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Statement

Chapter 1 covers some basic notions and results from Algebraic Topology such as CW-complexes,
homotopy and homology groups of a space in general and cellular homology for CW-complexes
in particular. Also we give some basic ideas from abstract reduction systems and some sup-
porting material such as several order relations on a set and the Knuth-Bendix completion
procedure. There are only two original results of the author in this chapter, Theorem 1.4.5
and Theorem 1.7.3. The material related to Topology and Homological Algebra can be found

in [12], [21], [40], [62], [82], [91] and [92]. The material related to reduction systems can be
found in (5] and [11].

The original work of the author is included in Chapters 2, 3 and 4 apart from Section 3.2
which contains general notions from Category Theory, Section 3.5.2 which contains an account
of the work in [67] and Section 4.1 which contains some basics from Combinatorial Semigroup
Theory. The results of Section 4.2 are part of [83] which is accepted for publication in the
International Journal of Algebra and Computation. The material related to Category Theory
can be found in [59), [64], [66], [67], [74], [75), [76], [82] and [93]. The material related to
Semigroup Theory is in [24] and [34].
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Abstract

In Chapter 2 we show that for every monoid S which is given by a finite and complete presen-

tation P = P[x,r], and for every n > 2, there is a chain of CW-complexes
Dc A C (D,pl) CAsC..CA,1C (Da pP1, '~"pn—2) C Anp,

such that A,, has dimension n, for every 2 < s < n the s-skeleton of A, is A; and F acts on
Ap. This action is called translation. Also we show that, for 2 < s < n, the open s-cells of A,
are in a 1-1 correspondence with the s-tuples of positive edges of D with the same initial. For
the critical s-tuples, the corresponding open s-cells are denoted by ps_; and the set of their

open translates by F.p,_;.F. The following holds true.

(D,P1s-sPo—a) UFPs_1.F if >3
DUF.p.F if s=2,

A, =

where L stands for the disjoint union. Also, for every 2 < s < n — 1, there exists a cellular

equivalence ~; on K, = (As x As)(s"'l) such that K;/ ~s= (D, p1,...,Ps—1) and the following

is an exact sequence of (zS,ZS)-bimodules

0 — Hy(D,py, vy Ps—1) 2y LS.ps-1.LS — Ha—l(Daplv "-,ps—2) — 0,

where (D, py, +Ps—2) = D if s = 2. Using the above short exact sequences, we deduce that S

is of type bi-FPy, and that the free fifite resolution of ZS is S-graded.

In Chapter 3 we generalize the notions left-(respectively right)-FP, and bi-FP, for small

categories and show that bi-FP,, implies left-(respectively right)-FP,. Also we show that an-

other condition, which was introdyceq by Malbos and called FP,,, implies bi-FP,,. Since the

name FP,, is confusing, we call it here f-FP,, for a reason which will be made clear in Section

3.1. Restricting to monoids, we show that, if a monoid is given by a finite and complete presen-

tation, then it is of type £-FP,,. Lastly, for evefy small category C, we show how to construct
free resolutions of ZC, at least up to dimension 3, using some geometrical ideas which can be

generalized to construct free resolutions of ZC of any length.
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In Chapter 4 we study finiteness conditions of monoids of a combinatorial nature. We show
that there are semigroups S in which ming, is independent of other conditions which S may
satisfy such as being finitely generated, periodic, inverse, E-unitary and even from the finiteness
of the maximal subgroups of S. We also relate the congruences of a monoid with the finiteness
condition ming, and show that, if S is a monoid which satisfies ming, then every congruence
K on S which contains Q is of finite index in S. If a semigroup satisfies ming and has all its
maximal subgroups locally finite, then we show that it is finite. Lastly, we show that, for trees

of completely 0-simple semigroups, the local finiteness of its maximal subgroups implies the

local finiteness of the semigroups.
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Introduction

In the mid 80’s Squier initiated a program whose main purpose was to find homological and
homotopical invariants for rewriting systems and, in particular, to characterize algebraically
those monoids which are given by a finite complete presentation (FCP). This class of monoids
is of interest since they have solvable word problem. In [95] Squier showed that, if a monoid
S is given by some presentation P = [x,r], then there is always a free acyclic resolution of the

trivial left-Z.S-module Z :
82 31 €
ZSr =+ ZS8x — 728 — Z — 0, (1)

and, if we assume that P is in addition FCP, then the resolution (1) can be prolonged with

another term as follows
8 & o € '
ZSp — ZSr — ZSx — LS — Z — 0, (2)

where p is the set of critical pairs of r. This in particular means that S is of type left-FPs. In the
same way one can show that, if the system P giving S is finite and complete, then S is of type
right-FP3. Later Kobayashi [50], Groves [36] and Brown [13] extended the result by éhow'mg that
such a monoid should flecessarily satisfy thelconditions left /right-FP,, for all n. Unfortunately
the properties left /right-FP,, together are not equivalent to FCP. To separate between these
two, Squier introduced in [96] another.ﬁniteness condition, invariant of the presentation, called
finite derivatién type (FDT). He showed that, if S is FCP, then S is FDT and exhibited an
example of a monoid satisfying the condition left-FP, but not being FDT and therefore not
FCP. In fact this is not enough to divide FPy from FCP since the monoid of that example
was left-FP, but not even right-FP3 as was pointed out by Pride and Wang in [89]. In the
mean time Wang and Pride [99] introduced another finiteness condition called FHT which later
Was proved to be strictly implied by FDT [87]. On the other hand Otto and Kobayashi showed
in [53] that FHT is equivalent to bi-FP3. One can use this and the example given in [54] of a
monoid which is left-FP,, and right-FP,, for every n but is not FHT, to separate between bi-FP,,
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and left-FP,, and right-FP,,. This in particular implies that left and right-FP, taken together
do not guarantee that the monoid is given by a finite complete presentation. On the other hand,
FDT and FCP are not equivalent. Indeed, for groups the properties FDT and bi-FP3 coincide
(see [53] and [86]) and bi-FPy is equivalent to left (right)-FPo as well (see [10]). On the other
hand there are examples of groups which are bi-FP3 but not bi-FP4 as shown in [9] or [10] and
therefore these groups can not be given by a finite complete presentation. Thus FDT draws a
line between what we know as homological properties of a monoid and FCP itself.

Our attention is immediately drawn to the fact that the resolution (1) is in a certain sense
an invariant of P, since, as we mentioned before, one can construct such a resolution whenever

a presentation for S is given. There is another similar to it found in [53):
0 — M —ZSXxZS — ZSQZLS — ZS — 0, 3)

where M = J/J? is the relation (ZS,ZS)-bimodule with J being the kernel of the natural
morphism p : ZF — ZS.

To define FDT for a monoid given by a presentation P = [x,r], Squier [96] constructs
the so called reduction graph I' = I'(x,r) whose vertices are the words of the free monoid
¥ = x* and whose edges correspond to one single step reductions on words. Then hé introduces
certain equivalence relations called homotopy relations, which in particular identify any two
parallel paths in T arising from disjoint reductions on the same word. It was pointed out by
Pride [85] that, instead of studying I" together with the homotopy relations, one can construct
a 2-dimensional CW-complex D whose 1-skeleton is T' and 2-cells arising from the same pair
of paths defining the homotopy relations in the sense of Squier. Also Pride noted that there
is a bi-action of F on D which turns out to have homotopical and homological consequences:
For example, expressed in this topological setting, FDT can now be defined as follows: there
is a finite set of closed paths X in T euch that, if we attach 2-cells for each closed path from
F.X.F then the new 2-complex obtained thus has fundamental homotopy groups trivial. The

advantage of this approach is that we can now associate to D the respective cellular chain

complex

Co(D) 2 01(D) 2 Cy(D) — 0

and study Hy(D). Pride [85) proved that Hi(D) has a (ZS,ZS)-bimodule structure and that

there is an exact sequence of (ZS,ZS )-bimodulés

H,(D) 1 28r.28 — M —> 0.
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Later Guba and Sapir [39] using ideas of diagram ‘groups, or Otto and Kobayashi [52] in an

alternative way, showed that 7 is injective giving thus the short exact sequence
0 — Hy(D) -5 Z8.x.2S — M — 0. (4)
Splicing together (3) and (4) one gets
H{(D) — ZSrZS — ZSX.ZS — ZS Q ZS — ZS — 0, (5)

which in contrast with (1) involves not only the data giving the presentation P, namely x
and r, but also the first homology group H;(D) of the Squier complex D associated with that
presentation. If the presentation P is finite and complete, then Hy(D) is finitely generated
which together with (5) shows that S is of type bi-FP3. Also we mention here that the map
Hy(D) — ZS.r.ZS is injective. It seems that the philosophy of obtaining long exact sequences,
which can then be used to obtain long free resolutions of S, is to introduce first short exact
sequences as in (4), and then to splice them with long exact sequences constructed from a
Previous step, as we did with (3) and (4) before.

In his thesis [71] (see also [72]) S. McGlashan extended the Squier complex D associated with
a presentation P by adding to it 2-cells p and their translates F.p.F such that the homology
classes of the 1-cycles arising from the boundaries of cells from p are bi-module generators of
H;(D). That complex was denoted by DP. Then it was shown how to add 3-cells to DP in a 1-1
correspondence with 3-tuples of positive edges with the same initial which are non-critical, to
obtain a 3-complex denoted there by (D, p). As before we can associate with (D, p) the cellular
chain complex

Cs(D, p) 2 Cy(D,p) 2 C1(D, p) 2+ Co(D,p) — 0

and study Hy(D,p). It was proved in [71] and [72] that there is a short exact sequence
0 — Hy(D,p? — ZS.p.ZS — H1(D) — 0 (6)

of (ZS,ZS)-bimodules. If we splice (6) with (5), which we know from the recursive step, then

we obtain the long sequence
0 — Hy(D,p) ~— Z8.p.ZS — ZS.x.ZS — ZSXZS — ZSQ®ZS — ZS — 0. (7

It was also shown that, under the assumption that P is finite and complete, if we choose cells
from p to have their own boundaries arising from resolutions of the critical pairs of positive

edges with the same initial, then Hy(D, p) is finitely generated and therefore one can deduce

easily from (7) that S is of type bi-FPy.



In Chapter 2 of this thesis, assuming that the presentation P is finite and complete, we keep
on doing the above process in all dimensions. Roughly sf)eaking, suppose that recursively we

have constructed a sequence of CW-complexes
Dc AZ C (D9 pl) - A3 c..C An—l C (D1 P1, ..y pn—2) - A‘n’ (8)

such that A, has dimension n, for every 2 < s < n the s-skeleton of A,, is A; and F acts on
A,. This action is called translation. Also, we suppose that, for 2 < s < n, the open s-cells of
A,, are in a 1-1 correspondence with the s-tuples of positive edges of D with the same initial.
For the critical s-tuples, the corresponding open s-cells are denoted by ps—1 and the set of their

open translates by F.ps_1.F. The following holds true.

(D, P1, ...,ps_z) UFps1.F if s>3
DU F.pi.F if s=2,

A =

where Ll stands for the disjoint union. Also, for every 2 < s < n — 1, there exists a cellular
equivalence ~s on K, = (As x Ag)*D) such that Ks/ ~s= (D,p1, ..., Ps—1) and the following

is an exact sequence of (ZS, ZS)-bimodules
)
0— Hs(Da P1,-.- ps—l) — Zs'ps—l'ZS "':"’ HS—l(D’ P1, ) ps—2) i 07

where (D,p1,...,Ps—2) =D if s = 2.

We construct inductively an (n + 1)-dimensional CW-complex A,41, having A, as its n-
skeleton, whose open (n + 1)-cells are of two kinds: those which are in a 1-1 correspondence
with the non-critical (n+ 1)-tuples of positive edges with the same initial, and open (n+1)-cells
Pr in a 1-1 correspondence with critical (n + 1)-tuples of positive edges with the same initial,
together with their open translates F.p,.F. The construction is carried out in two stages. In
the first stage we construct an (n + 1)-complex (D, pa, ..., pn—1) whose open (n + 1)-cells are
in a 1-1 correspondence with the non—critiga] (n + 1)-tuples of positive edges with the same
initial. In the second stage we attach open (n+ 1)-cells p, in a 1-1 correspondence with critical
(n+1)-tuples of positive edges with the same initial, together with their open translates F.p,.F.

As before we have

An+1 = (D,p1, ooy pn_l) U F.p,.F,

and then (8) extends to the sequence

DC Az C (D,pl) cC...C An-l C (D,pla ooy pn;2) C An C (D’plv-'apn—l) - An.+17 (9)

xi



with the property that the following sequence of (ZS, ZS)-bimodules
A}

0 — Hp(D,P1, ..., Pr1) — ZS.pn-1.28 %+ Hp_1(D, p1, ...y Pnz) — 0 (10)

is exact.
The general picture of the construction is given in our main Theorem 2.1.1 which roughly
states that associated with a finite and complete presentation P = P[x,r] giving a monoid S,

and for every n > 2, there is a chain of CW-complezxes
DC A2 C(D,p1) CA3C ... CAq1 C (D, P1y.y Pr2) C Ap,

such that A, has dimension n and for every 2 < m < n, the m-skeleton of An is Ap. The

complex satisfies certain properties among which is the ezactness of the sequences of (ZS,ZS)-

bimodules
-] v
0 — Hpn(D,p1y s Pm-1) — ZS.pm_1.ZS — Hpm_1(D,p1,...,Pm-2) — 0,

where (D, p1,....Pm-2) =D if m=2.

We use these sequences to give another proof of Corollary 7.2 of [55] for the integral monoid
ring ZS, which is stated in the following.

Theorem 2.1.2 If a monoid S is given by some finite complete presentation P = P[x,r]|, then
it is of type bi-FP,.

We also reprove in Theorem 2.4.3 the fact that properties FDT and FHT for groups are
equivalent, by using the machinery developed earlier in Chapter 2. Other proofs can be found
in [33] and also in [20], [86].

All left ZS-modules, right ZS-modules and (ZS,ZS)-bimodules involved in the above men;
tioned result can be seen as objects from the functor categories Ab%S, Ab%5”” and AbZSPOLS
respectively. In fact all these categories are special cases of functor categories of the form Ab®
with C a small additive category, since evefy ring with a unit element, in particular ZS, ZS°PP
and ZS°P? ® ZS, is a small additive category with a single object its unit element. It is then
natural to ask whether it is possible to look for finiteness conditions of a homological nature
for small categories which would generalize some of the results above. There is also another
good reason for studying small categories as generalizations of monoids as we will explain below.
In [28] (see also [7]) Dwyer and Kan introduced the notion of the category of factorizations FC of
a small category C. Its objects are the morphisms of C and a morphism w — ' is a pair (u, )

of morphisms in C such that w’ = vwu. Composition is defined by (u/,v')(u,v) = (u'u, v0').

xii



One can study what are called in (7] natural systems of abelian groups on C which are functors
D : ¥C — Ab. Every such functor extends to an additive functor D’ : ZFC — Ab where
ZFC is the additive category arising from FC, or, more explicitly, it is F'C enriched in Ab.
Thus, for a given smaﬂ (non-additive) category C, one can study two functor ca,tegories‘, AbZC
and AbZFC, In contrast with AbZC, whose object are functors associating with each object of

C an abelian group, the functors of the category AbBZFC

associate with each morphism in C an
abelian group. In the case of monoids, the difference between these two categories is clear and
one can expect to have finiteness conditions of a new nature if working with the second category.
It is fruitful and more illuminating to work with small categories rather than with the special
case of monoids when studying the category AbZF C, and then apply the results to monoids.
There is yet another reason why presentations of categories are interesting to study. It appears
that the homological properties of a monoid S which is given by some presentation P = P[x,
are “governed” by the reduction graph I'(x,r). The vertices of this graph can be seen as paths
of the free category x* with a single object, the empty word A, and with generating morphisms
one for each generator ¢ € x, and the edges of I' are path-rewritings on x* corresponding to
r-reductions. It is not essential that the graph whose paths will be rewritten has a single vertex;
hence we can expect that most of the properties which are discussed in the above mentioned
papers, will hold true if we try to generalize the results to monoids with several objects, known
as small categories. Why generalize? FCP is not a notion borrowed from the theory of monoids,
nor that of categories but from the theory of Term Rewriting Systems and occurs in many fields
of Algebra whenever one speaks of presentations of algebras in general. So generalizing the
existing theory to more general structures like small categories, at the very least would allow us
to understand more in depth the relation between FCP and the homological properties of the

algebraic structures.

In [67] Malbos defines a functor B in Ab* (A additive) to be of type FP, if there is a

projective resolution in Ab? .

Ph,—P,_1— ..— Pp—B—0,

such that P; is finitely generated for 0 < ¢ < n. In this context, a small category C is called of
type £-FP,, if the constant functor Z € AbBZFC ¢ of type FP,. It is called of type bi-FP,, if the
functor ZC which sends (c,d) € CPP @z C to the free abelian group with bases C(c,d), is of
type FP,, in AbZC7"82ZC, It is called of type left-FP,, (respectively right-FPy,) if the trivial left
(respectively right) ZC-module Z, sending each object of ZC on the group Z and each morphism
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of C on 1z, is of type FP,, in AbLZC (respectively AbZCOPP). The property f-FP,, was introduced
by Malbos in [67] but he calls it just FP, which is confusi;xg with left or right FP,,. Since it is

a property of the constant functor Z € ADBZFC

and since F'C is the category of factorizations
of C, we renamed it by calling it £FPy,.
The main result of [67] is that, for any presentation [x,r] of a small category C, there is an

exact sequence similar to (1):
ZC[r] 2 ZC[x] 2 By(C) = Z — 0,

which is in fact a projective resolution of Z € AbZFC_ He also shows that, if the presentation
of C is finite and complete, then C is of type fFP3, by giving an exact sequence similar to (2).

In Chapter 3 we deal with finiteness conditions f-FP,, bi-FP,, and left, right-FP, for small
categories. Being unable to verify the proofs for the implications i) == ii) => iii) of Lemma
3.3 of [67], we give our own proofs in Theorem 3.4.5 and Theorem 3.4.10 stated below.

Theorem 3.4.5 For every small category C the following implication holds true:
bi-FP, = left (right)-FP,,.

Theorem 3.4.10 If a small category C is of type f-FPy, then it is of type bi-FP,,.

Regarding monoids seen as categories, we prove the following.

Theorem 3.4.12 If the monoid S is of type bi-FP, and the corresponding free partial
resolution is S-graded, then S is of type f-FP,. In particular, monoids which are given by a
finite complete presentation are of type f-FPy.

In Section 3.5, we look for ways to build partial resolutions for the trivial functor
Z € Add(ZFC,Ab). Theorem 3.5.2 gives a resolution of length 3 and implicitly a condition
for a category to be of type f-FP3. The finiteness of that resolution is related to a property
which we call FDT for small categories and is defined in a similar fashion to FDT for monoids
(see [85] or [96]). More precisely, we prove tRe following.

Theorem 3.5.3 If C is of type FDT, then C is of type f-FPs.

In Chapter 4 we study finiteness conditions of monoids of a combinatorial nature. Several
authors have considered two approaches to studying finiteness of finitely generated semigroups.
The first is to assume conditions such as permutation properties, iteration conditions or repeti-
tivity, and combine either one of them with periodicity or with conditions imposed on the growth
function of the semigroup, to obtain the finiteness of the semigroup. The second approach is to

replace the first mentioned group of conditions by the minimal conditions on right/left ideals,
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quasi-ideals or bi-ideals, and look for similar results as in the first case. In Theorem 4.3.1 we
show that there are semigroups S in which ming, is indeﬁendent of other “good” conditions
which S may satisfy such as being finitely generated, periodic, inverse, E-unitary and even from
the finiteness of the maximal subgroups of S. On the one hand this reveals a rather étrange
nature of ming (and other minimal conditions similar to it), but on the other hand it justifies
their consideration as candidates to obtain finiteness of the semigroups besides other conditions.
We list below some of the results of this chapter.

Proposition 4.2.3 Let S be a finitely generated monoid which satisfies ming. Fvery congru-
ence K on S which contains Q is of finite index in S.

Theorem 4.2.7 A finitely generated semigroup S is finite if and only if it satisfies ming and
all its mazimal subgroups are locally finite.

Theorem 4.2.15 Let (S, %) be a tree of completely 0-simple semigroups (S, ) where t € T and
T is a tree. If the mazimal subgroups of S are locally finite, then S is locally finite.
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Notations

Topology and Homology
XY

XY

®.

Pe

€

eO

Oe

Dr

gn

[£]
Hn(X)
Hy(X)
H.(X,A)
clsé
mn(X)

e

the coproduct of spaces X and Y

the attaching of X to Y via f

the characteristic map of a cell e

the attaching map of a cell e

the closure of the cell e

the boundary of a cell e

the set of closed (dime-1)-cells meeting

the n-dimensional disk

the n-dimensional sphere

the homotopy class of a map f: S*™ — X
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Chapter 1

Preliminaries

1.1 CW Complexes

A part of this thesis deals with the way we construct complex spaces starting with simple ones
and then how we can study the homotopy and homology groups of these spaces. We start with
a number of basic notions and concepts from Algebraic Topology which can be found in several
books such as [21], [40], [62], [91) and [92].

A coproduct X1 ][] X3 of two spaces X7 and X3 is just the disjoint union of them in which
" both are open subsets of the union. If f; : X; — Y for ¢ = 1,2 are two continuous maps, then

the continuous map fi [[ fo: X1[[ X2 — Y is defined by setting (f1 ]I f2)(z) = fi(z), where
z € X;.

Definition 1.1.1 Let X and Y be spaces, let A be a closed subspace of X, andlet f: A — Y
be continuous. The space obtained from Y by attaching X via f is (X [[Y)/ ~, where ~ is the
equivalence relation on X J]Y generated by {(a, f(a)) € (X[IY) x (XIIY) | a € A}. This
space is denoted by X J].Y. The map f is called the attaching map.

L
Definition 1.1.2 The map ¢ : X — X[[;Y (which is the composite X — X[[Y —

XTI f Y)is cg,lled the characteristic map.

Definition 1.1.3 An n-cell e” (or simply e) is a homeomorphic copy of the open n-disk

pn — 8™ 1. Its closure will be denoted by .

Definition 1.1.4 Let Y be a Hausdorff space and let f : S® ! — Y be continuous. Then
D11y Y is called the space obtained from Y by attachz'ng an n-cell via f, and is denoted by
Ys.



Definition 1.1.5 A continuous map g : (X,4) — (Y, B) is a relative homeomorphism if

g(X —A): X —A— Y — B is a homeomorphism.

Definition 1.1.6 If a topological space X is a disjoint union of cells: X = U{e | e € £}, then
define, for each k > 0, the k-skeleton X&) of X by

X® =Ufe € E | dim(e) < k}.
We then have, X*) ¢ X*+1) for every k > 0, and X = UkZOX(k).

Definition 1.1.7 A CW-complez is an ordered triple (X, E, ®), where X is a Hausdorff space,

E is a family of cells in X, and ® = {®. | e € E} is a family of characteristic maps such that
1. X =J{e| e € E} (disjoint union);

2. for each k-cell e € E, the map ®, : (D¥,S%1) — (eU X*-1) x (k-1 jg g relative

homeomorphism;
3. if e € E, then its closure is contained in a finite union of cells in E,

4. X has the weak topology determined by {€ | e € E}: A set A C X is open (or closed) if

and only if AN e is open (or closed) in € for every e € E.

It is proved in Lemma 8.15, p.200 of [91] or in p.193 of [92] that, for every k-cell e € K,
®.(D*) = 2. We call ®,(D*) a closed k-cell. The restriction of ®, on the boundary S*~1 of D¥
is called the attaching map of e and e° = ®.(S*1) is called the boundary of e. We denote by de
the set of all closed (k — 1)-cells which meet &. In future, in order to simplify the notation, we
will write o € de to mean that & meets €. Note that it is not always true that e = ®.(D* — §%-1)
is open as a subset of X even though sometimes it is referred to by several authors as the open
k-cell e. _ )

A subcomplez of a CW-complex X is a subspace A € X which is a union of cells of X, such

that the closure of each cell in A is contained in A.

In practice the construction of CW-complexes is done in an inductive way as follows:
(1) Start with a discrete set X©, the O-cells of X.

(2) Inductively, form the n-skeleton X™ from X"~1 by attaching n-cells e® via maps

@a : S"1 — X1, This means that X™ is the quotient space X"~! I1,. Dz

2



(3) X =Up>0X™.

According to this procedure, to attach cells we need to specify the corresponding attaching
map. Actually this is not the only way to “produce” CW-complexes. Sometimes we can use a
tricky way to construct an (n + 1)-complex having as its own n-skeleton a given CW-complex.
We will show this in detail in a concrete situation in Chapter 2, but before that we need some

other notions and results listed below.

Theorem 1.1.8 If K and L are CW-complezes, so is the topological product K x L provided
that

(a) one of K, L is locally compact, or

(b) both K and L have a countable number of cells.

For the proof one may see Theorem 7.3.16 of [70].

There is also a more general notion than that of a CW-complex, the one of a cell complexz.

Definition 1.1.9 Let X be a set. A cell structure on X is a pair (X, ®) where ® is a collection

of maps of closed disks into X satisfying the following conditions.

(i) If ® € ® and ® has domain D, then & is injective on D™ — §™~1,

(ii) The images {®(D™ ~ S™~1) | & € ®} form a partition of X, i.e. they are disjoint and

have union X.

(iii) If ® € ® and ® has domain D™, then

o(s™ 1) ¢ U{\I,(Dk — §k-1y | ¥ e & bas domain D and k <n-1}
L]

Note that in this definition we do not have any topology specified on X. If ® € ® and &
has domain D™, we call 6™ = ®(D") a closed n-cell and ® its characteristic function. As be-

fore, we denote ®(S™1) = (6™)° and by abuse of language we call ®(D"—S"~1) an open n-cell.

Two cell structures (X, ®) and (X, ®') are strictly equivalent if there is a one-to-one cor-
respondence between ® and ®’ such that for a characteristic function ® € & with domain

D™ there corresponds a characteristic function ® € &' with domain D" again, and there is a
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homeomorphism of pairs A : (D®, S*~1) — (D", 5™ 1) such that ® = ®oh. Strict equivalence
is an equivalence relation and for some cell structure (X,<I>) we denote by Sg the set of all
pairs (o™, [®]), where o™ = ®(D") and [®] is the strict equivalence class of ® € ®. Obviously,
if (X, ®) and (X, ®') are strictly equivalent, then Sp = Sg/.

Definition 1.1.10 A cell complex on a set X is an equivalence class of cell structures (X, ®)
under the equivalence relation of strict equivalence. A cell complex on X will be denoted by a

pair (X,S) where S = Sg for some representative cell structure (X, ®). The set S is called the
set of closed cells of (X,S).

Definition 1.1.11 A subcomplez (A,J) of a cell complex (X,S) is a cell complex such that
ACXandJCS.

It is easy to see that every CW-complex is a cell complex and that every CW-subcomplex
of a CW-complex is a subcomplex of it seen as a cell complex. We call (X, A) a CW-pair if X
is a CW-complex and A a subcomplex of X.

Example 1.1.12 For any n > 0, the n-sphere S™ = {z = (zq,21,...,Zn) | (:1: z) = Ex =1}
has a CW-complex structure (S™, &), where ® consists of two functions, ¢° : D% — Sn and
®": D™ —s 8™, We define

¢°(z) = (1,0,...,0)

and

©™(z) = (2 (z,z) — 1,2214/1 — (z, ) znV/ 1 — (z,2)).

In this case we have only two cells 0° = (1,0, ...,0) and o™ = S™.

We can get a cell structure on the (n + 1)-disk by taking the two characteristic maps defined
above together with the identity map ¢"+! : D™ — D™+1. This gives a cell complex with

exactly three cells containing S™ as a subcomplex.

Definition 1.1.13, Propositions 1.1.18 and 1.1.19, and Theorem 1.1.15, which will follow

below, give the outline of the procedure we use in Chapter 2 to produce CW-complexes.

Definition 1.1.13 Let (X,S) be a cell complex and R an equivalence relation on X. Denote by

p the quotient map. Then R is a cellular equivalence relation provided the following conditions
are satisfied.

(1) fo €S, then p~1p(0 — 0°) is a union of open cells o; — o; of the cellular partition of X.
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(2) Ifog—0g € p_lp(a — ¢°) is of minimal dimension among all such open cells in the union,
then p | (oo — 0§) is a bijection onto p(o — 0°) and p(o) = p(op). Such a cell oy is called

R-minimal for the cell o.

(3) If o/ and o” are both R-minimal for the cell & and if ®’ and " are the respective charac-

teristic functions, then there is a homeomorphism h : Dyr — D,» such that p®’ = p®”h.

Remark 1.1.14 We draw the attention of the reader to the difference between the notations
used in [62] and those of other sources mentioned here, including the rest of this thesis. In
our terminology cells are open, unless otherwise stated and denoted by o, while their closure is
denoted by 7. In the terminology of [62], the closed cells @ are denoted simply by o, as in the

above definition, and what is an open cell for us, is denoted by o — ¢° in [62].

Theorem 1.1.15 Let (X,S) be a cell complez and R a cellular equivalence relation on X.

Define S/R = {p(c) | 0 € S and o is R-minimal}. Then (X/R,S/R) is a cell complez.

The proof is given in Theorem 6.2, I of [62].

Definition 1.1.16 If (X,S) is a cell complex and R a cellular equivalence relation on X, the

complex (X/R,S/R) is the quotient or identification complex of (X,S) with respect to R.

We give below a few examples of cellular equivalence relations which are based on Proposition

6.8, I of [62] given below.

Proposition 1.1.17 Let (X,S) be a cell complez and (A,,J,) a family of disjoint subcomplezes.
If A is the diagonal of X x X andR = AUU,(Ayx Ay), then R is a cellular equivalence relation.

We say that the quotient complex (X/R,S/R) is obtained from (X,S) by shrinking or
collapsing the subcomplezes (A, J.,) to vertices of (X,S). In the following examples X = (X, §)
will be a cell complex and I the unit interval segn as a cell complex with one 1-cell, the open unit
interval, and two O-cell, {0} and {1}. Recall also that the product X x Y of two cell complexes

X and Y is again a cell complex with cells pairs (o,6) with o and & cells from respectively X
and Y.

1. The cone over X, ¢(X), is obtained from X x I by collapsing the subcomplex X x {1} to

a vertex.

2. The suspension of X, S(X), is obtained from X xI by collapsing the subcomplexes X x {0}

and X x {1} to distinct vertices.



3. If Y = (Y,]) is another cell complex, the smash product X A'Y is obtained from X xY
by collapsing (X x {y})U ({z} x Y) to a point. Here x and y are basepoints of X and Y’

respectively.

Suppose that X is a space and for each X € A there is given an attaching map
fr: 8Dy — X, with 8D, the boundary of D). We let

B=|J{D:r|reA}, 0B=|J{8Dr| X € A}

and

F={JHh:0B—X
A

be the union map. With these notations we have the following two propositions from [62],

respectively, Proposition 2.1, p. 45 and Proposition 5.7, p. 59.

Proposition 1.1.18 Let X be a Hausdorff space, and suppose that Y = B[y X is obtained
by attaching the cells {Dx | A € A} to X. Then'Y is a Hausdorff space.

Proposition 1.1.19 Let X be a CW-complex and R a cellular equivalence relation such that
the space X/R is Hausdorff. Then with the quotient structure on X/R, the quotient space is a
CW-complex.

Remark 1.1.20 The idea of the construction of the CW-complex in Chapter 2 will be the
following. Suppose we have a CW-complex A of finite dimension n > 1 with a countable
number of cells in each dimension. The topological product A x A is again a CW-complex -
from Theorem 1.1.8, and has dimension 2n, therefore its (n + 1)-skeleton A(+1) ig agéin a
CW-complex. Suppose that ~ is a cellular equivalence on A("+1) such that the n-skeleton of
Aln+1) / ~ is'A and the rest of the cells are of dirﬁension n + 1. The last two propositions
imply that A("*1)/ ~ has a CW-structure; hdhce we have obtained a CW-complex A("+1)/ ~

of dimension n + 1, having as its own n-skeleton, the complex A we started with.

1.2 Homology and Homotopy Groups of a Space
- 1.2.1 Singular Homology

In this section we include a few basic notions of Homology Theory with a topological emphasis

which can be found in books like [21] and [40].




Before we define what singular homology groups of a space X are, we give the notion of the
e

standard n-simplex A™ for every n > 0, which by definition is
A™ ={(to, .., tn) €R™ | Y "t; =1 and ; > 0 for all i}.
i

It is usually denoted by [vg, ..., v] where v; = (0, ...,1,...,0) and 1 is at the -th coordinate.

To realize it geometrically, at least in low dimensions, we mention here that A? is a point, Al
is a closed interval, A? is a triangle with its interior and A® is a solid tetrahedron.

A singular n-simplez in a space X is by definition a continuous map o : A™ — X. Denote by
Cn(X) the free abelian group with bases the set of all singular n-simplices in X. The elements
of Cr(X) are called n-chains. We define the boundary maps 9, : Cp(X) — Cp—1(X) by the

formula:

Bn(0) = Z(—l)ia | [90, ey 5y +ery Un]

A - . . . .
where [vg, ..., vj, ..., ) is identified with [vo, ..., ¥i_1, Vi41, ..., Un] Preserving the order of vertices
A . . . .
and o | [vg, ..., ¥;, ..., vp] is regarded as a singular n-simplex. For a more accurate definition of

[v0, ..., B, ..y Un] the reader can see [21).

One can easily show that the boundary maps satisfy the formula 8,8,4+1 = 0 and then we

can define for each n > 0 the singular homology group
H.(X) = Kerd,/Im0Op43.
We call Kerd, the group of cycles and Imdy,41 the group of boundaries.

There is a nice splitting of H,(X) as the direct sum @, Hn(Xa) where X, are the path

connected components of X.

*®

There is also the notion of the reduced homology groups ﬁn(X } of a space X, which are by

definition the homology groups of the augmented chain complex
= Ca(X) 2 B () B ay(X) S5 Z = 0

where (3", nio;) = 3, ni.
It is clear that H,(X) 2 H,(X) for n > 0 and Ho(X) = Ho(X) & Z.



Given two chain complexes in general
3

C: oG 20, % 00

é [ 4
D: ..—»D, 2 .. D 5 Dy—0

we say that ¢ = {¢n : C, — Dy | n > 0} is a chain map from C to D, if for every n > 1 we
have ¢,_1 0 8y, = 8, 0 v,. Such a chain map induces a group morphism ¢, : H,(C) — Hy,(D)
for all n > 0 (see [44]).

In particular, if X and Y are spaces and C(X), C(Y') their respective singular chain com-
plexes, then every continuous map f : X — Y induces a chain map fy : C(X) — C(Y) and
therefore a morphism fi : Hp(X) — Hn(Y) for every n.

There is an important notion of relative homology groups. Given a space X and a subspace
A C X, denote by Cn(X, A) the quotient group Cr(X)/Cr(A). Since the boundary map
0 : Crp(X) — Cp_1(X) takes Cr(A) to Cp_1(A), we have an induced quotient map
0:Cn(X,A) — Crn-1(X, A) and as a result we have the chain complex

e = Ca(X, A) 25 Coy (X, A) — ...

whose homology groups are called by definition the relative homology groups and denoted by

H,(X, A). These groups fit into a long exact sequence

= Ho(A) 25 Ha(X) 25 Ha(X, A) 2 H,_1(4) 2=

. (L1)
ey Hy1(X) — ... — Ho(X, A) = 0

where 4, is induced by the inclusion i : Cp(A) — Cp(X), j« is induced by the surjection
J:Cp(X) — Cr(X, A) and 8 : Hp(X, A) — Hpn_1(A), called the connecting homomorphism
(see [82]), is defined as follows. Let ¢ be some cycle from Cy,(X, A). Since j is onto, we find
b € Ch(X) such that j(b) = c. The element 9b is in Kerj since j(9b) = 9j(b) = Oc = 0. But
Kerj = I'mi and therefore we find some a € C,,_1(X) such that 9b = i(a). We define 8, (clsc)
to be clsa where clsc and clsa are the respeceive homology classes of ¢ and a. For a detailed

proof that d, is indeed a well-defined group morphism, the reader may see [40], pp. 116-117.

Remark 1.2.1 The existence of (1.1) is crucial in the definition of the cellular chain complex

in Section 1.3.

1.2.2 Higher Homotopy Groups

A homotopy from a topological space X to a topological space Y is a family of continuous

maps f; : X — Y, t € [0,1] such that the associated map F : X x [0,1] — Y given by
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F(z,t) = fi(x) is continuous. One says that two maps fo, [1: X — Y are homotopic if there
exists a homotopy f; connecting them, and we write fo ~ fi.

If AC X and fy, f1 : X — Y are continuous maps such that fo | A = f1 | A, then we write
foxfirel A

if there is a continuous map F : X x [0,1] — Y such that F(z,0) = fo(z), F(z,1) = fi(z) for
all z € X, and F(a,t) = fo(a) = fi(a) for alla € A and t € [0,1]. We say that fo and fi are
homotopic relative to A. They are homotopic in the usual sense if A = §.

We say that two spaces X and Y are of the same homotopy type or are homotopy equiva-
lent, if there exists a map f: X ~—— Y and a map g : Y — X such that fog ~ idx and
go f ~idy. In such a case we say that f and g are homotopy equivalences. The relation of

homotopy equivalence is proved to be an equivalence relation.

In what follows we denote by I” the n-dimensional unit cube, that is the topological product
of n copies of the unit interval [0, 1], and by 8]™ its boundary which consists of all the points
with at least one of the coordinates 1. For a space X with basepoint 2o we define 7, (X, o) to be
the set of homotopy classes of continuous maps f : (I",8I™) — (X, ), where the homotopy
ft is required to satisfy f,(0I™) = x for all t. In the case when n = 0, we take I° to be a point
and 81° to be empty, and then mo(X, zg) is just the set of all path components in X.

For n > 1, a sum operation in 7,(X, zo) is defined by

‘ (281,82, ...y 8n), 81 € [O,i 2
(f+g)(31a32,°--)sn) = ( " / ]
9(281 — 1, 89,...,80), 81 €[1/2,1].

It turns out that, for n > 1, m,(X, z0) is a group with the operation [f] + [g] = [f + g], where
[f] is the homotopy class of f, and for n > 2 this group is abelian (see [40]).
Every base point preserving map ¢ : (X, z8) — (Y, yo) induces a map

@* 1 (X, 20) — (Y, %0) defined by ¢*([f]) = [¢f]. It is easy to see that ¢* is well-defined

and a homomorphism for n > 1.
We mention below a number of useful results which we use later in Chapter 2.

Lemma 1.2.2 Given a CW-pair (X, A) and a continuous map f : A — Y with Y path-
connected, then f can be extended to a map X — Y if m,_1(Y) = 0 for all n for which X — A

has cells of dimension n.



For the proof of it one may see Lemma 4.7 of [40].

Recall from p. 27 of [62] that, if (X,S) and (Y,K) are CW-complexes, then a map
f: X — Y is said to be cellular provided that, for each n, f(X™) C Y™. If in addition it
satisfies the property that, for each ¢ € S, f(¢) =7 € K and f(o¢ —0°) = 7 — 7°, then it is
called regular.

The following is Lemma 2.3, p. 46, [62] and will be useful in Chapter 2.

Lemma 1.2.3 Let X and Y be CW-complezes and f : X — Y a continuous map which is

regular and cellular. Then f is a homeomorphism.

The folloWing is Theorem 1, p. 199 of [92].

Theorem 1.2.4 Given a CW-pair (X, A) and a continuous map f: X — Y such that f | A

is cellular, then f is homotopic relative to A to a cellular map.

Remark 1.2.5 Lemma 1.2.2 is called the Eztension Lemma and, together with Theorem 1.2.4,
will be crucial in the proof of Theorem 2.2.12, where we take for (X, A) the pair (D", S*~1),
which is indeed a CW-pair from our Example 1.1.12.

Theorem 1.2.6 Let X and Y have the homotopy type of CW-complezes, and let f be a map

from X to Y. The map f is a homotopy equivalence if and only if it induces isomorphisms of

homotopy groups in each dimension.

For the proof of the above one may see Theorem 3.3, IV of [62].
-
The following two theorems from [92], respectively, Theorem 1, p. 223 and Theorem 2,

p. 225, are very useful in computing the first homotopy groups of CW-complexes.

Theorem 1.2.7 Let K be a CW-complezx, xq be a 0-cell and K! and K? be the 1 and 2-skeleta
of K respectively. The inclusions K! ¢ K2 C K induce an epimorphism

i1 1 (K, @) — m1(K2,20) and an isomorphism iy, : 71 (K2, x0) — m1(K, x0).

We will use the second isomorphism when we prove Theorem 2.2.12 in Chapter 2.
An edge path in a CW-complex is a path in its underlying 1-skeleton [92]. In the set of all closed

edge paths with initial some base point x¢ one considers the following operations:

1. Allowable insertion of an edge path ee™! or e~!e, or cancellation of such a path if possible.

2. Allowable insertion of an edge path p(c) or p~1(o), or deletion of such a path, if possible,

where p(c) is the edge path which runs once round the 2-cell 0.
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To every closed path like above we can now associate its corresponding equivalence class
and the set of such classes F can be equipped with a multiplication in the same way we did in

the case of homotopy groups. With this multiplication F forms a group.

Theorem 1.2.8 If one associates with every closed edge path at the base point xq with its

corresponding homotopy class, then there is defined an isomorphism © : F — m (K, xp).

An interesting question is, how the homology and homotopy groups of a space X are related
to each other. An elementary tool in the study of the relation between m,(X,z¢) and H,(X),
is the so called Hurewicz homomorphism hy : mp(X,20) — Hp(X) defined as follows. Recall
first that H,(S™) = Z (see for example pp. 34-35 of [21]) and let 05, € H,(S™) be the standard
generator: then, if [f] € m,(X,20) is represented by a map f : (I*,0I™) —s (X,xg), define

hn|f] = fi(on). This is independent of the chosen representative map f.

For n = 1 there is a handy description of the Hurewicz morphism as Lemma 4.26 of [91]

shows. We give it below as we will make use of it later.

Lemma 1.2.9 Let n: Al — I be the homeomorphism (1 — t)eg + tey — t. The Hurewicz
morphism
hy : m1(X,zo) — Hi1(X)
is given by
[f] — clsfn

where f: I — X is a closed path in X at xg.

