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(1)
- STATEMENT

Chapter 1 covers basic material in combinatbrial group
theory and is based to some extent on notes of S.J. Pride. The
modifications of his work to cover involutary complexes and
the proof of Proposition 1.1 are mine.

Chapters 2,4 and Appendix B are my own work. Chapter 3 was
joint work with S.J. Pride. (To be more precise the concept of
NEC-complex is due to Pride. Lemmata 3.1-3.3 were obc;ined in
collaboration with Pride, and the rest of the chapter was done
by myself, at Pride's suggestion.) Chapter 3 together with

some of chapter 1 has appeared in [15].
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ABSTRACT

Combinatorial group theory abounds with geometrical
techniques. In this thesis we apply some of them to three
distinct areas.

In Chapter 1 we present all of the techniques and
background material neccessary to read chapters 2,3,4. We
begin by defining complexes with involutary edges and define
coverings of these. We then discuss equivalences between
complexes and use these in §§1.3 and 1.4 to give a way (the
level method) of simplifying ;omplexes and an application of
this method (Theorem 1.3). We then discuss star—complexes of
complexes. Next we present background material on diagrams and
pictures. The final section in the chapter deals with
SQ-universality. The basic discussion of complexes is taken
from notes, by Pride, on complexes without involutary edges,
and modified by myself to cover complexes with involution.

Chapters 2,3, and 4 are presented in the order that the
work for them was done. Chapters 2,3, and 4 are intended

(given the material in chapter 1) to be self contained, and
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each has a full introduction.

In Chapter 2 we use diagrams and pictures to study groups
with the following structure.
(a) Let T be a graph with vertex set V and edge set E. We
assume that no vertex of I' is isolated.
(b) For each vertex veV there is a non-trivial group G,.
(c) For each edge e={u,v)¢E there is a set S, of cyclically
reduced elements of G, *Gy,, each of length at least two.

We define Gy to be the quotient of G *G, by the normal
closure of S,

We let G be the qﬁotient of *Sv by the normal closure of

Ve

S= US,. For convenience, we write
eckE
G=< Gy (veV); S, (e€¢E) >
The above is a generalization of a situation studied by
Pride [35], where each G, was infinite cyclic.'
Let e={u,v) be an edge of I'. We will say that Gg has
property-Wy if no non-trivial element of G *G, of free product

length less than or equal to 2k is in the kernel of the

natural epimorphism



)
Gu*Gy — Gg

We will work with one of the following:

(I) Each Gg has property-W,

(IT) T is triangleffree and each Gg has property-W,.

Assunming that (I) or (II) holds we: (i) prove a
Freihietssatz for these groups; (ii) give sufficient
conditions for the groups to be SQ-universal; (iii) prove a
result which allows us to give long exact sequences relating
the (co)-homology G to the (co)-homology of the groups
"Gy (veV), G (ecE).

The work in Chapter 2 is in some senses the least
original. The proofs are extensions of proofs given in [353]
and [39] for the case when each G,, is infinite cyclic.
However, there are some technical difficulties which we had to
overcome.

In chapter 3 we use the two ideas of star-complexes and
coverings to look at NEC-groups.

An NEC (Non-Euclidean Crystallographic) group is a

discontinuous group of isometries (some of which may be
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orientation reversing) of the Non-Euclidean plane. According
to Wilkie [46], a finitely generated NEC-group with compact
orbit space has a presentation as follows:

Involutary generators: ¥ij (1,3)eE,
Non-involutary generators: ey (ielg), ty (1<4kér)
ap (1£€k<g), by (1£kéh, h=0 or g)
(*) Defining paths: (yijyij+1)mij (ielg, 1£j4n(i)-1)
(Fin(i)eiyi e1")™Min(i) (ielg)
tfk (1kér, ppd2)
g(ei')(EtE')a

where

agbyap'by'! if h=g,

o [ %8k 1f h=0

In Hoare, Karrass and Solitar [22] it is shown that a
subgroup of finite index in a group with a presentation of the
form (*), has itself a presentation of the form (*). In [22]
the same authors show that a subgroup of infinite index in a
group with a presentation of the form (*) is a free product of
groups of the following types:

(A) Cyclic groups.
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(B) Groups with presentations of the form

<Xyy.oaXpse 3 (X,%X,)81,. .., (xpex,e” )™ >
Xys..,%Xn involutary.
(C) Groups with presentations of the form

< xq (1eZ) ; (xyx{4+,)" (ieZ) >

xi (ieZ) involutary.

We define what we mean by an NEC-complex. (This involves a
structural‘festriction on the form of the star-complex of the
complex.) It is obvious from the definition that this class of
complexes is closed under coverings, so that the class -of
fundamental group; of NEC-complexes is trivially closed under
taking subgrbups. We then obtain structure theorems for both
finite and infinite NEC-complexes,

We show that the fundamental group of a finite NEC-complex
has a presentation of the form (*) and that the fundamental
group of an infinite NEC-complex is a free productséf groups
of the forms (A), (B) and (C) above.

We then use coveriﬁgs to derive some of the results on

normal subgroups of NEC-groups given in [5] and [6].
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In chapter 4 we use the techniques of coverings and
diagrams to study the SQ-universality of Coxeter groups. Th;;
1s a problem due to B.H. Neumann (unpublished), see [40].

A Coxeter pair is a 2-tuple (I',p) where I’ is‘a graph
(with vertex set V(I') and edge set E(I')) and ¢ is a map from
E(T) to {2,3,4,...}. We associate with (I',p) the Coxeter group
C(I',p) defined by the presentation

B o=y s Cyyp ey ((x,y1eEM)>,
where each generator is involutary.

Following Appel and Schupp [1] we say that a Coxeter pair
is of large type if 2/Im p. I conjecture that if (I,p) is of
large type with |V(I') |23 and T not a triangle with all edges
mapped to 3 by ¢, then C(f,w) is SQ-universal. In connection
with this conjecture we firstly prove (Theorem 4.1).

Let (I',p) be a Coxeter pair of large type. Suppose

(A) T is incomplete on at least three vertices, or
(B) I' is complete on at least five vertices and for

any triangle e,,e,,e, in I

1 + 1 + 1 <
ple)+T 7 p(e)+1  p(ey)+1

1
2
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Then C(I',p) is SQ-universal.

Secondly we prove a result (Theorem 4.2) which‘shows: If
(T',p) is a Coxeter'pair with |V([) 124 and hef[p(E())] > 1,
then C(I',p) is either SQ-universal or is soluble of length at
most three.

Moreover our Theorem allows us to tell the two possibilities
apart.

The proof of this result leads to consideration of the
following question: If a direct sum of groups is SQ-universal,
does this imply that one of the summands is itself
5Q-universal?

We show (in appendix B) tha§ the answer is "yes" for
kcountable direct sums.

We consider the results in chapter 4 and its appendix to

be the most significant part of this thesis.



NOTATIONS
Let G, H and Ki (ieI) be groups.
GxH 1is the direct product.

G*H 1is the free product.

ZHi is the direct sum.
1el ‘
GSH G embeds in H.

We adopt the usual notation in set theory.
RUS is the union of sets R and S.

RNS is the intersection of sets R and S.
RSS means R is a gﬁbsét of §.

reR neans r is an element of R.

IR1 denotes the cardinality of R.

Z, is the cyclic group of order n.
F, is the free group of rank n.

Z 1is the integers.

The following notations are introduced in the text.
Let X be a l-complex.

V(E) set(bf‘vertices of X.

(%)
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E(X ) set of edges of ¥ .

t(e) 1initial vertex of the edge e.

r(e) terminal vertex of the edge e.

o ! inverse of the path a.

L(a) length of the path a.

1, the empty path associated with the vertex v.
Le(a) number .of times e,e”! appear in a path a.
star(p)=(e: ecE(3€ ), i((e)=v]}.

a~§?ﬁ a is freely equal to 8 in X .

Let A-<%;p)\ (NeA)> be a 2-complex.
A‘ is the l-skeleton %,
Py 1is a non-empty closed path in J{' , called a defining path.
‘A is the set of elements called indices.
,-,()% ,V) is thé fundamental group of A at v.
Ap an element of Ap is said to be of level m.
R(fg) is the set of cyclic permutations of defining péths and
there inverses
a‘uﬁ o is equi.valent to B in .)47 .

[o:]#‘r the equivalence class containing a with respect to 'R
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9‘5‘: the star-complex of fé .

15t(y) the first edge of 7.

7St(y) the inverse of the last edge of y.

™1 St the inverse of 7.

OIOSt(V) the full subcomplex of %st on star(v).
CG(A) the connectivity graph of k .

star,(v)=({e: eestar(v), p(e)eE(B)} (vhere ¢: A — B).

Let 6> =<X,,X,,r> be a presentation.
X, the set of non-involutary generators of ¥
X, the set of involutary generators of f .

ES

-ﬁ means ~f .

Let .91 be a diagram.
LK the angle at the corner K.
K(A) the curvature of a region A.

K(a) the curvature of a vertex a.

Let [P be a picture.
0
IP a mirror-picture.

Y a spray.
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G‘P(?) the sequence associated with ?.

N the class of NEC-complexes.
F the class of Fuchsian-complexes.

S the class of Surface-cdmplexes.
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BACKGROUND MATERTAL
1.1 COM S WITH INV 10N
A l-complex, X consists of two disjoint sets V(3¢)

(vertices) and E(3) (edges) and three maps,

1:E(¥) — V(3¥), 7:E(F) -—-) V(X) and ~1:E(#) — E(X),
satisfying:

(i) (e~')"'=e (ee¢E(x)), and
(11) 1(e)=r(e™) (e€E(X)).

An edge of ¥ is said to be involutary if e=e™'. Note
that, for such an ;dge 1(e)=r(e). When 3¢ has no involutary
edges, the notion of l-complex coincides with the concept of
"graph" as considered by Serre, [42], and others.

Remark: In this thesis we will only use the term gréph to
refer to a set and a collection of two element subsets of it.

A l-complex can be represented diagram‘aticall\.’y’as follows.
A vertex 1s represented by a point. For each involutérs' edge,
x say, we draw a loop (labelled x) at i(:ﬁ). The femaining

edges can be divided into two element sets of the form



{e,e”1'). For each of these sets we select one of the pair, e
say, and draw a directed segment (labelled e) joining the

point corresponding to t(e) to the point corresponding to r(e).

Example

This represents a l-complex with three vertices v, ,v,,v,
and eleven edges; ei’e{‘ (141@5) non-involutary and x
involutary. We havé l(&,)'t(es)‘T(ea)-l(84)-7(84)'V1,
r(e,)=1(eg)=t(x)=1(e,)=v,, and r(ez)-c(ez)-va.

A non-empty path o in Fis a sequence e,,...,e, (usually
written without the commas) of edges of X with r(ej)=t(ei4+,)
1¢i4n. Define ((a)=t(e,) and 7(a)=7(e,). The path o is said to
be closed if 1(a)=7(a). The length of o, L(c), isvn,MThg
inverse of a , a”', is the path eg'...e7'. For aP eﬁgé‘e of
we define Lg(a) to be the number of times e and e™!' occur in
o. If o 1s closed then we can write a'gP(a) where 3 is not a

0
proper power and p(a) is a positive integer. We call a the



root of o, and p(a) the period.

With each vertex, v, of X we associate an empty path, 1.
It has no edges and we define L(1,)=0, ¢(1ly)=r(ly)=v and
13'=1,,. If it is clear which vertex is intended then we will
denote the empty pgth at v simply by 1.

If |V(E)i=1, we call ¥ a bouquet.

A free reduction on a path o consists of deleting an
adjacent pair of edges of the form ee™'. A path o is said to
be reduced if no free reduction can be applied to it and is
cyclically reduced if for every cyclic permutation o* of a,
the first edge of &* is not the inverse of the last edge.

Two paths o, are said to be freely equal if there exists
a sequence

0=, Oy y ... Ok=(
where in each pair (aj,0j4,) 0£€i<k one path is obtained from
the other by a free reduction. We write this as aqi%, or just
aJ”6 if no confusion can arise. A path o is said to be freely

contractible if alul.

If o and B are paths in ¥ we say that the product, of, of



o« and B is defined if r(a)=it(B). Then off is the path
consisting of the edges of a followed by the edges of fB.

A l-complex ¥ is said to be connected if given any two:
vertices’ u,v then there is a path a in X with ((a)=u and
r(a)=v. A subcomplex of a l-complex X} is a subset of
V(ZE)IUE©®E ) which is closed under (,7 and ~'. If VEV(3¥ ) then
the full subcomplex on V. consists of V together with all edges
e of ¥ where both t(e) and r(e) lie in V. A maximal connected
subcomplex o‘fk a l-complex is called a component.

A tree is a connected l-complex in which no non-empty
closed path is reduced.

We now define mappings (of l-complexes). let X and y be.
1-complexes,

prX — y :
is called a mapping (of 1--comp1exeé) if it is a function
sending verticeg of 3 to vertices of’y and paths in X to
paths iny, and satisfying:

(1) p(ly)=l,(v) for all veV(z).

(ii) w(a"‘)ﬂ)w(a)“ for all paths o in 2.



(iii) Whenever a,o, is defined, ¢(o,)p(a,) is defined, and
pla,a,)=p(a,)pla,), @, and a, paths in %,

We call ¢ rigid if L(p(a))=L(a) for all paths in ¥ (that
is o maps edges to edges). We call p pure if p(a™1')=p(a)™' for
all paths in x, |

A 2-c?mp1ex,d% , 1s an object

<2 ; py (NeA)>

where X is a l-complex (called the I-skeleton of J% and

C1)
denoted by J% where neccessary) and each p) is a closed
non-empty path in %X . The p)\'s are called defining paths (for
j%). The elements of A are called indices. A 2-complex is said
to be finite if V(Z)UE(¥)UA is a finite set. A path in Jé is
a path in its l-skeleton. The vertices ( respectively, edges)
of J£ are the vertices (respectively, edges) of its
l-skeleton, we define V@)-V(X ), E(o%)-E(at).

If the l-skeleton of 6% is a bouquet, we say that¥J§ is a
presentation. |

The?e are four ways that we will descibe a presentation.

The first is in its form as a 2-complex.



< b1 (T 9,; P (eh)>

(ieI) jed)

The second is by listing its edges and defining paths

Noﬁ—involut;ry edges: pi' (ieI)
Invélﬁtary edges 4y (jed)
Définig; éaths | ey (NeA)
The third is in the form
< pj (iel) 9 (jeJ) ;3 py) (heA)> (pj (iel) non-involutary,
'qj (jed) involﬁtary).
The fourth Is in the form
<X, X, ; >
Where X ,=(pj: iel), X,={gj: jeJ) and r={p): NeA). In the third
and fourth cases the pj's (respectively, qj's) are called the
non-involutary (respecﬁively, in&olutary) gene;aﬁors, aﬁd the
p)\'s the relators.
The third and fourth forms correspond to the qual forms
for a presentation, as found in Magnus, Karrass and Solitar

[30] and extended, by Pride [38], to incorporate the notion of

involutary generators.



" Let R(]b) be the set of those paths 4, in \}V for which
some cyclic permutation of y or 47! is a defining path of A .

Let igb be a 2-complex. We define an equivalence relation
~4 on paths ind‘i5 as follows,

An elementary .reduction of a path o in \7‘> is a free
reduction on « or the deletion of some subpath -yeR(\A)) from «a.
For two paths o and § we say o~ B if there exists a sequence

qa-ozo,oz, vve o=
where in each pair (oj,0i4,) 04i4n one path is obtained from
the other by an elementary reduction.

CIf \7% is a preséntation and for tw§ paths o, we have a-wG
we will sometimes write

a-&ﬁ

The ~4 —equivalence class containing o is denoted [a] 4 or
(] if no confusion can arise. If o~4 1y for some veV(A) we
say that o is contractible (in \A7). We ﬁote that every element
of R(qq') is contractible,.

If o and B are two paths in df such that of is defined, we

define [a]dﬁ w]ﬁ -=[aB]éb (this is easily seen to be well



defined).

‘Let veV(\,A)). We define the fundamental group of \A (at v),

w,(?% ,V), to be the group with

Ma]k ;o a path in 5}3 with «(a)=7(a)=v)
as underlying set and with the above multiplication. The
identity element is [1‘,]3,' and [cx]\;'-[a“‘]\*

Let ,6)—< X,,X,; r> be a presentation. The group defined by
6 is the fundamental group of the complex with a single
vertex, non-involutary edges p3*! (peX,), involutary edges g
(qeX,) and defining paths the elements of r.

We now define mappings (of 2-complexes). Let ﬁ and 78 be
2-complexes, say V{T-< X ;5 px (NeA)> and '{2-<Z Y (yel)>.
Then ¢: \;{)—aﬁ is called a mapping of 2-complexes if it is a
function sending vertices of \)47 to vertices of Zg and paths in
\9‘ to paths in 3 , satisfying:

(1) p(ly)=ly(yy for all veV(h)

(ii) gp(oi"‘)—;ﬁg p(a)™! for all paths in «#



(iii) Whenever o,a, is defined, p(a;)p(a,) is
defined, and p(a,a;)=p(a,)p(a,), a, and a,
-paths in ﬁ .
(iv) ¢(py) 1ls contractible in 3 for all \eA.
' Q)
(N.b. p need not induce a mapping of l-complexes between A’)
5"
and unless A and I' are empty.)
Remark: (1) It is sufficient to define p on the edges of \/é,
provided t(p(e))=p(1(e)) for all eeE(x}é’).
(2) (iv) guarantees that the image of any contractible
path is itself contractible,
Example

Let

and 0 = <o g ; fg, eyg 'h?, h?>

We define a mapping from A to % by



10
x by, att P et b £, b g, ¢y, dt b 1.

We call ¢ rigid if L(p(a))=L(a) for all paths in j%; pure
if p(a~V)=p(a)”! for all paths 11156 ; and incompressable if. no
edge is mapped to-an empty path,

A based mapping of~2;comp1exes

w(o%,u) - (8 ,v)
is a mapping of 2-complexes from J% to B which sends u to v
(ueV(h ), veV(B)).

Let ¢:J$ — 7% be a mapping of 2-complexes. Then for every

vertex v of A we have an induced homomorphism
pxim (B V) = 1, (B Lp(v)
given by ¢*([a]% )‘[W(a)]ﬁ .
Lety{ =<% ; p) (NeA)> be a 2-complex. If ueV(ﬁ) define
star(u)={e: eeEQ% ), t(e)=u).
Let §-<y Py (yel')> and let ¢:J§ — B be a mapping of
2-complexes. Define
star,,(u)=(e: eestar(u)rand‘w(e)eE(§3));
Clearly ¢(star¢(u))§star(¢(u)) for all ueVGA})- We say ¢ is

locally injec tive/sur jective/bijective 1€
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¢'star¢,(u)35tar¢(u) — star(p(u)).
is injective/surjective/bijective for all ueV(dg).
If »: ﬁ-—eﬁ) is a mapping of 2-complexes and ¢<0)-v we
say 0 lies&over v. If o is a path in B and if ¥ lies over
t (), then a path 6 in d% such that L(é)-o'and ¢(Q)-a is
called a lift of a at 9.
Example
bbb b
. i . ‘

v Y

B R S S

A
V.

where ¢(@{‘)=e{‘ (14i43). Then Q1é2é3 is a lift of e, e,e, at

ALEMMA 1.1
Let p: A — % be an incompressable mapping of
2—complexes. The following are equivalent:
(1) For any vertex % of f% and path o in éa with
l(a)'p(O), there exists a lift of;a‘at 9.
(11) ¢ is locally surjective.

Proof

(I) & (I1). Let eestar(p(e)). Then there exists a lift of e
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at‘éy(of length one, by incompressability), namely an element

of starw(o). Thus ¢ is locally surjective.

(II) » (I). We argue by induction. If L(a)=0 then the

result 1s clearly true. So suppose L(a)dl and write a=Qe

(e¢E(T)). Then by the induction hypothesis there is a path @
in % such that «(B)=0 and p(Br=B. Now p(r (B))=r () so by

local surjectivity there is an edge é in starw(r(@)) with |

¢(Q)-e. So @Q is a 1lift of o at 6, the result follows by

induction.o

LEMMA 1.2

Let go:u%’ —9@ be a mapping of 2-complexes. Suppose that
for any vertex % of &43 and any path a in % ;vith t(oz)-so((\r),
there exists at most one lift of & at ¥. Then wyis locally
injective.

Proof

Let é,,ézestarw(e) and suppose that ¢(é,)—¢(éz)-e,‘say.

