHT) appears not only to be due to an imbalance between the 

vasoconstrictor/vasodilator actions of endogenous mediators, but also due to changes in 

their mitogenic/anti-mitogenic effects (MacLean, 1999). Chronic hypoxia causes 

abnormal cell proliferation and increased hypertrophy in pulmonary arteries (PAs), 

which results in remodelling. In response to chronic hypoxia PAs show increased wall 

thickness, progression of muscularisation into normally non-muscular vessels, and the 

formation of neointima and plexiform lesions (for review see Jeffery and Wanstall, 

2001). Remodelling of PAs is thought to reduce the ability of vasodilators to lower 

resistance and pressure in the pulmonary vasculature. Therefore, targeting pulmonary 

vascular remodelling may be important in finding new therapies for PHT. 

Cellular proliferation is initiated by mitogenic stimuli such as growth factors and 

hormones acting via cell surface receptors, that include growth factor tyrosine kinase 

receptors (RTK) and G-protein coupled receptors (GPCR). Activation of these 

receptors stimulates p42/p44 mitogen-activated protein kinase (p42/p44 MAPK or 

ERK1/2), a serine/theronine kinase belonging to the MAPK super family (Marshall, 

1995 and Van Biesen et aI., 1995). Other subfamilies of MAPKs include the c-Jun N

terminal kinases also known as stress activated protein kinases (JNKs/SAPKs), and the 

p38 MAPKs. JNK and p38 MAPK appear to be more involved in response to stress 

such as cytotoxic insults, and not in mitogenesis (Orsini et aI., 1999). The general 

sequence of activation for MAPK is, MAPK kinase kinase (MAPKKK) ~ MAPK 

kinase (MAPKK) ~ MAPK. These signalling cascades are deactivated by the 

dephosphorylation of MAPKs by MAPK phosphatases (MKPs) (for review see Keyse, 

2000). There is substantial evidence showing that hypoxia activates MAPK pathways 

in cells from the PA (Jin et aI., 2000; Welsh et aI., 2001). Furthermore, MKPs are 

induced in response to hypoxic stimuli in various cell types (Seta et aI., 2001; Laderoute 

et aI., 1999). Together these studies suggest a role for MAPK pathways in the increased 

cellular proliferation in the P A that can lead to the development of hypoxic induced 

PHT. 
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Mitogens including epidermal growth factor (EGF), platelet derived growth factor 

(PDGF), and thrombin have previously been shown to produce a robust and sustained 

activation of p42/p44 MAPK, which could be correlated with increased DNA synthesis 

in human airway smooth muscle cells (Orsini et aI., 1999). Furthermore, this increase 

in growth was inhibited by the MEK1 (the MAPKK activator of p42/p44 MAPK) 

inhibitor PD098055. Studies such as these and others, for example by Karpova et al. 

(1997), in bovine airway smooth muscle, suggest the p42/p44 MAPK pathway appears 

to be a key signalling event mediating mitogen-induced proliferation. In relation to the 

present study, many growth factors including PDGF-A, PDGF-B, VEGF, TGF-~, 

bFGF, IGF-1, and EGF have been documented to be elevated in PHT (for review see 

Jeffery and Wanstall, 2001), providing evidence for a role of growth factor induced 

MAPK pathways in remodelling of the P A. 

Another well-documented and studied GPCR pathway is the phototransduction cascade, 

which is similar to signalling by growth factors and GPCRs in other mammalian cell 

systems. Photo excitation of the GPCR rhodopsin, results in the GDP-GTP cycle 

activation of the heterotrimeric G protein, transducin, and G-protein receptor coupled 

kinase (GRK) and ~-arrestin (Stryer, 1991). GTP-bound transducin stimulates PDE6 

[expressed as a tetrameric protein composed of catalytic heterodimers (a~), and two 

inhibitory y-subunits (PDEy)], by displacing PDEy. Activation of PDE6a~ leads to the 

hydrolysis of cGMP to 5'GMP resulting in the closure of cGMP-gated NaT /Ca2
+ 

channels on the plasma membrane. Decrease in Na + and Ca2
+ results in 

hyperploarisation of the cells (for review see Yafitz and Hurley, 1994). 

Two functionally similar PDEy isoforms are known to exist, PDEy1 (rod) and PDEy2 

( cone), differing in their amino-terminal regions and their location in the retina 

(Hamilton and Hurley, 1990). The carboxyl-terminal domains, which are involved in 

the interaction with transducin, are almost identical. Furthermore, as a result of a 41 

base pair deletion, two isoforms of PDEy2 exist, namely long PDEy2 and short PDEy2. 

It is thought the two forms of PDEy2 are important at different stages of embryo 

development. Each step of the GTP-hydrolytic cycle of transducin is closely related to 

molecular states of PDEy (Morrison et aI., 1987). As PDEy is an important link 

between rhodopsin activated transducin and effectors, it was proposed that PDEy1 and 

PDEy2 maybe expressed in other tissues where they may regulate other receptor-G

protein-mediated pathways, such as p42/p44 MAPK. 



215 

Evidence for a role of PDEy in other systems of the body is evident primarily by results 

showing the expression of PDEyl in lung, kidney, testes, liver, heart, airway smooth 

muscle and human embryonic kidney (HEK) 293 cells, and its absence in all these 

tissues from PDEy1 knockout mice (unpublished data from the lab, Wan et al., 2001, 

Tate et aI., 1998, Tate et aI., 2001). Furthermore, using recombinant and antisense 

PDEy in HEK293 cells Wan et al. (2001), showed PDEy1 regulates the EGF and 

thrombin-dependent stimulation of p42/p44 MAPK through its interaction with the 

GRK2 signalling system in HEK 293 cells. Thrombin also stimulated the association of 

endogenous PDEy1 with dynamin II, which may be required for the endocytosis of 

receptor signal complexes leading to the activation of p42/p44 MAPK and stimulation 

of cell proliferation (Wan et aI., 2001). These studies proposed PDEy as a novel 

intermediate in p42/p44 MAPK signalling. 

In addition to the role of PDEy in regulating growth factor and GPCR stimulation of the 

p42/p44 MAPK pathway, it has been speculated that it may interact with other PDEs. 

This was proposed, as the presence of PDEy throughout the body cannot be explained 

by its association with PDE6 (as PDE6 is only found in the eye). In particular PDE5 

shares common structural and functional properties with PDE6. Both PDE5 and PDE6 

display a high degree of amino-acid identity (45-48%) between the catalytic domain, 

posses cGMP binding sites, hydrolyse cGMP better than cAMP, and are both sensitive 

to a common set of competitive inhibitors (McAllister-Lucas et aI., 1993; Gillespie and 

Beavo, 1989; Turko et aI., 1999b; Gonzalez, 1999). PDE5 appears an ideal candidate to 

contain its own y subunits controlling its regulation. In fact, Lochhead et al. (1997), 

identified two small molecular mass proteins termed p 14 and p 18 in guinea-pig airway 

smooth muscle cells and mouse lung (where PDE5 is the major cGMP binding protein, 

Burns et aI., 1992), which cross-reacted with antibodies raised to the polycationic rnid

region and C-terminal region of PDEy. Furthermore, recombinant PDEy has been 

shown to modulate PDE5 activity by preventing its activation by PKA in a 

concentration-dependent manner (Tate et aI., 1998, and Lochhead et aI., 1997). It was 

therefore speculated that since PDEy is a protein inhibitor of PKA-activated PDE5, this 

action might potentiate agonist-stimulated cGMP formation by preventing negative 

feedback control. It is also possible that the interaction of PDEy with PDE-5 may be 

reduced under hypoxic conditions, amplifying PKA-activation of PDE5, thereby 

explaining, in part, the increase in PDE5 activity observed in PA (MacLean et aI., 
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1997). In addition PDEy stimulates the proteolysis of PDE5 by caspase-3 and caspase-8 

in vitro (Frame et aI., 2001). These results suggest that under conditions of cellular 

stress, PDEy may convert PDE5 to a conformation that is more sensitive to attack by 

proteases. Together these findings suggest that PDEy may function to localise PDE5 in 

signalling complexes (with dynamin II) that are organised to stimulate the p42/p44 

MAPK pathway. This may protect the p42/p44 MAPK signalling pathway from the 

inhibitory action of cGMP. Chapter 3 reports that PDE3A13B and PDE5 expression and 

activity are increased in pulmonary vessels from rats maintained under chronic hypoxic 

conditions (MacLean et aI., 1997). This would offer more protection to mitogenic 

signalling pathways from the inhibitory action of cyclic nucleotides and might, in part, 

explain the enhanced pulmonary vessel remodelling in PHT. 

As PDEy1l2 appear to regulate growth factor and GPCR stimulation of the p42/p44 

MAPK pathway, it is proposed that changes in its expression may have profound effect 

on cellular proliferation in PAin response to hypoxia. In conjunction, PDEy may also 

have a key role in modulating PDE5 activity in the pulmonary circulation, and its 

interaction may be altered with hypoxic stimuli. The aim of this study was therefore to 

investigate whether PDEyl12 are expressed in rat PA and hPASMC, and to determine 

the effect of chronic hypoxia on this expression. The effect of chronic hypoxia on the 

expression of PDEyl/2 will also be correlated with any change in p42/p44 MAPK. 

These novel studies were intended to show a possible wider role of PDEy in signal 

transduction. 

5.2 Materials and Methods 

5.2.1 Materials 

All reagents, unless otherwise stated, were obtained from Sigma chemical company 

(UK.), or BDH (UK.). Cell culture supplies were from life Technologies (UK.). 

RNeasy total RNA isolation kit and QIA shredder were from Qiagen (UK.). 

Superscript II reverse transcriptase, DNase I Amplification Grade, Oligo dt (18), Taq 

Polymerase, and primers were from Life Technologies (UK.). DNA Polymerase Mix 

(dNTPS), GFX™ PCR and Gel Purification Kit, Hybond™ECLTM Nitrocellulose 

Membranes were from Amersham Pharmacia Biotech (UK.). Rat glyeraldehyde-3-

phosphate dehydrogenase (G3PDH) control amplimer set was from Clonetech 
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laboratories Inc (USA). BigDye Dye terminator cycle sequencing kit was from PE

Applied Biosystems (UK.). Anti-PDEy antibody to the C-terminal domain of 

photoreceptor PDEy was a kind gift from Dr. R. Cote (University of New Hampshire, 

USA). Phospho-p42/p44 MAPK antibody was from BD Transduction Laboratories 

(UK.). 