We say that a space X is m-connected (m > 1) if 7,(X) = 0 for every 1 < 3 < m. We state

now part of the Hurewicz Theorem which we use in Chapter 2 to define the attaching mappings

of critical (n + 1)-cells.

Theorem 1.2.10 If a space X is (n — 1)-connected, n > 2, then I?i(X) =0 fori<n and
mn(X) &2 Hy(X).

If X is path-connected, then the Hurewicz morphism hj : m1(X) — Hi1(X) is a surjection

with kernel [m1(X), m1(X)], the commutator subgroup of 71(X); hence
m1(X)/[m(X), m(X)] = Hi(X),
or in other words, H1(X) is the abelianization of 71 (X). This result is originally due to Poincaré.
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1.3 Cellular Homology

In the case of a CW-complex X it is possible to compute the homology groups in a rather nicer
way than one does in general. We will make use of the fact that the space in this case is split
into cells. The following lemma relates the cell structure of X with the singular homology of

the space.
Lemma 1.3.1 If X is a CW-complez, then:

(a) Hi(X™, X" 1) is 0 for k # n and is free abelian for k = n with bases in one-to-one

correspondence with n-cells of X.

(b) H,(X™) = 0 fork > n. In particular, if X is finite-dimensional then Hy(X) = 0 for
k> dimX.

(c) The inclusion ¢ : X™ — X induces an isomorphism 4y : Hy(X™) — Hi(X) if k < n.

See for the proof Lemma 2.3.4 of [40].

If X is a CW-complex, then parts of the long exact sequences corresponding to the pairs

(X™*1, X™), (X™, X" 1) and (X™1, X"~2), fit into a diagram

Oy in
Hpyy (X7, X7 —5 s Ho(X™) : Ho(X™+)

T~
In

Hn(X"', Xn—l)

o e

Hy (X" 1)—>Hn (XL X 2)_’H -2(Xn—2)

where dy, = jn—10, and dp41 = Jn0n4+1. It follows that the composition dpdpt1 = Jn-10nInOn+1
equals 0 since Onjn = 0 in the sequence corresponding to the pair (X", X" !). Thus we have

the chain complex of abelian groups

dna1 d
v Cpp = Cp = ... =5 Cy — 0

where from Lemma 1.3.1 each Cyx = Hy(X*, X*-1) is free abelian with bases the set of all k-cells

and dy, is given by the above composition.

We call this chain, the cellular chain complez. The homology groups of this chain are called

the cellular homology groups. It is proved in Theorem 2.35 of [40] that cellular homology groups
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HSW (X) and singular homology groups Hn(X) are isomorphic.

In applications we need to know what the cellular boundary formula is. For n = 1, the
boundary map d; @ Hi(X 1LX%) — Ho(XP) is the same as the simplicial boundary map
31 : A1(X) — Ag(X) [40]. For n > 1, dp, is given by the following.

Cellular Boundary Formula. d,(e}) = Zﬂ dapeg"l where dyg is the degree of the map
Sg‘l —_ Xl Sg'l that is the composition of the attaching map of e with the quotient
map collapsing Xxr1 - eg”l to a point. The summation in this formula is finite since the
attaching map of the cell e has compact image and therefore it meets only finitely many cells

n—1
eﬂ .

The cellular boundary formula can be derived from the following diagram

i} Aaﬂm

Hn(D3,8D%) —z—> Ha-1(8D3) Hua(S57) (12)

ld’a* l?a* an-

Oy, ~ ~
Hn(X",Xn_l) Hn-l(Xn_l) Hn_l(Xn—l/Xn—?)

T 5

Hn_l(X"‘l,X"‘z) = > Hn..1(Xn_1/X"_2,X"_Z/X"'~2)

where:

o &, and ¢, are the respective characteristic and attaghing maps of €.
o g: X" 1 — X" 1/X"2 is the quotient map.

e g5: X" 1/X"2 — S771 collapses the complement of each cell €271 to a point, and the
B8 B » 8
resulting quotient sphere is identified with Sg‘l = D'ﬁ‘"1 / 8Dg_1 via the characteristic

map $g.

o Ayg: 0D — Sg_l is the composition ggqya.

To compute dp(ey), we choose some generator [D7] of Z = H,(DZ%,0D%), which will be
referred to as the orientation of e, and then apply ®,, which takes this element to a generator
of the Z summand of H,(X™, X n—1) corresponding to e?. If we denote that generator by e, then
the commutativity of the left-hand side of the diagram implies that d,(e?) = In-19ax0[D?]. To

see that the coefficients dog are those stated in the formula above, we use the commutativity of
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the other half of the diagram and the fact that gg, maps the Z summand of fIn_l(X n-l Xn-2)

corresponding to eg_l to the degree of Ayg: STl — Xn-1 Sg‘l.

In other literature, such as [62], the coefficients dyg of the cellular boundary formula are
called incidence numbers and the formula is written in the form
dpo? = Z [0 - o‘g_l]oﬂ‘1
a;_IECn_l
where [o% : ag‘l] are the incidence numbers. In particular, the above results are also ob-

tained in [62], but using an arbitrary commutative ring R with unit 1 # 0 instead of the ring of

integers Z. We will quote some further results from [62] below, but just state them for the ring Z.

In practice it is difficult to compute the cellular boundary map coefficients, but in some
cases, as shown in the following result, we can compute them provided that the attaching map

of the cell satisfies a nice property. More precisely, we have from [62] the following.

Corollary 1.3.2 If" and 7~ are closed cells of the CW-complez X , if E is a closed (n—1)-
disk in OD™ whose interior is an open (n — 1)-cell K, if (pz | 8D™)~1(r) = K and if o5 maps

E homeomorphically onto T, then [0 : 7] is a unit in Z.

Recall from [62] that, if X and Y are CW-complexes and f : X — Y is a cellular map,

then there is an induced map fzx : Cn(X) — Cy(Y) which is in addition a chain map (see
Proposition 2.3, V of [62]). .

Definition 1.8.3 Let (X,S) and (Y,K) be oriented CW-complexes and let fiX—Ybea
cellular map. The cells of S are denoted by o} and those of K by T I fgt Co(X) — Cu(Y)

is the map induced by f, we write
fa(@™ =>"f :o™: 70,
7

where [f : 0™ : 77| € Z and [f : 0™ : 7] = 0 for all but finitely many p. The integer [f:0™: ]
is called the degree with which ¢™ is mapped on 7. by f.

Proposition 1.3.4 Let (X,S) and (Y,K) be oriented CW-complezes and let f: X — Y be q

cellular map. The degrees satisfy the following conditions.
(1) If 7} is not a subset of f(o™), then [f: o™ : 2] =0.
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(2) If f(0©) = 7°, then [f: 6% : 7] = 1.

(3) Frn>1and o™ € S and 7! €K,

Sl san ol s = 3RS o)
A

For the proof one may see Proposition 3.12, V of [62].

Example 1.3.5 The closed 2-disk D? has a CW-structure with three cells: a 0-cell 0 € 8D?,
ol = 8D? = 5! and ¢ = D?\@D?. From the cellular boundary formula, the incidence numbers
are: [o!: 0% =0and [02 : ¢!] = 1. One can now calculate easily the homology groups of D? by
writing down the cellular chain complex for the above cell structure. We have that Hy(D?) = Z,

H;(D?) =0 for i =1,2 and Hy(D?) =0 for k > 2 from Lemma 1.3.1 (b).

Example 1.3.6 Let X be the space obtained from the 2-sphere 52 by identifying two antipodal
points. To describe the CW-structure of it, we give the 2-sphere 52 a CW-structure with two
O-cells 69, 03; a 1-cell ¢! with boundary cells o9 and 09; a 2-cell attached by projecting S* onto
D! by (z,y) — z and then using the characteristic map of ol; and finally identifying o9 with

0

9. The incidence numbers are: [0 : 6°] = [6% : ¢'] = 0, therefore, similar to the previous

example, we have that Ho(X) = H1(X) = Ha(X) = Z and Hy(X) =0 for k > 2.

1.4 Abstract Reduction Systems

An abstract reduction system is a pair (A, —), where the®reduction — is a binary relation on
the set A. We write a—b instead of (a,b) € —. In what follows we denote by %, the transitive
closure of —, by - the reflexive transitive closure of — and by «— the equivalence relation
generated by —. We call a € A reducible if and only if there is a b € A such that a—"—"»b, otherwise
we call it irreducible or in normal form. We call b a normal form of a if and only if a-=+b and b
is irreducible. If it happens that b is unique, then we denote b by a |. We call a and &’ joinable
(or resolvable) if and only if there is ¢ such that a—»ca’, in which case we write a | a'.

A reduction — is called

e Church-Rosser if and only if a«"+b = a | b.
o Confluent if and only if acSb=>a | b

o Semi-Confluent if and only if a—c—b=>a | b.
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Locally-Confluent if and only if a«—c—b=>a | b.

Terminating (or Noetherian) if and only if there is no infinite descending chain ag—a;—-...

e Normalizing if and only if every element has a normal form.

Convergent if and only if it is both confluent and terminating.
The first three concepts coincide as Theorem 2.1.5, 5] given below, shows.
Theorem 1.4.1 The following conditions are equivalent:

1. — has the Church-Rosser property.
2. — is confluent.

3. — is semi-confluent.

Suppose that (A4,—) is a reduction system such that — is Noetherian and let P be some
property on the elements of A. The following inference rule gives what we call well founded

induction or simply Noetherian induction.

Va€ A. (Vb€ A. aBb = P(b)) = P(a)
Va € A. P(a)

So to prove that the property P is a property of all the elements of A we must show the

implication (Vb € A. aHb = P(b)) = P(a) for every a € A. This in particular means that

. » ‘
we show P for irreducible elements.

It turns out that the Noetherian induction always holds on any reduction system (A, —)
which is Noetherian, and conversely, if the Noetherian induction holds on (A, —), then — is
Noetherian. We will use Noetherian induction in many proofs in Chapter 2.

The following is known as the Newman’s Lemma. We give its proof in full as an example of

Noetherian induction techniques.

Lemma 1.4.2 A Noetherian system is confluent if it is locally confluent.

Proof. The confluence can be written in the form of a predicate as follows

P(@): Vy,z. yEaHzs =y | 2.
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We must show that P(z) holds under the assumption that P(t) holds for all t such that 5.
If in the “fork” y(imi»z either z = y or = 2, then the result follows. Otherwise we have

z—y1—y and z—2z1—2z as shown in the following diagram

The confluence of the pair y;«z—=z; follows from the local confluence, the confluence of

. . .. + +
yef-yl—*m and v«-*—zl-*—w follow from induction hypothesis since z—y; and z—z,. =

An important notion is that of a complete reduction system. A reduction system (A,—)
is called complete if and only if every element has a unique normal form. The following char-
acterization of complete systems, due to Newman [80], is important because it translates the

completeness in terms of confluence and termination.

Lemma 1.4.3 A reduction system is complete if and only if it is Noetherian and confluent.

This lemma is the reason why sometimes complete systems are called convergent. Combining

Lemma 1.4.2 and Lemma 1.4.3, we get the following characterization.

Lemma 1.4.4 A reduction system is complete if and only if it is Noetherian and locally con-

uent.
ﬂ ]

1.4.1 An Algebraic Characterization for a Complete Reduction Systems

In this section, we give a new algebraic characterization for a Noetherian reduction systems

(A, —) to be complete. First, for every reduction systems (A, —), we construct a submonoid P

of the full transformation monoid 7 (A) on the set A as follows:
P={re€T(A)|r(u) =v only if v is a descendant of u or u = v}.

It is clear that, under the usual composition of transformations, P forms a submonoid of 7(A4).
Before we give the announced characterization, we recall that a Noetherian reduction systems

(A,—) is complete if and only if every element from A has a unique irreducible descendant.

Theorem 1.4.5 Let (A,—) be a Noetherian reduction systems. Then, (A,—) is complete if

and only if the monoid P has a zero element.
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Proof. If P is complete, then, for every w € A, the respective congruence class [w] has a
unique irreducible element, say irr([w]). Let 6 € P be the element which sends every w € A to
its corresponding irr([w]). It is easy to show that & is the zero of P.

Conversely, suppose that P has a zero element 6. Denote by Irr(w) the set of irreducibles
which are descendants of w, and write Irr = Uyealrr(w). If we think of 8 as a 2 x oo matrix,
then we first show that the second row of @ consists only of elements from Irr. Indeed, if
there is u € A such that §(u) = v and v ¢ Irr, then for 7 which sends v to some corresponding
descendant v', we would have 76(u) = v/, which means that 76 # 6. Note also that in the second
row we always have represented all the elements from Irr because they are not transformed
under any element of P. Hence the second row of # consists only of all the elements of Irr. Next
we show that every w € A has a unique irreducible descendant. Suppose by way of contradiction
that there is some u € A which has n > 1 distinct irreducible descendants, say ¢, ...,4,. Let
Ki, ..., K, be respectively 671(i1),...,6 7 (in). Suppose that u € K. Since 4, with s # 1 is
a descendant of u too, then there will be some v such that v is a descendant of u and i, is a

descendant of v or ¢ = v. Distinguish between two cases.

1. v ¢ K. Let 7 € P be such that it sends u to v. Then 67(u) = 6(v) # 4; which contradicts
the fact that 0 is the zero.

2. v € K. Let 7 € P be such that it sends v to i;. Then 7(v) = 6(4s) = i, # iy which

again contradicts the fact that 8 is the zero.

So it remains that u can not have more than one irtftducible descendant and hence the

system is complete. ™

Corollary 1.4.6 A Noetherian reduction system (A, —) is complete if and only if the monoid

P constructed as above, has cohomological dimension 0.

Proof. This follows immediately from Theorem 1.4.5 and from [38]. m

1.5 Monoid Presentations and Finiteness Conditions

1.5.1 Monoid Presentations Via Reduction Systems

If x is a non empty alphabet, then the set of all words with letters from x together with the
empty word )\ is denoted by x* and forms the free monoid F(x) on x under the concatenation

of words. We denote F(x) for simplicity by F. The unit element of F' is the empty word ).

18



A string rewriting system (also called a monoid presentation) is a pair P = [x,r] where r is a
subset of x* x x* whose elements are called rewrite rules. The reflexive and transitive closure
induced from r on x*, is called the reduction relation induced from r and denoted by —*. The
congruence closure «+—y of r is a congruence relation on x*, called the Thue congruence, and
therefore every rewrite system defines a monoid, namely the quotient § = x*/ «—}. For every
word u € F, we denote by T the element of S represented by u. We say that a monoid S admits
a presentation P = [x,r] if and only if S = x*/ «—}. If § admits a finite presentation, then
we say that the monoid S defined by this presentation, is finitely presented.

Along with a rewriting system P = [x,r] giving a monoid S, there is the reduction system
(x*, =) with — := {(uwwv, ww'v) | (w,w’) € r} which obviously contains r, and < = r#. This
connection between presentation of monoids and reduction systems allows us to use concepts like
termination or local confluence to study the syntactic properties, and most importantly, homo-
topical and hbmological properties, of monoids. We say that a rewriting system is terminating

(locally confluent, confluent, complete) if its underlying reduction system is such.

1.5.2 Complete Monoid Presentations

The test for local confluence seems at a first sight to be difficult, but it can be simplified to a

certain degree for reduction systems arising from presentations of monoids.
Definition 1.5.1 Suppose that P = [x, ] is a presentation of a monoid and (x*, —) where

— = {(uprv, upa) | (1, p2h€ 1}

is the underlying reduction system.

If a = (p1, p2) € r then we write plgpg. A critical pair is a pair (o, 3) € r X r as in one of

the following situations:
. . . . iy o
i) inclusion ambiguities: uwv—w' and wBit , W HE N
.s L. [+ B
il) overlap ambiguities: uw—w' and wv—w”, w # \.

Lemma 1.5.2 The reduction system (x*,—) of Definition 1.5.1 is locally confluent if and only

if all the critical pairs resolve.

Proof. The “only if” part is trivial. For the converse, suppose that we have the “fork”

wy & w23 Wy where (o1,02) € = X —. There are three possible cases.
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1) w = aubvc and ay = (aubve, augbve) with (u,u1) € r, and a2 = (aubvc, aubvic) with
(v,v1) € r. In this case there is always a resolution of the (a1, az). We can transform auibvc
to aujbvic by applying (v,v;) on it and similarly we transform aubvic to au;bvic by applying
(u,u1) on it. Both the applications are in —.

2) w = paubp’, a1 = (paubp/, pwip') with of = (aub,w]) € r, and ay = (paubp/, pau'bp’)
with o = (u, ') € r. We see that the pair (o, @3) is an inclusion ambiguity and, if it resolves,
then one obtains the resolution of our fork by simply acting on the left and on the right of the
assumed resolution by respectively p and .

3) w = paubp’, ay = (paubp’, pu'bp’) with &} = (au,v’) € r, and ag = (paubp’, pau’ p') with
ofy, = (ub, ") € r. In this case the pair (@], a3) is an overlap ambiguity and, if we suppose that
the fork b 3’1 aub ?—/3 au' resolves, we act on that resolution with p and p’ respectively on the

left and on the right, to obtain the resolution of our fork w; 2wBuw,. m
An immediate consequence of this is

Lemma 1.5.83 If the reduction system of Definition 1.5.1 is Noetherian, then it is complete if

and only if all the critical pairs resolve.

1.5.3 Geometrical Constructions Associated with a Monoid Presentation

Associated with every rewriting system P = [x,r| presenting a monoid, say S, there is the
reduction graph I' = T'(V, E,¢,7,71) (see [96] or [85]) with

a) V = F the set of vertices; .

b) E = {(u, (o, 8),v,€) | u,v € F,(a,B) € r and € = 1} the set of edges;

c) the initial and terminal maps ¢,7 : E—YV defined by

uav if =1

u, (o, B),v,€) =

ufv if e=-1

and
(u, (o B), v, €) = uBv if e=1
uav- if € =-1

d) the inverse map -1: E—F sending (u,(a, 8),v,&) — (u, (a, B), v, —€).
An edge (u, (o, B),v,¢€) is called positive if ¢ = 1 and negative otherwise. We will denote the

set of positive edges by e*.
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There is a bi-action of F' on I':

§w.n = Ewn

and

5'('“', (a, ﬂ),'v,s).n = (éua (a,ﬁ),vﬂ,f)

which can be extended to paths of I' in the obvious way. This graph can be extended to a
2-complex by adding 2-cells [e, f], where e and f are edges, through closed paths of the form
(e.t(f)) o (T(e).f) 0 (43_7-(f))‘1 o (L(e).f)‘l. This means that we identify the 1-sphere S! with
the above closed path to make the attachment of 2-disk D2, This is a CW-complex which is
called the Squier complez of the presentation and is denoted by D(P) or simply by D if no
confusion arises. The complex D is not path-connected, but it splits as a disjoint union of the
form D = Use g Ds where D; is a path-connected component of D whose 0-skeleton consists of
the words w € F representing s.

The bi-action of F on I’ now induces a bi-action on D by simply acting on the boundaries
of 2-cells. Sometimes we call these actions, simply translations.
Actually the original definition of the Squier complex includes only cells [ef, f‘s] withe =4 = 1.
The other cells which are introduced in [85] give an “oriented” version of D. For example,
le, f~1] and [e71, f] have opposite orientations, and [e~1, £~1] have opposite orientation with
e, f]. Positive edges e..(f) and ¢(e).f both acting on ¢(e)¢(f) will be called disjoint.

There is also a geometric interpretation of critical pairs in this dimension. We say that
an edge e is left-reduced (respectively, right-reduced) if it cannot be written in the form u.f
(respectively, f.u) for some non-empty word u€F and edge*f . A pair of positive edges with the

same initial vertex form a critical pair if either:

1. One of the pair is both left- and right-reduced (a critical pair of inclusion type); or

2. One of the pair is left-reduced but not right-reduced, the other is right-reduced but not

left-reduced, and they are not disjoint (a critical pair of overlapping type).

Then any pair of edges in star*(w) (weF) (star*(w) denotes the set of edges starting at

w) are either disjoint or are a translate of a critical pair by the two-sided action of F' (see [72]).

The above interpretation of critical pairs can be taken as the definition of them.

Indeed, every critical pair as defined in Definition 1.5.1, gives rise to a pair of positive edges
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with the same initial uwwv, of types 1 or 2 as above. The converse is obvious.

There is also a 3-dimensional CW-complex associated with any monoid presentation [x, r]
as shown in [72]. We recall briefly here how it is constructed. First we attach 2-cells p together
with their translates u.p.v with u,v € F, to kill off the first homotopy groups =1(D,,) of the
connected components D,, of D, thus forming a 2-dimensional CW-complex (D, p). Then we
add 3-cells [f, o] and lo, f] for every positive edge f and every o € F.p.F. The boundary of
[f,0] is made of 2-cells ¢f.o, 7f.0 and [f, e;'] for every €' € do. Likewise, the boundary of
[0, f] is made of cells o.uf, o.7f and [, f] for every e;' € da. The action of ¥ on the 3-cells
is defined as follows: let u.[f,0].v = [u.f, o.v] and u.[o, fl.v = [u.g, fo] for all u,v € F. The
complex is denoted there by D(P)P or simply DP. In the next chapter we will show another
way of obtaining this and its n-dimensional analogue. If the system P = [x,r] is complete then
there is a simple way of attaching 2-cells to trivialize the first homotopy group of the complex.
Simply take the set p to be made of cells with boundary eoce, o f71o f~! with (e, f) a critical
pair and (e, fi) & resolution of that pair. (See [96] for more details.) In [72] this is done one
dimension higher, resolving what we define there critical triples, but we will not stop here to
explain the construction because this will be done for every 7 > 3 in the next chapter in a more

general way.

1.5.4 Finiteness Conditions for Monoids

Let P = [x,r| be a finite presentation of a monoid S an@ as before denote by D the Squier

complex associated with P.

Definition 1.5.4 The presentation P is said to have finite derivation type (FDT) if, by adding
to D a finite set of 2-cells X together with their translates F.X.F, we obtain a 2-complex DX

with trivial first homotopy groups.

The property FDT is proved in [96] to be independent of the presentation and therefore it
is a structural property of S. Also in [96] it is shown that, if the presentation P is finite and
complete, then S is FDT. '

One can associate with the Squier complex D its cellular chain complex? whose chain groups
turn out to have a (ZF,ZF)-bimodule structure, and then study the first cellular homology
H;i(D) which as is shown in [85] has an induced (ZS, ZS)-bimodule structure.
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Definition 1.5.5 A finite presentation P = [x,r] giving a monoid S, is said to have finite

homological type (FHT) if the H1(D) is finitely generated as a (ZS, ZS)-bimodule.

It turns out that FHT is an invariant of the presentation. Also the property FDT implies
FHT. Indeed, since every closed path f in D is homotopic with a closed path ¢ in the underlying
graph I, Lemma 1.2.9 shows that the Hurewicz homomorphism h; : m1(D) — H;(D) sends
the homotopy class [f] to the homology class of p. The fact that ¢ can be “filled in” using
standard cells of D and the translates of finitely many new 2-cells p, implies that the homology

generators of Hq(D) are the cycles corresponding to the boundaries of cells from p.

The converse is not true in general as it is shown in [87).
In [72] there are introduced the analogues of FDT and FHT, one dimension higher.

Definition 1.5.6 We say that a finite rewriting system P = [x;r| is of second order finite

derivation type FDT3 if:
1. is of type FDT,

2. for some finite homotopy trivializer p of D, the 3-complex (D,p) has a finite set X of
sphere tessellations such that attaching 3-cells to the set F.X.F gives a new

3-complex with trivial second homotopy groups.

Definition 1.5.7 We say that a finite rewriting system P = [x;r] is of second order finite
»

homological type FHT; if:
1. is of type FHT,

2. for some finite homology trivializer p of D, there is a finite set of 2-cycles Y whose

homology classes generate the (ZS,ZS)-bimodule Hz(D, p).

Remark 19 of [72] implies in particular that FDT; implies FHT2. On the other hand, it
follows that Ha(D, p) being finitely generated (equivalent with FHT; from the above definition)
implies the property bi-FP4. The property bi-FP,, is introduced in [53] as a generalization of
the property FHT in all dimensions.

A monoid S is called bi-FP,, for some n > 1 if there is a partial free finitely generated resolution
of ZS-bimodules of the ZS-bimodule ZS:

F On— é ) é
Cp 2 Cp1 == . 201 2 C) 7S — 0.
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If it is bi-FP,, for every n, then it is called bi-FP .
Finally, if the system is finite and complete, then it is FDT; (see Theorem 7 of [72]).

1.6 Useful Orders
o Multiset Orders

A multiset M over a set A is a function M : A — NU{0}. Intuitively, M (z) is the number
of copies of z € A in M. For example, if A = {a,b,c}, then a multiset over A would look like,
M = {a,a,b,b,b,b,b,c}, which means that Masamapsendsa - 2,b—4andec— 1. A
multiset M is finite if there are only finitely many z such that M(z) > 0.

Denote by M(A) the set of all finite multisets over A. Below are some basic operations on
M(A).

Element : x € M <= M(z) > 0.

Inclusion : M C N <= Vz € A. M(x) < N(z).

Union : (M UN)(z) := M(z)+ N(z), Vz € A.

Difference : (M — N)(z) := M(x) + N(z), where m +n is m —n if m > n and 0 otherwise.

We say that (A,>) is a strict order if and only if > is an irreflexive and transitive relation

on A.

Definition 1.6.1 Given a strict order > on a set A, we define the corresponding multiset order
>mu on M(A) as follows: »
M > N if and only if there exist X, Y € M(A) such that
X C M and
N=(M-X)UY and
VyeY. IzeX. z>y

It is not difficult to show that >, is strict if > is so, and that >, is Noetherian if > is
Noetherian too. The following characterization (see Lemma 2.5.6 of [5]) will be useful in the

next chapter.
Lemma 1.6.2 If > is a strict order on A and M, N € M(A), then

M>wnwuN < M#ZNAVREN-M. 3Ime M - N. m > n.
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We mention that, in the case of a partial order >, the multiset order >,,,; can be defined

as follows:

M>uN < (M=N)V(M>muN).
Note that any set A can be considered as a multiset by simply taking the constant map
[4]: A— Nu {0}
sending every element of A to 1. If we apply Lemma 1.6.2 for sets, it is translated as follows:
[M] >mu [N] <> M#NAVReE N-M.3Ime M—N. m>n,

where now — is the usual difference of sets.
Multiset ordering for sets does not allow comparing between a set and its subsets. We can
extend the above order to make possible that comparison, at least in the case of finite sets.

Let > be a strict order on a set A and let M be a finite subset of A. We let
M = {m € M | m is maximal in M with respect to <}.
We say for two finite subsets M and N of A that [M] < [N] if and only if
1. either M C N, or
2. M and N are incomparable and [M] <mu [N]).

It is obvious that <, is again Noetherian.

e Lexicographic Orders

Given two strict orders (4, > 4) and (B, >g), the (left) lezicographic product >4xp on Ax B
is defined by
/ / !
(z,y) >axp (@,¥) = @>42) V(=2 Ay>py).
The lexicographic product of two strict (respectively Noetherian) orders is again a strict (re-

spectively Noetherian) order.

One can extend the above for every n € N. Given strict orders (4;,>4,), i =1,...,n > 2,

the lexicographic product >4, written shortly by >, is defined as

(T1, ey Tn) > (Y15 0yYn) = Fk<n (Vi<k. zi=y)A(zp >a, i) (1.3)
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If (Ai,>4;) = (A,>4) for all n > 2, then one can define the lexicographic order >}, on A* as
follows. One can see A* as the disjoint union U,>9A™ where each A™ contains words of length
n with letters from A. Then for every m > n take any word from A" to be less than any word
from A™, and if u,v € A™, then compare them as in (1.3). Again, >, is strict (respectively

Noetherian) if > is strict (respectively Noetherian). If > is a total order, then >}, is total too.

¢ Reduction Orders

Let the monoid S be given by the rewriting system P = [x,r]. As before, we let — :=

{(uwv, ww'v) | (w,w’) € r}.
Definition 1.6.3 A strict order > in x* is called a reduction order if

1. u > v implies wjuws > wivwy for every wy, wy € x*,

2. > is Noetherian.

We have the following result:

Proposition 1.6.4 With the above notations, — is Noetherian if and only if there exists a

reduction order > compatible with r, that is, u > v for all (u,v) € r.

Proof. Assume that — is Noetherian. It follows that 5 is itself a reduction order compatible

»
with r from the definition of —.

Conversely, if we assume by way of contradiction that there is an infinite chain u; — uy —

w. = Uy — ..., then this would imply that vy > ug > ... > u, > ... is infinite. =
Definition 1.6.5 If — is Noetherian, then the partial order >, on F(x) given by writing
W1UwWy >y W1wy

for each (u,v) € r and w;, wp € x* such that composition is possible, is a reduction order, the

reduction order induced by r.
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1.7 Completion of a Rewriting System

We will describe in this section the Knuth-Bendix completion procedure for a finite rewriting
system P = [x,r| giving a monoid and find a sufficient condition for a finite rewriting system
in such a case to be equivalent with a finite complete one.

The Knuth-Bendix completion procedure is as follows.

Input: A finite Noetherian rewriting system P = [x,r] and a reduction order > on x*.

A A . . .
Output: A finite complete rewriting system P = [x,r] equivalent with P, if the procedure
terminates successfully; “Fail” if the procedure terminates unsuccessfully; runs forever without

terminating.

begin: If there exists (u,v) € r such that u # v, but incomparable, then terminate with
output “Fail”. Otherwise, i:=—1andro={u— v | (u,v) ErUr Au>v}.
repeat: ¢ «— ¢+ 1;
rigy — 0
C P «— the set of critical pairs of r;;
while CP # () do
begin choose (21, 2;) € CP; compute normal forms ;?1 and zAz of z; and 2y, respectively;
if é\l > 2/5\2 then riyq (e rip1 U {(5\1,1/\2)},
if 3 > #) then rit1 i g1 U {(2/\2,7{\1)};
CP «— CP —{(z1,22)} .
end;
(Comment: all the critical pairs of r; have been resolved.)
if riy1 # 0 then ripg —r;Urip1
until r;y; = 0;
r* « U;>oTi;

end.
Example 1.7.1 Let P = [x,1] be a rewriting system with x = {z,z7!} and
r= {.’EIIJ_]' = /\,CII_I.'E =\, zx = )\}

The reduction order is induced from the lez order based on z—! > z. There are four critical

pairs, two arising from the rules zz~! = X and 7!z = X\ which are both resolvable, and two
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others as follows

-1

T — g1

1 1 1

zz =z gz — z and © — TTL” — oz .

= ZTT

After the first loop of Knuth-Bendix, we obtain the set of rules r1 = r U {z = z~1}. This gives

rise to two new critical pairs

ANe—zz l=zz7! — zz and X «— z e —zz

which are resolved by the existing rule zz = A. The output is thus, the system P = [x,r,].
Example 1.7.2 Let P = [x,r] be a rewriting system with x = {a,@, b,b} and
r = {a@ — \,@a — X\, bb — \,bb — A, ba — ab, ba — @b, ba — ab, ba — @b}.

(i) Let > be the lexicographical order induced by the linear order a < @ < b < b. Then rg =r,
r is confluent and hence, r* =r.
(ii) Let > be the lexicographical order induced by the linear order b < a < @ < b. The Knuth-
Bendix procedure runs as follows.

ro=r,;

CP, = {(a, bab), (a, bab)}

ri =roU {bab — a, bab — a};

CP; = {(ba®b,a?), (ba®b, @)}

ry = r1 U {ba2b — a2, ba’b — @%}.
Repeating this process, we obtain r; =roU {ba’b — o7, Eﬁﬁ) —a | j=1,..,1}.
Hence, r* = ry U {ba/b — o, ba’b — @’ | j 2 1}.

This example shows that the termination of Knuth-Bendix depends on the well-order chosen.

Suppose we are given a finite Noetherian rewriting system P = [x,r]. List all the possible
critica) pairs as follows, (e;, fi) with ¢ =1,...,s. Let u; and v; be irreducibles such that re; LAY
and 7f; = v;. Denote by U the union of all irreducibles chosen as above. Suppose that U/

satisfies the following four properties.

1. None of u € U is a proper factor of any of the remaining,
2. none of u € U overlaps with any of the ' € U,

3. none of u € U is a proper factor of some w such that (w,w’) €r,
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4. none of u € U overlaps with any of the w such that (w,w’) € r.

The following gives new conditions under which a rewriting system is equivalent with a

complete one.

Theorem 1.7.3 If the system P = [x,1] is finite and Noetherian and for some choice of irre-
ducibles U as above, we have 1, 2, 8 and 4, then the system is equivalent with a finite complete

one,

Proof. Suppose that U is included in classes C1,...,C;. Add new letters #i,..., *; to the
alphabet, one for each C;, and edges from each u € U to *j, if v € Cj. The new system is
equivalent with the previous one since all the above transformations are of Tietze type (see
Definition 3.6.4) and is obviously Noetherian. It remains to check whether this procedure
produces critical pairs. If such a pair exists, then it should have at least one of its edges a new
one. They can not be both new edges, from Conditions 1 and 2. Also we can not have a critical
pair with one new edge and the other an old one since this would contradict Conditions 3 and

4. So it follows that the new system is complete. =
Systems satisfying Conditions 1-4 exist as the following shows.

Example 1.7.4 Take x = {a, b, c, d, €, f} and r = {(a'bca aCb)’ (de, bdc)a (Gde’ 6), (a'bdc, f)}
There is only one critical pair of overlapping type acbd «— abcd — abdc which does not
resolve. The only irreducible descendent of achd is e and thgonly irreducible descendent of abdc

is f. In this case the set U of the theorem is {e, f} and it obviously satisfies Conditions 1-4.

1.8 Groébner Bases for Algebras

In this section we will introduce some basic notions about Grébner bases which can be found
in several sources such as (8], [55], [68], [77] or [78].

Let x be a finite alphabet and x* the free monoid with bases x. For a commutative ring K
with unit 1, denote by P = K - x* the free left K-module generated by x*. The elements of P

have the form of noncommutative polynomials
n
f= Z kyw;
i=1
with k; € K\{0} and w; € x*.
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Suppose we have defined some lex order > on x*. We can write f above in such a way that
the terms are in descending order. In particular kjw; is the biggest term, which we call the
leading term of f and denote by It(f). Let rt(f) = f— It(f). The order > extends to an order
on P in the following way. First set f > 0 if f # 0. Now, if f and g are non zero polynomials
with 1t(f) = k - v and lt(g) = s - v, then define f > g if and only if either v > v or u = v and
rt(f) > rt(g). This order is of course partial and Noetherian. A monic rewriting rule is a pair
(u, p) € x* x P such that u > p and will be written as u — p. A monic rewriting system r is a
set of rewriting rules in P; in fact the pair (P,r) = (P,—) is a reduction system.

The rewriting process of polynomials works as follows. If the polynomial f contains the
term k - xjuxr and we want to apply the rule u — p on it, then replace zyuzs with z1pz9 and
in this way f transforms into g = f — k. z1(u — p)z2. Denote by —} the reflexive transitive
closure of — and by <} the equivalence generated by —. Let I(r) be the ideal generated by

the set {u—p|u— p€r}.

Proposition 1.8.1 The relation «—} is equal to the congruence on P modulo I(r), that is,
fer g f = g(mod I(r))

for f, g € P. In particular,
f o0 f=0(mod I(r))

for f € P, that is,
Ir)={feP|fer0}

The above is the reason why we say that the quotient algebra A = P/I(r) is defined by
the rewriting system r and use the notation A = P/ «*. We say that a set G of P is monic,
if every g € G is monic, that is, the leading coefficient of g is 1. Let I be an ideal of P and
G C I a set of generators. We say that G is a &robner base of I if it is monic and the system
rg = {lt(g) — — rt(g) | g € G} associated with G is a complete reduction system in P. We
say that an algebra A over K admits a Grébner base if it is isomorphic to the quotient P/T of

some finitely generated free algebra P over K modulo an ideal I with Grébner base.

Example 1.8.2 Let x be a finite alphabet and x(?) the subset of x* consisting of words of

length 2. Let U be a subset of x(? and ¢: U — K -x @ K be a map. Let
¢:K-xVpK -x—K-xPoK xoK
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be a K-linear map defined by .

&) = é(u) if uelU
u if wugU
for u € AUxUx®). Suppose that
¢'(¢(ab)c) = ¢'(ad(bc)) (1.4)

holds for every a,b,c € x such that ab,bc € U. The ideal I of P = K - x* generated by

G = {u— ¢(u) | u € U} has G as a Grobner base since (1.4) ensures that the rewriting system
rg = {u — ¢(u) | u € U} is confluent.

Example 1.8.3 Let again x be a finite alphabet but differently from the general case, take the
rewriting system r to be made of pairs (r4,r_) € x* x x*. Let S be the monoid defined by the
presentation [x,r| and K - x*, K - S be the respective free left K-modules generated by x* and
S. The canonical epimorphism x* — S extends to a ring epimorphism 6 : K - x* — K - S
whose kernel J is the abelian group generated by elements & - £.(ry — r_).n, where £, n € x*,
k € K and (r4,7~) € r. Therefore, as an ideal of P = K - x*, J is generated by the set
G = {ry —r_ | (r4,7_) € r} or, in other words, J = I(r). This in particular means that the
algebra A = P/I(r) defined by the rewriting system r, in our case is K - x*/J = K - S. If we

take r to be complete, then, since rg = {lt(g) — — rt(g) | g € G} is in fact r, we have that G

is a Grobner base for J.

1.9 Homological Finiteness Conditions for Monoids

As before, K will denote a commutative ring with unity 1 and S a monoid. We let K'S be the

monoid ring over K. One defines the standard augmentation

[
E:KS— K; s—1 (s€8),

which allows us to regard K as a left KS-module s K where the K S-action is given via e:
ak=¢e(a)k (a€ KS,keK).
We say that S is of type left-FP,, (over K) if there is a partial resolution
Phb—..— P —P—sK-—0 (1.5)

where P is a free finitely generated left K.S-module for all k =0, ...,n.
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Symmetrically, one defines the property right-FP, by ﬁ!"St regarding K as a right KS-
module Kg. These two properties are different from each otiler as shown in [17] where there
is given an example of a monoid which is right-FP, over Z for every n but not even left-FP;
over Z. In contrast with monoids in general, for groups the properties left-FP,, and right-FP,,
coincide. Interestingly, for any n € N there are groups which are left-FP,, over Z but fail to be
left-FP,,+1 over Z as shown in [10)].

Regarding K as a (K S, KS)-bimodule sKg via the 2-sided action

ak.d =¢(a)ke(d) (a,d €KS, ke K),

we can define the finiteness condition weak bi-FP,, [84] (see also [2]). It is shown in [2] that the
implication

left-FP, + right-FP, = weak bi-FP,

holds in the case when K is a PID. The converse is also true in general as shown in [84)].

One can regard K S as a (K S, KS)-bimodule where the action is the multiplication itself.
In [53] it is defined the finiteness condition bi-FP, for a monoid S if there exists a partial
bi-resolution

Fp—..—F—F—KS—0 (1.6)

where Fy, F1, ..., Fy, are free finitely generated (K S, K S)-bimodules.
In [53] the authors show that

bi-FP, = left-FP,, + right-FP,

by tensoring on the right (respectively left) hand side (1.6) with ¢K (respectively Kg). We'
will use a similar technique in Chapter 3 of this thesis to show that bi-FP,, for small categories
implies left-FP, and right-FPy,.

In the case of groups properties bi-FP,, and FR, coincide as shown in [84]. This is not the
case for monoids in general. Kobayashi and Otto have given in [54] an example of a monoid
which is left-FP,, and right-FP,, for every n but is not bi-FP3.

Note that in both resolution (1.5) and (1.6) we may take the respective modules to be
projective rather than free and the respective (seemingly new) property is equivalent with the
original one. See for this Proposition 4.3 of [12] or its bi-module version of [53].

Lastly, one can define the property bi-FP, for a monoid S by requiring the existence of a
bi-resolution

w—F— ... — R —F—KS—0 1.7
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where Fy, Fi, ..., Fy, ... are finitely generated projective (K S, Ig S)-bimodules. It turns out that
bi-FPo <= bi-FP,, for every n.

Also its analogue holds true for one sided versions of bi-FP .
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Chapter 2

Topological and Homological

Aspects of Rewriting Systems

2.1 Introduction

Given a monoid presentation P = [x, r], one can associate with the Squier complex D(P) =D
the respective cellular chain complex, whose chain groups turn out to have a (ZF, ZF)-bimodule
structure where F is the free monoid on x, and then study the first cellular homology H;(D)
which as is shown in [85] has a (ZS, ZS)-bimodule structure induced by its (ZF, ZF)-bimodule

structure, where S is the monoid given by P. There is an important short exact sequence
0 — Hy(D) - ZS.r.ZS — M(P) — 0, (2.1)

where M(P) is the relation bimodule of P introduced by Ivanov [45]. The sequence (2.1)
was obtained by Pride [85], apart from the injectivity of n which was proved by Guba and
Sapir [39] using ideas of diagram groups, and in an alternative way in [52]. In [71] and [72]
there is constructed a 3-dimensional CW-complexo(D, p;) containing the Squier complex D.
There is a bi-action of F' on the cells of this complex whose restriction on the 0O-skeleton F
coincides with the concatenation of words in F and the empty word X acts trivially on (D, py).
This action makes the homology groups H;(D) and Hy(D,p1) have both a (ZF,ZF) and an
induced (ZS, ZS)-bimodule structure. Here p; is a set of 2-cells whose homology classes of
the corresponding 1-cycles are (ZF,ZF)-bimodule generators of H;(D) and the 2-skeleton of
(D,p1) is A2 = DU F.p1.F. Then there are added 3-cells [f,0] and [0, f] for every positive
edge f and every o € F.p;.F. The boundary of [f, 0] is made of 2-cells ¢f.0, 7f.c and [f,e5’]

for every €' € do. Likewise, the boundary of [, f] is made of cells o.1f, o.7f and [ef*, f] for
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every e;' € do. The action of F' on the 3-cells is defined by letting u.[f,0].v = [u.f,0.9] and
u.[o, fl.v = [u.o, f.v] for all u,v € F. In this way we do not cfistinguish between 3-cells [o.u, f]
and [o,u.f] for any u € F, or between 3-cells [f.u,0] and [f,u.0] for any u € F. In other
words, for evéry o € F.p1.F, f € et and u € F, we identify each pair of cells from Ay x As
of the form (o.u, f) with (o, u.f), and similarly we identify (f.u,o) with (f,u.0). As we will
see later, these identifications arise from a cellular equivalence ~3 on the 3-skeleton K3 of the
complex Ay x Ag and that K3/ ~o= (D, p1). Also, it turns out that cells of dimension 3 of
(D, p1) are in a 1-1 correspondence with triples of positive edges with the same initial which are
translates of non-critical triples. If the system P is finite and complete, there is a canonical way
of constructing cells of p; by firstly taking resolutions of all the critical pairs (finitely many)
and then attaching the 2-cells through the corresponding closed paths in a 1-1 fashion. In this
case the set F.p;.F trivializes m; (D) and therefore the homology classes of cycles corresponding
to elements of p1 will be (ZF,ZF)-bimodule generators of H;(D). So, in the complete case,
cells of (D, p;) are in a 1-1 correspondence with the translates of critical k-tuples (k = 1,2), or
in a 1-1 correspondence with k-tuples (k = 2,3) of edges with the same initial which are not
critical. Again, if P is finite and complete, we introduced in [72] a canonical way of attaching
3-cells p2 to (D, p1) in a 1-1 correspondence with critical triples, together with their translates
F.py.F, and showed that the new complex Az = (D, p1) U F.p2.F has trivial second homology
group. In other words, 2-cycles arising from pp are (ZF,ZF)-bimodule generators of Haz(D, p1).

