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STATEMENT 

Chapter 1 covers basic material in combinatorial group 

theory and is based to some extent on notes of S.J. Pride. The 

modifications of his work to cover invo1utary complexes and 

the proof of Proposition 1.1 are mine. 

Chapters 2,4 and Appendix B are my own work. Chapter 3 was 

joint work with S.J. Pride. (To be more precise the concept of 

NEC-comp1ex is due to Pride. Lemmata 3.1-3.3 were obtained in 

collaboration with Pride, and the rest of the chapter was done 

by myself, at Pride's suggestion.) Chapter 3 together with 

some of chapter 1 has appeared in [15]. 
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ABSTRACT 

Combinatorial group theory abounds with geometrical 

techniques. In this thesis we apply some of them to three 

distinct areas. 

In Chapter 1 we present all of the techniques and 

background material neccessary to read chapters 2,3,4. We 

begin by defining complexes with involutary edges and define 

coverings of these. We then discuss equivalences between 

complexes and use these in §§1.3 and 1.4 to give a way (the 

level method) of simplifying complexes and an application of 

this method (Theorem 1.3). We then discuss star-complexes of 

complexes. Next we present background material on diagrams and 

pictures. The final section in the chapter deals with 

SQ-universality. The.basic discussion of complexes is taken 

from notes, by Pride, on complexes without involutary edges, 

and modified by myself to cover complexes with involution. 
\ 

Chapters 2,3, and 4 are presented in the order that the 

work for them was done. Chapters 2,3, alld 4 are intended 

(given the material in chapter 1) to be self contained, and 
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each has a full introduction. 

In Chapter 2 we use diagrams and pictures to study groups 

with the following structure. 

(a) Let r be a graph with vertex set V and edge set E. We 

assume that no vertex of r is isolated. 

(b) For each vertex VEV there is a non-trivial group Gv ' 

(c) For each edge e-{u,v}EE there is a set Se of cyclically 

reduced elements of Gu*Gv , each of length at least two. 

We define Ge to be the quotient of Gu*Gv by the normal 

closure of Se. 

We let G be the quotient of *Gv by the normal closure of 
VEV 

S- USe. For convenience, we write 
eEE 

The above is a generalization ofa situation studied by 

Pride [35], where each Gv was infinite cyclic.' 

Let e-{u,v} be an edge of r. We will say that Ge has 

property-Wk if no non-trivial element of Gu*Gv of free product 

length less than or equal to 2k is in the kernel of the 

natural epimorphism 
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We will work with one of the following: 

(I) Each Ge has property-W 2 

(II) r is triangle-free and each Ge has property-WI' 

Assuming that (I) or (II) holds we: (i) prove a 

Freihietssatz for these groups; (ii) give sufficient 

conditions for the groups to be SQ-universal; (iii) prove a 

result which allows us to give long exact sequences relating 

the (co)-homology G to the (co)-homology of the groups 

The work in Chapter 2 is in some senses the least 

original. The proofs are extensions of proofs given in [35] 

and [39] for the case when each Gv is infinite cyclic. 

However. there are some technical difficulties which we had to 

overcome. 

In chapter 3 we use the two ideas of star-complexes and 

coverings to look at NEC-groups. 

An NEC (Non-Euclidean Crystallographic) group is a 

discontinuous group of isometries (some of which may be 
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orientation reversing) of the Non-Euclidean plane. According 

to Yilkie [46], a finitely generated NEC-group with compact 

orbit space has a presentation as follows: 

Involutary generators: Yij (i,j)EZo 

Non-involutary generators: 6i (iElf), tk (l~~r) 

(*) Defining paths: (YijYij+,)mij (iElf, l~j~n(i)-l) 

where 

In Hoare, Karrass and Solitar [22] it is shown that a 

subgroup of finite index in a group with a presentation of the 

form (*), has itself a presentation of the form (*). In [22] 

the same authors show that a subgroup of infinite ingex in a 

group with a presentation of the form (*) is a free product of 

groups of the following types: 

(A) Cyclic groups. 



(vii) 

(B) Groups with presentations of the form 

Xl' ... 'Xn involutary. 

(e) Groups with presentations of the form 

Xi (iEZ) involutary. 

We define what we mean by an NEe-complex. (This involves a 

structural re$triction on the form of the star-complex of the 

complex.) It is obvious from the definition that this class of 

complexes is clo$ed under coverings, so that the class of 

fundamental groups of NEe-complexes is trivially closed under 

taking subgroups. We then obtain structure theorems for both 

finite and infinite NEe-complexes. 

We show that the fundamental group of a finite NEe-complex 

has a presentation of the form (*) and that the fundamental 

group of an infinite NEe-complex is a free product of groups 

of the forms (A). (B) and (e) above. 

We then use coverings to derive some of the results on 

normal subgroups of NEe-groups given in [5] and [6]. 
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In chapter 4 we use the techniques of coverings and 

diagrams. to stue,iy the SQ-universau'ty of Coxeter groups. This 

is a problem due to B.H. Neumann (unpublished). see [40]. 

A Coxeter pair is a 2-tup1e (r.~) where r is a graph 

(with vertex set V(r) and edge set E(r» and ~ is a map from 

E(r) to {2.3.4 •.•• }. We associate with (r.~) the Coxeter group 

c(r,~) defined by the presentation 

tr(r,~)-<v(r);(xy)~({X'Y}) ((x,y}eE(r»>, 

where each generator is involutary. 

Following Appel and Schupp [1] we say that a Coxeter pair 

is of large type if 2/Im~. I conjecture that if (r,~) is of 

large type with IV(r)I~3 and r not a triangle with all edges 

mapped to 3 by ~. then C(r,~) is SQ-universa1. In connection 

with this conjecture we firstly prove (Theorem 4.1), 

Let (r,~) be a Coxeter pair of large type. Suppose 

(A) r is incomplete on at least three vertices, or 

(B) r is complete on at least five vertices and for 

1 
< -

2 
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Then C(r,~) is SQ-universal. 

Secondly we prove a result (Theorem 4.2) which shows: If 

(r,~) is a Coxeter pair with IV(r)I~4 and hcf[~(E(r»] > 1, 

then C(r,~) is either SQ-universal or is soluble of length at 

most three. 

Moreover our Theorem allows us to tell the two possibilities 

apart. 

The proof of this result leads to consideration of the 

following question: If a direct sum of groups is SQ-universal, 

does this imply that one of the summands is itself 

SQ-universal? 

We show (in appendix B) that the answer is "yes" for 

countable direct sums. 

We consider the results in chapter 4 and its appendix to 

be the most significant part of this thesis. 



NOTATIONS 

Let G, Hand Ki (iEI) be groups. 

GxH is the direct product. 

G*H is the free product. 

LHi is the direct sum. 

iEI 

G 4H G embeds in H. 

We adopt the usual notation in set theory. 

RUS is the union of sets Rand S. 

Rns is the intersection of sets Rand S. 

R~S means R is a subset of S. 

rER neans r is an element of R. 

IRI denotes the cardinality of R. 

Zn is the cyclic group of order n. 

Fn is the free group of rank n. 

Z is the integers. 

The following notations are introduced in the text. 

Let Jt be a 1-complex. 

V()S) set of vertices of ~. 
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E(~) set of edges of 36 . 

,(e) initial vertex of the edge e. 

T(e) terminal vertex of the edge e. 

a- 1 inverse of the path a. 

L(a) length of the path a. 

lv the empty path ass.ociated with the vertex v. 

Le(a) nwnberof times e,e- 1 appear in a path a. 

star(Y')-( e: eEE(3€), ,(e)-v). 

(I) 
a-~(3 a is freely equal to (3 in ): . 

Let A-<?i;;p>.. (>"I:A» be a 2-complex. 

A is the l-skeleton 36. 

P>.. is a non-empty closed path in ~, called a defining path. 

A is the set of elements called indices. 

11' (j~ ,v) is the fundamental group of A- at v. 
1 

Am an element of Am is said to be of level m. 

R(~) is the set of cyclic permutations of defining p~ths and 

there inverses 

a-", (3 a is equivalent to (3 in fo . 

[a]~ the equivalence class containing a with respect to -~. 
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Jt st the star-complex of ~ . 

Tst(~) the inverse of the last edge of ~. 

~-1 st the inverse of ~. 

~ st(v) the full subcomplex of list on star(v). 

CG(A) the connectivity graph of .h . 

star<p(v)-{e: eestar(v). <p(ehE( 1»} (where <p: v4 -+ 'lS3). 

Let & -<X1 .X2 .r> be a presentation. 

X1 the set of non-involutary generators of '6'. 

X
2 

the set of involutary generators of f . 

-6' means -~ . 

Let} be a diagram. 

~K the angle at the corner K. 

K(A) the curvature of a region A. 

K(a) the curvature of a vertex a. 

Let Ip be a picture. 

,pO 
a mirror-picture. 

-+ 
~ a spray. 



(xiii) 

ffW(Y) the sequence associated with y. 

N the class of NEe-complexes. 

F the class of Fuchsian-complexes. 

S the class of Surface-complexes. 
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CHAPTER 1 

BACKGROUND MATERIAL 

1.1 COMPLEXES WITH INVOLUTION 

A l-complex, X consists of two disjoint sets V(~) 

(vertices) and E(a;) (edges) and three maps, 

L : E (x:) --+ V (~ ), 1: E (~) --+ V ( X) and - 1 : E (~) --+ E (~ ) , 

satisfying: 

An edge of ~ is said to be involutary if e-e- 1 • Note 

that, for such an edge L(e)-1(e). When ~ has no involutary 

edges, the notion of I-complex coincides with the concept of 

"graph" as considered by Serre, {42], and others. 

Remark: In this thesis we will only use the term graph to 

refer to a set and a collection of two element subsets of it. 

A I-complex can be represented diagramatically as follows. 

A vertex is represented by a point. For each involutary edge, 

x say, we draw a loop (labelled x) at L(X). The remaining 

edges can be divided into two element sets of the form 



2 

(e,e- 1). For each of these sets we select one of the pair, e 

say, and draw a directed segment (labelled e) joining the 

point corresponding to l(e) to the point corresponding to r(e). 

Example 

This represents a l-complex with three vertices v
"

v 2 ,v3 

A non-empty path a in 3fis a sequence e
" 

... ,en (usually 

written without the commas) of edges of ~ with r(ei)-t(ei+1) 

l~i~n. Define t(a)-t(e , ) and r(a)-r(en). The path a is said to 

be closed if L (a)-r (a). The length of a, L(a), is n. The 

inverse of a , a- 1 , is the path en' ... e,
'

. For an edge e of 

we define Le(a) to be the number of times e and e- 1 occur in 

o 0 
a. If a is closed then we can write a-aP(a) where a is not a 

o 
proper power and p(a) is a positive integer. We call Q the 
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root of Q, and p(Q) the period. 

With each vertex, v, of ~ we associate an empty path, 1v' 

It has no edges and we define L(lv)-O, L(lv )-r(lv )-vand 

1v'-lv ' If it is clear which vertex is intended then we will 

denote the empty path at v simply by 1. 

If IV(;£) 1-1, we call *' a bouquet. 

A free reduction on a path Q consists of deleting an 

adjacent pair of edges of the form ee-'. A path Q is said to 

be reduced if no free reduction can be applied to it and is 

cyclically reduced if for every cyclic permutation Q* of Q, 

the first edge of Q* is not the inverse of the last edge. 

Two paths Q,~ are said to be freely equal if there exists 

a sequence 

where in each pair (Qi,Qi+,) O'i"':k one path is obtained from 

. e,) 
the other by a free reduction. We write th1s as Q-¥~, or just 

QJV~ if no confusion can arise. A path Q is said to be freely 

contractible if a_UJ1. 

If Q and ~ are paths in ~ we say that the product, Q~, of 
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Q and ~ is defined if 1(Q)-L(~). Then Q~ is the path 

consisting of the edges of Q followed by the edges of ~. 

A 1-complex ~ is said to be connected if given any two 

vertices u, v then thell'e is a path Q in)S with L (Q)-u and 

1(Q)-V. A subcomplex of a 1-comp1ex ~ is a subset of 

v (3f ) UE (~) whith is e 10sed under L, 1 and - 1 If VS;;V (~) then 

the full subcomplex on V consists of V together with all edges 

e of ~ where both t(e) and 1(e) lie in V. A maximal connected 

subcomplex of a 1-complex is called a component. 

A tree is a connected 1-comp1ex in which no non-empty 

closed path is reduced. 

We now define mappings (of 1-complexes). Let ~ and I be 

1-complexes. 

is called a mapping (of I-complexes) if it is a function 

sending vertices of ~ to vertices of 1 and paths in ~ to 

paths in I' and satisfying: 

(i) ~(lv)-l~(v) for all VEV(~). 

(U) ~(Q-l )J/}~(Q)-l for all pathsCt in ~ . 
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We call ~ rigid if L(~(a»-L(a) for all paths in )€ (that 

is ~ maps edges to edges). We call ~ pure if ~(a-l)~(a)-l for 

all paths in .?f-. 

A 2-complex, ~ , is an object 

< 3t; PA (Atl\» 

where )f is a I-complex (called the I-skeleton of ~ and 

1(1) 
denoted by JV where neccessary) and each PA is a closed 

non-empty path in ~. The PA'S are called defining paths (for 

)&). The elements of 1\ are called indices. A 2-complex is said 

to be finite if V(~)UE(Je)UI\ is a finite set. A path in ~ is 

a path in its I-skeleton. The vertices ( respectively, edges) 

of J. are the vertices (respectively, edges) of its 

I-skeleton, we define v~)-vrx. ), E(.A- )-E(~). 

If the I-skeleton of ~ is a bouquet, we say that ~ is a 

presentation. 

There are four ways that we will descibe a presentation. 

The first is in its form as a 2-complex. 
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<Pi ~q1; 
(iEI) j EJ) 

The second is by listing its edges and defining paths 

Non-involutary edges: pi 1 (iEI) 

Involutary edges 

Defining paths 

The third is in the form 

< Pi (iEI) qj (jEJ) PA (AEA» (Pi (iEI) non-involutary, 

qj (jeJ) involutary). 

The fourth is in the form 

and fourth cases the Pi's (respectively, qi's) are called the 

non-involutary (respectively, involutary) generators, and the 

PA's the relators. 

The third and fourth forms correspond to the usual forms 

for a presentation, as found in Magnus, Karrass and Solitar 

[30) and extended, by Pride [38], to incorporate the notion of 

involutary generators. 



7 

Let R(Je) be the set of those paths ~, in ~ for which 

some cyclic permutation of ~ or ~-1 is a defining path of ,,4. . 

Let ~ be a 2-complex. We define an equivalence relation 

-~ on paths in A as follo'Ws. 

An elementary reduction of a path a in db is a free 

reduction on a or the deletion of some subpath ~ER(Jb) from a. 

For two paths a and ~ we say a-~ ~ if there exists a sequence 

where in each pair (ai,ai+l) O~i~n one path is obtained from 

the other by an elementary reduction. 

If ~ is a presentation and for two paths a,~ we have a~$ 

we will sometimes write 

The -A -equivalence class containing. a is denoted [a]~ or 

[a] if no confusion can arise. If a-A lv for some VEV(~) we 

say that a is contractible (inJt). We note that every element 

of R(c/t) is contractible. 

If a and ~ are two paths in~ such that a~ is defined, we 

define [a]~ [~]A -[a~] (this is easily seen to be well 
t.}V \IV ~ 



defined) . 

'Let vEv(v4). We define the fundamental group of it (at v), 

r1(~ ,v), to be the group with 

f'[a]~ : a a path in ~ with t(a)-r(a)-v) 

as underlying set and with the above multiplication. The 

Let fj-< X1 'X2 ; r> be a presentation. The group defined by 

cr is the fundamental group of the complex with a single 

vertex, non-involutary edges p%1 (pEX1 ), involutary edges q 

(qEX 2 ) and defining paths the elements of r. 

We now define mappings (of 2-complexes). Let ~ and tS be 

2-complexes, say vt -< =t ; Ph (XEA» and 1; -< J ; IJ..y ('YEn>. 

Then t.p: J4 -+'63 is called a mapping of 2-complexes if it is a 

function sending vertices of ~ to vertices of ~ and paths in 

~ to paths in 7J." satisfying: 

(i) t.p(lv)-lt.p(v) for all VEV(vt) 

(U) t.p(a-1)~ ",(a)-1 for all paths a in a4. 

8 
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paths in /1fJ . 

(iv) I{)(P'A) is contractible in ~ for all 'AEA. 

1 (I) 
(N.b. I{) need not induce a mapping of I-complexes between 10 

~l) 
and ~ unless A and r are empty.) 

Remark: (1) It is sufficient to define I{) on the edges of ~ , 

provided L(I{)(e»~(L(e» for all eEE(~). 

(2) (iv) guarantees that the image of any contractible 

path is itself contractible. 

Example 

Let 

axbc > 

and 0-

We define a mapping from A to ~ by 

9 
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x ~ y, a:!: 1 ~ e:!:l, b ~ t- 1 , b- 1 ~ 8, C:!:l ,y,d:!:l ~ Iv' 

We call ~ rigid if L(~{a»-L{a) for all paths in ~; pure 

if ~(a-l)~{a)-l for all paths in ~ ; and incompressable if,no 

edge is mapped to an empty path. 

A based mapping of 2~complexes 

~:{; ,u) ~ (63 tV) 

is a mapping of 2-complexes from .~ to ~ which sends u to v 

Let ~:; -+($ be a mapping of 2-complexes. Then for every 

vertex v of A we have an induced homomorphism 

~*:"'1{.h ,v) -+ "'1(l$ ,~(v» 

given by ~*([a]) )-[~{a)]s . 

Let ft -< ~ ; P>.. (>"EA» be a 2-complex. If UEV{ft) define 

star(u)-{e: eEE(~), L{e)-u). 

Let ~-<;j ; I'-t ("Yen> and let ~:); -+"$ be a mapping of 

2-comp1exes. Define 

star~{u)-{e: eEstar(u) and·~{e)EE{1B». 

Clearly ~(star~(u»~star(~{u» for all UEV(~). We say ~ is 

locally injective/surjective/bijective if 



is injective/surjectivefbijective for all UfV(~). 

If !p: ft -+8:> is a mapping of 2-complexes and !p(¢)-v we 

say ¢ lies over v. If Q is a path in ~ and if ¢ lies over 

called a lift of Q at ¢. 

Example 

LEMMA 1.1 

t\ v 

v e , 

Let !p: Jv -+ fP be an incompressable mapping of 

2-complexes. The following are equivalent: 

(I) For any vertex ¢ of .}v and path Q in "'6) with 

(II) !p is locally surjective. 

11 

(I) • (II). Let efstar(!p(¢». Then there exists a lift of e 
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A atv (of length one, by incompressability), namely an element 

A of star~(v). Thus ~ is locally surjective. 

