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Statement 

Chapter 1 covers some basic notions and results from Algebraic Topology such as CW-complexes, 

homotopy and homology groups of a space in general and cellular homology for CW-complexes 

in particular. Also we give some basic ideas from abstract reduction systems and some sup­

porting material such as several order relations on a set and the Knuth-Bendix completion 

procedure. There are only two original results of the author in this chapter, Theorem 1.4.5 

and Theorem 1.7.3. The material related to Topology and Homological Algebra can be found 

in [12], [21], [40], [62], [82], [91] and [92]. The material related to reduction systems can be 

found in [5] and [11]. 

The original work of the author is included in Chapters 2, 3 and 4 apart from Section 3.2 

which contains general notions from Category Theory, Section 3.5.2 which contains an account 

of the work in [67] and Section 4.1 which contains some basics from Combinatorial Semigroup 

Theory. The results of Section 4.2 are part of [83] which is accepted for publication in the 

International Journal of Algebra and Computation. The material related to Category Theory 

can be found in [59], [64], [66], [67], [74], [75], [76], [82] and [93]. The material related to 

Semigroup Theory is in [24] and [34]. 
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Abstract 

In Chapter 2 we show that for every monoid S which is given by a finite and complete presen­

tation P = P[x, r], and for every n ~ 2, there is a chain of CW-complexes 

such that ~n has dimension n, for every 2 ~ s ~ n the s-skeleton of ~n is ~s and F acts on 

~n. This action is called translation. Also we show that, for 2 ~ s ~ n, the open s-cells of ~n 

are in a 1-1 correspondence with the s-tuples of positive edges of V with the same initial. For 

the critical s-tuples, the corresponding open s-cells are denoted by Ps-I and the set of their 

open translates by F.Ps-I.F. The following holds true. 

if s ~ 3 

if s = 2, 

where U stands for the disjoint union. Also, for every 2 ~ s ~ n - 1, there exists a cellular 

equivalence "'s on Ks = (~s X ~8)(s+1) such that Ks/ "'s= (V, PI, ... ,Ps-I) and the following 

is an exact sequence of (ZS, ZS)-bimodules 

where (D, Pl, ... , Ps-2) = V if s = 2. Using the above short exact sequences, we deduce that S 

is of type bi-FPn and that the free fi~ite resolution of'lS is S-graded. 

In Chapter 3 we generalize the notions left-(respectively right)-FPn and bi-FPn for small 

categories and show that bi-FPn implies left-(respectively right)-FPn . Also we show that an-

other condition, which was introduced by Malbos and called FPn , implies bi-FPn . Since the 

name FPn is confusing, we call it here f-FPn for a reason which will be made clear in Section 

3.1. Restricting to monoids, we show that, if a monoid is given by a finite and complete presen­

tation, then it is of type f-FPn . Lastly, for every small category C, we show how to construct 

free resolutions of ZC, at lea..'lt up to dimension 3, using some geometrical ideas which can be 

generalized to construct free resolutions of ZC of any length. 
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In Chapter 4 we study finiteness conditions of ~onoids of a combinatorial nature. We show 

that there are semigroups S in which min'R., is independent of other conditions which S may 

satisfy such as being finitely generated, periodic, inverse, E-unitary and even from the finiteness 

of the maximal subgroups of S. We also relate the congruences of a monoid with the finiteness 

condition minQ, and show that, if S is a monoid which satisfies minQ, then every congruence 

JC on S which contains Q is of finite index in S. If a semigroup satisfies minQ and has all its 

maximal subgroups locally finite, then we show that it is finite. Lastly, we show that, for trees 

of completely O-simple semigroups, the local finiteness of its maximal subgroups implies the 

local finiteness of the semigroups. 

• 
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Introduction 

In the mid 80's Squier initiated a program whose main purpose was to find homological and 

homotopical invariants for rewriting systems and, in particular, to characterize algebraically 

those monoids which are given by a finite complete presentation (FCP). This class of monoids 

is of interest since they have solvable word problem. In [95] Squier showed that, if a monoid 

S is given by some presentation P = [x, r], then there is always a free acyclic resolution of the 

trivial left-ZS-module Z : 

ZS.r ~ ZS.x ~ ZS ~ Z ---+ 0, (1) 

and, if we assume that P is in addition FCP, then the fe'lolution (1) can be prolonged with 

another term as follows 

~ ~ ~ ~S ! ~ ° ZS.p ---+ ZS.r ---+ ZS.x ---+ ~ ---+ ~ ---+ , (2) 

where p is the set of critical pairs of r. This in particular means that Sis oftype left-FP3. In the 

same way one can show that, if the system P giving S is finite and complete, then S is of type 

right-FP3. Later Kobayashi [50], Groves [36] and Brown [13] extended the result by showing that 

such a monoid should necessarily satisfy the conditions left/right-FP n for all n. Unfortunately 

the properties left/right-FPn together are not equivalent to FCP. To separate between these 

two, Squier introduced in [96] another'finiteness condition, invariant of the presentation, called 

finite derivation type (FDT). He showed that, if S is FCP, then S is FDT and exhibited an 

example of a monoid satisfying the condition left-FP 00 but not being FDT and therefore not 

FCP. In fact this is not enough to divide FP 00 from FCP since the monoid of that example 

was left-FP 00 but not even right-FP3 as was pointed out by Pride and Wang in [89]. In the 

mean time Wang and Pride [99] introduced another finiteness condition called FHT which later 

was proved to be strictly implied by FDT [87]. On the other hand Otto and Kobayashi showed 

in [53] that FHT is equivalent to bi-FP3. One can use this and the example given in [54] of a 

monoid which is left-FPn and right-FPn for every n but is not FHT, to separate between bi-FPn 
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and left-FPn and right-FPn . This in particular implies that left and right-FPoo taken together 

do not guarantee that the monoid is given by a finite complete presentation. On the other hand, 

FDT and FCP are not equivalent. Indeed, for groups the properties FDT and bi-FP3 coincide 

(see [53] and [86]) and bi-FPoo is equivalent to left (right)-FPoo as well (see [10]). On the other 

hand there are examples of groups which are bi-FP3 but not bi-FP 4 as shown in [9] or [10] and 

therefore these groups can not be given by a finite complete presentation. Thus FDT draws a 

line between what we know as homological properties of a monoid and FCP itself. 

Our attention is immediately drawn to the fact that the resolution (1) is in a certain sense 

an invariant of P, since, as we mentioned before, one can construct such a resolution whenever 

a presentation for S is given. There is another similar to it found in [53]: 

° ~ M ~ ZS.x.ZS ~ ZS ® ZS ~ ZS ~ 0, (3) 

where M = J / J2 is the relation (ZS, ZS)-bimodule with J being the kernel of the natural 

morphism p : ZF ~ ZS. 

To define FDT for a monoid given by a presentation P = [x, r], Squier [96] constructs 

the so called reduction graph r = r(x, r) whose vertices are the words of the free monoid 

F = x* and whose edges correspond to one single step reductions on words. Then he introduces 

certain equivalence relations called homotopy relations, which in particular identify any two 

parallel paths in r arising from disjoint reductions on the same word. It was pointed out by 

Pride [85] that, instead of studying r together with the homotopy relations, one can construct 

a 2-dimensional CW-complex V whose I-skeleton is rand 2-cells arising from the same pair 

of paths defining the homotopy relations in the sense of Squier. Also Pride noted that there 

is a bi-action of F on V which turns out to have homotopical and homological consequences~ 

For example, expressed in this topological setting, FDT can now be defined as follows: there 

is a finite set of closed paths X in r .uch that, if we attach 2-cells for each closed path from 

F.X.F then the new 2-complex obtained thus has fundamental homotopy groups trivial. The 

advantage of this approach is that we can now associate to V the respective cellular chain 

complex 

and study H1(V). Pride [85] proved that Hl(V) has a (ZS,ZS)-bimodule structure and that 

there is an exact sequence of (ZS, ZS)-bimodules 
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Later Guba and Sapir [39] using ideas of diagram groups, or Otto and Kobayashi [52] in an 

alternative way, showed that '" is injective giving thus the short exact sequence 

(4) 

Splicing together (3) and (4) one gets 

HI(V) ---+ ZS.r.ZS ---+ ZS.x.ZS ---+ ZS ® ZS ---+ ZS ---+ 0, (5) 

which in contrast with (1) involves not only the data giving the presentation P, namely x 

and r, but also the first homology group HI (V) of the Squier complex V associated with that 

presentation. If the presentation P is finite and complete, then HI (V) is finitely generated 

which together with (5) shows that S is of type bi-FP3. Also we mention here that the map 

HI (V) ---+ ZS.r.ZS is injective. It seems that the philosophy of obtaining long exact sequences, 

which can then be used to obtain long free resolutions of S, is to introduce first short exact 

sequences as in (4), and then to splice them with long exact sequences constructed from a 

previous step, as we did with (3) and (4) before. 

In his thesis [71] (see also [72]) S. McGlashan extended the Squier complex V associated with 

a presentation P by adding to it 2-cells p and their translates F.p.F such that the homology 

classes of the I-cycles arising from the boundaries of cells from pare bi-module generators of 

HI(V). That complex was denoted by VP. Then it W8..'l shown how to add 3-cells to VP in a 1-1 

correspondence with 3-tuples of positive edges with the same initial which are non-critical, to 

obtain a 3-complex denoted there by (V, p). As before we can associate with (V, p) the cellular 

chain complex 

C3(V,p) ~ C2(V,p) ~ CI(V,p) ~ Co(V,p) ---+ 0 

and study H2(V,p). It was proved in [71] and [72] that there is a short exact sequence 

(6) 

of (ZS,ZS)-bimodules. If we splice (6) with (5), which we know from the recursive step, then 

we obtain the long sequence 

0 __ H2(V, p) ---+ ZS.p.ZS ---+ ZS.r.ZS ---+ ZS.x.ZS ---+ ZS ® ZS ---+ ZS ---+ O. (7) 

It was also shown that, under the assumption that P is finite and complete, if we choose cells 

from p to have their own boundaries arising from resolutions of the critical pairs of positive 

edges with the same initial, then H2(V, p) is finitely generated and therefore one can deduce 

easily from (7) that S is of type bi-FP 4. 
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In Chapter 2 of this thesis, assuming that the presentation P is finite and complete, we keep , 
on doing the above process in all dimensions. Roughly speaking, suppose that recursively we 

have constructed a sequence of CW-complexes 

(8) 

such that ~n has dimension n, for every 2 ~ s ~ n the s-skeleton of ~n is ~s and F acts on 

~n. This action is called translation. Also, we suppose that, for 2 ~ s ~ n, the open s-cells of 

~n are in a 1-1 correspondence with the s-tuples of positive edges of V with the same initial. 

For the critical s-tuples, the corresponding open s-cells are denoted by Ps-l and the set of their 

open translates by F.Ps-l.F. The following holds true. 

{
(V, Pl, ... , Ps-2) u F·Ps-l.F 

~s= 
VUF·Pl.F 

if s ~ 3 

if s = 2, 

where U stands for the disjoint union. Also, for every 2 ~ s ~ n - 1, there exists a cellular 

equivalence "'s on Ks = (~s X ~s)(s+l) such that Ks/ "'s= (V, Pl, ... , Ps-l) and the following 

is an exact sequence of ('1,8, '1.8)-bimodules 

where (V, Pl, ... , Ps-2) = V if s = 2. 

We construct inductively an (n + I}-dimensional CW-complex ~n+1. having ~n as its n­

skeleton, whose open (n + I)-cells are of two kinds: those which are in a 1-1 corre.."lpondence 

with the non-critical (n + 1 )-tuples of positive edges with the same initial, and open (n + 1 )-cells 

Pn in a 1-1 correspondence with critical (n + I)-tuples of positive edges with the same initial, 

together with their open translates F.Pn.F. The construction is carried out in two stages. In 

the first stage we construct an (n + I)-complex (V, Pl, ... , Pn-l) whose open (n + I)-cells are 

in a 1-1 correspondence with the non-critiial (n + I)-tuples of positive edges with the same 

initial. In the second stage we attach open (n + 1 )-cells Pn in a 1-1 correspondence with critical 

(n+ I)-tuples of positive edges with the same initial, together with their open translates F.Pn.F . 

As before we have 

and then (8) extends to the sequence 
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with the property that the following sequence of ('LB, 'LB)-bimodules 

(10) 

is exact. 

The general picture of the construction is given in our main Theorem 2.1.1 which roughly 

states that associated with a finite and complete presentation P = P[x, r] giving a monoid B, 

and for every n ::::: 2, there is a chain of CW-complexes 

such that ~n ha.9 dimension n and for every 2 ~ m ~ n, the m-skeleton of ~n is ~m. The 

complex satisfies certain properties among which is the exactness of the sequences of ('LB, 'LB)­

bimodules 

where (V, PI, ... , Pm-2) = V if m = 2. 

We use these sequences to give another proof of Corollary 7.2 of [55] for the integral monoid 

ring 'LB, which is stated in the following. 

Theorem 2.1.2 If a monoid B is given by some finite complete presentation P = P[x, r], then 

it is of type bi-FP n' 

We also reprove in Theorem 2.4.3 the fact that properties FDT and FHT for groups are 

eq1tivalent, by using the machinery developed earlier in Chapter 2. Other proofs can be found 

in [33] and also in [20], [86]. 

All left 'LB-modules, right 'LB-modules and ('LB, 'LB) -bimodules involved in the above men­

tioned result can be seen as objects from the functor categories Abzs , AbzsoPP and AbzsoPP0ZS 

respectively. In fact all these categories are special cases of functor categories of the form AbC 

with C a small additive category, since eve~ ring with a unit element, in particular 'LB, 'LBopp 

and 'LBopp (8) 'LB, is a small additive category with a single object its unit element. It is then 

natural to ask whether it is possible to look for finiteness conditions of a homological nature 

for small categories which would generalize some of the results above. There is also another 

good reason for studying small categories as generalizations of monoids as we will explain below. 

In [28] (see also [7]) Dwyer and Kan introduced the notion of the category offactorizations FC of 

a small category C. Its objects are the morphisms of C and a morphism w ~ w' is a pair (u, v) 

of morphisms in C such that w' = vwu. Composition is defined by (u', v') (u, v) = (u' u, vv'). 
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One can study what are called in [7] natural systems of abelian groups on C which are functors 

D : FC --+ Ab. Every such functor extends to an additiVe functor D' : ZFC --+ Ab where 

ZFC is the additive category arising from FC, or, more explicitly, it is FC enriched in Ab. 

Thus, for a given small (non-additive) category C, one can study two functor categories, AbzC 

and AbzFC. In contra.."lt with AbzC, whose object are functors associating with each object of 

C an abelian group, the functors of the category AbzFC associate with each morphism in C an 

abelian group. In the case of monoids, the difference between these two categories is clear and 

one can expect to have finiteness conditions of a new nature if working with the second category. 

It is fruitful and more illuminating to work with small categories rather than with the special 

case of monoids when studying the category AbzFc, and then apply the results to monoids. 

There is yet another reason why presentations of categories are interesting to study. It appears 

that the homological properties of a monoid S which is given by some presentation P = P[x, r] 

are "governed" by the reduction graph rex, r). The vertices of this graph can be seen as paths 

of the free category x* with a single object, the empty word .A, and with generating morphisms 

one for each generator x E x, and the edges of rare path-rewritings on x* corresponding to 

r-reductions. It is not essential that the graph whose paths will be rewritten has a single vertex; 

hence we can expect that most of the properties which are discussed in the above mentioned 

papers, will hold true if we try to generalize the results to monoids with several objects, known 

as small categories. Why generalize? FCP is not a notion borrowed from the theory of monoids, 

nor that of categories but from the theory of Term Rewriting Systems and occurs in many fields 

of Algebra whenever one speaks of presentations of algebras in general. So generalizing the 

existing theory to more general structures like small categories, at the very least would allow us 

to understand more in depth the relation between FCP and the homological properties. of the 

algebraic structures. 

In [67] Malbos defines a functor B in AbA (A additive) to be of type FPn if there is a 

projective resolution in AbA • 
Pn --+ Pn - 1 --+ ... --+ Po --+ B --+ 0, 

such that Pi is finitely generated for 0 ~ i ~ n. In this context, a small category C is called of 

type f-FPn if the constant functor Z E AbzFC is of type FPn. It is called of type bi-FPn if the 

functor ZC which sends (c, d) E copp 0z C to the free abelian group with bases C( c, d), is of 

type FP n in AbzcoPP0zZC. It is called of type left-FP n (respectively right-FP n) if the trivial left 

(respectively right) ZCmodule Z, sending each object of ZC on the group Z and each morphism 
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of Con lz, is of type FPn in AbzC (respectively AbzcoPP). The property f-FP n was introduced , 
by Malbos in [67] but he calls it just FPn which is confusing with left or right FPn . Since it is 

a property of the constant functor Z E AbzFC and since FC is the category of factorizations 

of C, we renamed it by calling it f-FPn . 

The main result of [67] is that, for any presentation [x, r] of a small category C, there is an 

exact sequence similar to (1): 

zqr] ~ zqx] ~ Bo(C) ~ Z -+ 0, 

which is in fact a projective resolution of Z E AbzFC. He also shows that, if the presentation 

of C is finite and complete, then C is of type f-FP3, by giving an exact sequence similar to (2). 

In Chapter 3 we deal with finiteness conditions f-FPn, bi-FPn and left, right-FPn for small 

categories. Being unable to verify the proofs for the implications i) ==? ii) ==? iii) of Lemma 

3.3 of [67], we give our own proofs in Theorem 3.4.5 and Theorem 3.4.10 stated below. 

Theorem 3.4.5 For every small category C the following implication holds tT"ILe: 

bi-FPn ==? left (right)-FP n' 

Theorem 3.4.10 If a small category C is of type f-FPn , then it is of type bi-FPn . 

Regarding monoids seen as categories, we prove the following. 

Theorem 3.4.12 If the monoid S is of type bi-FPn and the corresponding free partial 

resolution is S -graded, then S is of type f-FP n' In particular, monoids which are given by a 

finite complete presentation are of type f-FP n' 

In Section 3.5, we look for ways to build partial resolutions for the trivial functor 

Z E Add(ZFC, Ab). Theorem 3.5.2 gives a resolution of length 3 and implicitly a condition 

for a category to be of type f-FP3. The finiteness of that resolution is related to a property 

which we call FDT for small categories and is defined in a similar fashion to FDT for monoids 

(see [85] or [96]). More precisely, we prove tie following. 

Theorem 3.5.3 If C is of type FDT, then C is of type f-FP 3 . 

In Chapter 4 we study finiteness conditions of monoids of a combinatorial nature. Several 

authors have considered two approaches to stUdying finiteness of finitely generated semigroups. 

The first is to assume conditions such as permutation properties, iteration conditions or repeti­

tivity, and combine either one of them with periodicity or with conditions imposed on the growth 

function of the semigroup, to obtain the finiteness of the semigroup. The second approach is to 

replace the first mentioned group of conditions by the minimal conditions on right/left ideals, 
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quasi-ideals or bi-ideals, and look for similar results as in the first case. In Theorem 4.3.1 we , 
show that there are semigroups S in which minn, is independent of other "good" conditions 

which S may satisfy such as being finitely generated, periodic, inverse, E-unitary and even from 

the finiteness of the maximal subgroups of S. On the one hand this reveals a rather strange 

nature of minn (and other minimal conditions similar to it), but on the other hand it justifies 

their consideration as candidates to obtain finiteness of the semigroups besides other conditions. 

We list below some of the results of this chapter. 

Proposition 4.2.3 Let S be a finitely generated monoid which satisfies minQ. Every cong'T"lJ,­

ence JC on S which contains Q is of finite index in S. 

Theorem 4.2.7 A finitely generated semigroup S is finite if and only if it satisfies minQ and 

all its maximal subgroups are locally finite. 

Theorem 4.2.15 Let (S, *) be a tree of completely O-simple semigroups (St,.) where t E T and 

T is a tree. If the maximal subgroups of S are locally finite, then S is locally finite . 

• 
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Notations 

Topology and Homology 

XilY 

Xil f Y 

il>e 

'Pe 

oe 

[1] 

Hn(X) 

Hn(X) 

Hn(X,A) 

clse 

7rn (X) 

E(~) 

C1 II C2 

U 

the coproduct of spaces X and Y 

the attaching of X to Y via 1 

the characteristic map of a cell e 

the attaching map of a cell e 

the closure of the cell e 

the boundary of a cell e 

the set of closed (dime-l )-cells meeting e 

the n-dimensional disk 

the n-dimensional sphere 

the homotopy class of a map 1 : sn ---t X 

the nth homology group of a space X 

the reduced nth homology group of a space X 

the relative homology group 

the homology class of an n-cycle e 

the nth homotopy group of a path-connected space X 

the standard n-simplex 

homotopy equivalence 

homeomorthism 

the incidence number of O'n and O'n-1 

the cell decomposition of the complex ~ 

cells C1 and C2 are parallel 

disjoint union 

the tensor product of 0'1 with 0'2 
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Rewriting Systems 

p= [x,r] 

A 

o 
f(x, r) 

V(P) 

Z 

>mul 

>lex 

[A] 

Categories 

C 

aEC 

copp 

homc(a, b) 

F(X) 
R# 

Nat(G, F) 

E9 Ci 
iEI 

XCi 
iEI 

-
Add(A,lR) 

Kerf 

1mf 

N at(S, T)Add(A,IE) 

A0zlR 

\ 

presentation of a small category 

the single-step reduction relation corresponding to a E r 

the empty word 

the empty set 
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Chapter 1 

Preliminaries 

1.1 CW Complexes 

A part of this thesis deals with the way we construct complex spaces starting with simple ones 

and then how we can study the homotopy and homology groups of these spaces. We start with 

a number of basic notions and concepts from Algebraic Topology which can be found in several 

books such as [21], [40], [62], [91] and [92]. 

A coproduct Xl Il X2 of two spaces Xl and X2 is just the disjoint union of them in which 

both are open subsets of the union. If Ii : Xi ---t Y for i = 1,2 are two continuous maps, then 

the continuous map fl Il h : Xl Il X2 ---t Y is defined by setting (fl Il J2)(x) = Ii(X), where 

x E Xi· 

Definition 1.1.1 Let X and Y be spaces, let A be a closed subspace of X, and let I : A ---t Y 

be continuous. The space obtained from Y by attaching X via I is (X Il Y)/ rv, where rv is the 

equivalence relation on X Il Y generated by {(a, I(a)) E (X Il Y) X (X Il Y) I a E A}. This 

space is denoted by X IlJ Y. The map I is called the attaching map . 

• 
Definition 1.1.2 The map <I> : X ---t X Il, Y (which is the composite X '-t X Il Y ---t 

X Il, Y) is called the characteristic map. 

Definition 1.1.3 An n-cell en (or simply e) is a homeomorphic copy of the open n-disk 

Dn - sn-l. Its closure will be denoted bye. 

Definition 1.1.4 Let Y be a Hausdorff space and let I : sn-l ---t Y be continuous. Then 

Dn Il, Y is called the space obtained from Y by attaching an n-cell via I, and is denoted by 

Y,. 
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Definition 1.1.5 A continuous map g : (X, A) -t (Y, B) is a relative homeomorphism if 
~ 

gl(X - A) : X - A --+ Y - B is a homeomorphism. 

Definition 1.1.6 If a topological space X is a disjoint union of cells: X = U{ e leE .e}, then 

define, for each k ~ 0, the k-skeleton X(k) of X by 

X(k) = U{e EEl dim(e) ~ k}. 

We then have, X(k) c X(k+l) for every k ~ 0, and X = Uk~OX(k). 

Definition 1.1.7 A CW-complex is an ordered triple (X, E, ~), where X is a Hausdorff space, 

E is a family of cells in X, and ~ = {~e leE E} is a family of characteristic maps such that 

1. X = U{e leE E} (disjoint union); 

2. for each k-cell e E E, the map ~e (Dk,Sk-l) -t (e U X(k-l),X(k-l») is a relative 

homeomorphism; 

3. if e E E, then its closure is contained in a finite union of cells in E, 

4. X has the weak topology determined by {e leE E}: A set A c X is open (or closed) if 

and only if An e is open (or closed) in e for every e E E. 

It is proved in Lemma 8.15, p.200 of [91] or in p.193 of [92] that, for every k-cell e E .e, 
~e(Dk) = e. We call ~e(Dk) a closed k-cell. The restriction of ~e on the boundary Sk-l of Dk 

is called the attaching map of e and eO = ~ e (Sk-l) is called the boundary of e. We denote by oe 
the set of all closed (k - I)-cells which meet e. In future, in order to simplify the notation, we 

will write (f E oe to mean that (j meets e. Note that it is not always true that e = ~e(Dk - Sk-l) 

is open as a subset of X even though sometimes it is referred to by several authors as the open 
• k-cell e. 

A subcomplex of a CW-complex X is a subspace A C X which is a union of cells of X, such 

that the closure of each cell in A is contained in A. 

In practice the construction of CW-complexes is done in an inductive way as follows: 

(1) Start with a discrete set XO, the O-cells of X. 

(2) Inductively, form the n-skeleton xn from xn-l by attaching n-cells e~ via maps 

'Pa : sn-l -t xn-l. This means that xn is the quotient space xn-l il<POl D~. 

2 



According to this procedure, to attach cells we need to specify the corresponding attaching 

map. Actually this is not the only way to "produce" CW-complexes. Sometimes we can use a 

tricky way to construct an (n + I)-complex having as its own n-skeleton a given CW-complex. 

We will show this in detail in a concrete situation in Chapter 2, but before that we need some 

other notions and results listed below. 

Theorem 1.1.8 If K and L are CW-complexes, so is the topological product K x L provided 

that 

(a) one of K, L i.~ locally compact, or 

(b) both K and L have a countable number of cells. 

For the proof one may see Theorem 7.3.16 of [70j. 

There is also a more general notion than that of a CW -complex, the one of a cell complex. 

Definition 1.1.9 Let X be a set. A cell structure on X is a pair (X,~) where q> is a collection 

of maps of closed disks into X satisfying the following conditions. 

(i) If q> E ~ and q> has domain Dn, then q> is injective on Dn - sn-l. 

(ii) The images {q>(Dn - sn-l) I q> E ~} form a partition of X, i.e. they are disjoint and 

have union X. 

(iii) If q> E ~ and q> has domain Dn , then 

q>(sn-l) C U{W(Dk - Sk-l) I W E ~ has domain Dk and k::; n -I} . 

• 
Note that in this definition we do not have any topology specified on X. If q> E ~ and q> 

has domain Dn, we call an = q>(Dn) a closed n-cell and q> its characteristic function. As be­

fore, we denote q>(sn-l) = (an)O and by abuse of language we call q>(Dn_sn-l) an open n-cell. 

Two cell structures (X, ~) and (X, ~') are strictly equivalent if there is a one-to-one cor­

respondence between ~ and ~' such that for a characteristic function q> E ~ with domain 

Dn there corresponds a characteristic function q>' E ~, with domain Dn again, and there isa 
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homeomorphism of pairs h: (Dn, sn-l) ---t (Dn, sn-l) such that <1>' = <l>oh. Strict equivalence , 
is an equivalence relation and for some cell structure (X, ~) we denote by §CI> the set of all 

pairs (O"n, [<1>]), where O"n = <I>(Dn) and [<1>] is the strict equivalence class of <I> E ~. Obviously, 

if (X,~) and (X, ~') are strictly equivalent, then §CI> = §CI>'. 

Definition 1.1.10 A cell complex on a set X is an equivalence class of cell structures (X,~) 

under the equivalence relation of strict equivalence. A cell complex on X will be denoted by a 

pair (X, §) where § = §CI> for some representative cell structure (X, ~). The set § is called the 

set of closed cells of (X,§). 

Definition 1.1.11 A subcomplex (A,Jr) of a cell complex (X,§) is a cell complex such that 

A ~ X and.JT ~ §. 

It is easy to see that every CW-complex is a cell complex and that every CW-subcomplex 

of a CW-complex is a sub complex of it seen 8..'> a cell complex. We call (X, A) a CW-pair if X 

is a CW-complex and A a subcomplex of X. 

n 
Example 1.1.12 For any n ~ 0, the n-sphere sn = {x = (XO,Xl, ... ,xn) I (x,x) = LX~ = I} 

i=O 
has a CW-complex structure (sn, <1», where <I> consists of two functions, <po : DO ---t sn and 

<pn : Dn ---t sn. We define 

<p°(x) = (1,0, ... ,0) 

and 

<pn(x) = (2 (x,x) -1, 2xl\!1- (x,x), ... , 2xn\!1- (x,x)). 

In this case we have only two cells 0"0 = (1,0, ... ,0) and O"n = sn. 

We can get a cell structure on the (n + I)-disk by taking the two characteristic maps defined 

above together with the identity map <pn+l : Dn+1 ---t Dn+l. This gives a cell complex with 

exactly three cells containing sn as a subcolllPlex. 

Definition 1.1.13, Propositions 1.1.18 and 1.1.19, and Theorem 1.1.15, which will follow 

below, give the outline of the procedure we use in Chapter 2 to produce CW-complexes. 

Definition 1.1.13 Let (X,§) be a cell complex and JR. an equivalence relation on X. Denote by 

p the quotient map. Then JR. is a cellular equivalence relation provided the following conditions 

are satisfied. 

(1) If 0" E §, then p-lp(O" - 0"0) is a union of open cells O"i - O"i of the cellular partition of X. 
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(2) If ao - ao E p-lp(a - aD) is of minimal dimension ~ong all such open cells in the union, 

then p I (ao - ao) is a bijection onto p(a - aD) and p(a) = p(ao). Such a cell ao is called 

IR-minimal for the cell a. 

(3) If a' and a" are both IR-minimal for the cell a and if <1>' and <1>" are the respective charac­

teristic functions, then there is a homeomorphism h : Dul ----t Dull such that p<l>' = p<l>" h. 

Remark 1.1.14 We draw the attention of the reader to the difference between the notations 

used in [62] and those of other sources mentioned here, including the rest of this thesis. In 

our terminology cells are open, unless otherwise stated and denoted by a, while their closure is 

denoted by (t. In the terminology of [62], the closed cells (t are denoted simply by a, as in the 

above definition, and what is an open cell for us, is denoted by a - aD in [62]. 

Theorem 1.1.15 Let (X, §) be a cell complex and JR. a cellular equivalence relation on X. 

Define §/IR = {p(a) I a E § and a is JR.-minimal}. Then (X/IR,§/IR) is a cell complex. 

The proof is given in Theorem 6.2, I of [62]. 

Definition 1.1.16 If (X,§) is a cell complex and IR a cellular equivalence relation on X, the 

complex (X/IR, §/IR) is the quotient or identification complex of (X, §) with respect to lR.. 

We give below a few examples of cellular equivalence relations which are based on Proposition 

6.8, I of [62] given below. 

Proposition 1.1.17 Let (X, §) be a cell complex and (A-y, .If-y) a family of disjoint subcomplexes. 

If t::. is the diagonal of X x X and JR. = D.UU-y(A-y X A-y), then JR. is a cellular equivalence relation. 

We say that the quotient complex (X/JR., §/JR.) is obtained from (X, §) by shrinking or 

collapsing the subcomplexes (A-y,.If-y) to vertices of (X,§). In the following examples X = (X,§) 

will be a cell complex and I the unit interval s~n as a cell complex with one I-cell, the open unit 

interval, and two O-cell, {O} and {I}. Recall also that the product X x Y of two cell complexes 

X and Y is again a cell complex with cells pairs (a, 15) with a and 15 cells from respectively X 

and Y. 

1. The cone over X, c(X), is obtained from X x I by collapsing the subcomplex X x {I} to 

a vertex. 

2. The suspension of X, S(X), is obtained from XxI by collapsing the subcomplexes X x {O} 

and X x {I} to distinct vertices. 
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3. If Y = (Y,.1f) is another cell complex, the smash pro~uct X /\ Y is obtained from X x Y 

by collapsing (X x {y}) U ({x} X Y) to a point. Here x and yare basepoints of X and Y 

respectively. 

Suppose that X is a space and for each A E A there is given an attaching map 

f>.. : aD).. -----+ X, with aD).. the boundary of D)... We let 

and 

F = UfA : aB -----+ X 
).. 

be the union map. With these notations we have the following two propositions from [62], 

respectively, Proposition 2.1, p. 45 and Proposition 5.7, p. 59. 

Proposition 1.1.18 Let X be a Hausdorff space, and suppose that Y = B llF X is obtained 

by attaching the cells {D).. I A E A} to X. Then Y is a Hausdorff space. 

Proposition 1.1.19 Let X be a CW-complex and lR a cell11lar equivalence relation such that 

the space X/lR is Hausdorff. Then with the quotient structure on X/lR, the quotient space is a 

CW-complex. 

Remark 1.1.20 The idea of the construction of the CW-complex in Chapter 2 will be the 

following. Suppose we have a CW-complex b,. of finite dimension n 2.: 1 with a countable 

number of cells in each dimension. The topological product b,. x b,. is again a CW-complex 

from Theorem 1.1.8, and has dimension 2n, therefore its (n + I)-skeleton b..(n+l) is ag~in a 

CW-complex. Suppose that rv is a cellular equivalence on b,.(n+l) such that the n-skeleton of 

b,. (n+l) / rv is b.. and the rest of the cells are of dimension n + 1. The last two propositions 

imply that b,.(n+l) / rv has a CW-structure; h~ce we have obtained a CW-complex b,.(n+l) / rv 

of dimension n + 1, having as its own n-skeleton, the complex b,. we started with. 

1.2 Homology and Homotopy Groups of a Space 

1.2.1 Singular Homology 

In this section we include a few basic notions of Homology Theory with a topological emphasis 

which can be found in books like [21] and [40]. 
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Before we define what singular homology groups of a space X are, we give the notion of the 
• 

standard n-simplex ~ n for every n 2': 0, which by definition is 

~n = {(to, .. " tn) E lRn +1 Il:::>i = 1 and ti 2': 0 for all i}, 
i 

It is usually denoted by [vo, .. " vnl where Vi = (0, .. " 1, .. ,,0) and 1 is at the i-th coordinate, 

To realize it geometrically, at least in low dimensions, we mention here that ~ ° is a point, ~ I 

is a closed interval, ~ 2 is a triangle with its interior and ~ 3 is a solid tetrahedron, 

A singular n-simplex in a space X is by definition a continuous map (7 : ~ n ~ X. Denote by 

Cn(X) the free abelian group with bases the set of all singular n-simplices in X, The elements 

of Cn(X) are called n-chains, We define the boundary maps an : Cn(X) ~ Cn-I(X) by the 

formula: 

where [vo, .. "~, .. " vnl is identified with [vo, .. " Vi-I, Vi+l, .. " vnl preserving the order of vertices 

and (7 I [vo, .. " -b'i' .. " vnl is regarded as a singular n-simplex, For a more accurate definition of 
1\ . 

[vo, .. " Vi, .. " vn] the reader can see [21]. 

One can easily show that the boundary maps satisfy the formula OnOn+1 = 0 and then we 

can define for each n 2': 0 the singular homology group 

We call Keron the group of cycles and Imon+1 the group of boundaries, 

There is a nice splitting of Hn(X) as the direct sum EBa Hn(Xa) where Xa are the path 

connected components of X, 

There is also the notion of the reduced homology groups Hn(X) of a space X, which are by 

definition the homology groups of the augmented chain complex 

where E(Li ni(7i) = Li ni, 

It is clear that Hn(X) ~ Hn(X) for n > 0 and Ho(X) ~ Ho(X) El7 z, 
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Given two chain complexes in general 

we say that C{} = {C{}n : Cn ---t Dn I n ~ O} is a chain map from C to D, if for every n ~ 1 we 

have C{}n-l o8n = c5n 0 C{}n. Such a chain map induces a group morphism C{}n : Hn(C) ---t Hn(D) 

for all n ~ 0 (see [44]). 

In particular, if X and Yare spaces and C(X), C(Y) their respective singular chain com­

plexes, then every continuous map I: X ---t Y induces a chain map I# : C(X) ---t C(Y) and 

therefore a morphism I* : Hn(X) ---t Hn(Y) for every n. 

There L" an important notion of relative homology groups. Given a space X and a subspace 

A c X, denote by Cn(X, A) the quotient group Cn(X)/Cn(A). Since the boundary map 

8: Cn(X) ---t Cn-1(X) takes Cn(A) to Cn-1(A), we have an induced quotient map 

B: Cn(X, A) ---t Cn-l(X, A) and as a result we have the chain complex 

"8 
... ---t Cn(X,A) ---t Cn-l(X,A) ---t ... 

whose homology groups are called by definition the relative homology groups and denoted by 

Hn(X, A). These groups fit into a long exact sequence 

... ~ Hn(A) ~ Hn(X) ~ Hn(X, A) ~ Hn-l (A) ~ 

~ Hn-l(X) ---t ... ---t Ho(X, A) ~ 0 
(1.1) 

where i* is induced by the inclusion i : Cn(A) '---t Cn(X), j* is induced by the surjection 

j : Cn(X) ---t Cn(X, A) and 8* : Hn(X, A) ---t Hn-l(A), called the connecting homomorphism 

(see [82]), is defined as follows. Let c be some cycle from Cn(X, A). Since j is onto, we find 

bE Cn(X) such that j(b) = c. The element 8b is in Kerj since j(8b) = 8j(b) = Bc = O. But 

Kerj = lmi and therefore we find some a E Cn-1(X) such that 8b = i(a). We define 8*(clsc) 

to be clsa where clsc and clsa are the respective homology classes of c and a. For a detailed 

proof that 8* is indeed a well-defined group morphism, the reader may see [40]' pp. 116-117. 

Remark 1.2.1 The existence of (1.1) is crucial in the definition of the cellular chain complex 

in Section 1.3. 

1.2.2 Higher Homotopy Groups 

A homotopy from a topological space X to a topological space Y is a family of continuous 

maps It : X ---t Y, t E [0,1] such that the associated map F : X x [0,1] ---t Y given by 
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F(x, t) = ft(x) is continuous. One says that two maps fo, t1 : X ---+ Yare homotopic if there 

exists a homotopy ft connecting them, and we write fo :::: fI· 

If A c X and fo, fI : X --+ Yare continuous maps such that fo I A = fI I A, then we write 

fo:::: fI reI A 

if there is a continuous map F: X x [0,1]---+ Y such that F(x,O) = fo(x), F(x, 1) = h(x) for 

all x E X, and F(a, t) = fo(a) = h(a) for all a E A and t E [0,1]. We say that fo and !I are 

homotopic relative to A. They are homotopic in the usual sense if A = 0. 

We say that two spaces X and Yare of the same homotopy type or are homotopy equiva­

lent, if there exists a map f : X --+ Y and a map 9 : Y ---+ X such that fog :::: idx and 

9 0 f :::: idy . In such a case we say that f and 9 are homotopy equivalences. The relation of 

homotopy equivalence is proved to be an equivalence relation. 

In what follows we denote by ]n the n-dimensional unit cube, that is the topological product 

of n copies of the unit interval [0,1], and by (JIn its boundary which consists of all the points 

with at least one of the coordinates 1. For a space X with basepoint Xo we define lI'n(X, xo) to be 

the set of homotopy classes of continuous maps f : (In, a]n) ---+ (X, xo), where the homotopy 

ft is required to satisfy ft(a]n) = Xo for all t. In the case when n = 0, we take]o to be a point 

and a]o to be empty, and then 11'0 (X, xo) is just the set of all path components in X. 

For n ;::: 1, a sum operation in lI'n(X, xo) is defined by 

Sl E [0,1/2] 

81 E [1/2,1]. 

It turns out that, for n ;::: 1, lI'n(X, xo) is a group with the operation [f] + [g] = [J + g], where 

[f] is the homotopy class of f, and for n ;::: 2 this group is abelian (see [40]). 

Every base point preserving map ep: (X, x~) ---+ (Y, Yo) induces a map 

ep* : lI'n(X,XO) ---+ lI'n(Y,YO) defined by ep*([f]) = [epf]. It is easy to see that ep* is well-defined 

and a homomorphism for n ;::: 1. 

We mention below a number of useful re..c;ults which we use later in Chapter 2. 

Lemma 1.2.2 Given a CW-pair (X, A) and a continuous map f : A ---+ Y with Y path­

connected, then f can be extended to a map X ---+ Y if lI'n-1 (Y) = ° for all n for which X - A 

has cells of dimension n. 
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For the proof of it one may see Lemma 4.7 of [40]. 

Recall from p. 27 of [62] that, if (X,§) and (Y,lK) are CW-complexes, then a map 

f : X ~ Y is said to be cellular provided that, for each n, J(xn) c yn. If in addition it 

satisfies the property that, for each a E §, f(a) = T E lK and f(a - aO) = T - TO, then it is 

called regular. 

The following is Lemma 2.3, p. 46, [62] and will be useful in Chapter 2. 

Lemma 1.2.3 Let X and Y be CW-complexes and f : X ~ Y a continuous map which is 

regular and cellular. Then f is a homeomorphism. 

The following is Theorem 1, p. 199 of [92]. 

Theorem 1.2.4 Given a CW-pair (X, A) and a continuous map f : X ~ Y such that f I A 

is cellular, then f is homotopic relative to A to a cellular map. 

Remark 1.2.5 Lemma 1.2.2 is called the Extension Lemma and, together with Theorem 1.2.4, 

will be crucial in the proof of Theorem 2.2.12, where we take for (X, A) the pair (Dn, sn-l), 

which is indeed a CW-pair from our Example 1.1.12. 

Theorem 1.2.6 Let X and Y have the homotopy type of CW-complexes, and let f be a map 

from X to Y. The map f is a homotopy equivalence if and only if it induces isomorphisms of 

homotopy groups in each dimension. 

For the proof of the above one may see Theorem 3.3, IV of [62] . 

• The following two theorems from [92], respectively, Theorem 1, p. 223 and Theorem 2, 

p. 225, are very useful in computing the first homotopy groups of CW-complexes. 

Theorem 1.2.7 Let K be a CW-complex, Xo be a O-cell and Kl and K2 be the 1 and 2-skeleta 

of K re.~pectively. The inclusions Kl C K2 C K induce an epimorphiBm 

i h : 1l"l(Kl,xo) ~ 1l"1(K2,xo) and an isomorphism i 2* : 1l"1(K2,xO) ~ 1l"l(K,xo). 

We will use the second isomorphism when we prove Theorem 2.2.12 in Chapter 2. 

An edge path in a CW-complex is a path in its underlying I-skeleton [92]. In the set of all closed 

edge paths with initial some base point Xo one considers the following operations: 

1. Allowable insertion of an edge path ee-1 or e-1e, or cancellation of such a path if possible. 

2. Allowable insertion of an edge path p(a) or p-l(a), or deletion of such a path, if possible, 

where p(a) is the edge path which runs once round the 2-cell a. 
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To every closed path like above we can now associate its corresponding equivalence cla.."ls 

and the set of such classes F can be equipped with a multiplication in the same way we did in 

the case of homotopy groups. With this multiplication F forms a group. 

Theorem 1.2.8 If one associates with every closed edge path at the base point Xo with its 

corresponding homotopy class, then there is defined an isomorphism e : F --+ 71'1(K,xo). 

An interesting question is, how the homology and homotopy groups of a space X are related 

to each other. An elementary tool in the study of the relation between 71'n(X,Xo) and Hn(X), 

is the so called Hurewicz homomorphism hn : 71'n(X, xo) --+ Hn(X) defined as follows. Recall 

first that Hn(sn) = Z (see for example pp. 34-35 of [21]) and let O'n E Hn(sn) be the standard 

generator: then, if [f] E 71'n(X, xo) is represented by a map f : (In ,fun) --+ (X, xo), define 

hn[fl = f*(O'n). This is independent of the chosen representative map f. 

