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Abstract 

We have developed an open-path hand-held gas detector incorporating a distrihuted fped­

back InGaAs laser diode at 1. 65JLm. Incorporated into a hand-held transceiver unit, the 

emitted laser beam is backscattered from nearby surfaces, collected and focussed onto an 

amplified InGaAs detector using a 150mm diameter plastic Fresnel lens. At ranges of 4-

5metres, a typical backscattered signal is tens of nanowatts of laser light.. Applying second 

derivative wavelength modulation spectroscopy (WMS) gives a sensit.ivity to rnetha.lw of 

better than 10 parts per million over a one metre path length. 

Chapter 1 gives backgTound information on exLc.;ting deteetion methods, and explainfl why 

we chose to implement WMS. Chapter 2 discusses the Val'ious models created to justify 

the decision to use WMS. It also describes techniques used to help visualise escaping 

gas. Chapter 3 discusses the various stages of design and build of the actual prototypes, 

st.arting with a laboratory based prototype and finishing with a fully portable tedlllology 

demonstrator. Chapter 4 give details of the laboratory te.stillg undextakell in order to 

characterise and benchmark the system performance. Chapter 5 is concerned with the 

design and construction of an additional add-on scanning platform which scans the pointer 

instrument in order to build a 2-dimensional image of the gas escape. Chapter 6 mirrors 

chapter 3 in format, and discusses the various field-t.rialc.; where the instrument.s were 

t.ested in representative conditions. Finally Chapter 7 highlights the work performed in 

developing a pre-production prototype and advertising the instrument to a wider market. 
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Preface 

Chapter 1 of thiq thesis is background information and was produced with referenee to 
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which was done by myself, with occasional input from Graham Gibson. Chapter 4 in­

volves the laboratory based evaluation of the instrument which was dOllC solely by myself. 
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1. Trace Gas Detection Methods 

The low-cost, sensitive detection of methane gas has wide use amongst the ga..., utility 

companies for both routine pipeline inspection and leak-report response applications [3]. 

This chapter firstly outlines the instrument techniques currently employed by the indus­

trial gas utility companies for leak detection and location. These instruments mea.<;ure the 

concentration of gas at a point, and are used to survey the area in question by system­

atically displaying gas concentration data as the operator progresses over the suspected 

leak location. 

Secondly, this chapter discusses some of the optical techniques t.hat have been applied 

to trace gas detection. One advantage that some optical techniques bring to the field of 

trace gas detection is that it is possible to use remote techniques. This enables tlw user 

not to enter potentially explosive situations, but monitor from a. safe distance. It also 

allows for surveying above-ground pipe-work which may be diffieult. to access. 

Finally this chapter will discuss the advantages and disadvantages of current optical t{~h­

niques and give an ove.rview of current detection limits achieved by other groups. 

1.1 Industrial Gas Detection 

Flame ionisation detectors (FID's) (see figure 1.1) are the predominant natural-ga." de­

tection tool utilised by gas utility enginee.rs today, and have been developed from a gas 
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chromatography detection system. Early gas chromatographers for detecting natural-gas 

were based around a hydrogen flame, and were initially developed in 1954 [4]. In the 

hydrogen flame detector, the carrier gas contained hydrogen, which was burned at the 

column end, and the temperature of the flame was continually monitored. Without sam­

ple, the carrier gas produced a constant signal; however, when a combustible organic 

vapour appeared at the column, t he temperature of the flame increased, resulting in a 

response which was proportional to the amount of the compound present. Investigations 

A - Carrier gas and hydrogen 
B -Air 
C - Filter 
D - Metal jet 
E - Flame 
F - Electrodes 
G - Wire gauze collector electrode 
H - Recorder 

Figure 1.1: Early FID design with the jet as one of the electrodes, and filtered air [1] 

in early 1957 by McWilliam and Dewar showed that the continually burning hydrogen 

results in a high background, while the burning of small concentrations of sample com­

ponents causes only small temperature changes. They decided to modify the system by 

measuring the ion current in the flame and not its temperature. A filter was added to 

remove the dust from the air which was used for combustion, as the dust increased the 

noise within the system. 

Original designs used a hypodermic needle as a jet, with two metal electrodes pla.ced on 

opposite sides of the flame. The ion current produced by placing a battery in series with 

the electrodes could be measured, and fluctuations in this current could be attributed to 
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the presence of volatile compounds. Changes to the electrical system saw th(l metal jet 

nozzle become used as one electrode, and a wire gauze used as the collector electrode. 

A further modification was to use two FID's, one at the end of the analytical coluIlln 

and the second at the end of a reference column, and measuring the difference between 

the outputs of the two detectors. III this way, background cunent disturbances could be 

offset. 

Further research into his early design led McWilliams to comment that the FlO is es­

sentially a carbon counter because its response is proportional to the number of carbon 

atoms in the compounds molecule [5]. This observation facilitated the prediction of det<.,>c­

tor response; and the possibility of using the FlO in conjunction with capilla.ry ('olulUns 

was discussed. In fact the FlO was the ideal detector for such applications beca.use it 

had high sensitivity and zero dead volume, important for the small sample sizes and low 

flow-rates used with capillary colunms. 

The introduction of the FlO coincided with the growing interest in air pollution researeh 

and control. Because of this, an easy and accurate way to measure the total orga.nic 

content of the atmosphere and automobile exhaust was much sought after. Beeause the 

FlO was essentially a carbon counter (for gaseous hydrocarbons), it was proposed al­

most immediately after its introduction that it should be adapted for this purpose. Such 

portable instruments were developed in 1959; in these instruments no column was used, 

and the sample gas (e.g. atmospheriC air or automobile exhaust) was pumped at a COll­

stant flow-rate through the detector in lieu of the carrier gas. The detL>(~tor's response 

was proportional to the total concentration of gaseous hydrocarbon wmpounds prffient 

in the sample gas. 
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1.2 Optical Gas Detection 

1.2.1 Fourier Transform Spectroscopy 

There are many dffiigns of Fourier transform (FT) spectrometer, induding the MichelHOll 

interferometer. One particular spectrometer design [6] [7] is based on two Wollastoll 

prisms which when placed between polarisers aligned at 45 degrees to the optic axis of 

the prisms, form an interferogram in the spatial domain that can be recorded with a 

detector array. This interference pattern encodes the spedrum of the broadband light 

source. Applying an inverse transform to this interference pattern yields the t.ransmission 

spectra. 

The two Wollaston prisms utilised in this instrument are manufactured from quartz wedges 

and are aligned at 6 degrees and 11.8 degrees respectively. The resulting maximum path 

difference gives this instrument an effective resolution of 200cnC1 in the UV. An example 

ill.'ltrument is shown in figure 1.2. The advantage of using a FT spedrometer stems 

from its high optical efficiency. "For the same resolving power, a FT spectrometer has 

an etendue (optical efficiency) approximately 190 times greater than that of a dispersive 

instrument" [8] [9]. In this application, the use of a FT spectrometer, removes the need for 

collimating and focusing optics which would be required to couple the light into the input 

slit of a dispersive spectrometer. Consequently, any small-angle scattering of the light by 

the sample does not influence either the collection efficiency of the FT spectrometer or 

the recorded spec:trum. It is possible to use a FT spectrometer as a passive gas imaging 

tool [10], although the detection eapabilities of this technique are heavily influenced by 

prevailing wt>..ather conditions. 
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Ultraviolet BBO Linear Detector 
Crystal Polarisers at Array 

45 Degrees 

Quartz Wollaston Prism 
(11 .8 Degree Wedge) 

Figure 1.2: Optical layout of the static Fourier-transform ultra-violet spectrometer 

1.2.2 Cavity Leak Out Spectroscopy - CALOS 

The cavity leak out spectroscopy technique, utilizing CW lasers, is ideal for trace gas 

detection as it combines high sensitivity and a fast response. CALOS relies on optical 

excitation of the cavity followed by turning off the laser power and observing the subse­

quent power decay of the radiation . The gas sample to be analysed is sent through the 

absorption cell and after determination of the power decay rate of the cavity field, the 

mixing ratio of the trace constituent of interest is calculated from the absorption coeffi­

cient achieved [11]. A typical CALOS system is shown in Fig 1.3 which is a simplified 

version of the system used by Dahnke et al [12]. A close relation of CALOS is cavity ring 

down spectroscopy (CRDS) which is described in [13], [14] or [15]. 
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Figure 1.3: Typical cavity leak out spectrometer system 

1.2.3 Faraday Rotation Spectroscopy 

Faraday rotation spectroscopy (FRS) is a sensitive detection method for many radicals 

and ions. The method utilises the fact that the absorption frequency of radicals is tunable 

with an external magnetic field, enabling a user to gain a factor in sensitivity compared 

to standard approaches. A diagram of a Faraday rotation optical set up is shown in figure 

1.4. A linearly polarised laser beam is sent through the spectroscopic cell, and a magnetic 

field is applied. When any of the target gas is in the cell, the polarisation axis shift 

slightly. The analyser then transmits only t he rotated part of the light to the detector , 

with a lock-in amplifier utilised to increase sensitivity. An example of a Faraday rotation 

system is described in [16J . Faraday rotation spectroscopy has been used in many diverse 

applications such as the study of magnetic two-dimensional electron gases [17] . 
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SpectroSCOpiC oell. 
Magnetic f Id 

Lock-;n amplifier 

Figure 1.4: Schematic apparatus for technique used to mea .. mre time-resolved Faraday 

rotations 

1.2.4 Photo-acoustic Spectroscopy 

In photo-acoustic spectroscopy (PAS) , the gas is irradiated by intermittent light of prese­

lected wavelength. The gas molecules absorb some of the light energy and convert it into 

an acoustic signal, detected by a microphone. Figure 1.5 depicts an example of such a 

system. A mirror focuses the light through the light chopper and the optical filter , onto 

the window of the PAS cell . If the wavelength of the light coincides with the absorption 

wavelength of the gas, the gas absorbs some of the energy. As this happens, the gas heats 

up, expands and therefore causes a pressure rise. The light is being chopped at a particu­

lar chopping frequency and so the pressure increases and decreases at this same frequency, 

producing an acoustic signal whi ·h is picked up by the microphones. The main advantage 

of PAS over conventional techniqu is that no gas means no signal. Herpen et al [18J 
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recently reported a detection limit of 10 parts per trillion for ethane using photo-acoustic 

spectroscopy. More information on general photo-acoustic spectroscopy can be found in 

[19] . 

Gennanium 
window 

-i---
Optical 
filter 

, 
• • 
b 

IR source 

Light chopper 

Figure 1.5: Typical photo-acoustic spectroscopy system 

1.2.5 Raman Spectroscopy 

If a beam of light is passed through a transparent substance, some of the light is scattered, 

even if all external materials are excluded. If a very narrow frequen 'y band of radiation is 

used, the scattered energy will consist almost entirely of radiation of the incident frequency 

(Rayleigh scattering) , but will also contain mall amounts of other discrete frequencies 

above and below the incident. This is referred to as Raman scattering. A detector is 

placed at 90 degrees to the incident beam. If the collision is elastic this detector will 

collect light of energy hll. However , if the collision is inelastic the detector will collect 

light of a different energy (i.e. frequency), therefore energy transfer to and from the 

molecule has taken place [20] . This technique, while offering the potential to identify the 
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prffience of a gas, is not at all practical for gas detection outside of th{~ confinements of a 

laboratory; the signal levels involved with this technique are too small for real-world gas 

deteetion. 

1.2.6 Light Detection And Ranging, LIDAR 

A common technique used to remotely measure atmospheric trace llloiceuies is differen­

tial absorption lidar (DIAL). This technique uses two elos(~ly spa.ced wavelongths, which 

are selected so that one matches a prominent absorption line and tlw other lies off the 

absorption feature. Both wavelengths are transmitted simultaneously, or nearly so, to ffi­

sentially freeze any variation in the atmospheric path, the signal plume distribution and 

the surface reflectance. For DIAL applications, the lidar transmittor has to follow some 

requirements [21J: 

1. the wavelength must be tunable to match appropriate absorption lines of the inves­

tigated molecule 

2. the bandwidth and the spectral stability should be considerably smaller t.han t.he 

linewidth of the absorption line 

3. a high spectral purity (>99%) has to be guarant.etrl 

4. a sufficient pulse energy and average power is required 

5. a high repetition rate is desirable 

Thl) DIAL technique involves the transmission of a laser pulse and thc detcction of the 

backscattered radiation by USing a telescope. The time of flight of the laser puL"e allows 

range information to be gathered; the ratio of the intensities of the bru:~kscattered sig­

nals gives information about the concentration of the species under study. Many DIAL 
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systems need to detect more than one species [22], and hence require a laser radiation 

source that is tunable over a large spectral range, often as much as If.Lm. These systems 

often employ optical parametric oscillators (OPO's) and amplifiers (OPA's) as their light 

source [23], [24J. 

Lidar techniques have been applied to the detection of methane, chiefly for pipeline surveil­

lance [25J. These systems are often designed to be aircraft mounted to reduce survey time. 

Many fixed LIDAR systems use a retro-reflector to improve returned signal levels, and 

hence operational range, but this is not always practical. Some rely entirely on topo­

graphic reflection [26J. Yet more LIDAR systems rely on the light backscattered from the 

atmosphere (see figure 1.6). Lidar systems can also be developed which use various other 

detection prinCiples such as a Raman lidar system [27], or a gas correlation lidar system 

[28J. 

Figme 1.6: Lidar system using light reflected from gases in the atmosphere 

1.2.7 Wavelength Modulation Spectroscopy 

Wavelength modulation spectro copy (WMS) is a widely used technique for trace-gas de­

tection. It can be implemented by use of semiconductor lasers in the mid-infrared and 
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near infrared. WMS is based on the rapid wavelength modulation of the light emitted by 

a laser as it is slowly tuned through an absorption feature of the species to be detected. 

The interaction of the wavelength modulated light with the absorption line leads to the 

generation of signals at different harmonics of the modulation frequency. The signal at 

a given harmonic can be measured with lock-in detection and is proportional to the ab­

sorption [29]. 
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Figure 1.7: Wavelength modulation spectroscopy paJ.'ameters 

In a semiconductor laser, a frequency/wavelength modulation can be easily performed 

by modulation of the injected current. This produces a combined frequency modulation 

(FM) and intensity (amplitude) modulation (AM) of the emitted light, with a phase dif-
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ference between the two modulations. In WMS the detected signals arc mainly due to the 

FM of the laser emission, whereas AM, often referred to as residual amplitude Ulodulation 

[30], is an unwanted effect that distorts the signals. 

Although they are basically identical, the trace-gas detection Bwthods that use current­

modulated semiconductor lasers are generally separated iuto two categories, wavelength 

modulation (WM) and frequency modulation (FM) teehniques; this is simply a naming 

convention. FM tedmiques are eharacteIised by a modulation frequency, w, that is com­

parable to the modulation amplitude a, and to the width of the absorption feature flVline 

(w :::::: a ~ flVline)' On the other hand, WM techniques are characterist.'<l by a modu­

lation frequency that is much less than the modulation amplitude and width of fe-ature 

(w « a ~ flVline)' Near atmospheric pressure, the absorption lines usually extend over 

several gigahertz [2], making WM techniques easier to implement than FM techniques. 

1.3 Comparison of Optical Techniques 

An ideal gas detector for the gas utility companies would involve certain characteristics 

of various trace detection methods. The instrument would give a readout in terms of gil.." 

concentration, as this determines whether the gas/air mixture is potentially explosive; 

it would have a sensitivity great enough to see the ambient background Icweis (1.6ppm 

for methane); it would have a fast response time so measurements eould be made in real 

time; it would be substance specific so the user know which gases were being detected; 

it would detect remotely in order to provide a safe distance between the substance being 

detected and the user, and the detector would be robust enough to be used daily in harsh 

environments by the operator. Unfortunately, an instrument of this natmc would greatly 

exceed the cost of, and be less portable than, existing tools, and therefore not be an 
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economic solution. 

To find a compromise it is important to satisfy as many of these critm-ia as possible, but 

specifically the remote sensing criteria as this is the main advantage over a FID or otlwr 

existing point measurement device, 

To get a readout in terms of gas concentration requires knowing the di"ltributioll of ga.s 

throughout the sampled volume. For a small enough sample it is a sufficiently good ap­

proximation to assume that the gas concentration is homogeneous. For a remot.{' litH' of 

sight measurement, the returned signal gives units of concentration times path length. 

Knowing the sampled distance can reduce the units simply to concentration, but that 

assumes the gas is equally distributed, which may not be the ease. A long~r path length 

increases the possibility that there will be gas present in the line of sight, but mduees 

the positional information content. Longer path length instruments will require highly 

collimated beams and retro-refiectors, which will add bulk and cost to the instrument. 

The sensitivity of a line of sight instrument depends on reeeiving enough returned light, 

that has interacted with the gas, A l'etro-refiector is not a viable option as its movement 

would need to be synchronised with that of the transceivor unit, reducing the portabil­

ity of the instrument. This me.ans that a large diameter, high efficiency collection lens 

which could collect as much of the retul'l1ing light as possible would be an advantage. 

An instrument of this nature which will rely on light backscattered from a clifflls(~ target 

(brick wall, ground, paving ete) will ultimately have its sensitivity limited by the amount 

of collected light, 

One way to make an optical instrument substance-specific is to have control over which 

wavelength of light is used. This enables the design to choose a wavelength which COlTo­

sponds to an absorption line of the required substance, and not to any commonly found 

other substance. The response time of an instrument depends on which signal proeesf'dng 
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Persons Sensitivity Methoo 

Jackson et al [31] 32.2ppt Static ma .. "Is spectroscopy 

Kleine et al [32] 290ppt Cavity lr.ak-out spectroscopy 

Zahniser et al [33] precision 1.8ppb Direct spectroscopy with tunable oinde hu;cr 

Werle et al [341 2ppb FMS with an antimonide semiconouctor laser 

Blaha et al [35] 5ppb Direct spectroscopy with He-Ne la.'icr 

Petrov et al [36] 12ppb mHz5 WMS with 3.2JJUl diod(· laser 

Liang et al [37] 20-30ppb Photoaeoustie trace detection 

Uehara et al [38] 400ppb WMS with He-Ne at 3.392JLIll 

Prasad et al [26] 0.05 ppm o PO based DIAL over 1 mile rauge 

Werle et al [39] 2ppm FMS using 7.8JJm It'.ad-salt diode 

Minato et al [28] 4.4pprn Gas correlation lidar over 20m range 

Tai et al [40] 5pprn Dirt.'Ct spectroscopy using l.GGJJUl diode laser 

Fowler et al [41] 40 JJrnol m2 Static chamber measurements 

Ikuta et al [25] lOOOpprn.m Compact DIAL system at 130m range 

Table 1.1: The work done by other gToUps in methane detection 

method is used, but many techniques could easily be iIllpl{~mented with a respowm time 

less than 1 second. 

