
 
 

 

Foraging ecology and reproductive 

performance of sympatrically breeding 

larid species at a North Sea colony 

 

     
 
 
 

Gail Sheila Robertson 

 

Submitted in fulfilment of the requirements for the Degree of   

Doctor of Philosophy 

 

University of Glasgow 

College of Medical, Veterinary and Life Sciences 

Institute of Biodiversity, Animal Health and Comparative Medicine 

  



 
 

2 
 

Abstract 

Marine ecosystems provide essential goods and services to human populations, however 

anthropogenic offshore activities can adversely affect the functioning of ecosystems by 

reducing biodiversity. Temporal data on environmental fluctuations are required in order to 

implement effective ecosystem management. The health of marine ecosystems can be 

assessed using proximal measurements of biological data such as fishery catch statistics. 

However, these data are often patchily distributed and underreported. Seabirds have been 

shown to be useful indicators of the state of the marine environment. They are highly 

visible, charismatic species that are easy to count and observe in colonies and offshore 

foraging areas during the breeding season. In recent years the miniaturisation of electronic 

devices and the development of novel tracking methods have allowed a large variety of 

seabird species to be tracked to and from foraging areas and for environmental conditions 

in distant pelagic areas to be sampled. 

 It has been suggested that seabird foraging and breeding behaviour provide more 

accurate measures of environmental change than demographic parameters such as adult 

mortality and productivity, as many species are able to buffer the effects of low food 

abundance during the breeding season by increasing foraging effort. In this thesis, 

demographic and behavioural data of several sympatrically breeding larid species were 

examined over extended temporal scales and the effectiveness of these data at indicating 

environmental change are assessed.  

 Comparisons of annual fluctuations in demographic parameters were made among 

ecologically similar and dissimilar tern species breeding sympatrically at a North Sea 

colony. Species with similar foraging and breeding behaviour exhibited synchronous 

temporal population fluctuations, while dissimilar species showed no synchrony in 

population change. Similar and dissimilar species also showed differing responses to 

declines in predator abundance. To understand how seabird species with similar ecological 

requirements are able to coexist in the same area during the breeding season, foraging 

behaviour and reproductive parameters were examined among three morphologically 

similar terns (Sterna spp) breeding at the same colony. Species partitioned resources by 

both chick diet and foraging area and responded differently to increasing brood age. 

Sympatrically breeding Arctic (Sterna paradisaea) and Common Terns (S. hirundo) 

maintained comparable growth and survival rates of chicks, which suggests that species 

utilising different foraging strategies can be equally successful at raising chicks to 
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fledging.  However, Common Terns were found to exploit larger prey items with higher 

energetic contents than Arctic Terns, which may explain why this species was able to lay 

larger clutches and fledge more chicks. 

 Temporal variation in foraging behaviour was examined further in Black-legged 

Kittiwakes (Rissa tridactyla) by comparing the foraging behaviour of individuals at the 

same colony during two stages of the breeding cycle (incubation and chick-rearing) and in 

two consecutive years (2011 and 2012). Diet, foraging areas and environmental variables 

associated with foraging were found to vary significantly throughout the breeding season 

and between years, with important consequences for marine conservation policy. Parental 

resource allocation in Kittiwake broods of two also varied throughout the chick 

development period as chick demand and environmental conditions surrounding the colony 

changed. 

 This research illustrates how long-term seabird population and foraging behaviour 

data can be used to examine changes in the marine environment and to address ecological 

questions. Variation in chick demand, environmental conditions and species interactions 

can explain temporal changes in the foraging behaviour of sympatrically breeding species. 

These results also illustrate the value of considering seabird foraging behaviour when 

developing effectual offshore protected areas for marine predators.  

 

  



 
 

4 
 

Table of Contents 

 

Abstract ......................................................................................................................... 2 

List of Tables ................................................................................................................ 9 

List of Figures ............................................................................................................ 11 

List of Accompanying Material ............................................................................ 14 

Acknowledgements ................................................................................................... 15 

Author’s Declaration ............................................................................................... 16 

Chapter 1: General Introduction ......................................................................... 18 

1.1 Changes in Seabird Populations .......................................................................... 21 

1.2 Seabird Foraging Strategies ................................................................................ 21 

1.3 Factors Influencing Seabird Population Change .................................................. 23 

1.3.1 Climate Change ........................................................................................... 23 

1.3.2 Food Shortage ............................................................................................. 24 

1.3.3 Predation ..................................................................................................... 26 

1.4 Aims .................................................................................................................. 26 

Chapter 2: Methods.................................................................................................. 29 

2.1 Study Site ........................................................................................................... 29 

2.2 Conservation Management for Tern Species on Coquet ...................................... 32 

2.3 Limitations to Research on Coquet Island ........................................................... 34 

Chapter 3: Population synchrony within a seabird community ................. 36 

3.1 Abstract .............................................................................................................. 36 



 
 

5 
 

3.2 Introduction ........................................................................................................ 37 

3.3 Methods ............................................................................................................. 40 

3.3.1 Demographic Data Collection ..................................................................... 40 

3.3.2 Data Analyses .............................................................................................. 41 

3.4 Results ............................................................................................................... 43 

3.4.1 Temporal Fluctuations in Breeding Population Abundance of Tern    Species

 ............................................................................................................................. 43 

3.4.2 Changes in Large Gull Abundance and Tern Demographic Parameters ...... 49 

3.5 Discussion .......................................................................................................... 51 

Chapter 4: Resource partitioning in sympatric seabirds .............................. 59 

4.1 Abstract .............................................................................................................. 59 

4.2 Introduction ........................................................................................................ 60 

4.3 Methods ............................................................................................................. 62 

4.3.1 Colony-based Data Collection ..................................................................... 62 

4.3.2 At-sea Data Collection................................................................................. 64 

4.3.3 Data Analyses .............................................................................................. 65 

4.4 Results ............................................................................................................... 67 

4.4.1 Chick Provisioning ...................................................................................... 67 

4.4.2 Foraging Areas............................................................................................ 68 

4.4.3 Effect of Brood Age and Size on Foraging Behaviour .................................. 72 

4.5 Discussion .......................................................................................................... 75 

4.6 Supplementary Material ..................................................................................... 81 

Chapter 5: Influence of diet on reproductive success ..................................... 84 

5.1 Abstract .............................................................................................................. 84 

5.2 Introduction ........................................................................................................ 85 

5.3 Methods ............................................................................................................. 87 

5.3.1 Nest Observations ........................................................................................ 87 

5.3.2 Data Analyses .............................................................................................. 90 

5.4 Results ............................................................................................................... 93 

5.4.1 Comparing Chick Diet and Provisioning Rates ............................................ 93 

5.4.2 Comparing Reproductive Parameters .......................................................... 96 

5.5 Discussion ........................................................................................................ 101 



 
 

6 
 

Chapter 6: Temporal variation in foraging areas ......................................... 107 

6.1 Abstract ............................................................................................................ 107 

6.2 Introduction ...................................................................................................... 107 

6.3 Methods ........................................................................................................... 110 

6.3.1 GPS Tagging ............................................................................................. 110 

6.3.2 Prey Type and Adult Body Condition ......................................................... 112 

6.3.3 Environmental Variables ........................................................................... 113 

6.3.4 Data Analyses ............................................................................................ 113 

6.4 Results ............................................................................................................. 116 

6.4.1 Foraging Areas.......................................................................................... 116 

6.4.2 Prey Type and Adult Body Condition ......................................................... 122 

6.4.3 Environmental Determinants of Foraging Areas ........................................ 123 

6.5 Discussion ........................................................................................................ 126 

Chapter 7: Parental priorities vary with increasing brood age................. 134 

7.1 Abstract ............................................................................................................ 134 

7.2 Introduction ...................................................................................................... 135 

7.3 Methods ........................................................................................................... 137 

7.3.1 Study Species ............................................................................................. 137 

7.3.2 Nest Observations ...................................................................................... 138 

7.3.3 Data Analyses ............................................................................................ 139 

7.4 Results ............................................................................................................. 142 

7.4.1 Effect of Differential Resource Allocation on Growth Rate and Fledging   

Success ............................................................................................................... 142 

7.4.2 Variation in Parental Investment with Increasing Brood Age ..................... 144 

7.4.3 Variation in Intra-brood Resource Allocation with Increasing Brood Age…

 ........................................................................................................................... 146 

7.5 Discussion ........................................................................................................ 148 

Chapter 8: General Discussion ........................................................................... 156 

8.1 Seabirds as Indicators of the Marine Environment ............................................ 156 

8.2 Examining Variation in Seabird Foraging Behaviour ........................................ 158 

8.3 Problems with using Seabirds as Environmental Indicators............................... 159 



 
 

7 
 

8.4 Selecting Appropriate Indicator Species and Parameters ................................... 160 

8.5 Implications and Recommendations for Marine Conservation .......................... 161 

8.6 Concluding Remarks ........................................................................................ 164 

List of References .................................................................................................... 165 

Appendix ................................................................................................................... 214 

Abstract ................................................................................................................. 215 

Introduction ........................................................................................................... 216 

Materials and methods ........................................................................................... 218 

Study species ...................................................................................................... 218 

Oceanographic data sources .............................................................................. 219 

Oceanographic variables ................................................................................... 220 

Bird foraging areas ............................................................................................ 221 

Bird population data .......................................................................................... 223 

Statistical analysis .............................................................................................. 224 

Results ................................................................................................................... 226 

Temporal trends and correlations in oceanographic variables ........................... 226 

Models with single predictor variables ............................................................... 227 

Models with multiple predictor variables ............................................................ 227 

Climate change projections ................................................................................ 228 

Discussion .............................................................................................................. 229 

Use of estimated foraging areas ......................................................................... 229 

Physical oceanography as a driver of kittiwake productivity .............................. 230 

Climate change impacts ..................................................................................... 232 

Conclusions ........................................................................................................... 233 

Acknowledgements ................................................................................................ 234 

References ............................................................................................................. 236 

Supporting information .......................................................................................... 245 

Figure legends ........................................................................................................ 250 

Appendix S1: sensitivity analysis of threshold values used to define foraging areas

 ............................................................................................................................. .255 

References ............................................................................................................. 262 



 
 

8 
 

Appendix S2: maps of foraging area kernels used in analyses ................................. 263 

Appendix S3: results from generalised linear mixed models with Poisson error 

structure ................................................................................................................. 269 

Methods ................................................................................................................. 269 

Results ................................................................................................................... 270 

References ............................................................................................................. 281 

Appendix S4: results from models testing for trends over time, and from models 

trialling different forms of input variables .............................................................. 282 

Appendix S5: full model results from main analysis ............................................... 288 

  



 
 

9 
 

List of Tables 

Table 3. 1 Results of Pearson’s product-moment correlations with Bonferroni corrections 

calculated from detrended and standardised breeding population abundance (number of 

breeding pairs) data for each combination of tern species pair. The almost significant 

correlation between Arctic and Common Terns is highlighted in bold .............................. 46 

Table 3. 2 Results of Pearson’s product-moment correlations with Bonferroni corrections 

calculated from detrended and standardised productivity (number of fledged chicks per 

nest) data for each combination of tern species pair. Significant correlations are highlighted 

in bold ............................................................................................................................. 49 

Table 4. 1 Hatching dates, data collection start dates, mean chick ages ± SE when data 

collection began and percentage chick survival for Arctic, Common and Roseate Terns 

breeding on Coquet Island in 2011. Data were collected from 10 Arctic and Common 

Terns nests and 12 Roseate Tern nests ............................................................................. 63 

Table 4. 2 Percentage of prey types fed to chicks and lower quartiles, medians and upper 

quartiles of prey lengths (cm) and provisioning rates (deliveries per chick h
-1

) for each 

species ............................................................................................................................. 68 

Table 4. 3 Foraging trip characteristics of three tern species. Sample size (n) describes 

whether  complete tracks or both complete and incomplete tracks were used to calculate 

values. Mean max foraging distance, total distance travelled and mean trip duration were 

calculated using complete tracks only while mean bearing on leaving the colony (degrees 

where 0° = North) was calculated using both complete and incomplete tracks. Lower 

quartiles, medians, upper quartiles are given where non-parametric tests were used to 

examine differences among species and mean values ± SE are given where parametric tests 

were used. Significant differences are indicated in bold ................................................... 71 

Table 4. 4 Foraging range (95% contour) and core foraging area (25% contour) sizes (km
2
) 

for three tern species and percentage of species’ foraging areas located within those of 

Arctic Terns ..................................................................................................................... 72 

Table 4. 5 Foraging range (95% contour) and core foraging area (25% contour) sizes (km
2
) 

during early (<18 days old) and late chick-rearing (>18 days old) and percentage overlap 

between breeding stages. The ‘Overlap’ column refers to the percentage area which 

overlaps between areas used during early and late chick-rearing and the column ‘Within 

early chick-rearing’ refers to the percentage of late chick-rearing area found within that 

used during early chick-rearing by each species ............................................................... 74 

Table 5. 1 Mean ± SE clutch size, provisioning rates, energy delivery rates and number of 

chicks fledged per pair for Arctic and Common Terns breeding on Coquet Island in 2011

 ....................................................................................................................................... .95 

Table 5. 2 Output from minimum adequate model fitted using restricted maximum 

likelihood (REML) from a LMM with a normal error distribution and identity link function 

examining which variables are most significant in explaining variation in log(chick 

provisioning rate; deliveries per chick h
-1

). Random factor = Nest ID (n = 20). Random 

Intercept standard deviation = 0.16 and Residual standard deviation = 0.24. n = 42 .......... 96 



 
 

10 
 

Table 5. 3 Output from minimum adequate model fitted using restricted maximum 

likelihood (REML) from a LMM with a normal error distribution and identity link function 

examining which variables are most significant in explaining variation in chick growth rate 

(g day
-1

). Random factor = Nest ID (n = 20). Random Intercept standard deviation <0.001 

and Residual standard deviation = 1.28. n = 42 ................................................................ 98 

Table 5. 4 Output from minimum adequate model fitted using restricted maximum 

likelihood (REML) from a GLMM with a binomial error distribution and complementary 

log-log link function examining variation in the probability of a chick surviving to 

fledging. Random factor = Nest ID (n = 20). n = 42. Random Intercept standard deviation 

= 0.08 and Residual variance  = 0.01.Receiver operating characteristic (ROC) curve 

showed the model to fit the data satisfactorily (AUC = 0.92).......................................... 101 

Table 6. 1 Table comparing trip parameters at different breeding stages and in different 

years. Mean values are shown ± SE with range given in brackets. Displays results of 

likelihood ratio tests (LRTs) from LMMs where response variables were log-transformed 

for models examining differences in max foraging range and total distance travelled 

between stages/years and where random factor = Bird ID. Incubation and Chick-rearing 

2012 n = 75, Chick-rearing 2011 and 2012 n = 91 .......................................................... 118 

Table 6. 2 Output from minimum adequate binomial GLMM with a logit link function 

fitted using restricted maximum likelihood (REML) examining whether birds foraged 

further from the colony during incubation than during chick-rearing in 2012. Random 

factor = Bird ID. n = 210. ROC curve showed the model to fit the data satisfactorily (AUC 

= 0.88) ........................................................................................................................... 124 

Table 6. 3 Output from minimum adequate binomial GLMM with a logit link function 

fitted using restricted maximum likelihood (REML) examining environmental variables 

associated with foraging locations during incubation 2012. Random factor = Bird ID. n = 

90. ROC curve showed the model to fit the data satisfactorily (AUC = 0.84) ................. 125 

Table 6. 4 Output from minimum adequate binomial GLMM with a logit link function 

fitted using restricted maximum likelihood (REML) examining whether birds foraged 

further from the colony during chick-rearing in 2011 than during chick-rearing in 2012. 

Random factor = Bird ID. n = 220. ROC curve showed the model to fit the data 

satisfactorily (AUC = 0.91) ............................................................................................ 125 

Table 6. 5 Output from minimum adequate binomial GLMM with a logit link function 

fitted using restricted maximum likelihood (REML) examining environmental variables 

associated with foraging locations during chick-rearing in 2011. Random factor = Bird ID. 

n = 100. ROC curve showed the model to fit the data satisfactorily (AUC = 0.85) ......... 126 

Table 7. 1 Output from minimum adequate model fitted using restricted maximum 

likelihood (REML) from LMM with a normal error distribution and identity link function 

examining the effect of chick feeding rate (feeds h
-1

) on chick growth rate (g day
-1

). 

Random factor = Nest ID. n = 42 ................................................................................... 143 

Table 7. 2 Output from minimum adequate model fitted using restricted maximum 

likelihood (REML) from LMM with a normal error distribution and identity link function 

examining the effect of increasing brood age on log(brood feeding rate; feeds per brood h
-

1
). Random factor = Nest ID. n = 482 ............................................................................. 145 



 
 

11 
 

List of Figures 

Figure 2. 1 Location of the study site, Coquet Island (55º 20’ N, 1º 32’ W), 

Northumberland, northeast England. The first panel details the locations of study plots 

(blue shaded areas) for Arctic, Common and Roseate Terns and Black-legged Kittiwakes. 

Location of the Sandwich Tern colony and lighthouse buildings with courtyard are also 

shown .............................................................................................................................. 31 

Figure 2. 2 Aerial view of Coquet Island from the southwest showing locations of the 

lighthouse buildings, the sandy beach and low-lying central plateau. Photograph courtesy 

of Paul Morrison .............................................................................................................. 31 

Figure 2. 3 Photographs showing artificial terrace constructed for Roseate Terns on Coquet 

Island and Roseate Tern eggs in nest box provided by Coquet wardens. Photographs 

courtesy of Paul Morrison ................................................................................................ 32 

Figure 3. 1 Time series showing Arctic Tern, Common Tern, Sandwich Tern, Roseate Tern 

and large gull (Herring and Lesser Black-backed) breeding population abundance (number 

of breeding pairs) on Coquet Island from 1975 – 2013. Cubic smoothing splines were fitted 

to the data to illustrate general population trends for each species and are displayed here as 

red lines. Residual values between splines and data points were compared between tern 

species to examine interspecific synchrony in breeding abundance. One year (2003) of 

large gull breeding population abundance is missing ........................................................ 44 

Figure 3. 2 Correlations in detrended and standardised breeding population abundance for 

each tern species pair breeding on Coquet Island from 1975 – 2013 (a: Arctic and 

Common Terns; b: Arctic and Roseate Terns; c: Arctic and Sandwich Terns; d: Common 

and Sandwich Terns; e: Common and Roseate Terns; f: Sandwich and Roseate Terns). The 

straight line represents median quantile regression line (fitted using the ‘rq’ function from 

the package ‘quantreg’ in R version 3.1.2 (Koenker 2009)). Almost significant Pearson’s 

product-moment correlations with Bonferroni corrections were found for Arctic and 

Common Terns (p = 0.07) ................................................................................................ 45 

Figure 3. 3 Time series showing productivity (number of fledged chicks per nest) of Arctic, 

Common and Roseate Tern populations breeding on Coquet Island from 1991 – 2013 ..... 47 

Figure 3. 4 Correlations between tern species pairs using detrended and standardised 

productivity time series for Arctic, Common and Roseate Terns breeding on Coquet Island 

from 1991 – 2013. Straight lines represent median quantile regression lines (fitted using 

the ‘rq’ function from the package ‘quantreg’ in R version 3.1.2 (Koenker 2009)). 

Significant Pearson’s product-moment correlations with Bonferroni corrections were found 

for all three species pairs .................................................................................................. 48 

Figure 3. 5 Cross-correlation functions calculated for large gull and tern detrended and 

standardised breeding population abundance (number of breeding pairs) from 1975 – 2013 

(excluding 2003) for a) large gull and Arctic Terns, b) large gull and Common Terns, c) 

large gulls and Sandwich Terns and d) large gulls and Roseate Terns. A significant 

negative correlation (where the correlation coefficient lay outside the lower 2.5% 

confidence interval) were found at lag 0 for Roseate Terns (rt0 = -0.40). There was a 

significant positive correlation between large gull and Common Tern abundance at lag 0 

file:///C:/Users/Gail/Documents/Seabirds/Project%20Word%20docs/Thesis/Thesis_final2.docx%23_Toc410024672
file:///C:/Users/Gail/Documents/Seabirds/Project%20Word%20docs/Thesis/Thesis_final2.docx%23_Toc410024672
file:///C:/Users/Gail/Documents/Seabirds/Project%20Word%20docs/Thesis/Thesis_final2.docx%23_Toc410024672


 
 

12 
 

(rt0 = 0.51). There were no significant correlations between large gull and Sandwich Tern 

and large gull and Arctic Tern breeding population abundances at any time lag ............... 50 

Figure 4. 1 Complete and incomplete foraging tracks and dive locations for a) Arctic Terns 

(Number of track locations = 19,467; Number of dive locations = 111), b) Common Terns 

(Number of track locations = 11,136; Number of dive locations = 77) and c) Roseate Terns 

(Number of track locations = 18,001; Number of dive locations = 206) from 20 June – 1 

July 2011. Tracks are represented by solid lines and dive locations by shaded dots. Coquet 

Island is represented by a star........................................................................................... 69 

Figure 4. 2 Kernel utilisation distribution of 394 dive locations (Arctic = 111; Common = 

77; Roseate = 206) using tracks from a) 26 Arctic Terns, b) 18 Common Terns and c) 31 

Roseate Terns .................................................................................................................. 70 

Figure 4. 3 a) Relationship between log-transformed provisioning rate (deliveries per chick 

h
-1

) and brood age (days after hatching) for each tern species (black = Arctic, red= 

Common and green = Roseate). Straight lines were made using coefficients extracted from 

GLMMs and illustrate the significant interaction between Species and Brood age. b) 

Relationship between log-transformed prey length (cm) and brood age (days after 

hatching) for each tern species (black = Arctic, red= Common and green = Roseate). 

Straight lines were made using coefficients extracted GLMMs and show similar rates of 

increase in length of prey delivered to chicks with increasing brood age among species

 .................................................................................................................................... ....73 

Figure 4. 4 Kernel utilisation distribution of 470 dive locations during early (<18 days old) 

and late (>18 days old) chick-rearing for a) Arctic Terns early chick-rearing = 202 

locations; 11 tracks, b) Arctic Terns late chick-rearing = 95 locations; 11 tracks, c) 

Common Terns early chick-rearing = 96 locations; 18 tracks, d) Common Terns late chick-

rearing = 77 locations; 7 tracks ........................................................................................ 75 

Figure 5. 1 Percentage (%) of prey types delivered to Arctic and Common Tern chicks 

during the linear growth phase calculated from the total number of prey items delivered to 

chicks of each species (Arctic: sandeel = 511, sprat = 26, juvenile fish = 173, misc = 23; 

Common: sandeel = 570, sprat = 169, juvenile fish = 156, misc = 8) ................................ 94 

Figure 5. 2 Relationships between chick growth rate (g per chick day
-1

) and energy 

delivery rate per chick (kJ per chick h
-1

) for Arctic (black) and Common Terns (red). 

Straight lines represent GLMMs fitted for each species and hatching order (solid line = 

First hatched chick; dashed line = Second hatched chick; dotted line = Last hatched chick)

 ...................................................................................................................................... 100 

Figure 6. 1 Kittiwake foraging tracks during a) Incubation and Chick-rearing in 2012 and 

b) Chick-rearing in 2011 and 2012 recorded from 23 May to 3 July 2012 and 14 June to 17 

June 2011. Coquet Island (55° 20’ N, 1° 32’ W) is represented by a star ........................ 117 

Figure 6. 2 Kernel utilisation distribution of 3469 foraging locations (Incubation 2012 n = 

964 locations; Chick-rearing 2012 n = 1539 locations; Chick-rearing 2011 n = 966 

locations) using tracks from a) 9 incubating birds in 2012, b) 12 chick-rearing birds in 

2012 and c) 10 chick-rearing birds in 2011 foraging off Coquet Island. Contour plots show 

the density of locations on a 1 km² grid using a 2.5 km smoothing parameter (h) ........... 120 

Figure 6. 3 Percentage overlap between foraging ranges (95% contour) and core foraging 

areas (25% contour) during incubation and chick-rearing in 2012 and during chick-rearing 



 
 

13 
 

in 2011 and 2012 calculated using a smoothing parameter of 2.5 km and a grid size of 1 

km
2
. Coquet Island is represented by a star .................................................................... 121 

Figure 6. 4 Comparisons of total area (km
2
) covered by foraging ranges and core foraging 

areas estimated using random samples of 1 – 8 individuals (incubation 2012), 1 – 11 

individuals (chick-rearing 2012) and 1 – 9 individuals (chick-rearing 2011) for incubation 

(a, b), chick-rearing 2012 (c, d) and chick-rearing 2011 (e, f). Curved lines were fitted 

using a loess spline where α = 1.0. Standard deviations are represented by dashed lines..

 ...................................................................................................................................... 122 

Figure 7. 1 Relationship between chick growth rate (g day
-1

) and chick feeding rate (feeds 

h
-1

) during the linear growth phase for chicks of different hatching order. Straight lines 

were derived from coefficients of LMMs fitted for chicks of each hatching order .......... 144 

Figure 7. 2 Relationship between mean brood feeding rate (feeds per brood h
-1

) ± SE and 

brood age category (days after hatching). Curved line was fitted using a loess-smoothed 

spline with a second-degree polynomial where span (α) = 1.5. Broods contained two chicks 

throughout the chick-rearing period ............................................................................... 145 

Figure 7. 3 Relationship between percentage of occasions a nest was attended when an 

adult returned with food and brood age category (days after hatching) for broods aged 9 – 

40 days old .................................................................................................................... 146 

Figure 7. 4 Barplot showing the percentage of occasions first-hatched and second-hatched 

chicks were fed first during multiple feed bouts during early (4 < brood age < 20 days old) 

and late (20 < brood age < 35 days old) chick-rearing. Few data were available on which 

chick was fed first for brood ages > 35 days old as size differences between chicks were 

less clear ........................................................................................................................ 147 

Figure 7. 5 Mean proportion of feeds received by A chicks out of the total number of feeds 

delivered to broods ± SE with increasing brood age category (days after hatching). A 

horizontal line at y = 0.5 emphasises departure from equivalent feeds between chicks

 ................................................................................................................................. .....148 

 

  



 
 

14 
 

List of Accompanying Material 

Table S. 1 Output from minimum adequate model fitted using restricted maximum 

likelihood (REML) from a GLMM with a normal error distribution and logit link function 

examining which variables are most significant in explaining variation in log(provisioning 

rate; deliveries per chick h
-1

). Random factor = Nest. n = 594 .......................................... 81 

Table S. 2 Output from minimum adequate model fitted using restricted maximum 

likelihood (REML) from a GLMM with a normal error distribution and logit link function 

examining which variables are most significant in explaining variation in log(prey length; 

cm). Random factor = Nest. n = 511 ................................................................................ 82 

Appendix: Manuscript to be submitted to Global Change Biology using data collected 

during field work for this thesis………………………………………………………….214 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

15 
 

Acknowledgements 

First of all, I give my sincere thanks to my supervisors Pat Monaghan at Glasgow 

University and Mark Bolton based at the RSPB headquarters in Sandy, Bedfordshire. I am 

extremely grateful for all the help, advice and support they have given me in planning, 

carrying out and writing up my research.  

I am grateful to NERC and the RSPB for funding this project through a CASE studentship 

to the University of Glasgow (Project number: NE/I528369/1), and to JNCC and Natural 

England for funding tracking work. My deepest thanks go to staff and volunteers of Coquet 

Island RSPB Reserve, Northumberland for help and support during field work and for the 

provision of data on population abundance and breeding performance. In particular I would 

like to thank Paul Morrison (‘Captain Coquet’), Wesley Davies, Matt Butler (‘Jimmy Big 

Hand’), Adam Murphy and Hilary Brooker-Carey without whom my time on Coquet 

would not have been half as enjoyable. JNCC tracking data were collected by Kerstin 

Kober, Andy Webb, Roddy Mavor, Julie Black and Sophy Allen, with RIBs and skippers 

provided by Farne Islands Diving Charters and Farne Islands Divers. Sincere thanks go to 

James Grecian for statistical advice for Chapters 4 and 6 and for help and support 

throughout the project. I am grateful to Linda Wilson of JNCC for providing data on tern 

tracking and for providing helpful comments on Chapter 4. Thanks must also go to Dan 

Haydon, Jan Lindström, Jason Matthiopoulos, Grant Hopcraft, Paul Johnson and Sunny 

Townsend for statistical advice.  

The many people I have worked with in Glasgow, both in my office and in the department 

have provided great assistance, advice and support over the past four years. Special thanks 

go to friends and office mates (past and present) Anke Rehling, Dawn Anderson, Valeria 

Marasco, Robert Gillespie, Bart Adriaenssens, Graeme Anderson, Hannah Watson, Alex 

Robbins and Adam Cross, as well as other friends and colleagues working in the Graham 

Kerr who have made my time here so enjoyable. 

Finally I would like to thank my family for putting up with me during highs and lows and 

Niall Gauld for his continued love and support and for helping me to remember to smile.  



 
 

16 
 

Author’s Declaration 

I declare that the work in this thesis is my own, except where otherwise stated. No part of 

this thesis has been submitted as part of any other degree. The material included in this 

thesis has been produced in collaboration with co-authors as follows: 

 

Chapter 3. Robertson, G.S., Bolton, M. and Monaghan, P. Population synchrony within a 

multi-species seabird community: changes in abundance of sympatric species following the 

implementation of large gull control. Accepted for publication in PLOSONE. Initial 

concept was developed by GSR, MB and PM. Analysis was conducted by GSR with 

assistance from Dan Haydon and Jan Lindström. Manuscript was drafted by GSR and the 

final draft enhanced by MB and PM. 

 

Chapter 4. Robertson, G.S., Bolton, M., Grecian, W.J., Wilson, L.J., Davies, W. and 

Monaghan, P. 2014. Resource partitioning in three congeneric sympatrically breeding 

seabirds: foraging areas and prey utilization. The Auk 131: 434 – 446. Initial concept was 

developed by GSR, MB and PM. Colony- based data collection was undertaken and 

facilitated by GSR and WD. At-sea visual tracking was designed and initiated by JNCC 

and LJW as part of a 3-year study which ended in 2011.  Data analysis was conducted by 

GSR with assistance from WJG. Manuscript was drafted by GSR and the final draft 

enhanced by PM, MB, WJG and LJW. 

 

Chapter 5. In preparation for submission as: Robertson, G.S., Bolton, M. and Monaghan, P. 

Influence of foraging behaviour on reproductive success of two sympatrically breeding 

seabird species. Data collection was undertaken by GSR. Initial concept was developed by 

GSR, MB and PM. Analysis was conducted and manuscript drafted by GSR. The final 

draft was enhanced by MB and PM. 

  



 
 

17 
 

Chapter 6. Robertson, G.S., Bolton, M., Grecian, W.J. and Monaghan, P. 2014. Inter- and 

intra-year variation in foraging areas of breeding Kittiwakes (Rissa tridactyla). Marine 

Biology 161: 1973 – 1986. Data collection was carried out by GSR and MB. Initial concept 

was developed by GSR, PM and MB. Analysis was conducted by GSR with assistance 

from WJG and Jason Matthiopoulos. Manuscript was drafted by GSR and enhanced by 

contributions from PM, MB and WJG. 

 

Chapter 7. Robertson, G.S., Bolton, M. and Monaghan, P. Parental priorities vary with 

increasing brood age in Black-legged Kittiwakes (Rissa tridactyla); second-hatched chicks 

come to the fore. Accepted for publication in Bird Study. Data was collected by GSR. 

Initial concept was developed by GSR, PM and MB. Analysis was conducted by GSR. 

Manuscript was drafted by GSR and enhanced by contributions from MB and PM. 

 

Appendix. In preparation for submission as: Carroll, M.J., Butler, A., Owen, E., Ewing, 

S.R., Cole, T., Green, J.A., Soanes, L.M., Arnould, J.P.Y., Newton, S.F., Baer, J., Daunt, 

F., Wanless, S., Newell, M.A., Robertson, G.S., Mavor, R.A. and Bolton, M. Impacts of 

climate change on a marine apex predator: sea temperature and stratification within seabird 

foraging areas influence breeding success and could drive future declines. Global Change 

Biology. GSR contributed Kittiwake tracking data for Coquet Island and assisted in the 

improvement of the manuscript.  

 
 

  



 
 

Chapter 1 

General Introduction 

The marine ecosystem provides many essential goods and services including food 

resources, detoxification of waste products, energy production, flood defence and 

recreation and tourism (Peterson and Lubchenco 1997, Holmlund and Hammer 1999, 

Beaumont et al. 2007). As a large and increasing proportion of the world’s population lives 

close to the coast, loss of services such as flood defence can have severe consequences 

(Danielsen et al. 2005, Adger et al. 2005). Economic activities such as aquaculture, 

offshore energy production, fisheries, shipping and coastal recreation have increased in 

recent decades and this increase is expected to continue in future years (Hall 2001, Jackson 

et al. 2001, Douvere 2008, Breton and Moe 2009). Such activities can adversely affect 

marine ecosystems by reducing biodiversity in coastal and offshore areas (Thrush and 

Dayton 2002, Sala and Knowlton 2006, Halpern et al. 2008).  

 Changes in marine biodiversity can be caused directly by exploitation and habitat 

destruction or indirectly by climate change (Dulvy et al. 2003, Worm et al. 2005, Lotze et 

al. 2006). Loss of marine biodiversity impedes the effectiveness of the marine ecosystem 

to produce food, detoxify pollutants, maintain water quality and recover from 

anthropogenic activities such as overfishing and changes in climate (Worm et al. 2006). 

The decline in marine biodiversity is increasingly impairing the quality of goods and 

services the ocean environment provides, with potentially devastating outcomes for human 

populations (Duarte 2000, Worm et al. 2006). By protecting and restoring marine 

ecosystems through sustainable fishery practices, pollution control and the creation of 

offshore marine reserves, the reliability and productivity of marine goods and services may 

be maintained for future generations. Careful management is necessary to implement 

suitable controls for anthropogenic activites in protected areas and to consistently monitor 

changes in ecosystem health. 

 A key requirement for implementing ecosystem management is to obtain temporal 

data on environmental fluctuations (Botsford et al. 1997). Physical data describing the 

ocean environment tend to be noisier and more difficult to interpret than biological data 

which tend to exhibit fewer annual fluctuations (Hare and Mantua 2000, Piatt et al. 2007). 

The status of the marine environment can be assessed using distal measurements of 
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biological data (Boyd and Murray 2001), for example international fisheries catch statistics 

can be used to quantify the size of fish stocks (Deriso et al. 1985). However, catch 

statistics are often underreported, especially from illegal fisheries (Agnew et al. 2009) and 

stock biomass does not provide information on the recruitment of younger age classes into 

the population (Arnott and Ruxton 2002). Seabirds and other marine predators are highly 

sensitive to changes in prey abundance and availability, hence demographic and 

behavioural data are often used to examine changes in abundance and age structure of local 

fish populations (Cairns 1988, Einoder 2009).  

 Compared with fish and other marine animals, seabirds are highly visible and easy 

to count in breeding and foraging areas (Sydeman et al. 2006). Most species are colonial 

breeders and gather annually in large numbers at relatively few breeding sites allowing 

multiple species feeding at different trophic levels to be monitored simultaneously. Seabird 

populations have been identified as useful indicators of the health and status of marine 

ecosystems (Cairns 1988, Montevecchi 1993, Furness and Camphuysen 1997). While 

annual population fluctuations can provide some indication of environmental change 

(Morrison 1986, Temple and Wiens 1989, Barrett and Krasnov 1996), behavioural and 

reproductive parameters have been shown to be highly responsive to physical changes in 

the marine environment (Baird 1990, Montevecchi 1993, Boyd and Murray 2001, Inchausti 

et al. 2003, Wanless et al. 2005a). Quantifying changes in nest attendance of breeding 

adults, provisioning rates and the type and size of prey items delivered to chicks can 

provide a stronger and more immediate response to changes in prey abundance and 

distribution than by examining seabird population trends (Cairns 1988, Monaghan et al. 

1989, Diamond and Devlin 2003, Wanless et al. 2005a). Chick provisioning data have 

been shown to correlate with estimates of fish stocks (Montevecchi and Myers 1995, 

Davoren and Montevecchi 2003, Furness 2007) and by comparing provisioning behaviour 

of sympatrically breeding seabirds, the distribution of fish within the water column can be 

deduced (Monaghan 1996). However, care must be taken when using temporal data on 

seabird foraging and breeding behaviour to indicate change in local environmental 

conditions, as responses to environmental change can vary among sympatrically breeding 

species (Furness and Camphuysen 1997, Piatt et al. 2007). Seabirds vary in susceptibility 

to changes in the environment depending on species-specific foraging and breeding 

strategies. Also, species which coexist in the same area and exploit limited resources vary 

their foraging behaviour, diet and habitat selection in order to reduce competition. 

 Interspecific competition has long been considered to be a major factor influencing 

the structure of natural communities where species compete for similar resources (Hanski 
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1987, Ray and Sunquist 2001, Krijger et al. 2001). The effects of interspecific competition 

are considered to be density-dependent (May 1973, Minot 1981, Cairns 1989), and can 

negatively affect distribution, productivity, growth and survival of one or both competing 

species (Goldberg and Barton 1992, Dyer and Rice 1999, Gurnell et al. 2004, Carrete et al. 

2006). Ashmole (1963) proposed that growth of seabird populations can be restricted by 

density-dependent competition for food around colonies during the breeding season. This 

effect, often referred to as Ashmole’s Halo, has been confirmed by empirical evidence 

showing that seabirds can deplete local food supplies (Dann and Norman 2006, Gaston et 

al. 2007). This can have corresponding detrimental effects on annual demographic 

parameters, such as breeding success (Furness and Birkhead 1984, Birt et al. 1987, Cairns 

1988, 1989, Wakefield et al. 2013). Further studies have demonstrated a negative 

relationship between colony population size and growth rate and a positive relationship 

between foraging trip duration and colony size (Lewis et al. 2001a, b, Ainley et al. 2003). 

For communities affected by density-dependent processes, competing species can occupy 

different ecological niches by varying foraging behaviour, diet (type or size of prey), 

habitat preference or activity patterns (MacArthur 1958, Burger 1983, Ebersole 1985, 

Siemers and Schnitzler 2004, Garcia and Arroyo 2005). Hence by partitioning resources, 

species living in the same area are able to reduce interspecific competition allowing for 

coexistence (Lack 1971).  

 Competition among species and conspecifics for food and breeding areas is high in 

large multi-species assemblages (Pearson 1968, Burger 1981, Cairns 1992a). Large 

colonies are often spaced far enough apart to prevent the overlap of foraging areas used by 

conspecifics (Brown and Orians 1970, Furness and Birkhead 1984, Cairns 1989, Gordon 

and Kulig 1996, Robson et al. 2004, Wakefield et al. 2013). Interspecific competition is 

likely to be most apparent among closely related species which occupy similar ecological 

niches (May 1973, Werner and Gilliam 1984, Garcia and Arroyo 2005, Donadio and 

Buskirk 2006). Such species may reduce competition and allow limited resources to be 

shared by foraging in slightly different areas, varying dietary preferences or by exhibiting 

different breeding strategies (Schoener 1974, Croxall and Prince 1980, Swift and Racey 

1983, Garcia and Arroyo 2005). 

 In this introduction, I first describe how seabird population trends in the UK have 

changed since 1969 and how population trends vary among species. I then describe the 

main foraging strategies utilised by different seabird species, examine how foraging 

behaviour affects vulnerability to changes in the marine environment and discuss factors 
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influencing changes in seabird populations. This is followed by an outline of the aims of 

this thesis and how these have been addressed.   

1.1 Changes in Seabird Populations  

Seabirds are an important component of biodiversity in the UK with over seven million 

birds of 25 species regularly breeding (Mitchell et al. 2004). However, seabird populations 

worldwide are subject to increasing pressure from fisheries, pollution, human disturbance, 

predation and climate and oceanographic change (Aebischer et al. 1990, Carney and 

Sydeman 1999, Derraik 2002, Oro and Furness 2002, Frederiksen et al. 2004a, Scott et al. 

2006). Since annual population surveys began in the UK in 1969, many species have 

shown significant spatial and temporal changes in abundance and breeding success; some 

have shown substantial population growth, while others have declined (Monaghan 1992, 

Mitchell et al. 2004, JNCC 2012). Those showing increases in population abundance since 

1986 include Common Guillemots Uria aalge and Northern Gannets Morus bassanus, 

while Black-legged Kittiwakes (Rissa tridactyla; hereafter ‘Kittiwakes’) and particularly 

Roseate Terns Sterna dougallii have declined over the same time period. Trends in 

population abundance and breeding success can also vary spatially. More northerly 

colonies of some species have been found to exhibit greater declines in abundance and 

productivity than colonies further south (Monaghan et al. 1989, Mitchell et al. 2004). This 

has been attributed to changes in prey distribution and abundance in different regions of 

the UK (Furness 2002, Mitchell et al. 2004). It has been suggested that interspecific 

differences in susceptibility to changes in the marine environment explain variation in 

population changes among seabird species (Rolland et al. 2010, Somero 2010).  

1.2 Seabird Foraging Strategies 

Seabird species can be divided into two main groups according to their foraging strategies. 

Diving species (such as auks, Cormorants Phalacrocorax carbo and Shags Phalacrocorax 

aristotelis) forage within the water column while surface-feeding species (such as terns and 

gulls) forage at the sea surface (Pearson 1968). Surface-feeding and diving species differ in 

vulnerability to environmental change as they exhibit different diet preferences, foraging 

and breeding behaviour (Pearson 1968, Monaghan 1996, Furness and Tasker 2000). Small 

surface-feeding species such as Kittiwakes and terns (Sterna spp) have been identified as 

more vulnerable to food shortages than larger diving species as they have limited diving 



 
 

22 
 

capabilities, restricted abilities to switch to different prey types and, in the case of terns, 

comparatively short foraging ranges (Furness and Ainley 1984, Furness and Tasker 2000). 

While diving species are able to forage throughout the water column, surface-feeders are 

dependent on abiotic factors affecting the availability of prey at the surface (Monaghan 

1996, Schwemmer et al. 2009).  

 There have been significant changes in abundance, distribution, survival and 

breeding success of surface-feeding seabirds in the UK since the 1970s. Kittiwakes have 

declined by over 50% since 1986 and have shown similar declines in productivity and 

adult survival (Mitchell et al. 2004). Over a similar time period the number of Sandwich 

(Thalasseus sandvicensis), Arctic (Sterna paradisaea) and Little Terns (S. albifrons) 

breeding in Britain and Ireland have declined by ~11%, 29% and 25% respectively and 

have shown varying degrees of decline in productivity (Mitchell et al. 2004). Roseate 

Terns (S. dougallii) suffered a significant range contraction as well as a decline in 

population abundance of ~80% between 1986 and 2000. In the last 15 years there has been 

a slight increase in abundance and a significant increase in productivity of Roseate Terns 

owing to the work of conservationists at successful colonies on Rockabill, northeast 

Ireland and Coquet Island, northeast England; however this species still has a restricted 

range and breeds in only a few colonies throughout the UK (JNCC 2014). In contrast, 

diving species such as Common Guillemots and Razorbills Alca torda have shown 

increases in population over a similar time period. Guillemot abundance has increased by 

~50% since 1986 and Razorbill abundance increased by 78% from 1986 - 2003, but has 

declined slightly in recent years (JNCC 2014). 

 Several biotic and abiotic factors have been found to influence changes in seabird 

abundance and productivity, such as food availability and quality (Phillips et al. 1996, 

Wanless et al. 2005b), weather conditions (Dunn 1975, Becker and Specht 1989, 

Konarzewski and Taylor 1989) and predation pressure (Oro and Furness 2002, Jones et al. 

2008), and the impact of these factors on seabird populations are increasing due to recent 

changes in the marine environment (Montevecchi and Myers 1997, Grémillet and 

Boulinier 2009). However, sympatric species breeding at the same colony have been found 

to vary in susceptibility to environmental change depending on foraging behaviour and diet 

(Uttley et al. 1989, Inchausti et al. 2003, Chivers et al. 2012a). Those species with 

restricted diving abilities and limited diets are more severely affected by food reductions 

and adverse weather conditions than other species (Uttley et al. 1989, Furness and Tasker 

2000). 
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1.3 Factors Influencing Seabird Population Change 

1.3.1 Climate Change 

Recent changes in climate have been attributed at least in part to increases in levels of 

anthropogenic greenhouse gases in the atmosphere (Crowley 2000, Solomon et al. 2009, 

Shindell et al. 2012). The Intergovernmental Panel on Climate Change (IPCC) has reported 

an average increase of 0.74°C in global surface temperature from 1906 – 2005 and that 

global average sea levels have risen an average rate of 1.8 mm per annum from 1961 – 

2003 (IPCC 2007). The incidence of heavy rainfall has increased worldwide by 2 – 4% 

from 1906 – 2005 and the Northern Hemisphere is experiencing increasingly extreme 

weather patterns (Groisman et al. 1999, IPCC 2007, Min et al. 2011).  

 Various aspects of seabird breeding biology, including timing of breeding, 

recruitment, breeding success and adult survival, have been related to climatic conditions 

(La Cock 1986, Kitaysky and Golubova 2000, Druant et al. 2003, Inchausti et al. 2003). 

Adverse weather conditions can affect the metabolic rate of birds and negatively influence 

foraging conditions and chick survival (Taylor 1983, Sagar and Sagar 1989, Uttley et al. 

1989, Aebischer et al. 1990, Crick 2004).  

 Climate change is expected to cause a further rise in sea levels, an increase in wave 

height and is anticipated to influence oceanographic phenomena such as the North Atlantic 

Oscillation (NAO) (Bacon and Carter 1991, Mitchell 2006, Christensen and Christensen 

2003). Rising sea levels may reduce the extent of nesting habitat available to ground-

nesting seabirds such as terns, which commonly breed in coastal areas (Mitchell 2006). 

Exposed colonies close to the sea are likely to be more vulnerable to sea level rises and 

erosion than sheltered positions on cliffs. Hence, changes in available breeding habitat may 

be expected to vary among regions and among species. Studies have already reported 

increased instances of coastal bird colonies being flooded during the breeding season due 

to an increase in wave height in recent years (Brinker et al. 2007, van de Pol et al. 2010); 

the frequency of such events is likely to increase in the future according to climate model 

predictions (Dale 2005, Woth et al. 2006, Beniston et al. 2007). Other direct effects of 

climate change on seabird demographics include increased mortality due to heat stress 

(Sherley et al. 2011, Oswald and Arnold 2012), winter storm intensity (Sherley et al. 2011) 

and increases in the frequency of toxic algal blooms (Doney et al. 2012). Increased rainfall 

and wind strength have been shown to adversely affect chick mortlity in some species 

(Dunn 1975, Demongin et al. 2010), and to detrimentally affect the foraging ability of 
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adults during the breeding season (Dunn 1973, Dehnhard et al. 2013). Most climate models 

predict increases in the incidence of stormy conditions in the UK in coming years (Woth et 

al. 2006, Beniston et al. 2007).    

 The reproductive success of some UK seabird species is correlated with the NAO 

(Thompson and Ollason 2001, Frederiksen et al. 2004a), a periodic fluctuation in pressure 

gradient between the high atmospheric pressure zone over the Azores and the low pressure 

zone over Iceland (Hurrell et al. 2003). The NAO influences winter weather conditions in 

the UK and northern Europe; positive NAO indices correspond to warm and wet winter 

weather conditions and negative indices to cold dry conditions (Hurrell 1995, Hurrell and 

van Loon 1997). An increase in the frequency of positive NAO indices in Europe in recent 

decades has been linked to climate change (Hurrell 1995). Productivity of various seabird 

species breeding at colonies throughout the UK have been shown to be lower in years with 

positive winter NAO indices (Thompson and Ollason 2001, Frederiksen et al. 2004a) due 

to the effect of NAO on prey availability during the breeding season (Arnott and Ruxton 

2002). While the NAO does not directly cause changes in seabird demographics, it 

represents variation in meteorological and oceanographic conditions such as sea surface 

temperature (SST), air pressure and strength and direction of ocean currents, which can 

influence seabird mortality and breeding success via effects on primary productivity in the 

ocean and the abundance and distribution of organisms at lower trophic levels, such as fish 

species, which seabirds rely upon during the breeding season (Dalpadado et al. 2003, 

Sandvik et al. 2005). Incidences of adverse weather conditions, which can negatively affect 

winter survival and breeding success (Schreiber 2002), are also related to changes in the 

NAO. 

1.3.2 Food Shortage 

Over the last 20 – 30 years, seabird breeding success has shown spatial and temporal 

variation in the North Sea (Ratcliffe 2004). Breeding success of species such as terns and 

Kittiwakes has declined in recent decades and these declines have been especially evident 

in more northerly regions (Monaghan et al. 1989, Mitchell et al 2004). Declines in 

breeding success have been attributed to changes in food availability, particularly the 

prevalence of Lesser Sandeel (Ammodytes marinus; hereafter ‘sandeel’) (Monaghan 1992, 

Wanless et al. 1998, Furness and Tasker 2000). Sandeel distribution, abundance and 

phenology have been linked to fishery activities and to changes in climate with potentially 
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significant impacts for marine predators (Arnott and Ruxton 2002, Frederiksen et al. 

2004a, Daunt et al. 2008). 

 Previous studies have described long-term distributional shifts in several species of 

marine fish in the North Sea in response to climate change (Genner et al. 2004, Beare et al. 

2004, Perry et al. 2005). Some Clupeid species have already shown a northerly shift in 

distribution (Corten 2001). Winter sea surface temperature has been found to have a 

negative impact on sandeel recruitment (Arnott and Ruxton, 2002) and increasing sea 

temperatures affect distribution of fish within the water column, making foraging more 

difficult for surface-feeding seabirds (Dulvy et al. 2008).  

 The timing of the peak spring plankton bloom in the North Sea has shifted over the 

past 35 years and phyto- and zooplankton abundance, distribution and phenology have 

been altered due to changes in winter sea temperatures (Beaugrand et al. 2002, Beaugrand 

2004, Edwards and Richardson 2004, Sharples et al. 2006). It has been suggested that the 

recent decline in sandeel numbers in the North Sea has been driven by the effect of climate 

change on the phenology of plankton communities (Furness 2002, Edwards and 

Richardson 2004, Dulvy et al. 2008), with negative impacts on seabird breeding success 

(Frederiksen et al. 2004a, b).  

 Although changes in the oceanographic environment are thought to be the main 

driver of sandeel declines in the North Sea, industrial sandeel fisheries can have significant 

local effects on prey availability for seabirds (Monaghan 1992, Frederiksen et al. 2004a). 

After the closure of the Firth of Forth fishery in 2000, sandeel abundance increased 

significantly (Greenstreet et al. 2006) with a corresponding increase in Kittiwake breeding 

success on the Isle of May (Daunt et al. 2008). Fishery activities have been shown to 

detrimentally affect seabird breeding success and adult mortality by influencing the 

abundance of local fish populations, which many species rely on during the breeding 

season (Furness and Tasker 2000, Rindorf et al. 2000), and by causing direct mortality 

through by-catch on fishing lines and entanglement in nets (Strann et al. 1991, Tasker et al. 

2000). While the depletion of small lipid-rich fish by fisheries have led to corresponding 

declines in seabird abundance and breeding success in various areas including Peru, the 

North Sea and the Norwegian Sea (Duffy 1983, Tasker et al. 2000), the activities of 

fisheries have occasionally benefited local seabird populations by reducing the abundance 

of competing predatory fish (Tasker et al. 2000) and providing food in the form of discards 

and offal (Garthe et al. 1996, Ojowski et al. 2001). In a study by Frederiksen et al. (2006), 

productivity of four seabird species were found to be positively related to biomass of larval 

sandeel in the previous year, which suggests that birds rely on one-year-old fish to 
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successfully rear chicks. As larger fish species also feed on this age cohort, reductions in 

large fish species by fisheries may have a positive impact on seabird breeding success at 

this colony. However, other studies have suggested that the presence of industrial fisheries 

has no observable effect on seabird breeding success (Furness 2002). 

1.3.3 Predation 

Local declines in sandeel abundance can increase predation risk of seabird chicks by 

increasing the likelihood of chick neglect by parents (Wanless et al. 2005a, b) and by 

reducing availability of predators’ primary food supply (Hamer et al. 1991, Votier et al. 

2004). In Shetland, Great Skuas (Stercorarius skua) mainly feed on sandeels but a decline 

in sandeel abundance in the late 1970s increased reliance on fishery discards and seabirds 

as alternative food sources (Hamer et al. 1991). 

 Ground-nesting seabirds such as terns are particularly vulnerable to predation from 

mammalian predators (Clode and MacDonald 2002, Sanders and Maloney 2002), but also 

lose eggs and chicks to aerial predators (Shealer and Burger 1992, Becker 1995, Yorio and 

Quintana 1997). The effect of predation on breeding population abundance and 

productivity may be expected to vary among sympatrically breeding terns, as species show 

consistent interspecific differences in nesting behaviour and predator defence strategies 

(Burger and Gochfeld 1988a, Yorio and Quintana 1997, Jones et al. 2008). Black-headed 

Gulls (Chroicocephalus ridibundus), Common (Sterna hirundo) and Arctic Terns have 

been shown to behave more aggressively towards predators than Sandwich Terns (Fuchs 

1977), which respond to the threat of predation by forming denser colonies and becoming 

less likely to flush from nests (Cullen 1960, Fuchs 1977). Sandwich Terns commonly 

associate with other species to benefit from predator defence strategies (Fuchs 1977).  

1.4 Aims 

The main aim of this thesis is to investigate intra- and interspecific variation in foraging 

behaviour and demographic parameters in a multi-species seabird community, examine 

how variation in foraging behaviour affects reproductive parameters, and to consider the 

implications of these findings for seabird conservation. The utility of seabirds as indicators 

of change in the marine ecosystems is then evaluated. These aims are addressed by 

examining long-term data sets of tern species and their predators breeding on Coquet 

Island, northeast England and by examining changes in foraging behaviour and 
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reproductive parameters of three tern species and Black-legged Kittiwakes breeding at the 

same colony during the breeding season in 2011 and 2012. It has been previously shown 

that seabird foraging behaviour can vary temporally as well as among sympatrically 

breeding species (Duffy 1986, Weimerskirch et al. 1993, Mori and Boyd 2004, Chivers et 

al. 2013). However, many previous studies have examined foraging behaviour in only two 

sympatric seabirds and have limited their investigations to a single stage of the breeding 

season (Duffy 1986, Lewis et al. 2002, Lance and Thompson 2005, Weimerskirch et al. 

2007). This project aims to expand on previous research by examining foraging behaviour 

over longer temporal periods and in several sympatrically breeding species, as well as 

examining how foraging ecology influences vulnerability of seabirds to environmental 

change. I make recommendations for the extent and location of MPAs to represent 

foraging areas of seabird species breeding on Coquet Island. 