For n = 1 there is a handy description of the Hurewicz morphism as Lemma 4.26 of [91] 

shows. We give it below as we will make use of it later. 

Lemma 1.2.9 Let 11 : ~I ~ I be the homeomorphism (1 - t)eo + tel t---t t. The Hurewicz 

morphism 

is given by 

[f]1----t cls f 11 

where f : I ~ X is a closed path in X at Xo. 
• 

We say that a space X is m-connected (m ~ 1) if 71's (X) = 0 for every 1 ::::; s ::::; m. We state 

now part of the Hurewicz Theorem which we use in Chapter 2 to define the attaching mappings 

of critical (n + 1 )-cells. 

Theorem 1.2.10 If a space X is (n - I)-connected, n ~ 2, then it(X) = 0 for i < nand 

71'n(X) ~ Hn(X). 

If X is path-connected, then the Hurewicz morphism hI : 71'1(X) ~ HI(X) is a surjection 

with kernel [7I'1(X),7I'1(X)], the commutator subgroup of 71'1 (X)j hence 

or in other words, HI (X) is the abelianization of 71'1 (X). This result is originally due to Poincare. 
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1.3 Cellular Homology 

In the case of a CW-complex X it is possible to compute the homology groups in a rather nicer 

way than one does in general. We will make use of the fact that the space in this C8.."le is split 

into cells. The following lemma relates the cell structure of X with the singular homology of 

the space. 

Lemma 1.3.1 If X is a CW-complex, then: 

(a,) Hk(Xn, X n- I ) is 0 for k f= n and is free abelian for k = n 'With bases in one-to-one 

correspondence 'With n-cells of X. 

(b) Hk(xn) = 0 for k > n. In particular, if X is finite-dimensional then Hk(X) = 0 for 

k> dimX. 

(c) The inclusion i : xn <-..t X induces an isomorphism i. : Hk(xn) ---? Hk(X) if k < n. 

See for the proof Lemma 2.3.4 of [40j. 

If X is a CW-complex, then parts of the long exact sequences corresponding to the pairs 

(xn+l,xn), (xn,xn-I) and (xn-l,xn-2), fit into a diagram 

where dn = in-IOn and dn+1 = inOn+l. It follows that the composition dndn+1 = in-IOninon+1 

equals 0 since onin = 0 in the sequence corresponding to the pair (xn, X n- I ). Thus we have 

the chain complex of abelian groups 

C dn+l C dn dl C 
. .. ---? n+ I ---? n ---? ••• ---? 0 --+ 0 

where from Lemma 1.3.1 each Ck = Hk(Xk,Xk- l ) is free abelian with bases the set of all k-cells 

and dk is given by the above composition. 

We call this chain, the cellular chain complex. The homology groups of this chain are called 

the cellular homology groups. It is proved in Theorem 2.35 of [40] that cellular homology groups 
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H~W (X) and singular homology groups Hn(X) are isomorphic. 

In applications we need to know what the cellular boundary formula is. For n = 1, the 

boundary map d1 : H1(X1,XO) ~ Ho(XO) is the same as the simplicial boundary map 

ch : ~l(X) ~ ~o(X) [40j. For n > 1, dn is given by the following. 

Cellular Boundary Formula. dn(e~) = 2:,6 da,6er1 where da,6 is the degree of the map 

S~-l --+ X n- 1 ~ S3-1 that is the composition of the attaching map of e~ with the quotient 

map collapsing xn-1 - e~-l to a point. The summation in this formula is finite since the 

attaching map of the cell e~ has compact image and therefore it meets only finitely many cells 

n-1 
e,6 

The cellular boundary formula can be derived from the following diagram 

where: 

• CI>a and CPa are the respective characteristic and attathing maps of e~. 

• q: X n- 1 ~ X n-1 / X n-2 is the quotient map. 

• q,6 : xn-1 / xn-2 --+ S3-1 collapses the complement of each cell e~-l to a point, and the 

resulting quotient sphere is identified with S~-l = D~-l / fJD~-l via the characteristic 

map CI>,6. 

A fJDn sn-1. h . . 
• ua,6 : a --+,6 IS t e COmpOSItIOn Q,6qCPa. 

To compute dn(e~), we choose some generator [D~j of Z = Hn(D~, fJD~), which will be 

referred to as the orienta,tion of e~, and then apply CI>a* which takes this element to a generator 

of the Z summand of Hn(xn, X n- 1) corresponding to e~. If we denote that generator by e~, then 

the commutativity of the left-hand side of the diagram implies that dn(e~) = jn-1CPa*fJ[D~j. To 

see that the coefficients da,6 are those stated in the formula above, we use the commutativity of 
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the other half of the diagram and the fact that qf3* maps the Z summand of Hn- I (Xn-I, X n-2) 

d· n-I t th d f A sn-I xn-I em-I correspon mg to ef3 0 e egree 0 u o f3: a ---+ ---+ uf3 . 

In other literature, such as [62], the coefficients dOf3 of the cellular boundary formula are 

called incidence numbers and the formula is written in the form 

where [O"~ : O"~-I] are the incidence numbers. In particular, the above results are also ob­

tained in [62], but using an arbitrary commutative ring R with unit 1 =f 0 instead of the ring of 

integers Z. We will quote some further results from [62] below, but just state them for the ring Z. 

In practice it is difficult to compute the cellular boundary map coefficients, but in some 

cases, as shown in the following result, we can compute them provided that the attaching map 

of the cell satisfies a nice property. More precisely, we have from [62] the following. 

Corollary 1.3.2 Ifun and;:;:n-I are clo.ged cells of the CW-complexX, if E is a closed (n-1)­

disk in 8Dn 'Whose interior is an open (n - 1)-ceUl!J, if (<pc I 8Dn)-I(1") = l!J and if <pc maps 

E homeomorphically onto 1", then [0" : 1"] is a unit in Z. 

Recall from [62] that, if X and Yare CW-complexes and 1 : X ---+ Y is a cellular map, 

then there is an induced map 1# : Cn(X) ---+ Cn(Y) which is in addition a chain map (see 

Proposition 2.3, V of [62]). • 

Definition 1.3.3 Let (X, §) and (Y, J[{) be oriented CW-complexes and let 1 : X ---+ Y be a 

cellular map. The cells of § are denoted by O"~ and those of J[{ by 1";:. If 1# : Cn(X) ---+ Cn(Y) 

is the map induced by I, we write 

1#(O"n) = I)I : O"n : 1";:11";:, 
,.. 

where [I : O"n : 1";:] E Z and [I : O"n : 1";:] = 0 for all but finitely many /1-. The integer [J : O"n : 1";:l 
is called the degree with which O"n is mapped on 1";: by I. 

Proposition 1.3.4 Let (X,S) and (Y,J[{) be oriented CW-complexes and let I: X ---+ Y be a 

cellular map. The degrees .9atisjy the following conditions. 

(1) If 1";: is not a subset of I(O"n), then [I: O"n : 1";:1 = o. 
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(3) For n ~ 1 and an E § and Tn- 1 E lK, 

l:[f : an : T;][T; : Tn-I] = l:[an : a~-l][f : a~-l : Tn-I]. 
~ A 

For the proof one may see Proposition 3.12, V of [62]. 

Example 1.3.5 The closed 2-disk D2 has a CW-structure with three cells: a O-cell aO E aD2, 

0'1 = aD2 = 8 1 and a 2 = D2\aD2. From the cellular boundary formula, the incidence numbers 

are: [a1 : aO] = 0 and [a2 : a1] = 1. One can now calculate easily the homology groups of D2 by 

writing down the cellular chain complex for the above cell structure. We have that Ho(D2) = Z, 

Hi(D2) = 0 for i = 1,2 and Hk(D2) = 0 for k > 2 from Lemma 1.3.1 (b). 

Example 1.3.6 Let X be the space obtained from the 2-sphere 8 2 by identifying two antipodal 

points. To describe the CW-structure of it, we give the 2-sphere 8 2 a CW-structure with two 

O-cells O'~, O'~j a I-cell 0'1 with boundary cells a~ and O'~j a 2-cell attached by projecting 8 1 onto 

D1 by (x,y) -+ x and then using the characteristic map of a 1
j and finally identifying o'~ with 

o'~. The incidence numbers are: [a1 : aO] = [0'2 : 0'1] = 0, therefore, similar to the previous 

example, we have that Ho(X) = H1(X) = H2(X) = Z and Hk(X) = 0 for k > 2. 

1.4 Abstract Reduction Systems 

An abstract reduction system is a pair (A, -+), where thellreduction -+ is a binary relation on 

the set A. We write a-+b instead of (a, b) E -+. In what follows we denote by .2t the transitive 

closure of -+, by ~ the reflexive transitive closure of -+ and by ~ the equivalence relation 

generated by -+. We call a E A reducible if and only if there is abE A such that a.2tb, otherwise 

we call it irreducible or in normal form. We call b a normal form of a if and only if a~b and b 

is irreducible. If it happens that b is unique, then we denote b by a~. We call a and a' joinable 

(or resolvable) if and only if there is c such that a~c:""a', in which case we write a ~ a'. 

A reduction -+ is called 

• Church-Rosser if and only if a~b ==} a ~ b. 

• Confluent if and only if a:....c~b ==} a ~ b. 

• Semi-Confluent if and only if af-c~b ==} a ~ b. 
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• Locally-Confluent if and only if a~c--+b =====* a! b. 

• Terminating ( or Noetherian) if and only if there is no infinite descending chain aO--+al--+ ... 

• Normalizing if and only if every element has a normal form. 

• Convergent if and only if it is both confluent and terminating. 

The first three concepts coincide as Theorem 2.1.5, [5] given below, shows. 

Theorem 1.4.1 The following conditions are equiva,lent: 

1. --+ has the Church-Rosser property. 

2. --+ is confluent. 

3. --+ is semi-confluent. 

Suppose that (A, --+) is a reduction system such that --+ is Noetherian and let P be some 

property on the elements of A. The following inference rule gives what we call well founded 

induction or simply Noetherian induction. 

Va EA. (Vb EA. a.i+b =====* PCb)) =====* Pea) 

Va EA. Pea) 

So to prove that the property P is a property of all the elements of A we must show the 

implication (Vb E A. a.i+b =====* P( b)) =====* P( a) for every a E A. This in particular means that 

• we show P for irreducible elements. 

It turns out that the Noetherian induction always holds on any reduction system (A, --+) 

which is Noetherian, and conversely, if the Noetherian induction holds on (A, --+), then --+ is 

Noetherian. We will use Noetherian induction in many proofs in Chapter 2. 

The following is known as the Newman's Lemma. We give its proof in full as an example of 

Noetherian induction techniques. 

Lemma 1.4.2 A Noetherian system is confluent if it is locally confluent. 

Proof. The confluence can be written in the form of a predicate as follows 

P(x): Vy, z. y:'-x'::'z =====* y ! z. 
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We must show that P(x) holds under the assumption that P(t) holds for all t such that x~t. 

If in the "fork" y:'-x.!.:.z either x = Y or x = z, then the result follows. Otherwise we have 

X~Y1.!.:.Y and X~Zl.!.:.Z as shown in the following diagram 

* x --+ Zl -----+- Z 

! l.c. *: I 

* V ind 
Yl--+U 

* ! i:d * 1 * * ~ 
Y __ V--+W 

The confluence of the pair Yl+-x~Zl follows from the local confluence, the confluence of 

* * * * I fr . d . h th" + d + Y+-Yl-+U and V+-Zl-+Z fol ow om In uctlOn ypo eSIS SInce X-+Yl an X-+Zl· • 

An important notion is that of a complete reduction system. A reduction system (A, -+) 

is called complete if and only if every element has a unique normal form. The following char­

acterization of complete systems, due to Newman [80], is important because it translates the 

completeness in terms of confluence and termination. 

Lemma 1.4.3 A reduction system is complete if and only if it is Noetherian and confluent. 

This lemma is the reason why sometimes complete systems are called convergent. Combining 

Lemma 1.4.2 and Lemma 1.4.3, we get the following characterization. 

Lemma 1.4.4 A reduction system is complete if and only if it is Noetherian and locally con­

fluent. • 
1.4.1 An Algebraic Characterization for a Complete Reduction Systems 

In this section, we give a new algebraic characterization for a Noetherian reduction systems 

(A, -+) to be complete. First, for every reduction systems (A, -+), we construct a submonoid P 

of the full transformation monoid T(A) on the set A as follows: 

p = {7' E T(A) \7'(u) = v only if v is a descendant of U or U = v}. 

It is clear that, under the usual composition of transformations, P forms a submonoid of T(A). 

Before we give the announced characterization, we recall that a Noetherian reduction systems 

(A, -+) is complete if and only if every element from A has a unique irreducible descendant. 

Theorem 1.4.5 Let (A, -+) be a Noetherian reduction systems. Then, (A, ~) is complete if 

and only if the monoid P has a zero element. 
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Proof. If P is complete, then, for every w E A, the respective congruence class [w] has a 

unique irreducible element, say irr([w]). Let () E P be the element which sends every wE A to 

its corresponding irr([w]). It is easy to show that () is the zero of P. 

Conversely, suppose that P has a zero element (). Denote by Irr(w) the set of irreducibles 

which are descendants of w, and write Irr = UwEAIrr(w). If we think of () as a 2 x 00 matrix, 

then we first show that the second row of () consists only of elements from Irr. Indeed, if 

there is u E A such that ()(u) = v and v tf. Irr, then for T which sends v to some corresponding 

descendant v', we would have T()(U) = v', which means that T(} i= (). Note also that in the second 

row we always have represented all the elements from Irr because they are not transformed 

under any element of P. Hence the second row of () consists only of all the elements of Irr. Next 

we show that every w E A has a unique irreducible descendant. Suppose by way of contradiction 

that there is some u E A which has n > 1 distinct irreducible descendants, say il, ... , in. Let 

Kl, ... , Kn be respectively ()-l(il), ... , ()-l(in ). Suppose that u E Kl. Since is with 8 i= 1 is 

a descendant of u too, then there will be some v such that v is a descendant of u and is is a 

descendant of v or is = v. Distinguish between two cases. 

1. v tf. K 1. Let T E P be such that it sends u to v. Then ()T(U) = ()(v) i= i 1 which contradicts 

the fact that () is the zero. 

2. v E K 1. Let T E P be such that it sends v to is· Then ()T(V) = ()(is) = is i= i 1 which 

again contradicts the fact that () is the zero. 

So it remains that u can not have more than one in~ducible descendant and hence the 

system is complete. _ 

Corollary 1.4.6 A Noetherian reduction system (A, ---?) is complete if and only if the monoid 

P constructed as above, has cohomological dimension O. 

Proof. This follows immediately from Theorem 1.4.5 and from [38]. _ 

1.5 Monoid Presentations and Finiteness Conditions 

1.5.1 Monoid Presentations Via Reduction Systems 

If x is a non empty alphabet, then the set of all words with letters from x together with the 

empty word .A is denoted by x* and forms the free monoid F(x) on x under the concatenation 

of words. We denote F(x) for simplicity by F. The unit element of F is the empty word .A. 
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A string rewriting system (also called a monoid presentation) is a pair P = [x, r] where r is a 

subset of x* x x* whose elements are called rewrite rules. The reflexive and transitive closure 

induced from r on x*, is called the reduction relation induced from r and denoted by ---+;. The 

congruence closure +---+; of r is a congruence relation on x*, called the Thue congruence, and 

therefore every rewrite system defines a monoid, namely the quotient S = x* / +---+;. For every 

word u E F, we denote by u the element of S represented by u. We say that a monoid S admits 

a presentation P = [x, rJ if and only if S ~ x* / +---+;. If S admits a finite presentation, then 

we say that the monoid S defined by this presentation, is finitely presented. 

Along with a rewriting system P = [x, rJ giving a monoid S, there is the reduction system 

(x*,-+) with -+:= {(uwv,uw'v) I (w,w') E r} which obviously contains r, and ~ = r#. This 

connection between presentation of monoids and reduction systems allows us to use concepts like 

termination or local confluence to study the syntactic properties, and most importantly, homo­

topical and homological properties, of monoids. We say that a rewriting system is terminating 

(locally confluent, confluent, complete) if its underlying reduction system is such. 

1.5.2 Complete Monoid Presentations 

The test for local confluence seems at a first sight to be difficult, but it can be simplified to a 

certain degree for reduction systems arising from presentations of monoids. 

Definition 1.5.1 Suppose that P = [x, rJ is a presentation of a monoid and (x*, -+) where 

is the underlying reduction system. 

If a = (PI. P2) E r then we write Pl.!3, P2. A critical pair is a pair (a,;3) E r x r as in one of 

the following situations: 

i) inclusion ambiguities: uwv.!3,w' and w~w", w i- Aj 

ii) overlap ambiguities: uw.!3,w' and wv~w", wi-A. 

Lemma 1.5.2 The redu,ction system (x*, -+) of Definition 1.5.1 is locally confluent if and only 

if all the critical pairs resolve. 

Proof. The "only if" part is trivial. For the converse, suppose that we have the "fork" 

WI ~ w ~ W2 where (aI, a2) E -+ x -+. There are three possible cases. 
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1) W = aubvc and al = (aubvc, aUlbvc) with (u, Ul) E r, and a2 = (aubvc, aubvlc) with 

(v, VI) E r. In this case there is always a resolution of the (aI, a2). We can transform aUI bvc 

to aUI bVI c by applying (v, VI) on it and similarly we transform aubvl c to aUI bVI c by applying 

(u, Ul) on it. Both the applications are in -+. 

2) w = paubp', al = (paubp', pw~p') with a~ = (aub, wD E r, and a2 = (paubp', pau'bp') 

with a~ = (u, u') E r. We see that the pair (a~, a~) is an inclusion ambiguity and, if it resolves, 

then one obtains the resolution of our fork by simply acting on the left and on the right of the 

assumed resolution by respectively p and p'. 

3) w = paubp', al = (paubp', pu'bp') with a~ = (au, u') E r, and a2 = (paubp', pau" p') with 

a~ = (ub, u") E r. In this case the pair (a~, a~) is an overlap ambiguity and, if we suppose that 

the fork u'b ~ aub ~ au" resolves, we act on that resolution with p and p' respectively on the 

left and on the right, to obtain the resolution of our fork WI ~ W ~ w2. • 

An immediate consequence of this is 

Lemma 1.5.3 If the reduction system of Definition 1.5.1 is Noetherian, then it is complete if 

and only if all the critical pairs resolve. 

1.5.3 Geometrical Constructions Associated with a Monoid Presentation 

Associated with every rewriting system P = [x, r] presenting a monoid, say S, there is the 

reduction graph r = r(V, E, i, r,-1 ) (see [96] or [85]) with 

a) V = F the set of vertices; • 
b) E = {(u, (a,J3),v,e:) I u,v E F, (a,J3) E rand e: = ±1} the set of edges; 

c) the initial and terminal maps i, r : E ---+ V defined by 

{ 

uav if e:=1 
i(u,(a,J3),v,e:) = 

uJ3v if e: = -1 

and 

{ 

uJ3v if 
r(u, (a,J3),v,e:) = 

uav if 

e:=1 

e: =-1 

d) the inverse map -1 : E---+E sending (u, (a, J3), v, e:) I--t (u, (a, J3), v, -e:). 

An edge (u,(a,J3),v,e:) is called positive if e: = 1 and negative otherwise. We will denote the 

set of positive edges by e+. 
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There is a bi-action of F on r: 

and 

~.(u, (a, (3), V,e)."1 = (~u, (a,(3), V"I,e) 

which can be extended to paths of r in the obvious way. This graph can be extended to a 

2-complex by adding 2-cells [e,f], where e and f are edges, through closed paths of the form 

(e.l-(f)) 0 (r(e).f) 0 (e.r(f))-1 0 (l-(e).f)-I. This means that we identify the I-sphere 8 1 with 

the above closed path to make the attachment of 2-disk D2. This is a CW-complex which is 

called the Sq1Lier complex of the presentation and is denoted by V(P) or simply by V if no 

confusion arises. The complex V is not path-connected, but it splits as a disjoint union of the 

form V = USES Vs where VB is a path-connected component of V whose O-skeleton consists of 

the words w E F representing s. 

The bi-action of F on r now induces a bi-action on V by simply acting on the boundaries 

of 2-cells. Sometimes we call these actions, simply translations. 

Actually the original definition of the Squier complex includes only cells [ee, l~] with e = 8 = 1. 

The other cells which are introduced in [85] give an "oriented" version of V. For example, 

fe, f-l] and [e-1, f] have opposite orientations, and fe-I, f-l] have opposite orientation with 

[e,f]. Positive edges e.l-(f) and l-(e).f both acting on l-(e)l-(f) will be called disjoint. 

There is also a geometric interpretation of critical pairs in this dimension. We say that 

an edge e is left-red1lced (respectively, right-red1Lced) if it cannot be written in the form u.f 

(respectively, f.1L) for some non-empty word uEF and edge-f. A pair of positive edges with the 

same initial vertex form a critical pair if either: 

1. One of the pair is both left- and right-reduced (a critical pair of inclusion type); or 

2. One of the pair is left-reduced but not right-reduced, the other is right-reduced but not 

left-reduced, and they are not disjoint (a critical pair of overlapping type). 

Then any pair of edges in star+(w) (WEF) (star+(w) denotes the set of edges starting at 

w) are either disjoint or are a translate of a critical pair by the two-sided action of F (see [72]). 

The above interpretation of critical pairs can be taken as the definition of them. 

Indeed, every critical pair as defined in Definition 1.5.1, gives rise to a pair of positive edges 
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with the same initial uwv, of types 1 or 2 as above. The converse is obvious. 

There is also a 3-dimensional CW-complex associated with any monoid presentation [x, r] 

as shown in [72]. We recall briefly here how it is constructed. First we attach 2-cells p together 

with their translates u.p.v with u, v E F, to kill off the first homotopy groups 7Tl (Vw ) of the 

connected components Vw of V, thus forming a 2-dimensional CW-complex (V,p). Then we 

add 3-cells [I, a] and [a, I] for every positive edge I and every a E F.p.F. The boundary of 

[I, a] is made of 2-cells tf.a, 7" I.a and [I, e~i] for every e~i E Ga. Likewise, the boundary of 

[a, I] is made of cells a.tl, a.7" I and [e~i, I] for every e~i E Ga. The action of F on the 3-cells 

is defined as follows: let u.[I,a].v = [u.l,a.v] and u.[a,I].v = [u.a,!.v] for all u,v E F. The 

complex is denoted there by V(P)P or simply VP. In the next chapter we will show another 

way of obtaining this and its n-dimensional analogue. If the system P = [x, r] is complete then 

there is a simple way of attaching 2-cells to trivialize the first homotopy group of the complex. 

Simply take the set p to be made of cells with boundary eo e. 0 1;1 0 1-1 with (e, f) a critical 

pair and (e.,!.) a resolution of that pair. (See [96] for more details.) In [72] this is done one 

dimension higher, resolving what we define there critical triples, but we will not stop here to 

explain the construction because this will be done for every n ~ 3 in the next chapter in a more 

general way. 

1.5.4 Finiteness Conditions for Monoids 

Let P = [x, r] be a finite presentation of a monoid S an~ as before denote by V the Squier 

complex associated with P. 

Definition 1.5.4 The presentation P is said to have finite derivation type (FDT) if, by adding 

to V a finite set of 2-cells X together with their translates F.X.F, we obtain a 2-complex V X 

with trivial first homotopy groups. 

The property FDT is proved in [96] to be independent of the presentation and therefore it 

is a structural property of S. Also in [96] it is shown that, if the presentation P is finite and 

complete, then S is FDT. 

One can associate with the Squier complex V its cellular chain complex, whose chain groups 

turn out to have a (ZF,ZF)-bimodule structure, and then study the first cellular homology 

HI (V) which as is shown in [85] has an induced (ZS, ZS)-bimodule structure. 
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Definition 1.5.5 A finite presentation P = [x, r] giving a monoid S, is said to have finite 

homological type (FHT) if the HI (V) is finitely generated as a (ZS, ZS)-bimodule. 

It turns out that FHT is an invariant of the presentation. Also the property FDT implies 

FHT. Indeed, since every closed path 1 in V is homotopic with a closed path cp in the underlying 

graph r, Lemma 1.2.9 shows that the Hurewicz homomorphism hI : 7r1('V) -+ HI(V) sends 

the homotopy class [1] to the homology class of cpo The fact that cp can be "filled in" using 

standard cells of V and the translates of finitely many new 2-cells p, implies that the homology 

generators of HI (V) are the cycles corresponding to the boundaries of cells from p. 

The converse is not true in general as it is shown in [87]. 

In [72] there are introduced the analogues of FDT and FHT, one dimension higher. 

Definition 1.5.6 We say that a finite rewriting system P = [x; r] is of second order finite 

derivation type FDT2 if: 

1. is of type FDT, 

2. for some finite homotopy trivializer p of V, the 3-complex (V, p) has a finite set X of 

sphere tessellations such that attaching 3-cells to the set F.X.F gives a new 

3-complex with trivial second homotopy groups. 

Definition 1.5.7 We say that a finite rewriting system P = [x; r] is of second order finite .. 
homological type FHT2 if: 

1. is of type FHT, 

2. for some finite homology trivializer p of V, there is a finite set of 2-cycles Y whose 

homology cla..<;ses generate the (ZS,ZS)-bimodule H2(V,p). 

Remark 19 of [72] implies in particular that FDT2 implies FHT2. On the other hand, it 

follows that H2(V, p) being finitely generated (equivalent with FHT2 from the above definition) 

implies the property bi-FP4. The property bi-FPn is introduced in [53] as a generalization of 

the property FHT in all dimensions. 

A monoid S is called bi-FPn for some n ~ 1 if there is a partial free finitely generated resolution 

of ZS-bimodules of the ZS-bimodule ZS: 

<In C <In -1 <12 e <11 C <10 en -+ n-I -+ ... -+ 1 -+ 0 -+ ZS -+ O. 
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If it is bi-FP n for every n, then it is called bi-FP 00' 

Finally, if the system is finite and complete, then it is FDT2 (see Theorem 7 of [72]). 

1. 6 Useful Orders 

• Multiset Orders 

A m7Lltiset M over a set A is a function M: A --t NU{O}. Intuitively, M(x) is the number 

of copies of x E A in M. For example, if A = {a, b, c}, then a multiset over A would look like, 

M = {a, a, b, b, b, b, b, c}, which means that M as a map sends a ~ 2, b ~ 4 and c ~ 1. A 

multiset M is finite if there are only finitely many x such that M (x) > O. 

Denote by M(A) the set of all finite multisets over A. Below are some basic operations on 

M(A). 

Element: x EM:{:=:} M(x) > O. 

Inclusion: M ~ N :{:=:} 'ix E A. M(x) ~ N(x). 

Union: (M U N)(x) := M(x) + N(x), 'ix E A. 

Difference: (M - N)(x) := M(x) +- N(x), where m +- n is m - n if m ~ nand 0 otherwise. 

We say that (A, » is a strict order if and only if > is an irreflexive and transitive relation 

on A. 

Definition 1.6.1 Given a strict order> on a set A, we define the corresponding multiset order 

>mul on M(A) as follows: .. 

M >mul N if and only if there exist X, Y E M(A) such that 

X ~ M and 

N = (M - X) U Y and 

'iy E Y. 3x E X. x > y 

It is not difficult to show that >mul is strict if> is so, and that >mul is Noetherian if > is 

Noetherian too. The following characterization (see Lemma 2.5.6 of [5]) will be useful in the 

next chapter. 

Lemma 1.6.2 If> is a strict order on A and M, N E M(A), then 

M >mul N {:=:} M =J N /\ 'in EN - M. 3m EM - N. m > n. 
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We mention that, in the case of a pa,rtial order ~, the multiset order ~mul can be defined 

as follows: 

M ~mul N -¢::::::} ( M = N) V (M >mul N). 

Note that any set A can be considered as a multiset by simply taking the constant map 

[A] : A --+ N U {O} 

sending every element of A to 1. If we apply Lemma 1.6.2 for sets, it is translated as follows: 

[M] >mul [N] -¢::::::} M 1= N 1\ tin EN - M. 3m EM - N. m> n, 

where now - is the usual difference of sets. 

Multiset ordering for sets does not allow comparing between a set and its subsets. We can 

extend the above order to make possible that comparison, at least in the case of finite sets. 

Let > be a strict order on a set A and let M be a finite subset of A. We let 

M = {m EM I m is maximal in M with respect to <}. 

We say for two finite subsets M and N of A that [M] -<'mul [N] if and only if 

1. either M c N, or 

2. M and N are incomparable and 1M] <mul IN]. 

It is obvious that -<'mu! is again Noetherian. 
I 

• Lexicographic Orders 

Given two strict orders (A, > A) and (B, >B), the (left) lexicographic product> AxB on A x B 

is defined by 

(x, y) > AxE (x', y') :-¢=} (x > A x') V (x = x' /\ Y > E y'). 

The lexicographic product of two strict (respectively Noetherian) orders is again a strict (re­

spectively Noetherian) order. 

One can extend the above for every n E N. Given strict orders (Ai, > A;), i = 1, ... , n ~ 2, 

the lexicographic product >nAi! written shortly by>, is defined as 
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If (Ai, > Ai) = (A, > A) for all n ~ 2, then one can define the lexicographic order >iex on A* as 

follows. One can see A* as the disjoint union Un~oAn where each An contains words of length 

n with letters from A. Then for every m > n take any word from An to be less than any word 

from Am, and if u, v E An, then compare them as in (1.3). Again, >iex is strict (respectively 

Noetherian) if> is strict (respectively Noetherian). If> is a total order, then >iex is total too . 

• Reduction Orders 

Let the monoid S be given by the rewriting system P = [x, r]. As before, we let ~ .­

{(uwv,uw'v) I (w,w') E r}. 

Definition 1.6.3 A strict order> in x* is called a red71,ction order if 

1. u > v implies WI uW2 > WI VW2 for every wI, w2 E x* , 

2. > is Noetherian. 

We have the following result: 

Proposition 1.6.4 With the above notations, ~ is Noetherian if and only if there exists a 

red1Lction order> compatible with r, tha,t is, u> v for all (u, v) E r. 

Proof. Assume that ~ is Noetherian. It follows that ~ is itself a reduction order compatible 

• with r from the definition of ~. 

Conversely, if we assume by way of contradiction that there is an infinite chain Ul ~ U2 ~ 

... ~ Un ~ ... , then this would imply that 71,1 > U2 > ... > Un > ... is infinite .• 

Definition 1.6.5 If ~ is Noetherian, then the partial order ~r on F(x) given by writing 

for each (u, v) E r and WI, W2 E x* such that composition is possible, is a reduction order, the 

reduction order ind1Lced by r. 
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1. 7 Completion of a Rewriting System 

We will describe in this section the Knuth-Bendix completion procedure for a finite rewriting 

system P = [x, r] giving a monoid and find a sufficient condition for a finite rewriting system 

in such a case to be equivalent with a finite complete one. 

The Knuth-Bendix completion procedure is as follows. 

Input: A finite Noetherian rewriting system P = [x, r] and a reduction order> on x*. 

Output: A finite complete rewriting system P = [x,~] equivalent with P, if the procedure 

terminates successfully; "Fail" if the procedure terminates unsuccessfully; runs forever without 

terminating. 

begin: If there exists (u, v) E r such that u =I- v, but incomparable, then terminate with 

output "Fail". Otherwise, i := -1 and ro = {u --+ v I (u, v) E r U r- I /\ u > v}. 

repeat: if- i + 1; 

ri+1 f- 0; 

C P f- the set of critical pairs of ri; 

while C P =I- 0 do 

begin choose (ZI, Z2) E C P; compute normal forms .fi and i2 of ZI and Z2, respectively; 

if £1 > i2 then ri+1 :f- ri+1 U {(£1, i2)}; 
/\ /\ /\ /\ 

if Z2 > ZI then ri+I:f- ri+1 U{(Z2,ZI)}; 

CP f- CP - {(ZI,Z2)} 

end; 

(Comment: all the critical pairs of ri have been resolved.) 

if ri+1 =I- 0 then ri+1 f- ri U ri+1 

until ri+1 = 0; 

end. 

• 

Example 1.7.1 Let P = [x,r] be a rewriting system with x = {x,x- I } and 

r = {xx- I = >.,x-Ix = >.,xx = >.}. 

The reduction order is induced from the lex order based on x-I t> x. There are four critical 

pairs, two arising from the rules xx- I = >. and x-Ix = >. which are both resolvable, and two 
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others as follows 

X-I f-- X-IXX = X-IXX --+ X and X f-- XXX- I = XXX- I --+ x-I. 

After the first loop of Knuth-Bendix, we obtain the set of rules rl = r U {x = x-I}. This gives 

rise to two new critical pairs 

which are resolved by the existing rule xx = >,. The output is thus, the system P = [x, rl]' 

Example 1.7.2 Let P = [x, r] be a rewriting system with x = {a, a, b, b} and 

r = {aa -+ >', aa -+ >', bb -+ >', bb -+ >', ba -+ ab, ba -+ ab, ba -+ ab, ba -+ ab}. 

(i) Let> be the lexicographical order induced by the linear order a < a < b < b. Then ro = r, 

r is confluent and hence, r* = r. 

(ii) Let> be the lexicographical order induced by the linear order b < a < a < b. The Knuth­

Bendix procedure runs as follows. 

ro = rj 

CPo = {(a, bab) , (a,bab)} 

rl = ro U {bab -+ a, bab -+ a}j 

- 2 2 --2 -2)} CPI = {(ba b,a ), (ba b,a j 

r2 = rl U {ba2b -+ a2
, ba2b -+ a2

}. 

Repeating this process, we obtain ri = ro U {baj b -+ aj, baJ~ -+ aj I j = 1, ... , i}. 

Hence, r* = ro U {bajb -+ aj , bajb -+ (j;1 I j ~ 1}. 

This example shows that the termination of Knuth-Bendix depends on the well-order chosen. 

Suppose we are given a finite Noetherian rewriting system P = [x, r]. List all the possible 

critical pairs as follows, (ei' Ii) with i = 1, ... , s. Let Ui and Vi be irreducibles such that rei ~ Ui 

and r Ii ~ Vi. Denote by U the union of all irreducibles chosen as above. Suppose that U 

satisfies the following four properties. 

1. None of U E U is a proper factor of any of the remaining, 

2. none of U E U overlaps with any of the u' E U, 

3. none of u E U is a proper factor of some w such that (w, w') E r, 
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4. none of u E U overlaps with any of the w such that (w, WI) E r. 

The following gives new conditions under which a rewriting system is equivalent with a 

complete one. 

Theorem 1.7.3 If the system P = [x, r] is finite and Noetherian and for some choice of irre­

ducibles U as above, we have 1, 2, 3 and 4, then the system is equivalent with a finite complete 

one. 

Proof. Suppose that U is included in classes G1, ... ,Gt . Add new letters *1, ... , *t to the 

alphabet, one for each Gi, and edges from each u E U to *j, if U E Gj. The new system is 

equivalent with the previous one since all the above transformations are of Tietze type (see 

Definition 3.6.4) and is obviously Noetherian. It remains to check whether this procedure 

produces critical pairs. If such a pair exists, then it should have at lea..<;t one of its edges a new 

one. They can not be both new edges, from Conditions 1 and 2. Also we can not have a critical 

pair with one new edge and the other an old one since this would contradict Conditions 3 and 

4. So it follows that the new system is complete. _ 

Systems satisfying Conditions 1-4 exist a..<; the following shows. 

Example 1. 7.4 Take x = {a, b, c, d, e, J} and r = {(abc, aeb), (bcd, bde), (aebd, e), (abde, fn. 

There is only one critical pair of overlapping type aebd f-- abed ---+ abde which does not 

resolve. The only irreducible descendent of acbd is e and th,only irreducible descendent of abde 

is f. In this ca..<;e the set U of the theorem is {e, J} and it obviously satisfies Conditions 1-4. 

1.8 Grabner Bases for Algebras 

In this section we will introduce some basic notions about Grabner ba..<;es which can be found 

in several sources such a..<; [8], [55], [68], [77] or [78]. 

Let x be a finite alphabet and x* the free monoid with bases x. For a commutative ring K 

with unit 1, denote by P = K . x* the free left K-module generated by x*. The elements of P 

have the form of noncommutative polynomials 

n 

f = LkiWi 
i=l 

with ki E K\{O} and Wi E x*. 
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Suppose we have defined some lex order >- on x*. We can write f above in such a way that 
• 

the terms are in descending order. In particular kIWI is the biggest term, which we call the 

leading term of f and denote by It(J). Let rt(J) = f- It(J). The order >- extends to an order 

on P in the following way. First set f >- 0 if f =1= o. Now, if f and 9 are non zero polynomials 

with It(J) = k . u and It(g) = s . v, then define f >- 9 if and only if either u >- v or u = v and 

rt(J) >- rt(g). This order is of course partial and Noetherian. A monic rewriting 'r1Lle is a pair 

(u, p) E x* x P such that u >- p and will be written as u -t p. A monic rewriting system r is a 

set of rewriting rules in Pj in fact the pair (P, r) = (P, -t) is a reduction system. 

The rewriting process of polynomials works as follows. If the polynomial f contains the 

term k . Xl ux2 and we want to apply the rule u -t p on it, then replace Xl ux2 with XIPX2 and 

in this way f transforms into 9 = f - k . Xl (u - P )X2. Denote by -t; the reflexive transitive 

closure of -t and by ~; the equivalence generated by -to Let I(r) be the ideal generated by 

the set {u - p I u -t pEr}. 

Proposition 1.8.1 The relation f-----+; is equal to the congruence on P modulo I(r), that is, 

f~; 9 ~ f == g(mod I(r)) 

for f, 9 E P. In particnlar, 

f~; 0 ~ f == O(mod I(r)) 

for f E P, tha,t is, 

I(r) = {J E P I f ~; a}. 

The above is the reason why we say that the quotient algebra A = PII(r) is defined by 

the rewriting system r and use the notation A = P I ~;. We say that a set G of P is monic, 

if every 9 EGis monic, that is, the leading coefficient of 9 is 1. Let 1 be an ideal of P and 

Gel a set of generators. We say that G is a ~robner base of 1 if it is monic and the system 

ra = {It(g) -t - rt(g) I 9 E G} a..<;sociated with G is a complete reduction system in P. We 

say that an algebra A over K admits a Grabner base if it is isomorphic to the quotient PI 1 of 

some finitely generated free algebra P over K modulo an ideal 1 with Grabner base. 

Example 1.8.2 Let x be a finite alphabet and x(2) the subset of x* consisting of words of 

length 2. Let U be a subset of x(2) and ¢ : U ----+ K . x E9 K be a map. Let 

¢' : K . x(2) E9 K . x ----+ K . x(2) E9 K . x E9 K 

30 



be a K-linear map defined by 

for u E >. U x U x(2). Suppose that 

if u E U 

if u tJ U 

¢'(¢(ab)e) = ¢'(a¢(be)) (1.4) 

holds for every a, b, e E x such that ab, be E U. The ideal I of P = K . x* generated by 

G = {u - ¢( u) I u E U} has G as a Grabner base since (1.4) ensures that the rewriting system 

ra = {u -+ ¢(u) I u E U} is confluent. 

Example 1.8.3 Let again x be a finite alphabet but differently from the general case, take the 

rewriting system r to be made of pairs (r +, r _) E x* x x*. Let S be the monoid defined by the 

presentation [x, r] and K . x*, K . S be the respective free left K-modules generated by x* and 

S. The canonical epimorphism x* --+ S extends to a ring epimorphism () : K . x* --+ K . S 

whose kernel J is the abelian group generated by elements k . .;.(r + - r -).1], where ~, 1] E x*, 

k E K and (r +, r _) E r. Therefore, 8..<; an ideal of P = K . x*, J is generated by the set 

G = {r+ -r_1 (r+,r_) E r} or, in other words, J = I(r). This in particular means that the 

algebra A = P / I (r) defined by the rewriting system r, in our case is K . x* / J = K . S. If we 

take r to be complete, then, since ra = {It(g) -+ - rt(g) I 9 E G} is in fact r, we have that G 

is a Grabner base for J. 

1.9 Homological Finiteness Conditions for Monoids 

As before, K will denote a commutative ring with unity 1 and S a monoid. We let K S be the 

monoid ring over K. One defines the standard augmentation 

• 
€ : KS --+ K; 8 I--t 1 (8 E S), 

which allows us to regard K as a left K S-module sK where the K S-action is given via €: 

a.k = €(a)k (a E KS, k E K). 

We say that S is of type lejt-FPn (over K) if there is a partial resolution 

(1.5) 

where Pk is a free finitely generated left K S-module for all k = 0, ... , n. 
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Symmetrically, one defines the property right-FPn by fi~st regarding K as a right KS­

module Ks. These two properties are different from each other as shown in [17] where there 

is given an example of a monoid which is right-FPn over IE for every n but not even left-FP1 

over IE. In contra..'lt with monoids in general, for groups the properties left-FPn and right-FPn 

coincide. Interestingly, for any n E N there are groups which are left-FP n over Z but fail to be 

left-FPn+l over IE as shown in [10]. 

Regarding K as a (K S, K S)-bimodule sKs via the 2-sided action 

a.k.a' = E(a).k.E(a') (a, a' E K S, k E K), 

we can define the finiteness condition weak bi-FP n [84] (see also [2]). It is shown in [2] that the 

implication 

left-FPn + right-FPn ==> weak bi-FPn 

holds in the case when K is a PID. The converse is also true in general as shown in [84]. 

One can regard K S as a (K S, K S)-bimodule where the action is the multiplication itself. 

In [53] it is defined the finiteness condition bi-FP n for a monoid S if there exists a partial 

bi-resolution 

Fn-- ... --F1--Fo--KS--O (1.6) 

where Fo,H, ... ,Fn are free finitely generated (KS,KS)-bimodules. 

In [53] the authors show that 

bi-FPn ==> left-FPn + right-FP n 

by tensoring on the right (respectively left) hand side (1.6) with sK (respectively Ks). We 

will use a similar technique in Chapter 3 of this thesis to show that bi-FP n for small categories 

implies left-FPn and right-FPn. 

In the case of groups properties bi-FPn and F~ coincide as shown in [84]. This is not the 

case for monoids in general. Kobayashi and Otto have given in [54] an example of a monoid 

which is left-FPn and right-FPn for every n but is not bi-FP3 . 

Note that in both resolution (1.5) and (1.6) we may take the respective modules to be 

projective rather than free and the respective (seemingly new) property is equivalent with the 

original one. See for this Proposition 4.3 of [12] or its bi-module version of [53]. 

Lastly, one can define the property bi-FP 00 for a monoid S by requiring the existence of a 

bi-resolution 

... --Fn-- ... --FI--Fo--KS--O (1.7) 
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where Fo, FI, .'" Fn , ... are finitely generated projective (K S, K S)-bimodules. It turns out that 
.' 

bi-FPoo <==} bi-FPn for every n. 

Also its analogue holds true for one sided versions of bi-FP 00' 

• 
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Chapter 2 

Topological and Homological 

Aspects of Rewriting Systems 

2.1 Introduction 

Given a monoid presentation P = [x, r], one can associate with the Squier complex V(P) = V 

the respective cellular chain complex, whose chain groups turn out to have a (ZF, ZF)-bimodule 

structure where F is the free monoid on x, and then study the first cellular homology Hl(1J) 

which as is shown in [85] has a (ZS, ZS)-bimodule structure induced by its (ZF, ZF)-bimodule 

structure, where S is the monoid given by P. There is an important short exact sequence 

0-+ HI (V) ~ ZS.r.ZS ~ M(P) -+ 0, (2.1) 

where M(P) is the relation bimodule of P introduced by Ivanov [45]. The sequence (2.1) . 

was obtained by Pride [85], apart from the injectivity of ", which was proved by Guba and 

Sapir [39] using ideas of diagram groups, and in an alternative way in [52]. In [71] and [72] 

there is constructed a 3-dimensional CW-complex.(1J, pd containing the Squier complex V. 