5.2.2 Animal Studies - Chronic Hypoxic Rat 

Male Wistar rats of 28-30 days old (at start of experiment) were housed in a specially 

designed perspex hypobaric chamber (Royal Hallamshire Hospital, Sheffield). The 

pressure within the chamber was decreased to 550mbar; this reduced the inspired p02 to 

approximately 11 OmrnHg (~l 0% equivalent). The temperature of the chamber was 

maintained at 21-22°C and the chamber was ventilated with air at ~451 min-I. Animals 

were maintained in these hypoxic/hypobaric conditions for 14 days. Age-matched 

controls were housed under normoxiclnormobaric room conditions (20% v/v oxygen). 

Following sacrifice the right ventricle of the heart was dissected free of the septum and 

left ventricle and these were blotted and weighed. PHT was assessed by measuring the 

ratio of right ventricle (RV)/total ventricular (TV) weight. This is a well-established 

index of the degree of PHT in the rats (Hunter, et aI., 1974). Pulmonary arteries were 

then dissected and taken for biochemical analysis. 

5.2.3 Cell Culture 

Human pulmonary artery smooth muscle cells (BioWittaker, UK., fl-om main and first 

branch P A) were maintained in smooth muscle cell growth medium (SmGM-2 bulletkit 

system, BioWittaker, UK.). Following passage, flasks were split into two groups. Half 

the flasks were returned to the normoxic incubator (RS Biotech - Galaxy CO2 incubator 

set at 5%C02, 95% air, humidified, set 37°C), and half were transferred to the hypoxic 

incubator (RS Biotech - Galaxy CO2 - oxygen control incubator 10% O2, 5% CO2, 

balanced N2, humidified, set 37°C). Cells were grown in the hypoxic incubator for 24 

hours to 2 weeks to determine optimal conditions. 

5.2.4 Homogenate preparation 

To isolate protein from both tissue and cells, the homogenisation buffer isotonic sucrose 

solution (I.S.S.) was used with composition: 0.25M sucrose, 10mM Tris HCI, ImM 
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EDTA, O.lmM phenylmethylsulphonyl fluoride (PMSF) and 2mM benzamidine, pH 

7.4. The P A branches were initially ground to a fine powder in liquid nitrogen using a 

mortar and pestle, then homogenised by adding 500111 IS.S. and passing through a 25G 

syringe needle five times. After the removal of the media, cells were washed with 

sterile PB S, and then scraped in 600111 IS.s. per T -75 flask. To shear the cells, the 

lysate was passed five times through a 25G syringe needle. Both the homogenised 

tissue and cells were centrifuged for 2 minutes at 12,000 rpm, and only the supernatant 

used in subsequent experiments. 

5.2.5 Total RNA extraction 

For isolation of RNA, rat pulmonary arterial branches were ground to a fine powder in 

liquid nitrogen with a mortar and pestle. 600~Ll buffer RNeasy lysis buffer (containing 

14.5M ~-mercaptoethanol) was then added according to manufacturers guidelines 

(Qiagen), and the tissue was then homogenised by passing the lysate through a 25 G 

needle five times. For isolation of RNA from hP ASMC, the medium was aspirated and 

the cells washed with sterile PBS. The hPASMC were scraped in 600111 of RNeasy 

lysis buffer, and then passed through a 25G syringe five times. Both the tissue and cell 

lysates were then pipetted onto a QIAshredder (Qiagen). Total RNA was extracted 

according to the RNeasy protocol instruction (Qiagen). To prevent potential 

contamination from genomic DNA, an incubation step with 4 units of DNase at 37°C 

for 15 minutes followed by a second RNA extraction (clean up protocol, Qiagen) were 

included. Total RNA was eluted in RNase free H20 and stored at -20°C. 

5.2.6 RT -peR 

First strand synthesis was carried out using Illg total RNA catalysed by the enzyme 

superscript II reverse transcriptase. The reaction was primed using 500ng of oligo 

(dt)18. This mixture was heated to 70°C for 10 minutes and quick chilled on ice. The 

reverse transcriptase reaction was incubated at 42°C for 90 minutes and terminated at 

70°C for 15 minutes. 

The PCR was carried out using the following protocol: initial denaturation for 5 minutes 

at 95°C, 15-35 cycles of amplification (each cycle consisted of denaturation for 30 
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seconds at 95°C, annealing for 30 seconds at 50°C, and extension for 1 minute 40 

seconds at 72°C), a final extension of 10 minutes at 65°C, and storage at 4°C. 

RT-PCR with specific with specific forward and reverse oligonucleotide primers were 

used to amplify PDEyl/2 transcripts. For PDEyl, sense (Y00746 Forward), 5' -ATG 

AAC CTG GAG CCA CCC-3', and antisense, Y00746 Reverse, 5'-GCT CAC ATA GCA GGG 

ATC AGA-3' or C-terminal reverse, 5'-AAT GAT GCC ATA CTG GGC CAG-3'. For PDEy2 

sense, 5'-CGG GAT CCC GCC ACC ATG AGC GAC AGC CCT TGC C-3', and antisense, 5'

CCC AAG CTT GGG TCC TCA GAT GAT CCC GAA CTG-3'. 

5.2.7. Sequence analysis 

The purified amplicons were sequenced, in both directions, on aPE-Applied 

Biosystems Division Model 373A automated DNA sequencer using the PCR primers 

and a BigDye terminator cycle sequencing kit. 

5.2.8 Western Blotting 

Nitrocellulose sheets were blocked in 5% gelatin in PBS at 37°C for 1 hour and then 

probed with antibodies in PBS containing 1% gelatin (w/v) plus 0.05% (v/v) NP40 at 

37°C for 12 hours. After this time, the nitrocellulose sheets were washed in PBS plus 

0.05% (v/v) NP40. Detection of immunoreactivity was by incubating nitrocellulose 

sheets for 2 hours at 37°C with a reporter HRP-linked anti-rabbit antibody in PBS 

containing 1% gelatin (w/v) plus 0.05% (v/v) NP40. After washing the blots as 

described above, to remove excess reporter antibody, immunoreactive bands were 

detected using an enhanced chemiluminesence detection kit. 

5.2.9 Quantification 

R T -PCR and Western blotting results were quantified by densitometry (linear range of 

optical density between 0-1 arbitrmy unit). 

5.2.10 Statistics 

In all analysis comparisons between two groups of data were made using Student's t

test for paired or unpaired data where appropriate. The statistical software package 



220 

Prism (Graphpad Prism, San Diego, CA, USA) was used to handle raw data, where 

*P<O.05 was considered to be statistically significant. In all experiments "n" either 

indicates the number of different animals used or number of different populations of 

cultured cells. 
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5.3 Results 

5.3.1 The Chronic Hypoxic rat (CH) 

The animals used throughout these experiments were also used to generate the results in 

3.3.1 and figures 3.3.1 and 3.3.2. The exposure of male Wistar rats to 10% O2 for 2 

weeks resulted in a significant decrease (P<0.05) in body weight from 221.3g ± 2.6 to 

199.7g ± 2.4 (n=80, P<0.05, Student's t-test) as seen in figure 3.3.1. 

From figure 3.3.2 it can be seen that the RV/TV ratio was significantly increased with 

hypoxia, confirming that right ventricular hypertrophy had occurred. RV/TV ratios 

were 0.202 ± 0.001 and 0.336 ± 0.006 for normoxic and hypoxic rats respectively 

(figure 3.3.2, n=80, P<0.05, Student's t-test). As PHT is characterised by right 

ventricular hypertrophy, these results show its development in the rats exposed to 

hypoxia for 2 weeks. Throughout this study hypoxic refers to rats subjected to 14 days 

of chronic hypoxia (2.2.1.1). 

5.3.2 Linear amplification of PDEy1, PDEy2, and G3PDH transcripts by RT

PCR 

To perform semi-quantitative RT-PCR, each PDEy transcript was amplified at various 

cycle lengths (conditions as in 2.2.2.4). From figure 5.3.1 linear amplification 

conditions for all transcripts were seen to occur using up to 25 cycles. Hence 25 cycles 

were used in all subsequent RT -PCR reactions. 

5.3.3 The effect of hypoxia on PDEy1, and PDEy2 transcript levels in rat PA 

Figure 5.3.2 show the RT-PCR amplification (25 cycles) ofPDEyl (261bp product) and 

PDEy2 (282bp product) from the main P A, first branch P A, intrapulmonary PA and 

resistance vessels of both normoxic and hypoxic rats. These results confirm that the 

amplicons correspond to PDEyll2 mRNA transcripts obtained from all the vessels. 

With chronic hypoxia it can be seen from figure 5.3.3 that neither PDEy1 nor PDEy2 

transcript increased in any of the pulmonary arterial branches studied. The % effect of 

hypoxia on PDEy1 and PDEy2 transcripts in hypoxic versus normoxic rats were: main 

branch, PDEyl, -1 ± 9%; PDEy2, 3 ± 7%; first branch, PDEy1, -8 ± 14%; PDEy2, 7± 
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11%; intrapulmonary, PDEy1, 5 ± 4%; PDEy2, 12 ± 15%; resistance vessels, PDEy1, -3 

± 14%; PDEy2, 6 ± 9%, (n=4, P<0.05 versus normoxic animals, Student's t-test). Data 

can also be expressed as a ratio of G3PDH. The PDy1/G3PDH transcript ratio in 

normoxic and hypoxic animals respectively were: main branch, 1 ± 0.01, 1 ± 0.03; first 

branch, 0.99 ± 0.01, 0.93 ± 0.1; intrapulmonary, 1.02 ± 0.06, 1.06 ± 0.08; resistance 

vessels, 0.98 ± 0.09; 0.94 ± 0.1 (n=4, NS, versus normoxic animals, Student's t-test, 

figure 5.3.3). The PDy2/G3PDH transcript ratio in normoxic and hypoxic animals 

respectively were: main branch, 1 ± 0.02, 1.03 ± 0.05; first branch, 0.99 ± 0.03, 1.08 ± 

0.11; intrapulmonary, 1.05 ± 0.1, 1.13 ± 0.18; resistance vessels, 0.98 ± 0.06; 1.03 ± 0.7 

(n=4, NS, versus normoxic animals, Student's t-test, figure 5.3.3). Using these RT-PCR 

conditions, a chronic hypoxic-dependent increase in PDE3 and PDE5 transcript levels 

from the same samples has previously been observed (chapter 3). 