(II) • (I). We argue by induction. If L(a)-O then the 

result is clearly true. So suppose L(a)~l and write a-pe 

(eEE(13». Then by the induction hypothesis there is a path ~ 

. A ,1-
local surjectivity there is an edge e in star~(T(~» with 

~(~)-e. So ~ is a lift of a at~, the result follows by 

induction.O 

LEMMA 1.2 

Let r.p: Jr -+ fl:> be a mapping of 2-complexes. Suppose that 

for any vertex ~ of J,. and any path a in D3 with L (a)-~(~), 

there exists at most one lift of a at ~. Then r.p is locally 

injective. 

A A A AA h i Then e 1 and e 2 are both lifts of e at v so e 1-e 2 • T us r.p s 

locally injective.O 
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Let ~:~ .~~ be a rigid, locally injective mapping of 

2-complexes. Let 0 be a vertex of Ju and a a path in ~ with 

L(a)-~(O). Then there exists at most one lift of a at O. 

We argue by "induction on L(a). If L(a)-O the result is 

obvious. So suppose that L(cy)~l and that a has a lift at O. 

10 A A A Write a-~e (eEE(w ». Let CY 1 and CY 2 be lifts of CY at v. Then 

Since ~1 arid ~2 are both. lifts of ~ at 0, ~1-~2 by the 

• A ~ AA A inductlon hypothesis. Let U-T(P1)' Then e 1,e 2Estar(u) and thus 

A A '" by rigidity (to guarantee e1,e2estar~(u» and local 

A A A A 
injectivity we have that e 1-e 2 • Thus a 1-CY 2 as required. The 

result now follows by induction.O 

Combining the above we have 

LEMMA 1.4 

Let ~: dt ~tlJ be a rigid, loca.lly bijectiv~ m;tppins of 

2-complexes. For any vertex 0 of /JJ and any Plfl th .CY in ~ 

with L(a)-~(O) there exis~s a unique lift of CY at 0.0 
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Let V': r.A ~!?> be a mapping of 2-comp1exes. We· say V' is 

equlvalenc:e preserving if it satisfies 

(1.1) V' 1s rigidl and locally injective. 

(1.2) 

contractllD1e in A . 

(1. 3) 

Example 

Consider 

J... < -0 b sb>. and 

lB- <eU ; ee- 1>. 

Define a mapping from ~ to 1]; by a t1 1-+ et1 • btl 1-+ e+ 1 • 

This is equivalence preserving. It also illustrates the fact 

that (1.2) is not vacuous since abEV'-1(ee- 1 ). 

LEMMA 1.5 

Let V': Jo ~ fh be an equivalence preserving mapping of 

. /\ I 
2-complexes. Let v be a vertex of v~ and lec a.~be pachs in~ 

/\ /\.1 R' respectively ac v. Then a~ p if and only if a-~ ~. 
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•. To prove this it suffices to deal with the case when ~ 

is obtained from ~ by an elementary reduction. The general 

case then follows by induction. 

(since ~(~) is cont~actible in ~). 

~. To prove this it suffices to deal with the case when ~ 

is obtained from a by an elementary reduction. The general 

case then follows by induction. 

Since ~ is rigid we may write ~~1~2 where ~{~l)-al' 

contractible path in ~ . Thus 
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/\/\M /\ Since ~ is rigid W$ may write a-al~a2 where ~(al)-al' 

LEMMA 1.6 

Let ~:~~ ~ be an equivalence preserving mapping of 

2-complexes. Let ~ be a vertex of ~. Then the induced 

homomorphism 

is injective. 

/\ /\ 
Let [a],S4Eker ~*. Then ~(a)~1. Hence by Lemma 1.5, a-,*1 

/\ 
Le. [aJ~-[l~. So ~* is injective.o 

LEMMA 1.7 

Let ~: A ~f) be an equivalence preserving mapping of 

2-complexes. Let ~ be a vertex of Jv . Suppose a is a closed 

~ /\ /\ /\ 
path in ~ with L(a)-~(v) and that the lift, a, of a at v 
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exists. Then ~ is closed if and only if [a]1$ ECP*1f 1 (A ,0) . 

•. Suppose ~ is closed. Then 

+. Suppose [a]~ E'P*1(l<.irJ .0). Then [a]'O} -[CP(~)]8 for some 

closed path ~ at 0. Thus a-~ cp(~). So ~-~ ~ by Lemma 1.5. 

Hence in particular T(~)-T(~)(-O) 1. e. ~ is closed.O 

Suppose cp:.A- -+ 1» is a locally surjective, pure, 

equivalence preserving mapping, between two connected 

2-complexes. Then cp is called a covering. 

Example 

and 

.~ - b c; (XbC)4, (a 2cxb)2 

If we define a mapping cp from )g to]? by 

Then cp is a covering. 



Remark: (1) If ~: Jo -+ 6!> is a covering and 1) has no 

involutary edges then the same is true of .k . 

(2) We emphasise again,because of its central 

18 

importance, that if.~ is a covering then '1'* is a monomorphism. 

THEOR.EK 1.1 

Let }u be a Gonnect.ed 2-complex. Let v be a vertex of * 
and let H be a subgroup of ~1(Jb,V). Then there is a covering 

~H:~H -+~ and a vertex VB ofJu H such that ~H*'JI'1(vkH,VH)-H. 

Let JJ -<~,;p}. (}.EA» and X-{ [~] ;, (~)-v) . 

We say that two elements [~] and [~] of X are equivalent 

mod H if T(a)-T(~) and [~~-lJEH. The equivalence class 

containing [~] is {[1'] [~]: [1'] EH} .We denote this by H[~]. 

Define the l-skeleton of do H as follows. 

Vertices: H[~] ([~]EX). 

Edges 

For an edge (H[~],e) we set 

't ({H[~l, e) )-H[~]. T ({Hfa] • e) )-H[~e] and (H[a] 1 e)-1-{H(~e] • e- 1). 

We take VB to be the vertex H[ lv] . 
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For a defining path PX-e 1e 2 ••• en of ~ and a vertex H[a] 

We note that this is a closed path in ~ H' 

The defining paths of ~H are then all of the p(X,H[a) 

(XlU\ ,"~'and [a] eX such that T(a)-, (px» . 

~is defined as follows: 

~(H[a])-T(a) (Hfa] a vertex of ~H)' 

~H«Hfa),e)-e «Hfa),e) an edge of ~H) 

We now show that ~ is locally surjective. Let u be a 

vertex of Jb and let a be a path in ~ from v to u, so H[a) 

lies over u. Let eestar(u). Then (H[a],e) r+ e and 

(H[a),e)Estar(H[a]). Thus ~ is locally surjective. 

Clearly ~ is pure. We now show ~ is equivalence 

preserving. I.e. we verify (1.1), (1.2), and (1.3). Firstly, 

~ is clearly rigid and locally injective;secondlY4'the 

elements of ~-1 (ee- 1 ) are of the form 

, 
(H[a}, e)(H[ae], e- 1 )"'(Hea], e)(HfaJ, e)-1 which is (freely) 



20 

construction. 

Now we show that JbH is connected. Let H[a] be a vertex of 

is a path in Jb H from H[lv] to H[a). Thus ~ is connected. 

Hettce IPW: JoH -+ df is a covering. 

Finally we show that ~*~l(~H,H[lv])-H. Let a be a closed 

loop at v. Then by construction of ~H and Lemma 1.7 

A [a]eH if and only if there exists a closed lift a of a at 

Remark: Since ~H* is a monomorphism, if we are only interested 

in the group theoretical structure of H, we need only consider 

~l(~H,H[lv]) as this is isomorphic to H. 

Examples 

(1) Consider the homomorphism of ~ 1 (.A, v) .onto. Z3~Z~:;defined 

by a ~ (1,0), J(. ~ (0,1). Let H be the kernel of this 

homomorphism. A transversal for H in ~,(~,V) is 

[1] , [a] , [a 2 ] , [x], [ax] , [a 2x] I thus v4H has vertices 
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edges are al-(H[1],a),a2-(H[a],a),a3-(H[a2J,a),a4_(H[xJ,a) 

Then ~H has 1-ske1eton 

The lifts of the defining path a 3xa-3x are 

(2) Let ~ be as above and consider the homomorphism of 

'K 1 (Jo ,v) onto Z3(-{O,l,2}) defined by a H 1, x H O. Let H be 

the kernel of this homomorphism. A transversal for H in 

'K 1 (Jb,v) is [lJ,[a],[a 2J. Thus ~ has vertices 

u1-H[1], u2-H[a], u3-H[a 2 ] and the edges are 

a 1-(H[1],a), a2-(H[a],a), a
3
-(H[a 2 ],a), x 1-(H[l],x) 
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x 2-(H(aJ,x), xS-(H[a 2 ] ,X). Then ~H has l-skeleton 

The lifts of the defining path aSxa-sx are 

Let X be a class of connected complexes that is closed 

under taking coverings (i.e. if Jb is an element of X and if 

¥': J/ --+.ft is a covering then jol is an element of X). Call a 

group an X-group if it is isomorphic to the fundamental group 

of an element of X. Call a group an Xr-group (respectively, 

Xi-group) if it is isomorphic to the fundamental group of a 

finite (respectively, infinite) element of X 

Using Theorem 1.1, we then have the following simple but 

useful resul t . 

LEMMA 1.8 (THE SUBGROUP LEMMAl 

Let X be as above. Then 

(1) A subgroup of finite index in an Xf-group is an Xf-grouP. 



23 

(II) A subgroup of infinite index in an Xf-group is an 

(III) A subgroup of an Xi-group is an Xi-group.D 



1,2 EQUIVALENCES AND TIETZE TRANSFORMATIOH~ 

If Jv and ~ are 2-comp1exes a mapping 

is called an equivalence if there is a mapping 

such that 

(1.4) 

for each path Q in Jb, and, 

(1. 5) 

for each path {3 in 1S • We say that the equivalence 8 is 

inverse to the equivalence ~. Two 2-complexes are said to be 

equivalent if there is an equivalence between them. It is 

easily checked that being equivalent is an equivalence 

relation. 

Similarly ~8 (u)-u (UfV(ll». Hence the restricti0t\ of ~ to the 

vertices of ~ is a bij ection from the vertices of Jo to those 

of '5). 

The notion of equivalence is related to "Tietze 
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transformations", as we now explain. 

Suppose V' is a se t in 1: 1 correspondance wi th V (rA ), and 

let q:V(~) ---+ V' be a specific bijection. Let :7f:' be the 

i-complex with vertex set V', edge set E(Jb), and functions 

,',1' and -1' define by 

Let ~' .. < *' ;PA (AEA». We have an equivalence from ~ to J/ 

given by 

We say that ~' is obtained from ~ by a Tietze transformation 

(TO). 

Next, let Ei (ieI) be a collection of contractible paths 

in 10, and let J -<%; PA (AEA), h (iEl) >. The identity on 

~ induces an equivalence from A to 1!> • We say that .~ is 

obtained from A- by a Tietze transformation (Tl). The 

transformation is said to be elementary if 111-1. 

Finally, suppose ?J is a l-compleK obtdn&d from EtE by 

adjoining additional edges fj,fjl (jeJ). Suppose that for jEJ 
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there is a path 'Yj in A from t (fj) to T (fj ) with 'Yj 

contractible in .It if fj-fJ1. Let 

b -<,;p)" (XeA), fJ1j'j (jeJ) >. 

The inclusion of ~ in ~ induces an equivalence from ~ to G 

(with inverse equivalence given by 

v H v (VEV(,fo», e He (eEE(J7» and fj H 'Yj (jeJ». 

We say that ~ is obtained from; by a Tietze transformation 

(T2). The transformation is said to be elementary if IJI-l. 

THEOREH 1.2 

Two 2-complexes Jo, ot' are equivalent if and only if 

there is a finite sequence of 2-complexes 

where for i-O,l, ... ,n-l, one ofJ> i,6ti+1 is obtained from the 

other by a Tietze transformation (TO), (T1) or (T2). If jo , .jQ' 

are finite then all (Tl) and (T2) transformations can be taken 

to be elementary. 

The "if" part follows from the sbove discussion. We now 

prove the "only if" part. Let 
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Jv'-<~; ~p. (p.flM», 

and !p: Ju -+ ,i' be an equivalence with inverse 8. 

Firstly we show that we may assume that 

LIt ei' (ifl1) be the non-involutary edges of ~ and ej 

(j eJ, Jn1-p) be the involutary edges of Jr. Let ~, be 

obtained from ~ by adjoining new non-involutary edges 

and new involutary edges 

where the f's are chosen so that 

(fR I : keIUJ)nE( tA')-P. 

Let ~,-<~,; aX (XeA), fk 1ek (kflIUJ». So ~, is obtained 

from ~ by a (T2) transformation. Clearly 6k lfk (keIUJ) is 

contractible in ; l' Also, if we let a~ be that wor4 obtained 

from aX by replacing any occurence of ei (kflIUJ)b1 fi in it, 

the collection a~ (XflA) is also corttractdlble'in A" 

Let )0.2-<':1:, ; ax,a~ (XeA) , fk'6k' ektfk (keIUJ». Then A2 is 
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obtained from A, bya (Tl) transformation. By symmetry if 

,fo 3-<~ ,; a~ (>'EI\) , ei('fk (kE(IUJ», 

then ~3 is obtained from ~2 by a .transformation inverse to 

(T,l). If we let ~ 2 be obtained from '* 1 by deleting the ek IS 

and their inverses and if we let 

J, 4-< ](f;2: (X~ (A Et\) > , 

we find (again by symmetry) that ~4 is obtained from Jb
3 

by a 

transformation inverse to (T2). Thus we may assume, without 

loss of generality that (1.6) holds. 

Secondly we show that we may assume that 

(1. 7) V(~ )-V( vt') and 'I' maps V( tft) identically onto V( tit') 

We take the restriction oftp to V(Jb) as the q in the 

definition of the Tietze transformation (TO), to obtain a new 

2-complex 04 , equivalent to ~ with vertex set V(~'). 

So we now assume that (1.6) and (1.7) hold. 

Let ei' (iEI) (respectively f$' (pEP» be .the 

non-involutary edges of )0 (respectively };t') andej· (j EJ) 

(respectively f~ (~EH» be the involutaryedges of db 

(respectively }v'). 

28 



Let Ibe obtained from !' by adjoining e~1 (keIUJ) to it. 

Let Jt ~-< 'J:; (31' (p.eM) , Bk'~(ek) (keIUJ». (We note that 

~(ek)2~(ei), so if ~ is involutary rp(ek) 2 is contractible in 

A')· 

Now ~~ is obtained from ~' by a (T2) transformation. Now 

since ~-~f 'I'(ClJk) (keIUJ) we have W~/¥,,(W) for all paths W in 

J. ~, in particular 

a>.,,: ¥,(aA)-~: 1 ,(>.eA). 

Also we have () (fO')1jt,' '1'( () (fO'»-.At fO' (O'ePUH). So fu
' 

() (fO') is 

contractible in A~' (O'E (PUH». Let 

; ;-< ~;a}.. (>.E/\) .(31' (p.eM). ek'~(ek) (keIUJ),fu' () (fO') (O'EPUH». 

Then~; is obtained from v4~ by a (Tl) transformation. 

Now. by symmetry. v4; can be obtained from.j; by a similar 

sequence of Tietze tran&formations. The result follows.O 

There is also the notion of based equivalences. We say 

that the based mappingII': (10. u) -+ ('6 . v) is a based 

equ1valence if there is a based mapping (): (~ • v) ..,f,t~. u) 

such that (1.4) and (1.5) hold for all paths a and (3 with 

L (a)-T(a)-u. d(j}-T «(3)-v. Obviously an equivalence~: Jo -+ fi, 
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gives rise to a based equivalence for any choice of u and 

~(u). If ~:(Jb ,u) ~ (~ ,v) is a based equivalence then 

is an isomorphism, with inverse 8*. 

Given any connected 2-complex ~ and vertex u, there is a 

based mapping from (~,u) to a presentation. The method of 

obtaining such a presentation is called collapsing a maximal 

subtree, which we now describe. 

. 1(') 

Let tbe a maximal subtree of~, and let Erl (iEI) be the 

edges of Jo lying outside Y. Let)/ be the bouquet with vertex 

(iel). Define, 

1(1) \ /' 
~: \J\ ~ W by 

~(e)- {l eE 1:' 
gf e-Ef (ieI, e-±l). 

Let ~ -< 'w, ~(a>,> (XeA». Then 

~: (vt- ,u) ~ (f ,v), 

is a based mapping. We show that it is a based equivalence, by 

exhibiting an inverse, 8, for it. For iEl let Pi (respectively 

qi) be the geodesic in T from u to ,(Ei) (respectively TeEi»' 



Define 

8: f~.ltJ by 

Then 

8:(f IV) ~ (Ja ,U) is a based mapping. Clearlytp8-Idq I 

and for all closed paths a in ~ starting at u 

8tp(a)-J. a. 

To see this let a be such a path. Write 

where 8i is an edge lying outside 1r (l'i'n) and Ai is a path 

Hence 8tp(a)Jba. Thus 8 is inverse to '1'. and so 'I' is a based 

equivalence. 
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1.3 THE LJr{EL METHOD 

Let 

Suppose that 1\ is written as a disjoint union of subsets (some 

of which may be empty): 

co 
1\- U Am. 

m-O 

An element of Am will be said to be of level m. We assume 

that if A has level at least one, then some cyclic permutation 

edge associated with A. 

Let 

~O-~-(eA,e~l: A has level greater then O}, 

and for m:::'O let 

Note that if A has level m~l, then CYA is a path in ~ m-l' For 

suppose not. Then there is some edge in CYA that is for 

some ~EAk,k~m. Since ~~A, this edge must contradict our 

assumptions about the e~s. 
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Define '1': St -+;t; 0 as follows. First define 'I' on ;c- 0 to be 

the identity. Suppos~ that 'I' has been defined on ~m-1 (m~O). 

Extend 'I' to )em by setting 

We now show that Jt o and Jb are equivalent. First note the 

following three results. 

(i) For any path O! in .j" tp(0!-1 )"J
o 

tp(0!)-1. We prove this 

inductively. Certainly this is true if O! is a path in ~o for 

tp(O!)-O! and tp(0!-1)-0!-1. So suppose inductively that the result 

is true for all paths in :tm- 1, and let O! be a path in .?tm. 

associated with an index ~i of level m, and no edge involved 

in any O!i is associated with an index of level m. 

If ei is non-involutary then 



If ei is involutary then since ~(ei)2 is a defining path 

of Jo 0 we have 

-~(Qn)-l~(eftn)-l ... ~(Ql)-l~(e~l)-l~(Qo)-l 

(by the above remarks, and the 
inductive hypothesis) 

Thus (i) holds. 

(ii) ~(Pp.)70o 1 (p. of level greater than 0). 

-1. 

(iii) For any path Q in .A , ~(Q)-do Q. 