There is a bi-action of F on the cells of this complex whose restriction on the O-skeleton F 

coincides with the concatenation of words in F and the empty word A acts trivially on (V, PI)' 

This action makes the homology groups HI(V) and H2(V,PI) have both a (ZF,ZF) and an 

induced (ZS, ZS)-bimodule structure. Here PI is a set of 2-cells whose homology classes of 

the corresponding 1-cycles are (ZF, ZF)-bimodule generators of HI (1)) and the 2-skeleton of 

(1J,PI) is ~2 = 1J U F.PI.F. Then there are added 3-cells [f,O'] and [O',f] for every positive 

edge f and every 0' E F,PI.F. The boundary of [f,O'] is made of 2-cells tf.O', rf.O' and [f,er;] 

for every e~; E 00'. Likewise, the boundary of [0', f] is made of cells O'.tf, O'.r f and [er;, f] for 
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every e~i E aa. The action of F on the 3-cells is defined by letting u.[j,a].v = [u.j,a.v] and 
, 

u.[a, f].v = [u.a,!.v] for all u, v E F. In this way we do not distinguish between 3-cells [a.u, f] 

and [a, u.j] for any u E F, or between 3-cells [f.u, a] and If, u.a] for any u E F. In other 

words, for every a E F·Pl.F, f E e+ and u E F, we identify each pair of cells from ~2 X ~2 

of the form (a.u, f) with (a, u.j), and similarly we identify (f.u, a) with (f, u.a). As we will 

see later, these identifications arise from a cellular equivalence "'2 on the 3-skeleton K2 of the 

complex ~2 x ~2 and that K2/ "'2= (V, Pl)' Also, it turns out that cells of dimension 3 of 

(V, Pl) are in a 1-1 correspondence with triples of positive edges with the same initial which are 

translates of non-critical triples. If the system P is finite and complete, there is a canonical way 

of constructing cells of Pl by firstly taking resolutions of all the critical pairs (finitely many) 

and then attaching the 2-cells through the corre..<;ponding closed paths in a 1-1 fashion. In this 

case the set F.Pl.F triviaIizes 7Tl (V) and therefore the homology classes of cycles corresponding 

to elements of Pl will be (ZF,ZF)-bimodule generators of Hl(V). So, in the complete case, 

cells of (V, Pl) are in a 1-1 correspondence with the translates of critical k-tuples (k = 1,2), or 

in a 1-1 correspondence with k-tuples (k = 2,3) of edges with the same initial which are not 

critical. Again, if P is finite and complete, we introduced in [72] a canonical way of attaching 

3-cells P2 to (V, PI) in a 1-1 correspondence with critical triples, together with their translates 

F.P2.F, and showed that the new complex ~3 = (V, PI) U F.P2.F has trivial second homology 

group. In other words, 2-cycles arising from P2 are (ZF, ZF)-himodule generators of H 2 (D, PI)' 

Since P2 is finite, then Ih(V, PI) is a finitely generated (ZS, ZS)-bimodule. 

Most importantly, it is shown that, for every system P and every set of 2-cells PI whose 

homology cla..':lses of the corresponding I-cycles are (ZF,ZF)-himodule generators of Hl(V),. 

there is a short exact sequence 

0-+ H2(D, PI) ~ ZS.PI.ZS ~ Hl(D) -+ 0 

• which, if spliced with (2.1) and then with the exact sequence 

o -+ M (P) --+ ZS.x.ZS --+ ZS (9 ZS --+ ZS -+ 0 

found in [53], gives the exact sequence 

(2.2) 

0-+ H2(V, PI) --+ ZS·Pl.ZS --+ ZS.r.ZS --+ ZS.x.ZS --+ ZS (9 ZS --+ ZS -+ O. (2.3) 

In the case when P is finite and complete, then H2(V, Pl) is a finitely generated (ZS, ZS)­

bimodule and then using (2.3) it is easy to deduce that S satisfies the property bi-FP 4. 
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In the present, focusing on finite complete presentations P, we keep on doing the above 
• 

process in all dimensions. Our main result will be the following theorem whose proof covers the 

whole of Section 2.2. 

Theorem 2.1.1 Associated with a finite and complete presentation P = P[x, r] giving a monoid 

S, and for every n 2:: 2, there is a chain of CW-complexe.~ 

v C ~2 C (V, PI) C ~3 C ... C ~n-l C (V, PI, ... , Pn-2) C ~n, 

such that ~n has dimension n and, for every 2 ~ m ~ n, the m-skeleton of ~n is ~m' The 

complex satisfies properties An -F n together with properties {i}-{v}. 

We give below properties An-F n and leave for Section 2.2.1 properties (i)-(v). 

An There is a bi-action of F on the cells of ~n with >. acting trivially and such that the 

restriction on the O-cells coincides with the multiplication of F. We call this action 

translation. 

Bn For every 2 ~ m ~ n, the open m-cells of ~n are in a 1-1 correspondence with the m-tuples 

of positive edges of V with the same initial. For the critical m-tuples, the corresponding 

open m-cells are denoted by Pm-l (note that the index is one less than the dimension), 

and the set of their open translates by F.Pm-I.F. The following holds true. 

~m = { (V, PI, ... , Pm-2) U F·Pm-I.F 

VUF,PI.F 

where U stands for the disjoint union. 

if m = 2, 

en For every 2 ~ m ~ n-l, there exists a cellular equivalence "'m on Km = (~m X ~m)(m+l) 

such that Km/ "'m= (V, PI, ... , Pm-I). • 
Dn For every 2 ~ m ~ n -1, Hm(V, PI, ... , Pm-I) has a (ZF, ZF)-bimodule structure and an 

induced (ZS, ZS)-bimodule structure. 

En For every 2 ~ m ~ n -1, Hm(~m+l) = O. 

F n For every 2 ~ m ~ n - 1, the following is an exact sequence of (ZS, ZS)-bimodules 

where (V, PI, ... , Pm-2) = V if m = 2. 
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The first immediate advantage of (2.4) is that we can now see the (ZS,ZS)-bimodule 
• 

Hm-l (V, Pl, ... , Pm-2) as the cokernel of the map <.1>. The second advantage is that we give 

a shorter proof of Corollary 7.2 of [55] for the integral monoid ring ZS. This is given in the 

following theorem. 

Theorem 2.1.2 If a monoid S is given by some finite complete presentation P = P[x, r], then 

it is of type bi-FPn+l. In particular, the free finite partial resolution of ZS can be chosen to be 

S-graded. 

Proof. Using the property F n, one obtains the exactness of the following 

and then, if we splice it with (2.1) and then with (2.2), we obtain the exact sequence 

<I> o -t Hn-l(V, Pl, ... , Pn-2) ----+ ZS·Pn_2.ZS ----+ ..• ----+ ZS.Pl'ZS----+ 

----+ ZS.r.ZS ----+ ZS.x.ZS ----+ ZS ® ZS ----+ ZS -t O. 

But now, Hn-1(V, Pb ... , Pn-2) is a finitely generated bimodule, as Proposition 2.2.23 shows, 

and then there is a finitely generated free (ZS,ZS)-bimodule Pn-1 with ba..<;es Pn-1 and a 

surjective bimodule morphism 0 : Pn- l ----+ Hn- 1(V,Pb ... ,Pn-2). As a consequence, the 

following 
<1>06 

Pn-l ----+ ZS.Pn-2.ZS ----+ ... ----+ ZS.Pl.ZS ----+ ZS.r.ZS ----+ 

ZS.x.ZS ----+ ZS ® ZS ----+ ZS ----+ 0 

is exact, which shows that Sis bi-FPn+1. 

That the above resolution is S-graded, will be made clear in Definition 2.2.33. • 

Throughout Section 2.2, P = [x, r] will be a finite complete presentation. 

We will assume in addition that P is 1J,niquel'f!terminating, that is, it is finite and 

complete and if (r, Sl), (r, S2) E r, then Sl = S2' 

By a result of Squier [95], any finite complete presentation P 

is equivalent to a uniquely terminating one. 

(2.5) 

In Section 2.3 we ask the question whether we can always constrnct the sequence of CW­

complexes of Theorem 2.1.1 and prove that for every 2 ::; m ::; n - 1, the sequence (2.4) 

remains exact. In such a case we would be able to define properties FDTn and FHTn for n ~ 3 

generalizing the results of [72]. 
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In Section 2.4 we give a topological proof of the known fact that FHT and FDT for groups 

• coincide. This proof is based on our techniques for constructing complexes by taking products 

and quotients. 

2.2 Proof of Theorem 2.1.1 

Recall from the above that we have assumed that we have constructed the chain of CW-

complexes 

with properties An, Bn, en, Dn, En, F n. We will construct inductively an (n+ I)-dimensional 

CW-complex ~n+l' having ~n as its n-skeleton, whose open (n + I)-cells are of two kinds: 

those which are in a 1-1 correspondence with the non-critical (n + I)-tuples of positive edges 

with the same initial, and open (n + I)-cells Pn in a 1-1 correspondence with critical (n + 1)­

tuples of positive edges with the same initial, together with their open translates F.Pn.F. The 

construction will be carried out in two stages. In the first stage we construct an {n+ I)-complex 

(V, PI, ... , Pn-l) whose open (n+ I)-cells are in a 1-1 correspondence with the non-critical (n+ 1)­

tuples of positive edges with the same initial. In this stage we do not specify the attaching maps 

in order to attach the (n + I)-cells, but we obtain the complex as the quotient by a cellular 

equivalence "'n on the complex Kn = (~n X ~n)(n+l) whose attaching maps are easily calculated 

in terms of the respective maps of ~n. In the second stage we attach open (n + I)-cells Pn in a 

1-1 correspondence with critical (n + I)-tuples of positive edges with the same initial, together 

with their open translates F.Pn.F. Note that the constructing procedure we introduce in the 

first stage works for all the presentations whether they are complete or not, but there is not a 

canonical way of constructing (n+ I)-cells from F.Pn.F unless we assume that the presentation 

is finite and complete. 

• Recall from [721 (see also Section 1.5.3 of this thesis) that the I-skeleton r of (V, PI) is 

oriented and the set of positive edges is denoted by e+. We have defined in [72] the following 

Noetherian strict (irreflexive and transitive) orders on the 0- and I-skeleton, as follows. 

(0) We say that u ~o v, (u, v E F) if and only if v --+-:- u. 

(1) For e = (u, r, +1, v) and f = (u', r', +1, v') from e+, e ~l f if te ~o tf or if they have the 

same initial and one of the following occurs: 

(1.1) v' is a proper suffix of v or, 
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• 
The assumption that the system is uniquely terminating guarantees that it never happens 

that, for edges e and f as above, we have 

I I d -'- I 
V = v, r +1 = r +1 an r -1 I r -1· 

This in particular means that we can always compare between two edges with the same initial. 

Note also that the above strict ordering is Noetherian. 

Note that order of O-cells and 1-cells will be the bases to define a strict Noetherian order in 

each skeleton of the complex Don. 

We call two positive edges e = (u,r,+l,v) and f = (ul,rl,+l,v' ) with the same initial 

ur +1 v = ulr~l v' disjoint, if and only if the occurrences of the words r +1 and r~l in ur +1 v = 

ulr~lv', neither overlap with each other, nor is one of them a subword of the other. 

2.2.1 Properties of the Complex ~n 

To construct Don+1 = (V, PI, ... , Pn-r) U F.Pn.F, we suppose by induction that the complex Don 

satisfies the following five properties which are needed to carry out the construction of Don+1. 

Of course all these properties hold true for Do3 = (V, PI) U F.P2.F of [72], and then, after we 

construct Don+1, we have to show that they hold true for Don+1 as well. 

(i) For every pair of cells (aI, (2) such that dim a1 + dim a2 = m ::; n, Don contains m-cells 

a1 18) a2 such that the (m - I)-boundary <I> 0"11810"2 (S~0~2) is equal to the union of the closed cells 

of the form ali 18) a2 and those a1 18) a2j, for all ali E oa1 and all a2j E oa2. 

For every aI, a2, a3 E Don such that the sum of their dimensions is at most n, we have 

a1 18) (a2 18) (13) = (a1 18) (2) 18) a3· 

If any of the cells a1 or a2 are from F, then a1 18) a2 • = a1.a2, where . is the action of F on Don. 

(ii) For every pair of words u, v E F and every cell a E Don there is a homeomorphism 

h(u,O",v) : (j --+ u.a.v 

such that for every a' E oa, 

h(u,O",v) 10"1 = h(U,O"I,V). 
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Notation 2.2.1 For each 1 < m < n, we identify D m with the m-cube I X ... X I, and denote 
- - • '-v--' 

m 
/\ 

it by [h, ... , 1m]. Denote by [h, ... , h ... , 1m] the boundary cell of D m obtained by replacing the 
/\ 

i-th factor Ii with {I}. In other words, the i-th coordinate of the elements of [h, ... , h ... ,Im] 

will be 1. We let Ao = (0,1, ... , 1), Al = (1,0,1, ... ,1), ... , Am- I = (1, ... , 1,0), Am = (1, ... , 1). 

Also we make the notation 

di = AmAi-l = {(I, ... ,1, x, 1, ... 1) I x E 1d for every i = 1, ... , m. 

The following reveals some similarities of the cells of t:..n with simplicies in a simplicial com-

plex. 

(iii) Every cell (1 of dimension m with 2 ::; m ::; n the following hold true: 

1. The characteristic map <I> of (1 sends Am to a O-cell Wu which is the biggest vertex of the 

O-skeleton of (1, and there are positive edges el, ... , em from the I-skeleton of (1 coming out 

of wu , (this set of edges will he later referred to as staT(1) such that 

<I>(dl ) = ell ... , <I>(dm) = em. 

2. These edges determine (1 in a unique way. We say that they generate (1 and write 

(1 = [Wi (el, e2, ... , em)]. 

3. For every m-l of these edges eip ... , eim_l there is a boundary cell of (1 generated by them 

meeting Wu, and conversely every boundary cell meeting Wu is generated by such m - 1 

edges of el, .. ·,em • We denote by [Wi(el'''''~i, ... ,em)l, with i = 1, ... ,m, the boundary 

cell of (1 generated by the edges {el,e2, ... ,em}\{ei}. 

/\ 

4. The restriction of <I> on [h, ... , h ... ,Im] agrees. with the characteristic map of the cell 

generated by {el, ... , em} \ {ei}. The restriction of <I> on the union of the boundary cells 

of [h, ... , 1m] that do not meet Am is a union ( of closed (m - I)-cells whose maximal 

boundary cells are less than Wu. 

Definition 2.2.2 An m-tuple of positive edges ei, i = 1, ... m coming out of the same vertex w 

will be called critical if the following hold: 

(1) there are no kedges (0 < k < m) disjoint from the remaining m - ki 
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(2) w cannot be written in the form w = uw'v (u,v 1= >.) such that there are positive edges 
• e~, i = 1, ... m coming out of w' and for each i, ei = u @ e~ @ v. 

(iv) If a is critical then a = 0'1 @ a2 implies that either al = >. or 0'2 = >.. 

Critical cells turns out to be the building blocks of the complex. 

(v) (Unique Factorization Property) Every cell a from ~n of dimension at least 1, is 

expressed uniquely as 

with Ui E F and ai critical cells of dimensions at least 1. 

If Ul = >. in the above decomposition, then we call a left-reduced, and if Uk+l = >., then we 

call it right-reduced. 

2.2.2 The Construction of the Complex (V, PI, ... , Pn-l) 

Now we start constructing the (n + 1)-CW complex (D, PI, ... , Pn-l) we mentioned before. 

Property (iii) implies that ~n is countable, therefore we have that the topological product 

~n x ~n is again a CW-complex with count ably many cells (see Theorem 7.3.16 of [70]). The 

cells of ~n x ~n are pairs (a,a') with a and a' cells from ~n. 

Let Kn be the (n + I}-skeleton of ~n x ~n' Construct a mapping i : E(KAi
)) --+ E(~n)' 

,where 0 ::; i ::; nand E stands for the cell decomposition of the complex, such that 

Observe that dim c = dimj(c), for every c E E(K~i)), 0 ::; i ::; n. 

We say that two open cells Cl and C2 from Kn are parallel, denoted by Cl II C2, if either they 

are both of the same dimension which is at most nand i(Cl) = i(C2), or else if q, C2 are both 

of dimension n + 1 and there are aI, 0'2, 0'3 such that Cl = (0'1 @ 0'2,0'3) and C2 = (aI, a2 @ (3)' 

So in general we have that two open cells Cl and C2 from Kn of dimension 0 ::; m ::; n + 1 are 

parallel if and only if 
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This is due to the Unique Factorization Property (v) and from the definition of j. We identify 

as before the closed ball Dm for m > 1 with ]m =] x ... x ], where] is the unit segment, and 
'---v---" 

m 

for m = 0 we take DO = 1° to be a singleton set; then we can write 

and therefore there is an obvious homeomorphism h12 : D~ --+ D~. 

Define the following binary relation in Kn. 

Xl "'n X2 if and only if Xl E CI, X2 E C2, with CI and C2 open cells such that 

2) hI2(<P~/(XI)) = <p;;;1(X2), where <Pc; (i = 1,2) is the corresponding characteristic map and 

hl2 is the above homeomorphism. 

The relation "'n is an equivalence relation &'l may e&'lily be checked. 

Definition 2.2.3 Denote by (V,Pl, ... ,Pn-l) the quotient space Kn/ "'n and let 

be the quotient map. For every cell C E E(Kn), define p(c) = {p(x) I X E c}. 

Lemma 2.2.4 For every two open cells CI and C2 of Knl p(CI) = P(C2) if and only if CI II C2. 

Proof. The direct implication follows from the definition of "'n. 

Conversely, let C1 II C2 and D~l' D~2 be the balls corresponding to CI and C2 respectively. If we 

take Xl E CI, then there is a E D~l - S~-;l such that if>Cl(a) = Xl. Then X2 = if>c2(hI2(a)) E C2. 

From the definition of "'n we have that Xl "'n X2, or in other words p(XI) = P(X2) E P(C2). This 

shows that p(CI) ~ p(C2). By symmetry one shows tht.t p(C2) ~ p(CI), obtaining the equality . 

• 
This lemma shows that parallel open cells are identified under the map p. 

2.2.3 (V, PI, ... , Pn-d is a CW-complex 

We proceed by showing that (V, PI, ... , Pn-l) is a CW-complex. First we show that (V, PI, ... , Pn-l) 

is a cell complex by using Definition 1.1.13 and Theorem 1.1.15, and then using Propositions 

1.1.18 and 1.1.19, we derive that (V, PI, ... , Pn-l) is a CW-complex. 
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We are now going to show that all the Conditions (1), (2) and (3) of Definition 1.1.13 are 

satisfied for the equivalence relation "'n. • 

(1) Indeed, for every open cell c E E(Kn), Lemma 2.2.4 implies that p-lp(c) = Uc' where 

c' II c. 

(2) From above, every two open cells C1, C2 E p-1p(c) have the same dimension since C1 II C2. 

Also, from the definition of "'n, the restriction p Ict is a bijection onto p(C2)' It remains to show 

that p(Cl) = p(C2), where again by c we denote the closure of the cell c. For this we make some 

preparatory work. First we make a remark. 

Remark 2.2.5 If (0'1,0'2) E E( K n ), then the characteristic function <P(0"1,0"2) is just <P 0"1 X <P 0"2' If 

dim 0' = k and dim 0" = I, then (<P0"1 x <P0"2)(St~~~2\) = (<P0"1 X <P0"2)(S~;1 X D~2 U D~l X S~~l) = 

<P 0"1 (S~; 1) X 0'2 U 0'1 X <P 0"2 (S~~ 1) and, since the restriction of the characteristic map on the 

boundary of the ball acts as the attaching map, we derive from Property (i) that the boundary 

of the cell (0'1,0'2) consists of all the cells (O'li' 0'2), with O'li from the (k - 1)-boundary of 0'1 and 

those of the form (0'1, 0'2j), with 0'2j from the (l-I)-boundary of 0'2. In the case, when either 0'1 

or 0'2 is a zero cell, we have, respectively, that the boundary of (0'1,0'2) is either 0'1 X <P0"2(S~~1) 

or <P0"1 (S~;l) X 0'2· 

We prove the following. 

Lemma 2.2.6 For every two open cells 0' and 6 of b..n , we have 0' X 6 = a X 8. 

Proof. We have a X 8 = (0' U 0'0) x (6 U 6°) = 0' X 6 U 0' X 6° U 0'0 X 6 U 0'0 X 6°. On 

the other hand since (0' x 6)° = (<PO" X <Po)(S~~)O"+dimO-l) = (j x 6° U 0'0 X 8, then 0' x 6 = 

0' X 6 U (j x 6° U 0'0 X "6 = 0' X 6 U 0' X 6° U 0'0 X 6 U 0'0 X 6° and then we obtain 0' x 6 = (j x 8. • 
• 

Remark 2.2.7 Remark 2.2.5 and the proof of Lemma 2.2.6 imply that the boundary CO of any 

k-dimensional cell c E E(Kn) is a finite union of closed (k - I)-cells as below: 

Lemma 2.2.8 If the open cells C and d from K~i) are such that c II d, then 
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Proof. The following cases are possible. 

(a) Both c and d are of dimen.sion n + 1. Then from the defiaition of II we must have that 

c = (0"1 ® 0"2,0"3) and d = (0"1. 0"2 ® 0"3)' From Remark 2.2.5 and from Property (i), we see that 

the cells J.L of the boundary of c are of one of the following forms, (O"i ® 0"2, 0"3), (0"1 ® O"~, 0"3) or 

(0"1 ®0"2'0"~) with O"i, O"~ and O"~ from the respective boundaries of 0"1,0"2,0"3. Similarly for d 

they are (O"i, 0"2 ® 0"3), (0"1, O"~ ® 0"3) or (0"1,0"2 ® O"~). The equality of the sets now follows from 

the definition of j. 

(b) Both c and d have dimension at most n where c = (0",0"') has both coordinates of dimension 

at least 1 and either d = (U,O"l ® 0"2) with U.(O"l ® 0"2) = 0" ® 0"' and U E F, or d = (0"1 ® 0"2, u) 

with (0"1 ® 0"2)'U = 0" ® 0"' and U E F. In the first case we may assume that U.O"l = 0". This 

can be always achieved by taking in the unique decomposition (Property (v)) of u. (0"1 ® 0"2) 

that "prefix" which equals 0". On the other hand p(I7'I7,)(S~;~+diml7'-l) consists of the union 

of cells O"i X 0"', (f x 0".1 where O"i and 0".1 are from the respective boundaries of 0" and 0"', and 

n,. (Sdim l7+dim 17'-1) . t f h . f II - ( ) ( ) 
'¥(U,171@172) (U,I71@ 172) conSlS sot e UnIon a ce s U X O"li 00"2 = U X O"li 00"2 or 

U X (0"1 0 0"2j) = U X (0"1 0 0"2j), with O"li from the boundary of 0"1, and 0"2j from that of 0"2. 

Using Lemma 2.2.6, the definition of j and Property (i), one can easily see that {j(J.L) I Ji E 

P (17,17') (st;;~+dim 17' -1)} = {j (8) I (5 E P (U,171@172) (st~;~:~;) 17' -1 )}. The second case is proved 

similarly. 

(c) Both c and d are of dimension at most n and each has one of the coordinates from F. Again 

this is proved similarly to the previous case. 

(d) Both c = (0"1,0"2) and d = (81,82) are of dimension at most n and all 0"1,0"2,81,82 are of 

dimension at least 1. In this case we proceed similarly as in the previous cases. • 

Now we are ready to show that for C1, C2 E p-1p(c) we have p(q) = p(C2)' Since C1 II C2, 

from Lemma 2.2.8 we have that there is a 1-1 correspondence between the boundary cells of q 

and C2 such that the corresponding boundary cells f.L ~d 'TI are parallel, and then, applying an 

inductive argument on dimension for f.L and 'TI, we have that p(Ji) = p(Tj). Finally, Remark 2.2.7 

implies that 

(3) Now let cells C1 and C2 be parallel cells, say C1 = (a 0 {3, "() and C2 = (a, {3 0 "(). We 
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have on the one hand that 

and on the other hand 

piP(a,.B@,),)hI2«(Idima x ]dim.B) X ]dim')') = piP(a,.B@,),)(Idima x (Idim.B X ]dim')')) = 

p(iPa(Idima) x iP.B@,),(Idim.B X ]dim')')) = p(Ci, {3 (2)"f). 

But now p(a0{3,"Y) = p(a0{3,'Y) = p(a,{30'Y) = p(Ci,{30'Y) from Lemma 2.2.6 and the 

second part of (2), and as a result piP(a@.B,')') = piP(a,.B@,),)hI2. 

Proposition 2.2.9 (V, PI, ... , Pn-l) is an (n + I)-dimensional CW-complex whose n-skeleton 

is the complex An· 

Proof. That ""n is a cellular equivalence is immediate from (1), (2), (3) above, and therefore 

by Theorem 1.1.15, (V,PI, ... ,Pn-l) is a cell complex with cells p«0'1,0'2)) and characteristic 

maps P(iPuI x iPu2 )· To see that (V,Pl, ... ,Pn-l) is Hausdorff, we proceed as follows. 

We see first that An is embedded into (V, PI, ... , Pn-l) via the following injection map on 

cells 

~ : E(An) -t E«V, PI, ... , Pn-l)); 0' 1----+ p«O', ,X)) = p«'x,O')). 

Secondly, let us denote by Y = {p«0'1,0'2)) I (0'1,0'2) E K~n+l)}, B = U{D:;~+l I T E Y}, 

8B = U{ 8D~+1 IT E Y} and F = UTIT : 8B -t L\n where IT = P('PUI x 'PU2) does not depend 

on the choice of the representative (0'1,0'2) of T = p«0'1,0'2)) since, as we saw in Lemma 2.2.4, 

parallel open cells are identified under ""n. Since the closure of each (n + I)-cell T = p(0'1,0'2) 

splits a.', D'!;:+1\8D'!;:+1 Up{(0'1,0'2)O} and 8D'!;:+1 is identified with p{(0'1,0'2)O} C An via the 

attaching map IT = p( 'PUI X 'Pa2)' then it follows that (V, PI, ... , Pn-l) = An UF B, or in other 

words that (V, PI, ... , Pn-l) is the adjunction space of B to L\n via the attaching map F. From 

• II, Proposition 2.1 of [62], since An is Hausdorff, we derive that (V, PI, ... , Pn-l) is Hausdorff 

too and then, from II, Proposition 5.7 of [62], we get that (V, PI, ... , Pn-l) is a CW-complex, 

as required. • 

Cells of An, seen as a sub complex of (V, PI, ... , Pn-l), are those of the form p«O'I, 0'2)) for 

some 0'1,0'2 E Am with dimp«0'1,0'2)) ~ n. We denote (n+ I)-cells again by 0'1 00'2 instead of 
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2.2.4 Construction of the Critical (n + I)-cells 

Before we attach critical (n + 1)-cells and their translates to (V, P1, ... , Pn-1) to form ~n+1' we 

prove two properties of the complex ~n. First we need to order the skeleta of ~n and then 

obtain an induced order on the n-chains. 

• The order of the skeleta of ~n. 

Recall from Section 1.6 that for any set A, we have denoted by [A] the corresponding 

multiset. 

For every two cells of the same dimension 2 ~ m ~ n, U = [w.,.; (e1, e2, ... , em)] and 

8 = two; (h, 12, ... , im)] we define 

if and only if 

either w.,. -< Wo or w.,. = Wo and [{e1,e2, ... ,em}]-<mul [{h,h, ... ,im}], 

where -<mul is the multiset ordering induced by -<1. The ordering -<m is a Noetherian irreflexive 

and transitive order since -<1 is so. 

From now on, we 1Lse the same symbol -< for the order of cells of ~n. 

• The induced order on the m-chains. 

8 

We write an m-chain in the form e = Lniui, where s ~ 0, U1, ... 'U8 are all distinct m-cells 
i=l 

and nl, ... , n8 are non-zero integers. When s = 0, the sum is empty and e = O. 

We define an elementaT1J reduction on an m-chain 
8 

~ = Lniui 
i=l 

to be the replacement of a non-empty sub chain e '* nil Uil + ... + niqUiq of e by a chain 

E18il + ... + Ek 8ik' with k ~ 0 such that [{8ill ... ,8ik }]-<mul [{Uill ... ,Uiq}], where -<mul is the 

multiset ordering induced by the order -< of the m-cells. 

8 

For every non-zero m-chain ~ = Lniui, we denote 
i=l 

~(O) = U O'~O) 
i=l t 

where O'~O) is the O-skeleton of O'i. 

We define ( < e if: 
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1. (is obtained by ~ by a finite positive number of elementary reductions, and 

2. [«0)] -<mul [~(O)], where -<mul is induced by -<. 

Since -< is Noetherian, we have that < is Noetherian too. 

Lemma 2.2.10 For every (n - I)-cycle ~, the n-chain ( such that on() = ~ which exists from 

En, has the property that for every n-ce1l6 represented in (, the maximal O-cell of 6 is less than 

or equal to some O-cell from the O-skeleton of some (n - I)-cell a represented in~. 

Proof. Let ~ = Lj nja j, an (n - 1 )-cycle, and let 11, be some maximal O-cell of ~(O). 

Suppose a1 = [u; (e1, e2, ... , en-I)] is a maximal cell of~. Since ~ is a cycle, there will be a 

cell say ai = [u;(ei,e2, ... ,en-1)] represented in ~ with ei -< e1. That ei -< e1 follows from 

the fact that ai -< aI, which from the definition of -<, is equivalent to [{ei,e2, ... ,en-1}]-<mul 

[{ e1 , e2, ... , en- d]· It follows that there is the n-cell 

Let £i be the incidence number of [u; (e1,e2, ... ,en-1)] in /)1. The new cycle~' = ~ - £in10n/)1 

obtained from ~ by replacing n1 a1 by the chain 

-n1 (2: £i[e~, ... , ~i' ... , en-I)] + J.L) 
i>l 

where £i = ±1, [u;(ei'''''~i, ... ,en-1)] -< a1 for i > 1, and the cells represented in J.L have 

maximal O-cells strictly less than u. 

If after all the possible cancellations in ~ - £i n1 On+1 ( there are still cells represented there 

which meet u, we repeat the above process finitely many times until we obtain a cycle 

without cells meeting u. That this process terminates.in finitely many steps, follows from the 

fact that -< is Noetherian. 

From the definition of < we have that e < ~, therefore, by Noetherian induction, there is 

an n-chain (' such that e = on(' and the O-cells of the cells represented in (' are not bigger 

than those of the cells from e. It follows that 

and then the induction hypothesis for (' complete the proof. _ 

We make the following. 
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Definition 2.2.11 We call a sub complex K of .6.n lower complete, if a E .6.n and fJ E K are 

such that [aO] -<mul [fJo], then a E K. In other words K has ttte property that, if some cell 

a E .6.n has its own O-skeleton lower in the multiset ordering induced by -<0 than the O-skeleton 

of some fJ E K, then a E K. 

The order of edges extends naturally to the paths of the I-skeleton r of .6.n . We say that 

PI -< P2 if and only if [PI] -<mul [P2] where by [p] we denote the multiset of edges represented in 

the path p and -<mul is the multiset ordering induced by -<1. 

Theorem 2.2.12 If K is a path-connected n-dimensional lower complete subcomplex of .6.n , 

then every continuous map f : sn-l ---t K extends to a continuous map F : Dn ---t K. 

Furthermore, if f is cellular, then F is homotopic relative to sn-l to a cellular map. 

Proof. From the Extension Lemma (Lemma 1.2.2), it suffices to show that 7f'n-l(K) = O. 

Since every (n - I)-cycle from K is an (n - I)-cycle in .6.n , and since K is lower complete, 

we have from Lemma 2.2.10 that Hn - l (K) = O. To complete the proof we need to show 

that 7f'n-l(K) ~ Hn-l(K). For this we will make use of the Hurewicz Theorem by showing 

first that 7f'1 (K) = O. Since K is path-connected and lower complete, it contains the unique 

irreducible word of the corresponding class and therefore its I-skeleton K(l) is path-connected. 

From Theorem 1.2.7 we have that 7f'l(K) ~ 7f'1(K(2»); hence to prove our claim we need to show 

that 7f'1 (K(2») = O. Since from Theorem 1.2.8 every continuous map f : Sl ---t K(2) deforms 

homotopically to a closed path in the underlying graph K(l), we need only look at closed paths 

in K(l). So let p be such a closed path and u be some maximal vertex represented in p. Since u 

is maximal, there are two positive edges coming out of u, say el and e2. If they are disjoint we 

can add to our picture a standard 2-cell a of the Squier complex generated by el and e2 (this 

belongs to K due to the fact that it is lower complete) and then replace the part ell 0 e2 of 

p by the rest of the boundary of a to obtain a lower ~n the multiset ordering) closed path p' 

and then apply Noetherian induction on it. The same argument applies if the pair (ell e2) is a 

translate of a critical one since the set of critical 2-cells PI is contained in .6.n . 

The second part of the theorem follows immediately from Theorem 1.2.4 .• 

Remark 2.2.13 The idea of the above proof is a generalization of the proof that 7f'1 (DP1) = 0 

with DPl = V U F.Pl.F, found in [89]. 
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For some path-connected sub complex K of ~n, denote by K the subcomplex of ~n of 

maximal dimension which is spanned from the following set of O-fells 

{W E t::.n I W ~o w' for some w' E KO}, 

It is easy to see that K is lower complete and we will call it in future the lower completion of 

K, It is obvious that K is path-connected and, if K is finite, since the system P is finite and 

Noetherian, so will be K, 

Let (el,e2, .. "en+l) be a critical (n + I)-tuple of positive edges coming out of some w, 

Consider the cells [Wi (ell .. " ~i' .. " en+l)], where i = 1, .. " (n + 1), whose respective boundaries 

are as follows 

1\ 
8[w; (e2' .. " en+l)] = Ul~j~n[W; (e2' .. " ej, .. " en+d] U (1, 

1\ 
8[w; (ell e3"', en+d] = Ul~j~n[W; (el' e3, .. " ej, .. " en+l)] U (2, 

1\ 
8[w; (el' .. " en-I, en+l)] = Ul~j~n[W; (el' .. " ej, .. " en-I, en+l)] U (n, 

On[W; (el' .. " en-I, en)] = Ul~j~n[W; (el' .. " ~j, .. " en-I, en)] U (n+l, 

Here we have that all (i, i = 1, .. " n + 1, are made of closed cells with respective maximal O-cells 

less than w, 

Make the following notations, Denote by K7) the sub complex of (V, PI, .. " Pn-l) generated 

by the closed cells represented in some m-chain 'TJ and as before by K7) the lower completion of K7)' 

Recall that, for each 1 ~ m ~ n + 1, we have identified nm with the m-cube I X .. , x I , which 
'---v---' 

m 
we denote in another form as [h, .. ,,1m], and let Ao = (0,1, .. " 1), Al = (1,0,1, .. " 1), .. " Am- l = 

1\ 

(1, .. " 1,0), Am = (1, .. " I), Also we made the notation [h, .. ,,Ii, .. ,,1m] for the boundary cell 

of Dm obtained by replacing the i-th factor Ii with {I}, Let 

• di = AmA-I = {(I, .. ,,1, x, 1, .. ,I) I x E Ii} for every i = 1, .. " m, 

In order to attach an (n + I)-cell to the complex (V, PI, .. " Pn-l), we need to introduce the 

attaching map of that cell, To do this, we proceed as follows, Instead of taking sn as the bound­

ary of Dn+l, we take the boundary of the (n+ I)-cube [h, .. " In+l ] , We have that, for i ~ 1, the 
1\ 

characteristic map ~i from the cell [h, .. " Ii, .. ,,In+l] E 8[h, .. " In+l] to [Wi (el' .. " ~i' .. " en+l)], 

has the property that 
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1\ 
and for the union Ua' of a' E a[h, ... ,Ii, ... , In+ll not meeting An+l we have 

(2.6) 

The two above claims are consequences of Property (iii). 

Now denote by <p' the map 

, . n+l 1\ 
<p : U{ 8 E a[h, ... , In+lll8 meetmg An+l } ~ .U [Wj (el' ... , ei, ... , en+l)l 

t=l 

1\ 
whose restriction on each [h, ... ,Ii' ... , In+ll for i = 1, ... , n + 1, coincides with !Pi. This is well 

defined because of the assumption for the maps !Pi, and is continuous from the construction. 

From (2.6) the restriction f of <p' on 

1\ 
Sn-l ~ Ui{ a' E a[h, ... , h ... , In+lll a' not meeting An+Il 

n+l 
sends the latter to Kt;, = U Kt;, and therefore is cellular. Next we show how to construct a 

i=l • 

map <p" from {8 E a[h, ... , In+lll 8 not meeting An+l } ~ Dn to Kt;, whose restriction on sn-l 

equals f. In other words, we want to prove that f extends to a map <p" : Dn ~ Kt;,. Since 

Kr;, is path-connected, lower complete containing Kr;, and there is a map f : sn-l ~ Kt;" we 

have from Theorem 2.2.12 that f extends to a cellular map cp" from Dn to K,. Then we can 

"glue" cp' with <p" since they coincide on the boundary of Dn, to obtain the attaching map for 

our cell which we denote by [Wi (el, ... , en+l)]. Note that the finiteness of K, and hence that 

of K" together with the fact that cp" is cellular, imply that the "bottom" part cp"(Dn ) of the 

boundary of [Wj (el' ... , en+ 1)], is made of finitely many closed cells whose maximal O-cells do 

not exceed the O-cells of the complex K, and therefore are less than w. On the other hand the 

"top" cells of the boundary of [Wi (el, ... , en+1)] are those of the form [Wi (el, ... , ~i' ... , en+ 1) 1, all 

meeting w. However, since we do not know exactly what the bottom part <p"(Dn) of a critical 

cell a is, we can not have an explicit form for the cellular boundary formula of a . 

• We attach translates u ® a ® v of critical cells a, in the same way 8.<> above, by letting 

the boundary of such cells to be made of cells u ® a' ® v, with a' from the boundary of 

(J'. Explicitly, we can construct as before the top of the cell, this time to be made of cells 

u.[w;(el'''''~i, ... ,en+dl·v. The analogue of the map f above, here denoted by 1, sends sn-l 

to u.Kt;,.v. We define the analogue <p" of <p" by the following commutative diagram: 

nn Dn 

~,,! !~" 
Kt;,~u.Kt;,.v 
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with K, the homeomorphism which sends every (j E cp"(Dn) to u.a.v E u.KC;.v. The map K, can 

be constructed using Property (ii). It follows that there is a conti~uous bijection h : (j -7 u.a.v 

which from Lemma 1.2.3 satisfies Property (ii). The set of all critical (n+ 1)-cells is denoted by 

Pn and the set of their translates by F.pn.F. The resulting complex (V, PI, ... , Pn-l) U F.Pn.F 

is denoted by ~n+l' The properties A n+l and C n + l for ~n+l obviously hold true from the 

construction of it. Also the second half of Property Bn+l holds true. The first half will be 

proved in Lemma 2.2.18. 

2.2.5 Properties (i)-(v) of the Complex ~n+l 

In this section we show that properties (i)-(v) hold true for the complex ~n+l' Note that for 

(n+ 1)-cells from F.Pn.F, Property (i) is an obvious consequence of the way the action of Fan 

critical (n + I)-cells is defined, while Property (ii) follows from the construction. 

Lemma 2.2.14 For every open cell c E E(Kn) we have p(CO) = p(c)O and p(c) = p(c). 

m m 
Proof. From Remark 2.2.7 we have that CO = .U Ci and then p(CO) = .U p(Ci). On the 

t=l t=l 

other hand p(c)O = <I>p(c)(S~-I) = p<I>c(S~-I) = igl(Ci), which shows that p(CO) = p(c)o. To 

show the second equality, it is enough to split c as the disjoint union c U CO and then take 

p(c) = p(c U CO) = p(c) U p(CO) = p(c) U p(c)O = p(c) .• 

We prove now properties (i)-(iii) for (V, PI, ... , Pn-l). 

(i) For cells of dimension ~ n the statement follows by induction since we have ~n C (V, PI, ... , Pn-l). 

If a@O = p((a, 0)) is a non-critical (n+ 1)-cell, from Remark 2.2.5 and Lemmas 2.2.6 and 2.2.14 

we have that, <I>a®6(S~®6) = <I>p«a,6»(S;«a,6») = p<I>(a,6) (S(a,6») is made of cells 

and 

p((a', (5)) = p((a', 0)) = p((a',o)) = a' @ 0 

• 
p(((j,8')) = p((a, 0')) = p((a, 0')) =a@o', 

where a' and 0' are from the respective boundaries of a and 0. 

From the definition of p, for every aI, a2, a3 E (V, PI, ... , Pn-l) whose sum of dimensions is 

at most n + 1, we have al @ (a2 @a3) = (al @a2) @a3. 

The bi-action of F on ~n now extends to (n+ 1)-cells al @a2 E (V, PI. ... , Pn-l) as follows. 

For w E F we let 
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by induction, and similarly (0'1 ® 0'2).W = 0'1 ® (0'2.W). 

~ 

Lemma 2.2.15 For every two cells 0' and 8 from ~n such that dimO' + dim8 ::; n + 1, p 

maps homeomorphically 0' x 8 onto 0' ® 8 with the property that for every 0" E 00' and 8' E 08, 

p(O" x 8) ~ 0" ® 8 and p(O' x 8') ~ 0' ® 8'. 

Proof. The claim is obviously true if both the cells have dimension O. Let now 0' X 8 some 

cell of dimension m. From the definition of p, we have that p maps 0' x 8 homeomorphically 

onto 0' ® 8. On the other hand, by our 8..<;sumption, we have for every 0" E 00' and 8' E 08 the 

homeomorphisms p( 0" X 8) ~ 0" ® 8 and p( 0' x 8') ~ 0' ® 8'. The claim follows. • 

We continue with the proof of Property (ii). 

(ii) If 0' is a translate of a critical (n + I)-cell, then the result follows from the construction 

of such cells. Let 0' ® 8 an (n + I)-cell. By assumption, we have that for every u, v E F, 

there are homeomorphisms (f ~ U.O' and "8 ~ 8.v such that 0" ~ u.O" and P ~ rv for every 

0" E 00' and 8' E 08. It follows that there is a homeomorphism 0' x 8 ~ U.O' x 8.v with the 

property: 0" x 8 ~ u.O" x 8.v and 0' X 8' ~ U.O' x 6'.v for every 0" E 00' and 6' E 06. Lemma 

2.2.15 implies that there is a homeomorphism 0' ® 6 ~ U.O' ® 6.v such that 0" ® 6 ~ u.O" ® 6.v 

and 0' ® 6' ~ U.O' ® 6'.v for every 0" E 00' and 6' E 06 proving thus the claim. 

Before we prove Property (iii) we prove some preparatory results. 

Lemma 2.2.16 For every (n + I)-cell of the form 0' ® 6, its O-skeleton is ma,de of cells uv, with 

u and v being respectively in the zero skeleton of 0' and 6. 