 The history of research and conservation on Coquet Island is explored in Chapter 2 

and details are given of the limitations affecting field work at this site. Chapter 3 examines 

inter-annual variation in demographic parameters of four sympatric tern species breeding 

on Coquet Island from 1975 – 2013 and investigates the extent to which changes in 

predator abundance influence temporal fluctuations in breeding population abundance and 

productivity. The next four chapters are based on observational and tracking data collected 

on Coquet Island during field work from May – July 2011 and 2012. Chapter 4 examines 

resource partitioning in three sympatric tern species breeding on Coquet by comparing diet 

and habitat use throughout the chick-rearing period. This work extends previous studies by 

examining mechanisms used to partition resources in several morphologically similar 

sympatric species, and employs a more accurate tracking method than has been previously 

used to identify tern at-sea foraging areas. Chapter 5 examines how interspecific variation 

in foraging behaviour influences chick growth, survival and fledging success in two 

sympatrically breeding tern species and improves upon previous studies by quantifying 

changes in several reproductive parameters. Chapter 6 compares the size and location of 

foraging areas used by Kittiwakes breeding on Coquet Island in different years and 

breeding stages and highlights the value of such studies for identifying useful MPAs for 

seabirds. Chapter 7 investigates intra-brood parental resource allocation in broods of two 

Kittiwake chicks on Coquet Island and examines how parental investment varies with 

increasing brood age. Chapter 8 discusses the use of seabirds as biological indicators, 

summarises the findings of the data chapters and considers the implications of this work 

for marine conservation. 
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Chapter 2 

Methods 

As we used several different methods when collecting data, detailed descriptions of 

methods are available in respective data chapters. Data were collected from several seabird 

species (Arctic Sterna paradisaea, Common S.hirundo and Roseate Terns S.dougallii and 

Black-legged Kittiwakes Rissa tridactyla) breeding at the same study site, Coquet Island, 

Northumberland, England (55° 20’ N, 1° 32’ W) from May – July 2011 and 2012. Long-

term data on breeding population abundance and productivity for four tern species (Arctic, 

Common, Roseate and Sandwich Terns Thalasseus sandvicensis) and two large gull 

species (Lesser Black-backed Gulls Larus fuscus and Herring Gulls L. argentatus) were 

available on Coquet from 1975 and 1991 respectively (data were downloaded from 

www.jncc.defra.gov.uk/page-4460 and were available from RSPB unpubl. data.). This 

chapter describes the history and ecology of the study site and the limitations affecting 

research on Coquet Island. 

2.1 Study Site 

Coquet Island is a small (5 ha) low-lying island approximately 1 – 2 miles off the coast of 

Northumberland, northeast England, 30 kilometres south of the Farne Islands (55º 20’ N, 

1º 32’ W; Figure 2. 1). The island has multiple habitats for breeding seabirds including 

sandy and pebble beaches at the south end, low-lying areas in the centre and small cliffs <7 

m in height on the eastern side (Figure 2. 2). Terns breed in specially maintained plots 

close to the lighthouse at the southwestern edge of the island, while Kittiwakes breed on 

the small cliffs on the east side of the island (Figure 2. 1). Coquet is a Site of Special 

Scientific Interest (SSSI) and a Special Protected Area (SPA) under European Law for 

aggregations of breeding seabirds and has been managed as a reserve for four nationally 

and internationally important tern species by the Royal Society for the Protection of Birds 

(RSPB) since 1970. The island currently supports approximately 1000 pairs of Sandwich 

Terns, 70 – 80 pairs of Roseate Terns, 1200 pairs of Common Terns and 1100 pairs of 

Arctic Terns (RSPB unpubl. data. 2013). Coquet Island also supports significant numbers 

of breeding Northern Fulmars Fulmaris glacialis (70 pairs), Puffins Fratercula arctica 

http://www.jncc.defra.gov.uk/page-4460
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(15,000 pairs), Common Eiders Somateria mollissima (300 pairs) and Black-headed Gulls 

Chroicocephalus ridibundus (3000 pairs). Kittiwakes started visiting Coquet in significant 

numbers in 1990 and a breeding colony was established in 1991 (Coulson and Coulson 

2008). Since then the colony expanded each year to 215 pairs in 2012.   

 Arctic, Common and Roseate Terns have similar body sizes (average body weights 

of Common Tern = 110 – 140 g, Arctic Tern = 90 – 120 g, Roseate Tern = 105 – 135 g; 

Cramp 1985, Malling Olsen and Larsson 1995) and bill lengths (Arctic Terns = 3.0 – 3.4 

cm, Common Terns = 3.4 – 4.1 cm, Roseate Terns = 3.7 – 4.0 cm; Dunn 1975, 

Lemmetyinen 1976, Ramos et al. 1998), while Sandwich Terns are considerably larger 

(average body weight = 210 – 260 g, bill length = 5.0 – 5.4 cm; Dunn 1973, Cramp 1985, 

Malling Olsen and Larsson 1995). Arctic, Common and Roseate Terns occupy similar 

ecological niches and exhibit similarities in diet and foraging range. Sandwich Terns, being 

larger, are able to forage further from the colony and carry larger prey items than smaller 

tern species. They also have broader diets than other terns and winter in more extensive 

areas from the Mediterranean to the coast of South Africa (Pearson 1968, Cabot and Nisbet 

2013). Tern colonies were distributed homogenously across Coquet Island in the early 

1970s, but after 1976 colonies became concentrated in southwestern areas following an 

increase in the extent of large gull territories (Booth and Morrison 2010). Between 1998 

and 2000, the number of breeding pairs of Herring and Lesser Black-backed Gulls 

increased on Coquet from 11 to 49 (345%) and 20 to 184 (820%) respectively due to 

disturbance at nearby colonies, such as the Isle of May (Booth and Morrison 2010, JNCC 

2012). The RSPB implemented a program of lethal large gull disturbance and population 

control on Coquet under licence from Natural England annually from 2000 to present, with 

the aim of limiting gull predation on tern species and reducing competition for nest sites 

(Thomas 1972, Quintana and Yorio 1998, Morrison and Allcorn 2006). Eggs and nests 

were destroyed and adult birds disturbed throughout the year using various scaring 

methods (Morrison and Allcorn 2006, Booth and Morrison 2010). In the years following 

the introduction of the control program, large gull numbers declined to pre-1998 levels 

(Morrison and Allcorn 2006, Booth and Morrison 2010). The number of large gulls 

breeding on the island is currently stable at ~20 – 30 breeding pairs.  

 



 
 

31 
 

     

Figure 2. 1 Location of the study site, Coquet Island (55º 20’ N, 1º 32’ W), Northumberland, 

northeast England. The first panel details the locations of study plots (blue shaded areas) for Arctic, 

Common and Roseate Terns and Black-legged Kittiwakes. Location of the Sandwich Tern colony 

and lighthouse buildings with courtyard are also shown 

 

 

Figure 2. 2 Aerial view of Coquet Island from the southwest showing locations of the lighthouse 

buildings, the sandy beach and low-lying central plateau. Photograph courtesy of Paul Morrison   
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Coquet Island was home to lighthouse keepers and their families in the 1800s, 

during which time disturbance from humans and livestock prevented terns from breeding. 

In 1882 all tern species had disappeared from the island. It is thought that Common Eiders 

were the only species to breed on the island during this period (Marples and Marples 

1934). Terns returned to breed on Coquet after the farming activities of the lighthouse 

keepers ceased in the 1950s (Langham 1968).  

 The island is currently leased annually to the RSPB by the Duke of 

Northumberland. The RSPB liaise with other nature conservation and maritime bodies 

including the Natural History Society of Northumbria, Trinity House, Northumberland 

Estates and Northumberland Wildlife Trust to form the Coquet Management Committee, 

which oversees conservation management and makes decisions regarding the extent of 

research permitted on the island each year. Coquet is wardened from April – October, is 

subject to careful conservation management developed by the Coquet Management 

Committee and has a strict no landing policy.  

2.2 Conservation Management for Tern Species on Coquet 

The reserve is managed primarily for tern species and vegetation is controlled to maintain 

suitable breeding habitat for terns. Terns tend to settle in study plots approximately 10 x 10 

m in dimension, which are maintained regularly by cutting grass and controlling vegetation 

in the months leading up to the breeding season. As part of the Coquet Island reserve 

management plan, conventional herbicides are sprayed at least one month prior to the 

Figure 2. 3 Photographs showing artificial terrace constructed for Roseate Terns on Coquet 

Island and Roseate Tern eggs in nest box provided by Coquet wardens. Photographs 

courtesy of Paul Morrison   
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return of terns to breeding sites in April. Spraying efforts are focused on nettle beds to 

reduce vegetation growth. Herbicides do not persist in the environment for more than one 

month and hence have no effect on tern eggs or chicks (Robinson et al. 2001a).  

 Coquet is the only major breeding site for Roseate Terns in the UK, although two 

colonies in Ireland also support large breeding populations (Rockabill; 53° 35’ N, 6° 00’ W 

and Lady’s Island Lake; 52° 12’ N, 6° 23’ W). Numbers of Roseate Terns have fluctuated 

in the British Isles and throughout Europe since the 1980s due to trapping of adults and 

juveniles at wintering grounds in Ghana, disturbance at breeding sites by humans and 

predators and habitat loss (Avery et al. 1995, Mitchell et al. 2004). A European wide action 

plan was developed for this species to prevent disturbance at breeding colonies through 

legal protection, to increase available breeding habitat through reserve management and to 

prevent trapping at wintering grounds through local education (Avery et al. 1995). 

Wardens on Coquet Island implemented conservation measures to protect and aid the 

recovery of Roseate Terns in 2000, which included constructing terraces to provide 

breeding habitat, providing nest boxes to protect eggs and chicks from predation and 

implementing a large gull control program on the island (Morrison and Gurney 2007, 

Booth and Morrison 2010).  

 After discussions with wardens at the Rockabill colony, northeast Ireland, wooden 

nest boxes 45 x 30 x 15 cm in dimension were constructed and deployed on an artificial 

shingle terrace on Coquet in 2000 (Morrison and Gurney 2007; Figure 2. 3). Natural 

Roseate Tern nesting sites occur under beach debris, under boulders or in unused seabird 

burrows (Cabot and Nisbet 2013), hence providing nest boxes was deemed appropriate for 

improving the breeding success of this species (Morrison and Gurney 2007). Nest boxes 

provide shelter for eggs and chicks from predators and from adverse weather conditions. 

Twelve nest boxes had been provided for Roseate Terns before 2000, but were not enough 

to accommodate all breeding pairs on Coquet. Since 2000 the number of nest boxes 

provided has exceeded the number of Roseate Tern breeding pairs. A three tier artificial 

terrace composed of brick, sand and shingle was constructed before the breeding season 

commenced in 2000 on a low cliff close to traditional Roseate Tern breeding sites on the 

southwest side of the island (Figure 2. 1). The terrace was ~25 m long and each tier 

consisted of a low dry stone wall topped with flagstones covered in shingle taken from a 

beach on the island’s east side (Figure 2. 3). The length of the terrace was extended in 

2001 to allow more nest boxes to be provided. Since 2003, all Roseate Tern pairs breeding 

on Coquet have used nest boxes as nest sites or as shelters for chicks. 
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2.3 Limitations to Research on Coquet Island 

Due to the sensitive nature of the site, research activities are regulated on Coquet Island by 

the Coquet Island Advisory Committee to prevent investigators from having significant 

adverse impacts on breeding success of terns and other seabirds. While permission to 

conduct research for this study on terns and Kittiwakes was granted by the Committee, 

limitations were put in place to prevent unnecessary and potentially damaging disturbance. 

The handling of tern and Kittiwake chicks on a regular basis was not permitted due to the 

disturbance this would cause to their respective colonies hence chick growth rate had to be 

calculated during the linear growth phase from two measurements of weight. I was not 

permitted to carry out observations or chick measurements of Roseate Terns due to the 

importance of the Coquet Island colony for the survival of this species in the UK, and 

observations quantifying diet and provisioning rate of Roseate Terns were carried out by 

the Reserve Warden (Wesley Davies). As the Kittiwake colony was situated on the east 

side of the island, attempts to reach the colony without disturbing terns were impossible. 

From May – July 2011 intensive research was conducted on Arctic and Common Terns 

and unnecessary disturbance to tern colonies was limited during this period. Hence, regular 

checks of Kittiwake nests could not be made in 2011 to reduce disturbance to breeding 

terns, and data on productivity and fledging success of Kittiwake study nests in 2011 were 

not recorded. 
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Chapter 3 

Population synchrony within a multi-species seabird 

community: changes in abundance of sympatric 

species following implementation of large gull control 

3.1 Abstract 

Species breeding sympatrically in the same area are subject to changes in their shared 

environment. Ecologically similar sympatric species with the same general foraging and 

breeding behaviour may be expected to exhibit synchronous temporal fluctuations in 

demographic parameters, while populations of dissimilar species may be expected to 

fluctuate asynchronously. Previous studies examining synchrony in populations have 

mainly focused on single species and those which include data from more than one species 

have compared fluctuations in only one demographic parameter. We tested for synchrony 

in long-term inter-annual fluctuations of breeding population abundance and productivity 

among four sympatric tern species breeding on Coquet Island, northeast England. We also 

examined how changes in the numbers of potential predators (large gull species) affected 

ecologically similar and dissimilar tern species. The demographic parameters of 

ecologically similar species (Arctic Sterna paradisaea, Common S. hirundo and Roseate 

Terns S. dougallii) fluctuated in synchrony over time while those of a species with 

different foraging and breeding behaviour (Sandwich Terns Thalasseus sandvicensis) did 

not. The population abundance of Roseate Terns was negatively correlated with that of 

large gulls breeding on the island from 1975 – 2013, while that of Common Terns was 

positively correlated with large gull abundance and no significant correlations were found 

between large gull and Arctic and Sandwich Tern populations. The implementation of a 

large gull control program on Coquet Island in 2000 was strongly correlated with an 

increase in Roseate Tern breeding abundance and weakly correlated with an increase in 

Arctic Tern breeding abundance, but was not related to changes in breeding abundance or 

productivity of other tern species. Examining synchrony in multi-species assemblages 

improves our understanding of how whole communities react to long-term changes in the 
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environment and suggests that changes in predator abundance may differentially affect 

populations of sympatric seabird species.  

3.2 Introduction 

Spatial synchrony in population fluctuations has been documented in a range of different 

taxa (Pollard 1991, Ranta et al. 1995a, b, Paradis et al. 2000, Peltonen et al. 2002), but less 

information is available regarding extent of temporal synchrony among populations of 

different species (but see Ranta et al. 1995b, Raimondo et al. 2004a, b, Lahoz-Monfort et 

al. 2011). The majority of studies examining temporal fluctuations in demographic 

parameters have focused on analysing single parameters for single species (Lebreton et al. 

1992, Williams et al. 2003). Synchrony between sympatrically breeding populations of 

different species has received less attention than that of separate populations of a single 

species (Raimondo et al. 2004b), and of the limited number of studies examining 

synchrony in more than one species variation in only a single demographic parameter, such 

as population abundance, has been analysed (Swanson and Johnson 1999, Raimondo et al. 

2004a, b). Examining synchrony in larger species assemblages and incorporating several 

demographic parameters increases our understanding of the mechanisms responsible for 

influencing changes in population trends of whole communities (Loison et al. 2002, Lahoz-

Monfort et al. 2013).  

 Seabird species within a community may be expected to react in similar ways to 

changes in the common environment and to exhibit synchronous temporal variations in 

population demographics. However, several sympatrically breeding seabird species have 

been shown to vary in diet and in preferred foraging and nesting habitat, and are therefore 

differentially affected by environmental conditions (Pearson 1968, Croxall and Prince 

1980, Ballance et al. 1997). Ecologically similar seabirds with similar foraging and 

breeding behaviour might be expected to respond in the same way to changes in the 

environment, compared with ecologically dissimilar species (Hopkins and Wiley 1972, 

Bryant and Jones 1999, Trathan et al. 2007, Sandvik and Erikstad 2008). Hence, 

demographic parameters of species with similar ecological requirements in the breeding 

and non-breeding seasons are more likely to fluctuate in synchrony than those of species 

with less similar requirements (Raimondo et al. 2004a, Loreau and Mazancourt 2008, 

Lahoz-Monfort et al. 2011, 2013).  

 It is unclear which specific mechanisms cause synchrony or asynchrony in 

population dynamics among sympatrically breeding species. Hypotheses have suggested 
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that shared stochastic events such as changes in weather conditions and in the presence of 

generalist predators may influence population fluctuations among species (Ranta et al. 

1995a, b, Hawkins and Holyoak 1998, Bjørnstad et al. 1999, Raimondo et al. 2004b). 

Studies have shown that the presence of predators can differentially affect sympatric 

species with similar ecological requirements (Lawler 1989, Raimondo et al. 2004b), 

resulting in synchronous or asynchronous temporal fluctuations in population 

demographics (Ims and Steen 1990, Korpimäki and Krebs 1996). 

 Seabird breeding population abundance and productivity have been shown to be 

closely correlated with food availability, weather conditions and predation pressure in 

breeding and wintering areas (Crawford and Dyer 1995, Phillips et al. 1999, Ramos et al. 

2002, Gaston 2003, Schroeder et al. 2009). While various studies have examined how 

changes in food availability and oceanographic conditions drive temporal variation in 

demographic parameters among sympatric species (Crawford and Dyer 1995, Frederiksen 

et al. 2004a), few have examined how changes in predator abundance influence population 

fluctuations in multi-species communities (but see Paine et al. 1990, Yorio and Quintana 

1997). Colony-based predation can have significant deleterious effects on seabird 

populations (Oro 1996, Yorio and Quintana 1997, Jones et al. 2008), but sympatrically 

breeding seabird species with broadly similar ecological requirements have been shown to 

vary in their vulnerability to predation (Yorio and Quintana 1997, Jones et al. 2008). 

Hence, the presence of generalist predators may have varying impacts on seabird species of 

differing conservation concern breeding within multi-species assemblages. 

 Ground-nesting seabirds such as terns (Sterna spp) are vulnerable to predation from 

mammalian predators (Clode and MacDonald 2002, Sanders and Maloney 2002), but also 

lose eggs and chicks to aerial predators (Shealer and Burger 1992, Becker 1995, Yorio and 

Quintana 1997). Large gulls are opportunistic generalist predators and various studies have 

suggested that gulls can negatively affect tern abundance and breeding success through 

direct predation of eggs and chicks as well as through competition for nest sites (Courtney 

and Blokpoel 1983, Côté and Sutherland 1997, Yorio and Quintana 1997, Quintana and 

Yorio 1998, Vidal et al. 1998, Whittam and Leonard 1999, Schneider 2001). However, 

many of these studies provide only correlational evidence, and cannot definitively 

determine whether large gulls directly influence tern populations. Another study failed to 

show a corresponding decline in sympatric seabird populations (including terns) after the 

growth of Yellow-legged Gull Larus michahellis colonies in the Mediterranean (Oro and 

Martínez-Abraín 2007), although evidence suggests that Yellow-legged Gulls can 

negatively affect survival, foraging success and availability of nesting habitat for some 
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species. It has been shown that a few specialised individual gulls can be responsible for the 

majority of depredation incidents of vulnerable species at seabird colonies, and that the 

removal of these individuals can significantly improve population demographics of prey 

species (Sanz-Aguilar et al. 2009). 

 The effect of predation on breeding population abundance and productivity may be 

expected to vary among sympatrically breeding terns, as species show consistent 

interspecific differences in nesting behaviour and predator defence strategies (Burger and 

Gochfeld 1988a, Yorio and Quintana 1997, Jones et al. 2008). Due to perceived negative 

effects of the presence of large gulls on tern abundance and breeding success, gull control 

programs have been implemented in some UK tern colonies, including Rockabill and 

Coquet Island, which support internationally important numbers of endangered Roseate 

Terns (Sterna dougalli) (Wanless et al. 1996, Mavor et al. 2002, Morrison and Allcorn 

2006). Studies at some colonies have suggested that culling gulls can enhance productivity 

in tern species (Magella and Brousseau 2001), however the extent to which these induced 

changes in gull numbers were associated with changes in tern numbers on Coquet Island 

has not previously been evaluated.  

 In this study, we examine inter-annual variation in two demographic parameters of 

four tern and two large gull species breeding sympatrically on Coquet Island, northeast 

England. We test for synchrony in long-term fluctuations of breeding population 

abundance and productivity among the four tern species and compare the effect of 

declining large gull abundance on ecologically similar and dissimilar tern species. We 

examine how tern breeding population abundance and productivity change after the 

implementation of a large gull control on Coquet Island in 2000. We expect 1) 

demographic parameters of ecologically similar species to fluctuate in synchrony, 2) 

demographic parameters of sympatric tern species to change after the commencement of 

large gull control and 3) changes in large gull populations to differentially affect tern 

species depending on specific foraging and predator defence behaviours. Our study will 

determine how changes in abundance and productivity of species within a multi-species 

seabird community correlate with changes in predator abundance after the implementation 

of a large gull control program. 
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3.3 Methods 

3.3.1 Demographic Data Collection 

Demographic parameters of four tern species (Arctic, Common, Sandwich and Roseate) 

have been collected annually by reserve staff on Coquet Island since 1975. Number of 

breeding pairs on the island (breeding population abundance) was recorded for each 

species by carrying out one to two whole island nest censuses. Censuses were carried out 

between mid-incubation and early chick-rearing for each species. On occasions when two 

censuses were carried out, that which produced the largest total nest count was used as the 

final annual breeding population abundance. Breeding population abundance was therefore 

defined as the total number of pairs which attempted to breed on the island per annum. 

Overall productivity (number of fledged chicks per nest) was estimated from a subset of 30 

– 50 Arctic and Common Tern nests from study sites located in the centre of their 

respective colonies, and from colony wide counts of Roseate and Sandwich Tern fledglings 

(Pearson 1968, Nisbet and Drury 1972). Arctic and Common Tern study sites were 

selected from areas with dense tern breeding populations and lower vegetation length than 

peripheral areas, allowing chick survival to be easily monitored throughout the breeding 

season. Approximately 1 – 4 m² was enclosed around groups of two to three nests within 

study sites using plastic netting ~0.3 – 0.5 m high to prevent chicks from moving away 

from nests after hatching (Pearson 1968, McKearnan and Cuthbert 1989, Ramos et al. 

1998). Counts were made of the number of eggs and chicks in each study nest every 2 – 7 

days allowing survival to fledging to be estimated for each chick and for annual 

productivity to be calculated for each species. Roseate Terns nests were checked every 7 

days to record the number of chicks in each nest from first observed laying date until the 

last chick fledged. The number of Sandwich Tern fledgings was estimated using close 

colony observations and photographs, and this estimate was compared with the number of 

Sandwich nests recorded during whole colony counts. The total number of chicks fledged 

per nest could then be calculated for Sandwich and Roseate Terns. Methodologies used to 

estimate productivity were applied consistently from 1991 – 2013. Sandwich Tern 

fledgling counts could not be carried out in some years due to the position of the colony. In 

some years, the colony could not be safely approached later in the season when fledglings 

were present due to the risk of large chicks being scared into the sea. 

Herring (Larus argentatus) and Lesser Black-backed Gulls (L. fuscus) are the only 

species of large gull which breed regularly on Coquet Island and the only significant 
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predator of resident tern species. The annual breeding abundance of Herring and Lesser 

Black-backed Gulls was quantified by carrying out a whole island census of nests during 

mid incubation (within two weeks of first nest being found). As nests belonging to each 

gull species could not be conclusively differentiated, the breeding population abundances 

of both species were combined for analyses.  

3.3.2 Data Analyses 

Data on the breeding population abundance and productivity of four tern species and the 

breeding population abundance of two large gull species on Coquet Island from 1975 – 

2013 were downloaded from www.jncc.defra.gov.uk/page-4460 and were available from 

Coquet reserve wardens (RSPB unpubl. data. 2013). Breeding population abundance and 

productivity were collected annually for all four tern species from 1975 and 1991 

respectively, and breeding abundance of both large gull species was recorded from 1975. 

The year on which productivity data collection began varied among tern species (from 

between 1983 – 1991). Consecutive annual productivity data for all four species were 

available from 1991, hence inter-annual changes in productivity were compared among 

species from 1991 – 2013.  

 A continuous time series of breeding abundance data spanning 39 years was 

available for four tern species and two large gull species breeding on Coquet Island. Large 

gull breeding abundance data were missing for one year (2003) hence this year was 

removed from analyses comparing tern and gull populations. Due to difficulties in 

measuring productivity of Sandwich Terns on Coquet in some years (owing to annual 

variation in the position and density of the colony), productivity data for this species were 

severely fragmented and were therefore excluded from analyses. Productivity data for 

Arctic, Common and Roseate Terns were available for 23 consecutive years with no 

missing values. Twenty-five years of tern and large gull breeding abundance data were 

available before large gull control measures were implemented in 2000 after which a 

further 13 years of abundance data were available (excluding 2003). 

 Data on population size are likely to exhibit temporal auto-correlation, and long-

term trends may obscure short-term fluctuations (Buonaccorsi et al. 2001), such as those 

which may be linked to variation in gull numbers. Long-term trends were therefore 

removed from time series by subtracting actual data values from a cubic smoothing spline 

(fitted using R version 2.13.1), where the number of knots in the spline was equal to the 

number of decades in the time series (rounded) + 1 (Chatfield 1989, Sokal and Rohlf 1981, 

http://www.jncc.defra.gov.uk/page-4460
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Kerlin et al. 2007). A smoothing spline can be fitted to a series of noisy data points to 

represent a general trend in the data. A cubic smoothing spline is constructed from a series 

of third-degree polynomials and is commonly used in analyses (fitted using the 

‘smooth.spline’ function in R version 3.1.2). Various types of smoothing spline were 

constructed using different numbers of knots and degrees of freedom before a final cubic 

spline was chosen. This appeared to represent general overall trends in time series for each 

species. The number of knots included in a spline can vary the degree of smoothing. 

Making the number of knots used in splines equal to the number of decades in the time 

series + 1 resulted in a spline which best represented trends in breeding abundance and/or 

productivity for each species. This method of choosing a smoothing spline has also been 

used in previous studies (Kerlin et al. 2007). Therefore, this justification was used each 

time a smoothing spline was constructed. The resulting values were then standardised by 

dividing each by the standard deviation of the detrended time series. This was repeated for 

each tern species. Detrended and standardised time series for each species pair 

combination were plotted against each other and a Pearson’s product-moment correlation 

coefficient calculated after testing data for normality using Shapiro-Wilks tests. A 

Bonferroni correction was then applied to resultant p-values to account for multiple 

comparisons on the data, using the ‘corr.test’ function from the package ‘psych’ (Revelle 

2014) in R version 3.1.2. This analysis was repeated for Arctic, Common and Roseate Tern 

annual productivity data.  

 Cross-correlation functions (carried out using the ‘ccf’ function in R version 3.1.2) 

were used to examine correlations between large gull and tern populations at different time 

lags using detrended and standardised data. Large gull and tern breeding abundance data 

were detrended and standardised using smoothing splines as described above for previous 

analyses. Cross-correlation functions were used to determine whether breeding abundance 

of large gulls and those of four sympatric tern species were correlated from 1975 – 2013 

(Chatfield 1989, Pollard 1991, Ranta et al. 1995a, b). As disturbance and predation by 

large gulls in one year may influence the number of terns returning to breed on the island 

in subsequent years, we examined correlations between large gull abundance at lag 0 and 

tern abundance at lags 1 – 3 (juvenile terns which fledged on Coquet usually returned to 

breed within 2 – 3 years (Nisbet et al. 1984, Cabot and Nisbet 2013)). Species with cross-

correlation coefficients which were not included within 95% confidence intervals were 

regarded as significantly correlated. Cross-correlations between large gull and tern 

productivity could not be examined as productivity of large gulls was not recorded on 

Coquet Island.  



 
 

43 
 

 Due to temporal autocorrelation within breeding population abundance and 

productivity data, bootstrapping procedures were used to determine whether the breeding 

abundance of Arctic, Common, Sandwich and Roseate Terns and the productivity of 

Arctic, Common and Roseate Terns were significantly greater during years when a large 

gull control program was implemented on Coquet. One data point was randomly sampled 

from years before control was implemented and another from years when control was 

carried out. The difference between the two points was calculated and the procedure 

repeated 10,000 times to generate 95% confidence intervals taken from the resulting 

distribution. If confidence intervals overlapped 0, the difference in breeding abundance or 

productivity before and after control was not regarded to be significant. Analyses were 

carried out in R version 3.1.2 (R Development Core Team 2014). Means are presented ± 

SE throughout. 

3.4 Results 

3.4.1 Temporal Fluctuations in Breeding Population Abundance of Tern    

Species                                                                                                                                                                                                            

Arctic, Common and Roseate Terns showed similar overall trends in breeding population 

abundance from 1975 – 2013. All three species showed reduced breeding abundance in the 

mid 1980s followed by an increase after 2000 (Figure 3. 1). Sandwich Terns did not show 

any clear trend in breeding abundance over time due to large inter-annual population 

fluctuations, but the number of breeding pairs on Coquet appeared to decline after 2000 

(Figure 3. 1). The apparent lack of trend in Sandwich Tern abundance is unlikely to be a 

reflection of poorer quality data available for this species, as the annual number of 

breeding pairs on the island was recorded using similar methods for each tern species 

(namely, counting number of active nests). Large gull breeding abundance was relatively 

stable on Coquet Island from 1980 to the mid 1990s, after which numbers increased before 

declining again after 2000.  
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Figure 3. 1 Time series showing Arctic Tern, Common Tern, Sandwich Tern, Roseate Tern and 

large gull (Herring and Lesser Black-backed) breeding population abundance (number of breeding 

pairs) on Coquet Island from 1975 – 2013. Cubic smoothing splines were fitted to the data to 

illustrate general population trends for each species and are displayed here as red lines. Residual 

values between splines and data points were compared between tern species to examine 

interspecific synchrony in breeding abundance. One year (2003) of large gull breeding population 

abundance is missing  
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Figure 3. 2 Correlations in detrended and standardised breeding population abundance for each tern 

species pair breeding on Coquet Island from 1975 – 2013 (a: Arctic and Common Terns; b: Arctic 

and Roseate Terns; c: Arctic and Sandwich Terns; d: Common and Sandwich Terns; e: Common 

and Roseate Terns; f: Sandwich and Roseate Terns). The straight line represents median quantile 

regression line (fitted using the ‘rq’ function from the package ‘quantreg’ in R version 3.1.2 

(Koenker 2009)). Almost significant Pearson’s product-moment correlations with Bonferroni 

corrections were found for Arctic and Common Terns (p = 0.07)   

 We calculated Pearson’s product-moment correlation coefficients from detrended 

standardised breeding abundance data for each combination of tern species. Significant 

positive coefficients were found for Arctic and Common Terns (p = 0.01, r = 0.39, n = 39) 

and Arctic and Roseate Terns (p = 0.02, r = 0.36), while no significant correlations were 
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found for Common and Roseate Terns (p = 0.83, r = 0.03 ), Common and Sandwich Terns 

(p = 0.29, r = 0.17), Arctic and Sandwich Terns (p = 0.61, r = 0.08), and Sandwich and 

Roseate Terns (p = 0.23, r = -0.20). However, after applying the Bonferroni correction to 

these comparisons, only an almost significant correclation between Arctic and Common 

Terns was apparent (Table 3. 1). Figure 3. 2 illustrates correlations between standardised 

detrended breeding population abundance for each combination of tern species pair. A 

Pearson’s product-moment correlation test with a Boferroni correction was almost 

significant for Arctic and Common Terns (Figure 3. 2 a), although no significant 

correlations were found for other tern species pairs. 

Table 3. 1 Results of Pearson’s product-moment correlations with Bonferroni corrections 

calculated from detrended and standardised breeding population abundance (number of breeding 

pairs) data for each combination of tern species pair. The almost significant correlation between 

Arctic and Common Terns is highlighted in bold 

 Arctic Common Roseate 

Arctic  -   

Common r = 0.39,  p = 0.07                      -   

Roseate r = 0.36 , p = 0.13                     r = 0.03, p>0.99                         -  

Sandwich r = 0.08, p>0.99                     r = 0.17, p>0.99                        r = 0.20, p>0.99                        

 

 Inter-annual fluctuations in productivity appeared to be similar for Arctic, Common 

and Roseate Terns (Figure 3. 3). All three species were found to exhibit similar temporal 

fluctuations in productivity (Table 3. 2 Results of Pearson’s product-moment correlations 

with Bonferroni corrections calculated from detrended and standardised productivity 

(number of fledged chicks per nest) data for each combination of tern species pair. , Figure 

3. 4). This suggests that inter-annual fluctuations in the productivity of these three tern 

species were significantly similar. Productivity of Sandwich Terns was not recorded 

consistently on Coquet hence no comparisons could be made with productivities of other 

tern species. 
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Figure 3. 3 Time series showing productivity (number of fledged chicks per nest) of Arctic, 

Common and Roseate Tern populations breeding on Coquet Island from 1991 – 2013 
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Figure 3. 4 Correlations between tern species pairs using detrended and standardised productivity 

time series for Arctic, Common and Roseate Terns breeding on Coquet Island from 1991 – 2013. 

Straight lines represent median quantile regression lines (fitted using the ‘rq’ function from the 

package ‘quantreg’ in R version 3.1.2 (Koenker 2009)). Significant Pearson’s product-moment 

correlations with Bonferroni corrections were found for all three species pairs  
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Table 3. 2 Results of Pearson’s product-moment correlations with Bonferroni corrections 

calculated from detrended and standardised productivity (number of fledged chicks per nest) data 

for each combination of tern species pair. Significant correlations are highlighted in bold 

 Arctic Common 

Arctic -   

Common r = 0.76, p<0.001     -  

Roseate r = 0.53, p = 0.03 r = 0.59, p = 0.01 

 

3.4.2 Changes in Large Gull Abundance and Tern Demographic Parameters 

Figure 3. 1 appears to show that Arctic, Common and Roseate Tern breeding abundance 

increased following a decline in large gull breeding abundance in 2000 after the 

commencement of a large gull control program. To examine this effect further, large gull 

abundance data from 1975 – 2013 (excluding 2003) were compared with the breeding 

population abundance of each tern species over the same time period. 

 Cross-correlation coefficients were calculated to compare breeding abundance of 

large gulls with those of the four tern species breeding on Coquet for 3 positive time lags 

(years) from 1975 – 2013 (Figure 3. 5). Figure 3. 5d shows that the breeding abundance of 

large gulls and that of Roseate Terns were significantly negatively correlated during 

concurrent (lag 0 (rt)) years (rt0 = -0.40). There was a significant positive correlation 

between abundance of large gulls and Common Terns at lag 0 (r0 = 0.51; Figure 3. 5b). 

Conversely, no significant correlations were found between large gull and Sandwich Tern 

breeding population abundance or between large gull and Arctic Tern breeding population 

abundance at any time lag (Figure 3. 5a and c). It may be that significant correlations 

between tern species and large gulls were influenced by four years of particularly high 

large gull abundance (1976, 1999, 2000, 2001). To test this, 95% confidence intervals of 

detrended standardised abundance data, excluding years of high gull abundance, were 

calculated for Common and Roseate Terns. Detrended and standardised tern data for 1976, 

1999, 2000 and 2001 were included within the confidence intervals for Roseate Tern data, 

however 1976 was not included within conficence intervals for Common Tern data. Hence, 

the significant correlation between Common Tern and large gull abundance may have been 

influenced by large gull abundance in 1976.  
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Figure 3. 5 Cross-correlation functions calculated for large gull and tern detrended and standardised 

breeding population abundance (number of breeding pairs) from 1975 – 2013 (excluding 2003) for 

a) large gull and Arctic Terns, b) large gull and Common Terns, c) large gulls and Sandwich Terns 

and d) large gulls and Roseate Terns. A significant negative correlation (where the correlation 

coefficient lay outside the lower 2.5% confidence interval) were found at lag 0 for Roseate Terns 

(rt0 = -0.40). There was a significant positive correlation between large gull and Common Tern 

abundance at lag 0 (rt0 = 0.51). There were no significant correlations between large gull and 

Sandwich Tern and large gull and Arctic Tern breeding population abundances at any time lag 

 For each tern species breeding on Coquet, we examined the difference between 

breeding population abundance before and after large gull control was implemented in 

2000 using a bootstrapping procedure. Only Roseate Terns showed a significant increase in 

breeding population abundance (26.48 ± 1.83 and 71.71 ± 4.62 breeding pairs before and 

during control years respectively; bootstrapping 95% confidence intervals = 5 – 74, 

iterations = 10,000). Although Common Terns showed an increase in abundance after 2000 

(850.32 ± 51.17 and 1122.14 ± 31.83 breeding pairs), this difference was not significant 

(95% confidence intervals = -365 – 745). Sandwich Terns showed a slight decrease in 
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breeding population after 2000 (1423.8 ± 64.15 and 1192.29 ± 91.53 breeding pairs), but 

there was no significant change in abundance (95% confidence intervals = -1066 – 661). 

Arctic Terns showed an almost significant increase in breeding population abundance over 

the same time period (633.68 ± 25.91 and 1036.14 ± 51.81 breeding pairs; 95% confidence 

intervals = -5 – 795). However, when this analysis was repeated comparing magnitude and 

direction of interannual changes before and after the introduction of gull control, no 

significant difference was found for any tern species (95% confidence intervals, Arctic: -

75.34 – 126.63; Common: -110.79 – 112.23; Roseate: -3.51 – 11.61; Sandwich: -364.91 – 

171.11). 

 Arctic, Common and Roseate Terns exhibited slight increases in productivity in 

years when large gull control was carried out (Arctic = 0.78 ± 0.11 and 0.93 ± 0.09 fledged 

chicks per nest; Common = 1.16 ± 0.12 and 1.28 ± 0.14; Roseate = 0.97 ± 0.06 and 1.04 ± 

0.05 before (n = 9) and during (n = 14) control years respectively). However, no species 

showed a significant change in productivity after the implementation of large gull control 

(Arctic 95% bootstrapping confidence intervals = -0.88 – 0.88; Common = -1.06 – 1.29; 

Roseate = -0.44 – 0.59, iterations = 10,000).   

3.5 Discussion 

Our results suggest that temporal fluctuations in breeding population abundances of Arctic 

and Common Terns on Coquet Island may be synchronous, but there were no significant 

correlations in inter-annual population fluctuations among other tern species. Temporal 

variations in Sandwich Tern population breeding abundance were not synchronous with 

those of other tern species breeding on Coquet Island. Arctic and Common Terns, Arctic 

and Roseate Terns, and Common and Roseate Terns showed significantly similar temporal 

fluctuations in productivity, which did not vary with changes in gull numbers. Inter-annual 

comparisons with Sandwich Tern productivity could not be made as productivity data for 

Sandwich Terns were not consistently recorded on Coquet.  

 Previous studies have shown that sympatrically breeding seabird species can 

exhibit similar fluctuations in population demographics in response to general changes in 

the marine environment (Lahoz-Monfort et al. 2011, 2013). Declining food availability and 

adverse weather conditions have been shown to reduce foraging ability and breeding 

success in whole seabird communities (LaCock 1986, Barrett and Krasnov 1996, 

Frederiksen et al. 2004a, Monticelli et al. 2007, Daunt et al. 2008, Loreau and Mazancourt 

2008, Cabot and Nisbet 2013, Lahoz-Monfort et al. 2013). Organisms which coexist in the 
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same habitat over time tend to be affected in similar ways by changes in their environment, 

hence, in the absence of complete niche differentiation, demographic parameters of 

coexisting species should fluctuate together (Loreau and Mazancourt 2008). While diet and 

foraging behaviour of Arctic and Common Terns breeding at various colonies including 

Coquet Island have been shown to vary (Uttley et al. 1989, Rock et al. 2007, Robertson et 

al. 2014a), there are some general similarities in prey preferences and nesting behaviour 

among these species which may influence changes in demographic parameters (Hopkins 

and Wiley 1972, Cabot and Nisbet 2013). 

 Various studies have illustrated the importance of sandeel availability to seabird 

breeding success in the North Sea (Safina et al. 1988, Monaghan et al. 1989, Monaghan 

1992, Furness and Tasker 1997, Wanless et al. 1998, Furness and Tasker 2000). Terns 

have been identified as being especially vulnerable to reductions in sandeel abundance, due 

to their relatively short foraging ranges, restricted dietary preferences and limited diving 

ability (Furness and Tasker 2000). However, it has been suggested that Sandwich Terns are 

less at risk from food shortages than Arctic, Common and Roseate Terns due to their 

longer foraging ranges, wider diets and ability to exploit prey deeper in the water column 

(Furness and Tasker 2000, Perrow et al. 2011, Cabot and Nisbet 2013). Increased 

storminess and poor weather conditions have been shown to have a detrimental effect on 

seabird population breeding abundance and productivity (Steel et al. 2005, Mitchell 2006, 

Frederiksen et al. 2008a). Tern populations are vulnerable to poor weather as they nest in 

areas with little natural cover and adult foraging success can be significantly reduced in 

periods of high winds (LeCroy and LeCroy 1974, Taylor 1983, Snow and Perrins 1998, 

Ramos et al. 2002).  

 Sympatric populations of Arctic, Common and Roseate Terns can vary 

significantly in diet, foraging areas and breeding habitat (Duffy 1986, Burger and Gochfeld 

1988a, Safina et al. 1990), which may explain the lack of synchrony in breeding population 

abundance between Common and Roseate Terns and Arctic and Roseate Terns. Roseate 

Terns construct nests close to cover, in burrows and rock revices and utilise nest boxes, 

while Arctic and Common Terns tend to have more variable nesting habitats (Burger and 

Gochfeld 1988b, Cabot and Nisbet 2013). However, productivity was synchronous 

between Arctic, Common and Roseate Terns over time, perhaps due to certain general 

similarities in chick provisioning behaviour, such as reliance on sandeel and restricted 

foraging range and foraging behaviour (Cabot and Nisbet 2013). Productivity is likely to 

be influenced by local conditions during the breeding season which could affect the ability 

of parents of all three species to deliver food to chicks, whereas the number of pairs that 
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return annually to nest on the island may be affected by various factors such as conditions 

in wintering grounds and on migration, and availability of suitable nesting habitat. As tern 

species vary in wintering habitat and migration strategies (Cabot and Nisbet 2013), as well 

as in preference for nesting areas, interspecific synchrony in breeding population 

abundance is less likely than synchrony in productivity. This may explain why there was 

evidence of synchrony in breeding populations abundance in only in one species pair 

(Arctic and Common Terns), while three species pairs exhibited synchrony in productivity 

(Arctic and Common Terns, Arctic and Roseate Terns and Common and Roseate Terns).  

Sympatrically breeding Arctic and Common Terns exhibit some overlap in diet and 

in breeding behaviour (Rock et al. 2007, Cabot and Nisbet 2013). Although there are 

differences in the foraging and breeding behaviour of Arctic and Roseate Terns, both 

species tend to have more restricted diets and to forage in deeper waters than Common 

Terns (Cabot and Nisbet 2013, Robertson et al. 2014a). While synchrony in breeding 

population abundance and productivity was evident among Arctic, Common populations 

on Coquet, dissimilarities between these species and Sandwich Tern breeding population 

abundance suggest that Sandwich Terns responded differently to changes in the shared 

environment. This confirms our initial expectations that ecologically similar species will 

exhibit more similar temporal fluctuations in demographic parameters than species which 

are ecologically dissimilar.  

 Sandwich Terns are reported to have the most erratic trends in population, 

distribution and productivity of any seabird species breeding in Britain and Ireland 

(Mitchell et al. 2004, JNCC 2012, Cabot and Nisbet 2013). Their dramatic inter-annual 

population fluctuations are thought to be the result of variation in the number of adults 

attempting to breed in a given year and from movements of individuals between colonies 

(Mitchell et al. 2004). Sandwich Tern populations on Coquet also exhibit stochastic 

temporal fluctuations in breeding abundance which may explain why this species’ 

abundance did not synchronise with those of other tern species breeding on the island. 

Sandwich Terns are ecologically and morphologically dissimilar to Arctic, Common and 

Roseate Terns (Snow and Perrins 1998) and exhibit very different foraging, migratory and 

nesting behaviour (Cabot and Nisbet 2013). Being larger, Sandwich Terns are able to 

forage more successfully during periods of adverse foraging conditions, such as in high 

winds, than smaller tern species and have less restrictive energy budgets (Dunn 1975, 

Taylor 1983, Furness and Tasker 2000).  

 Tern species vary in their vulnerability to predation and in predator defence 

strategies. Arctic, Common and Roseate Terns nest in comparatively low densities and rely 
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on aggression or camouflage for predator defence (Langham 1974, Snow and Perrins 1998, 

Cabot and Nisbet 2013). Sandwich Terns, however, exhibit very different predator 

response behaviour and form dense colonies and become less likely to flush from nests 

than other more aggressive species when under threat of predation (Cullen 1960, Langham 

1974, Fuchs 1977, Veen 1977, Cabot and Nisbet 2013).  

 Tern breeding abundance and productivity can be detrimentally affected by the 

presence of predators at the breeding colony (Hunter and Morris 1976, Nisbet and Welton 

1984, Yorio and Quintana 1997, O’Connell and Beck 2003). Coquet Island has no natural 

or invasive mammalian predators, but does support limited numbers of Herring and Lesser 

Black-backed Gulls. Breeding population abundance of both species was relatively low 

prior to 1998 when populations started in increase, perhaps due to disturbance at nearby 

colonies (Booth and Morrison 2010). Since 2000, both species of large gulls have been 

controlled through nest and egg destruction and consistent adult disturbance, resulting in a 

gradual decline in large gull abundance to pre-1998 levels (Morrison and Allcorn 2006, 

Booth and Morrison 2010). We therefore examined the extent to which this was associated 

with changes in tern numbers.  

 Our results do suggest that changes in the abundance of generalist predators can 

differentially affect population demographics of sympatrically breeding seabird species. 

The breeding population abundance of Roseate Terns was found to increase significantly 

following corresponding declines in large gull abundance, while the breeding population 

abundance of Common Terns was found to be positively correlated with that of large gulls. 

Arctic and Sandwich Tern populations did not respond to changes in large gull abundance. 

This may be due to reduced vulnerability of Sandwich Terns to predation (Veen 1977), or 

due to differences in diet and foraging behaviour of these species (Shealer 1998a, Cabot 

and Nisbet 2013). Arctic and Common Terns have effective predator defense strategies and 

are highly aggressive during the breeding season (Cabot and Nisbet 2013). These species 

tend to have wider diets than Roseate Terns and often forage in similar areas (Safina et al. 

1990, Robertson et al. 2014a). Roseate Terns may be more vulnerable to predation and 

disturbance from gulls than other tern species as they arrive at breeding sites comparably 

late in the breeding season, are less aggressive than Arctic and Common Terns on Coquet, 

and lack nest defense strategies as effective as those of other tern species (Cabot and 

Nisbet 2013). Roseate Terns naturally nest under boulders and in rocky crevices and are 

easily disturbed by the activities of predators, hence the provisioning of nest boxes and 

predator control is most likely to benefit this species (Morrison and Gurney 2007). It is 

unclear why Common Tern populations were positively affected by increases in large gull 
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abundance. Common Terns are highly aggressive during chick-rearing (Whittam and 

Leonard 2000), making this species less at risk from disturbance and predation. Perhaps 

Common Terns benefited from gulls making nesting habitat available by disturbing and 

predating Roseate Terns. 

To attribute interspecific variation in temporal fluctuations in breeding population 

abundance only to predator abundance requires an examination of a control site close to 

Coquet Island where gull control measures have not be implemented. The Farne Islands 

~40 km north of Coquet might be expected to be useful as a control site as they support 

breeding populations of Arctic, Common and Sandwich Terns, but some evidence suggests 

that methods have been previously carried out on the Farne Islands to disturb and displace 

large gulls (Booth and Morrison 2010, Wesley Davies pers. comm.).   

 Breeding population abundance of Roseate Terns increased significantly during 

years in which large gull control was implemented and Arctic Terns showed an almost 

significant increase in abundance over the same time period. There was no change in 

Sandwich or Common Tern abundance during this period and productivity of tern species 

did not change significantly after 1999. Common Tern breeding population abundance was 

positively correlated with large gull abundance, which may explain why Common Tern 

breeding abundance did not increase significantly in years after large gull control 

commenced. However, Roseate Tern breeding population abundance was negatively 

correlated with changes in large gull abundance from 1975 – 2013, which may explain 

why this species increased significantly after the implementation of gull control. However, 

when this analysis was repeated comparing magnitude and direction of interannual changes 

before and after the introduction of gull control, no significant difference was found for 

any tern species. This suggests that interannual fluctuations in tern abundance on Coquet 

may have been unaffected by the introduction of large gull control. 

 Previous studies have shown that large gulls can detrimentally affect tern 

populations through direct predation, disturbance and competition for nest sites (Sadoul et 

al. 1996, Vidal et al. 1998, Whittam and Leonard 1999, Magella and Brousseau 2001). As 

tern breeding population abundance is determined by the number of birds which settle at 

the colony towards the beginning of the breeding season and as there was no change in 

productivity of tern species in years after large gull control was introduced, disturbance 

and nest site competition are more likely to be the mechanisms by which large gull 

abundance influenced the number of terns breeding on Coquet than predation of eggs and 

chicks (Booth and Morrison 2010). Herring Gulls typically roost at breeding sites 

throughout the year and pairs may start occupying nest sites as early as December, 
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although nest-building does not usually begin in earnest until early spring (Harris 1963, 

Brown 1966). Lesser Black-backed Gulls return to breeding territories from February to 

March and eggs are usually laid in April to May (Harris 1963, Brown 1966). Terns usually 

do not return from wintering grounds until April – June, with Sandwich Terns arriving as 

early as March, Arctic and Common Terns in early April and Roseate Terns from late 

April – May (Cabot and Nisbet 2013).  Roseate Terns may be more likely to be affected by 

reductions in availability of nest sites due to disturbance from large gulls, as they arrive 

from wintering grounds later than other tern species when competition for space is greatest. 

 Multi-species seabird assemblages can include species of varying conservation 

concern. Coquet Island supports breeding populations of four tern species including 

internationally important numbers of breeding Roseate Terns, and is one of only three 

regular breeding sites for this species in Britain and Ireland (Mitchell et al. 2004, JNCC 

2012). Roseate Terns suffered a range restriction as well as a decline in breeding 

abundance of ~80% between 1986 and 2000 (Mitchell et al. 2004), but in the last 15 years 

populations in Britain and Ireland have increased in abundance and productivity owing to 

the cessation of trapping in wintering sites and to the artificial improvement of breeding 

habitats at colonies including Coquet (Mitchell et al. 2004, Morrison and Gurney 2007, 

Mavor et al. 2008, Booth and Morrison 2010). The Roseate Tern population on Coquet 

Island could have increased for reasons other than predator control, such as the 

introduction of nest boxes in the 1990s, an increase in the number of nest boxes provided 

in 2000 and general improvement of breeding habitat on the island (Morrison and Gurney 

2007, Booth and Morrison 2010). Hence, the significant cross-correlation between the 

abundance of large gulls and Roseate Terns from 1975 – 2013 does not provide conclusive 

evidence that anthropogenic declines in large gull abundance influence tern populations. 

However, our results suggest that the control program on Coquet Island may at least partly 

influence changes in endangered Roseate Tern populations, but long-term tern 

demographic data from a nearby colony where no large gull control had been implemented 

is necessary to confirm or refute the results of this study.  

 Measuring synchrony in demographic parameters at a multi-species seabird 

assemblage improves our understanding of how whole communities react to long-term 

variations in the marine environment. Such studies are invaluable when considering the 

effect of climate change and other long-term environmental changes on communities of 

apex predators (Inchausti et al. 2003, Piatt et al. 2007, Gaston et al. 2009). Our results 

confirm our initial expectations that the demographic parameters of ecologically similar 

species fluctuate in synchrony over time and that the effects of changes in predator 
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abundance on demographic parameters differ among species. Tern species which exhibited 

similarities in inter-annual fluctuations of demographic parameters did not respond in 

similar ways to changes in predator abundance. Arctic and Sandwich Terns were 

unaffected by changes in gull abundance, Common Tern populations were positively 

correlated with those of large gulls, while Roseate Tern populations were negatively 

correlated with changes in gull abundance on the island. This suggests that predator 

abundance may be partly responsible for the interspecific variation in temporal fluctuations 

of population demographics observed on Coquet Island. While gull control in other UK 

colonies have had mixed results, our study suggests that the Coquet Island gull control 

program may positively influence breeding populations of threatened seabird species, such 

as the Roseate Tern, although further evidence is required.                 
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Chapter 4 

Resource partitioning in three congeneric 

sympatrically breeding seabirds; foraging areas and 

prey utilisation 

4.1 Abstract 

Morphologically similar sympatric species reduce competition by partitioning resources, 

for example by occupying different dietary niches or foraging in different areas. In this 

study, we examine the foraging behaviour of Arctic (Sterna paradisaea), Common (S. 

hirundo) and Roseate Terns (S. dougallii) breeding on Coquet Island, northeast England 

using colony-based observations and coincident at-sea visual tracking of foraging birds to 

quantify interspecific overlap in prey selection and foraging areas. Although visual 

tracking methods have been used in previous studies, our study is the first example of this 

method being used to quantify multi-species overlap in foraging areas and the first time 

Roseate Tern foraging locations have been conclusively identified using a visual tracking 

method. Percentage overlap in foraging areas varied among species with Arctic and 

Common Terns sharing a higher percentage of their foraging range with each other 

(62.63%) than either species did with Roseate Terns (Common = 40.50% and Arctic = 

0%). Arctic and Common Terns utilised similar foraging areas and partitioned resources by 

diet while Roseate Terns differed from other species in both diet and foraging area. Arctic 

and Common Terns varied provisioning rate, prey length and foraging areas with 

increasing brood age, while Roseate Terns fed similar prey and foraged consistently 

inshore. Whilst there were some similarities in areas utilised by these species, there were 

sufficient differences in behaviour to minimize interspecific competition. Our study further 

demonstrates the successful use of a visual tracking method to show how morphologically 

similar sympatric seabird species partition resources by diet, foraging area and response to 

increasing brood age. 
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4.2 Introduction 

Interspecific competition occurs in closely related morphologically similar species with 

similar resource requirements and limited foraging ranges. Various studies examining how 

seabirds reduce interspecific competition through resource partitioning have been carried 

out (Duffy 1986, González-Solís et al. 1997, Mori and Boyd 2004, Lance and Thompson 

2005) however most of these have compared only two species. While studies on two 

species provide useful data on resource partitioning, studies on larger seabird assemblages 

can determine the extent to which variation in foraging strategies, such as diet and foraging 

area, reduce interspecific competition in a highly competitive environment. By examining 

diet and foraging habitat utilisation among several species, the extent of each species’ 

ecological niche may be determined and the methods by which resources are partitioned 

can be examined more accurately than by comparing foraging behaviour in only two 

species. The local abundance of different fish species and age classes surrounding the 

colony may also be determined using multi-species comparisons of diet and foraging 

behaviour.  Few studies have compared foraging behaviour in more than two seabird 

species (but see Pearson 1968, Surman and Wooller 2003, Linnebjerg et al. 2013) and 

many of these used only colony-based data. For those that also compared species’ foraging 

areas, locations of feeding birds were recorded indirectly using boat transects which cannot 

determine the origin and breeding status of observed birds or the extent of potential 

competition (Tasker et al. 1984, Daunt et al. 2002, Surman and Wooller 2003). Although 

the more established bird-borne device tracking method has allowed interspecific 

comparisons of foraging areas (Phalan et al. 2007, Young et al. 2010), foraging locations 

have to be inferred from track characteristics (e.g. sinuosity). In this study, the visual 

tracking method allowed us to use observed, rather than inferred, foraging location data, by 

visually confirming the locations of dive sites (Perrow et al. 2011). There is a need to 

compare foraging behaviour of multiple seabird species using a direct estimation of 

foraging locations, to link foraging areas to a specific breeding colony and develop a 

comprehensive understanding of how species partition resources.  