Since pg is finite, then Hy(D,p1) is a finitely generated (ZS,ZS)-bimodule.

Most importantly, it is shown that, for every system P and every set of 2-cells p; whose
homology classes of the corresponding 1-cycles are (ZF,ZF)-bimodule generators of Hi(D),.

there is a short exact sequence
0 — H(D,p1) — ZS.p1.Z8 — H1(D) — 0
) ’
which, if spliced with (2.1) and then with the exact sequence
0—> M(P) — ZSXZS —ZSQZS — ZS — 0 (2.2)
found in [53], gives the exact sequence

0— Hy(D,p1) — ZS.p1.LS — LSr.ZS — LSx.LS — ZS QLS — LS — 0. (2.3)

In the case when P is finite and complete, then Hz(D,p;) is a finitely generated (ZS,ZS)-
bimodule and then using (2.3) it is easy to deduce that S satisfies the property bi-FPj.
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In the present, focusing on finite complete presentations P, we keep on doing the above
L]
process in all dimensions. Our main result will be the following theorem whose proof covers the

whole of Section 2.2.

Theorem 2.1.1 Associated with a finite and complete presentation P = P[x, r| giving a monoid

S, and for every n > 2, there is a chain of CW-complexes
DCcAyC(D,p1)CA3C...C A1 C (Dyp1,.yPr—2) C Ay,
such that A, has dimension n and, for every 2 < m < n, the m-skeleton of A, is A,,. The
complex satisfies properties Ay, -F,, together with properties (i)-(v).
We give below properties A,-Fp, and leave for Section 2.2.1 properties (i)-(v).
A, There is a bi-action of F' on the cells of A, with A acting trivially and such that the

restriction on the O-cells coincides with the multiplication of F. We call this action

translation.

B,, For every 2 < m < n, the open m-cells of A, are in a 1-1 correspondence with the m-tuples
of positive edges of D with the same initial. For the critical m-tuples, the corresponding
open m-cells are denoted by p,,—; (note that the index is one less than the dimension),

and the set of their open translates by F.p,,_;.F. The following holds true.

A = (DypP1y s Pm2) UFPp1 k' if m>3
™=
DUFp,.F i om=2,

where U stands for the disjoint union.

C, For every 2 < m < n—1, there exists a cellular equivalence ~,, on K,, = (A, X Ay )M+

such that Km/ ~;m= (Dspla "'apm—l)- .

D,, Forevery2<m <n-1, Hy(D,pi,...,pm-1) has a (ZF,ZF)-bimodule structure and an
induced (ZS,ZS)-bimodule structure.

E, Forevery 2<m <n—1, Hn(Am41) =0.
F, For every 2 < m < n — 1, the following is an exact sequence of (ZS,ZS)-bimodules
[
0— Hm(D’ PL - pm——l) - ZS'pm_l'ZS —V_) Hm—l(D$ P10y pm—2) - 0) (24)

where (D, p1,...,Ppm-2) =D if m =2,
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The first immediate advantage of (2.4) is that we can now see the (ZS,ZS)-bimodule
H,_1(D,p1,...,Pm—2) as the cokernel of the map ®. The second advantage is that we give
a shorter proof of Corollary 7.2 of [55] for the integral monoid ring ZS. This is given in the

following theorem.

Theorem 2.1.2 If a monoid S is given by some finite complete presentation P = P[x,r|, then

it is of type bi-FPny1. In particular, the free finite partial resolution of ZS can be chosen to be
S-graded.

Proof. Using the property F,, one obtains the exactness of the following
0 — Hp—1(D,P1, ...y Pr-2) — ZS.pp-2.2S — ... — ZS.p1.ZS — H1(D) — 0,

and then, if we splice it with (2.1) and then with (2.2), we obtain the exact sequence

0 — Hu_1(D, 1, ..y Prz) — Z8.Pr_2.Z8 —> ... — Z8.p1.Z8 —
—r ZSr.ZS — ZS x2S — ZSQZS — ZS — 0.

But now, Hp,—1(D,P1,.+Pn-2) is & finitely generated bimodule, as Proposition 2.2.23 shows,
and then there is a finitely generated free (ZS,ZS)-bimodule P,_; with bases p,_; and a
surjective bimodule morphism é : P,_y — Hy,_1(D,p1,..,Pn-2). As a consequence, the

following
P12 25Dy 228 —> ... — ZS.p1.ZS — ZS.x.ZS —>

(2.5)
ZS8x.ZS —ZS®ZLS — ZS — 0

is exact, which shows that S is bi-FPp41.

That the above resolution is S-graded, will be made clear in Definition 2.2.33. =

Throughout Section 2.2, P = [x,r] will be a finite complete presentation.
We will assume in addition that P is uniquely®™erminating, that is, it is finite and
complete and if (r,s;), (r,s2) € r, then 51 = s9.
By a result of Squier [95], any finite complete presentation P

is equivalent to a uniquely terminating one.

In Section 2.3 we ask the question whether we can always construct the sequence of CW-
complexes of Theorem 2.1.1 and prove that for every 2 < m < n — 1, the sequence (2.4)
remains exact. In such a case we would be able to define properties FDT,, and FHT,, for n > 3

generalizing the results of [72].
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In Section 2.4 we give a topological proof of the known fact that FHT and FDT for groups
e
coincide. This proof is based on our techniques for constructing complexes by taking products

and quotients.

2.2 Proof of Theorem 2.1.1

Recall from the above that we have assumed that we have constructed the chain of CW-

complexes

DcCc A C (D,pl) CA3C..CA, 1 C (D, P1, ...,pn_z) C A,,

with properties Ay, By, Cp, Dy, E,, F,. We will construct inductively an (n + 1)-dimensional
CW-complex Ap41, having A, as its n-skeleton, whose open (n + 1)-cells are of two kinds:
those which are in a 1-1 correspondence with the non-critical (n + 1)-tuples of positive edges
with the same initial, and open (n + 1)-cells py in a 1-1 correspondence with critical (n + 1)-
tuples of positive edges with the same initial, together with their open translates F.p,.F. The
construction will be carried out in two stages. In the first stage we construct an (n+1)-complex
(D, p1, .-y Pn—1) whose open (n+1)-cells are in a 1-1 correspondence with the non-critical (n+1)-
tuples of positive edges with the same initial. In this stage we do not specify the attaching maps
in order to attach the (n 4 1)-cells, but we obtain the complex as the quotient by a cellular
equivalence ~, on the complex Ky, = (An x An)™1) whose attaching maps are easily calculated
in terms of the respective maps of A,. In the second stage we attach open (n + 1)-cells p,, in a
1-1 correspondence with critical (n + 1)-tuples of positive edges with the same initial, together
with their open translates F.p,.F. Note that the constructing procedure we introduce in the .
first stage works for all the presentations whether they are complete or not, but there is not a
canonical way of constructing (n + 1)-cells from F.p,.F unless we assume that the presentation
is finite and complete.

Recall from [72] (see also Section 1.5.3 of this t.hesis) that the 1-skeleton T of (D,ps) is
oriented and the set of positive edges is denoted by e*. We have defined in [72] the following

Noetherian strict (irreflexive and transitive) orders on the 0- and 1-skeleton, as follows.
(0) We say that u <o v, (u, v € F) if and only if v —} w.

(1) For e = (u,r,+1,v) and f = («/,7/,+1,7) from et, e <; f if te <g ¢f or if they have the

same initial and one of the following occurs:

(1.1) @' is a proper suffix of v or,
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(1.2) v=", || < |rfa].

L]
The assumption that the system is uniquely terminating guarantees that it never happens

that, for edges e and f as above, we have
—— — gl !
v=2, ryy=riandr 1 #7 .

This in particular means that we can always compare between two edges with the same initial.
Note also that the above strict ordering is Noetherian.

Note that order of 0-cells and 1-cells will be the bases to define a strict Noetherian order in

each skeleton of the complex A,,.
We call two positive edges e = (u,r,+1,v) and f = (¥/,7/,+1,7’) with the same initial
urp v = u’r{i_lv’ disjoint, if and only if the occurrences of the words r4+; and rfl_l in urpjv =

w'r/ v/, neither overlap with each other, nor is one of them a subword of the other.

2.2.1 Properties of the Complex A,

To construct Apt+1 = (D, P1, ..., Pn-1) U F.pn.F, we suppose by induction that the complex A,
satisfies the following five properties which are needed to carry out the construction of A, 4.
Of course all these properties hold true for Az = (D, p1) U F.p2.F of [72], and then, after we

construct An+1, we have to show that they hold true for An41 as well.

(i) For every pair of cells (01,02) such that dimo; + dimos = m < n, A, contains m-cells
01 ® o such that the (m — 1)-boundary ®,,50, (S;’,':T@},Q) is equal to the union of the closed cells
of the form o1; ® o2 and those 01 ® o5, for all 7; € doy and all 735 € doy.

For every 01,02,03 € Ay such that the sum of their dimensions is at most n, we have
01 ® (02 ® 03) = (01 ® 02) ® 73.

If any of the cells o1 or o2 are from F, then oy ®02.= 01.02, where . is the action of F on A,,.

(ii) For every pair of words u,v € F and every cell o € A, there is a homeomorphism
h(u’a’v) 10— .oV

such that for every ¢’ € 9o,

Puowy l57 = Pluor )
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Notation 2.2.1 For each 1 < m < n, we identify D™ with the m-cube I x ... x I, and denote
(A A

A ‘ i
it by [I1, ..., Im]. Denote by [I1,...,I;, ..., I's] the boundary cell of D™ obtained by replacing the
i-th factor I; with {1}. In other words, the i-th coordinate of the elements of [y, ..., ?i, vey Im]
will be 1. We let A = (0,1,...,1), 4 = (1,0,1,...,1),..., A1 = (1,..,,1,0), A = (1,..,,1).

Also we make the notation

di=AnAi1={(,..,1,z,1,..1) |z € I;} forevery i = 1, ...,m.

The following reveals some similarities of the cells of A, with simplicies in a simplicial com-

plex.

(iii) Every cell o of dimension m with 2 < m < n the following hold true:

1. The characteristic map ® of ¢ sends A, to a 0-cell w, which is the biggest vertex of the
0O-skeleton of o, and there are positive edges ey, ..., €, from the 1-skeleton of & coming out
of wy, (this set of edges will be later referred to as starc) such that

o(di) =&, P(dm) =&

2. These edges determine o in a unique way. We say that they generate o and write

o= |w; (€1,€2, . €m)].

3. For every m—1 of these edges e;,, ..., e;,_, there is a boundary cell of & generated by them
meeting wg, and conversely every boundary cell meeting w, is generated by such m — 1
edges of ej,...,em. We denote by [w;(el,...,éi,...,em)], with ¢ = 1,...,m, the boundary

cell of o generated by the edges {e1,ea, ...,em}\{ei}

. . /\
4. The restriction of ® on [I;, vy Ziy oy Iy agrees.with the characteristic map of the cell
generated by {e1,...,em}\{ei}. The restriction of ® on the union of the boundary cells

of [I1,..., Im] that do not meet A,, is a union ¢ of closed (m — 1)-cells whose maximal

boundary cells are less than w,.

Definition 2.2.2 An m-tuple of positive edges e;, i = 1,...m coming out of the same vertex w

will be called critical if the following hold:

(1) there are no k edges (0 < k < m) disjoint from the remaining m — k;
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(2) w cannot be written in the form w = uw'v (u,v # A) such that there are positive edges

L]
el, i =1,...m coming out of w’ and for each i, &; = u @ € ® v.

We call a cell [w;(e1, e, ...,en)] critical if (e, ez,...,en) is a critical m-tuple.

(iv) If o is critical then 0 = 01 @ o2 implies that either o1 = A or o2 = A

Critical cells turns out to be the building blocks of the complex.

(v) (Unique Factorization Property) Every cell o from A, of dimension at least 1, is

expressed uniquely as

c=u1R01QuU2® ... QUL Qo) ® Up4,

with u; € F and o; critical cells of dimensions at least 1.

If u; = X in the above decomposition, then we call o left-reduced, and if uxy1 = A, then we

call it right-reduced.

2.2.2 The Construction of the Complex (D, pi, ..., Pn-1)

Now we start constructing the (n + 1)-CW complex (D, pi,...,Pn—1) we mentioned before.
Property (iii) implies that A, is countable, therefore we have that the topological product
Ay, x Ap is again a CW-complex with countably many cells (see Theorem 7.3.16 of [70]). The

cells of A, X Ay, are pairs (o,0') with ¢ and ¢/ cells from Ay,
Let K, be the (n + 1)-skeleton of A, x A,,. Construct a mapping 7 : E(K,(f )) — E(A,),

where 0 < ¢ < n and E stands for the cell decomposition of the complex, such that
i(0,0') =0 ®d, (0,0') § E(KY).

Observe that dim ¢ = dim j(c), for every ¢ € E( ,(f)), 0<i<n.

We say that two open cells ¢; and ¢ from K, are parallel, denoted by c; || ¢z, if either they
are both of the same dimension which is at most n and j(c1) = j(c2), or else if c1, ¢z are both
of dimension n + 1 and there are 01, 02,03 such that ¢; = (061 ® 02,03) and ¢ = (07,03 @ 03).
So in general we have that two open cells ¢; and cs from K, of dimension 0 < m < n+ 1 are

parallel if and only if
c1 = (01 ® 02,03) and ¢z = (01,02 ® 03) for some 01, 02,03 € A,,.
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This is due to the Unique Factorization Property (v) and from the definition of j. We identify

as before the closed ball D™ for m > 1 with I™ = I x ... x I, where I is the unit segment, and
e s’

m
for m = 0 we take D° = I° to be a singleton set; then we can write

DZL — (Idimal % Idima’g) x Idim03 and D:; — Idimal x (Idimaz % Idimag)

and therefore there is an obvious homeomorphism hig : D7} — DT,
Define the following binary relation in K,.

x1 ~q oo if and only if 23 € ¢1, 23 € ¢z, with ¢1 and c3 open cells such that
l) C1 “ Cc2,

2) h12(<I>C_11 (z1)) = <I>C_21 (z2), where ®, (i = 1,2) is the corresponding characteristic map and

hqz is the above homeomorphism.
The relation ~, is an equivalence relation as may easily be checked.
Definition 2.2.3 Denote by (D, py,...,pn—1) the quotient space K,/ ~, and let

p: K’n — (D’pl’ B3) pn—l)
be the quotient map. For every cell ¢ € E(K,,), define p(c) = {p(z) | z € c}.

Lemma 2.2.4 For every two open cells ¢; and ¢y of Ky, p(c1) = p(c2) if and only if ¢; || co.

Proof. The direct implication follows from the definition of ~,,.
Conversely, let ¢; || cz and Dil, Diz be the balls corresponding to €7 and ¢; respectively. If we
take 2] € ¢y, then thereis a € D} — Si-1 such that @, (a) = 1. Then z2 = &, (h12(a)) € ca.
From the definition of ~, we have that z; ~, z2, or in other words p(z1) = p(z2) € p(c2). This
shows that p(c1) C p(cz). By symmetry one shows tht p(c2) C p(c1), obtaining the equality.

| ]
This lemma shows that parallel open cells are identified under the map p.

2.2.3 (D,p1,., Pn-1) is a CW-complex

We proceed by showing that (D, p1, ..., Pa—1) is a CW-complex. First we show that (D, p1, ..., Pn—1)
is a cell complex by using Definition 1.1.13 and Theorem 1.1.15, and then using Propositions

1.1.18 and 1.1.19, we derive that (D, p1,...,Pn—1) is a CW-complex.
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We are now going to show that all the Conditions (1), (2) and (3) of Definition 1.1.13 are

satisfied for the equivalence relation ~,. .

(1) Indeed, for every open cell ¢ € E(Kp), Lemma 2.2.4 implies that p 1p(c) = Uc' where

¢l e

(2) From above, every two open cells ¢1, ¢ca € p~!p(c) have the same dimension since c; || c,.
Also, from the definition of ~y,, the restriction p |, is a bijection onto p(cz). It remains to show

that p(e1) = p(2), where again by € we denote the closure of the cell c. For this we make some

preparatory work. First we make a remark.

Remark 2.2.5 If (01,02) € E(K,), then the characteristic function ®(,, o,) is just &5, X B5,. If
dimo = k and dim o’ = 1, then (®g; X ®5,)(S(; o) = (B X D0, ) (SkT? x DL, UDE, x SL1) =
<I>,,1(S’§1'1) X 3 UTT X @az(S,l,Zl) and, since the restriction of the characteristic map on the
boundary of the ball acts as the attaching map, we derive from Property (i) that the boundary
of the cell (¢1,02) consists of all the cells (71;,77), with ; from the (k — 1)-boundary of ¢ and
those of the fdrm (@1,073;), with o2; from the (I —1)-boundary of o3. In the case, when either o;

or o3 is a zero cell, we have, respectively, that the boundary of (o1, 03) is either a7 x ®,,( Sf,’;l)

or &,,(Sk1) x 72
We prove the following.

Lemma 2.2.6 For every two open cells o and § of A,, we have 0 X § =& X 0.

Proof. We have @ x 6 = (CUs®) x (§UF°) =0 xdUox8Uc°xdUo°x . On

the other hand since (o x §)° = (¥, x @a)(S?;fg)""'dim‘s_l) =7 x0°Uc° x4, then o x 0 =

o XxSUFTX°UXxI=0X8Uox6°Ug®x §Uc° x §° and then we obtain o X 6 = 7 x 0.
[ ]

Remark 2.2.7 Remark 2.2.5 and the proof of Lemma 2.2.6 imply that the boundary c° of any

k-dimensional cell ¢ € E(K}) is a finite union of closed (k — 1)-cells as below:
¢ =2(sk 1) = Uz
=1
Lemma 2.2.8 If the open cells ¢ and d from K are such that ¢ | d, then

{3(1) | B € ®(ST1)} = {5(8) | § € ®4(STY)}.
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Proof. The following cases are possible.
(a) Both ¢ and d are of dimension n + 1. Then from the defiition of || we must have that
¢ = (01 ® 02,03) and d = (01,02 ® 03). From Remark 2.2.5 and from Property (i), we see that
the cells p of the boundary of c are of one of the following forms, (0] ® 02,03), (01 ® 05, 03) or
(01 ® 09,0%) with a7, 05 and o4 from the respective boundaries of o1,09,03. Similarly for d
they are (0,02 ® 63), (01,05 ® 03) or (01,02 ® 05). The equality of the sets now follows from
the definition of j.
(b) Both ¢ and d have dimension at most n where ¢ = (0,0") has both coordinates of dimension
at least 1 and either d = (u,01 @ 03) with u.(61 @ 02) =00’ and u € F, or d = (01 @ 72, u)
with (01 @ 02).u = 0 ® 6’ and u € F. In the first case we may assume that u.oc; = o. This
can be always achieved by taking in the unique decomposition (Property (v)) of u.(o1 ® o2)
that “prefix” which equals . On the other hand @(U’UI)(S?;?;F)“-dim -1} consists of the union
of cells 77 X o/, & X Eg where ¢; and a;- are from the respective boundaries of ¢ and ¢’, and
(I)(um@az)(S?;fgi’g:;;“”'_l) consists of the union of cells @ x (03; ® 03) = u X (61; @ 72) or
U X m =u X m, with o1; from the boundary of o, and o2, from that of o5.
Using Lemma 2.2.6, the definition of j and Property (i), one can easily see that {j(u) | & €
<I>(,,,U/)(S?;$,‘;+dimal’l)} = {j§)|d e <I>(u,,,1®02)(5?;$;’;£;"”"1)}. The second case is proved
similarly.
(¢) Both c and d are of dimension at most n and each has one of the coordinates from F. Again
this is proved similarly to the previous case.

(d) Both ¢ = (o1,02) and d = (81,8,) are of dimension at most n and all 01,02,01,02 are of

dimension at least 1. In this case we proceed similarly as in the previous cases. m

Now we are ready to show that for c;, ¢z € p~'p(c) we have p(c7) = p(¢z). Since ¢; || 2,
from Lemma 2.2.8 we have that there is a 1-1 correspondence between the boundary cells of ¢;
and cp such that the corresponding boundary cells u #hd n are parallel, and then, applying an
inductive argument on dimension for u and 7, we have that p(zz) = p(7). Finally, Remark 2.2.7

implies that

p(c1) = p(e1) (@) =pled) U p(@ =p(E).

u p
RE®e, (S71) TEde, (541
(3) Now let cells ¢; and cg be parallel cells, say ¢; = (¢ ® 8,7) and ¢; = (o, B® 7). We
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have on the one hand that
P (agp ) (TP x TUP) 5 [T = p(&,ga(14™* x IT™F) x &, (IU™7)) = p(a ® B,7),

and on the other hand

p‘P(a,ﬁ@q)hlz((Idim“ x Idim,@) X Idimy) =pq)(a’ﬁ®7)(1dima x (Idimﬁ x Idimfy)) —
P(Pa(I0™%) x Bpey(I4™F x I4M7)) = p(@, F® 7).

But now p(a® 3,7) = p(a® B,7) = p(a,®7) = p(@,f®7) from Lemma 2.2.6 and the
second part of (2), and as a result p®(,g8,7) = PP(a,807)h12-

Proposition 2.2.9 (D,p1,...,pn-1) is an (n + 1)-dimensional CW-complex whose n-skeleton

is the compler A,.

Proof. That ~,, is a cellular equivalence is immediate from (1), (2), (3) above, and therefore
by Theorem 1.1.15, (D, p1,...,pn-1) is a cell complex with cells p((01,02)) and characteristic
maps p(®,; X Ps,). To see that (D, p1, ..., Pn-1) is Hausdorff, we proceed as follows.

We see first that A, is embedded into (D, p1, ..., Pn—1) via the following injection map on
cells

v: E(Ar) — E((D,p1, -, Pn-1)); @ — p((0,2)) = p((}, 9)).

Secondly, let us denote by T = {p((c1,02)) | (01,02) € K,(L""'l)}, B = u{Dr+! | 7 € T},
B =u{dD"*! | 7€ Y} and F = U, f, : 8B — A, where fr = p(s, X ¢s,) does not depend
on the choice of the representative (o1,02) of 7 = p((01,02)) since, as we saw in Lemma 2.2.4,
parallel open cells are identified under ~,,. Since the closure of each (n + 1)-cell 7 = p(o1,032)
splits as D,',“"l\an""1 U p{(01,02)°} and 8D?*! is identified with p{(c1,02)°} C A, via the
attaching map fr = p(¥o1 X @s,), then it follows that (D, p1,...,Pn-1) = Ap [ B, or in other
words that (D, p1,...,Pn—1) is the adjunction space of B to A, via the attaching map F. From
11, Proposition 2.1 of [62], since A,, is Hausdorff, we (;erive that (D, p1,...,Pn-1) is Hausdorff
too and then, from II, Proposition 5.7 of [62], we get that (D, p1,...,Pn-1) is a CW-complex,

as required. ®

Cells of A, seen as a subcomplex of (D, pi,...,pn-1), are those of the form p((o1,09)) for
some 01,03 € A, with dim p((01,02)) < n. We denote (n + 1)-cells again by o1 ® o9 instead of

p((Ul,O’z)).
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2.2.4 Construction of the Critical (n + 1)-cells

Before we attach critical (n + 1)-cells and their translates to (D, 1, ..., Pn—1) to form Ap41, we
prove two properties of the complex A,. First we need to order the skeleta of A, and then

obtain an induced order on the n-chains.

o The order of the skeleta of Ay,

Recall from Section 1.6 that for any set A, we have denoted by [A] the corresponding
multiset.

For every two cells of the same dimension 2 < m < n, ¢ = [ws; (e1,€2,...,em)] and

8§ = [ws; (f1, f2, -+ fm)] we define
[woi (€1, €2, .. m)] <m [ws; (f1, f2, .y fm)]
if and only if
either wy < ws or wy, = ws and [{e1,e2, ...,em}] <mut [{f1, f25 s fm }]s

where <. is the multiset ordering induced by <3. The ordering <,, is a Noetherian irreflexive

and transitive order since <; is so.

From now on, we use the same symbol < for the order of cells of A,.
e The induced order on the m-chains.

8
We write an m-chain in the form £ = 3 n;0;, where s > 0, 71, ...,0, are all distinct m-cells
i=1
and nj,...,ns are non-zero integers. When s = 0, the sum is empty and £ = 0.

We define an elementary reduction on an m-chain

8
£= nio;
i=1

to be the replacement of a non-empty subchain & # n; o + ... + n,0i, of £ by a chain
€16y + ... + Ekbiy, with k > 0 such that [{;,..., 0, }] <mu [{0i1,...,0i,}], where < is the

multiset ordering induced by the order < of the m-cells.

8
For every non-zero m-~chain { = ) n;0;, we denote
=1

© — =0
¢ igla'
where (71(0) is the 0-skeleton of ;.
We define ¢ < £ if:
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1. Cis obtained by £ by a finite positive number of elementary reductions, and

2. [C(O)] ~<maul [5(0)], where <, is induced by <. ¢

Since < is Noetherian, we have that < is Noetherian too.

Lemma 2.2.10 For every (n— 1)-cycle £, the n-chain ¢ such that 0,(¢) = £ which exists from
E,, has the property that for every n-cell § represented in ¢, the mazimal 0-cell of & is less than

or equal to some 0-cell from the 0-skeleton of some (n — 1)-cell o represented in §.

Proof. Let £ = Zj njoj, an (n — 1)-cycle, and let u be some maximal 0-cell of £©),
Suppose o1 = [u; (e1,€2, ...,en—1)] is a maximal cell of . Since { is a cycle, there will be a
cell say o; = [u;(€),€2,...,en-1)] represented in & with €] < e;. That €] < e; follows from
the fact that o; < o1, which from the definition of <, is equivalent to [{e},e2,...,en-1}] <mul

[{e1,€2, ... en—1}]. It follows that there is the n-cell
1 = [u; (€, e1,€2, ..., €n-1)] € An.

Let £} be the incidence number of [u; (e1,€2,...,en—1)] in ¢1. The new cycle & = £ — €1n10,1
obtained from £ by replacing ni0; by the chain
A
—nq (zei[e'l,...,ei,...,en_l)] +u>
>1
where &; = %1, [y (e'l,...,gi,...,en_l)] < o1 for ¢ > 1, and the cells represented in u have
maximal O-cells strictly less than u.

If after all the possible cancellations in & — £]110,4+1¢ there are still cells represented there

which meet u, we repeat the above process finitely many times until we obtain a cycle

¢ = - 3n+1(5'1n1§1 + maga + ... +mGt)

without cells meeting u. That this process terminatesyin finitely many steps, follows from the

fact that < is Noetherian.

From the definition of < we have that ¢’ < &, therefore, by Noetherian induction, there is
an n-chain ¢’ such that & = 8,¢’ and the O-cells of the cells represented in ¢’ are not bigger

than those of the cells from &’. It follows that
€ = 0n(¢ +Elnics + magy + ... +mug)
and then the induction hypothesis for ¢’ complete the proof. m

We make the following.
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Definition 2.2.11 We call a subcomplex K of A, lower complete, if ¢ € A, and § € K are
such that [0 <, [6°], then 0 € K. In other words K has the property that, if some cell
o € A, has its own O-skeleton lower in the multiset ordering induced by <o than the O-skeleton

of some § € K, then ¢ € K.

The order of edges extends naturally to the paths of the 1-skeleton I' of A,,. We say that

p1 < p2 if and only if [p1] <mui [p2] where by [p] we denote the multiset of edges represented in
the path p and <, is the multiset ordering induced by ~<;.

Theorem 2.2.12 If K is a path-connected n-dimensional lower complete subcomplex of An,
then every continuous map f : Sl — K estends to a continuous map I : D* — K.

Furthermore, if f is cellular, then F is homotopic relative to S*~! to a cellular map.

Proof. From the Extension Lemma (Lemma 1.2.2), it suffices to show that m,_1(KX) = 0.
Since every (n — 1)-cycle from K is an (n — 1)-cycle in Ap, and since K is lower complete,
we have from Lemma 2.2.10 that H,,_1(K) = 0. To complete the proof we need to show
that mn_1(K) & Hn-1(K). For this we will make use of the Hurewicz Theorem by showing
first that m1(K) = 0. Since K is path-connected and lower complete, it contains the unique
irreducible word of the corresponding class and therefore its 1-skeleton K () is path-connected.
From Theorem 1.2.7 we have that m1(K) = m (K (2)); hence to prove our claim we need to show
that 71 (K )y = 0. Since from Theorem 1.2.8 every continuous map f : S — K2 deforms
homotopically to a closed path in the underlying graph K M), we need only look at closed paths
in K. So let p be such a closed path and u be some maximal vertex represented in p. Since u
is maximal, there are two positive edges coming out of u, say e; and ez. If they are disjoint we
can add to our picture a standard 2-cell o of the Squier complex generated by e; and ez (this
belongs to K due to the fact that it is lower complete) and then replace the part el_1 o ey of
p by the rest of the boundary of & to obtain a lower @in the multiset ordering) closed path p'
and then apply Noetherian induction on it. The same argument applies if the pair (e;,ez) is a
translate of a critical one since the set of critical 2-cells p; is contained in A,,.

The second part of the theorem follows immediately from Theorem 1.2.4. m

Remark 2.2.13 The idea of the above proof is a generalization of the proof that m (DP) =0
with DP1 = DU F.p;.F, found in [89].
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For some path-connected subcomplex K of Ap, denote by K the subcomplex of A, of

maximal dimension which is spanned from the following set of O-gells
{we Ay |w =o' for some v’ € K%}.

It is easy to see that K is lower complete and we will call it in future the lower completion of
K. It is obvious that K is path-connected and, if K is finite, since the system P is finite and

Noetherian, so will be K.

Let (e1,e2,...,ent1) be a critical (n + 1)-tuple of positive edges coming out of some w.
A ) . .
Consider the cells [w; (€1, ..-s €is - €nt1)], Where i = 1, ..., (n + 1), whose respective boundaries

are as follows

A
Olw; (€2, s €n+1)] = Urgj<nlw; (€2, -1 €5, oy €nt1)] U (1,

A
Olw; (€1, €3 €nt1)] = Urgjicnlw; (€1, €35 ..., €5y ooy €ny1)] U G2,

Ow; (€1, -+ €n—1,€n+1)] = Ur<jcnlw; (€1, ...,/éj, vy €n—1yens1)) U o,
Onlw; (€1, .+ €n—1,€n)] = Ur<j<nlw; (e1, ...,éj, vy €n—1,€n)] U Cnt1,
Here we have that all ;, 2 = 1,...,,n+ 1, are made of closed cells with respective maximal 0-cells
less than w.
Make the following notations. Denote by K, the subcomplex of (D, p1,...,pPn—1) generated
by the closed cells represented in some m-chain 7 and as before by —K—n the lower completion of K.

Recall that, for each 1 <m < n + 1, we have identified D™ with the m-cube I x ... x I, which
———

m
we denote in another form as [I1, ..., I,], and let 49 = (0,1, ...,1), A1 = (1,0,1,..., 1),..., App_1 =
A
1,..,1,0), Am = (1,...,1). Also we made the notation [I1,...,I;,..., I;s] for the boundary cell
of D™ obtained by replacing the i-th factor I; with {1}. Let

Y
di = AmAic1 ={(1,..,1,2,1,..1) |z € I} for every i = 1,...,m.

In order to attach an (n + 1)-cell to the complex (D,p;, ..., Pn-1), We need to introduce the
attaching map of that cell. To do this, we proceed as follows. Instead of taking S™ as the bound-
ary of D™*!, we take the boundary of the (n+ 1)-cube [I4, ..., I,41]. We have that, for i > 1, the
characteristic map ®; from the cell {11, ...,?i, v Ing1] € Ol14, ..., Ing1] to [w; (e1, ...,/e\i, cerent1)s
has the property that

®; (An+1) =w and ®; (di) =& for k # 1,
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A
and for the union Uo’ of o/ € 8|11, ..., I, ..., In4+1] not meeting A,4+1 we have

bi(Uo’) = Ko, ! (2.6)

The two above claims are consequences of Property (iii).

Now denote by ¢’ the map
/ . n+1 A
¢ :U{d € O[I1, ..., In41] | § meeting Any1} — 9 [w; (€1, ... €1y ooy ent1)]

A
whose restriction on each (I, ...,1;, ..., Jn41] for i = 1,...,n + 1, coincides with ®;. This is well
defined because of the assumption for the maps ®;, and is continuous from the construction.

From (2.6) the restriction f of ¢’ on
-1 ! n ’
S wU{e’ € 0y, ..., Ii, ...y Ing1] | 0/ not meeting Apt1}

sends the latter to K¢ = :@;Kg and therefore is cellular. Next we show how to construct a
map " from {§ € 011, ..., I4+1] | § not meeting Any1} »» D™ to K whose restriction on S™~!
equals f. In other words, we want to prove that f extends to a map ¢” : D* — T('E Since
K¢ is path-connected, lower complete containing K¢ and there is a map f : S — K¢, we
have from Theorem 2.2.12 that f extends to a cellular map ¢” from D" to K;. Then we can
“glue” ¢’ with ¢ since they coincide on the boundary of D", to obtain the attaching map for
our cell which we denote by [w; (e1, ..., e,41)]. Note that the finiteness of K, and hence that
of Ky, together with the fact that ¢ is cellular, imply that the “bottom” part ¢"(D™) of the
boundary of [w; (€1, .-, €nt1)], is made of finitely many closed cells whose maximal O-cells do
not exceed the 0-cells of the complex K, and therefore are less than w. On the other hand the
“top” cells of the boundary of [w; (e, ...,en41)] are those of the form [w; (es, ...,/éi, wyent1)], all
meeting w. However, since we do not know exactly what the bottom part ¢”(D™) of a critical
cell o is, we can not have an explicit form for the cellular boundary formula of &.

We attach translates u ® o ® v of critical cells o-? in the same way as above, by letting
the boundary of such cells to be made of cells © ® ¢/ ® v, with ¢/ from the boundary of

o. Explicitly, we can construct as before the top of the cell, this time to be made of cells

u.jw; (e1, ...,Qi, .yént1)]v. The analogue of the map f above, here denoted by f, sends S™~1

to u.K¢.v. We define the analogue ¢ of " by the following commutative diagram:

Dr Dn

wIll 1;"
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with & the homeomorphism which sends every & € ¢"(D™) to w.o.v € u.K¢v. The map & can
be constructed using Property (ii). It follows that there is a contipuous bijection h : & — T.G.0
which from Lemma 1.2.3 satisfies Property (ii). The set of all critical (n + 1)-cells is denoted by
pn and the set of their translates by F.p,.F. The resulting complex (D, p1, ..., Pn-1) U F.ps.F
is denoted by Ap+1. The properties A, and Cpyy for A,y obviously hold true from the
construction of it. Also the second half of Property Bn+1 holds true. The first half will be

proved in Lemma 2.2.18.

2.2.5 Properties (i)-(v) of the Complex A,

In this section we show that properties (i)-(v) hold true for the complex A, ;. Note that for
(n+ 1)-cells from F.p,.F, Property (i) is an obvious consequence of the way the action of F’ on

critical (n + 1)-cells is defined, while Property (ii) follows from the construction.

Lemma 2.2.14 For every open cell c € E(K,) we have p(c®) = p(c)° and p(c) = p(c).

Proof. From Remark 2.2.7 we have that c¢® = ﬂla and then p(c°) = 7ijlp(E{) On the
1= 1=
other hand p(c)° = @, (Sk-1) = p®.(S5-1) = 'nuzlp(c_i), which shows that p(c°) = p(c)°. To
1=
show the second equality, it is enough to split € as the disjoint union ¢ U ¢® and then take

p(e) =p(cU ) = p(c) Up(c®) = p(c) Up(c)° = p(c). m
We prove now properties (i)-(iii) for (D, p1,...,Pn-1).
(i) For cells of dimension < n the statement follows by induction since we have A, C (D, p1, ..., Pn-1)-

If 6 ® 8 = p((o, §)) is a non-critical (n+ 1)-cell, from Remark 2.2.5 and Lemmas 2.2.6 and 2.2.14
we have that, ®,0s(57gs) = ép((a,a))(sg((a’a))) = p@(a,a)(S?g’a)) is made of cells

p((e,8)) = p((¢',0)) = p((c",8)) =o' @
and ’

p((@, ) = p((0,8) = p((0,)) =7 ® 7,
where o’ and & are from the respective boundaries of & and 4.
From the definition of p, for every o1,0;,03 € (D, p1,...,Pn_1) Whose sum of dimensions is
at most n + 1, we have 01 ® (02 ® 03) = (01 ® 02) ® 03.
The bi-action of F' on A, now extends to (n+ 1)-cells o1 ® 03 € (D, p1, ..., Pn_1) as follows.
For w € F we let

w(o1®02)=w®(01®02) = (w®01) Qo = (w.o1) ® 02
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by induction, and similarly (o1 ® o2).w = 01 ® (F2.w).

A

Lemma 2.2.15 For every two cells o and § from A, such that dimo + dimé < n+1, p
maps homeomorphically o X § onto ¢ ® & with the property that for every ¢’ € do and §' € 84,
plo' x8) 2 o' ®6 and p(o x ') 20 ® 4.

Proof. The claim is obviously true if both the cells have dimension 0. Let now o x § some
cell of dimension m. From the definition of p, we have that p maps o x § homeomorphically
onto ¢ ® §. On the other hand, by our assumption, we have for every ¢/ € o and §' € 96 the

homeomorphisms p(c’ x §) = 0/ ® § and p(o x §') 2 0 @ ¢'. The claim follows. m

We continue with the proof of Property (ii).
(ii) If o is a translate of a critical (n + 1)-cell, then the result follows from the construction

of such cells. Let 0 ® § an (n + 1)-cell. By assumption, we have that for every u,v € F,

there are homeomorphisms & « @& and & » §.v such that ¢’ « u.0’ and & = §.v for every

o' € 9o and §' € 96. It follows that there is a homeomorphism ¢ X § © u.g x §.v with the

property: ¢/ X 0 © u.0’ X 6.v and ¢ X ¢/ = u.0 X ¢'.v for every o' € 9o and §' € 8. Lemma

2.2.15 implies that there is a homeomorphism 0 ® § » u.0c ® d.v such that 0/ @ § » u.o’ Q s.v

and 0 ® ¢’ v u.oc ® ¢'.v for every o’ € o and &' € 94 proving thus the claim.
Before we prove Property (iii) we prove some preparatory results.

Lemma 2.2.16 For every (n+ 1)-cell of the form o0 ®4, its 0-skeleton is made of cells uv, with

u and v being respectively in the zero skeleton of o and §.

Proof. The claim follows easily from Property (i). m

Lemma 2.2.17 For every (n+1)-cell o, there is w from the 0-skeleton o° of o which is bigger
than any other 0-cell of o. *

Proof. We distinguish the following two cases.

1) o =a®p € (D,p1,-,Pn-1). Property (iii) for o whose dimension is less than (n+1),
implies that there is w, from a® which is bigger than any other O-cell of a. Similarly, there is
wg from B° which is bigger than any other 0O-cell of 8. From the above lemma, w,wg is in o9

and then the compatibility of multiplication in F’ with < implies that wawpg is the biggest 0-cell

of o.

2) If o is a translate of a critical (n 4 1)-cell, then the construction of & shows the result. m
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The following lemma proves the Property (iii) for the complex Ap41. Similarly as in the

construction of the critical (n + 1)-cells, we take D"*! to be [I; s It
Lemma 2.2.18 The following hold true for every (n+ 1)-cell o.

1. The characteristic map ® of o sends Any1 to a 0-cell ws which is the biggest vertex of the
0-skeleton of o, and there are positive edges ey, ...,enq1 from the I-skeleton of o coming

out of w,, which we call staro, such that ®(d1) = €1, ..., ®(dn+1) = Eny1.
2. These edges determine o in a unique way. We say that they generate o.

3. For every n of these edges e;,,...,e;, there is a boundary cell of o generated by them

meeting we, and conversely every boundary cell meeting wy is generated by such n edges

of €1y ...y €nt1.

A
4. The restriction of ® on [I1,...,I;, ..., Iny1] agrees with the characteristic map of the cell
generated by {e1, ...,eny1}\{€i}. The restriction of ® on the union of the boundary cells of

(11, ..., Iny1] that do not meet Apy1 is a union  of closed n-cells whose mazimal boundary

cells are less than w,.

Proof. 1) The claims hold true for (n + 1)-cells belonging to F.p,.F from the construction
of these cells.

Let 0 ® 6 be some (n + 1)-cell from (D, p1, ..., Pn—1) with o a k-cell and & an I-cell. We can
take ™ = S¥+=1 t5 be the boundary of {1y Ing1] = [I1, ..., Ik} x [I1, ..., ];] and then from

Proposition 2.2.9 we can write the boundary of o ® 4 in the form
P(2o(S571) x ®5(D5)) Up(®+(D5) x @5(S57)).