Certainly this is true if Q is a path in )So' for ~(Q)-Q 

there. So suppose inductively that the result is true for all 

34 
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paths in Je m- 1 (m~O), and let a be a path in ~m' but not in 

~m-l. Let a' be the path obtained from a by replacing any 

edge eA by a A, for A of level m (and also replacing e~l by a~l 

~(a')-~(a), and by induction ~(a')-~ a'. Hence ~(a)-~(a')-~ a, 

as required. 

By (i) and (ii) above, ~ induces a mapping of 2-complexes 

(also denoted by ~) from Jb to ~O. By (iii) the inclusion of 

~ 0 in -* induces a mapping 8 from Jr 0 to Js. Clearly ~O-IdJ.o . 

By (iii) o~(a)~ a for every path a in J\: Thus ~ is an 

equivalence, with inverse 8. 
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1.4 AN APPLICATION OF THE LEVEL METHOD TO "QUADRATIC-LIKE" 

COMPLEXES 

We begin with some terminology. If 3f is a i-complex and ~ 

is a path in ~ then we let E(~) denote the set of edges 

occuring in ~ and ~-1 • 

Suppose we have a collection ~i (ill) of closed paths in 

~. We define the connectivity graph of this collection as 

follows: the vertex set is I; and (i,j) is an edge if and only 

if E(~i)nE(~j) is non-empty. A label of an edge (i,j) is a 

choice of element eEE(~i)nE(~j). A label, e, is said to be 

o 0 
quadratic if e is non-involutary, Le(~i)-Le(~j)-l, and 

Le(~k)-O for k~i,j. A subgraph in which each edge has a 

quadratic label is said to be quadratically labelled. 

The connectivity graph, CG(Jv), of a 2-complex ~ is 

defined to be the connectivity graph of its collection of 

defining paths. 

Throughout the remainder of this section, let 

~ -<;E-; P>. (>'EA». 

For convenience we will denote the period of P>. by p(>') 
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(rather than p(P A». 

THEOREM 1.3 

Let A* be a subset of A, and suppose that the full 

subgraph of CG(~) on A* has a spanning subforest F which is 

quadratically labelled. Assume that the following condition 

holds: 

If T is a connected component of F which is finite, 

(1. 8) then there is a vertex 0 of T, and an edge e of Jt, 
o 

such that Le(Po)-l and Le(PA)-O (AEA-{o}). 

Then ~ is equivalent to a 2-complex 

(1. 9) 

where the t's are non-involutary edges ofi-::t: and tA~t~l for 

For notational convenience we will carry out the proof for 

the case when F consists of a single tree T. If T is finite 

then we take 0 to be a vertex as in (1.8). If T is infinite we 

take 0 to be any vertex of T. 

o 
Let ~ be the l-complex obtained from 7E by adding new 
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For the purposes of constructing CG( ~ ), the subscript of 

tAgA will be taken to be A and that of t~(A) will be taken to 

be A I. We then consider CG( Jo ) to be a subgraph of CG( j ) in 

the obvious way. 

Now there is a subtree Too of T such that Too either has no 

extremal vertices, or has just one extremal vertex, namely 0, 

and such that removing the edges of Too from T gives a forest 

of finite trees Ti (iEI). If T is finite then Too consists of 

the single vertex 0, and I is a singleton. To see that Too 

exists when T is infinite, note that since each vertex of T 

has finite valence, by Konigs' infinity lemma, [47,p.79], 

there is an infinite reduced path in T begining at o. Let Too 

be the union of all such infinite paths. Clearly at most 0 is 

an extremal vertex of Too. Suppose if possible that removing 

the edges of Too from did not leave a forest of finite trees. 

Then there would be an infinite tree, T' say, joined to Too at 

a vertex v of T , containing no edges of Too. Again by Konigs' 
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infinity lemma there is an infinite reduced path r in T' 

begining at v, but now the concatenation of the geodesic from 

o to v with r is an infinite reduced path in T not in Too - a 

contradiction. Hence all the trees are finite. 

Each of the finite trees Ti has a unique vertex Ai in Too. 

~e let di be the maximum of the lengths ·of the geodesics in Ti 

starting at Ai' 

~e now partition the set 

o 
of subscripts of defining paths of ~ so that we can apply 

the level method. Let 

and for m~O, let 

(Here d(A,Ai) is the length of the geodesic from Ai to A.) For 

Af8m (m~O) the edge eA associated with A· is obtained as 

follows. Suppose AfTi' There is a unique edge in Ti joining A 

to a vertex of distance d(A,Ai)-l from Ai' ~e take e A to be 

the label on this edge. 
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Using the above partition of e and applying the level 

method we obtain an equivalence from ~ to a 2-complex 

The tree Too is a spanning subtree of the connectivity graph of 

the collection 

and retains its original labelling. 

We now partition the set 

of subscripts of defining paths of Jo'. 

Let 

For m=l,2, ... let J m be the set of iEI such that the distance 

from 0 to Xi in Too is m-l. The edge ii associated with iEJm 

(m~O) is obtained as follows. First consider the case when Too 

is infinite. Choose an edge of Too joining i to a vertex in 

J m+" and take ii to be the label on this edge. Next consider 

the case when Too consists of the single vertex o. Then J,-(o) 

and J m-9l for m~l. We take the edge io associated with oEJ, to 
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be the edge e as in (1.8). 

Using the level method, we then obtain an equivalence from 

~, to a 2-complex as in (1.9).0 

Example 

~i+2 

ai+l Ibi+l 

Ja - < 
~ 

·,fi+l 

si J bi 

-fi 
" 

CG(..k )-

Each edge (i,i+ll can be labelled bi+l' This labelling is 

clearly quadratic. Thus CG(~) has a spanning subtree 

consisting of {i,i+11 (iEZ) which can be quadratically 

labelled. Hence by Theorem 1.3, ~ is equivalent to a 2-complex 

< 1-; tTi (iEZ». 
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1.5 STAR-COMPLEXES OF 2-COMPLEXES 

Let ~ be a 2-comp1ex. We can associate with ~4 a 

1-complex Jr st, called the star-complex of v~ , as follows: 

Vertex set of hst : E(ck), 

Edge set of ~st R(Jn, 

with maps Lst,Tst and -1 st Given by 

Tst(-y)-inverse of the last edge of -y (-YER(.Ju» 

since -y is a closed path in Jb it is easy to see L(e)-L(f). 

Hence if g,h are two vertices of ~st in the same component of 

ftst then L(g)-L(h). 

For a vertex v of .:A we denote the full subcomplex of ~ st 

on star(v) by J,st(v). We say that a 2-complex,.fo is 

star-connected if ~st(v) is connected for each vertex, v, of 

do. 
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Examples 

(1) 

b; (e 2ab)2, (xba)3 > 

,Ast: e- 1 (e~be)2 

" 
e x a- 1 

(abe2) 2, '-(e2ab) 2 

a (axb) 3 b- 1 b 

(- Ast(V» (- JJst(U» 

(2) b 

~ a+c: (e 2ab)2, (xba)3 

x 

1B s t is identical with .As t, but note that Ja is 

star-connected whilst 0 is not. 

The following will prove crucial in chapter 3. 



PROPOSITION 1.1 

If ~ is connected and star-connected then CG(~) is 

connected. 

Let PA (AfA) be the collection of defining paths of Jo . 

Let A, A' fA, and let efE(PA) and ffE(P A'). Since.A is 

connected there is a path e,e 2 ••• en+, in J6, where e,=e and 

en+,-f. Since ~ is star-connected, for i-1, ... ,n there is a 

path (3i,(312' .. (3ir(i) in ~st starting at the vertex ell and 

ending at the vertex ei+l' Let d«(3ij) be an element A of A 

such that (3ij is a cyclic permutation of p~l. Then the 

following are elements of CG(v~) (where a singleton is to be 

regarded as a vertex). 

( }. , d «(31 1 ) }, ( d «(3nr (n) ) , A ' } , 

l~i~n, l~j~r(i)-l, 

l~i~n. 

Thus we obtain a path in CG(~) from A to A'.O 

INDUCED MAPPINGS OF STAR-COMPLEXES 

Let~: ~~~ be a pure, incompressible mapping, with 

44 
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~(R(~ »~(~). We then have an induced (rigid and pure) 

mapping 

~s t: .t s t -+ '£ s t 

defined by 

~st(e)_ first edge of ~(e) (e a vertex of .~ st) 

It is easily seen that if v is a vertex of ~ then ~st maps 

vt st(v) into tBst(~(v». 

THEOREM 1.4 

Let ~: A -+ S be a locally bijective. rigid. pure 

mapping. with ~(R(~»~($). Then the following are 

equivalent: 

(A) ~st is locally bijective. 

(C) For each vertex v of v\ . ~st maps I7tst (v) 

isomorphically onto ~st(~(v». 

See [37] Theorem 1.0 



1.6 DIAGRAMS 

DIAGRAMS OVER PRESENTATIONS 

Let ~-<X"X2;r> be a presentation. Planar (Van Kampen) 

and conjugacy diagrams over cr (at least when X2-¢) are 

discussed at length in [27,Chp. V]. Spherical diagrams are 

discussed in [7] and elsewhere. Here we give a general 

treatment of diagrams which includes all of the above, and 

more. The treatment follows 
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[36],[37] and the reader is refered there for further information. 

A & -spine is a finite combinatorial subdivision of a 

closed interval, where the oriented edges are labelled by 

elements of X,UX~'UX2 (with the understanding that if an 

oriented edge is labelled by ZEX,UX~'UX2' then if we traverse 

the edge against the orientation we read Z-l). A ~-sphere is 

a tesselated sphere, whose or<iented edges are labelled by 

elements of X,UX~'UX2 and for which there is a subset of 

regions (called non-distinguished regions, possibly consisting 

of all of the regions on the sphere) each of which has a 

boundary cycle labelled by a element of rUr-'. A label on a 

region ~ is ~(e,) ... ~(en) for any anti-clockwise boundary 
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cycle e 1 ... en of ~.The remaining regions are called 

distinguished regions. A diagram ,.:J , over f) 

is an ascending union 

where lois a single vertex, and J i+1 is obtained from ~ i 

either by attaching a 0 -spine to .J i by one of its endpoints 

to a vertex of J i' or by attatching a ~-sphere by one of its 

vertices to a vertex of J i . 
If J consists of a single sphere we will wish, in chapter 

4, to assign numbers, called angles, to the corners of the 

regions We denote the angle at a corner K by~. For a 

region ~ of J we define the curvature, K(~), of ~ to be 

h-(s-2)1, 

where h Is the sum of the angles at the corners of ~ and s is 

the number of corners of~. For a vertex, a, we define the 

curvature, K(a), at a to be 

where g is the sum of the angles of the corners incident at a. 

Using the Euler characterisic of the sphere it is easily shown 



that 

Let.J be a diagram over ~. Let .:1, and.:1 2 be ~ 

non-distinguished regions (not necessarily distinct) of ;L 
with an edge e~a.:1,na.:12. Let e6, and 6 2 e- l be boundary cycles 

of.:1, and.:1 2 respectively. Let U, .U 2 be the labels on 01 and 

6 2 respectively. ~ will be called reduced if one never has 
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The foll.owing two Lemmata are adaptions of results in [7]. 

LEMMA 1. 9 

Let 6 - <x, ,X2 ; r> be a presentation. Let sJ be a 

diagram over 6 with k distinguished regions labelled by words 

W, •...• Wk. Then there exist words U, •...• Uk on X, UX 2 such that 
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LEMMA 1.10 

Let ~ - <X 1 ,X 2 ; r> be a presentation. Suppose that there 

exist words U1"",Uk,W1""Wk on X 1UX 2 such that 

U1W1U~1",UkWkUk1 -« 1. 

Then there exists a reduced diagram overJ with distinguished 

regions ~1""'~k such that for some boundary cycle of ~i the 

label on ~i is Wi (l~i~k).O 

We note that Van Kampen diagrams correspond to the case of 

one distinguished region, conjugacy diagrams to two 

distinguished regions, and spherical diagrams to no 

distinguished regions. In general, more distinguished regions 

relate to general dependence problems, see [37]. 

PLANAR DIAGRAMS OVER QUOTIENTS OF FREE PRODUCTS 

It would be possible to give a general treatment of 

diagrams over quotients of free products along the lines of 

that'described above for presentations. However, we will only 

require the concept of planar (Van Kampen) diagrams, so we 

will content ourselves with describing these. The following is 

a variation on the discussion in Lyndon and Schupp [27, Chp.V]. 



Let H - *Hi' a word on H is a finite sequence (usually 
if I 
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written without the commas) of elements of UHi' The length of 
iEI 

Clearly we may talk about the element of H (or of any quotient 

of H) that any word on H defines. A word on H is said to be 

trivial if it defines 1 in H, and non-trivial otherwise. Let r 

be a set of words on H. An r-diagram is a finite oriented 

planar map M and a function ~ from the edges of M to UHi 
iEI 

satisfying 

(ii) M is connected and its complement in the plane has 

precisely one component. 

(iii) If A is any region of M there is a boundary cycle 

equal (in *Hi) to an element of r. 
iEI 

anti-clockwise boundary cycle of A. An r-trivial word on H is 

a word which defines 1 in <H;r> (the quotient of H by the 

normal closure of the elements defined by the elements of r). 
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LEMMA 1.11 

Let a 1a 2 ••• an be an r-trivisl word on H. Then there 

exists an r-diagram Mover <H;r> and a vertex v on aM such 

that if e 1 ••••• et is the boundary cycle of M beginning at v. 

then t-n and. 

To begin note that a
1
s

2 
••• an defines the same element in H 

l~j~k) . 

STEP 1 

Draw a "bunch of k lollipops". as follows. 

v 

Now subdivide the "stalk" from v to Vj into a number of 

segments equal to the length of Uj. For j-1 •...• k label the 

segment from v to Vj so that. reading from v to Vj we read Uj. 



S2 

Next subdivide a~j into a number of segments equal to the 

length of Rj. Label these segments so that the label on ~j' 

reading once anti-clockwise around ~j from Vj' is Rjj. Then 

the label on the above "bunch of lollipops", reading once 

anti-clockwise around its boundary from v, is 

following operations: 

(1) Insertion. Replace a word b 1 ••• bjbj+l" .bn by 

(2) Deletion. The inverse of insertion. 

(3) Splitting. Replace a word b 1 ••• g ... bn by a word 

b 1 ••• hk ... bn where g,h,kfHi and g-hk (if1). 

(4) Coalition. The inverse of splitting. 

Remark: (1) An operation (4) can also be achieved by an 

operation (3) followed by an operation (2). 

(2) We may remove a term bj if bj-1. Since, by 

splitting we may replace ... ,bj"" by ... ,bj,bj, ... which is 

equal to ... ,bj,bJ1 , ••• and so both terms can deleted .. 
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STEP 2 

We show that we can mimic the above operations on the 

boundary of M'. 

(1). This is mimicked an H' as follows. 

F <: t' 

lh 
---r 6 .A..--) .-

bj+l bj bj+l bj 

(2). We have, 

- ~ 1i Sl 1;j. bj+l V3 v 2 VI 

There are two cases. Firstly suppose Vl~v3' Then 

bj+l v3 h- 1 v 2 h VI bj bj+l V 1-V 3 b· 
, J _ I.' ... / (; I:..: -"' ,/ • ...... "" t, 

< -_. .. -"'1 

Now suppose that v 1-v3 . Then 

v 2 

~h 
.. '" ,~., ...... ) ,.... 

bj+l bj 
7 

bj+l bj 
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(3). We have, 

v, V, V 2 

g 
0-0 -~k'::--""'h,..---.(i(:----.. 

(4). This is dealt with by the above Remark. 

Thus by iteration of these operations we obtain a diagram 

of the required form.O 

LEMMA 1.12 (NORMAL SUBGROUP LEMMA) 

Let M be an r-diagram with regions A" ••• ,Am. Let 

a-e, ... en be a boundary cycle of M beginning at a vertex 

and words Ui on H, l'i'm, such that W defines the same element 

The proof is identical to the analogous result for 

presentations in [27,Chp. V].O 

Let M be a diagram over <H r>. Let A be a region of M 

with e, ... en a boundary cycle of A. We define 

A diagram M is minimal if there is no diagram with fewer 

regions and the same boundary label. 
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Let W be a word on H which defines 1 in <H r>. Then we 

know (Lemma 1./1) that there exists an r-diagram with boundary 

label W. We define deg(W) to be the number of regions in a 

minimal diagram with boundary label W. 
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1.7 SEQUENCES AND PICTURES 

SEQUENCES AND PICTURES OVER PRESENTATIONS WITHOUT INVOLUTARY 

GENERATORS 

Let 

<X;r> 

be a presentation without invo1utary generators (i.e X-Xl)' 

and let W be the set of words on X (reduced or not). For t~r 

we let 

closure of r in the free group on X). Two finite sequences 

(CI •...• Cm). (C~ •...• Cn)-of elements of rW will be said to be 

G-equivarent if m-n. there is a permutation u of {l •...• m} 

such that C~ is G-equivalent to Cu(~) and CIC2 ",Cm is freely 

Two finite sequences of elements of rW will be said to be 

equivalent if one can be obtained from the other by a finite 

number of operations of the following form. 
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(1.10) Replace a sequence by a G-equiva1ent sequence. 

(1.11) Delete two successive terms 

from a sequence. or insert two such terms into a 

sequence. 

A s~quence (C,.C 2 •••• Cm) of elements of rW is called an 

identity sequence if C,C 2 ",Cm is freely equal to 1. 

We now describe pictures over <X r>. The following basic 

exposition is taken from [41]. For further information see 

[4].[7]. and [8]. 

A picture jp (over <X:r» consists of the following. 

(a) A disk D with a basepoint 0 on aD. 

(b) Disjoint disks AI'" .• An in the interior of D with 

basepoin~s o, •...• on on aA, •...• ~. respectively. 

(c) A finite number of disjoint arcs. Each arc lies in the 

closure of 

and is either a simple closed curve having empty intersection 

with aDUaA,UaA 2 ••• UaAn • or it is a simple non-closed curve 
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which joins two distinct points of aDUad 1 U ... Uadn . neither 

point being a basepoint. Each arc has a normal orientation. 

indicated by a short arrow meeting the edge transversaly and 

is labelled by an element of X. 

(d) If we travel around adA once in the anti-clockwise 

direction starting at 0A and reading off the labels on the 

arcs encountered then we obtain a word R~A where RAEr and 

EA-tl. The word is called the label on d A. 

The label on Ip is the word one reads off by travelling 

around aD once in the anti-clockwise direction. starting at o. 

The discs of ~ are the discs d 1 ••••• dn (but not the 

ambient disc D). 
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Example 

tP 

o 

a 3 , c 2ac- 2a- 1 respectively. (The dotted lines in this picture 

represent a spray, as defined below.) 

A spherical picture is a picture in which no arcs meet aD. 

A'spherical subpicture of a picture is obtained by 

considering a subset E of the picture homeomorphic to a closed 

disc such that aE does not intersect any arcs or discs of the 
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picture. The ~ with the arcs and discs of the picture on it is 

a spherical subpicture of the picture. 