The ideal instrument concept now appears to be a lightweight transceiver unit which il­

luminates a diffuse topographical target and collects the backscatten~llight, of a known 

wavelength. The signal from the returned light can then be processed to determine 

whether the gas is present. There are various signal processing techniques which can 

be used to increa..'le the detection sensitivity of the instrument. Tahle 1.1 gives a COIll­

parison of the current situation in methane detection. Some techniques from this table 
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can be ruled out because of their cost or the bulk of the nec~essary equipment. The sen­

sitivity of the chosen method not only depends on t.he technique used, but. a.lso on the 

relative absorption depth of the gas line which is used, and hence the wavelength. Hy­

drocarbon gases have strong absorption bands in the mid infrared (rv3J.LIll) but low cost 

laser light sources do not currently operate in this region a.t room temperature. Detecting 

at rv1.6J.Lm gives a reduction in sensitivity because these wavelengths correspond to an 

overtone of the rv3J.Lm absorption, but i" considerably chcaper. The resulting condusioIlS 

mean that wavelength modulation spectroscopy appears t.o give t.he required sensitivity, 

and it can be implemented in a cost-effec:tive man ncr and within suitable sizc and weight 

considerations. 
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2. Modelling 

This chapter describes various models that have been used in the development of a re­

mote gas detector. The models help to estimate the theoretical limits of detectioll, aga.inst 

which our instrument can be compared. 

Firstly the modelling covers a theoretical view of wavelength modulation spectroscopy 

(WMS), which is a commonly employed signal recovery method. Here the eomputer 

simulation uses a known direct absorption mmlt, and produces the expected hanuonie 

spectra. This revE'.als which absorption lines are preferential to use and hence which wave .. 

length of diode laser should be sourced. 

Secondly a model has been created to estimate the dispersal of the ga.<; cloud ~Uld simulate 

the readings that a line of sight instrument would return. The effectivencss of the remote 

pointer relies heavily on knowledge of the dispersion of the leaking ga.<;. 

Thirdly, a method of directly viewing simulated gas leaks was desirable to furthor un .. 

dt'Istanding of their often turbulent nature, and to assist in training an end user OIl how 

best to search for leaks. An artificially high ba.ckground temperature was creatod, against 

which the cooler escaping gas was made visible using a thermal imaging camera. The 

processing of these black and white thermal video clips enabled the gas cloud to he colour 

enhanced, improving the effectiveness of the training videos. These video clips have been 

included in a compact disc based training aid. 
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2.1 Wavelength Modulation Spectroscopy 

Wavelength modulation spectroscopy (WMS) and frequency modulation spectroscopy 

(FMS) are corrunonly employed methods for improving the detection sensitivity of spec­

troscopic instruments. The difference between WMS and FMS is that WMS employs 

modulation frequencies much lower than the absorption lincwidth wherea.s FMS uses fre­

quenciE~ comparable to or much larger than the absorption bandwidth. 

If one were to measure the direct transmission signal, the change due to levels of ga.'l 

being present would be insignificant compared to fluctuations in the light level due to 

other mechanisms acting on a similar timescale. Even over a path length of 20m a con­

centration of lOppm would only result in an intensity change of 0.8% as shown ill figure 

2.1. WMS essentially delivers the derivative of the direct transmission signal; in our case 

specifically the 1st, 2nd and 3rd order derivatives as shown in figures, 2.2, 2.3 and 2.4. 

The 2nd order spectrum is the most impOltant processed signal for our application since 

for a given absorption line, the peak of the 2nd derivative is directly proportional to the 

amount of gas in the optical path, as shown in equation 2.3. This means that zero gas 

should give zero signal. As can be seen from figure 2.3 there is actually a small offset. 

This discrepancy arises because the optical output of the laser is not quite linear with 

the current. The 2f offset is small and constant for a given la..o;;m· and detected power level 

and so, once the laser has been characterised, can be directly subtracted from each va.lue 

of the 2f spectrum to allow "zero gas equals zero reading" to hold. AR figure 2.3 dearly 

shows there are two distinct advantages for using the seeond order derivative over direct 

absorption for detecting the prt~ence of a ga.o;;: 

• If there is no gas present there is no signal, so WMS is better suited to aceurat.eiy 

determining when no gas is present 
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Figure 2.1: Theoretical transmission spectrum for lOppm methane over a 20m path length 

[2] 
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• The first and third harmonics of WMS precisely indicate the centre of the absorption 

band as there is a zero crossing at line centre. 

line centre 

Wavelength 

Figure 2.2: Theoretical first order spectrum based on ab orption curve as in figure 2.1 

In wavelength modulation pcctroscopy, a modulation of frequency w (with an ampli­

tude a), is added to the laser output. If the detector signal is multiplied by a phase shifted 

reference oscillator of frequency w (or its rectified equivalent) and the result averaged, the 

first order differential is produced. This averaging is important as it remove the local os­

cillator beat . If the nth order is sought then the reference oscillator will have a frequency 

of nw and the output will be the nth order differential. The first three orders are as shown 

in figures 2.2,2.3 and 2.4. The theory behind wavelength modulation spectro copy can be 

explained mathematically (section 2.1.1, and further examined graphically (section 2.1.2). 



Chapter 2. Modelling 35 

line centre 

Wavelength 

Figure 2.3: Theoretical second order spectrum based on absorption curve as in figure 2.1 

line centre 
Q) 

Wavelength 

Figure 2.4: Theoretical third order spectrum based on absorption curve as in figure 2.1 
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2.1.1 Mathematical explanation of WMS 

To explain why multiplying the output at nw delivers the nth order harmonic wp should 

consider the Taylor Series expansion of the absorption signal ahout UlC' la."cr cpntw (woo 

queney: 

. . dAUo) 0:2 Sill
2 wt dl AUo) 

A(fo+O:SlIlwt)=A(fo)+O:SUlwt df + 2 dJ2 +... (2.1) 

where A is the absorption, 0: is the peak frequency deviation, w is the modulation fwoo 

queney and fo is the centre wavelength. Using the trigonometric id('utity: 

(2.2) 

and substituting into equation 2.1 we get: 

A( f .) A( f) . dAUo) 0:
2 (1 - cos 2wt) lf2 AUo) 

)0 + 0: SUl wt = )0 + o:smwt df + 4 dJ2 + ... (2.3) 

Hence, a frequency modulation of w produces signals at w, 2w, 3<..; etc. where the w 

signal is proportional to the first derivative, the 2w signal is proportional to the second 

de.rivative and so on. 

2.1.2 Graphical explanation of WMS 

An alternative way of investigating how wavelength modulation spec:tl'Oscopy works is 

graphically. First we must consider the theoretical transmission curve as in figure 2.5. 

The current applied to the lasel' diode is ramped to scan the wavelength, producing an 

output as shown in figure 2.6. This ramp was applied to the laser diode t:i." a cmrcnt 

ramp; the laser had a transfer function of O.005nm/mA, with a threshold of 2GmA and 

an upper limit of 150mA. The ramp width of O.3nlIl corresponded to a current ramp frol11 

60-120nm. 
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Figure 2.5: Theoretical transmission spectrum for a Imm (lOOOppm.l1l) gas doud of pure 
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Figure 2.6: Laser output and methane absorption combined 
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On top of this ramp a sinusoidal modulation of frequency w is added. This wavelength 

modulation gives rise to a small variation in the recorded transmission. This change in 

transmission is dependent on the shape of the transmission at that wavelength, with an 

amplitude depending on the ratio of transmission change to wavelength change, i.e ~r , 

which is the gradient of the transmission curve at that point. Hence, the signal recovered 

by the detector has an amplitude proportional to the local gradient of the transmission 

trace, as shown in figure 2.7. The action of multiplying the direct transmission trace by a 

Small ch~n~e in t f\ , 
transmisSion V-----tr--------+\ 

1.00 ----"""---

c 
o 

0.99 -

:~ 0.98-
E 
VI 
c 
~ 0.97 ~ .-

0.96 ~ 

0.95 '--------+-I----------w-a-ve"":'length 

~ 
Small change 
in wavelength 

Figure 2.7: WMS return the derivative of the transmission signal 

local oscillator can be mimicked by a computer program written in Lab VIEW as di cu sed 

in subsection 2.1.3. This generates the various derivatives, given the original transmission 

spectrum. 
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2.1.3 Phase Sensitive Detector 

Figure 2.8: LabVIEW program which mimics the action of a phase sensitive detector 

The direct absorption curve for the required absorption line is input as a list of 550 

points from the HITRAN database [2J. For each point the value of the absorption line 

is multiplied by a discretised sine function (10 radian per step). The resulting points a.re 

then assigned to be either positive or negative depending on their phase. Finally every 

discrete value is summed to give one final value. For the correct phase, this multiplication 

with a sine wave of the same frequency makes every value positive. When summed the 

result is always a large positive number. For other frequencies, the resulting sum will 

be approximately zero. The program then moves on to the next point on the absorption 

curve. The output from this program is a list of 550 points which corresponds to the 

theoretical output from a phase sensitive detector. 
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2.2 Gas Dispersion 

For an open path optical detection system to work favourably when COIllp!U"cd to tradi­

tional point measurement devices, we have to model the expected gas conwntration lcwds 

at any point, remote from the If:'-ak source. The assumptions in our model arc: 

• dispersing gas cloud is shaped as a half (;one down wind from Uw source 

• gas is uniformly distributed within the cloud 

• laser pointer is directed at the centre of the cloud 

• gas cloud travels with the same velOcity as the surrounding air 

• uniform gas/air flow at all heights. 

This gru; dispersal is as shown in figure 2.9, where: 

• L is the leak rate in litres of gas per minute (litre/min) 

• z is the distance from the leaking source (m) 

• v is the velocity of the wind (m/s) 

• ¢ is the half angle of the gas cloud 

• r is the radius of cross section through the gas eloud (m) 

• C is the fractional concentration of gas (i.e. range 0 to 1) 
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L( litre/min) 

Figure 2.9: An idealised gas leak and dispersion 

2.2.1 Gas Concentration At A Point Down Wind Of The 

Source 

To calculate the concentration of gas at a point at. a distanee z first we consicim' til(' volume 

of gas/air mixture passing past this point per second. Consider the half-circle moving at 

velocity v: 
71T2 

Vol(z)/secand = TV. 

Substituting for r into equation 2.4 gives us 

71"( <pz)2 
Vol (z) / second ';:"j 2 v, 

(2.4) 

(2.5) 

for small <p. Dividing the volume of gas releas{~l per second, by this flowing volume gives 

us the fractional concentration 

L 2 1 
C(L, z, v, </» = 60000 7I"(</>z)2;;' (2.6) 



Chapter 2. Modelling 42 

Within equation 2.6 the wind velocity, v, and the half cone angle, </>, of t.he gas cloud are 

independent variables, the values of which depend upon t.he wind charact.eristics. Values 

of 1 litre/min for the l('-ak rate, a wind speed of 1 m/s and a gas cloud half-cone anglt~ of 

0.1 radians are not unrt'.asonable and give a concentration distrihution as showll in figuw 

2.10. Note that concentration is proportional to 1/z2. 
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Figure 2.10: The I('Aking gas concentration at a point decreases with the square of the 

distance from the leak. Note: Log(Fractional COllcentl'ation)=O corresponds 

to p1ll'e gas 

2.2.2 Integrated Concentration Over Optical Path 

Line of sight optical detectors meas1ll'e not concentration, but the product of coucentratiou 

and thickness of gas cloud. Assuming that the instrument detects the backseattered 

light, that the laser pointer is directed at the centreline of the gas cloud, and that the 
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point of view is perpendicular to the gas cloud, the optical thickness is 2r. This gives Ii 

concentration x path length product of 

L 4 1 
C(L, z, v, c/» x 2r = 60000 11"( c/>z) ~. (2.7) 

This shows that the mf'-8.Sured signal is inversely proportional to the distance fwm the 

leak, seen in figure 2.11. This difference in scaling with distauce Hwans that Ii line of sight 
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Figure 2.11: The concentration x path length is inversely proportional to the distauce 

from the leak. Note: Log(Fractional Concentration)=O corresponds to pnre 

gas 

instrument will perform better than a point sensor when operating away from the lea.k 

source. As expected, comparison between the two approaches shows a cross over point, 

see figure 2.12. Near the leak the point measurement system is most sensitive wherf'.a8 

further from the leak the line of sight system become more effective. The absolute dis­

tance at which this cross over occurs depends upon a number of factors whieh influence 
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the sensitivity of each instrument type. The distance at which both systems show the 
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Figure 2.12: Comparing theoretical responses from point measurement and line of sight 

mC8Smement techniques. The cro s over point is arbitrary, and related to 

leak condition 

same sensitivity is not relevant ince the two systems use different units and can not be 

compared. However, it is alway the case that at a large enough distance, the line of sight 

instrument will be preferential over the point measurement system. The same reading 

could be found at a position given by z = iq" which for this leak is 5m, which is indepen­

dent of the leak rate but not of the cone angle. A more diffuse leak (larger cone angle) 

will allow the line of sight instrument to dominate at a closer range. Clearly an exact 

comparison requires a precise definition as to the gas dispersal which itself will depend 

greatly upon the condition under which the leak is found. 

It is possible that two /(idea)" in truments have the arne maximum distance limitation 
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since a fundamental limitation is reached when the increase in concentration due to the 

le.ak is not significant when compared with that of the atmospheric background. Atmo­

spheric background methane is globally uniform at approximately 1.6ppm. 

2.3 Collection Optics 

The optical power incident on the collection lens can be estimated by: 

1f X r2 

P = E x ~ X 21f X R2' (V~) 

(for a scatter angle of 21f steradians) where P is the laser power incident on the 

collection lens, E is the emitted laser power, ~ is the topographic surface reflectivity, r is 

the radius of the collection lens and R is the range. 

The distributed feedback laser diodes in use emit approximately 5mW of light, surface 

reflectivity is di~ussed later (table 4.1) but is taken here as 3%, the collection lens has a 

7.5cm diameter and the working range is taken as 5m. This gives: P = 0.005 x 0.03 x 

~ x (O.~75)2. Thus an estimate to the received power is: P = 17nW. 

This collected fraction of light is the fractional area of the sphere into which light is 

scattered as shown in figure 2.13. 

This is the light power incident on the front of the collection lens; in our case we use 

a thin, plastic Fresnel lens. The important consideration is the photocurrent developed 

in the detector. The lens has a transmissivity of approximately 90% at 1651nm, the 

narrow band optical filter in front of the detector transmits approximately 50% of the 

light and the detector has a quoted efficiency of O.85AjW at 1651nm. This means that 

the generated photocurrent in the detector will be rv6.5nA. 

Given this information and the specification of the InGaAs detector (Thorlabs PDA400), 

based on the theoretical data presented in figure 4.5 (see section 4.2), the instrument 
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Outgoing Laser Beam Captured fraction of light 

Figure 2.13: Light i cattered back into the collection optics 

should have a detection limit of '" 100ppm.metre. More generally, the predicted detector 

photocurrent derived from equation 2.8 varies with range as shown in figure 2.14. 

2.4 Processing of Gas Cloud Images 

To improv under tanding of g leak dispel' ion, it is desirable to be able to visualise this 

dispel'sion to aid the development of an active lasel' detection system. This was easiest 

to a hieve by USing a thermal imaging camera to survey a known leak against a heated 

background. Collaborators in Malmo, Sweden, developed a gas leak test site (see figure 

2.15) for the purpose of tudying gas leak dispersion. Water filled radiator were IlSed to 

control the background temperature in order that the leaking gas would be at a different 

temperature, and hen 'e detectable by the thermal imaging camera. The recorded video 

footage of gas dispersion i high resolution (300x300 pixels), but monochrome. Thi has 

the effect of ignmcantly reducing the contrast of the gas movement over the background 

image. Our aim was to develop an automated proc to boo t the contrast of this video 

footage. A computer program ( ubsection 2.4.1), writt n in LabVIEW, uses the first 
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Figure 2.14: Predicted photocurrent varies with the square of the distance (reflectivity 

taken as 3%) 
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Water-filled radiators to create 
artificial temperature difference 

Leaking pipes buried aDcm under 
paving slabs to mimic gas escape 

48 

Figure 2. 15: Test ite in Sweden with radiators to create an artificial background temper­

ature 
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few frames of the vid footage (before the artificial leak is turned on) to determine a 

gas free backgTOund image. This saved background frame can then be subtracted from 

all subsequent frames of the captured video leaving a raw image of the gas cloud. This is 

then coloured and uperimpo ed on the original backgTOund. The functionality of these 

stages is hown in figure 2.16. The processed images can be further manipulated by 

Original Thermal 

-
Bac19x:>1nd 

rmage 

• • 

Extra2dGas Fals.cobur'" 

e ·- • • 

Figure 2.16: Functionality of video linage processing 

PlOCI!88ai 

applying various level of smoothing to simulate capture footage of lower resolution. This 

is discussed in more detail in sub ection 2.4.2. 

2.4.1 Colour Enhancement of Monochrome Video Clips 

This Lab VIEW program tarts by loading a predetermined background image (figure 

2.17). This image was created by averaging the first five frames from the monochrome 

video footage, before the gas leak was activated. The progTam then loads the first in a 

sequence of images that have been created from the gas leak video, as shown in figure 

2.18. The background image is then subtracted from this video frame to leave an image 
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Figure 2.17: LabVIEW code to open background image 

1=: 
i LL~J~----------~ 

IiEl 

Figme 2.18: Lab VIEW code to open gas leak images 
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solely of a gas cloud. A section has been added to the program which gives the option 

to resample the gas cloud image so that it can appear as if the cloud has been sampled 

as a lOxlO pixel image. This is for a further application of the pointer unit which is 

discussed in chapter 5. The (resampled) gas cloud then has its colour plane changed as 

Figure 2.19: LabVIEW code to res ample image 

shown in figure 2.20. In our specific case it was replaced by a red col om as this was easily 

distinguishable from the background. This coloured gas cloud was then overlayed onto the 

original background image. This process repeats itself for every image in the sequence, 

to colour enhance the gas cloud in every frame of the video. Finally the program saves 

every frame it has created and gives the option to view them all sequentially, giving the 

effect of a Bicker-book animation ( ee figme 2.21). 
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Figure 2.20: LabVIEW code to replace the colour plane of the gas cloud image 
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Figure 2.21: LabVIEW code to ave the images which can then be viewed as a movie 
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2.4.2 Smoothing 

There is the potential to scan the methane detector over an area, building up an image of 

any methane leak. The fewer pixels in this image, the more time can be spent collecting 

data at each pixel, and 0 the more sensitive the instrument could be. Clearly then there 

is a trade-off between high methane sensitivity, and high pixel resolution of a generated 

image. Work was performed to simulate low pixel resolution data, and try to enhance the 

image such that it looked imilar to a higher pixel resolution image. 

This Lab VIEW program starts by creating space for the processing of images. Two images 

are loaded into the program. Firstly, a background image of the scene. The program then 

loads an image which contains only the gas cloud. This image is available since the gas 

image is extracted when it is false coloured (see subsection 2.4.1). The gas video clip is 

resampled at a set resolution, lower than the background image, as shown in figme 2.22. 

Figure 2.22: Gas image resampled at lower resolution 
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The sampled gas image (called smoke in the LabVIEW diagram) is then extracted and 

sampled again this time at the same re olution as the background image (350x350 pixels 

here). This gas image looks identical to the lowest resolution image, but consists of more 

pixels. The program then low-pass filters this 350x350 resolution gas image (figure 2.23). 

This has the effect of smoothing the gas cloud, so it looks like an image taken with a 

higher resolution gas detector. 

Figure 2.23: Gas image blurred, by passing through a low-pass filter, before being super­

impo ed onto background image 

The Lab VIEW program ensures that both the proces ed gas image and the background 

image are of the same resolution. Finally this processed gas image is added to the red 

colour plane of the background image. This gives the impression that the captured data 

is high resolution, and looks more representative of a gas cloud. 
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3. Instrument Development 

This chapter describes the various design stages which have seen the evolution of a 

large, bench mounted concept demonstra.tor into a small, battery-powered, portable pre­

production prototype. This project was carried out as part of an EC co-funded consor­

tium, and as such the instrument had to fulfill certain criteria, in particulru: the resulting 

design should be able to be made in a cost effective manner. The project was known as 

VOGUE; Visualisation Of Gases for the Utilities and the Environment. 