Proof. The claim follows e8..<;ily from Property (i) .• 

Lemma 2.2.17 For every (n + I)-cell 0', there is W from the O-skeleton 0'0 of 0' which is bigger 

than any other O-cell of 0'. • 
Proof. We distinguish the following two C8..<;es. 

1) 0' = a ® /3 E (V, PI, ... , Pn-1). Property (iii) for a whose dimension is less than (n + 1), 

implies that there is Wa from aO which is bigger than any other O-cell of a. Similarly, there is 

w{3 from pO which is bigger than any other O-cell of /3. From the above lemma, waw{3 is in 0'0 

and then the compatibility of multiplication in F with -< implies that waw{3 is the biggest O-cell 

of 0'. 

2) If 0' is a translate of a critical (n+ I)-cell, then the construction of 0' shows the result .• 
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The following lemma proves the Property (iii) for the complex ~n+!. Similarly as in the 

construction of the critical (n + I)-cells, we take Dn+l to be [h,,, .. , In+lJ. , 

Lemma 2.2.18 The following hold tr'ILe for every (n + I)-cell 0'. 

1. The characteristic map ~ of 0' sends An+l to a O-cell Wa which is the biggest vertex of the 

O-skeleton of 0', and there are positive edges el, ... , en+! from the 1-skeleton of 0' coming 

out of wa , which we call starO', such that ~(dl) = el, ... , ~(dn+l) = en+l. 

2. These edges determine 0' in a 'lLniq'ILe way. We say that they generate 0'. 

3. For every n of these edges eil' ... , ein there is a bO'ILndary cell of 0' generated by them 

meeting Wa , and conversely every boundary cell meeting Wa is generated by such n edges 

of el, ... , en+l· 

A 
4. The restriction of ~ on [h, ... ,h ... ,In+lJ agrees with the characteristic map of the cell 

generated by {el' ... , en+l} \ {ei}. The restriction of ~ on the union of the boundary cells of 

[h, ... , In+lJ that do not meet An+l is a union ( of closed n-cells whose maximal boundary 

cells are less than Wa. 

Proof. 1) The claims hold true for (n+ I)-cells belonging to F.Pn.F from the construction 

of these cells. 

Let 0' 08 be some (n + I)-cell from (V, PI, ... , Pn-l) with 0' a k-cell and 8 an l-cell. We can 

take sn = Sk+l-l to be the boundary of [h, ... , In+lJ = [h, ... , IkJ x [h, ... , Id and then from 

Proposition 2.2.9 we can write the boundary of 0' 0 8 in the form 

Then replacing S~-l and Si- 1 by the boundary of the respective cubes we get the form 

• 

From Property (iii) for 0' we have that ~a maps the edges dl, ... , dk of [h, ... , hI to the closures 

of the positive edges e~, ... , e~ of the I-skeleton of 0' with common initial Wa' Similarly ~o maps 

the edges (renumbered) dk+l, ... , dn+l of [h, ... , hI to respectively the closures of the positive 

edges e~+l' ... , e~+l coming out of Wo· Therefore P(~a x ~o) will map d1, ... , dk, dk+l, ... , dn+1, 

seen as edges of [h, ... , In+ll, to respectively the closures of the positive edges 

53 



which we denote by el, ... , ek, ek+l, ... , en+l and are ordered in the ascending order. Lastly, from 

Lemma 2.2.17 we have that WqWO is the biggest O-cell of a 0 8. ~ .. 
2) From 1 we have that 

star(a 0 8) = star(a) 0 Wo U Wq 0 star(8). 

Taking the unique decompositions of a and 8, we have that 

t 

star(a 0 8) = UUl 0 W01 0 ... 0 Ui 0 star(Q:i) 0 Ui+l 0 ... 0 Ut 0 WOt 0 Ut+l, 
i=l 

where star(Q:i) is a critical tuple of edges for every i = 1, ... , t. Suppose that there is another 

cell, such that star(T) = star(a 0 8) and let 

s 

star( ,) = UVI 0 Wf31 0 ... 0 Vi 0 star({3i) 0 Vi+l 0 ... 0 Vt 0 wf3. 0 Vs+l· 
i=l 

Note that, can not be a translate of a critical (n + I)-cell since otherwise its star would be a 

translate of a critical (n + 1 )-tuple of edges and therefore not equal with star( a 0 8). Since, 

for every 1 ~ i ~ t, star(Q:i) is a critical tuple of edges and so is star({3j) for 1 ~ j ~ s, the 

equality star(T) = star(a 0 8) implies that s = t and for every 1 ~ i ~ t, 

It remains to show that, for every 1 ~ i ~ t, star(Q:i) = star({3i). 

Since the number of edges in each side of (2.7) is less than n + 1, we have from Property 

(iii) that 

and then the unique factorization property implies that Q:i = {3i. 

3) Suppose that the cell is a08, where a = [wq,(~i, ... ,e~)l and 8 = [wO,(e~+l, ... ,e~+l)l. 
From 1 we have that 

therefore every n of those edges will contain either ei .Wo, ... , e~ .Wo together with n - k of 

wq.ek+l' ... ,wq.e~+l' or wq.ek+l , ... ,wq.e~+l together with k -1 of ei.wo, ... ,e~.wo. In the first 

ca..'le ei, ... , e~ generate a and each n - k of e~+l' ... , e~+l generate a boundary cell 8' of 8. 

Therefore we have the boundary cell a 0 8'. Similarly we prove 3 in the second ca..'le. 
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To prove the converse let a ® 8' E o( a ® 8). By Property (iii), 8' is generated by n - k of 

e~+l' ... , e~+l E star(8), say e~,k+l' ... , e~,n' and as a result 

star(a ® 8') = {e~ .W.;, ... , e~.w.;, Wa.e~ k+l' ... , wa.e~ n}' , , 

But star determines the cell uniquely, hence a ® 8' is generated by 

Similarly one can prove the case when a' ® 8 E o(a ® 8). 

4) Let a be a k-cell and 8 a (n + 1 - k)-cell. From Property (iii), the restriction of 
1\ 

~a0'; = P(~a X ~.;) in [h, ... , Ii, ... , In+l ] is of the form P(~a X ~';/) if i ~ k + 1 or P(~al X ~.;) 

if i ~ k. In the first case it coincides with ~a0';1, and in the second case with ~aI0';' 

Splitting In+l a..'l I dima X I dim '; and applying induction, we have that 

where Idima-l is the union of the boundary cells of Idima not meeting Adima, and a' E oa not 

meeting Wa. Similarly, 

with 8' E 08 not meeting W.;. • 

Lemma 2.2.19 Let al = [Wl; (h, .··,is)] and a2 = [W2; (gl, ... ,gt)] be cells of dimensions at 

least one. Then al ® a2 = [WlW2; (h,w2, ···,is,W2,Wl·gl, , .. ,Wl.gt)]. 

Proof. This follows from 1 and 2 of Lemma 2.2.18 .• 

Now we prove Properties (iv) and (v). 

(iv) If a critical cell a is decomposed a..'l al®a2 with al = ~l; (h, ... , is)] and a2 = [W2; (gl, ... , gd], 

then from Lemma 2.2.19 we have star(a) = {il.W2, ... , fs.w2, Wl.gl, ... , Wl.gt}, a contradiction. 

(v) (Unique Factorization Property) If the (n+ I)-cell is a translate of a critical (n+ I)-cell, 

then Property (iv) applies. Let now a ® 8 be an (n + I)-cell from (V, Pl, ... , Pn-l). If 

then from Property (v) we have 
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with all (J'i'S and 8j 's critical. To show the uniqueness, suppose that WI ® KI ® W2 ® ... ® Ki ® wi = 

VI ® PI ® V2 ® ... ® Pj ® Vj are two different expressions of (J' 135 8. From the definition of rv 
I 

we must have (WI ® Kl) X (W2 ® ... ® Ki ® Wi) II (VI ® PI) X (V2 ® ... (8) Pj (8) Vj); hence we ei-

ther have WI (8) K1 = VI (8) PI (8) a for some cell a, or VI (8) PI = WI (8) K1 (8) f3 for some cell f3. 

In the first case, Property (v) for Lln implies that WI = VI and then the indecomposability 

of Kl (Property (iv)) implies that K1 = PI and that a = A. As a consequence we have that 

W2 (8) ... (8) Ki (8) Wi = V2 (8) ... (8) Pj (8) Vj. Since the cell W2 (8) ... (8) Ki (8) Wi has dimension less than 

n + 1, Property (v) for Lln implies that the above expression is unique. The same argument 

applies in the second case. 

2.2.6 The Cellular Boundary Maps for ~n+1 

In order to prove Properties D n+1, En+l and Fn+l for Lln+l' we need to compute the cellular 

boundary maps for the cellular chain complex associated with Lln+1. Let this chain be 

(2.8) 

where Ck for k = n + 1, ... , 0, are free abelian with ba.c;es the respective k-cells and 8k are 

calculated from the cellular boundary formula. Here Ck for k :::; n, are the same a.c; those 

represented in the cellular chain complex associated with Lln . To compute 81 , we recall that 

the presentation P is terminating, hence the I-skeleton r of V does not contain edges with the 

same initial and terminal, therefore we can think of r as a simplicial complex. Now Example 1, 

p.222 of [79] implies that the map 81 : C1 --+ Co is the same a.c; the simplicial boundary map 

81 : Ll1 (r) --+ Llo(r) and then we have 

81(e) = Le - Te. 

t 

Property (iii) and Corollary V, 3.6 of [62] imply that for every 2 :::; k :::; n 

k 

8k[w, (e1' ... , ek)] = I)'dw, (eI, ... , ~i' ... , ek)] + (, 
i=1 

(2.9) 

(2.10) 

where for every i = 1, ... , k, ei = ±I and ( is a chain made of (k -I)-cells whose maximal O-cells 

are less than w. 

It remains to find an explicit form for 8n+1. We will split the work for this in two parts. 

First we compute the restriction 8n+1 of 8n+1 on Cn+1(P1, ... ,Pn-d, the free abelian group 
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generated by (n+ 1)-cells of (V,P1, ... ,Pn-1), and then we compute 8n+1(0') for 0' E F.pn.F. 

To compute 8n+1 we consider the cellular chain complex associated with (D, PI, ... , Pn-d: 

( ) 
8n+1 C 8n fh C 81 r< Cn +1 PI, ... , Pn-l ---t n ---t ... ---t 1 ---t vO ---t O. (2.11) 

On the other hand, the cellular chain complex associated with Kn is 

(2.12) 

where Ds is free abelian with ba.'les the set of s-cell CT x 8 E E(K~s)), with 0 ~ s ~ n + 1, 

and then the map p : Kn --+ (V, PI, ... , Pn-d, which is obviously cellular, induces a chain 

map p# from (2.12) to (2.11) such that p#(O' x 8) = 0' 1;9 8 = p(O' x 8), which means that 

[p: 0' x 8: p(O' X 8)] = 1. 

Lemma 2.2.20 If (0' x 8)JtI, (0' X 8)Jt" E 8(0' X 8) then 

IP' (u X 0)" ,p((u X 0)''')1 ~ { ~ if Ji = J.t" 

if Ji =I J.t" 

Proof. When J.t' = J.t" the a.'lsumption is obvious. In the case when J.t' =I J.t" we need 

to show that there are no different parallel cells in the boundary of CT x 8. Suppose that 

0' = U1 1;9 0'11;9 ... 1;9 Uk 1;9 O'k 1;9 Uk+1 and 8 = VI 1;9 81 1;9 ... 1;9 Vs 1;9 8s 1;9 Vs+1. The boundary cells of 

0' x 8 are of two kinds; 0" X 8 with 0" E 8CT and 0' x 8' with 8' E 88. By an inductive argument 

on dimension one can show that 0" = U1 1;9 0'11;9 ... 1;9 Ui 1;9 O'~ 1;9 Ui+1 1;9 ... 1;9 Uk+1 with O'~ E 80'i 

and similarly 8' = VI 1;9 81 1;9 .. , 1;9 Vj 1;9 8j 1;9 vj+1 1;9 ... 1;9 Vs+1 with 8j E 88j • Using Property (v), 

one can ea.'lily show that CT' 1;9 8 =I 0' 1;9 8' and therefore 0" x 8 -It 0' X 8'. The same holds true for 

the cells 0' X 8' and 0' X 8" where 8',8" E 88 and 8' =I 8", and similarly 0" X 8 -It a" x 8 with 

0" ,0''' E 80' and 0" =I 0'''. • 

Now let 0' X 8 E b'(K~+l)) and 0" E 80'. We tate p(O" x 8) to be in the role of'T of 

Proposition 1.3.4. We have that 

[p: 0' X 8 : p(O' X 8)][P(0' x 8) : p(O" X 8)] = L [0' X 8: (0' X 8)Jt][P : (0' X 8)Jt : p(O" x 8)]. 
JtEAn 

From Lemma 2.2.20, in the sum of the right hand side, only one of the factors 

[P : (0' X 8)J.l. : p(O" x 8)] is non zero, the one with (0' X 8)J.l. = (0" X 8) and then the equality 

above changes to 

[p: 0' X 8: p(O' X 8)][P(0' x 8) : p(O" x 8)] = [0' X 8 : (0" X 8)][P : (0" X 8) : p(O" x 8)], 
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which immediately implies that [p(a x 0) : p(a' x 0)] = [a x 0 : (a' x 0)]. In the same way we 

prove that for 0' E 00 we have that [p(a X 0) : p(a X 0')] = [a X <5<: (a X 0')]. So the coefficients 

in which a boundary cell p( a' X 0) or p( a x 0') is represented in the cellular boundary formula 

for p(a x 0) in (2.11) are the same as the coefficients of the respective boundary cells a' X 0 and 

a X 0' for a x 0 in (2.12). But on the other hand from [40] we have that the cellular boundary 

formula for (2.12) is given by 

which if written explicitly gives 

dn+1 (ai 
X a

j
) = L nsa! X a j + (_1)i L ntai X at, 

s t 

where nis and (-1 )injt are the incidence numbers of a! x a j and ai X at respectively. So we 

finally have for (2.11) the formula 

8n+1 (ai 0 a
j
) = L ns(O"! 0 O"j) + (_1)i L njt(ai 00"t). (2.13) 

s t 

Before we describe On+1 for cells from F.Pn.F, we will show that On+1 is a (ZF, ZF)-bimodule 

homomorphism. 

Property (v) shows that the chain group Cn+1 defined in (2.8) is in fact free (ZF, ZF)­

bimodule with bases the set of right and left-reduced cells and the F-action is inherited from the 

two-sided action 0 of F on ~n+1. To show that On+1 is a (ZF, ZF)-bimodule homomorphism, 

h \.I , A (n+1) 
we need firstly to show t at v a, a E L.l.n+1 and u, v E F, 

U 0 a 0 v = U 0 a' 0 v if and only if a = a' 

A (n+l) \.I ~ , and then we show that V 0" E L.l.n+1 ,v ai E ua and u,f' E }I, we have 

To show the first claim we take the respective decompositions of both a and 0"'. We then have 

UU1 0a10 U2 ... Uk 0ak 0 Uk+1 V = u0 (U10 a1 0U2 ... Uk 0 O"k 0 Uk+1) 0v = u0a 0 v = 

, 10>.('10>.'10>.' '10>.'10>.')10>. """ U 0 a 0 v = U'<Y u1 '<Y 0"1 '<Y U2···Us '<Y O"s '<Y Us+1 '<Y V = uU1 0 a1 0 u2 ... us 0 as 0 us+1 v. 

The uniqueness of such decompositions and the fact that multiplication in F is cancellative, 

imply that a = a'. To show the second claim, we define a chain map f from the chain complex 
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in (2.8) to itself that sends each (j to u ® 0' ® v. We have that [f : 0' : u ® 0' ® v] = 1 and 

[f: 0': u®O"®v] = 0 for 0" i= 0'. Now, fixing some O'i E 80', by Proposition 1.3.4 we may write 

I 

[f: 0' : u ® 0' ® v][u ® 0' ® v: u ® O'i ® v] = L [0' : O'/L][f : O'/L : u ® O'i ® v], 
/LEAn 

which yields [u ® 0' ® v : u ® O'i ® v] = [0' : ad. 

To show that the boundary map 8n+1 is a (ZF, ZF)-bimodule homomorphism, one can see 

from Property (i) that the boundary of every k-cell with 1 ::; k ::; n + 1, U.O'.V = u ® 0' ® v is 

made of cells U.O'i.V = U ® O'i ® v with O'i E 80'; hence 

8n+1(U,0',V) = Ldu ® 0' ® v: U ® O'i ® v](u ® O'i ® v) = 

u. (Li[u ® 0' ® v : U ® O'i ® V]O'i) .v = u. (Li[O' : O'dO'i) .v = u. (8n+10') .v. 

The following completes the description of the cellular boundary maps for all the (n + I)-cells. 

Lemma 2.2.21 For every (n + I)-cell 0' = [Wi (e1' e2, ... , en+1)], we have 

8n+10' = LEi[W; (el' ... , ~i' ... , en +1)] + (, 
i 

where Ei = ±1 for every i = 1, ... , n + 1 and ( is a chain made of n-cells whose respective 

maximal O-cells are below w. 

Proof. If 0' is a critical (n + 1 )-cell, then the formula holds true because of Corollary V, 3.6 

of [62] and from the construction of such cells. If 0' is a translate of a critical (n+ 1 )-cell, then the 

above and the fact that 8n+1 is a (ZF, ZF)-bimodule morphism imply the result. Now suppose 

that 0' = 0'1 ® 0'2, where dim 0'1 = 8 ~ 1 and dim 0'2 = t ~ 1 and that 0'1 = [WI; (h, ... , fs)] and 

0'2 = [W2; (gl, ... ,gt)]. From the cellular boundary formula for 0', from (2.10) and (2.9), we have 

that 

where Ei = ±I for every i = 1, ... , s, Ej = ±I for every j = 1, ... , t and ( is made of n-cells 

whose respective maximal O-cells are below W = W1W2. Now from Lemma 2.2.19 we can write 

0' = [W1W2; (J1.W2, ... , fs.W2,W1·g1, ... , w1·gd], and, since again from that lemma 

1\ 1\ 

[WI; (h, ... , fi' ... , fs)] ® 0'2 = [W1W2; (h,w2, ... , k W2, ... , fs.w2, W1·g1, ... , W1.gt)] 

and 
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we can finally write 

On+IO' = L£dw; (el' ... , ~i' ... , en+l)] + (, 
i 

where <: is made of n-cells whose respective maximal O-cells are below w = WIW2 and £i = ±1 

for every i = 1, ... , n + 1. • 

2.2.7 The Homology of the Complex (V, PI, ... , Pn-l) 

In this section we study the homology group Hn(V, PI, ... , Pn-l) and prove Properties Dn+l 

and En+l which are related to this group. 

We introduce the following notations: 

hence the n-homology group now is 

H -H(V )_Zn(V,PI, ... ,Pn-l) 
n - n ,PI, ···,Pn-l - . 

Bn(V, PI, ... , Pn-l) 

Note that, since both Keron and Imon+l have a (ZF,ZF)-bimodule structure, Hn has an 

induced (ZF, ZF)-bimodule structure too. 

Before we prove the next lemma, we observe that if in (2.13) we take i = 1, and hence 

O'i = e E e+, we obtain that (te - Te).O'j is homologous with Lt nt(e ® 0'1). 

Lemma 2.2.22 J.Hn = 0 = Hn. J . 

Proof. We only show that J.Hn = 0; the other equality is obtained similarly. 
t 

Suppose that e = LAi~i E Zm Ai E {±1} for all i = 1, ... , t, ~i is an n-cell. Suppose that 
i=l 

mi 

On~i = L OijO'ij' Now from the condition we have 
j=l 

(2.14) 

This shows that each element in (2.14) has its opposite again in this sum. As we saw earlier, 
mi 

for every e E e+, (te - Te)'~i is homologous to LOij(e ® O'ij) for 1 ::; i::; t. Taking the sums of 
j=l 

all Ai(te - Te).~i, we obtain that (te - Te).e is homologous to the following sum 
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Comparing it with (2.14), one can see easily that this sum is O,"and hence (t,e -7'e).~ is null 

homologous. • 

Lemma 2.2.22 implies that there is an induced (ZS, ZS)-bimodule structure on the n-th 

homology, with the action 

In this way we have proved Property Dn+1 for the complex ~n+I' 

Proposition 2.2.23 The complex ~n+1 satisfies Property En+l. 

Proof. To show that Property E n+1 holds true for the complex ~n+I' one can apply the ar­

gument ofthe proof of Lemma 2.2.10 and see that the bi-module generators of Hn(V, PI, ... , Pn-I) 

are the homology classes of cycles arising from Pm therefore by adding cells from F.Pn.F to 

(V, PI, ... , Pn-I) we obtain the complex 

~n+1 = (V, PI, ... , Pn-I) U F.Pn.F 

2.2.8 Proof of the Property F n+1 for Lln+1 

The strategy of proving that there are morphisms <J? and v such that the sequence 

(2.15) 

is exact, will be the following. First we introduce a short exact sequence of (ZF, ZF)-bimodules 

- inc! {) -o ~ Im8n+1 '--+ KPn-l ~ Im8n ~ 0 (2.16) 

• 
which fits into a commutative ladder with another short exact sequence of (ZF, ZF)-bimodules 

and then we use the Snake Lemma to prove the exactness of (2.15). 

Let us now define the modules represented in (2.16). Define first the map 

(2.17) 

where Cn(PI, ... , Pn-2) is the free abelian group with bases the n-cells of (V, PI, ... , Pn-2) and 

{ 

0 if 
<p(x) = __ 

U.O'.v if x = U.O'.V E F.Pn-I.F 
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and secondly the map 

such that 

From the induction hypothesis, Hn-l(V, PI, ... , Pn-2) is generated (as a bimodule) by the ele­

ments an (0') + B~_l' 0' E Pn-l and therefore II is surjective. Letting the kernel of 'P be KPn-1 

we have the following. 

Lemma 2.2.24 We can write KPn-1 = Cn(PI, ... ,Pn-2) + J.Pn-l.ZF + ZF.Pn-l.J. 

Proof. This follows from the general fact that for every set X the natural homomorphism 

mapping ZF.X.ZF to ZS.X.ZS has the kernel J.X.ZF + ZF.X.J .• 

Beside the chain complex (2.8) we consider the chain complex 

C ( ) an c 8n-1 82 C 81 
n PI, ... , Pn-2 ---+ n-l ---+ ... ~ I ~ Co -+ 0 (2.18) 

associated with the complex (V, PI, ... , Pn-2). The difference between (2.18) and (2.8) is that 

Cn in (2.8) is the direct sum of Cn(Pl. ... , Pn-2) with the free (ZF, ZF)-bimodule with bases 

Pn-l. while the other bimodules of both the chains, indexed n-l or less, coincide and therefore 

the respective boundary maps coincide as well. On the other hand the restriction of an on 

Cn(PI, ... , Pn-2) coincides with an. It is clear from the formulas (2.13) for an+l that 

lman+l ~ KPn-1. Now let (tf -rf).r:; E J·Pn-I.ZF. Again from formulas (2.13), taking 0'1 = f 

we get that (tf - rf).r:; = an+l(f 0 r:;) + Tf where Tf E Cn(Pl, ... ,Pn-2). Taking an of both sides 

of the above equality, we have that 

an((tf - r f).r:;) = anTf = anTf Elman . 

• 
Likewise an(r:;.(tf-r f)) Elman and hence from Lemma 2.2.24 we have that an(KPn-1) = Im8n. 

Lastly, the above and the fact that anan+l = 0, imply that (2.16) is a chain complex. Our 

intention is to show the following: 

Proposition 2.2.25 The sequence (2.16) is exact. 

We first prove some technical lemmas. 
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Lemma 2.2.26 For every (n + I)-cell (1 = [Wi (e1, e2, ... , en+d], the boundary cell8 of (1 which 

have Wu in their own re8pective O-boundarie8, are comparable. 'The maximal boundary cell i8 
1\ 

[Wi (e1, e2, ... , en+1)]. 

Proof. From Lemma 2.2.18 (3), the n-cells of (1 which have Wu in their own respective 

O-boundaries are in a 1-1 correspondence with subsets of star((1) with n elements. Let (11 and 

(12 be two of them with respective star's, {ei;,ei2, ... ,ein} and {ejpeh, ... ,ejn}' We have ei­

ther [{eipei2, ... ,ein}] -<mul [{ejpejw··,ejn}] or [{ejpeh,···,ejn}] -<mul [{eipei2, ... ,ein}] and 

hence, from the definition of -< we have either (11 -< (12 or (12 -< (11. The maximality of 

[Wi (~1' e2, ... , en+d] follows from the fact that {e2, ... , en+1} is maximal in star((1) .• 

Lemma 2.2.27 If the cell8 (11 and (12 of the 8ame dimension are 8uch that (11 -< (12, then for 

every cell a 8uch that dim( (11 0 0) ~ n we have (11 0 a -< (12 0 o. 

Proof. Let (11 = [WU1' (e1, ... , es)] and (12 = [WU2 , (fl, "" is)], 

If WU1 -< WU2 , then WU1 Wa -< WU2 wa and then from the definition of -< we have (110 a -< (120 O. 

If WU1 = WU2 = wand [{ e1, .. " es}] -<mul [{fl, .. " is}], then it is easy to see that 

where {gl, .. "gt} = star(o), This again implies that (110 0-< (1200, • 

Lemma 2.2.28 If the cell 01 and 02 of the same dimen8ion, are 8uch that 01 -< 02, then for 

every cell (1 8uch that dim( (1 0 01) ~ n we have (1 0 01 -< (1 0 02, 

Proof. The proof of this runs similarly to that of the previous lemma. • 

Lemma 2.2.29 Let (10 a be a non-critical cell 8uch that 2 ~ dim( (10 0) ~ n, Let (11 E 8(1 and 

01 E 80 be the re8pective maximal boundary cell8, We have (11 0 a ~ (10 aI, 
• 

Proof. Let (1 = [wu, (e1, .. " es )] and a = tWa, (fl, .. " id], From Lemma 2.2.26 we have that 

(11 = [wu, (e2, .. " es )] and 01 = tWa, (12, .. " It)]. It follows that 

and 

Since e1.Wa -< wu,fl, we have that 
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which proves the lemma. • 

Lemma 2.2.30 If a E F.Pn-l.F is a maximal cell from an n-cycle e in KPn-l, then a can 

not be written in the form a = u.[w;(el,e2, ... ,en )].v where u and v are both irreducible and 

[w;(el,e2, ... ,en )] E Pn-l. 

Proof. Suppose by the way of contradiction that we can write a = u.[w; (el' e2, ... , en)].v 

where u and v are both irreducible and [Wi (el' e2, ... , en)] E Pn-l. Since cpe = 0, there must 

exists some ai = udw; (el' e2, ... , en)].vi from e, such that Ui = U and Vi = v. The choice of u 

and v implies that ai >- a, which contradicts the maximality of a .• 

m 

Lemma 2.2.31 Every n-cycle e = [;niai in KPn-l is homologous to some n-cycle e in KPn-l 
i=l 

.mch that e is obtained from e by a positive number of elementary transitions. 

Proof. Let w be some maximal O-cell from e(O) and al some maximal cell represented in e 
whose maximal O-cell is w. We distinguish the following three possibilities. 

1) Suppose that al is represented in e as mal, with m E Z and al = a 0 f3 with a and 

f3 cells of dimension at least 1. Letting a = [wo; (el' .'" ek)] and f3 = [w,8; (ek+1! "., en)], from 

Lemma 2.2.19 we have that 

From Lemma 2.2.26 we have that the maximal boundary cell of al is 

Since al must cancel under the boundary map, there is some other cell a~ represented in ~ with 

all in its own boundary. This cell must be of the form 

where I -< el.w{3. It follows that I does not act on w,8 and hence we can write I = 1',w{3 

and I' is disjoint from ek+l, ... , en· Consequently we have the (n + 1)-cell ai = a* 0 f3 with 

a* = [wo; (f', el, e2, ... , ek)]. We can perform an elementary transition on ~ by replacing mal by 

the chain -em( with e = ±1 being the incidence number of al in ai, to obtain thus the n-cycle 

e = ~ - em(eal + () E Zn n KPn-l, where ( is given by the formula 

and hence is made of cells which are strictly less than al. 
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2) Suppose that 0"1 is represented in ~ as mO"l, with m E Z and 0"1 = te.O"i for some positive 

edge e and O"i arising from a critical n-tuple. The boundary 0: the (n + I)-cell e 1)9 O"i is given 

by the formula 

On+1(e 1)9 O"D = (te - re)·O"i + (-I)l l )e 1)9 O"i j ) , 

j 

where O"i
j 

E oO"i. From Lemma 2.2.29, te·O"i »- (e 1)9 O"h), with O"i1 the biggest of all O"i j E OO"i 

and, from Lemma 2.2.27, te.O"i »- re.O"i. So we can now perform the elementary transition of 

replacing mO"l = m(te.O"i) in ~ by the chain m(, and obtain thus the n-cycle e' = ~ -m(O"l -() E 

Zn n KPn-l. Here 

is made of cells lesser than 0"1· 

( = re·O"i + I)e 1)9 O"i j ) 

j 

3) Suppose that 0"1 = O'i .te for some positive edge e and O'i arising from a critical n-tuple. 

Let 0"2, ... , O"k be all the other cells (re-indexed) represented in e meeting w. For i = 1, ... , k, we let 

O'i = [Wj (eil' ei2, ... , ein)]. From the condition, we can write 0"1 = [w'tej (ei1· te , ei2· te , ... , ein·te )] 

for some positive edges eij , j = 1, ... , n. For every 2 ::; i ::; k and 1 ::; s ::; n, since O'i -< 0"1, it 

follows from the definition of -< that eis = e~s.te for some positive edge e~s' As a consequence 

there are (n + 1 )-cells 

for every i = 1, ... , k. On the other hand we have that 
k n 

Lni LE's;[Wj (eil' ... , ~iSil ... , ein)] = 0, 
i=l s;=l 

where E's; = ±1 are the incidence numbers. Indeed, 

k m 
o = on~ = Lni(OnO'i) + L ni(OnO"i) = 

t", t £,,[w; (eil' ':~~i'" ... , ein)Ji:k+(~ + E ni(Ono"i)) ' 
t=l s;=l • i=k+1 

(2.19) 

(2.20) 

where the bracket is a chain made of cells whose maximal boundary cell is different than w. 

It follows from (2.19) and (2.20) that 

k n 

Lni LE'sJWj (eil' ... , ~isil ... , ein, w'.e)] = O. 
i=l s;=l 

(2.21) 

Applying formula (2.13) on the cell in (2.19) we see that the incidence number of [Wj (ei1, ei2, ... , ein)] 

in [Wj (eil,ei2, ... ,ein,W'.e)] is (_l)n. This fact together with (2.21) imply: 

k m 

e - (-I)nLniOn+1[Wj (ei1, ei2, ... , ein,W'.e)] = L niO"i + (, (2.22) 
i=l i=k+1 
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where the chain ( is either zero or is made of cells whose maximal O-cell is less than w. Now 
m 

the cycle ~'= E niO"i + ( is homologous with ~, it is from Zn n KPn-l and is obtained from 
i=k+1 • 

k 
~ by replacing EniO"i by the chain ( .• 

i=1 

The following proof will be the combination of the last two lemmas. 

Proof of Proposition 2.2.25. Suppose that ~ E Zn n KPn-l and want to show that it is 

null-homologous. Let w be some maximal O-cell from ~(O) and 0" some maximal cell represented 

in ~ whose maximal O-cell is w. From Lemma 2.2.30 we have that (J" can only be as in one 

of the three cases of the proof of Lemma 2.2.31. We can then apply Lemma 2.2.31 to obtain 

an homologous cycle e. If e does not satisfy the condition e < ~, we chose w' to be some 

maximal O-cell from ~'(O) and 0"' some maximal cell represented in e whose maximal O-cell is 

w', and repeat the above procedure. After finitely many steps we obtain (' homologous with ~ 

and such that [e"(O)] -<mul [~(O)]. Therefore we have (' < ~ and then we can apply Noetherian 

induction on ~". • 

Now we prove the property F n+l for ~n+l. From Proposition 2.2.25 we have the following 

commutative diagram 

where all the vertical maps are inclusions, both rows are exact and Cn(~n) = Cn in (2.8), 

Zn(~n) is the kernel of an in (2.8), and Zn-I(~n) is the kernel of an-I in (2.8). Applying the 

"Snake Lemma" [90] to it, we obtain the short exact sequence 

where 

o --t Hn(V,PI, .. ·,Pn-I) ~ ZS.Pn_I.ZS ~ Hn-I(V,PI, ... ,Pn-2) --t 0, 

• 

is given by 

with cp defined as in (2.17), and 
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is the homomorphism taking each C; E Pn-l to the homology class of the corresponding (n -1)­

cycle. 

This completes the proof of Theorem 2.1.1. 

2.2.9 The S-graded Resolutions 

The following remark will be useful in Chapter 3. 

Remark 2.2.32 Associated with a finite and complete presentation P = P[x, r], we con­

structed in Theorem 2.1.2 the resolution: 

ZS.Pn.ZS ~ ... ~ ZS·Pl.ZS ~ ZS.r.ZS ~ ZS.x.ZS ~ ZS 0z ZS ~ ZS -+ O. 

We can think of each set Pk with k = 1, ... , n, as the subset of S whose elements are represented 

by the O-cells occurring in the cells of Pk. Of course this is a 1-1 correspondence. Similarly, 

r (respectively x) is the subset of S whose elements are represented by the coordinates of the 

elements of r (respectively by the generators in x). Now it is more illuminating to write the 

above resolution in the form: 

EB(ZSOPP0zZS) ~ ... ~ EB(ZSOPP0zZS) ~ EB(ZSOPP0zZS) ~ ZsoPP0zZS ~ ZS -+ O. 
Pn r x 

We identify here the free (ZS, ZS)-bimodule ZS 0z ZS with the free left ZsoPP 0z ZS module 

Zsopp 0z ZS via the isomorphism 

uOPp 0 v ~ v 0 u. 

From [53], [72], [85] and our definitions of mappings 8k with k ~ 3, we see that, for every 

1 ~ k ~ n + 2 and every s 0 t E ZsoPP 0z ZS, 

8k(S 0 t) = L n~si 0 ti), 
iEi 

where ni E Z and for every i E I, Siwiti = swt if s 0 t is taken from that direct sum component 

related to wE Sand Si 0 ti is in the direct sum component related to Wi E S. 

This is a motivation to make the general definition below. Before that we introduce some 

notation. If in the coproduct EB(ZSOPP 0z ZS) we think of P as a subset of S, then any element 
P 

s0t belonging to that ZsoPP0zZS which is the uth component of the coproduct will be denoted 

by (s 0 t)u. 
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Definition 2.2.33 A free resolution 

EB ('llSopp ®z ZS) ~ ... ~ EB(ZSOPP ®z ZS) ~ ZS ~ 0, 
pn Po 

of ZS is called S-graded if for each 1 ~ k ~ n and each (s ® t)u E EB(ZSOPP ®z ZS) we have 
Pk 

such that 

for every i E I, and 

6k(s ® t)u = L ni(si ® ti)Uil 
iEI 

60(s ® t)u = sut. 

2.3 A Remark and an Open Problem 

The result of Theorem 2.1.2 is a special case of that of Corollary 7.2 of [55] which states that if 

an algebra A over a commutative ring K with a unit element admits a finite Grobner base G, 

then a finitely generated A -bimodule with finite Grobner base modulo G has type bi -FP 00. 

Indeed, as we saw in Example 1.8.3, ZS admits a finite Grobner base if S is given by a finite 

complete presentation; therefore considering ZS as a (ZS, ZS)-bimodule, we obtain straightaway 

from the above result that ZS has type bi-FPoo . 

The advantage of our topological approach restricted in the ca..<;e of integral monoid rings, 

is that there is the possibility that one can define finiteness conditions FDT nand FHT n for 

monoids withn ~ 3 in a similar way with that of [72], generalizing McGlashan's results. A first .. 

step to achieve this is to solve the following. 

Problem 2.3.1 If P = P[x, r] is a finite presentation for a monoid S, then there is a CW­

complex ~n of dimension n > 3 containing the 3-tomplex (V, PI) of [72] and such that ~n 

is expressed as a disjoint union (V,PI,··.,Pn-2) U F.Pn-I.F where (V,PI, ... ,Pn-2) is an­

subcomplex of ~n and PI, ... , Pn-I are finite sets of cells which give rise to (ZS,ZS)-bimodule 

generators of respectively HI(V), ... , H I (V,PI, ... ,Pn-2). Secondly, there is a short exact se-

quence 

of (ZS, ZS)-bimodules. 
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As we saw in the previous sections, we can constmct the complex with the above properties 

if the system is finite and complete. In [72] the above problem is solved for n = 3 by first 

making P = P[x, r] compatible with some <lex and completing the resulting system using 

Knuth-Bendix. The output system poo = P[x, rOO] gives rise to a new Squier complex V(POO) 

with homology trivializers poo obtained by choosing resolutions of all the critical pairs of roo. 

Then, similarly as we did in Proposition 2.2.25, one can obtain the short exact sequence 

where Koo = C2(V(POO )) + J.poo:ZF + ZF.poo.J, and then using Lemma 13 of [72], we get the 

other short exact sequence 

(2.23) 

corresponding to (V(P),p), where p is a set ofbimodule generators of HI(V), 

Finally using the "Snake Lemma", in an identical fashion as in Theorem 2.1.2, one gets the 

basic short exact sequence 

which can then be used to define FDT2, FHT2 and prove the independence of them from the 

presentation. 

Despite the confusing notation, poo and p are not related with each other, but Lemma 13 

of [72] states that, if (2.23) is exact for some homology trivializer q of HI(V), then it stays 

exact for any other, say p. The key to proving that lemma is that every 2-cycle from KP is 

homologous to some 2-cycle in C2(V) and it is here that we use the other trivializer q to express 

this cycle as the boundary of some 3-chain in C3 (V, q). Then it is not difficult to see that the 

cycle we started with is a boundary of a 3-chain in C3(V(P), p), proving the exactness of (2.23) . 

• In the higher dimensional case, two different choices of the set of the trivializers for the first 

homology groups, say PI and ql, give rise to two different 3-complexes and therefore, in each 

case, the corresponding P2 and q2 will be different. Continuing the construction of complexes up 

to dimension n, we end up with two different complexes Lln(p) = (V, PI, ... , Pn-2) U F.Pn-I.F 

and Lln(q) = (V,ql, ... ,qn-2) U F.qn-I. F . The use of the techniques of Lemma 13 of [72] 

becomes useless in this case, but we believe that it is possible to find a relation between these 

complexes which would then enable us to show the equivalence of the respective short exact 

sequences analogues of (2.23). 
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2.4 FDT and FHT for Groups 

It is already known that FDT and FHT are equivalent for groups. Different proofs can be found 

for example in [33] and also in [20], [86]. We show this equivalence in a different way, using the 

topological settings established so far. 

Let G be a group given by a monoid presentation 

(2.24) 

and let C be the cubical oo-complex constructed as follows. Let CI = r be the usual graph 

associated with P. Take r x r and quotient it by "'2 = '" introduced in Section 2.2.2 obtaining 

a 2-complex C2 • In fact C2 is just the Squier complex V = V(P). Then take (V x V)(3) and 

quotient it by the appropriate "'3 obtaining a 3-complex C3 which contains V. Recursively we 

obtain an increasing sequence of complexes 

of respective dimensions 1, 2, 3, ... , n, n + 1, ... where 

and let 

Note that for every n ~ 1 there is always a quotient map 

arising from "'n+l. The n-cells of C with n ~ 2, are those of the form el ~ ... ~ en with ei positive 

edges and can be thought of as cubes with either top cell (el ~ ... ~ en-I).ten and bottom cell 

• • (el ~ ... ~ en_I).reno or wIth top cell LeI-{e2 ~ ... ~ en) and bottom cell rel.(e2 ~ ... ~ en). 

Proposition 2.4.1 For any other component Vw of the Squier complex of P, we have 

Proof. Since the existence of the n-cells with n ~ 3, do not influence the homotopy type of 

the complex, we need only to show that 7l"1(Cw ) ~ 7l"1(CA). We will make use of Proposition 1.18 

of [40] and for this we need a homotopy equivalence f : Cw ~ CA. We define f to be the map 

whose restriction on each cell coincides with the map of Property (ii) which in this case sends 
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each cell 0" E Cw to W-1.0" E C)\, Similarly, define 9 : CA ----+ Cw by sending every cell 0" E CA to 

W.O" E CWo We will show that gf ~ idcw and fg ~ idc>.. For simplicity we will suppose that w is 

a single letter. The proof in general does not differ in essence 'from the above special case. To 

show the first homotopy we need to introduce a continuous map F : I x Cw ----+ Cw such that 

F({l} x Cw) = gf and F({O} x Cw) = idcw' Recall that for every cell 0" E Cw, gf(O") = ww-1.0" 

and that from the choice of w E x, we have that ww-1 = te and A = re where e is the edge 

transforming ww-1 to A. There is a continuous map F: 

(2.25) 

where !l>e is the characteristic map of e and p is the map who..'le restriction on CI X Cn for every 

n ~ 1 is Pn+l. It is easy to see that F maps {1} x 0" ~ te.O" E 8(e ® 0") and {O} x 0" ~ re.O" E 

8(e®0"), and when composed with the inclusion t : Uue®O" ~ Cw it gives the desired homotopy 

F. The second homotopy fg ~ idc>. is shown in a similar fashion .• 

Corollary 2.4.2 For every w, we have an isomorphism of groups 1r1(Vw) ~ H1(Vw)' 

Proof. Indeed, from Lemma 7.4 of [39] we have that 1rl (VA) is abelian and then from Propo­

sition 2.4.1 we obtain that 1rl(Vw) is abelian for every w. Since Hl(1Jw) is the abelianization of 

1rl(1Jw), it follows that 1rl(1Jw) ~ HI (1Jw) . • 

Note that the isomorphism of the above corollary is the Hurewicz morphism 

hI : 1r1(1Jw) ----+ HI(Vw) as described in Lemma 1.2.9. Since changing the base point of 1Jw 

does not alter 1r1(1Jw) , we will take the base point to be a vertex of1Jw. Also, since every closed 

path in 1Jw is homotopic with a closed path in the underlying 1-skeleton r w, then the morphism 

of Lemma 1.2.9 has a simpler form: 

(2.26) 

where f is a closed path in r w with initial and terntnal the base point chosen and clse, is the 

homology class of the cycle e, corresponding to f. 

Theorem 2.4.3 For groups, FDT and FHT are equivalent. 

Proof. As we have seen before, FDT implies FHT in general so it remains to show the 

converse. First we define a bi-action of F on EBWEF1r1 (1Jw ) as follows 

u.[f]·v = [u.J.v] 
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where u, v E F and I is a closed path in r w. It is easy to see that this action is well defined. 