If ~ is a picture with label x1 , ••• xn then the 

o 
mirror-picture Ip is the picture obtained by "glueing" IP to 

its mirror-image ~'. We illustrate what we mean with an 

examp~e. 

Il': 

o 
IP~ 

o 

I 
IP: 

Note that IP is a spherical picture, and so according to 

our definition, its label is the empty word. However, it will 

o 
be convenient to define the label on the mirror-picture IP to 



be the label on W. 

We define three operations on pictures: 

(1.12) Bridge moves. 

x 
V 
R 

where the above are arcs in a picture. 

(1.13) Deletion of floating arcs. 

dO 

(1.14) Insertion and deletion of mirror-pictures. 

A transverse path in IP is a path ~ in ~ with the 

following properties 
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(a) The intersection of ~ and the union of all the arcs in 

IP is finite, moreover, if ~ intersects an arc then it 

does not just touch it but crosses it. 

not allowed. 



62 

(b) If ~ intersects aDU~lU ... UaAn then it does so in a 

Since we will only ever consider"transverse paths we will 

from now on drop the adjective "transverse". and simply refer 

to paths. 

If we travel along a path ~ from its initial point to its 

terminal point then we will cross various arcs. and we read 

off the labels on these arcs, giving a word w(~). 

~ A spray in IP is a sequence ~-(~l"".~n) of simple paths 

satisfying the following: 

(a) There exists a permutation 8 of {l •...• n} (depending 

~ 
on~) such that for ~-l •...• n. ~A starts at 0 and ends 

at 08(A)' 

(b) ror I~A.p~n distinct. ~A and ~p intersect only at 0 

(c) Travelling around 0 anti-clockwise we encounter the 

paths in the order ~1'~2""'~n' 

The sequence UIP(~) associated with ~ is 
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LEMMA 1.13 

If ~.~, are any rwo sprays in Ip then uW(~) and 

~ . 
qIP(~') are G-equivalent. 

We say that two pictures lP 1 and tP 2 are equivalent if for 

equivalent to UW2(~2)' This is well defined by Lemma 1.13. 

Clearly. if IP' is a picture obtained from IP by a series 

of operations of types (1.12), (1.13) and (1.14) then tp and 

IP' are equivalent. 

PICTURES OVER QUOTIENTS OF FREE PRODUCTS 

A picture over a quotient of a free product 

is identical to a picture over a presentation. except in the 

following ways. 

(a) Each arc is labelled by an element of some Gv ' 
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(b) If we travel around a~k once in the anti-clockwise 

direction starting at ok and read off the labels on 

the arcs encountered we obtain a word s~).. where S).. is 

equal (in *Gv ) to an element of Sand E)..-tl. 
VEV 

We note that the definitions of spherical picture and 

spherical subpicture carryover into this new situation. 
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1.8 SO-UNIVERSALITY 

A group, G, is said to be SQ-universal if every countable 

group can be embedded in some quotient group of G, see 

[27,p.282] 

Example: If A and B are non-trivial groups, not both of 

order two then A*B is SQ-universal, see [33]. Hence, in 

particular, the free group of rank two, F2, is SQ-universal. 

The following two. facts will be very important. See [33]. 

(1.15) Suppose ~:G ~ H is an epimorphism and that H is 

SQ-universal. Then G is SQ-universal. 

(1.16) If Hand G are groups with H of finite index in G then 

H is SQ-universal if and only if G is SQ-universal. 

We remark that being SQ-universa1 is a measure of the 

"largeness" of a group. A more general discussion of 

"largeness" in group theory is given in [9], [12] and [34]. 

Following [9], [12] and [34] we say that a group G is as large 

as F2 (written G>F 2) if G has a subgroup of finite index which 

can be mapped homomorphica11y onto F2. Note that, by (1.15) 

and (1.16) above, if G>F2 then G is SQ-universa1. 
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CHAPTER 2 

ON SOME QUOTIENTS OF FREE PRODUCTS 

2.1 INTRODUCTION 

In this chapter we will consider groups with the following 

structure. 

(a) Let r be a graph with vertex set V and edge set E. We 

assume that no vertex of r is isolated. 

(b) For each vertex VEV there is a non-trivial group Gv ' 

(c) For each edge e-{u,v}EE there is a set Se of cyclically 

reduced elements of Gu*Gv , each of length at least two. 

We define Ge to be the quotient of Gu*Gv by the normal 

closure of Se. 

We let G be the quotient of *Gv by the normal closure of 
VEV 

S- USe' For convenience, we write 
, efE 

The above is a generalization of a situation studied by 

Pride [351, where each Gv was infinite cyclic. 

Let e-(u,v} be an edge of r. We will say that Gehas 

property-Wk if no non-trivial element of Gu*Gv of free product 



67 

length less than or equal to 2k is in the kernel of the 

natural epimorphism 

We will work with one of the following: 

(I) Each Ge has property-W 2 

(II) r is triangle-free and each Ge has property-W,. 

Our results will concern a Freiheitssatz, SQ-universality, 

and (co)-homo1ogy. Our results will be discussed shortly, but 

first we give some examples of situations when conditions 

(1)/(11) hold. 

Example 1 

-For an edge e-{u,v) of r, let De denote the Cartesian 

subgroup of Gu*Gv (i.e. De is the kernel of the natural 

epimorphism Gu*Gv ~ GuxGv )' Then Ge clearly has property-W, if , 

Se~De and Ge has property-W 2 if Se~D~(e)D~ for some prime 

p(e) since 

1 i [ )DP(e)D' is an elementary abe ian p(e)-group with bas s x,Y e e 

(XEGU' YEGv , neither x nor Y equal to 1). See [30). 
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Example 2 

neither x nor y is trivial). Then Ge has property-Wk if r~k+2. 

This is easily verified using small cancellation theory. 

FREIHEITSSATZ 

Let ¢ be a full sub graph of r with vertex set V' and edge 

set E' say. Then we have the group 

and there is a natural homomorphism G¢ ~ G. 

THEOREM 2.1 (FREIHEITSSATZ) 

Suppose (I) or (II) holds. For every full subgraph ¢ of r 

the natural map 

is an injection. 

SQ-UNIVERSALITY 

We prove 

THEOREM 2.2 

Suppose (I) or (II) holds. Assume that there are vertices 

u,v of r satisfying the following: not both Gu,Gv have order 
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2; (u,v) is not an edge of r and if (II) holds (but (I) does 

not), then adjoining {u,v} to r does not create a triangle. 

Then G is SQ-universal. 

(CO)-HOMOLOGY 

The following is adapted from [39]. 

For each vertex VEV let Gv-<Xv;rv> (a presentation with no 

invo1utary edges) and for each gEGV let w(g) be a word on Xv 

representing g. If e~{u,v} is an edge of rand h is an element 

G-<X;r> 

-
where X- UXv , r- Ure . 

VEV eEE 

Let N be the normal closure of r in F, the free group on 

X. We let M denote the relation module for the given 

presentation of G. Thus M is the left G-modu1e with underlying 

abelian group 

and G-action 
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We have the submodu1e Me of M generated by 

For eEE, let Pe be the free left ZG-modu1e with basis 

{tR REre }, and let Ke be the kernel' of the epimorphism 

Let P be the free left ZG-modu1e with basis {tR: REr} and let 

K be the kernel of the epimorphism 

P ~ M, tR ~ RN' (REr). 

Now we have an epimorphism 

. 
which clearly carries $Ke into K. 

eEE 

Pride works with two assumptions: 

(A) The natural maps Gv ~ G (VEV), Ge ~ G (eEE) are 

injective. 

(B) Q carries $Ke onto K. 
eEE 

Under these assumptions he proves the following result. 

For v a vertex of r let nv-IAdj(v) 1-1, where Adj(v) is the 

set of vertices of r adjacent to v. 
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THEOREM (PRIDE) 

Let A be any right G-module, and B be any left G-module. 

(i) There is a long exact sequence 

terminating in 

(ii) There is a long exact sequence 

... Hn(G,B) ~ fiHn(Ge,B) ~ fiHn(Gv,B)nv ~ Hn+l(G,B) ~ ... 
eEE VEV 

starting with 

~ H2(G,B) ~ ... 0 

From ~his and a theorem due to Serre (see [24]) we have 

COROLLARY (PRIDE) 

Suppose that there is a global bound on the cohomological 

dimension of all of the Gv's. Then any finite subgroup of G is 

contained in a conjugate of some subgroup Ge (eEE). 

Clearly if (I) or (II) holds then Pride's assumption (A) 

holds (by the Freiheitssatz). 



72 

THEOREM 2.3 

If (I) or (II) holds then Pride's assumption (B) holds. 
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2.2 PROOF OF THEOREM 2.1 

The proof is very similar to the proof of Theorem 4 of 

Pride [35] (which considers the special case when each Gv is 

infinite cyclic). However, for the readers convenience we 

describe the main points of the proof. 

We ask the reader to begin by recalling the definitions 

and terminology of diagrams over free products (see section 

1. 6). 

Consider an S-diagram H. We define an equivalence relation 

on the regions of M as follows: 

D-D' if and only if there exist regions D-D o,D 1, ... ,Dn-D' 

with t(D o)-t(D1 )- ... -t-(Dn) and where Di ,Di+1 have an edge in 

common for i-1, ... ,n~l. The regions in a --equivalence class 

give rise to a connected subdiagram of M, which we call a 

federation. 

Let e-(u,v) be an edge of r. Define ~e to be the set of 

all non-trivial words on Gu*Gv which define 1 in Ge . Let 

Suppose M satisfies 



(2.1) 

Each federation is simply connected and no 

federation has boundary label defining 1 in *Gv . 
veV 

We may then obtain from M an ~-diagram by removing the 

interior edges and vertices of each federation. This diagram 

satisfies (a) and (b) below. By performing slight 
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modifications we can obtain an ~-diagram ~ which additionally 

satisfies (c). For details of this construction see Pride [35). 

(a) Each internal edge of ~ has a label from some Gv ' 

(b) If each Ge has property-Wk then each almost interior 

region of ~ has at least 2(k+1) sides. 

(c) Every internal vertex of ~ has valence at least three, 

and if r has no triangles then every internal vertex 

- of ~ has valence at least four. 

We now deduce that if M satisfies. (2.1) then it has a 

boundary region D with 

t(D)~t(aM). 

We show this for the case where hypothesis (I) holds. (The 

case where hypothesis (II) holds is similar.) Since every 

, 
internal vertex has valence at least three and every almost 
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interior region has at least six sides, A has a simple 

boundary region ~ with at most three interior edges (see 

Lyndon and Schupp [27,Chp. V]). Now ~ arises from a federation 

L in M, which has a region D, which is a boundary region of M. 

Suppose t(L)-{u,v}. Hypothesis (I)·together with (a) implies 

that the label on a~naA involves elements from both Gu and Gv · 

Thus 

Next we deduce that.any minimal S-diagram satisfies (2.1) 

above. 

To show this we argue by contradicion. Let K be a 

counterexample with-as few regions as possible. Let L be a 

-
federation in K which is not simply connected, and let M be a 

bounded component of K-L. Then since all federations in Mare 

simply connected, no federation in M can have boundary label 

defining 1 in *Gv ' else K is not minimal. Hence, 
VEV 

by the above, M has a boundary region D with t(D)'t(aM)-t(L), 

contradicting the fact that L is a federation. 

We can now outline the proof of Theorem 2.1 



Let ~ be a full subgraph of r with vertex set V'. Let Z be 

a word in *GV defining 1 in Gr. We argue by induction on 
VEV 

deg(Z). If deg(Z)-O the result is clearly true,· so suppose 

deg(Z)~O. Let M be a connected, simply-connected S-diagram 

with deg(Z) regions (which guarantees that M is minimal) and 
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boundary label Z. By the above M has a boundary region D with 

t(D)~V'. 

Let M' be obtained from M by removing the interior of D 

and one edge of aDnaM. Let Z' be the boundary label of M'. 

Then Z' is equal to 1 in G and deg(Z')Ldeg(Z) so Z' equals 1 

in G~. Now Z equals Z' in G~. Hence Z equals 1 in G~.O 

We note that Edjvet [10] has also obtained this result by 

different methods, as a consequence of his work on "filtered 

presentations". 
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2.3 PROOF OF THEOREM 2.2 

Let A-<a,b;T> be any two generator group. 

Suppose IGul~2 and IGvl~3, let k be a non-trivial element 

of Gu and g,h distinct non-trivial elements of Gv . Consider 

the following situation. 

Let r' be the graph obtained from r by adjoining a new 

edge {u,v}. For x a vertex of r', let Hx-Gx if x~u, and let 

Hu-A*Gu ' For e an edge of r', let Se-Se if e~{u,v} and let 

S'{u,v}-{akg(kh)kg(kh)2kg(kh)3 ... kg(kh)40,bkg(kh)41 ... kg(kh)80} 

If {x,y} is an edge of r' let H{x,y} be the quotient of 

. Hx*Hy by the normal closure of S{x,y}' Let 

We show (I) or (II) holds for H. The Theorem will then 

follow because firstly, A embeds into H (by the 

Freiheitssatz); secondly, by Tietze -transformations that 

eliminate a and b, we can show that H is a quotient of G; and 

thirdly, any countable group can be embedded in some two 

generator group (see Lyndon and Schupp [27,p.188]). 

For an edge e=={x,y} of r' we let He be the quotient of 
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Hx*Hy by the normal closure of Se' 

We show first that H{u,v} has property-W 2 • Consider any 

word on Hu*Hv that defines 1 in H{u,v} but not in-Hu*Hv ' Then 

there is a reduced S{u,v}-diagram representing this. Eliminate 

all of the vertices of this diagram of valence two, in the 

standard way, to obtain a diagram M. It is easily seen that 

any almost interior region of M has at least six sides. Thus M 

has a simple boundary region D with at most three internal 

edges (see-Lyndon and Schupp [27,Chp.V]). Thus we find that 

the label on aMnaD has free product length at least 1200. Thus 

G{u,v} has property-WS99 ! Hence G{u,v} certainly has 

property-W 2 • 

We now show that if {x,y} is an edge of r' distinct from 

,{u,v} then H{x,y} has property-Wi if Ge has property-Wi' 

Clearly if {x,y} is an edge of r' with neither endpoint 

equal to u then the above assertion holds. 

Suppose {u,y} is an edge of r' distinct from (u,v) and 

suppose that the assertion is false. Then there exists a word 

h h ( H h h H) on H *H which g, ,···gm m g" ···,gmE u' " ... , mE y u y 
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defines 1 in H{u,y} but not Hu*Hy and for which m~i. Choose 

such a word with m as small as possible. Now, write each gi' 

as an element of A*Gu ' in normal form. Next consider the 

subwords of g,h, ... gmPm that lie between the elements of A. At 

least- one of these, W say, must define 1 in G{u,y}. Since 

G{u,y} has property-Wi, W defines 1 in Gu*Gy . Now since we 

wrote the terms from A*Gu in normal form no term in W from Gu 

is 1, hence some hi .is equal to 1 and we can create a shorter 

counterexample - a contradiction. 

It follows that H satisfies (I) or (11).0 
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2.4 PROOF OF THEOREM 2,3 

To prove the result we first need the following: 

PROPOSITION[39] 

Assumption (B) holds if the following condition is 

satisfied: Every identity sequence u is equivalent to a 

for i-l"",k there is an edge e(i) of r such that all of the 

terms of ui belong to r~(i)' 

Proof of Theorem 2.3 

We prove that the condition in the above proposition is 

satisfied. 

-For e-{u,v) an edge of r let re-re-(ruUrv) and let r'- Ure · 
eEE 

Let u be an identity sequence over <X R>. The proof is 

by induction on the number, m(u), of terms of u in r'W. 

We proceed geometrically. using' pictures. We will always 

assume, that our pictures have no floating arcs. This can 

always be achieved by elimination. 

Consider first the case when m(u)-O. Let Ip be a spherical 

picture representing u. Let 'P' be a spherical subpicture of 
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lP containing at least one disc and which is minimal with this 

property. Clearly all of the discs in Ip' are labelled by 

elements from some rn' (otherwise we would have to have a disc 

labelled by an element of rn' joined by an arc to a disc 

labelled by an element of rt', u~v, which is impossible). Now 

put a spray over the picture, the first arcs of which go to 

the discs in ~'. This gives us that u is equivalent to a 

product u,u 2 of identity sequences where u, consists of terms 

from rHo and the number of terms in U 1U 2 is the same as in u. 

A simple induction finishes this case. 

Now suppose m(u)~O. We then prove that u is equivalent to 

a produc~ u,u 2 of identity sequences, where there exists an 

edge e-(u,v} of r such that all of the terms of u, lie in r~ 

and at least one term lies in rbW and m(u 1u 2 )-m(u). A simple 

then induction completes the proof. 

To begin, take a spherical picture W representing u. 

Then, 'it turns out (see pp.83-88 below) that we can alter this 

picture to an equivalent picture for which there exists a 

simple closed path 0 satisfying the following conditions. 
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(i) There exists an edge e of r such that each disc inside 

o is labelled by an element of r~'; moreover. at least 

one disc is labelled by an element of r~t' 

(ii) There exist n distinct points P, •.... Pn on 0 (none of 

which lies over an arc) such that if we read around 0 

anti-clockwise the label on the segment 0i of 0 from 

Pi to Pi+, (i-l •...• n. subscripts computed mod n) is 

a word on XV(i) that defines the identity in 

<Xv(i) 

o 
Now for each segment 0i there exists a mirror-picture roi 

over <Xv(i) rv(i». formed from a picture IDi who's label is 

the same_as the label on 0i. We insert these into the picture 

in the following way. 

Next we use bridge moves as follows 



Now put a spray over the resulting picture, the first arcs 

of which go to the spherical subpicture containing iDi' The 

result follows. 

We now show how to obtain a picture equivalent to IP, and 

a path 0 as above. Colour each disc labelled by an element of 

r,tl red, each disc labelled by an element of (r-r,)tl, blue. 

Colour aFt arc between two red discs, red; between two blue 

discs, blue; and all others green. 

If C is a blue component of the arcs and discs of Ip, a 

C-region is a subset ,AC of IP satisfying the following 

conditions 

(i) AC is homeomorphic to a closed disc. 

(ii) AC contains C. 
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(iii) Subject to (i) and (ii), dC contains as few discs as 

possible . 

(iv) Subject to (i),(ii) and (iii), dC contains as few 

segments of arcs as possible. 

e.g. 

but not 

For each blue component, C, of the arcs and discs of IP 

fix a C-region . 

We say that C is simply connected if there exists a 

C-region that contains no red discs. 

Suppose that not every blue component of /p is simply 

connected. Pick a blue component C such that: (i) dC contains 

a minimal number of red discs; (ii) subject to (i) dC contains 

as few discs as possible . Consider a particular red disc 

contained in dC' Clearly this red disc lies in some bounded 

component of the complement of C. We consider this component 
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as a picture over <X R> . Clearly by minimality every blue 

component of this picture is simply connected. 