Then é, and Qz are both lifts of e at 0 so Q,-Q;. ;Aus p‘is

locally injective.O
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LEMMA 1.3

Let ¢:¢&V—4Q} be a rigid, locally injective mapping of
' 2-complexes. Let ¢ be a vertex of 05 and o a path intﬁ} with
z(a)-gp(/v\'). Then there exists at most one lift of a at .
Proof -

We argue by induction on L(a). If L(a)=0 the result is
obvious. So suppose that L(a)21 and that o has a lift at 0.
Write o=Ge (eeE(B)). Let Q, and é, be lifts of a at ¥. Then
6,—@,@, and Q,-@z/e\z where «p(ﬁ,)'so(ﬁz)-ﬁ and ¢(/e\1)-¢(/é2)-e.
Since ﬁ, and @2 are both lifts of B at 9, ﬁ,-@z by the
induction hypothesi;. Let Q~1(ﬁ,). Then é,,ézestar(ﬁ) and thus
by rigidity (to guarantee Q,,Qzestarw(ﬁ)) and local
injectivity we have that Q,-Qz. Thus Q,-@z as required. The
result now follows by induction.O

Combining the above we have
LEMMA 1.4

Let so:\gJ& B be a rigid, locally bijective m,appiz;g~ of
2~-complexes. For any vertex $ of ggfand any path o in B

with ¢(a)-¢(0) there exists a unique lift of « at v.O



~Let : \A —T be ‘a mapping of 2-complexes. We say ¢ is
equivalence preserving if it satisfies
(1.1) ¢ is rigid and locally injective.
(1.2) For all e¢E(H ), if vep~'(ee™') then » is
contractible in ..A) .
1.3 R )RB).

Example

Consider

JL; < aO b ; ab>, and

B <eT_F i e

Define a mapping from ﬁ% to '63 by at! ps et!, bt | eFl,

This is equivalence preserving. It also illustrates the fact

that (1.2) is not vacuous since abeP~'(ee™1).

LEMMA 1.5

Let p: ‘}0 —® be an equivalence preserving mapping of

14

2-complexes. Let { be a vertex of ‘A) and let «,B be paths in®

with l(&)’l(ﬁ)"go(O). Suppose & and @ are lifts of & and

respectively at /x} Then /&% @ if and only if o~ 8.
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Proof

$f~T° p?oye this it suffices to deal with the case when @
is obtained from Q by an gleﬁgqtary’reduction. The general
case then follows by induction.

Case 1 é-é,é@-Iéz and @-&1Q2

Now aép(é)#w(a,éé“az)'w(a,)w(é)w(@“)¢(Qz)

~5 0@ 158,
~(')¢(3'1'3;'>-¢(95‘-B

Case ii @&Q,Q@zr(QGRQA)) and @»&,62

0""@(&)"?(6\‘1%2)'3"(/&1)¢(¢)W(éz)"3 So(é1)80(32)”‘(,0(/0\(,/&2)"90(@)'(3
(since p(}) is contractible in @),

«. To prove this it suffices to deal with the case when 8
is obtained from o by an elementary reduction. The general
case then follows by induction.

Case i a=a,ee”'a, and f=o,a,.

Since ¢ is rigid we may write é—é,@f@z where w(a,)“a,,
w(é)*e, w(?)se‘i and w(éz)-az. Now é?¢¢f?(eg“) and so is a
contractible path in q% . Thus

A
Ay B,
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Now ¢(Q,Q2)-ﬁ. hence by Lemma 1.3 Q,Qz-ﬁ. Thus Q"\b A,

Case ii o=a,yxr, (Y€R(B )) and f=a,aq,.

Since p is rigid we may write é-é,%z where ¢(Q,)-a1 ,
p(@)-y’and‘go(az)'-az. Now (y\éw"’(‘y) hence Qeg(ﬁ)_ Thus

Ay 24,

As above Q,ﬁ\,*@. Thus Q-‘ﬁ ﬁ.L’J
LEMMA 1.6

Let gp:\}e — % be an equivalence preserving mapping of
2-complexes. Let 9 be a vertex .of \A Then the induced
homomorphism

w*:vr,(f) D = =, B o)

is injective.
Proof

Let [Of]%fker px. Then 90(&)"&1. Hence by Lemma 1.5, Q'%l
| i.e. [Q]&-[lg . S0 py is injective.o
LEMMA 1.7

Let p: LA) — B be an equivalence preserving mapping of

2-complexes. Let 0 be a vertex of A) . Suppose a is a closed

path in @ with l(af)"so(‘/}) and that the lift, Q, of o at ¥
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exists. Then & is closed if and only if [a]é ego*r,((}o ,0)-
Proof

9. SuppOse‘Q is closed. Then
laly =(p®)], =px[B], epur, Gk D).

&. Suppose [az]b3 ep*w,(% .0). Then [a]z’ -[p(ﬁ)]s for some
closed path ﬁ at 9. Thus o~y (p(é). So Q-\* @ by Lemma 1.5.
Hence in particular T(é)'?(g)(‘e) i.e. & is closed.O

- Suppose ¢:J%U—+t3‘is a locally surjective, pure,
equivalence preserving mapping, between two connected

2-complexes. Then ¢ is called a covering.

Example

2
(x,b,c,x,b,c,)2,(a,8,¢,%,by)

2
(a,a,c,x,b,)

and

% -b ¢; (xbc)4, (a2cxb)?

()

If we define a mapping ¢ from A to® by
ail,aj! b a'', bi',b}' b b, cft cf' b c*l, Xy\X, b X,

Then ¢ is a covering.
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Remark: (1) 1f go:% —-9& is a covering and ® has no
involutary edges then the éame is true of o‘(’f .

(2) Ve emphasise again, because of its central
importance, that if ¢ 1s a covering then p4 is a monomorphism.
THEOREM 1.1

Let é% be a connected 2-complex. Let v be a vertex of J#y
and let H be a subgroup of 1,(db,v). Then there is a covering
¢H:‘\}@H —-;\k and a vertex vy of‘A)H such that goH*qr,(\kH,vH)-H.
Proof

Let \h-<%';p)‘ (NeA)> and X={[a]); i (a)=v).

We say that two elements [a] and [B] of X are equivalent
mod H if 7(a)=r(B) and [af~']eH. The equivalence class
containing [a] is ([y][a]:[y]eH}. We denote this by H[a].

Define the 1-skeleton of ‘%H as follows.

Vertices: H[a] ([a]eX).

Edges : (H[a],e) (eeEkg@), [a] X and 1(@?;@(6))‘

For an edge (H[a],e) we set
1((H[a],e))=H[a], 7((H[a],e))=H[ae] and (H[{o],e)  '=(H[ce],e™).

We take vy to be the vertex H[ly].



For a defining path py=e,e,...e, of 6§ and a vertex H[o]

of déH with 7(a)=t(p)) let "
o p(k’ﬂ[a]).-(ﬂ[a],é,‘)'(H[ae,],ez)...(H[ae,ez..en__,],en)
We note that this is a ¢losed path in U&}p
The defining paths of ﬁ%ﬁ are then all of the p(\,H[a])
(heA,/“and [a]eX such that r(a)=it(p))).
¢y is defined as follows:
pp(Hla])=r (a) (H[a] a vertex of JéH),
pu€(Hia),e)=¢ ((H[a],e) an edge of dbﬂ)

- We now show that ¢y 1s locally surjective. Let u be a
vertex of Ve and let o be a path in 0% from v to u, so H[a])
lies over u. Let eestar(u). Then (H{a],e) > e and
(H[a],e)estar(H[a]). Thus ¢y is locally surjective.

Clearly p is pure. We now show ypy is equivalence
preserving. I.e. we verify (1.1), (1.2), and (1.3). Firstly,
oy is clearly rigid and locally 1njectiVe;'éecoﬁd1§§th&
elements of ¢~ 1(ee™') are of the form"

(H[a},e) (H[ce],e"")=(H[a],e) (H[a],e)"! which is (freely)

contractible in 6bH; and thirdly}AQ&%RﬁA§)‘R(@bn) by

19
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construction.

ﬁow we show that ‘%H is connected. Let H[a] be a vertex of

\A’H with o=e,e,...eq. Then
A (H[1ly),e,)(H[e,],e,)...(H[e,...e,,] ven)

is a path in \/QH from H[1ly] to H[a]. Thus \7‘71.1 is connected,

Hence %:\}%H -—-)(ﬁ’ is a covering.

Finally we show that ?H*ﬁ(‘ﬁliv““-v])‘“- Let o be a closed
loop at v. Then by construction of 065 and Lemma 1.7
[a]eH if and only if there exists a closed lift Q of o at
H[1,] if and only if [a]eper,(®,%).0
Remark: Since gy is a monomorphism, if we are only interested

in the group theoretical structure of H, we need only consider

w,(’\)‘?fﬂ,ﬂ[lv]) as this is isomorphic to H,.

Examples
Let \k- < X <>V<7\a ; adxa~3x >

(1) Consider the homomorphism of x,(\A},v) onto, Z,xZ ;i defined
by a 1 (1,0), 3 b (0,1). Let H be the kernel of this
homomorphism. A transversal for H in r, W) is

(1].[a],[a?], [x], [ax], [a%x], th‘&sk"éﬁf has vertices
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ul"H[ll;“;"H[a]'“3‘H[82]’ua“H[X]»Us‘Hlaxl.us-H[ale. and the
edges are 31‘(3{1]’3)'a2'(H[a]'a)'aa'(Hiazl,a),a4-(H[x],a)

as=(Hlax], &), ag=(H[a%x],8) , x,=(H[1] %), x,~(H([a] ,x) , x,=(H[a?] %)

Then d%g has 1-skeleton

'\xa Ue
I'd
ag
X2 Usg ag
7
A\
a,
X, u
.
7/

The lifts of the defining path a%xa~3x are

&

-1

~1g=1g= 131 -1 -
a,a,a x,ag'aglay'xy!, a,a;a,x,a,'a7'a; '3,

aja,a,x,a5'az'ag'xy’, a4asavsx‘;‘a‘3"é;‘aj'x“
agagax;'aylay'ay'x,, aga,agxy'az'aylayix,.
(2) Let \A be as above and consider the homomorphism of

w,(eA ,v) onto Z,(={0,1,2)) defined by a t» 1, x +» 0. Let H be
the kernel of this homomorphism. A transversal fdr‘ﬁwin
1,(J6,V) is [1],[e],[a?]. Thus J%H has vertices

u,=H[1], u,-H[a]; us=H[a2] and the edges are

a,=(H[1],a), a,~(H[a],a8), a,=(H[a?],8), x,=(H[1],x)
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x,=~(H[a],x), xy=(H[a?],x). Then Jbg has l-skeleton

The lifts of the defining path a3xa~3x are
a,a,a3x,a3'az'al'x,, a,a;a,x,a7'a7'az'x,, 8,8,8,x,a3a71a71x,.
Let X be a class of conngcted complexes that ig closed
under taking coverings (i.e. if Jb is an element of X and if
w:d£l_qd& is a c;vering then Jb/is an element of X). Call a
group an X-group if it is isomorphic to the fundamental group
of an element of X. Call a group an Xg-group (respectively,
Xi—group)vif it is isomorphic to the fundamental group of a

finite (respectively, infinite) element of X

Using Theorem 1.1, we then have the following simple but
useful result.
1.8 HE _SUBGROU

Let X be as above. Then

(I) A subgroup of finite index in an Xg-group is an Xg-group.



(I1) A subérdup of infinite index in an Xf-—group is an
Xi;group.

(I1I) A subgroup of an Xj-group is an X{-group.[]

23
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2 _EQUIVALENC E_TRANSFO

If A‘) and B ére 2-complexes a mapping
oih =B,
is called an equivalence if there is a mapping
0: % — 4,
such that
(1.4) | 0¢(a)~& o
for each path ¢ in \*7, and ,

(1.5) p0(B)~p B
for each path §# in B . We say that the equivalence § is
inverse to the univalence ¢. Two 2-complexes are said to be
equivalent if there is an equivalence between them. It is
easily checked that being equivalent is an equivalence
relation.

Since fp(ly=lgy(v)~ lv we have 6p(v)=v (veV(fIJ"))»

similarly g6 (u)=u (ueV(B)). Hence the restriction of ¢ to the

vertices of Aj is a bijection from the vertices of v‘: to those

of D,

s,
e

The notion of equivalence is related to "Tietze
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transformations", as we now explain. :

Let ,}b =< X;py (NeA)>.

Suppose V' is a set in 1l:1 correspondance with V(\ﬁ), and
let a:V(e%) — V' be a specific bijection. Let *' be the
l-complex with vertex set V', edge set E(’\A), and functions
¢’',7' and -1/ define by

L' (e)=ai(e), 7' (e)=o7(e) and e~ee™! (ecE(h)).

Let (f'=< %'ip)\ (NeA)>. We have an equivalence from\/é to A’
given by

v b o(v) (veV(h)) and e 1 e (ecE(H)).
We say that Aa' is obtained from \.56 by a Tietze transformation

(T0O).

Next, let ¢{; (ieI) be a collection of contractible paths

in A), and let $-<%; p)x (NeA), &3 (1eI) >. The identity on

¥ induces an equivalence from A to B . We say that 18 is

obtained from A by a Tietze transformation (Tl). The
transformation is said to be elementary if i1Ii=l.
Finally, suppose 9 is a l-complex obtained from X by

adjoining additional edges fj'f}’ (jeJ). Suppose that for jeJ
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there is a path yj in A from L(£§) to 1(£) with y]
contractible in\% if fj-fj'. Let
£ -<y;p>; (Aeh), £j'y; (Jed) >.

The inclusion of ¥ in 27 induces an equivalence from gé to g
(with inverse equivalence given by

v v (veV(A)), e b e (ecE(R)) and £y 1 45 (Je)).
We say that é is obtained from Jé by a Tietze transformation
(T2). The transformation is said to be elementary if ;J|=1,
THEOREM 1

Two 2-complexes f;, dé' are equivalent if and only if
there is a finite sequence of 2-complexes

Jé'\ko'Uélv""uén'dél

where for i=0,1,...,n-1, one afué i'5£i+1 is obtained from the
other by a Tietze transformation (T0),(Tl) or (T2). If’ué ,oé'

are finite then all (Tl) and (T2) transformations can be taken

to be elementary.

Proof

The "if" part follows from the above discussion. We now

prove the "only if" part. Let -
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\){5-<1; oy (NeA)> and
k=< By (we)>,
and ¢: & — 0(,' be an equivalence with inverse 4.
Firstly we show that we may assume that
(1:6) E(AINEC A")=p
Lg;f _ef'as(ie.‘[) be the non-involutary edges of v% and e
(jeJ, JnI=g) be the involutary edges of #. Let X, be
obtained from X by adjoining new non-invelutary edges
£3Y (t(Fg)=e(eq),7(f1)=7(eg) (LeI))
and new involutary edges
£y Cu(fy)=t(ey) (Jed))
where the f's are chosen so that
(££': keIUJINE( ' )=g.
Let £,-<Sé,; ay (NeA), filep (keIUJ)>. So \7‘7, is obtained
from 7‘ by a (T2) transformation. Clearly ej'f (keIUJ) is
contractible in \A},. Also, if we let oy be that word"obtained
from o) by replacing any occurence of ef (keIW) by ff in it,
the collection @) (MeA) is also contractiblein 04,. |

Let ‘)4}2""'35’13 ax,a)" (NeA), file, ef'fik (keIUJ)>. Then Az is
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cbtained fkom A)r, by a (Tl) transformation. By symmetry if
0‘03-<36,; ay (NeA), eg'fy (ke(IUJ)>,
then \5‘% 3 is obtained from \A', by a transformation inverse to
(T1). If we let X, be obtained from X%, by deleting the e's
and their inverses and if we let

»vb‘.«?é,;;a)" (NeA)>,
we find (again by symmetry) that J{’r,, is obtained from J‘)a by a
transformation inverse to (T2). Thus we may assume, without
loss of generality that (1.6) holds.

Secondly we show that we may assume that
(1.7) V(b )=V( \}é') and ¢ maps V(g{y) identically onto V(")

We take the restriction of ¢ to V(.,etlg) as the ¢ in the
definition of the Tietze transformation (T0), to obtain a new
2-complex \}é, equivalent to Jr with vertex set V(A"

So we now assume that (1.6) and (1.7) hold.

Let ef' ({eI) (respectively f3! (peP)) be the ..
non-involutary edges of ﬁo (respectively ,(}'.) and ‘&j’" (jeJ)

(respective}.yff17 (7€H)) be the involutary edges of o% ‘

(respectively 4').
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Let &‘be obtained from } by adjoining ef' (kelUJ) to it.
Let A=< B, (ueM), ei'pley) (keIUJ)>. (We mote that-
pleg) 2=p(eg), so if ey is involutary p(er)? is contractible in
A

Now Jq; is obtained from ‘}" by a (T2) transformation. Now
since ék-&:so(@k) (keIuJ) we have Wu‘t@(m for all paths W in
A ,» in particular

N p(a)‘),u: 1 (Ze).

Also we have 0(f,,)~04‘: W(o(fo))'\}\( fy (0ePUH). So f;'0(f;) is
contractible in A,’ (ce(PUH)). Let
\ﬁ‘;‘“g?a)\ (AeA) By (peM),ei'p(ey) (kelUJ),£5'6(£5) (gePUH)>.
Then j‘); is obtained from 4, by a (Tl) transformation.

Now, by symmetry, \%; can be obtained from Jﬁ by a similar
sequence of Tj.etze transformations. The result follows.D

There is also the notion of baséd equivalences. We say

that the based mapping p:(»_k,u) — (B ,v) is a based

e w

equivalence if there is a based mapping 6:(B ,v)

¥

such that (1.4) and (1.5) hold for all paths o and § with

t{a)=r(a)=u, ((B)=1(B)=v, Obvi.ously‘;an §quivtjalenca;w: \ﬁ -5
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gives rise to a based equivalence for any choice of u and
v=p(u). If w:(¢b,u)‘—e (B ,v) is a based equivalence then

pxim, (A u) —a.w,(ﬁ V)
is an isomorphism, with inverse 8.
Given any’connected 2-complex d$ and vertex u, there is a
based mapping from (¢ ,u) to a presentation. The method of

obtaining such a presentation is called collapsing a maximal

subtree, which we now describe.
, a) , ‘
Let ’2,' be a maximal subtree of \113 , and let f}' (ieI) be the

edges of\ﬁ lying outside Y. Let wVﬁbe the bouquet with vertex
v and edges gi' (1eI). Where gy=gi' 1f and only if fy=f7?
(iel). Define,

¢:\ﬂ“{—)\vf by
1l ec 1{

p(e)= {
8f e=f§ (iel, e=t1).

Let E =<W, p(ay) (\eA)>. Then

e, — (f W,
is a based mapping. We show that it is a based equivaience, by
exhibiting an inverse, 6, for it. For ie¢I let pj (respectively

qi) be the geodesic in 7 from u to ¢(fi) (respectively r(fy)).



Define
6: ”&’ -—-)fe by
0(e)=(pif1q9i')¢ e=gf (ieI, e=21).
Then
0:(69 V) = (\ﬁ »u) is a based mapping. Clearly pl=Id, ,

7

and for all clesed paths o in \?‘ starting at u
8"’(0‘).& o.
To see this let o be such a path. Write
o=Agje A, ... .epAq,
where e; is an edge lying outside 4 d (l4€i4n) and Ay is a path
in 7Y (04ién). Thén

8p(2)=pi €491, -Pi endi,

o - U
Now Pi,"' A, Qir‘,‘”

) - )
A, and qijp1j+‘~ Ay (1€j4n).
Hence 0¢(a)1a. Thus § is inverse to p, and so ¢ is a based

equivalence.

31
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B =<E: oy (rer)>.

Suppose that A is written as a disjoint union of subsets (some
of which may be empty):

A= U Ao
- U Ay.
m---Om

An element of An will be said to be of level m. We assume
that if X\ has level at least one, then some cyclic permutation
of p) has the form ejo)', where e) is an edge, Lex(a)‘)-o. and

Le)‘(p”)-o (p;t)\, with p ofﬂlev‘el k, O<kém). We call e) the

#

edge associated with .
Let

'xo_ ¥X-(ey,ex': A has level greater then 0},

and for mdJ let ‘
Eém- % _ Uley,ex' :heAp).

Note that if X has level m2l, then o) is a path in %m-—v For

suppose not. Then there is some edge in o) that is e;' for

some peAp,kam. Since p#\, this edge must contradict our

assumptions about the e}s.
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Define p: % — X ; as follows. First define p on ¥, to be

the identity. Suppose that o has been defined on X,_, (mx0).

Extend p to Xp by setting
plen)=p(ay) (NeAp)
plexM=p(ay!) (NeAp, ey'#ey).

Let \AO-O&O; plp)) (NeAy), ple))? (NeAy, mdO, ex'=ey)>.