1. The initial bench-top system comprised of large laboratory electronics, and had 

the laser diode pointing at the detector, over a small path length. All of this was 

controlled by a desktop personal computer (PC) and powered by mains eiedricity. 

2. The first advance was to mount the laser and detector within the same housing and 

use backscattered light to detect the presence of gas. This proof of concept system 

still used bench-top control electronics. 

3. To improve portability, the large bench-top control electronics were then replaced 

with smaller commercially available units. A housing was designed which made the 

entire instrument self contained except for a controlling laptop PC. This allowed the 

instrument to be more easily tested at outdoor sites. The battery power enabled 

testing at more remote locations. 

4. The cost of reproducing the instrument was next addressed. All signal processing 



Chapter 3. Instrument Development 57 

electronics were designed to the necessary specification, and prototypes were made. 

For example, the cost of the reqnired four phase sensitive detectors (PSD's) fell to 

about 5% of their commercial predecessors. 

5. The final stage of development involved replacing the laptop by an automated sys­

tem that required minimal training to operate. An embedded computer system 

was integrated into the system to automatically launch the system software, and 

undertake diagnostic tests on startup. A digital readout and audible tone were im­

plemented to give feedbac.k to the user. The final instrument was a fully portable 

technology demonstrator. 

3.1 Bench Top Demonstrator 

The modelling of light absorption by a 10 cm cell of 100% methane predicted that it should 

be possible to directly see the change in returned light levels when scanning through the 

absorption band as shown in figure 3.1. The initial concept demonstrator was designed 

to show this result. 

An InGaAs distributed feedback (OFB) laser diode (supplied by Siemens) operating in 

the region of 1651nm was mounted onto a thermo-electric cooler (TEC) and temperature 

stabilised at 18°C (specific to this diode) as shown in figure 3.2. The operating wavelength 

of a laser diode is temperature dependant and so is required to be carefully controlled. 

The information about this diode, gained from Siemens, was that when operated at 18°C 

it would have a threshold current of 26mA, a tuning slope of O.005nm/mA, and should 

not be operated above 150mA. The laser diode was placed under computer control (s£-'(~ 

figure 3.3) using LabVIEW as the interfacing software. The current applied to the laser 

diode was slowly varied from SOmA to l00mA (as described in subsection 3.1.1), causing 
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O.DOE+OO~----~~----~------~ ______ ~ ______ ~ ____ ~ 
1..- 1.&6 1.6&06 1.661 1.6616 1.662 1.6625 

wavelength (microns) 

Figure 3.1: Theoretical methane spectrum obtained using HITRAN [2] 
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Figure 3.2: left: DFB laser diode mounted onto a TEe, right: close up howing laser 

diode mounted onto a metal carrier, with copper connection wires 



Chapter 3. Instrument Development 59 

a change in output wavelength known to include the 1651nm methane ab orption band. 

The light output from the front facet of the laser was collimated using a 25mm diameter 

Figure 3.3: The temperature control was hard-wired to the TEC lement, the diode cur­

rent controller is under computer control via an IEEE interface 

40mm focal length lens, and dir ted through the gas ample cell (at room temperature 

and atmo pheric pressure) . Collimated light exiting the sample cell was coll ·ted with a 

lOOmm diameter plastic Fresnel len and focussed onto an InGaAs detector as hown in 

figure 3.4. A schematic diagram howing the entire setup an be seen in figure 3.5. In 

thi one pt demonstrator the output from the laser diode was directed at the Fresnel 

lens (rather than both the laser and detector aimed at a common target) and optimised 

to ensure maximum laser light was incident on the detector. The Fresnel len had a larger 

diameter than necessary, but would be n essary with planned futme changes. A lOOcm 

sample cell was filled with 1% methane (balance of nitrogen) and placed between the laser 

collimating lens and the Fr nellens. Using wavelength modulation spectroscopy (WMS) 

with a laser diode modulation frequency of 1.5kHz (modulation depth corresponding to 

half the line-width) and with a time constant of lOOms, the fir t and econd derivative 
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Figure 3.4: IOOmm diameter Fresnel lens (50mm focal length) mounted in front of the 

InGaA detector 

spectra were acquired by the computer, as shown in figure 3.6. 

3.1.1 Ramp Generation and Data Acquisition 

The computer takes the (input) can centre together with the scan width and works out 

the start and end points of the can. At the first point, the computer writes the specified 

voltage to the configured data acquisition card output channel, and reads the voltage 

given at the input channels. These input voltages are stored by the computer. The 

output voltage is then increased by the designated step size, and the process is repeated. 

Once the scan end value is reached, and all channels have been communicated with, the 

computer then displays the stored array on individual graphs. This entire progTam is 

shown in figure 3.7. This program is the basis for all data acquisition, and is used with a 

scan width of zero to record data at a ingle point. The program is used as subroutine in 

future programs, and is labelled 'Ramp 2.1". 
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Figure 3.5: Schematic showing signal path through the setup 
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Figure 3.6: Left: 1st derivative pectrum, Right: 2nd derivative spectrum (both with 

1.5kHz modulation and lOOms time con tant). The additional structur' evi­

dent in these pectra is due to the gas cell; when not aligned exactly collinear 

with the laser light, extra fringes are visible. 

3.2 Proof of Concept System 

The next d velopment tran formed the bench top sy tern into an open path demon trator 

which could be u ed to as s the practical performance levels of the proposed instrument. 

Two main chang were propo xl: 

Optical layout The laser diode and the InGaAs detector would be placed in close prox­

imity (approximately the radiu of the Fresnel len ) with both aimed at a common 

distant target. 

WMS frequency The pecific WMS frequency in u e would be optimised to ensure 

maximum signal recovery. 

The lateral displacement of the outgoing beam from the colle tion lens reduces the po­

tential for tran. mitter breakthrough but does in principle produce a parallax i ne. This 
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Figure 3.7: LabVIEW code to ramp output voltage and acquire data 
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would reduce the amount of collected laser light at very long or short ranges. 

The primary issue was to ensure that enough returned light was collected by the Fresnel 

lens to ensure sufficiently noise-free signal processing could be performed. Because the 

amount of light incident on the detector is proportional to the area of the collection optics, 

it was decided to increase the diameter of the Fresnel lens to 150mm (with 80mm focal 

length). Both the laser diode and detector were mounted onto x-y-z translation stages to 

enable fine adjustment of their position, to maximise the returned light level as shown in 

figlIre 3.8. The value chosen for WMS of 1.5kHz was suggested, based on prior experience 

with this technique. This frequency lies comfortably within the audio band, making com­

mon integrated circuits such as operational amplifiers readily available and very cheap. 

However, this frequency may not be optimal. The modulation signal is derived from the 

phase sensitive detector, and is added to the computer generated ramp signal via a pur­

pose built circuit board, as shown in figure 3.13. The modulation signal from the phase 

sensitive detector was changed in 100Hz intervals from 300Hz up to 15kHz to investigate 

the effect this had on the returned signal to noise ratio. There was very little deviation 

throughout the entire range, but !'lOme improvement could be gained toward the middle of 

the range, at 6kHz modulation. This was not due to lower noise from interference, but an 

electronics issue. By choosing a modulation frequency such that the first three harmonics 

lie within the audio band, a supply of low-noise and low-cost electronic integrated circuits 

is guaranteed. 

The control electronics were all identical to the initial concept demonstrator, and were 

arranged so that they could be housed within a large flight case as shown in figure 3.9. 

This enabled the laser pointer to be tripod mounted and connected via a multi-way cable 

to the instruments within the flight case. For the first time outdoor tests could be carried 

out with the instrument. 
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Figure 3. : Left: Internal vi w of laser pointer , Right: The la er pointer technology 

demonstrator capable of detecting methane from the back scattered light (note 

in thi ase, the reference/calibration cell i also mounted) 
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Figure 3.9: Bench-top electronics arranged to fit into a large flight case 

3.3 Portable System 

Although the system could now be taken outside to try to detect simulated gas leak , it 

could not be described as portable! The next development obje tive was to reduce the 

size and cost of the supporting control electronics. The system presently relied upon a 

separate bench-top laser diode controller temperature controller, amplifier/filter stage, 

power supply and a single phase ensitive detector which is capable of generating either 

of the first two harmonics. 

The resulting changes replaced all of the electronics which had been hou ed within the 

flight case with either smaller commercially available units, or were designed and built 

in-house. Specifically: 

PC control Using suitable PC interface cards (National Instrument Data Acquisition 
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- NI-DAQ), the whole system has been placed under laptop eontrol. The modified 

software is " turn-key" , handling all aspects of the system operation from laser diode 

switch-on, wavelength tuning, signal processing and provides a user-friendly display. 

Control software The control software has been rewritten so that all data input and 

system control is via a single NI-DAQ card (DAQCard 6024E). The on-card oscilla­

tor is also used to generate the modulation frequency and reference frequencies for 

the phase sensitive detectors. 

Phase sensitive detector The phase sensitive detector has been replaced by 2 high­

quality miniature units (LIA-MV-150 units from Femto) allowing simultaneous 

recording of both first derivative and second derivative spectra. 

Amplifier/filter The high-performance amplifier has been replace by an in-house de­

signed and constructed amplifier/filter as discussed in section 3.4.3. 

Waveform generation Further in-house designed and constructed circuitry generates 

the reference waveform from the DAQ card for obtaining both first and second 

derivative spectrum as discussed in subsection 3.3.1. 

Power supply Lead-add rechargeable batteries are now used for portability. 

In addition to these changes, field tests had revealed a problem when operating the in­

strument in strong sunlight. Wavelength modulation spectroscopy (WMS) maximises the 

recovered signal, but if the detector (and therefore the detector amplifier) receivf'S too 

large a signal, it will become saturated and the WMS technique will fail. To counteract 

this, a narrow band interference filter was placed in front of the detector. Ideally the 

filter pass-band would be very narrow, and only allow the 1651nm laser light through. 

However, the angle tuning which arises bec:ause of the high numerkal aperture of the 
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collection optics shifts the allowed wavelengths. For incident angles up to 45° the trans­

mission wavelength of the filter is reduced by up to 40nm. 

A bandpass filter centered at 1700nm with a 100nm bandwidth was tested and, while 

redUCing the laser light by 50%, ensured that the detector amplifier was not saturated, 

even if aiming the collection optics at the Sun. 

Figure 3.10 hows the entire modified system (without power supply/batteries). The sys­

tem was designed to be fully enclo ed within two metal cases (250x250x130 mm) which 

were hinged to allow ac ·ess. After discussion with several potential end users (Euro-

Figure 3.10: Left: Rear half of the unit which contains a combined laser and temperature 

controll 1' , two PSD s and the electronics which generate the 1w and 2w 

reference frequencies, Right: Front half of the unit which houses the laser, 

detector, electronic filter and unity gain buffer amplifier 

pean gas utility engineer ) of the remote methane detector, it became clear that the 

ergonomics of the sy tern would have to be improved in order that the aesthetic appeal 

of the instrument increased. The system was then rewired so that it could be hou ed 

within a cylindrical container, the front (optical head) of which was detachable and could 

be hand-held, as shown in figure 3.11. 
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Figure 3.11: Left: Complete ystem rehoused into a cylinder (note that the front section 

is detachable and can be hand-held), Right: Internal view of the rehoused 

signal proces ing electronics (rear section) 

3.3.1 Waveform Generation 

The waveform generator was required to replace the functionality which had previously 

been present in the laboratory phase sensitive detector. It was also necessary to simul­

taneously demodulate the fir t and second harmonic waveform, with two phase sensitive 

detectors; this requires both the wand 2w frequencies to be generated. 

The data acquisition card (NI-DAQCard 6024E) was capable of generating a square wave­

form of the desired frequency 12kHz. This was fed into the custom designed electronics 

(figure 3.12). The first chip is commonly referred to as a "flip-flop" chip. The input is 

required to be a TTL compatible waveform. Every time it detects a rise at the input, the 

output changes state. This has the effect of perfectly halving the given signal. The 6kHz 

square output from this chip is low pas ed with a Sallen and Key filter to approximate 

a 6kHz sine wave. This is further low passed to improve the symmetry of the sine wave. 

This is an important stage; the sine wave will ultima.tely be used to drive the laser diode, 
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Figure 3.12: The in-house designed waveform generator 

and as such must be as smooth as possible to prevent any output spikes. These arc caused 

by sharp changes, or transitions at the input. Finally this signal is fcd into an amplifier 

which combines the sine wave with the computer generated ramp, which is discussed in 

subsection 3.3.2. The output from this circuit L'I fed to the Ia.Iler diode driver. 

3.3.2 Combining Ramp and Modulation 

As shown in figure 3.13, the resistors scale the input signals so that the output scans the 

laser from 80mA to 100mA with a modulation depth of approximately half the line width. 
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Ramp 

Modulallon E!=:r-.... p'~:.-..... -t.TO laser Diode 

Figure 3.13: Circuit designed to combine the ramp and modulation signals 

3.4 Functional Cost Efficient Prototype 

The laser pointer could now be used by trained personnel to search for ga..'i leaks in test 

conditions, but the entire system still needed to be tripod mounted and powered either 

by two 12V leAd-acid batteries, or a laboratory power supply. The next advancements 

needed to reduce the weight and size of the system still further, and minimise the cost of 

production of this system to enable it to be commercially viable. For a product to be a 

secure development investment, it should not rely on components som'ced from outwith the 

VOGUE consortium. Prominent changes planned for this instrument iteration involved: 

Phase Sensitive Detectors Design, construct and test our own PSD based on com­

mercially available integrated circuits. 

Partner Input Use updated components supplied by consortium members to improve 

the instrument, specifically with the introduction of a laser module. 

Control Electronics Replace the temperature controller and laser driver with smaller 

and more power efficient modules. 
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Housing Change the in trument layout so that the optical head and control electronics 

would be eparately housed. 

The key in-hou e development stag was in the design, construction and testing of phase 

sensitive detectors. Th e were based upon th Analogue Devic AD630 chip. The se -

and harmonic phase en itive det tor is described in subsection 3.4.1, and a photograph 

in shown in figure 3.14. 

Figure 3.14: IF and 2F in-house d igned and constructed PSD's 

Siemens have now hou cd the laser diode in a small hermetically sealed enclo ure, with a 

5mm focal length collimating lens mounted in front of the diode. The diode was eated 

onto a TEe element, with two temperature dependant resistor {2.2k thermistor and aPt 

Resistor} al 0 housed in the enclo ur . The r r facet of the laser diode was directed at a 

small InGaAs detector. This dete tor which is at the rear of the package is individually 

sealed within a tandard T05 endo ure, containing methane g (ec figure 3.15). This 

gas/detector package forms the basis for ensuring the ystem is operating at th correct 

wavelength, and provides the mechanism for frequency locking the laser diode. It is this 

new component that gives our in trument an advantage over ompetitors. The incorpo-
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ration of a reference methane cell ensures absolute wavelength stability at exactly the 

correct wavelength; no amount of temperature and current adjustment can provide this 

level of lifetime tability since the laser's characteristics can change over time. 

Top View 

Reference 
photo diode laser diode 

PT 1000 NTC 

Figllre 3.15: Left: laser diode module with top section removed llight: Schematic dia­

gram showing connection points of internal components 

The combined temperature controller and laser driver was replaced by separate units. 

These units were more compact, and required less drive current, making them ideal for a 

small battery powered device. The temperature controller (see figure 3.16) was designed 

and supplied by a con 'ortium partner (AOS Technology Ltd), who were also in the process 

of developing a laser driver specifically for our application. A suitable temporary laser 

driver was sourced (LD2000 from Thorlabs) and can be seen in figure 3.16. 

Previously the generated reference signal for both of the PSD's was provided by a N a­

tional Instruments DAQ card. These reference signals and associated phase shifter are 

now generated using a modulator and a digital phase shifter, also designed and supplied 

by AOS Technology Ltd, as shown in figure 3.17. This circuit utilised a high frequency 

modulator, and used a digital processor to return the required frequencies. Initially the 

first derivative signal was intended to be used to provide an error voltage (since it is 
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Figure 3.16: Left: Temperature ontroller from AOS, Right: Laser driver board from 

Thorlab , both mounted inside a 120mm die-cast housing 

Figure 3.17: Modulator and digital pbru: hifter 
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anti-symmetric) for feedback to the laser driver, providing a mechanism to be wavelength 

locked to the methane absorption. For the likely signal levels that are to be detected, the 

zero offset of the 1£ trace is significant compared to the peak-to-pcak height of the signal. 

The magnitude of the offset varies, depending on laser characteristics and returned light 

levels. It is not possible, therefore, to simply add a constant to ensure a zero offset to the 

1£ trace. The 3f trace is also a.nti-symmetric a.bout the methane absorption line, and has 

zero offset; this trace is suitable to provide an error voltage for feedback. 

A new feature has been added to the software whereby the laser initially ramps through 

the methane transition ( as before). Once the transition line from the methane in the 

reference cell has been identified, the laser fixes at the peak absorption wavelength, and 

can maintain this position by making small adjustments corresponding to the 3f signal. 

This addition to the program is discussed in more detail in subsection 3.4.2. 

The entire electronics assembly was housed in a shoulder-mountable sealed plastic enclo­

sure, connected to the optical head by a shielded multi-way cable. The two sections can 

be seen in figure 3.18. This enabled the unit to be operated by a single user without the 

need for a tripod mounting. Separating the optical head from the electronics reduced 

the arm fatigue of the user considerably and was considered important by the gas utility 

representatives . 

3.4.1 Phase Sensitive Detector Design 

The signal from the transimpedance amplifier (see section 3.4.3) is fed into an active 

filter chip from Texas Instruments (UAF42). The external resistor configuration on this 

chip determines the filter parameters. For the resistor combination shown in figure 3.19, 

the filter was designed to have a bandwidth of 11kHz; because this let sufficient 12kHz 

component through while minimising the overall bandwidth of signal passed to the phase 
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Figure 3.18: Left: 6" diameter optical head unit, Right: Shoulder mounted box containing 

signal proces ing electronic and batteries 

sensitive detector. Th filtered ignal is fed into an Analogue Devices AD630 chip. This 

IN 

Figure 3.19: Circuit diagram of PSD designed to detect the 2nd harmonic 

chip is a high precision balanced modulator/demodulator. The chip acts as a detector 

and narrow band filter combined. As stated on the data sheet "It can detect very small 

signals in the pr ence of large amount of uncorrelated nOise, wh n the frequency and 

phase of the desired signal are known. The precision input performance of the AD630 

provides more than 100dB of signal range and its dynamic re ponse permits it to be used 

with carrier frequencies of over 50kHZ" [42J. As is shown in figure 3.19, a further low pass 
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output filter has been added to aid in rejecting wider bandwidth interference. This final 

low pass filter determines the time constant of the output readings. 