Now the label on the boundary of this picture is a word on 

some Xv' defining the identity in G, hence by the 

Freiheitssatz, defining the identity in <Xv rv> ' Thus there 

is a mirror-picture over <Xv rv> with the same label as this 

picture. Insert the mirror-picture as follows. 

e.g. 

and then perform bridge moves to obtain 

Hence W is equivalent to a picture with a spherical 

subpicture IP' containing at least one red disc and for which 
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every blue component is simply connected. 

We now show how to put 0 over IP'. To do this we need the 

following Lemma. the proof of which is identical to that for 

the analogous result in [41]. 

CONTRACTIBLE LOOP LEMMA 

Let ru be a spherical picture over <Gv (VEV); S>. Then 

there exists a simple closed path 0 over .U with the following 

properties: 

(I) 0 intersects no discs 

(II) 0 contains at least one disc. 

(III) If AI, ...• An are all of the discs inside 0 then 

- there exists an edge e of r such that the labels on 

AI •...• An are equal in *Gv to elements of S~l. 
VEV 

(IV) The label on 0 is equal to 1 in *Gv'O 
VEV 

We turn Ip' into a spherical picture over <Gv (VEV); S> in 

the following way. Firstly re1ab1e each edge. Do this by 

replacing any label by the group element it represents. Then 

replace the blue components as follows (where the shaded area 

represents the chosen C-region for the component). 
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e.g. 

~/I ) f 

Let 0 be given by the Contactible Loop Lemma. By suitable 

alterations we may assume that (i) 0 does not intersect any 

C-region and (ii) 0 contains no C-regions arising from blue 

spherical subpictures of Ipl. 

To see (i) suppose that 0 does intersect some C- region ~C' 

Pick a point in ~C no~ on 0 and draw a small disc around it, 

a ga in no t inte rsecting o. Expand thi s d isc a n d continuous l y 

de f orm t h e arcs of 0 s o that they never intersect it . In this 

way we may "pus h" a ll of the arc s of 6 off the C- disc . 

e.g . 
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To see (ii) suppose 0 contains a C- region arising from a blue 

spherical picture of ip' . Draw a path 0' (which intersects no 

discs) from a point on 0 to a point on a6C. 

1. e. 

Then alter 0 to 

where the alterations are carried out "local" to 6' and 6C. 

Considering 0 as over W' we obtain a path as required.O 
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CHAPTER 3 

SUBGROUPS OF NEC-GROUPS 

3.1 INTRODUCTION 

BACKGROUND 

An NEC (Non-Euclidean Crystallographic) group is a 

discontinuous group of isometries (some of which may be 

orientation reversing) of the Non-Euclidean plane. For further 

information on this see Appendix A. According to Wilkie [46], 

a finitely generated NEC-group with compact orbit space has a 

presentation !J as follows: 

Involutary generators: Yij (i,j)E2o 

Non-involutary generators: ei (iElf), tk (l~k~r) 

8k (l~k~g), bk (1~~, h-O or g) 

<3.1) Defining paths: (YijYij+,)mij (iEIf, l~j~n(i)-l) 

where 
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In Hoare. Karrass and Solitar [22] it is shown that a 

subgroup of finite index in a group with a presentation of the 

form (3.1). has itself a presentation of the form (3.1). In 

[22] the same authors show that a subgroup of infinite index 

in a group with a presentation of the form (3.1) is a free 

product of groups of the following types: 

(A) Cyclic groups. 

(B) Groups with presentations of the form 

<Xl.· ..• Xn.e 

Xl'" "Xn invo1utary. 

(C) Groups with presentations of the form 

Xi (iEZ) invo1utary. 

In this chapter we are going to define what we mean by an 

NEG-complex. It will be obvious from the definition that this 

class of complexes is closed under coverings. so that the 

class of fundamental groups of NEC-complexes is trivially 

closed under taking subgroups. Our aim is then to obtain 

structure theorems for both finite and infinite NEC-comp1exes. 
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We show that the fundamental group of a finite NEC-complex has 

a presentation of the form (3.1) and that the fundamental 

group of an infinite NEC-complex is a free product of groups 

of the forms (A), (B) and (C) above. 

The usual approach to subgroup theorems for NEC-groups is 

to specify the groups by means of presentations and then try 

and show that every subgroup can be specified by a similar 

presentation. The approach here is different and has several 

advantages: (i) By using complexes, rather than presentations, 

we avoid a lot of technicalities involving the 

Reidermeister-Schreier rewriting process; (ii) by allowing 

involutary edges we get a more streamlined use of the 

star-complex (- coinitial graph), and avoid having to consider 

'coinitial graphs of presentations with "identifying relators" 

(as defined in [22]); (iii) The results 'of Hoare, Karrass and 

Solitar [20], [21] and [22] are unified, and the proofs 

considerably shortened; (iv) modulo an understanding of the 

basic theory of complexes, the arguments are straight forward 

and quite transparent. 
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The approach is analogous to the geometric proof of the 

Neilsen-Schreier Theorem [27,p.119j. There one looks at the 

class of graphs. This is clearly closed under taking 

coverings. One then shows that the fundamental group of a 

graph is free. 

This work can also be viewed in a wider context as part of 

a general program to study groups through properties of 

star-complexes, i.e specifying some structural restriction on 

the star-complex of a complex and seeing what this tells us 

about the fundamental group of the complex. See [11], [13], 

[14], [16], [18], [37], [38]. 

NEC-COMPtEXES 

A circle is a connected 1-comp1ex such that Istar(x)I-2 

'for each vertex x. We also require that there are no loops in 

the 1-complex, in order to avoid pathologies like the 

following: 

e 

b 

) O· 
e 
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Note that we allow a circle to be infinite, so that it 

may, in fact, be a "line" stretching off to infinity in both 

directions 

< < ( < 
We define an NEG-complex to be a connected, slender 

complex "~ such that )vst(v) is a circle for each vertex v of 

"1V. A Fuchsian-complex is an NEG-complex with no invo1utary 

edges, and a surface-complex is a Fuchsian-comp1ex with all 

defining paths of period one. We use N,F and S to denote the 

classes of NEG-complexes, Fuchsian-comp1exes and 

surface-complexes respectively. 

EXAMPLE 

z y x g w 

f 

e 

v t 
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'}vst a 
" 

b ~-1 d 
F / 

~ 

'I" ,/ t 
,II 

~ / 
U '- e v c 

y 

/ • k 
, 

s 

It follows from Theorem 1.4 that N is closed under 

coverings; also F and S are closed under coverings (F by a 

-remark in §l.l, and S since if ~:~ ~13 is a covering and all 

defining paths of ~ have period one, then the same is true 

for ~). We thus see that the Subgroup Lemma (see §l.l) 

applies for the classes N, F and S. 

It should, however, be noted that our use of the term 

"Fuchsian" is not strictly correct. In the finite case, for 

example, the term should really only apply to complexes for 

which the path Q in Theorem 3.1 terminates in a product of 
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commutators rather than a product of squares. However, we will 

use the term in this wider sense (cf. [27,p126]). We also note 

that the Fuchsian-complexes defined here are not the same as 

those defined in [27, section 111.7]. 

DEFINING PATHS AND CHAINS IN NEC-COMPLEXES 

Let 1v be an NEC-complex. 

We will say that a defining path p of 1( is of type I if, 

o 
whenever we have a cyclic permutation of p of the form ar with 

a involutary then rfy-l. We will say that a defining path p of 

1Vis of type II (respectively type III) if some cyclic 

o 
permutation of p has the form aoao- 1 with a involutary 

(respectively aobo- 1 , with arb and a, b involutary). 

Remark: It will be seen from Lemmata 3.1, 3.2 and 3.3 that no 

, 
path can be of two different types. 

LEMMA 3.1 

If P is of type I, and if e is an involutary edge occuring 

o 
in p then Le(p)-l, and e does not occur in any other defining 

path. 
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o 
Some cyclic permutation of P will have the form ea. By 

assumption ora- t , so (ea)P(P), (ea-t)P(P) are distinct edges 

of ·tv st starting at e. It follows immediately that no other 

defining path of 1v can contain e. 

non-empty and reduced since P is cyclically reduced). Then 

(ea 2ea t )P(P) is an edge of ~st starting at e, and so must be 

one of (ea)P(P), (ea-t)P(P). However it cannot be the former 

o 
since P is not a proper power. But neither can it be the 

latter, for otherwise we would have al-a~1 and a 2-a;1 Then 

~ 

at-~c~-t, a2-yd1-t where c and dare involutary edges, and 

o 
hence c~-t~d1-te~ is a cyclic permutation of P with 

~-I~d1-1e~ equal to its own inverse - a contradiction.O 

LEMMA 3.2 

If P is of type II, and if e is an involutary edge 

o 
occuring in P then Le(p)-2, and e does not occur in any other 

o 
permutations of P with a, a 1 involutary then a-a 1 and a-aft. 
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o 
It is clear that Le(P) is even, and since the valence of e 

o 
in ~st is at least Le(P) it must be precisely two. Obviously, 

then, no other defining path can contain e. 

To prove the second part, suppose, by way of a 

contradiction that ara1' Then a 1 must occur in a, so o-~a1~ 

o 
a1~-1a~a1~a~-1. In either case we deduce that ~-y-1, so that P 

is a cyclic permutation of (a~a1~-1)2, contradicting the fact 

o 
that p is not a proper power.O 

LEMMA 3.3 

If p is of type III then there are distinct involutary 

o 0 
edges a and b with La(p)-Lb(P)-l. There are unique defining 

paths P1 and P2 (both of type III) different from p with 

o 0 
La (P1)-Lb(P2)-l. If e is an involutary edge different from a 

o 
or b occuring in p, then Le (p)-2 and e does not occur in any 

other defining path. 

o 
By assumption, p has a cyclic permutation aaba- 1 with a 
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o 
and b distinct and invo1utary. Thus La(P) is odd and since the 

o 0 
valence of a in ~st is at least La(P) we must have La (p)-l. 

o 
Similarly Lb(P)-l. Clearly if e is an invo1utary edge 

different from a and b occuring in-p then e occurs in a, so 

o 
Le(P) is even and hence must be two, and e cannot occur in any 

other defining path. 

Now P contributes only one edge to 1Vst starting at a, 

namely the edge (aaba-')P(P). Hence a must occur in some other 

defining path P" which by Lemmata 3.1 and 3.2 must be of type 

o 
III. Clearly La (p,)-l. Similarly for b.O 

We let 20 denote the set of EE2 such that P~ is of type II 

or II~. It follows from Lemmata 3.2 and 3.3 that we can 

arrange the defining paths PE (EE20) into chains, which we now 

describe. 

If P is a path of type III let j(p) be the two element set 

containing the edges a,b given by Lemma 3.3. Define two type 

III paths p and P' to be equivalent if and only if there is a 

finite sequence 
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of defining paths of type III where j(pi)nj(pi+l)~~ 

(i-l, ... ,n-l). 

A finite chain is either a path of type II or consists of 

the elements of a finite equivalence class. An infinite chain 

consists of the elements of an infinite equivalence class. 

It is convenient to take the elements of Eo to be ordered 

pairs which reflect this arrangement. There will be elements 

(i,j) iElf l~j~n(i), j computed 
mod n(i), 

coming from finite chains, and elements 

coming from infinite chains. By cyclically permuting, if 

necessary, we may write 

where Xij' Xij+l are involutary edges, and mij is the period 

of P(i,j). The Xij'S are called the chain edges. 

The period cycles are the sequences 
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The proper periods are the periods p(p~) 

(~EE-Eo' p(p~)~2), together with a list of twos, one for each 

invo1utary edge which is not a chain edge. 

EXAMPLE (CONTINUED) 

There is one (finite) chain 

The corresponding period cycle is (5,4,2,3). The proper 

. periods are 3,3,4,2,2,2 since there are three invo1utary edges 

which are not chain edges in 1\/, namely y, z and t. 

It will be convenient later to assume that 1V has no 

involu~ary edges except the chain edges. This can always be 

achieved by modifying 'IV as follows. 

Let es (SES) be the collection of all involutary edges 

which are not chain edges. Introduce new non-involutary edges 

the root of some defining path of type I (and nowhere else), 

or will appear twice in the root of some defining path P(i,j) 

of type II or III (and nowhere else)~ In the former case 
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replace the occurrence of es by ts; in the latter case replace 

the occurrence of es in Aij by ts and replace the occurrence 

of es in AIj by til. Delete the edge e s from 'IV, and add a new 

defining path t~ for each SES, to obtain a complex ~. Then1V 

is equivalent to ~. 

We show in general that ~ is an NEC-comp1ex. If r is a 

non-involutary edge or a chain edge of 1v then since in 

. changing from 1v to ~ we do not alter the number of edges in 

the star-complex beginning with r, r has valence two in :) st. 

We now look at the vertices til of ~st. Each of these has 

precisely one edge incident to it arising from t~, and by 

construction of t precisely one edge of t st arising from the 

modified defining paths of 1v is incident to ts and precisely 

one to til. Thus every vertex of -Lst has valence two. 

We now show that ;t st(v) is connected for all vertices of 

~. Let x,y be vertices of i st(v). Then these arise from two 

" " st( ) " to y" in vertices x,y in 'kt v. Now there is a path from x 

~st(v). This path will involve only finitely many vertices 

from the set (es : SES). In pass'ing from 'k to'i,; each such 



vertex e is "expanded" 

e 
• 

t 

Thus it is easily seen that x and y.are connected in ~st(v) 

and hence dv is an NEC-complex. 

EXAMPLE <CONTINUED) 

Making the above modifications we obtain the complex i . 
w 

where t,y,z have been replaced by p±l ,q±l,r±l respectively. 

i st a e- 1 

') 
d 

r p 

e p v 

102 



i st (continued) 

q 

I 

q 1 

g 

k 
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3.2 FINITE NEC-COMPLEXES 

Let 1<; be an NEC-comp1ex. 

THEOREM 3.1 

If (~ is finite then there is a based equivalence from~ 

to a presentation 6' of the form 

Involutary edges: Yij (i,j)fEo 

Non-involutary edges: 

Defining paths: (YijYij+l)mij (if If, l~j~n(i)-l) 

(l~~r, Pk~2) 

(3.2) 

where 

and where fi-t1 (if If). If /vfF then there are no y's or e's, 

and if 1VfS then there are no y's, e's or t's. 

Remarks: (i) The period cycles and proper periods of fare 

the same as those of 1<1 • 

(ii) We may make fi--1 if for those i for which fi-1 
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The proof consists of six reductions: 

FIRST REDUCTION: Modify rv so that there are no involutary 

edges except the chain edges. 

This has already been dealt with, and we note that the 

resulting complex, ~ , is an NEC-complex. 

SECOND REDUCTION: Collapse a maximal subtree of i to obtain a 

presentation fl' 

We show that ~ 1 is an NEC-complex. This can be seen by 

examining the effect on the star-complex of ~ of collapsing a 

single edge pair {e,e- 1 } with L(e)tT(e), and then iterating 

the process. _Let A be obtained from i by collapsing {e, e- 1 } • 

If l' is a path in Jv denote by ~ the path in J-i obtained from 

l' by' removing every occurrence of e±l. , . 

The situation in i st is as follows. 

a c 

Ce 
( 

(3.3) 

b d 
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distinct. Thus 

Without loss of generality we take A-C and B-D, thus (3.3) . 

becomes 

a c 

(3.4) 

d 

Let 

p q 

be an edge of ~st with neither endpoint e or e- 1 • Then on 

collapsing e±l we have 

.. .. .. 
p q p q 

since R does not begin or end with e or e- 1 • 

Thus with the exception of (3.4) the star-complex of JU is 

isomorphic to that of ~. Now A does not begin or end with e 

or e- 1 , and similarly for B, so we have 



a c 

rv) 

J 

b d 

. 
a 

-b 

1\ 
A> 

1\ 
B 

> 

So ~st(v) is a circle for all vertices v. Hence by 

induction, {Y1 is an NEC-complex. 

THIRD REDUCTION: Modify the chains of t?, as follows, to 

obtain a presentation "(j 2' 

c ' 

Clearly chains in Iv go to chains in f l' Now suppose 

is a chain in fj l' Replace it by 

y"""Yn involutary, e±1 non-involutary. (The resulting 

co~plex is equivalent to l? 1 under the mapping defined by 

We now consider how the above operation affects the 

star-complex: 
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(i) 

(XY-Ai. X. Y non-empty). 

(l.!j"n) . 

(iii) 

X, 

(e- 1yn ey1)* (y,Y2)* 

Yn 

It now follows that ~ 2 is an NEC-complex. 
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FOURTH REDUCTION: Modify the defining paths of ~2 which have 

period at least two and which do not belong to any chain, as 

follows, to_obtain a presentation '"83' 

Let p be such a defining path. Add new non-involutary 

edges t±1, add new defining paths 

then delete ~. (The resulting complex is equivalent to tr2 

under the mapping which sends t±1 to ~±1 and is the identity 

on all other edges.) 

The effect of this on the star-complex is as follows 



(i) 

o 
(~1~2-P, ~1'~2 non-empty). 

(ii) P 
J~-"';>~""" 

"""- ) 

It now follows that t? 3 is an NEC-complex. 

t 

tp(p) 
> 

We describe the form of CG(tf 3 ). Each chain 

t 1 

o 
t- 1 p. 

7 

arising from the third reduction gives rise to a "hoop" 

, 

o 
and each pair tp(p),t- 1 p arising from the fourth reduction 

gives rise to a "stalk" 

These "hoops" and "stalks" are each attached by a single 

vertex to the full sub graph on Q, where Q is the set of 

defining paths of C?3 minus the chains and powers of t's. 
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Thus, since by Propos i tion 1. 1 it is connected, CG (~ 3) "looks 

like" 

where the part of CG(f3) "lying in the plane" is the full 

subgraph on Q. 

FIFTH REDUCTION: Modify ~ 3 to obtain a presentation of 4 in 

which Q is replaced by a sIngle defining path ~, and all other 

paths are unaltered. 

To see how to do this, observe first that CG(Q) is 

connected b~ the above discussion. Moreover it can be 

quadratically labelled by virtue of the following three 

observations, where {p,u} is an edge of CG(Q). , 

(i) The label on (p,u) must be non-involutary. 

(ii) If eEE(p)nE(u) then Le(~)-O for ~rp,u (otherwise e 

would have valence at least three in ~3st.) 

(iii) Le(p)-Le(u)-l. Suppose, by way of a contradiction, 

that this was not true. Say Le(p)~2. Then since ~3 is 
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'an NEC-complex p must give rise to precisely one edge 

in ~3st beginning at e. Let eQ be a cyclic 

permutation of p or p-1. If Q-Q1eQ1' p gives rise to 

two edges in f3st beginning at e since it is not a 

Q1-Q~1 - a contradiction (Q1 contains no involutary 

edges) . 