Alignment of the PDEy1 (264bp) and PDEy2 (252bp) with the corresponding mouse 

and human PDEy1 and PDEy2 (either from the published mouse sequence or the 

sequence obtained experimentally using the hPASMC) can be seen in figures 5.3.7 and 

5.3.8, all revealed >90% similarity in their nucleotide sequences. In both figures 5.3.7 

and 5.3.8 the open reading frame (ORP) of both PDEyl and PDEy2 are presented. To 

obtain the whole ORF for both PDEy1 and PDEy2, primers (2.2.2.4) were designed to 

include areas of the untranslated regions. Short PDEy could not be detected or 

sequenced, suggesting it may not be present in the P A from rats. These results imply 

that PDEy1 and PDEy2 transcripts are not altered with hypoxia in the PA ofthe CH. 

5.3.4 Controls in all RT -PCR reactions 

5.3.4.1 G3PDH transcript levels 

To verify equal loading of total RNA, and to include an internal control the glycolytic 

enzyme glyceraldehyde-3-phosphate dehydrogenase (G3PDH) was used. A product of 

983bp was amplified (25 cycles) from the main, first branch, intrapulmonary and 

resistance vessels by RT -PCR using G3PDH specific primers (2.2.2.4), confirming its 

expression. No change in G3PDH transcript level was observed under normoxic and 

hypoxic conditions from each vessel studied (figure 5.3.2C). The percentage change in 

G3PDH transcripts from hypoxic versus normoxic rats were: main branch, -1 ± 2%; 
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first branch, -1 ± 1%; intrapulmonary arteries, -1 ± 1%; resistance vessels; 3 ± 6% (n=4, 

NS versus normoxic animals, Student's t-test). As no significant differences could be 

seen in the levels of G3PDH, this confirms that equal amounts of total RNA had been 

used for the amplification of the PDEyl and PDEy2 transcripts. 

5.3.4.2 Verify removal of genomic DNA 

Contamination of RNA with genomic DNA would generate a PCR product leading to 

misinterpretation of results. It is therefore important to include a "minus -reverse 

transcriptase" negative control during the cDNA synthesis. This involved assembling a 

cDNA synthesis reaction that contained RNA and all other reagents except for the 

reverse transcriptase. This negative-reverse transcriptase control was then used as a 

template for PCR in parallel with the other experimental cDNA samples. As no cDNA 

can be synthesised without the inclusion of reverse transcriptase, the generation of a 

PCR product from this negative control indicates genomic DNA contamination. If 

genomic DNA was found in the samples, the results from the parallel RT-PCR with 

reverse transcriptase were discarded. 
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A) PDEy 1, 261bp 
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B) ~ - .. 
PDEy 2, 282bp 
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C) G3PDH, 983bp -- .. liN 
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Figure 5.3.1. RT -peR of the linear amplification of PDEy1, PDEy2, and 

G3PDH transcripts in rat control first branch pulmonary arteries 

RT -peR amplification using specific primers, as described in 2.2.2.4, of: (A) PDEyl, 

261bp; (B) PDEy2, 282bp; and (e) G3PDH, 983bp from control rat first branch 

pulmonary arteries. Illg total RNA/sample was used as a template for cDNA synthesis, 

of which one fifth was used for each RT -peR. Each reaction was carried out using 20, 

25, 30, and 35 cycles of amplification. Above is a representative result of 3 individual 

experiments, quantified by densitometry. 
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Figure 5.3.2. RT -peR of PDEy1, PDEy2 and G3PDH transcripts from control 

and hypoxic rat pulmonary arterial branches 

RT-peR with specific primers, as described in 2.2.2.4, for (A) PDEyl, 261bp; (B) 

PDEy2, 282bp; and (e) G3PDH, 983bp, from main, first branch, intrapulmonary, and 

resistance vessels from Wistar rats maintained under normoxic (-) and chronic hypoxic 

(+H) conditions. lllg total RNA/sample was used as a template for cDNA synthesis, of 

which one fifth was used for each R T -peR. Above is a representative result of 4 

individual experiments, quantified by densitometry. 
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5.3.5 Effect of hypoxia on PDEy1/2-protein levels in rat PA 

As changes in protein levels may not correspond with changes in rnRNA levels, 

Western blotting was carried out as in 2.2.3.3 using homogenates from the main, first 

branch, intrapulmonary and resistance vessels. The anti-PDEy antibody used was 

common for both PDEyl and PDEy2 (raised to the C-terminal domain). PDEy1l2 

(Mr=14/18kDa) was expressed in the main pulmonary artery, the first branch pulmonary 

artery, the intrapulmonary artery and the resistance vessel. The percentage increase in 

PDEy1l2 protein expression from basal was 26 ± 10% in the main P A, 97 ± 8% in the 

first branch P A, 11 0 ± 9% in the intrapulmonary artery, and 127 ± 9% in the resistance 

vessels (n=3, P<0.05 versus normoxic animals, Student's I-test, figure 5.3.3). These 

results suggest that in each PA studied, PDEy1l2 protein levels increased with hypoxia. 

The increase in PDEy1l2 expression with hypoxia is most marked in the resistance 

vessels. 

5.3.6 Effect of hypoxia on phospho- and total- p42/p44 MAPK protein 

levels in rat PA 

To link PDEy1l2 expression with increased proliferation through regulation of p42/p44 

MAPK, Western blotting was carried out as in 2.2.3.3. Homogenates from the main, 

first branch, intrapulmonary and resistance vessels and anti-phospho p42/p44 MAPK 

and total p44 MAPK antibodies were used. Phospho p42/p44 MAPK (Mr=42/44kDa) 

and total p44 MAPK (Mr=44kDa) were expressed in the main pulmonary artery, the 

first branch pulmonary artery, the intrapulmonary artery and the resistance vessel. In 

general it was found that the extent to which p44 MAPK was phosphorylated exceeded 

that of p42 MAPK in each P A (figure 5.3.4). The extent to which p42/p44 MAPK was 

phosphorylated increased in the vessels where PDEyl12 protein expression was also 

elevated by chronic hypoxia (figure 5.3.3). The percentage increase in phosphorylated 

p42/p44 MAPK in each vessel versus main branch (100 ± 4%) was 146 ± 9% in the first 

branch, 154 ± 7% in the intrapulmonary artery, and 184 ± 11 % in the resistance vessels 

(n=3, P<0.05 versus main branch vessel, Student's I-test, figure 5.3.4A). The most 

significant increase in the phosphorylation of p42/p44 MAPK between the P A branches 

from the CH was observed in the resistance vessels, and correlated with the most 

pronounced increase in PDEyl12 expression. The corresponding changes in p44 MAPK 

protein levels in each vessel versus main branch (100 ± 1 %) was 1 ± 0.2% in the first 
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branch, 1 ± 0.05% in the intrapulmonary artery, and 1 ± 1.1% in the resistance vessels 

(n=3, NS, versus main branch vessel, Student's t-test, figure 5.3.4B). As the expression 

of p44 MAPK was shown to be very similar in each vessel, the chronic hypoxic

dependent changes in the phosphorylation state of p42/p44 MAPK is not due to an 

increase in the expression of the kinase. The largest increase in the phosphorylation of 

p42/p44 MAPK between the P A branches from the CH was observed in the resistance 

vessels, and correlated with the most pronounced increase in PDEy1l2 expression. 
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Figure 5.3.3. Western blot analysis of PDEy1/2 from control and hypoxic 

rat pulmonary arterial branches 

Western blot analysis using an anti-PDEy1l2 antibody, as described in 2.2.3.3-2.2.3.5, 

showing the expression level of PDEy1l2 (p14/p18) in homogenates from main, first 

branch, intrapulmonary and resistance vessels from rat maintained under normoxic (-) 

and chronic hypoxic (+H) conditions. lOllg protein/sample were loaded onto SDS

P AGE. Above is a representative result of 3 individual experiments, quantified by 

densitometry . 
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Figure 5.3.4. Western blot analysis of phospho p42/p44 MAPK and total 

p44 MAPK from hypoxic rat pulmonary arterial branches 

Western blot analysis using A) anti-phospho p42/p44 MAPK and B) total p44 MAPK 

antibodies, as described in 2.2.3.3-2.2.3.5, showing the expression level of A) phospho 

p42/p44, and B) total p44 in homogenates from main (AR), first branch (BH) , 

intrapulmonary (CH) and resistance vessels (DR) from rat maintained under chronic 

hypoxic conditions. lOllg protein/sample were loaded onto SDS-PAGE. Above is a 

representative result of 3 individual experiments, quantified by densitometry. 
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5.3.7 Development of a model of PHT using cultured hPASMC 

PDEy1 and PDEy2 expression was investigated in hP ASMC exposed to 10% 02 for 6 

hours, 24 hours, 3 days, 7 days, and 14 days. Initially, PDEy1 and PDEy2 were 

amplified from hP ASMC at increasing cycle lengths to show linear amplification. From 

figure 5.3.5 it can be observed that 25 cycles are the optimal conditions where linear 

amplification can be seen in PDEyl, PDEy2 and G3PDH. 25 cycles were used in all 

subsequent RT-PCR with hPASMC. 

Using hPASMC, parallel RT-PCRs for the housekeeping gene G3PDH were used as 

internal standards and to verify equal loading of total mRNA. Negative controls were 

included, where reverse transcriptase was omitted during cDNA synthesis. These 

reactions were performed to ensure that the RT -PCR products were the result of 

amplification of the cDNA template, and not due to possible contamination by genomic 

DNA. If contamination of genomic DNA was found, the corresponding RT-PCR 

results were discarded. 