3.4.2 Line Locking 

The program starts up as before (subsection 3.1.1), and scans the laser wavelength. The 

3f signal from the reference detector is cross-correlated against a previously recorded spec­

trum - "X-FIT". This pre-recorded spectrum was taken while the laser diode was carefully 

temperature and current controlled under laboratory conditions. Provided the laser char­

acteristics have not changed then the pre;ent spectrum should match the pre-recorded 

spectrum - for the same temperature and current. The cross-correlation provides a mea­

sure of how well the two spectra are aligned. The centre of the scan is adjusted according 

to this value, and the process is repeated. The fail-safe incorporated into this process is 

that the program will perform a maximum of 20 scans before passing to the next stage. 

If the laser is not frequency locked by this stage an output error is displayed to the user. 

Once the scans are aligned, the laser diode is set to be the centre wavelength, where the 

3f value is zero. 

The program then acquires data, purely at this central, optimum, wavelength while si­

multaneously monitoring the signal at the 3f output. A multiple of the signal at the 3f 

output is added to the laser driver. In this way, the laser output wavelength is maintain<..xi 

at precisely the wavelength of the centre of the methane absorption line. 

3.4.3 Transimpedance Amplifier 

The bench-top system used a bare InGaAs PIN photodiode. This was connected to a 

laboratory amplifier and electronic filter, before the signal was fed into the pha.<;e sensitive 

detector. This was efficient in the laboratory, where sophisticated shielded wires were 
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Figure 3.20: LabVIEW code which frequency lock the laser diode onto the methane 

absorption line 
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used. The small photocurrents (approximately tens of nanoamps) whieh were produced 

by the photodiodc were easily swamped by any noise sources which could be picked up 

by the cables. To overcome this problem, an amplifier was built onto the rear of the 

photodiode, reducing the potential for pickup (before the amplifier) as much as possible. 

The gain stage was simply an inverting operational amplifier as shown in figure 3.21. 

Because such a large gain was needed, the de signal was high-passed. This prevented 

saturation of the inputs of the phase sensitive detectors. 

DC out 

>-........ ~ V out 

O.lnF 

-
Figure 3.21: The in-house designed transimpedance amplifier using a TL071 operational 

amplifier 

3.5 Technology Demonstrator 

All prototypes thus far had used a PC (usually a laptop) to control the system via the 

interfacing software LabVIEW. The PC gave feedback on the performance of the instru­

ment, and enabled the user to control parameters such as laser diode current and sean 

width. To use these functions reliably required knowledge of the system design. The final 
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modification to be addr ed enabled the entire sy tern to be operated by a single u er 

without any training (but with an instruction manual). It was also neces ary to integrate 

the PC ·ontrol into the sy tern so that the prototype was fully self-contained and required 

no knowledge of computer to operate. This increased the current drain to ",1.5A on the 

batteries, and 0 a battery belt was ourced to provide ample power for 8 hours continuolls 

use. 

Figure 3.22: Left: connection panel of control box, Middle: in ide of the control box 

shOwing the embedded computer and control electroniCS, Right: the digital 

readout on the rear of the hand-held optical head 

An embedded PC (TP400 system based on the National Semiconductor Geode processor, 

in a PC-104 form factor) running Windows XP was incorporated into the control box as 

shown in figure 3.22. Thi was programmed to load the control software on tartup, and 

perform a ystem check before running automatically. The u er interface comes in two 

forms. Firstly a digital readout on the rear of the optical head gives th u er a direct 

indication of th gas levels (rrun thi knes of gas cloud) in the line-of-sight of the instru­

ment; econdly an optional audio ignal gives out ontinuous beeps, the pitch of which 

corresponds to the gas ignal. 

The control oftware has been completely redeveloped. On Window tartup, a command 
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line control automatically loads the self-contained Lab VIEW program which then under­

takes system diagnostics. Once these have been completed, and everything is performing 

as required, the system then begins to lock to the methane absorption line and record 

gas levels. This program is discussed in more detail in subsection 3.5.1. A flow diagram 

showing the signal path through the software is shown in figure 3.23. 

While the instrument is measuring gas levels it is also performing system checks; to en­

sure the laser is operating and is operating in the corrret wavelength range, to ensure the 

system is receiving enough returned laser light to make a corrret reading and to ensure 

the detector is not being saturated by an external light source (e.g. the Sun). Should 

the instrument detect it is not operating correctly it will either report an errol' and await 

user correction or shut itself down to prevent damage, depending on the fault. Should 

the system shut itself down, it will be for one of three reasons (or any combination of the 

three) and the fault code it displays will indicate where the problem lies: 

User Display Laser Fail Lost Lock Lock Out Of Range 

-1 X - -

-2 - X -

-3 X X -
-4 - - X 

-5 X - X 

-6 - X X 

-7 X X X 

Should the system receive too little laser light it will display" -8", and if the detector 

becomes saturated it will display" -9". In both of these cases the system will continue to 

run, expecting the user to point the optical head in a different direction. 
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Figure 3.23: Flow diagram showing pathways through control software 

82 



Cbapter 3. Instrument Development 83 

The full system can be packaged into an aluminum flight case (550x420x200mm) for 

security and transportation and is shown in figure 3.24. 

Figure 3.24: Left: sy tern components, Right: all the component packaged into an alu­

minium flight case 

3.5.1 Self Executing Program 

The plOgram is plit into two main sections. The first antral section i a equenc of 

eleven commands which execute one after the other. Initially the system ensures the laser 

is off. Secondly, there i a pause to allow time for all of the electronics to settle. Thirdly 

the outputs from the PSD's are recorded, with the laser off, to set their zero reading as 

shown in figure 3.25. Next the laser diode is switched on. The dc signal on the reference 

channel is then read to ensure the laser is operational. An output to the user (both 

audio and on the digital output) confirms operation. The seventh stage is the stage which 

contains the second section of controls. 

This second sequence loop initially scans the laser diode, and locks to the absorption line 

as discussed in sub ection 3.4.2. Once locked the program calculates and displays gas 

concentration data, either until a fault is discovered or until a u er intervene as shown 
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Fecord zero of analogue inputs for 1f and 2f signal channels I 

Figure 3.25: Obtaining PSD outputs before laser is witched on 

in figure 3.26. Once the u er has chosen to shut down the instrument, or a fault has 

been identified, the laser is immediately switched off to prevent any pos ible damage. 

The instrument displays a negative reading to indicate why the instrument ha been shut 

down. A reading of -0.5 on the di play indicates that the in trument was shut down 

properly by the user. A fault code is calculated as shown in figure 3.27 in all other 

cases. The program will hold the fault code on the di play for 5 second , and then quit 

execution and cia e down. The command line code which called the LabVIEW program 

(on Window tartup) detect that the program has cIa ed, and initiates a Windows 

shutdown. 
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Figure 3.27: Calculating fault code to display to user 
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4. Laboratory Characterisation 

This chapter describes the various characterisation tests which were carried out to en­

sure that the instrument was performing optimally. The results obtained from the.se tests 

enabled us to ensure that each development stage of the prototype gas sensor was an 

improvement on its predecessor. 

Firstly the parallax issue arising from the offset between the laser diode and the ph(}­

todetector was investigated. The off-axis imaging performance of a Fresnel lens is much 

lower than that of a conventional lens. This has led to the optical head of the instrument 

being configured with the InGaAs detector at the centre of the Fresnel lens, and the laser 

diode being offset from it. This offset leads to a potential parallax problem whereby the 

instrument can only be optimised at one single range. 

Secondly the noise performance of the detector was characterist.'<I.. The overall sensi­

tivity of the instrument should ultimately be dependant on the sensitivity of the dett.'Ctor. 

A suitable detector has to be sourced, configured and tested to ensure it is performing as 

specified. 

Thirdly, the instrument has to be calibrated so that for a known level of returned laser 

light, the sensitivity of the instrument is known. The minimum detectable level of methane 
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depends on the amount of laser light interacting with the ga.'1 cloud. The system ha.'1 been 

characterised for a range of photocurrents incident on the detector, and this characteri­

sation graph is used as a benchmark to ensure the system is configured correctly. 

4.1 Parallax Optimisation 

An ideal setup of laser diode module and InGaAs detector would be to have them collinear. 

This would ensure that the optical head would not be sensitive to changes in range. Fur­

thermore, the optical head would work at all ranges, provided sufficient backscattercxl 

light could be collected. 

The plastic Fresnel lens is a cheap and robust method for collecting a large amount of 

back-scattered light. The off-axis performance of the lens is, however, very poor. This 

increases the importance of ensuring that the light incident on the centre of the lens is 

also incident on the detector. In other words, the detector is best positioned such that 

normally incident light is refracted by the lens and comes to a focus on the deteetor sur­

face. 

Preliminary laboratory testing, with the laser diode mounted next to (within 30null) the 

InGaAs detector, showed that at ranges of 8-lOm the returned Signal could be satisfactory 

to make measurements with a sensitivity of lOppm.m (normal reflectance off of a sheet 

of white cardboard). Maintaining the component orientation, and moving the optical 

head closer to the target showed that the light level incident on the detector increased. 

If the outgoing laser light beam was of a sufficiently large diameter, and was incident 011 

a truly diffuse reflector with the Fresnel lens and detector optimally positioned, it would 

be expected that the collected light would vary with the square of the distance. How­

ever because the optics were optimised at 10m, the instrument was not collecting light as 
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efficiently at shorter ranges; consequently the collected light was lower than expected at 

ranges other than 10m. The instrument was envisaged as having a quott.>d maximum oper­

ating distance of 10m, but clearly this value depends heavily on the backscatter material. 

To overcome any signal reduction arising from parallax, the instrument would initially be 

optimised at the longest required range. 

With the instrument working optimally at 10m, it is still possible to saturate the trall­

simpedance amplifier on the InGaAs detector when the optical head is moved to withiu 

2m of the target. This could be prevented by reducing the output gain of the amplifier, 

but would in turn reduce instrument sensitivity. Alternatively, by incre.asing the offset 

between the laser diode and the detector, the decrease in collection efficiency of the lens 

could be made to negate some of the effects of increased signal due to shorter operating 

ranges. This in turn would mean decreased methane sensitivity at intermediate distances, 

but would give the instrument a larger range of operating distances. 

The distance between the laser diode and detector was increased to 60mm so that the out­

going laser beam still originated from within the radius of the (150mm diameter) Fresnel 

lens. This ensures that at ranges approaching Om, backscattered light will still be inei­

dent on the collection lens. This increase in separation ensured that with the instrument 

optimised at 10m, when operating at shorter ranges the optical head would be far from 

optimal. This would compete with the inverse square law to ensure that the v81'iation in 

collected light levels was within the dynamic range of the detector and amplifier. 

The light collected by the Fresnel lens could be due to either background light, or light 

from the laser diode, A program was written in Lab VIEW to turn the laser diode on and 

off quickly, as discussed in subsection 4.1.1. The respective returned levels would then 

be due to either all sources, or just background light. Subtracting the background value 

from the signal received when the laser was switched on would yield the amount of light 
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incident on the detector from the laser. This value is critical to the instrument ~ellHitivity; 

the more light tbat passes through a methane escape and is picked up by the detector. 

the greater the sensitivity and accuracy of the gas reading. 

An experiment was conducted to measure how the returned laser light level .. change with 

distance, for a given laser diode and detector orientation. The instrument was aiIllt-'<i 

towards a standard reflectivity card target (7% reflectance) and the detector signal level 

was recorded. The instrument was optimised (maximum returned signal) at one distance, 

e.g. 10m. The target distance was then varied. This was repeated for 3 different optimi­

sations. 

As can be seen in figure 4.1, with the instrument optimised at 10m, the signal level due 

to laser light varies from O.036V to O.158V which is smaller than a factor of five. When 

the instrument is optimised at 5m, the largest signal is still only eight times the smallest. 

Thi .. changes the perception of how best to set up the instrument; previously the instru­

ment was optimised at the longest di<>tance possible, and worked well at shorter ranges. 

However, the trade off between the instrument working, and instrument sensitivity means 

that it is important to have the maximum sensitivity possible within the dynamic range 

of the detector/amplifier package. It is envisaged that although potentially useful to have 

the instrument capable of working over long (>lDm) ranges, it is increasingly difficult to 

accurately aim the instrument at a distant target. The majority of leak location work 

would take place by aiming the optical head a few metres forward of the operators feet. 

For this reason the instrument was optimised to work at a distance of 5m, and would 

provide more accurate readings off a larger diversity of topographic targets. 

This graph is used to ensure that the instrument has not become misaligned over time, 

or after being in transit. 
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Figure 4.1: Trade off between operating distance and parallax to achieve a suitable dy­

namic range 
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4.1.1 Laser On/Off 

The Lab VIEW program designed to rapidly toggle the laser output betwt~n on and off 

states is based around the "Ramp 2.1.vi" subroutine. This subroutine is plac(.>d within a 

while loop; the program will execute continuously until a stop command is given. Half 

of the time the laser is in the off state. The second half of the time the laser is in a 

state designated by the user. All the time the program is running, the signal voltage 

on the InGaAs detector is recorded. This signal is displayed as a gTaph every time the 

while loop restarts. Additionally, the average values for both halves of the loop are 

calculated and displayed. These values correspond to background light (when the laser is 

off), and background plus laser light (when the laser is on). The difference between the 

two calculated average values is entirely due to laser light, and thus gives an indication 

of how much laser light is collected by the system. Figure 4.2 shows the user interface for 

this Lab VIEW program. 

4.2 Detector Sensitivity 

In the 1.65 J..tm spectral region the composite transmission spectrum of methane is shown 

in figure 4.3. The individual laser diode that we have works at 1651nm. From this we 

can see that 1OOppm.m, at peak absorption, at 1651nm will produce a fractional change 

in signal of 4.4x 10-3 • Thus, a change in the received power by a factor of 4.4 x 10-3 will 

indicate the presence of lOOppm.m methane. A different way to present this information 

is that it would exptd a signal level equivalent to 227 times the noise floor of the system 

to detect the presence of 1OOppm.m methane. 

The noise on the photodiode detector provides a fundamental sensitivity limit for the 

entire system which cannot be bettered. The InGaAs photodetector and amplifier package 
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Figure 4.2: User interface of software designed to switch laser on and off 
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Figure 4.3: Methane transmission in the 1.65J.tffi region 
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used. in the optical head of the sy tem is quoted. as having a noise equivalent power (NEP) 

of 2.9xlO- 12wIJHz. This is the NEP quoted for the gain setting of 1.5xl06 VIA , 
which is the regime under which it is operating. This NEP can be used. to alculate 

a theoretical ignal level required. to detect 1ppm.m. Operating at lOms time constant 

(100Hz bandwidth, see Chapter 5) gives a noise floor of 

2.9 X lO- 11W. 

Using the given respon ivity of the InGaAs detector at l651nm gives 

2.9 X lO- 11W x O.85AjW = 2.465 x 10- 11 A. 

The current noi e in the detector is then 2.465 x 10- 11 A and a signal to noise ratio of 227 

is needed to r olve lOOppm.m methane. Thus: 

(2.465 X 10- 11
) x 227 = 5.6nA. 
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This implies that with a photocurrent of 5.6nA the system should be able to oetect 

100ppm.Ill methane. More generally, the minimum concentration fluctuation that can be 

resolvoo is given as 

Sensitivity = Constant x N EP x VBandwidth x Resposivity. 

For a detector responsivity of 0.85AjW and a linear methane fractional absorption of 

4.4% per 1000ppm.m we get the genera.l relationship: 

S 
... ( ) _ 1.93 X 104 x NEP x VBandwidth 

en81.t1,mty ppm.m - Pho ( A) . tocurrent n 
( 4.1) 

Relating this information back to figure 2.14, we see that for the given parameters 

(3% surface reflectivity) the instrument should generate enough photocurrent to resolve 

100ppm.m at ranges up to 5.5m. 

4.2.1 Backscatter From Surface 

The sensitivity of the instrument is dependant on the photocurrent genera.ted in the In­

GaAs detector. The amount of laser light incident on the detector changes not only with 

distance (figure 2.14) but also with varying topographic backscatter targets, a.., can be 

seen in table 4.l. 

The error in the measuroo angle i<; estimated to be 0.10
, and the estimated reading error 

in the reflectivity is 0.1%. Clearly a replacement surface of the same material would not 

exhibit the same reflectivity to this accuracy, so a more realistic error to consider here is of 

the order of 1%. These results are all given relative to the measured reflectivity from the 

SpectraIon sample. This sample provides better than 99% diffuse reflections, with negli­

gible specular characteristics. This removes the need for any polarisation considerations. 

A result of 50% at an angle of incidence of 750 means that the spectrometer measured 
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MATERIAL 15° to normal 45° to normal 75° to normal 

Spectralon Reference 100% 100% 100% 

White Melamine 69.3% 69.4% 50.6% 

Red Brick 59.1% 70.3% 112.3% 

Damp Red Brick 44.0% 45.3% 81.5% 

White Road Marking 58.5% 66.3% 59.1% 

Grass 45.1% 34.1% 32.1% 

Wood (Old Rough Pine) 40.0% 42.6% 70.8% 

Damp Wood 19.0% 20.4% 23.6% 

Wet Wood 9.0% 14.8% 8.6% 

Soil (Clay Type) 36.9% 50.0% 131.9% 

Damp Soil 16.4% 18.6% 56.4% 

Concrete Slab 26.8% 32.4% 53.1% 

Damp Concrete Slab 9.7% 8.1% 8.G% 

Wet Concrete Slab 5.8% 5.0% 3.1% 

Steel Bench 22.5% 6.8% 47.9% 

Grey Painted Lab Floor 13.7% 9.6% 11.8% 

Paving Bricks 13.1% 20.5% 39.3% 

Old Tarmac on Road 10.9% 13.1% 31.0% 

New Tarmac (3 Months Old) 6.5% 6.9% 18.1% 

Wet New Tarmac 3.4% 2.6% 3.3% 

Bitumen 5.3% 9.4% 15.7% 

Damp Bitumen 2.8% - -
Wet Bitumen 0.6% - -

Black PVC 3.6% 1.3% 1.3% 

Table 4.1: Comparison of the reflectivity of different surfaces with a reference, in the 

1.651.£m wavelength range of interest for methane dett-'ction 
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half as much light from the tffit surfru::e at 75° as from the Spedralon, aL"o at 75°. So, 

for example, a measurement made at 75° might show a highcr rclative reflectivity than 

one made at 45°, even though the absolute amount of light collected may be much higher 

at 45°. Over five times as much light wa.'l collected from the Spettralon at an angle of 

incidence of 15° than at an angle of incidence of 75°. 

The value of a high surface reflectivity ensures the availability of sufficient light to provide 

an accurate reading. The reflectivitiffi of a variety of real-world surfacffi have been mea­

sured relative to a reflectivity standard. The results have been compared with the design 

reflectivity figure of 5% that was used to model potential instrument performance. This 

was considered a likely worstXase reflectivity - a judgement that has been vindicated by 

these experiments. 

There are few material" that would exhibit a lower reflectivity than this figure, and even 

fewer that occur over large areas of ground. These problem surfaces include wet concrete 

and wet new tarmac, where the level of water was sufficient to give a glossy surface. In 

many cases the level of diffuse reflectivity at glancing angles of incidence was higher than 

might be expected, presumably because of inherent surface roughness and/or surface dirt. 

In all cases, the presence of water reduces the diffuse reflectivity. 

To compare the results obtained with the portable spectrometer to those which would 

be interpreted by the methane detector, an e.arly prototype instrument wa." used with 

a lOmm gas sample cell to determine the minimum detectable gas concentration from a 

given topographic target. This experiment is discussed in more detail in subsedion 6.2.2; 

the results are shown in figure 4.4. 