 Terns (Sterna spp) are small seabirds which feed mainly by snatching food from 

the sea surface or by plunge diving up to one metre in depth (Shealer 2001). Most tern 

species have relatively short foraging ranges of <10 km (Cabot and Nisbet 2013), while 

larger seabird species such as Gannets have been shown to have mean foraging ranges of 

~200 km (Hamer et al. 2000, Hamer et al. 2001). This makes terns more vulnerable to local 

food shortages than species with greater foraging ranges (Furness and Ainley 1984, 
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Furness and Tasker 2000). Terns are useful species for studying resource partitioning as 

they are morphologically similar with limited foraging ranges and diving ability. Most 

species carry prey individually in their bills allowing dietary observations to be made 

(Burness et al. 1994). 

 Morphologically similar tern species foraging in a limited area around the breeding 

colony may be expected to reduce interspecific competition by varying diet or foraging 

areas. Sympatrically breeding tern species exhibit considerable dietary overlap by feeding 

chicks high percentages of the same prey types and sizes (Hopkins and Wiley 1972, Safina 

et al. 1990, Surman and Wooller 2003), for example three tern species breeding at the same 

colony were found to share 78 – 87% of prey species (Surman and Wooller 2003). 

However, studies have also shown that some sympatrically breeding tern species exhibit 

different prey preferences (Safina 1990a, b, Safina et al. 1990, Rock et al. 2007). Arctic 

Terns (Sterna paradisaea) tend to deliver a higher percentage of small prey items (0 – 4 

cm) than Common (S. hirundo) and Roseate Terns (S. dougallii) (Uttley et al. 1989, Safina 

et al. 1990, Cabot and Nisbet 2013) and when nesting in the same colony as Arctic or 

Roseate Terns, Common Terns deliver a greater diversity of prey to chicks (Safina et al. 

1990, Robinson et al. 2001b). Tern species can also partition resources by varying the 

location of foraging areas around the breeding colony. Previous studies in the tropics and 

North America found that Roseate Terns have more restricted foraging areas than other 

tern species and tend to forage in shallow inshore waters, associate with predatory fish 

(Randall and Randall 1980, Safina 1990b, Safina et al. 1990, Shealer 1996) and rely on 

relatively few prey species during the breeding season (Nisbet 1981, Safina et al. 1990). 

Due to the small number of Roseate Tern colonies, little is known about foraging 

interactions between Roseate Terns and other tern species in the North Sea. 

 The way in which species partition resources has been shown to vary throughout 

the year, depending on  spatial overlap and prey availability (Cherel et al. 2008, Linnebjerg 

et al. 2013). As chick energy demands change during the breeding season (Drent and Daan 

1980), the mechanisms by which species partition resources (provisioning rate, prey size 

and foraging area) may vary temporally (Williams and Rothery 1990, Bertram et al. 1996). 

If species utilise different mechanisms to partition resources, we may predict that 

responses to increasing brood age will also vary interspecifically. 

 We combine colony-based data on parental provisioning behaviour with coincident 

at-sea tracking data for Arctic, Common and Roseate Terns breeding on Coquet Island, 

northeast England, to examine resource partitioning in a multi-species seabird assemblage 

in the North Sea. We 1) compare the type and size of prey items delivered to chicks by 
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different tern species, 2) compare the location of foraging areas used by each species and 

3) examine how resource partitioning changes throughout the breeding season, with the 

expectation that morphologically similar sympatric species use provisioning rate, diet or 

foraging area to partition resources and that response to increasing brood age varies 

interspecifically. We expect species to use at least one mechanism to partition resources; 

species exhibiting an overlap in foraging areas should differ in diet and species with 

similar diets should forage in different areas. We discuss the implications of our results for 

understanding interspecific competition in a multi-species seabird assemblage. 

4.3 Methods 

4.3.1 Colony-based Data Collection 

The study took place on Coquet Island, Northumberland, northeast England (55º 20’ N, 1º 

32’ W) during the 2011 breeding season. Arctic, Common and Roseate Terns were studied 

during chick-rearing from 2 June – 9 July 2011. Prey delivered to chicks was recorded for 

a sample of 10 Arctic and Common Tern nests and 12 Roseate Tern nests. Each Arctic and 

Common Tern study nest was checked daily to obtain accurate hatching dates. Precise 

Roseate Tern hatching dates are not known as nests were checked every seven days to limit 

disturbance to the colony. As in other studies using tern diet observations (Pearson 1968, 

Ramos et al. 1998), 1 – 4 m² was enclosed around each Arctic and Common study nest 

using plastic netting ~0.3 – 0.5 m high. This facilitated feeding observations by preventing 

the precocial chicks from moving away from the nest site when adults delivered food. 

Roseate Tern nests were not enclosed to reduce disturbance since this is one of few UK 

breeding sites for this endangered species. 

 Provisioning watches took place from a hide positioned <12 m from study nests 

from 2 June – 9 July. Common Tern study nests started hatching ~5 days before Arctic 

Tern nests although there was considerable overlap in hatching dates (Table 4. 1). Mean 

age of chicks on the first day of provisioning observations differed only slightly among 

species (Table 4. 1). By comparing foraging behaviour when chicks were approximately 

the same age, interspecific variation in diet and foraging areas could be examined while 

avoiding bias caused by variation in chick age.  
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Table 4. 1 Hatching dates, data collection start dates, mean chick ages ± SE when data collection 

began and percentage chick survival for Arctic, Common and Roseate Terns breeding on Coquet 

Island in 2011. Data were collected from 10 Arctic and Common Terns nests and 12 Roseate Tern 

nests 

 Arctic Tern Common Tern  Roseate Tern 

Hatch dates:    

    Min June 1 May 26 June 14 

    Median June 5 May 30 June 21 

    Max June 11 June 6 June 29 

Date provisioning watches started June 9 June 2 June 15 

Chick age (days after hatching) on 

first day of provisioning watches 

5.8 ± 0.3 4.2 ± 0.2 ~1.1 ± 0.1 

Date tracking started June 7 June 7 June 20 

Chick age (days after hatching) on 

first day of tracking 

3.9 ± 0.3 8.7 ± 0.1 ~6.1 ± 0.03 

Chicks survived to fledging (%) 65.00 62.96 83.33 

 

 Three-hour watches included every time period from 0400 – 2100 h for each tidal 

state. Each Arctic Tern nest was observed for approximately 63 hours (21 watches per 

nest), Common Tern nests for 69 hours (23 watches per nest) and Roseate Terns for 78 

hours (26 watches per nest). Species and size categories of prey items delivered to chicks 

were recorded and grouped into four categories: Lesser Sandeel (Ammodytes marinus; 

hereafter ‘sandeel’), sprat (Sprattus sprattus), juvenile fish (larvae not identifiable at 

species level) and miscellaneous (including crustaceans, cephalopods and demersal fish). 

Prey size was measured in tern bill lengths as in previous studies (Safina et al. 1990, 

Shealer 1998b, Rock et al. 2007). Type and size categories were agreed on by observers 

before watches started and were validated by examining discarded fish. Bill lengths of 

Arctic (3.0 – 3.4 cm), Common (3.4 – 4.1 cm) and Roseate Terns (3.7 – 4.0 cm) differ only 

slightly and there is considerable overlap between species (Lemmetyinen 1976, Ramos et 
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al. 1998)). Prey length (cm) was calculated by multiplying prey size category by median 

bill length. Roseate Tern watches were carried out by WD while GSR observed Arctic and 

Common Terns. Prey size recording methods were standardised for different observers by 

agreeing on prey size categories of items carried by the same selected individuals. Separate 

observations were only carried out by different observers after prey size category 

estimations made during simultaneous test watches were found to be comparable. 

4.3.2 At-sea Data Collection 

While GPS devices have been used to track various seabird species (Burger and Shaffer 

2008, Wakefield et al. 2009), terns are considered too small to carry such devices (Perrow 

et al. 2011). We used a visual tracking method which successfully identified foraging areas 

of tern species in a previous study carried out in Norfolk and North Wales, UK (Perrow et 

al. 2011). Although this method has been used previously, our study is unique in its use of 

visual tracking to identify foraging areas utilised by Roseate Terns, an endangered UK 

seabird species for which foraging behaviour data are scarce, and in quantifying overlap in 

foraging areas utilised by multiple species. Due to weight restrictions, GPS devices cannot 

be safely used to track tern species meaning that detailed data on at-sea foraging behaviour 

is difficult to collect. Studies examining interspecific differences in species’ foraging areas 

are limited and at-sea foraging behaviour of some tern species has not been studied in 

detail. Visual tracking allows detailed information on foraging areas utilised by small 

seabird species to be examined and for ecological questions regarding area partitioning to 

be addressed.  

 Individual terns were tracked to and from foraging sites by observers on board a 

rigid inflatable boat (RIB) using tracks obtained from the onboard GPS as proxies for 

foraging tracks. The starting position around the colony was varied so as to track an 

adequate representation of the breeding population. We took care to observe any changes 

in behaviour, such as evasive flight, which might indicate an adverse reaction to the 

presence of the vessel, and if so, increased the distance of the RIB from the bird.  

Observers recorded few instances of birds visibly reacting to the RIB and most appeared to 

ignore the vessel, consistent with Perrow et al. (2011). Birds were tracked for the duration 

of foraging trips although trips were aborted if birds were lost or it was no longer possible 

to follow them due to deteriorating sea conditions (a total of 67 of 122 tracks were aborted 

for all three species). Locations of foraging attempts (where birds dived or surface-dipped) 

were recorded as was the duration of each track. Incomplete tracks were those where 
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individuals were lost before returning to the colony and comprised 27/49 (55.10%), 24/42 

(57.14%) and 16/31 (51.61%) of Arctic, Common and Roseate Tern tracks respectively. 

Tracked birds dived throughout the trip allowing dive locations to be recorded even if 

tracking was later aborted. The cumulative probability of losing visual contact with a bird 

by chance increases with time, and if birds are likely to travel further with time, this may 

have resulted in maximum foraging distance being underestimated. However, we found no 

significant difference in maximum foraging distances (km) calculated from complete and 

incomplete tracks recorded from 7 June – 1 July (mean ± SE = 3.17 ± 0.26 km (n = 75) and 

3.49 ± 0.36 km (n = 40) respectively; t-test: t78.79 = -0.72, p = 0.47, n = 115). Arctic and 

Common Terns were tracked from 7 June – 1 July and Roseate Terns from 20 June – 1 

July. Twenty-six Arctic, 19 Common and 31 Roseate Terns were tracked in total, 

generating 111, 77 and 206 dive locations for Arctic, Common and Roseate Terns 

respectively. Hence, 4.27 dive locations per track were recorded for Arctic Terns, 4.05 dive 

locations per track for Common Terns and 6.65 for Roseate Terns.  

4.3.3 Data Analyses  

To avoid temporal bias, tracking and provisioning data from 20 June – 1 July were used for 

species comparisons and data collected before 20 June and after 1 July used to examine 

changes in foraging behaviour with increasing brood age. Provisioning rate was defined as 

number of deliveries made to each chick per hour. The percentage of sandeel (most 

commonly fed prey item) delivered to chicks in each nest, and variation in the mean length 

of prey items (cm) per nest were compared among species using Kruskal-Wallis tests. 

 Foraging trip parameters (maximum foraging distance, total distance travelled, trip 

duration and mean bearing on departing the colony) were compared among species using a 

circular ANOVA and Kruskal-Wallis tests. The circular ANOVA (from packages CircStats 

and circular (Jammalamadaka and SenGupta 2001) in R version 3.1.2) compared mean 

bearings calculated from the first five bearings in each track (Patrick et al. 2013), 

accounting for the bounded nature of data between 0º and 359º. Tracks where the start or 

end time had not been recorded were excluded from analysis.  

 Kernel density plots were generated using dive locations from complete and 

incomplete tracks, to compare species- and stage-specific foraging areas for all three 

species and for those tracked during early and late chick-rearing. Dive locations were not 

observed during every track: 111 Arctic, 77 Common and 206 Roseate Tern dive locations 

were used in kernel density estimations from 26 Arctic, 18 Common and 31 Roseate Tern 
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tracks. We examined species-specific differences in foraging ranges (95% contour) and 

core foraging areas (25% contour) from fixed kernel density estimation in a European 

Albers equal-area conic projection (ArcGIS 10.1) using a grid size of 100 m² calculated in 

R with adehabitatHR and maptools packages (Calenge 2006). Contours of 25% and 95% 

were selected as it was expected that these contours would be most appropriate for 

examining foraging areas at large and small spatial scales. The ad hoc method was used to 

calculate the smoothing parameter (h), where                         

       and n = number of locations, which resulted in a smoothing parameter that retained 

sufficient detail in distribution patterns to allow identification of high density areas without 

excessive smoothing. Percentage overlap in species’ foraging ranges and core foraging 

areas was calculated by dividing the area of overlap by the combined area utilised by both 

species and multiplying by 100. This quantifies the degree of similarity between foraging 

areas used by Arctic, Common and Roseate Terns. The percentage of foraging areas used 

by one tern species which coincided with that of another tern species was also calculated.  

 Brood age (in days after hatching) was separated into seven five day categories 

from 0 – 35 days. For each category, mean provisioning rate and prey length were 

calculated for each species and plotted against brood age. Relationships between 

provisioning rate and brood age and prey length and brood age were examined using 

generalized linear mixed models (GLMMs) with normal error distributions and logit link 

functions fitted using the lme4 package in R (Bates et al. 2014). We included species, 

brood age, brood size for each nest at each brood age (in days) and a 2-way interaction 

between species and brood age as fixed effects, and nest ID as a random factor. We fitted 

fully parameterized models using maximum likelihood (ML), and removed terms by 

sequential deletion while testing for significant changes in model variance using 

Likelihood Ratio Tests (LRTs) (Crawley 2007). We then refitted the minimum adequate 

model using restricted maximum likelihood (REML) to estimate effect sizes. REML takes 

into account the loss of degrees of freedom caused by estimating parameters, and is 

therefore more appropriate when estimating effect sizes than ML. Provisioning rate and 

prey length were log-transformed to reduce heteroscedasticity.  

 Differences in size and location of core foraging areas during early (before 20 June 

when chicks were <18 days old) and late chick-rearing (from 20 June when chicks were 

>18 days old) were compared for Arctic and Common Terns. Sample sizes of Roseate Tern 

tracks were too small to allow foraging areas at different chick-rearing stages to be 

examined. Kernel density estimations were generated for each species and breeding stage 

using the ad hoc method to estimate h (value varies depending on number of dive 
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locations) and a grid size of 100 m
2
. Overlap in foraging ranges and core foraging areas 

between stages was quantified for both species illustrating the degree of similarity in 

foraging areas as brood age increased. Analyses were carried out in R version 3.1.2 (R 

Development Core Team 2014) and ArcGIS version10.1 (ESRI, USA). Means are 

presented ± SE throughout. 

4.4 Results 

4.4.1 Chick Provisioning 

There were significant differences in the proportion of sandeel (Kruskal-Wallis test: χ²2 = 

25.67, p<0.001, n = 31) and mean prey length (Kruskal-Wallis test: χ
2
2

 
= 19.71, p<0.001, n 

= 31) delivered to chicks of different tern species. Arctic Tern chicks received the highest 

percentage of juvenile fish (Table 4. 2) and were fed smaller prey items than chicks of 

other tern species. Roseate Tern chicks were fed a higher percentage of sandeel than Arctic 

or Common Tern chicks and were fed significantly larger prey items than Arctic Terns (χ²1 

= 15.66, p<0.001, n = 22; Table 4. 2). Provisioning rates were significantly higher for 

Arctic Terns than for Common or Roseate Terns (χ
2

1 = 22.41, p<0.001, n = 31; Table 4. 2). 
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Table 4. 2 Percentage of prey types fed to chicks and lower quartiles, medians and upper quartiles 

of prey lengths (cm) and provisioning rates (deliveries per chick h
-1

) for each species 

 Arctic Tern   Common Tern  Roseate Tern  Number of 

deliveries 

Sandeel (%) 49.57 69.44 86.24 1675 

Sprat (%) 2.87 26.23 13.76 241 

Juvenile fish (%) 34.07 1.86 0 516 

Miscellaneous (%) 13.49 2.47 0 210 

Number of 

observations  

1497 338 821  

Prey length (cm) 1.60, 1.60, 

3.20 

3.75, 5.63, 5.63 3.85, 5.78, 

5.78 

 

Provisioning rate 

(deliveries per chick 

h
-1

) 

3.00, 3.58, 

4.90 

0.88, 1.31, 1.57 1.09, 1.32, 

1.72 

 

4.4.2 Foraging Areas 

Maximum foraging distance, total distance travelled and trip duration were calculated from 

complete tracks while mean bearing on leaving the colony was calculated using both 

complete and incomplete tracks (25 and 76 tracks respectively). This prevents maximum 

foraging range, total distance travelled and trip duration from being underestimated, as 

incomplete trips are likely to be shorter than complete trips. As mean bearing on leaving 

the colony is unlikely to be affected by whether or not an individual was followed for the 

complete duration of a foraging trip, both complete and incomplete tracks were included in 

its calculation. Figure 4. 1 illustrates complete and incomplete foraging tracks and dive 

locations for Arctic, Common and Roseate Terns from 20 June – 1 July. Arctic Terns 

foraged north of the colony (Figure 4. 1a) and Common Terns further south (Figure 4. 1b). 

Arctic and Common Terns core foraging areas, estimated using kernel density plots of dive 

locations, were centred close to the colony (Figure 4. 2 a, b) while that of Roseate Terns 

was situated slightly further away and closer to shore (Figure 4. 2c). There were no 
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significant differences in mean maximum foraging distance, total foraging distance or trip 

duration of complete tracks among tern species (Table 4. 3). However, there were 

significant differences in mean bearing on departing the colony with Roseate Terns leaving 

to forage almost exclusively to the northwest  (Figure 4. 1). There was less variation in 

departure direction among Roseate Terns than among Arctic and Common Terns and 

Roseate Terns left the colony in a significantly different direction to other species (Table 4. 

3). 

 

           

Figure 4. 1 Complete and incomplete foraging tracks and dive locations for a) Arctic Terns 

(Number of track locations = 19,467; Number of dive locations = 111), b) Common Terns 

(Number of track locations = 11,136; Number of dive locations = 77) and c) Roseate Terns 

(Number of track locations = 18,001; Number of dive locations = 206) from 20 June – 1 July 2011. 

Tracks are represented by solid lines and dive locations by shaded dots. Coquet Island is 

represented by a star 
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Figure 4. 2 Kernel utilisation distribution of 394 dive locations (Arctic = 111; Common = 77; 

Roseate = 206) using tracks from a) 26 Arctic Terns, b) 18 Common Terns and c) 31 Roseate 

Terns 
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Table 4. 3 Foraging trip characteristics of three tern species. Sample size (n) describes whether 

complete tracks or both complete and incomplete tracks were used to calculate values. Mean max 

foraging distance, total distance travelled and mean trip duration were calculated using complete 

tracks only while mean bearing on leaving the colony (degrees where 0° = North) was calculated 

using both complete and incomplete tracks. Lower quartiles, medians, upper quartiles are given 

where non-parametric tests were used to examine differences among species and mean values ± SE 

are given where parametric tests were used. Significant differences are indicated in bold 

 Mean max 

foraging 

distance (km) 

Total distance 

travelled  (km) 

Mean bearing on 

leaving colony 

(degrees where 0° 

= North) 

Mean trip 

duration (min) 

Arctic     1.17, 1.76, 3.39  

(n = 13)    

1.41, 2.35, 4.73              

(n = 13)     

239.55  ± 20.93       

(n = 25) 

3.20, 9.88, 15.72          

(n = 13)     

Common  3.35, 3.60, 3.93  

(n = 7) 

4.95, 6.08, 6.72             

(n = 7) 

267.24 ± 24.04        

(n = 19) 

9.28, 10.23, 11.07           

(n = 7) 

Roseate  1.22, 1.62, 3.30  

(n = 15) 

1.93, 2.77, 6.23             

(n = 15) 

101.41 ± 1.70           

(n = 31) 

3.03, 5.75, 9.38           

(n = 13) 

 Kruskal-Wallis: 

χ²2 = 4.45, n = 

35,  p  = 0.11 

Kruskal-Wallis:     

χ²2 = 2.11, n = 

35,  p  = 0.35 

Circular ANOVA:  

F2,74 = 7.34, n = 

75,  p = 0.001 

Kruskal-Wallis: 

χ²2 = 1.99, n = 35,   

p  = 0.37 

 

 There were differences in the extent of species’ foraging ranges with Arctic Terns 

covering a larger area than those of Common and Roseate Terns (Table 4. 4). Common and 

Roseate Tern core foraging areas were only slightly smaller than that of Arctic Terns and 

while species shared less than 41% of core foraging areas, high percentages of Common 

and Roseate Tern foraging ranges and Common Tern core foraging areas were found 

within that of Arctic Terns (Table 4. 4).  
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Table 4. 4 Foraging range (95% contour) and core foraging area (25% contour) sizes (km
2
) for 

three tern species and percentage of species’ foraging areas located within those of Arctic Terns 

 Arctic Tern Common Tern Roseate Tern 

Foraging range (km
2
) 54.10 42.42 36.57 

Core foraging area (km
2
) 2.91 2.20 2.83 

Foraging range shared with 

Arctic Terns (%) 

    - 62.63 40.50 

Core foraging area shared with 

Arctic Terns (%) 

    - 94.24 0 

 

4.4.3 Effect of Brood Age and Size on Foraging Behaviour  

Relationships between provisioning rate, prey length and brood age were examined for 

each species using diet observations from 2 June – 9 July. While Arctic and Common Tern 

provisioning observations were available for broods from 0 – 35 days old, Roseate Tern 

observations were only available for broods aged 0 – 25 days. Arctic Tern mean 

provisioning rate increased with brood age while provisioning rates of Common and 

Roseate Terns did not change (Species x Brood age interaction: χ²2 = 23.13, p<0.001, n = 

594; Figure 4. 3a). In addition, provisioning rate decreased with brood size for all species 

(χ
2

2 = 32.84, p<0.001); chicks from smaller broods had higher provisioning rates than 

chicks from larger broods (Table S. 1). 
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Figure 4. 3 a) Relationship between log-transformed provisioning rate (deliveries per chick h
-1

) and 

brood age (days after hatching) for each tern species (black = Arctic, red= Common and green = 

Roseate). Straight lines were made using coefficients extracted from GLMMs and illustrate the 

significant interaction between Species and Brood age. b) Relationship between log-transformed 

prey length (cm) and brood age (days after hatching) for each tern species (black = Arctic, red= 

Common and green = Roseate). Straight lines were made using coefficients extracted GLMMs and 

show similar rates of increase in length of prey delivered to chicks with increasing brood age 

among species 

 There was a significant effect of brood age on prey length (χ²1 = 10.80, p<0.001, n 

= 511), suggesting that in general, species delivered larger prey items with increasing 

brood age (Table S. 2). With respect to prey length, there was no significant interaction 

between species and brood age (χ²2 = 4.36, p = 0.11). Brood size had no effect on prey 

length (χ²1 = 0.03, p = 0.87) and Common and Roseate Terns continued to feed chicks 

significantly larger prey items than Arctic Terns as brood age increased (χ²2 = 64.56, 

p<0.001; Figure 4. 3b). A LMM with nest as a random factor was used to examine whether 

larger prey types, such as sprat, were fed to chicks more often as brood age increased. Prey 

length was used as the response variable, with prey type and brood age included as 

explanatory variables. There was a significant interaction between prey type and brood age 

(χ²3 = 104.71, p< 0.001), which suggests that terns delivered different prey types to chicks 

over time. The number of sprats fed to chicks increased with brood age (Estimate ± se = 

0.19 ± 0.02, t-value = 7.88, p-value<0.001), while there was no significant change in the 
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number of sandeel fed to chicks with increasing brood age (Estimate ± se = -0.02 ± 0.01, t-

value = 1.17, p-value = 0.24). This might explain the increase in prey length we observed, 

as there was a tendency for adults to deliver larger prey types to chicks over time. 

 Arctic and Common Tern core foraging areas shifted closer to the colony during 

late chick-rearing, reflecting the increased provisioning rate of Arctic Terns described 

above (Figure 4. 3a, Figure 4. 4). Late chick-rearing foraging areas were smaller than those 

of early chick-rearing in both species and while a high percentage of late chick-rearing 

foraging ranges were found within those of early chick-rearing, no overlap in core foraging 

areas between stages was evident in either species (Table 4. 5). However, core foraging 

areas of both species overlapped by 40% during late chick-rearing (Figure 4. 4). Although 

Arctic and Common Terns shared similar foraging areas during late chick-rearing, they 

partitioned resources by varying both prey length and frequency of delivery. 

Table 4. 5 Foraging range (95% contour) and core foraging area (25% contour) sizes (km
2
) during 

early (<18 days old) and late chick-rearing (>18 days old) and percentage overlap between 

breeding stages. The ‘Overlap’ column refers to the percentage area which overlaps between areas 

used during early and late chick-rearing and the column ‘Within early chick-rearing’ refers to the 

percentage of late chick-rearing area found within that used during early chick-rearing by each 

species 

 Arctic Common 

 Early 

chick-

rearing 

(km²) 

Late 

chick-

rearing 

(km²) 

Overlap 

(%) 

Within 

early 

chick-

rearing 

(%) 

Early 

chick-

rearing 

(km²) 

Late 

chick-

rearing 

(km²) 

Overlap 

(%) 

Within 

early 

chick-

rearing 

(%) 

Foraging 

range         

92.02 45.92 26.74 80.31 108.22 51.56 19.12 59.21 

Core 

foraging 

area             

5.44 3.27 0 0 6.16 3.04 0 0 
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Figure 4. 4 Kernel utilisation distribution of 470 dive locations during early (<18 days old) and late 

(>18 days old) chick-rearing for a) Arctic Terns early chick-rearing = 202 locations; 11 tracks, b) 

Arctic Terns late chick-rearing = 95 locations; 11 tracks, c) Common Terns early chick-rearing = 

96 locations; 18 tracks, d) Common Terns late chick-rearing = 77 locations; 7 tracks 

4.5 Discussion  

Resource competition should favor adaptations that reduce niche overlap (Gause 1934), 

which may explain species-specific differences in seabird foraging areas and feeding 

behaviour (Rome and Ellis 2004, Lance and Thompson 2005). There are several 

explanations for how competition facilitates resource partitioning among species. One 

species may outcompete and directly exclude another from foraging areas or species may 

use habitats which suit preferred feeding methods. Even if competition is not currently 

affecting species interactions, previous competition could have produced interspecific 

variation in ability to exploit different habitats (Trivelpiece et al. 1987, Wood et al. 2000). 

Studies have suggested that other seabirds exclude Roseate Terns from feeding flocks and 

that Roseate Terns forage more efficiently in flocks containing only conspecifics (Duffy 

1986, Shealer and Burger 1993). Our results show that Roseate Terns utilise separate 

foraging areas from other tern species, but it is unclear whether this is caused by a 
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preference for specific foraging conditions or from tern species excluding Roseate Terns 

from other areas. 

 Our findings provide direct evidence of resource partitioning by both foraging area 

and diet composition within a multi-species seabird assemblage. As in previous studies, 

Common and Roseate Terns fed chicks large energy-rich prey items less regularly while 

Arctic Terns fed a higher proportion of small juvenile fish at a higher rate (Safina et al. 

1990, Robinson et al. 2001b, Rock et al. 2007).  

 Roseate Terns fed chicks a high proportion of sandeel and large prey items 

throughout the chick-rearing period. This species is a dietary specialist over most of its 

range and relies on few fish species during the breeding season, especially sandeel 

(Randall and Randall 1980, Nisbet 1981, Safina et al. 1990). This specialisation may be a 

consequence of competition with other species (Duffy 1986, Shealer and Burger 1993) or a 

preference for specific foraging conditions (Safina 1990a, Shealer 1996). While relatively 

small, the breeding population of Roseate Terns on Coquet Island is currently stable 

suggesting there is sufficient food available close to the colony. 

 Arctic Terns have a limited diving ability and forage more regularly by surface-

dipping than Common and Roseate Terns which mainly plunge dive (Shealer 2001, Cabot 

and Nisbet 2013). Fish larvae and juvenile fish are more likely to congregate near the 

surface than adult fish, but are smaller than prey usually selected by terns (Rindorf et al. 

2000, Cabot and Nisbet 2013). Arctic Terns may have preferentially selected small 

juvenile fish as they were readily available and easy to catch and transport (Hopkins and 

Wiley 1972), and delivered them regularly to compensate for their lower energy content. 

Common and Roseate Terns selected larger fish, which may have been in range of their 

deeper diving capabilities and are easier for these larger-billed tern species to carry (Nisbet 

1981, Snow and Perrins 1998, Shealer 2001). Shealer (1996) suggested the limited diet of 

Roseate Terns was a consequence of foraging habitat specialisation. Roseate Tern foraging 

areas are associated with various biotic and abiotic habitats, including presence of 

predatory fish (Shealer 1996) and shallow water (Safina 1990a), which affect the 

availability of sandeel in surface waters. The region in which Roseate Terns were observed 

foraging around Coquet Island was restricted to depths of <30 m (JNCC pers. comm.). 

 Interspecific variation in time spent in specific habitats has been linked to dietary 

differences, suggesting that dietary segregation is associated with spatial partitioning 

(Waugh et al. 1999). In our study, Arctic and Common Terns foraged over a wider area 

than Roseate Terns, Arctic Terns concentrating further north of the colony and Common 
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Terns further south. There was considerable variation in the mean bearing in which Arctic 

and Common Terns left the colony, while Roseate Terns departed consistently to the 

northwest. Roseate Tern departure direction could have been influenced by the location 

and orientation of the colony and the foraging areas utilised by Roseate Terns may have 

been influenced by proximity to the colony. Although the starting position of the RIB 

around the island was varied to ensure an adequate representation of the breeding 

population was tracked and that variation in departure direction could be assessed, it was 

not practical to implement a formal randomisation procedure. Hence, as Roseate Terns 

were found breeding on only one area of the island and therefore were rarely observed 

leaving the island in other locations, departure direction may have been biased for this 

species. All three tern species nested mainly in the southwestern side of the island, so 

minimising distance between foraging locations and nest sites is unlikely to have been an 

important factor.  

 Arctic and Common Tern core foraging areas showed some overlap while neither 

species overlapped with Roseate Tern core foraging areas. However, a large percentage of 

Common and Roseate Tern foraging ranges were found within that of Arctic Terns. 

Individual variation in foraging area, departure direction and prey selection was greater in 

Arctic and Common Terns than in Roseate Terns, which foraged mainly on sandeel in a 

restricted area. Lack of individual variation can have significant effects on species’ 

vulnerability to environmental change (Lomnicki 1978, Safina et al. 1990, Bolnick et al. 

2003) and may have important consequences for Roseate Tern conservation. It is possible 

that individuals’ dive locations are spatially related to those of conspecifics and other 

species, as conspecifics often forage together in flocks (Gochfeld and Burger 1982, Cabot 

and Nisbet 2013); some species also actively exclude others from foraging in the same area 

(Duffy 1986). 

 Extent of foraging areas may explain the greater diversity of prey types and sizes 

delivered by Arctic and Common Terns and the limited diet of Roseate Tern chicks. This 

could have been examined by comparing individual sites used by each tern species in 

greater detail. For Arctic and Roseate Terns, dietary segregation coincided with spatial 

partitioning of foraging areas. However, Arctic and Common Terns delivered different 

prey items while sharing a high percentage of foraging areas. We show that dietary 

segregation occurs when foraging areas are spatially partitioned and also when species 

forage in similar areas. Similarities in diving ability may explain why Common and 

Roseate Terns, which dive to depths of up to 0.8 m and 1.2 m respectively, partitioned 

foraging habitats more completely than Arctic and Common Terns, which differ 
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significantly in diving ability (Arctic Terns rarely penetrate more than 0.5 m below the 

surface; Cabot and Nisbet 2013). Although our analysis is limited to a single year, visual 

tracking data from 2009 and 2010 indicate little inter-annual variation in distributions of all 

three species around Coquet Island (JNCC pers. comm.). Data from 2009 are presented in 

an unpublished report by the JNCC (see Wilson et al. 2009) and are comparable to results 

presented in this study. Colony-based data from 2009 and 2010 for Arctic, Common and 

Roseate Terns were unavailable, hence our analysis could not be wholly repeated for 2009 

and 2010 data.    

 Species also partition resources by differentially varying foraging behaviour in 

response to increasing brood age (Safina et al. 1990). Chicks require more energy as they 

approach fledging age (Ricklefs and White 1981) and studies have shown that seabirds 

increase prey size with brood age, rather than provisioning rate (Wiggins and Morris 1987, 

Smith 1993). This strategy is more efficient as it requires fewer foraging trips to deliver a 

given amount of energy. However, there may be costs to delivering larger prey items such 

as transport, vulnerability to kleptoparasitism and difficulty in capture (Barrett and 

Krasnov 1996, Ratcliffe et al. 1997, Dies and Dies 2005). Safina et al. (1990) found that 

Common Terns fed larger prey items to chicks as the breeding season progressed while 

Roseate Terns did not. 

 Arctic Terns in our study responded to increasing chick energy demands by 

providing more frequent prey deliveries, and while this species also increased the length of 

prey items with increasing brood age, they consistently delivered smaller prey items than 

Common and Roseate Terns. Common Terns delivered larger prey items as brood age 

increased while maintaining the same provisioning rate as in a previous study (Safina 

1990a). The tendency for all three tern species to increase the proportion of larger prey 

types, such as sprat, delivered to chicks with increasing brood age may partly explain this 

result. Both Arctic and Common Tern chicks were of similar ages when provisioning 

observations began, hence changes in provisioning rate and prey length were unlikely to 

have been caused by seasonal effects. Roseate Tern observations started ~11 – 16 days 

after those of Arctic and Common Terns. Roseate Tern provisioning rates did not change 

significantly as brood age increased and large prey items were delivered consistently to 

chicks throughout the chick-rearing period. The length of prey items delivered by Roseate 

Terns did increase with increasing brood age, contrary to results of a previous study 

(Safina 1990a). While we did not observe a significant change in provisioning rate with 

increasing brood age in Roseate Terns, this may have been influenced by the more limited 

brood age range available for Roseate Terns (0 – 25 days old) compared with Arctic and 
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Common Terns (0 – 35 days old). However, we suspect that the trend for Roseate Terns to 

deliver large fish is unlikely to have changed within the last 10 days of chick-rearing. 

 Interspecific variation in foraging behaviour with increasing brood age could be 

explained by changes in foraging areas. Arctic and Common Tern foraging ranges and core 

foraging areas shifted closer to Coquet Island during late chick-rearing. This may have 

allowed Arctic Terns to increase their provisioning rates, but no corresponding increase 

was evident in Common Terns; instead this species fed larger prey with increasing brood 

age. By foraging closer to the colony, Common Terns may have been able to reduce 

travelling time and increase time spent selecting larger prey items for chicks. Areas used 

by Arctic and Common Terns during early and late chick-rearing showed some overlap. 

While species’ core foraging areas were slightly different during early chick-rearing those 

of both species were located close to the colony during late chick-rearing. Although Arctic 

and Common Terns used the same small foraging area during late chick-rearing, each 

delivered different prey items. Studies have suggested that partitioning of foraging areas 

explains interspecific variation in seabird diets (Shealer 1996, Waugh et al. 1999). Our 

results show that dietary segregation can occur independently of foraging area partitioning 

and may be due to differences in foraging methods.  

 Visual tracking increases the likelihood of recording foraging locations of birds of 

known breeding status and origin. However, a limitation of this method is that it cannot 

definitively determine whether tracked birds were breeders or non-breeders. Our study 

shows that three morphologically similar tern species partition resources using different 

mechanisms. Arctic and Common Terns showed variation in diet, provisioning rate and 

response to increasing brood age but shared similar foraging areas, while Roseate Terns 

differed from other tern species in both diet and foraging area and showed no change in 

foraging behaviour with increasing brood age. Arctic and Common Terns generally exhibit 

more similarities in foraging behaviour and nesting habitat than either species does with 

Roseate Terns (Cabot and Nisbet 2013), so it seems unusual that these two similar species 

breed together at the same time, while Roseate Terns begin breeding approximately two 

weeks later. Perhaps the interspecific variation in diet, provisioning rate and response to 

increasing brood age observed in this study explains how Arctic and Common Terns are 

able to avoid competition and breed synchronously in the same area. It is unclear why 

Roseate Terns arrive at their breeding grounds later than Arctic and Common Terns, but it 

is unlikely that Arctic and Common Terns breed earlier to avoid competition with Roseate 

Terns as Common Terns have been shown to exclude Roseate Terns from foraging flocks 

(Duffy 1986, Shealer and Burger 1993), and sympatrically breeding Roseate Terns have 
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very different diets and utilise different foraging habitats (Safina 1990a, b, Safina et al. 

1990). We show how studies on multi-species assemblages can effectively compare 

mechanisms used to partition resources among species breeding sympatrically in a 

competitive environment, and illustrate the extent to which overlap in diet and foraging 

areas can vary among morphologically similar species. 

 We provide strong evidence of three sympatric seabird species partitioning 

resources by diet, foraging area and response to increasing brood age. Our findings 

complement those of previous studies comparing diet and foraging area partitioning in two 

seabird species. We show that dietary segregation does not always reflect differential 

forging area utilisation, but that birds foraging in the same area select different prey items. 
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4.6 Supplementary Material 

Table S. 1 Output from minimum adequate model fitted using restricted maximum likelihood 

(REML) from a GLMM with a normal error distribution and logit link function examining which 

variables are most significant in explaining variation in log(provisioning rate; deliveries per chick 

h
-1

). Random factor = Nest. n = 594 

 Estimate  SE t-value 

Intercept 1.08 0.18 5.92 

Species:    

     Arctic 0 -  - 

     Common -0.15 0.17 0.91 

     Roseate -0.47 0.17 2.71 

Brood size -0.32 0.06 5.76 

Brood age 0.02 0.01 3.41 

Species x Brood age:    

      Arctic 0 - - 

      Common  -0.04 0.01 4.77 

      Roseate  -0.02 0.01 2.13 
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Table S. 2 Output from minimum adequate model fitted using restricted maximum likelihood 

(REML) from a GLMM with a normal error distribution and logit link function examining which 

variables are most significant in explaining variation in log(prey length; cm). Random factor = 

Nest. n = 511 

 Estimate SE t-value 

Intercept 1.00 0.05 20.10 

Species:    

      Arctic 0 - - 

      Common 0.38 0.05 7.82 

      Roseate 0.62 0.05 13.24 

Brood age 0.07 0.01 3.11 
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Chapter 5 

Influence of diet on reproductive success of two 

morphologically similar sympatrically breeding 

seabird species  

5.1 Abstract 

Sympatrically breeding seabird species exhibit different foraging behaviour and diet 

preferences, which can influence their vulnerability to changes in the marine environment. 

While previous studies have compared chick diets among a variety of sympatric seabird 

species, few studies have examined how interspecific variation in chick provisioning 

strategies can affect reproductive parameters. Here, we compare provisioning rates and 

diets of nestling Arctic (Sterna paradisaea) and Common Terns (S. hirundo), two 

morphologically similar species, breeding on Coquet Island, northeast England and 

examine how interspecific variation in chick and brood provisioning behaviour relates to 

reproductive parameters of each species. Arctic Terns delivered higher percentages of 

smaller sandeel (Ammodytes marinus) and juvenile fish to their chicks than did Common 

Terns, which delivered comparatively high percentages of larger sprat (Sprattus sprattus). 

Arctic Terns had smaller clutch sizes than Common Terns and made more prey deliveries 

to each chick per hour, delivering a similar amount of energy per chick per hour as 

Common Terns despite feeding smaller prey items. Although chick growth rate during the 

linear growth phase, chick survival and fledging success were not significantly different 

between the two species, Common Terns fledged more chicks than Arctic Terns in total 

due to their larger clutch sizes. Our study shows that sympatric species may differ in how 

they provision broods to reduce interspecific competition. In consequence, variation in 

foraging strategies and in the distribution of prey types and sizes in the environment may 

differentially affect the reproductive parameters of closely related species breeding at the 

same colony.   
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5.2 Introduction 

Reproductive parameters of closely related, sympatrically breeding seabird species 

compared over similar time periods have been found to differ significantly (Waugh et al. 

2000, Lynnes et al. 2004, Jenouvrier et al. 2005). This may be explained by species-

specific foraging strategies and variation in vulnerability to changes in the environment 

surrounding the breeding colony. Morphologically similar sympatric species have been 

shown to utilise different foraging areas and to deliver different proportions of prey types 

and sizes to chicks (Safina et al. 1990, González-Solis et al. 1997, Lance and Thompson 

2005, Rock et al. 2007, Robertson et al. 2014a), which differentially affects species’ 

vulnerability to environmental change (Uttley et al. 1989, Furness and Tasker 2000).  

 The marine environment is highly changeable and subject to considerable temporal 

fluctuations in temperature and productivity. Changes in sea surface temperature (SST), 

phytoplankton abundance and weather conditions can affect availability of prey to marine 

organisms by influencing prey abundance and distribution in the water column (Cairns 

1988, Guinet et al. 1998, Arnott and Ruxton 2002, Diamond and Devlin 2003, Forcada et 

al. 2005, Frederiksen et al. 2004a, 2006, 2011). During the breeding season, seabirds are 

restricted to foraging in a limited area surrounding a central colony, making availability of 

prey species and foraging conditions around the colony important predictors of 

reproductive success (Orians and Pearson 1979, Baird 1990, Murphy et al. 1991, Gaston et 

al. 2005, Burke and Montevecchi 2009). 

 Some seabird species have been identified as being especially vulnerable to food 

shortages during the breeding season due to certain aspects of their foraging behaviour, 

such as their diving capability, foraging range and ability to exploit different prey species 

(Furness and Ainley 1984, Furness and Camphuysen 1997, Furness and Tasker 2000, 

Diamond and Devlin 2003). Surface-feeding seabirds such as Black-legged Kittiwakes 

(Rissa tridactyla) and terns (Sterna spp) have shorter foraging ranges, more restricted 

diving capabilities and limited abilities to switch prey compared with other seabirds and 

are therefore vulnerable to environmental conditions which affect abundance of preferred 

prey species (Furness and Tasker 2000). Reproductive success of Kittiwakes and terns is 

more likely to decline in years of adverse foraging conditions and low food availability 

than that of larger less sensitive species.  

  Terns are small seabirds with limited time and energy budgets during the breeding 

season (Pearson 1968, Cabot and Nisbet 2013). They mainly feed by snatching food from 
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the surface of the sea or by plunge diving to depths of up to one metre (Shealer 2001), and 

as such are dependent on biotic and abiotic processes making prey available at the water 

surface (Schwemmer et al. 2009). Interspecific variation in foraging behaviour influences 

tern species’ vulnerability to environmental change; smaller tern species with more 

specialist diets and restricted diving capabilities are at increased risk of food shortages than 

larger generalist species (Furness and Tasker 2000, Perrow et al. 2011). Arctic Terns 

(Sterna paradisaea) have been identified as the most sensitive UK seabird species to 

reductions in food abundance due to their specialist diets and foraging behaviour (Furness 

and Tasker 2000). Arctic Terns have an extremely limited diving ability (<0.5m; Cabot and 

Nisbet 2013) and forage more regularly by surface-dipping than other tern species which 

mainly plunge dive (Shealer 2001, Cabot and Nisbet 2013). They also have restricted diets 

and tend to feed chicks on small sandeels (0 – 4 cm) (Uttley et al. 1989, Furness and 

Tasker 2000, Cabot and Nisbet 2013). Hence, Arctic Tern reproductive success is more 

likely to be adversely affected during periods of low availability of sandeel of the right size 

close to the sea surface than that of other sympatric tern species (Uttley et al. 1989). 

 Arctic and Common Terns are closely related species often found breeding together 

in close proximity. Despite some overlap in body weight and near overlap in bill length 

between these species (see Chapter 2; Dunn 1975, Lemmetyinen 1976, Cramp 1985, 

Malling Olsen and Larsson 1995, Ramos et al. 1998, Snow and Perrins 1998), interspecific 

differences in foraging behaviour and reproductive parameters have been observed both 

when Arctic and Common Terns breed separately at single-species colonies, and when 

species breed together at the same colony (Pearson 1968, Dunn 1975, Uttley et al. 1989, 

Cabot and Nisbet 2013). Pearson (1968) compared the diets and foraging areas utilised by 

Arctic and Common Terns breeding on the Farne Islands, Northumberland and showed 

that the two species fed on broadly similar prey species and shared similar foraging areas. 

There were slight differences in diet however; Common Terns fed on a higher proportion 

of clupeid species, while Arctic Tern diet comprised a higher proportion of sandeel. In 

contrast, comparisons between Arctic and Common Terns breeding at different colonies 

show that diet, foraging behaviour and reproductive success can vary significantly between 

populations breeding in different areas (Morris et al. 1976, Uttley et al. 1989, Cabot and 

Nisber 2013). Terns are thought to adjust their diet to whatever prey items are available in 

different areas and at different times (Cramp 1985, Cabot and Nisbet 2013). Hence, 

variation in local food supply may influence the diet, foraging behaviour, and ultimately 

the reproductive success of populations breeding in different areas. 
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 While previous studies have shown that interspecific variation in chick 

provisioning behaviour, foraging habitat preference and behavioural response to changes in 

offshore conditions can occur in sympatrically breeding seabirds (Taylor 1983, Safina et al. 

1990, Croxall et al. 1997, Sapoznikow and Quintana 2003, Surman and Wooller 2003, 

Schwemmer et al. 2009, Robertson et al. 2014a), few studies have examined whether 

interspecific variation in foraging behaviour explains differences in reproductive success of 

closely related species (but see Uttley et al. 1989, Inchausti et al. 2003, Chivers et al. 

2012a). We compared the characteristics of prey items fed to chicks in two 

morphologically similar tern species, Arctic and Common Terns, over a single breeding 

season at a North Sea colony and examined whether variation in diet and provisioning rates 

differentially affected reproductive parameters of each species. We 1) compare the type, 

size and energy content of prey items delivered to chicks and broods by different tern 

species and 2) examine the relationship between prey delivery and chick growth rate, 

survival to fledging and overall breeding success. We discuss the implications of our 

results for predicting responses of sympatrically breeding species to changes in the marine 

environment. 

5.3 Methods 

5.3.1 Nest Observations 

The study took place from May – July 2011 on Coquet Island, Northumberland, England 

(55º 20’ N, 1º 32’ W) during the chick-rearing periods for Arctic and Common Terns. 

Coquet Island is managed for terns by the Royal Society for the Protection of Birds 

(RSPB) and vegetation control is carried out in the southwestern part of the island to 

maintain suitable breeding habitat for tern species. Study plots were selected from this area 

as it had dense tern breeding populations, lower vegetation length than peripheral areas and 

allowed for the simultaneous observation of many nests. Study plots were easily accessible 

without disturbing large numbers of breeding terns and the short vegetation length allowed 

the survival of chicks to be routinely recorded. Plots were situated near the centre of tern 

colonies, and as the position of nests within seabird colonies has been found to affect 

fledging success and survival (Tenaza 1971, Aebischer and Coulson 1990), nests in study 

plots may have had higher productivities than peripheral nests. Productivity of peripheral 

nests could not be recorded due to the length of surrounding vegetation and proximity to 

rare Roseate Terns (Sterna dougallii) breeding on the west side of the island. As study 
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nests for both species were situated near the centre of respective study plots, comparing 

productivities of Arctic and Common Terns using central study nests is unlikely to have 

resulted in significant bias.  

 Fifty study nests were selected from respective study plots for each species, 10 of 

which were used for regular nest observations. Approximately 1 – 4 m² was enclosed 

around each of the 10 nests using plastic netting ~0.3 – 0.5 m high (Pearson 1968, 

McKearnan and Cuthbert 1989, Ramos et al. 1998), to facilitate feeding observations and 

prevent precocial chicks from moving away from the nest and becoming difficult to 

observe when adults delivered food. The remaining nests in the group of 50 were enclosed 

in groups of two or three and were used to estimate clutch size (number of eggs per nest 

after completion of the clutch) and fledging success (number of fledged chicks / number of 

chicks hatched) for each species. The 50 nests were not enclosed individually to reduce 

disturbance to the colony when fitting plastic netting around nests. Chicks from each nest 

were ringed using uniquely numbered metal rings (supplied by the British Trust for 

Ornithology (BTO)) 3 – 4 days after hatching allowing individual chick mortality and 

fledging success to be calculated for each nest. Clutches were considered to be complete 

when on three consecutive days no additional egg had been laid. A similar method was 

used by Brinkhof et al. (1993) in a study examining variation in the timing of reproduction 

on fledging success in Coots. As Coquet Island does not have any mammalian predators 

and as large gulls are controlled, egg predation is rare. No incidence of egg predation was 

observed for study nests on Coquet Island, and once the final clutch size was recorded, no 

eggs were recorded to have been removed from study plots. Counts were made of the 

number of eggs and chicks in each of the 50 study nests every 2 – 3 days allowing hatching 

date, age and survival to be estimated for each chick.   

 Chicks in each of the 10 individually enclosed nests were ringed and marked 

shortly after hatching using temporary leg flags of unique colour combinations. Each chick 

also had small amounts of water-soluble nontoxic Tippex
®
 applied to the crown to allow 

individuals to be recognised from a hide on occasions when leg flags were obscured by 

vegetation. Chick weight was only recorded on two occasions during the linear growth 

phase to limit disturbance to the nearby Roseate Tern colony (Coquet Island is one of only 

a few breeding colonies for this species in the UK; Mitchell et al. 2004, Cabot and Nisbet 

2013).  

Chicks were weighed to the nearest 0.25 g using 50 g and 300 g pesola scales 2 – 3 

days after hatching and for a second time close to fledging or on the day of death (at 8 – 24 

days). Chick weight has been shown to increase linearly with age (in days) before reaching 
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asymptotic weightat 19 and 15 days old for Common and Arctic Tern chicks respectively 

(LeCroy and LeCroy 1974, Klaassen et al. 1989, Klaassen et al. 1994). As adverse weather 

conditions restricted access to the study plots when chicks of both species approached 

asymptotic weight, 19 chicks (17 Arctic and 2 Common) from a total of 42 could not be 

weighed until 1 – 8 days after the end of the linear growth phase. However, chick weight 

does not increase significantly after reaching asymptote (LeCroy and LeCroy 1974, 

Klaassen et al. 1989), hence weights recorded after the end of the linear growth phase were 

assumed to be similar had they been recorded earlier. Hence, for chicks measured after 

they reached asymptote, the second weight measurement was still used to calculate growth 

rate. Fewer second weight measurements were taken for Arctic Terns than for Common 

Terns as the number of days when chicks grew at a linear rate was more restricted (Arctic 

= 2 – 15 days, Common = 2 – 19 days; LeCroy and LeCroy 1974, Klaassen et al. 1989, 

Klaassen et al. 1994). Chick growth rate (g day
-1

) was calculated using the following 

equation (Coulson and Porter 1985, Nisbet et al. 1995):  

                   
       

       
 

Where: W1 = Weight (g) at first measurement (2 < chick age < 3 days old) 

             W2 = Weight (g) at second measurement (8 < chick age < 24 days old) 

             D1 = Date of first measurement 

             D2 = Date of second measurement  

Chicks which died before the age at which they could be initially weighed and marked 

were excluded from analyses. Chick growth rate was calculated for a total of 42 chicks (19 

Arctic and 23 Common Tern chicks), from which a total of 30 survived to fledging and the 

remainder died from starvation (n = 12). An equal number of chicks from both species (n = 

6) died before fledging. Growth rate was compared between those chicks which survived 

to fledging and those which did not using Mann Whitney U tests. This test was also used to 

compare growth rates of chicks which were measured twice during the linear growth phase 

and those which were measured late. 

Clutch size and fledging success recorded from 50 study nests per species (100 

nests in total) were compared between Arctic and Common Terns using generalised linear 

models (GLMs) with quasipoisson error distributions (to account for overdispersion) and 

log link functions, or with Gaussian error distributions and identity link functions where 

appropriate. Fledging success calculated from 10 individually enclosed nests was similar to 

that calculated using the remaining 40 nests for both species (Arctic: 10 nests = 0.65 ± 
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0.48, 40 nests = 0.58 ± 0.33; Common: 10 nests = 0.63 ± 0.22, 40 nests = 0.60 ± 0.27), 

although the larger samples gave greater accuracies. 

 Nest observations for each species took place from a hide positioned <12 m from 

study nests (maximum distance at which prey could be conclusively identified) from 2 

June – 9 July 2011. Only observations which took place during the linear growth phase 

were used for analyses in this study. Common Tern study nests started hatching ~5 days 

before Arctic Tern nests although there was considerable overlap in hatching dates (see 

Table 4. 1). Mean age of chicks on the first day of nest observations differed only slightly 

between species (Table 4. 1). To avoid biases related to chick age, interspecific 

comparisons in diet and rates of prey delivery were made for chicks of approximately the 

same age.  

Three-hour watches were carried out for every time period from 0400 – 2100 h and 

tidal state (low, high, rising, falling). For each nest, time of arrival and departure of adults, 

type and size of prey items fed to chicks and identity and hatching order of fed chicks 

(first, second or last-hatched) was recorded. Prey types were grouped into four categories: 

Lesser Sandeel (Ammodytes marinus; hereafter ‘sandeel’), sprat (Sprattus sprattus), 

juvenile fish (larvae not identifiable at species level) and miscellaneous (including 

crustaceans, cephalopods and small demersal fish). Prey size was measured in tern bill 

lengths as in previous studies (Safina et al. 1990, Shealer 1998b, Rock et al. 2007). Bill 

lengths of Arctic and Common Terns differ only slightly (Dunn 1975, Lemmetyinen 1976), 

hence estimates of prey size categories were comparable between species (Robertson et al. 

2014a). Type and size categories were validated for both species before observations began 

by examining discarded fish of known categories. Prey length (cm) was calculated by 

multiplying prey size category (<0.5, 0.5, 1, 1.5, 2, >2 bill lengths) by species’ median bill 

length and the mean prey length of items delivered to each chick during the linear growth 

phrase was calculated. Nest observations for both species were carried out by the same 

observer.  