Figure 5.3.5 show that hPASMC express PDEy1, PDEy2 and G3PDH. hPASMC were 

subjected to 10% O2 for 6 hours, 24 hours, 3 days, 7 days, and 14 days. As seen from 

figure 5.3.8 no significant differences were seen in any transcript levels, after 6 hours, 

24 hours, 3 days, or 7 days (densitometry not shown). After 14 days of sustained 

hypoxia no significant difference was observed in PDEyl, PDEy2, or G3PDH transcript 

levels (figure 5.3.9). The changes in PDEy1, PDEy2 and G3PDH transcript levels with 

chronic hypoxia versus normoxia in hPASMC were; PDEyl, 5 ± 11%, PDEy2, 8 ± 9%, 

and G3PDH -2 ± 1% respectively (n=3, NS, versus normoxic hPASMC, Student's t

test). Data can also be expressed as a ratio of G3PDH. The PDy1/G3PDH and 

PDEy2/G3PDH transcript ratio in normoxic and hypoxic hP ASMC respectively were: 1 

± 0.04, 1.07 ± 0.12; and 1 ± 0.04, 1.10 ± 0.15 (n=4, NS, versus normoxic hPASMC, 

Student's t-test). 

The alignment ofPDEy1 and PDEy2 from hPASMC with the published mouse sequence 

and the rat P A sequence ( obtained experimentally), all revealed >90% similarity in their 

nucleotide sequences (figures 5.3.6/5.3.7). Figures 5.3.6/5.3.7 show the open reading 

frame sequence for both PDEy1 and PDEy2. 
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Although PDEyl and PDEy2 transcript levels were unchanged with chronic hypoxia, 

protein levels were significantly increased (figure 5.3.9). Western blot analysis, showed 

that PDEyl/2 was expressed in hP ASMCs. Chronic hypoxic treatment resulted in an 

increase in PDEy1l2 protein by 65 ± 7% (n=3, P<O.05 versus normoxic hP ASMC, 

Student's t-test). Therefore these results correlated with the rat model ofPHT. 
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Figure 5.3.5. RT -PCR of the linear amplification of PDEy1, PDEy2, and 

G3PDH transcripts in hPASMC 

RT-PCR amplification using specific primers, as described in 2.2.2.4, of: (A) PDEyl, 

261bp; (B) PDEy2, 282bp; (C) G3PDH, 983bp from control hPASMC. Iflg total 

RNA/sample was used as a template for cDNA synthesis, of which one fifth was used 

for each RT-PCR. Each reaction was carried out using 20, 25, 30, and 35 cycles of 

amplification. Above is a representative result of 3 individual experiments, quantified 

by densitometry. 
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Figure 5.3.6. Rod PDEy (PDEy1) ORF cDNA sequence 
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PDEyl open reading frame (ORF) cDNA sequence (264bp) from rat pulmonary arteries 

and cultured human pulmonary smooth muscle cells aligned with corresponding mouse 

PDEyl to which the primers were designed (using the primers as in 2.2.2.4). The 

conserved amino acids across all three sequences are shaded black. 
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Figure 5.3.7. Cone PDEy (PDEy2) ORF cDNA sequence 
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PDEy2 open reading frame (ORF) cDNA sequence (252bp) from rat pulmonary arteries 

and cultured human pulmonary smooth muscle cells aligned with corresponding mouse 

PDEy2 to which the primers were designed (using the primers as in 2.2.2.4). The 

conserved amino acids across all three sequences are shaded black. 
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Figure 5.3.8 RT -PCR of PDEy1, PDEy2, and G3PDH transcripts in hPASMC 

exposed to hypoxia (10% 02) or normoxia for 6 hours, 24 hours, 3 days, 

and 1 week 

RT-PCR amplification using specific primers as described in 2.2.2.4. of: i) PDEy1, 

261 bp; ii) PDEy2, 282bp; and iii) G3PDH, 983bp from hP ASMC maintained under 

normoxic (-) and chronic hypoxic (+H) conditions for (A) 6 hours, (B) 24 hours, (C) 3 

days, or (D) 1 week. l!lg total RNA/sample was used as a template for cDNA 

synthesis, of which one fifth was used for each RT -PCR. Above is a representative 

result of 3 individual experiments, quantified by densitometry. 
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Figure 5.3.9 A) RT -PCR of PDEy1, PDEy2 and G3PDH transcript and 8) 

Western blotting of PDEy1/2 protein from hPASMC exposed to hypoxia 

(10% 02) or normoxia for 2 weeks 

(A) RT-PCR amplification using specific primers, as described in 2.2.2.4, of i) PDEyl, 

261bp; ii) PDEy2, 282bp; and iii) G3PDH, 983bp, from hPASMC maintained under 

normoxic (-) and chronic hypoxic (+H) conditions for 2 weeks. Ij.!g total RNA/sample 

was used to make cDNA, of which one fifth was used for each RT-PCR. (B) Western 

blot (2.2.3.5) with anti-PDEyll2 antibody showing the expression of PDEyl/2 in 

homogenates from hP ASMC maintained under normoxic (-) and chronic hypoxic (+H) 

conditions for 2 weeks. lOj.!g protein/sample were loaded onto SDS-P AGE. Above is a 

representative result of3 individual experiments, quantified by densitometry. 
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5.3.8 Effect of hypoxia and EGF/PDGF stimulation on phospho- and total

p42/p44 MAPK protein levels hPASMC 

To link PDEy1/2 expression with increased proliferation through regulation of p42/p44 

MAPK, Western blotting was carried out as in 2.2.3.3. Homogenates from normoxic 

and hypoxic hP ASMC, and anti-phospho p42/p44 MAPK and total p44 MAPK 

antibodies were used. Normoxic and hypoxic hP ASMC where also stimulated with 

either 50ng/ml epidermal growth factor (EGF), or 10ng/ml PDGF. Phosphorylated 

p42/p44 MAPK (Mr=42/44kDa) and total p44 MAPK (Mr=44kDa) protein were both 

detected in hP ASMC. 

Normoxic and hypoxic cells were also stimulated with 50ng/ml EGF for 5 min. The % 

changes in phosphOlylated p42/p44 MAPK protein levels versus normoxic cells were: 

hypoxic 54 ± 3%; EGF/normoxic, 102 ± 7%; EGF/hypoxic, 115 ± 9% (n=3, P<0.05 

versus normoxic hPASMC, Student's t-test). The corresponding % changes in total p44 

MAPK protein levels versus normoxic cells were: hypoxic 7 ± 13%; EGF/normoxic, 3 ± 

7%; EGF/hypoxic, 5 ± 12% (n=3, NS versus normoxic hPASMC, Student's I-test). 

Normoxic and hypoxic cells were also stimulated with 10ng/ml PDGF for 5 min. The 

% changes in phosphorylated p42/p44 MAPK protein levels versus normoxic cells 

were: hypoxic 65 ± 12%; PDGF/normoxic, 99 ± 7%; PDGF/hypoxic, 107 ± 11% (n=3, 

P<0.05 versus normoxic hPASMC, Student's t-test). The corresponding % changes in 

total p44 MAPK protein levels versus normoxic cells were: hypoxic 10 ± 23%; 

PDGF/normoxic, 12 ± 15%; PDGF/hypoxic, 15 ± 29% (n=3, NS versus norm oxic 

hPASMC, Student's t-test). 

Using monoclonal antibodies raised against total p42/p44 MAPK no significant change 

in the level of p44 MAPK was detected with hypoxia or on stimulation with the growth 

factors. This indicates that increased 'basal' p42/p44 MAPK phosphorylation in 

response to hypoxia and growth factors is not due to an increase in total p44 MAPK. 

These results show the hypoxic and growth factor dependent stimulation of p42/p44 

MAPK in hPASMC. Hypoxia in combination with either EGF, or PDGF did not 

however appear to act in a synergistic or additive manner to increase p42/p44 MAPK 

activation. 
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Figure 5.3.10. Western blot analysis of phospho p42/p44 MAPK and total 

p44 MAPK from control and hPASMC treated with EGF and PDGF 

Western blot analysis using A) anti-phospho p42/p44 MAPK and B) total p44 MAPK 

antibodies, as described in 2.2.3.3-2.2.3.5, showing the expression level of A) phospho 

p42/p44, and B) total p44 in homogenates from hP ASMC maintained under normoxic 

(-) and chronic hypoxic (+H) conditions treated with 50ng/rnl epidermal growth factor 

(EGF) and lOng/ml platelet derived growth factor (PDGF) for 5 minutes. lO!lg 

protein/sample were loaded onto SDS-P AGE. Above is a representative result of 3 

individual experiments, quantified by densitometry. 



239 

5.4 Discussion 

The first observation from these experiments is the presence of both PDEy1 and PDEy2 

mRNA and protein in the main P A, first branch P A, intrapulmonary and resistance 

vessels of the CH, and in hPASMC (see section 5.3). The presence ofPDEy emphasises 

a wider role for PDEy in mammalian cell biology, other than in the phototrasduction 

cascade in the eye. 

The second major finding of this study was that chronic hypoxia induced an increase in 

the protein expression of PDEy1/2 above basal in all PAs from the CH studied and in 

cultured hPASMC (figures 5.3.4 and 5.3.10). The increase in PDEyl/2 protein with 

hypoxia did not correlate with increased PDEyl and PDEy2 transcript levels (figures 

5.3.3 and 5.3.10). As there was no significant effect on PDEy transcript levels, it would 

appear that hypoxia may activate a translation pathway that increases protein synthesis. 

These results suggest the possibility of post transcriptional or post translational 

modification to PDEyl/2 in response to hypoxia. 

5.4.1 Possible role of PDEy in the hypoxic dependent increase in PDE5A 

During visual excitation of photoreceptors the removal of the inhibitory action of the 

PDEy subunit, triggers PDE6 activation. It was therefore proposed that PDEy may 

interact with PDE5 in the lung in a similar inhibitory manner. It was postulated that 

hypoxia might reduce PDEy, leading to the observed increase in PDE5 activity and 

expression in PA from CH (MacLean et aI., 1997, see chapter 3.3). Recombinant PDEy 

has been shown to modulate PDE5 activity indirectly by preventing its activation by 

PKA in a concentration-dependent manner (Tate et aI., 1998, and Lochhead et aI., 

1997). Therefore, a decrease in PDEy in response to hypoxia would increase PKA 

mediated activation of PDE5, giving rise to the hypoxic-dependent phosphorylation of 

the enzyme. However, this is not the case, as PDEy was actually shown to increase in 

the P A from the CH. 

In fact, results from this study suggest that in rat PAs and in hP ASMC, changes in 

PDE5 expression during hypoxia cannot be explained by reduced PDEy expression. 