Suppose now that (JJwEFH1(Vw) is a finitely generated (ZG,ZG) bi-module and let 

{~i I i = 1, ... ,n} be representative cycles of these generators which we may take without 

restriction to be polygons in the sense that the edges represented in each one ~i, form a closed 

path lei in f. Denote by h the path ,Ie/y-l where, is a path in r from the base point to 

any of the vertices represented in lei· 

Let now I be some closed path in r w and cls~f be the corresponding element of H1 (Vw ) 

which from the assumption can be written in the form 

cls~f = L£juj.cls~j.vj = L£jcls(uj.~j.Vj) 
j j 

where £j = ±1, cls~j are generators and Uj, Vj E F. From (2.26), we have that 

But 

and then we get 

[I] = II [Iuj.ej.Vjr j . 
j 

[I] = II(uj·[h;J.vj)ej . 

j 

This means that, if the classes [hj] are all 0, then every [I] = 0 and therefore 1I"1(Vw ) = O. In 

topological terms this means that, if we add 2-cells p to the complex V with boundaries the 

closed paths hj together with their translates, then we obtain a complex VP with 11"1 (VP) = 0, 

or in other words, the group is FDT. • 

• 
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Chapter 3 

Finiteness Conditions for Small 

Categories 

3.1 Introduction 

Small categories are sometimes called monoids with several objects. This is due to the simple 

fact that, if the category has a single object, then it is a monoid. Similarly additive categories 

generalize unitary rings and are sometimes called rings with several objects. The analogy 

goes further. For every fixed unitary ring R, the category R-Mod of left R-modules and R­

module morphisms is a special ca..<;e of the category Add(A, Ab) of additive functors and natural 

transformations between them. Here A is an additive category. In other words, if we replace 

a ring R by an additive category A, all the left-R-modules by additive functors from A to Ab 

and all the R-module morphisms by natural transformations between additive functors, then 

we get the category Add(A, Ab). Also notions such as free, projective and finitely generated in 

the category R-Mod have their natural analogues in the class of functor categories Add(A, Ab) 

where again A is additive. • 
The main scope of this chapter is to introduce finiteness conditions of a homological nature 

for small categories which would generalize finiteness conditions for monoids such as bi-FPn and 

left (respectively right)-FPn , and find the relations between them. We make those definitions in 

Section 3.4.1 but first we recall from [67] the definition of functors BE Add(A, Ab) of type FPn 

and then we say that a small category e is of type bi-FPn if a certain functor ze E Add(ZeOPP0z 

ze, Ab) is of type FPn in Add(ZeOpp 0z ze, Ab). Similarly, we say that a small category e 

is of type left (respectively right)-FPn if a certain functor Z E Add(Ze,Ab) (respectively 
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Z E Add(ZCOPP, Ab)) is of type FPn in Add(ZC, Ab) (respectively in Add(ZCOPP, Ab)). As it 

is expected, we show that the implication bi-FP n ==> left (right )-FP n holds true. More precisely 

we prove the following. 

Theorem 3.4.5 For every small category C the following implication holds true: 

bi-FPn ==> left (right)-FP n. 

In [67] Malbos claims that one can obtain a projective finitely generated resolution of the 

trivial left ZC -module Z in Add(ZC,Ab) by applying the left additive Kan extension functor 

Z 0zc _ to a projective finitely generated resolution of the (ZCOPP 0z ZC)-bimodule ZC in 

Add(ZCOPP 0z ZC, Ab). In fact he does not give a proof for this. It seems that he is referring 

to the Corollary 10.5 of [74] which states that, if C is an additive category and 

... --+ Xn --+ Xn- l --+ ... --+ Xl --+ Xo --+ G --+ 0 

is an exact sequence of projectives in Add( COPP,Ab), and if F E Add(C,A) where A is an 

abelian category with coproducts, then 

... --+ F 0c Xn --+ F 0c Xn- l --+ ... --+ F 0C Xl --+ F 0c Xo --+ F 0C G --+ 0 

is exact in A. 

This can be adapted to work for the category Add( COPP 0z 1), Ab) instead of Add( COPP, Ab) 

with V additive and for Add(C, Ab) instead of Add(C, A), but still the condition that 

G E Add(COPP 0z 1), Ab) is projective will not be satisfied in our case, because in that case 

we have that G = ZC E Add(ZCOPP 0z ZC, Ab) and ZC is not projective in general. For 

example, if C is a group G such that G =1= [G, G], then we know that ZG is not a projective 

(ZGopp 0z ZG)-bimodule. 

Be..<;ides that, one still need to compute Z 0zc ZC and Z 0zc Xk for every k ~ 0 and show 

that indeed Z 0zc ZC ~ Z and Z 0zc X k are proje~ive and finitely generated if Xk are such. 

There is also a possibility that one may use Proposition 11.8 of [74] which states that, if 

C and 1) are K-projective K-categories, and X be a projective resolution for F in Add(C, A), 

and Y be a projective resolution for G in Add(COPP 0z V, Ab), then X 0c Y is a projective 

resolution for F 0c Gin Add(V, Ab) provided that :L'or~(F, G) = 0 for all n > O. 

Again, this approach would need to compute explicitly the tensor X 0c Y to check for finite 

generation and for the condition Tor~(F, G) = O. 

For this reason we decided to give here our own proof. To prove our Theorem 3.4.5, we 

generalize the techniques introduced in [53] to show that for monoids the condition bi-FPn 
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implies left (right)-FPn . Since this techniques requires the tensor product of modules, we give 

in Section 3.3 the notion of the tensor product of functors which, as can be easily verified, 

coincides with the tensor product of modules if the functors happen to be modules. 

In [28] Dwyer and Kan introduced the notion of the category of factorizations FC of a small 

category C. Its objects are the morphisms of C and a morphism w -t w' is a pair (u, v) of 

morphisms in C such that w' = vwu. One can study what are called in [7] natural systems of 

abelian groups on C which are functors D : FC -t Ab. Every such functor extends to an 

additive functor D' : ZFC -t Ab where ZFC is the free additive category on FC. In contrast 

with Add(ZC, Ab) whose object are functors associating with each object of C an abelian group, 

the functors of the category Add(ZFC, Ab) associate with each morphism in C to an abelian 

group. In the case of monoids, the difference between these two categories is apparent and one 

can expect to have finiteness conditions of a new nature if working with the second category. 

In Section 3.4.2 we deal with small categories of type f-FP n defined as those small categories 

C with the property that a certain functor Z E Add(ZFC, Ab) called there the trivial natural 

system, is of type FP n in Add(ZFC, Ab). In fact what we call here type f-FP n, is introduced 

from Malbos in [67] and called there type FPn . This is slightly confusing with properties bi­

FPn or left and right-FPn , so we decided to change its name to f-FPn with f- standing for 

factorization. 

ing. 

To relate properties bi-FPn and left (respectively right)-FPn with FPm we prove the follow-

Theorem 3.4.10 If a small category C is of type f-FP n , then it is of type bi-FPn . 

Regarding to monoids seen as categories, we prove the following. 

Theorem 3.4.12 If the monoid S is of type bi-FP n and the corresponding free partial 

resolution is S-graded, then S is of type f-FPn . In particular, monoids which are given by a 

finite complete presentation are of type f-FP n . 

In Section 3.5, we look for ways to build partial ~esolutions for the trivial functor 

Z E Add(ZFC, Ab). Theorem 3.5.2 gives a resolution of length 3 and implicitly a condition 

for a category to be of type f-FP3' The finiteness of that resolution is related with a property 

which we call FDT for small categories and is defined in a similar fashion to FDT for monoids 

(see [85] or [96]). More precisely, we prove the following. 

Theorem 3.5.3 If C is of type FDT, then C is of type f-FP3' 

The proof of Theorem 3.5.2, which is the category versio~ of that of Theorem 3.2 of [19], 
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deserves a little bit more attention. The exact sequence of functors we construct 

ZqB] ~ Zqr] ~ zqx] ~ Bo(ce) ~ Z -+ 0, (3.1) 

is related to three graphs. The first one is UF(x), the underlaying graph of the free category 

F(x). The second is the Squier graph rex, r) which rewrites the paths of U F(x) by using rules 

from r seen as parallel paths in U F(x). The third one is .6. (x, r, B) which, similarly with the 

first two, rewrites the paths of r(x, r) by using rules from B consisting of parallel paths from 

rex, r). The expectation is that, if we want to extend the sequence (3.1) further, we have to 

extend the above sequence of graphs further by introducing rewrite rules of paths of the current 

graph at each stage, but the notations become complicated and the boundary transformations 

8n are difficult to compute for n > 3. 

3.2 Basic Notions from Category Theory 

3.2.1 Categories and Functors 

We will give in this section a few basic notions from Category Theory which are the essential 

ingredients to understand the work in the two last sections. One can find the relevant material in 

books like [64], [75] and [93] or in [66], [67], [74] and [76]. There is also a very helpful treatment 

of additive and abelian categories in Chapter 7 of [82]. 

Definition 3.2.1 A category C is a class 0, together with a cla.<;s M which is a disjoint union 

of the form 

M = U homc(a, b). 
(a,b)EOxO 

We call the members of M morphisms or arrows and those of 0 objects. For each triple of 

objects (a, b, c) EO x 0 x 0, there is a function homc(b, c) x homc(a, b) --+ homc(a, c). The 

image of the pair (13, a) under this function will be ~alled the composition of 13 and a, and will 

be denoted by j3a. The composition satisfies the following two axioms. 

(i) Associativity: Whenever the compositions are defined, we have (-yj3)a = "(j3a). 

(ii) Existence of identity: For each a E 0 we have an element la E homc(a, a) such that 

1aa = a and j31a = 13 whenever the composition is defined. 

If there is no danger of confusion, we write C(a, b) instead of homc(a, b) or sometimes 

hom(a, b). Note that hom(a, b) may be empty for certain pairs (a, b). For each morphism 
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0: E home( a, b), we say that a is the domain of 0: and b is the codomain of 0:. Any two 

morphisms 0:, (3 E C( a, b) are called parallel. If only the morphism 0: is given and we want to 

indicate the domain and the codomain of it, we use w for the <L~main and TO: for the codomain. 

If 0 and M are sets, then we call the category small. 

We will write c E C to mean that c is an object of C and the objects of a category will 

be denoted by the first letters of the Latin alphabet a, b, c, d, ... . For the morphisms, we use 

letters e, j, g, h, or Greek letters 0:, (3, "I, O. 

Definition 3.2.2 We say that a category C' is a subcategory of C if 

(i) C' ~ C. 

(ii) homc,(a, b) ~ home(a, b) for all (a,b) E C' xC'. 

(iii) The composition of two arrows in C' is the same as their composition in C. 

(iv) la is the same in C' as in C for every a E C'. 

If furthermore homc,(a, b) = home(a, b) for all (a, b) E C' X C' we say that C' is a full 

subcategory of C. 

Below is a list of some well known examples of categories. 

Set: the category of all sets and functions between them. 

Grp: the category of all groups and group homomorphisms between them. 

Ab: the category of all abelian groups and group homomorphisms between them. 

Rings: the category of all rings and ring homomorphisms between them. 

R-Mod: the category of all left R-modules and module homomorphisms between them. 

Top: the category of all topological spaces and continuous functions between them. 

Top*: the category of all topological spaces with a base point and continuous functions 
• between them which are base point preserving. 

Toph: the category of all topological spaces and homotopy classes of functions between 

them. 

Definition 3.2.3 If la and C are two categories, we can construct the product category la X C 

having objects pairs (b, c) E la x C with bEla, c E C, and hom-sets consisting of arrows 

(b,c) ~ (b',c') , 
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where IE Iffi(b, b'), 9 E C(c, c'). The composition of two arrows 

(b,c) ~ (b',c') (~) (b",c") . 

is defined to be (f', g') (f, g) = (f'I, g' g). 

Definition 3.2.4 To each category C we assign a category denoted by copp whose objects and 

morphisms are in a 1-1 correspondence with those of C in such a way that to each morphism 

a : a ---+ b in C the corresponding morphism in copp is aOPP : b ---+ a. The composition is 

defined by aOPPj3opp = (j3a)OPP whenever j3a is defined. The category COPP is called the opposite 

category of C. 

Definition 3.2.5 Let C and Iffi be categories. (i) A covariant functor T : C ---+ Iffi with domain 

C and codomain Iffi, consists of two functions: The object fl.l,nction T, which assigns to each 

object c E C an object 'l'(c) E Iffi and the arrow junction written again by '1', which assigns to 

each arrow a: c ---+ c' of C an arrow T(a) : T(c) ---+ T(c') of Iffi. We require that 

T(lc) = IT (c), for all c E C 

and T(j3a) = T(j3)T(a) whenever j3a is defined. 

(ii) A contravariant junctor T : C ---+ Iffi again consists of two functions: The object function 

T, which assigns to each object c E C an object T(c) E Iffi and the arrow function written again 

by T, which assigns to each arrow a : c ---+ c' of C an arrow T(a) : T(c') ---+ T(c) of Iffi. We 

require that 

T(lc) = IT (c), for all c E C 

and T(j3a) = T(a)T(j3) whenever j3a is defined. 

Remark 3.2.6 In general, if we refer to a functor, we will mean a covariant functor, unless 

• 
otherwise stated. 

Remark 3.2.7 It is easy to see that a functor T : C ---+ Iffi is contravariant if the functor 

T : COPP ---+ Iffi, which sends c t---+ T(c) and aOPP : b ---+ a to T(a), is covariant. 

Example 3.2.8 Let C be a small category. For each fixed object a E C, the covariant hom­

functor 

C(a, -) = hom(a, -) : C ---+ Set 
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sends each object bE C, to hom(a, b) E Set and each arrow f3 : b - b' to the map 

hom( a, (3) : hom( a, b) - hom( a, b') 

defined by the assignment f I------t f3f for each f : a-b. 

Similarly one defines the contravariant hom-functor 

C(_, b) = hom(_, b) : C - Set 

which sends each object a E C, to hom( a, b) E Set and each arrow a : a ---t a' to the map 

hom(a, b) : hom(a', b) ---thom(a,b) 

defined by f I------t fa for each f: a' ---t b. 

Example 3.2.9 (Homology as a Functor) As we mentioned in Section 1.2.1, every con­

tinuous map f : X - Y between two topological spaces X and Y induces a morphism 

f. : Hn(X) ~ Hn(Y) between the respective nth homology groups of X and Y, which we now 

denote by Hn(f). It is easy to see that Hn : Top - Ab is a functor, which we call the nth 

homology functor. 

Example 3.2.10 (7rl as a Functor) Also 7rl : Top. - Grp is a functor from based spaces 

Top. to Grp as can be easily checked. 

Example 3.2.11 A functor U : C - IE which forgets some of the structure of the domain 

category C, is called forgetful. The functor U : Grp ---t Set which sends each group G to its 

underlying set G and each morphism f : G - G' to the underlying set function f : G - G', 
is an example of a forgetful functor. 

• 
Definition 3.2.12 A functor T : C ---t IE is called faithful (respectively full) if the function 

is injective (respectively surjective) for every Cl, C2 E C. A full and faithful functor T which 

is bijective on objects will be called an isomorphism. We say that two categories C and IE are 

isomorphic, denoted by C ~ IE, if there is an isomorphism T : C - IE . 
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Example 3.2.13 For any two categories lIl\ and C, lIl\ x C ~ C x lIl\ via the isomorphism 

(3.2) 

sending (b,c) f-+ (c,b) and ({3,,) f-+ (,,{3). 

Any functor S : lIl\ x C --+ ill> is called a biftmctor. If S : lIl\ x C --+ ill> is a bifunctor and 

b E lIl\ (respectively c E C) are fixed objects, then we have the "obvious" induced partial functors 

S(b, _) : C --+ ill> (respectively S(_, c) : lIl\ --+ ID». 

Definition 3.2.14 An arrow a: a --+ b in a category C is called invertible if there is {3 : b --+ a 

such that af3 = lb and f3a = la. If such an arrow exists, then we call objects a and b isomorphic 

and denote this fact by a ~ b. 

Definition 3.2.15 Let Fl , F2 : C --+ lIl\ be two functors. A natural transformation from Fl to 

F2, is a family of morphisms oe : Fl(C) --+ F2(C), C E C such that, for every c, c' E C and every 

morphism e : c --+ c', the diagram 

Fl(C) ~ F2(C) 

Fl(e) 1 1 F2(e) 

Fl (c') a:.;+ F2 (c') 

commutes. 

Whenever the above commutativity occurs, we say that oe : Fl(C) --+ F2(C) is natural in c. 

A natural transformation with every oe invertible, is called a natural isomorphism. 

Example 3.2.16 In Example 3.2.9 take Top* instead of Top. The family 

of Hurewicz morphisms for every X E Top* is a natural transformation from 71"1 to HI . 

• 
Definition 3.2.17 Let 1R and C be categories. The flLnctor category CB has objects all functors 

from 1R to C and each hom-set CB(S, T) consists of all natural transformations from S to T. The 

composition of natural transformations is defined as follows. If 0" : R --+ Sand 7 : S --+ '1' 

are natural transformations, then their components for each b define arrows (7· O")b = 10 0 O"b 

which are the components of a natural transformation 7·0" : R --+ T. Sometimes when we 

need to simplify the notations and, if there is no confusion, we denote the hom-set CB(S, T) by 

Nat(S,T). 
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We usually denote the objects of a functor category e$ by Latin upper case letters. 

One can define the evalMtion (bi)functor 

Eval : ell! x lR ---t e (3.3) 

which is defined on objects by the assignment: (F, b) E ell! x lR f---+ F(b) E e and on morphisms 

as the diagonal of the commutative diagram 

F(b) ~G(b) 

T(f) 1 ~ 1 G(f) 

F(b') ~ G(b') 

An important notion in Category Theory is that of representable functors. 

Definition 3.2.18 Let lI) be a category with small hom-sets. A representation of a functor 

K : lI) ---t Set is a pair (r, 1/J), with r an object of lI) and 

a natural bijection. The object r is called the representing object. The functor K is said to be 

representa,ble if such representation exists. We will denote a natural bijection by ~. 

Example 3.2.19 Let U : Grp ---t Set be the forgetful functor. The free cyclic group Z is a 

repre..'lenting object of U where the natural transformation 1/J : Grp(Z, _) ---t U is the family of 

mappings 1/JG for every G E Grp, sending each morphism f : Z ---t G to f(l) E U(G). 

There is an elegant way of realizing in the general situation the natural transformations 

1/J : ID>( r, _) ---t K, given by the Yoneda Lemma below. 

Lemma 3.2.20 (Yoneda) If K : lI) ---t Set is a functor from lI) and r E lI) (for lI) a category 

with small hom-sets), there is a bijection • 
Y : Nat(ID>(r, _), K) ~ K(r) 

which sends each natural transformation 0: : ID>(r, _) ---t K to O:r(l r ), the image of the identity 

r ---t r. Furthermore, Y is natural in both rand K. 

Bya careful inspection of the following commutative diagram, one can see that every natural 

transformation from ID>(r, _) to K is uniquely determined by the image under the arrow 

O:r : ID>(r,r) ---t K(r) 
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of the identity lr : r ~ r. 

D(r, r) ~ K(r) 

D(r,J) 1 1 K(f) 

D(r, d) ~K(d) 

We call the map Y : Nat(Jf}(r, _), K) ~ K(r) of the lemma, the Yoneda map. 

Theorem 3.2.21 The Yoneda map is a bijunctor isomorphism 

where E is the evaluation functor and T is the isomorphism (3.2). 

For the proof see Theorem 4.2.2 of [93]. We will return to the Yoneda Lemma later when 

we study additive categories. 

3.2.2 Special Objects and Special Morphisms 

We will devote this section to some special types of objects and morphisms in general categories 

which will be of particular interest in functor categories Add(C, Ab) in later sections. 

Definition 3.2.22 An arrow a : a ~ b in a category Cis epi if for any two arrows 

f3l, f32 : b ~ c, the equality f3la = f32a implies that f3l = f32. We will denote an epi in the 

future by _. In this case b is called a quotient object of a. 

Example 3.2.23 In Set epi arrows coincide with surjections. In Grp epi arrows coincide with 

surjective group homomorphisms. See Exercise 5, p. 21, [64]. 

Definition 3.2.24 A functor '1' : C ~ m will be called an epijunctor, if'1'(-y) is epi whenever 

'Y is epi. 

Definition 3.2.25 An arrow a : a ~ b in a clftegory C is mono if for any two arrows 

f31, f32 : c ~ a, the equality af31 = af32 implies that f31 = f32' We will denote a monic in the 

future by >--+. In this case a will be called a subobject of b. 

Example 3.2.26 In Set and Grp, monomorphisms are precisely the injections. 

Definition 3.2.27 An object t E C is called terminal in C if for each a E C there is exactly 

one arrow a ~ t. An object sEC is called initial in C if for each a E C there is exactly one 

arrow s ~ a. A null or zero object z E C is an object which is at the same time initial and 

terminal. 
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Example 3.2.28 In Set the empty set is an initial object and everyone-point set is a terminal 

object. In Grp the trivial group {I} is a null object. 

Definition 3.2.29 If C has a zero object 0, then for any two objects a, bEe there is exactly 

one morphism a --+ b which factors through 0; that is, it can be represented in the form 

a ---+ 0 --+ b. We call this the zero morphism and denote it by Oa,b. It does not depend on the 

choice of the zero. 

Example 3.2.30 In Grp the one element group {I} is a null object and for every two groups 

A and B, the morphism 8 : A ---+ B which maps every element of A to the identity of B is a 

zero morphism. 

Definition 3.2.31 Let C be a category. We call an object c E C projective if, for every 

morphism f : c --+ b and every epimorphism j), : a - b, there is a morphism 9 : c ---+ a such 

that the following diagram commutes. 

This is equivalent to saying that C(c, _) is an epifunctor. 

Example 3.2.32 In Set every object is projective and in Grp (respectively Ab) projectives 

coincide with free groups (respectively free abelian groups) ( [63], p. 2). 

Definition 3.2.33 If every object in a category C is a quotient object of a projective, then we 

say that C has enough projectives. 

Example 3.2.34 The categories Ab, Grp and R-Mod have enough projectives . 

• 
Definition 3.2.35 Let C be a category and {cihEI be a family of objects in C. A coproduct of 

this family is a family of morphisms {Ui : Ci ---+ c}, called injections, such that for each family 

of morphisms {O:i : Ci ---+ c/} there is a unique morphism 0: : c --+ c' with O:Ui = O:i for all 

i E I. The object c is unique up to isomorphi..c;m and will be denoted by EBiEICi. 

Dually one can define the product of a family {CihEI of objects of C as follows: 
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Definition 3.2.36 It is a family of morphisms {Pi: C ~ Ci}, called projectionB, such that for 

any family of morphisms {ai : c' ~ Ci} there is a unique morphism a : c' ~ C with Pia = ai 

for all i E I. The object C is unique up to isomorphism and will be denoted by XiElci· 

Example 3.2.37 The coproduct of a family of modules (respectively abelian groups) {AihEI 

exists in R-Mod (respectively Ab) and is equal with EBiEIA. Products also exist in the 

respective categories and are just direct products denoted usually by I1iEI Ai. 

Definition 3.2.38 A set 9 of objects in a category C is called a generating Bet if, for every 

pair of different parallel morphisms a, {3 : a ~ b, there is a morphism 'Y : 9 ~ a with 9 E 9 

such that a'Y f:. {3'Y. An object 9 is called a generator if {g} is a generating set. 

Example 3.2.39 Everyone point set generates Set, Z generates Ab and Grp, and R generates 

R-Mod. As we will see later in Theorem 3.2.67, for any small category C, the functor category 

AbC is generated by the set {C(c, -) ICE C}. 

Definition 3.2.40 We call an object of a category finitely generated with respect to a family 
n 

of generators {gihEI if it is a quotient object of a finite coproduct of the form EB gik where 
k=l 

ik E I for k = 1, ... ,n. We call the object free with respect to the above family if it is of the 

form EBkEKgik where ik E I for k E K. 

Remark 3.2.41 The existence of a family of generators 9 for a category C which has coprod­

ucts does not imply that every element of that category is a coproduct of elements from g. For 

example, the empty set 0 is a generating objects in the poset P(S) where S is a non-empty set, 

but it is not true that for every a E S, a f:. 0 we have a = EBkEK0 with K f:. 0. 

There is also a more algebraic definition of free objects in a category satisfying a specific 

condition. Before that we need the following. 

• Definition 3.2.42 Let A and X be categories. An adjunction from X to A is a triple (F, G, c.p) : 

X ~ A, where F and G are functors 

F 
X~A, 

G 

while c.p is a function which assigns to each pair of objects x E X and a E A a bijection of sets 

c.p = c.px,a : A(Fx, a) ~ X(x, Ga) 

which is natural in x and a. We say that F is a left-adjoint for G and G is a right-adjoint for 

F. This will be denoted for short by F -1 G. 
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Definition 3.2.43 Let C be a category and let U : C --+ Set be a faithful functor. Suppose 

that there exists a functor Fr : Set ---+ C such that Fr -I U. Then, for every set S, Fr( S) is 

called the free object on S (relative to U). 

For such a category C as above, one can easily show that the set 

{Fr(S) I with S non-empty}, 

is a set of generators of C. This follows easily from the existence of the natural bijection 

C(Fr(S), c) ~ Set(S, U(c)) for any c E C, S E Set, and from the fact that together with one­

point sets of Set, all non-empty sets generate Set. On the other hand, Proposition 10.6 of [41J 

shows that coproducts of free objects are free objects. Therefore any coproduct of generators 

Fr( S) yields a free object in our new sense as well. As for the connection between free and 

projective objects in a category we give the following. 

Lemma 3.2.44 If the flJ.nctor U : C ---+ Set send.9 epimorphisms to surjections, then ever1J 

free object in C is projective. 

This is proved in Corollary 10.3 of [41J. 

The following lemma will be useful later. 

Lemma 3.2.45 For ever1J small category C, the categor1J AbC contains the coproducts and the 

products of every family of objects {1ihEI. 

Proof. We give the proof for coproducts only because the proof for products is the dual. 

For the family of objects PihEI E AbC we define for every c E C, T(c) = $iEI1i(c) and, if 

f : c ---+ d, then we define T(I) = $iEITi (I). In the following prism 

Ti(C) Qi,c • T'(c) 

~ v.: 
T;(f) T(c) T'(f) 

we have by definition 

ac(2: Xi) = 2: ai,c(Xi), 
i i 
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for Xi E Ti(C) and i E J where J is a finite subset of I, and therefore the top and the bottom ofthe 

diagram are commutative. Also the back and the left hand side squares are commutative since 

ai and Ui are natural transformations. The only thing we have to show is the commutativity 

of the right hand side square, thus proving the naturality of a. Indeed, 

(T'(f) 0 ac)(Li Xi) = T'(f)(Li ai,c(Xi)) (from above) 

= Li(T'(f) 0 ai,c)(Xi) = Li(ai,c' 0 Ti(f)) (Xi) (the front square commutes) 

= (act 0 'l'(f))(Li Xi) (from the definition of the maps '1'(f) and act) .• 

Definition 3.2.46 Let A be a category with a null object 0, and let a : a ---+ b. We will say 

that u : k ---+ a is the kernel of a, denoted by K era, if au = 0, and if for every morphism 

u' : k' ---+ a such that au' = 0 we have a unique morphism 'Y : k' ---+ k such that U'Y = u'. 

Equivalently, the kernel of a is given by the following pullback diagram 

Definition 3.2.47 Let A be a category with a null object 0, and let a : a ---+ b. Define the 

cokernel of a, denoted by cokera, to be the opposite of the kernel of aOPP in A °PP. In other 

words, it is given by the following pushout diagram 

a--O 

al 1 
b--c 

P 

Example 3.2.48 We can employ the above definition to describe kernels in Grp since it has 

a null object which is the one element group {I}. It turns out that the kernel of an arbitrary 

morphism f: G ---+ H is the inclusion N <-+ G where N = {x E G I f(x) = IH}. In R-Mod 

the null object is the trivial module {O} and then we ftave that the kernel of a module morphism 

f : A ---+ B is the inclusion K <-+ A where K = {x E A I f(x) = OB}. In Ab and R-Mod the 

cokernel of a morphism f: A ---+ B exists and is given by the arrow B ---+ B/ f(A). 

Definition 3.2.49 Let A be a category which has a null object and contains kernels and cok­

ernels. The image I m( a) of a morphism a : a ---+ b is defined as I m( a) = ker( cokera). 

Example 3.2.50 In Grp the image of f : G ---+ H is just 

I m(f) = {h E H I 3g E G : h = f (g) }. 
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Definition 3.2.51 In a category with a null object and kernels, a sequence of two morphisms 

is called exact if: 

(i) gf = OJ 

(ii) in the factorization f = (Kerg)f' guaranteed by (i) (see Definition 3.2.46), f' is an 

epimorphism. 

A sequence of morphisms 

is said to be exact at an if fn+! and fn satisfy (i) and (ii). It is exact if it is exact at every 

an. A short exact sequence is an exact sequence of the form 

o --+ a ~ b ....!!...c,. c --+ O. 

We denote it succinctly by 
m p 

a>-+ b -+> c. 

Lemma 13.1.4 of [93] shows that the exactness of the sequence a -.L. b ~ c at b is equivalent 

to the condition that Im(f) and Ker(g) are equivalent subobjects of b. 

Definition 3.2.52 A morphism p : b --+ c is called a retraction if there is q : c ---+ b such that 

po q = ide. A short exact sequence 

is called split if p is a retraction. 

Definition 3.2.53 Let C be a category which has a null object and let 

• 
( J'l) 8n +2 8n +1 8n 8n -l 
a, u : --+ an+l ---+ an --+ an-l --+ ... 

(b r) dn +2 b dn +! b dn b dn-l 
,u : ---+ n+l --+ n --+ n-l ---+ ... 

be two sequences of morphisms such that 82 = 0 and 02 = O. A chain transformation 

f : (a, 0) ---+ (b, 8) is a family of morphisms 

such that 

8n -l 0 fn = fn-l 0 On. 
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3.2.3 Presentations of Small Categories 

We will give in this section the definition of a presentation of a small category which mimics 

that of a monoid. First recall that a directed graph x is a pair (0, A) with 0 the set of vertices 

and A the set of edges e, together with a pair of functions 

We call ie the domain of e and re the codomain of e. A morphism D : x ---+ x' of graphs is a 

pair of functions Do : 0 ---+ 0' and D A : A ---+ A' such that 

for every e E A. It is ea..'ly to see that graphs together with graph morphisms form a category, 

which we denote by Grph. 

Every category C determines a graph UC with the same set of objects, and the set of arrows 

coincides with the set of arrows of C. Thus every path in UC gives rise to a graph arrow. Also 

every functor between categories F : C ---+ lR can be seen as a graph morphism U F : UC ---+ UlR 

and as a result we have the forgetful functor U : Cat ---+ Grph. We call UC the underlying 

graph of C. This is not the only relation between these two categories. Indeed, any graph X 

"generates" a category F(x) with the same set of vertices and with arrows, paths of x. We call 

F(x) the free category generated by the graph x. The following theorem (see Theorem 1, pp. 

49 of [64]) certifies the above chosen term. 

Theorem 3.2.54 Let x be a graph. There is a morphism P: x ---+ UF(x) of graphs from x to 

the underlying graph U F(x) of F(x) with the following universal property. Given any category 

lR and any morphism D : x ---+ UlR of graphs, there is a unique functor D' : F(x) --+ lR with 

(U D') 0 P = D such that the following diagram commutes 

• 
x~UF(x) 

~~UD' 
UlR 

There is even more in this theorem. Graph morphisms D : x ---+ UlR are in a 1-1 cor­

respondence with functors D' : F(x) ---+ lR via the bijection D' 1---+ D = (U D') 0 P. This 

bijection 

Cat(F(x), B) ~ Grph(x, UlR) 
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is natural in x and lR. In fact this is an example of an adjunction as described in Definition 

3.2.42. 

Once we have assigned to every graph a free category gene~ated by this graph, assignment 

which generalizes the construction of the free monoid generated by some set, we can attempt 

to extend this analogy further by expressing categories through generators and relations. The 

Proposition 1, p. 51 of [64] gives the general idea of taking the quotient of a category by a 

congruence relation. We state it below and make a comment afterwards. 

Proposition 3.2.55 For a given category C, let r be a function 'Which aBBignB to each pair 

of objectB a, b E C a binary relation r a,b on the hom-Bet C( a, b). Then there exiBt a category 

C/r and a functor Q = Qr : C --+ C/r Buch that (i) If Ira,bI' in C, then QI = Qf' j (ii) If 

H : C --+ ~ iB any other functor for 'Which Ir a,bf' implieB HI = HI' for all I and I', then 

there iB a unique functor H' : C/r --+ ~ 'With H' 0 Qr = H. Moreover, the functor Qr iB a 

bijection on objectB. 

The notation C/r used in this proposition is a bit misleading. Actually we do not take the 

quotient of C by r but we first define a new relation r#, the congruence generated by r, as the 

smallest relation containing ra,b for any a, b E C, which is reflexive, symmetric and transitive, 

and satisfies the property: if I, I' : a --+ b such that Ira,bl' and if g : a' --+ a and h : b --+ b'; 

then (hIg)ra,b(hI'g). Then we define C/r to be the category with the same objects as C and 

with hom-sets (C/r)(a, b) = <C(a, b)/r~b. In the special case when C = F(x) is the free category 

generated by some graph x, we call F(x)/r# the category 'With generatorB x and relationB r. In 

contrast to categories, we will agree to use the notation x E x to mean that x is an edge of x. 

3.2.4 Additive Categories 

In the rest of this chapter we deal with additive categories . 

• 
Definition 3.2.56 An additivel category is a category A together with an abelian group struc-

ture on each of its hom-sets, subject to the following condition: 

The composition functions hom(b, c) x hom(a, b) --+ hom(a, c) are bilinear. That is, if 

a,{3 E hom(a,b) and'Y E hom(b,c), then 'Y(a+{3) = 'Ya + 'Y{3, and if'Y E hom(a,b) and 

a, (3 E hom(b, c), then (a + {3h = a'Y + {3'Y. 

lIn [64] these categories are called Ab-categories and the name additive is reserved for those satisfying two 

extra conditions: having a zero element and biproducts. 
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Example 3.2.57 Any ring R with unit element can be thought of as an additive category with 

a single object * corresponding to the unit element of R, and morphisms r : * ---+ * for each 

r E R. In fact in the above definition, every hom(a, a) has a ring structure. Also the category of 

left R-modules R-Mod (respectively right R-modules Mod-R) for some ring R, form additive 

categories. 

Example 3.2.58 For every non additive category C one can construct the category ZC with 

objects those of C and hom-sets ZC(a, b) the free abelian group generated by C(a, b). If we 

require ZC to satisfy the condition of Definition 3.2.56, then ZC becomes an additive category. 

We say that ZC is the free additive category on C. If C is the trivial category with a single 

object and a single morphism, then we denote ZC by simply Z and call it the trivial additive 

category. 

Example 3.2.59 For every additive category A, its opposite AOPP is again additive where 

o.OPP + f30pp = (a + f3)OPP. 

A functor T : A ---+ JR with A and JR both additive, will be called additive if it satisfies the 

condition T(o. + 13) = T(o.) + T(f3) whenever 0.+13 is defined. 

If S : JR x C ---+ ][I) is a bifunctor where JR, C and ][I) are additive and for all b E JR and c E C, 

the respective partial functors are additive, then we call S biadditive. 

Definition 3.2.60 If A and JR are both additive categories, then we can consider the full 

subcategory Add(A,JR) of JRA with objects all the additive functors from A to JR and with hom­

sets equipped with an additive operation: if a, 13 : S ---+ T are natural transformations then, for 

any object a E A, we define (a + f3)a = o.a + f3a. For any two additive functors S, T : A ---+ JR, 

we denote by Nat(S,T)Add(A,JJ!) the hom-set in Add(A,JR) with domain S and codomain T. 

Example 3.2.61 (Left R-modules) An element ~ Add(R, Ab) is an additive functor 

J.L : R ---+ Ab sending * ---+ A and each morphisms r as explained in Example 3.2.57, to some 

endomorphism J.L(r) of A satisfying the following conditions: 

1. J.L(*)(x) = x for all x E A, 

2. J.L(r)(xl + X2) = J.L(r) (Xl) + J.L(r)(X2) , 

3. J.L(rlr2)(x) = J.L(rl)(J.L(r2) (x)), 

4. J.L(rl + r2)(x) = J.L(rl)(x) + J.L(r2) (x). 
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Thus I-" can be identified with the left R-module with underlying abelian group A. Motivated 

by this example we sometimes call Add(C,Ab), where C is additive, the category of left C­

modules. 

If lR and C are additive then one can define in a similar fashion with (3.3) the additive 

version of the evaluation functor 

E : Add(l$, C) x 1$ --+ C (3.4) 

The following mimics the definition of the tensor product of abelian groups. 

Definition 3.2.62 If A and lR are two additive categories, then their tensor product A0zlR is 

the additive category with object set all the pairs (a, b) with a E A and bE 1$, and the abelian 

group of morphisms from (aI, bl) to (a2' b2) is the tensor product 

The bilinear composition in A 0z 1$ is defined by 

Example 3.2.63 We can use the tensor product of categories to define bimodules. If Rand S 

are rings with unit elements, then, as we saw in Example 3.2.57, they are both additive categories 

and from Example 3.2.59 and Definition 3.2.62 we have that SOPP 0z R is an additive category. 

As in Example 3.2.61 one can define the category of left-(SOPP0zR) modules Add(SOPP0zR, Ab) 

whose functors satisfy all the properties of the (R, S)-bimodules. This is why we call its objects, 

(R, S)-bimodules. 

Example 3.2.64 If A is additive and Z is the free additive category generated by the trivial 

category, then it is easy to show that A 0z Z is isomorphic with A . 
• 

The analogues of Lemma 3.2.20 and Theorem 3.2.21 in the additive ca..'le also hold true. We 

include them below for the convenience of the reader. 

Lemma 3.2.65 If II) is additive and K : II) --+ Ab is an additive functor, then the Yoneda 

map 

Y : Nat(lI)(r, -), K)Add(IDl,Ab) --+ K(r), 

'Which sends each natural transformation O! : lI)(r,_) --+ K to O!r(1r), is an isomorphism of 

additive groups. Furthermore, Y is natural in both rand K. 
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For the proof see Lemma 4.3.1 of [93]. We remark here that the functor I!)(r, _) is additive 

if I!) is such. 

Proposition 3.2.66 Ifl!) is additive, then for a : I!)(r,_) ~ K the Yoneda map Y(a) = ar(1r) 

determines an isomorphism 

of biadditive functors I!) X Add(l!), Ab) --t Ab. 

The proof of the above is given in Proposition 4.3.3 of [93]. 

Theorem 3.2.67 If I!) is an additive categor'lj, then the set of all representables I!) ( r, _) is a set 

of generators for Add(ID>, Ab). 

Proof. Let F and G be two objects from Add(JI), Ab) and 1', "., two different natural 

transformations from F to G. We must find dE ID> and'Y : ID>(d, _) ~ F such that T'Y i:- T''Y. 

The fact that T i:- T' implies that there is some c E I!) such that the group morphisms Te, ~ : 

F(c) --+ G(c) are different; hence there is some x E F(c) s11ch that Te(X) i:- ~(x). Since, from 

Lemma 3.2.65, 'Y is uniquely determined from the value 'Ye(le), we take 'Y : I!)(c, _) ~ F to 

satisfy the condition 'Yc(lc) = x. It follows that 1'c'Yc(lc) =f.1'~'Yc(lc) since 1'c(x) =f.1'~(x) .• 

There is also an alternative proof of the above based on Proposition 3.2.66 as is shown in 

Example 10.5.2 of [93]. 

We prove below two interesting properties of represent abIes C(c, _) E Add(C, Ab). First we 

have this. 

Proposition 3.2.68 Let C be a small category. The functor EI1 C( c, _) E Add(C, Ab) is free 
eEC 

(in the sense of Definition 3.2.43) relative to the functor U : Add(C, Ab) --t Set which is 

defined on objects by • 
U(G) = II G(c), 

eEC 

and on morphisms J.L : G ~ H by 

U(J.L) : II G(c) ~ II H(c), 
eEC eEC 

where 

U(J.L) IG(e)= J.Le for every c E C. 
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Proof. Let Fr: Set ---t Add(C, Ab) be the functor defined on objects by 

Fr(S) = E9 E9 C(c, _). 
sES eEiC 

Denote E9 C( c, _) for the moment by A. If h : S ---t S' it can be seen as the map 
eEiC 

{As I S E S} ---t {As' Is' E S'} 

defined by 

h(As) = Ah(s) for every s E S, 

which, when composed with the injections Us' : As' ---t E9 As" induces a unique morphism 
s'ES' 

Fr(h): E9 As ---t E9 As" 
sES s'ES' 

It is easy now to check that Fr is a functor and it sends every set to an additive functor. It 

remains to show that Fr is a left adjoint of U and for this we have to show, that for each functor 

G E Add(C, Ab) and each non-empty set S, there is a natural bijection 

Add(C, Ab)(Fr(S), G) ~ Set(S, U(G)). 

First observe that each r E Add(C, Ab)(Fr(S), G) induces for every s E S and every c E C a 

natural transformation r(s,e) : C(c, _) ---t G such that for every dEC, rds,e) = rd lC(e,d)' From 

the definition of the coproduct, the family 

{r(s,e) I s E S, c E C} 

determines r uniquely and therefore can be identified with r. On the other hand, from the 

Yoneda Lemma, for every c E C, r(s,e) is uniquely determined by rJs,e)(le). Now we can 

construct the map 

• <I>: Add(C, Ab)( E9 E9 C(c,_),G) ---t Set(S, II G(c)), 
sES eEiC ~ 

by 

where 

We will show that <I> is bijective. 

r 1--+ (CPT: S ---t II G(c)), 
eEiC 

CPT(S) = II r£s,e)(lc), Vs E S. 
eEiC 
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Indeed, it is injective since, if T, t : Fr(S) ---+ G are two different natural transformations, 

then there is dEC such that 

Td: Ef) Ef) C(c, d) ---+ G(d) 
sES eEC 

is different from 

td: Ef) Ef) C(c, d) ---+ G(d). 
sES eEC 

This implies that there is s E Sand c E C such that T~s,e) =1= t~s,e) and, from the Yoneda Lemma, 

this is equivalent to TJs,e) (Ie) =1= t~s,e) (Ie), which proves the injectivity of ~. 

For the surjectivity, for any 

cp: S ---+ II G(c) 
eEC 

such that 

cp(s) = IIg~B), 'Vs E S, 
eEC 

we can define T(B,e) for any s E Sand c E C, by letting TJB,e) (Ie) = g~B). In this way we have 

defined a natural transformation T: Ef) Ef) C(c, _) ---+ G since, as we saw earlier, 
sES eEC 

T = {T(s,e) Is E S,c E C}. 

From the definition of ~ we have that ~(T) = cpo 

Lastly, we have to check the naturality of ~ in both Sand G. 

Let h: S ---+ S'. For any T E Add(C, Ab)( Ef) Ef) C(c, _), G), we have 
B'ES' eEC 

(CPr 0 h)(s) = II TJh(s),e)(le), 'Vs E S. 
eEC 

On the other hand we have, 

CProFr(h)(S) = II T~h(B),e)(le), 'Vs E S, 
eEC • 

which proves that ~ is natural in S. 

For the naturality of ~ in G, let J.L : G ---+ G' be some natural transformation. For every 

T E Add(C, Ab)( Ef) Ef) C(c, -), G), we have 
sES eEC 

CPjtor(s) = II (J.L 0 T)~B,e)(le) = II J.Le«T)~s,e)(le)), 'Vs E S. 
eEC eEC 

On the other hand we have 

(U(J.L) 0 CPr)(s) = II J.Le«T)~B,e)(le)), 'Vs E S, 
eEC 
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which proves the naturality in G. 

Finally, if in our definition of Fr( S) we take S to be a singleton, then we get EB C( c, _) to 
eEC 

be free .• 

Remark 3.2.69 The fact that U, as defined in the above proposition, is injective on morphisms, 

can be proved in another way using the fact that EB C(c, _) is a generator in Add(C, Ab) as 
eEC 

shown in Proposition 15.4.1 of [93]. 