As is clearly shown in figure 4.4, there are few surfaces where the returned light level 

is sufficiently low to prevent the instrument resolving a gas signal equivalent to a Imm 

(lOOOppm.m) methane cloud. In wet conditions, when a surface is effectively sealed by 
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Minimum Detectable Cloud Thickness 
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Figure 4.4: Comparing real-world reflectivit ies with an early prototype pointer (lmm gas 

cloud thickness is equivalent to lOOOppm.m) 
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a thin coating of water, a gas leak will not permeate through this water barrier and no 

gas leak will be evident to any surface optical gas detection tool. In this case, gas utility 

engineers will bore holffi into the ground at various intervals to enable the ga..'> to escape. 

By measuring the gas concentrations in thffie holffi it is possible to identify a probable 

area from which the leak is originating. 

Comparing the field result with figure 4.4 givffi an indication of the light levels which can 

be expected in a field trial scenario. A gas cloud thickness of O.5mrn corresponds to a 

concentration timffi path length of 500ppm.m. Substituting this sensitivity into equation 

4.1 implies that the photocurrents generated in the InGaAs detector are of the order of 

1nA. This is close to the minimum amount of light which would still provide enough signal 

to have confidence in the output. The majority of commonly found topographic targets 

approximately provide an order of magnitude more light. 

A graph of sensitivity against photo current can be plotted which showfl the theoretical 

sensitivity limit based on equation 4.1, and which also shows for comparison the achieved 

detection sensitivity of the entire methane detection system. This graph (figure 4.5) is 

used to benchmark the system to ensure it is performing optimally. 

From the graph, the instrument has approximately one third the sensitivity that the 

quoted noise of the detector predicts. Ideally, the instrument sensitivity would be limited 

by the noise in the detector, however there are several other contributing noise sources in 

our system, such as the in-house electronics. Given the nature of all possible noise sourCt~ 

within this prototype instrument, the sensitivity achieved is commendable. 
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Sensitivity vs. Photocurrent 
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Figure 4.5: Theoretical sensitivity based on quoted detector performance compared with 

sensitivity achieved 
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5. Scanning 

This chapter describes the various design consideration employed in the construction of 

a scanning mechanism. This scanner should be a self contained unit which could he usc'(i 

as an addition to the pointer instrument. The scanner position was required to be syn­

chronised with the output from the pointer to enable an image to be construeted. This 

image could then be superimposed on top of the captured background sccnc. 

The first section of this chapter describes the theory behind the imaging requircments; 

thc frame rate necessary for suitable video performance, the required resolution of the 

scanned image and the requirement for the detected gas doud to be superimposed cor­

rectly onto a background image of the scene. 

The chapter then describes the fabrication of the optical scanning platform which accu­

rately scans a large mirror which reflects the optical path through known angles. Scanning 

scripts are preloaded onto the motor controllers, and the main control software access 

these routines. The mirror is then scanned through a known pre-progranuned routine, 

gathering gas information. At the same time, a picture is taken of the background scene. 

Finally the real time image processing outputs a picture of the background scene with 

the gas cloud superimposed; this output is updated at the necessary frame rate. 
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5.1 Imaging Requirements 

Preliminary work, performed to identify the minimum acceptable scanning frame rate, 

used a thermal imaging came.ra system to detect gas escaping against a heated hack­

ground. These video clips were high resolution (300x300 pixels) and had a frame rate of 

10Hz. The video clips could be viewed at an artificially reduced frame rate and resolution 

to determine the minimum rate needed to still identify a moving gas image. If the gas 

cloud had distorted to such an extent that it was no longer identifiable as being a simple 

distortion from the previous frame, then the generated video clip would appear overly 

jerky. 

Systematically reducing the frame rate reduced the smoothness of frame transition. but 

also lowered the demand on any scanning system. In all but the most demanding (wind 

swept) conditions, a frame rate of 1Hz was sufficient to track the movement of any par­

ticular aspect of the gas cloud, as shown in figure 5.1. Furthermore, during still ambient 

conditions, a frame rate of less than 1Hz will be sufficient. 

Having identified that sampling a fixed region of interest once every second will provide 

adequate video footage of the scene, it is also important to determine how IIlany pixels 

this region should be sampled in. This has a direct influence on the sensitivity of the 

instrument, for example a 30x30 grid has nine times as many pOints as a lOx 10 grid 

causing the finer grid to have a third of the sensitivity as the coarser one, for a fixed scan 

rate of 1Hz. This is because the instrument dwell time pel' pixel is inversely proportional 

to the number of pixels, and the instrument sensitivity is proportional to the square root 

of this pixel dwell time (time constant), 

The thermal video footage was used as a basis for modelling work, designed to investi­

gate the IIlinimum pixel resolution necessary to vL'lualise a gas leak. The raw footage 

was 300 x 300 pixels. A Lab VIEW program was written to average neighbouring pixels 
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time = Osec time = 1 sec time = 2 sec 

time=3sec time=4sec time=S sec 

Figure 5.1: Snapshots at one second intervals of a gas leak, taken with a thermal camera, 

with colour enhancement as described in subsection 2.4 
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to produce an "equivalent" image, at a given reduced resolution. This smaller image at, 

say, 10 x 10 pixels was then resampled at the original resolution. Finally this image could 

be "smoothed". This process applies a simple algorithm to each pixel sueh that the new 

value is a fraction of its original value, plus a small fraction of its neighbours, plus a 

smaller fraction of the next neighbours and so on. The resulting effect is that it is shown, 

for example, that a lOx 10 image can be resampled at 300x300 and smoothed to produce 

an image not dissimilar to the original full-quality image as shown in figure 5.2. This 

LabVIEW program was discussed in more detail in subsection 2.4.2. 

Having successfully shown that a lOxlO image (i,e 100 pixels) can be processed to look 

representative of the gas leak, and that this image needs to be updated at l(>~t once every 

second to give a satisfactory video frame rate, it is clear that a detection time constant 

of lOms is required. This is based on the assumption that any scanning motion takes 

negligible time to move between pixels. 

For a one dimensional scan, it may be sufficient to scan continuously, at a constant rate, 

while acquiring data. The data can then be divided into the relevant number of pixels and 

averaged. Scanning ten pixels in one dimension reveals that this assumption holds true. 

However, for a two dimensional scan the transition between successive rows (or columns) 

requires some extra work. There are two clear ways in which the scanning mechanism 

could move, as shown in figure 5.3. The optimum scan path will be the path which re­

quires the minimum amount of mirror movement, while the instrument is not gathering 

data. This c1f'Mly favours the path shown on the right in figure 5.3. 

Reversing the scan direction for every second row minimises the scanner movement, but 

adds further complexity when processing the acquired data to display an image. As is 

discussed in section 5.2, the additional LabVIEW code is minimal. 

The modelling of gas video clips has improved our understanding of the nature of gas 
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300 x 300 lOx 10 

time=O sec 

time = 3 sec 

time = 6 sec 

t ime = 9 sec 

Figure 5.2: Comparing original image quality with resampled, and then smoothed image. 

On the left are the original images, on the right are the imag which have 

been reduced to 10 x 10 and then processed 
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Figure 5.3: Scanning options. The instrument will be acquiring data while scanning hor­

izontally (as shown); otherwise it is moving on-the-fly to reach a data acqui­

sition start point 

leaks, and has provided specification for an effective scanning mechanism. 

5.2 Optical Scanner 

There are two distinct ways in which a scanning mechanism could accurately steer the 

pointer over a range of predefined angles. Firstly, the optical he.ad of the instrument could 

be mounted upon motorised translation stages, and aimed. Working with a frame rate 

of 1Hz, over an angle of approximately 15degrees, the forces cxert<-'tI. would be too large 

for the prototype instrument. The alternative arrangement is to scan the optical beam of 

the instrument by mounting a large mirror onto the scanning platform. For our in-house 

constructed prototype, this beam steering is by far the better option. 

A suitably powerful two dimensional scanning mechani~m was sourced, and supplied by 

Micromech. The scanner comprised many parts: the rotary stages, the d.c. motors, the 

motor controllers, the motor encoders and a power supply. Assembled, the motors (and 

attached encoders) were bolted on to the rotary stages and tripod mounted. The power 

supply and motor controllers were housed ill a ventilated metal enclosure. A rectangular 

mirror was mounted onto the rotary stages at 45degrees to the optical head. Thi" setup 
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can be seen in figures 5.4 and 5.5. 

clc.motors 

polnter ---

camera---

tripod 

controllers & 
power $upply 

Figure 5.4: Tripod mounted scanning mechanism 
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To operate, predetermined routines are written and uploaded to the motor controllers. 

These can then be called at any time from the LabVIEW control software. Two routin 

are stored in the memory of the motor controllers. Firstly, an alignment progTam, which 

when called enables the user to "nudge" the tart position of the scan so that it aligns 

with the video camera. The second routine defines the canning parameter for the line 

and pan movement of the mirror, and is shown in figure 5.6. This routine has three 

commands: HSCAN, HSTEP and VLINE. Respectively they define a horizontal scan, a 

horizontal step and a vertical line. A horizontal scan consists of doing a verti al line and 
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camera 

Figllre 5.5: Schematic of scanning mechanism 

horizontal step ten times. A schematic showing the scanner oftware is shown in figure 

5.7. 

The preloaded software i. stored in the memory of the motor controllers until called. This 

reduces the amount of communication traffic between the ontrolling PC and the anner 

system. At the beginning and end of each scanned line, the controller s nds a trigger 

pulse. Firstly, this allows for timing between the two axes. The scanner will perform 10 

steps before the second axis moves. Secondly this enables synchronisation between the 

scan position, and the gas cloud information. 

The Lab VIEW program which brings all aspects of the scanner control into a single envi­

ronment is used predominantly to read gas information from the pointer, and synchronise 

this with the position information gained from the scanner. The resulting compiled gas 

image is superimposed onto a colour image of the background scene, taken with a web­

cam. 
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jStop any program that is running 
jEraSe all program labels and declarations 

;This label is pre-defined 
jPerforms a horizontal step 
;Performs a vert cal step 
jPerforms a horizontal scan 

;Energise the axis 
;set velocity in rps 
;Set acceleration rate in rps/s 
jset deceleration rate in rps/s 
;set distance to index 

;End of STAAT sequence 

JDO HSTEP label 10 times 
j Turn off output 2 

;Turn off output 2 - we're busy! 
JDO VLINE 
;Turn on output 2 - triggers a horizontal step 
;change direction 
;wait 0.05 seconds 

iDef1ne VLINE label sequence 
;Turn off output 3 - triggers data acqus1tion 
; Execut e move 
;wait til' in position 
; Turn on output 3 
jEnd of label sequence definition 

Figure 5.6: Routine which defines Hean parameters 
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~ Alignment Routine ~ 
Toggled? 

NO~ 
Load Predefined 

Routines 

Send Trigger To 
PC 

Perform 10 
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Send Trigger To 
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Perform 1 
Horizontal Step 

Superimpose Data 
Onto Camera Image 

Allow User To 
Nudge Position 

Repeat 10 
times for 
one scan 

Go BackTo Start 
Of Scan Routine 

Figure 5.7: Schematic signal path through scanner software 
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5.3 Real Time Gas Imaging 

5.3.1 Acquiring Gas Data 

Combining work which has been described throughout this chapter takes pIa e predomi­

nantly in one main scanner control LabVIEW progTam and as such, is detailed here. 

The program starts by creating torage space (PC virtual memory) for generated images. 

All communication hardware is then initialised and cleared of any prior setting. ; the USB 

digital web-cam is activated and prepared to acquire images. Once these stages have 

completed, the program starts the scanner hardware. 

The data acquisition is continuous, receiving gas data from the pointer. This is held in 

vectors, as shown in figure 5.8. The timing i predetermined and is such that the in tru-

Figure 5.8: Trigger from scanning mechanism defines scan pattern 

ment will acquire between ten and twelve data points in the time betw n the scan start 

and scan finish triggers. The first ten data points are selected, and ·hecked to remove any 

negative values. Negative value.s can occur if the gas reading is smaller than the random 

error in the system. After receiving 10 data points (a column) , the program first checks 

to see if the column should be reversed (because of the scan pattern) , and then outputs 
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this data into a 10 x 10 array, as hown in figure 5.9. 

Figure 5.9: Building a 10 x 10 array 

This 10xlO array of gas data is then proces ed into a suitable image with a eparat 

sub-routine. Once the processing is complete, the program displays the results and . tart 

over. 

5.3.2 Processing Gas Data Into An Image 

The acquired gas data is passed into the program, together with the cam ra imag , taken 

of the background scene. Th background image is rotated , since the amcra is mounted 

on its side for convenience. The gas data is orientated and checked to make sur th 

pixel size is the same as for th background image. The gas data is then smooth d, with 

scaling, before being added to the red colour plane from the unage, as hown ill figure 

5.10. This is the same proces that is used to colour nhance the mono brome thermal 

video camera footage. The r ulting image looks identical to the image acquir d by the 
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Figure 5.10: Adding gas information to the red colour plane from the web-cam 

camera, with any detected gas being displayed as a red gas cloud superimposed onto this. 

Finally the program displays this image, within LabVIEW (figure 5.11), before closing 

down and returning to the start of the gas data acquisition. R.e ults from the canned 

Figure 5.11: Displaying resulting image 

pointer are discussed in ection 6.5. 
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6. Field Trials 

This chapter dfficribffi the field trials that were carried out in order to test the various 

demonstration instruments. The results obtained from various trials on simulated leaks 

helped to steer the progrffis of the instrument over necessary hurdles, and were uHeful 

in marking development progress. It was also necessary to demonstrate the instrumcnt 

working outwith a laboratory envirolUllent to gain confidence from other consortium part­

Ilers about the future of a potential product. 

The vast majority of field testing has taken place at Spadeadam (Cumbria, UK) which is 

an Advantica Ltd test facility. The facility at Spadeadam allows the controlled rcl('.a.<.;c of 

natural gas, and can provide instrumentation to ensure the leak area remaill~ safe (not all 

explosion risk) throughout the tffiting period. Unless otherwise specified, all field trials 

di"cussed in this chapter have taken place at Spadeadam. 

This chapter follows the same format as Chapter 3, whereby the field trials are discussed 

in chronological order to coincide with instrument development. The section headings 

are named to provide c.asy cross referencing with Chapter 3. The subsed-ions split ('.neh 

development stage into the relevant distinct experiments, where necessary. 
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6.1 Proof of Concept System 

This system consisted of an optical head and bench-top electronics (scc scction :.3.2). The 

recovered signal was recorded and displayed on a desktop computer. The optical head 

consisted of a metal enclosure which held a large, 150mrn diameter, Fresnel lens ill posi­

tion. situated at the focal point of this lens was a bare InGaAs detector; the current signal 

from the detector was amplified by a transimpedance amplifier with a current to voltage 

gain of 1 x 106 V / A. The bench-top control electronics (which consisted of a temperature 

controller, laser diode driver, phase sensitive detector, amplifier/filter unit and a power 

supply) were all housed within a flight case to provide them with some protection, as 

shown in figure 3.9. 

The preliminary laboratory tests had provided sufficient backscattered light levels to iden­

tify methane by direct absorption. Reducing the concentration x path length of methane 

to 1O,OOOppm.metre (100% methane over a 1cm path) increased the detection difficulty, 

but was more representative of a real-life scenario. Wavelength modulation spectroscopy 

(WMS) was employed as a signal recovery techniquc, to help rcducc thc cft'cct of signal 

level changes caused by fluctuations in background reflectivity. The proof of concept 

system was temperature tuned to the wavelength region of interest. A currcnt ramp 

combined with a fine modulation was applied to the laser diode. The second harmonic 

recovered signal was studied for identifying signs of methane. 

A pipe connected to a methane supply was initially vented in a clear area. The tripod 

mounted optical head was directed onto the known location of the leak, and an initial 

attempt was made to detect the presence of methane. No significant signal levels were 

recorded. This was attributed to the turbulent and blustery nature of the weather. The 

vented gas was immediately swept away by the wind, and didn't remain in any position 

long enough to be detected by the instrument (working with a response time of lOOms per 
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reading). A signal flare was released in the vicinity of the earlier leak to give an indication 

of the wind conditions, and is shown in figure 6.1. 

Figure 6.1: Signal flare released to show turbulent nature of wind conditions 

The free end of the gas pipe was buried in a half-barrel, which was then overed in a 

coarse stone aggregate, and topped with some dry sand. The had th ffect of reducing 

the vertical velocity of the escaping methane gas, which now slowly sped out from the 

sand, and is more representative of a real leak. The half-barrel was partially shielded from 

the wind by the front bucket of an industrial earth moving vehicl , as shown in figur 

6.1. With the instrument optical head downwind of the gas leak, a further att mpt was 

made to detect the presence of methane. This time, with reduced wind, the instrument 

detected the methane as it escaped the sand, before the wind carried it away. 
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Various leak rates were used , between lljmin and 10l/min, and all were detect d b th 

instrument at a range of 4m. Longer ranges were d sir d, but the instrument wa not 

easily re-optimised at longer range in the field . A creen grab from the ontrol pc i 

shown in figure 6.2, where the white line is the real-time data, and the red lin i a trace 

which was rcmrdcd in t.hc lahorat.ory for mmparison. As can hc . cen. t.hc levels of ~as 

detected were comparable, but the noise in the field is significantly increased. This i du 

to the reduction in backscattered light collected by the instrument. 

Wavelength (Arbitrary Units) 

Figure 6.2: Second harmonic trace from 4m looking at l1/min 1 ak 
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6.2 Portable System 

This system initially comprised of two metal boxes hinged together. The first box, WH ... -; 

a modified version of the optical head from section 6.1; the support electronics had been 

replaced by smaller commercially available units, and mounted in the second metal COIl­

tainer, as shown in figure 3.10. This instrument was controlled by a laptop pc. 

This system still applies a current ramp to the laser diode, to scan through the methane 

transition, but the system now contains two phase sensitive detectors (PSD's) and thus 

can simultaneously perform first and second harmonic WMS. The electronics have been 

changed accordingly to accommodate this, with two waveforms now being generated. 

6.2.1 User Methods 

Consortium partners in Malmo, Sweden have constructed a test site on which gas detection 

instruments can be evaluated. The site consists of several pits, each with several buried 

open pipes in them. The pipes are at various depths, and the pits have various fill 

and surface components, as shown in figure 6.3. Each methane pipe is connected to an 

individual meter which controls the flow rate of the escaping gas. 

The leak location was known, but the best methodology for finding an unknown leak 

source has not been established for a line of sight instrument. The pointer wa.<; equipped 

with a red laser pointer in addition and running parallel to the infrared laser diode. This 

was used to aid with aiming the instrument. The pointer was aimed around the known 

location of the methane escape as shown in figure 6.4, and the results graphed. Intuitively 

one would imagine that by pointing directly at the leak location, the highest gas signal 

would be recorded. This is only true when very close to the leak source. Further away 

(with the pointer situated downwind) as the gas cloud expands, the largest gas signal is 
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Figure 6.3: Various surfaces at Malmo t st ·ite 

received when the pointer is aimed behind the leak, as shown in figur 6.5; these values 

were recorded from a distance of 5m. 

The values plotted on figure 6.5 are the normalised 2nd harmonic p ak valu , which ar 

recorded over time. The recorded signal fluctuates heavily; w b Ii ve that th ar r a1 

fluctuations in the gas cloud as it moves around, and is not noise flu tuations, a revealed 

by thermal images. The peak value occurring at 2300ppm.metre is th maximum value 

that this instrument can display: allY greater value saturates the instrum 'TIt and so it still 

displays 2300ppm.metre. 