5.3.2 Data Analyses 

Chick provisioning rate was defined as number of deliveries made to each chick per hour 

and was calculated for chicks in 10 study nests of each species during the linear growth 

phase. Brood provisioning rate was defined as the number of deliveries made to each brood 

per hour and was also calculated during the linear growth phase. The percentage of each 

prey type and the mean length of prey items (cm) delivered to chicks during the linear 
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growth phase were also calculated. The total amount of energy delivered to each chick and 

brood per hour during the linear growth phase was calculated using energy equations 

relating prey length to energy content (kJ) of sandeel and sprat (Hislop et al. 1991). As the 

species identity of prey items recorded as ‘juvenile fish’ was unknown, the mean energy 

content of sandeel and sprat was used for this prey type. This method is unlikely to have 

grossly under- or overestimated the energy content of juvenile fish as very small sandeel 

and sprat have similar energy contents (Hislop et al. 1991). Little could be inferred about 

the identity and energy content of miscellaneous species but because these only comprised 

1.89% of total number of prey items delivered, miscellaneous species were discounted 

from energy calculations. 

 Interspecific differences in proportions of different prey type categories fed to 

chicks were examined using linear mixed models (LMMs). LMMs used normal error 

distributions, identity link functions and nest ID as a random factor unless otherwise stated. 

Differences in the mean length of prey items delivered to Arctic and Common Tern chicks 

and to chicks of different hatching order were also examined using an LMM. Variables 

expected to explain a significant amount of variation in chick provisioning rate such as tern 

species, hatching order, brood size, energy delivery rate per chick, proportion of sandeel 

and juvenile fish fed to chicks and the following 2-way interactions: species x energy 

delivery rate per chick; species x proportion of sandeel; species x proportion of juvenile 

fish fed to chicks were examined using an LMM. Chick provisioning rate was log-

transformed to reduce heteroscedasticity in the residuals of the minimum adequate model. 

As 70% of Common Tern broods in this study contained three chicks while no Arctic 

Terns had brood sizes greater than two, hatching order was categorised as ‘first-hatched’, 

‘second-hatched’ and ‘last-hatched’ for each species allowing interspecific comparisons of 

prey delivered to chicks of different hatching order to be made. Second-hatched Arctic 

Tern chicks were classified as ‘last-hatched’, while the ‘second-hatched’ category referred 

to second-hatched chicks in Common Tern broods. Separating hatching order in this way 

allowed comparisons to be made between first- and last-hatched chicks of different 

species. Differences in brood provisioning rate and energy delivery rate per brood were 

examined between species using Mann Whitney U tests. Variation in energy delivery rate 

per chick between species and chicks of different hatching order was examined using 

LMMs. Only uncorrelated fixed effects were included in each model (identified using 

Pearson’s product moment correlation coefficient where r > 0.7 was taken to be a 

significant correlation (the use of 0.7 as a significant correlation was justified in a previous 

study (Dormann et al. 2012)) We also tested for correlation among fixed effects before 
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fitting the model using generalised variance inflation factors adjusted for the number of 

degrees of freedom (GVIF^(1/2*df) using package ‘car’ in R version 3.1.2 (Fox and 

Weisberg 2011). A GVIF > 2 was regarded to be correlated with another variable included 

in the model (Wheeler 2007). 

 Variables likely to explain a significant amount of variation in chick growth rate 

during the linear growth phase were examined using an LMM. The model initially 

included species, chick provisioning rate, energy delivery rate per chick, brood size, 

whether or not chicks survived to fledging, hatching order, proportion of sandeel and 

juvenile fish delivered to each chick and 2-way interactions: species x energy delivery rate 

per chick and species x chick provisioning rate. The inclusion of a 2-way interaction 

between species and hatching order prevented the model from converging and was 

therefore not included. The GVIF for these variables was not greater than two, which 

suggests this was not caused by multicollinearity among variables included within the 

initial model.  

 Throughout the chick-rearing period, individually enclosed nests of both tern 

species were checked daily from a hide using binoculars and date of death or fledging was 

recorded for each chick (a chick was considered to have fledged when it was able to fly out 

of the nest enclosure). Larger enclosures for each species were checked every 2 – 3 days to 

record the number of chicks which had fledged or died. Variation in probability of chick 

survival in the 10 individually enclosed nests was examined using a generalised linear 

mixed model (GLMM) with a binomial error distribution, complementary log-log link 

function (to control for unequal size of groups within the response variable (Piegorsh 1992, 

Petersen and Hardy 1996): chicks survived = 30, chicks did not survive = 12)) and with 

nest ID as a random factor. Species, chick provisioning rate and energy delivery rate per 

chick during the linear growth phase as well as hatching order were included in the initial 

model, as was a 2-way interaction between species and chick provisioning rate. Chick 

growth rate was not included as a previous model showed that growth rate was related to 

energy delivery rate per chick and the two variables were also found to show some 

correlation (Pearson’s product-moment correlation: t40 = 3.73, p<0.001, r = 0.51). 

 For each LMM and GLMM, we first fitted a fully parameterised model using 

maximum likelihood (ML) and removed terms by sequential deletion while testing for 

significant changes in model variance using likelihood ratio tests (LRTs) (Crawley 2007). 

We then refitted the minimum adequate model using restricted maximum likelihood 

(REML) to estimate effect sizes. Models were tested for goodness-of-fit using residual 

plots, receiver operating characteristic (ROC) curves and associated area under the curve 
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(AUC) using the ‘ROCR’ package in R (Sing et al. 2005). LMMs were fitted using the 

‘nlme’ R package (Pinheiro et al. 2014) and GLMMs using the ‘lme4’ R package (Bates et 

al. 2013). Analyses were carried out in R version 3.1.2 (R Core Development team 2014). 

Means are presented ± SE throughout. 

5.4 Results 

5.4.1 Comparing Chick Diet and Provisioning Rates 

There was a significant difference in the percentage of sandeel delivered to chicks of 

different species with Arctic Terns delivering a higher percentage than Common Terns 

during the linear growth phase (69.91 ± 0.02% and 63.05 ± 0.01% respectively; LMM: χ
2

1 

= 5.59, p = 0.02, n = 42). Whilst the percentage of juvenile fish delivered to chicks by 

Arctic Terns was greater than that delivered by Common Terns (23.74 ± 1.71% and 16.98 

± 1.06% respectively) this difference was only marginally significant (LMM: χ
2

1 = 4.29, p 

= 0.04). Figure 5. 1 shows that Common Terns delivered a higher percentage of different 

prey types than Arctic Terns and fed chicks a significantly greater percentage of sprat 

(LMM: χ
2

1 = 30.49, p<0.001).  
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Figure 5. 1 Percentage (%) of prey types delivered to Arctic and Common Tern chicks during the 

linear growth phase calculated from the total number of prey items delivered to chicks of each 

species (Arctic: sandeel = 511, sprat = 26, juvenile fish = 173, misc = 23; Common: sandeel = 570, 

sprat = 169, juvenile fish = 156, misc = 8) 

 Mean length of prey items was found to differ significantly between species with 

Arctic Terns delivering smaller items than Common Terns (3.06 ± 0.05 cm and 3.68 ± 0.06 

cm respectively; LMM: χ
2

1 = 16.26, p<0.001, n = 42), but there was no significant effect of 

hatching order on mean length of prey items delivered to individual chicks (χ
2

1 = 4.66, p = 

0.10). As Arctic Terns fed a higher percentage of prey types, such as juvenile fish, which 

tend to be smaller than species delivered more often by Common Terns, interspecific 

differences in prey length may have been confounded with prey type. 

 Mean prey length (correlated with energy delivery rate per chick and proportion of 

juvenile fish fed to chicks) was excluded from an initial model examining variation in 

chick provisioning rate. There were significant differences in chick provisioning rates 

(deliveries per chick h
-1

) between the two tern species, with Arctic Terns delivering food to 

chicks at a higher rate than Common Terns (LMM: χ
2

1 = 19.62, p<0.001, n = 42; Table 5. 

1, Table 5. 2). Last-hatched chicks in broods of both species were fed significantly less 

frequently than older chicks (χ
2

1 = 10.19, p = 0.01; Table 5. 2). Brood provisioning rate 

(deliveries per brood h
-1

) was only slightly higher for Arctic Terns than for Common Terns 
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(Table 5. 1), and a Mann Whitney U test showed there to be no significant difference 

between species (W = 67, p = 0.22, n = 20). Energy delivery rate per brood (kJ per brood h
-

1
), however, was found to be significantly higher for Common Tern broods than for Arctic 

Tern broods (W = 20, p = 0.02, n = 20; Table 5. 1). Despite interspecific differences in 

provisioning rates and in prey type and size fed to chicks, there was no significant 

difference in the total amount of energy delivered to Arctic and Common Tern chicks per 

hour (LMM: χ
2

1 = 3.47, p = 0.06, n = 42; Table 5. 1) or to chicks of different hatching 

order (LMM: χ
2

1 = 3.80, p = 0.12).  

Table 5. 1 Mean ± SE clutch size, provisioning rates, energy delivery rates and number of chicks 

fledged per pair for Arctic and Common Terns breeding on Coquet Island in 2011 

 Arctic Terns Common Terns 

Mean clutch size per pair 2.38 ± 0.06                     

(n = 50) 

2.84 ± 0.05                     

(n = 50) 

Mean brood size per pair when 

nest observations began 

2.18 ± 0.07                     

(n = 50) 

2.84 ± 0.04                     

(n = 50) 

Mean provisioning rate per chick 

(deliveries per chick h
-1

) 

2.02 ± 0.10                    

(n = 19) 

1.12 ± 0.05                                  

(n = 23) 

Mean energy delivery rate per 

chick (kJ per chick h
-1

)  

1.35 ± 0.07                                

(n = 19) 

1.98 ± 0.19                                  

(n = 23) 

Mean provisioning rate per brood 

(deliveries per brood h
-1

) 

3.26 ± 0.22                                  

(n = 10) 

3.06 ± 0.31                                 

(n = 10) 

Mean energy delivery rate per 

brood (kJ per brood h
-1

) 

2.55 ± 0.19   

 (n = 10) 

4.44 ± 0.53                                                                

(n = 10) 

Number of chicks survived to 

fledging per pair 

1.24 ± 0.07                                  

(n = 50) 

1.90 ± 0.11                                  

(n = 50) 
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Table 5. 2 Output from minimum adequate model fitted using restricted maximum likelihood 

(REML) from a LMM with a normal error distribution and identity link function examining which 

variables are most significant in explaining variation in log(chick provisioning rate; deliveries per 

chick h
-1

). Random factor = Nest ID (n = 20). Random Intercept standard deviation = 0.16 and 

Residual standard deviation = 0.24. n = 42 

 Estimate ± SE DF t-value p-value 

Intercept 0.80 ± 0.09 20 9.39 <0.001 

Species:     

    Arctic 0 - - - 

    Common -0.61 ± 0.11 18 5.55 <0.001 

Hatching order:      

   First-hatched 0 - - - 

   Second-hatched -0.06 ± 0.11 20 0.55 0.59 

   Last-hatched -0.29 ± 0.09 20 3.38 0.003 

 

5.4.2 Comparing Reproductive Parameters 

Mean clutch size, calculated from 50 study nests for each tern species, was found to be 

significantly larger in Common than in Arctic Terns (GLM: χ
2

1 = 2.03, p<0.001, n = 100; 

Table 5. 1). Brood size was also found to be significantly greater in Common Terns (χ
2

1 = 

4.35, p<0.001, n = 100; Table 5. 1). Conversely, fledging success, was not significantly 

different between the two species (GLM: χ
2

1 = 0.09, p = 0.66, n = 100). However, 

Common Terns succeeded in raising significantly more chicks to fledging overall than 

Arctic Terns (GLM: χ
2

1 = 7.18, p<0.001, n = 100; Table 5. 1). There was no significant 

difference in the growth rates (g day
-1

) of chicks which were measured during the linear 

growth phase and those which were measured after 19 or 15 days old (W = 219, p = 0.84, n 

= 42). First-hatched chicks of both species had comparable mean growth rates (g day
-1

) 

(Arctic = 6.28 ± 0.35, Common = 6.23 ± 0.22; t15.28 = 0.08, p = 0.93, n = 19), as did last-

hatched chicks (Arctic = 3.69 ± 0.57, Common = 3.34 ± 0.50; t11.25 = 0.26, p = 80, n = 15). 

Second-hatched Common Tern chicks had significantly higher growth rates than last-



 
 

97 
 

hatched Arctic Tern chicks (5.93 ± 0.26 and 3.69 ± 0.57 respectively; t11.41 = -2.34, p = 

0.04, n = 17), and this effect was marginally significant. However, it is important to note 

that last-hatched Arctic Terns chicks were from broods of two, and were compared with 

second-hatched Common Tern chicks from broods of three. Hence growth rates of chicks 

of different hatching order may not be directly comparable between species.  

 Mean prey length was excluded from an LMM examining variation in chick growth 

rate as this variable was correlated with energy delivery rate per chick (kJ per chick h
-1

). 

There was a significant difference in the growth rates of chicks which survived to fledging 

and those which did not (W = 8, p<0.001, n = 42). Therefore, survival to fledging was 

included as a 2-level factor (did survive to fledging and did not survive to fledging) in the 

LMM examining variation in chick growth rate. The model showed that both brood size 

and chick survival to fledging explained significant amounts of variation in chick growth 

rate (χ
2
1 = 3.88, p = 0.04, n = 42 and χ

2
1 =13.2, p<0.001 respectively) and that chicks 

which died before fledging and chicks from larger broods had lower growth rates than 

chicks which survived to fledging and chicks from smaller broods in both species (Table 5. 

3). Chick provisioning rate did not significantly affect chick growth rate (χ
2

1 = 0.27, p = 

0.27) and hatching order had an almost significant effect on chick growth rate (χ
2

1 = 4.86, 

p = 0.08; Table 5. 3). The inclusion of chicks which survived to fledging in the model 

explained a significant amount of variation in chick growth rate. Excluding chicks which 

did not survive to fledging would have significantly reduced the number of data points in 

the model (n = 13), hence chicks which survived and chicks which did not survive to 

fledging were both included in the initial model.   
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Table 5. 3 Output from minimum adequate model fitted using restricted maximum likelihood 

(REML) from a LMM with a normal error distribution and identity link function examining which 

variables are most significant in explaining variation in chick growth rate (g day
-1
). Random factor 

= Nest ID (n = 20). Random Intercept standard deviation = 0.13 and Residual standard deviation = 

1.12. n = 42 

 Estimate ± SE DF t-value p-value 

Intercept 3.69 ± 1.24 18 2.98 0.003 

Species:     

    Arctic 0 - - - 

    Common 2.27 ± 1.08 18 2.11 0.03 

Survival:     

   Did not survive 0 - - - 

   Survived 2.24 ± 0.63 18 3.56 <0.001 

Energy delivery rate per 

chick 

1.72 ± 0.66 16 2.59 0.01 

Brood size -0.99 ± 0.42 16 2.34 0.02 

Hatching order:      

   First-hatched 0 - - - 

   Second-hatched -0.02 ± 0.54 16 0.03 0.97 

   Last-hatched -1.09 ± 0.54 16 2.00 0.04 

Species x Energy delivery 

rate 

    

   Arctic 0 - - - 

   Common -1.34 ± 0.67 16 1.97 0.04 
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The LRT suggested that there was an almost significant interaction between species 

and energy delivery rate per chick with respect to chick growth rate (χ
2

1 = 3.15, p = 0.07), 

hence this interaction was retained in the minimum adequate model (Table 5. 3). The 

significance of this interaction term in the minimum adequate model indicates that the 

impact on chick growth rate of energy delivery rate was greater for Arctic Terns than for 

Common Terns. The growth rates of Arctic Tern chicks increased faster with energy 

delivery rate than growth rates of Common Tern chicks. Common Tern chick growth rates 

increased more slowly with increasing energy delivery rate as illustrated in Figure 5. 2. 

Figure 5. 2 shows that the significance of this interaction may be influenced by two 

outliers. These data points correspond to a single Common Tern nest where adults 

regularly delivered large prey items with high energy contents. We repeated the analysis 

excluding this nest and still found a significant interaction between species and energy 

delivery rate per chick (χ
2

1 = 15.13, p = 0.02, n = 40), hence we can conclude that these 

outliers did not influence the results of our analysis. 

 Seven out of 20 hatched Arctic Tern chicks and 10 out of 27 hatched Common 

Tern chicks died before fledging (35% and 37% respectively). There was no significant 

interaction between species and chick provisioning rate in explaining the probability of 

chick survival to fledging (GLMM: χ
2

1 = 1.06, p = 0.30, n = 42). Probability of survival to 

fledging was similar for chicks of both species (χ
2

1 = 0.31, p = 0.58) and chick 

provisioning rate had no significant effect on survival (χ
2

1 = 1.69, p = 0.19). Hatching 

order had a significant effect on chick survival with first-hatched chicks being more likely 

to survive than second and last-hatched chicks (χ
2

2 = 12.49, p = 0.002; Table 5. 4). Energy 

delivery rate per chick also explained a significant amount of variation in chick survival 

(χ
2

1 = 5.38, p = 0.02; Table 5. 4).    
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Figure 5. 2 Relationships between chick growth rate (g per chick day
-1
) and energy delivery rate per 

chick (kJ per chick h
-1

) for Arctic (black) and Common Terns (red). Straight lines represent 

GLMMs fitted for each species and hatching order (solid line = First hatched chick; dashed line = 

Second hatched chick; dotted line = Last hatched chick)  
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Table 5. 4 Output from minimum adequate model fitted using restricted maximum likelihood 

(REML) from a GLMM with a binomial error distribution and complementary log-log link 

function examining variation in the probability of a chick surviving to fledging. Random factor = 

Nest ID (n = 20). n = 42. Random Intercept standard deviation = 0.08 and Residual variance = 

0.01.Receiver operating characteristic (ROC) curve showed the model to fit the data satisfactorily 

(AUC = 0.92) 

 Estimate ± SE z-value p-value 

Intercept -0.40 ± 0.85 0.48 0.63 

Hatching order:    

    Second-hatched -1.41 ± 0.83 1.71 0.09 

    Last-hatched -2.11 ± 0.70 3.00 0.003 

Energy delivery rate per chick 1.28 ± 0.67 1.91 0.056 

 

5.5 Discussion 

Interspecific variation in diet and provisioning behaviour influence species’ vulnerability 

to changes in the marine environment (Furness and Camphuysen 1997, Furness and Tasker 

2000, Diamond and Devlin 2003) and may account for variation in reproductive success of 

species breeding at the same colony (Uttley et al. 1989, Baird 1990, Inchausti et al. 2003). 

Despite delivering prey items of different types and sizes to chicks, both Arctic and 

Common Terns in our study had similar chick growth rates, chick survival and fledging 

success.   

 Previous studies have shown that sympatric tern species can reduce interspecific 

competition by delivering different prey types and sizes to chicks (Duffy 1986, Rock et al. 

2007, Robertson et al. 2014a). Arctic and Common Terns in our study delivered 

significantly different proportions of sandeel, sprat and juvenile fish (Safina 1990a, Safina 

et al. 1990, Rock et al. 2007). Arctic Terns delivered a higher percentage of sandeel and 

juvenile fish and fewer sprats than Common Terns, and Figure 5. 1 shows that Common 

Terns delivered higher percentages of different prey types, which suggests that this species 

fed on a wider variety of prey items. Sandeel is an important prey species for terns in the 
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North Sea (Kirkham and Nisbet 1987, Furness and Tasker 2000, Mitchell et al. 2004), but 

reliance on sandeel varies among species and breeding colonies (Furness and Tasker 2000, 

Cabot and Nisbet 2013, Robertson et al. 2014a). In general, Arctic Terns rely more heavily 

on sandeel as a prey source than sympatric Common Tern populations (Monaghan et al. 

1989, Uttley et al. 1989), which may explain interspecific variation in reproductive success 

when sandeel abundance is low (Uttley et al. 1989).    

 Prey species and size classes vary in energetic content (Harris and Hislop 1978, 

Hislop et al. 1991). Sprats have a higher energetic content than sandeel and juvenile fish, 

which also tend to be smaller (Harris and Hislop 1978, Hislop et al. 1991). Prey items 

delivered to chicks by Arctic Terns were significantly smaller than those delivered to 

Common Tern chicks. As the energetic content of fish is strongly correlated with length 

(Hislop et al. 1991), the total amount of energy delivered to Common Tern chicks per hour 

may be expected to be higher than that delivered to Arctic Tern chicks. However, Arctic 

Terns delivered prey to chicks at a significantly higher frequency than did Common Terns. 

Hence, when energy delivery rate per chick was compared between species, no significant 

difference was found. Although Arctic Terns delivered smaller prey items with lower 

energy contents to chicks, they maintained similar energy delivery rates to Common Terns 

by increasing the frequency at which prey items were delivered to each chick.  

 The provisioning strategy utilised by Arctic Terns appears to be a less efficient than 

that of Common Terns. Delivering larger more nutritious prey less frequently is more 

economic for a small seabird with a limited foraging range and energy budget (Pearson 

1968, Cabot and Nisbet 2013) hence it is unclear why Arctic Terns consistently delivered 

small prey items. Due to their small size and limited diving ability, Arctic Terns 

concentrate their foraging activities at the sea surface and capture prey more regularly by 

surface-dipping (Shealer 2001, Cabot and Nisbet 2013). As small fish age classes are more 

often found congregating close to the surface than in deeper waters (Rindorf et al. 2000), 

Arctic Terns may have encountered smaller prey items regularly during foraging. 

However, it is possible that Arctic Terns preferentially selected small juvenile fish as they 

were readily available and easy to catch and transport (Hopkins and Wiley 1972). Being 

slightly larger with deeper diving capabilities (~0.8 m; Cabot and Nisbet 2013), Common 

Terns are able to capture and carry larger prey items than Arctic Terns (Nisbet 1981, Snow 

and Perrins 1998, Shealer 2001). However, there are costs to delivering larger prey items 

such as transport, increased difficulty in capture and vulnerability to kleptoparasitism 

(Barrett and Krasnov 1996, Ratcliffe et al. 1997, Dies and Dies 2005).  
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 In our study, Common Terns laid significantly larger clutches than Arctic Terns 

and raised more chicks to fledging. Interspecific differences in clutch and brood size may 

reflect the amount of food parents are capable of supplying to chicks (Lack 1968), 

although brood size in terns has been shown to be limited by the cost of egg production 

(Heaney and Monaghan 1995) as well as by parental provisioning effort (Robinson and 

Hamer 2000). Interspecific differences in reproductive output may result from differences 

in life history traits and migration strategies (Boggs 1992, Egevang et al. 2010, Cabot and 

Nisbet 2013), but variation in the effectiveness of species’ foraging strategies could also 

influence the amount of energy invested in foraging and reproduction (Uttley et al. 1989). 

Common Terns may be more capable of fledging larger broods than Arctic Terns due to 

their wider diet and more flexible foraging behaviour (Uttley et al. 1989, Safina et al. 1990, 

Robinson et al. 2001b, Cabot and Nisbet 2013). Arctic Terns are more reliant on sandeel 

during the breeding season, have limited diving capabilities and have more restricted diets 

than Common Terns, and have therefore been identified as more vulnerable to reductions 

in food availability (Furness and Ainley 1984, Furness and Tasker 2000). However, chick 

growth rates during the linear growth phase were similar between species and of the total 

number of chicks hatched in study nests, a similar proportion survived to fledging in both 

species. This suggests that Arctic and Common Tern parents were equally successful at 

providing adequate food to chicks throughout the developmental period. 

 As Common Terns had larger broods than Arctic Terns, Common Tern parents 

might have been expected to exhibit greater foraging effort to deliver enough food to each 

chick in a brood. However, we found there to be no significant difference in brood 

provisioning rate during the linear growth phase between the two species, which suggests 

that although individual Arctic Tern chicks within a brood received food deliveries at a 

higher rate than Common Tern chicks within a brood, parents of both species delivered 

prey to broods at similar rates. The higher chick provisioning rates of Arctic Terns may 

have been a consequence of their significantly smaller clutch sizes; food deliveries were 

distributed among fewer chicks. Although both species had comparable chick energy 

delivery rates per hour, Common Terns had higher energy delivery rates per brood than 

Arctic Terns, as they consistently delivered larger prey items to nests. This may be a result 

of interspecific differences in diet, foraging behaviour and offshore habitat selection 

(Uttley et al. 1989, Rock et al. 2007, Robertson et al. 2014a).  

 Although chick growth rate during the linear growth phase was similar between 

species, beyond a threshold of approximately 1.3 kJ per chick h
-1

, Arctic Tern chicks had 

higher growth rates than Common Tern chicks for a given energy delivery rate. Arctic 
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Terns are smaller than Common Terns and reach asymptotic weight at a younger age 

(Klaassen et al. 1989, Snow and Perrins 1998). Arctic Tern chicks also require less energy 

to maintain growth rates than larger tern species (Klaassen et al. 1989, Klaassen et al. 

1994). This may explain how Arctic Terns were able to maintain similar chick growth rates 

to Common Terns while using a less energetically efficient foraging strategy. Energy 

requirements are 30% higher for Common than for Arctic Tern chicks, and Common Tern 

chicks spend a greater proportion of their daily energy intake on maintaining body 

temperature, perhaps because their larger brood sizes reduce the efficiency of parental 

brooding or because Arctic Terns are better adapted to a more northerly distribution 

(Robinson et al. 2001b). Chick growth rate of sympatrically breeding tern species has been 

shown to be differentially affected by changes in weather conditions due to interspecific 

differences in parental foraging behaviour (Dunn 1975, Uttley et al. 1989). Hence, 

variation in chick energy requirements and vulnerability to changes in environmental 

conditions may influence chick growth among species. 

 There is a tendancy for chicks with higher energy delivery rates to be more likely to 

survive to fledging than chicks with lower energy delivery rates in both species, although 

the relationship between chick survival and energy delivery rate was not strong. Previous 

studies have shown that the energetic value of prey can significantly influence chick 

survival in seabirds and other marine predators (Rosen and Trites 2000, Wanless et al. 

2005b). The ‘junk-food hypothesis’ suggests that declines in seabird productivity can be 

attributed to a decrease in the nutritional value of the prey items fed to chicks (Romano et 

al. 2006, Grémillet et al. 2008). Chicks fed prey items of higher energy content are more 

likely to survive both before and after fledging than those fed on prey items of lower 

energetic value (Wanless and Harris 1992, Golet et al. 2000, Romano et al. 2006). Both 

Arctic and Common Tern chicks which were delivered energy at a higher rate were likely 

to have more available energy to fuel growth and survival than chicks delivered less energy 

per hour (Massias and Becker 1990, Golet et al. 2000, Litzow et al. 2002).   

 Diet and chick provisioning behaviour of morphologically similar species breeding 

at the same colony can differ significantly. Arctic Terns delivered smaller prey of lower 

energy content to chicks than Common Terns, but there was no significant difference in 

chick growth rate and survival between species. This is contrary to our initial expectations, 

as chicks receiving a high proportion of energetically poor prey may be expected to have 

lower growth rates and survival than those fed on large prey items with high energy 

contents. However, Arctic Terns in our study were able to compensate for the low 

energetic value of prey items by increasing the frequency at which prey items were 
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delivered to each chick in a brood. Both tern species delivered prey to broods at similar 

rates, and Arctic Terns were able to maintain higher chick provisioning rates by laying 

smaller clutches. Our study shows that sympatrically breeding species vary in their 

provisioning behaviour and total reproductive output which may be at least partly due to 

differences in diet and foraging strategies. 
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Chapter 6 

Inter- and intra-year variation in foraging areas of 

breeding Kittiwakes (Rissa tridactyla) 

6.1 Abstract 

While seabird conservation efforts have largely focused on protection from threats at the 

colony (e.g. reducing disturbance and predation), attention is increasingly being given to 

implementing protection measures for foraging areas at sea. For this to be effective, 

important foraging areas must be identified. Although numerous studies have examined 

seabird foraging behaviour, information is still lacking on the variability in area utilisation 

within and among breeding seasons. GPS devices were attached to adult Black-legged 

Kittiwakes (Rissa tridactyla) breeding at an expanding North Sea colony (55º 20’ N, 1º 32’ 

W) during both incubation and chick-rearing in 2012 and during chick-rearing in 2011, to 

determine whether foraging areas remained consistent and to identify the oceanographic 

characteristics of areas used for foraging. The type and size of prey items consumed at 

different stages of the breeding cycle was also examined. During incubation (April – May 

2012), Kittiwakes foraged substantially further from the colony and fed on larger sandeels 

than when feeding chicks, and there was significant inter-annual variation in foraging areas 

used during the chick-rearing period (June – July 2011 and 2012). Foraging areas were 

characterised by cooler sea surface temperatures (SST) and areas of high chlorophyll a 

concentration, although association with specific oceanographic features changed within 

the breeding season and between years. These results emphasise the importance of 

considering how foraging areas and reliance on specific oceanographic conditions change 

over time when seeking to identify important marine areas for seabirds. 

6.2 Introduction 

It is becoming increasingly apparent that protection of seabird foraging areas is necessary 

to mitigate threats caused by human activities at sea such as marine developments, 

overfishing, fishery bycatch of seabirds and pollution (Monaghan 1996, Lewison and 

Crowder 2003, Garthe and Hüppop 2004, Votier et al. 2005, Scott et al. 2006, Grecian et 
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al. 2010). Marine Protected Areas (MPAs) are a useful conservation measure to reduce 

threats to marine life by limiting human activities in important foraging areas (IUCN 

1988). For many seabird species data describing the use of offshore areas are limited, 

making identification of suitable MPAs difficult (Lewison et al. 2012). In recent years, 

bird-borne GPS devices have been successfully employed to identify foraging areas of a 

variety of species (Wood et al. 2000, Ryan et al. 2004, Weimerskirch et al. 2005, Kotzerka 

et al. 2010, Stauss et al. 2012).  

 Black-legged Kittiwakes (Rissa tridactyla, hereafter ‘Kittiwakes’) are small 

surface-feeding seabirds widely distributed in temperate and Arctic regions in the northern 

hemisphere (Harrison 1983). Historically, Kittiwakes have bred in large numbers along the 

north-western edge of the North Sea (Lloyd et al. 1991) but have recently become a species 

of conservation concern as their abundance and productivity in the North Sea have 

declined in the last 30 years (Harris and Wanless 1990, Wanless and Harris 1992, Harris 

and Wanless 1997, Upton et al. 2000, Mitchell et al. 2004, Eaton et al. 2009). An important 

factor contributing to this decline is a reduction in food availability due to decreases in the 

abundance of principal forage fish such as Lesser Sandeel (Ammodytes marinus, hereafter 

‘sandeel’) (Harris and Wanless 1990, Rindorf et al. 2000, Daunt et al. 2002, Frederiksen et 

al. 2004a, 2008b). Kittiwakes are obligate surface-feeders restricted to obtaining food from 

the top few metres of the water column (Harris and Wanless 1990, Coulson 2011). 

Previous studies have identified surface-feeding seabird species as being more severely 

affected by food shortages than diving species (Furness and Ainley 1984, Furness and 

Tasker 2000). Kittiwakes are especially vulnerable to reductions in prey abundance as they 

have high foraging costs, restricted diving ability and limited ability to switch to different 

prey types (Furness and Tasker 2000).  

 Kittiwakes are useful species in which to examine variation in foraging behaviour 

for several reasons. Firstly, their foraging areas have been shown to vary depending on 

environmental conditions and food abundance (Suryan et al. 2000, Scott et al. 2010). 

Secondly, Kittiwake populations have been shown to fluctuate in synchrony with sandeel 

abundance (Frederiksen et al. 2004a) and are therefore good indicators of the health of the 

marine environment (Parsons et al. 2008). Thirdly, understanding foraging distributions of 

Kittiwake colonies in the North Sea after the closure of the sandeel fishery in the Wee 

Bankie in 2000 demonstrates the effectiveness of offshore foraging area protection (Daunt 

et al. 2008). The recent miniaturisation of data loggers has allowed total duration of 

Kittiwake foraging trips to be recorded and important foraging areas to be identified 

(Kotzerka et al. 2010, Chivers et al. 2013, Redfern and Bevan 2014). 
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 Despite the large number of tracking studies carried out to date, most have 

considered only a single breeding phase (Lewis et al. 2002, Weimerskirch et al. 2007, 

Stauss et al. 2012, Chivers et al. 2013) or breeding season (Weimerskirch et al. 2005, 

Kotzerka et al. 2010, Votier et al. 2010). As such, few studies have examined 

spatiotemporal shifts in foraging behaviour at different stages of the breeding cycle, or in 

different years (Weimerskirch et al. 1993, Hull et al. 1997, Berrow et al. 2000, Stauss et al. 

2012, Chivers et al. 2013). Local prey distribution and abundance is strongly influenced by 

oceanographic conditions, therefore foraging areas used during breeding are likely to 

change through time (Monaghan et al. 1994, Suryan et al. 2002, Pinaud et al. 2005, 

Weimerskirch 2007, Chivers et al. 2013). Furthermore, the suitability of different areas is 

likely to be influenced by other factors such as the costs incurred by being away from the 

nest or variation in optimal prey size at different stages of the breeding cycle. Adult body 

condition may also affect an individual’s capability to exploit distant foraging areas, and 

has been shown to vary throughout the breeding season and in different years depending on 

food availability (Hamer et al. 1993, Kitaysky et al. 1999). Designating protected areas 

based on data collected only during one year or breeding stage may underestimate the size 

of foraging areas that need to be protected, but we lack information on variation in area 

use. Tracking studies carried out over longer temporal periods will improve our 

understanding of how foraging areas change over time and whether oceanographic 

conditions facilitate these changes. Such studies will improve our ability to make 

predictions regarding the distribution of seabirds at sea. 

 We examined the foraging behaviour of breeding Kittiwakes at a North Sea colony 

at different stages of the breeding season in the same year and at the same breeding stage 

(chick-rearing) in two different years. We investigated (1) whether the location of foraging 

areas or adult condition during chick-rearing varied between the two years, (2) whether 

prey size, foraging area or adult condition varied with stage of the breeding cycle in the 

same year and (3) how changes in foraging areas related to variation in specific 

oceanographic conditions. We discuss the implications of our results for the identification 

of offshore protected areas for seabirds. 
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6.3 Methods 

6.3.1 GPS Tagging 

The study took place on Coquet Island, northeast England (55º 20’ N, 1º 32’ W) during 

chick-rearing from June to July 2011 and during incubation and chick-rearing from May to 

July 2012. Tags were deployed on a total of 30 birds in 2012, seven of which were not 

recaptured, and 15 birds during chick-rearing in 2011, two of which were not recaptured. 

Hence, we retrieved movement data from adults in 13 nests during chick-rearing in 2011, 

10 nests during incubation in 2012 and 13 nests during chick-rearing in 2012. One adult 

per nest was captured using a pole and noose (Hogan 1985) under a permit issued by the 

British Trust for Ornithology (BTO). Each tagged bird was captured twice: once to deploy 

the tag and a second time to retrieve the tag and download the data. Some tags could not be 

retrieved as we were occasionally unable to recapture birds after deploying tags. No eggs 

were damaged from deploying or recovering tags during incubation. We ensured that the 

same nests were not used to capture adults more than once during the study. Body mass 

and head and bill length were recorded and captured birds were ringed and fitted with GPS 

tags (Mobile Action Technology GT120, rehoused in heat-shrink tubing and fitted with 

lighter batteries of lower power) which weighed <14 g, less than 4% of birds’ body mass 

(Caccamise and Hedin 1985, Hill and Robertson 1987). Tags were attached to the back 

feathers using thin strips of cloth-backed (TESA
®

) tape (item model number 56343-00026-

02). Four strips of pre-cut tape were attached horizontally to the back feathers so that each 

overlapped slightly with the preceding strip. The ends of each strip were covered by pieces 

of grease-proof paper to prevent feathers becoming attached before the tag was in position. 

The GPS tag was placed in the middle of the four strips and the ends of each strip wrapped 

around the tag to securely attach it to feathers. Care was taken to ensure that birds’ head, 

neck and wing feathers were not attached to the strips of tape and could move freely. Birds 

were processed and tagged within 20 minutes of capture. All flew normally after release 

and most returned to the nest within 10 – 15 mins. GPS tags were programmed to acquire a 

position every 100 s and tests indicated they had an accuracy of approximately 20 m when 

birds were moving. Tags were removed ~2 – 4 days after deployment. Breeding success of 

birds fitted with GPS tags and a random sample of untagged control birds breeding on the 

same cliffs were compared in 2012 to determine whether there were any detectable effects 

of tag deployment on breeding performance. Breeding success of tagged birds was not 

recorded in 2011 due to conflicts with other studies taking place at the study site. Coquet 
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Island is a highly sensitive conservation area supporting ~80 pairs of endangered Roseate 

Terns (Sterna dougallii) (Mitchell et al. 2004). In order to visit the Kittiwake colony, 

researchers had to move through the tern colonies which in 2011 were being studied 

intensively. Hence, to mitigate disturbance to sensitive species, regular visits to the 

Kittiwake colony were limited.   

 Tagging during incubation took place from 23 May – 26 May 2012. During chick-

rearing, birds were tagged from 14 June – 17 June 2011 and 17 June – 3 July 2012. The 

tracking period during chick-rearing in 2012 was longer than that in 2011 as tagging had to 

be temporarily suspended from 19 June – 25 June 2012 due to poor weather conditions. 

The difference in tracking start dates between years was caused by a difference in average 

laying dates at study colonies in 2011 and 2012; dates of first hatching were 31 May 2011 

and 5 June 2012. We considered it necessary to ensure that the birds we tracked were 

feeding chicks of similar ages, since this was likely to be more important than the slight 

variation in tracking dates between years. Approximate chick age at nests where each adult 

was tracked was estimated using date of first hatching recorded from a subset of 112 nests 

in the centre of the Kittiwake colony close to nests which were selected for tagging in both 

years. Estimates of dates of first hatching and dates on which tags were deployed were 

used to calculate chick age of tagged nests and were compared between years. Dates of 

first hatching were similar between tagged nests and the subset of 112 nests used to 

estimate first hatching dates in 2012 (5 June and 6 June), hence date of first hatching from 

the subset of nests is likely to provide a useful estimation of date of first hatching for 

tagged nests in both years. Chicks of tagged birds were likely to be similar ages in 2011 

and 2012, as the estimated age of chicks in the study colony, based on first hatching dates 

for a subset of 112 nests, were 15.5 ± 0.65 and 15.2 ± 1.16 days old when tracking started 

in 2011 and 2012 respectively. A direct comparison of chick ages when tracking started 

between the two years was not possible, as hatching dates for tagged nests were not 

available in 2011 due to conflicts with other studies being carried out on the island. Chick 

age when tracking began could only be estimated in 2011 using a subsample of 112 nests 

for which date of first hatching was recorded in both years (as described above). Although 

this method may not have been entirely accurate, it indicates that chicks should have been 

of similar ages when tracking began. However, as tracking was carried out over a longer 

time period in 2012 than in 2011, brood age of tracked adults is likely to have been greater 

and more variable in 2012 than in 2011. This may have contributed to observed inter-

annual differences in foraging behaviour.Chicks of tagged birds were likely to be similar 
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ages in 2011 and 2012, as the estimated age of chicks in the study colony  were 15.5 ± 0.65 

and 15.2 ± 1.16 days old when tracking started in 2011 and 2012 respectively.  

 We found no evidence that fitting GPS tags affected breeding performance of 

Kittiwakes, which we examined in 2012. Number of fledged chicks from nests where one 

adult was tagged was not significantly different from that of a random sample of 30 

untagged pairs breeding on the same cliffs (1.50 ± 0.14, n = 30 and 1.13 ± 0.16, n = 30 

respectively; GLM with Poisson error structure: χ
2
1 = 1.25, p = 0.26, n = 60). Despite being 

unable to determine the effect of deploying this kind of tag on Kittiwakes in 2011 due to 

lack of data on breeding success of tagged pairs, previous studies have shown that GPS 

tags of similar weight and method of attachment had no detrimental effect on Kittiwake 

reproductive performance (Kotzerka et al. 2010, Chivers et al. 2012a).  

6.3.2 Prey Type and Adult Body Condition 

In order to obtain information on the main prey type and size utilised during the tracking 

period, we collected spontaneous regurgitate samples from both adults and chicks while 

fitting and retrieving GPS tags during incubation and chick-rearing in 2012. Samples were 

stored in individual plastic containers. A saturated solution of biological washing powder 

(Biotex
®
) was added to each sample and the container left at approximately 20ºC for 3 – 5 

days until all the flesh and soft material had been dissolved. This material was then filtered 

from the solution leaving only bones (Lewis et al. 2001a, Bull et al. 2004). We identified 

species composition and estimated fish length from vertebrae. Bones were identified to the 

lowest taxa possible using a binocular microscope (for small bones x60 magnification and 

for large bones x12 magnification) and keys in Watt et al. (1997). Anterior caudal bones in 

each sample were identified, the total horizontal length of bones measured using a 

calibrated eye piece graticule (x12 magnification) and the corresponding fish length 

estimated using regression equations in Watt et al. (1997). To examine variation in adult 

Kittiwake body condition in relation to breeding stage and year, an index (g mm
-1

) was 

calculated by dividing body mass (g) by head and bill length (mm) (Chastel et al. 1995, 

Brinkhof 1997, Mateo et al. 1998, Whitfield et al. 1999, Weimerskirch et al. 2005). 

Although other methods of calculating a body condition index are available (Johnson et al. 

1985), this method was simple and provided useful results. Using weight and head and bill 

measurements to calculate a body condition index is more accurate than using weight 

measures alone (Johnson et al. 1985), can perform better than other scaling methods such 

as wing length which can vary temporally (Ormerod and Tyler 1990), and measurements 
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are quick and easy to collect in the field, which is especially important at a sensitive study 

site like Coquet Island.    

6.3.3 Environmental Variables 

To characterise the marine environment around the colony and examine how 

oceanographic features relate to foraging areas, we extracted 4 km
2
 resolution monthly 

composites of remotely sensed sea surface temperature (SST °C) and chlorophyll a 

concentration (mg m
-3

) from the MODIS instrument onboard the Aqua (EOS PM) satellite 

(http://oceancolor.gsfc.nasa.gov/), and 30 x 30 arc second resolution bathymetry data (m) 

from the GEBCO_08 dataset available from NERC Earth Observation Data Acquisition 

and Analysis Service (NEODAAS). We used nightime SST data to reduce any bias in 

daytime estimates due to solar heating. Previous studies have found that SST, chlorophyll 

a concentration and bathymetry correlate with prey distribution and abundance both during 

the breeding season and during the preceding winter (Lutjeharms 1985, Schneider 1997, 

Park et al. 2002, Weimerskirch et al. 2004, Pinaud et al. 2005, Hyrenbach et al. 2007).  In 

particular, SST in winter has been found to affect the distribution and abundance of 

sandeels, known to be an important Kittiwake prey species (Arnott and Ruxton 2002). We 

also extracted SST and chlorophyll a concentration one month before tracking took place 

to account for potential lag in relationships between these variables and prey abundance. 

We retrieved mean monthly composites of SST and chlorophyll a concentration from 

concurrent months (May – July 2012 and June 2011 (lag 0)), and from one month previous 

to tracking commencing (April – June 2012 and May 2011 (lag 1)) as well as from the 

preceding winters (December – February 2012 and 2011) for use in environmental models. 

6.3.4 Data Analyses 

Although a previous study on Kittiwake foraging behaviour defined foraging trips as 

starting 300 m from the colony (Kotzerka et al. 2010), we increased this distance to 1 km 

in our study to exclude birds observed resting on rocks up to 1 km from Coquet Island (GS 

Robertson pers. obs.). We therefore classified behaviour at locations within 1 km of the 

colony or over land as maintenance, resting and nest attendance rather than foraging 

activities; a trip during which foraging may occur was defined as seaward movement 

beyond 1 km from the colony. Frequency distributions of flight speeds during incubation 

and chick-rearing in both years showed slight bimodality at speeds below 1 ms
-1

 and 

between 9 and 11 ms
-1

. As Kittiwakes reduce their flight speed to collect food from the sea 

http://oceancolor.gsfc.nasa.gov/
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surface (Coulson 2011), we used periods of reduced flight speeds as indicators of foraging 

activity (Weimerskirch et al. 2004, Kotzerka et al. 2010). One ms
-1

 was used as a cut off 

for foraging behaviour as the frequency histogram of flight speeds showed that birds spent 

a high proportion of time moving at less than 1 ms
-1

. As foraging and resting on the sea 

surface are common behaviours in Kittiwakes, this speed was used to represent foraging 

and/or resting locations. Hence, birds were judged to be engaged in foraging behaviour at 

locations where instantaneous speed was <1 ms
-1

. This classification rule cannot 

discriminate between situations where birds foraged on the sea surface and where they 

rested between foraging bouts. Kittiwakes are known to rest on the sea surface while 

collecting food (Cramp and Simmons 1983, Coulson 2011). Without the use of saltwater or 

stomach temperature switches which record when birds were feeding we could not 

definitively separate foraging and resting locations (these devices could not be attached to 

birds in our study due to weight restrictions (Wilson et al. 1995, Benvenuti and 

Dall’Antonia 2004)). However, this is unlikely to result in misrepresentation of foraging 

locations as surface-feeders such as Kittiwakes forage primarily during daylight hours 

(Galbraith 1983, Weimerskirch and Guionnet 2002, Humphreys et al. 2007, Phalan et al. 

2007), and locations where birds moved at speeds of <1 ms
-1

 during hours of darkness 

were removed before carrying out kernel density estimations and examining the effect of 

environmental variables on foraging, as these locations were likely to be where birds rested 

during the night. 

 For each foraging trip we calculated maximum foraging range (most distant point 

from the colony (km)), total distance travelled (km) and trip duration (h) and examined 

differences between trip parameters at both breeding stages and in different years using 

linear mixed models (LMMs) with bird ID as a random factor. Separate models were used 

to examine how time of day trips were carried out (day or night) affected variation in trip 

parameters during different breeding stages and years. Four individuals tracked during 

chick-rearing in both years and one individual tracked during incubation 2012 were 

excluded from models as their trips included <5 daylight foraging locations. As each 

individual was only tracked once during the study, and GPS devices were only attached for 

a limited time, it was possible for birds to be tracked when they were carrying out only 

brief feeding trips or non-foraging trips for exploration, bathing or resting. Such trips were 

unusual (only occurred in <14% of tracked individuals), and were therefore not regarded to 

be part of normal foraging trips, justifying their exclusion. These birds undertook trips with 

significantly smaller mean maximum foraging ranges (Welch’s t-test: t11.28 = -2.71, p = 

0.02, n = 36) than those of non-excluded individuals, although trip durations were not 
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significantly different (t5.11 = 0.58, p = 0.58). Trips may have been carried out for purposes 

other than foraging, such as bathing or resting. Number of individuals included in further 

analyses from each breeding stage and year were as follows: Incubation in 2012 = 9 birds; 

Chick-rearing in 2012 = 12 birds and Chick-rearing in 2011 = 10 birds. Minimum adequate 

models were tested for normality by examining residual plots and response variables log-

transformed where residuals showed heteroscedasticity. No recorded trips were 

incomplete.   

 We examined differences in foraging ranges (95% volume contour) and core 

foraging areas (25% volume contour) at different breeding stages and in different years 

using fixed kernel density estimation in a European Albers equal-area conic projection 

with a smoothing parameter (h) of 2.5 km and a grid size of 1 km² (Suryan 2006). Kernel 

density plots were calculated in R version 3.2.1 using the adehabitatHR and maptools 

packages (Calenge 2006). Examination of possible breeding stage and year effects was 

carried out by quantifying overlap in foraging ranges and core foraging areas between 

incubation and chick-rearing in 2012 and during chick-rearing in 2011 and 2012. 

Percentage overlap was calculated by dividing the area of overlap between years/stages by 

the combined area utilised by foraging birds in both years/stages and multiplying by 100. 

This quantifies the degree of similarity between foraging areas used in different years and 

breeding stages. The percentage area of foraging ranges and core foraging areas found 

within those of another stage or year was also calculated. We used an area saturation curve 

method (Soanes et al. 2013) to determine whether foraging ranges and core foraging areas 

calculated for each breeding stage and year were likely to be representative of areas used 

by the whole colony. Using the statistical software R (R Core Development Team 2014), 

an increasing sample of individual kittiwakes were randomly selected, and foraging ranges 

(95% contour) and core foraging areas (25% contour) calculated from each sample using 

foraging location data. First, one individual was randomly selected from the total number 

of individuals tracked during each breeding stage/year, and the foraging locations 

associated with that individual used to calculate kernel density utilisation contours. This 

was repeated using two individuals and so on until kernel density utilisation contours had 

been calculated for n - 1 birds for each breeding stage and year. The total number of 

individuals selected differed for each breeding stage or year, and was defined as the total 

number of birds tracked - 1 (Incubation 2012 = 1 – 9 birds; Chick-rearing 2012 = 1 – 11 

birds; Chick-rearing 2011 = 1 – 9 birds).  

 Separate binomial generalised linear mixed models (GLMMs) with logit link 

functions were used to examine how foraging range changed at different stages of the 
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breeding cycle and to identify environmental correlates of foraging locations. GLMMs 

were also used to examine how the distance that birds foraged from the colony changed 

during chick-rearing in two different years (2011 and 2012), whether changes could have 

been caused by the small difference in the timing of tracking studies within and between 

the two years and whether birds foraged in areas with similar environmental conditions in 

both years. To reduce interdependency among points, for each model presence data were 

five randomly selected foraging locations per track and for absence data, five non-foraging 

locations per individual were randomly selected from a buffer zone around the colony (size 

of the buffer zone was defined as the maximum foraging range of all tracks in each 

breeding stage and in each year).  

 For models examining how environmental variables affected foraging locations we 

fitted SST (lag 0), chlorophyll a concentration (lag 0), bathymetry, SST one month 

previously (lag 1), chlorophyll a concentration one month previously (lag 1), SST and 

chlorophyll a concentration the previous winter and their interactions as fixed effects, and 

included bird ID as a random factor. Only uncorrelated fixed effects were included in the 

models (using Pearson’s product moment correlation coefficient where r > 0.7 was taken to 

be a significant correlation). We first fitted the fully parameterised models using maximum 

likelihood (ML), and then removed terms by sequential deletion while testing for 

significant changes in model variance using likelihood ratio tests (LRTs) (Crawley 2007). 

We then refitted the minimum adequate model using restricted maximum likelihood 

(REML) to estimate effect sizes. Models were tested for goodness-of-fit using receiver 

operating characteristic (ROC) curves and the associated area under the curve (AUC) using 

the ‘ROCR’ package in R (Sing et al. 2005). We used a LMM to test for differences in fish 

length between breeding stages in 2012 with bird ID as a random factor. The body 

condition indices of adults at different breeding stages and in different years were 

compared using Welch’s t-tests. Analyses were carried out in R version 3.2.1 (R 

Development Core Team 2014) and ArcGIS version 10.1 (ESRI, USA). Means are 

presented ± SE throughout. 

6.4 Results 

6.4.1 Foraging Areas 

We obtained data from 106 foraging trips in total (Incubation n = 15, Chick-rearing in 

2012 n = 60, Chick-rearing in 2011 n = 31). The amount of time GPS tags were attached to 
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birds (Incubation = 10 birds, Chick-rearing 2012 = 13 birds and Chick-rearing 2011 = 13 

birds) did not differ significantly between years and breeding stages (one-way ANOVA: 

F2,33 = 0.69, p = 0.51, n = 36) and the percentage of tags retrieved was also similar between 

stages and years (Incubation 2012 = 76.92%, Chick-rearing in 2012 = 76.47%, Chick-

rearing in 2011 = 86.67%). 

 In 2012, birds foraged closer to the colony during chick-rearing than during 

incubation (Figure 6. 1, Table 6. 1); maximum foraging range, total distance travelled and 

trip duration were all significantly greater during incubation. Despite the longer tracking 

period, maximum foraging range, total distance travelled and trip duration were 

significantly smaller during chick-rearing in 2012 compared with chick-rearing in the 

previous year (Figure 6. 1, Table 6. 1). Models examining the effect of time of day on 

variation in trip parameters found significant interactions between breeding stage and time 

of day for all three trip parameters (χ
2

1 = 41.78, p<0.001, n = 75; χ
2
1 = 33.22, p<0.001 and 

χ
2

1 = 34.62, p<0.001 respectively) which suggests that birds travelled further and for 

longer at night during incubation than during chick-rearing in 2012. Models for chick-

rearing in 2011 and 2012 showed that time of day had a significant effect on maximum 

foraging range (χ
2

1 = 7.72, p<0.001, n = 91) and trip duration (χ
2

1 = 31.93, p<0.001), but 

no effect on total distance travelled (χ
2

1 = 0.10, p = 0.75). There were no significant 

interactions between year and time of day for maximum foraging range, total distance 

travelled and trip duration (χ
2

1 = 0.75, p = 0.39, n = 91; χ
2

1 = 0.10, p = 0.75; χ
2
1 = 1.45, p = 

0.23 respectively).  

         

Figure 6. 1 Kittiwake foraging tracks during a) Incubation and Chick-rearing in 2012 and b) Chick-

rearing in 2011 and 2012 recorded from 23 May to 3 July 2012 and 14 June to 17 June 2011. 

Coquet Island (55° 20’ N, 1° 32’ W) is represented by a star  
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Table 6. 1 Table comparing trip parameters at different breeding stages and in different years. 

Mean values are shown ± SE with range given in brackets. Displays results of likelihood ratio tests 

(LRTs) from LMMs where response variables were log-transformed for models examining 

differences in max foraging range and total distance travelled between stages/years and where 

random factor = Bird ID. Incubation and Chick-rearing 2012 n = 75, Chick-rearing 2011 and 2012 

n = 91 

Incubation and Chick-rearing 2012 

 Incubation (n = 15) Chick-rearing (n = 60) LRTs 

Max foraging range (km) 50.95 ± 12.99 

 (1.16 – 122.55) 

9.03 ± 1.17 

 (2.21 – 47.55) 

χ
2

1 = 12.99, 

p<0.001 

Total distance travelled (km) 129.62 ± 34.44 

 (0.22 – 324.84) 

20.28 ± 3.24 

 (1.51 – 153.45) 

χ
2

1 = 4.90,       

p = 0.03 

Trip duration (h) 10.20 ± 2.55 

 (0.08 – 25.78) 

2.87 ± 0.53 

 (0.36 – 30.20) 

χ
2

1 = 16.38, 

p<0.001 

Chick-rearing 2011 and 2012 

 Chick-rearing 2011              

(n = 31) 

Chick-rearing 2012           

(n = 60) 

 

Max foraging range (km) 28.02 ± 3.88 

 (1.15 – 77.63) 

9.03 ± 1.17 

 (2.21 – 47.55) 

χ
2

1 = 17.85, 

p<0.001 

Total distance travelled (km) 64.43 ± 9.19 

 (0.05 – 182.60) 

20.28 ± 3.24 

 (1.51 – 153.45) 

χ
2

1 = 9.44,       

p = 0.002 

Trip duration (h) 5.07 ± 0.75 

 (0.08 – 14.12) 

2.87 ± 0.53 

 (0.36 – 30.20) 

χ
2

1 = 4.46,       

p = 0.03 

 

 Kernel density plots illustrated clear differences in the extent of foraging ranges at 

different breeding stages with birds covering a larger area during incubation in 2012 than 

during chick-rearing in both years (Incubation = 2219.37 km
2
, n = 9 birds, 964 foraging 

locations; Chick-rearing in 2012 = 678.48 km
2
, n = 12 birds, 1539 foraging locations; 
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Chick-rearing in 2011 = 1962.48 km
2
, n = 10 birds, 966 foraging locations; Figure 6. 2). 