There does not appear to be any consistent correlation between PDE5 expression and 

I 
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PDEy expression in PAs from CH or in hypoxia treated hPASMC (sections 3.3 and 5.3). 

These results do not disprove that PDEy may interact with PDE5 in these systems. It 

may be that PDEy has more of a regulatory than inhibitory role over PDE5. For 

example, PDEy could stabilise any increase in PDE5 activity/expression and that the 

acute PKA-dependent regulation of PDE5 activity is not as significant as the changes in 

protein expression under hypoxic conditions. This is plausible, as Tsang et at. (1996), 

showed that mice carrying a disruption of the PDEy gene, (Pdegtllll/Pdegtllll) rather than 

increasing PDE6 activity prevented the functioning of the enzyme and elevated cGMP 

levels. These authors suggested that an interaction between the inhibitory PDEy subunit 

and the catalytic subunits of PDE may be critical for the proper action of the enzyme, as 

well as the correct folding or confirmation of the catalytic sites in photoreceptors. 

5.4.2 Possible role of PDEy1/2 in the remodelling of the pulmonary artery 

with chronic hypoxia 

The increased PDEyl/2 expression as a result of hypoxia could be related to increased 

mitogenic signalling. This is proposed as Wan et at. (2001), have shown that PDEyl 

regulates both tyrosine kinase and G-protein coupled receptor-dependent stimulation of 

p42/p44 MAPK. Hence increased PDEy as a result of hypoxia may potentially improve 

the efficiency of mitogenic signalling from these receptors, which may subsequently 

account for the increased proliferation of smooth muscle observed with PHT. The fact 

that the increase in PDEy is more profound in PAs (i. e. resistance vessels) that 

classically show most remodelling in response to hypoxia, provides further evidence for 

its role in increased proliferation (figure 5.3.4). 

A role for the proposed model by Wan et at. (2001), appears to be supported by results 

obtained in both the CH and in hypoxia treated hP ASMC. Exposure of both rats and 

hP ASMC to chronic hypoxia resulted in increased PDEyl12 expression, which may be 

responsible for the observed increase in p42/p44 MAPK activation in these vessels. 

When comparing the vessels within the pulmonary arterial tree of the CH, the greatest 

increase in both p42/p44 MAPK and PDEy is observed in the resistance vessels that 

classically show the most profound remodelling in response to hypoxia. This is a 

significant finding as p42/p44 MAPK activation plays a key role in regulating cell 

proliferation, and is therefore likely to play a role in pulmonary vessel remodelling in 

PHT. 
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Below is a more detailed explanation of the proposed novel role of PDEy in regulating 

p42/p44 MAPK-dependent signalling in HEK293 cells. This is followed by evidence, 

which may link the model proposed in HEK293 cells, with what may be occurring in 

the CH, and hypoxia treated hP ASMC studied in this chapter. 

5.4.2.1 Novel role of PDEy in p42/p44 MAPK signalling 

Wan et aI., 2001 provided the first evidence that PDEy may be a novel intermediate 

regulating p42/p44 signalling from both receptor tyrosine kinase (RTK) and G-protein 

coupled receptors (GPCR) in HEK293 cells. These authors initially demonstrated that 

both the EGF- and Gailo coupled receptor agonist-dependent activation of p42/p44 

MAPK were reduced by the transfection of antisense PDEy, and conversely increased 

by the overexpression of recombinant PDEy. Furthermore, these pathways were shown 

to require G-protein input through GRK2 (which is activated by G~y subunits). PDEy 

was shown to be a substrate for GRK2, and their interaction required for its stimulatory 

effect of p42/p44 MAPK activation. 

In addition, PDEy appeared to interact with dynamin II to regulate p42/p44 MAPK 

signalling in HEK293 cells (Wan et aI., 2001). The interaction with dynamin II 

suggests PDEy may have a role in stimulating GTP hydrolysis by dynamin II, 

promoting endocytosis of receptor signalling complexes resulting in the relocalisation 

with and activation of p42/p44 MAPK. 

5.4.2.2. Evidence for p42/p44 MAPK activation in response to hypoxia 

In this study chronic hypoxia (14 days) induced the activation of p42/p44 MAPK in 

hP ASMC. Others have shown that chronic hypoxia induced temporal activation of 

p42/p44 MAPK. Jin et al. (2000), previously investigated the roles of p42/p44 MAPK, 

JNK, and p38 in hypoxia induced remodelling in PA. This study showed an increase 

p42/p44 MAPK, JNK and p38 MAPK tyrosine phosphorylation and activities with 

hypoxia in the main and first branch P A from male Sprague-Dawley rats. JNK 

activation peaked at day 1, and p42/p44 MAPK and p38 MAPK peaked after 7 days of 

hypoxia. In addition, both p38 MAPK and p42/p44 MAPK were shown to be activated 

in fibroblasts derived from the pulmonary arteries, but not from the aorta of CH (Welsh 

et aI., 2001). It was suggested that the fibroblasts from the PA ofCH appeared to have 
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undergone a phenotypic switch, which causes them to exhibit enhanced proliferative 

responses compared to fibroblasts derived from the P A of normoxic rats. 

Activation of MAPK family results in the phosphorylation of several transcription 

factors such as; early growth resonse-l (Egr -1), Elk -1, activated transcription factor 

(ATF)-2 and members of the activator protein-l (AP-l) family such as c-jUl1 and c-fos. 

The activation of downstream effectors of MAPK pathways have been shown to occur 

in response to hypoxia, and appear to be important for the resultant increased cell 

growth and proliferation. In fact, c-fos gene expression was "turned on" by hypoxia via 

the p42/p44 MAPK pathway (Muller et a!., 1997b; Premkumar et a!., 2000). 

Premkumar et a!., 2000, showed that hypoxia activated p42/p44 MAPK and that this 

was essential fro stimulation of c-fos via the cis semm response element, a critical 

immediate early gene involved in regulating mitogenesis. In bovine aortic endothelial 

cells Lo et a!., 2001, outlined a Ca2+-dependent activation of p42/p44 MAPK in 

response to hypoxia, whereby phospholipase C activated PKCa in association with Raf-

1 triggered events leading to the transcription of Egr-l. The p42/p44 MAPK pathway is 

known to phosphorylate hypoxia inducible factor-la (IDF-la) and enhance 

transcriptional activity of HIF-l (Richard et a!., 1999). In endothelial cells it has been 

documented that hypoxia induces phosphorylation, nuclear translocation and activation 

p42/p44 MAPK (Minet et a!., 2000). Furthermore, HIF-l was activated in these cells in 

response to hypoxia. This increase was shown to be dependent on the phosphorylation 

of the HIF-la carboxyl-terminal domain by p42 MAPK. These authors concluded that 

the temporal activation of the p42/p44 MAPK pathway appears to be associated with 

hypoxia-induced pulmonary arterial remodelling. 

In addition to the p42/p44 MAPK pathway mediating hypoxic responses, it is also well 

documented that JNK and p38 MAPK pathways are activated in a low oxygen 

environment (Bogoyevitch et a!., 1996; Seko et a!., 1996, Scott et a!., 1998, Jin et a!., 

2000, Das et a!., 2001). Of particular interest, it was demonstrated that hypoxic 

stimulation of P A cells is mediated by activation of the stress-activated protein kinases 

with particular strong muti-phasic activation of the p38 MAPK pathway (Scott et a!., 

1998). Due to such studies JNK and p38 MAPK signalling should be looked at in 

greater detail in the models of hypoxia used in this study, and consequently assess if 

there may also be a role for PDEy in these pathways. Variable patterns of activation of 

ERK, JNK, and p38 MAPK in response to hypoxia have been documented depending 
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on cell type studied, and the conditions under which the experiments were done. 

Studies such as those by Jin et a!. (2000), Das et a!. (2001), and Scott et a!. (1998), all 

show the transient activation of p42/p44 MAPK, JNK, and p38 MAPK in response to 

hypoxia. 

PDEy1l2 might increase the activation of components involved in p42/p44 MAPK 

signalling (increase rate of endocytic signalling), or/and reduce MAPK phosphatases to 

prolonging the temporal activation of p42/p44 MAPK (long term adaptation). In fact, 

MAPK phosphatases (MKPs), which dephosphorylate threonine and tyrosine residues 

of MAPKs, have previously been shown to be induced in response to hypoxic stimuli. 

Northern and Western blot analyses verified that MKP-1 mRNA and protein levels were 

dramatically up regulated by hypoxia in PC12 cells (Seta et a!., 2001). Furthermore, 

Laderoute et a!. (1999), demonstrated that the transient increase in MAPK activity 

induced by hypoxia in SiHa cells correlated with both the transcriptional activation of 

the gene for the MKP family member MKP-1, and the enhanced expression of MKP-1 

protein. Together these results suggest that the induction of MKP may be responsible 

for the temporal activation MAPKs in response to hypoxia. Interaction of PDEy1l2 

with MKP may prevent or attenuate its activation, hence indirectly prolonging p42/p44 

MAPK. Prolongation of p42/p44 MAPK activation might have a significant effect on 

gene induction and pulmonary artery remodelling. 

It is important to note however the effect of MAPK on MKP is chronic. Therefore, 

increased p42/p44 MAPK activation by PDEy will eventually increase MKP. Hence it 

is essential to make clear that the effects described above could be accounted for by 

acute inhibition ofMKP by PDEy e.g. direct protein-protein interaction. 

5.4.2.3. Evidence for G-protein activation in response to hypoxia 

The increased phosphorylation of p42/p44 MAPK in response to hypoxia may be due to 

increased GPCR or R TK activation. There is evidence for a role of upstream signals of 

the proposed model in the cellular response to hypoxia. 

Primarily it is known that G-proteins can be activated by environmental stimuli known 

to have a role in cell proliferation. Activation of G proteins have been speculated to be 

critical in the early responses to hypoxia, and the subsequent modulation of ion channel 
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activity and cell depolarisation in vanous cell types (Mironov and Richter, 2000, 

Kobayashi et aI., 1998, Wenzlaff et aI., 1998). In particular, Gai has been shown to 

mediate mitogenic responses as a result of shear stress, mechanical stretch, and reactive 

oxygen species (Nishida et aI., 2000). The mechanism by which Gai-coupled receptors 

activate p42/p44 MAPK has been shown to involve ~y subunit as well as a-subunit 

associated coupling (Lopez-Ilasaca et aI., 1998). It has been demonstrated that Gai/o is 

utilized for growth, and subpopulations of smooth muscle cells specifically with Gailo 

proliferated in response to hypoxia (Frid et aI., 1998). Das et al. (2001), demonstrated 

that pertussis toxin-sensitive G-proteins are essential upstream signalling components of 

proliferation and activation of MAPK in response to hypoxia in fibroblasts from P A. 