We now show that Jeo and db are equivalent. First note the

following three results.
(i) For any path a in u&, ¢(a-‘)7}9¢(a)_1‘ We prove this
inductively. Certainly this is true if @ is a path in 6$o for

p(a)=a and p(a~')=a"'. So suppose inductively that the result
is true for all paths in ¥p_,, and let «a be a path in %.
Suppose a-aoef‘a,eg?..e;_T’an, where e; (i=1,...,n) is
associated with an index XAy of level m, and no edge involved
in any oy is associated with an index of level m.
If e is non-involutary then
pleT")=p(oy]

~¢(axi)"‘ (by inductive hypothesis)

=p(ey)1.
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If e; is involutary then since p(ej)2 is a defining path

of th. we nave
plef)p(ei)-1
so p(ej')~p(ei)~!. We now have that
pla~ ) =p(on')plenn) .. .p(a7 ) p(eT¢1)p(a;)
(o) p(efm) Tt pla,) (e 1) T p(arg) T

(by the above remarks, and the
inductive hypothesis)

=o(a)” .
Thus (i) holds.
(ii) w(p#)?% 1 (p of level greater than 0).
Let p,=ce,f, then a;'Aﬁa.
plpy)=p(ae,B)=p(a)p(ey)p(B)
=p()p(ay)p(B)
) =p(e)p(ay)p(B)p(a)p(a) ™!
=p()p(ey)play)p(e)™!
"'so(oz)w(éu)go(a”)"w(a)"
-1,
(iii) For any path o in A s ¢(a)~$ .
Certainly this is true if o is a path in %, for p(a)=a

there. So suppose inductively that the result is true for all
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paths in . (m>0), and let a be a path in X, but not in
*m—,- Let o' be the path.obtained from o by replacing any
edge ey by ay, for X\ of level m (and also replacing ey' by oy’
if ey'#e)). Since ex=4 s a;7A o. By definition of o,
p(a')=p(e), and by induction go(oz')u) a'. Hence ¢(a)-¢(a')~* o,
as required.

By (i) and (ii) above, ¢ induces a mapping of 2-complexes
(also denoted by ¢) from U% to Gko. By (iii) the inclusion of
X, in % induces a mapping § from 176'0 to \‘/0 Clearly po=Id; .
By (iii) ow(a)Tk o for every path ¢ in fk? Thus ¢ is an

equivalence, with inverse 6.
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1.4 AN APPLICATION OF THE LEVEL METHOD TO “"QUADRATIC-LIKE"
COMPLEXES

We begin with some terminology. If X is a l-complex and f
is a path in % then we let E(B) denote the set of edges
occuring in 8 and 7'.

Suppose we have a collection B3 (iel) of closed paths in
X. We define the connectivity graph of this collection as
follows: the vertex set is I; and (i,j} is an edge if and only
if E(Bi)nE(Bj) is non-empty. A label of an edge {i,j} is a
choice of element eeE(Bi)ﬂE(Bj). A label, e, is said to be
quadratic if e is non-involutary, Le(gi)-Le(gj)=l, and
Lo(Bk)=0 for k#i,j. A subgraph in which each edge has a
quadratic label is said to be quadratically labelled.

The connectivity graph, CG(d%), of a 2-complex O% is
defined to be the comnectivity graph of its collection of
defining paths.

Throughout the remainder of this section, let
B =<E; oy (NeA)>.

For convenience we will denote the period of py by p(})
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(rather than p(py)).
THEOREM 1.3

Let A* be a subset of A, and suppose that the full
subgraph of CG(UL) on A* has a spanning subforest F which is
quadratically labelled. Assume that the following condition
holds:

If T is a connected component of F which is finite,
(1.8) then there is a vertex o of T, and an edge e of J%,
such that Le(go)-l and Lgo(p))=0 (NeA-{o}).
Then SL is equivalent to a 2—c9mplex
(1.9) <’}; tRON) (neA¥), oy (NeA-A*)>
where the t's are non-involutary edges of? - and t)\;ttﬁ‘ for
NEu. .
Proof -

For notational convenience we will carry out the proof for
 the case when F consists of a single tree T. If T is finite
then we take o to be a vertex as in (1.8). If T is infinite we
take o to be any vertex of T.

0
Let € be the l-complex obtained from > by adding new
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non-involutary edges ti‘ (A eA¥), where t(t*)-T(tx)-l(px). Let
\%-« X w‘ix, c{‘”(xe/\*), Py (NeA-A%)>
For the purposes of constructing CG(;; ), the subscript of
t)py will be taken to be A and that of t§™ will be taken to
be A'. We then consider CG(gb ) to be a subgraph of CG(\% ) in
the obvipus way.

Now there is a subtree T, of T such that T, either has no
extremal vertices, or has just one extremal vertex, namely o,
and such that removing Fhe edges of T, from T gives a forest
of finite trees T; (iel). If i is finite then T, consists of
the single vertex o, and I is a singleton. To see that T,
exists when T is infinite, note that since each vertex of T
has finite valence, by Konigs' infinity lemma, [47,p.79],
there is an ;nfinite reduced path in T begining at o. Let T,
be the union of all such infinite paths. Clearly at most o is
an extremal vertex of T,. Suppose if possible that removing
the edges of T, from did not leave a forest of finite trees.

Then there would be an infinite tree, T' say , joined to T, at

a vertex v of T , containing no edges of T,. Again by Konigs'
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infinity lemma there is an infinite reduced path vy in T’
begining at v, but now the concatenation of the geodesic from
o to v with 0% is an infinite reduced bath in T not in T, - a
contradiction. Hence all the trees are finite.
Each of the finite trees Tj; has a unique vertex \; in T,.
We let dj be the maximum of the lengths of the geodesics in Tj
starting at \j.
We now partition the set
B=(N, N1 NeA¥)U(A-AY)
of subscripts of defining paths of \;!;( so that we can apply
the level method. Let
Bo=(Ni:ieIJU(N": NeA*JU(A-AT),
and for mM0, let -
O={X:NeTj,A\#Nj,dj~d(A,Nj)=m-1,ieI}.
(Here d(X\,:\j) is the length of the geodesic from Aj to \.) For
NeB (m>0) the edge e) associated with )\ is obtained as
follows. Suppose AeTj. There is a unique edge in Tj joining A

to a vertex of distance d(A,A\{)-1 from \j. We take e) to be

the label on this edge.
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Using the above partition of 6 and applying the level
method we obtain an equivalence from 3£v to a 2-complex
A=< x5 6By (LeD), R (ned®), py (heA-A%)>
The tree T, is a spanning subtree of the connectivity graph of
the collection
txiﬁxi(iel)
and retains its original labelling.
We now partition the set
J=IU{N': NeA¥)U(A-A™)
of subscripts of defining paths of'JQ'.
Let
To={N": NeA*JU(A-AT).
For m=1,2,... let J; be the set of iel such that the distance
from o to Xj in T, is m-1. The edge f; associated with ieJy
(m>0) is obtained as follows. First consider the case when T,
is infinite. Choose an edge of T, joining i to a vertex in
Jm+,,» and take fj to be the label on this edge. Next consider
the case when T, consists of the single vertex o. Then J ,={o)}

and Jy=¢ for mdl. We take the edge f, associated with ong to
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be the edge e as in (1.8).

Using the level method, we then obtain an equivalence from

J%' to a 2-complex as in (1.9).0

Example
Si+z |
rd
244 Ei+1
A N .
k=< | cin i (818141614,PT1,BI'CINIML (1€2)>
rd
aj A by
A
$i
/ ‘

cc(d )=

Each edge {i,i+l) can be labelled bi+1.iThis labelling is
clearly quadratic. Thus CG(O%) has a spanning subtree
consisting of (i,i+l)} (ieZ) which can be quadratically
labelled. Hence by Theorem 1.3, Jb is equivalent to a 2-complex

< y; thi (ieZ)>.
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1.5 STAR-COMPLEXES OF 2-COMPLEXES
Let j% be a 2-complex. We can associate with J% a
l-complex \*St, called the star-complex of\k , as follows:
Vertex set of ASt: E((* ),
Edge set of ¢St R(A),
with maps 1St 7St and ~1 St Given by
(St(y)=first edge of vy (yeRGY)),
TSt(y)-inverse of the last edge of v (yeRQR »
and 47! ST = 471 (VGR(J%))-

Let 4 be an edge of ngt,'with 15t (y)=e and 75%(y)=f. Then
since 4 is a closed path in Jb it is easy to see t(e)=((f).
Hence if g,h are two vertices of\%st in the same component of
*St then ((g)=t(h). .

For a vegfex v of J% we denote the full subcomplex of 5#5t
on star(v) by \¢St(v). We say that a 2—comp1ex,.‘ , is

star-connected if QQSt(v) is connected for each vertex, v, of

k.
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Examples
(1)
\,b- < a b ; (c2ab)2?2, (xba)3 >
u
st: -1 be)?2 N ba) 3 a1
A c (cz c) c X ](x a) a
(abc?) 24 (c2ab)? (bax)? (bc2a)?
a (a?(b)3 b~ b
(= 45T (= 45t
(2) b
B a c; (c?ab)?, (xba)?

X

» St is identical with #%St, but note that P is
star-connected whilst [/ is not.

The following will prove crucial in chapter 3.
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PROPOSITION 1.1

If dh is connected and star-connected then CG(J%) is
connected.
Proof

Let p) (MeA) be the collection of defining paths of J%.
Let k,k'fA, and let eeE(p)) and feE(py). Since J% is
connected there is a path e e,...eny, in J%, where e,=e and
en+,=f. Since J5 is star-connected, for i=l,...,n there is a .
path Bj,Bi,...8ir(i) in St starting at the vertex ej' and
ending at the vertex ej,,. LeF d(Bij) be an element A of A
such that Bij is a cyclic permutation of p3'. Then the
following are elements of CG(J%) (where a singleton is to be

regarded as a vertex). .

(%,dkB,,)}. (d(Bar(n)) '),
(d(B13),d(B1, j41)) Léidn, 14j4r(1)-1,
and {d(Bir(i))»d(Bi+1,1)) 1<4isn,
Thus we obtain a path in CG(fr) from X to \'.O

INDUGED MAPPINGS OF STAR—-COMPLEXES

Let ¢:‘k-—>$ be a pure, incompressible mapping, with
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¢(Rcﬁ ))SR(®B ). We then have an induced (riéid and pure)
mapping

pSt: fSt _, gst
 defined by
oSt(e)= first edge of p(e) (e a vertex ofv4 st)
PSE(y)=p(y) (v an edge of D{)St)
It is easily seen that if v is a vertex of f‘ then oSt maps
|)bsc(v) into QSt(p(V)).
THEOREM 1.4
Let o: A — B be a locally bijective, rigid, pure
mapping, with ¢(R(A))§R(8 ). Then the following are
equivalent:
(A) ¢St is locally bijective.
(B) w‘*-R(Bﬁ)-zagb).
(C) For each vertex v of ﬁ’, ¢St maps #SE)
isomorphically onto gSt(p(v)).

Proof

See [37] Theorem 1.0
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1.6 DIAGRAMS

DIAGRAMS OVER PRESENTATIONS

Let 6-<x,,x2;r> be a presentation. Planar (Van Kampen)
and conjugacy diagrams over 6) (at least when X,=g) are

discussed at length in [27,Chp. V]. Spherical diagrams are

discussed in [7] and elsewhere. Here we give a general

treatment of diagrams which includes all of the above, and

more. The treatment follows

[36],{37] and the reader is refered there for further information.
A 67—spine is a fiﬁite combinatorial subdivision of a

closed interval, where the ofiented edges are labelled by

elements of X,UX7'UX, (with the understanding that if an

oriented edge is labelled by zeX,UXT'UX,, then if we traverse

“

the edge against the orientation we read z71). A 6)-sphere is
a tesselated sphere, whose oriented edges are labelled by
elements of X,UX7'UX, and for which there is a subset of
regions (called non-distinguished regions, possibly consisting
of all of the regions on the sphere) each of which has a

boundary cycle labelled by a element of rUr~'. A label on a

region A is p(e,)...p(e,) for any anti-clockwise boundary
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cycle e,...e, of A.The remaining regions are called
distinguished regions. A diagram ,2& , over "6

is an ascending union
;Aos: A,g...;)n-gi
where 330 is a single vertex, and )"Aih is obtained from jdi
either by attaching a ﬁ -spine to_& i by one of its endpoints
to a vertex of Q i, or by attatching a 6’—sphere by one of its
vertices to a vertex of e?i.
If J consists of a single sphere we will wish, in chapter
4, to assign numbers, called angles, to the corners of the
regions of i . We denote the angle at a corner K byyék. For a
region A of{& we define the curvature, K(A), of A to be
h-(s-2)%,
where h 1skghe sum of the angles at the corners of A and s is
the number of corners of A.‘For a vertex, a, we define the
curvature, K(a), at a to be
27-g,
where g is the sum of the angles of the corners incident at a.

Using the Euler characterisic of the sphere it is easily shown
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that

ZK(a) + ZK(A) =4x .

Let A be a diagram over 6). Let A, and A, be &l
non~distinguished regions (not necessarily distinct) of )1 '
with an edge e<dA,NdA,. Let es, and ,e”' be boundary cycles
of 4, and A, respectively. Let U,,U, b; the labels on §, and
5, respectively.,& will be called reduced if one never has

U,=U3".

The following two Lemmata are adaptions of results in {7].
Let C? = <X,,X, ; r> be a presentation. Let D( be a
diagram'over'é) with k distinguished regions labelled by words

W,»...,Wx. Then there exist words U,,...,Uy on X,UX, such that

U, W, UL U W U -0) 1.0
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LEMMA 1.10
¢

Let 6 = <X, ,X.‘,; r> be a presentation. Suppose that there

exist words U,,...,Ug,W,,...W on X,UX2 such that
U, W, U7, L LU W Ug! -6 1.

Then there exists a reduced diagram over.ﬂ. with distinguished
regions A,,...,Ax such that for some boundary cycle of Aj the
label on Ay is Wi (14i<k).O

We note that Van Kampen diagrams correspond to the case of
one distinguished region, conjugacy diagrams to two
distinguished regions, and spherical diagrams to no
distinguished regions. In general, more distinguished regions

relate to general dependence problems, see [37].

PLANAR DIAGRAMS OVER QUOTIENTS OF FREE PRODUCTS

It would be possible to give a general treatment of
diagrams over quotients of free products along the lines of
that described above for presentations. However, we will only
require the concept of planar (Van Kampen) diagrams, so we
will content ourselves with describing these. The following is

a variation on the discussion in Lyndon and Schupp [27, Chp.V].
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Let H = *H;, a word on H is a finite sequence (usually

iel

written without the commas) of elements of.U¥i. The length of
ie

a word a,...a is n, and its .1'.z'nrerse‘(él,...an)"l is ap'...a7l.
Clearly we may talk about the element of H (or of any quotient

of H) that any word on H defines. A word on H is said to be
trivial if it defines 1 in H, and non—t?ivial otherwise. Let r
be a set of words on H. An r-diagram is a finite oriented
planar map M and a function ¢ from the edges of M toiggi
satisfying
(1) If e is an edge of M then p(e) '=p(e™').
(ii) M is connected and its complement in the plane has
precisely one component,
(iii) If A is any regio? of M there is a boundary cycle
e‘.,e;,...,en of A such that ¢(el)¢(e2)...¢(en) is

equal (in.*¥i) to an element of r.
ie

A label on a region A is p(e,)p(e,)...p(e,) for any
anti-clockwise boundary cycle of A. An r-trivial word on H is
a word which defines 1 in <H;r> (the quotient of H by the

normal closure of the elements defined by the elements of r).
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LEMMA 1.11

Let a,a,...ap be an r-trivial word on H. Then there
exists an r-diagram M over <H;r> and a vertex v on oM such
that if e,,...,e¢ is the boundary cycle of M beginning at v,
then t=n and,

ple;)...pleq) = a,...an.

Proof

To begin note that a,a,...a, defines the same element in H
as some product ﬁ U;RSJuse (U; a word on H, R;jer, and ei=tl

P FLRe e e J » Bjet b

14j<k).
STEP 1

Draw a "bunch of k lollipops”, as follows.

Now subdivide the "stalk" from v to vj into a number of
segments equal to the length of Uj. For j=1,...,k label the

segment from v to v; so that, reading from v to vi we read Uj.
g 3 . g b 3
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Next subdivide aAj into a number of segments equay tq the
length of Rj. Label these segments so that the label on Aj,
réading once anti-clockwise around Aj from Vi, is jo. Then
the label on the above "bunch of lollipops", reading once
anti-clockwise around its boundary from v, is

k .
I U;R$JUT'. The result is an r-diagram, M' say. We know that
j=1 373773

k €
. 1 {

we can turn jHIUJRjjUj into a,...a, by a series of
following operations:

(1) Insertion. Replace a word b,...bjbj,,,,...bn by

b,...bsjhh™'b ...by (heUHy) .
1 j J+1 n ieIi
(2) Deletion. The inverse of insertion.
(3) Splitting. Replace a word b,...g...b, by a word

b,...hk...b, where g,h,keH; and g=hk (ieI).

(4) Coalition. The inverse of splitting.
Remark: (1) An operation (4) can also be achieved by an
operation (3) followed by an operation (2).
(2) Ve may remo#e a term bj if bj-l. Since, by

splitting we may replace ...,bj,.;. by ...,bj,bj,... which is

equal to ...,by,bj',... and so both terms can deleted. -



STEP 2

We show that we can mimic the above operations on the
boundary of M’.

(1). This is mimicked an M' as follows.

53

h
~ ‘/\ < T Ar)  w—
by+s bj Bj+s b
(2). We have,
— £ y " &
bj+y Vs B v, h v, ‘bj.
There are two cases. Firstly suppose v,#v,. Then
bj'H v, h™' v, h v, bj bj+1 V=V, bj
P———— &— bt < h‘ z
- v,
Now suppose that v,=v,. Then
Va
h h
[ et Lo
¢ . /
bjer b AT
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(3). We have,
v, v, v, v,
———e————‘ L & —%
g ~7 kK h

(4). This is dealt with by the above Remark.

Thus by iteration of these operations we obtain a diagram
of the required form.O
LEMMA 1:12 (NORMAL, SUBGROUP TLEMMA)

Let M be an r-diagram with regions A,,...,Ay. Let
o=e,...e, be a boundary cycle of M beginning at a vertex
v,eoM. Let W-p(e,)...wken). Then fhere exist labels Ry of Ay
and words Ui on H, 1<£idm, su;h that W defineé the same element
of H as (U,R,UT")...(UgRUn").

Proof

-

The proof is identical to the analogéus result for
presentations in [27,Chp. V].O
, Let M be a diagram over <H ; r>. Let‘A be a region of M
with el..;en a boundary cycle of A. We define
t(A) = { i: iel and for some 1<j<n ¢(ej)eHi}-

A diagram M is minimal if there is no diagram with fewer

regions and the same boundary label.



Let W be a word on H which defines 1 in <H ; r>. Then we
know (Lemma 1./l) that there exists an r-diagram with boundary
label W. We define deg(W) to be the number of regions in a

minimal diagram with boundary label W.

55
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1.7 SEQUENGES AND PICTURES

SEQUENCES AND PICTURES OVER PRESENTATIONS WITHOUT INVOLUTARY

GENERATORS
Let
<X:r>
be a presentation without involutary generators (i.e X=X,),
and let W be tﬁe set of words on X (reduced or not). For t&r
we let
tw-(Wtfw“: ﬁeW, tet, e=tl}.
Two elements W, ,R$1W7' and Wzgng;‘ of r¥ will be said to be
G-equivalent if R;~R,, ¢,=¢, and W N=W,N (N being the normal
closure of r in the free group on X). Two finite sequences
(Cys..sCh)s (C:,...,Cﬁ)‘of elements of r¥ will be said to be
G—equivalen; if m=n, there is a permutation ¢ of (1,...,m)
~such that C] is G-equivalent to C;()) agd €,C,...Cq is freely
e;ual to CiC5...C4.
Two finite sequences of elements of r¥ will be said to be

equivalent if one can be obtained from the other by a finite

number of operations of the following form.
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(1.10) Replace a sequence by a G—equivaient sequence,
(1.11) Delete two successive terms
co B, WREWTY WRTEWTT, L.
from a sequence, or insert two such terms into a
sequence,

A sequence (C,,C,,...Cy) of elements of ¥ is called an
identity sequence if C,C,...Cy is freely equal to 1.

We now describe pictures over <X ; r>. The following basic
exposition is taken frgm [41]. For further information see
{4},[7]), and [8].

A picture {P (over <X:r>) consists of the following.

(a) A disk D with a basepoint o on ao.'

(b) Disjoint disks Ay,...,A, in the interior of D with

basepoints o,,...,0, on 04,,...,04,, respectively.