The core foraging area was smaller during chick-rearing in 2012 than during incubation in 

the same year (Incubation = 116.91 km
2
, Chick-rearing in 2012 = 32.20 km

2
) and showed 

no overlap between stages (Figure 6. 3). Core foraging areas during chick-rearing in both 

years showed an overlap of 17.89% and there was a slightly greater degree of overlap in 

foraging ranges (18.16%; Figure 6. 3). Both foraging ranges and core foraging areas during 

chick-rearing in 2012 were more restricted than those of chick-rearing in 2011 (Foraging 

ranges: Chick-rearing in 2012 = 678.48 km
2
, Chick-rearing in 2011 = 1962.48 km

2
; Core 

foraging areas: Chick-rearing in 2012 = 32.20 km
2
, Chick-rearing in 2011 = 78.74 km

2
). 

As well as examining percentage overlap between foraging areas at different breeding 

stages and years, we also examined the percentage foraging area from one breeding 

stage/year which was contained within that of another breeding stage/year. Over half of 

foraging ranges and core foraging areas of birds foraging during chick-rearing in 2012 

were found within those of birds foraging at the same stage in the previous year (Foraging 

range = 70.70%, Core foraging area = 61.65%).  

Area saturation curves showed that chick-rearing 2012 foraging ranges and core 

foraging areas and chick-rearing 2011 core foraging areas reached asymptote (Figure 6. 4 

c, d, f), while those of incubation and chick-rearing 2011 foraging ranges did not. 

However, increase in foraging area size slowed down as more individuals were included in 

the sample.  
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Figure 6. 2 Kernel utilisation distribution of 3469 foraging locations (Incubation 2012 n = 964 

locations; Chick-rearing 2012 n = 1539 locations; Chick-rearing 2011 n = 966 locations) using 

tracks from a) 9 incubating birds in 2012, b) 12 chick-rearing birds in 2012 and c) 10 chick-rearing 

birds in 2011 foraging off Coquet Island. Contour plots show the density of locations on a 1 km² 

grid using a 2.5 km smoothing parameter (h) 
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Figure 6. 3 Percentage overlap between foraging ranges (95% contour) and core foraging areas 

(25% contour) during incubation and chick-rearing in 2012 and during chick-rearing in 2011 and 

2012 calculated using a smoothing parameter of 2.5 km and a grid size of 1 km
2
. Coquet Island is 

represented by a star          
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Figure 6. 4 Comparisons of total area (km
2
) covered by foraging ranges and core foraging areas 

estimated using random samples of 1 – 8 individuals (incubation 2012), 1 – 11 individuals (chick-

rearing 2012) and 1 – 9 individuals (chick-rearing 2011) for incubation (a, b), chick-rearing 2012 

(c, d) and chick-rearing 2011 (e, f). Curved lines were fitted using a loess spline where α = 1.0. 

Standard deviations are represented by dashed lines              

6.4.2 Prey Type and Adult Body Condition 

A total of 17 regurgitate samples containing 288 vertebrae were collected over the 2012 

breeding season (Incubation: adults n = 8, vertebrae = 187; Chick-rearing: adults n = 3, 

chicks n = 6, vertebrae = 101). In 2012, 94.1% (n = 16) of samples contained only sandeel 

(Ammodytes spp) vertebrae; the remaining sample from an adult during incubation 

contained vertebrae from sprat (Sprattus sprattus). Regurgitates collected during 
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incubation in 2012 contained larger fish than those collected during chick-rearing in the 

same year (Incubation: 165.14 ± 16.70 mm, Chick-rearing: 60.78 ± 43.04 mm; LMM (with 

sample ID as a random factor): χ
2
1 = 10.31, p = 0.001, n = 288). Productivity of the whole 

colony (number of chicks fledged / nest) was slightly higher in 2011 than in 2012 (1.5 and 

1.2 respectively from a range of 0.4 – 2.0 on Coquet Island from 1991 – 2012 (RSPB 

unpubl. data.)). This inter-annual difference did not coincide with variation in body 

condition. No significant difference in adult body condition index was found between birds 

foraging during chick-rearing 2012 and 2011 (1.15 ± 0.03 g mm
-1

 and 1.15 ± 0.02 g mm
-1

 

respectively; t27.01 = 0.02, p = 0.98, n = 30). The body condition index of birds foraging 

during incubation was significantly higher than that of birds foraging during chick-rearing 

in 2012 (1.26 ± 0.02 g mm
-1

 and 1.15 ± 0.03 g mm
-1

 respectively; t28.80 = -3.34, p = 0.002, 

n = 32).  

6.4.3 Environmental Determinants of Foraging Areas 

We used binomial GLMMs with presence/absence data from foraging locations (presence) 

and randomly selected non-foraging points from a buffer around the colony (absence) to 

examine how foraging range changed at different stages of the breeding cycle and to 

identify environmental correlates of foraging locations. Birds foraged further from the 

colony during incubation than during chick-rearing in 2012 (χ
2

1 = 41.51, p<0.001, n = 220; 

Table 6. 2) and while there were some similarities in environmental parameters associated 

with foraging locations between breeding stages, some environmental parameters 

associated with foraging locations differed. During incubation, individuals foraged in areas 

of high chlorophyll a concentration, low SST and in areas where chlorophyll a 

concentration had been low the previous winter and in the previous month (Table 6. 3), 

while during chick-rearing in 2012 individuals foraged in areas of low SST (χ
2

1 = 102.98, 

p<0.001, n = 120) and winter chlorophyll a concentration (χ
2

1 = 5.08, p = 0.02). Birds 

foraged further from the colony during chick-rearing in 2011 than in 2012 (χ
2

1 = 19.56, 

p<0.001, n = 220; Table 6. 4). We found no effect of date on foraging range during the 

chick-rearing period in 2012 (χ
2

1 = 1.04, p = 0.31, n = 120) or between chick-rearing in 

2011 and 2012 (χ
2

1 = 0.89, p = 0.34, n = 220). Environmental conditions associated with 

foraging locations were not consistent between years. During chick-rearing in 2012 birds 

foraged in areas of low SST (Estimate ± SE = -5.59 ± 0.93, z-value = 5.98, p<0.001) and 

winter chlorophyll a concentration (Estimate ± SE = -0.92 ± 0.42, z-value = 2.19, p = 

0.03), while during chick-rearing in 2011 foraging locations may have been associated 

with low SST (Table 6. 5), areas of higher winter chlorophyll a concentration (χ
2

1 = 19.63, 
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p<0.001, n = 100) and areas of shallow water (Table 6. 5). However, as there was a 

significant interaction between SST and bathymetry (χ
2

1 = 18.24, p<0.001; Table 6. 5) 

explaining probability of foraging during chick-rearing in 2011, the relationship between 

foraging locations and SST varied depending on water depth, and the influence of SST 

alone on foraging location is not clear. Correlated explanatory variables were excluded 

from models: bathymetry, SST lag 1 and chlorophyll a concentration lag 1 from the chick-

rearing 2012 model and SST lag 1 from the chick-rearing 2011 model. This is unlikely to 

have caused the inconsistency in environmental variables observed between breeding 

stages and years, as including these variables gave qualitatively similar model results. 

However, we emphasise here that testing for reliance on specific environmental variables 

using different models does not definitively prove that there is a difference in 

environmental variables associated with foraging over time.  

Table 6. 2 Output from minimum adequate binomial GLMM with a logit link function fitted using 

restricted maximum likelihood (REML) examining whether birds foraged further from the colony 

during incubation than during chick-rearing in 2012. Random factor = Bird ID. n = 210. ROC 

curve showed the model to fit the data satisfactorily (AUC = 0.88) 

 Estimate ± SE z-value p-value 

Intercept 4.17 ± 0.85 4.93 <0.001 

Distance from colony -0.13 ± 0.03 5.02 <0.001 

Stage:    

    Chick-rearing  0 -  - 

    Incubation -3.08 ± 0.98 3.13 0.002 

Distance from colony x Stage:    

    Chick-rearing  0 - - 

    Incubation 0.11 ± 0.03 4.29 <0.001 
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Table 6. 3 Output from minimum adequate binomial GLMM with a logit link function fitted using 

restricted maximum likelihood (REML) examining environmental variables associated with 

foraging locations during incubation 2012. Random factor = Bird ID. n = 90. ROC curve showed 

the model to fit the data satisfactorily (AUC = 0.84) 

 Estimate ± SE z-value p-value 

Intercept 19.81 ± 7.16 2.77 0.006 

SST lag 0 -2.11 ± 0.78 2.72 0.006 

Chlorophyll a conc lag 0  0.54 ± 0.17 3.13 <0.002 

Chlorophyll a conc winter -0.84 ± 0.42 2.01 0.04 

Chlorophyll a conc lag 1 -0.46 ± 0.24 1.94 0.05 

 

Table 6. 4 Output from minimum adequate binomial GLMM with a logit link function fitted using 

restricted maximum likelihood (REML) examining whether birds foraged further from the colony 

during chick-rearing in 2011 than during chick-rearing in 2012. Random factor = Bird ID. n = 220. 

ROC curve showed the model to fit the data satisfactorily (AUC = 0.91) 

 Estimate ± SE z-value p-value 

Intercept 1.86 ± 0.48 3.86 <0.001 

Distance from colony -0.05 ± 0.01 4.37 <0.001 

Year:    

    Chick-rearing 2011 0 - - 

    Chick-rearing 2012 2.10 ± 0.89 2.37 0.02 

Distance from colony x Year:    

    Chick-rearing 2011 0 - - 

    Chick-rearing 2012 -0.10 ± 0.03 3.64 <0.001 
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Table 6. 5 Output from minimum adequate binomial GLMM with a logit link function fitted using 

restricted maximum likelihood (REML) examining environmental variables associated with 

foraging locations during chick-rearing in 2011. Random factor = Bird ID. n = 100. ROC curve 

showed the model to fit the data satisfactorily (AUC = 0.85) 

 Estimate ± SE z-value p-value 

Intercept 144.09 ± 32.92 4.38 <0.001 

SST lag 0 -14.49 ± 3.26 3.26 <0.001 

Chlorophyll a conc winter 1.16 ± 0.32 3.66 <0.001 

Bathymetry 2.05 ± 0.50 4.13 <0.001 

SST lag 0 x Bathymetry -0.20 ± 0.05 4.18 <0.001 

 

6.5 Discussion 

To protect at-sea foraging areas over an appropriate time scale, temporal changes in 

foraging behaviour must be considered if important areas are to be fully captured. Previous 

studies have identified foraging areas used by a range of seabird species including 

Kittiwakes from tracking data collected during only one breeding stage (examples from 

recent studies include Kotzerka et al. 2010, Stauss et al. 2012, Chivers et al. 2013, Edwards 

et al. 2013) or year (e.g. Weimerskirch et al. 2005, Votier et al. 2010). However, there are 

some studies which have tracked birds from the same colony in multiple years and 

breeding stages (Anderson et al. 2003, Guilford et al. 2008, Louzao et al. 2009), although 

such studies are relatively rare. Using tracking data over restricted time periods to 

recommend suitable locations for long term MPAs is likely to result in seabird foraging 

areas being underrepresented. Our findings show that foraging areas can change 

significantly within the breeding season and between years and that environmental 

variables associated with foraging locations also change over time.  

 The Kittiwake colony on Coquet Island comprised 215 breeding pairs in 2012, 

which is typical of a smaller colony in the UK where the median colony size is 301 pairs 

(data from http://jncc.defra.gov.uk/page-4460 and RSPB unpub. data. 2012). Intra-specific 

competition for food may regulate seabird foraging behaviour (Hunt et al. 1986, Lewis et 

al. 2001b, Grémillet et al. 2004), with individuals breeding in smaller colonies having 

http://jncc.defra.gov.uk/page-4460
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shorter foraging ranges than those from large colonies. Whilst such relationships have not 

been demonstrated for Kittiwakes in the UK, it is possible that birds from larger colonies 

range more widely than the birds tracked here. The effect of breeding stage on foraging 

range of Kittiwakes nesting in larger colonies is unknown, although one study has 

examined inter-annual variation in foraging range at larger colonies than that on Coquet 

Island (Chivers et al. 2012b). Chivers et al. (2012b) examined foraging behaviour of 

Kittiwakes breeding at two UK and Irish colonies (Rathlin Island and Lambay Island) 

using GPS loggers. Trip parameters such as foraging range, distance travelled and trip 

duration increased significantly in 2010 for birds breeding at Rathlin Island. The authors 

postulated that birds increased their foraging effort to compensate for reduced food 

availability close to the colony in 2010. A corresponding decline in breeding success was 

observed for Kittiwakes on Rathlin Island during this year.   

 Foraging areas exhibited very little overlap between breeding stages. Important 

foraging areas were situated further to the north of the colony during incubation while 

birds foraged close to the colony during chick-rearing in 2012, to the west and south. 

During incubation, birds made longer foraging trips further from the colony presumably to 

areas with more predictable resources compared with during chick-rearing when birds 

made shorter trips to areas closer to the colony. Studies on a variety of different species 

have found a similar effect with birds foraging further from the colony during incubation 

than during chick-rearing (Cairns 1988 (Common Murres Uria aalge); Weimerskirch et al. 

1993 (Wandering Albatross Diomedea exulans); Jouventin et al. 1994 (King Penguins 

Aptenodytes patagonicus)). Chicks require regular food provisioning shortly after hatching 

(Weimerskirch et al. 1993, Suryan et al. 2002) and chick demand for food may explain the 

reduction in trip length we observed during early chick-rearing compared with the 

incubation period, when adults were less restricted (Weimerskirch et al. 1993, Ojowski et 

al. 2001). Although studies have shown that adults respond to changing chick demands by 

varying diet and foraging areas (Williams and Rothery 1990, Robertson et al. 2014a), these 

changes may also be facilitated by changes in food availability over time (Uttley et al. 

1994, Myksvoll et al. 2013).  

 More foraging trips contained overnight components during incubation than during 

chick-rearing in 2012. Birds may have been less restricted to foraging close to the colony 

during incubation than during chick-rearing (Weimerskirch et al. 1993, Ojowski et al. 

2001) which may have allowed them to undertake longer trips, requiring overnight resting 

periods, to exploit distant foraging areas. 
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 While there were some similarities in environmental variables explaining variation 

in foraging locations between breeding stages, our results suggest that the importance of 

specific environmental variables linked to foraging change throughout the breeding season.  

During incubation birds foraged in areas of higher chlorophyll a concentration, while 

during chick-rearing in 2012 chlorophyll a concentration had no effect on foraging location 

and birds foraged in areas of lower SST and where chlorophyll a concentration had been 

low the previous winter. Sandeel have been shown to aggregate in areas of high 

chlorophyll a concentration (Eliasen et al. 2011) and lower SST has been correlated with 

increased sandeel recruitment and growth (Arnott and Ruxton 2002, Frederiksen et al. 

2004a, 2011).  

 North Sea Kittiwakes feed almost exclusively on sandeel during the breeding 

season (Harris and Wanless 1997, Lewis et al. 2001a, Coulson 2011) but change their 

feeding habits according to breeding stage. During incubation in May, adults concentrate 

on older sandeel (1+ year group) to feed themselves and switch to juvenile sandeel (0 year 

group) to feed both themselves and their chicks during the chick-rearing period in June and 

July (Wright 1996, Harris and Wanless 1997, Lewis et al. 2001a). Kittiwake breeding 

success has been shown to correlate with abundance of both 0 group and 1+ group sandeel 

in the North Sea (Harris and Wanless 1990, 1997, Rindorf et al. 2000) which suggests that 

both these age classes are necessary for successful reproduction. We found significantly 

larger (and therefore older) sandeel in adult regurgitates during incubation in May 2012 

and smaller sandeel in both adult and chick regurgitates during chick-rearing in June 2012. 

Juvenile sandeel are readily available in surface waters in June while older sandeel start to 

move deeper into the water column at this time (Rindorf et al. 2000), hence temporal 

changes in diet may reflect variation in abundance of different sandeel age classes 

(Montevecchi and Myers 1996, Coulson 2011).  

 While birds travelled further from the colony during incubation, the size corrected 

mass of birds tracked at this breeding stage was higher than that of birds tracked during 

chick-rearing in 2012. Previous studies have shown that adult body mass declines during 

chick-rearing as birds must work harder to supply both themselves and their chicks with 

enough food (Weimerskirch 1990, Tveraa et al. 1998a, Lormée et al. 2003). Adults can 

compensate for weight loss during chick-rearing by accumulating fat reserves during 

incubation and initially feed on large energy-rich prey before switching to smaller prey 

items to feed chicks (Kitaysky et al. 1999). Birds in our study may have targeted large prey 

items to accumulate fat reserves prior to chicks hatching when they had to increase their 
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energy expenditure, although it has been suggested that weight loss during chick-rearing is 

a deliberate strategy by adults to improve flight efficiency (Croll et al. 1991). 

 Environmental variables such as SST and chlorophyll a concentration can change 

significantly over the course of the breeding season (Pingree 1975, Sharples et al. 2001, 

Hyrenbach et al. 2002, Peck et al. 2004). Such changes have the potential to affect the 

distribution and abundance of sandeel of different age classes. Zero group sandeel are 

smaller than older age classes and are therefore more vulnerable to predation and 

cannibalism (Arnott and Ruxton 2002). They also have higher metabolic rates and are 

differentially affected by physical features such as ocean currents, upwellings and 

temperature (Hayward 1997, Hollowed et al. 2001). Sandeel in the North Sea mainly prey 

on Calanus species, the abundance and distribution of which also depends on 

oceanographic conditions (Mackas et al. 2001). Prey preference and habitat selection vary 

among fish of different age classes (Werner and Gilliam 1984), hence 0 group sandeel may 

utilise different feeding areas to 1+ group sandeel. As Kittiwakes in our study exploited 

sandeels of different age classes between breeding stages, variation in habitat preference 

(e.g. sediment size) among sandeel age classes may explain differences in environmental 

variables associated with Kittiwake foraging locations we observed during incubation and 

chick-rearing (Wright et al. 2000, Holland et al. 2005). 

 We show that foraging areas of birds breeding at the same colony can change 

significantly during chick-rearing in two consecutive years confirming the results of 

previous studies (Wanless et al. 1991, Suryan et al. 2000, Chivers et al. 2012a). A study 

comparing Kittiwake foraging behaviour in years of varying food availability showed that 

trip length and duration increased in years of low food availability resulting in decreased 

breeding success (Chivers et al. 2012a). Both foraging range and core foraging area were 

larger during chick-rearing in 2011 than in 2012 and birds were more likely to forage 

further from the colony during chick-rearing in 2011. This was despite tracking being 

carried out over a longer period in 2012, which might have been expected to result in more 

variable foraging areas. On the contrary, foraging areas used in 2012 were smaller than 

those used in 2011 despite the longer tracking period, and the greater variation in brood 

age among individuals tracked in 2012, emphasising the importance of areas close to the 

colony during chick-rearing in 2012. While there was limited overlap in foraging areas 

between years, over half of the chick-rearing 2012 foraging range and core foraging area 

were found within those of chick-rearing 2011. Hence, although birds foraged further from 

the colony in 2011, birds in both years shared some important foraging areas. Time of day 

trips were carried out affected duration and maximum foraging range during chick-rearing 
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in both years. However, the percentage of trips which took place at night was similar 

during chick-rearing in 2011 and 2012 (29.0% and 22.0% respectively) hence this is 

unlikely to explain inter-annual variation in trip parameters. 

 While tracking dates did not overlap between the two years (birds were tracked 

from 14 – 17 June 2011 and from 17 June – 3 July 2012), we found no effect of date on the 

distance birds foraged from the colony between years. Therefore, the difference in foraging 

range between chick-rearing in 2011 and 2012 is very unlikely to result from seasonal 

effects. Our analysis shows that birds foraged in areas associated with different 

environmental variables during chick-rearing in consecutive years. In 2012 birds foraged in 

areas of lower SST and areas where winter chlorophyll a concentrations had been low. 

While SST and winter chlorophyll a concentrations were also significant in 2011, birds 

were found to forage in areas of deeper water and winter chlorophyll a concentration was 

shown to have the opposite effect on probability of foraging than during chick-rearing in 

2012. These changes may reflect differences in oceanographic conditions between years 

affecting prey abundance and distribution. In 2012, conditions close to the colony appear 

to have supported a high abundance of small sandeel, while models and kernel density 

plots suggest that prey was distributed in patches of productive areas further from the 

colony in 2011. Productivity of the whole colony was relatively high in 2011 and 2012 

suggesting that adequate prey was available in both years (Chivers et al. 2012a). Size 

corrected mass measurements taken from adults during chick-rearing in both years suggest 

that adult condition was similar during chick-rearing in 2011 and 2012. Hence, while prey 

distribution may have differed between the two years, there is no evidence to suggest that 

low food availability affected foraging locations of birds in 2011. Previous studies have 

shown that foraging behaviour of species breeding at the same colony varies between years 

(Watanuki et al. 1993, Monaghan et al. 1994, Chivers et al. 2012b) making it necessary to 

undertake tracking studies over several years of differing food availability to identify 

useful foraging areas. 

 While this study suggests that foraging parameters can change significantly even 

within a single breeding season and between consecutive years, other studies on various 

species have shown that foraging locations used by individuals can remain consistent 

throughout the breeding season and also between years (Kittiwakes (Irons 1998), Imperial 

Shags Phalacrocorax atriceps (Harris et al. 2014) and Northern Gannets (Patrick et al. 

2014)). Such behavoiour suggests that oceanographic conditions and prey availability in 

areas surrounding the breeding colony remain relatively stable during the breeding season 

and over several years. However, some seabird prey species are highly mobile and can be 
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difficult to locate in the environment. Seabirds sometimes rely on information transferred 

among individuals at gathering places, allowing birds to locate unpredictable foraging 

patches (Weimerskirch et al. 2010, Machovsky-Capuska et al. 2013). Our study shows that 

birds travelled further from the colony during incubation than duing chick-rearing in 2012. 

However, a recent study by Ponchon et al. (2014) found that Kittiwakes breeding at a 

colony in the southern Barents Sea did the opposite; birds travelled further during early 

chick-rearing than during incubation. The authors also noted a dramatic decline in the 

proportion of successful breeding pairs in early chick-rearing, which was related to an 

increase in foraging range and trip duration. This change in foraging and reproductive 

behaviour was thought to be related to a decrease in prey availability during early chick-

rearing. These results emphasise the difficulty in disentangling the effects of changes in 

reproductive demands at different stages of the breeding cycle with intra-seasonal variation 

in food availability. Without local data on fish abundance, we cannot disregard the 

possibility that the change in foraging behaviour at different breeding stages we observed 

in our study was caused by coincidental variation in prey availability. 

 Area saturation curves showed that number of individuals included in kernel 

density estimations affected the estimated size of foraging areas. As curves for foraging 

ranges and core foraging areas reached asymptote for chick-rearing 2012, this suggests that 

an adequate number of birds were tracked to accurately represent foraging areas for the 

whole colony during this breeding stage. However, foraging ranges during incubation 2012 

and chick-rearing 2011 did not reach asymptote hence differences in extent of foraging 

areas used by the whole colony between breeding stages and years may have been even 

larger area than estimated by this study (Soanes et al. 2013). We recognise that while our 

study suggests that foraging areas can differ significantly throughout the breeding season 

and in different years, data were collected for a very limited period during each stage and 

year. Considerably more data are needed before definitive differences in foraging areas and 

association with specific environmental conditions at different stages of the breeding 

season and in different years may be determined. Therefore our results must be treated 

with caution when applied over longer time periods. 

 The protection of foraging areas to enhance the prey resources on which seabirds 

depend for successful reproduction would be expected to result in higher levels of breeding 

productivity. Previous studies have attempted to estimate probable seabird foraging areas 

using correlations between known foraging locations and associated oceanographic 

features (Huettmann and Diamond 2001, Nur et al. 2011, Grecian et al. 2012, Lascelles et 

al. 2012). Prey aggregations for seabirds occur where oceanographic features combine to 
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enhance phytoplankton abundance and hence zooplankton and fish availability, or where 

currents force prey species to aggregate (Hunt et al. 1999). Features such as chlorophyll a 

concentration and SST vary spatially and temporally (Hunt et al. 1999, Hyrenbach et al. 

2000) affecting the location of potential foraging areas. Our study shows how 

oceanographic features associated with foraging areas vary throughout the breeding season 

and between years. This has significant implications for the designation of potential MPAs 

based on habitat suitability as the usefulness of specific areas for foraging will change over 

time. To designate useful long-term MPAs for seabirds, temporal changes in foraging areas 

and variation in preference for oceanographic features must be considered. The UK 

Government is a signatory to international agreements including the EU Birds Directive, 

Convention on Biological Diversity and the OSPAR Convention whose aims include 

establishing a network of MPAs and Special Protection Areas (SPAs) incorporating 

foraging areas used by seabirds, seaducks, waders and divers (Stroud et al. 2001, 

www.jncc.gov.uk/page-4549). This network is unlikely to adequately represent a 

significant proportion of seabird foraging areas, as areas useful for foraging are highly 

variable. The development of dynamic MPAs which vary depending on breeding stage and 

the location of optimal foraging habitat would complement current proposed sites (Game et 

al. 2009). 

 It is becoming increasingly apparent that protection of seabird foraging areas is 

necessary to prevent population declines brought about by a decrease in food availability. 

Examining foraging behaviour throughout the breeding season and in more than one year, 

results in the identification of larger potential foraging areas than by examining foraging 

behaviour only during a single breeding stage or year. Our study emphasises the 

importance of carrying out seabird tracking and examining associated environmental 

variables during extended time periods when attempting to identify sites for designation as 

MPAs for seabirds.   

  

http://www.jncc.gov.uk/page-4549
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Chapter 7 

Parental priorities vary with increasing brood age in 

Black-legged Kittiwakes; second-hatched chicks come 

to the fore 

7.1 Abstract 

In species with asynchronously hatching young, parents usually allocate resources to older 

chicks at the expense of younger chicks. While resource allocation between parents and 

offspring has been examined, few studies have considered how intra-brood parental 

resource allocation varies throughout the developmental period. We examine how parental 

investment and intra-brood resource allocation change with increasing brood age, and how 

differential allocation of feeds affects chick growth rate and fledging success in Black-

legged Kittiwakes (Rissa tridactyla). Kittiwake nests were observed during chick-rearing 

at a North Sea colony. Contrary to our expectations, we found no difference in growth or 

feeding rates between chicks of different hatching order. However, while the growth rate 

of first-hatched chicks was not related to how frequently they were fed by parents, our 

results suggest that for second-hatched chicks there was a significant negative relationship 

between growth and feeding rate. Both overall parental investment and intra-brood 

resource allocation varied according to brood age. Feeding rate per brood per hour and nest 

attendance decreased nonlinearly as brood age increased. First-hatched chicks were more 

frequently fed at the beginning of multiple feed bouts and received a higher proportion of 

feeds delivered to broods during early chick-rearing. This pattern of prioritising the feeding 

of first-hatched chicks did not persist into the later phases of chick-rearing; second-hatched 

chicks then received proportionally more feeds and chicks of different hatching order were 

fed at the beginning of multiple feeds equally often. These results illustrate how parental 

resource allocation can change throughout the developmental period and may explain 

similarities in growth rate and fledging success between chicks of different hatching order.  
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7.2 Introduction 

Iteroparous individuals balance limited resources among offspring during a reproductive 

event (Royle et al. 2002, Royle et al. 2004). The amount of parental resources allocated to 

offspring can vary depending on number of offspring (Rogowitz and McClure 1995, 

Rogowitz 1996), parental condition (Tveraa et al. 1998b) and resource availability (Braun 

and Hunt 1983, Erikstad et al. 1998). While it was originally thought that parents control 

the amount of food allocated to each offspring, recent empirical studies have suggested that 

resource allocation can be influenced by offspring through sibling competition and begging 

stategies (Kacelnik et al. 1995, Krebs and Magrath 2000, Royle et al. 2002, Royle et al. 

2004). However, it is still unclear which of these mechanisms influence how resources are 

allocated to each offspring throughout chick-rearing. Allocation decisions may be expected 

to vary throughout the developmental period as offspring demand and foraging conditions 

change (Tveraa et al. 1998b, Granadeiro et al. 2000).  

 Theoretical models predict that parents should invest more resources in offspring 

with the greatest need, usually the smallest (Godfray 1995). While some studies have 

shown that older offspring tend to solicit food from parents more frequently than younger 

chicks (Drummond 2002, Royle et al. 2002), others have reported that parents consistently 

feed larger offspring more often than their smaller siblings, even when not signalling the 

greatest need (Price and Ydenberg 1995, Price et al. 1996). In bird species with 

asynchronously hatching young, parents preferentially allocate resources to older, larger 

chicks, which are of higher value to parents than younger offspring that are less likely to 

survive to fledging (Parker et al. 2002). First-hatched chicks in asynchronous broods are 

generally larger than second-hatched chicks and are fed at a higher rate (Braun and Hunt 

1983, Price and Ydenberg 1995). As feeding rate is generally positively correlated with 

growth rate (Braun and Hunt 1983, Donazar and Ceballos 1989), older chicks may be 

expected to have higher growth rates and therefore be more likely to survive to fledging 

than younger chicks (Hahn 1981, Kersten and Brenninkmeijer 1995).  

 It is difficult to predict how parental resource allocation will vary with offspring 

age. Increasing reproductive value of offspring over time should favour an increase in 

parental investment, while changes in the benefit of parental care to offspring survival and 

the requirement of parents to replenish their own depleted resources are likely to favour a 

reduction (Sargent and Gross 1986, Redondo and Carranza 1989, Pugesek 1990). Studies 

on birds have shown that parents match feeding rates to increasing chick energy 

requirements over time (Ricklefs et al. 1985, Bertram et al. 1991). The energy demands of 
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chicks peak at period of maximum growth (Ricklefs and White 1981) hence chicks 

generally require more food during maximum growth and less as they approach fledging 

age (Cairns 1987, Emms and Verbeek 1991, Roby 1991). Adults usually decrease the 

amount of energy delivered to chicks prior to fledging (Cairns 1987, Emms and Verbeek 

1991), either to match declining energy demands of chicks or as a strategy to induce 

fledging (Emms and Verbeek 1991, Roby 1991). Hence, parental investment may be 

expected to vary throughout the chick developmental period as energetic demands of 

offspring change.  

 As timing of maximum growth and peak energy demand vary among offspring of 

different hatching order (Drent and Daan 1980, Mock and Schwagmeyer 1990) and as 

reproductive value of offspring increases with age (Redondo and Carranza 1989), parents 

may be expected to increase the proportion of resources allocated to younger chicks in a 

brood later in the developmental period (Kloskowski 2001, Shizuka and Lyon 2009). It has 

been previously shown that greater cooperation among siblings can be expected later in 

development as energy demands decline (O’Connor 1978, Kloskowski 2001). While 

resource allocation between parents and offspring and among offspring have been 

examined in several species (Ricklefs 1987, Jodice et al. 2002, Royle et al. 2002), fewer 

studies have examined how food distribution varies among offspring throughout the 

developmental period and how this affects reproductive success (but see Seddon and van 

Heezik 1991, Kloskowski 2001, Shizuka and Lyon 2009).  

 We investigate intra-brood parental resource allocation in broods of two Black-

legged Kittiwake (Rissa tridactyla hereafter ‘Kittiwake’) chicks on Coquet Island, 

northeast England. We expect: 1) first-hatched chicks to be fed more frequently and have 

higher growth rates and fledging success than second-hatched chicks, 2) parental 

investment to increase until chicks reach maximum growth and decrease as they approach 

fledging age and 3) the proportion of resources allocated to first and second-hatched chicks 

to become more equal as brood age increases. We discuss how our results contribute to the 

understanding of parental resource allocation in species with asynchronously hatching 

offspring. 
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7.3 Methods  

7.3.1 Study Species 

Kittiwakes are a suitable species in which to examine parental resource allocation as they 

are easy to observe on breeding cliffs and, provided due care is taken, allow close approach 

without disturbance having an effect on breeding success (Sandvik and Barrett 2001, 

Brewer et al. 2008). Each nest is a separate structure from which chicks generally do not 

stray until a few days prior to fledging allowing observations of individual broods to be 

made (Galbraith 1983). Feeding rate and trip duration can be deduced for large numbers of 

nests through colony observations. Mean and mode trip duration is relatively short for 

Kittiwakes foraging during chick-rearing (mean ± SE = 2.87 ± 0.53 h and mode = 1.17 h 

for 13 birds tracked on Coquet Island during mid chick-rearing in 2012; Robertson et al. 

2014b) compared to other offshore foraging seabirds such as Northern Fulmars Fulmaris 

glacialis (median = 6 h at a colony on Foula in 1981; Furness and Todd 1984) and 

Northern Gannets Morus bassanus (mean ± SE = 31.3 ± 2.67 h at a colony on Bass Rock 

in 1999; Hamer et al. 2001). Hence, numerous nest deliveries can be recorded during a few 

hours of observation. Mean trip duration of birds in this study was estimated as 1.08 ± 0.06 

h, perhaps due to prey availability close to the breeding colony in June – July. This was 

smaller than the mean trip duration calculated from birds tracked using GPS devices in the 

same year on Coquet (Robertson et al. 2014b) and may be a consequence of the larger 

sample size or greater extent of the data collection period utilised during this study (30 

nests were observed continually for 28 days compared with 13 birds tracked for 16 days 

during the previous study on Coquet). 

 Kittiwake broods vary in size from 1 – 3 chicks (Coulson 2011), depending on 

parental body condition, breeding experience and food availability (Coulson and White 

1961, Coulson and Porter 1985, Jacobsen et al. 1995). In our study, the majority of pairs 

had broods of two, hence broods of three and single broods (either from single clutches or 

from broods which lost chicks during the study period) were excluded from analyses (a 

total of 9 nests). Chicks (usually first-hatched) close to fledging would occasionally leave 

the nest during observations towards the end of the developmental period, leaving a single 

chick (usually second-hatched) in the nest. Occasions where one chick left the nest during 

an observation period occurred in 16% of nests. As A chicks tend to leave the nest before 

B chicks, this could cause an apparent increase the proportion of feeds allocated to B 

chicks later in the chick-rearing period. Therefore, while these chicks invariably returned 
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before subsequent observations, occasions when one chick was left at the nest were 

excluded from analyses. 

7.3.2 Nest Observations 

The study took place on Coquet Island, northeast England (55º 20’ N, 1º 32’ W) during 

chick-rearing from June – July 2012. To produce an adequate sample size for analyses, 30 

study nests were selected from an area close to the centre of the Kittiwake colony by 

assigning a unique number to each nest and using a random number generator (R version 

3.0.1) to randomly select nests. The position of nests within Kittiwake colonies has been 

shown to affect reproductive success and survival (Coulson and Thomas 1985, Aebischer 

and Coulson 1990). Hence, nests positioned at the edge of the colony, and those which 

were difficult to reach for the purpose of marking chicks, were excluded from the selection 

process. Study nests had a mean clutch size of 2.2 ± 0.1 (n = 30). Study nests were checked 

every 2 – 3 days allowing the hatching date of each chick to be recorded. First-hatched (A) 

chicks hatched ~0.9 ± 0.2 (mean ± SE) days before second-hatched (B) chicks, and were 

10.36 ± 4.77 g heavier than second-hatched chicks when broods were weighed 2 – 4 days 

after hatching at the beginning of the study period. Approximately 2 – 4 days after 

hatching, A chicks in each nest were marked (under a permit issued by the British Trust for 

Ornithology (BTO)) using a small amount of water-soluble nontoxic Tippex
®
 on the tip of 

the beak which was clearly visible from the ground using binoculars (8 x 10 

magnification). As the position and size of the Tippex
®
 mark was similar to the fecal spots 

which regularly appeared on both chicks in a brood, we did not expect the marking of A 

chicks to influence parental provisioning behaviour. Tippex
®
 has been used successfully to 

mark chicks in previous studies (Cook 2000, Skórka et al. 2012) and had no observable 

effect on chick behaviour or survival in this study (GS Robertson pers. obs.). B chicks 

were differentiated from A chicks both by size, B chicks always being visibly smaller than 

A chicks, and by Tippex
®
 marks. As chicks were weighed as close to hatching as possible, 

it is unlikely that incidences of asymmetry reversals among broods were missed. Kittiwake 

chicks solicit food from parents by begging (defined as frequent vertical movements of the 

head accompanied by vocalisations; Kitaysky et al. 2001). We were unable to collect 

solicitation behaviour data in this study due to difficulties in effectively recording begging 

of each chick in 30 nests simultaneously.  

 Observations of study nests took place from a portable hide to minimise 

disturbance to breeding birds. The hide was positioned ~10 – 15 m from the base of cliffs 
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(maximum distance at which chicks could be conclusively identified) during observations 

from 17 June – 17 July 2012. Hatching dates were relatively synchronous (6 – 13 June) 

hence chicks were of similar ages when observations began (4 – 10 days old). Three-hour 

watches included every time period from 0400 – 2100 h for each tidal state (low, high, 

rising, falling). For each nest, we recorded time of arrival of an adult with food, time of 

departure of either adult, whether or not an adult was attending the nest when its partner 

returned with food, which chick was fed during feeding bouts, how many times an adult 

regurgitated food to each chick and the order in which chicks were fed during multiple 

feed bouts. A feed was defined as an occasion during which an adult regurgitated food to a 

chick. A feeding bout was defined as a period during which either attending adults or those 

returning to the nest from a foraging trip delivered food on one or more occasions to at 

least one chick in a brood.  

Trip duration was quantified by recording the time of adult departure and return to 

the nest during each observation period. Although adults were not marked, trip duration 

prior to food delivery could be deduced on occasions when an adult was recorded leaving 

the nest and returning to feed at least one chick while the second member of the pair 

continuously attended the nest. Trip duration could not be deduced on occasions when both 

adults were absent from the nest simultaneously. Mean trip duration calculated from GPS-

tracked birds at the same colony was <3 h (Robertson et al. 2014b) which suggests that 

three hour observation periods can be used to record whole foraging trips.  

7.3.3 Data Analyses 

Adults began feeding chicks within 15 minutes of returning to the nest which was also the 

maximum time period for which an adult was observed continually feeding chicks during a 

feeding bout (GS Robertson pers.obs.). Hence, separate feeding bouts were regarded as 

those where chick feeds occurred >15 minutes apart. Feeding bouts which began close to 

the end of the observation period may not have been completed before the observation 

period ended; hence feeding bouts which began within 15 minutes of the end of the 

observation period were excluded from analyses. A total of 686 feeding bouts were 

observed from 30 nests over a total of 135 h of observations.  

 Kittiwakes deliver meals to chicks by regurgitating food stored in a crop hence 

adults can make multiple regurgitations while feeding chicks (Coulson 2011). A multiple 

feed bout refers to feeding bouts during which an adult regurgitated food more than once to 

at least one chick within 15 minutes of the first initial feed. The order in which A and B 
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chicks were fed during a multiple feed bout was recorded and the number of times A and B 

chicks were fed first compared. To compare the number of feeds allocated to A and B 

chicks during both single and multiple feed bouts, the number of feeds received by the A 

chick in a brood was expressed as a proportion of the total number of feeds delivered to 

both chicks. The mass and total energy content of regurgitates could not be determined due 

to limitations placed on regular chick handling by reserve managers. 

 Two metrics of feeding rate were calculated, one to examine how number of feeds 

delivered to each chick per hour differed between chicks of different hatching order and 

how this affected growth rate (hourly feeding rate per chick, hereafter ‘chick feeding rate’), 

and another to determine how number of feeds delivered to each brood per hour varied 

with increasing brood age (hourly feeding rate per brood, hereafter ‘brood feeding rate’). 

Chick feeding rate was calculated by dividing the number of times a chick received food 

from an adult during the linear growth phase by the total number of hours for which that 

chick was observed. Brood feeding rate was defined as the number of feeds delivered to 

each brood per hour of observation throughout the developmental period. 

 In order to limit disturbance to the colony, chick weights were recorded on two 

occasions during the linear growth phase (Coulson and Porter 1985). Each chick in a study 

nest was weighed twice to the nearest 0.1 g using electronic scales (SATRUE SA-500), 

first when chicks were 2 – 8 days old and again when the same chicks were 16 – 20 days 

old. A and B chicks from the same brood were weighed as close together in time as 

possible, usually on the same day. Chick growth rate (g day
-1

) was calculated for each 

chick using the following equation (Coulson and Porter 1985, Nisbet et al. 1995):  

             
       

       
 

Where: W1 = Weight (g) at first measurement (2 < chick age < 8 days old) 

             W2 = Weight (g) at second measurement (16 < chick age < 20 days old) 

             D1 = Date of first measurement  

             D2 = Date of second measurement 

Growth rate and chick feeding rate were both calculated during the linear growth phase and 

are therefore directly comparable. Chick skeletal measurements (such as tarsus and wing 

length) were not recorded in this study to reduce chick handling time and disturbance to 

the colony. Previous studies have also calculated chick growth rate using weight 

measurements recorded during the linear growth phase (Coulson and Porter 1985, Coulson 
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and Thomas 1985). Fledging success (%) was calculated as the percentage of hatched 

chicks observed leaving the nest at the end of the developmental period (Spahn and Sherry 

1999). 

 Linear mixed models (LMMs) were used to examine differences in growth rate and 

chick feeding rate between chicks of different hatching order and to examine how much 

variation in growth rate could be explained by chick feeding rate. Unless otherwise stated 

LMMs were fitted with normal error distributions and identity link functions, and included 

nest ID as a random factor. A GLMM with a Poisson error distribution, a log link function 

and with nest ID as a random factor was used to compare how often A and B chicks were 

fed first during multiple feed bouts throughout the chick-rearing period. The total number 

of occasions A and B chicks were fed first was calculated for each brood over the whole 

study period.  

 Change in parental investment throughout the chick-rearing period was determined 

by examining variation in brood feeding rate, trip duration and nest attendance (whether or 

not study nests were already attended by a parent each time an adult returned to the nest to 

feed at least one chick) with increasing brood age. Brood age (in days after hatching) was 

defined as the difference between the date on which an observation was made and date of 

first hatching within a brood. Brood age was separated into eight five day categories from 

0 – 40 days. For each category, mean brood feeding rate ± SE was calculated and plotted 

against brood age. The percentage of occasions study nests were already attended by a 

parent when a foraging adult returned with food was calculated for each brood age 

category in one day intervals from 9 – 40 days old (broods less than nine days old were 

continually attended by an adult) and were plotted against brood age category. Variation in 

brood feeding rate and trip duration with increasing brood age was examined using LMMs, 

while changes in nest attendance with increasing brood age was examined using a 

generalised linear mixed model (GLMM) with a binomial error distribution. GLMMs used 

the logit link function and included nest ID as a random factor unless otherwise stated. 

Date of first hatching was not included in models as this was included within calculations 

of brood age. 

 Variation in parental resource allocation among offspring was examined with 

increasing brood age using a GLMM with a binomial error distribution and a logit link 

function. The response variable was the hatching order of the chick fed first (A or B) for a 

given multiple feed bout, where A chick fed was defined as 0 and B chick fed was defined 

as 1. Changes in the proportion of total feeds delivered to a brood that were received by A 

chicks during both single and multiple feed bouts were also examined. GLMMs with 
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Poisson error distributions and log link functions were used to compare the number of 

times A and B chicks in each nest were fed first during multiple feed bouts in early and late 

chick-rearing periods. A GLMM with a binomial error distribution was used to determine 

how much variation in the proportion of feeds received by A chicks was explained by 

brood age. 

 For each LMM and GLMM, we first fitted a fully parameterised model using 

maximum likelihood (ML) and removed terms by sequential deletion while testing for 

significant changes in model variance using likelihood ratio tests (LRTs) (Crawley 2007). 

We then refitted the minimum adequate model using restricted maximum likelihood 

(REML) to estimate effect sizes. Where necessary, brood feeding rate was log-transformed 

to reduce heteroscedasticity in the residuals and improve the fit of the model. Models were 

tested for goodness-of-fit using residual plots, receiver operating characteristic (ROC) 

curves and associated area under the curve (AUC) using the ‘ROCR’ package in R (Sing et 

al. 2005). LMMs were fitted using the ‘nlme’ R package (Pinheiro et al. 2014) and 

GLMMs using the ‘lme4’ R package (Bates et al. 2013). Analyses were carried out in R 

version 3.1.2 (R Core Development team 2014). Means are presented ± SE throughout. 

7.4 Results 

7.4.1 Effect of Differential Resource Allocation on Growth Rate and Fledging   

Success 

There was no significant difference between chick feeding rates (in feeds h
-1

) calculated 

during the linear growth phase for A and B chicks (0.85 ± 0.09 and 0.75 ± 0.08 

respectively; LMM: χ
2

1 = 2.30, p = 0.13, n = 42) and no difference between growth rates (g 

day
-1

) of chicks of different hatching order (15.62 ± 0.46 and 15.31 ± 0.52 for A and B 

chicks respectively; LRT from LMM: χ
2

1 = 0.39, p = 0.53, n = 42). There was a significant 

difference in the mean number of occasions chicks of different hatching order were fed 

first per nest during multiple feed bouts for all brood ages (81.04% of feeding bouts 

throughout the chick-rearing period contained multiple feeds), with A chicks being fed first 

significantly more often than B chicks (5.33 ± 0.45 and 3.71 ± 0.36 respectively; GLMM 

with Poisson error distribution: χ
2

1 = 6.12, p = 0.01, n = 42).   
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Table 7. 1 Output from minimum adequate model fitted using restricted maximum likelihood 

(REML) from LMM with a normal error distribution and identity link function examining the 

effect of chick feeding rate (feeds h
-1

) on chick growth rate (g day
-1

). Random factor = Nest ID. n = 

42 

 Estimate ± SE t-value p-value 

Intercept 15.70 ± 1.05 14.94 <0.001 

Chick feeding rate -0.08 ± 1.10 0.08 0.94 

Hatching order:    

   A chicks 0 - - 

   B chicks 2.02 ± 1.18 1.71 0.10 

Chick feeding rate x Hatching order:    

   A chicks 0 - - 

   B chicks -3.13 ± 1.37 2.28 0.035 

 

 A 2-way interaction between chick feeding rate and chick hatching order explained 

a significant amount of variation in growth rate (χ
2
1 = 5.25, p = 0.02, n = 42) and for B 

chicks, growth rate declined with increasing chick feeding rate (Table 7. 1, Figure 7. 1). 

However, Figure 7. 1 suggests that the significance of this interaction may be influenced 

by one B chick data point. A Grubbs test (carried out using the ‘outliers’ package in R 

version 3.1.2 (Komsta 2014)) showed that this point was significantly different from other 

values of growth rate for B chicks (G = 2.79, p = 0.02). When the LMM was repeated 

excluding this data point no significant interaction between chick feeding rate and hatching 

order was found (χ
2

1 = 1.30, p = 0.26, n = 41). However, as there was no obvious 

biological reason to exclude data collected from the B chick or its brood from the analysis, 

the data point was retained. Overall fledging success was high (94.92%), and only a 

slightly higher percentage of A chicks survived to fledge (93.33%) than B chicks 

(89.65%). 
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Figure 7. 1 Relationship between chick growth rate (g day
-1

) and chick feeding rate (feeds h
-1
) 

during the linear growth phase for chicks of different hatching order. Straight lines were derived 

from coefficients of LMMs fitted for chicks of each hatching order  

7.4.2 Variation in Parental Investment with Increasing Brood Age 

Brood feeding rate appeared to increase slowly with brood age before declining as chicks 

approached fledging (Figure 7. 2). Due to the apparent quadratic relationship between 

brood feeding rate and brood age, brood age squared was included in an LMM examining 

how feeding rate changes with increasing age. Both brood age and brood age squared 

explained a significant amount of variation in feeding rate (results of LRTs from LMMs: 

χ
2

1 = 29.38, p<0.001, n = 483 and χ
2

1 = 25.14, p<0.001 respectively), brood age had a 

positive effect on brood feeding rate and brood age squared a negative effect (Table 7. 2). 

This confirms that the quadratic relationship between brood feeding rate and brood age 

was significant and that feeding rate increased with brood age to reach a peak when chicks 

were ~21 – 25 days old, before decreasing as they approached fledging age (Figure 7. 2).   
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Figure 7. 2 Relationship between mean brood feeding rate (feeds per brood h
-1

) ± SE and brood age 

category (days after hatching). Curved line was fitted using a loess-smoothed spline with a second-

degree polynomial where span (α) = 1.5. Broods contained two chicks throughout the chick-rearing 

period 

Table 7. 2 Output from minimum adequate model fitted using restricted maximum likelihood 

(REML) from LMM with a normal error distribution and identity link function examining the 

effect of increasing brood age on log(brood feeding rate; feeds per brood h
-1
). Random factor = 

Nest ID. n = 482 

 Estimate ± Std error t-value p-value 

Intercept -0.73 ± 0.24 3.02 0.003 

Brood age 0.13 ± 0.02 5.51 <0.001 

Brood age
2 -0.003 ± 0.0005 5.09 <0.001 

 

 Nest attendance appeared to vary nonlinearly with increasing brood age, declining 

as brood age increased (Figure 7. 3). Brood age had a significant negative effect on the 

probability of a nest being attended by a parent when an adult returned with food and 

attendance declined as brood age increased (χ
2

1 = 275.89, p<0.001, n = 446; Estimate ± SE 
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= -0.33 ± 0.03, z-value = -11.21, p<0.001). There was no effect of increasing brood age on 

trip duration (χ
2

1 = 0.06, p = 0.81, n = 79).  

       

Figure 7. 3 Relationship between percentage of occasions a nest was attended when an adult 

returned with food and brood age category (days after hatching) for broods aged 9 – 40 days old  

7.4.3 Variation in Intra-brood Resource Allocation with Increasing Brood 

Age 

Variation in the likelihood of second-hatched chicks being fed first during multiple feed 

bouts with increasing brood age was examined using a GLMM. The likelihood of second-

hatched chicks being fed first during multiple feed bouts was found to increase 

significantly with brood age (χ
2

1 = 5.02, p = 0.03, n = 190; Estimate ± SE = 0.05 ± 0.02, z-

value = 2.20, p = 0.03). Figure 7.4 illustrates the difference in the number of occasions 

where A and B chicks were fed first during early chick-rearing (4 < brood age < 20 days 

old) and late chick-rearing (20 < brood age < 35 days old).  
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Figure 7. 4 Barplot showing the percentage of occasions first-hatched and second-hatched chicks 

were fed first during multiple feed bouts during early (4 < brood age < 20 days old) and late (20 < 

brood age < 35 days old) chick-rearing. Few data were available on which chick was fed first for 

brood ages > 35 days old as size differences between chicks were less clear   

 There appeared to be slight increase in the proportion of feeds received by A chicks 

out of the total number of feeds delivered to chicks when broods were >10 days old, 

however this proportion began to decline when brood were >30 days old ( 

Figure 7. 5). A GLMM showed that the proportion of times A chicks were fed in 

comparison with B chicks decreased with increasing brood age (χ
2
1 =6.44, p = 0.01, n = 

446; Estimate ± SE = -0.02 ± 0.006, z-value = 2.54, p = 0.01).   
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Figure 7. 5 Mean proportion of feeds received by A chicks out of the total number of feeds 

delivered to broods ± SE with increasing brood age category (days after hatching). A horizontal 

line at y = 0.5 emphasises departure from equivalent feeds between chicks   

 7.5 Discussion 

Previous studies have shown that older offspring tend to receive food from parents more 

often than younger offspring, regardless of individual requirements (Price and Ydenberg 

1995, Price et al. 1996). This is especially apparent in bird species with asynchronously 

hatching young, where older, larger chicks are fed more frequently and are more likely to 

survive to fledging than younger chicks (Braun and Hunt 1983, Parker et al. 2002). 

However, parental investment may be expected to vary throughout the breeding season as 

energetic demands of offspring change. Our study shows how parental investment and 

allocation of resources between offspring in broods of two varies throughout the chick-

rearing period. 

 Asynchronous hatching has been observed in many different bird species, including 

Kittiwakes (Braun and Hunt 1983, Magrath 1990, Stenning 1996). It was suggested that 

asynchronous hatching is a deliberate strategy to induce brood reduction during periods of 
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food shortage by producing a competitive hierarchy within broods (Lack 1947, 1954, 

Ricklefs 1965). However, experimental evidence suggests that asynchronous hatching 

could be a consequence of external drivers such as predation risk, temperature control and 

embryo viability, which facilitate the need for immediate incubation and introduce brood 

hierarchy (Clark and Wilson 1981, Stenning 1996, Hillström et al. 2000, Gilby et al. 2011, 

Aldredge et al. 2014). The effect of brood hierarchy on the allocation of resources to 

chicks has been examined in several species (Ricklefs 1987, Jodice et al. 2002, Royle et al. 

2002); however few studies have compared food distribution among offspring throughout 

the developmental period (but see Seddon and van Heezik 1991, Kloskowski 2001, 

Shizuka and Lyon 2009). Our study examined differences in feeding rates, growth rates 

and fledging success among chicks of different hatching order and determined whether 

parental provisioning behaviour and intra-brood resource allocation varied over time. 

 While previous studies have shown that first-hatched Kittiwake chicks in a brood 

tend to receive food from parents significantly more frequently than younger offspring 

(Braun and Hunt 1983), we found no significant difference in the feeding rates or growth 

rates of A and B chicks during the linear growth phase. This is contrary to what we initially 

expected, as studies have shown that parents usually allocate resources to older, larger 

chicks (Parker et al. 2002), which facilitates variation in growth rates between chicks of 

different hatching order (Barrett and Runde 1980, Braun and Hunt 1983, Coulson 2011). 

Competition for food can result in brood reduction in asynchronously hatching 

species, either directly due to older chicks attacking and sometimes killing younger chicks, 

or from unequal food distribution (Mock and Parker 1997, White et al. 2010). Although 

physical contact between Kittiwake chicks is unusual, its incidence increases during 

periods of low food availability (White et al. 2010). No incidence of physical conflict 

between siblings was observed in our study perhaps because adequate food was available 

for both chicks in a brood. 