This result changes the wayan operator could use the instrum nt. Remaining stationary, 

and pointing in all ruredions, the highest. value does not necessarily correspond t.o t.he 

leak location. However , by following the direction given by the great st gas reading, th 

usel· will eveutually eud up at the leak location . 
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Figure 6.4: Aiming the pointer around the leak location 
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6.2.2 Real World Reflectivity 

The information gained from the very first field trial showed that more inforlllation w(~-; 

needed on the returned light levels. Information from table 4.1 indicated that most sur­

faces should provide sufficient backscattercd light to enable an accurate reading to he 

made. However, this had to be verified by the portable system. 

The metal boxes have been replaced by a grey cylindrical tube, which is more portable 

(shoulder mounted), and has the option to contain the battery power supply making the 

unit self-contained, except for the laptop pc. This shoulder mounted instrument is easy to 

aim, and so provided the ideal platform to measure the backscattered light from various 

surfaces. 

The battery powered system was held on the shoulder of the user, and remained con­

nected to the control pc, carried by a helper. The pointer wa aimed as various materials, 

approximately 5m ahead of the user, and horizontal at ground level. The backscattcrcd 

light from this grazing angle of incidence was collected by the instrument. Holding a 

1cm sample cell, filled with 100% methane, in front of the laser diode gave a wturnec\ 

signal with a particular noise level. The detection limit (signal to noise equals 1) of the 

instrument could then be calculated for each target surface (figure 4.4). 

6.2.3 Scanning Through A Gas Cloud 

The pointer instrument was tripod mounted, 5m away from a known lcak sourcc. The 

objective of this experiment was to try to identify the leak location, and to investigate 

the effect wind direction had on the signal levels. 

The pointer was initially situated downwind from the leak, assuming that having the 

pointer in the gas cloud, the signal levels would be largest and thus would provide the 



Chapter 6. Field Trials 123 

easiest detection scenario. The pointer was then positioned perpendicular to the wind 

direction, and scanned both upwind and downwind from the leak to try to identify the 

magnitude and location of the detectable gas cloud (figure 6.6 right) . 

"""'- Wind 
""----Direction 

Wind t 
Direction 

• Leak Source 

• leak Source 

Figure 6.6: (Left) Scanning parallel and then (right) perpendicular to the wind direction 

When scanning head on to the wind, the gas cloud appears very thin; the strong (ap­

proximately 8m/s) wind conditions disperse the gas very strongly in one direction. This 

makes locating the leak difficult. By scanning the pointer through the known location, 

the rise in gas signal level is clear (figure 6.7) . The transition between no gas detected, 

and gas being detected is very sharp, and is characteristic of the strong wind conditions. 

After moving the pointer to be perpendicular to the wind direction, the instrument was 

slowly scanned through the leak location. As can be seen from figure 6.8, upwind of the 

leak there is a very distinct cut-off: where no methane can be detected. Downwind from 
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Scanning Downwind (sited upwind) 
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Figure 6.7: Results when positioned parallel to the wind direction (lmm gas cloud is 

equivalent to lOOOppm.m) 
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the leak location, the gas level slowly reduces as it is dispersed by the wind. 

The fluctuations shown in figure 6.8 are fluctuations in the levels of methane pre ent 

within the line of sight of the instrument. The fluctuation are not indicative of noise 

within the system but are an artefact of the turbulent wind nature. 
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Figure 6.8: Results when positioned perpendicular to the wind direction 

6.3 Functional Cost Efficient Prototype 

This prototype system was advanced by incorporating in-house designed electronics, 

greatly reducing the overall cost of the instrument. Furthermore, the optical head and 

signal processing electronics were separated into two containers. The optical head was 
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made as light as possible, capable of being operated in one hand for a prolonged period of 

time. The support electronics were shoulder mounted and connected to the optical head 

via a multi-way shielded cable. There was still a laptop pc used to interface bctwc('ll thc 

user and instrument. 

For the first time a compact laser diode package with integrated methane reference c('l1 wa." 

used. This enabled the system to frequency lock to the centre of the methane absorption, 

maximizing the time spent monitoring for the presence of methane. 

6.3.1 Reflectivity Update 

The in-house designed electronics performed well in the laboratory, but had to be test('d 

in an outdoor environment. A similar test to before was performed, in a less rigorous 

manner, to determine the sensitivity of the instrument when collecting backscattcred 

light from a variety of different targets. A wider diversity of targets were found, with 

difficult conditions (figure 6.9). The system detected methane with a sensitivity of better 

than lOOOppm.metre from every surface that was tested; this included dirty puddles and 

wet tarmac. 

6.3.2 Comparison with Flame Ionisation Detector 

There was enough confidence in the instrument performance to compare its detection 

ability with that of the industry standard flame ionisation det.ector (FID). The FID is a 

point measurement device and sO a direct comparison of signal levels, and hence perfor­

mance, is not possible. Furthermore, strong wind conditions would favour the FID as it 

operates at ground level, and could detect gas as it escapes, before the wind disperses the 

gas cloud. 

The experiment to compare the two instruments involved performing a sweep of the ga.'i 
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Figure 6.9: Carbon coated storage tank used to test the sensitivity of the instrument 

under low backscattered-light conditions 
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leak area with the FID. The pointer was tripod mounted and, while stationary, was aimed 

at the FID (figure 6.10). As the FID user walked around the leak site, the pointer user 

remained by the pointer instrument and aimed at the FID. 

Figure 6.10: Aiming the pointer instrument at the flame ionisation d t ctor 

The time stamped output from each instrument was saved, so they can be plotted on the 

same ~raph (figure 6.11). As expected, t.he ahsolut.c recorded values c.annot. he compared 

since the instrument measure a different variable. However: the shape of each signal (over 

time) is similar, indicating that when the FID detected methane, so also did the pointer. 

Furthermore, there were no instances where one instrument detected methane and the 

other did not. Confidence is placed in the FID by the gas utilities to reliably detect a 

methane escape. This same reliability has been demonstrated by the pointer. 

The apparent larger noise in the signal from the pointer is again due to the fluctuating 

signal levels, and not. random noise fluctuations. This would also be apparent in the FID 

output if it had a faster response time, and the output wasn't time averaged over a 1 
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Figure 6.11: Comparing the FID output with the results from the pointer instrument 

(note similar performance but the pointer is operating remotely) 
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second interval. 

6.4 Technology Demonstrator 

The final in-house designed and built prototype contained the previolls electronic sys­

tems, and improved upon the system ergonomics. Emphasis was placed on improving tlw 

robustness of both the shoulder mounted case, and the optical head (figure 3.22). 

In addition to these changes, the system was reconfigured to be controlled by an em­

bedded computer system. This PC automatically starts and performs system diagnostic 

tests, before starting to record methane levels. The system now uses an audible output. 

and a digital display on the rear of the optical head to provide information back to the 

user. 

6.4.1 Bar Hole Examination 

When a surface is intact, and there is no permeable layer through which gas can escape, 

the gas will track along pipe-work, and other subterranean cavities until an opening exists. 

This presents a problem when trying to relate detected gas to the location of the leak in 

the gas pipe. For non-permeable surfaces, such as roads, the current technique is to hon' 

several holes through this layer (bar-holing) and measure the gas concentration in each. 

At the Transco depot office in Leicester, there is a small test site facility, where instru­

ments can be examined. One area of this site consists of a tarmac pathway, with buried 

pipes underneath. The pipes can simulate leaks from several different locations along the 

length of the path. The surface of the path has been bar-holed. 

The instrument was carried around the location of the bar-holes, and an attempt was 

made to measure the relative amount of methane escaping from each hole, ami hence find 
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the leak location (figure 6.12). The returned light levels from this damp tarmac surface 

Figure 6.12: Detecting gas escaping from bar-holes 

were very low, and so the sensitivity of the instrument was also low. The measured signal 

levels were all comparable, and so no conclusion could be made about the location of th 

gas leak. 

6.4.2 Blind Leak Search 

At the Transco Leicester depot, there is a pipe line with leak locations buried under 80cm 

of coarse aggregate gravel. The leak location was known to the safety officer present; but 
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not to the instrument users. 

The point.er instrument wa.<; ~iven the ta.<;k of searchin~ the area aIHl findilll!; allY pot<'llt ial 

number of separate leaks. The area in question was approximately 7m x 13m ill SiZl' 

and was without any distinguishing features. The area was scanned while thC' opC'rator 

remained stationary at the downwind side of the area. Three points of interest wen' 

noted, and marked by placing markers in the approximate areas. The operator then 

moved position, until he was perpendicular to the wind direction, and examined the area 

again. Two of the marked positions were adjusted slightly, while the third marker was 

removed completely. 

Further movement and examination of the area gained no further information. Seeking 

clarification from the safety officer revealed that one leak was directly below the first 

marker, but the second marker appeared to be someway from the second leak location 

(there were only two leaks) as shown in figure 6.13. The area was swept with an FID to 

show the actual leak locations; the FID agreed with the pointer instrument. 

Further explanation revealed that the gas from the second leak was most probably tracking 

back along the pipe because the ground was saturated by heavy rain. The pointer had 

indeed spotted the correct location of the above-ground gas, but as with other techniques 

this does not always correspond to the location of the leak. 

6.4.3 Saturation Test 

The sensitivity of the pointer instrument depends on the amount of backscattered light 

that can be collected by the Fresnel lens. By increa.<;ing amplifier gain, electronically, it. 

is possible to improve the signal to noise performance of the instrument. The electronics 

have a threshold, above which they saturate and output their maximum value. It i::; im­

portant that this will not happen during normal usc, but also that the operator is awarC' 
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Figure 6.13: Layout of Leicester depot training area 
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of this potential issue. Laboratory testing gave information about the possible maxilllulll 

returned light lev<~ls. This information wa.<; used to set the amplifier de gaill Oil the In­

GaAs detector. 

The potential also exists to saturate the optical path with sufficient methane such that 

at peak absorption no light is returned to the detector (figure 6.14). In this case. it is 

important that the dangerously high levels of methane do not cause the instrument to 

malfunction or display an erroneous reading. To aid this, the display electronics were 

scaled to have an upper threshold smaller than the instrument electronics. If the display 

was within it's working range, the instrument would still be operating normally. 

The digital output display, on the rear of the optical head, was configured to give a read­

out in units of lOOOppm.mctre (equivalent to 1mm thickness of a gas cloud). The scak 

had a maximum display of 19.999, so any greater gas signal would saturate the display. 

By examining figure 6.14 we can see that a gas signal of 19.999 would not saturate the 

optical path. The signal processing electronics could therefore withstand a greater level 

of methane in the line of sight of the instrument. 

The task was to try to saturate the display of the instrument, causing a malfunction, in 

an outdoor environment. Any gas escaping is usually quickly dispersed, so a sheltered 

environment would limit the dispersion and provide greater signal levels. At the Leicester 

depot there is an examination pit, containing a large methane pipe. Thi:-; pipe was cut, 

releasing a large flow of gas into the pit, and escaping into the atmosphere. The gas escape 

was clearly audible, and the scented additive easily smelled. The pointer was directed into 

the pit to record as large a signal as possible (figure 6.15). The largest signal recorded by 

the pointer was approximately 14000ppm.metre. At no point during the trial did it fail 

to return a high gas reading. 

The pointer instrument could not be blinded by the largest gas leak available at the Leices-
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Figure 6.14: Signal saturated by large amounts of methane 
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Figure 6.15: Trying to saturate the pointer 
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ter depot. A bigger gas leak which could provide a large enough methane' path to saturate 

the instrument wonkl he sufficiently large to he detected without instrumentation! 

6.4.4 Real World Verification 

The final consortium meeting took place in Brussels where the opportunity arose to take 

the instrument outside to try to identify a known leak. The gas company had identified 

the gas leak previously, but had not yet initiated the repair process. The information 

reported to the gas utility on the location of the leak was passed on to the users of the 

prototype pointer, and the pre-commercial instruments. This reduced the search area to 

a 30m length of pathway, about 3m wide. The instruments were used to search the given 

area for traces of methane as shown in figure 6.16. 

It was known that the gas pipes were buried under the centre of the pathway, however, 

the unbroken tarmac pathway would not let any methane permeate through. Searching 

the area revealed that methane was escaping from the boundary between the pathway 

and the neighboring grass area. Both the Glasgow and Siemens instruments agreed on 

the location of the strongest gas signal, which was verified by independent means. 

6.5 Scanning The Pointer 

The scanner platform (chapter 5) was used to rapidly scan the optical beam of the pointer 

instrument. The returned signal from the pointer was correlated with position information 

from the scanner, and a colour image of the scene. The gas information was processed 

and superimposed on top of the colour background image. 

The scanning hardware development was still in its infancy when the scanner was taken 

to the Leicester depot. Init.ially it was set.up in a confined environment, and aligned using 
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Figure 6.16: Locating a real leak location in Brussels 
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transparent bags filled with methane. Once the instrument was aligned, it was taken 

outside to the test area, and positioned roughly in the middle of the test area. Aiming 

at the pit in the ground, the gas was turned on so that a slow leak was created. Initially 

the metal pit covers were opened very slightly (figure 6.17), and a small amount of gas 

escaped. The mdallid was furt.her opened to Rllow more gas to esmpe, to see t.he dIed, 

this had on the gas image (figure 6.18). 

Figure 6.17: Narrow opening in metal pit lid 

The images clearly show the methane which has been detected, and further indicate the 

source of the gas leak. The cycle time of the scanning platform is too long to gain insight 

into the behaviour of the leak dispersion, but this can be reduced with changes to the 

software. The software changes will reduce the scan time to approximately 1 second, 

which should be quick enough to detect changes in the gas behaviour. This in turn will 

allow a more intuitive approach to locating the gas leak source. 
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Figure 6.18: Pit lid completely open allowing gas to escape freely 
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7. Commercialisation 

This chapter will discuss the commercialisation potential of the laser pointer. Every stage 

of development of the instrument was discussed with various consortium partners so that 

a route to market could be developed and then exploited. The scientific detail of the 

instrument was passed on to Siemens AG (Munich, Germany) at every development stage 

so that a pre-production prototype could be developed in tandem with the work discussed 

in this thesis. 

This chapter will primarily outline the development of the Siemens instrument, where 

direct parallels are clearly visible with the deVelopment discussed in Chapter 3. The in­

strument designed by Siemens was fabricated predominantly in-house, which may provide 

the simplest route to market. 

Secondly this chapter will outline the work performed by various consortium partners to 

promote the instrument to a wider audience. Such activities include the production of a 

brochure and the development of a web-site. 

Finally this chapter will cover the options available to the consortium mcmbers to develop 

the instrument into a saleable item, and the potential producers of such an item. 
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7.1 Pre-production Prototype 

At the outset of the project, the work performed by Rainer Strzoda at Siem(~ns AG used a 

different technique for methane detection. After several technical discussiolls, the COllsor­

tium consensus was that the WMS technique used at Glasgow was the better approach. 

A different strategy was employed so that I, at Glasgow University, would continue with 

the development of the instrument; Siemens AG would concentrate their efforts into tak­

ing my design developments, and integrating them into a pre-production prototype. For 

example, I had used a fully operational PC to control the system, so that changes could 

be made to the software throughout testing; Siemens took this resulting information and 

programmed a microprocessor for system control. 

The effect of these changes on the resulting system ensured that it wa.<; smaller, lighter 

and more power efficient than the instrument developed in Glasgow (see figure 7.1). As 

can be seen in figure 7.1, the user interface is provided by a palm-top device. This is 

connected to the internal micro-processors by way of a serial connection. The palm top 

gives a graphical readout of gas concentration with time, as well as an audible signal. 

As is also visible is figure 7.1, the laser diode module has been positioned closer to the 

optical axis of the system. This is possiLle within this instrument configuration since the 

Siemens units employed a variable gain detector amplifier. The usable dynamic range is 

thereby significantly increased. In addition, further work had been done to characterise 

the power consumption and temperature performance of the instrument as shown in table 

7.1. 
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Laser Operating Wavelength 1651nm 

Laser Output Power <10mW 

Beam Divergence 60mm @ 10m distance 

Laser Class 1 

Visible Laser wavelength 635nm 

Laser Output Power <lmW 

Laser Class 2 

Response Time lOOms 

Methane Gas Depending on reflected power, O .. >lOOOppm.m. 

Concentration Range With rising reflected power the max. 

resolvable concentration decreases 

Power Consumption 2.5. AW depending mainly 

on ambient temperature 

Operating time with 3.5 hours with rechargeable cells (2000mAh) 

one battery charge depending on ambient temperature, 

with primary cells probably longer 

Operating temperature range -10 .. +40DC 

Operating distance range > 10m depending on reflecting surface 

Lower detection limit 10-20ppm.m depending on reflecting power 

Table 7.1: Performance figures for Siemens pre-production prototype 
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Figure 7.1: Instrument developed by Siemens, based on the Glasgow design 

7.2 Advertising 

Several avenues for advertising the project have been explored. A requirement s t by 

the Ee for funding projects is that a website must be designed and maintained, which 

satisfies certain criteria. I designed and developed a website, hosted on th ptics group 

web-space (at Glasgow University). This website is very simple in architecLur , buL give 

broad information on the project, the consortium partners, and the goal which w et 

out to aehieve (see figure 7.2). A domain uarne (http://vogue.uo-ip.org) was purehaseu, 

and setup to point towards the site, but this registration may now have expired. 

Throughout the project various partners attended conferences aimed at gas utiliLies. On 

various occasions a presentation included mention of the work being conduct d on thi 

project. Because of the commercial sensitivity of the details, care had to be taken not to 

divulge too much information. To this end, and for more general advertising purpos s, a 
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Figure 7.2: Website hosted at Glasgow University 
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brochure was designed by Advantica and made public. The six pages of the brochnrc are 

shown in Appendix A. 

7.3 Marketing 

Very little can be said on this subject at present. Considerable effort has been spout 

developing the instrument into a working prototype which can be independently cvaluated 

by gas utility companies. The gas utility consortium members have provided invaluabk 

feedback in all areas, specifically those which they consider particularly important. Design 

and construction of the instrument has, at all times, taken into consideration the nceds 

of the potential end-users. 

However, the potential market of these tools is, like any business, financially constrained. 

The potential cost of a produced instrument is likely to be in the region of EUR10,OOO and 

sales likely to be limited to a couple of instruments per gas utility depot. The financial 

risk involved with proceeding with the final development of this instrument is sufficient 

to deter all but the largest companies. My belief is that consortium members such (1)0; 

Semelab would be interested in producing components for a salable instrument, but do 

not have the resources to develop, market and sell the instrument on their own. 