We could have defined for every fixed c E C the functor U by 

U = Add(C, Ab)(C(c, _),_) 

and the functor Fr by letting Fr(S) = EB C(c, _) for every set S. Again Fr is a left adjoint of 
sES 

U (see [94], p. 378) but U may fail to be injective on morphisms. If every C(c, _) is a generator, 

then of course U as defined above will be injective on morphisms. We state below a condition 

under which C(c, _) is a generator in Add(C, Ab). 

Lemma 3.2.70 If the small category C has the property that, for evenJ c, dEC the identity 

morphism Ie can be expressed as Ie = J3e,dae,d where ae,d : c ---+ d and J3e,d : d ---+ c, then every 

representable C( c, _) is a generator in AbC. 

Proof. One can show easily as in the proof of Yoneda Lemma that for every F E Abc, 

every dEC and every natural transformation T : C(c, _) ---+ F, T is uniquely determined by 

the value T( ae,d)' Then the lemma follows. • 

The second property of the representables C(c, _) E Add(C, Ab) is proved in the following. 

Proposition 3.2.71 Representable functors C( c, _) E Add(C, Ab) are projective. 

Proof. In fact, as we have observed in Definition 3.2.31, this is equivalent to showing that the .. 
hom functor Add(C, Ab)(C(c, -), -) is an epifunctor. So let T : G ---+ H be an epi in Add(C, Ab). 

From Lemma 3.2.65, Add(C,Ab)(C(c,_),F) ~ F(c) and Add(C,Ab)(C(c,_),G) ~ G(c), and 

the isomorphism Y is natural in F. This implies that the induced morphism 

Add(C, Ab)(C(c, _), T) : Add(C, Ab)(C(c, _), F) ---+ Add(C, Ab)(C(c, _), G) 

is an epimorphism. • 
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3.2.5 Abelian Categories 

A special type of additive categories are Abelian categories. A consequence of Proposition 3.2.76 

below is that, for every additive category A, the category of additive functors Add(A, Ab) is 

Abelian. This type of category will be the focus of our study in the rest of this chapter. 

Definition 3.2.72 Let A be an additive category. A biproduct diagram for the objects a, b E A 

is a diagram 
PI P2 

a==:;: c +== b 
il i2 

(3.5) 

with morphisms PI, P2, iI, i2 satisfying the identities 

The following important result (Theorem 2, p. 194 of [64]) relates the biproduct of two 

elements with their product and coproduct. 

Theorem 3.2.73 Let A be an additive category. Two objects a, b E A have a product in A if 

and only if they have a biproduct in A. Specifically, given a biproduct diagram (3.5), the object 

c with projections PI and P2 is a product of a and b, while, dually, c with injections i l and i2 

is a coproduct of a and b. In particular, two object.9 a and b have a product in A if and only if 

they have a coproduct in A. 

Definition 3.2.74 An additive category A with a null object is called pre-Abelian if it contains 

the biproducts of any two objects, and if any morphism has both kernel and cokernel. It is called 

Abelian if it is pre-Abelian and satisfies two further conditions: every monic is a kernel and 

every epi is a cokernel. 

Example 3.2.75 Ab is obviously Abelian and for every ring R with unit element, the category 

of R-Mod is also Abelian. • 
The following result of Grothendieck [35] (see also Proposition 3.1, p. 258 of [65]) shows 

that when A is a small category, not necessarily additive, the functor category IffiA is Abelian. 

Proposition 3.2.76 If the category A is small and Iffi is Abelian, then IffiA is Abelian. A sequence 

O~F~G~H---+O 

is exact in IffiA if and only if, for each a E A, the sequence 

o ~ F(a) ~ G(a) ~ H(a) ~ 0 
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is exact in llL 

Staying with exact sequences in abelian categories, we make the following remark. 

Remark 3.2.77 Firstly, if a ---+ a ~ b ~ c ---+ a is exact which splits, then b ~ a El1 c 

(see [93], p. 126). Secondly, if a ---+ a ~ b ~ c ---+ a is exact, then m is the kernel of p and 

p is the cokernel of m. Also b ~ c ---+ a is exact if and only if p is epi, and a ---+ a ~ b is 

exact if and only if m is mono (see [93], p. 124). 

In the case when lB = Ab, there is a nice description of the kernel, cokernel and the image 

of a morphism as the following shows. 

Example 3.2.78 For any category C, since AbC is Abelian, it contains a null object, namely 

the functor a E AbC which sends every object to the trivial group {a}, and in addition it 

contains all pullbacks; therefore Definition 3.2.46 and Example 3.2.48 imply that for every 

T: F ---+ G in AbC, KerT can be given functorially on objects by 

(KerT)(c) = KerTe, 

where KerTe is the kernel of the group morphism Te : F(c) ---+ G(c), and on morphisms by 

(KerT)(<5) = F(<5) \KerTc , 

for every <5 : c ---+ c/. Similarly, for every T : F ---+ G in AbC, cokerT is given functorially by 

(cokerT)(c) = COkerTe, 

where COkerTe is the cokernel in Ab of Te : F(c) ---+ G(c), and on morphisms by 

(cokerT)(<5) = F(<5) \eokerTc , 

• 
for every <5 : c ---+ d. Lastly, combining the two above results, one gets that the image of 

T : F ---+ G in AbC can be given functorially by 

(ImT)(c) = Im(Te), 

where Te : F (c) ---+ G (c), and on morphisms by 

(ImT)(8) = F(8) IIm(Tc ) , 

for every <5 : c ---+ c/. 
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The following is useful in proving the Schanuel's Lemma for abelian categories. 

Lemma 3.2.79 In an abelian category, an exact sequence k >--+ b -+> c and a morphism 'Y : d --+ c 

can be put into a commutative diagram 

k~b'--c' 

II 1 11 
k>-----+- b - c 

where the top row is exact and the right square is a pullback. 

Proof. The full proof is given in Corollary 20.3 of [75]. We give here only a sketch of it. 

First one shows that, if in the following commutative diagram 

(3.6) 

the right-hand side square is pullback, u is the kernel of al and 'Y is the morphism into the 

pullback induced by the morphisms u : k -----+ band 0 : k -----+ c', then 'Y is the kernel of {32. 

Secondly one shows that, if in the pullback square 

b'~d (3.7) 

!~~!o, 
al is epi (respectively mono), then {32 has to be epi (respectively mono). Combining (3.6) with 

(3.7) for the epi case, gives the result. -

Lemma 3.2.80 (Schanuel's Lemma) Let k >--+ p -+> m and k' >--+ p' -+> m be two short exact 

sequences in an abelian category and let p and p' be projective objects. Then p E9 k' ~ p' E9 k. 

Proof. Using Lemma 3.2.79 twice one can constru~ the following commutative diagram 

1=1 
k~q-p' 

II 1 l 
k~P-m 

with exact r~ws and columns. Since p and p' are projective, then, using a similar argument as 

in Homological Algebra, one can see that the exact sequences involving q must split and then 

from Remark 3.2.77 we have that p E9 k' ~ q ~ p' E9 k. _ 
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Before we prove the generalized Schanuel's Lemma for abelian categories, we give a number 

of preliminary results. First we give below Proposition 13.3.4 of [93]. 

Proposition 3.2.81 In abelian categories finite coproducts of exact sequences are exact. Here 

we define the coproduct of two sequences 

and 

to be the sequence 

Corollary 3.2.82 The coproduct of finitely many finitely generated objects in an abelian cate­

gory is finitely generated. 

Proof. It is enough to prove the claim for any two objects. Let a and b be two finitely 

generated objects and 

and 
m, 
E9 gj - b. 
j=l 

Remark 3.2.77 implies that we have the following exact sequences 

and 

Their cop rod uct 

is still exact and then again from Remark 3.2.77 we get that 

is epi and therefore a E9 b is finitely generated. • 
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Lemma 3.2.83 Let 0 be a null object for a category A and let al and a2 be two objects. Then 

the diagram 

p~a2 

PI! ! 
al-O 

is a pullback if and only if P is the product of al and a2· 

For the proof see Lemma 17.6 of [75]. Note here that, if the category A is in addition 

additive, then from Theorem 3.2.73 we have that p is also a coproduct of al and a2. 

Corollary 3.2.84 In an abelian category A with a null object 0, for any biproduct diagram 

PI P2 
a==+aEBb~b 

il i2 

the projection P2 : a EB b ---? b is an epimorphism. In particular, 

o EB b ~ b. 

Proof. From Lemma 3.2.83 we can see a EB b as part of the pullback diagram 

But now a --+ 0 is epi as there is exactly one arrow from 0 to any other object of Aj therefore 

from the second part of the proof of Lemma 3.2.79 we have that P2 is epi. To see the second claim, 

put in the above diagram a = 0 and then again from Lemma 3.2.79 the projection P2 : OEBb --+ b . 

is mono. On the other hand from the definition of a biproduct, P2 is a retraction, hence there 

is j3 : b --+ 0 EB b such that P2j3 = lb. It follows that P2j3P2 = 1bP2 = P2 = P210G3b. Since P2 is 

mono, we have that j3P2 = 10G3b' therefore P2 is an isomorphism. • 

• 
Lemma 3.2.85 (Generalized Schanuel's Lemma) Let 

o -t Pn ---? Pn-I ---? ... ---? Po ---? m -t 0 

and 

O " , 0 -t Pn ---? Pn-I ---? ... ---? Po ---? m -t 

be exact sequences in an abelian category A and Pi, p~are projective for i ::; n - 1. Then 

, 'f'V , , 
Po EB PI EB P2 EB P3 EB ... = Po EB PI EB P2 EB P3 EB ... • 
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Consequently, if for i ~ n - 1, Pi and p~ are finitely generated with respect to some set of 

generators of A, then Pn is finitely generated if and only if p~ is such. 

Proof. We use induction on n. When n = 2, the result follows from Schanuel's Lemma. 

Let k (respectively k') be the kernel of Pn-2 ~ Pn-3 (respectively P~-2 ~ P~-3)' By the 

induction hypothesis we have 

k ffi' IT'Ip ~ k'lT'I ffi' Il7 Pn-2 Il7 n-3··· Il7 Pn-2 Il7 Pn-3 .... 

Let 
, 

q = Pn-2 EB Pn-3··· 

and 
, , 

q = Pn-2 EB Pn-3 .... 

The following two exact sequences 

o ~ Pn ~ Pn-l EB q ~ k EB q ~ 0 

and 

o ~ p~ ~ P~-l EB q' ~ k' EB q' ~ 0 

are obtained from 

o ~Pn ~Pn-l ~k ~O 

and 

o ~ p~ --+ P~-l --+ k' ~ 0 

respectively, by taking the coproduct of each with the exact sequences 

and then applying Proposition 3.2.81. We can then apply Schanuel's Lemma to obtain 

Pn EB P~-l EB' ~ p~ EB Pn-l EB q. 

For the last part, if for example p~, Pn-l and q are finitely generated, then from Corollary 

3.2.82 p~ EB Pn-l EB q is finitely generated. Since the isomorphisms are epi (see Exercise 5.1.5 

of [93]) then it follows that Pn EB P~-l EB q' is finitely generated. On the other hand, Corollary 

3.2.84 implies the existence of an epi Pn EB P~-l EB q' - Pn which finally proves that Pn is finitely 

generated .• 

The following definition is the restriction of Definition 7.7 of [82] to the category Add(A, Ab) 

which is Abelian from Proposition 3.2.76. 
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Definition 3.2.86 Let A be an additive category and B E Add(A, Ab). A projective resolution 

of B is an exact sequence 

.. , --+ Pn+1 --+ Pn --+ Pn-1 --+ ... --+ Po --+ B --+ 0, 

with all Pj projective objects. 

The following theorem will play an important role in the next sections. 

Theorem 3.2.87 A sequence 

Q 8n+1Q 8n £h Q 81 80 n+1 --+ n --+ ... --+ 1 ~ Qo --+ B --+ 0, (3.8) 

in Add(A, Ab) is exact if and only if the sequence of abelian groups 

( ) 
8n+1,0; Q ( ) 8n,0; £h,0; () 81,0; () 80,0; () Qn+1 a --+ n a --+ ... --+ Q1 a --+ Qo a --+ B a --+ 0, 

is exact for every object a E A. 

Proof. We argue by induction on the length of the sequence. If the length is 3, then the 

claim is true from Proposition 3,2,76, If K --+ Qo is the kernel of Qo ~ B, then we have the 

short exact sequence 

o --+ K ~ Qo ~ B --+ O. (3.9) 

The exactness of (3.8) implies that there is an epi Q1 ~ K such that 

ch =/'i£. (3.10) 

Therefore the exactness of (3.8) is equivalent to the exactne..'lS of (3.9) together with the exactness 

of the following 

By induction hypothesis we have that they are equivalent to the exactness of 

• 
0--+ K(a) ~ Qo(a) ~ B(a) --+ 0 

and 

( ) 
8n+1,0; Q ( ) 8n,a £h,a eo; 

Qn+1 a --+ n a --+ ... --+ Q1(a) --+ K(a) --+ 0, 

for every a E A. Using (3.10), we can now splice the two last sequences to obtain the exactness 

of 

) 
8n+1,a Q ( ) 8n,a 82,a Q ( ) 81.~ 80 a Qn+1(a --+ n a --+ ... --+ 1 a ---t Qo(a) -'--t B(a) --+ 0 

as desired .• 
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Definition 3.2.88 Let C be an additive category which has a null object. With the notations 

of Definition 3.2.53, two chain transformations f, g: (a, a) ---+ (b,c5) are said to be homotopic, 

denoted by f :::: g, if there exists a family of morphisms 

such that 

The following can be found in [82] and will play an important role in the next sections. 

Proposition 3.2.89 Let C be a pre-Abelian category which has enough projectives. Then any 

object in C has a projective resolution which can be chosen by a choice function. If b, b' E C 

and h : b ---+ b' , and if 

(p,a) : 

(pl,c5) : 

8,,+1 8n 8n-l 81 80 
---+ Pn ---+ Pn-l ---+ ... ---+ Po ---+ b ---+ 0 
6n +1 I 6n I 6n _ 1 61 I 60 b

' 
0 

---+ Pn ---+ Pn-l ---+ ... ---+ Po ---+ ---+ 

are projective re.90lutions, then there is a chain transformation f : (p, a) ---+ (P', 15) such that 

f -1 = h. Any two such chain transformations are homotopic. 

Let C be a pre-Abelian category with enough projectives and let 

(a, a) : 

(b,c5): 

8n +l 8n 8n -l 81 80 
---+ an+ 1 ---+ an ---+ ... ---+ aO ---+ x ---+ 0 

6n+1 b 6n 6n -l 61 60 
---+ n+ 1 ---+ bn ---+ ... ---+ bo ---+ x ---+ 0 

be two projective resolutions of x E C. Denote by I, : x ---+ x be the identity morphism on x. 

Proposition 3.2.89 tells us that I, can be extended into a chain transformation f : (a, a) ---+ (b,c5) 

such that f -1 = 1,. In a similar fashion, one can construct 9 : (b,c5) ---+ (a, a) such that g-1 = 1,. 

It is easy to see that 

and 

gf = {gnfn : an ---+ an I n E IE} 

• 
fg = {fngn : bn ---+ bn I n E IE} 

are both chain transformations of (a,a) and (b,c5) respectively such that g-d-l = I, = f-lg-l. 

Proposition 3.2.89 implies that gf and fg are homotopic with the identity chain transforma­

tions of (a, a) and (b, 15) respectively. We call such chain transformations, chain equivalence.9. 

Whenever there are two projective resolutions (a, a) and (b,c5) of x and chain equivalences 

f : (a, a) ---+ (b,c5) and 9 : (b,c5) ---+ (a, a), we call (a, a) and (b,c5) homotopically equivalent. 

The following is immediate. 
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Lemma 3.2.90 Any two projective resolutions of some x E Care homotopically equivalent. 

Proposition 3.2.91 If j : a --+ p in C is an epimorphism and p projective, then j is a 

retraction. If <C has a mdl object, then a coproduct EBiEIPi is projective if and only if each Pi is 

projective. 

See for the proof Proposition 10.4.6 of [93J. As a consequence of this we have that any co­

product of represent abies q c, _) E Add(C, Ab) is projective. Our intention is to find conditions 

under which a category of additive functors has enough projectives. Corollary 10.5.5 of [93] 

gives such conditions and can be obtained immediately from Proposition 10.5.4 of [93J. We give 

below both of them. 

Proposition 3.2.92 Let <C be a category with coproducts (and thus an initial object). A set g 

of objects is a generating set if and only if for every c E C, the following holds true: For 

gc = EB ge, ge is the domain of e, 
eE U iC(g,c) 

gEg 

the morphism 7rc : gc --+ C defined by 7rcUe = e is an epi. 

Corollary 3.2.93 A category with coproducts and a generating set of projectives has enough 

projecti ves. 

Proposition 3.2.94 For every additive category C, the category of additive functors Add(<C, Ab) 

has enough projectives. 

Proof. Lemma 3.2.45 implies that Add(<c,Ab) has coproducts. Theorem 3.2.67, Proposi­

tion 3.2.71 and Corollary 3.2.93 imply the result. _ 

The consequence of this proposition is that we can apply Proposition 3.2.89 to compare 

• between resolutions of functors from Add(C, Ab). 

3.3 Tensor Product of Functors 

In this section we will define the tensor product 0c of two functors F E Add(C, Ab) and 

G E Add(COPP 0z]])l, Ab) and prove a number of properties. 
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3.3.1 The Definition of the Tensor Product 

Definition 3.3.1 Let C and JI)) be two additive categories and let F E Add(C, Ab) and G E 

Add(COPP 0z JI)), Ab). We define the tensor product of F and G, F 0c G as a covariant functor 

from Add(JI)), Ab) defined on objects by 

(F 0c G)(d) = (El1 (F(c) 0z G(c, d))) 1M, 
eEC 

where M is the subgroup generated by elements x 0 G(-y°PP, d)(y) - F(-y)(x) 0 y for every 

"{ E C(CI' C2), x E F(CI) and y E G(C2, d), and on morphisms by the group morphism 

for every 8 : dl ---t d2, which sends the class of each element x 0 y E F(c) 0z G(c,dl ) to the 

class of x 0 G(c, 8)(y) E F(c) 0z G(c, d2)' 

In the future, the elements of the quotient group (El1 (F(c) 0z G(c,dI))) 1M will be de­
eEC 

noted either by x + M or by x where x E El1 (F(c) 0z G(c, dl)). 
eEC 

To make sure that (F 0c G) (8) is well-defined and is a homomorphism, it is sufficient to 

show that it is induced from the homomorphism 

arising from G(c, 8) with 8 : dl ---t d2. For this, we need to show that (F 0c G)(8)(MI) ~ M2. 

Let x 0 G(-y°PP,dl)(y) - F("{)(x) 0 y be a generator from MI, where x E F(c), y E G(-y(c),dI) 

for some morphism "{ : c ---t "{(c) in C. Now x ® G(-y°PP, dl)(Y) will be mapped to 

x ® (G(c, 8) 0 G(,,{opp, dl))(y) and F(-y)(x) ® y to F(-y)(x) 0 G(-y(c) , 8)(y). But 

x 0 (G(c, 8) 0 G(-y°PP, dl))(y) - F(-y)(x) 0 G(-y(c) , 8)(y) = 

x 0 (G(-y°PP, d2) 0 G(-y(c) , 8))(y»- F(-y)(x) 0 G(-y(c) , 8)(y) 

from the commutativity of G(_,8) with G(-y°PP,_). On the other hand, 

x ® (G(-y°PP,d2) 0 G(-y(c) , 8))(y) - F(-y)(x) ® G(-y(c) , 8)(y) 

is equivalent mod(M2) to x 0 (G(-y°PP, d2) 0 G(-y(c) , 8) )(y) - x 0 (G(-y°PP, d2) 0 G(-y(c) , 8))(y) = O . 

. Lastly, n..<;ing the fact that G is a functor, one can check easily that F 0c G is a functor too. 

Since 

G(c,8I +82): G(c, d) ---t G(c,d') 
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is defined by 

(because G is additive), then passing to quotients, we get 

thus proving the additivity of F ®c G. 

The following will be needed to prove Theorem 3.4.5. 

Lemma 3.3.2 Let C and lIJ) be two additive categories and let FE Add(C, Ab) and 

Gi E Add(COPP ®z lIJ), Ab) with i E I. Then, 

Proof. From Lemma 3.2.45 and Definition 3.3.1 we have on the one hand that 

where M$ is the subgroup generated by elements x@( El1 Gi)(-Y°PP, d»(y) -F(-y)(x) ®y for every 
iEi 

l' E C(Cl,C2), x E F(Cl) and y E (EI1Gi (c2,d». By definition (see Lemma 3.2.45) 
iEi 

On the other hand, again from Definition 3.3.1, we have 

where Mi is the subgroup generated by elements x ® Gi(-Y°PP, d)(y) - F('Y)(x) ® y for every 

l' E C(Cl,C2), x E F(Cl) and y E Gi (C2,d). 

• The isomorphism 

h: EI1 (F(C) ®z CEI1 Gi(C, d))) --+ E9 (E9 F(c) 01£ (G·(c d))) 
cEC tEl iEI cEC t" 

defined on finite sums by 

induces a morphism 
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defined by 

(
X0 Laj) +MEB t-+ L(x0aj + Mj), 

jEJ jEJ· 

where J ~ I is finite and aj E Gj(c, d). One can show easily that h* is an isomorphism, proving 

that for every dE IDl, 

Also h* is natural in each dE IDl which proves the claim .• 

3.3.2 A Universal Property for the Tensor Product 

Given three additive functors F E Add(C, Ab), G E Add(COPP 0zIDl, Ab) and H E Add(IDl,Ab) 

and let dE IDl be a fixed object. We say that a map 'l/Jd: U F(c) X G(c, d) ---+ H(d) is bilinear 
cEiC 

if for every c E C, 

'l/Jd((X, y' + y")) = 'l/Jd((X, y')) + 'l/Jd((X, y")), "Ix E F(c) and "Iy', y" E G(c, d), 

'l/Jd((X' + x", y)) = 'l/Jd((X', y)) + 'l/Jd((X", y)), "Ix', x" E F(c) and "Iy E G(c, d), 

and 

for every q,C2 objects in C and every x E F(q), 'Y E C(q,C2) and y E G(c2,d). 

Let F E Add(C, Ab) and G E Add(COPP 0z IDl, Ab) and d E IDl a fixed object. Let 

:F = EB Z(F(c) x G(c,d)), 
cEiC 

where Z(F(c) x G(c,d)) is the free abelian group generated by F(c) x G(c,d), and 

i: U F(c) X G(c, d) ---+:F 
cEiC 

• 
be the inclusion map. From Definition 3.3.1 we have that (F 0iC G)(d) is obtained from :F by 

factoring it by the subgroup B generated by the elements of the sets 

ucEdi((X, y' + y")) - i((x, y')) - i((x, y")) I "Ix E F(c) and "Iy', y" E G(c, d)} 

and 

UCEc{ i((x' + x", y)) - i((x', y)) - i((x", y)) I "Ix', x" E F(c) and "Iy E G(c, d)}, 
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together with elements of the form: 

i((x, G(''/PP, d)(y))) - i((F(-y)(x) , y)), 

for every cll C2 objects in C and every x E F(Cl), 'Y E C(Cl, C2) and y E G(C2' d). 

We let J-Ld = poi where p: F ---+ F / B is the canonical epimorphism. 

Lemma 3.3.3 Given three additive functors F E Add(C, Ab), G E Add(COPP ®z lI), Ab) and 

H E Add(lI),Ab), and let dEli) be a fixed object. The pair (u F(c) x G(c,d),J-Ld) has the 
cEC 

universal property: for every bilinear map 'ljJd: U F(c) x G(c, d) ---+ H(d), there is a unique 
cEC 

homomorphism ()d making the diagram 

U (F(c) x G(c, d)) P-d ~ (61 (F(c)®zG(c,d)))/M 
cEC cEC 

~ ...... 3!Od 
~ 

(3.11) 

H(d) 

commutative. 

Proof. We consider the commutative diagram 

U (F(c) x G(c, d)) _____ ~ 'L 
cEC or 

/ 

~ ~/; 
H(d) 

where j is a morphism such that j 0 i = 'IjJ. The existence of j comes from the freeness of F. 

Using the fact that 'ljJd is bilinear, one can easily see that B ~ Kerj and hence j induces a 

morphism () : F/ B ---+ H(d) such that () 0 p = j. It follows that the triangle (3.11) commutes­

since () 0 J-L = () 0 poi = j 0 i = 'IjJ. To show the uniqueness of (), we suppose by the way of 

contradiction that there is another ()f making (3.11) commute. Every generator t E (F ®c G) (d) 

is expressed in the form • 
t = J-Ld((X, y)), 

where u = (x, y) E F(c) x G(c, d) for some c E C. Therefore, ()d(t) = ()dJ-Ld(U) = 'ljJd(U) = 

()~J-Ld( u) = ()~( t). • 

3.3.3 Functorial Properties of the Tensor Product 

We prove in this section that the tensor product can be regarded as an additive functor 

®C : Add(C, Ab) ®z Add(COPP ®z lI), Ab) -t Add(lI), Ab) 

108 



defined on objects by 

(F, G) ---+ F ®C G. 

It remains to define it on morphisms and then check for the functorial properties of it. Since 

every morphisms a®zf3 : (Fl' Gl ) ---+ (F2' G2) equals with the composition (a®z l a2)(IH ®zf3) , 

or with (IF2 ®z f3) (a ®z lal)' then it is sufficient to make the definition for morphisms of the 

form IF ®z f3 and a ®z la· 

Using the universal property of Lemma 3.3.3, we show that, if a: Gl ---+ G2 is a morphism 

in Add(COPP ®z IDl, Ab) and F E Add(C, Ab), then there is an induced morphism 

in Add(IDl, Ab). 

Let now Gl and G2 be two functors in Add(COPP ®z IDl, Ab) and 

a = {a(c,d) ICE Candd E IDl} 

a natural transformation from G l to G2 . If F E Add(C, Ab) then for every C E C and dE IDl 

one has an induced map 

and therefore by extension the map 

UFx/\Cd) 
U (F(c) x Gl(C, d)) . U (F(c) x G2(c,d)). 

cEC cEC 

For j = 1,2 we denote the elements of EB (F(c) ®z Gj(c, d)) by 
cEC 

((Zl ®z al), ... , (zn ®z an)) where (Zi ®z ai) E F(Ci) ®z Gj(Ci, d) for i = 1, ... , n, 

and the elements of (F ®C Gj)(d) by 

where Mj is the subgroup of EB (F(c) ®z Gj(c, d)) clefined as in Definition 3.3.1. 
cEC .. 

Using the universal property of the tensor F®cGl depicted in the diagram (3.11), we obtain 

the following commutative diagram 

(3.12) 
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with 

defined by 

Also we have that both 111 and 112 0 (EBF X O(c,d») are bilinear. That 111 is bilinear follows from 

the way it is defined. Let use check for convenience that the 3rd condition of bilinearity for 

Wd = 112 0 (EBF x O(c,d») is satisfied. Let z E F(q), 'Y E C(Cl,C2) and y E Gl(C2,d). Then, 

On the other hand 

which proves the condition. 

Next we prove that the family 

is a natural transformation. For this we examine the following diagram with 8 : d ---+ d' 

(z, 0:) -------------------+-~ Z 0 0: 

~ ~~ ------..,.. 
z 0 O(c,d) (0:) 

• 
(z,Gl(c,8)(0:))------- -------~ z0G1(c,8)(0:) 

~ ~ ~ 

and (z, 0:) being for simplicity a vector with a single coordinate. The commutativity of the right­

hand side square comes from the fact that the family O(c,d) : G1(c,d) ---+ G2(c,d) is a natural 

transformation and therefore, for every 0: E G1(c,d), G2(c,8)(o(c,d)(0:)) = O(c,d/)(G1(c,8)(0:)). 

In the future, we denote the induced morphism () by F 0c O. 
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Finally, by using twice the diagram (3.12), one can show that for every fh : G2 --+ G3, 

(h : Gl --+ G2 and F E Add(C, Ab) we have that 

which proves the functoriality of ®c in the second variable. Also (3.13) implies that for every 

a, a' : G1 --+ G2 we have that 

which proves the additivity. 

One can show in exactly the same way as above that ®c is an additive covariant functor in 

the first variable, making thus ®c a covariant additive functor of two variables as claimed. 

3.3.4 Tensoring Over Sequences 

Let 

be a sequence of functors in Add( copp ®z IDl, A b) such that 0 2 = O. For every Y E Add( C, A b ) 

we will denote by Y ®c A the sequence 

in Add(IDl, Ab) where ()n is induced from an for every n ~ O. 

As the following lemma shows, Y ®c A has the property that ()2 = O. 

Lemma 3.3.4 Let for i = 1,2,3, G i E Add(COPP ®z IDl, Ab). Suppose that in the diagram 

'We have 0"0' = 0; then for any F E Add(C, Ab) in tie induced diagram 

we have (F ®c a")(F ®c a') = o. 

Proof. From the condition we have that a" a' = 0 therefore, F ®c 0"8' = 0 since ®c is 

additive. On the other hand F ®c 0"0' = (F ®c a")(F ®c a') which implies that 

(F ®c a")(F ®c a') = o .• 

We prove now the analogue of III, Lemma 2.1 of [44] for the tensor product ®c. 
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Lemma 3.3.5 Let 

(A l:l) an+2 A 8n+! A an A an- 1 80 X 0 ,u : ----t n+ I ----t n ----t n-I ----t ..• ----t ----t 

and 

(B 5:) an+2 Ban+! B an B an-laO X 0 ,u : ----t n+ I ----t n ----t n-I ----t ••• ----t ----t 

two projective resolutions of the functor X E Add(COPP ®z II}, Ab). Then, for evenJ Y E 

Add(C, Ab) and every dEli}, we have that Hn«Y ®c A)(d)) ~ Hn«Y ®c B)(d)) for every n. 

Proof. From Lemma 3.2.90 there exist chain transformations 

f = {f n : An ----t Bn I n 2: -1} 

9 = {gn : Bn ----t An I n 2: -1} 

such that the compositions 

gf = {gnfn : An ----t An I n 2: -1} 

fg = {fngn : Bn ----t Bn In 2: -1} 

are homotopic to the identity chain transformations of A and B respectively. 

It is easy to see that 

'P = {'Pn : Y ®c An ----t Y ®c Bn I n 2: -1} 

'I/J = {'l/Jn : Y ®c Bn ----t Y ®c An I n 2: -1} 
(3.14) 

are chain transformations, where 'Pn = {'Pd,n IdE D} and 'l/Jn = {'I/Jd,n IdE II}} are the natural 

transformations induced by respectively fn and gn. In the case of c.p for example, since for 

every n 2: 0 we have that Onfn-I = 6nfn, then (Y ®c On)c.pn-I = (Y ®c on)(Y ®c fn-I) = 

(Y ®c 6n)(Y ®c fn) = (Y ®c 6n)'Pn. 

Since c.p and 'I/J are chain transformations, it follows that Vd E II}, 

'Pd = {'Pd,n : (Y ®c An)(d) ----t (Y ®c Bn)(d) In 2: -1} 

'l/Jd = {'l/Jd,n : (Y ®c Bn)(d,f.----t (Y@C An)(d) In 2: -1} 

are chain transformations, therefore there are induced homomorphisms 

'Pd,n : Hn«Y ®c A)(d)) ----t Hn«Y ®c B)(d)) 

'I/J'd,n : Hn«Y ®c B)(d)) ----t Hn«Y ®c A)(d)) 

(3.15) 

for every n 2: 0 and dEli}. Using the fact that gf and f 9 are homotopic to the identity 

chain transformations of (A, 8) and (B, 6) respectively, one can easily show that c.p'I/J and 'l/Jc.p are 

respectively homotopic to the identity of Y @c An and Y ®c Bn and therefore for every d E D, 
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CPdo'l/Jd and 'l/JdoCPd are respectively homotopic to the identity of (Y 0cAn)(d) and (Y 0c Bn)(d). 

Now as in III, Lemma 2.1 of [44] we can show that 'l/Ja. nO CPa. n and CPa. nO 'l/Ja. n are the identity 
" " 

automorphisms of the groups Hn((Y 0c A)(d)) and Hn((Y 0c B)(d)) which means that these 

groups are isomorphic. -

Proposition 3.3.6 If X is a projective functor in Add(COPP 0z ill>, Ab), then for every 

Y E Add(C, Ab) and d E ill> 'We have that Hn((Y 0c A)(d)) = 0 'Where n E N and A is any 

projective resolution of X. 

Proof. From Lemma 3.3.5 we are free to chose the projective resolution of X. Let just take 

it to be 

... O---tO~X~X---tO 

where /, is the identity, and then the following is exact 

... 0 ---t 0 ---t Y 0c X Y~x Y 0c X ---t 0 

because the induced Y 0c Ix is again the identity, which proves the claim. -

3.4 Homological Finiteness Conditions for Small Categories 

In this section we will give the homological finiteness conditions left (respectively right)-FPn 

and bi-FP n for small categories as natural generalizations of their counterparts for monoids and 

relate them with a new finiteness condition called f-FPn which is introduced by Malbos in [67] 

but called there FP n' 

In what follows we will deal with categories Add(A, Ab) which we denote for short by AbA. 

In the future we take the generators of AbA to be the representables A(a, _) with a E A. 

Definition 304.1 Let n ~ 0 be an integer and A an additive category. An object B in AbA is 

• said to be of type FP n if there is a partial projective resolution in AbA 

Pn ---t Pn - 1 ---t ... ~ Po ---t B ~ 0, 

such that ~ is finitely generated for 0 ~ i ~ n. 

The following from [67] holds true. 
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Lemma 3.4.2 Let A an additive category. For each B in AbA and n ~ 0, the following are 

equivalent: 

1. there is a partial resolution Fn ~ ... ~ Fo ~ B ~ 0, where each object Fi is free 

(in the sense of Definition 3.2.40) and finitely generated, 

2. B is of type FPn , 

3. B is finitely generated and for every partial projective resolution 

D dk P dk_l do 
rk ~ k-l ~ ... ~ Po ~ B ~ 0, 

with k < n and each Pi finitely generated, then K erdk is finitely generated. 

Proof. The proof runs the same as the proof of Proposition 4.3 of [12] for modules and uses 

Lemma 3.2.85. • 

3.4.1 Small Categories of Type bi-FPn and left (right)-FPn 

We will generalize in this section the notions of bi-FPn and left (right)-FPn monoids for small 

categories. 

Define ZC to be the functor ZC : Zcopp ®z ZC ~ Ab where ZC(p, q) is the free abelian 

group generated by C(p, q) and if (0: ® (3) : (p, q) ---? (p', q') is an arrow in ZCopp ®z ZC, where 

0: E COPP(p,p') and (3 E C(q, q'), then ZC(o: ® (3) : ZC(p, q) ~ ZC(p', q') is defined by sending 

every arrow 'Y E ZC(p, q) to (3'YO:0PP E ZC(p', q'). 

Define the trivial left (respectively right) ZC-module Z, as the additive functor 

Z : ZC ---? Ab (respectively Z : ZcoPP ---? Ab) by sending each object of ZC to the group Z 

and each morphism of C to 1z. 

Definition 3.4.3 A small category C is said to be of type 

• 
1. bi-FPn if the functor ZC is of type FPn in AbzcoPP0zZC, 

2. of type left-FPn (respectively right-FPn) if the trivial left (respectively right) ZCmodule 

Z is of type FPn in AbzC (respectively AbzcoPP). 

Remark 3.4.4 In the ca.c;e of mono ids, conditions bi-FPn and left-FPn (respectively right-FPn) 

just defined coincide with those defined in Section 1.9 for monoids. Indeed, since a monoid Sis 

a category with a single object *, then the functor ZS is just the (ZS, ZS)-bimodule ZS. The 
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value at (*, *) of the only representable (ZSOPP 0zZS) (( *, *), (_, _)) is the free (ZS, ZS)-bimodule 

Zsopp 0z ZSj therefore every free resolution in AhzsoPP0zZS of the functor ZS can be seen as 

a free resolution of the (ZS, ZS)-bimodule ZS. Similarly one can discuss the left or right ca.<;e. 

Theorem 3.4.5 For every small category C the following implication holds true: 

bi-FPn ===> left (right)-FPn . 

Before we prove the theorem, we prove the following proposition which will be useful in the 

proof of the theorem. 

Proposition 3.4.6 Z 0zC (ZCOPP 0z ZC)((a, b), (_, _)) ~ ZC(b, _) where Z is the trivial left 

ZC-module Z. 

Proof. First we prove that, for every dEC, there is an isomorphism 

fd: (9 Z(c) 0z (ZCOPP 0z ZC)((a, b), (c, d))) 1M -+ ZC(b, d), (3.16) 
eEC 

where M is the subgroup generated by the elements 

x 0 (ZCOPP 0z ZC)((a, b), hOPP , d))(y) - Z('Y) (x) 0 y 

for every x E Z(c), 'Y E C(c, c') and y E (ZCOPP 0z ZC)((a, b), (c/, d)). 

For every fixed c E C and dEC, we can write (ZCOPP 0z ZC)((a, b), (c, d)) in the form 

ZCOPP(a, c) 0zZC(b, d) and use the universal property of Z0zZCOPP(a, c) 0zZC(b, d) presented 

by the following diagram 

Z x ZCOPP(a, c) x ZC(b, d) J1. ~ Z 0z ZCOPP(a, c) 0z ZC(b, d) 

~~ 
ZC(b, d) 

The map 'IjJ is defined by 

for every x E Z, D:i E COPP(a, c), ni E Z and f3 E ZC(b, d). It is obviously a trilinear map, 

therefore there is e defined by 
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which makes the diagram commutative. This diagram induces the diagram 

EB (Z x ZCOpp (a, c) x ZC( b, d)) ___ $JI. __ -+-~ EB (Z 0z ZcoPP (a, c) 0z ZC( b, d)) 
cEC cEC 

~~ 
ZC(b, d) 

where EBJ.L, EBO and EB'ljJ are linear extensions of respectively J.L, 0 and 'ljJ. 

We claim that M ~ Ker(EBO). For this we need to check whether EBO vanishes on the 

generators of M. Since Z is the trivial functor and since (ZCOPP 0z ZC) (( a, b), ('Y0PP , d)) acts 

only on ZCOPP(a, c'), we can write the generators of M in the form 

(3.17) 

where a E ZCOPP(a, c'), f3 E ZC(b, d) and 'Y E C(c, c'). 

Now it is straightforward that (EBO) (x0'YOPPa0f3-x0a0f3) = O. The fact that M ~ Ker(EBO) 

implies that EBO induces a morphism 

such that for the generators 1 0 a 0 f3 + M with a E COPP (a, c) and f3 E C( b, d) we have: 

fd(l 0 a 0 f3 + M) = f3 . 

. We need the following claim. 

Claim 1 For every x E Z, a E COPP(a, c) and f3 E ZC(b, d), the element x 0 a 0 f3 E Z 0z 

ZCOPP(a, c) 0z ZC(b, d) is equivalent mod(M) with x 0 ida 0 f3 E Z 0z ZCOPP(a, a) 0z ZC(b, d). 

Proof. We can write x 0 a 0 f3 = x 0 'Y0PPida ® f3 where 'Y E C( c, a) is such that 'Y0PP = a. 

From (3.17) x ® 'Y0PPida ® f3 is equivalent mod(M) with x ® ida ® f3 proving the claim. _ 

The claim and the fact that 

• 
x ® a 0 f3 = x.(l ® a 0 f3) 

for every x E Z, implies that every generator of ( EB Z ®z ZCoPP (a, c) 0z ZC( b, d)) 1M has the 
cEC 

form 1 ® ida ® f3 + M for some f3 E C(b, d). 

We also define a morphism 

gd : ZC(b, d) --+ (EB Z ®z ZCOPP(a, c) 0z ZC(b, d)) 1M 
cEC 
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by 

and see that fd and gd are mutually inverse of each other which finally proves the isomorphism 

(3.16). 

As we saw in Definition 3.3.1, the morphism 8 : dl --+ d2 induces the group morphism 

defined on generators by 

On the other hand, 

and 

which imply that 

This means that fd in natural in every d E Dl Therefore we have the isomorphism Z 0zIC 

Proof of Theorem 3.4.5. Since C is bi-FPm then by Lemma 3.4.2 there exists a free 

finitely generated partial resolution of the functor ZC E AbzlCoPP0zZIC: 

(3.18) 

we want to construct a projective finitely genettated resolution of the trivial functor Z E AbzlC . 

By repeating the argument of the proof of Proposition 3.4.6, one can see that tensoring 

ZC E AbzICoPP0zZIC on the left by the trivial module Z E AbzlC yields Z E AbzlC . Again 

from Proposition 3.4.6 if we tensor on the left by the trivial functor Z each of (ZCOPP 0z 

ZC)((asi' bsi) , (_, _)) for some fixed 0 ~ s ~ n obtain ZC(bsi , _). Lemma 3.3.2 implies that for 

. every dEC 
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for all 0 ~ k ~ n. Therefore if we tensor through on the left of (3.18) by Z and evaluate all 

the functors in some d, we obtain from Lemma 3.3.4 and above, the chain complex of abelian 

groups 

( ) 
Z0c8n Z0c8t () Z0c80 E9 ZC bni, d --+ ... --+ E9 ZC bOi, d --+ Z --+ 0 

iEln iElo 
(3.19) 

The last thing is to show that (3.19) is exact. To do this, we will obtain (3.19) is another way 

which will allow us to use Proposition 3.3.6. 

Firstly, for every fixed representable (ZCOPP 0z ZC)«a, b), (., .)) E AbzICoPP0zZIC and a fixed 

R AbzICoPP b dEC, we let the functor (a,b,d) E e 

R(a b d) = E9 ZCOPP(a,.) 
, , IC(b,d) 

which is projective since it is a coproduct of projectives in AbzlCoPP. Note here that for every 

C E C, 

R(a,b,d)(C) = (ZCOPP 0z ZC)«a, b), (c, d)). 

Secondly, for every fixed dEC, we let Sd E AbzICoPP be 

Sd = ZCOPP(d,.), 

which is again projective in AbzlCoPP. Note again that for every C E C, 

Sd(C) = ZC(C, d). 

The resolution (3.18) induces a projective resolution of Sd in AbzICoPP as follows: 

R 8n ,d 81,d &n,d 
EI1 (ani,bni,d) --+ ... --+ EI1 R(ao' boo d) --+ Sd --+ 0 

iEln iElo "" 
(3.20) 

where for every 0 :$ i :$ n, ai,d is the natural transformation induced by ai. 

If we tensor (3.20) on the left by the trivial module Z E AbzlC we obtain (3.19) and then we 

apply Proposition 3.3.6 by taking Y = Z E AbzlC, 11) = Z, X = Sd and (3.20) as the resolution 

of X, obtaining that (3.19) is exact .• 

3.4.2 Small Categories of Type f-FP." 

In [671 Malbos has defined a new finiteness condition for small categories called FPn . We will 

give the definition for it but, as we explained in Section 3.1, we will change its name to f·FP n' 

Also we will relate it with the other finiteness conditions studied in the previous section: bi-FPn 

and left (right).FPn . 

In what follows we will write the composition of two arrows u : a --+ b 

with v : b --+ c as uv instead of the standard notation vu. 
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To define f-FPn, we need the following. 