Then replacing S5-1 and st‘l by the boundary of the respective cubes we get the form
*

p(<I>,,(8([11, vy Ig])) % @5([11, ...,Ill)) Up((I)U([Il, v Ig]) x ®5(0(11, ...,Il])).

From Property (iii) for o we have that ®; maps the edges dj, ..., dj, of [I1, ..., It} to the closures
of the positive edges €}, ..., €, of the 1-skeleton of & with common initial w,. Similarly ®; maps
the edges (renumbered) dx41, ..y dn+1 of [I1,...,Ij] to respectively the closures of the positive
edges €}, 1, ., €4, coming out of ws. Therefore p(®, x ®5) will map dy, ..., di, dky1, vy dny1,

seen as edges‘of [I1, ..., In41], to respectively the closures of the positive edges

/ / / ’
€] QWs, ..., € QWs,Wo B €pryyenywWo ® €ntls
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which we denote by €1, ..y €k, €ky1, s €n+1 and are ordered in the ascending order. Lastly, from

Lemma 2.2.17 we have that w,ws is the biggest O-cell of o ® 6. ¢
2) From 1 we have that

star(o @ 0) = star(o) ® ws Uw, ® star(d).

Taking the unique decompositions of o and 4, we have that

t
star(oc ® §) = Uul O Wa; @ ... ® U @ star(o;) @ ui+1 ® ... @ up @ wa, ® Ut4+1,

i=1

where star(o;) is a critical tuple of edges for every ¢ = 1,...,t. Suppose that there is another

cell v such that star(y) = star(c ® §) and let
8
star(y) = | Jv1 @ wp, ® ... © vi @ star(8) ® vis1 ® ... ® vt @ wp, @ Vs41.
i=1
Note that 4 can not be a translate of a critical (n + 1)-cell since otherwise its star would be a
translate of a critical (n + 1)-tuple of edges and therefore not equal with star(c ® 4). Since,

for every 1 < i < t, star(a;) is a critical tuple of edges and so is star(8;) for 1 < j < s, the
equality star(y) = star(o ® 6) implies that s =t and for every 1 <i < t,

UR .0 u; ® sta'r(a,-) QU1 ®..QUuU+1 =110 ... 1; ® star(ﬂi) U419 ... Q V41 (27)

It remains to show that, for every 1 < ¢ < t, star(a;) = star(8;).

Since the number of edges in each side of (2.7) is less than n + 1, we have from Property

(iii) that
WM. . QUOuQUit1 ®..Q0 U1 = V1 ® .. @V ® Fi ®Vit1 ® ... ® Ve41.

and then the unique factorization property implies that o; = £;.

. »
3) Suppose that the cell is o ® §, where 0 = [wy, (€], ..., €})] and & = [ws, (€;pqs - €py1)]-

From 1 we have that

— ! ! / /
star(c @ 6) = {€].ws, ..., €} . W5, Wo-€h 41, -y Wor-Enp1 }5

therefore every n of those edges will contain either €j.ws,...,€}.ws together with n — k of
! .

Wo €y 1y e W€y OF Wo €k sy Wo-pyy together with k —1 of €).ws, ..., e}.ws. In the first

case €),...,¢} generate o and each n — k of e} ,,...,e,,; generate a boundary cell &' of 4.

Therefore we have the boundary cell ¢ ® §’. Similarly we prove 3 in the second case.
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To prove the converse let 0 ® & € 8(c ® §). By Property (iii), ¢’ is generated by n — k of

! / / / ’
€hy1 -1 €ng1 € star(9), say € k+10 1 €l and as a result 2
n o[t ' ' ;
star(o @ ') = {€].ws, ..., €W5, Wo€; 115 -y Wo €5 1 }-
But star determines the cell uniquely, hence o ® &' is generated by
! ! ! /
{€1-Ws, s €k -Wo, W € g1y ony Wor € 1 }-

Similarly one can prove the case when ¢/ ® § € 9(0 ® 4).

4) Let o be a k-cell and § a (n + 1 — k)-cell. From Property (iii), the restriction of
Boos = P(®y X B5) 10 [[1, oo Ity ooy Ins1) i5 of the form p(®, x Bg) if i > k + 1 or p(Bpr x By)
if 2 < k. In the first case it coincides with ®,54/, and in the second case with ®,/gs.

Splitting I™*1 as J4ima x [dimé and applying induction, we have that
p(®g x Bs)(IMm1 x [4im) — Uo7 5

where 19m2-1 i the union of the boundary cells of J4m? pet meeting Adimo, and ¢’ € do not
meeting w,. Similarly,

P(‘I)a x (I)J)(Idima x Idim&—l) —Ur® 5

with &’ € 86 not meeting ws. =

Lemma 2.2.19 Let 01 = [wi; (f1,- fs)] and o2 = [wo;(g1,...,9t)] be cells of dimensions at

least one. Then o1 ® o = [wiws; (f1.wa, -y fs.wa,wy.g1, ...y w1 .g¢)].

Proof. This follows from 1 and 2 of Lemma 22.18. =

Now we prove Properties (iv) and (v).

(iv) If a critical cell o is decomposed as 01Q02 with o1 = fur; (f1, ..., fs)] and o2 = [w2; (g1, ..., at)],

then from Lemma 2.2.19 we have star(o) = {f1.wz, ..., fs.w2,w1.91, ..., w1.G}, a contradiction.

(v) (Unique Factorization Property) If the (n-+1)-cell is a translate of a critical (n+1)-cell,

then Property (iv) applies. Let now ¢ ® é be an (n + 1)-cell from (D, p1, ..., pn_i). If
C=u®01QuU2®..QUk®0k®Ukt1 and d =11 ® 51 Q12 ® ... ® Vs ® 05 ® Vsy1,

then from Property (v) we have

CRI=u1Q01QuU2® ... QU ® 0k @ (Uk4171) QI QU2 ® ... ® Us ® 85 ® Vgp1
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with all ¢;’s and §;’s critical. To show the uniqueness, suppose that w1 ®£1@uW2® ... K Quw; =
v1 ® p1 @ V2 @ ... ® pj ® v; are two different expressions of o :® §. From the definition of ~
we must have (w1 ® £1) X (W2 ® ... @ K; Q w;i) || (v1 ® p1) X (V2 ® ... ® p; @ v;); hence we ei-
ther have w1 ® K1 = 11 ® p1 ® o for some cell a, or v1 ® p1 = w1 ® K1 Q@ B for some cell G.
In the first case, Property (v) for A, implies that w; = v; and then the indecomposability
of k1 (Property (iv)) implies that k1 = p; and that & = A. As a consequence we have that
W® .0k Quw; =V ® ... p; ®v;. Since the cell wy ® ... ® k; ® w; has dimension less than
n + 1, Property (v) for A, implies that the above expression is unique. The same argument

applies in the second case.

2.2.6 The Cellular Boundary Maps for A,

In order to prove Properties D41, Enyq and Fpq for A,41, we need to compute the cellular

boundary maps for the cellular chain complex associated with Ap4+1. Let this chain be
O By,
Cot1 28 Cp 2 20, 20y —0 (2.8)

where Cy for k = n + 1,...,0, are free abelian with bases the respective k-cells and 8y are
calculated from the cellular boundary formula. Here C) for k < n, are the same as those
represented in the cellular chain complex associated with A,,. To compute 8;, we recall that
the presentation P is terminating, hence the 1-skeleton I' of D does not contain edges with the
same initial and terminal, therefore we can think of I' as a simplicial complex. Now Example 1,
p-222 of [79] implies that the map 81 : C; —> Cy is the same as the simplicial boundary map
91 : A1(T') — Ay(T') and then we have

O1(e) = e —te. . (2.9)

Property (iii) and Corollary V, 3.6 of [62] imply that for every 2 < k <n

k
3};[(—0’, (61, ) ek)] = ZEi[u), (61, --~7/e\ia evy ek)] +¢, (210)
i=1

where for every ¢ = 1,...,k, €; = £1 and ( is a chain made of (k — 1)-cells whose maximal 0-cells

are less than w.
It remains to find an explicit form for 8,41. We will split the work for this in two parts.

First we compute the restriction Op41 of 041 on Cpyi(p1, «yPn-1), the free abelian group
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generated by (n + 1)-cells of (D, pi,...,Pn-1), and then we compute O,41(0) for ¢ € F.p,.F.

To compute 5n+1 we consider the cellular chain complex associated with (D, p1,...,Pn-1):

i

8n Bn
Crt1(P1y s Pro1) =5 G 25 . 20 2 gg — 0, (2.11)

On the other hand, the cellular chain complex associated with K, is

dn
Dup1 =5 .. 2, D, 4, py — 0, (2.12)

where D, is free abelian with bases the set of s-cell o X § € E(K,(f)), with 0 < s < n+1,
and then the map p : K, — (D,P1,..,Pn-1), which is obviously cellular, induces a chain

map pg from (2.12) to (2.11) such that py(oc x §) = ¢ @ § = p(o x §), which means that
[p:oxé:plocxd))=1.

Lemma 2.2.20 If (o X 6), (0 X 8)u € 8(c x &) then

(o x D ipllox = { - T E =K

0 if p#y
Proof. When p/ = u” the assumption is obvious. In the case when p’ # u” we need
to show that there are no different parallel cells in the boundary of o x §. Suppose that
C=uR01Q.0usR0kQuit1 and d =11 R 61 ® ... ® s ® §; ® ve41. The boundary cells of
o x § are of two kinds; o/ x § with 0/ € 0o and o x §' with &' € 85. By an inductive argument
on dimension one can show that ¢/ =41 ® 01 ® ... ® 4; ® 0} ® Ui41 @ ... ® upy1 with ol € Bo;
and similarly ¢’ = v; ® 61 ® ... ® v, ® 8} ® V41 ® ... ® Vg4 With 6% € 84;. Using Property (v),
one can easily show that ¢/ ® § # 0 ® ¢’ and therefore o/ x & }f ¢ x &'. The same holds true for
the cells o x &' and o x §” where ¢',6"” € 86 and §' # ¢, and similarly o’ x § }f o” x § with

o',o’" €8 and o’ #£c". =

Py
Now let o0 x § € E(K’f(),n+1)) and o' € dg. We take p(¢’ x ) to be in the role of 7 of
Proposition 1.3.4. We have that

[p:ox6:p(ox6)|lplox8):p(a"x8)] = [ox35:(0x8)llp: (0x8),:p(o’ x 8)).

HEA,

From Lemma 2.2.20, in the sum of the right hand side, only one of the factors

[p: (o x &), : p(c’ x §)] is non zero, the one with (¢ x §), = (¢/ x §) and then the equality

above changes to

[p:a)ﬁ(J:p(axé)][p(axé):p(O"X5)]=[ax5:(a'xé)][p:(U'XJ):p(a'xé)],
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which immediately implies that [p(c x 8) : p(o’ x §)] =[o x § : (¢’ x §)]. In the same way we
prove that for 6’ € 88 we have that [p(o x §) : p(o x §')] = [0 x &: (o x §")]. So the coefficients
in which a boundary cell p(¢’ x §) or p(o x ¢') is represented in. the cellular boundary formula
for p(o x 8) in (2.11) are the same as the coefficients of the respective boundary cells ¢/ x § and
o x §' for o x & in (2.12). But on the other hand from [40] we have that the cellular boundary

formula for (2.12) is given by
dnt1(0* x 07) = Bi(0*) x 0¥ + (=1)ic" x 8;(c7)
which if written explicitly gives
dnt1(0* x 07) = Znsai x ol + (—l)iZntai x ol
s t

where n;, and (—1)'nj; are the incidence numbers of 0% x 07 and ¢* x o7 respectively. So we

finally have for (2.11) the formula

Bri1(0* ®07) =D ny(0i @ %) + (-1)' Y mu(o’ @ o). (2.13)
8 t

Before we describe dp+1 for cells from F.p,,.F, we will show that 8,1 is a (ZF, ZF)-bimodule

homomorphism.

Property (v) shows that the chain group Cy4) defined in (2.8) is in fact free (ZF,ZF)-
bimodule with bases the set of right and left-reduced cells and the F-action is inherited from the

two-sided action @ of F on An+1. To show that 8,4 is a (ZF,ZF)-bimodule homomorphism,

we need firstly to show that V 0,0’ € Agfll) and u,v € F,

U ®v=uQ0c ®v if and only if 6 =o'

and then we show that V o € Agﬁl) » V 0; € 0o and u,p € I, we have

o:o]=[u@o®@v:ux s
To show the first claim we take the respective decompositions of both o and ¢’/. We then have

uu1®01®u2...uk®ak®uk+1’u=u®(u1®01 ®u2...uk®ak®uk+1)®v:u®a®v=

' _ ! ! ' ! ! !
UR o ®v_u®(u1®gl®u2...us®as®u3+1)®v:uu’1®ai®u’2...u’s®ag®u’s+lv.

The uniqueness of such decompositions and the fact that multiplication in F' is cancellative,

imply that ¢ = o’. To show the second claim, we define a chain map f from the chain complex
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in (2.8) to itself that sends each o to u® 0 @ v. We have that [f : 0 : u® 0 ® v] = 1 and
[f:0:u®0’®v] =0 for o/ # 0. Now, fixing some o; € 9o, by Proposition 1.3.4 we may write
[f:o:u®oQVuQRo@v:u®o®v] = Z [a:c;#][f:cr#:u@oi@v],
pEAn
which yields [u® e ®v:u® 0; Q@ v] = [0 : 7y].
To show that the boundary map On4; is a (ZF,ZF)-bimodule homomorphism, one can see

from Property (i) that the boundary of every k-cell with 1 <k <n+1l,ucv=u®oc Qv is

made of cells u.0;.v = u ® 0; ® v with o; € do; hence

Ont1(uov)=> [u®c®v:u® s V(U o; QV) =
w.(;u®@o®v:iu®o; @vjoy) v ="u.(} ;o 0i|o;) v = u. (On410) 0.

The following completes the description of the cellular boundary maps for all the (n + 1)-cells.

Lemma 2.2.21 For every (n+ 1)-cell o = [w; (e1, €3, ..., ent1)], we have
A
3n+10' = ZEi[u}; (61, ey €y ey en+1)] + C,
i

where €; = +1 for every i = 1,..,n+ 1 and ¢ is a chain made of n-cells whose respective

mazimal 0-cells are below w.

Proof. If ¢ is a critical (n+ 1)-cell, then the formula holds true because of Corollary V, 3.6
of [62] and from the construction of such cells. If o is a translate of a critical (n+1)-cell, then the
above and the fact that On41 is a (ZF, ZF)-bimodule morphism imply the result. Now suppose
that ¢ = 01 ® o2, where dimo; = s > 1 and dimoy =t > 1 and that 61 = [w1; (f1, ..., f5)] and

o2 = [wa; (g1, ... g¢)]. From the cellular boundary formula for o, from (2.10) and (2.9), we have

that
" A
as.HO' = Zfi[wl; (fl’ '")fi’ ey fs)] ® o2 + (—1)3 X:Ejal ® [w2; (gl, ""gja "'agt)] + C,
i J

where £; = %1 for every ¢ = 1,...,8, €; = %1 for every j = 1,...,t and { is made of n-cells
whose respective maximal 0-cells are below w = wjw;. Now from Lemma 2.2.19 we can write

o = [wiwa; (f1.w2, ..., fs-w2,w1.91, -, w1.9¢)], and, since again from that lemma

A A
[wl; (fla ---afi1 ---1f3)] Qo2 = [u)l(-dz; (f1~w2, ceey fi'w2s ey fs-w2,w1-glv '",wl'gt)]
and
A A
01 ® [w2; (91, -y G5y s 9)] = [Wrwas (Frowz, ., fow, w11, 0y w195, ooy w1.G1)],
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we can finally write

A
Bn+10' = Zsi[w; (el’ cery €45 0eny €n+1)] + C’

i
where ¢ is made of n-cells whose respective maximal O-cells are below w = wywy and g; = £1
foreveryi=1,..,n+1. =n

2.2.7 The Homology of the Complex (D, py, ..., Pn-1)

In this section we study the homology group H,(D,pi,...,Pn-1) and prove Properties Dy 41
and E,,; which are related to this group.

We introduce the following notations:
Im0nt1 = Ba(D, P11, Pn-1) C Zn(D,P1, -y Pn-1) = Kerdy;
hence the n-homology group now is

Zn(D,P1, ..., P
Hn = Hu(D,P1, s P-1) = ((D 1;1 I;n 1;.
n 1y Ply oy Pn-1

Note that, since both Kerd, and Imdny1 have a (ZF,ZF)-bimodule structure, H, has an
induced (ZF,ZF)-bimodule structure too.

Before we prove the next lemma, we observe that if in (2.13) we take ¢ = 1, and hence

ot = e € e+, we obtain that (te — 7¢).67 is homologous with Yen(e® a{),
Lemma 2.2.22 JH,=0=H,.J.

Proof. We only show that J.H, = 0; the other equality is obtained similarly.

t
Suppose that & = El,\ig € Zny i € {£1} for all 4 = 1,...,¢, g; is an n-cell. Suppose that
=

m;
Onsi = 3 8;0:;. Now from the condition we have
J=1
L]

t mi
T0=0x¢ = Zx\i Z(Sijo'ij . (2.14)
=1 \j=1

This shows that each element in (2.14) has its oppoqlte again in this sum. As we saw earlier,
for every e € et, (te — Te).g; is homologous to Z(S”(e ® 03;) for 1 < i < t. Taking the sums of

all \;(te — Te).i, we obtain that (e — 7¢).£ is homologous to the following sum

i m;
Z)\i Z%’ (e® 0yj)
i=1  \j=1
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Comparing it with (2.14), one can see easily that this sum is 0,"and hence (te — 7¢).£ is null
homologous. ®

Lemma 2.2.22 implies that there is an induced (ZS,ZS)-bimodule structure on the n~th

homology, with the action
U+ Bn)v=ubv+B, (£€Zn,u,veF).
In this way we have proved Property D, for the complex Any1.

Proposition 2.2.23 The complexr Any1 satisfies Property En41.

Proof. To show that Property Ey41 holds true for the complex A1, one can apply the ar-
gument of the proof of Lemma 2.2.10 and see that the bi-module generators of H,(D, p1, ..., Pn-1)

are the homology classes of cycles arising from p,, therefore by adding cells from F.p,.F to
(D, p1, .-y Pn—1) we obtain the complex

An+1 = (Dapl, ---)pn—l) U F.pp.F

with Hy(Apy1) =0. m

2.2.8 Proof of the Property F,, for A,,;

The strategy of proving that there are morphisms ® and v such that the sequence
o
0 — Hu(D,p1, .. Pn-1) — ZS:Pn_1.ZS - Hp 1(D,p1y .y Pnz) — 0~ (2.15)

is exact, will be the following. First we introduce a short exact sequence of (ZF, ZF)-bimodules

0 — ImBnyy 25 Kot Oy 15 40 (2.16)

.
which fits into a commutative ladder with another short exact sequence of (ZF, ZF)-bimodules

and then we use the Snake Lemma to prove the exactness of (2.15).

Let us now define the modules represented in (2.16). Define first the map
@ : Cn(P1y.s Pn—2) ®ZF.py 1 ZF — ZS.pp_1.28, (2.17)
where Cy(p1, ..., Pn-2) is the free abelian group with bases the n-cells of (D, p1, ..., Pn-2) and

0 if xz€Cn(p1,y-.,Pn-2)

4o if r=uocve Fp,_;.F

plz) =
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and secondly the map

v:ZSpp_1.ZS — H,_1(D,p1,....Pa_2)

such that
v(0) = 8,(0) + Bj_1, 0 € Pn_1 and B,,_; = 0,(Cr(p1, ..., Pn—2)).

From the induction hypothesis, Hn—1(D,P1, ..., Pn_2) is generated (as a bimodule) by the ele-
ments O,(c) + Bl,_;, 0 € pp—1 and therefore v is surjective. Letting the kernel of p be KPr-1

we have the following.

Lemma 2.2.24 We can write KP*~! = Cu(p1,...,Pn-2) + J.Pn-1.ZF + ZF.pp_1.J.

Proof. This follows from the general fact that for every set X the natural homomorphism

mapping ZF. X.ZF to ZS.X.ZS has the kernel JX.ZF +ZFX.J. m

Beside the chain complex (2.8) we consider the chain complex

Cn(P1, -1 Pn-2) B Gy 23 2 0 2 0y 0 (2.18)
associated with the complex (D, p1,...,Pn—2). The difference between (2.18) and (2.8) is that
C, in (2.8) is the direct sum of Cp(p1,...,pn—2) with the free (ZF,ZF)-bimodule with bases
Pn-1, ‘while the other bimodules of both the chains, indexed n —1 or less, coincide and therefore
the respective boundary maps coincide as well. On the other hand the restriction of 8, on
Cn(P1, .., Pn—2) coincides with 5n It is clear from the formulas (2.13) for 5n+1 that
Imgn.H C KP»-1, Now let (tf —7f).c € J.pn_1.ZF. Again from formulas (2.13), taking oy = f
we get that (of —7f).¢ = 5n+1(f ® 6) +n where n € Cr(p1, ..., Pn—2). Taking 8, of both sides

of the above equality, we have that
On((tf —71)6) =0un = 5,,;7 € Imd,.

Likewise 8,,(s.(tf =7 f)) € Imd, and hence from Lemma 2.2.24 we have that 8, (KP»-1) = Im3,.
Lastly, the above and the fact that 8,841 = 0, imply that (2.16) is a chain complex. Our

intention is to show the following:

Proposition 2.2.25 The sequence (2.16) is ezact.

We first prove some technical lemmas.
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Lemma 2.2.26 For every (n+ 1)-cell o = |w;(e1,€2,...,en+1)], the boundary cells of o which

have w, in their oun respective 0-boundaries, are comparable. "The mazimal boundary cell is

A
[w; (€1, €2, s €nt1)]-

Proof. From Lemma 2.2.18 (3), the n-cells of o which have w, in their own respective
0-boundaries are in a 1-1 correspondence with subsets of star(c) with n elements. Let o7 and
o2 be two of them with respective star’s, {e;,,e,,...,e;,} and {ej;,€5,...,€;,}. We have ei-

ther [{eineim"'aein}] ~mul [{eji?ejZ"“’ejn}] or [{eji’ejzv'”aejn}] <mul [{eig)eiz,"'aein}] and

hence, from the definition of < we have either o7 < o2 or 03 < ¢;. The maximality of

[w; (21, €2, ...,en+1)] follows from the fact that {e3,...,en+1} is maximal in star(c). =

Lemma 2.2.27 If the cells 01 and o2 of the same dimension are such that o1 < o3, then for

every cell § such that dim(c1 ® 0) <n we have 61 Q § < 02 ® 4.

PI‘OOf- Let o1 = [ng, (61, "'$68)] a'nd o2 = [Wag, (fl) '",fs)]-
If wy, < Wg,, then wyws < Ws,ws and then from the definition of < we have 01 ® 6 < 02 ® 4.

If wy, = we, = w and [{e1,.-;€s}] <mut [{f1,..., fs}], then it is easy to see that
[{el'wé’ ceey €5.W5, W01, oy W-gt}] <mul [{fl Gy ey fg-WJ,W-gl, '",w'gt}])

where {g1,...,gt} = star(6). This again implies that 01 ® § <0, ® 4.

Lemma 2.2.28 If the cell §; and 03 of the same dimension, are such that §; < 0y, then for

every cell o such that dim(o ® 01) < n we have 0 ® §; < 0 @ ba.

Proof. The proof of this runs similarly to that of the previous lemma. m

Lemma 2.2.29 Let 0 ®§ be a non-critical cell such that 2 < dim(0 ®6) < n. Let o1 € do and

81 € 88 be the respective mazimal boundary cells. We have 01 ® 8§ > 0 ® 41.
. ]
Proof. Let 0 = [wo, (€1, ..., s)] and & = [ws, (f1, ..., fi)]. From Lemma 2.2.26 we have that

o1 = [wg, (€2, ..., €5)] and 81 = [ws, (f2, .-, ft)]. It follows that
01 Q8 = [Wows, (€2.Ws, ..., €5.W5, Wy f1, ey Wer. f2 )]
and
o ® 0 = [wows, (€1.Ws, ..., €5.W5, Wy fa, vy Wo ft)]
Since ej.ws < wgy.f1, we have that |
[{e2.ws, ..., €s.ws,Wo - f1, -y wo - ft}] > [{€1.ws, ..., €5.w5,Wo. f2, .., wo. fi }]
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which proves the lemma. =

Lemma 2.2.30 If o € F.p,_1.F is a mazimal cell from an n-;ycle £ in KPr-1 then o can
not be written in the form o = u.[w;(e1,€2,...,er)].v where u and v are both irreducible and

[w; (el) €2y .00y en)] € Pn-1.

Proof. Suppose by the way of contradiction that we can write o = u.[w; (e1,€2,...,n)].v
where u and v are both irreducible and |w; (e1,eq,...,es)] € pn—1. Since & = 0, there must
exists some o; = u;.[w; (e, €2, ..., €n)]-v; from &, such that % = % and 7; = 7. The choice of u
and v implies that ¢; > o, which contradicts the maximality of . ®

m
Lemma 2.2.31 Every n-cycle £ = Y n;0; in KPn-1 is homologous to some n-cycle &' in KP»-1
=1

such that ¢ is obtained from & by a positive number of elementary transitions.

Proof. Let w be some maximal 0-cell from ¢ and ¢; some maximal cell represented in £
whose maximal 0-cell is w. We distinguish the following three possibilities.

1) Suppose that o, is represented in ¢ as mo;, with m € Z and 0y = a ® B with a and
B cells of dimension at least 1. Letting o = [w,;(e1,...,ex)] and B = [wg; (€k+1,-..y€n)], from

Lemma 2.2.19 we have that
01 = [wawp; (€1.W, ..., €% WG, Wa -Ekt1, -r) Wa-€n)]-
From Lemma 2.2.26 we have that the maximal boundary cell of o is
011 = (wawg; (€2.wp, ..., €5.Wg, W €k41, -y Wa-n)).

Since o1 must cancel under the boundary map, there is some other cell o} represented in £ with

011 in its own boundary. This cell must be of the form
! .
o1 = |wawg; (£, e2.wg, oy €W, Wog€h 1y ey Wo-n)],

where f < ej.wg. It follows that f does not act on wg and hence we can write f = f'.wg
and f’ is disjoint from eg41,...,en. Consequently we have the (n + 1)-cell o} = a* @ § with
a* = [wa; (f/,€1,€2,...,ex)]. We can perform an elementary transition on ¢ by replacing mo by
the chain —em( with € = +1 being the incidence number of o1 in o7, to obtain thus the n-cycle

g =¢ - em(eotr + ¢) € Z, N KPr-1, where ( is given by the formula
Ont10] = €01+ ¢
and hence is made of cells which are strictly less than o;.
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2) Suppose that oy is represented in § as moy, with m € Z and o1 = te.o] for some positive
edge e and o/ arising from a critical n-tuple. The boundary of the (n + 1)-cell e ® o is given
by the formula |

Ontr(e® 01) = (te — Te).01 + (1)1 ) _(e®0Y),
J
where o7; € 00}. From Lemma 2.2.29, te.0] > (e® o1y), with o}; the biggest of all o}; € o}
and, from Lemma 2.2.27, te.0} > Te.o]. So we can now perform the elementary transition of
replacing mai = m(ie.0}) in € by the chain m(, and obtain thus the n-cycle &' = { —m(o1~() €
Z, N KPn-1 Here
¢= 're.ai + Z(e ® o{j)
J

is made of cells lesser than 5.

3) Suppose that o1 = o} .te for some positive edge e and oy arising from a critical n-tuple.
Let o3, ..., ok be all the other cells (re-indexed) represented in £ meeting w. Fori =1, ..., k, we let
o; = [w; (€i1, €i2, ---» €in)]- From the condition, we can write o1 = [w'te; (€];.¢e, €]5.te, vy €l pete)]
for some positive edges e’lj, j=1,..,n Forevery2 <i<kand1l<s <mn,since 0; < 01, it
follows from the definition of < that e;s = ¢€/;.ce for some positive edge €},. As a consequence

there are (n + 1)-cells

[w; (ei1, €i2, ..., €in, w'.€)] = [w'; (€l1, €la, .y €ln) @ € (2.19)

for every ¢ = 1,...,k. On the other hand we have that
k

A
n; E €s;[w; (€i1y oy isyy ooy €in)] = 0, : (2.20)
1

8;=1

=
where €5, = %1 are the incidence numbers. Indeed,

k m
0 =0n8 = Y ni(0noi) + Y. ni(Onoy) =
i=1 i=ktl

k n A m
doni 3 Esiw; (€i1, -y Eisyy ooy €in)] + <7)+ > ni(ana,-)) ,
i=1 s;=1 ] i=k+1
where the bracket is a chain made of cells whose maximal boundary cell is different than w.
It follows from (2.19) and (2.20) that
k n
zniZESi[w; (ei1y .oy Qisi, vy in, ' €)] = 0. (2.21)
i=1

8;=1
Applying formula (2.13) on the cell in (2.19) we see that the incidence number of [w; (i1, €i2, -, €in)]
in [w; (€1, €2y - €in, w'.€)] is (—1)™. This fact together with (2.21) imply:
k m
£~ (—1)"Zni3n+1[w; (i1, €2, ..., €in, ' €)] = Z nio; + ¢, (2.22)
i=1 i=k+1
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where the chain ( is either zero or is made of cells whose maximal O-cell is less than w. Now
m

the cycle ¢ = Y n;o; + ¢ is homologous with &, it is from Z, N KP~-1 and is obtained from
i=k+1 ‘ .

k
¢ by replacing > n;o; by the chain {. =

i=1

The following proof will be the combination of the last two lemmas.

Proof of Proposition 2.2.25. Suppose that ¢ € Z, N KP»-1 and want to show that it is
null-homologous. Let w be some maximal O-cell from ¢(© and ¢ some maximal cell represented
in £ whose maximal O-cell is w. From Lemma 2.2.30 we have that ¢ can only be as in one
of the three cases of the proof of Lemma 2.2.31. We can then apply Lemma 2.2.31 to obtain
an homologous cycle &'. If & does not satisfy the condition ¢’ < &, we chose w' to be some
maximal O-cell from ¢’ (® and o/ some maximal cell represented in ¢ whose maximal O-cell is
w', and repeat the above procedure. After finitely many steps we obtain £” homologous with &

and such that [¢” (0)] <mul [€ (0)]. Therefore we have ¢” < ¢ and then we can apply Noetherian

induction on £”7. m

Now we prove the property Fy 11 for Apy;. From Proposition 2.2.25 we have the following

commutative diagram

incl. an

0 —> ImBpy1 ——> KPn-1 Imd, 0

N

0 —> Zn(An) <% Co(An) =2 Zny (A) — 0

where all the vertical maps are inclusions, both rows are exact and Cr(A,) = Cy, in (2.8),
Zn(Ay) is the kernel of 8, in (2.8), and Z,_1(A,) is the kernel of 8,,_; in (2.8). Applying the -

“Snake Lemma” [90] to it, we obtain the short exact sequence
. :
0— Hn(Dypla “"pn—l) - ZS~pn—1~ZS - Hn—l(D» P1, ""pn—Z) — 0,
»

where
®: Hno(D,p1, s Pn-1) = coker(s;) —> coker(iz) = ZS.pn_1.ZS
is given by
fnt Bn — ¢(&n) (én € Zn),

with ¢ defined as in (2.17), and

v : ZS.pp-1.ZS = coker(tz) — coker(t3) = Hy—1(D, p1, ..., Pn_2)
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is the homomorphism taking each ¢ € pn—1 to the homology class of the corresponding (n —1)-

cycle.

This completes the proof of Theorem 2.1.1.

2.2.9 The S-graded Resolutions

The following remark will be useful in Chapter 3.

Remark 2.2.32 Associated with a finite and complete presentation P = P|x,r|, we con-

structed in Theorem 2.1.2 the resolution:
28.pn.28 ™% . 24, 250125 25 25028 22 25x 25 5 25 9225 20 7S — 0.

We can think of each set py with k= 1,...,n, as the subset of S whose elements are represented
by the O-cells occurring in the cells of px. Of course this is a 1-1 correspondence. Similarly,
r (respectively x) is the subset of S whose elements are represented by the coordinates of the
elements of r (respectively by the generators in x). Now it is more illuminating to write the

above resolution in the form:
® (2S5 @z28) =3 ... & O(ZS7P @715 22, o(2SPP@zZ8) 2L 257 9,75 2 75 — 0,
Pn X

We identify here the free (ZS,ZS)-bimodule ZS ®z ZS with the free left ZS°PP ®7 ZS module
ZS°P? ®7 7S via the isomorphism

uPPRQu — v Qu.

From [53], [72], [85] and our definitions of mappings & with k > 3, we see that, for every
1<k<n+2andevery sQte ZSP ®zZS,

S(s®@t) = Zn,‘si ®t:),

i€l
where n; € Z and for every ¢ € I, s;w;t; = swt if s® ¢ is taken from that direct sum component

related to w € S and s; ® t; is in the direct sum component related to w; € S.

This is a motivation to make the general definition below. Before that we introduce some
notation. If in the coproduct GE(ZS"”’” ®z ZS) we think of p as a subset of S, then any element
s®t belonging to that ZSPP ®zZS which is the ut* component of the coproduct will be denoted
by (s ® t)u.
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Definition 2.2.33 A free resolution
& (ZS™ @2, 25) 22 ... 2 B(ZSPP @ ZS) 2 25 — 0,
Pn Po

of ZS is called S-graded if for each 1 <k < n and each (s ® )y, € O(ZSP? @z ZS) we have
Pr

0k(s®@t)u = Zni(si @ ti)uy»

el
such that

sut = s;u;t;

for every ¢ € I, and

60(3 ® t)u = sut.

2.3 A Remark and an Open Problem

The result of Theorem 2.1.2 is a special case of that of Corollary 7.2 of [55] which states that if
an algebra A over a commutative ring K with a unit element admits a finite Grobner base G,
then a finitely generated A-bimodule with finite Grobner base modulo G has type bi-FP.

Indeed, as we saw in Example 1.8.3, ZS admits a finite Grobner base if S is given by a finite
corhplete presentation; therefore considering ZS as a (ZS, ZS)-bimodule, we obtain straightaway
from the above result that ZS has type bi-FP .

The advantage of our topological approach restricted in the case of integral monoid rings,
is that there is the possibility that one can define finiteness conditions FDTn‘ and FHT,, for
monoids with-n > 3 in a similar way with that of [72], generalizing McGlashan’s results. A first

step to achieve this is to solve the following.

Problem 2.3.1 If P = P|x,r] is a finite presentation fof a monoid S, then there is a CW-
complex A, of dimension n > 3 containing the 3-%omp1ex (D, p1) of [72] and such that A,
is expressed as a disjoint union (D,pi,...,Pr-2) U F.p,_1.F where (D,p1,...,pn_2) is a n-
subcomplex of A, and p1, ..., Pn—1 are finite sets of cells which give rise to (ZS,ZS)-bimodule

generators of respectively Hy(D),..., Hi(D,p1,...,Pn_2). Secondly, there is a short exact se-

quence
(-]
0— Hn—l(D1 Pl pn—2) - Zs‘pn—LZS 5 Hn—2(D, P1,..y pn——3) — 0

of (ZS,ZS)-bimodules.

68



As we saw in the previous sections, we can construct the complex with the above properties
if the system is finite and complete. In [72] the above problem is solved for n = 3 by first
making P = P[x,r| compatible with some <j.; and compleéing the resulting system using
Knuth-Bendix. The output system P> = P[x,r>] gives rise to a new Squier complex D(P>)
with homology trivializers p> obtained by choosing resolutions of all the critical pairs of r°.

Then, similarly as we did in Proposition 2.2.25, one can obtain the short exact sequence
0 — Bo(D(P*),p™) — K= — B1(D(P™)) =0

where K® = Co(D(P*)) + Jp®*.ZF + ZF.p™.J, and then using Lemma 13 of [72], we get the

other short exact sequence
0 — By(D(P),p) — K® — B{(D(P)) —» 0 (2.23)

corresponding to (D(P), p), where p is a set of bimodule generators of H(D).
Finally using the “Snake Lemma”, in an identical fashion as in Theorem 2.1.2, one gets the

basic short exact sequence
0 — Hy(D,p) -2+ ZS.p.Z5 % Hy(D) — 0

which can then be used to define FDTs, FHT, and prove the independence of them from thé
presentation.

Despite the confusing notation, p> and p are not related with each other, but Lemma 13
of [72] states that, if (2.23) is exact for some homology trivializer q of H;(D), then it stays
exact for any other, say p. The key to proving that lemma is that every 2-cycle from KP is
homologous to some 2-cycle in C2(D) and it is here that we use the other trivializer q to express "
this cycle as the boundary of some 3-chain in C3(D, q). Then it is not difficult to see that the
cycle we started with is a boundary of a 3-chain in C3(D(P), p), proving the exactness of (2.23).

In the higher dimensional case, two different cho:ces of the set of the trivializers for the first
homology groups, say p1 and qi, give rise to two different 3-complexes and therefore, in each
case, the corresponding p2 and gz will be different. Continuing the construction of complexes up
to dimension n, we end up with two different complexes An(p) = (D,p1,...yPn—2) U F.pp_1.F
and A,(q) = (D,qi, vy Qn-2) U F.an-1.F. The use of the techniques of Lemma 13 of [72]
becomes useless in this case, but we believe that it is possible to find a relation between these
complexes which would then enable us to show the equivaleﬁce of the respective short exact

sequences analogues of (2.23).
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2.4 FDT and FHT for Groups

It is already known that FDT and FHT are equivalent for groups. Different proofs can be found
for example in [33] and also in [20], [86]. We show this equivalence in a different way, using the
topological settings established so far.

Let G be a group given by a monoid presentation
P=xUx1:r(zz =)A= z7 1)) (2.24)

and let C be the cubical oo-complex constructed as follows. Let C; = I' be the usual graph
associated with P. Take I' x I" and quotient it by ~3 = ~ introduced in Section 2.2.2 obtaining
a 2-complex C3. In fact Cp is just the Squier complex D = D(P). Then take (D x D)®) and
quotient it by the appropriate ~3 obtaining a 3-complex C3 which contains D. Recursively we

obtain an increasing sequence of complexes

CicCcCC..cCpCCpy1C ...

of respective dimensions 1, 2, 3,...,n, n+1,... where
Cnt1 = (Cn x cn)(n+l)/ ~n+tl

and let
C= UQGC,.

n>1

Note that for every n > 1 there is always a quotient map
Prs1: (Cn X Co)™Y) — Cyg

arising from ~,4+1. The n-cells of C with n > 2, are those of the form e;®...Qe,, with ¢; positive
edges and can be thought of as cubes with either top cell (e; ® ... ® en_1).te, and bottom cell

. L]
(€1 ® ... ® en—1).Ten, Or with top cell tej.(e2 ® ... ® e,) and bottom cell Te1.(e2 ® ... ® ey,).

Proposition 2.4.1 For any other component D,, of the Squier complezx of P, we have

7T1('Dw) & 7T1('D>‘).

Proof. Since the existence of the n-cells with n > 3, do not influence the homotopy type of

the complex, we need only to show that m1(Cu) >~ 71(C,). We will make use of Proposition 1.18
of [40] and for this we need a homotopy equivalence f : C,, — C,. We define f to be the map

whose restriction on each cell coincides with the map of Property (ii) which in this case sends
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each cell ¢ € C, to wl.o € Cy. Similarly, define g : Cx — C., by sending every cell ¢ € C) to
w.o € C,. We will show that gf ~ ide, and fg ~ ide,. For simplicity we will suppose that w is
a single letter. The proof in general does not differ in essence :from the above special case. To
show the first homotopy we need to introduce a continuous map F' : I x C, — C,, such that
F({1} x C,) = gf and F({0} x C,) = idg,,. Recall that for every cell o € C,, gf(0) = wwlo
and that from the choice of w € X, we have that ww™! = e and A = Te where e is the edge

transforming ww™? to A. There is a continuous map F :
p(Pe xide,): IXC, — Uyse®o0 (2.25)

where ®, is the characteristic map of e and p is the map whose restriction on C; x C,, for every
n > 1is ppy1. It is easy to see that F' maps {1} xoc — ec€d(e®o) and {0} x 0 — Te.o €
d(e®o0), and when composed with the inclusion ¢ : Use® o < C,, it gives the desired homotopy

F. The second homotopy fg ~ idc, is shown in a similar fashion. m

Corollary 2.4.2 For every w, we have an isomorphism of groups m1(Dy) & Hi(D,).

Proof. Indeed, from Lemma 7.4 of [39] we have that 7 (D, ) is abelian and then from Propo-

sition 2.4.1 we obtain that 71(D,) is abelian for every w. Since H;(D,) is the abelianization of

71(D.), it follows that (D)= Hi(Dy,). m

Note that the isomorphism of the above corollary is the Hurewicz morphism
hi : m(D,) — Hi(D.) as described in Lemma 1.2.9. Since changing the base point of D,
does not alter 71(D.,), we will take the base point to be a vertex of D,,. Also, since every closed
path in D,, is homotopic with a closed path in the underlying 1-skeleton I',,, then the morphism -

of Lemma 1.2.9 has a simpler form:
[fl—cls&; (2.26)

where f is a closed path in 'y, with initial and ternfinal the base point chosen and clsy is the

homology class of the cycle {5 corresponding to f.

Theorem 2.4.3 For groups, FDT and FHT are equivalent.

Proof. As we have seen before, FDT implies FHT in general so it remains to show the

converse. First we define a bi-action of F' on @,¢xm1(D,,) as follows

u.[flv = [u.f.v]
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where u,v € F and f is a closed path in I'y,. It is easy to see that this action is well defined.
Suppose now that ®,epH1(D,) is a finitely generated (ZG, ZG) bi-module and let
{¢& | ¢ = 1,..,n} be representative cycles of these generatoi"s which we may take without
restriction to be polygons in the sense that the edges represented in each one &;, form a closed
path fé‘, in I'. Denote by f;, the path ')'féi'y‘1 where « is a path in " from the base point to
any of the vertices represented in f{,.