These authors demonstrated that hypoxia-induced and serum stimulated activation of 

p42/p44 MAPK, JNK, and the increase in DNA synthesis were, markedly attenuated by 

pertussis toxin. 

Finally, a variety of G-protein receptor agonists are well documented to be elevated 

with PHT. For example in response to hypoxia there is evidence of Gai protein 

activation through the NPYI receptor and 5-HTlD/lB receptor (MacLean et al., 1996). 

These results together support an upstream role of Gai-proteins, in hypoxia induced 

proliferation through p42/p44 MAPK. 

5.4.2.4. Evidence for growth factor and RTK activation in response to 

hypoxia 

Growth factors are also known to playa role in cell replication and division, and several 

studies suggest they may have a role in the remodelling of P A seen with PHT. PDGF 

and bFGF have been shown to cause proliferation of rat pulmonary arteries (Rothman et 

al., 1994; Wang et aI., 2000). In fact, the results presented in this study demonstrated 

that stimulation of hP ASMC with growth factors resulted in increase p42/p44 MAPK 

activation (5.3. 10). 

In PHT elevations of numerous growth factors and/or their mRNA have been 

documented, including PDGF-A and PDGF-B (Arcot et aI., 1993; Katayose et aI., 

1993), VEGF (Turder et aI., 1995, Christou et aI., 1998), TGF-~ (Acrot et aI., 1993), 

bFGF (Arcot et aI., 1995), IGF-l (Perkett et aI., 1992), and EGF (Gillespie et aI., 

1989a). In addition, hypoxia caused the upregulation of vascular endothelial growth 
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factor, and platelet-derived growth factor mRNA with a time course of up regulation that 

correlated to the activation of p42/p44 MAPK and p38 MAPK (Jin et a/., 2000). 

Finally Xiao et al. (1993), also suggested that hypoxia may initiate the secretion of 

growth factors from endothelial cells, which may be responsible for the proliferation of 

smooth muscle in P A. This was concluded as hypoxic endothelial cells conditioned 

medium stimulated proliferation of P ASMC, promoting them from GOlD 1 phase to S 

phase and increasing 3H-thymidine incorporation. 

It can be seen from figure 5.3.10 that exposing hP ASMC to chronic hypoxia increased 

p42/p44 MAPK activation. This was correlated with a hypoxic-dependent increase in 

PDEyl12 expression. Furthermore, it was investigated whether an increase in p42/p44 

MAPK in response to EGF and PDGF may be potentiated in hP ASMC previously 

exposed to chronic hypoxia. However, as seen from figure 5.3.10 hypoxia and growth 

factors did not appear to have an additive or synergistic activation of p42/p44 MAPK. 

It may be that the concentrations of both EGF and PDGF used in the study were too 

high. The maximal p42/p44 MAPK activation may have already been achieved in 

response to these growth factors alone, therefore any additive effect that hypoxia may 

have had would not have been seen. An extended concentration response for both EGF 

and PDGF should be preformed in the presence of hypoxia in hP ASMC to test this 

theory. However, it may also be that the relatively small increase in PDEy1l2 

expression in hP ASMC, may not be sufficient to significantly alter the maximal 

EGFIPDGF-dependent activation of p42/p44 MAPK. The increase in 'basal' p42/p44 

MAPK with hypoxia can be correlated with findings in the rat. These results suggest 

that chronic hypoxia may induce the release of a factor (e.g. growth factor) that can act 

back on smooth muscle cell receptors to regulate p42/p44 MAPK via a pathway 

involving PDEyl12. This hypothesis may explain how hypoxic-dependent increased 

expression ofPDEy1l2 may increase an apparent 'basal' p42/p44 MAPK activation. 

In conclusion, figure 5.4.1 shows an outline of the proposed model for the role ofPDEy 

and subsequent p42/p44 MAPK activation in response to hypoxia in rat PA and 

hPASMC. 
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Figure 5.4.1 Proposed role of PDEy in hypoxia-induced activation of 

p42/p44 MAPK in hPASMC and PAs from CH 

It is proposed in response to hypoxia increased growth factors such as EGF or PDGF 

and/or GPCR agonists such as 5-HT are released, which act on tyrosine kinase receptors 

(RTK) or G-protein coupled receptors (GPCR) respectively on the smooth muscle cell 

surface. It is suggested that this causes the uncoupling of the ~y subunits of G-proteins, 

which activate G-protein receptor kinase-2 (GRK2). GRK2 may then interact with 

PDEy, which stimulates the formation of a complex with dynamin-II. This interaction 

may be needed for the dynamin-II driven endocytosis of receptor signalling complexes 

leading to p42/p44 mitogen activated protein kinase (MAPK) activation. Increased 

p42/p44 MAPK may cause the activation of mitogen activated kinase phosphatases 

(MKP), which may be responsible for its temporal activation (long term adaptation). It 

is possible PDEyll2 may acutely interact with MKPs (possibly directly), prolonging the 

activation of p42/p44 MAPK. Increased p42/p44 MAPK activity may be responsible 

for increased cellular growth and proliferation that results in remodelling. 
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5.4.2.5 Conclusion 

These results are merely the beginning of many further investigations required in 

hP ASMC or in the CH, to establish a role for PDEy in hypoxia induced remodelling. It 

will be necessary to further elucidate the pathways involved in increased proliferation 

and remodelling in both these models. It would be advantageous to study the effect of 

PDEy on the responsiveness of pulmonary vessels. To address this question further 

studies will focus on using PDEyl knockout and heterozygote mice to assess whether 

this removal of PDEyl would prevent the hypoxic-dependent pulmonary arterial 

remodelling and reverse MAPK activation. 

These experiments did however identify a hypoxic-dependent change in the phenotypic 

expression of an intermediate protein regulating mitogenic signalling in pulmonary 

arteries in both the rat and the human. Furthermore these studies may provide evidence 

for a role of PDEy in regulation of cellular proliferation through p42/p44 MAPK under 

hypoxia. This may have a significant effect on the future investigations of arterial 

remodelling in PHT. The proposal that PDEy is a novel intermediate involved in 

p42/p44 MAPK signalling in mammalian cells, opens a new dimension to signal 

transduction. 
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Chapter 6 General Discussion 

6. 1 General discussion 

Both cAMP and cGMP are thought to be involved in maintaining low resistance and 

tone in the vascular bed of the pulmonary circulation (Murray, 1990; Della Frazia et aI., 

1997; Koyama et aI., 2001). One of the factors in governing signal amplitude in each 

pathway is the hydrolysis of the cyclic nucleotides by phosphodiesterases (PDEs). 

Eleven families of PDEs presently exist, differing in tissue distribution, regulatory 

properties, amino acid sequences, and kinetic characteristics (Beavo et aI., 1995, 

Soderling et at., 1998, Fisher et at., 1998a, Fisher et at., 1998b, Guipponi et at., 1998, 

Soderling et al., 1999, Fujishige et aI., Fawcett et aI., 2000, Yuasa et aI., 2000). 

Activity of specific PDE families, in particular PDE3 and PDE5, were reported to be 

elevated in pulmonary arteries (PA) from chronic hypoxic rats (CH, MacLean et aI., 

1997). It was hypothesised that altered expression of PDE3 and PDE5 may contribute, 

in part, to the maintenance of abnormal tone and the remodelling associated with 

pulmonary hypertension (PHT). The overall aim of this investigation was to study the 

role of PDE3, and PDE5 and the PDE inhibitory y-subunit (PDEy), in response to 

hypoxia in the pulmonary circulation. Advances in the understanding of the 

mechanisms of hypoxia-induced signal transduction would prove to be important in 

finding novel or more effective treatments for PHT, which may even prevent the need 

for heart-lung transplants. 

Chapter 3 of this investigation provides a possible molecular mechanism to explain the 

previously observed changes in PDE3, and PDE5 activity in the PA branches from CH 

(MacLean et aI., 1997). Using molecular approaches, combined with biochemical 

techniques, it was concluded that the increased PDE3 activity seen in the main, first and 

intrapulmonary P A with hypoxia appears to be due to the de-novo synthesis of both 

PDE3A and PDE3B from their respective genes. PDE3A transcript levels and PDE3 

activity were also significantly increased in cultured human pulmonary artery smooth 

muscle cells (hP ASMC) maintained under chronic hypoxia. These results were similar 

to those reported by Wagner et aI., 1997, who demonstrated an approximate 3-fold 

increase in PDE3 transcript in the CH. 
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Furthermore, a role for the cAMP pathway in regulating PDE3A expressIon 111 

hP ASMC was demonstrated. Roles for both cAMP and protein kinase A (PKA) in the 

response of the pulmonary circulation to low oxygen was concluded. The enhanced de

novo synthesis of PDE3A in response to hypoxia could be mimicked by exposing 

hPASMC to the membrane permeable analogue of cAMP, 8-Br-cAMP, and prevented 

by the PKA inhibitor, H8 peptide (chapter 3). It is possible the increased PDE3 

expression is directly the consequence of PKA activation via increased intracellular 

cAMP, which may occur in response to the initial hypoxic insult. Equally, increased 

PKA may increase the de-novo synthesis of PDE3 indirectly through the activation of 

the cAMP response element binding protein (CREB). CREB is a transcription factor 

that potentially allows cAMP to alter gene expression (reviewed by Shaywitz and 

Greenberg, 1999; Yamamoto et aI., 1988; Gonzalez and Montminy, 1989; Montminy, 

1997; Roesler, 1999). CREB is phosphorylated in response to hypoxia, providing 

evidence for this theory (Chida and Voelkel, 1996; Beitner-Johnson and Millhorn, 

1998). 