(c) A finite number of disjoint arcs. Each arc lies in the

closure of

D- U A
A=l

and is either a simple closed curve having empty intersection

with ODUOA,UdA,...UdA,, or it is a simple non-closed curve
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which joins two distinct points of aDUBA;U...UaAn, neither
point being a basepoint. Each arc hasla normal orientation,
indicated by a short arrow meeting the edge transversaly and
is labelled by an element of X.

(d) If we travel around an once in the anti-clockwise
direct?on starting at oy and reading off the labels on the
arcs encountered then we obtain a word Rix where R)er and
€x=t1l. The word is called the label on 4,.

The label on |P 1; the‘word one reads off by travelling
around dD once in the anti—;lockwise direction, starting at o.

The discs of [P are the discs 4A,,...,A,; (but not the

ambient disc D).
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Example

<a,b,c; c2ac”2371, ¢ 1a”1c?b?2, ad>

P

The labels‘on 4,,4,34,, and A, are c"'a"'c?b?, c?acT%a7',
a3, czad“zg;‘ respectively. (The dotted lines in this'picture
represent a spray, as defined below.)

' A spherical picture is a picture in which no arcs meet oD.

A spherical sﬁbpicture of a picture is obtained by

considering a subset { of the picture homeomorphic to a closed

disc such that 0f does not intersect any arcs or disc; of the
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picture. The } with'the arcs and discs ;f the picture on it is
a spherical subpicture of the picturé.

If [P is a picture with label %,,...x, then the
mirror-picture lg is the picture obtained by "glueing®" ([P to
its mirror-image [P’'. We illustrate what we mean with an

example.

‘ .0
Note that |P is a spherical picture, and so according to
our definition, its label is the empty word. However, it will

0
be convenient to define the label on the mirror-picture [P to



be the label on |P.

We define three operations on pictures:

\f
/%

where the above are arcs in a picture.

(1.12) Bridge moves.

(1.13) Deletion of floating arcs.

3D ~ D

(1.14) Insertion and deletion of mirror-pictures.
A transverse path in [P is a path 4 in A with the

following properties

-

61

(a) The intersection of 4 and the union of all the arcs in

|P is finite, moreover, if ¥ intersects an are then it

does not just touch it but crosses it.

arc

0% not allowed.
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(b) If 4 intersects GDUGA,U...UdA, théﬁ it does so in a

subset of {o0,0,,...04]).

Since we will only ever consider transverse paths we will
from now on drop the adjective "transverse", and simply refer
to paths.

If we travel along a path 4 from its initial point to its
terminal point then we will cross various arcs, and we read
off the labels on these arcs, giving a word w(y).

A spray in IP is a‘sequénce ?—(7,,...,7n) of simple paths

satisfying the following:

(a) There exists a permutation 8 of (1,...,n} (depending
on ?) such that for »=l,...,n, v, starts at o and ends
at °0(X)' -

(b) For 14)\,pén distinct, ) and Tu intersect only at o
(c) Travelling around o anti-clockwise we encounter the
paths in the order v,,v,,...,v,.

The sequence 0‘p(?) associated with ? is

)T DT T e .
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LEMMA 1,13A
H?ﬁ'uemymowmﬁinWCMn”ﬁ%aM
atp(?') are.G-equivalent.
Proof
See [41].0
We say that two pictures P, and P, are equivalent if for
a spray ?, over |P, and a spray ?2 over |P,, U|P‘(?,) is
equivalent to U(Pz(?z)- This is well defined by Lemma 1.13.
Clearly, if |P' is a picture obtained from [P by a series
of operations of types (1.12), (1.13) and (1.14) then IP and

IP' are equivalent.

PICTURES OVER QUOTIENT§ OF FREE PRODUCTS

A picture over a quotient of a free product
<Gy, (veV); S>
is identical to a picture over a presentgtion, except in the
following ways.

(a) Each arc is labelled by an element of some Gy.
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(b) If we travel around JAp once in the anti-clockwise
direction starting at ok.and read off the }abels on
the arcs éncountered we obtain a word S;x where S, is

equal (in *3V) to an element of S and e)=t1.
ve

We note that the definitions of spherical picture and

spherical subpicture carry over into this new situation.
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1.8 SQ-UNIVERSALITY

A group, G, is said to be SQ—uﬁiversal if every countable
group can be embedded in some quotient group of G, see
[27,p.282)

Example: If A and B are non-trivial groups, not both of
order two then A*B is SQ-universal, éeé [33]). Hence, in
particular, the free group of rank two, F,, is SQ—univer;al.

The following two facts will be very importént. See [33].
(1.15) Suppose p:G — H is an epimorphism and that H is

SQ-universal. Then G is SQ-universal.
‘ (1.16) If H and G are groups with H of finite index in G then
H is SQ-universal if and only if G is SQ-universal.

We fémark that being SQ-universal is a measure of the
"largeness" of a group. A more general discussion of
"largeness" in group theory is given in L9j, [12] and I34].
Folloﬁing {9), [12] and [34] we say that a group G is as large
as F, (written G>F,) if G has a subgroup of finite index which

can be mapped homomorphically onto F,. Note that, by (1.15)

and (1.16) above, if GyF, then G is SQ-universal.
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CHAPTER 2
ON_SOME QUOTIENTS OF-FREE PRODUCTS

2.1 INTRODUCTION

In this chapter we will consider groups with the following
structure.
(a) Let T be a graph with vertex set V and edge set E. We
assume that no vertex of I' is isolated.
(b) For each Yertex veV there is a non—-trivial group Gy.
(c) For each edge e={u,v)eE there is a set S, of cyclically
reduced elements of G *G,,, each of length at least two.

We define G, to be the quotient of G, *G, by the normal

closure of Sg .

pes

We let G be the quotient of *gv by the normal closure of
ve

8= US,. For convenience, we write
, ecE

G=< G, (veV); So (ecE) >
Tﬁe above is a generalization of a situation studied by
?ride [35], where each G, was infinite cyclic.
Let e={u,v} be an edge of I'. We will say that Ge.hgs

property-Wy if no non-trivial element of G, *G, of free product
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length less than or equal to 2k is in the kernel of the
natural ebimorphism

Gy*Gy, — Gg

We will work with one of the following:

(I) Each G, has property-W,

(IT) T is triangle-free and each G, has property-W,.

Our results will concern a Freiheitssatz, SQ-universality,
and (co)-homology. Our results will be discussed shortly, but
first we give some examples of situations when conditions
(I)/(1II) hold.

_Example 1

For an edge e={u,v)‘of ', let D, denote the Cartesian

-

subgroup of G, *G,, (i.e. Dy is the kernel of the natural
ePimorphism Gy*Gy — GyxGy). Then G, clearly has property-W, if
SeSDg and G, has property-W, if SeQDg(e?Dé for some prime

p(e) since

D

(
p2¢®)p,

is an elementary abelian p(e)-group with basis [x,y]Dg(e)De

(x€G,, yeGy,, neither x nor y equal to 1). See [30].
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Example 2
For an edge e={u,v) of T, leﬁ Se={(xy)T¥) (x€Gy, ,yeG,,
neither x nor y is trivial). Then G, has property-Wy if_rék+2.
This is easily verified using small cancellation theory.

FREIHEITSSATZ

Let ¢ be a full subgraph of I' with vertex set V' and edge
set E' say. Then we have the group
Gp = <Gy, (veV') ; Sg (e¢E') >
and there is a natural homomorphism Gg — G.
THEOREM 2.1 (FREIHEITSSATZ)
Suppose (1) or (II) holds. For every full subgraph ¢ of T
the natural map
Gp — G
is an injection.

SQ-UNIVERSALITY

We prove
THEOREM 2.2
Suppose (I) or (I1I) holds. Assume that there are vertices

u,v of T satisfying the foilowing: not both G,,G,, have order
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2; {u,v) is not an edge of ' and if (II) holds (but (I) does
not), then adjoining (u,?} to T’ does not create a triangle.
Then G is SQ-universal.

(C0)-HOMOLOGY

The following is adapted from [39].

For each vertex veV let Gy=<Xy;r,> (a presentation wi;h no
involutary edges) and for each geG, let w(g) be a word on X,
representing g. If e={u,v) is an edge of ' and h is an element
of Sg, say h=x,y,...XnyneSg (X;,...,Xn€Gy ¥y, ¥neGy),
let A*w(x,)w(y,)...w(xn)w(yn); Let Qe-{é:sese} and
_re-QeUruUrV, so

© G=<X;r>

-

where X= UX,, r= Ur..
ver eeEe

Let N be the normal closure of r in F, the free group on
X. We let M denote the relation module for the given.

presentation of G. Thus M is the left G-module with underlying

abelian group

Naban/N'

and G-action
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wN-uN'= wuw™'N' (weF, ueN)
We have the submodule M, of M genefated by
(RN': Rerp).
For e¢E, let P, be the free left ZG-module with basis
(tﬁ : Rerg), and let K, be the kernel of the epimorphism
Po — M, tp b RN' (Rery).
Let P be the free left ZG-module with basis {tp: Rer) and let
K be the kernel of the epimorphism
P— M, tg - RN’ (Rer).
Now we have an epimorphism

o Py — P, tR +> tp (e€E, Rery)
. eE€

which clearly carries bKe into K.
- eek

Pride works with two assumptions:

(A) The natural maps G, — G (veV), G, — G (ec¢E) are
injective.

(B) o carries &K, onto K,

eeE

Under these assumptions he proves the following result.

For v a vertex of I' let ny=jAdj(v)i-1, where Adj(v} is the

set of vertices of I' adjacent to v,
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THEOREM (PRIDE)
Let A be any right G-module, and B be any left G-module.
(1) There is a long exact sequence
...— Hpy, (G,A) —> @H,(Gy,A) — eH,(Gg,A) — Hy(G,A) —...
veV eekE
terminating in
...— H,(G,A) — Q(A@GVIGv)nv — QAGGeIGe — A®gIG — 0.
veV ecE :
(ii) There is allong exact sequence
...HR(G,B) — [[H"(G,B) — [[HP(G,,B)0v — HOF1(G,B) — ...
eeE veV
starting with
0 — Homzg(IG,B) — [[Homzg (IG,,B) — [[Hom(IG,,B)Dv
ecE e veV
— H?(G,B) — ...0

-

From this and a theorem due to Serre (see [24]) we have
COROLILARY (PRIDE)

Suppose that there is a global bound on the cohomological
dimension of all of the Gy's. Then any finite subgroup of G is
contained in a conjugate of some subgroup G, (ec¢E).

Clearly if (I) or (II) holds then Pride's assumption (A)

holds (by the Freiheitssatz).



THEOREM 2.3

If (I) or (1I1) holds then Pride's assumption (B) holds.

72
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2.2 PROOF OF THEOREM 2.1

The proof is very similar to tﬁe proof of Theorem &4 of
Pride [35) (which considers the special case when each Gv‘is
infinite cyclic). However, for the readers convenience we
describe the main points of the proof.

We ask the reader to begin by recalling the definitions
and terminology of diagrams over free products (see section
1.6).

Consider an S-diagram M. We define an equivalence relation
on the regions of M as follows:

D~D' if and only if there exist regions D=Do,ﬁ1,...,Dn-D'
with t(Do)=t(D,)-...-tan) and where Dj,Dj,, have an edge in
common for i=1,...,n=1. The regions in a ~-equivalence class
give rise to a connected subdiagram of M, which we call a
federation.

lLet e={u,v)} be an edge of I'. Define ée to be the set of

all non-trivial words on G, *G, which define 1 in Go. Let

& ..

ec¢E

Suppose M satisfies
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Each federation is simply connected and no
(2.1)

federation has boundary label defining 1'invtsv.

We may then obtain froﬁ M an Q—diagram by removing the
interior edges and vertices of each féderation. This diagram
satisfies (a) an@ (b) below. By performiﬂg slight

modifications we can obtain an e—diagram ff which additionally
satisfies (c). For details of this construction see Pride [35}.

(a) Each ingernal edge of f has a label from some Gy.

(b) If each G, has property-Wy then each almost interior

region of'Q has at least 2(k+l) sides.

(c) Every internal vertex of ff has valence at least three,

and if T" has rio triangles then every internal vertex

e

of f has valence at least four.
We now deduce that if M satisfies (2.1) then it has a
boundary region D with
t(D)ct(oM).
We show this for the case where hypothesis (I) holds. (The
case where hypotheéis (II) holds is similar.) Since{every

L]
internal vertex has valence at least three and every almost
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interior region has at least six sides, ﬁ has a simple
boundary region B with‘at most three interior edges (see
Lyndoﬁ and Schupp [27,Chp. V]). Now B arises from a federation
L in M, which has a region D, which is a boundary region of M.
Suppose t(L)={u,v). Hypothesis (I) together with (a) implies
that the label on aﬁnaﬁ involves elements from both G, and Gy.
Thus

t(D)-c(L)-c(S)sc(aﬁ)-c(an) :

Next we deduce that any minimal S-diagram satisfies (2.1)
above,

To show this we argue by contradicion. Let K be a
counterexample with“as few regions as possible. Let L be a
federation in K which is not simply connected, and let M be a
bounded component of K-L. Then since all federations in M are
simply connected, no federation in M can have boundary label
défining 1 in;tgv, else K is not minimal. Hence,
by the above, M has a boundary region D with t(D)st(oM)=t(L),

contradicting the fact that L is a federation.

We can now outline the proof of Theorem 2.1
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Let & be a full subgraph of I' with vertex set V'. Let Z be
a word invtgy defining 1 in Gr.-We argue by induction on
deg(Z). 1f deg(Z)=0 the result is clearly true, so supppse
deg(Z)>0. Let M be a connected, simply-connected S-diagram
with deg(Z) regions (which guarantees that M is minimal) and
boundary label Z. By the above M has a boundary region D with
t(D)eV'.

Let M’ be obtained from M by removing the interior of D
and one edge of ODNOM. Let Z' be the boundary label of M'.
Then Z' is equal to 1 in G and deg(Z')<4deg(Z) so Z' equals 1
in Gg. Now Z equals Z' in Gg. Hence Z equals 1 in Gg.O

We note that Edjvet [10] has also obtained this result by

different methods, as a consequence of his work on "filtered

presentations”,
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2.3 PROOF OF THEOREM 2.2

Let A=<a,b;T> be any two generétor group.

Suppose 1G,122 and {Gy123, let k be a non-trivial element
of G, and g,h distinqt non-trivial elements of G,. Consider
the following situation.

Let I'' be the graph obtéined from.F by adjoining a new
edge {u,v}. For x a vertex of I'', let Hy=G; if x#u, and let
H, =A*G,. For e an edge of I'', let §=S, if e#{u,v) and let
§8'(u,v)=takg(kh)kg(kh)2kg(kh)?®...kg(kh)4°,bkg(kh)*' .. kg(kh)®8®)

If {x,y) is an edge of I'' let Hix,y) be the quotient of

“Hx*Hy by the normal closure of S(x,y}- Let
H=<H, (veV(['')" ; Sg (eeE(T''))>

We’show (1) or (II) holds for H. The Theorem will then
follow because firstly, A embeds into H (by the
Freiheitssatz); secondly, by Tietze -transformations that
eliminate a and b, we can show that H is a quotient of G;‘and
thirdly, any countable group can be embedded in some two

generator group (see Lyndon and Schupp [27.P'183])j

For an edge e=(x,y) of I'" we let H, be the quotient of
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Hy*Hy, by the normal closure of S;.

We show first that Hyy vy has broperty—wz. Consider any
word on H,*H, that defines 1 in H{y y) but not in H,*H,. ?hen
there is a reduced §(, y)-dlagram representing this. Eliminate
all of the vertices of this diagram of valence two, in the
standard way, to obtain a diagram M. It is easily seen that
any almost interior region of M has at least six sides. Thus M

- has a simple boundary region D with at most three internal
edges (see Lyndon and Schupp [27,Chp.V]). Thus we find that
the label on OMNAD has free product length at least 1206. Thus

" G(y,v) has prgperty—wsgg! Hence Gy v) certainly has

“

' propertytyz.

We’now show that if (x,y) is an edge of I'' distinct from
'(u,v) then H(y j) has property-Wj if G, has property-Wj.

Clearly if (x,y) is an edge of I’ w;th neither endpoint |
equal to u then the above assertion holds.

Suppose (u,y)} is an edge of I'' distinct from {u,v) and

suppose that the assertion is false. Then there exi;ts a word

&hy...gohm (8, ..., 8nmeHy, h,»---'hmfﬂy) on HU*HY which
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defines 1 in H{u,y} but not Hu*Hy and for which m<i. Choose
such é word with m as small as poséible. Now, write each gi,
as an element of A*G,, in normal form. Next consider the
subwords of g,h,...gyhy that lie between the elements of A. At
least one of these, W say, must define 1 in G(u,y); Since
G{u,y} has property-Wj, W defines 1 in Gu*Gy. Now since we
wrote the terms from A*G, in normal form no term in W from Gy,
is 1, hence some hj is equal to 1 and we can create a shorter
counterexample - a contradiction.

It follows that H satisfies (I) or (II).O
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2.4 PROOF OF THEOREM 2.3

To prove the result we first ﬂeed the following:
PROPOSITION([39]

Assumpfion (B) holds if the following condition is
satisfied: Every identity sequence ¢ is equivalent to a
product ¢,0,...0 of identity sequences o; (14i4k) such that
for i=1,...,k there is an edge e(1) of I' such that all of the
terms of ¢; belong to rg(i).

Proof of Theorem 2.3

We prove that the condition in the above proposition is

satisfied.

For e=(u,v) an edge of T let ri=re—-(ryVr,) and let r'= Ugé.
- ec

Let ¢ be an identity sequence over <X ; R>. The proof is
'by induction on the number, m(¢), of terms of ¢ in r'V,

We proceed geometrically, using pictures. We will always
assume_ that our pic?ures have no floating arcs. This can
always be échieved by elimination.

Consider first the case when m(c)=0. Let Ip be»a-spheriCél

picture representing ¢o. Let |P' be a spherical subpicture of
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1P containing #t least one disc and which is minimal with this
property. Clearly all of the discs in [P’ are labelled by
elements from some ré‘ (otherwise we would have fo have a disc
labelled by an element of r}' joined by.an arc to a disc
labelled by an element of ré‘, u#v,.which is impossible). Now
put a spray over the picture, the first arcs of which go to
the discs in [P’'. This gives us that o is equivalent to a
product 0;02 of identity sequences where ¢, consists of terms
from r¥s and the number of termslin_or,o2 is the same as in 0.
A simple induction finishes this case.

Now suppose m(g)>0. We then prove that ¢ is equivalent to

-

a product 0,0, of identity sequences, where there exists an
edge ;-(u,v} of T such that all of the terms of ¢, lie in rg
.and at least one term lies in réw and m(co,0,)=m(c). A simple
then induction completes the proof:

To begin, take a spherical picture [P representing o.
Then, ‘it turns out (see pp.83-88 below) that we can alter this

picture to an equivalent picture for which there exists a

simple closed path § satisfying the following conditions.
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(i) There exists an edge e of I' such that each disc inside
5 is labelled by an element of ré‘; moreover, at least

one disc is labelled by an element of rj*'.

(ii) There exist n distinct points p,,...,p, on & (none of
which lies over an arc) such that if we read around &
anti-clockwise the label on the segment §; of & from
pi{ to pi4, (i=l,...,n, subscripts computed mod n) is

a word on xv(i) that defines the identity in

<Xy(1) + Ty(i)>:

0
Now for each segment 5; there exists a mirror-picture IDj

over <Xv(i) : Ty(i)>s formed from a picture [Dj who's label is

-

the same.as the label on §j. We insert these into the picture

in the following way.

Next we use bridge moves as follows



Now put a spray over the resulting picture, the first arcs

of which go to the spherical subpicture conta;ning iDi. The
;esult follows.

We now show ho& to ob£ain a picture equivalent to |P, and
a path § as above. Colour eaéh disc labelled by an element of
r'*! red, each disc labelled by an element of (r-r')*', blue.

-

Colour an arc between two red discs, red; between two blue
discs, blue; and all others green.

If C is a blue component of the afcs and discs of |P, a
C—region is a subset ,Ag of [P satisfying the following
conditions

'(i) Ac is homeomorphic to a closed disc.

(1i) A¢ contains C.
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(iii) Subject to (i) and (ii), A¢ contains as few discs as
possible.
(iv) Subject to (i),(ii) and (iii), Ag contains as few

segments of arcs as possible.

%

but not

For each blue component, C, of the arcs and discs of |P

fix a C-region.

We say that C is simply connected if there exists a

C-region that contains no red discs.