Let now f be some closed path in I, and clsé; be the corresponding element of H;(D,,)

which from the assumption can be written in the form
clséy = Z £505.clsé; vj = Z g;cls(u;.€5.v;5)
J J
where €; = +1, cls{; are generators and u;,v; € F. From (2.26), we have that

(] = T [ 1fu; 50,05

J
But
(fuj&505] = [ug-fe; 03] = wj.[fe;]v5
and then we get

HES | (PRFARNES
J

This means that, if the classes [f¢;] are all 0, then every [f] = 0 and therefore m(D,) = 0. In
topological terms this means that, if we add 2-cells p to the complex D with boundaries the
closed paths f; together with their translates, then we obtain a complex DP with (DP) =0,

or in other words, the group is FDT. m
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Chapter 3

Finiteness Conditions for Small

Categories

3.1 Introduction

Small categories are sometimes called monoids with several objects. This is due to the simple
fact that, if the category has a single object, then it is a monoid. Similarly additive categories
generalize unitary rings and are sometimes called rings with several objects. The analogy
goes further. For every fixed unitary ring R, the category R-Mod of left R-modules and R-
module morphisms is a special case of the category Add(A, Ab) of additive functors and natural
transformations between them. Here A is an additive category. In other words, if we replace
a ring R by an additive category A, all the left-R-modules by additive functors from A to Ab
and all the R-module morphisms by natural transformations between additive functors, then
we get the category Add(A, Ab). Also notions such as free, projective and finitely generated in
the category R-Mod have their natural analogues in the class of functor categories Add(A, Ab)
where again A is additive. .

The main scope of this chapter is to introduce finiteness conditions of a homological nature
for small categories which would generalize finiteness conditions for monoids such as bi-FP,, and
left (respectively right)-FP,, and find the relations between them. We make those definitions in
Section 3.4.1 but first we recall from [67] the definition of functors B € Add(A, Ab) of type FP,,
and then we say that a small category C is of type bi-FPy, if a certain functor ZC € Add(ZCPP®z
ZC, Ab) is of type FP,, in Add(ZCP ®z ZC, Ab). Similarly, we say that a small category C

is of type left (respectively right)-FP, if a certain functor Z € Add(ZC,Ab) (respectively
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Z € Add(ZCP?, Ab)) is of type FP, in Add(ZC, Ab) (respectively in Add(ZCPP, Ab)). As it
is expected, we show that the implication bi-FP,, == left (right)-FP,, holds true. More precisely
we prove the following. .

Theorem 3.4.5 For every small category C the following implication holds true:
bi-FP, = left (right)-FP,.

In [67] Malbos claims that one can obtain a projective finitely generated resolution of the
trivial left ZC -module Z in Add(ZC, Ab) by applying the left additive Kan extension functor
Z ®zc - to a projective finitely generated resolution of the (ZC°P? @z ZC)-bimodule ZC in
Add(ZCPP @z ZC, Ab). In fact he does not give a proof for this. It seems that he is referring
to the Corollary 10.5 of [74] which states that, if C is an additive category and

o Xy — Xy 11— ... — X — Xg—G—0

is an ezact sequence of projectives in Add( C°PP,Ab), and if F € Add(C,A) where A is an

abelian category with coproducts, then
= F@e Xy — F@Xn1— .. —F@cXi—F®:Xo— F®:G—0

is exact in A. .

This can be adapted to work for the category Add( C°PP ®zD, Ab) instead of Add( C°?, Ab)
with D additive and for Add(C, Ab) instead of Add(C, A), but still the condition that
G € Add(C°PP @z D, Ab) is projective will not be satisfied in our case, because in that case
we have that G = ZC € Add(ZC’P? ®z ZC, Ab) and ZC is not projective in general. For
example, if C is a group G such that G # [G,G], then we know that ZG is not a projective _
(ZG°PP @z ZG)-bimodule.

Besides that, one still need to compute Z ®z¢ ZC and Z ®z¢ X for every k > 0 and show
that indeed Z ®zc ZC = Z and Z Qzc Xk are projec‘tive and finitely generated if X; are such.

There is also a possibility that one may use Proposition 11.8 of [74] which states that, if
C and D are K-projective K-categories, and X be a projective resolution for F in Add(C,A),
and Y be a projective resolution for G in Add(CPP @z D, Ab), then X Q¢ Y is a projective
resolution for ¥ @¢ G in Add(D, Ab) provided that 1'or$(F,G) = 0 for all n > 0.

Again, this approach would need to compute explicitly the tensor X ®¢ Y to check for finite
generation and for the condition Tor$(F,G) = 0.

For this reason we decided to give here our own proof.‘ To prove our Theorem 3.4.5, we

generalize the techniques introduced in [53] to show that for monoids the condition bi-FP,,
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implies left (right)-FP,. Since this techniques requires the tensor product of modules, we give
in Section 3.3 the notion of the tensor product of functors which, as can be easily verified,
coincides with the tensor product of modules if the functors halppen to be modules.

In [28] Dwyer and Kan introduced the notion of the category of factorizations FC of a small
category C. Its objects are the morphisms of C and a morphism w — ' is a pair (u,v) of
morphisms in C such that w’ = vwu. One can study what are called in [7] natural systems of
abelian groups on C which are functors D : FC — Ab. Every such functor extends to an
additive functor D' : ZFC — Ab where ZFC is the free additive category on FC. In contrast
with Add(ZC, Ab) whose object are functors associating with each object of C an abelian group,
the functors of the category Add(ZFC, Ab) associate with each morphism in C to an abelian
group. In the case of monoids, the difference between these two categories is apparent and one
can expect to have finiteness conditions of a new nature if working with the second category.

In Section 3.4.2 we deal with small categories of type f-FP,, defined as those small categories
C with the property that a certain functor Z € Add(ZFC, Ab) called there the trivial natural
system, is of type FPp in Add(ZFC, Ab). In fact what we call here type f-FPp, is introduced
from Malbos in [67] and called there type FP,. This is slightly confusing with properties bi-
FP,, or left and right-FP,, so we decided to change its name to fFP, with f- standing for
factorization. ‘

To relate properties bi-FP, and left (respectively right)-FP,, with FP,, we prove the follow-
ing.

Theorem 3.4.10 If a small category C is of type f-FP,, then it is of type bi-FP,.

Regarding to monoids seen as categories, we prove the following.

Theorem 3.4.12 If the monoid S is of type bi-FP, and the corresponding free partial '

resolution is S-graded, then S is of type f-FP,. In particular, monoids which are given by a

finite complete presentation are of type f-FP,.

In Section 3.5, we look fqr ways to build partial Yesolutions for the trivial functor
Z € Add(ZFC, Ab). Theorem 3.5.2 gives a resolution of length 3 and implicitly a condition
for a category to be of type £FP3. The finiteness of that resolution is related with a property
which we call FDT for small categories and is defined in a similar fashion to FDT for monoids
(see [85] or [96]). More precisely, we prove the following.

Theorem 3.5.3 If C is of type FDT, then C is of type f-FPs.

The proof of Theorem 3.5.2, which is the category version of that of Theorem 3.2 of [19],
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deserves a little bit more attention. The exact sequence of functors we construct

ZC(B] - zCjr] & zC[x] 25 By(C) =+ Z — 0, (3.1)

is related to three graphs. The first one is UF(x), the underlaying graph of the free category
F(x). The second is the Squier graph I'(x,r) which rewrites the paths of UF(x) by using rules
from r seen as parallel paths in UF(x). The third one is A(x,r, B) which, similarly with the
first two, rewrites the paths of I'(x,r) by using rules from B consisting of‘ parallel paths from
['(x,r). The expectation is that, if we want to extend the sequence (3.1) further, we have to
extend the above sequence of graphs further by introducing rewrite rules of paths of the current
graph at each stage, but the notations become complicated and the boundary transformations

d,, are difficult to compute for n > 3.

3.2 Basic Notions from Category Theory

3.2.1 Categories and Functors

We will give in this section a few basic notions from Category Theory which are the essential
ingredients to understand the work in the two last sections. One can find the relevant material in

books like [64], [75] and [93] or in [66], [67], [74] and [76]. There is also a very helpful treatment
of additive and abelian categories in Chapter 7 of [82].

Definition 3.2.1 A category C is a class O, together with a class M which is a disjoint union

of the form

M= U homg(a, b).
(a,b)eOxO

We call the members of M morphisms or arrows and those of O objects. For each triple of
objects (a,b,c) € O x O x O, there is a function home(b, ¢) x homg(a, b)) — home(a,c). The
image of the pair (3, ) under this function will be galled the composition of 8 and a, and will

be denoted by Ba. The composition satisfies the following two axioms.

(i) Associativity: Whenever the compositions are defined, we have (y8)a = v(Ba).

(i) Emistence of identity: For each a € O we have an element 1, € homg(a,a) such that

lp,a = o and B1, = B whenever the composition is defined.

If there is no danger of confusion, we write C(a,b) instead of homc(a,b) or sometimes

hom(a,b). Note that hom(a,b) may be empty for certain pairs (a,b). For each morphism
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a € home(a,b), we say that a is the domain of a and b is the codomain of a. Any two
morphisms «a, 8 € C(a,b) are called parallel. If only the morphism « is given and we want to
indicate the domain and the codomain of it, we use ca for the domain and 7a for the codomain.
If ©® and M are sets, then we call the category small.
We will write ¢ € C to mean that c is an object of C and the objects of a category will
be denoted by the first letters of the Latin alphabet a, b, ¢, d, ... . For the morphisms, we use
letters e, f, g, h, or Greek letters a, 3, 7, é. 4

Definition 3.2.2 We say that a category C' is a subcategory of C if
(i) ¢ CC.
(ii) home (a,b) € homg(a,d) for all (a,b) € €' x C'.
(iii) The composition of two arrows in C' is the same as their composition in C.

(iv) 1, is the same in €’ as in C for every a € C'.

If furthermore homgr(a,b) = homg(a, b) for all (a,b) € C' x C' we say that C' is a full
subcategory of C.

Below is a list of some well known examples of categories.

Set: the category of all sets and functions between them.

Grp: the category of all groups and group homomorphisms between them.

Ab: the category of all abelian groups and group homomorphisms between them.

Rings: the category of all rings and ring homomorphisms between them.

R-Mod: the category of all left R-modules and module homomorphisms between them.
Top: the category of all topological spaces and continuous functions between them.

Top,: the category of all topological spaces wi.th a base point and continuous functions

between them which are base point preserving.

Toph: the category of all topological spaces and homotopy classes of functions between

them.

Definition 3.2.3 If B and C are two categories, we can construct the product category B x C

having objects pairs {b,c) € B x C with b € B, ¢ € C, and hom-sets consisting of arrows

(bc) L8 (v, ¢y,
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where f € B(b, ), g € C(c, ). The composition of two arrows
(byc) ) ¥, ) ", "y .
is defined to be {f',g') {f,9) = (f'f,d'9).

Definition 3.2.4 To each category C we assign a category denoted by C°P? whose objects and
morphisms are in a 1-1 correspondence with those of C in such a way that to each morphism
a : a — b in C the corresponding morphism in C?? is a°?? : b — a. The composition is
defined by a°PP3°PP = (Ba)PP whenever Ba is defined. The category C°7 is called the opposite
category of C.

Definition 3.2.5 Let C and B be categories. (i) A covariant functor T : C — B with domain
C and codomain B, consists of two functions: The object function T, which assigns to each
object ¢ € C an object 1'(c) € B and the arrow function written again by I', which assigns to

each arrow o : ¢ — ¢ of C an arrow T'(a) : T(c) — T'(¢) of B. We require that
T(l;) =1y, foralliceC

and T'(Ba) = T(ﬂ)T(a) whenever Sa is defined. ‘

(#) A contravariant functor T : C — B again consists of two functions: The object function
T, which assigns to each object ¢ € C an object T'(c) € B and the arrow function written again
by T, which assigns to each arrow a : ¢ — ¢’ of C an arrow T(a) : T(c') — T(c) of B. We
require that ‘

T(l) =1y, forallce C

and T(Ba) = T(a)T(B) whenever Sa is defined.

Remark 3.2.6 In general, if we refer to a functor, we will mean a covariant functor, unless
»
otherwise stated.

Remark 3.2.7 It is easy to see that a functor T : C — B is contravariant if the functor

T : CP? — B, which sends ¢ — T'(c) and a°”? : b — a to T(«), is covariant.

Example 3.2.8 Let C be a small category. For each fixed object a € C, the covariant hom-
functor
C(a,.) = hom(a,.) : C —> Set
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sends each object b € C, to hom(a,b) € Set and each arrow §:b — b’ to the map
hom(a, 8) : hom(a, b) — hom(a, b’)

defined by the assignment f — (f for each f:a —b.

Similarly one defines the contravariant hom-functor
C(-,b) = hom(.,b) : C — Set
which sends each object a € C, to hom(a,b) € Set and each arrow a:a — a’ to the map
hom(a, b) : hom(a’,b) — hom(a, b)
defined by f — fa for each f:a' —b.

Example 3.2.9 (Homology as a Functor) As we mentioned in Section 1.2.1, every con-
tinuous map f : X — Y between two topological spaces X and Y induces a morphism
fo : Hy(X) — H,.(Y) between the respective nt* homology groups of X and Y, which we now
denote by Hyn(f). It is easy to see that H, : Top — Ab is a functor, which we call the nth

homology functor.

Example 3.2.10 (m; as a Functor) Also 7; : Top, — Grp is a functor from based spaces
Top, to Grp as can be easily checked.

Example 3.2.11 A functor U : C — B which forgets some of the structure of the domain
category C, is called forgetful. The functor U : Grp — Set which sends each group G to its '
underlying set G and each morphism f : G — G’ to the underlying set function f : G — G,

is an example of a forgetful functor.
L]
Definition 3.2.12 A functor T': C ~— B is called faithful (respectively full) if the function

Cle1,c2) — B(T(c1), T(c2))

is injective (respectively surjective) for every ci,c2 € C. A full and faithful functor T which
is bijective on objects will be called an isomorphism. We say that two categories C and B are

isomorphic, denoted by C = B, if there is an isomorphism T: C — B .
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Example 3.2.13 For any two categories B and C, B x C= C x B via the isomorphism

7T:BxC—CxB . (3.2)

sending (b, ¢) — {c,b) and (8,7) — (v,8).

Any functor S : B x C — D is called a bifunctor. If S : B x C — D is a bifunctor and
b € B (respectively ¢ € C) are fixed objects, then we have the “obvious” induced partial functors

S(b,.) : C — D (respectively S(-,c) : B — D).

Definition 3.2.14 An arrow a : a — b in a category C is called invertible if thereis 8: b — a

such that a8 = 1, and Ba = 1,. If such an arrow exists, then we call objects a and b isomorphic

and denote this fact by a = b.

Definition 3.2.15 Let F}, F; : C — B be two functors. A natural transformation from Fy to
F, is a family of morphisms 9. : Fi(c) — F»(c), ¢ € C such that, for every c,c’ € C and every

morphism e : ¢ — ¢/, the diagram
8
Fi(c) —2> Fy(c)
Fl(e)i le(e)
Fy(c) 5 Fa(e)
commutes.

Whenever the above commutativity occurs, we say that . : Fi(c) — Fa(c) is natural in c.

A natural transformation with every 9. invertible, is called a natural isomorphism.

Example 3.2.16 In Example 3.2.9 take Top, instead of Top. The family
hi(X,z) : m(X,z) — Hi(X,z)

of Hurewicz morphisms for every X € Top, is a natural transformation from m; to Hj.
*

Definition 3.2.17 Let B and C be categories. The functor category CB has objects all functors
from B to C and each hom-set CB(S, T) consists of all natural transformations from S to T. The
composition of natural transformations is defined as follows. If 6 : R— Sand 7: S — '
are natural transformations, then their components for each b define arrows (7-0), = 0 0}
which are the components of a natural transformation 7.¢ : R — T. Sometimes when we

need to simplify the notations and, if there is no confusion, we denote the hom-set C®(S, T) by

Nat(S,T).

80



We usually denote the objects of a functor category CB by Latin upper case letters.

One can define the evaluation (bi)functor
Eval :CBxB—C (3.3)

which is defined on objects by the assignment: (F,b) € CExB+— F(b) € C and on morphisms

as the diagonal of the commutative diagram

F(b) —> G(b)
T(f)l \ lG(f)
F(¥) —%>G(¥)

An important notion in Category Theory is that of representable functors.

Definition 3.2.18 Let I be a category with small hom-sets. A representation of a functor
K : D — Set is a pair (r,v), with 7 an object of D and

Y :D(r,)) — K

a natural bijection. The object r is called the representing object. The functor K is said to be

representable if such representation exists. We will denote a natural bijection by ~.

Example 3.2.19 Let U : Grp — Set be the forgetful functor. The free cyclic group Z is a
representing object of U where the natural transformation 9 : Grp(Z,.) — U is the family of

mappings Y for every G € Grp, sending each morphism f : Z — G to f(1) € U(G).

There is an elegant way of realizing in the general situation the natural transformations

¢ : D(r,.) — K, given by the Yoneda Lemma below.

Lemma 3.2.20 (Yoneda) If K : D — Set is a functor from D and r € D (for D a category

with small hom-sets), there is a bijection "
Y : Nat(D(r,.),K) ~ K(r)

which sends each natural transformation o : D(r,.) — K to a,(1,), the image of the identity

r — . Furthermore, Y is natural in both r and K.

By a careful inspection of the following commutative diagram, one can see that every natural

transformation from D(r,_) to K is uniquely determined by the image under the arrow
o : D(r,7) — K(r)
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of the identity 1, : 7 — 7.
D(r,r) = K(r)
D(m‘)l lK ]
D(r,d) %> K(d)
We call the map Y : Nat(D(r,-), K) — K(r) of the lemma, the Yoneda map.

Theorem 3.2.21 Thé Yoneda map is a bifunctor isomorphism
Y: Na’t(D(—a —)s -) i ET(-’ -)
where E is the evaluation functor and T is the isomorphism (3.2).

For the proof see Theorem 4.2.2 of [93]. We will return to the Yoneda Lemma later when

we study additive categories.

3.2.2 Special Objects and Special Morphisms

We will devote this section to some special types of objects and morphisms in general categories

which will be of particular interest in functor categories Add(C, Ab) in later sections.

Definition 3.2.22 An arrow o : a — b in a category C is epi if for any two arrows

B1, B2 : b — ¢, the equality S1a = Bza implies that 81 = f2. We will denote an epi in the

future by —». In this case b is called a quotient object of a.

Example 3.2.23 In Set epi arrows coincide with surjections. In Grp epi arrows coincide with

surjective group homomorphisms. See Exercise 5, p. 21, [64].

Definition 3.2.24 A functor 1': C — B will be called an epifunctor, if 1'(y) is epi whenever
v is epi.

Definition 3.2.25 An arrow @ : a — b in a cgfegory C is mono if for any two arrows

B1,Ba : ¢ — a, the equality afy = af2 implies that 8; = ;. We will denote a monic in the

future by . In this case a will be called a subobject of b.
Example 3.2.26 In Set and Grp, monomorphisms are precisely the injections.

Definition 3.2.27 An object t € C is called terminal in C if for each a € C there is exactly
one arrow a — t. An object s € C is called initial in C if for each a € C there is exactly one
arrow s — a. A null or zero object z € C is an object which is at the same time initial and

terminal.
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Example 3.2.28 In Set the empty set is an initial object and every one-point set is a terminal

object. In Grp the trivial group {1} is a null object.

Definition 3.2.29 If C has a zero object 0, then for any two objects a,b € C there is exactly
one morphism a — b which factors through 0; that is, it can be represented in the form
a — 0 — b. We call this the zero morphism and denote it by 0, 4. It does not depend on the

choice of the zero.

Example 3.2.30 In Grp the one element group {1} is a null object and for every two groups
A and B, the morphism 6 : A — B which maps every element of A to the identity of B is a

zero morphism.

Definition 3.2.31 Let C be a category. We call an object ¢ € C projective if, for every
morphism f : ¢ — b and every epimorphism y : a — b, there is a morphism g : ¢ — a such

that the following diagram commutes.

This is equivalent to saying that C(c,_) is an epifunctor.

Example 3.2.32 In Set every object is projective and in Grp (respectively Ab) projectives
‘coincide with free groups (respectively free abelian groups) ( [63], p. 2).

Definition 3.2.33 If every object in a category C is a quotient object of a projective, then we -

say that C has enough projectives.
Example 3.2.34 The categories Ab, Grp and R-Mod have enough projectives.
*

Definition 3.2.35 Let C be a category and {ci}ier be a family of objects in C. A coproduct of
this family is a family of morphisms {u; : ¢; — c}, called injections, such that for each family
of morphisms {o; : ¢; — '} there is a unique morphism a : ¢ — ¢ with au; = a4 for all

i € I. The object c is unique up to isomorphism and will be denoted by ®;c;c;.

Dually one can define the product of a family {c;};c; of objects of C as follows:
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Definition 3.2.36 It is a family of morphisms {p; : ¢ — ¢;}, called projections, such that for
any family of morphisms {o; : ¢/ — ¢;} there is a unique morphism o : ¢ — ¢ with p;a = a;

for all i € I. The object ¢ is unique up to isomorphism and will be denoted by X;er¢;.

Example 3.2.37 The coproduct of a family of modules (respectively abelian groups) {A:}ier
exists in R-Mod (respectively Ab) and is equal with @;esA;. Products also exist in the

respective categories and are just direct products denoted usually by [];c; 4:.

Definition 3.2.38 A set G of objects in a category C is called a generating set if, for every
pair of different parallel morphisms a, 3 : @ — b, there is a morphism v: g —a withg€ g

such that ay # By. An object g is called a generator if {g} is a generating set.

Example 3.2.39 Every one point set generates Set, Z generates Ab and Grp, and R generates
R-Mod. As we will see later in Theorem 3.2.67, for any small category C, the functor category
AbC is generated by the set {C(c,-) | ce C}.

Definition 3.2.40 We call an object of a category finitely generated with respect to a family
of generators {gi}ier if it is a quotient object of a finite coproduct of the form 6?9 gi, where
k=1

ix € I for k = 1,...,n. We call the object free with respect to the above family if it is of the
form @ekgi, where i € I for k € K.

Remark 3.2.41 The existence of a family of generators G for a category C which has coprod-
ucts does not imply that every element of that category is a coproduct of elements from G. For
example, the empty set 0 is a generating objects in the poset P(S) where S is a non-empty set,

but it is not true that for every a € S, a # @ we have a = @rex® with K # 0.

There is also a more algebraic definition of free objects in a category satisfying a specific

condition. Before that we need the following.

*
Definition 3.2.42 Let A and X be categories. An adjunction from X to A is a triple (F, G, ) :

X — A, where F and G are functors
XZT==4A,
G
while ¢ is a function which assigns to each pair of objects € X and a € A a bijection of sets
¢ = Pzq: A(Fz,0) =~ X(z,Ga)

which is natural in z and a. We say that F is a left-adjoint. for G and G is a right-adjoint for
F. This will be denoted for short by F' 4 G.
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Definition 3.2.43 Let C be a category and let U : C — Set be a faithful functor. Suppose
that there exists a functor F'r : Set — C such that F'r 4 U. Then, for every set S, F'r(S) is
called the free object on S (relative to U). :

For such a category C as above, one can easily show that the set
{Fr(S) | with S non-empty},

is a set of generators of C. This follows easily from the existence of the natural bijection
C(Fr(S),c) ~ Set(8,U(c)) for any c € C, S € Set, and from the fact that together with one-
point sets of Set, all non-empty sets generate Set. On the other hand, Proposition 10.6 of [41]
shows that coproducts of free objects are free objects. Therefore any coproduct of generators
Fr(S) yields a free object in our new sense as well. As for the connection between free and

projective objects in a category we give the following.

Lemma 3.2.44 If the functor U : C — Set sends epimorphisms to surjections, then every
free object in C is projective.
This is proved in Corollary 10.3 of [41].

The following lemma will be useful later.

Lemma 3.2.45 For every small category C, the category ADC contains the coproducts and the
products of every family of objects {1;}ier.

Proof. We give the proof for coproducts only because the proof for products is the dual.
For the family of objects {1i}ier € AbC we define for every ¢ € C, 1'(c) = ®ierli(c) and, if
f:c—>c, then we define T(f) = @ie/Ti(f). In the following prism

Ti(c) T'(c)
Ti(f) T(c) T'(f)
13(¢) = L)
Ui o A"

T(c)

we have by definition

O‘C(Z T;) = Z i o(Zi),
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for z; € T;(c) and ¢ € J where J is a finite subset of I, and therefore the top and the bottom of the
diagram are commutative. Also the back and the left hand side squares are commutative since
o; and u; are natural transformations. The only thing we have to show is the commutativity
of the right hand side square, thus proving the naturality of . Indeed,
(T'(f) 0 ae) (X 20) = T'(F) (T (1)) (From above)

=3 A(T'(f) o cie)(ws) = D 5(eir © Ti(f))(xi) (the front square commutes)

= (ay o 1'(f))(X; z:) (from the definition of the maps 1'(f) and ay). =

Definition 3.2.46 Let A be a category with a null object 0, and let @ : a — b. We will say
that u : k — a is the kernel of a, denoted by Kera, if au = 0, and if for every morphism
u : k' — a such that au’ = 0 we have a unique morphism « : ¥ — k such that uy = /.

Equivalently, the kernel of « is given by the following pullback diagram
k 0
a b

Definition 3.2.47 Let A be a category with a null object 0, and let o : a — b. Define the

l

l
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cokernel of a, denoted by cokera, to be the opposite of the kernel of a®”? in AP, In other

words, it is given by the following pushout diagram
a 0
b c

Example 3.2.48 We can employ the above definition to describe kernels in Grp since it has

l

y

a null object which is the one element group {1}. It turns out that the kernel of an arbitrary
morphism f : G — H is the inclusion N < G where N = {z € G | f(z) = 15}. In R-Mod
the null object is the trivial module {0} and then we Rave that the kernel of a module morphism
f: A~ B is the inclusion K < A where K = {z€ A| f(z) =0p}. In Ab and R-Mod the

cokernel of a morphism f: A — B exists and is given by the arrow B — B/ f(A).

Definition 3.2.49 Let A be a category which has a null object and contains kernels and cok-

ernels. The image Im(a) of a morphism o : a — b is defined as Im(a) = ker(cokera).
Example 3.2.50 In Grp the image of f: G — H is just . °
Im(f)={h€ H|3g€G:h=f(g)}.
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Definition 3.2.51 In a category with a null object and kernels, a sequence of two morphisms

is called ezact if:
(i) gf =0
(i) in the factorization f = (Kerg)f' guaranteed by (i) (see Definition 3.2.46), f’ is an
epimorphism.
A sequence of morphisms

fn+1 b -1
QNP L. ST LN Lo SN

is said to be ezact at a, if fo41 and f, satisfy (i) and (ii). It is ezact if it is exact at every

an. A short exact sequence is an exact sequence of the form
0—ab-2c—0.
We denote it succinctly by
aS b
Lemma 13.1.4 of [93] shows that the exactness of the sequence a Jib L cathis equivalent

to the condition that /m(f) and Ker(g) are equivalent subobjects of b.

Definition 3.2.52 A morphism p : b — ¢ is called a retraction if there is ¢ : ¢ — b such that

poq=id,. A short exact sequence
a )1'_11.) b -}-9» C
is called split if p is a retraction.

Definition 3.2.53 Let C be a category which has a null object and let
]
On 8,
(a,0) : = ant1 =5 an On, Gn-1 8,,_}_1
on 8
(b,6) = bnt1 -5 bn Ln, bn_1 6"—_}
be two sequences of morphisms such that 62 = 0 and 8% = 0. A chain transformation
[ : (a,8) — (b, d) is a family of morphisms
f={fnian— n | 1 € Z}
such that

671—1 o fn = fn—-l o 3,,,.
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3.2.3 Presentations of Small Categories

We will give in this section the definition of a presentation of a small category which mimics
that of a monoid. First recall that a directed graph x is a pair (O, A) with O the set of vertices

and A the set of edges e, together with a pair of functions
3

We call e the domain of e and Te the codomain of e. A morphism D : x — x’ of graphs is a

pair of functions Do : O — O" and D4 : A — A’ such that
Dote =1Dge and Dpre = 7D4e

for every e € A. It is easy to see that graphs together with graph morphisms form a category,
which we denote by Grph.

Every category C determines a graph UC with the same set of objects, and the set of arrows
coincides with the set of arrows of C. Thus every path in UC gives rise to a graph arrow. Also
every functor between categories F' : C — B can be seen as a graph morphism UF : UC — UB
and as a result we have the forgetful functor U : Cat — Grph. We call UC the underlying
graph of C. This is not the only relation between these two categories. Indeed, any graph x
“generates” a category F'(x) with the same set of vertices and with arrows, paths of x. We call

F(x) the free category generated by the graph x. The following theorem (see Theorem 1, pp.
49 of [64]) certifies the above chosen term.

Theorem 3.2.54 Let x be a graph. There is a morphism P : x — UF(x) of graphs from x to
the underlying graph UF(x) of F(x) with the following universal property. Given any category "

B and any morphism D : x — UB of graphs, there is a unique functor D' : F(x) --» B with
(UD"YoP=D such that the following diagram commutes

®
x L5 UF(x)
|
1\uD’
b Y
UB

There is even more in this theorem. Graph morphisms D : x — UB are in a 1-1 cor-
respondence with functors D' : F(x) — B via the bijection D’ — D = (UD') o P. This
bijection

Cat(F(x), B) ~ Grph(x, UB)
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is natural in x and B. In fact this is an example of an adjunction as described in Definition
3.242.

- Once we have assigned to every graph a free category genefated by this graph, assignment
which generalizes the construction of the free monoid generated by some set, we can attempt
to extend this analogy further by expressing categories through generators and relations. The
Proposition 1, p. 51 of [64] gives the general idea of taking the guotient of a category by a

congruence relation. We state it below and make a comment afterwards.

Proposition 3.2.55 For a given category C, let r be a function which assigns to each pair
of objects a,b € C a binary relation rop on the hom-set C(a,b). Then there erist a category
C/r and a functor @ = Qr : C — C/r such that (i) If frapf' in C, then Qf = Qf; () If
H : C — D is any other functor for which fropf’ implies Hf = Hf' for all f and f', then
there is a unique functor H' : C/r — D with H' o Q: = H. Moreover, the functor Qr is a

bijection on objects.

The notation C/r used in this proposition is a bit misleading. Actually we do not take the
quotient of C by r but we first define a new relation r#, the congruence generated by r, as the
smallest relation containing r,p for any a,b € C, which is reflexive, symmetric and transitive,
and satisfies the property: if f, ' : a — bsuch that fr,;f' andifg: o/ — aand h: b — ¥/,
then (hfg)rap(hf'g). Then we define C/r to be the category with the same objects as C and
with hom-sets (C/r)(a,b) = C(a,b)/ rf’b. In the special case when C = F(x) is the free category
generated by some graph x, we call F(x)/r# the category with generators x and relations r. In

contrast to categories, we will agree to use the notation z € x to mean that z is an edge of x.

3.2.4 Additive Categories

In the rest of this chapter we deal with additive categories.
L]

Definition 3.2.56 An additive! category is a category A together with an abelian group struc-
ture on each of its hom-sets, subject to the following condition:

The composition functions hom(b, ¢) X hom(a,b) — hom(a, c) are bilinear. That is, if

a,B € hom(a,b) and v € hom(b,c), then y(a + B) = ya + 7B, and if v € hom(a,b) and
a, B € hom(b, c), then (a+ B)y = ay+ B.

!In [64] these categories are called Ab-categories and the name additive is reserved for those satisfying two

extra conditions: having a zero element and biproducts.
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Example 3.2.57 Any ring R with unit element can be thought of as an additive category with
a single object * corresponding to the unit element of R, and morphisms r : ¥ — * for each
r € R. In fact in the above definition, every hom(a, a) has a ring structure. Also the category of
left R-modules R-Mod (respectively right R-modules Mod-R) for some ring R, form additive

categories.

Example 3.2.58 For every non additive category C one can construct the category ZC with
objects those of C and hom-sets ZC(a,b) the free abelian group generated by C(a,b). If we
require ZC to satisfy the condition of Definition 3.2.56, then ZC becomes an additive category.
We say that ZC is the free additive category on C. If C is the trivial category with a single
object and a single morphism, then we denote ZC by simply Z and call it the trivial additive

category.

Example 3.2.59 For every additive category A, its opposite A°PP is again additive where

QPP 4 IBOPP = (a + /@)OPP.

A functor T : A — B with A and B both additive, will be called additive if it satisfies the
condition T'(a + B) = T(a) + T(B) whenever a + S is defined.
If S:BxC — D is a bifunctor where B, C and D are additive and for all b€ B and ¢ € C,

the respective partial functors are additive, then we call S biadditive.

Definition 3.2.60 If A and B are both additive categories, then we can consider the full
subcategory Add(A,B) of BA with objects all the additive functors from A to B and with hom-
sets equipped with an additive operation: if &, 8: § — T are natural transformations then, for
any object a € A, we define (@ + B)a = a4 + B,. For any two additive functors S,7 : A —» B,
we denote by Nat(S,T)addqap) the hdm—set in Add(A,B) with domain S and codomain T.

Example 3.2.61 (Left R-modules) An element of Add(R, Ab) is an additive functor
p: R — Ab sending ¥ — A and each morphisms r as explained in Example 3.2.57, to some

endomorphism u(r) of A satisfying the following conditions:
1. pu(x¥)(z) =z for all x € A,
2. p(r)(z1 + z2) = p(r)(®1) + p(r)(z2),
3. p(rirz)(z) = p(r1)(u(r2)(@)),

4. p(r1+r2)(x) = p(r1) (@) + p(r2)(2).
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Thus u can be identified with the left R-module with underlying abelian group A. Motivated
by this example we sometimes call Add(C, Ab), where C is additive, the category of left C-

modules.

If B and C are additive then one can define in a similar fashion with (3.3) the additive

version of the evaluation functor
E: Add(B,C) x B — C (3.4)

The following mimics the definition of the tensor product of abelian groups.

Definition 3.2.62 If A and B are two additive categories, then their tensor product AQzB is
the additive category with object set all the pairs (a,b) with a € A and b € B, and the abelian

group of morphisms from (a1,b1) to (az, b2) is the tensor product
A(ay,a2) ®z B(by, by).

The bilinear composition in A ®z B is defined by
(01 @ B1)(02 ® B2) = (a12) ® (B1B2).

Example 3.2.63 We can use the tensor product of categories to define bimodules. If R and S
are rings with unit elements, then, as we saw in Example 3.2.57, they are both additive categories

and from Example 3.2.59 and Definition 3.2.62 we have that S??? ®z R is an additive category.
As in Example 3.2.61 one can define the category of left-(SPP®zR) modules Add(S°”’®zR, Ab)
whose functors satisfy all the properties of the (R, S)-bimodules. This is why we call its objects,
(R, S)-bimodules.

Example 3.2.64 If A is additive and Z is the free additive category generated by the trivial
category, then it is easy to show that A®z Z is isomgrphic with A.

The analogues of Lemma 3.2.20 and Theorem 3.2.21 in the additive case also hold true. We

include them below for the convenience of the reader.

Lemma 3.2.65 If D is additive and K : D — Ab is an additive functor, then the Yoneda
map

Y : Nat(D(r,.), K) pda,an) — K(),

which sends each natural transformation a : D(r,)) — K to a,(1,), is an isomorphism of

additive groups. Furthermore, Y is natural in both r and K.
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For the proof see Lemma 4.3.1 of [93]. We remark here that the functor D(r, ) is additive
if D is such.

Proposition 3.2.66 IfD is additive, then for o : D(r,.) — K the Yoneda map Y(a) = ar(1,)

determines an isormorphism

Y : Nat(D(,-), -) ada,ap) — E7(--)
of biadditive functors D x Add(D, Ab) — Ab.

The proof of the above is given in Proposition 4.3.3 of [93].

Theorem 3.2.67 IfD is an additive category, then the set of all representables D(r,_) is a set
of generators for Add(D, Ab).

Proof. Let F and G be two objects from Add(D,Ab) and 7, 7 two different natural
transformations from F to G. We must find d € D and v : D(d,-) — F such that 7y # 7'y.
The fact that 7 # 7' implies that there is some ¢ € D such that the group morphisms 7,7/, :
F(c) — G(c) are different; hence there is some 2 € F/(¢) such that 7.(z) # 7¢(z). Since, from
Lemma 3.2.65, v is uniquely determined from the value v.(1;), we take v : D(c,.) — F to
satisfy the condition v(1c) = z. It follows that 7.y(1c) # 7iyc(1c) since 7o(z) # 7/(z). =

There is also an alternative proof of the above based on Proposition 3.2.66 as is shown in
Example 10.5.2 of {93].

We prove below two interesting properties of representables C(c, .) € Add(C, Ab). First we
have this.

Proposition 3.2.68 Let C be a small category. The functor @ C(c,.) € Add(C, Ab) is free
ceC

(in the sense of Definition 3.2.43) relative to the functor U : Add(C,Ab) — Set which is

defined on objects by

]
v(e) =[] 6,

ceC
and on morphisms p: G — H by

U :[1¢ — [ H ),
ceC ceC

where

U(n) la()= e for every c € C.
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Proof. Let Fr : Set — Add(C, Ab) be the functor defined on objects by
Fr(S) = C(e, -).
T( ) sGEaS c?c (C )
Denote EBCC(c, _) for the moment by A. If h: S — S’ it can be seen as the map
ce
{As|s€ 8} — {Ay | s € 5"}

defined by
h(As) = Ap(s) for every s € S,

which, when composed with the injections ug : Ay — '®S'ASI, induces a unique morphism
s'e
Fr(h): & As — & As.
s€s s'es’
It is easy now to check that Fr is a functor and it sends every set to an additive functor. It
remains to show that F'r is a left adjoint of U and for this we have to show, that for each functor

G € Add(C, Ab) and each non-empty set S, there is a natural bijection
Add(C, Ab)(Fr(S),G) ~ Set(S,U(G)).

First observe that each 7 € Add(C, Ab)(Fr(S),G) induces for every s € S and every c € C a
natural transformation 79 : C(c, ) — G such that for every d € C, T‘gs,c) = 74 |¢(c,d)- From

the definition of the coproduct, the family
{r9) | s€ S,ce C}

determines 7 uniquely and therefore can be identified with 7. On the other hand, from the
Yoneda Lemma, for every ¢ € C, (99 ig uniquely determined by *rc(s’c)(lc). Now we can

construct the map

»
& : Add(C, Ab ),
( )(jgs CGEBC‘C(c, ),G) — Set(S,cg:G(C)),

T— (pr: S — HG(c)),
ceC
where
or(s) = [[r&9(1c), Vs € 5.
ceC )
We will show that ® is bijective.

93



Indeed, it is injective since, if 7,¢ : Fr(S) — G are two different natural transformations,
then there is d € C such that
Ta: D 69 C(c,d) — G(d)
s€S ceC
is different from

tq: C
¢ 36693 cEEB (C d) — G(d)

This implies that there is s € S and ¢ € C such that Tds’c) # tff’c) and, from the Yoneda Lemma,
(s:0)
te"(

this is equivalent to 'rcs c)(l ) # 1.), which proves the injectivity of ®.

For the surjectivity, for any

p: 8 — H G(c)
ceC
such that

(s) = Hg(s) Vs € S,

ceC
we can define (¢ for any s € S and ¢ € C, by letting ¢ (e C)( 1) = g(s). In this way we have

defined a natural transformation 7 : GBS ® C(c,-) — G since, as we saw earlier,
s€8 ceC

7= {r(®)|se S,ceC}.

From the definition of ® we have that &(7) =
Lastly, we have to check the naturality of ® in both S and G.
Let h: S — S'. For any 7 € Add(C,Ab)( ® @ C(c,.),G), we have
s'e8’ ceC

(proh)(s) = [] r#9(1L), Vs € 8.
ceC

On the other hand we have,

SproFr(h) H T(h(s) c) , Vs € S,
ceC

which proves that ® is natural in S.

For the naturality of ® in G, let u : G — G’ be some natural transformation. For every

T € Add(C,Ab)(® & C(c,-),G), we have
] 3€8 ceC

por(8) = [ [ o 1)(1e) = [ e((n)9(1)), Vs € 8.

CEC CGC
On the other hand we have

U)o pr)(s) = [ ] me((1)E9(1)), Vs € 8,
ceC
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which proves the naturality in G.
Finally, if in our definition of F'r(S) we take S to be a singleton, then we get @ C(c,-) to
‘ ceC

be free. =

Remark 3.2.69 The fact that U, as defined in the above proposition, is injective on morphisms,

can be proved in another way using the fact that G)CC(C, .) is a generator in Add(C,Ab) as
ce!
shown in Proposition 15.4.1 of [93]. '

We could have defined for every fixed ¢ € C the functor U by
U = Add(C, Ab)(C(c,-),-)

and the functor Fr by letting Fr(S) = GEBSC(C, _) for every set S. Again Fr is a left adjoint of
8

U (see [94], p. 378) but U may fail to be injective on morphisms. If every C(c, ) is a generator,

then of course U as defined above will be injective on morphisms. We state below a condition

under which C(c,-) is a generator in Add(C, Ab).

Lemma 3.2.70 If the small category C has the property that, for every c,d € C the identity
morphism 1, can be expressed as 1c = B, qa.q where acg: ¢ — d and B4 : d — c, then every

representable C(c,-) is a generator in AbC.

Proof. One can show easily as in the proof of Yoneda Lemma that for every F € AbC,
every d € C and every natural transformation 7 : C(c,.) — F, 7 is uniquely determined by

the value 7(c,4). Then the lemma follows. m

The second property of the representables C(c, ) € Add(C, Ab) is proved in the following.

Proposition 3.2.71 Representable functors C(c,.) € Add(C,Ab) are projective.

Proof. In fact, as we have observed in Definition 3..2.31, this is equivalent to showing that the
hom functor Add(C, Ab)(C(c,-),-) is an epifunctor. Solet 7: G — H be an epi in Add(C, Ab).
From Lemma 3.2.65, Add(C,Ab)(C(c,.),F) = F(c) and Add(C,Ab)(C(c,-),G) = G(c), and

the isomorphism Y is natural in F. This implies that the induced morphism
Add(C, Ab)(C(c,-), ) : Add(C, Ab)(C(c,.), F) — Add(C, Ab)(C(c,.),G)

is an epimorphism. ®
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3.2.5 Abelian Categories

A special type of additive categories are Abelian categories. A consequence of Proposition 3.2.76
below is that, for every additive category A, the category of additive functors Add(A, Ab) is
Abelian. This type of category will be the focus of our study in the rest of this chapter.