Whether the instrument will become a commercial success depends on too many factors 

outwith our control. One thing is certain, though, the instrument developed at Glasgow 

University has been a technological success. 
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A. Brochure 

The brochure contained within this appendix has 6 A4 sized faces. Face 1 (the front page) 

gives an indication to the nature of the content, it introduces the product. Face 2 gives an 

overview of why the work is of interest to gas utilities, and goes some way to describing 

how the work was carried out. Face 3 gives some key results, which were obtained during 

testing, and explains how these should be interpreted. Face 4 is a diagram detailing the 

project structure, showing key development stages. Face 5 puts the work into context, 

describing how the work performed in this project may have influences on future EU 

policies. Finally face 6 (the back page) gives the performance specification of the Siemens 

instrument, and references the website as a source for updated future information. 
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The Vogue Project 

Objectives 
The VOGUE project objectives were to 
provide new knowledge and instrumentation 
to aid the process of locating gas leaks from 
both high and low pressure gas mains. 
Gas distribution utilities have long wished for 
a method of visualizing gas leaks. 
A performance step change in gas leak 
detection was expected. compared With 

current techniques. VOGUE was targeted to ~ 
provide Impro~d understanding of gas leak 
behaviour through "passive" infrared (IR) 
imaging of gas leaks. supported by 
development of numerical models. The range 
of applicability of IR techniques in the field 
would be quantified. and material produced 
for training purposes. An "active" gas leak 
indicating instrument. using a remotely 
hand-held. distributed feedback (DFB) laser 
pointer was to be developed and tested in 
the laboratory and field. Novel methods of 
laser scanning to proVide gas images would be 
developed with the aim to proVide an 
instrument with marketable cost / benefits. 

leaking generated 
image of leak 

~ \ ~ ga~_\ __ 
. ...-"--

fW'~~~ 

raster scan 

Workplan and methodology 
The programme, shown in the accompanying chart. was 
structured into 10 work packages (WPs), the first two 
encompassing project management. explOitation and 
dissemination strategies. The next two technical WPs 
provide for a design specification and from expenmental 
and theoretical activities on the spatial and temporal 
characteristics of gas leak behaviour. the anticipated limits 
of practical system design A separate WP deals 
specifically with the use of passive, infra-red thermal 
imaging of gas leaks. and within this activity a field te~t 
site has been established where a series of controlled gas 
leaks from buried pipes have been examined. From this 
activity. images of a Wide range of gas leaks have been 
obtained. 

A remote active laser based pointer for gas detection was 
the key objective of the project and the many design and 
safety aspects of control"ng and managing the laser 
component have been addressed In a discrete WP. Using 
this knowledge. bench technology that can detect 
methane at low concentrations over a distance of 10m 
was the target of development In a further WP. 
Additional focus was on methods to provide a rugged, 
low-cost scanner to produce an interrogation beam for 
rapid leak location and zero gas confirmation. 

The bench-top developments have been transferred into 
a number of field prototypes in a further WP and these 
have been tested in two further WPs a) under controlled 
conditiOns in specially designed outdoor field test sites 
and b) finally in field evaluations With the gas 
utility operators. 
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Key Results 
The key results from the project 
Include the followlng:-

• Design for a hand·held laser pointer 
for gas leak detection. 

• Detailed understanding of gas leak 
behaviour through Imagll1g. 

• limits of thennallm-SIOg for gas leak detectIOn 

• Training material on gas leak detectlOf1 

• Test site for ~aluatlOn of ga. leaks 
from buned pipeS 

• Interpretation of gas concentration 
measurements u>ing a laser pointer 

• SIX prototype uMS evaluated in controlled and 
under field cond,tlC)"S 

• Demoostrator gas k!ak imaging ,)'Stem ba<ed 
on a laser pointer 

/~ '-"'J". f!'e • .,.... . ". ' ......... ~~ ). -
". ......... ", 

-- --:;: ...... ,-

1-Tec:t>nology De_,OIJ 
_ flOI/lllrumOfl1 

Assessment of Results 

I. 
""-! 
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The laser pOinter was able to Identify most leaks 
identified by conventional instruments. Correlation 
between ppm.m and ppm gas concentrations from 
conventional instruments still requires further 
interpretation. Factors that Influence performance 
include wind speed and as With conventional instruments. 
the porosity of the ground. Factors that do not affect 
performance Include sunlight and other gases. A number 
of additional benefits are seen from the use of a remote 
detector. including looking through Windows. vieWing gas 
rISers or inacceSSible locat ions, testing barholes without 
extractmg the gas sample. remotely checking an area 
before entry. etc. 

The project has Improved understanding of gas leak 
dispersion In air from buried gas pipes. particularly from 
thermal imaging. An active laser gas pointer has been 
developed to remotely detect gas from distances up to 
15m and has been extenSively demonstrated under real 
world conditions. A first commercial design for use by gas 
field engineers has prOVided encouragement for its 
broader application Within the gas industry. 
Conversion of the laser pointer unit into a scanner has 
been demonstrated in the field but further work is 
required to make a practical unit. The future potential of 
these types of unit for scanning in leak surveys and 
vehicle patrols is recognized and the consortium IS 
developIng an exploitatIon business plan 
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The Bigger Picture 

The European Dimension 
of the Problem 
The leakage of gas from distribution. t ransmission and 
storage systems is a problem which. to a greater or lesser 
degree. affects all the countries in the European Union. 
Leakage is conventionally associated with older 
distributions networks. such as may be found in the UK 
and Italy. but the problem is by no means confined to 
such systems. 

Leakage from the gas mains network is an Important ISSue 
that must be managed by the gas Industry world-wide. 
It has been estimated that approximately 90% of the 
leakage (by volume) emanates from the low pressure 
distribution mains~. The pnmary focus, for safety, cost 
and environmental reasons, has been to detect and 
reduce leakage from this part of the system. A secondary 
focus was to detect leah from higher pressure sections of 
the transmission and storage system. in which the gas may 
not be odorised. These objectives have been advanced 
by the successful development, in thiS proJect, of 
advanced gas detectors and an improved understanding 
of the behaviour of gas leaks. 

Contributions to EU Policies 

TrJilliflg 
Illlllcri lil for 
impru\ cu 
undcr.wndinll 
of ga, leal 
behoviC'>ll r 

Induding:- Inrnrmation on current & new 
methods of leak detection & Illl'llsurcmcnt 

I<;C Contract !l.0. ~;NK6-CT-2000-0005ol 
Arnendmt'Rt 0. 1 

The benefits of the project will be shared by many stakeholders, not limited to members of the consortium. 
The European gas network is becoming increasingly integrated. as pipelines are extended between different 
regions. Safety Improvements Will benefit gas customers and personnel working within the industry as well as 
others affected by explOSion hazards. QUicker and more accurate leak location will also reduce levels of 
disruption for affected people, transport networks and industries. 

A.n important aspect of the research programme has been the establishment of a new product speCification, 
test procedures and the baSIS for new working practices and European guidelines on gas leak detection. ThiS 
has required a pan-European approach. supporting European poliCies on competition. industrial development. 
environmental legislation and freedom of movement of Citizens within the community. 

Economic benefits will also be felt within the EU via the reduced cost of emergency response systems, With a 
reduction in energy costs passed to consumers. The project has provided EU industry with fundamental 
knowledge that will aid the development and use of new gas detectors. The programme has fostered 
Increased technical co-operation between European countries and required technology transfer of the 
specialist optical skills that rest In universities and SMEs. 

[1] Methane emissions. Watt Committee report number 28, prof Alan Williams (Editor) R~port of a 
worktng group appointed by the Watt Committee on En<!rgy (1994) 
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Performance Specification 

Laser operating wavelength 

Laser output power 

Beam divergence 

Laser class 

Visible laser wavelength 

laser output power 

Laser class 

Response time 

Methane gas concentration range 

Power consumption 

Operating time with one 

battery charge 
Operating temperature range 

Operating distance range 
Lower detection limit 

http://vogue.no-ip.org 

1651nm 

<10mW 

60 mm @ 10 m distance 

1 

635nm 

<lmW 

2 

10Qms 

Depending on reflected power 0 .. >1000ppm.m. With rising 

reflected power the max . resolvable concentration decreases 

2.5 .. 4 W depending mainly on ambient temperature 

3.5 hours with rechargeable cells (2000 mAh) depending on 

ambient temperature, with primary cells probably longer 
-10 +40°C 

:>10 m depending on reflecting surface 

10 -20 ppm.m depending on reflecting power 

For further Information on the Vogue product 
please contact 

RU5s Pride 
Advantica Ltd 
Ashby Road 
Loughborough 
Leicestershire 
LEll 3GR 

ADVANTICA 

Tel: ... 44 (0)1509 282761 
Fax: +44 (0)1509 283119 
Email: russell.pride@advantica.biz 

or info.uk@advantica.biz 

SGC~= .. ' r :;'WW" It/gas Electrabel0 ADVANTICA 
AOS 
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B. Published Paper 

The paper contained within this appendix was published on 13th May 2005 (J. Opt. A: 

Pure App!. Opt. 7 (2005) S420S424). The work was predominantly written by myself, 

with input from those referenced. 
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Abstract 
We ha\'e dc\eloped allll!X'n-path hand-held ~a, dele,tor incorpomting a 
di,tributed feedback InGaA, la,er diodc;1l l.bS /1 m. Incorporated intu a 
hand-held Ir,m,.xi\'cr unit. Ihe "mined la",r ocam " h'Kk",,,ltercd from 
ncarhy ,urface" ,nllc,'ted and ftX:lI'ed 01110 an ampliticd InGaA, dc(cetllf 
using a 150 mill dial11eler pla,tic Frc,ncllcn" At mnges ,)1' 4-5 Ill, a typical 
backscallercd ~ignal i, tel1\ of nannwall, of laser light. Applying ,ccond 
derivative wavelength modulati,)(l 'pcctw"opy gi\cs a sensitivity to 
methane of ocller Ihan 10 pal1, per 1I11l1ioll o\er a on" metre path length. 
A number of demon .. tration units have ocen fabricated and successfullv 
evaluated hy end ",,,rs. . 

KeY"'ord"i: methane. "a\'cknglh Illt.x.lulatinn \p.!'ctroscopy. in~trumenlation. 
infrared spectro-.:opy, relllote dete,'tion 

1. Backltruund 

The: 10",-1..'0\1. \cmolti\~ dt.:ll'..:lU.,lll \)f m\,·thanc ga:'\ ha~ \\ iJ~ U~ 
among" 11h.' l!0I' Ulilil)' ~:I,.)!lIpanic .... fr,r hoth routine pipeline 

i'''f",ctioll alld 1c~,-rcp"l1 re'p,m'c applil';ollUn' III. The 
COI1\cntioni.iI arpn,a~:h to ka~ dt.'I.:\.,tinn I' ha:-.c'd u(>,()n flame 

iOl1l/ation JCh.'&:IOP" (Fit)... t I ~ I hUI 'lK.'h lL"chnnlog} mca"'ur't.~~ 

I..~onc ... ·ntl' .. tiun ill onl~ a "inglc point. l'~ing a point ~n~lr i:-. 
probkm;ollc 111 Ihal the lea, lila) be mwl,,,,,cd, the u,cr may 
haw 10 enter f'Otcntlally l'~plo<I\'c ,tnI3I1M< and Ihat aho\'c­
gruund plpc-,"ork l."oulJ he Jini,,'ult tn aCl'C~:-', Thi .... p~,p:r 

d("tail~ th ... · dC!<ll~n dlHJ operational (X't1orma,l\,:c ,,1' .1Il llpli"'~ll 

il1~lrul1lcnt l."apal1lc \,f I1lca,uring OlC'lhanc at a range (If \('vcr.d 
metre ... with a ".-n:-'Iti\"ily dO~t~ 10 (hal n~uirL-o for delc-I.-ting (he 
almn'phcri,' oockground "f I.t> ppm. 

A \'arict~ of ;n'Lrumcnl~ txt."-Cd no optkal ahsorptilln of 
light can be configured 10 detecI j;"' 0\ or Ihe line of ,ight of 
a Iighl !>ellm, Sophi'lil'''IL-d I.I()AR in'tnlfncnh I" ha,'c heen 
rC(l<,ncd u,ing pul",d I ",CI'S. luned to Ihe r,,,onant frequency 
of the larg~1 gal", whc:n: bal'k\oC.ltIcn:d light from the g.'~ in 
the alITll)!\phl-rC gi .. "c, ht,th !!3' l'tll1(f.:ntmtit.lI1 (fn.m the ,i/C ~lf 

lhe ,i1!nal) anti nmgc (from Ihe th:la) lime I. SUl.:h in~tnllncnl' 

ar~ uMlally \'~hide m air .. rafl h.,,~d, are rarely eye-safe and 
ha\',,' OJ cn .... ur complc:\ily Ihal lim!h their \\·jdc .. prcad U'l' 

Our appnxll.'h hot .. heel} 10 db.pcn~l' with the nc~d for I.mg\.' 

infonnalion and rely on II>.: dclihcralc hack,,'allcreu signal 
ohlaincd from the gruun<.l or building ,-wer .. I rimgc of ~1111~ 
~\cr ... 1 tnt:ll"L ..... Ihcr..:by giving a lar~cr contlllU()u!'o. !'r.i~n~il. 

dell'cla"'" wilh a lo"~r ,'o"licnll1pk.ity in<tnlmeill. 

2_ Operatinlt principles of the optical gas detector 

Methane ga~ has ih slnlngcst absorption in the .\ 1011 

sJX.~lml ~&!ion. Oul ,um:~pomling laser ~uun.:('s. im:IUI..hng 
cryugcni..:all}' (ooted la.\er \lindt.'s and uptical paramctrh.: 
oscillalol'<, "xcced the cosl budget for a hund-held 'y,tcm. 
Methane has an addilional ah,orplion v, band at I.t> 1'11\ 
which. although tl\cr une order ,)f mag.niluJc wC'a,,"cf. "h.w:' 
coincide with Ihe single'mooe, 'inglc-frcquen,'y emi"iull 
w",elen!!lh of InCiaA, dislrihuled feedback 1.",1' ,liodes 141 
Funhennore, diode la".,,,, arc readily tcmIX'fature-lUned 10 

malt.'h (he nt-"'llrplion wu\'dcnglh. :'1I1t.1 ","uh""C(IHCnl l'olllmi ~,f 
their uri\'t,' i,.'UITCnI gin ...... line M:ah.- IUllin~ ~lful lhl' ~Iprion l)f 
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\\ ~\d nglh OI"du .JllOn InGaA, d'll,k 1.1' "C.1Il he readd> 
Hilled OH'r ..J fe'" j1·a t"l'n l of th":lf op:r..IlIng \\ J.\cicnglh by 
ch~'ngin£ thC'ir lem!X'r~Hurc anu o\er 'oC\C'ral GHI h~ dl:mgi ng 
Ihl! dri\\~ cunent 11",,\1.!'\ r, d.l) I . JJ~ \an.ll ion In lht!lr 

luning rMIJIllCl ~ I'" m"Jn, (hal ah,nlul{' '\J\cI'Il£lh "'I abdil~ 

i ... prohkl11allc ~lIll a \\IC .. h: \\a'Clcn~lh ... can of a gtl' hllt!J 
rcf 'rcne~ <'eli i, r~l(lllrcd Remole hand hdd g~' dClc,' lIon 
inqrumcnl, t>J,cd on J "mdar prmCiple ha'~ been rei l1~d 

previnu,l> 15. 01 . CCI1lI1lI III our appro:lch h", N:cn Ihe 
dc' clopmcnl of a 'peciJII7N 1.I'cr m<>dulc \\ h~rc Ihe g~, 

reference cell and .t"OCI~il d dCH:("lur ~Ir Integral 10 the lu .. rr 

module r:lc~agc . Thl' II1CllIh thaI uper:lll0n (If Ihe 100er al 
Ihe COITl!lI \\qJ\'c!t.;ngth " 'ontinn J h~ monllonng lh~ ,ignu l 
frnm lhc le fercnee phNOOiodc .• 111" Ihll' Ihe Intq~" I ) of the 
Icro-ga-, ~i£nal i .I"ured-a l..C) rc4uilclllt:1I1 III all ... af I) 
clilit~ll en\ lronmenl,. !'lInhenIlUI"t:. il i, lit" de\ e!oplll<nl of a 
rch:lblc \\'3\ cJt:ngth-rert:rr.:.n 'cd module tlhll ha ... ;.,Ikm cd 1J~ In 

111;\l..~ Iich.l-h::hCd n"': 'hUl~Ill~l1t' \\ hieh \\ ' pn.:'-Cnt ~rc 
Gi\~n;] tuncabk la,':1 'ClUI"("C . .1 numher I 'p..!I.' tnh,-=upi 

IcdmiqU('" l'an ~ .. JPplicc..I 10 the dCI~l:II(}n of g:3~ . in ludlng 

phoIO-" '''I ic, 171. c:l\lly ring-do\\n IHI and Clmplillld,·. 
"""'Iellglh or fn..'<lu nc) I11OOIlI.\IIOn 191 . Althou, h t" gh l) 
.... clhi ll VC to ,m311 3b .. rptlU"I;,. photo-a ou .. ti and C3\ It) 

ring-down Icchni IIC' requirc de Ii 'ulcd ,.ll11ple cit- .\IId 
arc IhcrcforL' not .. lIllcd 10 UJ " n ,p~lIh ~ pplic::uion... C .. ill£. 
" la. cr lun dc,,, II) to Ih ab,orpllon "a,ekn);lh of Ihe 
ga, could he u'Cd 10 Im)I1l lnr Ih< ab,orplion :lIId hen 
ga, On cnl rallon btll in our cnnhguratinn a ~hangc In 

dtle led po"cr :ould al 0 n c from 3 hangc '" r,lI1ge 
or back"-C3ncnng .. urf, c. rath r than ~a .. con cntl'3t1on. 

It i, 01111110n pm Ii C In u h I\U 1t0l1\ 10 rd) n a 
r pit! l110dulali n 01 Ihe IJ'cr In.:qucnc) /"J\ len)!th in th 

ncighb.lUrh{)(X1 of Ihe g.h ath '1'llOn. gi \ ing U 'oltt'Jl<'o"lng 
1I100ul.llion 111 the oelc'l"lcd IX>" cr. Ihe m:lgniludc of \\ I" h 
i 1 4!131~LI 10 the e" " on 'ellll.lllon. \\ 'hen the mOOulallOrl 

frequenc) i, w"'P ruhle 10 Ihe moJublion deplh and lars;e 
comparee! to the wit.ith of the ga' 3 rptinn, the teChnique 
i, called frcqucn,'y modulalion 'pee Ir,), .,'p~ . When Ihe 
mooul3t ion freqllcn~> i ~ ~lllal1 mp. reo 10 th modulation 
d':plh and \\ idlh of S'" .b'oO'1'lil)n. Ihe lechnique L ' :>lied 
\\.nclcnglh mooul:ui n 'peelro,cop 1101 Iloth Icchnique, 
have been \\ idd) implemenled III1 and .u-c c:lp"ble of 
IHc;I\unng ,m~11I an,orl'ti 11\ \\, Ilh ;l ...cn,lth It) :lppn:>;lching 
Ih.1 Ilioiled hy I~<! 'h I 001'" till '1U;lIi"", In the po\\er of 

Ihe la'Cr il,ell. For Ihe 'peelm,copy ,)f ga,e , ;11 al IIlt"phel i. 
p",",,,e. Ihe ah'oq l ioll \\ldlh Iyplca ll apl"""ehc, I G il l. 
Ilh:;HlIl1g Ihat Ihl' II llX.luhlliul1 irnd dcmoou lalloll rcqulrcJ 
lor fn,'qucn .' nmdui:t1ion .. pc IrOq'l'PY I" 11.x+m(lln,gi c~llI) 

h;lIlenl!ing. COli' ·4UC II II) . ,,,,,elenglh mollulal"'" " Ih.: 
n::uurJI choir' :1, ~t Ioo.pt!c lro!\c-.)pic Ie hniqlll' ~ r d.:!t('(.'l ion of 

g: .... C\ .Il atmo~phcric I rC~"'lIrc . 
lIm :nl mooul.lI ion of th.: 1:I'cr \\~l'cle ll lS l h over Ih ' 

ah"",lrptHlll lin ·· o(lhc g;, .... n: .. ult:-. In:t 1110 lulalit,ln of thcdclCCI 'd 
la'er 0<)\Hr. Ihe ph:."c and 11l11rlil "d ' or \ hieh i, " ·,,dil) 
m~a .. urcd ul;ing a lock.in·!lmplifi rr. l1l{, :tlllpl itude of the 

IIlh h"rmllnic f Ihe modulaled IXlwcr i, pr, )ponional , .... Ihe 
11th d~rh.l1h C' of the detected power. \ Vithi n our in~trumcnt 

\\c u ... c firM, .. C(.'CUlU ::lIld third ham) ni demodulation 10 gi\ l' 
rc"pc 'thely, Ihl! fir .. " ~cc(\ lId anJ third <.II.!Ji\ -;'lIj",~ .. 01 lhe 
:Ib"\.)rption ih j fum:lIol1 or \\a\'(·lcngth. Null' I h~1I it I' the 
, cunddcn\~III\C nfthc .. \' hJrm IIIC,; thai h~L' u maxlITIurll value 
:11 the \\ ~1\(·ll.:n£lh cnrrc .. pl.tIIlhng ItJ Ihl! l.·t:ll l n:: url)IC .11.,...,lrptillll 
fC.ll ur.: . 