Intracellular levels of cAMP are reduced in the main, first branch and intrapulmonary 

arteries of the CH (MacLean et aI., 1996). Together, with the results presented in this 

study, it can be hypothesised that hypoxia may initially lead to a series of defence and 

rescue mechanisms to protect P ASMC. This may include an initial increase in cAMP 

and PKA activation, which in turn may lead to the down-regulation of the cAMP 

pathway. A large increase in cAMP may saturate the PKA substrate phosphorylation 

sites and initiate cellular processes that inactivate or counter the cyclic nucleotide 

signalling pathways. Over-stimulation of PKA as a result of chronic hypoxia may lead 

to the activation of PDE3, and thereby reduce cAMP levels and limit the maximum 

effect of further stimulation of cAMP. It is important to make clear that the PKA

dependent phosphorylation of PDEs is an acute response. This desensitisation may 

explain the decrease responsiveness to vasodilators such as isoproterenol and forskolin 

in promoting smooth muscle relaxation in P A from the CH, and the decrease in cAMP 

observed in these vessels (Wanstall and O'Donnell, 1992; Jeffery and Wanstall, 1998; 

Wagner et aI., 1997; MacLean et aI., 1996). The negative feedback regulation of cAMP 

has been demonstrated in various other cell types, and is thought to have evolved to 

prevent excessive accumulation of cyclic nucleotides, and allow for the efficient 

termination of cyclic nucleotide pathways (Kobayashu et al., 1998, Moon et a/., 2002, 

Corbin et a/., 1985, Degerman et a/., 1997; Gettys et a/., 1987). 



251 

Chapter 3 also showed that an increase in the de-llovo synthesis of PDE5A2 in the 

conduit P A appears to be responsible for the increase in PDE5 activity previously 

observed by MacLean et aI., 1997. In contrast, the enhanced PDE5 activity seen by 

these authors in the distal P A of the CH could not be explained by changes in the levels 

of PDE5A1 or PDE5A2. Hanson et aI., 1998, found that increased PDE5 activity in 

response to PHT correlated with increased phosphorylation of the enzyme. Therefore, it 

may be that increased phosphorylation may explain the changes in PDE5 activity seen 

in these vessels of the CH. These results highlight the important point that each branch 

of the P A tree can respond differently to stimuli, therefore it is essential to know which 

P A branch is being studied. In the large elastic P A of the CH there is an increase in 

endogenous tone and a decrease in acetylcholine-induced and sodium nitroprusside

induced vasodilation (MacLean et aI., 1995; MacLean et a!., 1996; MacLean et a!., 

1998; Wanstall and O'Donnell, 1992; Oka et aI., 2001). However, acetylcholine and 

sodium nitroprusside-induced relaxation is unchanged in the resistance vessels after 

hypoxic exposure (Oka, et a!., 2001). These authors proposed that the reduced 

responsiveness of the larger vessels to vasodilators may be due to an increase in PDE5 

expression, which can be concluded from this study. The regional differences in the 

response of the pulmonalY circulation to hypoxia is likely to be due to the 

heterogeneous population of smooth muscle cells present in each P A branch, which 

means they can express different cytoskeletal and contractile proteins, and potassium 

channels, and differ in their proliferative and matrix producing abilities (Frid et a!., 

1997). 

In a common mechanism with PDE3 activation, the increased PDE5 expression in the 

main and first branch PAin response to hypoxia may be due to increased cGMP and the 

subsequent activation of protein kinase G (PKG). Therefore, a potential mechanism for 

adaptation to hypoxia at the cellular level could involve the functional regulation of 

both cyclic nucleotides. Increases in cGMP levels have been shown to activate PDE5, 

increasing expression, by activating PKG, and by binding to the allosteric sites of PDE5 

increasing phosphorylation (Corbin et a!. 2000; Venkatesh et a!., 2001). Elevation of 

cGMP would cause increase sequestration of cGMP by PDE5, resulting in dampening 

of the cGMP signal and rendering it unavailable to target protein. The increase in PDE5 

expression in response to hypoxia may therefore explain the reduced cGMP levels 

observed in the P A of CH, and the reduced sensitivity to agents such as nitric oxide in 

promoting relaxation of pre-contracted pulmonary vessels from the CH and from 
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patients with PHT (MacLean et aI., 1996; MacLean et aI., 1997; Shaul et aI., 1993). 

Negative feedback pathways such as these, would suggest that PASMC may not tolerate 

excessive activation of cyclic nucleotides and protein kinases. 

Biochemical 'cross-talk' between the second messengers cAMP and cGMP may also be 

important during the response of the pulmonary circulation to hypoxia. For example, 

PDE5 has been shown to be activated not only by PKG, but also by PKA (Bums et aI., 

1992, Corbin et aI., 2000, Murthy et aI., 2001; Kotera et aI., 1999). Additionally, 

cAMP response elements have been observed in the 5' -untranslated region and intron of 

the PDE5A gene (Kotera et ai., 1999). These authors demonstrated an increase in 

cAMP resulted in an increase in PDE5A2 transcript in rat vascular smooth muscle cells 

(VSMC). Therefore, the activation of PKA, as a result of an acute hypoxic-dependent 

increase in cAMP, may be responsible either directly or indirectly through CREB, for 

the increased expression of both PDE3 and PDE5 in the P A of the CH. Furthermore, 

the increase in PDE5 activity, as a result of hypoxia, would reduce cGMP levels, 

thereby subsequently dampening its inhibitory action on PDE3, leading to a further 

increase in PDE3 activity. In fact, the antimitogenic effect ofPDE5 inhibitors has been 

shown to be mediated via PKA (Osinski et aI., 2001). These authors suggested than the 

accumulation of cGMP due to inhibition of PDE5, inhibited PDE3, increasing 

intracellular levels of cAMP and causing stimulation of PKA. This suggests a very 

close interaction between cAMP and cGMP mediated effects. During the development 

ofPHT the levels of both cyclic nucleotides may therefore be equally important. 

Chapter 4 demonstrated that both the PDE3 inhibitor SKF94836 and the PDE5 inhibitor 

sildenafil playa functional role in regulating relaxation of P A from control rats, and rats 

previously exposed to hypoxia. Systemic influences make it difficult to study the direct 

effects of vasoactive agents on pulmonary vascular smooth muscle tone in the intact 

animal. Therefore, isolated PArings were used, so that the vascular smooth muscle 

vasomotor function could be studied with few compound variables. Both SKF94836 

and sildenafil were effective in relaxing precontracted main and first branch P A. The 

relaxant effect of each PDE inhibitor was dependent on the artery studied and the 

preconstrictor used to raise tone. Importantly, sildenafil remained potent in the P A from 

CH, and responses in both the control main and first branch P A were not attenuated by 

removal of the endothelium. The endothelium-independent action of sildenafil is of 

advantage in the treatment of PHT, as its potency would not be reduced in patients with 
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PHT where the endothelium is thought to be damaged (Dinh-Xuan et ai., 1991: 1993). 

Although SKF94836 was still potent in the P A from CH, its actions were endothelium

independent in the main P A, however endothelium-dependent in the first branch P A. 

These results do not rule out the possibility of SKF94836 as a therapy for PHT, but may 

merely suggest a fully functional endothelium is required for its optimal effect. 

The potencies of each inhibitor were not compromised in well-established PHT (2 

weeks hypoxia), despite structural changes such as vascular hypertrophy in the vessels. 

These results would suggest both SKF94836 and sildenafil may be beneficial in the 

treatment ofPHT. Interestingly, other PDE5 inhibitors such as E-4010 and E-4021 and 

PDE3 inhibitors such as milrinone, have been shown to cause selective pulmonary 

vasodilation, and attenuate the increase in pulmonary arterial pressure (PAP), right 

ventricular hypertrophy, and pulmonary arterial remodelling seen in rat models of PHT 

(Takahashi et aI., 1996, Hanasato et aI., 1999; Kato et aI., 1998; Bairn et aI., 1983, Jaski 

et aI., 1985). Sildenafil (100mg) has previously been shown to inhibit the rise in 

pulmonary arterial pressure in both mice and humans chronically exposed to hypoxia, 

and in patients with PHT secondary to lung fibrosis (Zhao et aI., 2001; Ghofrani et aI., 

2002). Together results from chapter 3 and chapter 4 offer an explanation to why both 

PDE3 and PDE5 inhibitors effectively reduce pulmonary vasoconstriction in models of 

PHT. PDE3 and PDE5 inhibitors act on targets that appear to play significant roles in 

altering vasoactive responsiveness of the pulmonary circulation. It may be that PDE 

inhibitors block the vasoconstriction and remodelling associated with PHT by 

increasing the circulating levels of cyclic nucleotide. 

A number of other signalling pathways are thought to be involved in the response of the 

pulmonary circulation to hypoxia, and may act upon or along side cAMP and cGMP 

dependent pathways (reviewed by Jeffery and Wanstall, 2001; Archer and Rich 2000). 

Also, to accommodate changes in their environment cells are known to adjust the 

pattern of gene expression by regulating of a number of transcription factors (Makarvo, 

2000, Baldwin 1996). Results from chapter 3 suggest that NF-KB, the ubiquitous, 

dimeric transcription factor, may control transcription of PDE5 (NF-KB reviewed by 

Makarov, 2000, Balwin, 1996; Ghosh et aI., 1998). This study showed that the NF-KB 

inhibitor TLCK reduced the basal expression of PDE5A in hP ASMC. The PDE5 gene 

may have NF-KB binding sites in its promoter region controlling its regulation, or NF

KB may increase PDE5 expression through its known activation of inducible nitric 
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oxide (iNO, Xie et a!., 1993). Activation of iNOS by NF-KB would lead to increased 

NO production, thereby increasing the levels of intracellular cGMP, which in turn 

would increase PKG and lead to the subsequent activation PDE5, as proposed above to 

occur in response to hypoxia. Increased NF-KB activation has been seen in 

monocrotaline-induced model of PHT, which may provide further evidence for its role 

in the increase in PDE5 activity and transcript seen in the conduit P A from the CH 

(Aziz et a!., 1997; MacLean et a!., 1997). In addition, the catalytic subunit of PKA 

(PKAc) has been shown to bind IKB proteins, and is associated with the NF-KB/ IKB 

complex. Active PKAc phosphorylates NF-KB at its PKA consensus site in the ReI 

domain, and leads to a dramatic increase in transcriptional activity (Blank et aI, 1992, 

Verma et a!., 1995; Zhong et a!., 1997). The proposed increase in PKA in response of 

the pulmonary circulation to hypoxia may lead to the activation ofNF-KB, and thereby 

be indirectly responsible for the increase in PDE5 transcript observed. Interestingly, 

PDEs are also thought to have a role in regulating the IKBINF-KB signalling pathway 

(Coward et a!., 1998; Haddad et a!., 2002). PDE5 inhibitors can reduce LPS-mediated 

NF-KB translocation/activation in epithelial cells, suggesting they may be a novel way 

to target transcriptional activity implicated in the progression of a number of disorders, 

such as PHT (Hadded et a!., 2002). These findings suggest that NF-KB inhibitors could 

be a potential new strategy to reduce PDE5 activity indirectly, and could even improve 

the vasodilator action of PDE5 inhibitors in patients with PHT when taken in 

combination. 