Definition 3.2.72 Let A be an additive category. A biproduct diagram for the objects a,b € A

is a diagram

a 51 c P2 b

with morphisms p1, p2, %1, i2 satisfying the identities
p1t1 = la, p2i2 =1y, @1p1+d2p2 = Lo

The following important result (Theorem 2, p. 194 of [64]) relates the biproduct of two

elements with their product and coproduct.

Theorem 3.2.73 Let A be an additive category. Two objects a,b € A have a product in A if
and only if they have a biproduct in A. Specifically, given a biproduct diagram (3.5), the object
¢ with projections p1 and pz is a product of a and b, while, dually, ¢ with injections i; and iy

is a coproduct of a and b. In particular, two objects a and b have a product in A if and only if

they have a coproduct in A.

Definition 3.2.74 An additive category A with a null object is called pre-Abelian if it contains
the biproducts of any two objects, and if any morphism has both kernel and cokernel. It is called
Abelian if it is pre-Abelian and satisfies two further conditions: every monic is a kernel and

every epi is a cokernel.

Example 3.2.75 Ab is obviously Abelian and for every ring R with unit element, the category
of R-Mod is also Abelian. *

The following result of Grothendieck [35] (see also Proposition 3.1, p. 258 of [65]) shows

that when A is a small category, not necessarily additive, the functor category B? is Abelian.
Proposition 3.2.76 If the category A is small and B is Abelian, then BA is Abelian. A sequence
0—F-LG2H—0
is ezact in B2 if and only if, for each a € A, the sequence
0 — F(a) 22 6(a) 2@ H(a) — 0
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1s exact in B..

Staying with exact sequences in abelian categories, we make the following remark.

Remark 3.2.77 Firstly, if 0 — a 2 b -£5 ¢ — 0 is exact which splits, then b 2 a® ¢
(see [93], p. 126). Secondly, if 0 — a b -4 ¢ — 0 is exact, then m is the kernel of p and
p is the cokernel of m. Also b 2, ¢ — 0 is exact if and only if p is epi, and 0 — a = b is

exact if and only if m is mono (see [93], p. 124).

In the case when B = Ab, there is a nice description of the kernel, cokernel and the image

of a morphism as the following shows.

Example 3.2.78 For any category C, since AbCis Abelian, it contains a null object, namely
the functor 0 € Ab® which sends every object to the trivial group {0}, and in addition it
contains all pullbacks; therefore Definition 3.2.46 and Example 3.2.48 imply that for every
r: F — G in Ab®, Kerr can be given functorially on objects by

(Kert)(c) = Kerr,,
where Kert, is the kernel of the group morphism 7, : F(¢) — G(c), and on morphisms by
(Kert)(8) = F(8) |kerr, »
for every & : ¢ — ¢/ Similarly, for every 7: F — G in AbC, cokerr is given functorially by
(cokert)(c) = cokerr,

where cokert, is the cokernel in Ab of 7, : F(c) — G(c), and on morphisms by

(cokerT)(8) = F(8) |cokerr, .’
L

for every § : ¢ — ¢. Lastly, combining the two above results, one gets that the image of

r: F — G in Ab€ can be given functorially by
(Im7)(c) = Im(7.),
where 7. : F(c) — G(c), and on morphisms by
(Im7)(8) = F(8) |1m(re) »
for every 6 : ¢ — .
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The following is useful in proving the Schanuel’s Lemma for abelian categories.

Lemma 3.2.79 In an abelian category, an ezact sequence k — b —» ¢ and a morphism~y:d — ¢

can be put into a commutative diagram

k>—— b — ('
N
k>—>ph—cC

where the top row is exact and the right square is a pullback.

Proof. The full proof is given in Corollary 20.3 of [75]. We give here only a sketch of it.

First one shows that, if in the following commutative diagram

k —L>pf P J (3.6)

| )

k—>b——>c
the right-hand side square is pullback, u is the kernel of a; and v is the morphism into the
pullback induced by the morphisms u : k — b and 0 : k — ¢/, then « is the kernel of fs.

Secondly one shows that, if in the pullback square

¥ (3.7)

lﬁl 102
ay

b——c

a; is epi (respectively mono), then B2 has to be epi (respectively mono). Combining (3.6) with

(3.7) for the epi case, gives the result. =

Lemma 3.2.80 (Schanuel’s Lemma) Let k — p —» m and k' — p' - m be two short exact

sequences in an abelian category and let p and p’ be projective objects. Thenp ® k' = p’ ® k.
Proof. Using Lemma 3.2.79 twice one can construc the following commutative diagram

IT — IT

k>——q —p'

k>———>P ——»m
with exact réws and columns. Since p and p’ are projective, then,‘ using a similar argument as

in Homological Algebra, one can see that the exact sequences involving ¢ must split and then

from Remark 3.2.77 we have that p@ k' 2 ¢~ p' @ k. m
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Before we prove the generalized Schanuel’s Lemma for abelian categories, we give a number

of preliminary results. First we give below Proposition 13.3.4 of [93].

Proposition 3.2.81 In abelian categories finite coproducts of exact sequences are ezact. Here

we define the coproduct of two sequences

o —F Ayl — O —F Q] — ...
and

o = by — by — by — ..

to be the sequence
vee. = Q41 D bn+1 — 0 ® by — A1 Dby — . .

Corollary 3.2.82 The coproduct of finitely many finitely generated objects in an abelian cate-
gory is finitely generated.

Proof. It is enough to prove the claim for any two objects. Let a and b be two finitely

generated objects and
n
Dgi—»a
i=1
and
o

. —» b,
ji)lgg -

Remark 3.2.77 implies that we have the following exact sequences
n
Bgi—a—0
i=1

and

m / ’
j=1 »

n m ’
Dgi|D| Dgj) —adb—0
i=1 j=1

is still exact and then again from Remark 3.2.77 we get that

n m '
Dg)®| Dgj)—add
i=1 j=1

is epi and therefore a @ b is finitely generated. =

Their coproduct
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Lemma 3.2.83 Let 0 be a null object for a category A and let a1 and a be two objects. Then
the diagram

p_p.2_>a,2

SO

a] —— ()

is a pullback if and only if p is the product of a1 and as.

For the proof see Lemma 17.6 of [75]. Note here that, if the category A is in addition

additive, then from Theorem 3.2.73 we have that p is also a coproduct of a1 and as.

Corollary 3.2.84 In an abelian category A with a null object 0, for any biproduct diagram

P P2
a adb b

i1 i2

the projection p2 : a @ b — b is an epimorphism. In particular,
0b=b.
Proof. From Lemma 3.2.83 we can see a @ b as part of the pullback diagram

a@b—”i*b

T

a—()

But now a — 0 is epi as there is exactly one arrow from 0 to any other object of A; therefore
from the second part of the proof of Lemma 3.2.79 we have that ps is epi. To see the second claim,
put in the above diagfa.m a = 0 and then again from Lemma 3.2.79 the projection py : 06b — b
is mono. On the other hand from the definition of a biproduct, ps is a retraction, hence there
is B: b — 0@ b such that ps8 = 1;. It follows that pafp; = 1pp2 = p2 = palogs. Since pg is

mono, we have that Bp2 = logs, therefore py is an isomorphism. =

.
Lemma 3.2.85 (Generalized Schanuel’s Lemma) Let

O0—-ppn—pn-1—..—p—m—0

and
0— pp — Py — . — pp — m — 0

be exact sequences in an abelian category A and p;, p} are projective for i <n — 1. Then

PDD, PP O D . PO DD DD D ... .
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Consequently, if for i < n—1, p; and p} are finitely generated with respect to some set of

generators of A, then py is finitely generated if and only if pl, is such.

Proof. We use induction on n. When n = 2, the result follows from Schanuel’s Lemma.
Let k (respectively k') be the kernel of pn—3 — pp—3 (respectively pj, o — p,_3). By the
induction hypothesis we have

k@D, 2®Pn-3. = kK Opra®p) 3.
Let
4= Pz ®Pn-3...
and
! '
9 =pn2DP,_3--
The following two exact sequences
0—pp —p10¢—k®g—0
and
0—p, —ph 107 —kK&d —0
are obtained from
0 —pp—pp1—k—0
and
0—p,—p, , —k —0
respectively, by taking the coproduct of each with the exact sequences
lq ! lql '
0—0—qg—¢qg—0and0—0—¢ —q —0
and then applying Proposition 3.2.81. We can then apply Schanuel’s Lemma to obtain
Pa®P 1 ® P, OPa-10¢.

For the last part; if for example pl,, p,_1 and q are finitely generated, then from Corollary
3.2.82 pl, @ pn—1 @ g is finitely generated. Since the isomorphisms are epi (see Exercise 5.1.5
of [93]) then it follows that p, & Ph_1® ¢ is finitely generated. On the other hand, Corollary
3.2.84 implies the existence of an epi p, ® ph_1®¢ —» p, which finally proves that py, is finitely

generated. ®

The following definition is the restriction of Definition 7.7 of [82] to the category Add(A, Ab)
which is Abelian from Proposition 3.2.76.
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Definition 3.2.86 Let A be an additive category and B € Add(A, Ab). A projective resolution

of B is an exact sequence
wi— Ppy1 — P, — P11 — ...— B — B —0,

with all P; projective objects.

The following theorem will play an important role in the next sections.

Theorem 3.2.87 A sequence

Bn %
Qri1 28 Qn 2 L 2 Q1 2 @ 2 B — 0, (3.8)

in Add(A, Ab) is ezact if and only if the sequence of abelian groups

Qnr1(@) 25 Qnl@) 23 .. 22 Qu(a) 25 Qola) 23 B(a) — 0,

is ezact for every object a € A.

Proof. We argue by induction on the length of the sequence. If the length is 3, then the
claim is true from Proposition 3.2.76. If K — Qg is the kernel of Qo o, B, then we have the

short exact sequence

0— K 5 Qp -2 B—0. - (3.9)

The exactness of (3.8) implies that there is an epi Q1 -5 K such that

31 = KE. _ (3.10)

Therefore the exactness of (3.8) is equivalent to the exactness of (3.9) together with the exactness
of the following

6n
Qni1 28 Qn 20 2,0, S5 K — 0.

By induction hypothesis we have that they are equivalent to the exactness of
L]

0 — K(a) =% Qo(a) 23 B(a) — 0
and
. an+1,a On,a 82,0 [
Qur1() ™5 Qu(a) 25 .. 22 0, (a) 22 K(a) — 0,

for every a € A. Using (3.10), we can now splice the two last sequences to obtain the exactness

of

Qni1(@) 25 Qu(@) 25 .. 25 Qi(a) 2 Qo(a) 25 B(a) — 0

as desired. =
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Definition 3.2.88 Let C be an additive category which has a null object. With the notations
of Definition 3.2.53, two chain transformations f, g : (a,0) — (b,0) are said to be homotopic,

denoted by f = g, if there exists a family of morphisms
h={hn:an— bpy1|n€Z}

such that
5'n+1hn + hn—lan = fn -

The following can be found in [82] and will play an important role in the next sections.
Proposition 3.2.89 Let C be a pre-Abelian category which has enough projectives. Then any

object in C has a projective resolution which can be chosen by a choice function. Ifb, ¥ € C

and h:b— b, and if

i 9 On On-1
(2.0): = pn 2 py g 2 2apg b0
/ . Ont1l 4 én / Sn-1 1 7 '
(p,l;). —— Pn 7 Pp— 1“—*~~-—’P0“*b_’0

are projective resolutions, then there is a chain transformation f : (p,8) — (¢, 6) such that

f_1=h. Any two such chain transformations are homotopic.

Let C be a pre-Abelian category with enough projectives and let

Ont1 8 On—

(a,8): =5 an+1——>an—"—§... & aoix—»o
On+1 n

(5,6): "B by 22p, 2 2 0

be two projective resolutions of z € C. Denote by ¢ : ¢ — x be the identity morphism on z.
Proposition 3.2.89 tells us that ¢ can be extended into a chain transformation f : (a,8) — (b,9)
such that f—1 = ¢ In a similar fashion, one can construct g : (b, §) — (a,d) such that g_; = L.

It is easy to see that

gfz{gnfn:an’—"an‘TlEZ}

*
and

f9={fngn:bn — bn|n € Z}

are both chain transformations of (a,d) and (b, §) respectively such that g_1f-1 =¢= f_19_1.
Proposition 3.2.89 implies that gf and fg are homotopic with the identity chain transforma-
tions of (a,d) and (b,9) respectively. We call such chain transformations, chain equivalences.
Whenever there are two projective resolutions (a,8) and (b,d) of z and chain equivalences
f:(a,8) — (b,8) and g : (b, 0) — (a,0), we call (a,8) and (b, §) homotopically equivalent.

The following is immediate.
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Lemma 3.2.90 Any two projective resolutions of some x € C are homotopically equivalent.

Proposition 3.2.91 If j : a — p in C is an epimorphism and p projective, then j is a
retraction. If C has a null object, then a coproduct ®;crp; is projective if and only if each p; is

projective.

See for the proof Proposition 10.4.6 of {93]. As a consequence of this we have that any co-
product of representables C(c, ) € Add(C, Ab) is projective. Our intention is to find conditions
under which a category of additive functors has enough projectives. Corollary 10.5.5 of [93]
gives such conditions and can be obtained immediately from Proposition 10.5.4 of [93]. We give

below both of them.

Proposition 3.2.92 Let C be a category with coproducts (and thus an initial object). A set G
of objects is a generating set if and only if for every ¢ € C, the following holds true: For

Gc = @® is the domain of e
¢ eegggC(g,c)ge, Ge f e,

the morphism m; : g — ¢ defined by mu, = e is an epi.

Corollary 3.2.93 A category with coproducts and a generating set of projectives has enough

projectives.

Proposition 3.2.94 For every additive category C, the category of additive functors Add(C, Ab)

has enough projectives.

Proof. Lemma 3.2.45 implies that Add(C, Ab) has coproducts. Theorem 3.2.67, Proposi-
tion 3.2.71 and Corollary 3.2.93 imply the result. =

The consequence of this proposition is that we can apply Proposition 3.2.89 to compare

*
between resolutions of functors from Add(C, Ab).

3.3 Tensor Product of Functors

In this section we will define the tensor product ®¢ of two functors F € Add(C,Ab) and
G € Add(CP? @z D, Ab) and prove a number of properties.
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3.3.1 The Definition of the Tensor Product

Definition 3.3.1 Let C and D be two additive categories and let F' € Add(C,Ab) and G €
Add(CPP ®z D, Ab). We define the tensor product of F' and G, F ®c G as a covariant functor
from Add(D,Ab) defined on objects by

(Foc )@ = ( 8, (PO ezC(e d)) /M,

where M is the subgroup generated by elements z ® G(y°%P,d)(y) — F(v)(z) ® y for every
v € C(ey,¢2), € F(e1) and y € G(c2,d), and on morphisms by the group morphism

(Feca)®): (8P 82Gled) M — (g (P 82.Cled) ) M

for every & : dj — dg, which sends the class of each element z ® y € F(c) ®z G(c,d1) to the
class of £ ® G(c,8)(y) € F(c) ®z G(c,d3).

In the future, the elements of the quotient group (@ (F(c) ®z G(c, dl))) /M will be de-
ceC
noted either by z + M or by T where z € (BC (F(c) ®z G(c,d1)).
cE
To make sure that (F ®c G)(J) is well-defined and is a homomorphism, it is sufficient to

show that it is induced from the homomorphism

8. (F(c) ®z G(c,d1)) — 8. (F(e)®2 G(e, d2)

arising from G(c,d) with & : d1 — da. For this, we need to show that (F ®c G)(0)(M1) C M.
Let = ® G(7°PP,d1)(y) — F(7)(z) ® y be a generator from M;, where z € F(c), y € G(v(c),dy)
for some morphism 7 : ¢ — ¥(c) in C. Now z ® G(7??, d;)(y) will be mapped to

z @ (G(c,8) o G(v#,d1))(y) and F(7)(z) ® y to F(7)(z) ® G(v(c),8)(y). But

z ® (G(c,9) o G(Y"P,d1))(y) — F(7)(z) ® G(v(c), 8)(y) =
z ® (G(Y7F,d2) 0 G(7(c), 8)) (= F(7) (=) ® G(7(c), 0)(v)

from the commutativity of G(_,d) with G(°PP, ). On the other hand,
z® (G(Y",d2) 0 G(7(c), 8))(y) = F(7)(z) ® G(7(c),5)(v)

is equivalent mod(Mz) to z® (G(YP?,d2) 0 G(v(c),))(y) —z @ (G(y°PP, d3) 0 G(7(c), 8))(y) = 0.
'Lastly, using the fact that G is a functor, one can check easily that F ®c G is a functor too.
Since |

G(c,01 +82) : G(c,d) — G(c,d")
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is defined by
y+— G(c,61)(y) + G(c, 82) (v),

(because G is additive), then passing to quotients, we get

(F ®c G)(01+ 82)( 8z ) = (F ®¢ G)(61)(z Bz y) + (F &¢ G)(92)(z Bz v),
thus proving the additivity of F' ®c G.
The following will be needed to prove Theorem 3.4.5.

Lemma 3.3.2 Let C and D be two additive categories and let F € Add(C, Ab) and
G; € Add(CP? @z D, Ab) with ¢ € I. Then,

(Fec(®G:) & o (FocG).
iel iel

Proof. From Lemma 3.2.45 and Definition 3.3.1 we have on the one hand that

(Fecieo) @= (g, (Fo1engoica)) me,

where M® is the subgroup generated by elements z® ( EBI Gi)(v°"P,d))(y) — F(7)(z) ®y for every
i€
v € C(cy,ca), z € F(cy) and y € ('GEBIGi(Cz’d))’ By definition (see Lemma 3.2.45)

(& G)(v™,d) = (& Gi(v"", d)).
el iel

On the other hand, again from Definition 3.3.1, we have

greccid = g,((

0, (FO826i(e.d) ) /M)

ceC
where M; is the subgroup generated by elements z @ G;(Y??,d)(y) — F'(7)(z) ® y for every
v € C(c1,¢2), € F(c1) and y € Gi(cz, d).

The isomorphism

h: cGEBC (F(C) ®z (%Gi(C, d))) — @ (

i€l

® F(c) @z (Gilc, d))) ;

ceC

defined on finite sums by

h <Z (x ®z ZGi(c,d)» = ZE(:}C ®z Gi(c,d)),

c

induces a morphism
h* (F Rc (.65 Gi)) (d) — ® (F ®c G;)(d)
i€l iel
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defined by

(z@Za,-) +M®+— " (z®0a; + M),

jeJ jeJ
where J C I is finite and a; € Gj(c, d). One can show easily that h* is an isomorphism, proving

that for every d € D,
(F ®c (®Gi))(d) = & (F ®c G:)(d).
el el

Also h* is natural in each d € D which proves the claim. =

3.3.2 A Universal Property for the Tensor Product

Given three additive functors F' € Add(C, Ab), G € Add(C°?? @z D, Ab) and H € Add(D, Ab)

and let d € D be a fixed object. We say that a map 94 : ch(c) x G(c,d) — H(d) is bilinear
C

if for every c € C,

Ya((x,y + ")) = Yal(z,9)) + Ya((z,y")),Vz € F(c) and Vy/, y" € G(c,d),

Ya((@' +2",v)) = va((#',v)) + ¢a((z", 1)), Vo', 2" € F(c) and Vy € G(c,d),

and

Ya((z, G(YPP, d)(v))) = Ya((F(7)(z), v)),

for every ¢y, cp objects in C and every z € F(c1), v € C(c1,¢2) and y € G(cz,d).
Let F € Add(C,Ab) and G € Add(C°P? @z D, Ab) and d € D a fixed object. Let
F = & Z(F(c) x G(c,d)),
ceC
where Z(F (c) x G(c,d)) is the free abelian group generated by F(c) x G(c,d), and
i U F(e) x Gle,d) —F

L
be the inclusion map. From Definition 3.3.1 we have that (F ®c G)(d) is obtained from F by

factoring it by the subgroup B generated by the elements of the sets

Ueec{i((z, ¥ +9")) — i((z,¥)) - i((z,¥")) | Vz € F(c) and Vy/, ¢" € G(c,d)}

and

Ueec{i((z +2",9)) =i((&,9)) = i((z",v)) | V2!, 2" € F(c) and Vy € G(c, d)},
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together with elements of the form:

i((z, G(Y"P, d)())) — i((F(7)(2), ),

for every cj, cg objects in C and every z € F(c1), v € C(e1,¢2) and y € G(cp, d).

We let pq = poi where p: F — F/B is the canonical epimorphism.

Lemma 3.3.3 Given three additive functors I € Add(C,Ab), G € Add(C°?? @z D, Ab) and

H € Add(D, Ab), and let d € D be a fized object. The pair (UCF(C) x G(c, d),,ud) has the
ce

universal property: for every bilinear map g : gCF(c) x G(c,d) — H(d), there is a unique

homomorphism 64 making the diagram

Y (Fle) x Gle,d) (g (FOeCEd)) M B

-
-

P 04

H(d)

Ve

commutative.
Proof. We consider the commutative diagram

cLeJC (F(c) x G(c,d)) i

7/
Ve

e
Y4 )

H(d)
where j is a morphism such that j o ¢ = 4. The existence of j comes from the freeness of F.
Using the fact that ¥g is bilinear, one can easily see that B C Kerj and hence j induces a
morphism 6 : /B — H(d) such that § o p = j. It follows that the triangle (3.11) commutes -
since fop = Gopoi=joi= 1. To show the uniqueness of 6, we suppose by the way of
contradiction that there is another 6’ making (3.11) commute. Every generator ¢t € (F ®@¢ G)(d)

is expressed in the form .
t = pa((z,v)),

where u = (z,y) € F(c) X G(c,d) for some ¢ € C. Therefore, 04(t) = Oapa(u) = Ya(u) =
Orpua(u) = O)(1).
3.3.3 Functorial Properties of the Tensor Product
We prove in this section that the tensor product can be regarded as an additive functor
Q®c : Add(C, Ab) ®z Add(C’? @z D, Ab) — Add(D, Ab)
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defined on objects by

(F,G) — F®cG.
It remains to define it on morphisms and then check for the functorial properties of it. Since
every morphisms a®z8 : (F1, G1) — (F2,G2) equals with the composition (a®z1g, (15 ®z8),
or with (1, ®z 8)(a ®z g, ), then it is sufficient to make the definition for morphisms of the
form 1 ®z 8 and a ®z lg.

Using the universal property of Lemma 3.3.3, we show that, if 8 : G — G2 is a morphism

in Add(C°P? ®z D, Ab) and F € Add(C, Ab), then there is an induced morphism
0:F®cG1 — F®cGa
in Add(D, Ab).
Let now G; and G2 be two functors in Add(CP? @z D, Ab) and
8 = {8(cq) | ¢ € Candd € D}

a natural transformation from G to Ga. If F' € Add(C, Ab) then for everyc € Cand d € D
one has an induced map

Fx8,
F()) x Gie,d) —5 F(c) x Ga(c, d)

and therefore by extension the map
YF(E) x e d) "y (Po) x Gale,d).
For j = 1,2 we denote the elements of ffc( F(c) ®2 Gj(c,d)) by
((z1 ®2 1), -, (2n Oz n)) Where (2; ®z ;) € F(c;) ®z Gj(ci,d) for i =1, ..., 7,
and the elements of (F ®c Gj)(d) by
((21 ®z 1), ..., (2 @z o)) + M;

where M; is the subgroup of c6{69«:(14_' (c) ®z Gj(c,d)) defined as in Definition 3.3.1.
Using the universal property of the tensor Q¢ G depicted in the diagram (3.11), we obtain

the following commutative diagram

Y (F() x Gi(e,d)) & (F®c G1)(d) (3.12)
U (F(c) x Ga(c,d) 364

[

!

l

|

|
\I
b2 '
Y

(F ®c G2)(d)
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with
ba: (FOcG1)(d) — (F&cG2)(d)

defined by
(21 ®z 1)y oons (70 Bz ) + M1+ ((21 ®2 Fc,a(@1)), -+, (2n ®2 Od(an)) + M2 (3.13)

Also we have that both uj and p2 o (BF X a(c,d)) are bilinear. That y; is bilinear follows from
the way it is defined. Let use check for convenience that the 3™ condition of bilinearity for

g = p2o (BF x 5(6,‘,,)) is satisfied. Let 2 € F(c1), v € C(c1,¢2) and y € Gi(c2,d). Then,
Ya(z, G1(Y*",d)(y)) = 2 ®2 8(c,,a)(G1(v"*, d)(v)) + Moa;
but the naturality of 0 implies that 8, 4)(G1(v°PP, d)(y)) = G2(Y°P?, d)(8(c,,4)(¥)) and therefore
Ya(z, G1 (Y, d)(v)) = 2 ®z G2(¥"", d)(0(cy,a) (¥)) + Mo
On the other hand
2 ®z G2(7°7,d) (00,0 ()) + M2 = F(7)(2) ®2 8(cy,0)(¥) + Mz = Ya(F(7)(2), ),

which proves the condition.

Next we prove that the family
{64 d € D}

is a natural transformation. For this we examine the following diagram with 6 : d — d’

\ ®
A/

z® a(c,d) (a)

(2,0)

(2,Ga(c, 8)(a)) z®G1(c 2@ G1(c,8) (@)

-
-
-
-

.

2 ® O(c,a)(G1(c,6)(a))

and (z, a) being for simplicity a vector with a single coordinate. The commutativity of the right-

hand side square comes from the fact that the family 9. 4y : G1(c,d) — Ga(c, d) is a natural

transformation and therefore, for every a € Gi(c, d), Ga(e, 8)(9(c,a)()) = Oc,ay(G1(c, 8)(a)).
In the future, we denote the induced morphism 8 by F ®c¢ 0.
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Finally, by using twice the diagram (3.12), one can show that for every d; : G2 — Gs,
8, : G1 — Gg and F € Add(C, Ab) we have that

F ®c 020, = (F ®¢ 9;3)(F ®c¢ 61),

which proves the functoriality of ®¢ in the second variable. Also (3.13) implies that for every
8,0 : G; — Gy we have that

Fec(0+d)=F®cd+F®cd,

which proves the additivity.
One can show in exactly the same way as above that ®¢ is an additive covariant functor in

the first variable, making thus ®¢ a covariant additive functor of two variables as claimed.

3.3.4 Tensoring Over Sequences

Let
On+2 Ont1 O, 8 8y
(A,a): I n+1——>An——>...—)A0——->A_1-—)O

be a sequence of functors in Add(C” @z D, Ab) such that §2 = 0. For every Y € Add(C, Ab)
we will denote by Y ®c A the sequence

Y®cd O +1

Y®con
— Y ®¢ Ant1 Y ®c An Bcd Yoch Y ®c 4o Yoch Y @c A1 — 0,

in Add(D, Ab) where 0, is induced from 8, for every n > 0.
As the following lemma shows, Y ®¢ A has the property that 6% = 0.

Lemma 3.3.4 Let fori=1,2,3, G; € Add(C°?? @z D, Ab). Suppose that in the diagmm
G-Lag 2o
we have 8"8' = 0; then for any F' € Add(C, Ab) in the induced diagram
(F&cGs) 2 (FacGy) 2% (Fec ),
we have (F ®c¢ 8")(F ©c 0') =0.

Proof. From the condition we have that 8”8 = 0 therefore, F ®¢c 8”9 = 0 since Q¢ is
additive. On the other hand F ®c 8”0 = (¥ ®¢ ") (¥ Q¢ a/) which implies that
(F®cd")(Focd)=0. =

We prove now the analogue of 111, Lemma 2.1 of [44] for the tensor product ®c.
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Lemma 3.3.5 Let

67) n
(A’a) . +2 il +1 A a1 On_1 . ) X O
and
6” n:
(B,): 2 Bop1 “8 B, By ML B x 0

two projective resolutions of the functor X € Add(C? @z D, Ab). Then, for every Y €
Add(C, Ab) and every d € D, we have that H,((Y ®c A)(d)) 2 Hn((Y ®c B)(d)) for every n.

Proof. From Lemma 3.2.90 there exist chain transformations

9={gn:Bp— A, |n> -1}

such that the compositions

gfz{gnfn:An_’Anan_l}
fg={fngn:Bn_’Bn|n2_1}
are homotopic to the identity chain transformations of A and B respectively.

It is easy to see that

={pn:Y Q®cAn — Y ®c B, |n> -1}

V={¥n:Y®cBn — Y ®c4n|n>-1} 1

are chain transformations, where on, = {p4, | d € D} and ¥, = {4 | d € D} are the natural
transformations induced by respectively f, and g,. In the case of ¢ for example, since for
every n > 0 we have that O,fn_1 = 6nfs, then (Y ®¢ 8p)pn_1 = (Y ®c O ®¢ fai) =
(Y ®c 6s)(Y @c frn) = (Y Oc 6n)pn.

Since ¢ and 9 are chain transformations, it follows that Vd € D,

va = {¢an : (Y ®c 4n)(d) — (Y &¢ Bn)(d) | n > -1}
i (3.15)
4= {¥an: (Y & Br)(dp — (Y ®c 4 (d) |n 2> -1}

are chain transformations, therefore there are induced homomorphisms
Can : Hnl(Y ®c 4)(d)) — Ha((Y ®c B)(d))
Yin : Hu((Y ©c B)(d)) — Hn((Y ®©c A)(d))

for every n > 0 and d € D. Using the fact that gf and fg are homotopic to the identity
chain transformations of (A,0) and (B, d) respectively, one can easily show that @ and ¥y are

respectively homotopic to the identity of Y ®c A, and Y ®¢ B, and therefore for every d € D
3y
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@a01a and 4o pg are respectively homotopic to the identity of (Y ®c An)(d) and (Y ®c Bn)(d).
Now as in III, Lemma 2.1 of [44] we can show that ¢} o ¢}, and ¢}, o9}, are the identity

automorphisms of the groups Hy((Y ®c A)(d)) and H,((Y ®c B)(d)) which means that these

groups are isomorphic. ®

Proposition 3.3.6 If X is a projective functor in Add(C’P? ®z D, Ab), then for every
Y € Add(C,Ab) and d € D we have that H,((Y ®c A)(d)) = 0 where n € N and A is any

projective resolution of X.

Proof. From Lemma 3.3.5 we are free to chose the projective resolution of X. Let just take
it to be

w0 —0— XX 0

where ¢ is the identity, and then the following is exact
Y®clx
w0 —0—0Y®X —Y®:X—0

because the induced Y ®¢ 1x is again the identity, which proves the claim. =

3.4 Homological Finiteness Conditions for Small Categories

In this section we will give the homological finiteness conditions left (respectively right)-FPn
and bi-FP,, for small categories as natural generalizations of their counterparts for monoids and
relate them with a new finiteness condition called f-FP, which is introduced by Malbos in [67)

but called there FPy.

In what follows we will deal with categories Add(A, Ab) which we denote for short by AbA,

In the future we take the generators of Ab® to be the representables A(a,.) with a € A.

Definition 3.4.1 Let n > 0 be an integer and A an additive category. An object B in Ab?is

. . )
said to be of type FP, if there is a partial projective resolution in AbA
P,—P,y—..—P— B—0,

such that P, is finitely generated for 0 < ¢ < n.

The following from [67] holds true.
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Lemma 3.4.2 Let A an additive category. For each B in Ab? and n > 0, the following are

equivalent:

1. there is a partial resolution F,, — ... — Fy — B — 0, where each object F; is free

(in the sense of Definition 3.2.40) and finitely generated,
2. B is of type FPy,
3. B is finitely generated and for every partial projective resolution
P2p % g2 B s,
with k < n and each P; finitely generated, then Kerdy is finitely generated.

Proof. The proof runs the same as the proof of Proposition 4.3 of [12] for modules and uses

Lemma 3.2.85. m

3.4.1 Small Categories of Type bi-FP,, and left (right)-FP,

We will generalize in this section the notions of bi-FP,, and left (right)-FP, monoids for small
categories.

Define ZC to be the functor ZC : ZCPP ®7 ZC — Ab where ZC(p, q) is the free abelian
group generated by C(p,q) and if (¢ ® B) : (p,q) — (¥, ¢') is an arrow in ZC? ®z ZC, where
o € CoPP(p,p’) and B € C(g,¢'), then ZC(a ® B) : ZC(p, q) — ZC(p',¢') is defined by sending
every arrow v € ZC(p, q) to Bya’™ € ZC(p',¢).

Define the trivial left (respectively right) ZC-module Z, as the additive functor
Z : ZC — Ab (respectively Z : ZC?? — Ab) by sending each object of ZC to the group Z

and each morphism of C to 1z.

Definition 3.4.3 A small category C is said to be of type

*
1. bi-FP,, if the functor ZC is of type FP, in AbZC™”®z2C

2. of type left-FP, (respectively right-FP,,) if the trivial left (respectively right) ZC-module
Z is of type FPy in AbZC (respectively AbZC™).

Remark 3.4.4 In the case of monoids, conditions bi- FP,, and left-FP,, (respectively right-FP,)

just defined coincide with those defined in Section 1.9 for monoids. Indeed, since a monoid S is

a category with a single object x, then the functor ZS is just the (ZS,ZS)-bimodule ZS. The
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value at (*, ) of the only representable (ZS°P? ®zZS)((*, *), (-, -)) is the free (ZS, ZS)-bimodule
7.5°PP ®7 7.S; therefore every free resolution in AbZ577®2ZS of the functor ZS can be seen as

a free resolution of the (ZS, ZS)-bimodule ZS. Similarly one can discuss the left or right case.
Theorem 3.4.5 For every small category C the following implication holds true:
bi-FPy, = left (right)-FP,,.

Before we prove the theorem, we prove the following proposition which will be useful in the

proof of the theorem.

Proposition 3.4.6 Z Qzc (ZC? ®z ZC)((a,b), (-,-)) = ZC(b,.) where Z is the trivial left
ZC-module Z.

Proof. First we prove that, for every d € C, there is an isomorphism
fa: (C?CZ(C) ®z (ZCPP @z ZC)((a, b), (c, d))) /M — ZC(b,d), (3.16)
where M is the subgroup generated by the elements
2 ® (ZC @z, ZC)((a,b), (v??, d))(y) — Z(7)(z) ® ¥

for every x € Z(c), v € C(c, ) and y € (ZCP? @z ZC)((a,b), (¢, d)).

For every fixed ¢ € C and d € C, we can write (ZCP? @z ZC)((a,b), (c,d)) in the form
ZCP(a, c) ®z ZC(b, d) and use the universal property of Z ®z ZC"(a, c) ®z ZC(b, d) presented
by the following diagram

Z x ZCPP(a, c) x ZC(b, d) Z ®z ZCPP(a, ¢) ®z ZC (b, d)

ZC(b, d)

] (z,;n,.a,.,;) NENE

for every z € Z, a; € C(a,c), n; € Z and B € ZC(b,d). It is obviously a trilinear map,
therefore there is ¢ defined by

0 (m (z) 0s)- (Z) s
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which makes the diagram commutative. This diagram induces the diagram

CEEBC (Z x 2C°PP(a,c) x ZC(b,d)) i g)c (Z ®z ZCPP(a,c) @z ZC(b,d))
MA %
ZC(b, d)

where ®u, ©6 and ®y are linear extensions of respectively p, § and .
We claim that M C Ker(@0). For this we need to check whether ®6 vanishes on the
generators of M. Since Z is the trivial functor and since (ZCP? @z ZC)((a,b), (v°*?, d)) acts

only on ZC°PP(a,c'), we can write the generators of M in the form

z@YPPa®@fB-zRa®f, (3.17)

where o € ZCP(a,c’), B € ZC(b,d) and v € C(¢, ).
Now it is straightforward that (©6)(2®7PPa®B—z®a®B) = 0. The fact that M C Ker(96)

implies that @@ induces a morphism
fa: <ce€9CZ ®z ZC(a, c) ©z ZC(b, d)) /M — ZC(b, d)
such that for the generators 1 ® a ® 8+ M with o € CP(a,c) and 8 € C(b, d) we have:
fil@a®f+M)=4.

"We need the following claim.

Claim 1 For every ¢ € Z, o € CPP(q,c) and B € ZC(b,d), the element Q@ a Q B € Z ®z
ZCPP(a,c) ®z ZC(b, d) is equivalent mod(M) with « Q@ id, ® B € Z ®z ZC°"(a, a) ®z ZC(b, d).

Proof. We can write z ® a® B =z ® YPPid, ® B where v € C(c,a) is such that yPP = q.
From (3.17) z @ ¥°PPid, ® B is equivalent mod(M) with z ® id, ® 8 proving the claim. m

The claim and the fact that
*

za®f=z.(10aQp)

for every x € Z, implies that every generator of ( ® Z ®z ZC%(a, c) @z ZC(b, d)) /M has the
ceC
form 1 ® id, ® 8+ M for some 3 € C(b,d).

We also define a morphism

gda: ZC(b,d) — ( GEBCZ ®z ZCP(a, c) @z ZC(b, d)) /M
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by
Br—1®id, @B+ M

and see that f; and g4 are mutually inverse of each other which finally proves the isomorphism
(3.16).
As we saw in Definition 3.3.1, the morphism 4 : dj — dj induces the group morphism

(Z @zc (ZCPP ©2 ZC)((a,b), (- -)))(d1) — (Z ®zc (ZCPF ®2 ZC)((2, ), (- -)))(d2)

defined on generators by

1Qide® B+ M — 1 ®id, @ 68 + M,.
On the other hand,
fa,(1®id. @ B+ M) =25

and

fd2(1 ®ida ®6ﬂ + M2) = 66’

which imply that
ZC(b, 6) ° fdl = fd2 ° (Z Qzc (ZCOPP ®z ZC)((G') b)a (-, -)))(6)

This means that fg in natural in every d € D. Therefore we have the isomorphism Z ®zc

(ZCP ®7 2ZC)((a,), (- -)) = ZC(b,.). m

Proof of Theorem 3.4.5. Since C is bi-FP,,, then by Lemma 3.4.2 there exists a free

finitely generated partial resolution of the functor ZC € ADZCPPeLZC,

ZCP ©7 ZC)((anir bri), (-, ) 225 .. 2 °
ign( ®z )((am n )’( a-)) .., zgo(zc PP ®z ZC)((G'Oi’ bO'i)a (—a -))

[3/
— ZC(.,.) — 0; (3.18)

we want to construct a projective finitely genefated resolution of the trivial functor Z € AbZC

By repeating the argument of the proof of Proposition 3.4.6, one can see that tensoring

ZC € AbZC?®2ZC on the left by the trivial module Z € AbZC yields Z € AbZC. Again
from Proposition 3.4.6 if we tensor on the left by the trivial functor Z each of (ZCP? @z

ZC)((asi, bsi), (- -)) for some fixed 0 < s < n obtain ZC(by,.). Lemma 3.3.2 implies that for
‘every d € C

@ o @ (BCT 02 20 (os b (- D)D) @ Z62e (2C™ 822C) (b ()@
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for all 0 < k < n. Therefore if we tensor through on the left of (3.18) by Z and evaluate all
the functors in some d, we obtain from Lemma 3.3.4 and above, the chain complex of abelian
groups

® ZC(bni, d) Z3chn | Zech  ZC(bos, d) Zach g 0 (3.19)
i€ln 1€lp

The last thing is to show that (3.19) is exact. To do this, we will obtain (3.19) is another way
which will allow us to use Proposition 3.3.6.

Firstly, for every fixed representable (ZCP? @z ZC)((a,b), (-,-)) € ABZEPEZC 41 & fixed
d € C, we let the functor R(gp.4) € ADBZC?? 1o

Rpa) = c (?d)ZC"pp (a,-)

which is projective since it is a coproduct of projectives in AbZ®” | Note here that for every
ceC,
R(ap,0)(c) = (ZCPP ®z ZT)((a, b), (¢, d)).

Secondly, for every fixed d € C, we let Sy € ADBZC? 1o
84 =2ZC"(d,.),

which is again projective in AbZC™ | Note again that for every c € C,
S4(c) = ZC(c, d).

The resolution (3.18) induces a projective resolution of Sz in AbZC™” as follows:

0"" 8 ¥ .
9 5. =5 9 Ragiboud) 24 54— 0 (3.20)
el

ignR(a"“b"“
where for every 0 <4 < n, 8; 4 is the natural transformation induced by 8;.

If we tensor (3.20) on the left by the trivial module Z € ADbZC we obtain (3.19) and then we
apply Proposition 3.3.6 by taking Y =Z ¢ AbZC D=7, X =S, and (3.20) as the resolu;ion

of X, obtaining that (3.19) is exact. m

3.4.2 Small Categories of Type f-FP,»

In [67] Malbos has defined a new finiteness condition for small categories called FP,,. We will
give the definition for it but, as we explained in Section 3.1, we will change its name to f-FP,,.
Also we will relate it with the other finiteness conditions studied in the previous section: bi-FP,,

and left (right)-FPp.

In what follows we will write the composition of two arrows u:a — b

with v : b — ¢ as uv instead of the standard notation vu.
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To define f-FP,,, we need the following.

Definition 3.4.7 Let C be a small category. The category of factorizations FC in C, has
objects the set of morphisms in C and a morphism in FC from w to W' is a pair (u,v) of

morphisms in C such that the following diagram commute in C:

q—>p

bk

¢ <7
The composition is defined by pasting such squares: if (u,v) : w — ' and (¥/,?) : W' — "
are morphisms in FC then (v, v')(u,v) = (v'u,vv'). The triple (u,w,v) is called a factorization

of W'

Definition 3.4.8 An abelian natural system on C is a functor D : FC — Ab. If
(u,v) : w — ' is a morphism in FC, then its image D(u,v) : D(w) — D(w') will be denoted

shortly by u.v*. It extends uniquely to an additive functor D : ZFC — Ab.

Recall from Example 3.2.58 that ZFC is the free additive category on F'C.
The trivial natural system Z : FC — Ab is the functor, defined on objects by Z(w) = Z,

and for each morphism (u,v) we let u,v* = 1z . It extends uniquely to an additive functor from

ADZFC which we denote again by Z and call the trivial natural system.