J . I II (rument dcsi(:n 

Our i"'lnunc nt j, c tllig ll fc!d 'h an oplic..~i.d hC~lu cont~lil1ing :1 
I~",cr di\..K!c ITlmlu lc. I Cl11pcr~Hu rc C I'llro l ciCCII'. nij,,;~. CC'l IIcl'IHlIl 

lei" lind phuhx]" .. k . 11" , b couple" 1\1 " ,"p"nlle " .... nl,,'1 
00 ('unwilling the l11i1:ruprOCI.:!~'OI CUllin I. .1Il:&l nguc H' 
dlc.it:ll Inlcrf:u:e. l:I .. er diode UI i\cr :H1(1 mu lt iple 1t K..t.. - in 

:1I1;plilicrVph:I'C ,hiller, . ph()\ .... ~mph or Ihe t"lllIIplclC 

inqntlllcni " ,hown In figure I . 
The Ia-cr diode module i, mounled ill n ,wlld;, ru 14, 

pin t'ullerfl) P" kage ioc q rali ng Ihc 16 I nl11 la,cl' d,Ul]c 
moulllcd on a Ihermoelectric cooler. it 45 11\111 luca l l en~ l h 
a,ph~ric lell> 10 ("ol lill1:lIc Ihe cmi"ion froll1 Ihe frOll1 fa ' I, 
:lIld::t ~cp,l r.l1C Ilhott"Kliodc rn ni tori ng I h~ rear fflcc t cn,j"lon. 
11)c ol11l11crci. Ill' . h,ilablc moni lor pholOOiodc p.' CkllgC (TO) 
I' tilled \,"Hh methane l;~I" fOnl ling a re rCrt!Il(',(, ...:cl l frulIl "'hi h 

Ihe ol)Cral ing \\ ",,"lenglh f Ihe I:bcr can he cllntn.l li cd. The 
I IIIl11 lhl 'knc" f g'" bel'''' n Ihe d i'llic 'Ill I p; ~ :l gc \\ indo" 
giw' an uh,o'1'lion o f a pproximale ly 4 '.l· :II 165 1 nm. The 
,'pli :11 la OUI and a ph olOgraph of Ihe comple le la' r I1wdul c 
arc ,ho\\ n in ligure _. \ c ha\'e opcraled ~c \ era) n l the .. c 

module, o'er " l)Criod of one ycrtr ano h. \c found no Ilroblellh 
\\ ith the methane nh~uq)t ioll ndcrt!llcc oue to ga~ Ica lr.. agc. 

The ncar,<,o li il11~ l ed la,cr be:>111 emerges fmm Ihe opliclil 
1\C.,d "1Ie1 " "'I ~ 'CIl II " red f,..)m any ohj<'cl In Ihe h"",,, . 'l1,c 
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Top ,<I,' 
Reference 

phot0-Qd~ 8 Lascrdiode 

rue 

I 1 

PT I(xx) NTC 

Figure 3. chemali · diagnun ~ho\\ mg 'il g llOlljXilh Ihrough lhl! 
'YSlem. 

bad " 'ollcred lighl i colle led u<ing a 150 mm diameler. 
80 nllll ~ al lenglh. pla'tlC Frc<ncl len, thai loco<c, Ihe 

lighl ntll a I mill diamelcr InG. "ig'lal pholodiooe "ilh 
inlegral l>reumpli/i"r. Thl' delecl r 0< ,hielded fr m c'ce. 
<u nlighl. which would hen, i,e ,alur.lIe the amplifier, . by a 
100 non bandwidlh ti lt rcenlred at I 0 nm. Typicilily when 
poinled al a wall ur the ground 31 a d"tam: of - 5 on lhe 
haelL<.calt(!rcd <iglll,1 j, of Ih rdcr of 10-100 n\ mpared 

IO lhcnoi~ equi"ulent po\\crof thedet 'Ior f _.9p\ HL I'~ 
(1.5 x 10" A I guin .• Hl band" idlh). 

of Ihe } ICII1 i, ,\)0" n in ligur 3. 
The la cr di e dri\ cr (\Va\ elength Elc lroni ) i. hOllscd 

II ilhin Ihe ,houldcr· trapped omrol bo\ and Ihe la-..cr urrenl 
dri,'c i, fed to Ihe optical head vb a .hielded muiti ore able. 
which al<o feed. Ihe amplified ,i 'n3" from bolh monil rand 
,ignal pi lodiode b.1 I. I Ihe cOntrol bo\ The I 'r diode 
driver ""pplic, a DC urn:nlllf appro ' Imalel), 70 mA. giving 
a laser OUIPUI power of ar und 8 m\. upcrimpo<;ed upon Ihi, 
DC leve l i, a 6 \cHI. mooul:,11 n "itll :til amplirude of 6 mA, 
ufh icnllomooulatclh la,c" ,c1'ngtho\'~rthe\ Idthoflhc 

melhullc ah'orplion. Thi. rc"ri~led r."'gc ha been .clecled 10 

",clude olhcr<pe ie,. Thi" hniquc can Ix: eXI nded I delCCI 

$422 

Po1K("r up pc and 
NOtrol dC!Ctronics 

II b .. rerence del ct." I 
OC·OV~ 

II ' .. fore"", IF <ignol I 
s OV at lint centre? 

II " .. f.,.",.. 3F .1;:.", I 
• OV at line cr~? 

I" ahon butlon ~~n 

I pressed'! 

I l). Q'gn:aJ Dec:: I 
Il I. "" .. mod I."r .. , hI J 

> IOnA? 

YES 
~ 

YES hui down 
~ sysum and 

di.play cmv 

_NO C<ldc:r", 
~ dill,l»OSlics 

YES 
~ 

NO 
~ Display <rTOt"lWC 

(or usc-r inroonatiatt . 

NO 
Continue:' 10 operDte 

~ normally 

Figu~ 4. Row dmgrarn of ,Ofl\\'3rt control . 

t-

olh r ~pc ie. by u sui lablechoi 'c of lighl sour 'c operoting o"cr 
a differenl speclral m llge. 

Within the control box. Ihe DC "ollUge from Ihe O1onilor 
ph I()(hodc i, read d"ectly by Ihe microproce •• r I onfirlll 
I. <er pemti n. The pholodiodc , ignul arc demodulated 
al V".lfi u hanno nic fn:Qllen ie. uSIng Annl g uc Devicc, 
AD630 inlegmwd ircuib. Th ' monilor phOiodiode . ignnl i. 
d"l1lodulntetl at b(\lh 12 nnd 18 kH/.. TIle 12 kHl d mooulaled 
,igonl COJ1"C.'rond;. I Ihe C olld dcrivmh'c f lhe, b, rplion. a 
ignnl \ hieh is a ma:<imum and symmetric OboUlih cenl re or 

Ih ab,vrption fe"lure. and i u,ed 10 o .. linn Ihe opcrnling 
wavelenglh (lr Ihe In...: r. 111" 18 kHz demoduhllcd s ignnl 

OrTe>lJOll I 10 Ihe lhird deri'"-lli \ ", a signol which i, zero 
:llld nnli"rmmctri aooullh cenlre of th' absorpli n fcalure . 
prOl id,ng an error \ Ituge enabling Ihe software to m!'lke fill c 
"djuSlment< IU Ihe !:her w;"" lenglh. Iliai moining it exacll), UI 
Ihe ab"'rpliol1 fcalure. 
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Fi~un" 6. FII'I t kll) .111J '-t"l't,nd ~ ri~hl' harmlllll"- tJl'ITh..o\II;'III."O '(X"Clf,1 rl'-.:orlil."J fronl .he 'l~niJl dl"h.'(I(lr. 

Th(' ,i~nal )lllPl0dil'K.k· "dt'll1lxtulah.·d at fl .. tnd 12 Ub 
The (, klil dl'mlx.Jui;.ltcu 'lgn~1 " OliIlUlWk'd h~ {he ofr" .. 't 
i..'l,rrc:-.lltUlding h,thl'lllw':.1rdcpol'nJC'Il",'4,.'(,flao..cr I'H."'I.'I on Jri\c 
curn."nt anti al..·t .. a ... 111 ;)I.',,'urdh .. · m ... ·ij .. uh.· of thl' ~('ci\4,.·d I'hl'r 
pu\\,cr inl.h:pc:ndt.·r,1 of ~Hl~ n.: .. idual "'(!,lhil1\ It~ hl ,unlight nr 

l,lhel th..:nnal "'ow'cl", A h"\\"'1 1111111 i ... ~"I upon thl~ 4.,ktC:(lcd 
la ... rf ~'M'..:r ... ul'h :l411 h.,.·lov. .1 l.'l·nain Ihfl~,h(llt.f the..' ... oltwar(' 

I'i\'c, ;\ 'Iow-lighl' \I aminl'. 11 .... I ~ kill ocmn .. lul"I .. ·d 'ignal 
give ... illllt:'a,url' of the methane g.a' v. ithin tht: line llf 'light \,r 
the in~lrul1ll'nt. Tile normall,cJ gO!' .. 'on .. ·cnlrJlh)fl rcadlll!= i, 
uhl:uncd frllln Ihe rali,) ul Ihe I ~ ~Hl '" Ihe!l klil ,ignal. 

Thl!' \\ h"I..: in'lrUllll'nl j, und..:r mi •. :nlpn ...... ·C"""r L:llnth.1 

in the rOnll or 01 ,",nard k·\,c! f'\.·~mal \"'omputc:r I!\ S 

Geode ,(Xl Mill). u""JOlling under Wind."" XI' l'mfc"inllJl 
and nlllllln!,! ,,,,,,Irol ",flwan' \I nUcn wililln Ih,' LahVI!:\\' 
progmmmin~ l.'I1\'il\lOlncnt ll(l')Jl pt.l\\\'·r-up. dk' l'tlrnpUler 

uulu-tNK1 .... Hnd laul"k.'h", the f..~nntrtll ,of!" arl.', Thl~ 1,:0l1ln-.l 

~oflwarc mail1l'1in, all a~f"..-\"·1' of in'lful1lcm np.:r.tttol1. 
indudlOg ... t~u1-Ur "'\."'-IUClh.:C. h~,:klUf I~ la ..... ·r ";.I\ckngth t\l 

the ;lh"ll"f,)li{ln t'l'3tl1rt", and 1..'.dcLJlallO~ a !!:h l'nth.'cnlrallon 

... i~nal "hh:h I' Ji'pla~I.·J 1)(1 .J Ji~it;ll n."~,dout \)11 thl' Ixi,,:l 

... urfa"·l· of thl' l)ptil.'al hcaJ. '1'11(..' putpU( .... ta~c ... ", .... :!.ltt=J ",th 
all the,,,, dcnllH...lul~llion I,:in.:uil .. I .... ,,,'I lu a 11111,,' \,:on ... tant (If 

10 m" although .a~ldI11l1nal hlll.'rIII); \\ilh till' .. 'O"lro! ,ohwarc 

I~ pil'al IIIcrca't:\O Ihi, to .~OO ",'-an ideal rc'J'K)O~c limC' 
for 'her IIltrr;'K.'ti\m, During opcratilln. \ariou~ \ig.nal k\ch 
an: mOlillurco \\ ilh r~!'opc~1 lu ..::ontinnmg lu':>.:!' t}pt'r~li()n, 

\\a\den~lh Iud lind Ih .. 1 lhere is ,uflicicnl hac~,call~rcd !ighl 
10 m.Jkc an ;.&,;,:umlc r~ading. Failure in any of lhc~c a:-'lh:'Cl!oo 
fl.·Irr,ulh 111 a ~peCitl\.· cffor,'()de (\11 Ih(' ga ... n.'adin~ di ... play 
ri~un: '" \htl", , a thl\\ diagram llfth~ .... t'h\\arc ... ;oIlLHII pHlgr..tln. 

4. Laoorator)" characterization or the instrument 
performance 

Wh~n <'!'Craling "ilhin Ihe 1;loor.llory. lhe ,,,nlml ",Ihvare 
"('(liltigurcd to ~I,.·~m the la,~r wa\Clcng.lh o,.:r the ah\c'f1)tiull 
fcalure and recoro and disilla) Ih~ variuu> 'pt.-.:'rul signals on an 
external l1lonitor. Figure 5 ~h(\w~ typical tmcc, nhtaint.."lI frum 

Ih~ <k:lllodululion of Ihe reference liclcclor signal. Figun' II 
,how, I~ pl..:al Ir .. cc, "hlamed from lhe dClTKl<Iulalion of Ih" 
'ign,,1 liclcClor. 

Th)'C' "ignal'" nhtalrk-d fnlln the rcfen..'ncc phnlOditxic arc 
indl.'l'l'Jl(lcnt of g.a, in the atnmsphcre and shu\\ clearly the 
Charal."leri\lil· second and Ihird derivalive 'pc.:tru. The Irue< 
trom thl.:' ,ignal phulOJivd\.~ I~ for .a rCl.:cin,~ puw~r uf 30 II\\' 

.1IlJ .1 ga!o. f,.'(,"f,.·~nlr;,uiul1 of 1(.;,(. nmlint..-d ttl a 100 mill h:nglh l,r 
Ih~ ""alii. i.c. IIKK) ppllllll. The kcy paramelcr in d"ll'rmining 
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the ,rn~llIc'l am lint of ~:h thai c.m be rnc.hurcd i~ Ihe arnoullI 
of hack ... altered li£ht 1"C{lching the dele ' Iur. Figure 7 ~h('I\\' !\ ,I 
gr~rh of the minim um cict('ctll ble g'" con cn lrmi 11 (S:N 1:1) 
~, a fun tioll of n:cc ivcd power. The dCI' linn limil 'ellie, 
inve"cly "ilh Ihe rCllImcd lighl power, indi OIling Ihat Ihc 
') , ICm ha a con,lanl noi<e floor. Thi< i, JpproxilllJlcly 2-
3 lint . , £rc~lcr Ihan Ihal pn.'llil: lcd b)' Ihe NEP of Ihe dele ·IOr. 

5. Ficld-t.C!>1ing and evaluation of the instrument. 

For OllidOClr U>C. the o.l1rol ,ofl"arc i> conligllrrd I mainlni n 
tht.: lu'cr \\ i.l\c1cllgt h HI "' \ 0"11 the .:tb~orplion fea tur'C. The 
IlIllCCOn'lantO Ihcd ' ll1odlllmi ni, <'II03001l1<.ujXIallnglhc 
g...l~ concentration output ilbout three IIInC' per ~ :md. A 10\\ 

« 10n\\' ) recei\"d Itghl Icvcl I rig£c " a n 'gmivcconccntmlion 
di>pla of -9000 pplll m and a .unl ighl ' OIl1rnliol1 of Ihe 
delec.or " :I nellalive <Ii . pl~ ,f - S(){XI ppm Ill. Mo.,1 of Ihe 
in.:,trul1lcnt haraclcri,.-Oui n ""',I"; carriell Uti! lit an opcn ~lir lc't 
"tile Ii en,ed to undcnal;c !'tuch \\ur"-. 

The kc\ COIllP.tri,()11 i, 10 MII1 ."Irul" Ihal Ihc oplical 
in'lrumcnt ~3n gi\ e "mil;.'f rc~\ding' to a FID in\IRI11'X:nt \\ hll,' 
gh ell the addition~, 1 ~llh ~lIlwgc of remOl1! 'en\lIlg. ,jug a 
m:lnll lncllIrcd leak "uri d (\I' rc .. li," d 'pl h of~O m hcn~"'h 
Ihe ground \\C i.1\ ilcu (. FID 1I,cr 10 'p,l lr r :t u hned aren. 
I )~in£. for sig" , ot n S:'I" ~jg n .1. AI all lime ... '..uln din~ at 
"di,lancc f.j Ill. \\ dire Icd Ihe Ilc:lln of Ihc la:.er I.ghl 
from Ihe plical g.l' detcCI r atlhe AD inle!. Figur-' 8 ,how, 
the rC:Jding~ from Ihe 1\\0 t}rc' of In,tnlll1cnl pi t h.~d a, ,I 
lu. Ii n of lill\. hhuugh 1101 'IIl'Jl1ingful II) compare lit · 
POUlt ("011 clHr..tlioli mea'Ulct..! by the FlO "ilh the lnll'grated 

over pmh on cl1Irmion l1lea,urccl by Ih' oplical in'tn.lI llent 
direcil . Wl! 'co) Ihnl Ihe gCl1crn l forlll of Ihe 1\\'(\ \igl1a l, i, 
eXir 'Illely ,ionilur For Ihe la or poinler. :J Illc:t,urcmCnl of :t 
g'" loud Ihiclnc , of I mill i, equi\"Jlenl to (I ol1cenl raliol1 
lillle palh-Iength \alu of 1000 ppm m. When p.!r.lling ler 
.. Iypical range of m. Ihi- con" I lIld, III an ;11 Cr.I!;C g(l\ 
CO'K·,·nll";}lion. O\ Cf Ihe c.llore lath. onlX) ppm. 1I00Ie"er. il i, 
impon nl 10 appreciate Ihal in mO~1 "'enl" leak . ilualion\ Ihe 
gu, Ollccnl r:tlion will be lrongl) peaked in Ihe I'. inilY uflh' 
Ic:tlll>c lf. Prololype< hale been cl alualcd b) end u",'r, wlto 
1t:IIC repone I \Il1l ilar perfol1l1llncc 10 e\I'ling Ie ·ltn.)logle,. 

Il. Disc lission 

TIle do-" cqu i\ alene" uf Ihe rc:lding' from Ihe FID anJ Ihe 
Ilpl.cal i.hlrumcnt ,uggc\llhm lit opli '31111'11111'1("111 COllie! he 
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'''CO in Ihe field ", a direcl replaccmcl1l of lit . FID approa -h. 
Furthermore, Ihe rC1l1t Ie ,c."ing "apahili ty \If Iltc oplical 
i lhlrUIl1ClI1 opel1' 11/,,'\\ mode ... of u,c ~u h that the o l>craror (,,;11) 

in~pc '( a loc~ l ion thai j" difhcult (0 :ICCC". whether n g.rtnuul .... 
of geometry or :.afcty. 
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