. Hence by an application of the level method (see §1.3) we 

may replace Q by a single defining path and leave all other 

defining paths unaltered. 

SIXTH REDUCTION: Modify ~ to be of the form (3.2). 

The procedure for doing this is well known (see Henle 

[17,§2l] and [20]) and will not be given here in detail (see 

the example below for an illustration). The strategy is 

roughly as follows. Note that in ~ each e arising in the third 

reduction and each t arising in the fourth reduction is 

involved precicely once, and all other edges are involved 

precisely twice. We first bring the e's to the front, and then 

bring the t's to the front, inverting as neccessary. Next we 
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turn the remainder of the defining path into a product of 

squares followed by a product of commutators. Finally, if 

there are any squares we turn the product of squares and 

commutators into a product of squares.O 

EXAMPLE' (CONTINUED) 

We illustrate the above steps for our example. 

First reduction: Already done (see p.102). 

Second reduction: Collapsing the maximal subtree of 

consisting of the edges a t1 ,Itl and e t1 gives the following 

presentation f" 
Involutary edges :u,v,w,x 

Defining paths 

p2, q2, r2 

~~ t: p- , __ ) ____ p u . x w ... S-l 
-.-._'-" > .. -_ ... -.... "._--J--- .. > • r 

V g 

C k 

d c- 1 

b S 

q k- 1 

q 1 ( • r r 1 d 1 g-l 
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Third reduction: Modifying the chain (UpVp-l)5, 

presentation "6 2· 

Involutary edges 

Defining paths 

·e- 1pcks 

d 

s 

r 

Fourth reduction: Modifying the defining paths 

following presentation ~3. 

Involutary edges Y 1 ,Y 2 ,Y 3 ,Y 4 
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Defining paths 

Fifth reduction: Replacing Q by a single defining 'path gives 

the following presentation f 4 ;" 

Involutary edges 

Non-involutary edges: t±l t±l t±l t±l t±l t±l 
1 • 2 • 3 • 4 • 5 • 6 

.. ,_~;. \ _ I ~ J ' I 

.: .. ~. .: 
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Defining paths 

We do this in the following way. Eliminating p via p r+ t 4 ; q 

cyclically permuting. 

th reduction: 

The e's are already at the front. 

Bringing the t's to the front (see [20]) gives a path 

The next step (see Henle [l7,p.l25]) turns the word into 

and the last step (see Henle [l7,p.l27]) turns the word into 

I.e. a word of the required form. 
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3.3 INFINITE NEC-COMPLEXES 

Let 1v be an NEC-complex. 

THEOREM 3.2 

If '}<tis infinite then there is a based equivalence from JV 

to a presentation f of the following form: 

Involutary edges: Yij (i,j)eEo 

Non-involutary edges: el' (ielf), tj' (jEJ), S~l (kEK) 

Defining paths: (YijYij+l )mij «i ,j) eEo-( (i, n(i» : ielf) 

(Yin(i)eiYileI,)min(i) (iElf) 

If tEF then there are no y's or e's, and if )vES then 

there are no y's,e's or t's. 

Remarks: (i) If 1V belongs to F (or S) then the Theorem 

follows immediately from Theorem 1.3 since CG(-IV) may be 

quadratically labelled, in this case. 

(ii) The Theorem provides an alternative proof of the main 

result of Macbeath and Hoare [29]. 

(iii) Although in general, ~ is not an NEC-presentation, it 

is still clear what one means by the period cycles and proper 
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periods of ~ . We then have that the period cycles and proper 

periods of ~ are the same as those of tv . 

The proof consists of four reductions: 

FIRST REDUCTION: Modify 1V so that there are no involutary 

edges except chain edges. 

This has already been dealt with. and we note that the 

resulting complex. ~. is an NEC-complex. 

SECOND REDUCTION: Modify the chains of ~. as follows, to 

obtain a new complex .t4 . 

A finite chain. say 

(3.5) 

is replaced by 

" + x, •... 'xn involutary, e- ' non-involutary. 

An infinite chain. say 

(3.6) (iEZ), 

is replaced by 
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(iEZ), 

Y1 (iEZ) involutary. 

The mapping which sends 

, 
Yi 

and is the identity on all other edges, defines an equivalence 

from )t to i . 

We note the effect of the above operations on the 

connectivity graph. A chain as in (3.5) gives rise to a 

"circle" in the connectivity graph. 

, 

(3.7) 

On passing from i to A this "circle" becomes a "hoop" 

, 
Pn-l 

, 
Pn 

, 
P 

All edges incident to one of the vertices Pl,P2' .··,Pn of the 
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/ 

circle (3.7) are reattached to the verte~ p (andtetain their 

original labelling.) 

A chain as in (3.6) gives rise to an uinfinite-line" in 

the connectivity graph. 

(3.8) 

On passing from £ to )1J we get an infinite line 

8/ 
1 

8/ 
2 

and all edges incident to one of the vertices 8i (iEZ) of 

(3.8) are removed. 

THIRD REDUCTION: Modify~ so that_any defining path not 

involving an involutary edge has the form tk, as follows, to 

obtain a new complexA/. 

- Let 1i (iEI) be the defining paths of ~l not involving any 

invo1utary edges. Then we modify}1 by first adjoining for 

each iEI a defining path of the form tiP(1i) 

(ti non-invo1utary, t{ti)-t (11», and then eliminating those 

defining paths which are not of·the·form·tk and which do not 

involve an involutary edge. More formally we apply Theorem 1.3 

to )1, as follows. 
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By an argument similar to that in" the proof of Theorem 3.1 

it is seen that A, the full subgraph of the connectivity graph 

of it on the defining paths of A4 minus the chains, is 

quadratically labelled. 

Let T be a finite, connected component of A. Pick a vertex 

of the connectivity graph of ~ that corresponds to a vertex 

of T. Now, over all paths in the connectivity graph of i from 

this vertex to a vertex of an infinite chain, pick a path of 

minimal length. Let a be the label on the final edge of this 

path. Note that it must be non-invo1utary. Let Po be the 

vertex of T to which the penultimate vertex corresponds. 

Hence we may apply Theorem 1.3. 

FOURTH REDUCTION: Collapse a maximal subtree of ~1. and 

eliminate those tiP(~i) for which P(~i)-l.D 
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3.4 NORMAL SUBGROUPS OF NEe-GROUPS 

Let f be an NEe-presentation as in Theorem 3.1, and ·let· H : 

be a normal subgroup of 2', (f), E. Bujalance [5] and J. A. 

Bujalance [6] have obtained results relating the period cycles 

and proper periods of ~ to those of H. Their proofs use an '. 

analysis of fundamental region. Mqst of their results can be 

proved more directly and quickly using standard results about 

coverings. We will give short proofs of Propositions 2.2 and 

2.3 of [5], and Theorems 3.1 and 4.1 of [6]. 

By the proper periods and period cycles of ij we mean those 

of the covering 'PH: 'P H -+ ~ corresponding to H. 

Throughout the following H is a normal subgroup of ~1(~) 

of finite index n. 

(A) n is odd 

In this case we describe the proper peri-ods and period . :.. .. 

cycles of H. 

We will need the following concept (this will also be.,;-... ,., 

needed in (e) below). 

For an edge d of tr, we define two vertices U,V of ~H to 



122 

be d-equivalent if there is a path ~ from u to v such that 

~H(~) is a power of d. This is clearly an equivalence relation 

on the vertices of ~ H' Let o(d) denote the order of the 

element H[d]~ of Tl('~ )/H. Then there are n/o(d) equivalence 

classes each having o(d) elements. For let H[~]~ be a 

representative of some d-equiva1ence class, then since H is 

normal in 11" 1 (1)') , 

H[~] ,H[~d] , ... ,H[~dO(d)-l] , o Q 8 

are distinct. 

Consider the defining paths t~k (l~k~l) of ty. Let tP 

denote a typical one of these. There will be n/o(t) defining 

paths of trH mapping to tP in 1:1 correspondance with the 

t-equiva1ence classes, and each of these defining paths will 

have period p/o(t). Thus the proper periods of Hare Pk/o(tk) 

Now consider the chains of cr, and let 

(3.9) 

denote a typical chain. (We note that since n is odd the lift 

of an involutary edge is itself invo1utary.) This chain will 



give rise to n/o(f) chains in trH in 1:1 correspondance with 

the f-equivalence classes. For any given f-equivalence class 

the corresponding chain will have the form 

obtained by lifting (3.9) at the vertices of 

Zo(f) Xl 

fo Yl 

Zl 

fl 

x 2 
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Thus the chain (3.9) gives rise to n/o(f) period cycles of 

H, each of the form (ml, ... ,mr ) concatenated with itself o(f) 

times. 
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i.e. (m 1 ,·.· ,mr ,.m 1 ,··· ,mr:' ... ,m 1 ,··· ,mr ) 
'-- --1 L------' I I 

""'- 0 (f)1 times ,---) 

Remark: This combines Propositions 2.2 and 2.3 of [5]. 

(B) n is even 

We obtain some of the period cycles of H. Suppose 

(m 1 , ••• ,ms ) is a period cycle of Lr with associated chain 

11"1 (~)/H 

Say two vertices H[a]~,H[~]~ are equivalent if there 

exists c~O for which 

This equivalence relation partitions the vertices of (1~ 

into n/2q equivalence classes, each of which gives rise to a 

period cycle as illustrated by the following: 
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Xi+l.l Xi.l J .. I' i ~ i '.! _ 1 

Taking lifts. we find that we get the following chain 

Thus H has n/2q period cycles of the form 

times. 

Remark: This is Theorem 3.1 of [6]. 

(C) 11", (6')/H has precisely one element of order-two. :H[-'Y]~; 

fj H has no proper periods. and all· of its period . cycles are of 

the form (1 •...• 1) 

We determine the period cycles and proper periods of ]f. 

We will need the concept of d-equiva1ence introduced in 

(A) above. 
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(similarly for Yr and y,? Now H[YiYi+, 11"-H[-Yllf' Thus the lift 

(i-1 •...• r) else ~H has a period cycle not of the form 

(1 •...• 1). 

Thus the period cycles of zr consist of 

i-1 •...• s 

and Pj-(2 •...• 2) j-1 •...• k 

where the number of terms in Pj is rj. an even number. 

We now prove 

(3.11)The number of period cycles _ 
of '6'H 

k 

~ L ~ 
i-1 

where (YieiYiei') (i-1 •...• p) are all of the chains of 6' with 

period cycle (1) for which Yi lies in H. and where n, •...• np 

are the orders of e, •...• ep respectively in ~,(tr)/H. 

Let 

(yeye-' ) 

be one of the above chains. This gives rise to n/o(e) period 
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cycles of the form (1, ... ,1) in ~H in 1:1 correspondance with 

the ei-equiva1ence classes, in the following way. Lifting 

yeye-' at each vertex of the following 

, 
y, 

, 
eo(e) 

, 
Yo(e) 

"""""----' ..... 

gives rise to a chain 

in '6'H which has period cycle (1, ... 1) 

Thus we obtain 

period cycles of the form (1, ... ,1) in {fH in this manner. 

Discussion (B) gives that each period cycle 

ri 
(2, ... ,2) 

gives ¥.~ period cycles of the form (1, ... 1) for ()H' since 

there are ~ invo1utaries in the chain, and the q of (III) in 



(B) above is one. Hence (3.11) holds. 

Remark: This is Theorem 4.1 of [6]. 
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APPENDIX A 

GENERAL INFORMATION ON NEC-GROUPS 

We begin by describing what the NEG-groups are. We do this 

by analogy with the Euclidean crystallographic groups. 

(1) Euclidean preliminaries 

Let I(IE)2 be the group of isometries of the Euclidean 

plane. There are four types (see [26,Chp.2]). 

(i) Translations 

(ii) Reflections 

(iii) Rotations 

(iv) Glide reflections 

f ---) 



b ff t d by a Product of two (i) any translation can e e ec e 

reflections with parallel axes, [26,Chp.2]; 

(ii) any rotation can be effected by a product of two 

reflections with non-parallel axes, [26,Chp.2]; 
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(iii) a glide reflection is a product of a translation and 

a rotation, [26,Chp.2]; 

we have that I( IE2) is generated by reflections. 

A subgroup, G, of I( jE2) is discontinuous if for every 

point v of JE2 there is a neighbourhood U of v such that 

i.e. 

gv 

e.g. Let G consist of the translations 

Tm n(x,y) - (x+m,y+n) (m,neZ) , 

Clearly a disc of radius half about any point (x,y) contains 

no point of the orbit of (x,y) except (x,y). 

Corresponding to G we have a tesselation of IE2: 
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Now since: 

(i) any translation can be effected by a product of two 

reflections with parallel axes, [26,Chp.2]; 

(ii) any rotation can be effected by a product of two 

reflections with non":,,,parallel axes, [26,Chp.2]; 

(iii) a glide reflection is a product of a translation and 

a rotation, [26,Chp.2]; 

we have that I( IE2) is generated by reflections. 

A subgroup, G, of I( /E2) is discontinuous if for every 

point v of JE2 there is a neighbourhood U of v such that 

Le. 

gv 

e.g. Let G consist of the translations 

Tm,n(X,y) - (x+m,y+n) (m,neZ) 

Clearly a disc of radius half about any point (x,y) contains 

no pOint of the orbit of (x,y) except (x,y). 

Corresponding to G we have a tesselation of JE2: 
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- --_ .. _.-1-._._--+--

_. - ----.---- -----t----
( 1 • 1 ) 

(0,0) (0, 1) (0,2) 

~ is called a fundamentsl region (no two points in Int(~) lie 

in the same orbit, and the translates of ~ under the elements 

of G tesselate the plane). 

(2) The geometry of the hyperbolic plane IH2 

This is represented by the upper half of the complex 

plane. Lines in ,H2, IH-lines, are Euclidean lines 

perpendicular to the x-axis and semi-circles with their 

origins on the x-axis. 

e.g 

7 

There is a metric one can put on 'H2, (the hyperbolic 

metric), given by 

IZ-WI+IZ-WI 
p(z, w) - In ...:..;:;..--=--.:...--

IZ-WI-IZ-wl 
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I(/H2) is then the group of isometries of m2. This is 

generated by reflections in /H-lines, [2,p.137], which are 

defined as follows. 

Reflection in an~-line that is a Euclidean line 

perpendicular to the x-axis is exactly the same as Euclidean 

reflection. For any other iH-line, the reflection of any point 

is obtained by thinking of ~2 as /E2 and then inverting the 

point in the circle. 

i.e 

., .. .... -.- .. 

r 

S,s2-r2 (s"s2,r Euclidean 
distances between 
the points) 

The discontinuous subgroups of I( ~2) are the NEC-groups. 

Wilkie [46] showed that finitely generated NEC-groups with 

compact orbit space have presentations of the form (3.1) and 

Singerman [44] showed that the area of a fundamental region of 

such a group is 
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r 

where ~ - g + h + s + L ~k + ~iL.[l - m~J'] 
1 ,J 

Thus in our work we work with a slightly wider class of 

groups, than just the NEC-groups, as for particular choices of 

~, ~ may be negative, and thus T 1 (0') is not an NEC-group. In 

this regard see [48]. 

It is interesting to note that the class of presentations 

of the form (3.1) for which ~ > 0 form one of the few classes 

for which all three of Dehn's classical problems are solvable. 

Macbeath [28] solved the isomorphism problem. The word and 

conjugacy problems are solved in [38]. 
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CHAPTER 4 

ON THE SO-UNIVERSALITY OF COXETER GROUPS 

4.1 INTRODUCTION 

A Coxeter pair is a 2-tuple (r,~) where r is a graph and 

~ is a map from E(r) to {2,3,4, ... }. With each Coxeter pair we 

associate a presentation 

tr(r,~)-<v(r);(xy)~({X,y}) «x,Y}fE(r»> 

where each generator is involutary. ~(r,~) is called a 

Coxeter presentation and the associated group C(r,~) is called 

a Coxeter group. 

We will often represent a Coxeter pair (r,~) by drawing 

the graph r and writing numbers on the edges to represent the 

values of ~. Sometimes, if no confusion can arise, we will use 

such a diagram to represent the group C(r,~). 

Let (r,~) be a Coxeter pair. When discussing the 

SQ-universality of C(r,~) it suffices to deal with the case 

when IV(r)I~4 and r is connected. For if IV(r)I~2 then C(r,~) 

is either cyclic or dihedral (finite or infinite) and so is 

not SQ-universal. If IV(r)I~3 and r is not connected then we 
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can express C(r,~) as a free product of two non-trivial groups 

not both of order two, and so C(r,~) is again SQ-universa1 

(see [33]). If Iv(r) 1-3 and r 1s connected then C(r,~) is 

SQ-universal if and only l ~({!,y}) < 1, by Neumann [33];d 

(x,y)EE(r) 

Following Appel and Schupp [l]-we -will saythat-'a CCoxeter . 
I 

f 
pair is of large type if 211m ~. 

I conjecture that if (r,~) is a Coxeter pair of large type 

with IV(r)I~3, then C(r,~) is SQ-universal except when (r,~) 

is 

In connection with this conjecture we prove the following. 

THEOREM 4.1 

Let (r,~) be a Coxeter pair of large type. Suppose 

(A) r is incomplete on at least three vertices~or 

(B) r is complete on at least ·.five verticf3sand for 

(4.1) 1 1 1 1 
~(e,)+l + ~(e2)+1 + ~(e3)+1 < 2 

Then C(r,~) is SQ-un1versal. 
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can express C(r,~) as a free product of two non-trivial groups 

not both of order two, and so C(r,~) is again SQ-universal 

(see [33]). If Iv(r) 1-3 and r is connected then C(r,~) is 

SQ-universal if and only L ~«;,y}) <1, by Neumann (33]; 

{x,y} fE(r) 

Following Appel and Schupp [l)"ve 'will s~y-"that·'a·Coxeter·· . 
! , 

pair is of large type if 211m ~. 

I conjecture that if (r,~) is a Coxeter pair of large type 

with IV(r)I~3, then C(r,~) is SQ-universal except when (r,~) 

is 

In connection with this conjecture we prove the following. 

THEOREM 4.1 

Let (r,~) be a Coxeter pair of large type. Suppose 

(A) r is incomplete on at least. three v:e:rticesi: .or 

(B) r is complete on at least 'five verti'c~s <!nd for" 

.' , 
, • .:- : ~ ! •. -/ I 1.~ ~ J ;" ••• 

(4.1) 

Then C(r,~) is SQ-universal. 
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This result is in fact a corollary of more general results 

stated and proved in §§4.2, 4.3. 

Note that (4.1) always holds if 2,3,4/Im ~ and there is no 

triangle in r of the form 

Before stating our second result we need the following 

'definition. Let (r,~) be a Coxeter pair. We define an 

equivalence relation - on V(r) as follows: 

x-y if and only if there exist vertices X-X 1 ,X 2 , ... ,xn-y 

\i-l, ... ,n-l). 

An island in (r,~) is a Coxeter pair (r',~') where r' is 

the full subgraph of r on some--equivalance class and~' is 

the restriction of ~ to E(r'). 