Definition 3.4.7 Let C be a small category. The category of factorizations FC in C, has 

objects the set of morphisms in C and a morphism hi FC from w to w' is a pair (u,v) of 

morphisms in C such that the following diagram commute in C: 

q' -V-P' 

The composition is defined by pasting such squares: if (u, v) : w ----t w' and (u', v') : w' ----t w" 

are morphisms in FC then (u', v') (u, v) = (u' u, vv'). The triple (u, w, v) is called a factorization 

of w'. 

Definition 3.4.8 An abelian natural system on C is a functor D : FC ----t Ab. If 

( u, v) : w ----t w' is a morphism in FC, then its image D ( u, v) : D (w) ----t D (w') will be denoted 

shortly by u*v*. It extends uniquely to an additive functor D : ZFC ----t Ab. 

Recall from Example 3.2.58 that ZFC is the free additive category on FC. 

The trivial natural system Z : FC ----t Ab is the functor, defined on objects by Z(w) = Z, 

and for each morphism (u, v) we let u*v* = 1z . It extends uniquely to an additive functor from 

AbzFI[:: which we denote again by Z and call the trivial natural system. 

Definition 3.4.9 A small category C is said to be of type f-FPn if the trivial natural system 

Z is of type FPn in AbzFC
. 

Theorem 3.4.10 If a small category C i.~ of type f-FPn , then it is of type bi-FPn • 

Proof. From Lemma 3.4.2 we may suppose that 

ffi ZFC( u, _) ~ ... ~ ffi ZFC( u, _) ~ Z ----t 0 
uEUn uEUo 

is a finitely generated free partial resolution of the trivial natural system Z E AbZFC. From 

Theorem 3.2.87 this is equivalent with the exactness of the following sequence of abelian groups 

'7lF""'( ) {)n,w {)l,w ) Bo,w () ffi /LJ \V U, W ----t ... ----t ffi ZFC( u, w ----t Z W ----t 0, 
uEUn uEUo 

for any wE FC. It follows that for every (CI' C2) E ZCopp ®zZC, the sequence of abelian groups 

ffi ffi ZFCCu,w) {)n~c2) .. , {)1,(C}'~2) ffi ffi ZFC(u,w) 
WEC(Cl,C2) uEUn WEC(Cl,C2) uEUo 

{)O,(Cl,C2) 
----t ffi Z( w) ----t 0 

WEC(Cl,C2) 

(3.21) 
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is exact, where for every s = 0,1, ... , nand (CI' C2) E Zcopp 0z re, we have defined 

to be the extension of the maps os,w with W E C(Cl, C2) on the direct sum 

EB EB ZFC(u,w). 
wEiC(C},C2) uEU. 

We claim that OS,(C},C2) is natural in (Cl,C2). Indeed, if,,! 0 a (CI,C2) - (ci,c~) is a 

morphism in Zcopp 0z ZC, then it induces a map 

EB EB ZFC( u, w) - EB EB ZFC( u, w') 
wEiC(Cl,C2) uEU. w'EiC(ciA) uEU. 

by 

(a, (3) 1--+ ("!opp a, (30) 

for every w E C( CI, C2) and every generator (a, (3) E EB ZFC( u, w). But the restriction ofthis 
uEU. 

map on EB ZFC(u, w) for some fixed w E C(CI, C2) is the same as the map 
uEU. 

EB ZFC( u, w) - EB ZFC( u, w') 
uEU. uEU. 

induced by bOPP,o) : w - w' = ,,!oPPwo. Since from the definition of OS,(C},C2)' for every 

w E C(CI' C2), 0S,(Cl,C2) I Gl
u 

ZFiC(u,w)= os,w and since os,w is natural in each w E C(CI' C2), we 
uE • 

obtain the naturality of OS,(Cl,C2) as claimed. 

For every s = 0, 1, ... , n we will construct finitely generated projective functors Ps E AbzlCoPP®zzlC 

and then introduce a resolution 

D On 01 00 
rn - ... -PO -ZC-O 

of ZC in AbzlCoW®zZIC, proving the theorem. 

Define, for every s = 0,1, ... , n, 

which is projective being a coproduct of representables in AbzlCopp®zZIC, and is obviously finitely 

generated. 

Before we start defining transformations as for every s = 0,1, ... , n, we note that for every 

(CI' C2) E ZcoPP 0z ZC and u E FC there is an isomorphism 
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defined by 

for every wE IC(CI, C2) and every (a, f3) : u ----+ w = auf3. This is natural in (CI, C2) too. Indeed, 

if -y@ 8: (CI' C2) --+ (ci,~) is a morphism in 7LiCopp @z ZIC, then it induces a map 

$ ZFIC( u, w) --+ $ ZFC( u, w') 
wEIC( Cl,C2) Wi EIC( c4 ,c~) 

by 

(a, f3) ~ (-y0PP a, f38) 

for every w E C( CI, C2) and every generator (a, f3) E $ ZFC( u, w). It induces also a map 
uEU. 

by 

for every a @ f3 : (LU, 'Tu) ----+ (CI' C2). Now the naturality of /l-(Cl,C2) in (CIt C2) follows easily. 

For every s = 1, ... , nand (CI' C2) E ZCopp @z ZIC we define 

to be 

where 

is the extension of /l-(Cl,C2)' The morphism 8S,(CltC2) is natural in (Cl,C2) since it factors through 

naturals. 

Define • 
80,(Cl,C2): u~Uo (ZICOPP @z ZC)((tU, 'Tu), (CI' C2)) ----+ ZC(CI' C2) 

by 

where 
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is the natural isomorphism in (CI, C2) which sends the generator of Z(w) to w E C(Cl, C2). Again 

00,(Q,C2) is natural in (Cb C2). 

Since, for every s = 1, ... , n, we have Os-1,(Cl,C2) 0 OS,(Q,C2) = 0, then it follows that 

I t remains to show that for every (Cl' C2) E ZcoPP 0z ZC the sequence of abelian groups 

is exact. But this is straightforward from the definition of morphisms OS,(Cl,C2) and from the 

exactness of (3.21) .• 

Combining Theorem 3.4.5 with Theorem 3.4.10, we obtain immediately the following. 

Corollary 3.4.11 If a small category C, then the following implications hold true: 

C is of type f-FPn ==:} C is of type bi-FPn ==:} C is of type left (right)-FPn . 

3.4.3 Monoids of Type f-FP n 

As we explained in the introduction, we can consider every monoid S as a category with a 

single object; hence all the notions and results of the previous sections apply for monoids. The 

following reveals an interesting property of the S-graded resolutions of ZS. 

Theorem 3.4.12 If the monoid S is of type bi-FPn and the corresponding free resolution is 

S -graded, then S is of type f-FPn . In particular, monoids which are given by a finite complete 

presentation are of type f-FPn . 

Proof. Suppose that there is a free finitely generated S-graded resolution of ZS 

EB(ZSOPP 0z ZS) ~ ... ~ EB(ZSOPP 0z ZS) ~ EB(ZSOPP 0z ZS) 
qn q3. q2 

~ EB(ZSOPP 0z ZS) ~ ZsoPP 0z ZS ~ ZS ---. 0 
ql 

as explained in Definition 2.2.33. 

As discussed in Remark 3.4.4, the free (ZS, ZS)-bimodule ZsoPP 0z ZS is nothing but the 

value of the functor (ZSOPP 0z ZS)((*, *), -) E AbzsoPP0zZS at (*, *), hence, from the proof of 

Theorem 3.4.10, for every 0 ~ t ~ n, there is an isomorphism 

J.Lt = J.Lt,(*,*): EB EB ZFS(u, s) ~ EB(ZSOPP 0z ZS) 
sES uEqt qt 
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which is natural in (*, *). 

There is also a natural isomorphism 

J-L-l: E9 Z --+ ZS. 
sES 

Similarly with Theorem 3.4.10, one can construct the exact sequence of abelian groups 

E9 E9 ZFS(u, s) ~ ... ~ E9 E9 ZFS(v, s) ~ E9 ZFS(1, s) ~ E9 Z -t O. (3.22) 
sES uEqn sES vEql sES sES 

Note that dt is S-graded for every 0 ~ t ~ n. Indeed, for any fixed s E S, we denote 

(0:, (3) E E9 ZF S( u, s) by (0:, (3)u if it is in the uth component of the direct sum. Similarly we 
uEqt 

denote its J-L-image o:opp ® (3 E E9 Zsopp ®z ZS by (o:opp ® (3)u. Then we have 
uEqt 

dt«o:, (3)u) = (J-Lt:':1 0 ~t 0 J-Lt)«O:, (3)u) = (J-Lt:':1 0 ~t)«O:°PP ® (3)u) = 

J-Lt:':1 (EiEI ni(O:?P ® (3i)v;) = EiEI ni(O:i, (3i)v;. 

But now since, for every i E I, we have from Definition 2.2.33 that O:ivi(3i = s = o:u(3, it follows 

that 

dt ( E9 ZFS(u, S)) ~ E9 ZFS(v, s). 
uEqt vEqt-l 

We claim that 

E9 ZFS(u,_) ~ ... ~ E9 ZFS(v,_) ~ZFS(1,_) ~Z-tO, 
uEqn vEql 

is a resolution of Z, where at,s is the restriction of dt in the sth component of the direct sum 

E9 E9 ZFS(u, s). 
sES uEqt 

Since dt is S-graded for every 0 ~ t ~ n, and since (3.22) is exact, then it follows that, for 

every s E S, 

'7IFS( ) 8n ,. ~,. '7IF 81,. 80,. E9 """ u,s --+ ... --+ E9 """ S(v,s) --+ ZFS(1,s) --+ Z -t 0, 
uEqn vEql 

is exact. • 
Lastly, for every 0 ~ t ~ n, the family 

{at,s I s E S} 

is a natural transformation. This follows from the definition of J-Lt and from the fact that ~t is 

a (ZS, ZS)-bimodule morphism. 

The second part of the theorem follows immediately from the above and from Remark 2.2.32 . 

• 
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3.5 Partial Resolutions of the Trivial Functor Z E AbzFC 

3.5.1 Introduction 

The main scope of this section is to introduce partial resolutions of the trivial functor Z E AbzFC 

which involve the data giving a presentation P = [x, r] of C, namely x and r, and some other 

data arising from P which we will introduce in the next sections. 

Before doing that, let us recall how we construct partial resolutions of the trivial left ZM­

module Z where M is a monoid given by a presentation P = [x, r]. It is shown in [95] that in 

such a case there is always the partial free resolution 

ZM[r] ~ ZM[x] ~ ZM ~ Z ---+ 0 (3.23) 

of the trivial functor Z E AbzM where 

ZM[r] = EBZM and ZM[x] = EBZM. 
r x 

In order to extend (3.23) with another term, Cremanns and Otto in [19] (see also [57] and [85]) 

introduced other data arising from P: a homotopy base B for the relation 

p2(r) = {(p, q) I tp = tq and rp = rq}. 

They showed that there is an exact sequence 

ZM[B] ~ ZM[r] ~ ZM[x] ~ ZM ~ Z ---+ 0, 

where 

ZM[B] = EBZM. 
B 

This was achieved by a heavy use of the graph tl = tl(x, r, B) which rewrites the paths of the 

graph r(x, r) by using as rewriting rules the set B ~ p2 (r). 

Returning to the category AbzFC
, we recall frdhl [67] the following important theorem. 

Theorem 3.5.1 If the small categor'lJ C is given by the presentation P = [x, r], then there is a 

partial free resolution of the trivial functor Z E AbzFC 

(3.24) 

where E is the augmentation defined functorially by EW-(U, v) = {uv} for any morphism w E C. 
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To extend this partial resolution with another term, we will follow here the approach of [19]. 

For this we will define in Section 3.5.3 two graphs associated with a presentation 'P = [x, r] of a 

small category C, the Squier graph f(x, r) and the graph .6. = .6.(x, r, B) which is the analogue 

of .6. explained above. Then using similar techniques to those used in Theorem 3.2 of [19], we 

prove the following. 

Theorem 3.5.2 Let the small category C be given by the presentation 'P = [x, r]. For every 

B ~ P2(f(x,r)) such that '::::.B= P2(f(x,r)), the seq7J.ence 

is exact. 

The following follows immediately from the above and the definition of FDT. 

Theorem 3.5.3 IfC is of type FDT, then C is of type f-FP3. 

3.5.2 A Basic Exact Sequence Associated With a Presentation P 

We will give in this section a short account of the notions involved in [67) which are used to 

prove Theorem 3.5.1 (Lemma 4.2 of [67)). 

Let C be a small category presented by the presentation 'P = [x, r]. The free abelian natural 

system ZC[x] : ZFC ~ Ab generated by the set of all edges x in the graph x viewed as 

morphisms in C is defined by 

zqx) = EB ZFC(x, _) 
xEx 

For each morphism w in C, the elements of ZFC(x, w) are denoted by (u, [x), v), where u, v are 

morphisms in C such that w = uxv and the actions are given by the abelian group morphisms 

defined by 

u'*v'* : ZC[x](w) ~ ZC[x] (u'wv') 

" 
u' *v'* (u, [x), v) = (u'u, [x), vv'). 

Similarly, the free abelian natural system Zqr) : ZFC --? Ab generated by the set of all rules 

of R, is the free abelian group 

ZC[r] = EB ZFC(l, _). 
(l,r)Er 
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For each morphism w in C, the elements of ZC[r](w) are denoted by (u, [1, r], v), where u, v are 

morphisms in C such that w = ulv and the actions on ZC[r] are given by morphisms 

defined by 

,,*(- [l ] -) (-, [1 ] -') U * v U, , r ,v = U U, ,r, vv . 

Lastly for a set B ~ p2(r(x, r)), the free abelian natural system ZC[B] ZFC --+ Ab 

generated by B, is the free abelian group 

ZC[B] = EB ZFC(t(tp) , -). 
(p,q)EB 

Similarly to the above, for morphisms w in C, the elements of ZC[B](w) are denoted by 

(u, [p, q], v) and the actions on ZC[B] are given by morphisms 

defined by 

, ,*(- [l ] -) (-, [p ] -,) U*v u, ,r ,v = UU, ,q ,VV • 

Denote (1 L(x), [x], Lr(x)) by [x], (1 L(I), [1, r], 1r(I)) by [1, r] and (1 L(L(p)) , [p, q], 1r (L(p))) by [p, q]. 

Call a natural system of sets a functor S : ZFC --+ Set. Associated with S there is the 

so called abelian natural system over C, ZC[S] : ZFC --+ Ab defined as the composition 

ZC[S] = Z[_] 0 S, where Z[_] : Set --+ Ab denotes the free abelian functor which sends every 

non-empty set to the free abelian group generated by that set, the empty set to the group 

{O}, and is defined on morphisms by sending every map of sets to the unique group morphisms 

induced by that map. Thus, for every morphism w in C, ZC[S](w) is the free abelian gr<?up 

generated by S(w). For every factorization w' = uwv, the action u'*v,* : Z[S(w)] --+ Z[S(w')] 

is the morphism of abelian groups ~duced by the map S( u, v). 

Let Nn(C) : ZFC --+ Set be the natural system of sets such that 

Nn(C)(w) = {(Ul' ... , un) I w = Ul ... Un} 

for n > 0 and No(C)(w) = ¢ if w =1= >. and No(C)(>') = {1}. 

For any factorization w' = uwv in C, the action 
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is defined by 

For each n ~ 0, denote by 

the free abelian natural system generated by N n+2(C). 

A derivation from a small category C with values into an abelian natural system Dover C 

is a function 

d: O(FC) ---+ U D(w) 
wEFC 

where d(w) E D(w) for every w E FC and such that 

for every TI, v E C. 

Lemma 3.5.4 Let x be a graph, F(x) the free category generated by x and D be an abelian 

natural system on F(x). Any family ([X])xEx, with [x] E D(x), has a unique extension into 

derivation [] : O(FF(x)) ---+D by setting for every n compos able morphisms Xl, ... ,xn E F(x) 

n 

[Xl ... Xn] = l)Xl ... Xi-l)*(Xi+l ... Xn)*[Xi]. 
i=l 

The proof of the above is given in Lemma 4.1 of [67]. 

For a presentation P = [x, r] of a small category C, denote by 7r : F(x) ---+ C the canonical 

morphism sending u to its corresponding class TI. For every morphism u in F(x), 7r induces a 

homomorphism 

Zrr[x](u): EB ZF(F(x))(x, u) ---+ EB ZFC(x, TI) 
xEx xEx 

by 

Z7r[t](u)((a, [x], 13)) = (a, [x],f3). 

Now for a fixed x E x, define the map 

by 

a 
~ : x ---+ U ZF(x)[x](u) 
uX uEF(x) 

ax' = {[X] if 

axO 
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Again from Lemma 4.1 of [67] we can extend it uniquely to a derivation 

f) 
!'l : F(x) -+ U ZF(x)[x](u) 
uX uEF(x) 

which composed with 

Zll'[x]: U ZF(x)[x](u) -+ _U ZC[x](u) 
uEF(x) uEIC 

gives a derivation 
'& 
!'l : F(x) -+ U ZC[x](u) 
uX 'flEIC 

by the formula 

for every morphisms u, v in F(x). 

Let now 

be the natural transformation defined as follows. For each morphisms u, v in C and x E x such 

that w = uxv, 
Ol,w(U, [x],v) = (ux,v) - (u,xv). 

Definition 3.5.5 Let P = [x, r] be a presentation for the small category C. The Reidemeister­

Fox Jacobian of P is the morphism of abelian natural systems 

defined functorially, for each morphism w in C by 

for morphisms u, v in C and (l, r) i r such that w = ulv. 

Finally we make the following. 

Remark 3.5.6 In the original statement of Lemma 2.4 of [67] (here Theorem 3.5.1), the last 

term of the resolution of Z is Bo(C) which is nothing but El1 ZFC(lc, _) and therefore this 
cEIC 

is a partial projective resolution in AbzFIC• If C is finitely generated, then Bo(C) is finitely 

generated too. F\lrthermore, if C is finitely presented, the sequence of the above lemma gives a 

finitely generated partial projective resolution of Z of length 2. 
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3.5.3 Geometrical Constructions Associated with a Presentation P = [x, r] 

We will construct a graph r(x, r) associated with a presentation P = [x, r] of a small category 

C, which will contain information how the morphisms of C are presented by paths from U F(x). 

We denote by PU F(x) the set of paths of x and by 0 their composition. 

Definition 3.5.7 Let r(x,r) = (V,E,t,T,-l) be as follows: 

1. The set of vertices is V = PUF(x). 

2. The set of edges is E = {(u, (l,r),v,e) I u,V E PUF(x), (l,r) E rand e = ±1} 

3. the maps t, T : E ---+ V which associate with each edge e E E its initial vertex te and its 

terminal Te, are defined by 

and 

,(u,(I,r),v,E) ~ { uolov if e=l 

uorov if e=-l 

{ 

uorov if 
T(u,{l,r),v,e) = 

uolov if 

e=l 

e =-1 

4. and the map -1 : E ---+ E, which associates with each edge e E E, its inverse edge e-1 

defined by 

(u,(l,r),v,e)-l = (u,(l,r),v,-e). 

Below is how an edge of r(x, r) looks like: 

I 
u '12' v 

tu~a 'I)'U' b~TV 
~ 

r 

An edge (u, (l, r), v, e) is called positive if e = 1 and negative if e = -1. There is a partial action 

of vertices of r(x, r) on the set of :dges defined as follows: 

w.(u, (l,r),v,e).w' = (w 0 u, (l,r), v 0 w',e) 

where w, w' E PU F(x) and the compositions w 0 u and v 0 w' are defined. This action extends 

in the obvious fashion to paths of r(x,r). 

We call r(x, r) the Squier graph of the presentation P = [x, r]. We define the composition 

e . f of two edges e and f in r(x, r) whenever tf = T f. Inductively we can define paths 

Cl:1 ..... Cl:n provided that for every i = 1, ... ,n - 1 we have TCl:i = tCl:i+1. We say that the path 
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p = a1 ..... an E f(x, r) has length n. A path p = a1 ..... an will be called positive if ak = 1 is 

a positive for every k = 1, ... , n. The inverse of a path p = al ..... an is by definition the path 

-1 -1 P = a1 ..... an . 

Denote by p(r(x, r)), or simply by p(r), the set of paths of r(x, r) and by p2(r(x, r)), or 

simply by p2(r), the set of paths in f(x, r) which have the same initial and terminal. In the 

future we call P2(f) the set of parallel paths of f(x, r). 

Define this set of relations in P2(f(x, r)): 

1. Relations I : (e· e-l, id~e), (e- 1 • e, ic4e) for every edge e of r(x, r), 

2. Relations D : For every two edges e, f E f(x, r) we take 

(( e 0 11) . (7'e 0 f), (/,e 0 f) . (e 0 r f)). 

In the sequel we call eo /'f and /,e 0 f disjoint edges. For any (pl,P2) E P2(f), we define 

its whisker (translate) by p', p" E U F(x) to be the pair (p' 0 PI 0 p", p' 0 P2 0 p"), whenever this 

is defined. We say that some set B ~ P2(f) is whisker closed if it contains the set of all the 

possible translates of its elements by paths from F(x). We denote the whisker closure of some 

set B by w(B). 

Remark 3.5.8 We could have used 2-categories to define f(x, r) by considering the 2-category 

arising from F(x) by adding 2-cells in a 1-1 correspondence to r#. But this approach does not 

give a clear description of the rewriting process. 

Definition 3.5.9 An equivalence relation ~ ~ P2(f(x, r)) is called a homotopy relation if it 

satisfies the following: 

1. IUD ~~, 

2. it is whisker closed, and 

3. for every (p1,P2) E ~,and every p,q E f(x,r) such that rp = /'P1(= /'P2) and 

/,q=rp1(=rp2), (P·P1·q,P·P2·q) E~. 

We denote by ~B the smallest homotopy relation containing a set B ~ P2(f(x,r)). 

Lemma 3.5.10 Let (a· (3, 'Y) E p2(r). Then, a· (3 ~ 'Y if and only if a ~ 'Y' (3-1. 
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Proof. If a· {3 ~ "I, then from the above definition a· {3. {3-1 ~ "I' {3-1 and again from the 

definition, {3. {3-1 ~ iddom/3 which implies that a ~ "I' {3-1. The converse is proved similarly. _ 

Definition 3.5.11 We say that a presentation P = [x, rJ of some small category C has finite 

derivation type (FDT) if it is finite and if there is a finite set B c p2(r(x, r)) such that 

~B= p2(r(x, r)). 

Definition 3.5.12 Let B ~ p2(r(x, r)). Define the graph .6.(x, r, B) = (V, E, t, T,-l) as fol-

lows: 

1. V = p(r(x, r)) is the set of vertices; 

2. E = {(T1' U, (p, q), v, T2, E) I T1, T2 E V, u, v E UF(x), (p, q) ED u I U B, E = ±1 such that 

TTl = t(u 0 p 0 v) and tT2 = T(U 0 P 0 v)} is the set of edges; 

3. the maps t, T : E ~ V which associate with each edge e E E its initial vertex te and its 

terminal Te, are defined by 

,(r" u, (p, q), v, r2, £) = { 
T1'(UOpOV)'T2 if E=1 

T1 . (u 0 q 0 v) . T2 if E = -1 

and 

E=1 

E =-1 

4. and the map -1 : l!J ---+ l!J, which associates with each edge e E l!J, its inverse edge e-1 

defined by 

The following is an immediate consequence of Definition 3.5.9 . 

• 
Lemma 3.5.13 Let.6. be the graph defined above and let p and q be two mOTphisms in p(r(x, r)). 

The following aTe equivalent. 

1. theTe is a path in .6. from p to q, 

2. P~B q. 
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3.5.4 Proof of the Theorem 3.5.2 

In what follows we denote by P(G) the set of paths of a given graph G. Again suppose that 

p = [x, r] gives a small category C. 

Define the map 

/1 : P(U F(x)) -+ E!3 E!3 ZFC(x, w) 
wEFC xEx 

by 

{ 

0 if lui = 0 

/1(U) = E t if lul:l 0, 
xEx 

where lui denotes the length of u E P(U F(x)). With this notation we can rewrite the expression 

for 82 OJ as follows: , 

Similarly we define the map 

/2: P(f(x,r)) -+ E!3 E!3 ZFC(l,w) 
wEFC (r,I)Er 

as follows: 

/2(P) = { 0 if Ipi = 0 

/2(pl) + EU* v*[l, r] if p = p' . (u, (l, r), v, E) 

Define the transformation 

83: Z<C[B] -+ Z<C[r] , 

by 

It is easy to see that 0'3 is natural in every w. 

Lastly we define the map 

• 
1'3: P(t:..) -+ E9 E9 7lFC(u,w) 

wEFC (p,q)EB 

(here u is the morphism of C represented by t(tp)) as follows: 

/3(a) = 0 if lal = 0 

and 

I . . { /3(a
/
) 'Y3(a • (rl,u,(p,q),V,T2,c)) = 

/3(a' ) + EU* v*[p, q] if (p, q) E B 

if (p,q) ~ B 
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where. denotes the concatenation of paths in P(Ll). 

In [67] for every morphism win C there is defined a group morphism 

'f/2,w : zqx](w) ---t ZC[r](w) 

by 

(u, [x], v) f-t 'Y2(r(U, x) 0 V), 

where r(u, x) is a path in r(x, r) from u 0 x to Ux. From here on, w will be some fixed 

representative of the morphism w in C. 

Before we define for every morphism w in C a group morphism 'TJ3,w : Zqr](w) --+ ZqB](w) , 

we need to introduce another notion. 

Let (l, r) E r where l = al 0 ... 0 as and r = bl 0 ... 0 bt . For every morphisms u, v in C, define 

two paths in r(x, r) as follows: 

rl(U, (l,r),v) = (u, (l,r),v, 1). (.x,r(U,bl) 0 b2 0 ... 0 bt,v, 1) ..... (.x,r(uo bl 0 ... 0 bt-l,bt),v, 1) 

and 

r2(U, (l, r), v) = (.x, r(u, al) 0 a2 0 ... 0 as, V, 1) . (A, r(u 0 aI, a2) 0 a3 0 ... 0 as, V, 1) .... 

'(A, r(uo al 0 ... 0 as-l,as),v, 1). 

It is easy to see that r 1 (u, (l, r), v) is a path in r(x, r) from u 0 l 0 v to urv and r2(U, (l, r), v) is 

a path in r(x, r) from u 0 lo v to ;;k = UrV. Therefore, assuming that ~B= p2(r(x, r)) for a 

set B c p2(r(x,r)), we have from Lemma 3.5.13 that there is a path a:(u, (l,r),v) in Ll(x,r,B) 

connecting rl(u,(l,r),v) with r 2(u,(l,r),v). 

Now we define for every morphism w in C, a group morphism 

'TJ3,w : Zqr](w) ---t ZqB](w) 

by .. 
(u, [l, r], v) f-t 'Y3( a:(u, (l, r), v)). 

The following diagram gives all the maps defined here and in [67]. 

P(Ll) p(r(x,r)) P(UF(x)) 

l~ l~ In 
EB ZC[B](w) ~ EB Zqr](w) ~ EB ZC[x](w) ~ EB Bo(C)(w) ~ EB Z 

wEFC <13 wEFC <12 . wEFC <Ii wEFC wEFC 

Lemma 3.5.14 82(-Y2(p)) = 'Yl(~p) - 'Yl(Tp) for all P E p(r(x, r)). 
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Proof. First we show that 'Yl(te) - 1'l(1"e) = cu*v*(')'l(l) - 1'l(r)) for every edge e = 
(u,(l,r),v,c). For c = 1, ,1(te) = ,1(uolov) = lOV*'l(U) +u* v*,l(l) + (UOl)*,l(V) and 

'Yl (1"e) = 'Yl (u 0 r 0 v) = r 0 v*,Yl (u) + U* V*'l (r) + (u 0 r)* Ii (v). Subtracting, we get the result. 

The CB.'le c = -1 is the analogue of the above. To prove the lemma, we use an induction 

argument on the length of p. If the length of pis 0, then we certainly have the result. Now 

suppose that p = p' . e with p' E P(f(x, r)) and e = (u, (l, r), v, c), then 

62(')'2(p)) = 62(')'2(p') + Eu*v*[l, r]) = 62(T2(p')) + Eu*v*62 ([l, r]) = 

11(lp') - 1'l(1"P') + EU*V*(Tl(l) - 1'l(r)) = 1'l(tp') - 1'l(1"P') + (')'l(te) - 1'l(re)) = 1'l(tp) - 1'l(1"p) . 

• 
Lemma 3.5.15 For every morphism w in C, 62,w63,w = O. 

Proof. Indeed, if (p, q) E B such that the vertices in p represent w, then 62(63([P, q])) = 

62(')'2(P) - 1'2(q)) = 62(')'2(P)) - 62(')'2(q)) = (')'l(tp) - 1'l(1"P)) - bl(/,q) - 1'l(1"q)) = o .• 

Lemma 3.5.16 63(')'3(a)) = 1'2(ta) - 1'2(1"a) for all paths a E P(fl.). 

Proof. We first show that for each edge e = (rl' u, (p, q), v, r2, c) E P(fl.), 

Indeed, for e positive we have: 

and 

It follows that 1'2 (/'e) - 1'2 ( re) = u* v* (')'2 (p) - 1'2 (q)). Similarly we prove the result for c = -1. 

We proceed with the proof of the 'emma by induction on the length of a. If a is a path of 

length 0, then 63b3(a)) = 63(0) = 0, and 1'2(ta) - 1'2 (1"a) = 1'2(0) = o. 
If a = (3 • e with e = (rl' u, (p, q), v, r2, c), then we distinguish between two cases, (p, q) E B 

and (p, q) fJ. B. If (p, q) E B, then 

63(')'3(a)) = 63(')'3((3. e)) = 63(')'3((3) + cu* v*[P, q]) 

= 63(')'3((3)) + cu* v*63([P, q]) 

= 1'2(/,(3) - 1'2(1"(3) + cu* v*63([P, q]) (by induction hypothesis) 

= 1'2(ta) - 1'2(1"(3) + cu* V*(')'2(p) - 1'2(q)) 
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= ,2(Ul:) - ,2(T{3) + ,2(Le) - ,2(Te) (from above) 

= ,2(Ul:) - ,2 (T(¥) , since T{3 = Le and Te = TO.. 

If (p, q) ¢ B, we have 

83(,3(0.)) = 83b3({3. e)) = 83b3({3)) 

= ,2(L{3) - ,2 (T{3) (by induction hypothesis) 

= ,2(La) - ,2 (T{3) + £u* V*b2(p) - ,2(q)) since 

for all (p, q) E D u I, ,2 (p) = ,2 (q) (easily checked). Therefore, 

83b3(a)) = ,2(L{3) - ,2(T{3) + ,2 (Le) - ,2(Te) (from above) 

= ,2(Ul:) - ,2(Ta), since T({3) = L(e), L({3) = L(a) and T(e) = T(a) .• 

Lemma 3.5.17 Let B C p2(r(x,r)) such that ::::!.B= p2(r(x,r)). Then, for every morphi.~m 

w in C, 83,wT/3,w + TJ2,w82,w = icizqr](w)' 

Proof. Let u and v be morphisms in C and (l,r) E r. We have the following: 

83(TJ3(U, [l, r], v)) = 83b3(a(u, (l, r), v))) 

= ,2(L(a(u, (l, r), v)) - '2(T(a(u, (l, r), v)) (by Lemma 3.5.16) 

= ,2(rl (u, (l, r), v)) - ,2(r2(U, (l, r), v)) 

= (u, [l, r], v) + b2 0 ... 0 bt 0 ~ ,2 (r(u, bl)) + ... + V*,2(r(U 0 bl 0 ... 0 bt-I, bt)) 

- a20 ... 0 as 0 ~ ,2(r(U, al)) - ... - V*,2(r(U 0 al 0 ... 0 as-I, as)) 

On the other hand, 

After summing up we have that 83(T/3(u, [l,rJ,v)) + TJ2(82(u, [l,r],v)) = (u, [l,r],v) as claimed . 

• 
Lemma 3.5.18 Let B c p2(r(x,~) be such that ::::!.B= p2(r(x, r)). Then 83,w(ZC[B](w)) = 

Ker(82,w). 

Proof. From Lemma 3.5.15 we have that 83,w(ZC[B](w)) ~ Ker(82,w). Conversely, if 

x E K er( 82,w) , then (TJ2,w82,w)(x) = 0 and hence x = (83,wTJ3,w) (x) + (T/2,w82,w) (x) = 83,w(T/3,w(x)) 

by Lemma 3.5.17. As a result Ker(82,w) ~ 83,w(ZC[B](w)) .• 

Theorem 3.5.2 now follows easily. 
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3.6 Open Problems 

In this section we raise a few questions regarding the relation between conditions f-FP nand 

bi-FPn for small categories and another one for the invariance of FDT. 

Problem 3.6.1 Is it true that for small categories, f-FPn is equivalent to bi-FPn? What about 

monoids? 

We believe that for small categories in general f-FPn strictly implies bi-FPn. The second 

question would have a positive answer if we could solve the following. 

Problem 3.6.2 If the monoid 8 is of type bi-FP n, then is there a free finite partial resolution 

of Z8 which is 8-graded? 

Indeed, if the answer is positive, then we can apply Theorem 3.4.12. 

Problem 3.6.3 Is FDT an invariant of the presentation? 

We will discuss this in some detail. For monoids we know that: two finitely presented 

monoids 81 and 82 given by the respective presentations PI = [Xl, rl] and P2 = [X2, r2] are iso­

morphic if and only if PI and P2 can be obtained from the other by applying finitely many Tietze 

transformations. We can certainly extend the notion of the elementary Tietze transformations 

for presentations of categories. 

Definition 3.6.4 Let P = [x, r] be a presentation of a small category. The following four types 

of transformations on P will be called Tietze transformations. 

(Tl) If u : a ---t b and v : a ---t b are such that (u, v) E r#, then add to r the pair (u, v). 

(T2) If (u,v) E r such that (u,v) E (r\(u,v))#, then we remove (u,v) from r. 

(T3) For some arrow u : a --+ b in ~ F(x), add to x a new edge 0: : a ---t b and add the relation 

(0:, u) to r. 

(T4) If 0: : a --+ b is an edge in x and u : a ---t b is a path in U F(x) such that u does not 

factor through 0: and (0:, u) is from r, then remove 0: from the set of edges of x together 

with the respective relation (o:,u) or (u,o:) from r and then in every relation (j,g) E r if 

0: is a factor of either f or g, it will be replaced by u. 
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One can show in a similar way as in [96] that FDT is invariant under applying Tietze 

transformations. The problem is that Tietze transformations seem to be not enough to transform 

one presentation of a category to another. It is easy to show that for some given presentation 

P = [x, r] of a small category C, if we apply one of TI-T4 to P, then the resulting category is 

isomorphic to C, but it is not clear whether the converse holds true or not . 

• 
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Chapter 4 

Notes on Finitely Generated 

Semigroups 

4.1 Results in Combinatorial Semigroup Theory 

In this chapter we will present some finiteness conditions for semigroups which are of a combi­

natorial nature such as permutation properties, iteration conditions, repetitivity, and minimal 

conditions on ideals. We show that in some cases minimal conditions on ideals are not neces­

sary to ensure the finiteness of semigroups, but on the other hand, we exhibit an example of 

a semigroup S in which min'R, is independent of other "good" conditions which S may satisfy 

such as being finitely generated, periodic, inverse, E-unitary and even from the finiteness of the 

maximal subgroups of S. Also we prove that if a semigroup S is finitely generated and satisfies 

minQ (respectively min8, min.c, min'R" min.]), then every congruence on S which contains Q 

(respectively B, £, n, .1), is of finite index in S. 

Throughout we will denote by A * the free monoid with letters from a finite alphabet A. We 

say that a word u E A* is a factor of w E A*, if there are ~, '" E A* such that w = ~u",. It is 

called a prefix if ~ = >. and a suffix !f '" = >.. Any subset L of A* will be called a language over 

A. For any language L, we denote by F(L), P(L), S(L), the sets of factors, prefixes, suffixes 

of all the words of L. We say that L is closed by factors if F(L) = L. A language L is called 

bounded if there exists finitely many words Ul'''',Un E A* such that L ~ ui ... u~. 

A two-sided infinite (or bi-injinite) word waver an alphabet A is any map 

w: Z --+ A. 
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For every nEZ, we set Wn = wen) and denote W in the form 

The set of bi-infinite words on A will be denoted by A±w. A word u E A* is a finite factor of 

W E A ±w if u = >. or there exist i, j E Z such that i ~ j and u = Wi ••• Wj. Also one can define 

right-infinite (respectively left-infinite) words W over an alphabet A by a map 

W : N+ ----+ A (respectively W : N_ ----+ A). 

The set of right-infinite words will be denoted by AW and that of left-infinite words by A-w. 

For every bi-infinite word W = .. 'W-2W-IWOWIW2 • ", we denote by W+ the word WIW2 • ". 

For all the definitions and results given in this section we refer the reader to [26]. 

Definition 4.1.1 Let S be a set and ¢ : A* ----+ S a map. A word W = WI'" wk with Wi E A*, 

is called a k-power modulo ¢ if 

Definition 4.1.2 Let A* be a free monoid, S a set and kEN, k > 1. A map ¢ : A* ----+ S 

is called k-repetitive if there exist a positive integer L, depending on ¢ and k, such that every 

word W with Iwi ~ L has a factor which is a k-power modulo ¢. One says that is repetitive if it 

k-repetitive for every k > 1. 

Definition 4.1.3 A factor u of an infinite word W E AW (respectively W E A±W) is recurrent 

if the set of all i E N+ (respectively i E Z) such that u = w[i, i + lui - 1] has not an upper 

(respectively upper and lower) bound. The word is recurrent if and only if all its factors are 

recurrent. 

Definition 4.1.4 A factor u of an infinite word t occurs sydentically in t if there exists an 

integer k such that in any factor of t of length k there is at least one occurrence of u. An infinite 

word is called uniformly recurrent, or with bounded gaps, if all its factors occur sydentically in 

t. 

Theorem 4.1.5 Let L ~ A* be an infinite language. There exists an infinite word x E A±w 

such that 

(i) x is uniformly recurrent and 

(ii) F(x) ~ F(L). 
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Corollary 4.1.6 Let J be a two sided ideal of A*. If, for every uniformly recurrent word 

wE AW, F(w) n J 1= </>, then there exists an n > 0 such that An A* ~ J. 

Proof. Suppose that there exist infinitely many words that belong to the set C = A*\J. 

Being the complement of an ideal, C is closed by factors, then by the above theorem, there 

exists a uniformly recurrent word w E A±w such that F(w) ~ C. Hence, F(w+) ~ C which is a 

contradiction since w+ E AW is uniformly recurrent as well .• 

If a semigroup S is generated by a set A, then we can define the canonical morphism 

</> : A+ __ S where A+ is the free semigroup with base A and cp sends each word of A+ to the 

element of S it represents. Suppose we have a total order < on A and define the alphabetical 

order <a on A+ as follows: 

U <a V {::=? (lui < Ivi) or 

(lui = Ivl and u = hxe, v = hy'f}, h, e, 'f} E A*, x, yEA and x < y) . 

A word w E A + is called reducible, if there exists u E A + such that 

u <lex wand </>(u) = </>(w). 

A word which is not reducible, is called irreducible. Let s E 8. The unique minimal element of 

</>-l(s) will be called the canonical representative of s. For every subset T ~ 8, we denote by 

CT the set of canonical representatives of the elements of T. 

A sequence Sl, ... , Sn of elements of a semigroup 8 is called a bi-ideal sequence if for i > 0 

where 8 1 = 8 U {1} with 1 a unit element, or 8 1 = 8 if S already has such an element. 

Proposition 4.1. 7 Let 8 be a finitely generated semigroup. If T is an infinite subset of 8 

closed by factors, then there exists a bi-ideal seqnence (sn)n>O such that for all n > 0, Sn E T 

and for all positive integers i, j wit".i 1= j, one has Si 1= Sj. 

Let 8 be a finitely generated semigroup, A its generating set and </> : A+ __ 8 be the 

canonical morphism. The growth function of 8 is defined for all n> 0, as 

gs(n) = card{s E 8 I </>-l(s) n A-::;n 1= cp}. 

Proposition 4.1.8 Let S be a finitely generated semigronp such that there exists an integer 

n > 0 for which 

() 
n(n+3) 

gs n < 2 . 
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If S is infinite, then S contains an element of infinite order. 

In what follows we will define some finiteness conditions for semigroups and give a few 

important results related with them. 

Definition 4.1. 9 Let S be a semigroup and n an integer > 1. A sequence 81, ... , 8 n of n 

elements of S is called permutable if the product 81 ... 8 n remains invariant under some non­

trivial permutation of its factors. 

We say that Sis n-permutable if every sequence of n elements of S is permutable, and that 

S is permutable if it is n-permutable for some n > O. Obviously, permutability generalizes 

commutativity. There are a number of interesting results which we mention briefly below. 

Proposition 4.1.10 Let S be a finitely generated semigroup which is permutable. Then, Cs is 

a bounded language and the growth function of S is polynomially upper bounded. 

Theorem 4.1.11 Let S be a finitely generated and periodic semigroup. S is finite if and only 

if it is permutable. 

There is a characterization of finitely generated groups. 

Theorem 4.1.12 A finitely generated group G is permutable if and only if it is abelian-by-finite, 

i.e., G has an abelian (normal) subgroup of finite index. 

The similarity of the following two results is not surprising if we recall that to a certain 

degree, completely O-simple semigroups are similar to groups. 

Theorem 4.1.13 If the growth function of a group G is bounded by a polynomial of degree =::; 3, 

then G is permutable. 

Proposition 4.1.14 A completely i-simple semigroup whose growth function is bounded by a 

polynomial of degree =::; 3 is permutable. 

Next we give some finiteness condition of a different nature. They are related with the 

so called chain conditions which are conditions on the ideal structure of the semigroups. We 

advise the reader to read first a few basic notions from Semigroup Theory in the Appendix of 

this Thesis. 
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Consider the following relations on a semigroup 8. For s, t E 8 we set 

s ~'R. t *=* 

s ~e t *=* 

s81 ~ t81 

8 1s ~ 8 1t 

Definition 4.1.15 A semigroup 8 satisfies the minimal condition on principal right (respec­

tively left, two-sided) ideals if the quasi-order ~e (respectively ~'R. , ~.J) is well-founded. We 

denote by mine (respectively min'R., min.J) these minimal conditions. 

Definition 4.1.16 An element s E 8 is called right-stable (respectively left-stable) iffor every 

t E JB , t81 ~ s81 (respectively 8 1t ~ 8 1s) implies t'Rs (re.."lpectively tCs). It is called stable if 

it is both right and left stable. A subset X ~ 8 is called stable if every element of X is stable. 

Lemma 4.1.17 Every periodic semigroup is stable. 

Before we state the :T-depth decomposition theorem, which we use in the proof of Theorem 

4.2.7, we give some definitions and preliminary results. 

Definition 4.1.18 Let s be an element of a semigroup 8. The :T-depth of s is the length of the 

longest strictly ascending chain of two-sided principal ideals starting with s. The :T-depth of s 

can be infinite. A semigroup 8 admits a :T -depth function d.J if for every s E 8 the :T-depth 

d.J(s) of s is finite. 

For s, t E 8, if JB < Jt, then we say that the :T-class Jt is above JB • 

Definition 4.1.19 A semigroup 8 is weakly finite J -above if each :T-class of 8 has only finitely 

many :T-classes above it. 

Definition 4.1.20 A semigroup 8 is finite J-above if it is weakly finite :T-above and every 

:T -class is finite. • 
Let 8 be a semigroup. We define recursively a sequence (Kn)n~o of sets as follows: Ko = 0 

and for all n > 0, 

where for j> 0 , Cj is the set of elemens of 8\Kj-l which are maximal with respect to ~.J in 

8\Kj_1. We set Ks = NoKj. 
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Lemma 4.1.21 Let 8 be a semigroup. For all j > 0, Kj is closed by factors and is a union of 

:J -classes. 