 Field research suggests that the benefit of hatching asynchrony and brood reduction 

varies depending on environmental conditions and resource availability (Stenning 1996, 

Hillström et al. 2000). Although there were no available data on prey abundance around 

Coquet Island in the year of our study, productivity of the whole colony was generally high 

(number of chicks fledged per nest = 1.2 (taken from a random sample of 30 nests); 

Productivity range on Coquet Island 1991 – 2011 = 0.4 – 2.0 

(www.jncc.defra.gov.uk/page-4460)) when compared with other colonies and years 

(productivity = 0.02 – 0.97 chicks per nest on the Isle of May, southeast Scotland; Lewis et 

al. 2001a; mean productivity 1986 – 2004 for colonies in east England = 1.02 chicks per 

http://www.jncc.defra.gov.uk/page-4460)
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nest; Frederiksen et al. 2007a). Trip duration of birds in our study was short which 

suggests that prey availability was adequate close to the colony (Monaghan et al. 1994, 

Croxall et al. 1999). Also, fledging success of both first and second-hatched chicks was 

high, indicative of a good feeding environment (Cairns 1988). Good feeding conditions in 

the area surrounding the colony in 2012 may also explain similarity in feeding frequencies 

between chicks of different hatching orders, as adults are more likely to be able to deliver 

adequate food to both chicks in a brood when prey availability is good. 

 Although we found growth rate during the linear growth phase to be comparable 

for chicks of different hatching order, there was a significant negative relationship between 

growth rate and chick feeding rate for B chicks, while no relationship was evident for A 

chicks. Hence, B chicks with high feeding rates appeared to have significantly lower 

growth rates than A chicks fed at the same rate. This is contrary to the results of previous 

studies which show that feeding rate and growth rate are positively correlated in seabird 

chicks (Huin et al. 2000, Roby et al. 2000). However, other studies have suggested that the 

size and energy content of regurgitates fed to chicks varies depending on hatching order, 

and that younger chicks receive less energy per regurgitate than older chicks (Galbraith 

1983, Golet et al. 2000).  

 Mass and energy content of prey can explain more variation in seabird chick 

growth rate and pre-fledging survival than feeding frequency (Weimerskirch et al. 1997, 

Golet et al. 2000, Wanless et al. 2005b). Birds are able to vary the proportion of their 

stomach contents regurgitated to each chick (Meyer et al. 1997) and  are able to gauge a 

chick’s nutritional status by its solicitation behaviour (Phillips and Croxall 2003). While 

we were unable to regularly collect regurgitate samples from chicks due to imposed limits 

to colony disturbance on Coquet Island, we speculate that variation in regurgitate content 

may explain why B chicks with high feeding rates had significantly lower growth rates 

than A chicks fed at the same rate. B chicks may have received frequent small 

regurgitations of lower energy content than A chicks, which received larger, higher quality 

meals. Although the relationship between chick feeding rate and growth rate was 

significant for B chicks, the effect was not strong due to large amounts of variation in 

chick feeding rates and growth rates. 

 Parental resource allocation may be expected to vary throughout the developmental 

period in response to changing offspring energy requirements and environmental 

conditions (Ricklefs et al. 1985, Emms and Verbeek 1991, Low et al. 2012). While 

increasing reproductive value of offspring with age should favour an increase in parental 

investment, changes in the benefit of parental care and the requirement of parents to 
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replenish depleted resources later in the breeding season may favour a reduction (Sargent 

and Gross 1986, Redondo and Carranza 1989, Pugesek 1990). In our study both brood 

feeding rate and nest attendance changed nonlinearly with increasing brood age. Brood 

feeding rate increased until chicks were 21 – 25 days old, before declining as chicks 

approached fledging age at ~40 – 43 days old (Maunder and Threlfall 1972, Coulson 

2011).  

 The seasonal deterioration hypothesis (Bertram et al. 1991) states that declines in 

feeding rates in the latter stages of chick-rearing are caused by a seasonal decline in food 

abundance around the breeding colony (Burger 1980). While brood feeding rates in our 

study declined after chicks reached a certain age, there was no change in trip duration with 

increasing brood age. This suggests that food availability in surrounding waters remained 

adequate throughout the chick-rearing period as parents showed no increase in foraging 

effort later in the breeding season (Abrams 1991, Petersen et al. 2006). Hence, this 

hypothesis is not likely to explain the changes in feeding rate we observed. An alternative 

hypothesis suggests that a decline in feeding rates later in the breeding season reflects 

decreasing energy demands of nestlings. Studies on various seabirds have shown that chick 

energy budgets peak in the middle of the developmental period and fall as chicks approach 

fledging age (Simons and Whittow 1984, Cairns 1987, Coulson 2011). Kittiwake chick 

growth rate increases linearly until chicks are ~20 days old (Coulson and Porter 1985) after 

which growth rate decreases. Chicks require less food after the period of maximum growth 

which is reflected by a decline in energy demand (Coulson and Porter 1985, Cairns 1987). 

 Some studies have suggested that both chick energy demand and changing 

environmental conditions affect seabird foraging behaviour during the breeding season. 

Environmental conditions influence prey availability with important effects on foraging 

and reproductive success for Kittiwakes and other seabirds (Hamer et al. 1993, Harding et 

al. 2007). It is thought that prey availability is linked nonlinearly to reproductive success 

(Cairns 1988) such that beyond a given threshold it has no effect on feeding rate and 

breeding success (Burger and Piatt 1990, Phillips et al. 1996). Hence, when food 

availability is good, Kittiwake parents are able to adjust foraging effort to chick energy 

demand (Suryan et al. 2002). This was likely to have been the case in the year of our study, 

as productivity and trip duration suggest that food abundance was good.  

 Seabird nest attendance has been related to temporal changes in food availability 

and chick demand (Gaston and Nettleship 1982, Coulson and Johnson 1993). The 

probability of one Kittiwake parent attending a nest when an adult returned with food 

declined as brood age increased in our study; the probability of a nest being attended was 
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~50% when broods were 25 days old. Previous studies have also shown Kittiwake nest 

attendance to decline throughout the chick-rearing period (Coulson and Johnson 1993, 

Cadiou and Monnat 1996) although the age at which chicks are first left alone at the nest 

varies among individuals (Coulson and Johnson 1993) and is dependent on annual food 

availability (Hamer et al. 1993). Seabird chicks require less brooding as they get older 

(Barrett 1978) and energy demand declines after the period of maximum growth (Cairns 

1987). Seabird chicks also tend to be larger and less vulnerable to predatory attacks later in 

the breeding season (Andersson 1976, Davies and McCaffrey 1986). Hence, adults are able 

to decrease time spent at the nest and increase self-maintenance activities such as 

replenishing depleted body reserves, and to prospect for future nest sites (Boulinier et al. 

1996, Cadiou and Monnat 1996, Weimerskirch et al. 2001).  

 The order in which chicks received food from parents varied between chicks of 

different hatching order. A chicks were fed at the beginning of multiple feed bouts 

significantly more often than B chicks in each brood. This confirms results of previous 

studies on several species which showed that older chicks were fed first following an 

adult’s return to the nest more frequently than younger chicks, regardless of begging 

intensity (Price and Ydenberg 1995, van Heezik and Seddon 1996). Being larger, older 

chicks are able to stretch higher (Teather 1992), gape wider and are better able to position 

themselves at the edge of the nest, closer to the approaching adult than younger chicks 

(McRae 1993, Kacelnik et al. 1995). In these ways, older chicks are better equipped to 

obtain food from adults before younger chicks, although adults have been shown to be 

capable to some extent of manipulating the quantity and quality of food each chick 

receives per delivery (Hudson 1979, Weimerskirch et al. 1997). A previous study has 

suggested that the first few feeds delivered to seabird chicks by a returning adult are larger 

and therefore contain more energy than subsequent feeds (Anderson and Ricklefs 1992). 

Hence, by receiving the first feed in a multiple feed bout more frequently than B chicks, A 

chicks may be expected to obtain more energy and sustain higher growth rates (Golet et al. 

2000, Romano et al. 2006). However, in our study no variation in feeding or growth rates 

was found between chicks of different hatching order.  

 When considering data collected during different chick-rearing stages, A chicks 

were fed first significantly more often than B chicks during early chick-rearing, but there 

was no difference in the order in which A and B chicks were predominantly fed during late 

chick-rearing. As timing of peak growth differs between seabird chicks in asynchronous 

broods (Braun and Hunt 1983, Moreno et al. 1994), B chicks might be expected to be 

smaller and lighter than A chicks prior to reaching peak mass, and therefore be less 



 

153 
 

competitive. During this period, younger chicks consistently adopt a submissive posture 

when confronted by older siblings and are more likely to lose competitive interactions 

(Galbraith 1983, Drummond and Osorno 1992). As intra-brood variation in weight 

declines as seabird chicks approach fledging age (Williams and Croxall 1991), competitive 

abilities of younger chicks should more closely match those of their older siblings later in 

the developmental period. Change in intra-brood resource allocation could explain the 

similarities in growth rates observed between chicks of different hatching order. 

 Our results show that initially, A chicks received a higher proportion of feeds 

delivered to broods during early chick-rearing, but this proportion declined steadily as 

brood age increased, resulting in a higher proportion of B chicks receiving feeds later in 

the chick-rearing period. It is unclear whether this change in intra-brood resource 

allocation is the result of an increase in competitive abilities of younger chicks later in the 

developmental period, whether younger chicks’ demand for food surpasses that of older 

chicks after peak growth, or whether parents allocate a higher proportion of resources to 

younger chicks as their reproductive value increases (Kacelnik et al. 1995, Parker et al. 

2002). Whichever mechanism is responsible, variation in intra-brood resource allocation 

may explain similarities in overall chick feeding rates, growth rates and pre-fledging 

survival of A and B chicks. As mortality of larid chicks is highest in the first week of life 

(Langham 1972, Bollinger et al. 1990), changes in resource allocation later in the chick-

rearing period are only likely to positively influence fledging success of younger chicks if 

conditions allow them to survive this long. Likelihood of younger Kittiwake chicks 

surviving to late chick-rearing decreases in years of poor food availability, when sibling 

competition for food causes mortality rates of younger offspring to increase prior to 

reaching peak growth rate (Braun and Hunt 1983, Wanless and Harris 1992). Our results 

may have been influenced by A chicks leaving the nest for short periods of time during 

observations which were carried out towards the end of the study period. A chicks, being 

older, were more likely to leave the nest than B chicks. This meant that the B chicks was 

left in the nest alone on some occasions and was able to fully exploit deliveries made by 

parents. Although we were careful to exclude occasions when one chick was absent from 

the nest, it is possible that some occasions were missed which may partially explain the 

increase in proportion of feeds received by B chicks later in the chick-rearing period. 

Previous studies have suggested that the presence of artificial marks can affect parent-

offspring and offspring-offspring interactions (Calvo and Furness 1992). Hence, 

consistently applying Tippex
®
 marks to the first-hatched chick in each brood may also 

have influenced our results.  
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 While A chicks received feeds at the beginning of multiple feed bouts more 

frequently than B chicks and received a greater proportion of feeds delivered to broods 

during early chick-rearing, this pattern of allocation did not persist into the latter stages of 

the developmental period when parental resource allocation switched to favouring younger 

chicks. Our study provides evidence of changing parental intra-brood resource allocation 

within the chick development period, which may explain similarities in growth and 

survival between chicks of different hatching order. Only by considering resource 

allocation throughout the developmental period can we gain a more complete 

understanding of differential parental investment in asynchronous broods and its effect on 

offspring survival. We recommend that the mass and energy content of regurgitates fed to 

chicks in asynchronously hatching broods be examined throughout the developmental 

period to determine the influence of regurgitate content on parental resource allocation and 

chick growth rate and survival.  
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Chapter 8 

General Discussion 

Changing environmental conditions are known to affect the population dynamics of most 

organisms in marine and terrestrial habitats. However, some species are easier to study and 

more sensitive to changes than others, and as such can provide useful indicators of 

ecosystem health over different spatial scales. Studying seabird foraging and breeding 

behaviour contributes to our understanding of how marine ecosystems change over time 

(Cairns 1988, Monaghan 1996, Lewis et al. 2006). In recent years the miniaturisation of 

electronic devices and the development of novel tracking methods have allowed seabird 

species to be tracked to and from foraging areas and for environmental conditions in 

distant pelagic areas to be sampled. This thesis investigated temporal changes in foraging 

behaviour and demographic parameters of terns and Kittiwakes breeding sympatrically at a 

North Sea colony, and examined how interspecific differences in foraging behaviour 

influences reproductive parameters. Long-term population abundance and productivity 

data in conjunction with colony-based and offshore observational data were used to 

examine how seabird populations reflect changes in the marine ecosystem. The 

implications of the results can now be discussed in the context of predicting and 

understanding changes in the marine environment and in developing marine conservation 

policy. 

8.1 Seabirds as Indicators of the Marine Environment 

Environmental changes and ecological disturbances, due to both natural phenomena and 

anthropogenic effects, can significantly influence population dynamics of marine 

organisms. There is a need to develop reliable indicators of the ecological state of the 

marine environment in order to track changes in biodiversity and maintain essential 

ecosystem services (Rice and Rochet 2005, Worm et al. 2006). Numerous long-term 

studies examining the response of organisms to changes in marine ecosystems have been 

carried out for species at different trophic levels (Reid and Croxall 2001, Beaugrand et al. 

2002, Perry et al. 2005). While species at lower trophic levels have been identified as more 

responsive to environmental change than those at upper trophic levels (Perry et al. 2005, 
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Walther 2010), data can be more difficult and more costly to obtain for species at lower 

trophic levels, such as forage fish, than more visible species such as marine predators 

(Edgar et al. 2004, Agnew et al. 2009). Fishery catch statistics and transect sampling for 

phytoplankton and zooplankton can be used to estimate abundance of lower trophic level 

species (Durbin and Durbin 1981, Bannerot and Austin 1983, Rozas and Minello 1997), 

but these methods can be labour intensive, expensive and logistically challenging (Cairns 

1992b, Rice and Rochet 2005, Agnew et al. 2009, Einoder 2009).  

 The selection of informative biological indicators can be difficult due to the 

complexity of marine trophic interactions (Cairns 1988), and current uncertainty regarding 

relationships between physical and biological components of the marine environment 

(Freon et al. 2005). Selection of appropriate indicator species can also be dependent on the 

feasibility and accuracy with which demographic parameters can be measured. Seabirds 

and other marine predators have been shown to be useful biological indicators of the health 

of marine ecosystems and can be used to assess a range of information about the 

environment (Diamond and Devlin 2003, Piatt et al. 2007). Marine predators tend to forage 

over large areas, locate prey quickly and efficiently and sample prey at multiple trophic 

levels. They are sensitive to changes in food abundance and distribution, are highly visible 

in the environment, are relatively easy to study and are charismatic species with a high 

public profile (Cairns 1988, Montevecchi 1993, Sydeman et al. 2006). Seabirds tend to be 

more useful indicators of environmental change than marine mammals, which are more 

difficult to observe and census (Zacharias and Roff 2001). Seabird-based data are cheaper 

and easier to collect than other measures of prey abundance and ecosystem status such as 

fishery data, and seabird populations can be used to estimate fish abundance in areas where 

fishery data are unavailable (Cairns 1988, Cairns 1992b, Monaghan 1996). 

 There are various examples illustrating direct associations between seabird 

demographics and changes in oceanographic conditions and anthropogenic activities. 

Cyclical changes in oceanic temperatures in the Pacific Ocean are known to strongly 

influence seabird populations over wide areas, by affecting primary production and the 

abundance of prey species (Hodder and Graybill 1985, Ainley et al. 1988, Chavez et al. 

2003). Seabird productivity has been shown to vary with temporal changes in sea surface 

temperatures (Decker et al. 1995, Guinet et al. 1998, Frederiksen et al. 2004a) as well as 

with local variation in anthropogenic fishing activities (Daunt et al. 2008), both of which 

affect prey availability. Where long-term seabird monitoring studies coincide with changes 

in fishing effort they can provide a means of assessing the relative importance of 
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anthropogenic and environmental factors in influencing marine organisms (Frederiksen et 

al. 2004a, Scott et al. 2006). 

 Examinations of trends in seabird demographic parameters such as breeding 

population abundance, productivity and adult mortality can provide an index of prey 

abundance and distribution, and can identify regime shifts in the marine environment 

(Cairns 1988, Frederiksen et al. 2007b, Newman et al. 2007, Piatt et al. 2007). However, 

demographic parameters vary in their sensitivity to changes in food supply (Cairns 1988), 

and previous studies have suggested that behavioural parameters are more accurate 

indicators of changes in local prey density and distribution (Monaghan 1996, Harding et al. 

2007). Seabird foraging and chick provisioning behaviour have been shown to reflect 

environmental change, as species vary these behaviours in response to changes in prey 

availability and foraging conditions during the breeding season (Montevecchi 1993, 

Monaghan 1996, Kitaysky et al. 2000, Pinaud et al. 2005, Harding et al. 2007). 

8.2 Examining Variation in Seabird Foraging Behaviour  

Comparing parameters such as foraging range, trip duration and habitat and dietary 

preference among sympatrically breeding seabirds can address important ecological 

questions regarding interspecific competition and resource partitioning, and can provide 

information on the state of the local environment. Interspecific comparisons of dietary and 

foraging behaviour in sympatric species allow changes in abundance and distribution of 

different prey types and size classes surrounding the breeding colony to be determined 

(Croxall and Prince 1980, Diamond and Devlin 2003, González-Solís et al. 2007, Iverson 

et al. 2007, Montevecchi et al. 2012, Thaxter et al. 2012). Changes in the availability of 

prey species and size classes at critical stages of the breeding season can be indicative of 

regime shifts in the surrounding environment and can facilitate reductions in productivity 

at local seabird colonies (Rindorf et al. 2000, Lewis et al. 2001a).  

 For many seabird species, data describing foraging behaviour and the use of 

offshore areas are limited (Lewison et al. 2012). In recent years, novel seabird tracking 

methods have been developed to identify both foraging areas and oceanographic variables 

associated with foraging (Weimerskirch et al. 2005, Kotzerka et al. 2010, Perrow et al. 

2011, Stauss et al. 2012). However, many previous seabird tracking studies have been 

temporally restricted or have examined foraging behaviour in only a limited number of 

species (Mori and Boyd 2004, Lance and Thompson 2005, Votier et al. 2010, Chivers et al. 

2013). In Chapter 4 I compared foraging area use, diet and chick provisioning behaviour in 
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three morphologically similar sympatric tern species and showed that species reduce 

interspecific competition by varying diet, foraging areas or both. I also found that foraging 

area use and chick provisioning behaviour changed throughout the chick-rearing period in 

two tern species. Chapter 5 showed that although two sympatrically breeding tern species 

fed chicks on different prey types and sizes, both delivered comparable amounts of energy 

to each chick in a brood. Common Terns (Sterna hirundo) delivered larger prey items to 

chicks than Arctic Terns (S. paradisaea), but Arctic Terns were able to match energy 

delivery rates of Common Terns by increasing the frequency at which prey was delivered 

to each chick. However, Common Terns laid larger clutches and fledged more chicks in 

total than Arctic Terns. Hence, foraging behaviour of morphologically similar species can 

differ significantly with important consequences for total reproductive output. Temporal 

variation in foraging behaviour was examined further in Chapter 6 and 7 by comparing 

foraging areas utilised by Black-legged Kittiwakes (Rissa tridactyla) at different stages of 

the breeding season and in two consecutive years, and by examining chick provisioning 

behaviour throughout the developmental period. Diet, foraging areas, oceanographic 

variables associated with foraging and parental resource allocaton changed throughout the 

breeding season and between years. These results demonstrate how seabird behavioural 

data can be used to track temporal changes in the marine environment and in chick 

demand.  

8.3 Problems with using Seabirds as Environmental Indicators   

Despite the advantages of using seabird demographic and behavioural data over more 

conventional methods of sampling the marine environment, such as vessel-based surveys 

and fishery catch statistics (Bannerot and Austin 1983, Diamond and Devlin 2003), there 

are uncertainties regarding the extent to which seabird populations indicate change in the 

local environment (Frederiksen et al. 2007b, Piatt et al. 2007, Parsons et al. 2008). 

Previous studies have suggested that seabird species vary in their response to changes in 

food availability depending on their foraging ecology and life history (Montevecchi 1993, 

Furness and Tasker 2000). Estimating prey abundance and distribution based on seabird 

population dynamics or behavioural observations depends on species’ sensitivity to food 

reductions and requires a comprehensive understanding of species-specific relationships 

between demographic or behavioural parameters and food supply.  

 As seabirds are long-lived, they are likely to reduce reproductive effort in response 

to declining foraging conditions in order to increase their long-term survival (Stearns 1992, 
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Montevecchi 1993). This is evident in most seabird species, especially those with limited 

ability to increase foraging effort during periods of low food availability (Monaghan et al. 

1989, Furness and Tasker 2000, Kitaysky et al. 2000). Hence, seabirds may be less 

responsive to environmental variability than short-lived species (Morris et al. 2008, 

Sandvik and Erikstad 2008) and seabird productivity and behavioural parameters are likely 

to provide more accurate information on the state of the marine ecosystems than adult 

mortality data. Some of the problems associated with using seabirds as biological 

indicators can be mitigated by careful species and parameter selection, which I discuss 

further below.  

8.4 Selecting Appropriate Indicator Species and Parameters 

 Seabird breeding success, chick growth, colony attendance and activity budgets 

have been shown to vary with prey availability (Cairns 1988, Monaghan et al. 1989, 

Montevecchi and Myers 1995, Diamond and Devlin 2003), although changes in these 

parameters with food supply can occur at different temporal scales (Cairns 1988, 

Hyrenbach and Veit 2003). Some parameters convey information on daily or monthly food 

availability, while others reflect feeding conditions over longer temporal scales, over years 

or decades (Cairns 1992b, Montevecchi 1993, Einoder 2009). Short-term parameters such 

as foraging and breeding behaviour are useful when examining abundance and age 

structure of prey populations (Montevecchi 1993), while parameters such as annual 

population abundance and productivity are useful for gauging the effects of long-term 

environmental change (Piatt et al. 2007, Crawford et al. 2008). 

 Selected indicator species must reflect environmental conditions at an appropriate 

spatial scale, which depends on the extent of foraging activities. Pelagic seabirds which 

forage over wide areas are likely to be useful indicators of environmental conditions 

throughout the ocean basin, while coastal seabirds are likely to reflect conditions at a more 

local scale (Cairns 1988, Montevecchi and Myers 1995). 

 Dietary preferences and foraging behaviour are known to influence the sensitivity 

of seabird species to perturbations in food supply and foraging conditions (Furness and 

Ainley 1984, Furness and Tasker 2000). Generalist feeders are able to switch to different 

prey types when the abundance of preferred prey declines, whereas species with more 

restricted diets are less capable of prey switching (Furness and Nettleship 1991, Furness 

and Tasker 2000). Smaller bodied species also tend to be more sensitive to declines in prey 

availability due to their more restricted energy budgets (Furness and Camphuysen 1997, 
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Furness and Tasker 2000). Small species already forage close to their maximum rate when 

food availability is good and are therefore less able to increase their foraging effort during 

periods of reduced food supply (Monaghan 1992, Piatt et al. 2007). In contrast, larger 

species are able to buffer breeding parameters when food abundance is low by increasing 

their foraging effort (Hamer et al. 1993, Uttley et al. 1994, Hamer et al. 2001, Carscadden 

et al. 2002, Litzow and Piatt 2003). Hence, variation in food availability is better reflected 

in breeding and behavioural parameters of small bodied specialist species (Hamer et al. 

2006). During small to moderate food shortages, the breeding success of sensitive species 

has been shown to decline significantly, while that of more resistant species remains 

unaffected (Montevecchi 1993, Furness and Tasker 2000). Hence, when monitoring small-

scale changes in food supply, seabird species such as terns and Kittiwakes that are more 

sensitive to changes in food supply may provide the most accurate information.  

 Studies have shown that sympatrically breeding surface-feeding and diving 

seabirds respond in different ways to changes in local prey availability (Monaghan et al. 

1992, Monaghan et al. 1996, Carscadden et al. 2002, Enstipp et al. 2006). Hence, only by 

examining changes in demographic parameters and foraging behaviour among various 

sympatric seabird species can we gain a more complete understanding of conditions in the 

local environmental (Carscadden et al. 2002). Chapter 3 and 5 show that even among 

ecologically similar species with broadly similar diets and foraging behaviour, 

demographic parameters and reproductive output can vary significantly, which may be due 

to interspecific variation in diet and foraging behaviour. Chapters 4, 6 and 7 show how 

foraging behaviour of different species can vary inter-annually and within a single 

breeding season. Examining variation in demographic parameters and foraging behaviour 

in a suite of seabird species over extended temporal scales can contribute to a greater 

understanding of changes in the marine environment than by examining single species over 

a limited time period. 

8.5 Implications and Recommendations for Marine 

Conservation  

Population trends have varied significantly among UK seabird species in recent decades 

(Mitchell et al. 2004). Threats from declines in food abundance (especially sandeel; 

Ammodytes marinus), human disturbance at breeding colonies and predation have led to 

declines in abundance and productivity of many species since the 1980s, although some 

have exhibited greater population changes than others (Mitchell et al. 2004, Mavor et al. 
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2008). Terns and Kittiwakes have been identified as particularly vulnerable to reductions 

in prey availability (Furness and Tasker 2000) and have exhibited significant declines in 

population abundance and productivity in recent years (Mitchell et al. 2004). 

 Population trends can vary among tern species breeding sympatrically at the same 

colony. Coquet Island supports breeding populations of four tern species, one of which, the 

Roseate Tern (Sterna dougallii), is among the most endangered seabird species breeding in 

the UK (Mitchell et al. 2004, Cabot and Nisbet 2013). By comparing diet and foraging 

behaviour among sympatrically breeding tern species on Coquet, we showed that Roseate 

Terns consistently foraged in a specific area close to the mainland shore and exhibited less 

variation in prey selection than other tern species (see Chapter 4). This confirms the results 

of studies on Roseate Terns in the tropics and the US and may explain the limited 

abundance of this species throughout its range (Nisbet and Spendelow 1999, Safina et al. 

1990, Shealer 1996). No protection is currently given to the foraging areas used by Roseate 

Terns breeding on Coquet (www.jncc.defra.gov.uk/mczmap), although in light of new 

data, JNCC are currently making recommendations to the UK Government on the 

protection of areas identified by tracking work.  

 While legal protection is afforded to seabird breeding colonies in the UK to 

mitigate threats from human disturbance and predation (Nettleship 1991, Mitchell et al. 

2004), at-sea foraging areas are currently provided with little legal protection. The UK 

Government is a signatory to international agreements including the EU Birds Directive, 

Convention on Biological Diversity and the OSPAR Convention whose aims include 

establishing a network of Marine Protected Areas (MPAs) and Special Protection Areas 

incorporating foraging areas used by seabirds, as well as other aquatic bird species (Stroud 

et al. 2001; www.jncc.gov.uk/page-4549).  For many species, few data are available on the 

location of important foraging areas making protection of offshore foraging areas difficult 

(Lewison et al. 2012).  

 In recent years, bird-borne GPS devices have been successfully employed to record 

complete foraging trips to and from foraging grounds and to identify foraging areas of a 

variety of seabird species (Weimerskirch et al. 2005, Kotzerka et al. 2010, Stauss et al. 

2012). Seabird tracking data can be used to accurately identify foraging locations and 

associated oceanographic variables and inform the designation of useful offshore protected 

areas (Weimerskirch et al. 2005, Kotzerka et al. 2010, Grecian et al. 2012, Lascelles et al. 

2012, Stauss et al. 2012). Previous studies have attempted to estimate probable seabird 

foraging areas over wider areas using correlations between known foraging locations and 

http://www.jncc.defra.gov.uk/mczmap
http://www.jncc.gov.uk/page-4549
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associated oceanographic features (Huettmann and Diamond 2001, Nur et al. 2011, 

Grecian et al. 2012, Lascelles et al. 2012).  

 There are various limitations to using GPS devices to track seabirds. Sample sizes 

are usually restricted due to difficulties in fitting and recovering devices (Soanes et al. 

2013), there may be adverse effects of fitting devices on bird foraging behaviour and flight 

efficiency (Wilson et al. 2002, Phillips et al. 2003), monetary cost of devices can be high 

(Ropert-Coudert and Wilson 2005) and the duration of the tracking periods tend to be 

limited. Most tracking studies have been carried out over restricted time scales, either 

during a single breeding season (Kotzerka et al. 2010, Votier et al. 2010) or breeding phase 

(Stauss et al. 2012, Chivers et al. 2013). Chapter 6 shows that both foraging areas and 

oceanographic variables associated with foraging locations vary intra- and inter-annually. 

This has significant implications for the designation of potential MPAs based on habitat 

suitability as the usefulness of specific areas for foraging are likely to change over time. To 

designate useful long-term MPAs for seabirds, temporal changes in foraging areas and 

variation in preference for oceanographic features must be considered. The development of 

MPAs for seabirds that are dynamic in space and time may account for temporal variation 

in foraging area utilisation. MPAs with flexible borders that change depending on the stage 

of the breeding cycle (being larger during incubation) and on annual environmental 

conditions, such as SST, primary productivity and oceanic stratification, are likely to be 

more effective at representing important seabird foraging areas than MPAs with 

intransigent borders. However, this method may not be viable over longer time periods as 

it does not prevent areas from being overexploited when protection is temporally 

rescinded. Also, tracking enough individuals in order to accurately determining home 

range areas of whole colonies can be difficult, due to the cost and effort required (Burger 

and Shaffer 2008, Soanes et al. 2013).     

 The development of smaller, more accurate tracking devices and of novel 

methodologies such as visual tracking is likely to increase the value of seabirds as remote 

sensors of the marine environment. An extension in the number of individuals, colonies, 

populations and species included in studies will lead to a corresponding increase in 

knowledge and understanding of coastal and pelagic environments, with positive 

implications for the conservation and protection of offshore areas. 
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8.6 Concluding Remarks 

In this thesis it has been shown firstly, that variation in seabird foraging behaviour and 

demographic parameters can reflect changes in the local environment, such as prey 

availability and oceanographic conditions. Secondly, that prey selection, foraging areas 

and chick provisioning behaviour can vary temporally and among morphologically similar 

sympatrically breeding species. Finally, these results provide evidence that seabird 

demographic and behavioural data can be used effectively to indicate the state of the 

marine environment and can inform marine conservation policy designating effectual 

offshore protected areas for marine predators.  
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Abstract 

Species at higher trophic levels are likely to be vulnerable to impacts of climate change 

acting indirectly, via changes to their supporting food webs. As apex predators in marine 

ecosystems, seabirds may primarily experience such indirect climate change impacts. 

Declines in UK black-legged kittiwake (Rissa tridactyla) populations have been linked to 

oceanographic and food web changes possibly associated with climate change, but 

relationships have often been derived from relatively few colonies and consider only sea 

surface temperature (SST), meaning that other important oceanographic drivers, and spatial 

variation in these drivers, may remain undetected. Further, explicit projections of the 

consequences of climate change for kittiwakes have rarely been made, meaning that the 

extent of longer-term impacts remains unclear. Here, we use tracking data to estimate 

foraging areas for eleven kittiwake colonies in the UK and Ireland, thus reducing reliance 

on single colonies and allowing calculation of colony-specific oceanographic conditions. 

We then use mixed models to consider how SST, the potential energy anomaly (a metric 

indicating the strength of density stratification) and the timing of seasonal density 

stratification influence kittiwake productivity. Models including data from all colonies 

indicated that higher breeding success was associated with weaker ocean stratification 

before the breeding season and lower SSTs during the breeding season. Eight colonies with 

≥10 years of data were also modelled individually: three showed higher productivity with 

later stratification, two showed higher productivity with weaker stratification, one showed 

higher productivity with lower SSTs, and two showed no relationship with any variable, 

indicating that primary drivers of productivity varied amongst colonies. Finally, fitted 

models were used to make climate change projections. Results indicated that breeding 

success could decline by 21–43% between 1961-90 and 2070-99, suggesting that climate 

change poses a substantial longer-term threat to UK kittiwake populations, and potentially 

to other marine apex predators.  
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Introduction 

Ecological impacts of climate change are becoming increasingly well-understood, with 

changes in geographical ranges and the timing of important life-history events predicted 

and observed in both terrestrial and marine environments (Parmesan, 2006; Walther, 2010; 

Bellard et al., 2012; Doney et al., 2012). Climate change impacts acting via food chains or 

community composition are also becoming better-understood (e.g., Pearce-Higgins et al., 

2005; Pearce-Higgins, 2010; Pearce-Higgins et al., 2010), but for many ecosystems such 

impacts may be hard to predict and observe (Tylianakis et al., 2008; Gilman et al., 2010; 

Walther, 2010). These “indirect” impacts may be relatively widespread and bring with 

them substantial extinction risks (Cahill et al., 2013; Ockendon et al., 2014), but they also 

pose considerable conservation challenges: whilst species near the top of food webs often 

attract most conservation attention (Sergio et al., 2006; Sergio et al., 2008), successful 

conservation may require consideration of the multiple lower trophic levels and abiotic 

drivers that combine to influence their population trajectories. 

Seabirds are the world’s most threatened group of birds, with around 50% of 

species declining (Croxall et al., 2012). Although seabirds face various direct threats, such 

as introduced predators and fishery practices, as apex predators in marine ecosystems they 

could also experience “indirect” climate change impacts through their supporting food 

webs (Croxall et al., 2012; Sydeman et al., 2012; Burthe et al., 2014). Their populations 

are sensitive to changes in breeding success (Sandvik et al., 2012), which may be 

influenced by food availability or quality during the breeding season (Wanless & Harris, 

1992; Wanless et al., 2004; Wanless et al., 2005). Under conditions of low food 

availability or quality, seabird adults and chicks are in poorer condition, nest attendance 

falls, and chicks may starve, thus reducing productivity (Wanless & Harris, 1992; 

Frederiksen et al., 2004b; Vincenzi & Mangel, 2013). Hence, environmental changes that 

affect seabird food webs could impact productivity. Identifying the underlying mechanisms 

can be challenging, particularly in light of relatively poor information on local prey 

availability, but it can be informative to examine relationships between physical ocean 

conditions and seabird population parameters (e.g., Frederiksen et al., 2004b; Wanless et 

al., 2007), as these can indicate the ultimate drivers of declines. 

Some of the best examples of impacts of changing oceanographic conditions on 

seabirds come from the UK and Ireland, where populations of several species have 

declined since the mid-1980s (JNCC, 2013). Some declines have been linked to rising sea 

surface temperatures (SSTs) (e.g., Frederiksen et al., 2004b; Frederiksen et al., 2007a). 



 

217 
 

Possible mechanisms behind the relationship include reduced prey accessibility due to fish 

behavioural responses, reduced prey nutritional value due to changing zooplankton 

communities, or increased predation of key prey species (Arnott & Ruxton, 2002; 

Frederiksen et al., 2007b; van Deurs et al., 2009). However, although strong SST 

relationships have been derived for individual colonies (e.g., Frederiksen et al., 2004b), the 

importance of temperature may vary between regions and colonies (Frederiksen et al., 

2007a; Lauria et al., 2012). Further, SST may not be the only important variable, with 

thermohaline stratification potentially having a strong effect (Scott et al., 2006). 

Stratification occurs when temperature or salinity differences cause density differences 

between deep and shallow waters. Associated changes in nutrient availability and light 

regimes lead to increased phytoplankton growth and subsequent increases in zooplankton 

abundance, in turn influencing fish activity and growth (Scott et al., 2006; Sharples et al., 

2006). Under earlier seasonal stratification, key fish species may be less nutritious or be 

available too early in the seabird breeding season (Wright & Bailey, 1996; Wanless et al., 

2004; Scott et al., 2006; van der Kooij et al., 2008), whilst under stronger stratification, 

abundance of key zooplankton and accessibility of key fish species may decline (Beare et 

al., 2002; Jensen et al., 2003). To improve our understanding of the physical drivers of 

seabird productivity and the threats posed by climate change, it may therefore be necessary 

to consider multiple colonies and multiple oceanographic variables. 

With a more complete understanding of the physical drivers of seabird productivity, 

longer-term climate change impacts can be considered more explicitly. Whilst longer-term 

impacts have been implied from observed changes (e.g., Frederiksen et al., 2004b; 

Wanless et al., 2007), few studies have made explicit climate change projections (but see, 

e.g., Frederiksen et al., 2013). A clearer understanding of future impacts is essential to 

establish appropriate conservation strategies in a changing climate, especially in light of 

legislative frameworks that consider seabird productivity under prevailing climatic 

conditions (HM Government, 2012). Therefore, examining both observed relationships and 

explicit climate change projections provides a more complete understanding of the 

influences of oceanographic change on seabird populations, allowing consideration of both 

immediate and longer-term impacts. 

In this study, we examine drivers of productivity for multiple colonies of a seabird 

species, considering both temperature and stratification variables. We use the black-legged 

kittiwake (Rissa tridactyla, hereafter “kittiwake”) as a model, as it has been well-studied 

throughout its range and is considered to be a sensitive indicator of the condition of the 

marine environment (Wanless et al., 2007; Cook et al., 2014). We focus on the UK and 
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Ireland, which support around 14% of the biogeographic kittiwake population and for 

which population and productivity data are routinely collected (JNCC, 2013). Specifically, 

we consider the following hypotheses: 

1) higher SSTs are associated with reduced kittiwake breeding success; 

2) strong, early ocean stratification is associated with reduced kittiwake breeding 

success; 

3) modelled kittiwake productivity will be reduced in future scenarios due to the 

impacts of climate change. 

Materials and methods 

Study species 

Kittiwakes are one of the most abundant seabirds in the UK and Ireland, with 

approximately 400,000 pairs (Mitchell et al., 2004; Coulson, 2011). However, populations 

have declined by around 60% since 1986 (JNCC, 2013). They nest on steep cliffs in 

colonies of up to tens of thousands of pairs, with egg-laying usually occurring from April 

to June (Mitchell et al., 2004; Coulson, 2011). Kittiwakes feed primarily on fish during the 

breeding season, with sandeels (particularly the lesser sandeel, Ammodytes marinus) a key 

prey species (Furness & Tasker, 2000; Wanless et al., 2007). However, diet may vary 

temporally and spatially: in the Irish Sea, clupeids (e.g., herring, sardine, sprat) are locally 

important (Chivers et al., 2012), whilst capelin, gadids (e.g., cod, pollock) and krill are 

important elsewhere in the kittiwake’s range and outside of the main breeding season (e.g., 

Lewis et al., 2001; Barrett, 2007). At finer scales, the importance of sandeels may vary 

between colonies (Bull et al., 2004) and throughout the breeding season (Lewis et al., 

2001; Suryan et al., 2002). Although colonies with diverse diets may be somewhat 

buffered from variations in prey availability (Coulson, 2011), many colonies are heavily 

dependent upon a single species, often sandeels, during the breeding season (e.g., Harris & 

Wanless, 1997; Lewis et al., 2001; Bull et al., 2004), thus are more likely to experience 

impacts of climatic variability. 
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Oceanographic data sources 

Oceanographic data were acquired from two sources: one covered recent years (hereafter 

‘hindcast’), whilst the other covered 30-year periods for the mid 20
th
 Century and late 21

st
 

Century (hereafter ‘projections’). Both datasets were produced from the Atlantic Margin 

Model of the Proudman Oceanographic Laboratory Coastal Ocean Modelling System 

(POLCOMS), which simulates ocean hydrodynamics as driven by atmospheric inputs and 

oceanic boundary conditions (Holt & James, 2001). The model operates on a 
1
/6° long × 

1
/9° lat grid (approximately 12 km × 12 km), and divides the vertical dimension into layers, 

with an increased vertical resolution nearer the surface. Outputs acquired consisted of 

monthly mean values for temperature and salinity in each vertical layer. 

Hindcast data were acquired from the MyOcean web portal 

(http://www.myocean.eu; product 

NORTHWESTSHELF_REANALYSIS_PHYS_004_005; accessed 23/04/2013). For this 

dataset, POLCOMS was driven by the ‘ERA-40’ climate reanalysis dataset (Uppala et al., 

2005) until 2001, then the European Centre for Medium-Range Weather Forecasting 

operational analysis dataset until 2004; these are climatic reconstructions based on 

observed climate data, so represent an estimate of actual conditions experienced between 

1967 and 2004. This dataset could therefore be used to establish relationships with 

observed kittiwake productivity. Further information on this dataset is provided by Holt et 

al. (2012).  

Projection data were acquired from the British Atmospheric Data Centre 

(http://badc.nerc.ac.uk/data/link; accessed 01/03/2013; data access provided by the UK 

Met Office). For this dataset, POLCOMS was driven by UKCP09 climate projections for a 

baseline period (1961-90) and a future period (2070-99) under the A1B SRES scenario. 

Projections account for inter-annual variability but do not correspond to conditions in 

specific years, thus could only be used to predict breeding success under average 

conditions in each time period. Further information on this dataset is provided by Lowe et 

al. (2009).  

 

http://www.myocean.eu/
http://badc.nerc.ac.uk/data/link
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Oceanographic variables 

Three key oceanographic variables were selected for use in analysis: SST (e.g., 

Frederiksen et al., 2004b; Frederiksen et al., 2007a), the strength of ocean stratification and 

the timing of seasonal stratification onset (e.g., Scott et al., 2006; Scott et al., 2010). 

Variables were calculated for winter and spring time periods. The winter period, defined as 

December, January and February, approximately corresponded to that important for 

sandeel recruitment and, consequently, for kittiwake breeding success (Arnott & Ruxton, 

2002; Frederiksen et al., 2004b). The spring period, defined as March, April, May and 

June, approximately corresponded to the period in which kittiwakes commence breeding, 

and in which sandeel eggs hatch, larvae metamorphose and abundance peaks (Wright & 

Bailey, 1996; Coulson, 2011; Lynam et al., 2013). SST was calculated for these periods by 

extracting the top layer of temperature outputs for each month. 

The strength of stratification was expressed using the potential energy anomaly 

(PEA; Equation 1), as defined by Holt et al. (2010). PEA indicates the amount of energy 

per unit depth required to mix the water column completely. Hence, the higher the value, 

the greater the energy input required to achieve mixing, and therefore, the stronger the 

stratification. PEA was calculated as 

 

    
 

 
                             
 

      
 (1). 

 

Here, φ = PEA, g = gravitational acceleration, h = water depth (or 400 m if the depth 

exceeds this, after Holt et al. (2010)), z = the vertical coordinate (with 0 indicating the 

surface, and with larger negative values indicating deeper water), ρ = density (calculated 

here using a deterministic polynomial function defined by Jackett et al. (2006)), 

T = temperature, S = salinity, and the overbar indicates the quantity is averaged from h to 

the surface. As temperature and salinity data were only available for a discrete set of 

depths, the integral was evaluated numerically using Simpson’s rule.  

The timing of seasonal stratification onset was calculated in a similar way to 

previous analyses of POLCOMS data (Lowe et al., 2009; Holt et al., 2010), but as daily 

outputs were unavailable, additional assumptions were made. Stratification onset was 

defined to be the first day of the year on which the mixed layer depth (MLD) was 

shallower than 50 m (or, if the total water depth was <50 m, shallower than the water 
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depth). MLD was defined as the depth at which density differed from surface density by an 

amount equivalent to a 0.5°C reduction in temperature. Only monthly outputs were 

available, so daily MLD values were interpolated by fitting a cubic spline with 365 knots 

through monthly values; note that this interpolation retains the overall seasonal pattern of 

MLD, but could lead to some error around the ‘true’ MLD, and will likely lead to 

underestimation of the true variability in stratification onset. Hence, the stratification onset 

metric is relatively coarse, but variability between years and sites should still be adequately 

described. For a small number of cells, MLD was never <50 m, so were assigned a ‘no 

data’ value; as these were only a small fraction of all cells, it was determined that this 

should not unduly bias subsequent estimates of mean stratification onset date. 

Bird foraging areas 

Previous analyses linking kittiwake productivity to oceanographic conditions have 

extracted conditions from arbitrarily-sized boxes or broad-scale regions (e.g., Frederiksen 

et al., 2004b; Frederiksen et al., 2007a; Burthe et al., 2012; Lauria et al., 2013; Sandvik et 

al., 2014). However, seabird tracking studies have indicated substantial variability in the 

size, shape and location of the areas used by different colonies (e.g., Wakefield et al., 

2013). This implies that the area of sea influencing productivity is also likely to vary 

among colonies. To account for such variability here, data from kittiwake tracking studies 

were used to define colony-specific areas. 

Data were acquired for 11 colonies where kittiwake tracking was carried out during 

the 2010-12 breeding seasons and for which productivity data were available (Table 1; Fig. 

1). Tracked birds had high-resolution GPS tags (modified IgotU GT 120, Mobile Action, 

Taiwan) attached with waterproof adhesive tape to back feathers whilst at the colony. Tags 

recorded a location fix accurate to around 20 m approximately every 100 seconds, and 

remained attached for two to five days. Kittiwake tracking occurred from May to July, with 

most tracking occurring in June, primarily covering the late incubation and chick rearing 

period. 

It was assumed that as oceanographic changes would primarily affect kittiwake 

productivity via the food web, the most relevant areas from which to extract oceanographic 

conditions would be those associated with foraging. GPS records were therefore filtered to 

remove records unlikely to be associated with foraging. Records within 1 km of the colony 

centre were removed to exclude GPS fixes associated with behaviours at or around the 

nest, which may not be associated with foraging in some colonies (e.g., Irons, 1998; 
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Suryan et al., 2002). Then, travel speeds between points were calculated; the distribution 

of speeds formed a bimodal distribution, with only the lower speeds likely to be associated 

with foraging (e.g., Kotzerka et al., 2010). Based on preliminary analysis of a subset of the 

data, a threshold of 14 km h
-1

 was selected (Appendix S1); records associated with higher 

speeds were removed. This filtering left 192,638 individual GPS records. Although 

filtering did not exclude behaviours such as resting on the sea, the range of kittiwake 

foraging behaviours (Coulson, 2011) makes it hard to apply a set of criteria to describe all 

foraging, so it was determined that this more inclusive approach was preferable. A 

sensitivity analysis (Appendix S1) indicated that the speed threshold chosen made little 

difference to mean environmental variable values extracted from the resulting foraging 

area (Pearson correlations between threshold values ranging 11– 20 km h
-1

 all > 0.999). 

The distance threshold had a larger effect, but resulting environmental variable values were 

still highly correlated (correlations between threshold values ranging 0.2 – 2 km all ≥ 

0.929). Therefore, analyses using environmental data at this relatively coarse scale should 

be robust to threshold specification within the ranges considered. 

Kernel density estimates were calculated to convert GPS records into estimated 

foraging areas. Foraging areas were computed separately for each colony, with data pooled 

across all years and birds to produce an estimate of the ‘core’ area for that colony. 

Although the size of foraging kernels is sensitive to the number of birds included in 

estimation, all colonies here had at least the number of birds required to describe >50% of 

the ‘true’ foraging area, with many including the number required to describe >95% 

(Soanes et al., 2013). Kernel densities were evaluated on a regular 30 arc-second by 30 

arc-second rectangular grid. The limits of the grid were defined to be 1.25 degrees away 

from the most extreme observed foraging location in each direction. 

Kernel density estimates were based on a bivariate Gaussian kernel, and were 

evaluated the 'ks' R package (Duong, 2013). Two possible methods for choosing the degree 

of smoothing were considered: 1) a bivariate plug-in bandwidth estimator (Duong & 

Hazelton, 2003); and 2) an estimator selected using a simple rule-of-thumb (Silverman, 

1986). The rule-of-thumb approach involved taking the kernel bandwidth to be 1.06·σx·n
(-

1/5)
 and 1.06·σy·n

(-1/5)
, where n denotes the sample size and σx and σy denote the standard 

deviations of the longitudes and latitudes of GPS record locations. This rule-of-thumb is 

derived in a univariate setting, under an assumption of normality, and so should be 

interpreted with some caution in the bivariate setting. However, the plug-in estimation 

approach was highly computationally intensive for datasets of this size. The two 

approaches were therefore compared using a subset of sites: foraging area shapes differed 
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slightly between the two methods, but locations were highly similar, hence resulting 

oceanographic variable values were highly correlated (r ≥ 0.99). The rule-of-thumb 

approach was therefore used for all remaining sites. Foraging areas were defined by the 

90% density contour, which has been recommended for home range estimates (Börger et 

al., 2006). Resulting kernels are presented in Appendix S2. 

Bird population data 

Kittiwake breeding success data were acquired from the seabird monitoring programme 

(SMP; http://www.jncc.defra.gov.uk/smp; Walsh et al. (1995)). The SMP is an annual 

sample survey of seabird abundance and breeding success in the UK and Ireland, which 

started in 1986 and is coordinated by the Joint Nature Conservation Committee (JNCC). 

Data from an associated study on the Isle of May National Nature Reserve were acquired 

from the Centre for Ecology & Hydrology (http://gateway.ceh.ac.uk; accessed 

12/04/2013). Productivity data were not available for all years for all colonies, leaving 142 

site-by-year combinations (Table 1). 

SMP breeding success is often analysed as the mean number of fledged chicks per 

nest (e.g., Mavor et al., 2008). However, it was preferable here to avoid modelling 

productivity as a Gaussian variable: if predicting outside the range of current climates, a 

Gaussian variable could become negative, and the number of nests monitored varied 

between colonies and years (minimum 21, maximum 1446), so there was unequal variance 

associated with observations. Therefore, numbers of fledged and failed chicks were 

modelled directly in a binomial error framework, with fledged chicks taken from the raw 

data, and failed chicks estimated as ((2 × nests) - fledged), based on the mean and modal 

UK kittiwake clutch size of 2 eggs (range 1 - 3; Coulson & Porter, 1985; Harris & 

Wanless, 1997; Coulson, 2011; Cook et al., 2014). Consequently, breeding success was 

modelled as the young produced per egg (Cook et al., 2014), thus preventing the response 

becoming negative, and allowing prior weights to account for variation in surveyed nests. 

To ensure results were robust to these assumptions, modelling was also carried out in a 

Poisson error framework using the raw number of fledged chicks as the response variable, 

and containing an offset of log(nests) to reflect unequal sampling; results were highly 

similar to those from the binomial analysis, so are only presented in Appendix S3. 

 

http://www.jncc.defra.gov.uk/smp
http://gateway.ceh.ac.uk/
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Statistical analysis 

Analyses were conducted in R v. 3.1.0 (R Core Team, 2014). Oceanographic data were 

extracted from estimated foraging areas using the ‘raster’ R package (Hijmans, 2013). The 

mean of each variable within each foraging area was calculated; for SST and PEA, spring 

and winter means were calculated; for stratification onset, only an annual mean could be 

defined. Before inclusion in productivity models, oceanographic variables were tested for 

collinearity and trends over time (Appendix S4). Further, PEA values appeared to display a 

heavily skewed distribution, so logged and untransformed PEA values were compared in 

productivity models (Appendix S4). Akaike information criterion (AIC) values indicated 

that logged PEA performed better, so all further models used log(PEA). 

Breeding success data were analysed in a Generalised Linear Mixed Model 

(GLMM) framework, using a binomial error distribution and logit link function. The 

response was a two-column matrix containing the numbers of fledged chicks and estimated 

numbers of failed chicks. All models were fitted via maximum likelihood in the ‘lme4’ R 

package (Bates et al., 2014).  

Models of breeding success were fitted with time as a predictor variable to identify 

temporal trends (Appendix S4), and then with oceanographic predictor variables to explore 

drivers of breeding success variation. Models including all sites were fitted with ‘site’, 

‘region’, ‘year’, ‘site*year’ and ‘region*year’ random effects; the site*year random effect 

was an observation-level factor included to model overdispersion (e.g., Browne et al., 

2005); the ‘region’ random effect was based on the kittiwake population regions identified 

by Frederiksen et al. (2005). For single-site models, only colonies with ≥10 years of 

overlapping breeding success and oceanographic data were analysed; these models were 

fitted with only a ‘year’ random effect, which at this scale constituted an observation-level 

factor to model overdispersion.  

For single-site models, which had a minimum of 12 and a maximum of 19 data 

points, only models with single predictor variables were considered as the data were 

deemed inadequate to include multiple explanatory variables. The influence of each 

variable was assessed by comparing the sample-size-corrected AIC (AICc) value to that 

from a null model fitted with intercept and random effects only; models with ΔAICc ≤ 0 

were considered to show some support over the null model, with ΔAICc ≤ -2 taken to show 

substantial support. AICc was used in favour of QAICc because overdispersion was 

already accounted for by inclusion of observation-level random effects. Equivalent models 

were also constructed including data from all sites to examine independent impacts of each 
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variable; due to the larger sample size, these models were assessed with uncorrected AIC. 

Previous analyses have indicated that SST with a 1-year lag provided the best predictor of 

kittiwake productivity, but that unlagged SST still had some effect (Frederiksen et al., 

2004b). Therefore, both lagged and unlagged variables were trialled. Lagged and unlagged 

variables produced similar relationships, but unlagged variables produced lower AICs, so 

further analyses only considered unlagged variables, and results from analyses with lagged 

variables are presented in Appendix S4. 

Models including data from all sites were then fitted with multiple predictor 

variables. Interactions between variables were not considered, as this would lead to 

overfitting and reduce interpretability of results in models containing high-order 

interactions. Model comparison was conducted using the ‘MuMIn’ R package (Barton, 

2014), with model performance determined by comparing AIC values to that from the 

model with lowest AIC. Models with ΔAIC ≤ 2 relative to the best model were considered 

to show similar support. 

Climate change impacts were estimated from the models with multiple predictor 

variables. To account for model uncertainty, all 32 candidate models were used in a 

randomisation procedure; for each randomisation run, one model was picked with 

probability of selection proportional to its Akaike weight. To account for parameter 

uncertainty within models, new parameter estimates were simulated. Fixed effect estimates 

were simulated from a multivariate normal distribution, with mean and covariance matrix 

equal to those from the chosen model, using the ‘mvtnorm’ R package (Genz & Bretz, 

2009; Genz et al., 2014). As the sites and regions used for projections were the same as 

those in model fitting, ‘site’ and ‘region’ random effect estimates were extracted directly 

from the fitted model. As years in projections differed from those in model fitting, ‘year’, 

‘site*year’ and ‘region*year’ estimates were simulated from normal distributions with 

mean = 0 and standard deviations equal to those from the chosen model. 

Simulated parameters were applied to UKCP09 oceanographic projection data for 

the ‘baseline’ period of 1961-90 and the future period of 2070-99 to produce breeding 

success estimates. Estimates were calculated for all years within each period, but as these 

periods represented average conditions, the mean across all years was calculated. The 

randomisation process was carried out 1,000,000 times, giving 1,000,000 estimates of 30-

year mean breeding success for each time period. To estimate climate change impacts, the 

two periods were compared to one another; proportional change in breeding success was 

calculated as ((future - baseline)/baseline); probability of decline was estimated by 

calculating the difference between the periods for each randomisation run, and then 
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calculating the proportion of these differences that did not show a decline. Finally, to 

understand which variables influenced projected breeding success trends, differences in 

oceanographic predictor variables between periods were tested using Wilcoxon rank sum 

tests. 