Further signalling pathways activated by cellular stress and hypoxia includes the 

mitogen activated protein kinase (MAPK) cascades (reviewed by Marshall, 1995 Van 

Biesen et a!., 1995; Serger and Krebs, 1995; Wildmann et a!., 1999). The MAPK 

system provides a route whereby growth factors/hormones can alter transcription and 

other cellular processes. The role of the MAPK pathway in the hypoxic response of the 

pulmonary circulation was also studied in chapter 5, in particular concerning its possible 

regulation by the PDE inhibitory y-subunit (PDEy). Wan et al., 2001, have previously 

shown that PDEyl is limiting for both tyrosine kinase and G-protein coupled receptor

dependent stimulation of p42/p44 MAPK. Hence, it was proposed that hypoxia may 

increase PDEy and potentially improve the efficiency of p42/p44 MAPK, thereby 

leading to the remodelling of the PA. Initially, the presence of both PDEyl and PDEy2 

mRNA and protein in the main P A, first branch P A, intrapulmonary and resistance 
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vessels of the CH, and in hP ASMC were detected for the first time. Chronic hypoxia 

induced an increase in the protein levels ofPDEyll2 in all PA from the CH studied, and 

in cultured hP ASMC. The increase in PDEy was more profound in the PA (i.e. 

resistance vessels) that classically show most remodelling in response to hypoxia, which 

provides evidence for the suggested role of a MAPKlPDEy interaction in increased 

proliferation. 

The proposed model by Wan et al., 2001, appears to be supported by results obtained 

and discussed in chapter 5. In both the rat and in hPASMC the increased PDEy1l2 

expression as a result of chronic hypoxia was correlated with an increase in p42/p44 

MAPK activation. Furthermore, my results suggested that chronic hypoxia might 

induce the release of a factor (e.g. growth factor) that can act back on smooth muscle 

cell receptors to regulate p42/p44 MAPK via a pathway involving PDEy1l2. This 

hypothesis may explain how hypoxic-dependent increased expression of PDEy1l2 may 

increase 'basal' p42/p44 MAPK activation in the hP ASMC. Furthermore, it was 

suggested that in addition to increasing the activation of components involved in 

p42/p44 MAPK signalling (increase rate of endocytic signalling), PDEy1l2 might even 

interact (direct protein-protein interaction) with and acutely inhibit MAPK phosphatases 

(MKPs) to prolonging the temporal activation of p42/p44 MAPK. This was suggested 

due to the variable patterns of activation of MAPK pathways in response to hypoxia 

previously documented (Jin et at., 2000, Das et at., 2001, Scott et at., 1998), and the 

possible role of MKPs in this transient activation (Alessi et al., 1993; Sun et at., 1993; 

Ward et at., 1994; Seta et at., 2001; Laderoute et at., 1999). Although a great deal of 

further research is required sUlTounding PDEy, chapter 5 may provide the first evidence 

for a role of PDEy in regulating cellular proliferation through p42/p44 MAPK under 

hypoxia. 

It is possible that oxygen deprivation may induce synergism and 'cross-talk' between 

signalling pathways. For example, the PKA and the MAPK pathways are known to 

interact at various levels (Wu et al., 1993; Graves et at., 1993). Classically, PKA is 

known to inhibit vascular smooth muscle cell proliferation by antagonising mitogenic 

signalling pathways induced by growth factors (reviewed Bornfeldt and Krebs, 1999; 

Graves et al., 1993). Several studies have shown PKA acts downstream of Ras 

activation to inhibit the p42/p44 MAPK cascade. It has been suggested that inhibition 

of p42/p44 MAPK activation in response to cAMP occurs predominantly through the 
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PKA-dependent phosphorylation of Raf-1, mainly on Ser43, thereby inhibiting its 

kinase activity (Cook and McCormick, 1993; Wu et aI., 1993). It is important to clarify 

that the PKA-dependent phosphorylation of p42/p44 MAPK, as with PDE, is an acute 

response. PKA may also inhibit MAPK by inhibition of kinases that activate Raf, for 

example PKC, although this precise mechanism is still to be defined (Magnuson et aI., 

1994). In certain conditions, and in certain cell types, cAMP can activate rather than 

inhibit MAPK pathways, for example through activation of Rap-1 (cAMP activates 

guanine-nucleotide exchanger for Rap-I), and subsequent activation of B-Raf in PC12 

cells (Vossler 1997, York 1998). The overall effect of cAMP appears to be dependent 

on the relative amount of Rap-1, B-Raf and Raf-1 expressed in the cell at a given time, 

which may even be altered in response to stimuli. Activation of MAPK pathways, as a 

direct result of cAMP stimulation, has been shown to result in an increase in DNA 

synthesis in neonatal, but not adult pulmonary bovine smooth muscle cells (SMC, 

Guldemeester et aI., 1999). 

Additionally, in SMCs that express cycloxygenase-2 (COX-2), activation ofMAPK can 

control the activation of PKA. PDGF has been shown to stimulate cAMP synthesis in 

cultured guinea pig lung smooth muscle cells (Pyne et al., 1997). These authors 

suggested PDGF stimulates MAPK activation leading to the phosphorylation and 

activation of phospholipase A2 (cPLA2), and the subsequent formation of arachidonic 

acid. In the presence of COX-2, arachidonic acid metabolites such as prostaglandin E2 

(PGE2) are formed, and released, which stimulate adenylyl cyclase, increase cAMP, and 

activate PKA (Graves et aI., 1996; Pyne et aI., 1997). COX-2 mRNA and protein levels 

have been shown to increase in response to hypoxia in rat lung tissue (Chida and 

Voelkel, 1996). Together, these results suggest the increased MAPK and COX-2 shown 

to occur in response to hypoxia in P ASMC may contribute to increased PKA activation, 

and consequently in part to the observed increase in PDE3 and PDE5 activity and 

transcript. Furthermore, the increased PDEy associated with hypoxia (chapter 4) could, 

in part, also play a role in potentiating this pathway, by increasing the activation of 

components involved in p42/p44 MAPK signalling (increase rate of endocytic 

signalling) orland reduce MAPK phosphatases to prolonging the temporal activation of 

p42/p44 MAPK (long term adaptation). This hypothesis may suggest remodelling of 

the P A occurs primarily in response to hypoxia, which can then lead to the increase 

tone, by altering the cAMP/cGMP pathways. The exact interaction between these 
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pathways in the pulmonary circulation in response to hypoxia is still unclear, however 

worth investigating further. 

The MAPK pathway has also recently been shown to regulate specific isoforms of 

PDEs (Hoffmann et a!., 1999; MacKenzie et a!., 2000; Baillie et a!., 2000). p42 MAPK 

was shown to have the ability to either increase or decrease cAMP levels dependent 

upon the pattern of the cAMP-specific PDE (PDE4) isozyme expression. MAPK has 

been shown to increase cAMP levels in the cell, by phosphorylating PDE4D3 at a single 

site (SerS79), and inhibiting its activity (Hoffmann et a!., 1999). These authors 

demonstrated this interaction in vitro by treating the recombinant enzyme with p42 

MAPK, and also in intact COS 1 cells transfected to express PDE4D3 and stimulated 

with EGF. In contrast, the short form of PDE4Dl was shown to be activated when 

phosphorylated by p42 MAPK (MacKenzie et a!., 2000). Baillie et a!., 2000, also 

demonstrated that in common with PDE4D, both PDE4B and PDE4C were shown to be 

substrates for C-terminal phosphorylation by p42 MAPK at a single serine residue. The 

short form of PDE4B2 was activated by p42 MAPK phosphorylation, however the long 

forms ofPDE4B and PDE4C isozymes were markedly inhibited (Baillie et a!., 2000). It 

may therefore be possible that MAPK could control the activation of a number of other 

PDE families in a similar manner. The increase in MAPK in response to hypoxia may 

be involved in the observed reduction in intracellular levels of cyclic nucleotides by 

directly increasing the activity ofPDEs, for example PDE3. 

It is apparent that PHT is a complex multi-factorial process involving many signalling 

pathways, which may act synergistically and/or interdependently. Undoubtedly, there is 

no single cause of PHT, and the sensor for hypoxic stimuli that triggers pulmonary 

vasoconstriction and an increase in tone and proliferation of the PAis still unknown. 

However, further elucidating the signalling pathways involved in PHT and generally 

understanding the regulation of processes involved, may lead to the development of a 

series of treatments that would be beneficial. Due to complexity of the remodelling and 

the increased tone associated with PHT, drugs with more than one action, or that act on 

a pathway common to a number of stimuli, would be most successful in its treatment. 

The results presented in this study establish a rationale for, and demonstrate the 

potential benefit of, inhibiting both PDE3 and PDES activity in the lung as a possible 

therapy for PHT. Due to their possible cross-talk with the MAPK pathway and 

transcription factors such as CREB and NF-KB, not only could altering PDE activity 
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effect the tone of the pulmonary circulation, but also the remodelling of the P A and the 

transcription of a number of genes. Furthermore, additional studies of the distribution 

of PDE isoforms in the lung and more precise characterisation will allow the 

development of more selective drugs targeted to the pulmonary circulation, minimising 

side effects. For example the detection of different isoforms of PDE5 by Lin et aI., 

2000 raised the possibility of identifYing isoform-specific inhibitors allowing an even 

more organ-specific enhancement of cGMP-mediated vasodilation. The data presented 

suggests PDE inhibitors to be used alone or in combination to treat PHT, which is still 

presently an incurable disease, would appear to be beneficial. 
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