Definition 3.4.9 A small category C is said to be of type f-FPy if the trivial natural system
Z is of type FPy in AbZFC,

Theorem 3.4.10 If a small category C is of type f-FPy, then it is of type bi-FP,.

Proof. From Lemma 3.4.2 we may suppose that
an 61 30
® ZFC(u,.) = .. — @ ZFC(u,.)—Z —0
uely, UEU()
is a finitely generated free partial resolution of $he trivial natural system Z € Ab%FC, From
Theorem 3.2.87 this is equivalent with the exactness of the following sequence of abelian groups

anw W w
® ZFC(u,w) 2% .. 2% & ZFC(u,w) 2% Z(w) — 0,
u€lUy uelp

for any w € FC. It follows that for every (ci1, c2) € ZCP? ®zZC, the sequence of abelian groups

® o ZFC(yw) oy Oam o0 o ZFC(u,w)
weC(ec1,c2) w€UR 5 w€C(e1,c2) u€lp (3 21)
Wec(01,02)
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is exact, where for every s = 0,1,...,n and (c1, c2) € ZCPP ®z ZC, we have defined

Os,w

0 = &
3,(C1,C2) UGC(Cl,CQ) 8y

to be the extension of the maps 8., with w € C(c1, ¢2) on the direct sum

@ ® ZFC(u,w).
weC(cy,c2) ueUs

We claim that O5,(¢,c,) is natural in (ci,c2). Indeed, if y® 6 : (c1,62) — (€),¢)) is a
morphism in ZC%P ®z ZC, then it induces a map
weC?zl,cz) ug?fs ZFC(w,w) — w’EC%'l,C'z) ugaUa ZFC(u, )
by
(a, B) V— (YPPa, B6)

for every w € C(cy, c2) and every generator (a, 8) € (BU ZFC(u,w). But the restriction of this
uel,

map on 6}?] ZFC(u,w) for some fixed w € C(cy, ¢2) is the same as the map
uelUs

ZFC !
ug%s (u,w) — ug?]sZFC(u,w )

induced by (y??,6) : w — w' = 4°PPy§. Since from the definition of Os,(c1,c0)» Tor every

w € C(e1,¢2), 5 (caye) | & ZFC(uw)= 0s,, and since Oy, is natural in each w € C(cy,¢c3), we
ueUg

obtain the naturality of 9, (¢, ;) as claimed.

For every s = 0, 1,...,m we will construct finitely generated projective functors P; € ADpZCPPezZC

and then introduce a resolution

On

P, 2 p e —0

of ZC in AbZC”®2ZC 1roving the theorem.

Define, for every s =0,1,...,n,
P= @ @C™ oz L0)((w,w), ()

which is projective being a coproduct of representables in ADbZCPPOZC gnd is obviously finitely
generated.
Before we start defining transformations §, for every s = 0,1, ...,n, we note that for every

(c1,c2) € ZCPP ®7 ZC and u € FC there is an isomorphism

H(e1,e2) : wEC%z,CQ)ZFC(u, w) —* (anpp Qz ZC)((L'U., Tu), (Cl, 62))
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defined by
(0, ) — P @ B
for every w € C(c1,c2) and every (o, 8) : u — w = auf3. This is natural in (c3, cz) too. Indeed,

if y® 4 : (c1,¢0) — (¢}, ) is a morphism in ZCPP ®z ZC, then it induces a map

® ZFCu,w)— & ZFC(u,w")
weC(e1,c2) w'€C(ch,c5)

by
(a, B) — (Y7o, B5)

for every w € C(c1,c2) and every generator (o, 8) € @U ZFC(u,w). It induces also a map
uel,
(ZCPP @z ZC)((vu, Tu), (c1, c2)) — (ZCPP @z ZC)((1u, Tu), CAY))
by
a® fr— ay® pé

for every a ® B : (vu,7u) — (c1,¢2). Now the naturality of B(es,c2) 10 (€1, ¢2) follows easily.

For every s = 1,...,n and (c1, cz) € ZCPP @z ZC we define

vEU4--1

63,(01,02):U?U3(ZCOPP ®z ZC)((w, Tu), (c1,¢2)) — @ (ZC @z ZT)((tv,7v), (c1, ¢2))

to be
Hs—1,(c1,c2) © 6.s,(cl,cg) ° p’s—,%cl,cg)’

where

Poeren) " ey myubn ) T & (BET @2 BC) (e ), (o0, 2)

is the extension of fi(cy,c,)- The morphism g (., ..} is natural in (c1, c2) since it factors through

naturals.
Define »
boeren @ (ZC™ ®22C)((vus ), (1, 2)) — ZC(er, )
by
H1,(e1,e2) © D0,(e1,62) © 15 (o1 c0):
where

—1.(c1.co) - Z
H-1,(c1,c2) wEC(ezl,cz) (w) — ZC(CI,C2)
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is the natural isomorphism in (¢1,¢2) which sends the generator of Z(w) to w € C(c1,¢2). Again
80,(c1,c2) 18 natural in (e1,¢2)-

Since, for every s = 1,...,n, we have 63_1’(,:1@) o 88’(61,02) = 0, then it follows that
68—1,(01,62) ° 68,(01,62) =0.

It remains to show that for every (c1,cz) € ZCP ®z ZC the sequence of abelian groups

J )
ZCPP @z ZC)((Lu, mlerea) Ol
ueé%,.( ®z ZC)((tu, Tu), (c1,¢2)) —" . =5 US?J(,(ZCOPP ®z ZC)((wv, Tv), (c1,¢2))

60'(‘31“52)

ZC(c1,c3) — 0

is exact. But this is straightforward from the definition of morphisms &, (, .,) and from the

exactness of (3.21). ™
Combining Theorem 3.4.5 with Theorem 3.4.10, we obtain immediately the following.

Corollary 3.4.11 If a small category C, then the following implications hold true:

C is of type f-FP, = C is of type bi-FP, = C is of type left (right)-FP,.

3.4.3 Monoids of Type f-FP,

As we explained in the introduction, we can consider every monoid S as a category with a
single object; hence all the notions and results of the previous sections apply for monoids. The

following reveals an interesting property of the S-graded resolutions of ZS.

Theorem 3.4.12 If the monoid S is of type bi-FP, and the corresponding free resolution is
S-graded, then S is of type f-FPn. In particular, monoids which are given by a finite complete
presentation are of type f-FPp.

Proof. Suppose that there is a free finitely generated S-graded resolution of ZS

®(ZSPP ®z ZS) 22y ... ovp 83 0
& 2 Z5) > B@S°Y ©2 L8) = O(Z57 @ L5)

é
=1 O(ZSTP ®2.25) s LS @7 25 25 — 0
as explained in Definition 2.2.33.
As discussed in Remark 3.4.4, the free (ZS, ZS)-bimodule ZSP? ®z ZS is nothing but the
value of the functor (ZS°PF ®z ZS)((*,*),.) € AbZS®2LS gt (4 x), hence, from the proof of

Theorem 3.4.10, for every 0 <t < n, there is an isomorphism

/‘l't = ut:(*v*) : 3?5 ug?]t ZFS(u’ S) — g(zsopp ®Z ZS)
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which is natural in (¥, *).
There is also a natural isomorphism

p-1: ®Z—ZS.
sesS

Similarly with Theorem 3.4.10, one can construct the exact sequence of abelian groups

dn do d do
ZFS(u,s) = ... — Z.F 1
& 8 (u, 5) 8, 8 ZFS(v,s) —»seEBSZFsa,s) % ©Z-0. (3.22)

Note that d; is S-graded for every 0 <t < n. Indeed, for any fixed s € S, we denote

(o, B) € ung tZFS(u, s) by (o, B)y if it is in the u*® component of the direct sum. Similarly we
denote its pu-image a’?? @ B € ug} Z5°PP @7 ZS by (a®”? ® )y. Then we have
q:

de((a, B)u) = (121 0 8 0 pe) (o, B)u) = (i 0 8) (PP ® B)u) =
-1
pi1(Pier ni (a7 @ Bi)y;) = Yoier (@i, Bi);-
But now since, for every ¢ € I, we have from Definition 2.2.33 that a;v;8; = s = auf, it follows

that

d ( ® ZFS(u,
& LFS(u s)) C veg%_IZFS(v,s).

We claim that

o
® ZFS(u,) 2 .. 2 @ ZFSp, ) 2 2Fs(1,) 2z -0
uEQn vEqL ’

is a resolution of Z, where 0; s is the restriction of d; in the st" component of the direct sum

& & ZFS(u,s).
sES ueqy

Since d; is S-graded for every 0 <t < n, and since (3.22) is exact, then it follows that, for
every s € S,

Ons Bos
® ZFS(u,s8) — ... — & ZFS(v,s) b1 ZF5(1, ) bo.s o 0
uEqn veql L]

is exact. .

Lastly, for every 0 <t < n, the family

{8t,s | se S}

is a natural transformation. This follows from the definition of y; and from the fact that 8; is
a (ZS,ZS)-bimodule morphism.

The second part of the theorem follows immediately from the above and from Remark 2.2.32.
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3.5 Partial Resolutions of the Trivial Functor Z ¢ AbZFC

3.5.1 Introduction

The main scope of this section is to introduce partial resolutiéns of the trivial functor Z € AbZFC
which involve the data giving a presentation P = [x,r] of C, namely x and r, and some other
data arising from P which we will introduce in the next sections.

Before doing that, let us recall how we construct partial resolutions of the trivial left ZM-
module Z where M is a monoid given by a presentation P = [x,r]. It is shown in [95] that in

such a case there is always the partial free resolution
ZMIr) 22 ZM[x] 25 ZM <5 Z — 0 (3.23)
of the trivial functor Z € AbZM where
ZM[r] = EPZM and ZM [x] = e’]‘)ZM .

In order to extend (3.23) with another term, Cremanns and Otto in [19] (see also [57] and [85])

introduced other data arising from P: a homotopy base B for the relation
PX(T') ={(p,q) | v =1q and 7p = 7q}.
They showed that there is an exact sequence
ZM[B] 25 ZM[r] 22 zM[x] 25 ZM =572 —s 0,

where

ZM|B| = @ZM.

This was achieved by a heavy use of the graph A = A(x,r, B) which rewrites the paths of the
graph I'(x,r) by using as rewriting rules the set B C P?(T).

bZFC

Returning to the category A » we recall frém [67] the following important theorem.

Theorem 3.5.1 If the small category C is given by the presentation P = [x,r], then there is a
partial free resolution of the trivial functor Z € AbZFC
02 é
ZFC(l, - 1 €
(1,9)’@ (¢,) = @ZFC(z,) = CGEBCZFC(IC, )=Z—0, (3.24)

where € is the augmentation defined functorially by ez (w,v) = {ww} for any morphism @ € C.

124



To extend this partial resolution with another term, we will follow here the approach of [19].
For this we will define in Section 3.5.3 two graphs associated with a presentation P = [x,r| of a
small category C, the Squier graph I'(x,r) and the graph A = A(x,r, B) which is the analogue
of A explained above. Then using similar techniques to those used in Theorem 3.2 of [19], we

prove the following.

Theorem 3.5.2 Let the small category C be given by the presentation P = [x,r|. For every
B C P¥(I'(x,r)) such that ~p= P?(T'(x,r)), the sequence

3 s 5
® ZFC((wp),-) — & ZFC{,.) =2 1 ]
05 (¢(ep);-) (O ZFC(,) = @ ZFC(z,) = GZFC(L,) <2 —0

is exact.

The following follows immediately from the above and the definition of FDT.

Theorem 3.5.3 If C is of type FDT, then C is of type f-FPs.

3.5.2 A Basic Exact Sequence Associated With a Presentation P

We will give in this section a short account of the notions involved in [67] which are used to

prove Theorem 3.5.1 (Lemma 4.2 of {67]).
Let C be a small category presented by the presentation P = [x,r]. The free abelian natural

system ZC[x] : ZFC — Ab generated by the set of all edges = in the graph x viewed as
morphisms in C is defined by

ZClx| = m%axZFC(z, )

For each morphism @ in C, the elements of ZFC(z,w) are denoted by (%, [z],v), where %, 7 are

morphisms in C such that & = %Zv and the actions are given by the abelian group morphisms
ZJ*W: : ZC|x|(@) — ZC[x|(Wmv’)
defined by
u o (T, 2], ) = (W, [z], vv).

Similarly, the free abelian natural system ZClr] : ZF'C — Ab generated by the set of all rules
of R, is the free abelian group

ZC[r] = (Q.ZFe ).
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For each morphism @ in C, the elements of ZC[r](w) are denoted by (%, [{, ], 7), where @, 7 are

morphisms in C such that @ = ulv and the actions on ZC|r| are given by morphisms
o ZC[r)(@) — ZC[r}(v'wo)

defined by

ul " (%, [1, 7], 7) = (@u, [, 7], vo).

Lastly for a set B C P%(I'(x,r)), the free abelian natural system ZC[B] : ZFC — Ab
generated by B, is the free abelian group
ZC[B)= @ ZFC(L(Lp) -)
(p9)EB
Similarly to the above, for morphisms w in C, the elements of ZC[B](w) are denoted by

(@, [p, q), ) and the actions on ZC[B] are given by morphisms
W, ZC|B|(@) — ZC|B|(W@v’)

defined by
w0 (@, [, 7], %) = (uu, [p, q), v0).

Denote (1,(z), [z], Lr(z)) by [z], (Lgy, [, 7] 1rqy) Dy [6,7] and (1)), [P, ) Lruy) by [Pyl

Call a natural system of sets a functor § : ZFC — Set. Associated with S there is the
so called abelian natural system over C, ZC|S] : ZFC — Ab defined as the composition
ZC[S] = Z[] o S, where Z[] : Set — Ab denotes the free abelian functor which sends every
non-empty set to the free abelian group generated by that éet, the empty set to the group
{0}, and is defined on morphisms by sending every map of sets to the unique group morphiéms
induced by that map. Thus, for every morphism @ in C, ZC[S](W) is the free abelian group
generated by S(w). For every factorization w’ = %wv, the action wy  ZIS@)] — Z[S(W)]
is the morphism of abelian groups jnduced by the map S(u, ).

Let Nn(C):ZFC — Set be the natural system of sets such that

Na(©)@) = {(T, ... T) | & = W)

for n > 0 and No(C)(w) = ¢ if w # X and No(C)(A) = {1}.

For any factorization w’ = wwv in C, the action

W : Na(C)(@) — No(C)(@)
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is defined by

T (T, ooy Up) = (WUTy vy UnV).

For each n > 0, denote by
By (C) = ZC[Np42(C)]
the free abelian natural system generated by Np42(C).

A derivation from a small category C with values into an abelian natural system D over C

is a function

d: O(FC
(FC) — 4 _D()

where d(@) € D(w) for every & € FC and such that
d(wv) = Ud(7) + *d(T),

for every u,7 € C.

Lemma 3.5.4 Let x be a graph, F(x) the free category generated by x and D be an abelian
natural system on F(x). Any family ([z])zex, with [z] € D(2), has a unique extension into

derivation [ | : O(FF(x)) —D by setting for every n composable morphisms z1, ..., zn € F(x)
n
[.’171....’1},-,] = Z(wl...zi_l)*(ziﬂ...zn)*[mi].
=1

The proof of the above is given in Lemma 4.1 of [67].
For a presentation P = [x, r] of a small category C, denote by 7 : #(x) — C the canonical

morphism sending u to its corresponding class . For every morphism u in F(x), 7 induces a

homomorphism
Zrlx|(u) : @ ZF(F(x))(z,u) — & ZFC(z,T)
by
Zr[®)(u) (e [2], B)) = (&[], B).
Now for a fixed z € X, define the map

0
7 X ueg(x)ZF(x) [x](u)

9’ | fa] f o=z
ox '

0 otherwise
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Again from Lemma 4.1 of [67] we can extend it uniquely to a derivation

9
gz P — 9 ZFE(w)

which composed with

Zm(x] : ueg(x)ZF (x)[x}(u) — aLe)CZC[x] (w)

gives a derivation
by the formula

for every morphisms u,v in F(x).
Let now

81 : ZC[x] — By(C)

be the natural transformation defined as follows. For each morphisms %, 7 in C and z € x such

that @ = uxv,

61,g(ﬁ, [a:],i) = (_'ll_f,ﬁ) - (ﬂ,ﬁ)

Definition 3.5.5 Let P = [x,r] be a presentation for the small category C. The Reidemeister-

Foz Jacobian of P is the morphism of abelian natural systems
62 : ZC[r] — ZC[x]

defined functorially, for each morphism @ in C by

62,U(H, [l,”‘]vv) = E* -ﬁ*z (% - g_,r> ! —
, T

for morphisms %,7 in C and (I,7) § r such that @ = ulv.

Finally we make the following,

Remark 3.5.6 In the original statement of Lemma 2.4 of [67] (here Theorem 3.5.1), the last
term of the resolution of Z is Bo(C) which is nothing but @& ZFC(l.,-) and therefore this
is a partial projective resolution in ALZFC_ If C is finitely ;iierated, then By(C) is finitely
generated too. Furthermore, ifCis ﬁnitely presented, the sequence of the above lemma gives a

finitely generated partial projective resolution of Z of length 2.
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3.5.3 Geometrical Constructions Associated with a Presentation P = [x,r|

We will construct a graph I'(x,r) associated with a presentation P = [x,r] of a small category
C, which will contain information how the morphisms of C are presented by paths from UF (x).

We denote by PUF(x) the set of paths of x and by o their composition.
Definition 3.5.7 Let ['(x,r) = (V, E,,7,”1) be as follows:

1. The set of vertices is V = PUF(x).

2. The set of edges is E = {(u,(l,7),v,€) | u,v € PUF(x), (I,r) € r and € = 1}

3. the maps ¢,7 : E — V which associate with each edge e € E its initial vertex te and its

terminal Te, are defined by

uolov if e=1
L(ua (l,T‘),'U,E) =
uorowv if e=-1

and

uorov if e=1
T(u” (l,T), st) =

uolov if £=-1
4. and the map ~! : E — E, which associates with each edge e € E, its inverse edge e~1
defined by

(uy (4, 7),0,8) 72 = (u, (1,7), v, —€).

Below is how an edge of I'(x, r) looks like:

l
T
Lu_u_>a Ual b.__v>7"v
S~—7

r

An edge (u, (I, 7),v,€) is called positive if ¢ = 1 and negative if ¢ = —1. There is a partial action

of vertices of ['(x,r) on the set of gdges defined as follows:
w.(u, (1,7),v,6)w' = (wou,(l,r),vou,e)
where w,w’ € PUF(x) and the compositions w o u and v o w’ are defined. This action extends

in the obvious fashion to paths of I'(x, r).

We call T'(x,r) the Squier graph of the presentation P = [x,r]. We define the composition
e - f of two edges e and f in I'(x,r) whenever of = T f. Inductively we can define paths

o1 - ... - ap provided that for every i = 1,...,n — 1 we have T7a; = ta;+1. We say that the path
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p=a-.. ap€(x,r) has length n. A pathp=a;-...- an will be called positive if ax =11is
a positive for every k = 1,...,n. The inverse of a path p = a3 - ... - ay, is by definition the path
p=oail ..ozl

Denote by P(I'(x,r)), or simply by P(T'), the set of paths of I'(x,r) and by P%(I'(x,r)), or
simply by P?(T'), the set of paths in I'(x,r) which have the same initial and terminal. In the

future we call P?(T') the set of parallel paths of I'(x, ).
Define this set of relations in P%(I'(x,r)):

1. Relations I : (e - e'l,idw), (e‘l - e,4dye) for every edge e of T'(x,r),

2. Relations D : For every two edges e, f € I'(x,r) we take
((eotf) (teo f),(ceo f) - (eoTf)).

In the sequel we call e o of and te o f disjoint edges. For any (p1,p2) € P2(I‘), we define
its whisker (translate) by p',p" € UF(x) to be the pair (¢' o p1 0 p", ¢ o py 0 p"), whenever this
is defined. We say that some set B C P?(T") is whisker closed if it contains the set of all the

possible translates of its elements by paths from F(x). We denote the whisker closure of some

set B by w(B).

Remark 3.5.8 We could have used 2-categories to define I'(x, r) by considering the 2-category
arising from F'(x) by adding 2-cells in a 1-1 correspondence to r#. But this approach does not

give a clear description of the rewriting process.

Definition 3.5.9 An equivalence relation ~ C P?(I'(x,r)) is called a homotopy relation if it

satisfies the following:

1. JUDC =,

9. it is whisker closed, and

3. for every (p1,p2) € =, and every p,q € I'(x,r) such that 7p = tp1(= tp2) and
w=7p1(=7p2), (P P14, P-p3-q) € .

We denote by ~p the smallest homotopy relation containing a set B C P?(I'(x,r)).

Lemma 3.5.10 Let (- f,7) € PX(T'). Then, a- B~ if and only if a - g1
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Proof. If o+ 8 ~ «, then from the above definition a - BBl ~~.8"1 and again from the

definition, 8-~ 1 ~ idgoms which implies that o >~ «y- B~1. The converse is proved similarly. m

Definition 3.5.11 We say that a presentation P = [x,r| of some small category C has finite
derivation type (FDT) if it is finite and if there is a finite set B C P2?(I'(x,r)) such that
~p= P*(T'(x,r)).

Definition 3.5.12 Let B C P*(T(x,r)). Define the graph A(x,r,B) = (V,E,t,7,71) as fol-

lows:
1. V = P(I'(x,r)) is the set of vertices;

2. E={(r1,u,(p,q),v,72,€) | 11,72 € V, u,v € UF(x), (p,q) € DUIUB, € = %1 such that

7r1 =t(uopowv) and vrz = T(uopov)} is the set of edges;

3. the maps ¢,7 : E — V which associate with each edge e € E its initial vertex te and its
terminal 7e, are defined by

r1-(uopow)-rp if e=1

l’(rl’ u, (p’ Q), v, T2, 5) =

r1-(uogov)-ry if e=-1

and

r1-(uogov).rg if e=1
T(Tl,u, (p,q),v,rz,s) =
ri-(uopov).rg if e=-1

1.

4. and the map ~* : £ — L, which associates with each edge e € F, its inverse edge e~1

defined by

(Tl)u” (p, q),’U,’f’2,E)_1 = (Tl,u> (pa Q),v,"‘z, —E)'

The following is an immediate consequence of Definition 3.5.9.
®

Lemma 3.5.13 Let A be the graph defined above and let p and q be two morphisms in P(T'(x,r)).

The following are equivalent.
1. there is a path in A from p to q,

2. p~Byg.
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3.5.4 Proof of the Theorem 3.5.2

In what follows we denote by P(G) the set of paths of a given graph G. Again suppose that
P = [x,r] gives a small category C. '
Define the map

m:PUF(x))— & & ZFC(z,w)
weFC z€x

by
0 if |u=0
TH i A0,

where |u| denotes the length of u € P(UF(x)). With this notation we can rewrite the expression

1(u) =

for 825 as follows:
O25(, [I,7],9) =T 7" (m(l) — (7)) -
Similarly we define the map
Y2 P(T(x,r)) — & & ZFC(l,w)
weFC (rl)er

as follows:
0 if =
Ya(p) = 1 Ip} =0
Y2(p') + e T(l,r] if p=p"-(u,(I,7),v,€)

Define the transformation

43 : ZC|B] — ZC]r],

by
035(T, [p, 4, %) = TWT* (12(p) — 72(a)).
It is easy to see thaﬁ 63 is natural in every @. ’

Lastly we define the map
.

v3:PA)— & @& ZFC(u,w)
wEFC (p,g)€B

(here u is the morphism of C represented by ¢(2p)) as follows:
v3(a) =01if |a| =0

and
v3(a’) if (pg)¢B
y3(o!) + €Uy T*[p,q] if (p,q) € B

v3(a’ o (r1,u, (p, 9),v,72,€)) =
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where o denotes the concatenation of paths in P(A).

In [67] for every morphism @ in C there is defined a group morphism
T  ZC[x|(@) — ZClr](@)
by
(@, [z],9) = y2([(T, 2) 0 v),

where I'(,z) is a path in I'(x,r) from %o z to uZ. From here on, @ will be some fixed

representative of the morphism @ in C.

Before we define for every morphism @ in C a group morphism 733 : ZC[r}(w) — ZC[B](@),

we need to introduce another notion.

Let (I,7) € r where l = aj0...0a, and r = by 0... 0 b;. For every morphisms %, 7 in C, define

two paths in I'(x,r) as follows:

Fl(ﬁ, (l,’l’),’l_)') = (fl:, (l,’l"),"l‘)', 1) . (/\,F(ﬁ, b1) obyo..ob7, 1) et ()\,I"(uo bio..o bt_l,bt),‘ﬁ, 1)
and

I'2(@, (1,7),7) = (A T'(T,a1) 0 az0...0a,,7,1) - (A\,(Wo @1,a2) 0 @30 ... 0 a5, 7, 1) - ...

A\ T(woaro.-0a,-1,0s),7, 1).
It is easy to see that I'1 (%@, (I, 7),7) is a path in I'(x,r) from %o lo% to &rv and T's(%, (I,7),7) is
a path in I'(x,r) from @olo ¥ to ulv = wrv. Therefore, assuming that ~p= P?(I'(x,r)) for a
set B ¢ P%(T'(x,r)), we have from Lemma 3.5.13 that there is a path a(%, (/,7),?) in A(x,r, B)
connecting I'1(%, ({,7),7) with Ty (T, (I, 1), 7).

Now we define for every morphism @ in C, a group morphism
M3z ZC[r](w) — ZC[B}(W)

by .
(ﬂ’ [l,T],ﬁ) U 73(&(1_1,', (l,'l‘),ﬁ))-

The following diagram gives all the maps defined here and in [67].

P(A) P(D(x,r)) P(UF(x))
iva 172 171
7 72 m
S OB = © O =2 @ ZCKW < @ BC)w) £ 87

Lemma 3.5.14 63(72(p)) = m1(tp) — 1 (7p) for all p € P(T(x,1)).

133



Proof. First we show that vi(ce) — m1(re) = etT*(11(l) — 71(r)) for every edge e =
(u,(l,7),v,€). For e =1, 11(ce) = m(uolow) =lov y(u) +% 7*1(l) + (uo 1), v1{v) and

Y1(re) = 1(uorov) =To vy (u) + 8, Ti(r) + (wor),vi(v). Subtracting, we get the result.
The case £ = —1 is the analogue of the above. To prove the lemma, we Vuse an induction
argument on the length of p. If the length of p is 0, then we certainly have the result. Now
suppose that p = p’ - e with p’ € P(['(x,r)) and e = (u,(l,7),v,€), then
62(72(p)) = 62(72(P) + €WT (I, 7]) = a(12(P)) + €WT ([l 7]) =
(') = n(re) + enT* () — 1) = n(wp) = nlre) + (ne) — ni(re)) = m(wp) — 1 (7p).

Lemma 3.5.15 For every morphism @ in C, d3 5035 = 0.

Proof. Indeed, if (p,q) € B such that the vertices in p represent @, then d2(83([p, q}))
82(72(p) — 12(9)) = 92(72(p)) — 82(72() = (m(ep) — m(7P)) — (11(:q) = (7g)) =0. m

Lemma 3.5.16 83(73()) = v2(ta) — y2(ra) for all paths a € P(A).

Proof. We first show that for each edge e = (1,4, (p,q),v,72,€) € P(A),

72(t€) — 72(Te) = €TWT* (Y2(p) ~ 12(9))-

Indeed, for e positive we have:

Y2(¢€) = v2(r1 - (wopow) - r3) = va(T1) + TWT ¥2(p) + 72(r2)

and
Y2(T€) = Y2(r1 - (w0 gow) - T3) = ya(r1) + U ¥2(q) + y2(r2). .

It follows that vy2(te) — v2(Te) = Ty T*(73(p) — 2(q)). Similarly we prove the result for ¢ = —1.
We proceed with the proof of the temma by induction on the length of . If a is a path of
length 0, then d3(v3(@)) = 03(0) = 0, and v2(ta) — y2(ra) = ¥2(0) = 0.
If « = Bee with e = (r1,%,(p,q),v,72,¢), then we distinguish between two cases, (p,q) € B
and (p,q) ¢ B. If (p,q) € B, then
3(73()) = 03(v3(B e €)) = 63(73(B) + ey T*[p, q])
= 03(73(8)) + €% v*d3([p, q])
= 12(t8) — 72(1B) + €T 5*63(@, q]) (by induction hypothesis)
) —

= ya(ta) — 12(7B) + €% T* (72(p) — 72(q))
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= yo(ta) — y2(78) + 12(te) — y2(7e) (from above)
= v(ta) — 72(T¢), since 78 = te and 7e = 7o
If (p, q) ¢ B, we have
83(v3(a)) = 3(y3(B o €)) = 83(73(8))
= v3(t8) — 72(7B) (by induction hypothesis)
= 72(v) — 12(7B) + €t T*(12(p) — 72(q)) since
for all (p,q) € DUI, 72(p) = v2(q) (easily checked). Therefore,
83(v3(@)) = 72(¢8) — v2(78) + 12(ve) — 72(7e) (from above)
= 72(ta) — yo(ra), since 7(B8) = (e), t(B) = () and 7(e) = 7(c). m

Lemma 3.5.17 Let B C P*(I'(x,r)) such that ~g= P%*(['(x,r)). Then, for every morphism
@ in C, 835 + Mwd2m = tdacy(m)-

Proof. Let @ and 7 be morphisms in C and (l,r) € r. We have the following:
83(n3(@, [1,7],9)) = 83(3((T, (L, 7), 7))

= v({a(T, (1,7),7)) — v2(r(a(m, (I,7),7)) (by Lemma 3.5.16)

= v9(T1(%, (I, 7), 7)) = v2(T2(%, ({,7),7))

=@ [l,7],7) +b20 ...0b 0 © o (D(W,b1)) + ... + T*72(T(wo b1 0 ... 0 by_1, bt))
- mvz(l‘(ﬂ, a1)) — ... = Ty (T(Wo a1 0-.- 0 Gs_1, As))

On the other hand,

m2(82(, [1, 7}, 9)) = (@ ¥ (1 (1) — m(r))) = G 7 (@30 -0 a5"[a1] +@7e TG - 0 G5 [a2] +
4 (@100 G 1)[0s] = B30 0By [ba] 4+ Bra B30 0 By [ba] + . + (1 0 -0 Boa). [Be]))-

After summing up we have that d3(ns(%, [I,7],7)) + n(82(%, [I, 7], ?)) = (%, [l’r];g) as claimed.
- i}

Lemma 3.5.18 Let B C P*(I'(x,§)) be such that ~p= P?([(x,t)). Then 835(ZC[B]@)) =
Ker(52,;). ’

Proof. From Lemma 3.5.15 we have that d35(ZC[B](@)) C Ker(d25). Conversely, if
x € Ker(02), then (12,5025)(z) = 0 and hence z = (835m35)(z) + (n2,z02,3) (z) = S35(M3.5(2))
by Lemma 3.5.17. As a result Ker(d2) C 835(ZC[B](w)). m

Theorem 3.5.2 now follows easily.
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3.6 Open Problems

In this section we raise a few questions regarding the relation between conditions f-FP,, and

bi-FP,, for small categories and another one for the invariance of FDT.

Problem 3.6.1 Is it true that for small categories, f-FP,, is equivalent to bi-FP,? What about

monoids?

We believe that for small categories in general £-FP,, strictly implies bi-FP,,. The second

question would have a positive answer if we could solve the following.

Problem 3.6.2 If the monoid S is of type bi-FP,,, then is there a free finite partial resolution
of ZS which is S-graded?

Indeed, if the answer is positive, then we can apply Theorem 3.4.12.
Problem 3.6.3 Is FDT an invariant of the presentation?

We will discuss this in some detail. For monoids we know that: two finitely presented
monoids Sy and Sz given by the respective presentations P1 = [x1,r1] and P = [x2,r2] are iso-
morphic if and only if P1 and Py can be obtained from the other by applying finitely many Tietze
transformations. We can certainly extend the notion of the elementary Tietze transformations

for presentations of categories.

Definition 3.6.4 Let P = [X,r] be a presentation of a small category. The following four types

of transformations on P will be called Tietze transformations.

(Ty) If u:a — band v:a— b are such that (u,v) € r¥, then add to r the pair (u,v).

(Tp) If (u,v) € r such that (u,v) € (r\(u, v))#, then we remove (u,v) from r.

(T3) For some arrow w:a — bin 6 F(x), add to x a new edge o : a — b and add the relation

(e, u) tor.

(Ty) f o : a — b is an edge in x and u : @ — b is a path in UF(x) such that u does not
factor through a and (a,w) is from r, then remove a from the set of edges of x together
with the respective relation (o, u) or (u,a) from r and then in every relation (f,g) € r if

a is a factor of either f or g, it will be replaced by u.
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One can show in a similar way as in [96] that FDT is invariant under applying Tietze
transformations. The problem is that Tietze transformations seem to be not enough to transform
one presentation of a category to another. It is easy to show that for some given presentation

P = [x,r] of a small category C, if we apply one of T1-T4 to P, then the resulting category is

isomorphic to C, but it is not clear whether the converse holds true or not.
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Chapter 4

Notes on Finitely Generated

Semigroups

4.1 Results in Combinatorial Semigroup Theory

In this chapter we will present some finiteness conditions for semigroups which are of a combi-
natorial nature such as permutation properties, iteration conditions, repetitivity, and minimal
conditions on ideals. We show that in some cases minimal conditions on ideals are not neces-
sary to ensure the finiteness of semigroups, but on the other hand, we exhibit an example of
a semigroup S in which ming is independent of other “good” conditions which S may satisfy
such as being finitely generated, periodic, inverse, E-unitary and even from the finiteness of the
maximal subgroups of S. Also we prove that if a semigroup S is finitely generated and satisfies
ming (respectively ming, ming, ming, miny), then every congruence on S which contains Q
(respectively B, L, R, J), is of finite index in S. 4-

Throughout we will denote by A* the free monoid with letters from a finite alphabet A. We
say that a word u € A* is a factor of w € A*, if there are £, n € A* such that w = fun. It is
called a prefix if £ = A and a suffix ?f 71= A. Any subset L of A* will be called a language over
A. For any language L, we denote by F(L), P(L), S(L), the sets of factors, prefixes, suffixes
of all the words of L. We say that L is closed by factors if #'(L) = L. A language L is called
bounded if there exists finitely many words uy,...,un, € A* such that L C uy U,

n°

A two-sided infinite (or bi-infinite) word w over an alphabet A is any map

w:Z — A.
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For every n € Z, we set w, = w(n) and denote w in the form
W= W oW_1Wwowiwy - -.

The set of bi-infinite words on A will be denoted by A**. A word u € A* is a finite factor of
w € A if u = X or there exist 4,7 € Z such that ¢ < j and u = w; - - - w;. Also one can define

right-infinite (respectively left-infinite) words w over an alphabet A by a map
w: Ny — A (respectively w : N — A).

The set of right-infinite words will be denoted by A“ and that of left-infinite words by A~%.
For every bi-infinite word w = - - ‘w_sw_jwowiws - -+, we denote by w+ the word wyws - --.

For all the definitions and results given in this section we refer the reader to [26].

Definition 4.1.1 Let S be a set and ¢: A* — S a map. A word w = wj - - - wy with w; € A*,

is called a k-power modulo ¢ if

P(w1) = ... = dlwy)-

Definition 4.1.2 Let A* be a free monoid, S aset and k€ N, k > 1. Amap ¢: A* — S
is called k-repetitive if there exist a positive integer L, depending on ¢ and k, such that every

word w with |w| > L has a factor which is a k-power modulo ¢. One says that is repetitive if it

k-repetitive for every k > 1.

Definition 4.1.3 A factor u of an infinite word w € A¥ (respectively w € A*¥) is recurrent
if the set of all ¢ € N (respectively ¢ € Z) such that u = w[i,i + |u] — 1] has not an upper
(respectively upper and lower) bound. The word is recurrent if and only if all its factors are

recurrent.

Definition 4.1.4 A factor u of an infinite word ¢ occurs sydentically in t if there exists an
. : g .
integer k such that in any factor of ¢ of length k there is at least one occurrence of u. An infinite

word is called uniformly recurrent, or with bounded gaps, if all its factors occur sydentically in

t.

Theorem 4.1.5 Let L C A* be an infinite language. There exists an infinite word x € A*v
such that

(i) = is uniformly recurrent and

(ii) F(z) C F(L).
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Corollary 4.1.6 Let J be a two sided ideal of A*. If, for every uniformly recurrent word
w € A¥, F(w)NJ # ¢, then there exists an n > 0 such that A"A* C J.

Proof. Suppose that there exist infinitely many words that belong to the set C' = AX\J.
Being the complement of an ideal, C is closed by factors, then by the above theorem, there
exists a uniformly recurrent word w € A*“ such that #'(w) C C. Hence, F(wy) C C which is a
contradiction since wy € AY is uniformly recurrent as well. =

If a semigroup S is generated by a set A, then we can define the canonical morphism
$: At — S where A" is the free semigroup with base A and ¢ sends each word of At to the
element of S it represents. Suppose we have a total order < on A and define the alphabetical

order <, on A% as follows:

u<gv <= (|lu|<|v|) or
(Ju| = |v| and u = hzf, v = hyn, h,é,n € A*, z,y € Aand z < y).

A word w € A7 is called reducible, if there exists u € At such that
U <jgz w and ¢(u) = P(w).

A word which is not reducible, is called irreducible. Let s € S. The unique minimal element of
¢~1(s) will be called the canonical representative of s. For every subset T C S, we denote by

Cr the set of canonical representatives of the elements of T

A sequence s1, ..., 5, of elements of a semigroup S is called a bi-ideal sequence if for i > 0
1
Si+1 € 85",
where S = SU {1} with 1 a unit element, or S! = S if S already has such an element.

Proposition 4.1.7 Let S be a finitely generated semigroup. If T is an infinite subset of S
closed by factors, then there exists a bi-ideal sequence (sp)n>0 such that for alln >0, s, € T

and for all positive integers i,j withgi # j, one has s; # s;.

Let S be a finitely generated semigroup, A its generating set and ¢ : AT — S be the

canonical morphism. The growth function of S is defined for all n > 0, as
gs(n) = card{s € S| ¢71(s) N AS™ # ¢}.

Proposition 4.1.8 Let S be a finitely generated semigroup such that there exists an integer

n > 0 for which
n(n+3)

9s(n) < —
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If S is infinite, then S contains an element of infinite order.

In what follows we will define some finiteness conditions for semigroups and give a few

important results related with them.

Definition 4.1.9 Let S be a semigroup and n an integer > 1. A sequence si,...,5, of n
elements of S is called permutable if the product s; - - - 5, remains invariant under some non-

trivial permutation of its factors.

We say that S is n-permutable if every sequence of n elements of S is permutable, and that
S is permutable if it is n-permutable for some n > 0. Obviously, permutability generalizes

commutativity. There are a number of interesting results which we mention briefly below.

Proposition 4.1.10 Let S be a finitely generated semigroup which is permutable. Then, Cg is

a bounded language and the growth function of S is polynomially upper bounded.

Theorem 4.1.11 Let S be a finitely generated and periodic semigroup. S is finite if and only

if it is permutable.

There is a characterization of finitely generated groups.

Theorem 4.1.12 A finitely generated group G is permutable if and only if it is abelian-by-finite,

i.e., G has an abelian (normal) subgroup of finite index.

The similarity of the following two results is not surprising if we recall that to a certain

degree, completely 0-simple semigroups are similar to groups.

Theorem 4.1.13 If the growth function of a group G is bounded by a polynomidi of degree < 3,

then G is permutable.

Proposition 4.1.14 A completely @-simple semigroup whose growth function is bounded by a

polynomial of degree < 3 is permutable.

Next we give some finiteness condition of a different nature. They are related with the
so called chain conditions which are conditions on the ideal structure of the semigroups. We
advise the reader to read first a few basic notions from Semigroup Theory in the Appendix of

this Thesis.
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Consider the following relations on a semigroup S. For s,t € S we set

s<pt = 881 C t§1
s<gt <«  SlscS't
§<gt < 8158 C sltSh

Definition 4.1.15 A semigroup S satisfies the minimal condition on principal right (respec-
tively left, two-sided) ideals if the quasi-order <z (respectively <z , <7) is well-founded. We

denote by ming (respectively ming, mins) these minimal conditions.

Definition 4.1.16 An element s € S is called right-stable (respectively left-stable) if for every
t € Js, tSt C 881 (respectively $'t C S1s) implies tRs (respectively tLs). It is called stable if
it is both right and left stable. A subset X C S is called stable if every element of X is stable.

Lemma 4.1.17 Every periodic semigroup is stable.

Before we state the J-depth decomposition theorem, which we use in the proof of Theorem

4.2.7, we give some definitions and preliminary results.

Definition 4.1.18 Let s be an element of a semigroup S. The J-depth of s is the length of the
longest strictly ascending chain of two-sided principal ideals starting with s. The J- -depth of s

can be infinite. A semigroup S admits a J-depth function ds if for every s € S the J-depth
d7(s) of s is finite. '

For s,t € S, if Jg < J;, then we say that the J-class J; is above J,.

Definition 4.1.19 A semigroup S is weakly finite J-above if each J-class of S has only finitely

many J-classes above it.

Definition 4.1.20 A semigroup S is finite J-above if it is weakly finite J-above and every

J-class is finite. ¢

Let S be a semigroup. We define recursively a sequence (K, )n>o of sets as follows : Ko =0

and for all n > 0,

K,=

= U C;
1<j<n 7’

where for j > 0, Cj is the set of elemens of S\ K j—1 which are maximal with respect to <7 in

S\K;_q. = i
\Kj_1. We set Kg ngKJ
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Lemma 4.1.21 Let S be a semigroup. For all j > 0, K; is closed by factors and is a union of

J -classes.

Definition 4.1.22 A semigroup S has a weak J-depth decomposition if for all 5 > 0 the sets
K are finite. Moreover, if S is infinite then K5 has to be infinite. A semigroup S has a J-depth

decomposition if it has a weak J-depth decomposition and § = Kg.

Proposition 4.1.28 Let S be a semigroup. The following are equivalent.
(i) S has a J-depth function and a weak J-depth decomposition.
(ii) S has a J-depth decomposition.