Suppose that not every blue component of (P is simply

connected. Pick a blue component C such that: (i) Ag contains

a minimal number of red discs; (ii) subject to (i) Ag contains

as few discs as possible. Consider a particular red disc

contained in Ag. Clearly this red disc lies in some bounded

component of the complement of C. We consider this component
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as a picture over <X ; R>. Clearly by minimality every blue

component of this picture is simply connected.

Now the label on the boundary of this picture is a word on

some X, defining the identity in G, hence by the

Freiheitssatz, defining the identity in <X, ; ry>. Thus there

is a mirror-picture over <X, ; ry> with the same label as this

picture. Insert the mirror-picture as follows.

Hence P is equivalent to a picture with a spherical

subpicture |P' containing at least one red disc and for which
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every blue component is simply c?nnected.

We now show how to put & over IP'. To do this we need the
following Lemma, the proof of which is identical to that for
the analogous result in [41].

CONTﬁACTIBLE LOOP LEMMA

Let U be a spherical picture over <G,, (veV); S>. Then
there exists a simple closed path & over U with the féllowing
properties:

(I) 5 intersects no Aiscs

(I1) & contains at least one disc.

(I11) If 4,,...,4, are all of the discs inside & then

~ there exists an edge e of I' such that the labels on
’A,,...,An are equal in *G, to elements of S}'.

veV

(IV) The label on & is equal to 1 in *3V.D
. Ve

We turn [P’ into a spherical picturé over <G, (veV); S> in
the following way. Firstly relable each edge. Do this by
replacing any label by the group element it represents. Then
replace the blue components as follows (where thevsbaAed area

represents the chosen C-region for the component).



Let 6 be given by the Contactible Loop Lemma. By suitable

alterations we may assume that (i) & does not intersect any
C-region and (ii) & contains no C-regions arising from blue
spherical subpictures of IP'.

To see (i) suppose that § does intersect some C-region Ag.
Pick a point in Ag not on 6 and draw a small disc around it,
again nog intersecting é. Expand this disc and continuously
deform the arcs of § so that they never intersect it. In this

way we may "push" all of the arcs of & off the C-disc.

e.g.
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To see (ii) suppose & contains a C-region arising from a blue
spherical picture of (P'. Draw a path &' (which intersects no

discs) from a point on § to a point on dAg.

Then alter § to

where the alterations are carried out "local" to §' and Ag.

Considering § as over [P’ we obtain a path as required.O
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CHAPTER 3
SUBGROUPS OF NEC-GROUPS

3.1 INTRODUCTION
BACKGROUND

An NEC (Non-Euclidean Crystallographic) group is a
discontinuous group of isometries (some of which may be
orientation reversing) of the Non-Euclidean plane. For further
information on this.see Appendix A. According to Wilkie [§6],
a finitely generated NEC—éroup with compact orbit space has a
presentation 67 as follows:

Involutary generators: Yij (1,j)eE,

-

Non-involutary generators: ey (ielg), ty (1£k<4r)
ay (l€k<g), by (14kéh, h=0 or g)
{3.1) Defining paths: (yijyij+‘)mij (ielf, 14j4n(i)~1)
(Pin(1)e1ri,eIHMn(d) (ielg)
tRk (1€kér, ppd2)

ICei") (Etﬁ‘ o
1

where

abrag'bi! if h=g,

oo { gak if h=0
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In Hoare, Karrass and Solita? [22] it is shown that a
subgroup of finite index in a group with a presentation of the
form (3.1), has itself a presentation of the form (3.1)..In
[22] the same authors show that a subgroup of infinite index
in a group with a presentation of the form (3.1) is a free
product of groups of the following types:

(A) Cyclic groups.

(B) Groups with‘presentations of the form

<X,,...,%Xp,e ; (X,x,)™,...,(xpex,e”")n >
X,,... X involutary.
(C) Groups with presentations of the form

-

"< xq (ied) ; (x3x34,)™ (1eZ) >
xq{ (ieZ) involutary.
‘ In this chapter we are going to défine what we mean by an
NEC-complex. 1t will be obvious from the definitionAthat this
class of complexes is closed under coverings, so that the
class of fundamental groups of NEC-complexes is trivially

closed under taking subgroups. Our aim is then to obtain

structure theorems for both finite and infinite NEC-complexes.
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We show that the fundamental group of a finite NEC-complex has
a presentation‘of the form (3.1) and that the fundamental
group of an infinite NEC-complex 1Is a free product of grbups
of the forms (A), (B) and (C) above.

The usual approach to subgroup theorems for NEC-groups is
to specify the groups by means of presentations and then try
and show ;hat every subgroup can be specified by a similar
presentation. The abproach ﬁere is different and has several
advantages: (i) By using complexes, rather than presentations,
we avoid a lot of technicalities involving the
Reidermeister-Schreier rewriting process; (ii) by allowing

-

involutary edges we get a more streamlined use of the
star—-complex (= coinitial graph), and avoid having to consider
‘coinitial graphs of presentations with "identifying relators"
(as defined in [22]); (iii) The results of Hoare, Kéfrass and
Solitar [20], [21] and [22] are unified, and the proofs
considerably shortened; (iv) modulo an understanding of the

basic theory of complexes, the arguments are straight forward

and quite transparent.
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The approach is analogous to.the geometric proof of the
Neilsen-Schreier Theorem [27,p.119]. There one looks at the
class of graphs. This is clearly closed under taking
coverings. One then shows that the fundamental group of a
gra;h is free.

This work can also be viewed in a wider context as part of
a generallprogram to study groups through properties of
star-complexes, i.eAspecifying some structural restriction on
the star-complex of a complex and seeing what this tells us
about the fundamental group of the complex. See [11], [13],
(14}, [16]), [18], {37], [38].

NEC-COMPLEXES

A circle is a connected l-complex such that |star(x)|=2
‘for each vertex x. We also require that there are no loops in
the l-complex, in order to avoid pathologies like the

following:
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Note that we allow a circle to be infinite, so that it
may, in fact, be a "line" stretching off to infinity in both

directions

AN\

= <—

We define an NEC-complex to be a connected, slender
'complex 4Q such that J&ﬁt(v) is a circle for each vertex v of
‘?Q. A Fuchsian-complex is an NEC—comp%ex with no involutary
edges, and a surface-complex is a Fuchsian-complex with all
defining paths of period one. We use N,F and S to denote the
classes of NEC—complexes, Fuchsian-~complexes and
surface-complexes respectively.

-

EXAMPL%
?v-
g _k, s w
. N\

z y x :
f ‘ (ayzb™1)3,(csgk™1gd™")?
(bfd~ Ve~ 1) 4, (etvte u)®
; (vcksws™ 'k~ '¢™1)4
(fwf'?x)z,(uaxa")3
AN ) .
\ (Z) .

N

v

ot
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A st =1
a b e d
~ > 5
A
A ¥ ¢ Jy
.A
Z P
u N e v o c
d-! R A v s
7 v 7 + rd
N
g™\
A
L 7 - pa o Z
k™1 s s o c 1 A k

It follows from Theorem 1.4 that N is closed under
coverings; also F and ? are closed under coverings (F by a
remark—in;§1.1, and S since if ¢:J$ -7 is a covering and all
defining paths of [p have period one, then the same is true
%or‘d%). We thus see that the Subgroup Lemma (see §1.1)
applies for the classes N, F and S.

It should, however, be noted that our use of the term’
"Fuchsian” is not strictly correct. In the finite case, for

example, the term should really only apply to complexes for

which the path a in Theorem 3.1 terminates in a product of
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commutators rather than a product of squares. However, we will
use the term in this wider sense»(cf. [27,p126]). We also note
that the Fuchsian-complexes defined here are not the same as
those defined in [27, section III.?].

DEFINING PATHS AND CHAINS IN NEC—-COMPLEXES

Let 70 be an NEC-complex.

We will say that a defining path p of K is of type I if,
whenever we have a cyclic permutation of 3 of the form ay with
a involutary then 4#y~'. We will say that a defining path p of
Ksis of type I1 (respectively type III) if some cyclic
permutation of 3 has ?he form amaa™' with a involutary
(respeftfﬁely acbo™', with ayb and a, b involutary).

Remark: It will be seen from Lemmata 3.1, 3.2 and 3.3 that no
'path can be of two different types.
LEMMA 3.1

If p is of type I, and if e is an involutary edge occuring

in p then Le(g)-l, and e does not occur in any other defining

path.
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Proof

Some cyclic permutation of 3 will have the.form ex. By
assumption o#a™!', so (ea)P(P), (ea“)P(P) are distinct edges
of kSt starting at e. It follows ?mmediately that no other
defining path of 40 can contain e.

Suppose now that L,(a)#0, so that a=o,ea,, (a,,q,
non-empty and reduced since p is cyclically reduced). Then
(eazea,)P(P) is an edge of 195t starting at e, and so must be
one of (ea)P(P), (ea”1)P(P) . However it cannot be the former
since S is not a proper power. But neither can it be the
latter, for otherwis% we would have o,=a7' and a,=a3'. Then
a,-Bc@‘;; a,=ydy”! where c and d are involutary edgeé, and
hence c¢f7'eydy 'ef is a cyclic permutation of 3 with
B"‘éydy“eﬁ equal to its own inverse — a contradiction.O
LEMMA 3.2

va.p is of type 11, and if e is an involutary edge
occuring in p then‘Le(g)-Z, and e does not occur in any other

defining path. If acaa™' and a,a,a,a;' are two cyclic

0 +
permutations of p with a, a, involutary then a=a, and a=aj’.
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Proof
o
It is clear that L,(p) is even, and since the valence of e
: 0
in %St is at least Lg(p) it must be precisely two. Obviously,
then, no other defining path can contain e.

To prove the second part, suppose, by way of a
contradiction that aza,. Then a, must occur in a, so o=fa,y
say, and we get that a,d,a,a;‘ must be one of a,yay 'a,f 'ag,

0
a,f 'aBa,yay”'. In either case we deduce that f=y~', so that p
is a cyclic permutation of (afa,f”')2, contradicting the fact
0 .
that p is not a proper power.n
LEMMA 3.3
If_pmis of type 111 then there are distinct involutary
0 0
edges a and b with Ly(p)=Lp(p)=1. There are unique defining
paths p, and p, (both of type I11) different from p with

0 0 ‘

La(p,)=Lp(p,)=1. If e is an involutary edge different from a

0 :
or b occuring in p, then Lg(p)=2 and e does not occur in any
other defining path.

Proof

0 .
By assumption, p has a cyclic permutation aabo™! with a
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and b distinct and involutary. Thus La(g) is odd and since’the
valence of a in «/St‘is at least La(g) we must have La(z)-l.
Similarly Lb(;)-l. Clearly if e is an involutary edge
different from a and»b occuring in-p tﬁen e occurs in o, so
Le(g) is even and hence must be two, and e Fannot occur in any
otherydefining path.

Now p contribu?es only one edge to %St starting at a,
namely the edge (aaba“)?(P). Hence a must occur in some other
defining path p,, which by Lemmata 3.1 and 3.2 must be of type
III. Clearly La(g,)-l. Similarly for b.O

We let Z, denote the set of {eZ such that Pt is of type II
or IIE. ;t follows from Lemmata 3.2 and 3.3 that we can
arrange the defining paths p; (§eZ,) into chains, which we now
describe.

If p is a path of type III let j(p) be the two element set
containing the edges a,b given by Lemma 3.3. Define two type
IIT paths p‘and p' to be equivalent if and only if Fhere is a

finite sequence

P=Py+P3s e P=P'
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o; defining paths of type III wherg Jpi)Nj(pi4,)28
(i=1,...,n-1),

A finite chain is either a path of type II or consists of
the elements of a finite equivalence class. An infinite chain
consists of the elements of an infinite equivalence class.

It is convenient to take the elements of =, to be qrdered

pairs which reflect this arrangément. There will be elements

(1,j) 1ielg 1£€j4én(i), j computed
: mod n(i),

coming from finite chains, and elements
(i,j) iely, jel,

coming from infinite éhains. By cyclically permuting, if

-

necessary, we may write
P(1,3) = (XijAij¥ij+1A1))M]
where Xij» Xij+]1 are involutary edges, gnd mj § is the period
of Pii,j)' The xj4's are called the chain edges.
The period cycles are the sequences
(mi,,miz;...,min(i)) (ielg)

(° .. ’mi,-—‘ 'mio)mi1 y e ') (iEIoo)
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The proper periods are the periods p(ps)
(EeE-5,, p(pz)22), together with a list of twos, one for each
involutary edge which is not a chain edge.
EXAMPLE (CONTINUED)
There is one (finite) chain
(uetvte™1) S, (vecksws™1k™1¢™ )4, (wf™1xf) 2, (xa " tua) 3.
The corresponding period'cycle is (5,4,2,3). The proper
. periods are 3,3,4,2,2,2 since there are three involutary edges

which are not chain edges in 702 namely y,z and t.

It will be convenient later to assume that M has no
involugar; edges except the chain edges. This can always be
achieved by modifying Kr as follows.

Let eg (seS) be the collection of all involutary edges
which gre not chain edges. Introduce new non-involutary edges
td (seS) where 1 (tg)=7(tg)=t(es). Now eg will appear once in
the root of some defining path of type I (and nowhere else),

or will appear twice in the root of some defining path P(1,3)

of type II or III (and nowhere else). In the former case
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replace the occurrence of eg by tg; in the latter case replace
the occurrence of eg in Ay by tg and replace th'e occurrence
of eg in A] by tg'. Delete the edge eg fr.om7</,b and add a new
defining path t2 for each seS, to obtain a complex j/ Then’
is equivalent to ‘3/

We show in general that i/ is an NEC-complex. If rv is a
non-involutary edge or a chain edge of X/ then since in
_changing from 79 to 1, we do not alter the number of edges in
the star-complex beginning with r, r has valence two in ls':.
We now look at the vertices t3! of 5[/5‘:. Each of these has
precisely one edge inc}dent to it arising from t2, and by
constrl{ct-{on of L precisely one edge of LSt arising from the
modified defining paths of % is incident to tg and precisely
one to t3'. Thus every vertex of ;,(,St has valence two.

We now show that ,LSC(V) is connecte& for all vertices of
i,. Let :f,y be vertices of ;{,St(v). Then these arise from two
vertices §,9 in %St(v). Now there is a path from 2 to 9 in
% St(v). This path will involve only finitely many vgrtices

from the set {eg: se¢S). In passing from X to 1 each such
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vertex e is "expanded"

e t t™1
. S

(In %5%) (In {59
Thus it is easily seen that x and y are connected in iﬁt(v)
and hence J,is an NEC-complex.

EXAMPLE (CONTINUED)

Making the above modifications we obtain the complex‘l.

/e p2,9%,r?

o g k s w
£ (aqrb™1)3,(csgk~1gd™1)3
(bfd~'e™1)4, (uepvp~le™1)5s
: (vcksws™1k™1¢c™1)4
/ (wf~'xf)?,(xa"'ua)3

v p

where t,y,z have been replaced by p*!, g1 r#1 respectively.

‘ift a N b e d

|

/N
[+]
©
|
<
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i/s € (continued) a~' x . f
7 v 7 ]
X v
q H1
A J
< Vi
N - -~ -
q! r r
d— 1 N f_ 1 w S S— 1
4 v ( -
T v
g lg
M| ¥
L - 7 .
IC—Al N s o~ c"'l N k
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3.2 FINITE NEC-COMPLEXES
Let K/ be an NEC-complex.
THEOREM 3.1
If K is finite then there is a based equiva;ence from X
to a présentation 67 of the form
Involutary edges: ¥ij (i,1) ez,
Non-involutary edgegz e}' (ielg), t§! (1ék£r)‘
at! (1;k4g), bﬁ1 (14kéh, h=0 or g)
Defining paths: (yijyij+;)mij (ielg, 1<£jén(id-1)
(Yin(1)61Yi{eE‘)miﬂ(i) (1elf)
tRk (1€kér, pya2)
(3.2) - g(ei‘;)(ﬂtﬁ‘)a

where 2
Hak if h=0

a = { ﬂakbkaﬁ‘bﬁ‘ if h=g,
and where ej=t1 (ielg). If %/ €F then thére are no y's or e's,
and if X/ €S then there are no y's, e's or t's.

Remarks: (ij The period cycles and proper periods of }) are
the same as those of %,

(ii) We may make ej=-1 if for those i for which ej=1

we replace (Yin(i)eiYi1e§1)min(i) by (yin(i)e{’yi,ei)min(i)-
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Proof
The proof consists of six reductions:
FIRST REDUCTION: Modify K, so that there are no involutary
edges except the chain edges.

This has already been dealt with, and we note that the
resulting complex, 1,, is an NEC-complex.

SECOND REDUCTION: Cbllapse a maximal subtree of J, to obtain a
pre.sentation f, .

We show that y, is an NEC-complex. This can be seen by
examining the effect on the star;complex of iJ of collapsing a
single edge pair {(e,e™') with ((e)#r(e), and then iterating
the process. Let ./q be ob;ained from i by collapsing (e,e™1}.
If y is a ;ath in i, denote by 9 the path inkﬁ* obtained from

. b4
v by removing every occurrence of e*'.

The situation in alst is as follows.

(3.3) : e e~

Now since eA and eB™' are distinct, e 'A™' and e™'B are
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distinct. Thus

{e”'A™1,e" 'B)={e”1C™1,e”1D}.

Without loss of generality we take A=C and B=D, thus (3.3) °

becomes
a c
eA Ae ,
(3.4) . e e !
h Be™t e 'B
d
Let
s R b8 )
P - q

be an edge of ift with neither endpoint e or e”'. Then on

collapsing e*! we have

o
3
x>

WV

p q P ' q
since R does not begin or end with e or e™'.
Thus with the exception of (3.4) the star-complex of Ja is

isomorphic to that of j, Now A does not begin or end with e

or e~', and similarly for B, so we have



A
A .
‘-——/—7_———“
a c a c
's -~
N A Ae \ l
\ |
e e} ~)
\ \
Be~1' e7'B / y

So.uMSt(v) is a circle for all vertices v. Hence by
induction, 6% is an NEC-complex.
THIRD REDUCTION: Modify the chains of z?, as follows, to
obtain a presentation‘tyz.

Clearly chains in 1/ go 'to chains in f1 . Now suppose

(x1A,x2A;‘)*,...,(xn_,An_,xﬁ 2l ¥, (xpApx, AR ¥

is a chain in f?,. Replace it by

-

(y1y2)*k.-.,(yn_,yn)*.(yney,e“)*,e-?A,...An,
yI,...,yg.involutary, e*' non-involutary. (The resulting
complex is equivalent to 6’, under the mépping defined by

yi P AL A5 xjATY, LAY ‘14ién
e{’ B (A,. ..An)!‘.)

We now consider how the above operation affects the

star-complex:

107
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(i) Yx A7 'x;X YA; ., ... Ane 1A, ., A;_ X
i+1_)i___1_‘ — - i+ n N i-1

(XY=A;, X, Y non-empty).

(i) géin+,A3‘Xj)*‘(XjAjl,xj_1Aj_|)* Aj...ApeT'A, LAy,

- r3 I
Xj
(14j4n).
(1ii) (AR'XpApx ¥ (x,A,x,A71)*
= X, T D
AR'...A7'e  (eT'ypey)¥  (¥,y)*
6_1 yl . Y2
(Fn-1¥n)*  (yney,e”))* eag'.. . A7
. In-1 In e

It now follows that 6’2 is an NEC-complex.
FOURTH REDUCTION: Modify the defining paths of °, which have
period at least two and which do not belong to any chain, as
follows, to_obtain a presentation Z?3'

Let é.be such a defining path. Add new non-involutary
edges t*', add new defining paths

c"B,cP(P),

then delete p. (The resulting complex is equivalent to t?z
under the ﬁapping which sends t*' to 331 and is the identity

on all other e&ges.)

The effect of this on the star-complex is as follows



109
(1) (v27,)P(P) Y2t

0
(Y172™P» ¥,,Y, non—empty).

o ' 0
(ii) p pt™1 tp(p) t™p-
- > At %
e o S LT

It now follows that 1?3 is an NEC-complex.
We describe the form of CG(t?a). Each chain

(Y1Y2)*,---.(Yn—lyﬂ)*’(yneyle_')*

arising from the third reduction gives rise to a "hoop"

(Fa-2Yn=1)"

(Yn—1Yn)*

0
and each pair tP(P),t“p arising from the fourth reduction

4

gives rise to a "stalk"

These "hoops" and "stalks" are each attached by a single
vertex to the full subgraph on Q, where Q is the set of

defining paths of 6% minus the chains and powers of t's.
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Thus, since by Proposition 1.1 it is connected, CG(573) "looks

\

like"

where the part of CG(1?3) "lying in the plane" is the full
subgraph on Q.
FIFTH REDUCTION: Modify C?a to obtain a presentation 6)4 in
whicb Q is replaced by a single defining path B, and all other
paths are unaltered.