Results 

Temporal trends and correlations in oceanographic variables 

Across all sites, breeding success showed no significant trend over time (P = 0.141; 

Appendix S4). Spring SST increased significantly (P = 0.026), and winter SST increased 

but did not attain significance (P = 0.054). Winter PEA showed a weakly significant 

increase over time (P = 0.046), but spring PEA (P = 0.173) and stratification onset (P = 

0.096) showed no significant change over time.  

For individual site models, the direction and strength of temporal trends varied 

(Appendix S4). Breeding success decreased at Flamborough Head, Fowlsheugh and St 

Abb’s Head, but increased at Bardsey Island; other than at Flamborough Head (P = 0.003) 

these trends were only weakly significant (0.023 ≤ P ≤ 0.047). Spring and winter SST 

increased at every site; winter increases were either weakly significant or non-significant 

(0.029 ≤ P ≤ 0.192), and spring increases were significant for Bardsey Island, 

Flamborough Head and Puffin Island (P < 0.01) but non-significant elsewhere. Increases in 

winter PEA were only significant at Isle of May (P = 0.016) and St Abb’s Head (P = 

0.048). Spring PEA showed no significant changes over time. Stratification onset showed 

significant changes only at Boddam to Collieston, Fowlsheugh and Isle of May (0.014 ≤ P 

≤ 0.020), becoming earlier over time. 

Correlations between unlagged variables were moderate or weak (Appendix S4), 

with the highest those between winter and spring PEA (ρ = 0.669), winter and spring SST 

(ρ = 0.672), and stratification onset date and PEA (spring ρ = -0.559; winter ρ = -0.485). 

Strong or moderate correlations were found between lagged and unlagged forms of 

stratification onset (ρ = 0.815), spring SST (ρ = 0.647), winter SST (ρ = 0.673) and winter 

PEA (ρ = 0.825). Overall, it was considered acceptable to include multiple predictor 

variables in the same model, but that it was preferable to avoid including lagged and 

unlagged forms of the same variable. 

 



 

227 
 

Models with single predictor variables 

Relationships between breeding success and oceanographic predictor variables differed 

between sites, but some overall patterns emerged (Table 2; Appendix S5). Stratification 

onset provided the best model at Isle of May and St Abb’s Head, and showed some support 

at Bardsey Island, with higher productivity associated with later stratification. Spring PEA 

provided the best model at Flamborough Head and showed some support at Fair Isle; both 

indicated that higher productivity was associated with lower spring PEA. The best model at 

Bardsey Island showed that breeding success was higher when winter PEA was lower; the 

winter PEA parameter estimate attained significance at Coquet Island and approached 

significance at St Abb’s Head but displayed no support over the null model. Spring SST 

provided the best model at Fair Isle and received some support at Flamborough Head, 

showing higher breeding success was associated with lower spring SSTs. Winter SST did 

not perform better than the null model or approach significance at any site. Boddam to 

Collieston and Fowlsheugh showed no variable to perform better than the null model. 

When lagged variables were considered, the only relationships that were better-supported 

than unlagged equivalents were negative relationships with spring SST at Isle of May and 

St Abb’s Head (Appendix S4). 

The best all-sites model with a single predictor variable showed breeding success to 

be higher when winter PEA was lower (Table 2; Fig. 2). A similar relationship was found 

with spring PEA, but a smaller ΔAIC value indicated weaker support. There was also 

strong support for a negative relationship with spring SST and a positive relationship with 

stratification onset date (Table 2). Models including lagged variables showed similar 

patterns, but with lower AICs than the unlagged equivalents (Appendix S4). Therefore, as 

in single-site models, breeding success was typically higher under lower SSTs, when 

stratification occurred later and when the water column was better mixed early in the year. 

Models with multiple predictor variables 

The best model with multiple predictor variables (Table 3; Supporting Information 5) 

contained significant, negative coefficients for winter PEA (-0.602, P = 0.002) and spring 

SST (-0.539, P = 0.027), indicating that higher breeding success was associated with 

weaker stratification the winter before breeding and lower SSTs in early spring of the 

preceding year. Only three other models had strong empirical support (ΔAIC ≤ 2 relative to 

the best model; Table 4). The second-ranked model (ΔAIC = 1.649) contained significant, 
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negative coefficients for winter PEA (-0.609, P = 0.001) and spring SST (-0.674, P = 

0.045), but also a non-significant positive effect of winter SST (0.173, P = 0.556), 

contrasting with the negative impact of winter SST found in the single predictor case, but 

possibly reflecting the moderate collinearity between winter and spring SST. The third-

ranked model (ΔAIC = 1.861) contained significant negative coefficients for spring SST (-

0.544, P = 0.027) and winter PEA (-0.566, P = 0.008), but also a non-significant positive 

coefficient for stratification onset (0.003, P = 0.712), in line with the single predictor 

models. The fourth-ranked model (ΔAIC = 1.926) showed significant negative effects of 

spring SST (-0.541, P = 0.027) and winter PEA (-0.574, P = 0.008), and included a non-

significant negative effect of spring PEA (-0.090, P = 0.786). Therefore, multiple predictor 

variable models again highlighted the importance of lower spring SSTs and lower winter 

PEAs for kittiwake breeding success.  

Climate change projections 

Projections of breeding success in the climatic baseline period of 1961-90 and a future 

scenario of 2070-99 indicated that substantial productivity declines could be driven by 

changing oceanography under climate change (Table 4; Fig. 3). For the climatic baseline 

period, mean projected breeding success across all sites was 0.560, corresponding to 

around 1.12 chicks per pair; by 2070-99, this had declined by 32.6% to 0.377, 

corresponding to approximately 0.754 chicks per pair. Only 3.0% of simulations of 

breeding success across all sites did not predict a decline. 

Projections differed slightly between sites, but all sites showed declines (Table 4). 

The largest proportional decline was for Fair Isle (43.2%), followed by Bardsey Island 

(42.4%); the smallest proportional decline projected was at Coquet Island (21.4%). The 

largest absolute decline projected was at Flamborough Head (-0.214), and the smallest 

absolute decline projected was at Boddam to Collieston (-0.161). The proportion of 

simulations predicting a decline also varied between sites; at Bardsey Island and Fair Isle, 

only 1.8% and 1.1% of simulations respectively did not predict a decline, whilst for 

Boddam to Collieston, Coquet Island, Fowlsheugh, Isle of May and St Abb’s Head, 7.9 – 

16.9% of simulations did not predict a decline. Therefore, both the magnitude and 

probability of declines varied between sites. 

Neither stratification onset date (Wilcoxon rank sum test, W = 48309, P = 0.692) 

nor winter PEA (W = 45255.5, P = 0.325) changed significantly between periods. Spring 

PEA increased significantly (W = 39562, P < 0.001), but the absolute change was small 



 

229 
 

(1961-90 mean 10.02 Jm
-3

 (log scale 2.034); 2070-99 mean 12.13 Jm
-3

 (log scale 2.215)) 

and spring PEA coefficients in high-ranking models were small. Hence, these three 

variables changed too little or had too little an effect on productivity estimates to have 

contributed substantially to the projected productivity declines. SST increased significantly 

in both spring (1961-90 mean 7.95°C; 2070-99 mean 10.46°C; W = 2470, P < 0.001) and 

winter (1961-90 mean 7.08°C; 2070-99 mean 9.58°C; W = 4736, P < 0.001); model 

coefficients for spring SST were large and negative, whilst those for winter SST were 

either small and positive or large and negative. Hence, due to the larger differences 

between the two periods and the larger model coefficients, rising SSTs appeared to be the 

major driver of projected productivity declines. 

Discussion 

Here, seabird productivity has been related to multiple oceanographic variables from 

colony-specific foraging areas for multiple colonies, with derived relationships 

subsequently used to produce explicit projections of climate change impacts. This 

approach has reduced reliance on individual colonies, allowed examination of spatial 

variation in the importance of different drivers, and considered both short-term and longer-

term effects of changing conditions, thus providing a more complete examination of 

physical drivers of kittiwake productivity.  

Across all colonies, lower SSTs and weaker, later stratification were associated 

with higher kittiwake productivity. At eight colonies modelled individually, stratification 

timing provided the best model at two, PEA provided the best model at three, and SST 

provided the best model at one, indicating spatial variation in primary drivers of kittiwake 

productivity. Future projections indicated that rising SSTs could drive productivity 

declines, suggesting that climate change is a longer-term threat. Together, these results 

provide an example of how changing physical conditions, presumably acting via 

supporting food webs, can influence apex predators, leading to substantial “indirect” 

climate change impacts. 

Use of estimated foraging areas 

Previous analyses have extracted oceanographic data from generic boxes or large regions 

(e.g., Frederiksen et al., 2004a; Frederiksen et al., 2007a; Lauria et al., 2013) but here, 

GPS tracking data were used to estimate colony-specific foraging areas. Although this 
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allowed the regions of interest around focal colonies to reflect observed variation in habitat 

use, the approach brings caveats that must be considered when interpreting results. It was 

assumed that colonies use foraging areas consistently, but foraging locations may vary 

somewhat over time (e.g., Ainley et al., 2003; Robertson et al., 2014). However, given the 

narrow habitat requirements of sandeels (Holland et al., 2005), a key prey species for many 

colonies, some areas where prey resources are concentrated are likely to remain important, 

presumably explaining previous findings of foraging site fidelity (Irons, 1998). A further 

consideration is that foraging area estimates are sensitive to the number of birds included 

in calculations (Soanes et al., 2013; Bogdanova et al., 2014), so the true ‘whole colony’ 

foraging area may not be well-represented. Here, however, all colonies passed the 

threshold required to estimate >50% of the core foraging area (Soanes et al., 2013). These 

issues could be resolved by collecting more tracking data, allowing increased 

understanding of foraging location variability and providing more robust foraging kernel 

estimates. Even with these caveats, the use of tracking data to identify areas of sea relevant 

to individual colonies will provide new opportunities to understand interactions between 

the marine environment and seabirds. 

Physical oceanography as a driver of kittiwake productivity 

As in previous analyses (e.g., Frederiksen et al., 2004b; Frederiksen et al., 2007a; Lauria et 

al., 2013) a negative relationship between productivity and SST was found, but the 

strongest relationship across all sites showed a negative relationship with winter PEA. This 

confirms that examination of multiple oceanographic variables can provide a more 

complete understanding of the system, with the relationships identified allowing 

underlying mechanisms to be considered.  

The onset of stratification is linked to the occurrence of the spring plankton bloom, 

which can cause sandeels to emerge from the sediment (Greenstreet et al., 2006) and other 

fish to move towards surface waters to feed (e.g., Buren et al., 2014). Therefore, 

stratification itself is unlikely to be detrimental to foraging seabirds. Instead, it is likely that 

stratification timing and strength interact to determine the suitability of feeding conditions. 

In particular, early stratification could lead to a mismatch between peak fish availability 

and the bird breeding season (Rindorf et al., 2000; Scott et al., 2006; Burthe et al., 2012), 

possibly explaining the positive relationship between stratification onset date and kittiwake 

productivity. 
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The strong negative relationship with winter PEA may reflect variation in 

stratification timing, with high PEA values simply indicating areas likely to stratify early. 

However, there may be more direct mechanisms: kittiwakes avoid foraging in the most 

strongly stratified areas (Scott et al., 2010), indicating that feeding conditions are less 

suitable somehow. In areas where sandeels are an important food resource, this may be 

linked to accessibility or abundance, as sandeel larvae are more abundant in surface waters 

in areas with weaker stratification (Jensen et al., 2003), and strong stratification can cause 

oxygen deficits in underlying sediments, thus reducing habitat suitability (Behrens et al., 

2009). More widely, stronger stratification is associated with lower abundance of the 

copepod Calanus finmarchicus (Beare et al., 2002). This is a key prey item for many 

forage fish species (e.g., Prokopchuk & Sentyabov, 2006), so reduced abundance may lead 

to decreased size of the seabirds’ prey (e.g., van Deurs et al., 2014). Given that 

stratification is likely to become stronger and earlier under climate change (Lowe et al., 

2009) investigating relationships between stratification, forage fish and seabirds seems to 

be a priority for further research. 

It has been suggested that relationships between SST and seabird productivity 

could reflect stratification conditions (Scott et al., 2006), but the best models here included 

both PEA and SST, indicating that temperature has an independent effect. For sandeels, 

increased metabolic costs at higher temperatures may inhibit growth or cause them to 

remain buried in the sediment (Greenstreet et al., 2006), possibly explaining observations 

of reduced presence and abundance of sandeels at high temperatures (van der Kooij et al., 

2008). Higher temperatures also cause changes in plankton communities, with smaller, less 

nutritious species replacing larger, cold-adapted species, and affecting energy flow through 

the food web (Beaugrand et al., 2002; van Deurs et al., 2009; Morán et al., 2010; Doney et 

al., 2012); such changes could reduce survival or growth of forage fish more generally. 

Results therefore support suggestions that higher temperatures may reduce food 

availability or quality, leading to declining kittiwake productivity under rising 

temperatures. 

Examination of single-site models allowed some consideration of local and regional 

differences in drivers of productivity. Primary drivers varied between colonies, but where 

foraging areas overlapped, similar patterns were observed. At Isle of May and St. Abb’s 

Head, which showed some overlap (Appendix S2), stratification onset was the strongest 

driver of productivity, whilst at Boddam to Collieston and Fowlsheugh, which showed 

substantial overlap, no variable showed a strong relationship with productivity. This 

therefore supports the idea that spatial clustering of kittiwake population trends is driven 
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by local food webs and oceanographic conditions (Frederiksen et al., 2005). At many 

colonies, and across all colonies, variables with a 1-year lag showed similar relationships 

to unlagged variables, but received less support. Only Isle of May and St Abb’s Head 

showed a lagged variable to perform better than the unlagged equivalent, with both sites 

showing negative relationships with lagged spring SST. This result replicates a previous 

result from Isle of May, which was taken to show that 1-group sandeels influenced 

productivity more than 0-group (Frederiksen et al., 2004b). However, the absence of 

lagged effects elsewhere implies that other areas may rely on 0-group sandeels or other 

species, or that oceanographic conditions may affect availability of all prey items. 

Therefore, further examination of seabird diets, and how they vary between colonies, is 

required to improve understanding of such spatial differences.  

Climate change impacts 

Climate change projections indicated that kittiwake productivity could decline by 21 – 

43% between the mid 20
th
 Century and late 21

st
 Century, driven by rising sea temperatures. 

The largest absolute decline was projected for Flamborough Head, likely reflecting the 

greater warming forecast in that region (Lowe et al., 2009). Smaller declines, with lower 

probabilities of occurrence, were projected for colonies further up the east coast, 

suggesting that climate change impacts may be slightly weaker there. However, the largest 

proportional decline occurred at Fair Isle, indicating that more severe impacts will not 

necessarily be limited to southerly colonies. Indeed, as dramatic declines have already been 

observed in northern Scottish colonies (JNCC, 2013), it may be these colonies where 

climate change poses the greatest threat. 

Between 1986 and 2008, UK kittiwake productivity declined by 31% (Cook & 

Robinson, 2010; JNCC, 2013), making observed declines comparable to those projected 

over longer timescales. This does not, however, indicate that productivity declines have 

reached their maximum. Instead, projections simply indicate that climate change could 

drive substantial productivity declines, with realised extents determined by factors such as 

density dependence (Massaro et al., 2001; Frederiksen et al., 2005), anthropogenic 

influences (e.g., Furness & Tasker, 2000; Frederiksen et al., 2004b), and adult condition 

(Frederiksen et al., 2004a). Methodological differences also limit comparison with 

observations: projections describe 30-year means that obscure ‘bad’ or ‘good’ years, and 

are based on only 11 colonies (c.f. >50 colonies in Cook & Robinson, 2010) that did not 

show significant declines over the observation period. Therefore, although realised impacts 
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will differ from projections, results strongly suggest that climate change is expected to 

reduce kittiwake productivity. 

Global SSTs are projected to increase by 1 – 3°C by the end of the 21
st
 Century 

(Collins et al., 2013), meaning that further impacts on seabirds may be unavoidable. 

However, if reduced food availability or quality underlies the impacts, appropriate 

management may ameliorate some negative effects. Sandeel fisheries reduce kittiwake 

productivity (Furness & Tasker, 2000; Frederiksen et al., 2004b), so any action that 

reduces prey abundance in key foraging areas is also likely to have some effect. With 

improved knowledge of foraging locations, it may be possible to identify important areas 

to be granted enhanced environmental protection; this is in line with previous 

recommendations for climate change adaptation in marine ecosystems (Mawdsley et al., 

2009). Indeed, abundance of some fish species may even increase under warmer 

temperatures (Rijnsdorp et al., 2009; Edwards et al., 2013). Therefore, ensuring that 

populations of potential prey species can be supported in sensitive areas may provide the 

best approach for conserving kittiwakes and other apex predators under uncertain future 

conditions. 

Conclusions 

Results presented here suggest that lower SSTs and weaker, later stratification are 

beneficial for kittiwake productivity, with both likely to act via changes to abundance, 

quality or accessibility of key prey resources during the breeding season. Kittiwakes are 

surface-feeding apex predators, so some findings may be primarily relevant to species 

occupying this foraging niche: if stronger stratification simply reduces availability of prey 

near the surface, this may explain why surface feeders such as kittiwakes and Arctic terns 

(Sterna paradisaea) appear to be more susceptible to changes than do diving species such 

as common guillemots (Uria aalge) (Monaghan, 1996; Enstipp et al., 2006). If, however, 

changes to stratification conditions and rising temperatures lead to reduced prey nutritional 

value or decreased abundance throughout the water column, it is feasible that all marine 

apex predators could be affected. Indeed, widespread declines have been observed in North 

Sea harbour seal (Phoca vitulina) populations (Lonergan et al., 2007), increased starvation 

of harbour porpoises may be linked to reduced sandeel availability (MacLeod et al., 2007), 

and productivity of both guillemots and razorbills (Alca torda) has declined (JNCC, 2013), 

suggesting that changing physical conditions could be affecting more than just surface-

feeding birds. Climate change could therefore have substantial ecosystem-wide impacts, 
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but further examination of links between prey populations and physical conditions is 

needed to assess the true extent of possible impacts. 

More widely, this study provides an example of possible “indirect” climate change 

impacts, with the variables tested likely to influence productivity via changes to supporting 

food webs rather than a direct physiological response. Although the relationships identified 

over the observed period are not evidence in themselves of climate change impacts, the 

explicit projections indicated that climate change is likely to drive substantial declines in 

productivity by the late 21
st
 Century. Such “indirect” impacts are possible whenever 

predators rely heavily on prey species that are themselves susceptible to more direct 

climate change impacts (e.g., Pearce-Higgins et al., 2010), and may be a more frequent and 

serious concern than previously understood (Cahill et al., 2013; Ockendon et al., 2014). 

Given the complexity associated with identifying and understanding these impacts, there is 

a great need to identify drivers and investigate the biotic mechanisms that link the physical 

environment to higher consumers. By improving our understanding of these relationships, 

we may be able to identify appropriate conservation actions. If appropriate management 

allows apex predators to maintain high productivity in some years, it may still be possible 

to ameliorate population-level impacts of climate change. 
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Table 1. Descriptions of sites included in analyses. Site refers to the name in the SMP database. 

Map site number refers to location on Fig. 1. Oceanographic data were available up to 2004, 

whilst productivity data were available from 1986, meaning that the maximum possible overlap 

was 19 years. Regions listed were based on those specified by Frederiksen et al. (2005); if a 

region was not stated for a specific site, the region of the next nearest site was used. 

Site 
Map 
site 

number 

Region 
based on 

Frederiksen 
et al. 
(2005) 

Coordinates 

Years of 
breeding 

success data 
overlapping 

oceanography 

Years of 
tracking 

data 

Total 
birds 

tracked 

Fair Isle 1 Shetland 
-1.65° 
long, 

59.52° lat 
19 3 11 

Boddam to 
Collieston 

2 
East 

Scotland 

-1.85° 
long, 

57.42° lat 
15 1 25 

Fowlsheugh 3 
East 

Scotland 

-2.20° 
long, 

56.92° lat 
17 1 15 

Isle of May 
NNR 

4 
East 

Scotland 

-2.57° 
long, 

56.18° lat 
18 1 17 

St Abb’s 
Head NNR 

5 
East 

Scotland 

-2.13° 
long, 

55.91° lat 
18 1 15 

Coquet 
Island 

6 
East 

England 

-1.52° 
long, 

55.34° lat 
12 2 36 

Flamborough 
Head and 
Bempton 

Cliffs 

7 
East 

England 

-0.08° 
long, 

54.12° lat 
18 3 51 

Bardsey 
Island NNR 

8 Irish Sea 
-4.83° 
long, 

52.76° lat 
17 1 8 

Puffin Island 9 Irish Sea 
-4.03° 
long, 

53.32° lat 
1 3 70 

Lambay 10 Irish Sea 
-6.03° 
long, 

53.50° lat 
1 2 14 

Isle of 
Colonsay 

11 
West 

Scotland 

-6.21° 
long, 

56.08° lat 
6 3 59 
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Table 2. Results from models relating breeding success to single oceanographic predictor variables. See text for model fitting details. Parameter 

estimates ( SE) are given, along with ΔAIC (for all-sites models) or ΔAICc (for individual site models) relative to a null model fitted with intercept 

and random effects only. Parameter estimates significantly different from 0 at P < 0.05, as indicated by Wald Z tests, are bold; results approaching but 

not attaining significance with 0.05 ≤ P < 0.1 are italic. Full model details are given in Supporting Information 5. 

 Bardsey Island 
Boddam to 
Collieston 

Coquet Island Fair Isle 
Flamborough 

Head and 
Bempton Cliffs 

Fowlsheugh Isle of May St Abb’s Head All sites 

Null 
model 

AICc = 
187.621 

AICc = 
178.476 

AICc = 
103.824 

AICc = 
278.788 

AICc = 225.489 
AICc = 

214.311 
AICc = 

254.784 
AICc = 

230.539 
AIC = 1803.730 

Winter 
SST 

0.928  

( 0.579), 
ΔAICc = 0.516 

0.175  

( 0.498), 
ΔAICc = 3.059 

-0.075  

( 0.315), 
ΔAICc = 3.610 

-3.661  

( 1.474), 
ΔAICc = -

2.561 

-0.434  

( 0.393), 
ΔAICc = 1.733 

-0.270  

( 0.366), 
ΔAICc = 2.453 

-0.283  

( 0.535), 
ΔAICc = 2.636 

-0.122  

( 0.328), 
ΔAICc = 2.777 

-0.240  

( 0.231), 
ΔAIC = 0.994 

Winter 
PEA 

-1.645 

( 0.693), 
ΔAICc = -

2.090 

-0.141 

( 0.488), 
ΔAICc = 3.099 

-0.697 

( 0.346), 
ΔAICc = 0.109 

-0.942 

( 1.295), 
ΔAICc = 2.336 

0.253 

( 0.509), 
ΔAICc = 2.668 

-0.388 

( 0.451), 
ΔAICc = 2.263 

-1.478 

( 1.192), 
ΔAICc = 2.738 

-1.085 

( 0.613), 
ΔAICc = 0.029 

-0.641 

( 0.201), 
ΔAIC = -
11.502 

Spring 
SST 

1.311  

( 0.877), 
ΔAICc = 0.807 

0.057  

( 0.593), 
ΔAICc = 3.172 

-0.061  

( 0.351), 
ΔAICc = 3.636 

-4.280  

( 1.189), 
ΔAICc = -

8.679 

-0.663  

( 0.300), 
ΔAICc = -

1.416 

-0.239  

( 0.407), 
ΔAICc = 2.647 

-0.488  

( 0.601), 
ΔAICc = 2.264 

-0.024  

( 0.361), 
ΔAICc = 2.910 

-0.700  

( 0.264), 
ΔAIC = -5.242 

Spring 
PEA 

-1.719 

( 2.266), 
ΔAICc = 2.420 

-0.123 

( 1.414), 
ΔAICc = 3.174 

1.228 

( 0.968), 
ΔAICc = 2.140 

-13.414 

( 5.332), 
ΔAICc = -

3.316 

-2.502 

( 0.909), 
ΔAICc = -

3.417 

-1.176 

( 1.244), 
ΔAICc = 2.117 

0.689 

( 2.371), 
ΔAICc = 2.830 

-1.177 

( 1.241), 
ΔAICc = 2.034 

-0.602 

( 0.285), 
ΔAIC = -2.668 

Strat. 
onset 

0.041 

( 0.019), 
ΔAICc = -

1.356 

0.024  

( 0.018), 
ΔAICc = 1.561 

0.018  

( 0.014), 
ΔAICc = 1.992 

0.042  

( 0.058), 
ΔAICc = 2.348 

-0.023  

( 0.029), 
ΔAICc = 2.321 

0.013  

( 0.020), 
ΔAICc = 2.561 

0.092  

( 0.030), 
ΔAICc = -

4.855 

0.034  

( 0.013), 
ΔAICc = -

2.665 

0.014  

( 0.007), 
ΔAIC = -3.383 
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Table 3. Top-ranked models from the all-sites analysis relating breeding success to oceanographic 

variables; those shown have ΔAIC ≤ 4 relative to the best model; the null model, fitted with intercept 

and random effects only, is shown for comparison. See text for details of model fitting. Parameter 

estimates ( SE) are given, along with the ΔAIC value relative to the best model. Parameter estimates 

significantly different from 0 (P < 0.05), as indicated by Wald Z tests, are bold; results with 0.05 ≤ P < 

0.1 are italic. Full model details are given in Supporting Information 5. 

  

Intercept 
Spring 
PEA 

Spring SST 
Stratification 
onset date 

Winter 
PEA 

Winter 
SST 

 AIC ΔAIC Weight 

4.429 

( 2.181) 
– 

-0.539 

( 0.244) 
– 

-0.602 

( 
0.190) 

–  1789.734 0 0.263 

4.308 

( 2.185) 
– 

-0.674 

( 0.336) 
– 

-0.609 

( 
0.192) 

0.173 

( 0.295) 
 1791.383 1.649 0.115 

4.206 

( 2.269) 
– 

-0.544 

( 0.245) 
0.003 

( 0.008) 

-0.566 

( 
0.214) 

–  1791.595 1.861 0.104 

4.706 

( 2.408) 

-0.090 

( 
0.333) 

-0.541 

( 0.244) 
– 

-0.574 

( 
0.217) 

–  1791.659 1.926 0.100 

-0.322 

( 0.263) 
– – – 

-0.641 

( 
0.201) 

–  1792.228 2.495 0.076 

4.521 

( 2.416) 

-0.070 

( 
0.335) 

-0.670 

( 0.336) 
– 

-0.586 

( 
0.220) 

0.167 

( 0.296) 
 1793.340 3.606 0.043 

1.283 

( 1.076) 
– – – 

-0.622 

( 
0.198) 

-0.212 

( 0.222) 
 1793.342 3.609 0.043 

4.211 

( 2.264) 
– 

-0.662 

( 0.344) 
0.001 

( 0.008) 

-0.591 

( -
0.591) 

0.155 

( 0.316) 
 1793.354 3.621 0.043 

-0.677 

( 0.268) 
– – – – –  1803.730 15.336 0.000 
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Table 4. Projected breeding success for the UKCP09 climatic baseline period of 1961-90 and for 

2070-99 under the SRES A1B scenario. Reported breeding success values are the mean of 100,000 

randomisation runs, where each run produces a mean breeding success across all years in the time 

period; breeding success is here defined as the proportion of successfully fledged chicks. The standard 

deviation of the 1,000,000 projections is also given. Percentage change is calculated as ((future -

 baseline)/baseline)*100, based on the mean for each period. To indicate the probability of decline, the 

difference between the baseline and future projections was calculated for each run, and the proportion 

of these differences > 0 (i.e. those not showing a decline) was calculated. See Methods for 

randomisation procedure details. 

Site 

Mean 
predicted 1961 

– 1990 
breeding 
success  

( st. dev.) 

Mean 
predicted 2070 

– 2099 
breeding 
success  

( st. dev.) 

Absolute 
change 

Percentage 
change 

Proportion of 
projections 
not showing 

decline 

Bardsey Island 0.426 ( 0.090) 0.246 ( 0.121) -0.181 -42.4% 0.018 

Boddam to 
Collieston 

0.578 ( 0.109) 0.418 ( 0.107) -0.161 -27.8% 0.169 

Coquet Island 0.776 ( 0.077) 0.610 ( 0.123) -0.166 -21.4% 0.125 

Fair Isle 0.431 ( 0.091) 0.245 ( 0.068) -0.186 -43.2% 0.011 

Flamborough 
Head and 

Bempton Cliffs 
0.591 ( 0.108) 0.378 ( 0.112) -0.214 -36.1% 0.028 

Fowlsheugh 0.606 ( 0.106) 0.442 ( 0.109) -0.164 -27.0% 0.168 

Isle of Colonsay 0.535 ( 0.101) 0.350 ( 0.104) -0.185 -34.6% 0.035 

Isle of May 0.492 ( 0.097) 0.308 ( 0.084) -0.183 -37.3% 0.098 

Lambay 0.500 ( 0.077) 0.318 ( 0.139) -0.182 -36.4% 0.087 

Puffin Island 0.633 ( 0.106) 0.437 ( 0.158) -0.197 -31.0% 0.026 

St Abb’s Head 0.592 ( 0.088) 0.401 ( 0.097) -0.191 -32.2% 0.079 

Across all sites 0.560 ( 0.074) 0.377 ( 0.095) -0.183 -32.6% 0.030 
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Figure legends 

Figure 1. Map indicating locations of kittiwake colonies included in analyses. Numbers refer 

to colony descriptions in Table 1. 

 

Figure 2. Plots of breeding success against oceanographic predictor variables with no lag, 

along with fitted lines from binomial GLMMs including the ‘site’ and ‘region’ random 

effects. Each point represents one site-by-year observation; point sizes are scaled by log(nests 

surveyed) to reflect weightings of observations in models. 

 

Figure 3. Boxplots comparing oceanographic variables and projected breeding success 

between 1961-90 and 2070-99. For oceanographic variables plots, input values were 30 years 

of projection data for each foraging area used in all-sites analyses; for breeding success, input 

values were 1,000,000 annual breeding success projections (see text for details of 

randomisation). Boxes indicate interquartile range and median; whiskers indicate 1.5×IQR; 

outliers indicate points outside 1.5×IQR. Letters above boxes indicate whether difference 

between time periods was significant (see text for relevant methods); if letters are the same, 

there was no significant difference between time periods. 
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Figure 1. Map indicating locations of kittiwake colonies included in analyses. Numbers refer to colony 

descriptions in Table 1. 
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Figure 2. Plots of breeding success against oceanographic predictor variables with no lag, along with 

fitted lines from binomial GLMMs including the ‘site’ and ‘region’ random effects. Each point 

represents one site-by-year observation; point sizes are scaled by log(nests surveyed) to reflect 

weightings of observations in models. 
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Figure 3. Boxplots comparing oceanographic variables and projected breeding success between 

1961-90 and 2070-99. For oceanographic variables plots, input values were 30 years of projection 

data for each foraging area used in all-sites analyses; for breeding success, input values were 

100,000 annual breeding success projections (see text for details of randomisation). Boxes indicate 

interquartile range and median; whiskers indicate 1.5×IQR; outliers indicate points outside 

1.5×IQR. Letters above boxes indicate whether difference between time periods was significant 

(see text for relevant methods); if letters are the same, no significant difference between time 

periods. 
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Appendix S1: sensitivity analysis of threshold values used to 

define foraging areas 

As part of the process of turning raw GPS fixes into estimated foraging areas, thresholds 

had to be applied to remove records unlikely to be associated with foraging behaviour. As 

these thresholds influence which GPS fixes are taken into account for kernel density 

estimation, it was necessary to examine whether subsequent analyses would be sensitive to 

the exact threshold value. Therefore, an initial threshold value was selected for both travel 

speed and distance from colony, and then three other values for each threshold were 

trialled in a sensitivity analysis to determine threshold selection would impact subsequent 

analyses. 

A threshold based on distance from colony was applied to remove records 

associated with behaviours at or around the nest. A distance threshold of 1 km was used, as 

kittiwakes are very rarely observed foraging within 1 km of the nest (Irons, 1998). Values 

of 0.2, 0.5 and 2 km were trialled in the subsequent sensitivity analysis. Hence, the 

distance to the colony centre was calculated for each GPS record, and all records with a 

distance smaller than the threshold values were discarded. 

A travel speed threshold was also applied to remove records associated with 

commuting. Previous analyses have shown that speed between GPS records may follow a 

bimodal distribution, with the two parts of the distribution representing different 

behaviours (e.g., Weimerskirch et al., 2002; Guilford et al., 2008); for kittiwakes, the 

slower speeds are likely to be associated with foraging (Kotzerka et al., 2010). A 

preliminary analysis of FAME project data from 2010 and 2011, covering colonies at 

Bardsey Island, Flamborough Head and Bempton Cliffs, Isle of Colonsay, Fair Isle, 

Orkney (Copinsay, Muckle Skerry and Swona), Puffin Island and the Isles of Scilly, 

indicated that the trough between the two modes was wide, and that a speed of 14 km h
-1

 

represented a reasonable threshold (Fig. S1.1; A. Butler & E. Owen, unpublished). As the 

distribution of speed values in the full dataset was highly similar to that from this earlier 

analysis (Fig. S1.2), 14 km h
-1 

was selected as the primary threshold in the full analysis; 

values of 11, 17 and 20 km h
-1

 were trialled in the sensitivity analysis. Hence, travel speed 

was calculated for all records, and those records with speeds above the threshold values 

were discarded. 

The sensitivity analysis involved applying each threshold in turn to the data and 

calculating relevant values from the resulting records. First, the proportion of points found 
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in each POLCOMS grid cell (the grid on which all environmental data were based) was 

calculated under each threshold condition: this was designed to indicate whether areas 

would be over- or under-represented in subsequent extraction of environmental data. 

Second, the environmental variables used in the full analyses (surface temperature, 

stratification onset date and potential energy anomaly) were extracted from the point 

locations and a mean was calculated across all points: this was designed to indicate 

whether environmental variables included in analyses would be biased by threshold 

selection. In each case, the resulting values were correlated against those produced by 

using the 1 km and 14 km h
-1

 thresholds (Figs. S1.3 – S1.6); Pearson correlations were 

calculated for each comparison. 

In all cases, the selection of the speed threshold made little or no difference to 

resulting values; Pearson correlations for both the proportion of time in each cell and for 

all three environmental variables were > 0.999, indicating that there was substantial 

robustness to the threshold value specified (Figs. S1.3 – S1.6, parts a, c, e). The distance 

threshold had a greater impact on the proportion of time spent in each cell, with the 

correlation dropping to 0.873 when a 200 m threshold was used, and 0.751 when a 2 km 

threshold was used (Fig. S1.3, parts b, d, f), presumably implying that individual well-used 

grid cells near the colony were being included or excluded depending on the threshold 

value. However, mean environmental variables were still very highly correlated (Figs. S1.4 

– S1.6, parts b, d, f), with Pearson correlation coefficients ranging from 0.929 to 0.999. 

Therefore, whilst the distance threshold had a greater impact than did the speed threshold, 

resulting environmental variable values were still robust to the value selected. 

In conclusion, the speed threshold had almost no impact on the analysis, and 

although the distance threshold had a slightly greater impact, its effect on mean 

environmental variables was minimal and, further, there is biological support for a 1 km 

threshold (Irons, 1998). Therefore, it was concluded that further analyses would be 

sufficiently robust to threshold specification, and that the thresholds of 14 km h
-1

 and 1 km 

would be suitable for use in the full analysis. It must be noted, however, that the findings 

of this analysis are only relevant to the grid from which the environmental data are drawn; 

if environmental data were at a finer resolution or analyses conducted at a finer spatial 

scale, impacts of threshold specification could increase. 
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Figure S1.1. Distribution of speed values from initial analysis of subset of tracking data (see text 

for details of sites and years), showing a) full histogram, and b) histogram with truncated y axis for 

improved view of second distribution mode. Vertical line indicates 14 km h
-1

 speed threshold used 

in subsequent analyses. 

 

 
 
Figure S1.2. Distribution of speed values from full dataset used in analysis showing a) full 

histogram, and b) histogram with truncated y axis for improved view of second distribution mode. 

Vertical lines indicate thresholds used (solid line = 14 km h
-1

) and trialled in the sensitivity analysis 

(dashed lines = 10, 17 and 20 km h
-1

) 
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Figure S1.3. Comparison of the proportion of time spent in each POLCOMS grid cell for the 

standard distance and speed thresholds (i.e., 1 km and 14 km h
-1

), and that for different possible 

speed threshold values ((a) 11 km h
-1

; (c) 17 km h
-1

; (e) 20 km h
-1

) and distance threshold values 

((b) 200 m; (d) 500 m; (f) 2 km). Plots show Pearson correlation coefficient between the two sets of 

values. 
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Figure S1.4. Comparison of the mean sea surface temperature extracted from filtered points for the 

standard distance and speed thresholds (i.e., 1 km and 14 km h
-1

), and that for different possible 

speed threshold values ((a) 11 km h
-1

; (c) 17 km h
-1

; (e) 20 km h
-1

) and distance threshold values 

((b) 200 m; (d) 500 m; (f) 2 km). Plots show Pearson correlation coefficient between the two sets of 

values. 
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Figure S1.5. Comparison of the mean potential energy anomaly extracted from filtered points for 

the standard distance and speed thresholds (i.e., 1 km and 14 km h
-1

), and that for different possible 

speed threshold values ((a) 11 km h
-1

; (c) 17 km h
-1

; (e) 20 km h
-1

) and distance threshold values 

((b) 200 m; (d) 500 m; (f) 2 km). Plots show Pearson correlation coefficient between the two sets of 

values. 
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Figure S1.6. Comparison of the mean stratification onset date extracted from filtered points for the 

standard distance and speed thresholds (i.e., 1 km and 14 km h
-1

), and that for different possible 

speed threshold values ((a) 11 km h
-1

; (c) 17 km h
-1

; (e) 20 km h
-1

) and distance threshold values 

((b) 200 m; (d) 500 m; (f) 2 km). Plots show Pearson correlation coefficient between the two sets of 

values. 
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Appendix S2: maps of foraging area kernels used in analyses 
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Appendix S3: results from generalised linear mixed models with 

Poisson error structure 

Methods 

Models used in main analyses were generalised linear mixed models (GLMMs) with 

binomial error structure and logit link, for which the response variable was a matrix of the 

number of fledged chicks and the estimated number of failed chicks. In this, failed chicks 

were estimated as ((2 × nests) - fledged), because although 1-egg and 3-egg clutches are 

possible, the mean and modal clutch size in the UK is 2 (Coulson & Porter, 1985; Harris & 

Wanless, 1997; Coulson, 2011; Cook et al., 2014). This approach was preferred over 

modelling the number of fledged chicks as the response, with a Poisson error structure and 

log(nests) offset, because when predicting from the models under new climate scenarios, 

the number of fledged chicks would not be an inherently meaningful value without 

reference to the number of nests, unlike the proportional response from the binomial 

model. Therefore, it was decided that the binomial error models provided a better 

approach. However, to examine whether this assumption and error specification 

substantially affected the results of analyses, GLMMs were specified with the number of 

fledged chicks as the response, with a Poisson error distribution, log link function, and an 

offset of log(nests). 

 Results from single predictor variable models for single sites are presented in Table 

S3.1 (comparable to results presented in Table S5.1). Models were fitted with a single 

predictor variable, with a ‘year’ random effect to model overdispersion. Effects of 

variables were assessed by comparing AICc from each model to AICc from a null model, 

fitted with intercept and random effect only. These models were only fitted for sites with 

≥10 years of overlapping oceanographic and breeding success data. 

 Results from all-sites models (i.e. including all sites, regardless of number of years 

of data) with single predictor variables are presented in Table S3.2; those with multiple 

predictor variables are presented in Table S3.3 (comparable to results presented in Table 

S5.2).  All-sites models were fitted with up to five predictor variables, with no interactions 

between main effects considered; random effects were ‘site’, ‘region’, ‘year’, ‘site*year’ 

and ‘region*year’; ‘site*year’ was an observation-level random effect included to model 

overdispersion. Models were assessed using AIC: single predictor variable models had 
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AIC compared to that from the null model, and multiple predictor variable models were 

evaluated by comparing AIC to that from the best model.  

Results 

Local-scale models showed the same patterns as those analysed in the binomial error 

framework. All sites showed the best model to be the same as that identified in the main 

analysis, and other variables identified as important via ΔAICc were the same as those in 

binomial models. Fixed effect parameter estimates were similar to those from the binomial 

models, indicating similar relationships in both approaches. The best model with multiple 

predictor variables was the same in both frameworks, with strong negative effects of both 

spring temperature and winter PEA; ΔAIC of the best model relative to the null model was 

highly similar in both cases. When considering other models with some empirical support 

(ΔAIC ≤ 2 relative to the best model), there were some differences between approaches, 

with the order of the top-ranked models differing somewhat. The 4
th
-ranked model under 

the binomial framework (spring PEA, spring temperature, winter PEA) becoming 3
nd

-

ranked under the Poisson framework. However, the other highly-ranked models appeared 

to retain their relative rankings. Outside of the top-ranked models, there was further 

variation in relative model performance, but the strong negative effects of spring 

temperature and winter PEA remained the main feature of all highly-ranked models. 

Climate change projections from models fitted with Poisson error structure, indicated 

similar patterns to those found from the binomial analysis, with projected declines across 

all sites (Table S3.4). However, the scale of declines was projected to be larger, and the 

proportion of simulations not showing a decline was projected to be larger, meaning that 

the magnitude and significance of decline projections differed from the binomial analysis. 

 Given the high similarities between results from the two different approaches, it 

can be concluded that in the present analyses there is little impact of modelling breeding 

success in a binomial framework instead of a Poisson framework. The best models were 

the same in both analyses, and relationships identified were highly similar; the only 

differences were in the ranking of some all-sites models and the magnitude of climate 

change driven productivity declines. Therefore, the results identified in the main analyses 

appear to be robust to the error specification used. 
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Table S3.1. Parameter estimates, AIC and ΔAIC from model fitting for single-site models with a 

Poisson error and log link. Fixed effects are reported as estimate ( standard error); the ‘year’ 

random effect is reported as the standard deviation of the effect. ΔAIC and ΔAICc were calculated 

relative to the null model for each site. Fixed effects highlighted in bold are those for which Wald 

Z tests indicated the parameter estimate was significantly different from 0; italics highlight 

marginally non-significant parameter estimates (0.05 ≤ P < 0.1). See text for model fitting details.  

Site 
Predictor 
variable 

Intercept 
Parameter 
estimate 

Year 
RE 

AIC ΔAIC AICc ΔAICc 

Bardsey 
Island 

Null model 

-0.680 

( 
0.282) 

– 1.134 196.679 –  – 

Spring PEA 
2.299 

( 4.549) 

-1.124 

( 1.715) 
1.120 198.252 1.573 200.098 2.562 

Lagged 
spring PEA 

6.800 

( 4.954) 

-2.837 

( 1.880) 
1.051 196.526 

-
0.153 

198.372 0.836 

Spring SST 
-11.027 

( 6.575) 

1.044 

( 0.662) 
1.070 196.222 

-
0.457 

198.068 0.532 

Lagged 
spring SST 

1.668 

( 5.087) 

-0.239 

( 0.517) 
1.129 198.466 1.787 200.312 2.776 

Stratification 
onset 

-3.986 

( 
1.646) 

0.031 

( 0.015) 
1.025 194.573 

-
2.106 

196.419 
-

1.117 

Lagged 
strat. onset 

2.183 

( 2.710) 

-0.025 

( 0.024) 
1.100 197.571 0.892 199.417 1.881 

Winter PEA 
-0.104 

( 0.339) 

-1.217 

( 0.528) 
0.975 193.776 

-
2.903 

195.622 
-

1.914 

Lagged 
winter PEA 

-0.073 

( 0.385) 

-1.614 

( 0.800) 
1.022 194.768 

-
1.911 

196.614 
-

0.922 

Winter SST 
-6.915 

( 3.859) 

0.713 

( 0.439) 
1.060 196.108 

-
0.571 

197.954 0.418 

Lagged 
winter SST 

-0.262 

( 4.162) 

-0.048 

( 0.477) 
1.135 198.669 1.990 200.515 2.979 

Boddam to 
Collieston 

Null model 

-0.787 

( 
0.194) 

– 0.742 180.033 – 181.033 – 

Spring PEA 
-1.064 

( 3.123) 

0.094 

( 1.059) 
0.742 182.025 1.992 184.207 3.174 

Lagged 
spring PEA 

-4.468 

( 2.731) 

1.239 

( 0.917) 
0.701 180.302 0.268 182.484 1.450 

Spring SST 
-1.193 

( 3.806) 

0.047 

( 0.443) 
0.742 182.022 1.989 184.204 3.170 

Lagged 
spring SST 

-1.187 

( 3.896) 

0.046 

( 0.453) 
0.742 182.023 1.989 184.205 3.171 

Stratification 
onset 

-2.528 

( 1.431) 

0.017 

( 0.014) 
0.707 180.596 0.562 182.777 1.744 

Lagged 
strat. onset 

0.745 

( 1.501) 

-0.015 

( 0.014) 
0.717 181.010 0.977 183.192 2.159 

Winter PEA 

-0.789 

( 
0.193) 

-0.149 

( 0.364) 
0.738 181.867 1.833 184.048 3.015 

Lagged 
winter PEA 

-0.787 

( 
0.194) 

-0.028 

( 0.402) 
0.742 182.029 1.995 184.210 3.177 

Winter SST 
-1.454 

( 2.907) 

0.086 

( 0.374) 
0.741 181.981 1.947 184.163 3.129 
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Lagged 
winter SST 

2.508 

( 2.939) 

-0.423 

( 0.377) 
0.713 180.818 0.785 183.000 1.967 
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Table S3.1 (cont.) 

Site 
Predictor 
variable 

Intercept 
Parameter 
estimate 

Year 
RE 

AIC ΔAIC AICc ΔAICc 

Coquet 
Island 

Null model 
0.081 

( 0.074) 
– 0.214 102.258 – 103.592 – 

Spring PEA 
-1.796 

( 1.483) 

0.515 

( 0.405) 
0.199 102.713 0.454 105.713 2.121 

Lagged 
spring PEA 

-1.253 

( 1.578) 

0.368 

( 0.434) 
0.201 103.585 1.326 106.585 2.993 

Spring SST 
0.655 

( 1.322) 

-0.065 

( 0.149) 
0.214 104.070 1.811 107.070 3.478 

Lagged 
spring SST 

0.428 

( 1.343) 

-0.040 

( 0.153) 
0.214 104.192 1.933 107.192 3.600 

Stratification 
onset 

-0.482 

( 0.401) 

0.008 

( 0.006) 
0.198 102.253 

-
0.006 

105.253 1.661 

Lagged strat. 
onset 

-0.067 

( 0.432) 

0.002 

( 0.006) 
0.214 104.137 1.879 107.137 3.545 

Winter PEA 

0.266 

( 
0.118) 

-0.256 

( 0.142) 
0.182 101.308 

-
0.950 

104.308 0.716 

Lagged 
winter PEA 

0.005 

( 0.153) 

0.100 

( 0.174) 
0.209 103.939 1.680 106.939 3.347 

Winter SST 
0.440 

( 1.030) 

-0.048 

( 0.138) 
0.214 104.137 1.878 107.137 3.545 

Lagged 
winter SST 

-0.155 

( 1.024) 

0.032 

( 0.139) 
0.214 104.205 1.947 107.205 3.613 

Fair Isle 

Null model 

-1.564 

( 
0.603) 

– 2.586 292.324 – 293.074 – 

Spring PEA 

43.710 

( 
17.285) 

-11.908 

( 4.557) 
2.204 287.716 

-
4.609 

289.316 
-

3.759 

Lagged 
spring PEA 

32.916 

( 
20.510) 

-9.112 

( 5.427) 
2.422 291.513 

-
0.811 

293.113 0.039 

Spring SST 

29.875 

( 
8.858) 

-3.661 

( 1.037) 
1.934 283.073 

-
9.252 

284.673 
-

8.401 

Lagged 
spring SST 

21.916 

( 
10.217) 

-2.755 

( 1.202) 
2.291 289.155 

-
3.169 

290.755 
-

2.319 

Stratification 
onset 

-6.145 

( 5.706) 

0.041 

( 0.050) 
2.557 293.680 1.356 295.280 2.206 

Lagged strat. 
onset 

-7.820 

( 5.889) 

0.055 

( 0.052) 
2.517 293.212 0.888 294.812 1.738 

Winter PEA 
-0.589 

( 1.659) 

-0.705 

( 1.128) 
2.548 293.942 1.618 295.542 2.468 

Lagged 
winter PEA 

0.577 

( 1.569) 

-1.526 

( 1.053) 
2.447 292.302 

-
0.022 

293.902 0.828 

Winter SST 

21.915 

( 
10.082) 

-3.023 

( 1.300) 
2.232 289.485 

-
2.839 

291.085 
-

1.989 

Lagged 
winter SST 

12.997 

( 
11.566) 

-1.883 

( 1.495) 
2.493 292.770 0.446 294.370 1.296 
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Table S3.1 (cont.) 

Site 
Predictor 
variable 

Intercept 
Parameter 
estimate 

Year 
RE 

AIC ΔAIC AICc 
ΔAIC

c 

Flamborough 
Head and  
Bempton 

Cliffs 

Null model 
-0.182 

( 0.137) 
– 

0.57
7 

233.19
0 

– 
233.99

0 
– 

Spring PEA 
3.389 

( 1.332) 

-1.519 

( 0.565) 

0.48
5 

229.07
2 

-
4.11

9 

230.78
6 

-
3.20

5 

Lagged 
spring PEA 

1.868 

( 1.520) 

-0.882 

( 0.652) 

0.55
1 

233.43
6 

0.24
5 

235.15
0 

1.16
0 

Spring SST 
3.489 

( 1.597) 

-0.423 

( 0.184) 

0.50
6 

230.50
4 

-
2.68

6 

232.21
8 

-
1.77

2 

Lagged 
spring SST 

1.060 

( 1.871) 

-0.145 

( 0.218) 

0.57
1 

234.75
2 

1.56
1 

236.46
6 

2.47
6 

Stratificatio
n onset 

1.247 

( 1.733) 

-0.015 

( 0.018) 

0.56
6 

234.51
8 

1.32
7 

236.26
2 

2.24
2 

Lagged 
strat. onset 

-0.929 

( 1.796) 

0.008 

( 0.018) 

0.57
5 

235.01
8 

1.82
7 

236.73
2 

2.74
1 

Winter PEA 
-0.018 

( 0.325) 

0.174 

( 0.313) 

0.57
2 

234.88
3 

1.69
2 

236.59
7 

2.60
7 

Lagged 
winter PEA 

-0.303 

( 0.325) 

-0.122 

( 0.298) 

0.57
5 

235.02
3 

1.83
3 

236.73
7 

2.74
7 

Winter SST 
1.750 

( 1.618) 

-0.289 

( 0.241) 

0.55
6 

233.80
6 

0.61
6 

235.52
0 

1.53
0 

Lagged 
winter SST 

0.427 

( 1.773) 

-0.092 

( 0.266) 

0.57
6 

235.07
2 

1.88
1 

236.78
6 

2.79
6 

Fowlsheugh 

Null model 
-0.472 

( 0.132) 
– 

0.53
9 

215.50
9 

– 
216.36

6 
– 

Spring PEA 
2.117 

( 2.534) 

-0.829 

( 0.811) 

0.52
3 

216.49
0 

0.98
2 

218.33
6 

1.97
1 

Lagged 
spring PEA 

-0.865 

( 2.598) 

0.126 

( 0.833) 

0.53
8 

217.48
6 

1.97
7 

219.33
2 

2.96
6 

Spring SST 
1.014 

( 2.282) 

-0.173 

( 0.266) 

0.53
2 

217.08
8 

1.57
9 

218.93
4 

2.56
8 

Lagged 
spring SST 

1.677 

( 2.261) 

-0.252 

( 0.265) 

0.52
4 

216.62
7 

1.11
8 

218.47
3 

2.10
7 

Stratificatio
n onset 

-1.338 

( 1.261) 

0.009 

( 0.013) 

0.53
1 

217.03
8 

1.52
9 

218.88
4 

2.51
8 

Lagged 
strat. onset 

0.223 

( 1.236) 

-0.007 

( 0.013) 

0.53
4 

217.19
2 

1.68
3 

219.03
8 

2.67
2 

Winter PEA 
-0.495 

( 0.131) 

-0.261 

( 0.294) 

0.52
6 

216.73
7 

1.22
8 

218.58
3 

2.21
7 

Lagged 
winter PEA 

-0.495 

( 0.133) 

-0.210 

( 0.277) 

0.53
0 

216.94
3 

1.43
4 

218.78
9 

2.42
3 

Winter SST 
0.965 

( 1.842) 

-0.187 

( 0.239) 

0.53
0 

216.90
6 

1.39
8 

218.75
3 

2.38
7 

Lagged 
winter SST 

0.962 

( 1.889) 

-0.188 

( 0.247) 

0.52
9 

216.94
0 

1.43
1 

218.78
6 

2.42
0 
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Table S3.1 (cont.) 