Using the terminology of §1.8, our second result is 
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THEOREM 4.2 

Lec (r,~) be a Coxeter pair with IV(r)I~4 and 

hcf[~(E(r»] > 1. 

(I) If hcf[~(E(r»] ~ 3 then C(r,~) > F2. 

(II) If hcf[~(E(r»] - 2 and not all islands have the 

form 

(4.2) , . . , U 
2 

(III) If hcf[~(E(r»] - 2 and all islands have the form 

(4.2) then C(r.~) is soluble of length at most 

three. 

COROLLARY 4.1 

Let (r,~) be a Coxeter pair as in the statement of the 

above Theorem. Then C(r.~) is SQ-universal if and only if (I) 

or (II) holds. 

Remarks: (1) If (r1'~1) and (r2'~2) are distinct islands in 

(r.~) and xeV(r1) and YEV(r2). then clearly (x,y}eE(r) and 

~{x,y}-2, giving the following observation: 



If (r,~) is a Coxeter pair and (ri'~i) (if I) are all 

of the islands in (r,~) then 

c(r.~)aL C(ri'~i) 
if I 

(2) The proof of (II) above proceeds by picking an 
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island not of the form (4.2) and showing that it is equally as 

large as F2 , whence C(r,~) is equally as large as F2 • 

(3) Bearing in mind remark (1) above it is 

interesting to ask the following question: If a direct sum of 

groups is SQ-universa1, does this imply that one of the 

summands is itself SQ-universal? We will show (in an appendix 

to this chapter) that the answer is "yes" for countable direct 

sums. 

At various points in the chapter we will need to use 

THE SOLUTION TO THE WORD PROBLEM FOR COXETER GROUPS. 

This is effectively the algorithmn given in Tits [45]. Let 

be a Coxeter presentation. Let A be a word on Vcr). We define 

two operations on words: 
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(4.3) If B is a subword of A of length k that is also a 

subword of a relator (xy)k, replace B by the word 

obtained by interchanging x and y in it. 

(4.4) Delete any subword of the form x 2 • 

The derived set of A is the set of all words obtainable 

from A by a finite number of operations of types (4.3) and 

(4.4). We have: a word A on V(r) is equal to 1 in C(r,~) if 

and only if the empty word is in the derived set of A. We will 

say that a word is minimal if there is no shorter word in its 

derived set. 

THE FREIHEITSSATZ FOR COXETER GROUPS. 

This says that if r' is a full subgraph of r and ~' the 

restriction of ~ to E(r') then the natural mapping 

given by v r+ v (veV(r'» is injective. See [3] for details. 
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4.2 THEOREM 4.3 

In this section we prove the following result: 

THEOREM 4.3 

Let (r,~) be a Coxeter pair with Iv(rl~3. Suppose there 

exists a vertex v of r not joined to every other vertex, 

satisfying: If {u,v} is an edge of r then ~({u,v})~3. Then 

c(r,~) is SQ-universal. 

Remark: Part (A) of Theorem 4.1 is a special case of this 

result. 

w~ delay the proof until after the following discussion, 

taken from Shelah [43J. If A and B are any groups with A a 

subgroup of B we sayan element x of B is malnormal over B 

(relative to A) if 

where AX-{xax-l:aEA}. Now suppose 

is a free product with amalgamated subgroup C. 

THEOREM (SHELAH) 

Let A,B,C and D be as above. If there exists a malnormal 

element x in either A or B (relative to C) then D is 
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the empty word is not in the derived set of either of these. 

Case 2 L(X)-2 

Z has one of the following forms (where p,q,r,s are 

distinct elements of V(rs»: 

1) vpqvr 

2) vpqvp 

3) vpqvq 

4) vpqvrs . 

5) vpqvps 

6) vpqvqs 

7) vpqvrp 

8) vpqvrq 

9) vpqvpq 

10) vpqvqp 

We now show that the empty word is not in the derived set 

of any of the above. We only give subcase 9) a fuller 

treatment, as this is most complicated. The other subcases are 

obtained similarly. 
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Subcases 1), 2), and 3) 

This is obvious as no word of odd length ever defines 1 in 

a Coxeter group. 

Subcase 4). 

The derived set is a subset of 

{vpqvrs, vqpvrs, vpqvsr, vqpvsr}. 

Subcase 5). 

The derived set is a subset of 

{vpqvps, vpqvsp, vqpvsp, vqpvps, vqvpvs, qvqpvs, qvpqvs}. 

Subcase 6). 

The derived set is a subset of 

{vpqvqs, vpqvsq, vqpvqs, vqpvsq, vpvqvs, pvpqvs, pvqpvs}. 

Subcase 7). 

This reduces to subcase 5) if (rp)2 is a relator, so 

suppose it is not. Then the derived set is a subset·of 

{ vpqvrp , vqpvrp}. 

Subcase 8). 

This reduces to Subcase 6) if (rq)2 is a relator, so 

suppose it is not. Then the derived set is a subset of 

{vpqvrq, vqpvfrf}. 
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Subcase 9). 

If (pq)2, (qv)3, and (pv)3 are all relators we find that 

the derived set has the following structure. 

vpqvpq 

vpqvq qpvpq 

vqpvqp 

(qv) 3 (pv) 3 

vpvqv vqvpvq 

(pv) 3 (qV)3 

pvpqv qvqpvq 

(pq)2 (pq)2 

pvqpvp qvpqvp 

(pv) 3 
(qV)3 

pvqvpv qvpvqv 

(qv) 3 (pv) 3 

qpvqpv 

(pq) 2 

pqvqpv qpvpqv 

(pq) 2 

pqvpqv 
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So suppose that they are not all relators. Then the derived 

set is a subset of 

(vpqvpq, vpqvqp, vqpvpq, vqpvqp, vpvqvp, vqvpvq). 

Subcase 10). 

If (pq)2 is a relator this reduces to subcase 9), so 

suppose it is not. Then the derived set is a subset of 

(vpqvqp, vpvqvp, pvpqvp). 

Case 3 L(X)~3 

Let (Xi:iEI), (Yj:jEJ) be the derived sets of X and Y 

respectively. For iEI write Xi-Xipi where Pi is an element of 

to VXivPivYj, and since L(Xi)~2 and Xi, Yj are minimal, no 

further type (4.3) or type (4.4) operations involving a 

relator containing v, can be applied to this word, apart from 

changing the word back to vXivYj' It now easily follows that 



147 

• 
are all of the words in the derived set of Z. Hence vXvYf1 in 

c(rl'~l) - a contradiction. The result fo11ows.o 
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§4.3 THEOREM 4.4 

THEOREM 4.4 

Let (r,~) be a Coxeter pair. Suppose that the following 

hold: 

(1) There exist five distinct vertices v,u,w,x,y of r such 

that 

(i) the full subgraph of r on {v,u,w,x,y} is 

complete, and 

(ii) the image under ~ of any edge of r with at least 

one endpoint in (v,u,w,x,y) is at least 3. 

(2) If e 1 ,e 2 ,e 3 EE(r) form a triangle in r then 

1 + 1 + 1 <1 
~(el)+l ~(e2)+1 ~(e3)+1 2, 

unless some of e 1 ,e 2 ,e
3 

are mapped to 2 by~, in 

which instance we may replace ~ by 7/ 12 , 

(2,3) . 

Then C(r,~) is SQ-universal. 

Remark: Part (B) of Theorem 4.1 is a special case of this 
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result 

Recall that if Hand G are groups with H a subgroup of G, 

then H is said to be normal-convex in G if for every normal 

subgroup N of H the intersection of H with the normal closure 

of N in G is N (see .[23]). Thus if H is normal-convex in G, 

and is SQ-universal, then G is SQ-universal. For let X be a 

countable group and let N be a normal subgroup of H such that 

X ~ H/N 

Then X <; H/N - H/HnNG ~ HNG/NG ( G/NG 

Our strategy is thus the following: we will find a free 

subgroup H of rank two in C-C(r,~) and we will show that it is 

normal convex in C. We begin with a technical lemma, the proof 

of which uses some of the ideas in Howie [23] and is quite 

long. For that reason it is presented in two halves; the 

first, the outline, is the proof omitting technical details, 

the second, the details, contains the technical details 

missing from the outline. 

Remark: Originally we had hoped to prove that for any three 

vertices x,y,z of r the subgroup generated by them was 
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normal-convex in C(r,~). This has turned out to be false as 

the following example shows 

b 

4 c 

For band c are not conjugate in the subgroup generated by 

b,c,d and yet are conjugate in the whole group. 

LEMMA 4.1 

Let (r,~) be as in the statement of Theorem 4.4 with 

e(r,~)~<V(r);R>, and suppose 

~=(uvw)X(UVW)2X ... X(UVW)20,OO' 

~-(xvy)U(xvy)2U ... U(xvy)20,OO' . 

If J. is a reduced diagram over <V(r) ;R> with n 

distinguished regions labelled by words V" ... ,Vn in ~ and ~, 

then there exist words S"""Sn in ~ and ~ such that 

(4.5) 

Remarks: (i) Note that we can change the order of the terms in 

(4.5) by "Peiffer-type" transformations (at the expense of 
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altering the S's). For example we could alter the first two 

terms to 

(ii) In (4.5) we could. of course. take S1 to be empty (by 

conjugating). but it is convenient to allow S1 to be non-empty 

for symmetry. 

We indicate straight away how Theorem 4.4 follows from the 

Lemma 4.1. 

Let H be the subgroup of C generated by ~ and ~. It is 

easily seen. by using the solution to the word problem. that H 

is free of rank two and hence is SQ-universal. We now show 

that H is normal-convex in C. If Wo is a word on ~ and ~ that 

represents an element of the normal closure of some normal 

subgroup N of H in C. we must show that Wo represents an 

element of N itself. 

We in fact have the following: Suppose 

where Wo •...• Wn are words on ~ and ~, and U1 ••••• Un are words 
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on V(r). Then there exist words Tl , ... ,Tn on ~ and ~ such that 

(4.6) 

This is proved by appealing to Lemma 1.12 by which we may 

assume that there exists a reduced diagram with n+1 

distinguished regions labelled by Wo, ... ,Wn . Then Lemma 4.1 

and the remarks following it give us (4.6) as required. 

Thus H is normal-convex in C. 

Proof of Lemma 4.1 

The outline 

It suffices to prove the result when;l consists of a 

single sphere. The proof is by induction on n. Clearly the 

result holds if n-O or 1, so suppose n>l. 

The idea now is to assign angles to the corners of the 

regions of 1 in such a way that for every non-distinguished 

region d, K(d)~O, and for every vertex a of Jl , K(a)~O. Since 

I K(a) + I K(d) - 4~ 

a a vertex d a region 

there then exists some distinguished region d 1 with K(dl»O. 

In order to explain the next step of the proof we need 

some terminology. If d is a distinguished region then an edge 
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of a~ is called a distinguished edge if it occurs twice in a 

boundary cycle of ~, or if it' separates,,~' from another 

distinguished region. A non-distinguished edge of a~ is one 

which separates ~ from a non-distinguished region. A subpath 

of a~ is a distinguished segment if each of it$ edges isa 

distinguished edge and each of its intermediate vertices has" 

valence two. It is a non-distinguished segment if each of its 

edges is a non-distinguished edge and each intermediate vertex 

has precisely one corner from ~ incident .at it and corners' 

from no other distinguished regions areincident'at' it;~Then.' .,' .... 

a~ splits up uniquely into a collection of maximal 

distinguished segments and maximal non-distinguished segments. 

Our aim is to show that ~1 has a "very long" distinguished 

segment. To do this we consider ,the angles at the various 

corners of ~1' What we show is that for a, suitable- small f>O; , . 

if K is a corner of ~1 then t. ___ ._ 

(4.7) {
-~ if K is incident to an in~ermediate 

vertex of a distinguishea segment ' 

~~-E otherwise. 

Now let q be the number of corners of ~1 with angle ~ and 
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let p be the number with angle at most T-E. Then 

whence p<2T/E. Since the length of a boundary cycle of ~1 is 

at least the length of p, we deduce that there exists a 

distinguished segment E of a~l of length at least IpIE/2T. 

For each distinguished region ~ of ~ , the boundary cycle 

of ~ can be broken uniquely into segments labelled by either 

p+l or ~;1. We may show that these factorizations coincide 

exactly on E (see pp.l68-l69 below). 

e.g. :( p 

-'-, 
~ i ~ but not or ~ 

-L 
p: p p 

~'< 
We remove E to obtain a new diagram; 

¥ ¥ 
E 

h 0< 
where A and B are words, possibly empty, on V(r). We then 

"fold" these segments out, as follows 



l 
'5), 

:¥ \r '.:.~ ~. 

T"A -,-
A 

B B 

"J\ L 

There are two cases now. 

(i) The regions on either side of ~ were distinct. 

Here X (respectively Y) is the label on the segment of a~2 

reading anti-clockwise from a to b (respectively b to a), and 

where Z (respectively y-l) is the label on the segment of a~l 

reading anti-clockwise from c to d (respectively d to c). 

Performing the above modifications gives a new region ~' 

Where ZX is the label on a~' reading anticlockwise from e. 

Note that ZX is a word on ~ and ~. Using the inductive 

hypothesis on this new diagram, which has only n-l 



distinguished regions. and Remark (i). we find there exist 

words S.S3 •...• Sn on p and ~ such that 

where V3 •...• Vn are the labels on the distinguished regions 

excluding ~'. 

Now there exist words p.Q on p and ~ such that PXYP-1 is 

equal (in C) to the label V2 on ~2' and QY-1ZQ-1 is equal (in 

C) to the label V1 on ~1' Replacing SZXS- 1 by 

completes the proof. 

(ii) The regions on either side of ~ coincide. 

Here Z (respectively Y.X. and y-1) is the label on the segment 

of a~1 reading anti-clockwise from a to b (respectively b to 

c. c to d. and d to a). Eliminating ~ and performing the above 
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modifications and then removing· the· interior' of the resulting 

annular region gives rise to two planar diagramsD 1 . and p 2" ., i c'." ". 

one with boundary label X and,;the >.oeher:withboundary·:label "Z. ." 

From this we create two new spherical diagrams ,J " and, sJ... 2' 

in the following way. We "glue','. P f to·'anuntesselated· sphere 

to obtain )..1 and "glue" t> 1 to- a:::second 'untesselated sphere 

to obtain .J 2' Now each of 1.1 and ) 2 ha,s n~l or fewe,r 

distinguished regions: 

and 

Then by applying the inductive hypothesis ,to1 1 ·and'Ji' .. · 

and making use of Remark (i) after Lemma 4.1, we find tha,t 

(4.8) 

(4.9) 

where L1 , ••• ,La are the labe1s'on·the distinguished-regions.>" ','. 

of ~ 1 other than E1 • in some',order; M~, .. , ~Mb are the labels 

on the distinguished regions of ;(2 other than E:2, '. in, some .' ' 

order. and T1 •••• ,Ta ,U 1 , ••• ,Ub are words on ~ and~. 

Combining (4.8) and (4.9) we find 
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-1 in C. 

Conjugating each term by a suitable word on ~ and ~ and then 

performing free reductions on the first term, allows us to 

replace it by V1 , where V1 is the label on ~1' This completes 

the outline of the proof. 

The details 

Consider the following two assertions: 

(4.10) If p is a freely reduced word on (~,~), no 

cyclic permutation of p begins with sts for s,t 

distinct elements of (u,v,w,x,y). 

(4.11) Any subword of an element of the symmetrized closure 

of (~,~) of length at least 120,008 is not a piece. 

(4.10) is easily verified by inspection. We verify (4.11). 

Let ~ be a maximal piece. We suppose without loss of 

generality that it is a subword of a cyclic permutation of ~. 

Since 

is never a piece, ~ must be contained in 
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(UVW)20000X (UVW)20002 

and hence has length at most 120,007. 

(4.10) and (4.11) are both crucial to our proof, and will 

be refered back to. 

We now begin the details proper by describing how,to 

assign the angles to the corners· of the regions of·;l and 

showing that they have the required properties. 

Let ~ be a non-distinguished region. Then ~ has 2r corners 

for some r~2. A corner of ~ is bad if the vertex it is 

incident to has valence two, and good otherwise. Now two 

successive corners cannot both be bad since this would imply 

that ~ had a common boundary of length at least three with a 

distinguished region, which would violate (4.10) above. 

Thus at most r corners can be bad. Call ~ bad if exactly r 

corners are bad, and good otherwise. 

Example of a bad region: 

distinguished 
region 

. ... '.';-

' .. distinguished 
region 

distinguished 
region 
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We observe that if two non-distinguished regions have an 

edge in common then both regions must be good. 

We first assign angles to the corners of the 

non-distinguished regions. Let E-r/421. 

Firstly suppose that ~ has four sides. Assign the angle 

r/2 to each of its corners. Then 

4r 
K(~) - ~ - (4-2)r - o. 

So now suppose that ~ has at least k~6 sides. Assign 

the angle r+E to each of its bad corners and, [1 - ~]r-E to 

(k-2) . 
each of its good corners if ~ is bad, or (K+2)(r-E) to each of 

its good corners if ~ is good. 

If ~ is bad we have 

- o. 

If ~ is good we have, where b is the number of bad corners 

of ~, 

K(~) - (k-b)[t:~](r-E) + b(r+E) - (k-2)r 
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[
k-2] [4~+2kf] - k k+2 (~-f) + b k+2 - (k-2)~ 

[k-2] - k+2 (k+2)~ - (k-2)~ 

- O. 

Thus for all non-distinguished regions ~, K(~)~O as 

required. 

Let a be a vertex of.,J. A corner incident with a will be 

said to be distinguished (respectively, non-distinguished) if 

it arises from a distinguished (respectively, 

non-distinguished) region. 

Suppose that there is at least one distinguished corner 

incident with a. Assign angles to the incident distinguished 

corners as follows: Suppose there are t such corners and that 

the sum of the angles of the non-distinguished corners 

incident at a is 0, then assign an angle 

(2~-0) 
t 

to each incident distinguished corner. Then 

K(a) - O. 
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Hence we need only show K(a) ~ 0 for those vertices a of 

with all incident corners non-distinguished corners. 

Case 1. Five or more non-distinguished corners are incident at 

~. 

We first note (for use in this and the following case) 

that if K is a corner incident to a then 

For by a previous remark K must be a corner of a good region. 

If that region has four sides then ~ - ~ , whereas if that 

region has k~6 sides then 

Thus 

K(a) ~ 2~ - 5[~] ~ 2T - 2T - o. 

Case 2. Precisely four non-distinguished corners are incident 

at a. 

Suppose first that all four corners come from regions with 

four sides. Then 
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11" 
K(a) - 211" - 42 -0. 

Suppose now that less than four corners come from regions 

with four sides. By hypothesis (3) of the Theorem at least one 

region incident to a has k ~ 8 sides so 

Case 3. Precisely three non-distinguished corners are incident 

at a. 