To see how to do this, observe first that CG(Q) is

-

connected by the above discussion. Moreover it‘can be
quadratic;lly labelled by virtue of the following three
ob§ervations, where {p,0) is an edge of CG(Q).
(i) The label on (p,0) must be non;involutary.
(i1) If eeE(p)NE(oc) then Lo(p)=0 for p#Fp,0 (otherwise e
would have valence at least three in ZPast-)

(1ii) Le(p)sie(o)-l. Suppose, by way of a contradiction,

that this was not true. Say Lg(p)22. Then since 2?3 is
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'an NEC-complex p must give rise to precisely one edge
in 6335‘: beginning at e. Let ex be a cyclic |
permutation of p or p~'. If a=x,eq,, p givés rise to
two edges in §§5t beginning at e since it is not a

" proper power. So o=a,e”'o, (a,',a2 non-empty) Hence
a,=a7' - a contradiction (a, contains no involutary
edges).

. Hence by an application of the level method (see §1.3) we
may replace Q by a single defining path and leave all other
defining paths unaltered.

SIXTH REDUCTION: Modify f to be of the form (3.2).

-

The prosedure for doing this is well known (see Henle
[17,§21]-;nd (20]) and will not be given here in detail (see
th? example below for an illustration). The strategy is
roughly as follows. Note that in § each e arising in the third
reduction and each t arising in the fourth reduction is
involved pfecicely once, and all other edges are involved

precisely twice. We first bring the e's to the front, and then

bring the t's to the front, inverting as neccessary. Next we



turn the remainder of the defining path into a product of
squares followed by a product of commutators. Finally, if
there are any squares we turn the product of square.s and
commutators into a product of squares.O
EXAMPLE (CONTINUED)

We illustrate the above steps for our example.
First reduction: Already. dope (see p.102).
Second reduction: Collapsing the maximal subtree of
consisting of the edges a*!',f*' and e?' gives the following
presentation ’6), .

Involutary edges ‘u,vV,w,X

-
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Non-involutary edges:b%',c¥1,d*1 g*1 k1 s*1 p*r g1 rt
Defining paths :(upvp™1)S, (vcksws™'k 'c™1)4, (wx)?2,(xu)?
(qrb=%)3, (csgk™'gd™1)3, (bd™1)4,
, gx '8
p?, q2, r?2
?y?t:p—i p u o X N W S s~
B e e G e
v g
v
c 4k
N4
d 1c™?
4
b ys
¥ .
q k™
. 9
e« e L
g . r ot N d-1 g!
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Third reduction: Modifying the chain (upvp™1)Ss,
(vecksws™ 1k~ 1¢c™1)4, (wx)?,(xu)?® of 6’, gives the following
presentation -6 g¢

Involutary edges DY Y2:Y3:Ya

Non-involutary edges: e*‘,b*‘,c",d*‘;g*‘,kt‘,st‘,p!‘,qt‘,r:‘
Defining paths : (y,y,)s,(y§y3)4.(yay4)2,(y4ey1e")3

‘e 'pcks

" (qrb™')3,(csgk™'gd™1)3,(bd"1)4%,p2,q2,r?

st. ; =1
82 .e Ya Y3 Y2 Y N e
N ~ - - > S - ) Y >
I 7 7 N -
P s
A y
o g
4 ¥
ce k
A \
d - r c—‘
o
- ~'
b ) S
P S N 4
k1
a4 }
— Z - ya - < v & &
q-! Dy 1 p—1 d-1 g™!

’

Fourth reduction: Modifying the defining paths
(qrb=1)3, (csgk~1gd=1)23,(bd=1)4,p2,q2,r? of . gives the
following presentation ﬁ)a'

Involﬁtary edges C Y Y21Y3:Ya

Non-involutary edges: t1,t37,¢ed1 ¢21,ed0, ¢3!

+ * % * 3 b 4 * b 4 %
e—l,btl,c—1,d—l’g—l’k 1’8 "p 1’q 1'r 1
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Defining paths DTS, (ay)?t (a¥a)?, (yaey,e7')?
e~ 'pcks
tJ'qrb™', tllesgkTlgd™?t, t;'éd“

£3'p, ty'q, ty'r, t3, £}, td

CG(??a):

Q={g~'pcks, t7'qrb™', t;lcsgkTgd™', t;‘bd“‘, t3'pr t3'q, tg'r)
Fifth reduction: Replacing Q by a singlé defining path gives
the following presentation 693?* T e st
Involutar; edges A 2D 2D 7
Non—involutar§ edges: t7',e31,edv e e, e}

+ + + + + * b4 L2
e*', b1, et ,d* g% k3,577 ,p7 1 g
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Defining paths D (7 Y25 Py (Faya)?, (yeey ')

ettt et g7 kgT s ks,
We do this in the following way. Eliminating p via p b t,; ¢
via g b tg; rviar pt; dviad b t3'b; bviab b
t7't tg and ¢ via ¢ b» t'esT'k™!, and then inverting and
cyclically permuting.
th reduction;
The e's are already at the front.
Bringing the t's to the front (see [20]) gives avpath
et e e e e g thg T IsT k!
The next step (see Henle [17,p.125]) turns the word into
e eI e e e e e g2 [k, 5T,
and the last step (see Henle [17,p.127]) turns the word into
e“t;’t;‘t;‘;;‘t;‘t;‘szt2u2-

I.e. a word of the required form.
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3.3 INFINITE NEC-COMPLEXES
Let 40’be»an NEC-complex.

THEOREM 3.2

If ’is infinite then there is a based equivalence fronz)o
to a presentation € of the following form:
;pvolutary edges: ¥ij (1,J) ez,
Non-involutary edges: ei' (ielg), tf‘ (jei), sg! (keK)
Defining paths: (yijyij+,)mij ((1,3)eE,-1(i,n(i)):ielf)
(Yin(i)eiyi,e1")™Min(i) (ielg)
t8) (JeJ py22)
If % eF then there are no y's or e's, and if kseS then
there are no y's,e's or t's.
Remarks: (i) If X belongs to F (or S) then the Theorem
follows immediately from theorem 1.3 since CG(y%V) may be
quadratically labelled, in this case.
(ii) The Theorem provides an alternative proof of the main
result of Macbeath and Hoare [29].
(iii) Although in general, 6’ is not an NEC-presentation, it

is still clear what one means by the period cycles and proper
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periods of 6’. We then have that the period cycles and proper

periods of 6 are the same as those of K .
Proof

The proof consists of four reductions:

FIRST REDUCTION: Modify ?Q so that there are no involutary

edges except chain edges.

This has already been dealt with, and we note that the

resulting complex, jv , is an NEC-complex.

SECOND REDUCTION: Modify the chains of d,, as follows, to

obtain a new complex A{.
A finite chain, say
(3.5) P =(x,A,%x,A7)%, ..., pp=(xpAnx,Aq")*

is replaced by

Py=(x,x )%, .. Py =(Xpe  Xn) ¥, pp=(xpex ;e 1)¥ p'=eT 1A, ...

x:,...,xﬁ involutary, e*? non-involutary.
An infinite chain, say
(3.6) 01=(y1Biyi+,BI)*  (1eZ),

is replaced by



0i=(yiyi+)* (1e2),
yi (i€Z) involutary.
The mapping which sends
xi - Al"'Ai—lxiAflg---AT‘, et (A1---An)!‘

' Ag...A{_,y{ATL,...AT" id0
yi b

AZ)...A7'yiA;...A_, i<o0,
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and is the identity on all other edges, defines an equivalence

from J{ to i .

We note the effect of the above operations on the
connectivity graph. A chain as in (3.5) gives rise to a

"circle" in the connectivity graph.

-

r

~

P,

(3.7) o) _ha

fn

On passing from j; to M this "circle" becomes a "hoop"

All edges incident to one of the vertices p,,P,:---1Pn of the
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circle (3.7) are reattached to the vertex p (and retain their
original labelling.)

A chain as 1ﬁ (3.6) gives rise to an “"infinite 1line" in -

the connectivity graph.

(3.8) o i, 5,6, 8,

On passing from L to ./a/ we get an infinite line

and all edges incident to one of the verticés 63 (ieZ) of .
(3.8) are removed.

THIRD REDUCTION: Modifyf{ so that any defining patb not
involving an involutary edge has the form tk, as follows, to
obtain a new complex /V .

- Let yj (ieI) be the defining paths of M not involving any
involutary edges. Then we modify/"l by first adjoining for
each ie¢I a defining path of the form tiP(')’i)

(ti non-involutary, «(ti)=t(y1)), and then eliminating those
defining paths which are not of the form tK and which do not
involve an involutary edge. More formally we apply Theorem 1.3

to Jyl, as follows,
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By an argument similar to that in the proof of Theorem 3.1
it is seen that A, the full subgraph of the connectivity graph
of M on the defining paths of M minus the chains, is
quadratically labelled.

Let T be a finite, connected component of A. Pick a vertex
of the connectivity graph of ;L that corresponds to a vertex
of T. Now, over all paths in the connectivity graph of i from
this vertex to a vertex of an infinite chain, pick a path of
minimal length. Let a2 be the label on the final edge of this
path. Note that it must be non—involutary.‘Let PU be the
vertex of T to which the penultiméte vertex corresponds.
Clearly then La(go)-l and L;(p))=0 for py#p,.

Hence we may apply Theorem 1.3.

FOURTH REDUCTION: Collapse a maximal subtree ot’/¢4 and

eliminate those tiP(Yi) for which p(yi)=1.D
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3.4 NORMAL, SUBGROUPS OF NEC-GROQUPS - . -

Let 6’ be an NEC-presentation as in Theorem 3.1, and'1et~H -
be a normal subgroup of x‘(tP). E. Bujalance {5] and J. A.
Bujalance [6] have obtained results relating the period cycles
and proper periods of 6) to those of H. Their proofg'use an -
analysis of fundamental region. Most of their results éan-be
proved moré directly and quickly using standard results about
coVerings. We will give short proofs of Propositions 2.2 and
2.3 of [5], and Theorems 3.1 and 4.1 of [6].

By the proper periods and period cycles of H we.mean those -
of the covering ¢H:6)H — 07 corresponding to H.

Throughout the following H is a normal subgroup of 11(67)
of finite index n.
(A) n is odd

In this case we describe the proper periods and period "~ [~

cycles of H.

We will need the following concept (this will also be.. ...

1

needed in (C) below).

For an edge d of Zf , we define two vertices u,Vv of'6?H to -
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be d-equivalent if there.is a path B from u to v such that
¢u(B) is a power of d. This is clearly an equivalencevrelation
on the vertices of 6)H. Let o(d)’denote the order of the
element H[d]S of 1,(67)/H. Then there are n/o(d) equivalence
classes each having o(d) elements. For let H[BIW be a
representative of some d-equivalence class, then since H is
normal in =, (I? ),

HIB], HIBd] ... JH[pdo (D)= g
are distinct.

Consider the defining paths tRk (14k£1l) of 6). Lgt tP
denote a typical one of these. There will be n/o(t) defining
paths of Z?H mapping to tP in 1:1 correspondance with the
t-equivalence classes,'and each of these defining paths will
have period p/o(t). Thus the proper periods of H are py/o(ty)
repeated n/o(ty) times for each 1<k<£1 where o(ty)#pPk-

Now consider the chains of C?, and let
(3.9) (xy)M, ..., (zfxf~1)Pr

denote a typical chain. (We note that since n is odd the lift

of an involutary edge is itself involutary.) This chain will
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give rise to n/o(f) chains in I?H in 1:1 correspondance with
the f-equivalence classes. For any given f-equivalence class

the corresponding chain will have the form

(X, 7,)™1,...,(z,f,x,£7")0c
(x50, ..., (2,f,x,£71)0r
(o (£)Yo(£)Y™M1 - v (Zo(F)Eo(£) X1 Fole))™E

obtained by lifting (3.9) at the vertices of

Zo(£) Xy

Thus the chain (3.9) gives rise to n/o(f) period cycles of
H, each of the form (m,,...,m;) concatenated with itself o(f)

times.



i.e. (m,,...,mr,m,,...,ms,...,m,,...,mr)
™~ o(f§ times =

Remark: This combines Propositions 2.2 and 2.3 of [5].

(B) n is even

We obtain some of the period cycles of H. Suppose

(m,,...,mg) is a period cycle of Z? with associated chain
edges x,,...,Xg. Suppose
(I) X{sX{4qre-e ,Xj eH

(I1) x5-, ’xj'H/H
(III) q is the order of H[Xi_1Xj+1%> in
w,(ﬁ’ )/H

Say two vertices H[a],,H[B]_. are equivalent if there
Yy © ®

exists c¢20 for which
H[&Xi_‘(XJ.{.,X]'__‘)C]&‘H[B]?, or
Hlo(xj-,%X34,)¢] =H[B
i-1%j+0) 7)o ( ]6’
This equivalence relation partitions the vertices of C?”
into n/2q equivalence classes, each of which gives rise to a

period cycle as illustrated by the following:

124
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Xj,.l'

Xi+q » 1 xi,l R S e
Taking lifts, we find that we get the following chain -
(Xi:lxi+1,l)mi+"""(Xj—l,1Xj,1)mj'(xj,1xj+1,1xj,2x311,1)imj*‘

(Xj’2Xj_,'2)mj,...,(xi+,xi,2)mi+1,(xi,zxi_,'zxi,ax{l,'2)%mj

(Xi,p Xi-y,p ¥1,, %1%, n )80
2q 2q 2q

Thus H has n/2q period cycles of the form
(mi+,,...,mj,imj+1,mj,...,mi+1,§mi) concatenated with itself q
times.

Remark: This is Theorem 3.1 of [6].

(C) r,(ﬁ’)/H has precisely one element of order two, ‘H[yl,; =~ -
%

R H has no proper periods, ahd{all-of its period cycles are of .

v

the form (1,...,1)

We determine the period cycles and proper periods °f'ﬁg'
We will need the concept of d-equivalence introduced in

(A) above.
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(similarly for y, and y,). Now H[yiyi+,] -H[Ylf' Thus the lift

5
of (yiyi+,)™i (respectively (yrxey,e ")Pr) is closed if and
only if my=2k; (i=1,...,r). Now the lift of (yjyis,)2¥i
(respectively (yrey,e“)Zkr) has period kj, hence kj=1
(i=1,...,r) else 6@;has a period cycle not of the form
(1,...,1).

fhus the period cycles of 67 consist of

gi=(1) i=1,...,s
and pj-(Z,...,Z) j=1,...,k

where the number of terms in Hj is rj, an even number.

We now prove

(3.11)The numberogftgzriod cycles _ i gi . ; ? E%

i=-1 i=1
where (yieiyie{') (i=1,...,p) are all of the chains of ﬁ with
period cycle (1) for which y; lies in H, and where n,,...,Tp
are‘the orders of €ys-..1€p respectively in w,(zf)/ﬂ.

Let

(yeye™)

be one of the above chains. This gives rise to n/o(e) period
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cycles of the form (1,...,1) in QH in 1:1 correspondance with
the ej-equivalence classes, in the following way. Lifting

yeye~! at each vertex of the following

gives rise to a chain
(y181726,71), -4 (Fo(e)®o(e)V180T2))
in ﬁﬂ which has period cycle (1,...1)

Thus we obtain

period cycles of the form (1,...,1) in fﬂ in this manner.

Discussion (B) .gives that each period cycle

ry
(2,...,2)

gives g% period cycles of the form (1,...1) for 61{: since

there are “i involutaries in the chain, and the q of (III) in

N
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(B) above is one. Hence (3.11) holds.

Remark: This is Theorem 4.1 of [6].
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APPENDIX A
GENERAL INFORMATION ON NEG-GROUPS
We begin by describing what the NEC—groups are. ﬁe do this
by analogy with the Euclidean crystallographic groups.
(1) Euclidean p;eliminaries
Let I(|E)? be the group of isometries of the Euclidean
plane. There are four types (see [26,Chp.2]).

(i) Translations

(ii) Reflections

« .
J ( ;
(iii) Rotations

;/'7

(iv) Glide reflections
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(i) any translation can be effected by a product of two

reflections with parallel axes, [26,Chp.2];
(ii) any rotation can be effected by a product of two

reflections with non-parallel axes, [26,Chp.2];

(iii) a glide reflection is a product of a translation and
a rotation, [26,Chp.2];

we have that I( |JE2) is generated by reflections.

A subgroup, G, of I(|E2?) is discontinuous if for every
point v of JE2 there is a neighbourhood U of v such that

Orbg(v) NU={v)

e.g. Let G consist of the translations
Tm’n(x,y) = (x+m,y+n) (m,neZ)
Clearly a disc of radius half about any point (x,y) contains

no point of the orbit of (x,y) except (x,y).

Corresponding to G we have a tesselation of [E2:

.
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Now since:
(1) any translation can be effected by a product of two
reflections withbparallel axes, [26,Chp.2]; )
(i1) any rotation can be effected by a product of two
reflections with non-parallel axes, [26,Chp.2];
(iii) a glide reflection is a product of a translation and
a rotation, [26,Chp.2];
we have that I( |JE2) is generated by reflections.
A subgroup, G, of I([E?) is discontinuous if for every

point v of |E? there is a neighbourhood U of v such that

OrbG(v) U={v)}

e.g. Let G consist of the translations

Tm,n(x,y) = (x+m,y+n) (m,neZ)
Clearly a disc of radius half ‘about any point (x,y) contains
no point of the orbit of (x,y) except (x,y).

, 2.
Corresponding to G we have a tesselation of JEZ:
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T5. 14 r,,,A

(o0,0) «J(o,t)~ (0,2)
A is called a fundamental region (no two points in Int(A) lie

in the same orbit, and the translates of A under the elements

of G tesselate the plane).
2) The geometry of the hyperbolic plane [H2
This is represented by the upper half of the complex

plane. Lines in |H2?, /H-lines, are Euclidean lines
perpendicular to the x-axis and semi-circles with their

origins on the x-axis.

e.g

y

There is a metric one can put on [H?, (the hyperbolic

metric), given by

z-wi+lz-wi
p(z,w) = 1n JZ¥ITIZZR)
|z-wi-—12-W]|
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I(IH?) is then the group of isometries of J[H2. This is
generated by reflections in |H-lines, [2,p.137], which are
defined as follows.

Reflection in an jH-1line that is a Euclidean line
perpendicular to the x—axis is exactly the same as Euclidean
reflection. For any other |H-line, the reflection of any point
is obtained by thinking of [H? as I>E’ and then inverting the
point in the circle.

i.e

$,8,~r? (s,,s,,r Euclidean
distances between
the points)

The discontinuous subgroups of I([H?) are the NEC-groups.
Wilkie [46] showed that finitely generated NEC-groups with
compact orbit space have presentations of the form (3.1) and

Singerman [44) showed that the area of a fundamental region of

such a group is
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where p = g+ h + s + 1y % [1 - ‘%T]

Thus in our work we work with a slightly wider class of
groups, than just the NEC-groups, as for particular choices of
0?, 4 may be negative, and thus w,(Zf) is not an NEC-group. In
this regard see [48].

It is interesting to note that the class of presentations
of the form (3.1) for which p > 0 form one of the few classes
for which all thrée of Dehn's classical problems are solvable.

Macbeath [28] solved the isomorphism problem. The word and

conjugacy problems are solved in [38].
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CHAPTER 4
ON_THE UNIVERSALITY OF COXETER GROUPS
4.1 INTRODUCTION
A Coxeter pair is a 2-tuple (I',p) where I' is a graph and
¢ is a map from E(I') to {2,3,4,...}. With each Coxeter pair we
associate a presentation
B )=y (xyp)p (X 7)) ((x,5) E(M))>
where each generator is involutary. 6Xfﬁ¢) is called a
Coxeter presentation and the assoclated group C(I',p) is called
a Coxeter group.

We will often répresent a Coxeter pair (I',p) by drawing
the graph I' and writing numbers on the edges to represent the
values of p. Sometimes, if no confusion can arise, we will use
such a diagram to represent ;he group C(I',p).