Site 
Predictor 
variable 

Intercept 
Parameter 
estimate 

Year 
RE 

AIC ΔAIC AICc ΔAICc 

Isle of 
May 

Null model 

-1.034 

( 
0.236) 

– 0.997 258.389 – 259.189 – 

Spring PEA 
0.141 

( 6.755) 

-0.337 

( 1.939) 
0.995 260.359 1.970 262.073 2.884 

Lagged 
spring PEA 

0.712 

( 6.779) 

-0.503 

( 1.953) 
0.995 260.322 1.934 262.037 2.848 

Spring SST 
2.700 

( 4.233) 

-0.432 

( 0.489) 
0.977 259.622 1.233 261.336 2.148 

Lagged 
spring SST 

7.168 

( 
2.976) 

-0.960 

( 0.348) 
0.831 254.011 

-
4.377 

255.726 
-

3.463 

Stratification 
onset 

-4.353 

( 
1.072) 

0.076 

( 0.024) 
0.800 252.328 

-
6.061 

254.042 
-

5.147 

Lagged strat. 
onset 

-1.516 

( 1.309) 

0.011 

( 0.029) 
0.992 260.249 1.860 261.963 2.774 

Winter PEA 
1.402 

( 1.830) 

-1.297 

( 0.967) 
0.952 258.666 0.277 260.380 1.191 

Lagged 
winter PEA 

-0.679 

( 1.877) 

-0.189 

( 0.993) 
0.995 260.353 1.964 262.067 2.878 

Winter SST 
0.758 

( 3.067) 

-0.256 

( 0.437) 
0.989 260.048 1.659 261.762 2.573 

Lagged 
winter SST 

1.161 

( 2.974) 

-0.316 

( 0.427) 
0.980 259.850 1.461 261.564 2.376 

St 
Abb’s 
Head 

Null model 

-0.502 

( 
0.116) 

– 0.485 231.157 – 231.957 – 

Spring PEA 
2.416 

( 2.910) 

-0.829 

( 0.826) 
0.472 232.176 1.019 233.890 1.933 

Lagged 
spring PEA 

0.865 

( 3.046) 

-0.390 

( 0.869) 
0.482 232.956 1.799 234.670 2.714 

Spring SST 
-0.155 

( 2.137) 

-0.039 

( 0.240) 
0.485 233.130 1.974 234.845 2.888 

Lagged 
spring SST 

2.783 

( 1.621) 

-0.375 

( 0.185) 
0.437 229.428 

-
1.729 

231.142 
-

0.815 

Stratification 
onset 

-1.998 

( 
0.587) 

0.023 

( 0.009) 
0.412 227.447 

-
3.709 

229.162 
-

2.795 

Lagged strat. 
onset 

-0.741 

( 0.679) 

0.004 

( 0.010) 
0.483 233.029 1.872 234.743 2.786 

Winter PEA 
0.351 

( 0.487) 

-0.730 

( 0.408) 
0.445 230.208 

-
0.948 

231.922 
-

0.034 

Lagged 
winter PEA 

0.112 

( 0.495) 

-0.528 

( 0.415) 
0.464 231.607 0.450 233.321 1.365 

Winter SST 
0.333 

( 1.594) 

-0.115 

( 0.219) 
0.482 232.882 1.725 234.596 2.639 

Lagged 
winter SST 

0.702 

( 1.557) 

-0.167 

( 0.216) 
0.477 232.566 1.409 234.280 2.323 
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Table S3.2. Parameter estimates, AIC and ΔAIC from all-sites models with single predictor variables, fitted 

with Poisson error and log link. Fixed effects are reported as estimate ( standard error); random effects are 

reported as the standard deviation of the effect. ΔAIC was calculated relative to the null model for each site. 

Fixed effects highlighted in bold are those for which Wald Z tests indicated the parameter estimate was 

significantly different from 0; italics highlight marginally non-significant parameter estimates (0.05 ≤ P < 

0.1). See text for model fitting details.  

Predictor 
variable 

Intercept 
Parameter 
estimate 

Site 
RE 

Region 
RE 

Year 
RE 

Site  
year 
RE 

Region 

 year 
RE 

AIC ΔAIC 

Null model 

-0.532 

( 
0.202) 

– 0.244 0.263 0.182 0.601 0.904 1885.454 – 

Spring PEA 
0.960 

( 0.674) 

-0.485 

( 0.213) 
0.332 0.000 0.114 0.574 0.932 1881.685 -3.769 

Lagged 
spring PEA 

0.836 

( 0.676) 

-0.446 

( 0.214) 
0.326 0.000 0.119 0.577 0.934 1882.769 -2.685 

Spring SST 

4.323 

( 
1.865) 

-0.546 

( 0.207) 
0.244 0.429 0.000 0.574 0.907 1880.231 -5.223 

Lagged 
spring SST 

3.793 

( 
1.746) 

-0.491 

( 0.196) 
0.247 0.398 0.000 0.582 0.901 1880.978 -4.477 

Stratification 
onset 

-1.536 

( 
0.546) 

0.011 

( 0.006) 
0.326 0.338 0.134 0.558 0.939 1881.849 -3.605 

Lagged strat. 
onset 

-0.751 

( 0.458) 

0.002 

( 0.004) 
0.223 0.304 0.190 0.601 0.901 1887.186 1.731 

Winter PEA 
-0.284 

( 0.195) 

-0.444 

( 0.147) 
0.355 0.000 0.217 0.539 0.920 1874.959 -10.495 

Lagged 
winter PEA 

-0.355 

( 
0.176) 

-0.354 

( 0.129) 
0.303 0.280 0.197 0.580 0.880 1878.297 -7.157 

Winter SST 
0.926 

( 1.311) 

-0.188 

( 0.168) 
0.303 0.173 0.000 0.594 0.920 1886.337 0.883 

Lagged 
winter SST 

0.302 

( 1.437) 

-0.108 

( 0.185) 
0.282 0.199 0.116 0.601 0.910 1887.133 1.678 
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Table S3.3 Parameter estimates, AIC, ΔAIC and Akaike weights from all-sites models fitted with multiple predictor variables, using Poisson error distribution and 

log link. Fixed effects are reported as estimate ( standard error); random effects are reported as the standard deviation of the effect. Fixed effects highlighted in bold 

are those for which Wald Z tests indicated the parameter estimate was significantly different from 0; italics highlight marginally non-significant parameter estimates 

(0.05 ≤ P < 0.1). See text for model fitting details. 

Intercept 
Spring 
PEA 

Spring 
temperature 

Stratification 
onset 

Winter 
PEA 

Winter 
temperature 

Site RE 
Region 

RE 
Year RE 

Site  
year RE 

Region  
year RE 

AIC delta weight 

3.320 

( 1.685) 
– 

-0.408 

( 0.189) 
– 

-0.424 

( 0.140) 
– 0.372 0.000 0.000 0.532 0.922 1872.433 – 0.243 

3.245 

( 1.686) 
– 

-0.507 

( 0.260) 
– 

-0.429 

( 0.141) 

0.125 

( 0.225) 
0.385 0.001 0.000 0.531 0.918 1874.117 1.684 0.105 

3.753 

( 1.863) 

-0.138 

( 0.252) 

-0.412 

( 0.189) 
– 

-0.379 

( 0.163) 
– 0.380 0.000 0.000 0.531 0.923 1874.130 1.696 0.104 

3.135 

( 1.744) 
– 

-0.415 

( 0.190) 

0.003 

( 0.006) 

-0.392 

( 0.159) 
– 0.398 0.001 0.003 0.528 0.923 1874.236 1.803 0.099 

-0.284 

( 0.195) 
– – – 

-0.444 

( 0.147) 
– 0.355 0.000 0.217 0.539 0.920 1874.959 2.526 0.069 

3.627 

( 1.865) 

-0.127 

( 0.253) 

-0.498 

( 0.258) 
– 

-0.386 

( 0.165) 

0.113 

( 0.225) 
0.388 0.001 0.004 0.531 0.920 1875.869 3.436 0.044 

0.962 

( 1.276) 
– – – 

-0.432 

( 0.143) 

-0.164 

( 0.166) 
0.345 0.000 0.154 0.539 0.927 1875.999 3.566 0.041 

3.540 

( 1.954) 

-0.125 

( 0.258) 

-0.415 

( 0.189) 

0.002 

( 0.006) 

-0.358 

( 0.174) 
– 0.398 0.001 0.004 0.528 0.924 1876.009 3.576 0.041 

3.145 

( 1.741) 
– 

-0.495 

( 0.266) 

0.002 

( 0.006) 

-0.408 

( 0.013) 

0.103 

( 0.242) 
0.400 0.001 0.001 0.529 0.920 1876.053 3.620 0.04 

0.034 

( 0.773) 

-0.110 

( 0.258) 
– – 

-0.412 

( 0.165) 
– 0.368 0.000 0.208 0.538 0.923 1876.774 4.340 0.028 

-0.445 

( 0.629) 
– – 

0.002 

( 0.006) 

-0.428 

( 0.160) 
– 0.377 0.000 0.208 0.535 0.926 1876.885 4.452 0.026 

3.068 

( 1.896) 
– 

-0.505 

( 0.201) 

0.009 

( 0.005) 
– – 0.302 0.430 0.000 0.548 0.918 1877.424 4.991 0.020 

0.910 

( 1.297) 
– – 

0.004 

( 0.006) 

-0.377 

( 0.167) 

-0.212 

( 0.180) 
0.385 0.000 0.097 0.531 0.940 1877.537 5.104 0.019 

1.441 

( 1.577) 

-0.138 

( 0.260) 
– – 

-0.391 

( 0.163) 

-0.175 

( 0.168) 
0.362 0.000 0.136 0.537 0.930 1877.713 5.279 0.017 

3.545 

( 1.948) 

-0.119 

( 0.258) 

-0.492 

( 0.264) 

0.001 

( 0.007) 

-0.375 

( 0.179) 

0.099 

( 0.242) 
0.398 0.000 0.000 0.529 0.921 1877.841 5.407 0.016 



 

278 
 

4.880 

( 1.813) 

-0.480 

( 0.206) 

-0.444 

( 0.189) 
– – – 0.343 0.001 0.000 0.559 0.926 1878.006 5.573 0.015 

 

Table S3.3 (cont.) 

Intercept 
Spring 
PEA 

Spring 
temperature 

Stratification 
onset 

Winter 
PEA 

Winter 
temperature 

Site RE 
Region 

RE 
Year RE 

Site  
year RE 

Region  
year RE 

AIC delta weight 

3.882 

( 1.976) 

-0.344 

( 0.241) 

-0.451 

( 0.191) 

0.007 

( 0.006) 
– – 0.408 0.000 0.000 0.544 0.930 1878.248 5.815 0.013 

-0.116 

( 1.026) 

-0.105 

( 0.261) 
– 

0.001 

( 0.006) 

-0.399 

( 
0.176) 

– 0.384 0.000 0.201 0.535 0.927 1878.722 6.289 0.010 

1.337 

( 1.587) 

-0.124 

( 0.263) 
– 

0.004 

( 0.006) 

-0.343 

( 0.183) 

-0.217 

( 0.180) 
0.393 0.000 0.079 0.531 0.941 1879.313 6.880 0.008 

3.063 

( 1.894) 
– 

-0.525 

( 0.272) 

0.009 

( 0.005) 
– 

0.027 

( 0.240) 
0.299 0.436 0.000 0.548 0.918 1879.412 6.979 0.007 

4.765 

( 1.817) 

-0.473 

( 0.021) 

-0.502 

( 0.253) 
– – 

0.08 

( 0.216) 
0.343 0.008 0.003 0.559 0.926 1879.866 7.432 0.006 

4.322 

( 1.865) 
– 

-0.545 

( 0.207) 
– – – 0.244 0.429 0.000 0.574 0.907 1880.231 7.798 0.005 

3.881 

( 1.977) 

-0.343 

( 0.241) 

-0.435 

( 0.266) 

0.007 

( 0.006) 
– 

-0.021 

( 0.239) 
0.407 0.001 0.000 0.544 0.930 1880.241 7.807 0.005 

0.690 

( 1.321) 
– – 

0.013 

( 0.005) 
– 

-0.313 

( 0.173) 
0.421 0.000 0.000 0.548 0.944 1880.814 8.381 0.004 

1.898 

( 1.560) 

-0.332 

( 0.242) 
– 

0.009 

( 0.006) 
– 

-0.296 

( 0.173) 
0.403 0.000 0.000 0.547 0.943 1880.926 8.492 0.003 

4.023 

( 1.855) 
– 

-0.688 

( 0.251) 
– – 

0.203 

( 0.209) 
0.216 0.465 0.000 0.574 0.904 1881.323 8.889 0.003 

0.959 

( 0.674) 

-0.485 

( 0.213) 
– – – – 0.332 0.000 0.114 0.574 0.932 1881.685 9.252 0.002 

-1.536 

( 0.546) 
– – 

0.011 

( 0.006) 
– – 0.326 0.338 0.134 0.558 0.939 1881.849 9.416 0.002 

-0.094 

( 1.078) 

-0.362 

( 0.244) 
– 

0.008 

( 0.006) 
– – 0.408 0.000 0.089 0.552 0.951 1881.870 9.437 0.002 

2.645 

( 1.487) 

-0.504 

( 0.215) 
– – – 

-0.213 

( 0.164) 
0.343 0.000 0.000 0.571 0.930 1881.973 9.540 0.002 
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-0.532 

( 0.202) 
– – – – – 0.244 0.263 0.182 0.601 0.904 1885.454 13.021 0.000 

0.926 

( 1.311) 
– – – – 

-0.188 

( 0.168) 
0.303 0.172 0.000 0.594 0.920 1886.337 13.904 0.000 

 
 



 

280 
 

Table S3.4. Projections of mean fledged chicks under the UKCP09 climatic baseline period of 

1961-90 and for 2070-99 under the SRES A1B scenario. Reported values are the mean of 100,000 

randomisation runs, where each run produces a mean number of fledged chicks across all years in 

the time period. The standard deviation of the 100,000 projections is also given. Proportional 

change is calculated as ((future - baseline)/baseline), based on the mean for each period. To 

indicate the probability of decline, the difference between the baseline and future projections was 

calculated for each run, and the proportion of these differences > 0 (i.e. those not showing a 

decline) was calculated. 

Site 

Mean predicted 
1961 – 1990 

fledged chicks  

( st. dev.) 

Mean predicted 
2070 – 2099 

fledged chicks 

( st. dev.) 

Proportional 
change 

Proportion of 
projections not 

showing 
decline 

Bardsey Island 1.498 ( 0.818) 0.665 ( 0.543) -55.6% 0.032 

Boddam to 
Collieston 

2.875 ( 1.728) 1.369 ( 0.772) -52.4% 0.136 

Coquet Island 6.506 ( 3.883) 2.768 ( 1.778) -57.5% 0.100 

Fair Isle 1.407 ( 0.718) 0.557 ( 0.246) -60.4% 0.016 

Flamborough 
Head and 

Bempton Cliffs 
3.087 ( 1.900) 1.141 ( 0.678) -63.0% 0.056 

Fowlsheugh 3.256 ( 1.927) 1.539 ( 0.875) -52.7% 0.143 

Isle of Colonsay 2.674 ( 1.747) 1.097 ( 0.672) -59.0% 0.054 

Isle of May 1.953 ( 1.042) 0.798 ( 0.374) -59.2% 0.088 

Lambay 1.882 ( 0.811) 0.899 ( 0.704) -52.3% 0.079 

Puffin Island 3.990 ( 3.126) 1.783 ( 1.748) -55.3% 0.035 

St Abb’s Head 3.047 ( 1.542) 1.262 ( 0.617) -58.6% 0.082 

Across all sites 2.925 ( 1.290) 1.261 ( 0.638) -56.9% 0.063 
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 Appendix S4: results from models testing for trends over time, 

and from models trialling different forms of input variables 

Breeding success and oceanographic variables were tested for trends over time (Table 

S4.1). Breeding success trends were tested using generalised linear mixed models with 

binomial error and logit link, with ‘year’ as a continuous predictor, and with the response a 

matrix with the number of fledged chicks as successes and the estimated number of failed 

chicks as failures; random factors were ‘site’, ‘region’, ‘year’, ‘site*year’ and 

‘region*year’ in models including all colonies, and ‘year’ for single colony models. Trends 

in oceanographic variables were modelled in the same framework but with Gaussian error 

structure, and with observation-level random factors removed (i.e., ‘site*year’ and  ‘year’ 

for all-sites and single-site models respectively); therefore, no random factors were 

required for local-scale models, meaning that they were fitted as standard linear models. 

Breeding success models showed convergence problems when fitted with raw ‘year’ input, 

so ‘year’ was scaled and centred. This reduced convergence problems, but means that 

parameters are not strictly comparable with those from oceanographic trend models. 

 Results of Spearman correlations to test for collinearity between predictor variables 

are presented in Table S4.2. Correlation coefficients were typically weak to moderate; see 

the main text for discussion of stronger correlations. 

 Models of productivity were fitted using both log-transformed and untransformed 

PEA (Table S4.3). For both spring and winter PEA, models with log-transformed PEA 

were associated with smaller AIC values than were models with untransformed PEA. 

 Productivity models were fitted with variables with a 1-year lag (Table S4.4; Fig. 

S4.1) for comparison with those without a lag (main text Table 2 and Fig. 2). Lagged 

spring SST showed support over the null model at Fair Isle, Isle of May and St Abb’s 

Head; as with the unlagged form, higher productivity was associated with lower SSTs. The 

relationships at Isle of May and St Abb’s Head were not found with the unlagged form, but 

the relationship at Fair Isle was weaker than the unlagged equivalent. The only other 

models that performed better than the null model were negative relationships with winter 

PEA at Bardsey Island and spring PEA at Fair Isle; both were less well supported than the 

unlagged equivalents. For models including data from all colonies, relationships were 

similar to those without lags, but ΔAIC was always greater for the unlagged form, 
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indicating that unlagged variables performed better. Therefore, with the exception of 

spring SST at Isle of May and St Abb’s Head, lagged variables performed worse than 

unlagged equivalents. 
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Table S4.1 Results from models of breeding success and oceanographic variables against time. Results presented indicate the parameter estimate of the predictor 

variable, along with its associated P-value; bold indicates that the parameter estimate is significantly different from 0; italics indicate the estimate is marginally non-

significantly different from 0 (i.e., 0.05 ≤ P < 0.1). Models of breeding success in Lambay and Puffin Island could not be fitted due to limited years of data. To aid 

model convergence, breeding success models were fitted using scaled and centred year; see text for further details of model fitting. 

 
 

 Breeding success Winter SST Winter PEA Spring SST Spring PEA 
Stratification 

onset 

Across all sites 
-0.235 ( 0.159), 

P = 0.141 
0.038 ( 0.019),  

P = 0.054 
0.020 ( 0.010), 

P = 0.046 
0.044 ( 0.018),  

P = 0.026 
0.006 ( 0.004), 

P = 0.173 
-0.316 ( 0.180),  

P = 0.096 

Bardsey Island 
0.724 ( 0.348), 

P = 0.038 
0.052 ( 0.023),  

P = 0.035 
-0.011 ( 0.020), 

P = 0.588 
0.057 ( 0.020),  

P = 0.009 
-0.002 ( 0.007), 

P = 0.782 
0.026 ( 0.769),  

P = 0.973 

Boddam to 
Collieston 

-0.179 ( 0.312), 
P = 0.567 

0.040 ( 0.021),  
P = 0.073 

0.039 ( 0.022), 
P = 0.092 

0.037 ( 0.018),  
P = 0.057 

0.005 ( 0.008), 
P = 0.589 

-1.285 ( 0.491),  
P = 0.018 

Coquet Island 
0.336 ( 0.276), 

P = 0.224 
0.046 ( 0.021),  

P = 0.043 
0.003 ( 0.021), 

P = 0.904 
0.048 ( 0.024),  

P = 0.061 
0.007 ( 0.006), 

P = 0.264 
-0.102 ( 0.522),  

P = 0.848 

Fair Isle 
-0.970 ( 0.706), 

P = 0.170 
0.026 ( 0.017),  

P = 0.133 
0.028 ( 0.022), 

P = 0.224 
0.039 ( 0.019),  

P = 0.052 
0.009 ( 0.005), 

P = 0.076 
-0.956 ( 0.475),  

P = 0.061 

Flamborough Head 
and Bempton Cliffs 

-0.560 ( 0.186), 
P = 0.003 

0.047 ( 0.021),  
P = 0.037 

0.013 ( 0.018), 
P = 0.482 

0.069 ( 0.023),  
P = 0.008 

0.013 ( 0.008), 
P = 0.129 

0.184 ( 0.322),  
P = 0.576 

Fowlsheugh 
-0.361 ( 0.181), 

P = 0.047 
0.040 ( 0.021),  

P = 0.070 
0.035 ( 0.020), 

P = 0.101 
0.038 ( 0.019),  

P = 0.067 
0.006 ( 0.007), 

P = 0.407 
-1.043 ( 0.381),  

P = 0.014 

Isle of Colonsay 
-0.379 ( 0.432), 

P = 0.381 
0.031 ( 0.023),  

P = 0.192 
0.020 ( 0.017), 

P = 0.260 
0.043 ( 0.024),  

P = 0.086 
-0.002 ( 0.008), 

P = 0.801 
-0.851 ( 0.529),  

P = 0.126 

Isle of May 
-0.190 ( 0.310), 

P = 0.541 
0.035 ( 0.023),  

P = 0.138 
0.023 ( 0.009), 

P = 0.016 
0.032 ( 0.024),  

P = 0.194 
0.002 ( 0.005), 

P = 0.670 
-0.767 ( 0.299),  

P = 0.020 

Lambay – 
0.050 ( 0.021),  

P = 0.029 
-0.001 ( 0.024), 

P = 0.982 
0.037 ( 0.025),  

P = 0.164 
-0.002 ( 0.005), 

P = 0.659 
0.458 ( 0.530),  

P = 0.400 

Puffin Island – 
0.045 ( 0.023),  

P = 0.064 
0.008 ( 0.012), 

P = 0.507 
0.056 ( 0.019),  

P = 0.008 
0.001 ( 0.008), 

P = 0.917 
0.634 ( 0.515),  

P = 0.235 

St. Abb’s Head 
-0.380 ( 0.167), 

P = 0.023 
0.042 ( 0.022),  

P = 0.069 
0.022 ( 0.010), 

P = 0.048 
0.041 ( 0.023),  

P = 0.092 
0.007 ( 0.006), 

P = 0.255 
-0.513 ( 0.462),  

P = 0.282 
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Table S4.2 Spearman rank correlations between predictor variables, and associated P-values. Correlations 

were tested at the national scale (i.e. across all sites). 

 
Strat. 
onset 

Lagged 
strat.  
onset 

Spring 
PEA 

Lagged 
spring 
PEA 

Spring 
SST 

Lagged 
spring 

SST 

Winter 
PEA 

Lagged 
winter 

PEA 

Winter 
SST 

Lagged 
strat. 
onset 

ρ = 0.815 
P < 0.001 

–        

Spring 
PEA 

ρ = -0.559 
P < 0.001 

ρ = -0.529 
P < 0.001 

–       

Lagged 
spring 
PEA 

ρ = -0.537 
P < 0.001 

ρ = -0.558 
P < 0.001 

ρ = 0.169 
P = 0.006 

–      

Spring 
SST 

ρ = -0.210 
P < 0.001 

ρ = -0.199 
P = 0.001 

ρ = 0.212 
P < 0.001 

ρ = 0.174 
P = 0.005 

–     

Lagged 
spring 

SST 

ρ = -0.229 
P < 0.001 

ρ = -0.209 
P < 0.001 

ρ = 0.169 
P = 0.006 

ρ = 0.208 
P = 0.001 

ρ = 0.647 
P < 0.001 

–    

Winter 
PEA 

ρ = -0.485 
P < 0.001 

ρ = -0.411 
P < 0.001 

ρ = 0.669 
P < 0.001 

ρ = 0.681 
P < 0.001 

ρ = 0.165 
P = 0.007 

ρ = 0.148 
P = 0.016 

–   

Lagged 
winter 

PEA 

ρ = -0.428 
P < 0.001 

ρ = -0.465 
P < 0.001 

ρ = 0.681 
P < 0.001 

ρ = 0.681 
P < 0.001 

ρ = 0.112 
P = 0.069 

ρ = 0.166 
P = 0.007 

ρ = 0.825 
P < 0.001 

–  

Winter 
SST 

ρ = 0.197 
P = 0.001 

ρ = 0.183 
P = 0.003 

ρ = 0.070 
P = 0.257 

ρ = 0.340 
P = 0.059 

ρ = 0.672 
P < 0.001 

ρ = 0.481 
P < 0.001 

ρ = 0.093 
P = 0.131 

ρ = 0.052 
P = 0.395 

– 

Lagged 
winter 

SST 

ρ = 0.162 
P < 0.008 

ρ = 0.212 
P < 0.001 

ρ = 0.072 
P < 0.241 

ρ = 0.061 
P = 0.320 

ρ = 0.488 
P < 0.001 

ρ = 0.655 
P < 0.001 

ρ = 0.051 
P = 0.411 

ρ = 0.097 
P = 0.116 

ρ = 0.673 
P < 0.001 

 

 

Table S4.3. Results from models of breeding success with log-transformed and untransformed PEA as 

predictors, fitted to data from all sites. Models were GLMMs with binomial error distribution, logit link 

function and ‘year’, ‘site’, ‘region’, ‘site*year’ and ‘region*year’ random effects. ΔAIC values are calculated 

relative to the null model, fitted with only intercept and random effects. 

Variable 
Parameter 

estimate ( SE) 
P value AIC ΔAIC 

Null model – – 1803.730 – 

Spring PEA -0.024 ( 0.014) 0.104 1803.181 -0.549 

Log(spring PEA) -0.602 ( 0.285) 0.035 1801.062 -2.669 

Winter PEA -0.217 ( 0.070) 0.002 1793.519 -10.211 

Log(winter PEA) -0.641 ( 0.201) 0.001 1792.228 -11.502 
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Table S4.4. Results from models relating breeding success to single oceanographic predictor variables with a 1-year lag. See main text for details of model fitting. 

Parameter estimates ( SE) are given, along with the ΔAIC (for all-sites models) or ΔAICc (for individual site models) value relative to a null model fitted with 

intercept and random effects only. Parameter estimates significantly different from 0 at P < 0.05, as indicated by Wald Z tests, are bold; results approaching but not 

attaining significance with 0.05 ≤ P < 0.1 are italic. Full model details are given in Supporting Information 5. 

 Bardsey Island 
Boddam to 
Collieston 

Coquet Island Fair Isle 

Flamborough 
Head and 
Bempton 

Cliffs 

Fowlsheugh Isle of May St Abb’s Head All sites 

Null model 
AICc = 

187.621 
AICc = 

178.476 
AICc = 

103.824 
AICc = 

278.788 
AICc = 

225.489 
AICc = 

214.311 
AICc = 

254.784 
AICc = 

230.539 
AIC = 1803.730 

Lagged 
winter SST 

0.037 

( 0.632), 
ΔAICc = 2.986 

-0.496 

( 0.508), 
ΔAICc = 2.257 

0.124 

( 0.326), 
ΔAICc = 3.522 

-2.052 

( 1.732), 
ΔAICc = 1.473 

-0.068 

( 0.433), 
ΔAICc = 2.889 

-0.281 

( 0.378), 
ΔAICc = 2.445 

-0.429 

( 0.523), 
ΔAICc = 2.254 

-0.251 

( 0.324), 
ΔAICc = 2.323 

-0.105 

( 0.248), 
ΔAIC = 1.827 

Lagged 
winter PEA 

-2.133 

( 1.052), 
ΔAICc = -

0.886 

-0.130 

( 0.536), 
ΔAICc = 3.123 

0.244 

( 0.425), 
ΔAICc = 3.343 

-1.880 

( 1.203), 
ΔAICc = 0.524 

-0.110 

( 0.484), 
ΔAICc = 2.863 

-0.376 

( 0.421), 
ΔAICc = 2.209 

-0.510 

( 1.212), 
ΔAICc = 2.738 

-0.862 

( 0.619), 
ΔAICc = 1.074 

-0.483 

( 0.175), 
ΔAIC = -7.091 

Lagged 
spring SST 

-0.234 

( 0.689), 
ΔAICc = 2.874 

0.017 

( 0.605), 
ΔAICc = 3.181 

-0.043 

( 0.366), 
ΔAICc = 3.653 

-3.115 

( 1.399), 
ΔAICc = -

2.046 

-0.221 

( 0.353), 
ΔAICc = 2.526 

-0.425 

( 0.404), 
ΔAICc = 1.916 

-1.192 

( 0.425), 
ΔAICc = -

3.636 

-0.541 

( 0.280), 
ΔAICc = -0.502 

-0.621 

( 0.250), 
ΔAIC = -4.247 

Lagged 
spring PEA 

-3.720 

( 2.478), 
ΔAICc = 0.873 

1.644 

( 1.225), 
ΔAICc = 1.478 

1.013 

( 1.051), 
ΔAICc = 2.778 

-10.901 

( 6.243), 
ΔAICc = -0.191 

-1.140 

( 1.072), 
ΔAICc = 1.817 

0.244 

( 1.274), 
ΔAICc = 2.952 

-0.279 

( 2.398), 
ΔAICc = 2.901 

-0.451 

( 1.311), 
ΔAICc = 2.796 

-0.528 

( 0.283), 
ΔAIC = -1.381 

Lagged 
stratification 

onset 

-0.031 

( 0.032), 
ΔAICc = 2.047 

-0.019 

( 0.019), 
ΔAICc = 2.258 

0.002 

( 0.015), 
ΔAICc = 3.647 

0.068 

( 0.059), 
ΔAICc = 1.572 

0.004 

( 0.030), 
ΔAICc = 2.893 

-0.008 

( 0.020), 
ΔAICc = 2.831 

0.019 

( 0.036), 
ΔAICc = 2.632 

0.007 

( 0.016), 
ΔAICc = 2.713 

0.003 

( 0.005), 
ΔAIC = 1.756 
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Figure S4.1. Plots of breeding success against oceanographic predictor variables with a 1-year lag, 

along with fitted lines from binomial GLMMs including the ‘site’ and ‘region’ random effects. 

Each point represents one site-by-year observation; point sizes are scaled by log(nests surveyed) to 

reflect weightings of observations in models. 
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Appendix S5: full model results from main analysis 

 
Full details of models relating breeding success to single oceanographic predictor variables 

for single sites are given in Table S5.1. Only sites with ≥ 10 years of overlapping 

oceanographic and breeding success data were selected for this analysis. Models were 

generalised linear mixed models with binomial error structure and logit link. Only one 

predictor variable was entered into each model to avoid overfitting. The response variable 

was a matrix with number of fledged chicks as success and estimated number of failed 

chicks as failures. Only a ‘year’ random factor was fitted, which in these models 

represented an observation-level factor used to model overdispersion. The effect of each 

predictor variable was assessed by comparing each model’s AICc to that from a null 

model, fitted with intercept and random effect only.  

 Full details of models relating breeding success to oceanographic predictor 

variables across all sites are given in Tables S5.2 (single predictor variable models) and 

S5.3 (multiple predictor variable models). Models were generalised linear mixed models 

with binomial error structure and logit link. For multiple predictor models, up to 5 

predictor variables were fitted in each model, with no interaction terms considered. The 

response variable was a matrix with number of fledged chicks as successes and estimated 

number of failed chicks as failures. Random effects were ‘site’, ‘region’, ‘year’, ‘site*year’ 

and ‘region*year’, with the ‘site*year’ effect an observation-level factor used to model 

overdispersion. Single predictor variable models were assessed by comparing each model’s 

AIC to that from a null model. Multiple predictor variable models were ranked by AIC, 

allowing all models to be compared to the best single model. 
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Table S5.1. Parameter estimates, AIC and ΔAIC from model fitting for single-site models with 

single predictor variables. Fixed effects are reported as estimate ( standard error); the ‘year’ 

random effect is reported as the standard deviation of the effect. ΔAIC was calculated relative to 

the null model for each site. Fixed effects highlighted in bold are those for which Wald Z tests 

indicated the parameter estimate was significantly different from 0; italics highlight marginally 

non-significant estimates (0.05 ≤ P < 0.1). See text for model fitting details. 

Site 
Predictor 
variable 

Intercept 
Parameter 
estimate 

Year 
RE 

AIC ΔAIC AICc 
ΔAIC

c 

Bardsey 
Island 

Null model 
-0.888 

( 0.373) 
– 

1.50
7 

186.76
4 

– 
187.62

1 
– 

Spring PEA 
3.668 

( 6.012) 

-1.719 

( 2.266) 

1.48
3 

188.19
5 

1.43
1 

190.04
2 

2.420 

Lagged spring 
PEA 

8.924 

( 6.534) 

-3.720 

( 2.478) 

1.40
1 

186.64
8 

-
0.11

6 

188.49
4 

0.873 

Spring SST 
-13.877 

( 8.707) 

1.311 

( 0.877) 

1.43
1 

186.58
2 

-
0.18

2 

188.42
8 

0.807 

Lagged spring 
SST 

1.411 

( 6.776) 

-0.234 

( 0.689) 

1.50
4 

188.64
9 

1.88
5 

190.49
5 

2.874 

Stratification 
onset 

-5.369 

( 2.133) 

0.041 

( 0.019) 

1.35
1 

184.42
0 

-
2.34

5 

186.26
6 

-
1.356 

Lagged strat. 
onset 

2.628 

( 3.609) 

-0.031 

( 0.032) 

1.47
0 

187.82
2 

1.05
8 

189.66
8 

2.047 

Winter PEA 
-0.111 

( 0.449) 

-1.645 

( 0.693) 

1.29
5 

183.68
5 

-
3.07

9 

185.53
1 

-
2.090 

Lagged winter 
PEA 

-0.086 

( 0.511) 

-2.133 

( 1.052) 

1.35
9 

184.88
9 

-
1.87

5 

186.73
5 

-
0.886 

Winter SST 
-8.998 

( 5.082) 

0.928 

( 0.579) 

1.41
2 

186.29
1 

-
0.47

3 

188.13
7 

0.516 

Lagged winter 
SST 

-1.213 

( 5.513) 

0.037 

( 0.632) 

1.50
6 

188.76
1 

1.99
7 

190.60
7 

2.986 

Boddam to 
Collieston 

Null model 
-1.113 

( 0.259) 
– 

0.99
5 

177.47
6 

– 
178.47

6 
– 

Spring PEA 
-0.751 

( 4.170) 

-0.123 

( 1.414) 

0.99
4 

179.46
8 

1.99
2 

181.65
0 

3.174 

Lagged spring 
PEA 

-5.996 

( 3.648) 

1.644 

( 1.225) 

0.94
0 

177.77
2 

0.29
6 

179.95
3 

1.478 

Spring SST 
-1.606 

( 5.092) 

0.057 

( 0.593) 

0.99
5 

179.46
6 

1.99
1 

181.64
8 

3.172 

Lagged spring 
SST 

-1.260 

( 5.207) 

0.017 

( 0.605) 

0.99
5 

179.47
5 

1.99
9 

181.65
7 

3.181 

Stratification 
onset 

-3.579 

( 1.902) 

0.024 

( 0.018) 

0.94
2 

177.85
5 

0.38
0 

180.03
7 

1.561 

Lagged strat. 
onset 

0.837 

( 2.014) 

-0.019 

( 0.019) 

0.96
4 

178.55
2 

1.07
6 

180.73
3 

2.258 

Winter PEA 
-1.115 

( 0.258) 

-0.141 

( 0.488) 

0.99
2 

179.39
3 

1.91
7 

181.57
4 

3.099 

Lagged winter 
PEA 

-1.111 

( 0.258) 

-0.130 

( 0.536) 

0.99
3 

179.41
7 

1.94
1 

181.59
9 

3.123 

Winter SST -2.474 0.175 0.99 179.35 1.87 181.53 3.059 
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( 3.875) ( 0.498) 0 3 7 4 

Lagged winter 
SST 

2.744 

( 3.960) 

-0.496 

( 0.508) 

0.96
5 

178.55
1 

1.07
5 

180.73
2 

2.257 
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Table S5.1 (cont.) 

Site 
Predictor 
variable 

Intercept 
Parameter 
estimate 

Year 
RE 

AIC ΔAIC AICc ΔAICc 

Coquet 
Island 

Null model 
0.233 

( 0.178) 
– 0.579 102.490 – 103.824 – 

Spring PEA 
-4.245 

( 3.532) 

1.228 

( 0.968) 
0.541 102.964 0.473 105.964 2.140 

Lagged 
spring PEA 

-3.445 

( 3.819) 

1.013 

( 1.051) 
0.552 103.601 1.111 106.601 2.778 

Spring SST 
0.775 

( 3.109) 

-0.061 

( 0.352) 
0.578 104.460 1.970 107.460 3.636 

Lagged 
spring SST 

0.612 

( 3.224) 

-0.043 

( 0.366) 
0.578 104.477 1.986 107.477 3.653 

Stratification 
onset 

-0.999 

( 0.940) 

0.018 

( 0.014) 
0.538 102.816 0.325 105.816 1.992 

Lagged strat. 
onset 

0.088 

( 1.040) 

0.002 

( 0.015) 
0.578 104.470 1.980 107.470 3.647 

Winter PEA 

0.742 

( 
0.297) 

-0.697 

( 0.346) 
0.493 100.933 

-
1.558 

103.933 0.109 

Lagged 
winter PEA 

0.047 

( 0.369) 

0.244 

( 0.425) 
0.569 104.167 1.676 107.167 3.343 

Winter SST 
0.791 

( 2.343) 

-0.075 

( 0.315) 
0.577 104.433 1.943 107.433 3.610 

Lagged 
winter SST 

-0.679 

( 2.402) 

0.124 

( 0.326) 
0.575 104.346 1.856 107.346 3.522 

Fair Isle 

Null model 

-1.815 

( 
0.695) 

– 2.985 278.038 – 278.788 – 

Spring PEA 

49.179 

( 
20.227) 

-13.414 

( 5.332) 
2.586 273.871 

-
4.166 

275.471 
-

3.316 

Lagged 
spring PEA 

39.437 

( 
23.595) 

-10.901 

( 6.243) 
2.780 276.997 

-
1.041 

278.597 
-

0.191 

Spring SST 

34.932 

( 
10.162) 

-4.280 

( 1.189) 
2.225 268.509 

-
9.529 

270.109 
-

8.679 

Lagged 
spring SST 

24.732 

( 
11.892) 

-3.115 

( 1.399) 
2.671 275.142 

-
2.896 

276.742 
-

2.046 

Stratification 
onset 

-6.486 

( 6.587) 

0.042 

( 0.058) 
2.962 279.535 1.498 281.135 2.348 

Lagged strat. 
onset 

-9.526 

( 6.744) 

0.068 

( 0.059) 
2.892 278.760 0.722 280.360 1.572 

Winter PEA 
-0.513 

( 1.905) 

-0.942 

( 1.295) 
2.929 279.523 1.486 281.123 2.336 

Lagged 
winter PEA 

0.823 

( 1.795) 

-1.880 

( 1.203) 
2.800 277.712 

-
0.326 

279.312 0.524 

Winter SST 

26.625 

( 
11.439) 

-3.661 

( 1.474) 
2.535 274.626 

-
3.411 

276.226 
-

2.561 

Lagged 
winter SST 

14.057 

( 
13.397) 

-2.052 

( 1.732) 
2.894 278.661 0.623 280.261 1.473 
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Table S5.1 (cont.) 

Site 
Predictor 
variable 

Intercept 
Parameter 
estimate 

Year 
RE 

AIC ΔAIC AICc 
ΔAIC

c 

Flamborough 
Head and  
Bempton 

Cliffs 

Null model 
-0.166 

( 0.222) 
– 

0.93
8 

224
.68
9 

– 
225.48

9 
– 

Spring PEA 
5.717 

( 2.146) 

-2.502 

( 0.909) 

0.78
5 

220
.35
7 

-
4.33

2 

222.07
2 

-
3.41

7 

Lagged spring 
PEA 

2.484 

( 2.502) 

-1.140 

( 1.072) 

0.91
0 

225
.59
1 

0.90
2 

227.30
6 

1.81
7 

Spring SST 
5.594 

( 2.613) 

-0.663 

( 0.300) 

0.83
1 

222
.35
9 

-
2.33

0 

224.07
3 

-
1.41

6 

Lagged spring 
SST 

1.730 

( 3.036) 

-0.221 

( 0.353) 

0.92
8 

226
.30
1 

1.61
2 

228.01
5 

2.52
6 

Stratification 
onset 

2.014 

( 2.816) 

-0.023 

( 0.029) 

0.92
2 

226
.09
6 

1.40
7 

227.81
0 

2.32
1 

Lagged strat. 
onset 

-0.589 

( 2.926) 

0.004 

( 0.030) 

0.93
7 

226
.66
8 

1.97
9 

228.38
2 

2.89
3 

Winter PEA 
0.072 

( 0.527) 

0.253 

( 0.509) 

0.93
1 

226
.44
3 

1.75
4 

228.15
7 

2.66
8 

Lagged winter 
PEA 

-0.275 

( 0.527) 

-0.110 

( 0.484) 

0.93
7 

226
.63
7 

1.94
8 

228.35
1 

2.86
3 

Winter SST 
2.735 

( 2.635) 

-0.434 

( 0.393) 

0.90
7 

225
.50
8 

0.81
9 

227.22
2 

1.73
3 

Lagged winter 
SST 

0.287 

( 2.883) 

-0.068 

( 0.433) 

0.93
7 

226
.66
4 

1.97
5 

228.37
8 

2.88
9 

Fowlsheugh 

Null model 
-0.685 

( 0.202) 
– 

0.82
7 

213
.45
3 

– 
214.31

1 
– 

Spring PEA 
2.986 

( 3.889) 

-1.176 

( 1.244) 

0.80
6 

214
.58
2 

1.12
8 

216.42
8 

2.11
7 

Lagged spring 
PEA 

-1.445 

( 3.975) 

0.244 

( 1.274) 

0.82
6 

215
.41
7 

1.96
3 

217.26
3 

2.95
2 

Spring SST 
1.368 

( 3.499) 

-0.239 

( 0.407) 

0.81
9 

215
.11
1 

1.65
8 

216.95
7 

2.64
7 

Lagged spring 
SST 

2.936 

( 3.446) 

-0.425 

( 0.404) 

0.80
1 

214
.38
0 

0.92
7 

216.22
6 

1.91
6 

Stratification 
onset 

-1.951 

( 1.935) 

0.013 

( 0.020) 

0.81
6 

215
.02
5 

1.57
2 

216.87
2 

2.56
1 

Lagged strat. 
onset 

0.069 

( 1.903) 

-0.008 

( 0.020) 

0.82
3 

215
.29
6 

1.84
2 

217.14
2 

2.83
1 

Winter PEA 
-0.718 

( 0.201) 

-0.388 

( 0.451) 

0.80
9 

214
.72

1.27
4 

216.57
4 

2.26
3 
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8 

Lagged winter 
PEA 

-0.725 

( 0.202) 

-0.376 

( 0.421) 

0.80
8 

214
.67
4 

1.22
0 

216.52
0 

2.20
9 

Winter SST 
1.388 

( 2.818) 

-0.270 

( 0.366) 

0.81
4 

214
.91
7 

1.46
4 

216.76
3 

2.45
3 

Lagged winter 
SST 

1.462 

( 2.895) 

-0.281 

( 0.378) 

0.81
3 

214
.91
0 

1.45
6 

216.75
6 

2.44
5 
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Table S5.1 (cont.) 

Site 
Predictor 
variable 

Intercept 
Parameter 
estimate 

Year 
RE 

AIC ΔAIC AICc ΔAICc 

Isle of 
May 

Null model 

-1.408 

( 
0.289) 

– 1.223 253.984 – 254.784 – 

Spring PEA 
0.990 

( 8.263) 

-0.689 

( 2.371) 
1.219 255.900 1.916 257.614 2.830 

Lagged 
spring PEA 

-0.439 

( 8.325) 

-0.279 

( 2.398) 
1.222 255.971 1.986 257.685 2.901 

Spring SST 
2.810 

( 5.200) 

-0.488 

( 0.601) 
1.202 255.334 1.350 257.049 2.264 

Lagged 
spring SST 

8.777 

( 
3.636) 

-1.192 

( 0.425) 
1.017 249.434 

-
4.550 

251.148 
-

3.636 

Stratification 
onset 

-5.411 

( 
1.316) 

0.092 

( 0.030) 
0.988 248.215 

-
5.769 

249.929 
-

4.855 

Lagged strat. 
onset 

-2.247 

( 1.599) 

0.019 

( 0.036) 
1.212 255.702 1.718 257.416 2.632 

Winter PEA 
1.367 

( 2.256) 

-1.478 

( 1.192) 
1.175 254.505 0.520 256.219 1.435 

Lagged 
winter PEA 

-0.452 

( 2.292) 

-0.510 

( 1.212) 
1.216 255.808 1.824 257.522 2.738 

Winter SST 
0.575 

( 3.757) 

-0.283 

( 0.535) 
1.214 255.705 1.721 257.420 2.636 

Lagged 
winter SST 

1.567 

( 3.635) 

-0.429 

( 0.523) 
1.199 255.323 1.339 257.038 2.254 

St 
Abb’s 
Head 

Null model 

-0.754 

( 
0.174) 

– 0.731 229.739 – 230.539 – 

Spring PEA 
3.391 

( 4.370) 

-1.177 

( 1.241) 
0.714 230.859 1.120 232.573 2.034 

Lagged 
spring PEA 

0.825 

( 4.595) 

-0.451 

( 1.311) 
0.729 231.621 1.882 233.335 2.796 

Spring SST 
-0.540 

( 3.211) 

-0.024 

( 0.361) 
0.731 231.735 1.996 233.449 2.910 

Lagged 
spring SST 

3.993 

( 2.457) 

-0.541 

( 0.280) 
0.665 228.323 

-
1.416 

230.037 
-

0.502 

Stratification 
onset 

-2.972 

( 
0.881) 

0.034 

( 0.013) 
0.625 226.160 

-
3.579 

227.875 
-

2.665 

Lagged strat. 
onset 

-1.205 

( 1.018) 

0.007 

( 0.016) 
0.727 231.538 1.799 233.252 2.713 

Winter PEA 
0.513 

( 0.733) 

-1.085 

( 0.613) 
0.674 228.853 

-
0.886 

230.568 0.029 

Lagged 
winter PEA 

0.248 

( 0.738) 

-0.862 

( 0.619) 
0.695 229.898 0.159 231.613 1.074 

Winter SST 
0.133 

( 2.396) 

-0.122 

( 0.328) 
0.729 231.602 1.863 233.316 2.777 

Lagged 
winter SST 

1.057 

( 2.342) 

-0.251 

( 0.324) 
0.719 231.148 1.409 232.862 2.323 
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Table S5.2. Parameter estimates, AIC and ΔAIC from all-sites models with single predictor 

variables. Fixed effects are reported as estimate ( standard error); random effects are reported as 

the standard deviation of the effect. ΔAIC was calculated relative to the null model for each site. 

Fixed effects highlighted in bold are those for which Wald Z tests indicated the parameter estimate 

was significantly different from 0; italics highlight marginally non-significant parameter estimates 

(0.05 ≤ P < 0.1). See text for model fitting details.  

Predictor 
variable 

Intercept 
Parameter 
estimate 

Site 
RE 

Region 
RE 

Year 
RE 

Site 

 
year 
RE 

Region 

 year 
RE 

AIC ΔAIC 

Null model 
-0.677 

( 0.268) 
– 0.315 0.373 0.263 0.790 1.146 1803.730 – 

Spring PEA 
1.174 

( 0.895) 

-0.602 

( 0.285) 
0.461 0.000 0.183 0.754 1.189 1801.062 -2.669 

Lagged spring 
PEA 

0.945 

( 0.889) 

-0.528 

( 0.283) 
0.447 0.000 0.176 0.759 1.194 1802.349 -1.381 

Spring SST 

5.554 

( 
2.371) 

-0.700 

( 0.264) 
0.323 0.545 0.000 0.756 1.154 1798.488 -5.242 

Lagged spring 
SST 

4.792 

( 
2.227) 

-0.621 

( 0.250) 
0.326 0.509 0.000 0.766 1.150 1799.483 -4.247 

Stratification 
onset 

-1.964 

( 
0.709) 

0.014 

( 0.007) 
0.432 0.448 0.221 0.736 1.186 1800.347 -3.383 

Lagged strat. 
onset 

-0.941 

( 0.592) 

0.003 

( 0.005) 
0.298 0.406 0.267 0.790 1.142 1805.486 1.756 

Winter PEA 
-0.322 

( 0.263) 

-0.641 

( 0.201) 
0.517 0.000 0.320 0.694 1.177 1792.228 

-
11.502 

Lagged 
winter PEA 

-0.436 

( 0.235) 

-0.483 

( 0.175) 
0.430 0.000 0.285 0.756 1.123 1796.639 -7.091 

Winter SST 
1.184 

( 1.801) 

-0.240 

( 0.231) 
0.388 0.276 0.093 0.781 1.170 1804.724 0.994 

Lagged 
winter SST 

0.134 

( 1.927) 

-0.105 

( 0.248) 
0.350 0.323 0.218 0.789 1.152 1805.557 1.827 
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Table S5.3. Parameter estimates, AIC, ΔAIC and Akaike weights from all-sites models with multiple predictor variables. Fixed effects are reported as estimate ( 

standard error); random effects are reported as the standard deviation of the effect. Fixed effects highlighted in bold are those for which Wald Z tests indicated the 

parameter estimate was significantly different from 0. See text for model fitting details. 

Intercept 
Spring 
PEA 

Spring SST 
Stratification 

onset 
Winter 

PEA 
Winter SST Site RE 

Region 
RE 

Year RE 
Site  

year RE 
Region  
year RE 

AIC ΔAIC Weight 

4.429 

( 2.181) 
– 

-0.539 

( 0.244) 
– 

-0.602 

( 0.190) 
– 0.526 0.000 0.000 0.687 1.185 1789.734 0 0.263 

4.308 

( 2.185) 
– 

-0.674 

( 0.336) 
– 

-0.609 

( 0.192) 

0.173 

( 0.295) 
0.542 0.000 0.000 0.687 1.180 1791.383 1.649 0.115 

4.206 

( 2.269) 
– 

-0.544 

( 0.245) 

0.003 

( 0.008) 

-0.566 

( 0.214) 
– 0.551 0.000 0.000 0.685 1.185 1791.595 1.861 0.104 

4.706 

( 2.408) 

-0.090 

( 0.333) 

-0.541 

( 0.244) 
– 

-0.574 

( 0.217) 
– 0.533 0.000 0.000 0.687 1.185 1791.659 1.926 0.100 

-0.322 

( 0.263) 
– – – 

-0.641 

( 0.201) 
– 0.517 0.000 0.320 0.694 1.177 1792.228 2.495 0.076 

4.521 

( 2.416) 

-0.070 

( 0.335) 

-0.670 

( 0.336) 
– 

-0.586 

( 0.220) 

0.167 

( 0.296) 
0.545 0.000 0.000 0.687 1.180 1793.34 3.606 0.043 

1.283 

( 1.076) 
– – – 

-0.622 

( 0.198) 

-0.212 

( 0.222) 
0.502 0.000 0.249 0.694 1.186 1793.342 3.609 0.043 

4.211 

( 2.264) 
– 

-0.662 

( 0.344) 

0.001 

( 0.008) 

-0.591 

( -
0.591) 

0.155 

( 0.316) 
0.554 0.000 0.001 0.686 1.180 1793.354 3.621 0.043 

4.441 

( 2.543) 

-0.070 

( 0.341) 

-0.545 

( 0.245) 

0.003 

( 0.008) 

-0.548 

( 0.232) 
– 0.553 0.000 0.000 0.685 1.185 1793.553 3.819 0.039 

-0.501 

( 0.806) 
– – 

0.002 

( 0.008) 

-0.621 

( 0.219) 
– 0.537 0.000 0.312 0.690 1.182 1794.172 4.439 0.029 

-0.156 

( 1.023) 

-0.057 

( 0.342) 
– – 

-0.626 

( 0.222) 
– 0.525 0.000 0.315 0.693 1.178 1794.200 4.467 0.028 

1.200 

( 1.725) 
– – 

0.005 

( 0.008) 

-0.557 

( 0.226) 

-0.262 

( 0.237) 
0.538 0.000 0.206 0.688 1.196 1794.994 5.260 0.019 

1.611 

( 2.096) 

-0.093 

( 0.344) 
– – 

-0.596 

( 0.221) 

-0.219 

( 0.224) 
0.514 0.000 0.239 0.693 1.188 1795.268 5.534 0.017 

4.414 -0.062 -0.658 0.001 -0.573 0.148 0.554 0.001 0.001 0.686 1.181 1795.322 5.588 0.016 
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( 2.536) ( 0.341) ( 0.344) ( 0.008) ( 0.238) ( 0.316) 

3.962 

( 2.428) 
– 

-0.650 

( 0.257) 

0.012 

( 0.007) 
– – 0.408 0.540 0.000 0.723 1.167 1795.925 6.191 0.012 

-0.348 

( 1.360) 

-0.048 

( 0.346) 
– 

0.002 

( 0.008) 

-0.609 

( 0.235) 
– 0.541 0.000 0.309 0.690 1.182 1796.153 6.419 0.011 
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Table S5.3 (cont.) 

Intercept Spring PEA Spring SST 
Stratification 

onset 
Winter PEA Winter SST 

Site 
RE 

Region 
RE 

Year 
RE 

Site 

 
year 
RE 

Region 

 year 
RE 

AIC ΔAIC Weight 

1.453 

( 2.112) 

-0.072 

( 0.348) 
– 

0.005 

( 0.008) 

-0.539 

( 0.244) 

-0.265 

( 0.238) 
0.544 0.000 0.199 0.687 1.197 1796.950 7.217 0.007 

4.877 

( 2.565) 

-0.396 

( 0.319) 

-0.592 

( 0.247) 

0.010 

( 0.007) 
– – 0.558 0.000 0.000 0.716 1.183 1797.241 7.507 0.006 

6.310 

( 2.345) 

-0.589 

( 0.273) 

-0.584 

( 0.244) 
– – – 0.471 0.000 0.000 0.736 1.182 1797.277 7.543 0.006 

3.956 

( 2.425) 
– 

-0.692 

( 0.353) 

0.012 

( 0.007) 
– 

0.054 

( 0.315) 
0.401 0.556 0.000 0.723 1.165 1797.895 8.162 0.004 

5.554 

( 2.372) 
– 

-0.700 

( 0.264) 
– – – 0.323 0.545 0.000 0.756 1.154 1798.488 8.755 0.003 

6.199 

( 2.355) 

-0.580 

( 0.275) 

-0.666 

( 0.331) 
– – 

0.107 

( 0.285) 
0.471 0.008 0.001 0.736 1.183 1799.137 9.403 0.002 

4.877 

( 2.565) 

-0.394 

( 0.319) 

-0.569 

( 0.346) 

0.010 

( 0.008) 
– 

-0.030 

( 0.311) 
0.557 0.002 0.000 0.716 1.183 1799.232 9.498 0.002 

0.925 

( 1.711) 
– – 

0.017 

( 0.007) 
– 

-0.408 

( 0.224) 
0.556 0.000 0.000 0.722 1.203 1799.428 9.694 0.002 

5.139 

( 2.366) 
– 

-0.901 

( 0.322) 
– – 

0.285 

( 0.272) 
0.278 0.604 0.000 0.757 1.149 1799.440 9.707 0.002 

2.331 

( 2.046) 

-0.387 

( 0.321) 
– 

0.013 

( 0.007) 
– 

-0.391 

( 0.224) 
0.546 0.000 0.000 0.720 1.202 1799.950 10.217 0.002 

-1.964 

( 0.709) 
– – 

0.014 

( 0.007) 
– – 0.432 0.448 0.221 0.736 1.186 1800.347 10.614 0.001 

-0.325 

( 1.422) 

-0.423 

( 0.324) 
– 

0.011 

( 0.008) 
– – 0.561 0.000 0.174 0.726 1.206 1800.959 11.226 0.001 

1.174 

( 0.895) 

-0.602 

( 0.285) 
– – – – 0.461 0.000 0.183 0.754 1.189 1801.062 11.328 0.001 

3.430 

( 1.948) 

-0.627 

( 0.287) 
– – – 

-0.285 

( 0.214) 
0.472 0.000 0.000 0.750 1.190 1801.295 11.562 0.001 

-0.677 – – – – – 0.315 0.373 0.263 0.790 1.146 1803.730 13.996 0 
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( 0.268) 

1.184 

( 1.801) 
– – – – 

-0.240 

( 0.231) 
0.388 0.276 0.093 0.781 1.170 1804.724 14.991 0 

 
 