A more direct connection between the J-depth decomposition and the ideals of a semigroup,

is given in the following.

Proposition 4.1.24 If a semigroup S has a J-depth decomposition, then S is finite J-above.

The following has many applications to finiteness conditions for finitely generated semigroups

with maximal subgroups locally finite.

Theorem 4.1.25 (J-depth decomposition theorem) Let S be a finitely generated semi-
group which is right stable and whose subgroups are locally finite. Then S has a weak J-depth

decomposition.

Returning to the chain conditions, we give a theorem found in [24] which generalizes a

theorem of Hotzel [42].

Theorem 4.1.26 Let S be a finitely generated semigroup whose subgroups are locally finite. If

S satisfies ming (respectivelyming ), then S is finite. .

Proof. If S satisfies ming then it is right-stable. Suppose that S is infinite, then from
Theorem 4.1.25 so will be K. Sinc® K g is closed by factors, from Proposition 4.1.7 one finds

a bi-ideal sequence (fn)n>0 of elements of Kg such that
fa= fn—lgn—lfn—l, gn-1 € Sl, n>1,

and f, # fm for n #m. Since in particular f,S! C f,S1, from ming there exists an integer k
such that for all n > k we have f, Rf;. This means that the class Jy, is infinite and therefore

K which contains frn will be so, which is a cohtra.diction. n
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Recall from [97] the definition a bi-ideal in a semigroup S. We call B C S a bi-ideal if
BSB C B.
It is easy to see that the principal bi-ideal generated by s € S has the form
B(s) = sS'sUs.
This gives rise to another relation on S:
sBt <= B(s)= B(t).

We say that s <g t if B(s) C B(t). If this quasi-order is well-founded, we say that S satisfies
ming.

The following generalizes a theorem of Coudrain and Schutzenberger [18].

Theorem 4.1.27 Let T' be a semigroup which satisfies ming. Let T' be a subsemigroup of T
such that the subgroups of T are locally finite in T'. Then T" is locally finite.

Corollary 4.1.28 LetT be a semigroup satisfying ming. If T is a periodic subsemigroup whose
subgroups are locally finite, then T is finite.

We will use Corollary 4.1.28 to prove the McNaughton and Zalcstein Theorem [24]:

Theorem 4.1.29 A torsion semigroup of n X n matrices over a field is locally finite.

Sketch of proof. For every field F, the semigroup My (F) of n x n matrices over F can
be identifies with End,(V, F) where V is a vectorial space of dimension n. In a next step, one
can prove that Endn(V, F') satisfies ming and ming and therefore as can be easily seen, also
ming. Also it is know that all the maximal subgroups of M,(F) are locally finite (see [46]).
All we stated above, hold true for every subsemigroup S of M,(F) and as a result Corollary
4.1.28 applies. m ¢

We say that a semigroup S satisfies the iteration property if for any product s - -« s,, of a
sufficiently great number m of elements of S, there exists a factor s; -+ s; with1<¢<j<m

which can be iterated, i.e., can be replaced by (s; - - - s;)", n # 1, without changing the value of
the product.
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Definition 4.1.30 Let S be a semigroup and m and n integers such that m > 0 and n > 0.

We say that the sequence sy, ..., 5, of m elements of S is n-iterable if there exist integers ¢, j

such that 1 < ¢ < j <m and
31"'3m=31"'Si—l‘(Si“'sj)n‘3j+1"'3m-

We say that S is (m,n)-iterable, or satisfies the property C(n,m), if all sequences of m elements

are n-iterable.

The condition stated below is rather weaker.

Definition 4.1.31 Let m be a positive integer. A semigroup S satisfies the condition C(m) if
for any sequence 81, ..., Sm, of m elements of S there exist integers ¢, j,n such that 1 <¢ < j < m,

0<n#l,and

— n
31...Sm_31...si_l.(si...sj) .sj+1...sm_

There is also a stronger version of Definition 4.1.30 called the iteration property on the right.

A semigroup satisfies D(n,m), if for every sequence si, ..., s, of m elements of S there exist

integers #,j such that 1 <4 < j <m and

31"'Sj=31"'3i—1'(3i"'3j)n~

Theorem 4.1.32 Let S be a finitely generated semigroup. Then S is finite if and only if S
satisfies properties D(2,m) (respectively C(2,m)) or D(3,m) (respectively C(3,m)).

The following shows that in the case of C(m) one needs to assume the finiteness of the

finitely generated subgroups of S.

Theorem 4.1.33 Let S be a finitely generated semigroup satisfying the iteration conditi;)n

C(m). If the subgroups of S are locally finite, then S is finite.
»
Lastly we define strong repetitivity as a candidate for a finiteness condition for semigroups.

Before doing so we need the following.

Definition 4.1.34 Let S be a semigroup. We say that a morphism ¢ : A¥ — S is strongly
repetitive if it satisfies the following condition: for any map f : Ny — N, there exists a

positive integer M, depending on f, such that for every w € A% if |w| > M, then w can be

factorized as

W = h’Ul s ’Uf(p)h/,
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where p € Ny, h,h' € A*, 0 < |vi| <p, 1 < i < f(p), and

B(o1) = . = Blugey).

Definition 4.1.35 A semigroup S is strongly repetitive, if for every finite alphabet A, every

morphism ¢ : At — S is strongly repetitive.

Theorem 4.1.36 A finite semigroup is strongly repetitive.

The following in due to Brown [14] and will be useful in the next section.

Theorem 4.1.37 Let ¢ : S — 1" be a morphism of semigroups. If ' is locally finite and if
for each idempotent e € T, ¢~1(e) is locally finite, then S is locally finite.

Sketch of proof. One must show that for every finite alphabet A and every morphism
¢: A* — S, ((A™) is finite. Since T is locally finite, one has that T’ = ¥(A*) is finite where

¥ = (¢. There is € Ny such that for every t € T, t" € E(T"). For every idempotent e € T"
and n € Ny we denote by X, . the set

Xne={u€ A* | ((u) € 67 1(e) and |u| < n}.

Since ¢~ (e) is locally finite and {(X;},) is a finitely generated subsemigroup of ¢~1(e), we have
that ((X;t,) is finite. There exists an integer p(n,e) such that if u € X}, and [u| > p(n,e),
then there exists v’ € X, such that |u/| < |u| and ¢(u) = {(u'). Let us set

f(n) =r max{p(rn,e) | e € E(1")}.

Using the fact that 9 : AT — T is strongly repetitive (Theorem 4.1.36), one can show that
there exist M € N4 such that all the words of AT of length at least M are ¢ equivalent with

shorter words of A% and as a result ¢(A*) is finite. m

Lastly we give the following. »

Theorem 4.1.38 Let S be a semigroup. S is locally finite if and only if it is strongly repetitive.

4.2 Some other Finiteness Conditions

The results of this section will appear in [83].

Let (S,-) be a monoid generated by a finite set A (A C S). Denote by A* the free monoid

on A and by ¢ the canonical morphism ¢ : A* — S sending every word w € A* to the element
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of S it is representing. For any congruence K on S and for any K-class, K; (z € S) we define

the set
M, ={we p 1 (K;) | W' € 1K), l(w) < ')},

where I(w) is the length of the word w. Clearly M, contains all the words of ¢~1()C;) of minimal
length which will be referred to later as the set of the minimal length representatives of the K-
class Ky. Next we show that the set M = xLéJSMz is closed by factors. Indeed, let
w = ujvug € M and suppose v € A* — M. It follows that there is v' € <p_1(IC¢(v)) such that
I(v') < l(v). On the other hand, since p(v')K(v),we obtain op(u1)e(v’)e(u2)Kp(u1)e(v)e(us)
or equivalently w' = uiv'up € 1 (Ky(yy). But U(w') = I(u1)+1{(v")+1(uz) < L(ug)+U(v)+(uz) =
l(w), which is a contradiction. Similarly it can be shown that if w € M, then all its suffixes
and prefixes are also in M, hence M is closed by factors. This fact is denoted for short by
M = F(M).

Suppose that A* — M # @. Under this assumption we show that I = A* — M is an ideal
of A*, that is JA* € I and A*I C I. Indeed, suppose by the way of contradiction that there
is u € I, v € A* such that uv € M, then since M = F(M) it follows that u € M, which is a

contradiction. Similarly I is a right ideal. Thus we have proved the following.

Lemma 4.2.1 If (S,-) is a monoid generated by a finite set A and K a congruence on S such

that A* — M # 0 where M is the set of the minimal length representatives of the K-classes.
Then I = A* — M is an ideal of the free monoid A*.

In the next lemma, A will denote the trivial relation {(z,z) | z € S} on the set S.

Lemma 4.2.2 Let S be a monoid generated by a finite set A, K a congruence on S and let M
be the set of the minimal length representatives of the K-classes. If K contains Q (respectively
B, L, R, J) and either @ # A (respectively B # A, L # A, R+ A, T #A4A), or Q =A
(respectively B = A, L =A, R = A.i J = A) and S satisfies ming (respectively ming, ming,
ming, ming), then A* — M # ¢.

Proof. We will prove the claim for Q only since the proofs for the other cases run similarly.
Suppose first that @ # A and let z,y € S such that x # y and xQy. It follows in particular
that there are s1,52 € S\{1} (1 is the unit element of S) such that z = zs1s2. This means that

there are two representations of x with words from A* of different lengths. Since @ C K, we

have that M # A*.
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Suppose now that @ = A and S satisfies ming. It is easy to see that in general for every

x € S we have

therefore ming implies that there is an n > 1 such that z”Qz"*!. Since Q = A, we must have
z" = z™t! and as a consequence there are two representations of ™ with words from A* of

different lengths. As with the first case one deduces that M # A*. =

Proposition 4.2.3 Let S be a finitely generated monoid which satisfies ming. Every congru-

ence K on S which contains Q is of finite index in S.

Proof. We use the notation of Lemma 4.2.1 and Lemma 4.2.2. Lemma 4.2.2 assures that
we always have M # A*. Since M meets every ¢~ }(K;), z € S, then it suffices to show that
M = A* — I is finite. We will make use of Corollary 2.3.2 of [26] to prove the finiteness of M.
According to that result, we must show that for any uniformly recurrent word w € A“ we have
F(w) NI # ¢, where F(w) is the set of factors of w. Let w = ajay..., be a uniformly recurrent

word from the set of infinite words A% with letters from A. Denote by

Qo = (p(a1))q = (w(a1)S N Sp(a1)) Up(as)

the principal quasi-ideal generated by ¢(a;). Since w is uniformly recurrent, then there is

vy € F(w) such that u; = ajvia; € F(w). Observe that

Q1 = (p(u1))g = (#(a1)p(v1)¥(a1)S N Sp(ar)p(v1)e(a1))
U @(a1)e(v1)e(a1) € p(a1)S N Sp(a1) € Qo.

Inductively one can construct a sequence as follows
a1, U1 = A10101, U2 = UVaUL, .oy U = Uk_1VkUk—1, U4l = URVk41Uky -

where ux € F(w), k 2 1 and p(aig 20 p(u1) 20 p(u2) 20 -(uk) 20 P(urs1) 2@ ...
Recalling that S satisfies ming, we find k € N such that ¢(u;)Qp(uk+1) or equivalently ¢(uy)
and o(ux41) are in the same Q-class and hence in the same K-class, say K(y,). It follows that
ug and ug41 € LP—I(K(P(uk)), but from the construction we have I(uy) < I(ug41), hence

ug41 € M. So ugy1 € F(w) NI and we are done. m

Combining Theorem 4.1.37 with Proposition 4.2.3, we obtain the finiteness condition of

Corollary 4.2.4 below.
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Corollary 4.2.4 Let S be a finitely generated monoid and let K be a congruence containing Q.

Then S is finite if and only if it satisfies ming and every idempotent of the factor monoid S/K
is a locally finite subsemigroup of S.

Similar results to Proposition 4.2.3, and consequently to Corollary 4.2.4, hold if we put
respectively rélations B, L, R, J instead of @ = H.

Let us now consider the semigroup S with r generators which satisfies the equation " = z"t!
for a fixed n € N and every z € S. We denote it by’ B(r,n,n + 1). Since the Q-classes
of B(r,n,n + 1) are trivial (see Lemma 4.6.1 of [26]), we have that Q is a congruence. The
presentation giving the semigroup in this case is length reducing, therefore there are words
representing the same element of S which do not have the same length. In particular this

means that we automatically have the condition M # A* satisfied.

Proposition 4.2.5 S = B(r,n,n + 1) is finite if and only if it satisfies ming.

Proof. From the above comment, the set of the minimal length representatives M related
with any congruence is never equal to A*, the free monoid of rank r. On the other hand, since

in this case Q is itself a congruence whose classes are of a single element, one can get the result

by applying Corollary 4.2.4. m

Lemma 4.2.6 If S is a semigroup that satisfies ming and all its mazimal subgroups are locally

finite, then it is periodic.

Proof. As we mentioned earlier, for every a € S,
a>ga’>ga3>g..200a" 2ga™! >4 ...

On the other hand ming implies the existence of n € N such that a®Qa?" . It follows that the
Q-class Hgn is a subgroup of S. Now denoting by (a™) the subgroup of H,» generated by a®,
we have from the assumption that (87) is finite, hence there is some k € N such that a™ = a™*,

This shows that a is periodic. m

Theorem 4.2.7 A finitely generated semigroup S is finite if and only if it satisfies ming and

all its maximal subgroups are locally finite.

Proof. From Lemma 4.2.6, S is periodic and consequently it is stable. From the J-depth
decomposition theorem it follows that S has a weak J-depth decomposition‘, consequently if we

suppose S to be infinite, then so will be Kg. Under this assumption, from Proposition 3.2.2 and
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Lemma 3.6.3 of [26], there is a bi-ideal sequence (fn)n>0 of elements of K¢ such that fn # fm
for all n# m. Since fn € fn181 NS f_1 C( fn-1)g, then from ming one has that there
exists n € N such that fpHfp, for all m > n, hence Jy, contains infinitely many elements of S.

It follows that the one K; which contains Jy, is infinite, a contradiction. =

Observe that Theorem 4.2.7 is a substantial generalization of Proposition 4.2.5.
Now we focus our study in finding finiteness conditions for some special kinds of regular

semigroups. First we recall the following from [81].

Lemma 4.2.8 Let S5 be a completely 0-simple semigroup. Then S is locally finite if and only

if a mazimal subgroup of S is locally finite.

Proposition 4.2.9 Let the semigroup S be a union of completely 0-simple semigroups S;, i € I
such that for any ¢, j € I, S;8; C S;NS;. Then S is locally finite if and only if every subgroup
of S is locally finite.

Proof. Here we use an induction argument on the minimal number of completely 0-simple
subsemigroups S;, ¢ € I needed to contain the set of generators X of a finitely generated
subsemigroup of S. Assume that every subgroup of S is locally finite. If X is contained in a
single S; for a certain ¢ € I, then Lemma 4.2.8 implies that the subsemigroub (X) is finite.
Let us now suppose that any finitely generated subsemigroup of S whose set of generators is
contained in at most k — 1 semigroups of the collection {S;};¢;, is finite. Let X C S be finite

and the minimal number of the subsemigroups of S of the collection {S;};; which contain X

is k. Denoting these semigroups by Si, S, ..., Sk—1, Sk, we may write

XCSuUSuU..US_1US;.

Denote by Y1 = X N (jL;'éJij) and Y2 = X N (Sk\ _;Jk S;). Now since Y1 C S1 U S2U ... U Sj_1,
J
it follows that the minimal numbergof S;, ¢ € I that contain Y; is at most k — 1. From the

induction hypothesis it follows that T; = (Y1) is finite. Of course Ty = (Y3) is finite too. Next

we show that
(X)y =M UY) =1 Ul Ul UYL U T ULyl Ulyl,

where 13 = (1115 U 1511) and that 13 is finite. Indeed, any element of (Y1 UY3) belongs to one
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of the following four types of products of powers of Y7 and Y5:
(Yo Ym ) (YY) (YY),
(VI Yem) (Yemygm). (Y Yyt Vi,
(YY) (YY), (YY),
(G Yo (Vg Yem). (Yo Vet Yy,
where n ranges over N and for all k = 1,..,n, ayx and agx are non negative integers. It is clear
that products of the first type are included in (T173)" C T3, products of the second type are

included in (T1T2)"*T1 C T5T4, those of the third type in (7271)™ C T3 and lastly products of
the fourth type in (12141)™ V15 C 1515, hence

(Yl U Yz) = <T1 U Tz) CTHUT,UTzs UTYTs U T3Ty UTTs U T5Th,

while the converse is obvious. Finally to prove that (X) is finite we need only the finiteness of

Ts. First we see that
T C(S1US2U...U Sk 1)Sk = 8515, U... U Sk-15%
- (S} N Sk) U..u (Sk_]_ N Sk)
C(51USU..US)NS=85USU...US .

Similarly 1513 € 81U S2U ..U Sg_;. Consequently, 1315 U311 € $1U S, U ..U Sy_1. Now
since 71T UT>T is finite and since the minimal number of semigroups of {S;};c I‘which contain
1415 U'Iy1Y, is at most k — 1, it follows from induction that 13 = (1112 Ul511) is finite. m
Corollary 4.2.10 A primitive regular semigroup S is locally finite if and only if every subgroup
of S is locally finite.

Proof. From Theorem 1.9 of [34], S is a O-direct union of completely O-simple semigroups.

The result follows from Proposition 4.2.9. =

In what follows one needs the concept of a tree of semigroups. The description in general of

such structures is given in Lemma 38 and Lemma 3.4 of [34]. We include below these lemmas

for the convenience of the reader.

Lemma 4.2.11 Let A > B be J-classes of a strict regular semigroup. Let w‘g :A— B
assign to each z € A the element y € B such thaty < z. Then <p’§ is a partial homomorphism.
Furthermore @7 is the identity on A; if A> B > C, then pB o pf = pf; and

2y = 21y = 5(2)eé(v)

when A= Jy, B=Jy, C=Joy and z > 21 > ¢A(2), y > 11 > p3(v).
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Lemma 4.2.12 Let T be a tree in which every element has finite height. For eacht € T let S;
be a semigroup with 0. For each t € I' let ¢ be a partial homomorphism of Si\0 into Sy \0 if t
is not minimal. Assume that the partial semigroups S;\0 are pairwise disjoint. On the disjoint

union S = (Uier(S:\0) U {0}) define a multiplication x recursively as follows:‘ for all xz € S\O
and y € S,\0,

zy if t=uanday#0in S,

ei(x)pe(y) of t=uandzy=01inS;,
Txy=19 lx)y if t>u,
zou(y) i t<u,

[ wi(@)eu(y) o tZuandt g u

Then S is a semigroup.

Next we study semigroups (S, x) which are trees of completely 0-simple semigroups (S;, ),
t € T and T is a tree. In fact, as Theorem 3.5 of [34] shows (see also Theorem A.0.6 in Appendix),
such semigroups are regular and their idempotents form a tree in which every element has finite
height, or equivalently, they are strict regular and their J-classes form a tree in which every
element has finite height. As it turns out from this theorem, the J-classes of S are the sets
J; = Si\0, and S/J = T. This implies that each maximal subgroup of S is included in S;\0
for some t € T'. If we add the condition that the maximal subgroups of S are locally finite, then
from Lemma 4.2.8 we obtain that each (S, -) is locally finite. Here arises a question: Is a tree of
completely O-simple semigroups whose subgroups are locally finite, a locally finite semigroup?
Before dealing with this question, let us introduce the following notations. For X C S, denote
by (X) the subsemigroup of (S, *) generated by X. For X C S;, t € I', denote by (X), the
subsemigroup of (8t, ) generated by X. Observe these two facts.
Fact 1. (X) C J¢ = (X) = (X),. ’
Fact 2. (X) ¢ Jy = (X), = ((X) n S;) U {0}.
Fact 1 is obvious. .
Fact 2. Since (X) & J; , then there are elements of (X) which equal to the zero of S;, 0, hence
(X), consists of {0} and of those elements of (X) which belong to S;.

Lemma 4.2.13 Let (S,%) be a tree of completely 0-simple semigroups and let the mazimal

subgroups of S be locally finite. If X C J;, t € I' and | X| < oo, then (X) is finite.

Proof. We use an inductive argument on the cardinality of X. Let first X = {z} C Jj,,

to € T. There are two possibilities.
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1) For each n € N, z™ € Ji,. From Fact 1 above we have that (X) = (X), and since (S, ')
is completely O-simple, from Lemma 4.2.8 the finiteness of (X) = (X), follows.

2) (z) G Jio» then there is ng € N: 2™ € Jy, and z™*! € J;, where t; < to. From the
definition of the product is S, we find that .

2™ = g (2) - gl (4™) = g () - (pae (2))™ = (g (z))"o .

Now let n1 € N, n1 > ng + 1 be such that 2™ ¢ J;, and zmtl ¢ Ji, where t < t1. Similarly

with above we have

2" = g (2) - $a™) = $5 @) (PA @)™ = (Fen @)™,

and so on. Since the height of ¢; is finite, there is m € N such that 2™ € J; , and
A= {:c""‘+1,a:""'+2, } C Ji,,,,where tmy1 < tm. Now since obviously Si; N () is finite for
each ¢ < m, we need only to prove the finiteness of A. Indeed, (4,-) is a subsemigroup of
(Stms1s -) and furthermore it is finitely generated with B = {:1:""""1,:1:"'""'2, vony TEOM a:2”"'+1} as
its generating set. Recalling that (S;,,.,,-) is locally finite, we obtain that A is finite. Suppose
now that for X' C J;, t € T and |X'| = k—1 we have |{(X')] < 00. Let X C J;, t € T and
|X| =k, that is X = {x1,z2,...,zx_1,24} . Denote by X3 = {z1,%2,...,7k_1} and X2 = {zx}.
From the induction hypothesis we have that |(X3)| < oo and [(X3)| < co. Let S; = Sy, Sty
Styy ey Sty Where to =1 > 11 > ... > t,, be the sets which (X) intersects with. It suffices to
prove that (X) NS, ¢ = 0,1,...,n is finite. First (X) NS;, C (X);,, from Fact 2, and since
|(X)to| < oo we obtain that |[(X) NSy | < co. Now for ¢ > 1, each element of (X) NS, is

expressed as a product of elements taken in the set

Ai= oSLjJSi {‘PZ: (((X2) U (X)) N St")} ’

which implies that (X) NS}, C (A4;),,. From induction hypothesis A; is finite and hence (A;),,
is finite, consequently (X) N Sy, is figite too. m

Lemma 4.2.14 Let (S,*) be a tree of completely 0-simple semigroups and let the mazimal

subgroups of S be locally finite. If X C J,, UJ,, U..UJy, |X| <00 and t1 > ta > ... > t,
ti €1, i=1,2,..,k, then [(X)| < co.

Proof. First we observe that if the lemma holds true in the special case when t = ¢, + 1,
ts =ty +1, ..., tx = ty—1+ 1, where by ¢; + 1 we denote the predecessor of ¢;, then it holds true
in general. Indeed, let X CJy U..UJy. Put X; = XNJg, 1 <i<kand let us consider the
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set

X*=X,U ‘Pslt +1(X1)U‘Pst +2(X1)U U‘Pst (XI)U‘PS:I(XI)U
XU <pSt2+l(X2) U (pst2+2(X2) U..u <pS:: (X2)UX3U...
Sy, Sty S, S,
wUpg T (Xk-1) U ‘PStt_In (Xg-1)U..U 905::_1 (Xg-1)U ‘Ps:: N Xk-1) U X

Obviously, X* is finite and X* C S, U S, 41 U...US;, _,US;, ,41U...US;,. Since, by our
assumption, [(X*)| < oo and since (X) C (X*), we obtain that (X) is finite too. To prove
the lemma in the special case, we use induction on k. In case k = 1, from Lemma 4.2.13, it
follows that |{X)| < oo. Let us now denote X' = X; U XU ...U X)_; and X" = Xj. From
the induction hypothesis we have |(X'}| < oo and |(X"})| < co. Let n € N, n > k be such
that (X) € S;; US, U...US, U...US;, and (X)N S, # 0, (X)N St,+1 = 0. From the
above we obtain that Y/ = (X')n S, i = 1,2,...,n is finite and Y/ = (X")N S, § =k,
k +1,..,n is finite too. Now it suffices to prove that |[(X) N S| < oo, for each ¢ < n. Observe
that (X) NSy, =(X')N S}, =Y/ fori =1,2,...,k — 1 and as we mentioned before these are all
finite. For all # < tk, letting in general gogg (0) = 0, where a > 3 and @ is the empty set, as in
the proof of Lemma 4.2.13 we have (X) N S, C (A;);, where

A= U Gosr)u( u

t1>t1>tl

v5 (1))

tp2t; 2>t

Since A is finite, it follows that (X) N S}, is finite too. m

Theorem 4.2.15 Let (S, %) be a tree of completely 0-simple semigroups (S;,-) wheret € 1' and
T is a tree. If the mazimal subgroups of S are locally finite, then S is locally finite.

Proof. First for any J;,, Ji,, ..., J;,, denote by |J;, U Ji, U ... U Jy, ] the set

{zeS|zesS, t<t; forsomei= 1,2,..,k}.

Let X C S be finite and X C |J;, U J;, U..U Ji,] where t1,tg, ..., tx do not necessarily form a
chain. If k=1, then from Lemma £2.14, |{X)| < co. Make the following notations

Xpg1=X O]Jtl U Jt2 u..u ‘]tk—l] and Xy =X O]th] .
Let Yi_1 = (X-1) and Yx = (X}), both of them finite by the induction hypothesis. Let
Ti={t€T|S ClhUJ,U..UL], SN (X) # 0}

and

T < T | Vs £ 6), T8 = (1€ T4 Ve 5 £0)
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It suffices to prove that S; N (X) is finite for each t € Ty. Clearly, (X) NSy, = Yx_1 N Sy, for
i=1,2,..k—1and (X)NS;, =Y;NS;. From the induction both intersections are finite.
Now for t € T\ {t1,t2, ..., tk—1,tx} we have that

Sy Sy
(x)nsic << U Mans)U( U el n su)>>
t/eTy teT}

>t vt t

The latter semigroup is finite because it is generated by a finite subset of S; and (S, -) is locally

finite. MW

4.3 A counterexample

In Theorem 4.2.7 and Proposition 4.2.5, or in Corollary 3.1 of [16], the minimality condition
on principal quasi ideals and right ideals respectively, is required besides the local finiteness of
the maximal subgroups of the semigroup, as a finiteness condition for the semigroup. A natural
question which arises here is whether or not there is any case when ming (ming, ming, or
other minimal conditions) follows from the rest of the conditions under which a semigroup is
expected to be locally finite. In this section we find a negative answer of the above. Precisely,
we find finitely generated, periodic, £-unitary inverse semigroups which have all their maximal

subgroups finite, but do not satisfy ming and consequently are not finite.

Theorem 4.3.1 There is a finitely generated, periodic, E-unitary inverse semigroup which has

all its mazimal subgroups finite, but does not satisfy ming.

In general we can construct, as will be shown later, an inverse semigroup which is generated
by one of its subsets along with a group that is generated by one of its subsets. The semigroup
has the following properties. If the group is finitely generated, we show that so is the semigroup
constructed. If the group is period&'c, then so will be the semigroup. Further if the group
is infinite, then the semigroup does not satisfy the condition ming . Since there are finitely
generated and periodic groups which are infinite (see [1]), then we can deduce from Theorem
4.3.1 that ming on a finitely generated semigroup does not depend on its being inverse and
periodic, E-unitary and on having all its maximal subgroups finite. The way of constructing

such a semigroup is quite similar to that one of constructing free inverse semigroups presented

in the Theorem of Scheiblich (see [34]).
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Let G be such a group generated by one of its subsets X. Along with G, let us consider the
free group FGx on X. Denote by ¢ the canonical morphism ¢ : FGx — G defined by

e(Y192.-Yn) = @(11)@(¥2) .. (¥n),

Y 1,2, ¥n € XUX ' and forevery i = 1,...,m, ¢(1) = v, VR €N,

For every fixed g € G and for every w € ¢~ 1(g) C FGx, we take A, C FGyx such that
w € Ay, Ay is finite but nontrivial and suff(Ay) = Ay, where suff(A,,) is the set of all suffixes
of the words in A,. In the sequel we consider pairs (¢(w), p(Ay)) = (9,9(Ay)) for g € G and

Ay chosen as above. For any fixed w, denote by A, the set of all possible A,, described above.

Define the set
S= U U U AL)).
o welie) Actdu (9, p(Aw))

Define in S the following multiplication

(91, 0(Auwy)) - (92, 0(Awy)) = (9192, P(Awy ) g2 U 0(Auy,))-

Observe that
¢(Auw;)g2 U p(Au,) = p(Auwywz U Auw,)
and that
wiwg € Ay, wa U Ay,

which is finite, nontrivial and clearly
suff( Ay, wa U Ay,) = Ay, wa U Ay,.

This shows that the Pair (419, ¢(Auy )2 U ¢(Auy)) = (9(w1w2), ¢(Auywz U Auy)) belongs to
S, which assures one for the correctness of the multiplication - as a mapping § x § — S. Let

us now show that (S, ) is a semigroup. Indeed,

(91, ‘P(Awl)) [(92’ SO(sz))(g:;, ‘}(Aw';))] = (91»¢(Aw1))(9293,‘p(Aw2)g3 v ‘P(Aws)) =
v (919393, (Aw; ) 9293 U 0(Auy)g3 U p(Aus)) =
(9192, P(Aw )92 U P(Aw,)) (g3, p(Aus)) = [(91, (Aw;)) (92, P(Awy))] (93, £(Ausy)).-

To show that S is an inverse semigroup and at the same time to find a generating set of S, we
proceed as follows. Consider the free inverse semigroup F on X constructed in the theorem
of Scheiblich (Theorem 7.1 of [34]) and the mapping f : F — S such that f((w, Ay)) =
(p(w), p(Ay)). Clearly f is onto. ‘
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Let us now show that f is homomorphism. Indeed,

f((wr, Ay, ) (wz, Awy)) = f(wlw?a Ay, w2 U Ay,) =
(‘P(w1w2)’ ‘P(Awlwi.’ U sz)) = (So(wl)‘/’(w2)a SO(Awl)‘P(wZ) U ‘P(sz)) =
(p(w1), (Aw,)) (p(w2), p(Aw,)) = f((w1, Awy))f (w2, Aw,))-

As S is a homomorphic image of F' and F is inverse, we have from Proposition 1.2 of [34] that

so will be S. We already know that

F={u{»1})yeY =XUX}).

Next we show that

S={ew) {e@)e)lyeY =XuX)) = {(v{ve)|yeY =XuXx1}),
where e is the unit element of G (recall that ¢(y) = y,Vy € Y). Indeed,

(p(w), p(Aw)) = f((w, Aw)) = f((y1, {y1, 1} (w2, {y2, 1}) (s {wm, 1})) =
£ v, 1N (w2, {w2, 1)) - f ((Wns {¥m 1)) =
(e (w1): {(¥1), (DN (e(v2): {0 (w2), LD} - (2(¥n), {2(¥n), (D}) =
(¥1, {v1,e}) (w2, {v2, €})--(¥ms {m, €})-
In particular ‘if X is finite, then S is finitely generated. Now we prove that the periodicity of
S follows from that of G. Indeed, in such a case Vg € G, In € N such that g" = e and hence
g"t! = g. Let (9,(A4)) € S and g" = e (¢"*! = g). One can easily check that

(9, p(A))™+! = (g,p(A)g" U p(A)g" 1 U ..U p(A)g U p(4)),

and then, since g" = e, we can write

(9, 0(A))"+! = (g, 0(A)g™ L U... Up(A)g U p(A)).

It is now easy to see that (g,p(A))2n+! = (g, @(A))™*! which shows the periodicity of S.
Before we prove that S is in addifion K-unitary, we note that (g, p(A)) is idempotent if and
only if g = e € G. If we have

(9, ¢(A))(e, p(B)) = (ge, (A) U p(B)) € E(S),

where E(S) is the set of idempotents of S, then ge = e, which implies ¢ = e and hence
(9,(A)) € E(S).
Next we show that each maximal subgroup of S is finite. Indeed, from Proposition 5.1.2

of [43] and from the fact that the inverse of (g,¢(A)) is (g,9(A4)) = (g7, ¢(A)g™?) (this
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can be checked directly), we obtain that (g1, (A1))H(g2, ¢(Az2)) if and only if (A1) = ¢(A42)
and p(A1)gr" = @(42)g;™"
an idempotent (e, p(A)). Hence (e, o(A))H(g,¥(A)) and it follows that ¢(A)g = ¢(A). Since

e € p(A), then from the last equality we have that g € ¢(A). But recalling that ¢(A) is finite,

Now if Hg ,(4)) is a maximal subgroup of S, then it contains

we have finitely many g € G such that (g, ¢(A)) € H ,(4)) and consequently |H(e’q,( A))| < o0.
Let us now observe a few simple facts regarding the idempotents of S. We begin with the

following equivalence
(e,0(A)) <r (e,p(B)) <> ¢(4) 2 ¢(B).

The following sequence of implications is easily checked:

(e, p(A))S C (e, 9(B))S
= (e,¢(4)) € (e,¢(B))S
= (e,(4)) = (e,9(B))(¢(w), ¢(C)).
Since in this case, ©(u) must equal to e, then one has (e,9(A)) = (e,(B))(e,v(C)) which

implies that ¢(A) = »(B) U ¢(C) and consequently ¢(A) 2 ¢(B). Conversely, it suffices to
show that (e, »(4)) € (e,¢(B))S. Indeed,

(e:¢(A)) = (e, (B))(e, p(A)) € (e,(B))S,

because p(A) = p(B) Up(A).

Secondly we claim that

(e, (A))R(e, p(B)) <= »(A) = @(B).

This follows from the first claim.

And thirdly,
(e,0(A))S C (e,9(B))S += ¢(A) D @(B).
This follows from the previous two cfhims.

Finally we show that if G is infinite, then S does not satisfy ming .

Let
(e,9(A1))S D (e, 0(A2))S D ... D (&,0(An))S D (e, 0(An41))S D ...

be a descending chain of principal right ideals. From the third claim above, this is equivalent

to:

o(A41) C 9(A2) C ... C p(An) C @(Anp1) C ... (4.1)
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If we require the chain of right ideals to be infinite, then we must construct an infinite ascending
chain of subsets of G of the form (4.1) where A; are finite, nontrivial and suff(4;) = A, for each
¢ > 1. Since G is infinite, one can find an infinite ascending chain of finite subsets of G like the
following. |

BycByc..CcB,C.. (4.2)

It follows that for every ¢, 7 € N with ¢ < j, we have

©~1(Bi) C ¢~1(By),

where for a set C C G in general, we denote by ¢~1(C) the set of words of minimal length in

FGx representing the elements of C. Note that since X is finite, then ¢~1(C) has to be finite
if C is finite.

It is clear that for every i < j,

4; = sufi(p1(BY) C sufi(p1(By) = 4;,
and then we obtain the chain
AiCAC...CA,C.., (4.3)

where from above Ay, is finite and suff(A,) = Ay for every n > 1.
This chain can not terminate at some n > 1 since otherwise we would have infinitely many
elements of the chain (4.2) being represented by finitely many words from the finite chain (4.3),

. n ———
namely those of il;JILP‘l(B,'). Therefore we can extract from (4.3) an infinite subchain as below.

Ag, CAp, C... C Ag, C ..y
which induces the chain
P(Ax;) C p(Ag,) € ... Co(4g,) C ... (4.4)

Also this chain can not terminate at gome n > 1, since for every i € N, By, C (Ay,) and as a

result we would have
UsenBi, € 0(Ax,)

which is impossible as ¢(Ag,) is finite. Hence we can finally extract from (4.4) an infinite

ascending chain of the form

‘P(Aktl) Cc ‘P(AI%) C..C ‘P(Akt,,) C .y
as desired.
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Appendix A

Basics from Semigroup Theory

Notions from Algebraic Theory of Semigroups can be found in standard books like [34], (43], [97]
or [16]. Let S be a semigroup. We define the relation R by

aRb <= aS!'=aUaS=>bUbS =bS",
that is,
aRb <= a and b generate the same principal right ideal.

By symmetry one can define the relation £. Relations R and £ are respectively left and right

congruences. Also one defines the relation H on S by

H=RnNL.

In [97] it is defined the relation Q by

a@Qb < aU(aSNSa)=>buU(bSN SH),

where z U (zS N Sz) is the principal quasi-ideal generated by z € S. It can be shown that
2=H

Yet another relation

.

D=RVL,

that is,

D is the least equivalence containing both R and L.

Since R o £ = L o R (an easy exercise), one has that
D=RolL.
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Lastly we have the relation J defined by
aJb < S'laS'=aUaSUSaUSaS=>bUbSUSbUSHS = S'bS?,

that is,

aJb <= a and b generate the same principal ideal.

We say that S satisfies ming (reps. ming, ming, miny) if and only if every descending chain
of principal right ideals (reps. left ideals, quasi ideals, ideals) terminates.

Every D-class can be visualize like an egg-box as we always have
aDb <= R,NLy#¢ < L,NRy#¢.

Lemma A.0.2 (Green’s Lemma) Let aRb in a semigroup S, and let s,s' € S be such that
as="b, bs =a.

Then the right translations ps | Lo, pg | Ly are mutually inverse R-class preserving bijections

from L, onto Ly and Ly onto L, respectively.

There is also an L-version of this Lemma know as well as the Green’s Lemma.

Theorem A.0.3 (Green’s Theorem) If H is an H-class in a semigroup S, then either H?N
H = ¢ or H> = H and H is a subgroup of S.

In fact it is easy to show that the group H-classes of a semigroup S are the maximal
subgroups of S.

We call an element a € S regular if there is z € S such that a = aza. If a D-class D
contains a regﬁlar element, then every element of D is regular. In fact, in a regular D-class,

every R-class and every L-class contains respectively an idempotent. Also every two group

‘H-classes in a D-class are isomorphic.
3 . .
A semigroup S with zero 0 is called 0-simple if

(i) {0} and S are the only ideals of S and
(1) S% # {0}.

There is a partial order in the set of idempotents of a semigroup S defined as follows
e<f < ef=fe=e
and called the Rees order.
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There is also a more general order in a semigroup S defined by
z<y <= 5! QyS1 and x = ey for some e € R,.

This order is called the natural order. It turns out that for regular semigroupé the Rees order
on idempotents coincides with the natural order.

We call a 0-simple semigroup S, completely 0-simple if for every idempotent e # 0, the only
idempotent “below” e is 0. Below we give a receipt (due to Rees) how to construct completely
O-simple semigroups. Let G be a group with identity e, and let I and A be non-empty sets. Let
P = (pxi) be a A x I matrix with entries in the 0-group G® = G U {0}, and suppose that P is
regular, that is, no row or column of it is entirely 0. Let § = (I x G x A)U {0}, and define a

composition on S by

(ia a'pkjb’ /‘l') if Prj 7é O’
0 if pa; =0,
(4,8, \)0 = 0(6, a, A) = 0.

(i? a, A)(]a ba l"') =

The semigroup S defined thus is completely O-simple. In fact every completely 0-simple semi-
group S arises in this way. Indeed, since S has exactly two D-classes, {0} and D = S\{0}, we
let I and A be the set of respectively the R and L-classes of D, and denote by H;y = R; N L,.

Since S is regular, we can choose a group H-class Hi1 and then using the Green’s Lemma it is

easy to show that there is a bijection

¢:(Ix Hp xA)U{0} — S
given by
(ia a, A)d’ = Tiaqx, 0¢ =0,

where r; € H;1 and g) € Hj) are fixed elements. Since

(riagd)(r5bq,) = ri(agar;b)qy,

we can define py; = gxr; (which in fact is proved to be an element of Lg, N Ry; = Hy1) if and
only if the H-class Hj is a group (and therefore isomorphic to Hi1), otherwise we take py; = 0.

So (I x Hi1 x A)U {0} is a regular Rees matrix. That the bijection ¢ is an isomorphism, this

is easy to show.

The principal factors of a semigroups S are defined as follows. If S has ésingle J-class J,

then we let P; = J. If there are more than one J-classes, then for every such class J, we let
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P; = JU {0} with the multiplication defined by

ab if abe J
axb=

0 if ab¢ Joreithera=0o0rb=0.

We call a semigroup completely semisimple if all its principal factros are completely simple or

completely 0-simple semigroups.

Proposition A.0.4 A regular semigroup is completely semisimple if and only if x < y and

zDy implies z = y.

Theorem A.0.5 (Lallement) For a regular semigroup S the following conditions are equiva-

lent:

1. S is a subdirect product of completely simple and completely 0-simple semigroups (this

semigroups are called strict regular);

2, for every J-classes A > B and idempotent e € A there is exactly one idempotent f € B
such thate > f;

3. for every J-classes A > B and x € A there is ezactly one y € B such that z > y.

FEither condition implies that S is completely semisimple.
Here A > B menas that for every z € A and y € B we have S'yS! C S'zS?.

A tree is a partially ordered set T in which the principal ideal {z € T'| z < t} is a chain.
In a tree T' the height h(t) of an element t is the cardinality of {x € T | z < t}. If t has finite

height, then either ¢ is minimal (h(t) = 0), or there is a greatest = < t, the predecessor of t
(which has height h(t) — 1).

Theorem A.0.6 (Lallement and Retrich) The following conditions on a semigroup S with

zero are equivalent:

1. S is regular and its idempotents form a tree in which every element has finite height;

2. S is strict regular and its J-classes form a tree in which every element has finite height;

3. S is a tree of completely 0-simple semigroups.
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It turns out that the completely 0-simple semigroups of the theorem are the principal factors

of S.

_Either one of the following can be taken as the definition of an inverse semigroup S.

(1) S is regular and its idempotents commute;

(2) Every L-class and every R-class contains a unique idempotent;

(3) Every element of S has a unique inverse.

Of interest are free inverse semigroups. By definition, the free inverse semigroup on a set
X, is an inverse semigroup FIx which satisfies the universal property given by the following

commutative diagram

The existence of FIx is given by the following.

Theorem A.0.7 (Scheiblich) The free inverse semigroup on X is isomorphic to the semi-
group
F={(w,A) | AC G is finite nontrivial closed and w € A}

with multiplication given by (u, A)(v,B) = (u-v,A-vUB).

Here G is the free group on X and closed means that the set contains all suffixes of its

elements.
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