Let (I',p) be a Coxeter pair. When discussing the
SQ-universality of C(I',p) it suffices to deal with thé case
when |V(I') 124 and " is connected. For if IV(FSIéZ then C(T,p)
is either cyclic or dihedral (finite or infinite) and so is

not SQ-universal. If jV(I')|23 and I is not connected then we
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canlexpress C(I',p) as a free product of two non-trivial groups
notvboth of order two, and so C(I',p) is again SQ-universal
(se; [33]). If \W()1=3 and T is connected then C(I",p) is

SQ-universal if and only z ¢({i 77 <1, by Neumann [33];17;-
{(x,y)eE(T)

Following Appel and Schupp [1] we will say that-‘a-Coxeter .
)
_ /
pair is of large type if 24Im ¢.
I conjecture that if (P,¢) is a Coxeter pair of large type

with V(') 123, then C(I',p) is SQ-universal except when (T,p)

is

In connection with this conjecture we prove the following.
THEOREM 4.1
Let (I',p) be a Coxeter pair of large type. Suppose
(A) T is incomplete on at least three vertices, or
(B) T' is complete on at least ‘five vertices and for:

any triangle e,,e,,e, in T ey e denegie o

(4.1) 1 1 1
pley+l * I ES S I ES <

1
2

Then C(T',p) is SQ-universal.
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can‘ express C(I',p) as a free product of two non-trivial groups
not both of order two, and so C(TI",p) is again SQ-universal
(se:a [33]). If \V(I")1=3 and T is connected then C(I',p) is

SQ-universal if and only Z 2 ;lc',y)) <1, by Neumann [33];:'7:'
{x,y}eE(T") ’

Following Appel and $Schupp [1])we will say that-a-Coxeter
, !
palr is of large type if 2/4Im .
I conjecture that if (I',p) is a Coxeter pair of large type

with V(') 123, then C(I',p) is SQ-universal except when (I",p)

is

In connection with this conjecture we prove the following.
THEOREM 4.1
Let (I',p) be a Coxeter pair of large type. Suppose
(A) T is incomplete on at least three vertices; .or
(B) T is complete on at least ‘five vertices and for:

any triangle e,,e,,e, inT

(4.1) 1 + 1 + 1 <L
ple )+l ple,)+1 ~ pley)+l 2

Then C(I',p) is SQ—Qniversal.
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This result is in fact a corollary of more general results
stated and proved in §84.2, 4.3.

Note that (4.1) always holds if 2,3,4/Im ¢ and there is no

triangle in I' of the form

—3
Before stating our second result we need the following
‘definition. Let (I',p) be a Coxeter pair. We define an
equivalence relation ~ on V(I') as follows:
x~y if and only if there exist vertices x=x,,x,,...,xq=y
satisfying xj#xj,1 and, if (xj,x141)}¢E(T) then p({xj,x5,1))23,
Ni=1,...,n-1).
An island in (I',p) is a Coxeter pair (I'',p') where I'' is
the full subgraph of I' on some ~-equivalance class and ¢’ is
the restriction of ¢ to E(I'’).

Using the terminology of §1.8, our second result is
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THEOREM 4.2
Let (I',p) be a Coxeter pair with |V(Fj|é4 and
hef{p(E(M))] > 1.
(1) If hcf[¢(E(F))]‘é 3 then C(TI",p) » F,. .
(II) If hef{p(E())] = 2 and not all islanés Aave the

form

(4.2) . ’ e ¢ —

2

then C(I',p) » F,.
(I11) If hef[p(E(I'))] = 2 and all islands have the form

(4.2) then C(I',p) is soluble of length at most
three.

COROLLARY 4.1

Let (I',p) be a Coxeter pair as in the statement of the
above Theorem. Then C(T',p) is SQ-universal if and only if (I)
or (II) holdsi
Remarks: (1) 1f (I'},p,) and (T',,p,) are distinct islands in
(I',p) and xeV(I',) and yeV(I',), then clearly (x,y}eE(I") and

p{x,y)=2, giving the following observation:
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If (I',p) is a Coxeter pair and (I'j,p;) (iel) are all
of the islands in (I',p) then

C(Fm)“z C(T{,p1)
iel

(2) Tﬁe préof af (II) above proceeds by picking an
islénd not of‘éhé‘f;rm (4.25 and sh;wing that it is equally as
large as F,, wﬁénée C(F,@) is equaliy éé large as F,.

(3) Bearing in mind'remark (1) above it is
interésting to ask thé following question: If a direct sum of
groups is SQ—uniVefsal, does this imply’that one of the
summands is itself SQ-universal? We will show (in an appendix
to this chapter) that the ahswéf is "yes" for countable direct
sums.

At various’points in the chaptef we will need to use

THE SOLUTION TO THE WORD PROBLEM FOR COXETER GROUPS.

This is effectively the algorithmn given in Tits [45]. Let
K (Top)=<V(D); (xp)e{IX7)) ((x,5) €E(T))>

be a Coxeter presentation. Let A be a word on V(I'). We define

two operations on words:
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(4.3) If B is a subword of A of length k that is also a
subword of a relator (xy)k, replace E by the word
obtained by interchanging x and y in it.

(4.4) Delete any subword of the form x2.

The derived set of A is the set of all words obtainable
from A by a finite number of operations of types (4.3) and
(4.4). We have: a word A on V(I') is equal to 1 in C(T,p) if
and only if the empty word is in the derived set of A. We will

say that a word is minimal if there is no shorter word in its

derived set.

THE_FREIHEITSSATZ FOR COXETER GROUPS.

This says that if I'' is a full subgraph of " and ' the
restriction of ¢ to E(I'’) then the natural mapping

C(r',p') — C(T,p)

given by v p» v (veV(I'')) is injective. See [3] for details.
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4.2 THEOREM 4.3

In tﬁis section we prove the following result:
THEOREM 4.3

Let (I',p) be a boxeter pair wi#h iv(l'123. Suppose there
exists a vertex V’Of F‘not Joined to every other vertex,
satisfying:’If {u,v) i; an edge of I' then p({u,v))23. Then
C(I,p) is Sé—ﬁnivergal.

Remark: Part (A) of Theorem 4.1 1s a special case of this

result.

We delay the proof until after the following discussion,
taken from Shelah [43]. If A and B are any groups with A a

subgroup of B we say an element x of B is malnormal over B

(relative to A) if

AXNA=(1},
where A¥=(xax l:aeA). Now suppose

D=A%B (A¥C, B#C)

is a free product with amalgamated subgroup C.

THEOREM (SHELAH

Let A,B,C and D be as above. If there exists a malnormal

element x in either A or B (relative to C) then D is
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the empty word is not in the derived set of either of these.

Case 2 L(X)=2

Z has one of the following forms_(where p.q,r,s are
distinct elements of V(I'y)):

1) vpqvr

2) vpgqvp

3) vpqvg

4) vpqvrs

5) vpgvps

6) vpqvgs

7) vpqvrp

8) vpgvrg

9) vpqvpq

10) vpqvqgp

We now show that the empty word is not in the derived set
of any of the above. We only give subcase 9) a fuller

treatment, as this is most complicated. The other subcases are

obtained similarly.
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Subcases 1), 2), and 3)

This is obvious as no word of odd length ever defines 1 in
a Coxeter group.
Subcase 4).
The derived set is a subset of
{vpgvrs, vqpvrs, vpgvsr, vqpvsr),

Subcase 5).

The derived set is a subset of

{quvps,‘quvsp,‘vqpvsp, vgpvps, VqQVvpvs, qvgpvs, qvpqvs).
Subcase 6).
The derived set is a subset of

{vpqvgs, vpgvsq, vqpvgs, vqpvsq, VPVQVs, pvpqvs, pvqpvs).
Subcase 7).
This reduces to subcase 5) if (rp)? is a relator, so

suppose it is not. Then the derived set is a subset -of

{vpqvrp, vqpvrp).

Subcase 8).

This reduces to Subcase 6) if (rq)? is a relator, so

suppose it is not. Then the derived set is a subset of

{vpqvrq, vqpvyw .
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Subcase 9).

If (pq)?, (gv)3, and (pv)? are all relators we find that

the derived set has the following structure.

vpqvpq

vgpvgp
(qv)?3 (pv)?3
VPVQVR . {vqvpvyg
(pv)? ~ - [(gv)?®
équm , $qvgpvq
(pp)? (pe)?
PVqPVPs lqvpavp
(pv)? (gv)?
pvqvpvd ¥qVpvqv
(qv)?® (pv)?3

qpvqpv

qpvpqv

pgvpqv
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So suppose that they are not all relators. Then the derived

set 1s a subset of

{vpqvpq, vpqvqp, vqpvpq, vqgpvqQp, vpvqvp, vqvpvq).

Subcase 10).

If (pq)? is a relator this reduces to subcase 9), so

suppose it is not. Then the derived set is a subset of
(vpqvgp, vpvqvp, pvpqvp}.

Case 3 L(X)>3

Let (Xj:iel}, (Yj:jeJ) be the derived sets of X and Y
respectively. For iel write Xi-Xipi where pjy is an e}ement of
V(l,), and for jeJ write Yj-Qij, where qj is an element of
V(,). We let

K=((1,3):pi=qj, (v,pileE), o({v,pi))=3).

Note that if (i,j)eK then inVYj (=VX£pivpin) can be changed
to VXiniVYj, and since L(Xi)éZ and Xy, Yj are minimal, no
further type (4.3) or type (4.4) operations involving a -
relator containing v, can be applied to this word, apart from
changing the word back to vkivYs;. It now easily follows that

J

VXiVYj iel, jeJ
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vivpiv¥j (1,))eK
s

are all of the words in the derived set of Z. Hence vaYfl in

C(I',,p,) - a contradiction. The result follows.D
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§4.3 THEOREM 4.4

THEOREM 4.4

Let (I',p) be a Coxeter pair. Suppose that the following

hold:

(1) There exist five distinct vertices v,u,w,x,y of T such

that
(1) the full subgraph of T on {v,u,w,x,y} is
complete, and
(ii) the image under ¢ of any edge of ' with at least

one endpoint in {v,u,w,x,y} is at least 3.

(2) If e,,e,,e,eE(I") form a triangle in I' then

1 + 1 + 1 <1

ple)+1 ¢(e2)+1' ¢(e3)+1 2,

unless some of e,,e,,e, are mapped to 2 by ¢, in

which instance we may replace %} by 7/, ,.

(3) If e,,e,,e;,e,¢E(I") form a square in I' then

lp(e,),p(e,),p(e;),p(e,)) is not equal to {3} or

{2,3).

Then C(T',p) is SQ-universal.

Remark: Part (B) of Theorem 4.1 is a special case of this
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result

Reéall that if H and G are groups with H a subgroup of G,
then H is said to be normal-convex in G if for every normal
subgroup N of H the intersection of H with the normal closure
of N in G is N (see [23]). Thus if H is normal-convex in G,
and is SQ-universal, then G is SQ-universal. For let X be a
countable group and let N be a normal subgroup of H such that

X G H/N

Then X S H/N = H/HNNG & HNG/NG < G/NG

Our strategy is thus the following: we will finq a free
subgroup H of rank two in C=C(I",p) and we will show that it is
normal convex in C. We begin with a technical lemma, the proof
of which uses some of the ideas in Howie [23] and is quite
long. For that reason it is presented in two halves; the
first, the outline, is the proof omitting technical details,
the second, the details, contains the technical details
missing from the outline.
Remark: Originally we had hoped to prove that for any three

vertices x,y,z of I' the subgroup generated by them was
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normal-convex in C(I,p). This has turned out to be false as

the following example shows

For b and ¢ are not conjugate in the subgroup generated by
b,c,d and yet are conjugate in the whole group.
LEMMA 4.1
Let (I',p) be as in the statement of Theorem 4.4 with
@(r.¢)=<V(F);R>, and suppose
p=(uvw)x(uvw) 2x. . .x(uvw) 20,001
p=(xvy)u(xvy)?u...u(xvy)20,001,

If_d\is a reduced diagram over <V(I') ;R> with n
distinguished regions labelled by words V,,...,V, in p and 7,
then there exist words S,,...,S, in p and n such that »

(4.5) (S,V,571)(S,V,53")...(SpV,Sg") = 1 in C.
Remarks: (1) Note that we can change the order of the terms in

(4.5) by "Peiffer-type" transformations (at the expense of
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altering the S’'s). For example we could alter the first two
terms to

(S,V,53M)(5,V,8,™")...
where $;=5,V3'S3'S,

(ii) In (4.5) we could, of course, take S, to be empty (by
éonjugating), but it is conveniént to allow S, to be non-empty
for symmetry.

We indicate straight away how Theorem 4.4 follows from the
Lemma 4.1,

Let H be the subgroup of C generated by u and 7. It is
easily seen, by using the solution to the word problem, that H
is free of rank two and hence is SQ-universal. We now show
that H is normal-convex in C. If W, is a word on yx and 7 that
represents an element of the normal closure of some‘normal
subgroup N of H in C, we must show that W, represents an
element of N itself.

We in fact have the following: Suppose

W,U,W,U71. .. UWUR? =1 in C

where Wos... Wy are words on p and 7, and U,,...,Uy are words
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on V(I'). Then there egist words T,,...,Ty on p and n such that
(4.6) WoT,W,T7'. . . ToWnTq! =1 in C.

This is proved by appealing to Lemma 1.12 by which we may

assume that there exists a reduced diagram with n+l
distinguished regions labelled by W,,...,W,. Then Lemma 4.1

and the remarks following it give us (4.6) as required.

Thus H is normal-convex in C.

Proof of Lemma 4.1

The outline

It suffices to prove the result when.}l consi§ts of a
single sphere. The proof is by induction on n. Clearly the
result holds if n-O.or 1, so suppose n>l.

" The idea now is to assign angles to the corners of the
regions of A\ in such a way that for every non-distinguished
region A, K(A)40, and fdr every vértex a of )L , K(a)£0. Since

z K(a) + z K(A) = 4«

a a vertex A a region
there then exists some distinguished region A, with K(4,)>0.
In order to explain the next step of the proof we need

some terminology. If A is a distinguished region then an edge
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of dA is called a disti@gu;shed edge if it occurs twice in a
boundary cycle of A, or if it separates,A from another
distinguighed region. A non-distinguished edge of 0A is one
which separates A from a non-distinguished region. A subpath
of 0A is a distinguished segment if each of its edges is.a
distinguished edge and each of its intermediate vertices has’™
valence two. It is a non-distinguished segment if each of its
edges 1s a non-distinguished edge and each intermediate vertex

has precisely one corner from A incident at it and corners

from no other distinguished regions are incident-at'it: :Then..: . -

A splits up uniquely into a collection of maximal
distinguished segments and maximal non-distinguished segments.
Our aim is to show that A, has a "very long" distinguished
segment. To do this we consider the angles at the wvarious
corners of A,. What we shoﬁ is-that for a, suitable-small €>0, -
if K is a corner of A, then =i & 1o . . o

=7 if K is incident to an intermediate
vertex of a distinguished segment :

(4.7) ZK

£x-¢ otherwise,

Now let q be the number of corners of A, with angle = and
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let p be the number wiFh angle at most x—e. Then
0 < K(4,) € p(x—¢) + qr - (p+q-2)n,

whence p<2x/e¢. Since the length of a boundary cycle of 4, is
at least the length of pu, we deduce that there exists a
distinguished segment ¢ of 0A, of length at least iple/27.

For each distinguished region A of QL , the boundary cycle
of A can be broken uniquely into segments labelled by either
p¥' or 9%, We may show that these factorizations coincide

exactly on ¢ (see pp.168-169 below).

e.g LYl op
T -
n | n but not or ]
_i. —
L “
A A

We remove { to obtain a new diagram,
B/\ B

ko

where A and B are words, possibly empty, on V(I'). We then

9 7

"fold" these segments out, as follows
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There are two cases now,

(i) The regions on either side of { were distinct.

Here X (respectively Y) is the label on the sggment of 04,
reading anti-clockwise from a to b (respectively b to a), and
where Z (respectively Y~ ') is the label on the segment of aA1
reading anti-clockwise from ¢ to d (respectively d to c).

Performing the above modifications gives a new region A’

Where ZX is the label on OA' reading anticlockwise from e.
Note that ZX is a word on g and 7. Using the inductive

hypothesis on this new diagram, which has only n-1
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distinguished regions, gnd Remark (i), we find there exist
words S,S,,...,8, on g and 7 such that

(8ZXS™1)(5,V,53") ... (SpVpSp'y = 1 in C
where V,,...,V, are the labels on the dis;inguished regions
excluding A'.

Now there exist words P,Q on u and 5 such that PXYP™! is
equal (in C) to the label V, on A,, and QY 'ZQ™' is equal (in
C) to the label V, on A,. Replacing SZXS™!' by

(SYQ™'V,QY™'S™1) (SYP~'V,PYT1571)
completes the proof.

(ii) The regions on either side of ¢ coincide.

Here Z (respectively Y,X, and Y™!) is the label on the segment
of JA, reading anti-clockwise from a to b (respectively b to

c, ¢ tod, and d to a). Eliminating { and performing the above
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modifications and then ?emoving-the-interior'of-the resulting .-
annular region gives rise to two ﬁianar diagrams t),~and-¢),3x=ch'“
one with boundary label X and-the:other:with boundary-label-Z. ..~
From this we create two new spherical.diagramseuﬂﬁ}%and, j{2~?:~&-
in the following way. We "glue™ P?f to'an.untesselated sphere
to obtain XX, and "glue" ﬁ)l to aisecond untesséldated sphere .- - .
to obtain‘xgz. Now each of 2&, and }Az has n+1l or fewer
distinguished regions:

X _E, and

A -,

Then by applying the inductive hypothesisyto~}1{~and*&li~m

and making use of Remark (i) after Lemma 4.1, we find that

(4.8) XT,L,T7'.. . TgLTg' = 1 in C

(4.9) ZUM U, . UpMpUg' = 1 in C

where L,,...,L; are the lébels~on~the distinéuished»regions TSR
of ;&, other than E;, in some-order; M,,... M, are then}abels“w

on the distinguished regions of )i, other than E,,:in.some .-~ = . ...
order, and T,,...,T3,U,;,...,Uy are words on pu and 7.

Combining (4.8) and (4.9) we find ... -
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XYTIZY(YT U, M, UTTY) (YU MU YY) L (YT T URMBUR 'Y (T Ly T 1) - (Tala TE)
=1 in C,
Conjugating each term by a suitable word on g and 7 and then
performing free reductions on the first term, allows us to
replace it by V,, where V, is the label on A,. This completes
the outline of the proof.
The details
Consider the following two assertions:
(4.10) If p is a freely reduced word on {u,n}, no
cyclic permutation of p begins with sts for s,t
distinct elementslof {u,v,w,x,y]}.
(4.11) Any subword of an element of the symmetrized closure
of {u,n) of length at least 120,008 is not a piece.
(4.10) is easily verified by inspection. We verify (4.11).
Let 4 be a maximal piece. We suppose without loss of
generality that it is a subword of a cyclic permutatiop of p.
Since
x(uvw)kx

is never a piece, ¢y must be contained in
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(uvw) 20000x (yyw) 20002
and hence has length at most 120,007.-

(4.10) and (4.11) are both crucial to our proof, and will
be refered back to.

We now begin the details proper by describing how-to :- .-
assign the angles to the corners of the regions of'ﬂ;.and.f?
showing that they have the required properties.

Let A be a non-distinguished region. Then A has 2r corners
for some r>2. A corner of A is bad if the vertex it is ~
incident to has valence two, and good otherwise. Now two
successive corners cannot both be bad since this would imply
that A had a common boundary of length at least three with a
distinguished region, which would violate (4.10) above.

Thus at most r corners can be bad. Call A bad if exactly r
corners are bad, and good otherwise.

Example of a bad region: S e o A bl Fopaon

distinguished

- distinguished
region '

Z.oregion

non—distinguished
region
distinguished

region //{,

distinguished
region
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We observe that if two non-distinguished regions have an
edge in common then both regions must be good.
We first assign angles to the corners of the
non-distinguished regions. Let e=x/421.
Firstly suppose that A has four sides. Assign the angle
7/2 to each of its corners. Then

K(A) = gﬁ ~ (4-2)x = 0.

So now suppose that A has at least k26 sides. Assign
the angle x+e¢ to each of its bad corners and, [l - %]w-e to
each of its good corners if A is bad, or (k-z)(w—e).to each of
' (k+2)

its good corners if A is good.

If A is bad we have
k 4 k
K(A) = 5[[1 - E]r—e]+ S(rrO=(-2)r

= 0.
If A is good we have, where b is the number of bad corners

of A,

R(8) = (k-b) (K=2](x-¢) + b(a+e) - (k-2

- k[52)me) + br + € - [Sg) (0] = (D)
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k[gg%](w-e) + b[ﬁﬁ{éki] - (k-2)7

w0 + (SRR - oo
- [E;%](k+2)x - (k-2)7
- 0.

Thus for all non-distinguished regions A, K(A)£0 as
required.

Let a be a vertex of.EAA. A corner incident with a willvbe
said to be distinguished (respectively, non-distinguished) if
it arises from a distinguished (respectively,
non-distinguished) region.