Definition 4.1.22 A semigroup 8 has a weak :J-depth decomposition if for all j > 0 the sets 

Kj are finite. Moreover, if 8 is infinite then Ks has to be infinite. A semigroup 8 has a :J-depth 

decomposition if it has a weak :J-depth decomposition and 8 = Ks. 

Proposition 4.1.23 Let 8 be a semigroup. The following are equivalent. 

(i) 8 ha.9 a :J -depth function and a weak :J -depth decomposition. 

(ii) 8 has a :J -depth decomposition. 

A more direct connection between the :J-depth decomposition and the ideals of a semigroup, 

is given in the following. 

Proposition 4.1.24 If a semigroup 8 has a :J -depth decomposition, then 8 is finite :J -above. 

The following has many applications to finiteness conditions for finitely generated semigroups 

with maximal subgroups locally finite. 

Theorem 4.1.25 (:J-depth decomposition theorem) Let 8 be a finitely generated semi­

group which is right stable and whose subgroups are locally finite. Then 8 has a weak :J -depth 

decomposition. 

Returning to the chain conditions, we give a theorem found in [24] which generalizes a 

theorem of Hotzel [42]. 

Theorem 4.1.26 Let 8 be a finitely generated semigroup whose subgroups are locally finite. If 

8 satisfies min'R (respectivelymin.c), then 8 is finite. 

Proof. If 8 satisfies min'R then it is right-stable. Suppose that 8 is infinite, then from 

Theorem 4.1.25 so will be Ks. Sinc~ Ks is closed by factors, from Proposition 4.1.7 one finds 

a bi-ideal sequence (fn)n>O of elements of Ks such that 

In = In-lgn-dn-l, 9n-l E 8 1
, n > 1, 

and In f: 1m for n f: m. Since in particular In81 ~ Im81, from min'R there exists an integer k 

such that for all n ~ k we have InRfk. This means that the class JIn is infinite and therefore 

K j which contains In will be so, which is a contradiction .• 
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Recall from [97] the definition a bi-ideal in a semigroup S. We call B ~ S a bi-ideal if 

BSB ~ B. 

It is easy to see that the principal bi-ideal generated by s E S has the form 

This gives rise to another relation on S: 

sBt {:::::} B(s) = B(t). 

We say that s $(3 t if B(s) ~ B(t). If this quasi-order is well-founded, we say that S satisfies 

min(3. 

The following generalizes a theorem of Coudrain and Schutzenberger [18]. 

Theorem 4.1.27 Let T be a semigroup which satisfies min(3. Let T' be a subsemigroup of T 

such that the subgroups of T are locally finite in T'. Then T' is locally finite. 

Corollary 4.1.28 Let T be a semigroup satisfying min(3. 1fT' is a periodic subsemigroup whose 

subgroups are locally finite, then T' is finite. 

We will use Corollary 4.1.28 to prove the McNaughton and Zalcstein Theorem [24]: 

Theorem 4.1.29 A torsion semigroup of n x n matrices over a field is locally finite. 

Sketch of proof. For every field F, the semigroup Mn(F) of n x n matrices over F can 

be identifies with Endn(V, F) where V is a vectorial space of dimension n. In a next step, one 

can prove that Endn (V, F) satisfies minR and mine and therefore as can be easily seen, also 

min(3. Also it is know that all the maximal subgroups of Mn(F) are locally finite (see [46]). 

All we stated above, hold true for every subsemigroup S of Mn(F) and as a result Corollary 

• 4.1.28 applies. -

We say that a semigroup S satisfies the itemtion property if for any product SI ••• Sm of a 

sufficiently great number m of elements of S, there exists a factor Si ... Sj with 1 $ i $ j $ m 

which can be iterated, i.e., can be replaced by (Si··· Sj)n, n 1= 1, without changing the value of 

the product. 
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Definition 4.1.30 Let S be a semigroup and m and n integers such that m > 0 and n ~ O. 

We say that the sequence Sl, ... , Sm of m elements of S is n-iterable if there exist integers i, j 

such that 1 ~ i ~ j ~ m and 

We say that Sis (m, n)-iterable, or satisfies the property C(n, m), if all sequences of m elements 

are n-iterable. 

The condition stated below is rather weaker. 

Definition 4.1.31 Let m be a positive integer. A semigroup S satisfies the condition C(m) if 

for any sequence 81, ... , 8 m of m elements of S there exist integers i,j, n such that 1 ~ i ~ j ~ m, 

o ~ n i- 1, and 

There is also a stronger version of Definition 4.1.30 called the iteration property on the right. 

A semigroup satisfies D(n, m), if for every sequence S1. ... , Sm of m elements of S there exist 

integers i,j such that 1 ~ i ~ j ~ m and 

Theorem 4.1.32 Let S be a finitely generated semigroup. Then S is finite if and only if S 

satisfies properties D(2, m) (respectively C(2, m)) or D(3, m) (respectively C(3, m)). 

The following shows that in the ca..'ie of C(m) one needs to assume the finiteness of the 

finitely generated subgroups of S. 

Theorem 4.1.33 Let S be a finitely generated semigroup satisfying the iteration condition 

C(m). If the subgroups of S are locally finite, then S is finite . 

• 
Lastly we define strong repetitivity as a candidate for a finiteness condition for semigroups. 

Before doing so we need the following. 

Definition 4.1.34 Let S be a semigroup. We say that a morphism <p : A+ ---+ S is strongly 

repetitive if it satisfies the following condition: for any map f : N+ --+ N+ there exists a 

positive integer M, depending on f, such that for every w E A+ if Iwl ~ M, then w can be 

factorized as 
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where p E N+, h, h' E A*, 0 < IVil :S p, 1 :S i :S f(p), and 

Definition 4.1.35 A semigroup 8 is strongly repetitive, if for every finite alphabet A, every 

morphism cP : A + ----t 8 is strongly repetitive. 

Theorem 4.1.36 A finite semigroup is strongly repetitive. 

The following in due to Brown [14] and will be useful in the next section. 

Theorem 4.1.37 Let cP : 8 ----t '1' be a morphism of semigroups. If '1' is locally finite and if 

for each idempotent e E T, cP- 1 (e) is locally finite, then 8 is locally finite. 

Sketch of proof. One must show that for every finite alphabet A and every morphism 

( : A+ ----t 8, «(A+) is finite. Since T is locally finite, one has that T' = W(A+) is finite where 

W = (cP· There is r E N+ such that for every t E T', t T E E(T'). For every idempotent e E T' 

and n E N+ we denote by Xn,e the set 

Xn,e = {u E A+ I ((u) E ¢-l(e) and lui :S n}. 

Since cP-1(e) is locally finite and «(X~e) is a finitely generated subsemigroup of ¢-l(e), we have 

that ((X~e) is finite. There exists an integer p(n, e) such that if u E X;t,e and lui;::: p(n, e), 

then there exists u' E X;t,e such that lu'l < lui and «(u) = «(u'). Let us set 

f(n) = r max{p(rn, e) leE 1!J('1")}. 

Using the fact that W : A+ ----t T' is strongly repetitive (Theorem 4.1.36), one can show that 

there exist M E N+ such that all the words of A+ of length at least Mare ( equivalent with 

shorter words of A+ and as a result «(A+) is finite. _ 

Lastly we give the following. _ 

Theorem 4.1.38 Let 8 be a semigroup. 8 is locally finite if and only if it is strongly repetitive. 

4.2 Some other Finiteness Conditions 

The results of this section will appear in [83]. 

Let (8,·) be a monoid generated by a finite set A (A S;;; 8). Denote by A* the free monoid 

on A and by r.p the canonical morphism r.p : A * ----t 8 sending every word w E A * to the element 
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of 8 it is representing. For any congruence K on 8 and for any K-class, Kx (x E 8) we define 

the set 

where l(w) is the length of the word w. Clearly Mx contains all the words of <p-l(Kx) of minimal 

length which will be referred to later as the set of the minimal length representatives of the K­

class Kx. Next we show that the set M = u Mx is closed by factors. Indeed, let 
xES 

W = u1vU2 E M and suppose v E A* - M. It follows that there is v' E <p-l(Kr,o(v)) such that 

l(v') < l(v). On the other hand, since <p(v')K<p(v),we obtain <p(uI)<p(v')<p(u2)K<p(U1)<p(V)<p(U2) 

or equivalently w' = U1 V'U2 E <p-1(Kr,o(w))' But l(w') = l( u1)+l( v')+l( U2) < l( ud+l( v)+l( U2) = 

l(w), which is a contradiction. Similarly it can be shown that if w E M, then all its suffixes 

and prefixes are also in M, hence M is closed by factors. This fact is denoted for short by 

M = F(M). 

Suppose that A* - M =I- 0. Under this assumption we show that I = A* - M is an ideal 

of A *, that is I A * ~ I and A * I ~ I. Indeed, suppose by the way of contradiction that there 

is u E I, v E A* such that uv E M, then since M = F(M) it follows that u E M, which is a 

contradiction. Similarly I is a right ideal. Thus we have proved the following. 

Lemma 4.2.1 If (8,·) is a monoid generated by a finite set A and K a congruence on 8 such 

that A* - M =I- 0 where M is the set of the minimal length representatives of the K-classes. 

Then I = A* - M is an ideal of the free monoid A*. 

In the next lemma, b.. will denote the trivial relation {(x, x) I x E 8} on the set 8. 

Lemma 4.2.2 Let 8 be a monoid generated by a finite set A, K a congruence on 8 and let M 

be the set of the minimal length representatives of the K-classes. If K contains Q (respectively 

13, .c, n, .1) and either Q =I- b.. (respectively 13 =I- ~, .c =I- b.., n =I- b.., .1 =I- b..), or Q = b.. 

(re.~pectively 13 = ~, .c = ~, n = L\ .1 = b..) and 8 satisfies minQ (respectively minB, mine, 

min'R., min.7), then A* - M =I- <p. 

Proof. We will prove the claim for Q only since the proofs for the other cases run similarly. 

Suppose first that Q =I- b.. and let x, y E 8 such that x =I- y and xQy. It follows in particular 

that there are Sl,S2 E 8\{1} (1 is the unit element of 8) such that x = X8182. This means that 

there are two representations of x with words from A* of different lengths. Since Q ~ K, we 

have that M =I- A * . 
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Suppose now that Q = ~ and S satisfies minQ. It is easy to see that in general for every 

xES we have 

therefore minQ implies that there is an n ~ 1 such that xnQxn+l. Since Q = ~, we must have 

xn = xn+1 and as a consequence there are two representations of xn with words from A* of 

different lengths. As with the first case one deduces that M =f:. A*. _ 

Proposition 4.2.3 Let S be a finitely generated monoid which satisfies minQ. Every congru­

ence IC on S which contains Q is of finite index in S. 

Proof. We use the notation of Lemma 4.2.1 and Lemma 4.2.2. Lemma 4.2.2 assures that 

we always have M =f:. A*. Since M meets every <p-l(lCx ), xES, then it suffices to show that 

M = A* - I is finite. We will make use of Corollary 2.3.2 of [26] to prove the finiteness of M. 

According to that result, we must show that for any uniformly recurrent word w E AW we have 

F(w) nI =f:. <p, where F(w) is the set of factors of w. Let w = ala2 ... , be a uniformly recurrent 

word from the set of infinite words AW with letters from A. Denote by 

the principal quasi-ideal generated by <p(al). Since w is uniformly recurrent, then there is 

VI E F(w) such that Ul = alvlal E F(w). Observe that 

Ql = (<P(Ul))q = (<p(al)<p(vl)<p(adS n S<p(al)<p(vl)<p(al)) 

U <p(al)<p(vl)<p(al) ~ <p(al)S n S<p(al) ~ Qo. 

Inductively one can construct a sequence as follows 

where Uk E F(w), k ~ 1 and <p(a~ ~Q <p(Ul) ~Q <p(U2) ~Q •.. <p(Uk) ~Q <P(Uk+l) ~Q .... 

Recalling that S satisfies minQ, we find kEN such that <p(Uk)Q<p(Uk+l) or equivalently <p(Uk) 

and <p(Uk+l) are in the same Q-class and hence in the same IC-class, say Kcp(Uk). It follows that 

Uk and Uk+l E <p-l(Kcp(Uk))' but from the construction we have I(Uk) < l(Uk+l), hence 

Uk+l ~ M. So Uk+l E F(w) nI and we are done. _ 

Combining Theorem 4.1.37 with Proposition 4.2.3, we obtain the finiteness condition of 

Corollary 4.2.4 below. 
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Corollary 4.2.4 Let S be a finitely generated monoid and let IC be a congruence containing Q. 

Then S is finite if and only if it satisfies minQ and every idempotent of the factor monoid S/IC 

is a locally finite subsemigroup of S. 

Similar results to Proposition 4.2.3, and consequently to Corollary 4.2.4, hold if we put 

respectively relations B, £, R, J instead of Q = 1i. 

Let us now consider the semigroup S with r generators which satisfies the equation xn = xn+1 

for a fixed n E N and every xES. We denote it by B(r,n,n + 1). Since the Q-classes 

of B(r, n, n + 1) are trivial (see Lemma 4.6.1 of [26]), we have that Q is a congruence. The 

presentation giving the semigroup in this case is length reducing, therefore there are words 

representing the same element of S which do not have the same length. In particular this 

means that we automatically have the condition M =1= A* satisfied. 

Proposition 4.2.5 S = B(r, n, n + 1) is finite if and only if it satisfies minQ. 

Proof. From the above comment, the set of the minimal length representatives M related 

with any congmence is never equal to A *, the free monoid of rank r. On the other hand, since 

in this case Q is itself a congruence whose classes are of a single element, one can get the result 

by applying Corollary 4.2.4. • 

Lemma 4.2.6 If S is a semigroup that satisfies minQ and all its maximal subgroups are locally 

finite, then it is periodic. 

Proof. As we mentioned earlier, for every a E S, 

On the other hand minQ implies the existence of n E N such that an Qa2n . It follows that tbe 

Q-class Han is a subgroup of S. Now denoting by (an) the subgroup of Han generated by an, 

we have from the assumption that (~n) is finite, hence there is some kEN such that an = ank . 

This shows that a is periodic. • 

Theorem 4.2.7 A finitely generated semigroup S is finite if and only if it satisfies minQ and 

all its maximal subgroups are locally finite. 

Proof. From Lemma 4.2.6, S is periodic and consequently it is stable. From the .J-depth 

decomposition theorem it follows that S has a weak .J-depth decomposition, consequently if we 

suppose S to be infinite, then so will be Ks. Under this assumption, from Proposition 3.2.2 and 
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Lemma 3.6.3 of [26], there is a bi-ideal sequence (fn)n~O of elements of Ks such that fn f= fm 

for all n f= m. Since fn E fn_1S1 n Sl fn-l ~ (fn-1)q, then from minQ one has that there 

exists n EN such that fn1-lfm for all m 2:: n, hence Jln contains infinitely many elements of S. 

It follows that the one Kj which contains Jln is infinite, a contradiction. _ 

Observe that Theorem 4.2.7 is a substantial generalization of Proposition 4.2.5. 

Now we focus our study in finding finiteness conditions for some special kinds of regular 

semigroups. First we recall the following from [81]. 

Lemma 4.2.8 Let S be a completely O-simple semigroup. Then S is locally finite if and only 

if a maxima,l subgroup of S is locally finite. 

Proposition 4.2.9 Let the semigroup S be a union of completely O-simple semigroups Si, i E I 

.9uch that for any i, j E I, SiSj ~ Si n Sj. Then S is locally finite if and only if every subgroup 

of S is locally finite. 

Proof. Here we use an induction argument on the minimal number of completely O-simple 

subsemigroups Si, i E I needed to contain the set of generators X of a finitely generated 

subsemigroup of S. Assume that every subgroup of S is locally finite. If X is contained in a 

single Si for a certain i E I, then Lemma 4.2.8 implies that the subsemigroup (X) is finite. 

Let us now suppose that any finitely generated subsemigroup of S whose set of generators is 

contained in at most k - 1 semigroups of the collection {Si}iE/' is finite. Let X ~ S be finite 

and the minimal number of the subsemigroups of S of the collection {SihE/ which contain X 

is k. Denoting these semigroups by Sl, S2, ... , Sk-1, Sk, we may write 

Denote by Y1 = X n (j~/j) and Y2 = X n (Sk\ j~k Sj). Now since Y1 ~ Sl U S2 U ... U Sk-1, 

it follows that the minimal number4Pf Si, i E I that contain Y1 is at most k - 1. From the 

induction hypothesis it follows that T1 = (Y1) is finite. Of course T2 = (Y2) is finite too. Next 

we show that 

where '13 = ('1].'12 U '12'11) and that '13 is finite. Indeed, any element of (Y1 U Y2) belongs to one 
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of the following four types of products of powers of Y1 and Y2: 

(Yt'll y2
ct21 ) (y

1
ct12 y2

ct22 ) ... (Yt'ln y2ct2n), 

(y
1
ctll y2

ct21 )(Yt'12Y2ct22 ) ... (yt1n- 1 Y2ct2n-1) yt'ln, 

(Y2ct21 ytll ) (Y2ct22 yt12) ... (Y2ct2n ytln), 

(Y2ct21 Yt'll ) (y2
ct22y

1
ct12 ) ... (y;2n-l yt1n- 1) Y2ct2n , 

where n ranges over N and for all k = 1, .. , n, alk and a2k are non negative integers. It is clear 

that products of the first type are included in (T1T2)n ~. T3, products of the second type are 

included in (T1T2)n-1T1 ~ T3T1, those of the third type in (T2T1)n ~ T3 and la.<;tly products of 

the fourth type in (J'2J'1)n-1J'2 ~ J'3J'2, hence 

while the converse is obvious. Finally to prove that (X) is finite we need only the finiteness of 

T3' First we see that 

T1T2 ~ (81 U 82 U ... U 8k-1)8k = 818k U ... U 8k-18k 

~ (81 n 8k) u ... U (8k-1 n 8k) 

~ (81 U 8 2 U ... U 8k-1) n 8 = 8 1 U 8 2 U ... U 8k-1' 

Similarly '1 2'11 ~ 8 1 U 8 2 U ... U 8k- 1. Consequently, '11'1 2 U '1 2'11 ~ 81 U 82 U ... U Sk-1. Now 

since T1T2UT2T1 is finite and since the minimal number of semigroups of {8i}iEI which contain 

1'1 '1 2 U J' 2'11, is at most k - 1, it follows from induction that J' 3 = (J' 1 '1 2 U '1 2J' 'I) is finite. _ 

Corollary 4.2.10 A primitive regular semigroup 8 is locally finite if and only if every subgroup 

of S is locally finite. 

Proof. From Theorem 1.9 of [34], 8 is a O-direct union of completely O-simple semigroups. 

The result follows from Proposition 4.2.9. _ 

In what follows one needs the concept of a tree of semigroups. The description in general of 

such structures is given in Lemma 3f8 and Lemma 3.4 of [34]. We include below these lemma.<; 

for the convenience of the reader. 

Lemma 4.2.11 Let A ~ B be .:J-classes of a strict regular .~emigroup. Let cp~ : A --+ B 

assign to each x E A the element y E B such that y :::; x. Then cp~ is a partial homomorphism. 

Furthermore cp1 is the identity on A; if A ~ B ~ C, then cpg 0 cp~ = cp~; and 
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Lemma 4.2.12 Let T be a tree in which every element has finite height. For each t E T let Bt 

be a semigroup with O. For each t E '1' let CPt be a partial homomorphism of Bt\O into Bt,\O ift 

is not minimal. Assume that the partial semigroups Bt \0 are pairwise disjoint. On the disjoint 

union B = (UtET(Bt \0) U {O}) define a multiplication * recursively as follows: for all x E Bt \0 

and y E Bu\O, 

xy if t = u and xy i- 0 in Bt , 

CPt (x) CPt (y) if t = u and xy = 0 in Bt , 

x*y= CPt (x)y if t> u, 

xCPu(Y) if t < u, 

CPt (x ) CPu (y) if t i u and t ~ u. 

Then S is a semigroup. 

Next we study semigroups (B, *) which are trees of completely O-simple semigroups (St, .), 

t E T and T is a tree. In fact, as Theorem 3.5 of [34] shows (see also Theorem A.0.6 in Appendix), 

such semigroups are regular and their idempotents form a tree in which every element has finite 

height, or equivalently, they are strict regular and their .7-classes form a tree in which every 

element has finite height. As it turns out from this theorem, the .J-classes of B are the sets 

Jt = Bt \0, and Bf.J ~ T. This implies that each maximal subgroup of B is included in St \0 

for some t E T. If we add the condition that the maximal subgroups of S are locally finite, then 

from Lemma 4.2.8 we obtain that each (St,·) is locally finite. Here arises a question: Is a tree of 

completely O-simple semigroups whose subgroups are locally finite, a locally finite semigroup? 

Before dealing with this question, let us introduce the following notations. For X ~ B, denote 

by (X) the subsemigroup of (B, *) generated by X. For X ~ Bt , t E '1', denote by (X)t the 

subsemigroup of (Bt,·) generated by X. Observe these two facts. 

Fact 1. (X) ~ J t ===* (X) = (X)t. 

Fact 2. (X) ~ Jt =* (X)t = «(X) n St) U {O}. 

Fact 1 is obvious. • 
Fact 2. Since (X) ~ Jt , then there are elements of (X) which equal to the zero of St, 0, hence 

(X)t consists of {O} and of those elements of (X) which belong to Bt . 

Lemma 4.2.13 Let (B, *) be a tree of completely O-simple semigroups and let the maximal 

subgroups of S be locally finite. If X ~ Jt, t E '1' and IXI < 00, then (X) is finite. 

Proof. We use an inductive argument on the cardinality of X. Let first X = {x} ~ Jto , 

to E T. There are two possibilities. 
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1) For each n EN, xn E Jto . From Fact 1 above we have that (X) = (X}to and since (Sto,') 

is completely O-simple, from Lemma 4.2.8 the finiteness of (X) = (X}to follows. 

2) (x) S;; Jto , then there is no E N: xno E Jto and xno+l E Jt1 where tl < to. From the 

definition of the product is S, we find that 

Now let nl E N, nl ~ no + 1 be such that xn1 E Jt1 and xn1+1 E Jt2 where t2 < tl. Similarly 

with above we have 

and so on. Since the height of to is finite, there is mEN such that xnm E Jtm and 

A = {xnm+l , xnm+2, ... } ~ Jtm+1 where tm+l < tm. Now since obviously St; n (x) is finite for 

each i ~ m, we need only to prove the finiteness of A. Indeed, (A,.) is a subsemigroup of 

(Stm+l") and furthermore it is finitely generated with B = {xnm+1, xnm+2, ... , x2nm, x2nm+l} as 

its generating set. Recalling that (Stm +!,·) is locally finite, we obtain that A is finite. Suppose 

now that for X' ~ Jt. t E T and IX/I = k - 1 we have I(X/}I < 00. Let X ~ Jt , t E T and 

IXI = k, that is X = {XI,X2, ... ,Xk-l,xd. Denote by Xl = {XI,X2, ... ,Xk-l} and X2 = {Xk}. 

From the induction hypothesis we have that I (Xl) I < 00 and I (X2) I < 00. Let St = Sto, Stl! 

St2' ... , St n , where to = t > tl > ... > tn, be the sets which (X) intersects with. It suffices to 

prove that (X) n Stp i = 0, 1, ... , n is finite. First (X) n Sto ~ (X}to' from Fact 2, and since 

I(X}tol < 00 we obtain that I(X) nStol < 00. Now for i ~ 1, each element of (X) n St; is 

expressed as a product of elements taken in the set 

which implies that (X) n St; ~ (Ai}t;. From induction hypothesis A is finite and hence (Ai}t; 

is finite, consequently (X) n St; is fi~te too. • 

Lemma 4.2.14 Let (S, *) be a tree of completely O-simple semigroups and let the maximal 

subgroups of S be locally finite. If X ~ Jt1 U Jt2 U ... U Jtk , IXI < 00 and tl > t2 > ... > tk, 

ti E '1', i = 1,2, ... ,k, then I(X}I < 00. 

Proof. First we observe that if the lemma holds true in the special case when t2 = tl + 1, 

t3 = t2 + 1, ... , tk = tk-l + 1, where by ti + 1 we denote the predecessor of ti, then it holds true 

in general. Indeed, let X ~ Jt1 U ... U Jtk . Put Xi = X n Jtil 1 ~ i ~ k and let us consider the 
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set 

Obviously, X* is finite and X* S;;; Stl U Stl+l U ... U St"_l U St"_l+l U ... U St". Since, by our 

assumption, I(X*)I < 00 and since (X) S;;; (X*), we obtain that (X) is finite too. To prove 

the lemma in the special case, we use induction on k. In case k = 1, from Lemma 4.2.13, it 

follows that I(X)I < 00. Let us now denote X, = Xl U X2 U ... U Xk-l and X" = Xk. From 

the induction hypothesis we have I(X')I < 00 and I (X") I < 00. Let n E N, n ~ k be such 

that (X) S;;; Stl U St2 U ... U St" U ... U Stn and (X) n St n =f. 0, (X) n Stn +1 = 0. From the 

above we obtain that Y/ = (X') n Stp i = 1,2, ... , n is finite and Yj' = (X") n St;, j = k, 

k + 1, ... , n is finite too. Now it suffices to prove that I (X) n St; I < 00, for each i ~ n. Observe 

that (X) n St, = (X') n St, = Y/ for i = 1,2, ... , k - 1 and as we mentioned before these are all 

finite. For all tj < tk, letting in general <P~; (0) = 0, where 0: ~ j3 and 0 is the empty set, as in 

the proof of Lemma 4.2.13 we have (X) n Stl S;;; (Al)tl where 

Al = (U Stj (Y./)) U (U Stj (y(I)) 
t >t·>t <PStl' t >t ·>t <PStl J • 1_'_1 "-J-l 

Since Al is finite, it follows that (X) n Stl is finite too. • 

Theorem 4.2.15 Let (S, *) be a tree of completely O-.~imple semigro1Lp.~ (St, .) where t E '1' and 

T is a tree. If the maximal s1Lbgro1Lp.~ of S are locally finite, then S is locally finite. 

{x E S I x E St, t ~ ti for some i = 1, 2, ... , k} . 

Let X S;;; S be finite and X S;;; ]Jtl U Jt2 U ... U Jt ,,] where tl, t2, ... , tk do not necessarily form a 

chain. If k = 1, then from Lemma .f.2.14, I(X)I < 00. Make the following notations 

Let Yk-l = (Xk-l) and Yk = (Xk), both of them finite by the induction hypothesis. Let 

and 
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It suffices to prove that St n (X) is finite for each t E Tk. Clearly, (X) n St; = Yk-l n St; for 

i = 1,2, ... , k - 1 and (X) n Stk = Yk n Stk. From the induction both intersections are finite. 

Now for t E Tk \ {tI, t2, ... , tk-l, tk} we have that 

The latter semigroup is finite because it is generated by a finite subset of St and (StI·) is locally 

finite .• 

4.3 A counterexample 

In Theorem 4.2.7 and Proposition 4.2.5, or in Corollary 3.1 of [16], the minimality condition 

on principal quasi ideals and right ideals respectively, is required besides the local finiteness of 

the maximal subgroups of the semigroup, as a finiteness condition for the semigroup. A natural 

question which arises here is whether or not there is any case when min'R (minQ, minB, or 

other minimal conditions) follows from the rest of the conditions under which a semigroup is 

expected to be locally finite. In this section we find a negative answer of the above. Precisely, 

we find finitely generated, periodic, l!:-unitary inverse semigroups which have all their maximal 

subgroups finite, but do not satisfy min'R and consequently are not finite. 

Theorem 4.3.1 There is a finitely generated, periodic, E-unitary inverse semigroup which has 

all its maximal subgroups finite, but does not satisfy min'R. 

In general we can construct, as will be shown later, an inverse semigroup which is generated 

by one of its subsets along with a group that is generated by one of its subsets. The semigroup 

has the following properties. If the group is finitely generated, we show that so is the semigroup 

constructed. If the group is perio~c, then so will be the semigroup. Further if the group 

is infinite, then the semigroup does not satisfy the condition min'R. Since there are finitely 

generated and periodic groups which are infinite (see [1]), then we can deduce from Theorem 

4.3.1 that min'R on a finitely generated semigroup does not depend on its being inverse and 

periodic, E-unitary and on having all its maximal subgroups finite. The way of constructing 

such a semigroup is quite similar to that one of constructing free inverse semigroups presented 

in the Theorem of Scheiblich (see [34]). 
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Let G be such a group generated by one of its subsets X. Along with G, let us consider the 

free group FG X on X. Denote by cp the canonical morphism cp : FG x ---+ G defined by 

"if YI, Y2, ... Yn E X U X-I and for every i = 1, ... , n, cp(Yi) = Yi, "if n E No 

For every fixed g E G and for every W E cp-l(g) ~ FGx, we take Aw ~ FGx such that 

wE Aw, Aw is finite but nontrivial and suff(Aw) = Aw, where suff(Aw} is the set of all suffixes 

of the words in Aw· In the sequel we consider pairs (cp(w),cp(Aw)) = (g,cp(Aw)) for g E G and 

Aw chosen as above. For any fixed w, denote by Aw the set of all possible Aw described above. 

Define the set 

S = U U U (g, cp(Aw)). 
gEG WE<p-l(g) AwEAw 

Define in S the following multiplication 

Observe that 

and that 

which is finite, nontrivial and clearly 

This shows that the pair (glg2, CP(AWl )g2 U CP(AW2)) = (cp( WI W2), CP(AWl w2 U AW2 )) belongs to 

S, which assures one for the correctness of the multiplication· as a mapping S x S ---+ S. Let 

us now show that (S, .) is a semigroup. Indeed, 

(gl, CP(AWl)) [(g2, CP(AW2 ))(g3, $(AW3 ))] = (gl, CP(AWl ))(g2g3, CP(AW2)g3 U CP(AW3)) = 

(glg3g3, cp(AWl )g2g3 U CP(AW2)g3 U CP(AW3)) = 

(glg2, CP(AWl )g2 U CP(AW2) )(g3, CP(AW3)) = [(gl, CP(AWl)) (g2, cp(AW2 ))] (g3, CP(AW3))' 

To show that S is an inverse semigroup and at the same time to find a generating set of S, we 

proceed as follows. Consider the free inverse semigroup F on X constructed in the theorem 

of Scheiblich (Theorem 7.1 of [34]) and the mapping f : F ---+ S such that f((w,A w )) = 

(cp(w), cp(Aw)). Clearly f is onto. 
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Let us now show that f is homomorphism. Indeed, 

f « WI, AWl) (W2' AW2 )) = f ( wI w2, AWl W2 U AW2 ) = 
(<p(WI W2), <P(AWI w2 U AW2 )) = (<p( WI)<p( W2), <P(AWl )<p(W2) U <p(AW2 )) = 

(<p( WI), <P(AWl ))(<p( W2), <p(AW2 )) = f« WI, AWl ))f« W2, AW2 ))· 

As S is a homomorphic image of F and F is inverse, we have from Proposition 1.2 of [34] that 

so will be S. We already know that 

F = ({ (y, {y, I}) lyE Y = X U X-I} ) . 

Next we show that 

S = < {( <p(y), {<p(y), e}) lYE Y = X U X-I}) = < {(y, {y, e}) lyE Y = X U X-I}) , 

where e is the unit element of G (recall that <p(y) = y, "i/y E Y). Indeed, 

(<p(W), <p(Aw)) = f(w, Aw)) = f«YI, {YI, I} )(Y2, {Y2, I} ) ... (Yn, {Yn, I})) = 
f«YI, {YI, I} ))f«Y2, {Y2, I} )).·.f(Yn, {Yn, I})) = 

(<p(YI), { <p(YI), <p( I)} ) (<p(Y2) , { <p(Y2) , <p(I)} ) ... ( <P(Yn) , {<P(Yn), <p( I)}) = 

(YI, {YI, e} )(Y2, {Y2, e} ) ... (Yn, {Yn, e}). 

In particular if X is finite, then S is finitely generated. Now we prove that the periodicity of 

S follows from that of G. Indeed, in such a case "i/ 9 E G, 3n E N such that gn = e and hence 

gn+1 = g. Let (g, <p(A)) E Sand gn = e (gn+1 = g). One can easily check that 

(g, <p(A))n+1 = (g, <p(A)gn U <p(A)gn-1 U ... U <p(A)g U <p(A)), 

and then, since gn = e, we can write 

(g, <p(A))n+1 = (g, <p(A)gn-1 U ... U <p(A)g U <p(A)). 

It is now ea.<;y to see that (g,<p(A))2n+1 = (g,<p(A))n+1 which shows the periodicity of S. 

Before we prove that S is in addi~on b'-unitary, we note that (g,<p(A)) is idempotent if and 

only if 9 = e E G. If we have 

(g,<p(A))(e,<p(B)) = (ge, <p(A) U<p(B)) E E(S), 

where E(S) is the set of idempotents of S, then ge = e, which implies 9 = e and hence 

(g, <p(A)) E E(S). 

Next we show that each maximal subgroup of S is finite. Indeed, from Proposition 5.1.2 

of [43] and from the fact that the inverse of (g,<p(A)) is (g,<p(A))' = (g-l,<p(A)g-l) (this 
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can be checked directly), we obtain that (g},<p(Al))1t(g2,<p(A2)) if and only if <p(Al) = <p(A2) 

and <p(A1)g11 = <P(A2)gil. Now if H(g,cp(A» is a maximal subgroup of S, then it contains 

an idempotent (e,<p(A)). Hence (e, <p(A))1t(g, <p(A)) and it follows that <p(A)g = <p(A). Since 

e E <p(A), then from the last equality we have that g E <p(A). But recalling that <p(A) is finite, 

we have finitely many g E G such that (g,<p(A)) E H(e,cp(A» and consequently IH(e,cp(A» I < 00. 

Let us now observe a few simple facts regarding the idempotents of S. We begin with the 

following equivalence 

(e,<p(A)) ~n. (e,<p(B)) -¢:::::? <p(A) ~ <p(B). 

The following sequence of implications is easily checked: 

(e,<p(A))S ~ (e,<p(B))S 

===> (e,<p(A)) E (e,<p(B))S 

===> (e,<p(A)) = (e, <p(B))(<p(u), <p(C)). 

Since in this ca..'le, <p(u) must equal to e, then one has (e,<p(A)) = (e,<p(B))(e,<p(C)) which 

implies that <p(A) = <p(B) U <p(C) and consequently <p(A) ~ <p(B). Conversely, it suffices to 

show that (e, <p(A)) E (e, <p(B))S. Indeed, 

(e,<p(A)) = (e,<p(B))(e,<p(A)) E (e,<p(B))S, 

because <p(A) = <p(B) U <p(A). 

Secondly we claim that 

(e, <p(A))R(e, <p(B)) -¢:::::? <p(A) = <p(B). 

This follows from the first claim. 

And thirdly, 

(e, <p(A))S c (e, <p(B))S -¢:::::? <p(A) :> <p(B). 

This follows from the previous two cfttims. 

Finally we show that if G is infinite, then S does not satisfy minn. . 

Let 

be a descending chain of principal right ideals. From the third claim above, this is equivalent 

to: 

(4.1) 
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If we require the chain of right ideals to be infinite, then we must construct an infinite ascending 

chain of subsets of G of the form (4.1) where Ai are finite, nontrivial and suff(Ai) = Ai for each 

i ~ 1. Since G is infinite, one can find an infinite ascending chain of finite subsets of G like the 

following. 

(4.2) 

It follows that for every i, j E N with i < j, we have 

where for a set C C G in general, we denote by cp-l(C) the set of words of minimal length in 

FGx representing the elements of C. Note that since X is finite, then cp-l(C) has to be finite 

if C is finite. 

I t is clear that for every i < j, 

and then we obtain the chain 

(4.3) 

where from above An is finite and suff(An) = An for every n ~ 1. 

This chain can not terminate at some n ~ 1 since otherwise we would have infinitely many 

elements of the chain (4.2) being represented by finitely many words from the finite chain (4.3), 
. n -~=-:-

namely those of .U cp-l(Bi). Therefore we can extract from (4.3) an infinite subchain as below. 
~=1 

which induces the chain 

(4.4) 

Also this chain can not terminate atlome n ~ 1, since for every i E N, Bki ~ cp(Aki) and as a 

result we would have 

which is impossible a..'l cp(Akn ) is finite. Hence we can finally extract from (4.4) an infinite 

ascending chain of the form 

as desired. 
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Appendix A 

Basics from Semigroup Theory 

Notions from Algebraic Theory of Semigroups can be found in standard books like [34], [43], [97] 

or [16]. Let S be a semigroup. We define the relation R by 

aRb <===* aS l = a U as = b U bS = bS l , 

that is, 

aRb <===* a and b generate the same principal right ideal. 

By symmetry one can define the relation C. Relations Rand C are respectively left and right 

congruences. Also one defines the relation 1i on S by 

1i = RnC. 

In [97] it is defined the relation Q by 

aQb <===* a U (as n Sa) = b U (bS n Sb), 

where xU (xS n Sx) is the principal quasi-ideal generated by xES. It can be shown that 

Q=1i. • Yet another relation 

V=RV C, 

that is, 

V is the least equivalence containing both R and C. 

Since RoC = CoR (an easy exercise), one has that 

V =RoC. 
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Lastly we have the relation :T defined by 

a:Tb {=::> SlaSl = a U as USa U SaS = b U bS uSb u SbS = SlbSl , 

that is, 

a.Jb {=::> a and b generate the same principal ideal. 

We say that S satisfies min'R. (reps. mine, minQ, min.7) if and only if every descending chain 

of principal right ideals (reps. left ideals, quasi ideals, ideals) terminates. 

Every V-class can be visualize like an egg-box as we always have 

Lemma A.O.2 (Green's Lemma) Let aRb in a semigroup S, and let s, s' E Sl be such that 

as = b, bs' = a. 

Then the right translations Ps I La, Ps' I Lb are mutually inverse R-class preserving bijections 

from La onto Lb and Lb onto La respectively. 

There is also an L:-version of this Lemma know as well as the Green's Lemma. 

Theorem A.O.3 (Green's Theorem) If H i.~ an 'H.-clas.~ in a semigroup S,then either H 2n 
H = ¢> or H2 = Hand H is a subgroup of S. 

In fact it is easy to show that the group 'H.-classes of a semigroup S are the maximal 

subgroups of S. 

We call an element a E S regular if there is xES such that a = axa. If a V-class D 

contains a regular element, then every element of D is regular. In fact, in a regular V-class, 

every R-class and every £-class contains respectively an idempotent. Also every two group 

'H.-classes in a V-cla.c;s are isomorphic . 

• A semigroup S with zero 0 is called O-simple if 

(i) {O} and S are the only ideals of Sand 

(ii) S2 =I {O}. 

There is a partial order in the set of idempotents of a semigroup S defined as follows 

e 5:. f {=::> ef = fe = e 

and called the Rees order. 
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There is also a more general order in a semigroup S defined by 

x ~ y ~ xSl ~ ySl and x = ey for some e E Rx. 

This order is called the natural order. It turns out that for regular semigroups the Rees order 

on idempotents coincides with the natural order. 

We call a O-simple semigroup S, completely O-simple if for every idempotent e =i- 0, the only 

idempotent "below" e is O. Below we give a receipt (due to Rees) how to construct completely 

O-simple semigroups. Let G be a group with identity e, and let I and A be non-empty sets. Let 

P = (P>.i) be a A x I matrix with entries in the O-group GO = G u to}, and suppose that Pis 

regular, that is, no row or column of it is entirely O. Let S = (I x G x A) U to}, and define a 

composition on S by 

( . ')( . b ) _ { (i, ap>.jb, f./,) if 
'l,a,/\ J, ,f./, -

o if 

(i,a,.x)O = O(i,a,.x) = O. 

P>.j =i- 0, 

P>.j = 0, 

The semigroup S defined thus is completely O-simple. In fact every completely O-simple semi­

group S arises in this way. Indeed, since S has exactly two V-cla.,>ses, {O} and D = S\ { O}, we 

let I and A be the set of respectively the Rand £-classes of D, and denote by Hi>. = Ri n L>.. 

Since S is regular, we can choose a group l-t-class Hll and then using the Green's Lemma it is 

easy to show that there is a bijection 

¢ : (I X Hll X A) U to} ---+ S 

given by 

(i, a, .x)¢ = riaq>., O¢ = 0, 

where ri E Hil and q>. E Hn are fixed elements. Since 

we can define P>.j = q>.rj (which in fact is proved to be an element of Lq>. n Rrj = Hn) if and 

only if the l-t-cla.,>s Hj>. is a group (and therefore isomorphic to H ll ), otherwise we take P>.j = O. 

So (1 X Hll X A) U to} is a regular Rees matrix. That the bijection ¢ is an isomorphism, this 

is easy to show. 

The principal factors of a semigroups S are defined as follows. If S has a single .7-cla.,>s J, 

then we let PJ = J. If there are more than one .7-classes, then for every such class J, we let 
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PJ = J U {O} with the multiplication defined by 

{ 

ab if ab E J 
a* b= 

o if ab rf. J or either a = 0 or b = O. 

We call a semigroup completely semisimple if all its principal factros are completely simple or 

completely O-simple semigroups. 

Proposition A.O.4 A regular semigroup is completely semisimple if and only if x ~ y and 

x'Dy implies x = y. 

Theorem A.O.5 (Lallement) For a regular semigroup S the following conditions are equiva­

lent: 

1. S is a subdirect product of completely simple and completely O-simple semigroups (this 

semigroups are called strict regular) i 

2. for every :I -cla.'Mes A ~ B and idempotent e E A there is exactly one idempotent fEB 

such that e ~ fi 

3. for every :I-classes A ~ B and x E A there is exactly one y E B such that x ~ y. 

Either condition implies that S is completely semisimple. 

Here A ~ B menas that for every x E A and y E B we have SlySl ~ SlxSl. 

A tree is a partially ordered set T in which the principal ideal {x E T I x ~ t} is a chain. 

In a tree T the height h(t) of an element t is the cardinality of {x E T I x ~ t}.If t has finite 

height, then either t is minimal (h(t) = 0), or there is a greatest x < t, the predecessor of t 

(which has height h(t) - 1). 

Theorem A.O.6 (Lallement and Detrich) The following conditions on a semigroup S with 

zero are equivalent: 

1. S is regular and its idempotents form a tree in which every element has finite height; 

2. S is strict regular and its :I -classes form a tree in which every element has finite height; 

3. S is a tree of completely O-simple semigroups. 

163 



It turns out that the completely O-simple semigroups of the theorem are the principal factors 

of S. 

Either one of the following can be taken as the definition of an inverse semigroup S. 

(1) S is regular and its idempotents commute; 

(2) Every .c-class and every 'R.-class contains a unique idempotent; 

(3) Every element of S has a unique inverse. 

Of interest are free inverse semigroups. By definition, the free inverse semigroup on a set 

X, is an inverse semigroup FIx which satisfies the universal property given by the following 

commutative diagram 

The existence of FIx is given by the following. 

Theorem A.O.7 (Scheiblich) The free inverse semigroup on X i.~ isomorphic to the semi-

group 

F = {(w, A) I A ~ G is finite nontrivial closed and wE A} 

with multiplication given by (u, A)(v, B) = (u· v, A· v U B). 

Here G is the free group on X and closed means that the set contains all suffixes of its 

elements. 

• 
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