Let e 1 ,e 2 ,e
3
EE(r) be the three edges in r corresponding to 

the three regions. The following is crucial: 

If hypothesis (2)(i) of the Theorem holds for 

(4.12) 

and if (2)(ii) holds, then the sum is bounded above 

by 61/105. 

Verification of this is given after the proof. 



164 

" 2'1" - ('I"-E)m - 0; using (4:12) 
.': '.f 

Note that at most one of these can :be • eq\ial to two. so·· 

without loss of generality we ,-assume that it is'¥'(e O. Using -.,'-

(4.12) we find 

Now 

" 2'1" - [~ + 4!~i[2 - l~~]] 

2 
1685 

'I" - 8'42'1" 

'I" L. 0 - - 842 - . 

.-, 

Thus for all vertices K(a) " 0 I and we may assign-the --angles 

as asserted. 

We now verify (4.7). Let K be a corner of ~1· 
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Case 1. K separates two maximal non-distinguished segments. 

since both Nl and N2 have at least six sides, but may both be 

bad. 

Case 2. K separates two maximal distinguished segments. 

Case 3. K separates a non-distinguished segment and a 

distinguished segment. 

Case 4. K is intermediate to a non-distinguished segment. 

Subcase 4.1. There are at least three non-distinguished 

corners incident at the same vertex as K. 

11" 3 + -2 f £: 11"- f , "2 

since each region N1 , ••• ,Nn must be good. 



166 

Subcase 4.2. There are precisely two non-distinguished 

corners incident at the same vertex as K. 

N1 i N2 , 
Z 

T I u 
-x y 

K 

Firstly: by hypothesis (1) of the Theorem, neither ~({x,z}) 

nor ~({y,z}) is 2 T. 's also ~({x,z}) and ~({z,y}) are not 

both three, since, if they were, hypothesis (2) would be 

violated. It can now be shown that the following holds. 

(4.13) 1 
-~-;-( ~{x-,-z-,} .... )-+T1 + 

1 L. 9 
~({z,y})+l - 20' 

Verification of this is given after the proof. See p.173 below. 

Subcase 4.3. There is precisely one non-distinguished 

corner incident at the same vertex as K. 

K 
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Case 5. K is intermediate to a distinguished segment. 

K 

Thus (4.7) holds and so the number p referred to in the 

discussion after (4.7) is less than 842. So some distinguished 

segment of aA l • ~ say. has length at least 713568. 

Now consider Al • for some boundary cycle of Al the label 

on this cycle is a word on ~ and ~. We mark the vertices of 

aA l that correspond to the endpoints of the ~'s and ~'s with 

flags in Al • 

e.g. 

If Al has a boundary with self intersection we always draw the 

flags as though Al were simply connected. 

e.g. 

we think of it as though it were 
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\ 

() 
for the purposes of drawing the flags. Thus no flag on a 

vertex of 61 , lies attached to a vertex of 62 and vice versa, 

and hence flags are always drawn on the "right" side of any 

such boundary. We may also do this for any distinguished 

region. 

We now show that the factorization of the boundary cycles, 

of the regions on either side of ~, match up on ~. Suppose by 

way of contradiction that it does not. 

If there are two or more flags on either side of ~ then we 

must have a piece of length at least 1~1/2, - a contradiction 

to (4.11). 

i.e. 

So we may suppose that there is at most one flag on either 

side of ~. 
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Now if there is no flag on one side of ~ we find that we 

have a piece of length at least 1~1/2. - a contradiction to 

(4.11). 

Le. 

~ a piece or pieces 

So we may assume that there is precisely one flag on each side. 

Le. 

pieces 

Now at least one of these pieces has length at least 1~1/3 

i.e. length at least 237832 - a contradiction to (4.11). Hence 

the factorizations match up as required. This completes the 

details.O 

We now verify (4.12). We begin by verifying the first 

part. Let X={4.5.6 •... } and let 8:X3 ~ R be given by 

8(p.q.r) -l/p + l/q + l/r. The problem reduces to showing the 

following: suppose 8(p.q.r) ~ 1/2. then 8(p.q.r) ~ 209/420 -

8(4.5.21). We argue by contradiction. Suppose if possible 
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(p,q,r)eX 3 and 209/420 L 8(p,q,r) L 1/2. Without loss of 

generality we may assume that p , q , r. Firstly 

l/p ~ 209/1260 so p - 4, 5 or 6; 

Case 1. p - 4. 

1/2 ~ 1/4 + l/q + l/r ~ 209/420 hence 

1/4 ~ l/q + l/r ~ 26/105. So l/q ~ 13/105 hence q , 8 also 

l/q L 1/4 so q ~ 5 

subcase 1.1. 9 - 5. 

1/2 ~ 1/4 + 1/5 + l/r ~ 209/420 hence 1/20 ~ l/r ~ 1/21 

- a contradiction. 

subcase 1.2. 9 - 6. 

1/2 ~ 1/4 + 1/6 + l/r ~ 209/420 hence 1/12 ~ l/r ~ 17/210 

- a contradiction. 

subcase 1.3. 9 - 7. 

1/2 ~ 1/4 + 1/7 + l/r ~ 209/420 hence 3/28 ~ l/r ~ 11/105 

- a contradiction. 

subcase 1.4. g - 8. 

1/2 ~ 1/4 + 1/8 + l/r ~ 209/420 hence 1/8 ~ l/r ~ 103/840 

- a contradiction. 
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Case 2. p - 5. 

1/2 ~ 1/5 + l/q + l/r ~ 209/420 hence 

3/10 ~ l/q + l/r ~ 25/84. So l/q ~ 25/168 hence q - 5 or 6; 

subcase 2.1. 9 - 5. 

1/2 ~ 1/5 + 1/5 + l/r ~ 209/420 hence 1/10 ~ l/r ~ 41/420 

- a contradiction. 

subcase 2.2. 9 - 6. 

1/2 ~ 1/5 + 1/6 + l/r ~ 209/420 hence 2/15 ~ l/r ~ 11/84 -

a contradiction. 

Case 3. p - 6. 

1/2 ~ 1/6 + l/q + l/r ~ 209/420 hence 

1/3 ~ l/q + l/r ~ 139/420. So l/q ~ 139/840 hence q 6. So 

1/2 ~ 1/6 + 1/6 + l/r ~ 209/420 hence 1/6 ~ l/r ~ 23/140 - a 

contradiction. 

This completes the proof of the first part of (4.12). 

We now verify the second part. We note that precisely one 

of ~(el),~(e2),~(e3) is two. Hence the problem reduces to 

showing the following: Let ~:X2 ~ R (given by ~(p,q) -

l/p + l/q) satisfy ~(p,q) L 1/4 - (7/12-1/3), then 



172 

.: _I ..l...:_' 

We argue by contradiction. Suppose:26/1Q5 ~"f.t(P .. q),",·1/4~"·;.;;-···-

Without loss of generality we assume that p , q. Firstly 

l/p ~ 13/105 so P , 8 

Case 1. p - 4. ,'. , 
--,-,.", 

1/4 ~ 1/4 + l/q ~ 26/105 hence 0 ~ l/q ~ -1/420 -a . 

contradiction. 

Case 2. p - 5. 

1/4 ~ 1/5 + l/q ~ 26/105 hence 1/20 ~ l/q ~ 1/21~a· 

contradiction. 

Case 3. p - 6. 

1/4 ~ 1/6 + l/q ~ 26/105 hence 1/12 ~ l/q ~ 17/210 

a contradiction. 

Case 4. P - 7. 

1/4 ~ 1/7 + l/q ~ 26/105 hence. 3/28 : ~ :l/q -~.77 /735 'i, = 

a contradiction. ! , ... I, '. ~ •• _, '. 

Case 5. P - 8. 

1/4 ~ 1/8 + l/q ~ 26/105 hence 1/8 ~ l/q ~ 103/840 

a contradiction. 
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Thus the second part of (4.12) holds. 

Lastly we verify (4.13). To do this we must show that if 

~(P.q) ~ 1/2 then ~(P.q) ~ 9/20 - ~(4.5). We argue by 

contradiction. Suppose 1/2 ~ ~(P.q) ~ 9/20. Without loss of 

generality we assume that p , q. Firstly l/p ~ 9/40 hence 

p - 4. Thus 1/2'~ 1/4 + l/q ~ 9/20. Hence 1/4 ~ l/q ~ 1/5 - a 

contradiction. 
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§4.4 PROOF OF THEOREM 4.2 

We ask the reader to recall what it means for a group to 

be as large as F2 , from §1.8. We will use the following fact 

throughout this section. 

(4.14) If IV(f) 1-3 and f is connected then C(r,~) is as large 

as F 2 if and only if L tp((; ,y}) <1, by [34]. 

{x ,y} fE(r) 

Let k - hcf[tp(E(r»). 

Proof of (1). 

Suppose first that k~4; let u,v,w be distinct vertices of 

r. Then there is a homomorphism from C(f,tp) onto 

H- 6: 
x k Z 

given by U ~ x, v ~ y, W ~ Z, and t ~ x for 

tfV(f)-{u,v,W}. By (4.14), H is as large as F
2

, and hence so 

is C(r,tp) 

Now suppose k-3. Let U,V,W,X be distinct elements of V(f). 

Then there is a homomorphism from C(f,tp) onto 



H -o 

b 

3 c 

given by u H a, v H b, W H C, x H d and t H a for 

tEV(r)-{u,v,w,x}. 

We now show Ho is equally as large as F2 • 

Now there is an automorphism of this group of order 
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dividing four carrying a H b, b He, C H d, d H a, hence 

is a finite extension of Ho. Let H2 be the kernel of the 

homomorphism from H1 onto Z2-{O,l} given by x H 1, 8 H O. 

The covering corresponding to H2 is 

Collapsing the maximal subtree gives 
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Let H3 be the kernel of the homomorphism from H2 onto 

<X,y; X2, y2, (xy) 3> given by 8 H x, ! H y. The covering 

corresponding to H3 is 

(8 18 4!Sl!Sl)3, (8 48dl.2'1!Sl)3 

(8s83!~1!~1)3, (8 38 s!Sl!;1)3 

(8 18 4)2, (8 38 s )2, (8 28 5)2 

(!S!2)2, (!1!4)2, (!3!S)2 

Collapsing the maximal subtree consisting of 8 4 '!3,8 2 '!l,8 s 

and then eliminating !s by a Tietze transformation gives the 

following 

There is now an homomorphism from H3 onto 

3 x 3 i 

as large as F2 , and hence so is Ho. 

Proof of (II). 

Let (r',~') be an island not of the form (4.2). Then there 



177 

is an homomorphism from C(r,~) onto C(r',~') given by 

v 1--+ v (VEV(r'» and u 1--+ 1 (UEV(r}-V(r'». Let r , be the 

complete graph on V(r') and let ~, be the extension of ~' to 

E(r , ) for which, if r' is not complete, ~1(E(r,)-E(r'»-{6}. 

Thus there is a homomorphism from C(r,~) onto C(r,,~,), 

If IV(r , )1-3 then, since 

~4' 
2 

it follows from (4.14) that C(r"~1) is as large as F2 , hence 

so is C(r,~). 

Suppose IV(r,)1~4. We begin by showing the following: 

(4.15) There is a complete subgraph r 2 on four vertices in r , 

such that any two vertices of 12 are joined by a path 

in 12 no edge of which is mapped to 2 by ~,. 

Pick a maximal subtree T of r , consisting of edges with 

image at least 3. (T exists since (I',~') was an island.) Pick 

a subtree of T containing precisely four vertices and let r 2 

be the full subgraph of r, on these. 

Let ~2 be the restriction of ~, to the edge set of r 2 • Now 
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there is a homomorphism from C(r,,~,) onto C(r2'~2) given by 

Case 1. There is a triangle in r 2 with no edge mapped to 2 by 

b 

We suppose, without loss of generality, that no edge of 

the triangle with vertices a,b,c is mapped to 2. Then there is 

a homomorphism from C(r2'~2) onto 

y 

H- 6 
x Z 

f 

given by a ~ x, b ~ y, c ~ z, d ~ 1. By (4.14), H is as 

large as F2, and hence so is C(r2'~2). 

Case 2. In each triangle in r 2 there is an edge mapped to 2 by 
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We note that by (4.15) there can be at most three edges 

mapped to 2 by ~2' 

Subcase 2.1. Precisely two edges of r 2 are mapped to 2 by 

~. 

Then we must have the following situation. 

b 

d 
2 c 

If at least one of Q,~,O,E is at least 6 (say Q), then there 

is a homomorphism from C(r2'~2) onto 

z 

H-

gi ven by a 1-+ y, b 1-+ Z, c 1-+ 1, and d 1-+ x. By (4. 14), H is 

as large as F2, and hence so is C(r2'~2)' 

So now assume that 
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b 

d 2 c 

Let H be the kernel of the homomorphism from C(r2'~2) onto 

Z2"{O,l} given by 8 1--+ 1; b,c,d 1--+ O. The covering 

corresponding to H is 

b c d 

(bd)4, (cd)2, (b'C')4, (b'd,)4, (c'd')2 

Collapsing the maximal subtree and then eliminating b ' gives 

H-<b,c,c',d,d';(cC')2,(dd')2,(bc)4,(bd)4,<cd)2,(bc')4,(bd,)4,(c'd')2> 

(all generators involutary). There is a homomorphism from H to 

H' - y 4 x 4 z 

given by b 1--+ x. c' 1--+ Y. d 1--+ z and c. d ' 1--+ 1. By (4. 14). H' 

is as large as F2• and hence so is C(r2'~2). 

Subcase 2.2. Precisely three edges are mapped to 2 by ~2. 
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Then we must have the following situation. 

b 

where o,~~2 and exactly one of Q,r is 2. 

Let H be the kernel of the homomorphism from C(r2'~2) onto 

Z2-{O,1} given by a r+ 1; b,e,d r+ O. The covering 

corresponding to H is 

b e d 

d' 

aba-lb', aea-le', (ada- ld')O/2 

(be)r, (bd)Q, (ed)~, (b'e')r 

(b'd,)Q, (e'd')~ 

Collapsing the maximal subtree and then eliminating b' and c' 

gives 

e 

H-
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Firstly suppose y-2 and a~2. Then H is as large as F2 

either by Case 1 (if 0~6) or Subcase 2.1 (if 0-4). 

Suppose now that a-2 and ~~2. Then H is as large as F2 

either by Subcase 2.1 (if 0~6) or the above case (if 0-4). 

Proof of (III). 

The Coxeter groups associated with the graphs in (4.2) are 

Z2' Z2*Z2' the dihedral group of order 2k, and a group which 

Each of these groups is soluble of length at most three. Hence 

any direct sum of such groups is soluble.of length at most 

three [32]. Hence C(r,~) is soluble of length at most three by 

remark (1) on p.138.0 
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APPENDIX B 

ON THE S9-UNIVERSALITY OF A DIRECT SUM 

LEMMA B.l 

If A and B are any groups, and AxB is SQ-universal then A 

or B is SQ-universal. 

We argue by contradiction. So suppose that we have groups 

A and B such that AxB is SQ-universal but that neither A nor B 

is. 

Let H1 ,H 2 be countable groups that embed into no quotient 

of A and B respectively. Let X be a countably infinite simple 

group embedding H1 xH 2 (see Lyndon and Schupp [27,p.189]). Then 

X embeds into some quotient 

AxB 
fr 

ofAxB. For convenience we assume that X is actually a 

subgroup ofAxB 
fr' 

Let B(N)-{bEB (a,b)EN for some aEA). Then there is a 

homomorphism 

l1:AxB B 
fr ~ B(N) 
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given by (a,b)N ~ bB(N). Since X is simple, the restriction 

of ~ to X is either an isomorphism or the trivial 

homomorphism. By construction of X it cannot be the former (or 

else H2 ~ B/B(N», so must be trivial. 

Let (a,b)NEX. Then bEB(N) so there exists a'EA such that 

(a' ,b)EN. Hence (a,b)N-(aa'-l,l)N(a' ,b)N-(aa'-l,l)N. 

Thus X'{ (a ,l)N aEA), a homomorphic image of A under the 

map a ~ (a,l)N. Thus X injects into some quotient of A - a 

contradiction. The result follows.O 

COROLLARY B.l 

Suppose that Gi (iEI) is a collection of groups with I 

finite, and.LGi SQ-universal. Then for some iEI, Gi is 
lEI 

SQ-universal. 

By repeated application of Lemma B.l.o 

LEMMA B.2 

Let Gi (iEI) be a collection of groups. Then G7LGi is 
lEI 

SQ-universal if and only if for every countable group A there 

is a finite subset J of I such that A embeds into some 



quotient of 2Gj. 
jeJ 

Since for any subset of I the direct sum of the groups 
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indexed by that set is a homomorphic image of G. Clearly the 

"if" part holds. 

To show the "only if" part we show that if there exists a 

countable group A that embeds in no quotient of any finite 

subsum of the Gi's then G is not SQ-universal. 

We argue by contradiction. Suppose such an A exists but 

that G is SQ-universal. Embed A in a two generator group B 

(see Lyndon and Schupp [27,p.188]). Then B embeds in some 

quotient GIN of G. Now since B is finitely generated and since 

each generator of B can be written as a finite sum of terms of 

the form xN, where x is in some Gi' there thus exists a finite 

subset J of I such that B embeds in 

jf~i 
2Gi nN 

jeJ 

a contradiction. The result follows.O 
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THEOREM B.1 

Let Gi (iEI) be a collection of groups' with, Icouritable:,' 

Suppose that }:Gi is SQ-universal.Then there exists iEt 
iEI 

such that Gi is SQ-universal. -",,:, . , .... 

We argue by contradiction. Suppose_.thab:·no·Gi'-is;·-,-~-:,,, ... '''!''-'-''-

SQ-universal. By Corollary B.Levery--finite~um--of-Gi!S is~not' ,-, .,.,.,-

SQ-universal. Hence, for every finite subset J of I there is a 

countable group AJ which injects into -no quothnt: 'Gf'}:GJ; ':-Let _ .. 
jEJ 

f be the set of all non-empty- finite-'subsets of' L.-Clear:1y f:" .. ·-

is countable. Hence 

is countable. By construction A embeds in no quotient of any 

finite subsum of the Gi's. Hence by Lemma B.2 }:Gi i~-not - . -
iEI 

SQ-universal - a contradiction.' The result follows m::; ., . 
•. ' •... it',: j t. 

We note that in Theorem B.1 the restrlctiort-thatI'cbe~' -1 ',:: "', 

countable cannot be dropped. For let 'X-- {G:C:: lE2~l:-pe'-:a 

collection of two generator groups such that every two ,-

generator group is isomorphic to some -element of-X and no two 
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elements of X are isomorphic (see Lyndon and Schupp 

[27, p .188]) . 

Let Hi be a countable simple group into which Gi embeds 

~ (iE2 ). Then 

is SQ-universal (in fact every countable group embeds in H) 

but no Hi is itself SQ-universal. 
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