Suppose that there is at least one distinguished corner
incident with a. Assign angles to the incident distinguished
corners as follows: Suppose there are t such corners and that
the sum of the angles of the non-distinguished corners

incident at a is 6, then assign an angle

(2x-06)
t

to each incident distinguished corner. Then

K(a) = 0.
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Hence we need only show K(a) £ 0 for those vertices a of
with all incident corﬁers non-distinguished corners.

Case 1. Five or more non-distinguished corners are incident at

I

We first note (for use in this and the following case)
that if K is a corner incident to a then
LKs 5
For by a previous remark K must be a corner of a good region.

If that region has four sides then /K = % , whereas if that

region has k26 sides then

4

(2o
- [ - o

[ 4

%(-x—e) .
Thus

K(a) £ 2% - 5[1;_‘] £ 2r - 27 = 0.

Case 2. Precisely four non-distinguished corners are incident

Suppose first that all four corners come from regions with

four sides. Then
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K(a) = 2x = 45 =0,
Suppose now that less than four corners come from regions
with four sides. By hypothesis (3) of the Theorem at least one

region incident to a has k 2 8 sides so

K(a) £ 2; - [ + %(w—e)] £ 0.

Case 3. Precisely three non-distinguished corners are incident

at a.

Let e,,e,,e,eE(I') be the three edges in I' corresponding to
the three regions. The following is crucial:

If hypothesis (2)(i) of the Theorem holds for

e,,e,,e, then in fact

1°?

(4.12) 1 + 1 + 1 ¢ 209
ple )+l ~ ple)+1 ~ ple)+1 ~ 420

and if (2)(ii) holds, then the sum is bounded above
by 61/105.
Verification of this is given after the proof.

Subcase 3.1. min{p(e,),p(e,),p(e,)) > 3.

2¢0(e,)=2

K(a)=27 - [[%g%g?%%%](r—e) + [%g%gf%;%](w—e) + [7¢T€§717]("‘)]

-2 - [[1—$(€%7:T](1—5)+[}-;TE§7:T](w—e)+[1-¢z€§7¢T](r—e)]
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- 2= om0 - 2l e i)

£ 2x - (r—e)g%% = 0; using (4.12)

Subcase 3.2. min{p(e,),p(e,),ple) p= 2. winiuta i o0

Note that at most one of thesé can:be equal té two, $0°
without loss of generality we:-assume that it isp(e;): Using---

(4.12) we find R A

1,1, 2 e :
o(e )+ T pley+l “ 105 A

Now

2

20 - [3+ [7£%§§%£%](r—e),+ [7%%2?%5%]<w4e)]

K(a)

-2 - (54 1- G?E%TIT](”"‘) + 1 - S;@%ﬁ](«—é)]

= 21 - [% + (1\'-6)[2 - 2[¢(et)+l.+ ¢(e1)+1]]]

IN

e - [+ 582 - 5]

- orx £ 0, e B

842
Thus for all vertices K(a) £ 0, and we may assign-the-angles
as asserted.

We now verify (4.7). Let K be a corner of 4,.
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Case 1. K separates two maximal noh—distinguished segments.

kefon-2f5- )] =B+ eéne

since both N, and N, have at least six sides, but may both be

bad,

Case 2. K separates two maximal distinguished segments.

>K< ’ Llﬁé%rér—e.

Case 3. K separates a non-distinguished segment and a

distinguished segment,.

>R< Lé%[zr—[g-e]]-%w}%

~

IN

€.

Case 4. K is intermediate to a non-distinguished segment.

Subcase 4.1. There are at least three non-distinguished

corners incident at the same vertex as K.

A(ézw-s["_;_‘]=

since each region N,,...,N, must be good.



166

Subcase 4.2. There are precisely two non-distinguished

corners incident at the same vertex as K.

Firstly: by hypothesis (1) of the Theorem, neither p({x,2))

nor p({y,z}) is 2 » . also ¢({x,é}) and ¢o({z,y)) are not

K}
both three, since, if they were, hypothesis (2) would be

violated. It can now be shown that the following holds.

(4.13) 1 . 1 9
p({x,z})+1 ez, yN+1L - 20°

Verification of this is given after the proof. See p.173 below.

So[@ +4 - [2—2[ 1

1 11
p({x,z})+1 * w({z,y))+1]](”-e) 2 Tﬁ(T-e) > 7+e

so[k £ 27 = (xte) = x—¢.

Subcase 4.3. There is precisely one non-distinguished

corner incident at the same vertex as K.

A( = 2x - (w+e) = w—e€.
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Case 5., K is intermediate to a distinguished segment.

AK-%x-w.

xlﬁ

Thus (4.7) holds and so the number p referred to in the

discussion after (4.7) is less than 842. So some distinguished

segment of 0A,, { say, has length at least 713568.

Now consider A,, for some boundary cycle of A, the label
on this cycle is a word on p and 7. We mark the vertices of

0A, that correspond to the endpoints of the pu's and 7's with

flags in 4,.

e.g.

If A, has a boundary with self intersection we aiways draw the

flags as though A, were simply connected.

e.g.

we think of it as though it were
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for the purposes of drawing the flags. Thus no flag on a
vertex of §,, lies attached to a vertex of 5, and viée versa,
and hence flags are always drawn on the "right" side of any
such boundary. We may also do this for any distinguished
region,

We now show that the factorization of the boundary cycles
of the regions on either side of ¢, match up on ¢. Suppose by
way of contradiction that it does not.

If there are two or more flags on either side of { then we
must have a piece of length at least I1u1/2, - a contradiction

to (4.11).

So we may suppose that there is at most one flag on either

side of £.
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Now if there is no flag on one side of { we find that we

have a piece of length at least |{1/2, - a contradiction to

(4.11).

<— a piece or

v///// pieces
A

Now at least one of thése pieces has length at least 1£1/3
i.e. length at least 237832 - a contradiction to (4.11). Hence
the factorizations match up as required. This completes the
details.d

We now verify (4.12). We begin by verifying the first
part. Let X=(4,5,6,...) and let 6:X3 — R be given by
0(p,q,r) = 1/p + 1/q + 1/r. The problem reduces to showing the
following: suppose e(p,q,rj < 172, then 0(p,q,r) £ 209/420 =

6(4,5,21). We argue by contradiction. Suppose if possible
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(p,q,r)eX3 and 209/420 <« q(p,q,r) < 1/2. Without loss of
generality we may assume that P £q£r. Firstly
1/p > 209/1260 so p = 4, 5 or 6;

Case 1. p =4,

1/2 3 1/4 + 1/q + 1/r X 209/420 hence
1/4 s 1/q + 1/r > 26/105. So 1/q > 13/105 hence q £ 8 also
1/q €1/4 so q 25

subcase 1.1. g = 5,

1/2 3 1/4 + 1/5 + 1/r > 209/420 hence 1/20 ‘> 1/r x 1/21
- a contradiction.

subcase 1.2, q = 6.

1/2 > 1/4 + 1/6 + 1/r N 209/420 hence 1/12 N 1/r > 17/210

- a contradiction.

subcase 1.3. q = 7,

1/2 > 1/4 + 1/7 + 1/r N 209/420 hence 3/28 x 1/r > 11/105

- a contradiction.

subcase 1.4, q = 8.

1/2 > 1/4 + 1/8 + 1/r N 209/420 hence 1/8 > 1/r > 103/840

- a contradiction,
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Case 2. p = 5.

1/2 5 1/5 + 1/q + 1/r > 209/420 hence
3/10 > 1/q + 1/r > 25/84. So 1/q > 25/168 hence q = 5 or 6;

subcase 2.1. q = 5.

1/2 N 1/5 + 1/5 + 1/r > 209/420 hence 1710 > 1/r > 417420

- a contradiction.

subcase 2.2. q = 6.

1/2 N 1/5 + 1/6 + 1/r > 209/420 hence 2/15 > 1/r N 11/84 -

a contradiction.

Case 3. p = 6.

1/2 N 1/6 + 1/q + 1/r > 209/420 hence

1/3 > 1/q + 1/r > 139/420. So 1/q > 139/840 hence q = 6. So

1/2 5 1/6 + 1/6 + 1/r N 209/420 hence 1/6 > 1/r » 23/140 - a

contradiction.

This completes the proof of the first part of (4.12).

We now verify the second part. We note that precisely one

of ¢(e,),¢(e2),¢(e3) is two. Hence the problem reduces to

showing the following: Let u:X? — R (given by pu(p,q) =

1/p + 1/q) satisfy p(p,q) < 1/4 = (7/12-1/3), then
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p(p,q) £ 26/105 = 61/105 - 1/3 = p(5,21). - Pl et
We argue by contradiction. Suppose:26/105-£-pu{p,q) - £ L/by v
Wiﬁhout loss of generality we assume that p £ q. Firstly

1/p » 13/105 so p

N
[+]

Case 1, p = 4,

v

1/4 > 1/4 + 1/q > 26/105 hence -0 N 1/q N -1/420 - a

contradiction.

Case 2. p = 5,

v

176 3 1/5 + 1/q 26/105 hence 1/20 > 1/q:> 1/2Y:=:a - - -

contradiction.

Case 3. p = 6.

1/6 3 1/6 + 1/q

v

26/105 hence 1/12 x 1/q > 17/210
a contradiction.

Case 4. p = 7.

1/6 > 1/7 + 1/q

v

26/105 hence, 3/28 i\ 1/q ¥ 77/735:7 =

a contradiction. CoSe eiih e

Case 5. p = 8. L

v

1/4 x 1/8 + 1/q > 26/105 hence 1/8 > 1/q > 103/840

a contradiction.
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Thus the second part of (4.12) holds.

Lastly we verify (4;13). To do this we must show that if
u(p,q) € 1/2 then p(p,q) £ 9/20 =~ u(4,5). We argue by
contradiction. Suppose 1/2 N u(p,q) > 9/20. Without loss of
generality we assume that p £ q. Firstly 1/p > 9/40 hence
P=4. Thus 1/2'y 1/4 + 1/q > 9/20. Hence 1/4 > 1/q > 1/5 — a

contradiction.
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§4.4 PROOF OF THEOREM 4.2

We ask the reader to recall what it means for a group to

be as large as F,, from §1.8. We will use the following fact

throughout this section.
(4.14) If V()i1=3 and T is connected then C(I',p) is as large

: . 1
as F2 if and Only if z -MT_— <1, by [34].

52))
{x,y}eE(T)

Let k = hef[p(E(M))].

Proof of (I).

Suppose first that k24; let u,v,w be distinct vertices of

I'. Then there is a homomorphism from C(I',p) onto

H= k k

givenbyu b x, vy, w2z, and t  x for
teV(I)-{u,v,w). By (4.14), H is as large as F,, and hence so
is C(I,p)

Now suppose k=3, Let u,v,w,x be distinct elements of V(I').

Then there is a homomorphism from C(I',p) onto
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given by u » a, v 1 b, W ¢, Xx P dand t » a for
teV(M)-{u,v,w,x).
We now show H; is equally as large as F,.

Now there is an automorphism of this group of order
dividing four carrying a t» b, b » ¢, ¢ I d, d + a, hence
H,=<x,0; (x0x671)3, (x62x6~2)3, 64> (x involutary)

is a finite extension of H,. Let H, be the kernel of the
homomorphism from H, onto Z,={0,1) given by X1l 6 b 0.

The covering corresponding to H, is

(x6x71971)3, (x"1gx071)3, (x62x7'872)°
H

(x7192x0~2)3, ¢4, 89

Collapsing the maximal subtree gives

H,=<6,0; (607')3, (62072)3, 64, 8%>.
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Let H, be the kernel of the homomorphism from H, onto
<x,y; x2, y?, (xy)3> given by ¢ - x, § > y. The covering

corresponding to H, is

0,0310,0310505", 0,0310,07'085"

(0,0,035'05")2, (0,0,07'85")3

P (06050310713, (8,0,85'83")°
(650,8710737)3%, (8,6,05'83")°7

(6,0,)2, (8,042, (8,04)7

(Qsﬂz) 2, (_0_1.@.4) 2, (23.@.5) 2

Collapsing the maximal subtree consisting of 6,,8,,0,,8,,0,

and then eliminating §. by a Tietze transformation gives the

following

Hy=<0,,05,05,08,,08,,86;(8,03")3, (6,83")%, (858313, (0565")°
6,630,05'6505", (8,053, (6,033

012103»0%» Q%o .ng Qé>-

There is now an homomorphism from H, onto

L .\

Hi=y 3 x 3 2

given by 6,,0, b X, 05,8, Py, 6,,0, b z. By (4.14) H, is

as large as F,, and hence so is H,.

Proof of (II).

Let (I'',p') be an island not of the form (4.2). Then there
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is an homomorphism from C(I,p) onto C(I'',p') given by
Vb Vv (veV(I'')) and u > 1 (ueV(IM)-V('')). Let ', be the
complete graph on V(I'') and let p, be the extension of ' to
E(l',) for which, if I'' is not complete, ¢|(E(F1)—E(F'))={6).
Thus there is a homomorphism from C(I',p) onto C(T",,p,).
If V(') 1=3 then, since

Ty ,p)#¢ 4 4,

it follows from (4.14) that C(I',,p,) is as large as F,, hence
so is C(T,p).

Suppose 1V(I';)124. We begin by showing the following:

(4.15) There is a complete subgraph I', on four vertices in r,
such that any two vertices of I', are joined by a path
in T', no edge of which is mapped to 2 by ¢,.

Pick a maximal subtree T of I', consisting of edges with
image at least 3. (T exists since (I'',p') was an island.) Pick
a subtree of T containing precisely four vertices and let T,
be the full subgraph of I', on these.

Let ¢, be the restriction of ¢, to the edge set of I',. Now
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there is a homomorphism from C(T",,p,) onto C(I',,p,) given by

v b v (veV(l,)) and u > 1 (ueV(Tl,)-V(T',)). We show that

C(r,,p,) is as large as F,.

Case 1. There is a triangle in I') with no edge mapped to 2 by

0y

(Fy.p,)=

We suppose, without loss of generality, that no edge of
the triangle with vertices a,b,c is mapped to 2. Then there is

a homomorphism from C(I',,p,) onto

givenby a m x, b by, ¢ 2z, d b 1. By (4.14), H is as

large as F,, and hence so is C(I',,p,).

Case 2. In each triangle in I', there is an edge mapped to 2 by

E.Z'
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We note that by (4.15) there can be at most three edges

mapped to 2 by ¢,.

Subcase 2.1. Precisely two edges of I', are mapped to 2 by

22.'

Then we must have the following situation.

If at least one of a,y,5,¢ is at least 6 (say «), then there

is a homomorphism from C(I',,p,) onto

H= o 2

givenby a by, b » 2, ¢ » 1, and d b x. By (4.14), H is
as large as F,, and hence so is C(l,,p,).

So now assume that
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(Typ,)= ' 4/2 4

Let H be the kernel of the homomorphism from C(I',,p,) onto

Zz~{0,1] given by a +» 1; b,c,d » 0. The covering

corresponding to H is

b c d
A aba~1b', (aca~'c')?, (ada='d')?, (be)*4
a : _ .
(bd)4, (cd)?, (b'c')4, (b'd')4, (c'd')?
b! c! ! d’

Collapsing the maximal subtree and then eliminating b' gives

H=<b,c,c’,d,d"';(cc')?,(dd")?,(bc)?,(bd) 4, (cd)?,(bc’)4,(bd")*,(c'd")?>

(all generators involutary). There is a homomorphism from H to

H' =y & x & &
givenby b b x, ¢' »y,d i z and ¢,d' + 1. By (4.14), H'
is as large as F,, and hence so is C(I",,p,)-

Subcase 2.2. Precisely three edges are mapped to 2 by ¢,.
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Then we must have the following situation.

where §,%h#2 and exactly one of a,y is 2.
Let H be the kernel of the homomorphism from C(I',,p,) onto
Z2,-{0,1) given by a - 1; b,c,d > 0. The covering

corresponding to H is

b c d
<::§£L£:7 aba™'b', aca~'c', (ada~'d')%/2
ah L (be)Y, (Bd)®, (cd)P, (b'c')Y
(b'd")®, (c'd")?
CTN
bl cl dl

Collapsing the maximal subtree and then eliminating b' and c¢'’

gives

s /9
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Firstly suppose 4=2 and a#2. Then H is as large as F,
either by Case 1 (if 6é6)Aor Subcase 2.1 (if é=4).
Suppose now that o=2 and 4#2. Then H is as large as F,
either by Subcase 2.1 (if §26) or the above case (if &=4).
Hence C(I',,p,) is as large as F,.

Proof of (IT1I).

The Coxeter grpups associated with the graphs in (4.2) are
Z,, 2,*Z,, the dihedral group of order 2k, and a group which
can be written as ((ZxZ)J (Z,x2))] (Z,xZ,), respectively.
Each of these groups is soluble of length at most three. Hence
any direct sum of such groups 1s soluble.of length at most
three [32]. Hence C(I',p) is soluble of length at most three by

remark (1) on p.138.0
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APPENDIX B
ON THE SQ-UNIVERSALITY OF A DIRECT SUM
LEMMA B

If A and B are any groups, and AxB is SQ-universal then A
or B is SQ-universal.
Proof

We argue by contradiction; So suppose that we have groups
A and B such that AxB is SQ-universal but that neither A nor B
is.

Let H,,H, be countable groups that embed into no quotient
of A and B respectively. Let X be a countably infinite simple
group embedding H,xH, (see Lyndon and Schupp [27,p.189]). Then
X embeds into some quotient

AxB

N
of AxB. For convenience we assume that X is actually a
subgroup of AxB
N
Let B(N)={beB : (a,b)eN for some aeA}. Then there is a

homomorphism

—— ) e

7:AxB B
N B(N)
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given by (a,b)N b bB(N). Since X is simple, the restriction
of n to X is either an isomorphism or the trivial
homomorphism. By construction of X it cannot be the former (or
else H, & B/B(N)), so must be trivial.

Let (a,b)NeX. Then beB(N) so there exists a'eA such that
(a',b)eN. Hence (a,b)N=(aa'~',1)N(a',b)N=(aa’'~1,1)N.

Thus X<4{(a,1)N : aeA}, a hémomorphic image of A under the
map a b (4,1)N. Thus X injects into some quotient of A - a-
contradiction. The result follows.QO
COROLIARY B.1

Suppose that Gj (iel) is a collection of groups with 1
finite, andi%%i SQ-universal. Then for some ie¢l, Gj is
SQ-universal.
Proof

By repeated application of Lemma B.1.O
LEMMA B.2

Let G; (ieI) be a collection of groups. Then G;Z%i is
SQ-universal if and only if for every countable group A there

is a finite subset J of 1 such that A embeds into some



185

quotient of YGj.
1253

Proof

Since for any subset of I the direct sum of the groups
indexed by that set is a homomorphic image of G. Clearly the
"1f* part holds.

To show the "only if" part we show that if there exists a
countable group A that eﬁbeds in no quotient of any finite
subsum of the Gj's then G is not SQ-universal.

We argue by contradiction. Suppose such an A exists but
that G is SQ-universal. Embed A in a two generator group B
(see Lyndon and Schupp [27,p.188]). Then B embeds in some
quotient G/N of G. Now since B is finitely generated and since
each generator of B can be written as a finite sum of ;erms of
the form xN, where x is in some Gj, there thus exists a finite

subset J of I such that B embeds in

51

ZGiﬂN
jed

a contradiction. The result follows.O
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THEOREM B.1

Let Gj (iel) be a collection of groups with:1 countablé.:: -

Suppose thatizgi is SQ-universal. Then there exists iel
€

such that Gy is SQ-universal.-.«i /=0 =y 70 =g uoivaaal,

Proof

We argue by contradiction. SupPpose that no Gjrisi. 1. Hupnass o

SQ-universal. By Corollary B.l .every-finite sum-of -Gy's is'not::: -

SQ-universal. Hence, for every finite subset J of I there is a

countable group Ay which injects«inté»no~quotieneﬂof52§§jfhét SR
€

f:be the set of all non-empty- finite subsets ofIIrv01earLy}:3“"

is countable. Hence

A-ZAJ

Jefi

is countable. By construction A embeds in no quotient of any

finite subsum of the G;j's. Hence by Lemma B.2 YG; is not "~
i€l

SQ-universal — a contradiction. The result follows:iE:ii- i ion. o ionli

1

We note that in Theorem B.1 the restriétioﬁ*théthrbefA-

countable cannot be dropped. For let'X=(Gi"! 162%?}}beﬁa e Lo e

collection of two generator groups such that every two

generator group is isomorphic to some element of X and no two
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elements of X are isomorphic (see Lyndon and Schupp

[27,p.188]).

Let Hj be a countable simple group into which Gj embeds

(ieZab). Then

H= SHy

12?0

is S8Q-universal (in fact every countable group embeds in H)

but no Hy is itself SQ-universal.
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