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Abstract 

 

 

 
There are many harmful airborne microorganisms which can be breathed in by animals or 

humans and lead to illness or even death.  Such organisms can land on surfaces or in liquid 

leading to other opportunistic routes to infection such as touch and ingestion.  

Consequently, there is a need to develop novel forms of decontamination and detection of 

pathogens in air, on surfaces and in liquids.   The present work investigates these areas and 

in particular assesses the impact of novel laser and plasma decontamination systems on 

inactivation of Bacillus atropheaus spores, an anthrax simulant, in aerosols and on 

surfaces.  To further evaluate the performance of the methods, it was necessary to identify 

how the spores flowed through the systems.  Experiments were devised to quantify the 

effect of flow shaping and the electrode’s surface roughness, on the spore deposition.   

 

The spatial distribution of B. atropheaus spores on the electrodes was determined by using 

two methods, either a membrane filter or an imprinting (pressing) technique. Rougher 

surfaces allowed a higher level of microorganisms adhesion compared to smooth surfaces.  

The angle of incidence of the flowshaping on the spore distribution was investigated by 

using two angles, 10° and 30°.  The capture was quantified by the number of spores that 

were counted on agar plates following incubation.  The number of colony forming unit 

CFU was greatest near the entry point, and generally reduced along the electrodes’ length 

and was also greater for the 30° inlet angle.  Computational Fluid Dynamics (CFD) 

techniques were applied to model the particular flow through the electrode geometry and 

for the laser decontamination system. 

 

Methods of spatial detection of microorganisms on surface were further developed using 

microscopy methods. Three methods were used in this research: optical microscopy 

examination to find the minimum detectable level of B. atrophaeus spores on surfaces, a 

fluorescence technique using LEDs was developed to investigate the spatial detection of 

spores and microalgae and a flow chamber system was developed that was used for cell 

counting of microalgae in liquid.   
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The effect of excimer laser radiation on Escherichia coli vegetative cells and Bacillus 

atrophaeus spores was investigated. E. coli or B. atrophaeus spores were lawned onto agar 

plates and treated with pulsed excimer laser radiation at 248 nm. The plates were incubated 

overnight at 37 °C and assessed for areas of clearing or inactivation.  The applied pulse 

energy was 37 mJ, the pulse repetition frequency (PRF) was either 20 or 100 Hz, 

exposures were from 1-10 pulses, or up to 1 min.  The range of applied energy densities 

was from 0.31 to 18500 Jcm
-2

. Image processing techniques were developed to determine 

the cleared area, major and minor axis and fractional clearing away from the region 

directly exposed to the laser beam. The area of clearing was approximately linear for 

treatment against E. coli, and was non-linear against B. atrophaeus. Increasing the PRF 

increased the area of clearing, as did increasing the exposure time. Interestingly, these 

areas of clearing were much greater than the beam area (2 x 6 mm), suggesting that 

scattering of the radiation played a significant role in contributing towards inactivation 

away from the directly laser exposed region. The results showed that excimer lasers offer 

the potential for rapid decontamination of microorganisms and spores on surfaces. Simple 

protocols allow direct comparison of the inactivation efficacy of different laser sources and 

image processing techniques can be applied to accurately quantify these results. 

 

Growing and harvesting microalgae is important for sustainable and secure biofuel and 

food production. There is a wide spread interest in growing and exploiting the microalgae. 

The lipid, protein, carbohydrate and vitamin content of microalgae are not only species 

dependent but are also a function of their growth parameters such as nutrient, light, 

temperature and CO2.  The importance of detection of microalgae on assessing optimal 

growth conditions was investigated, along with the impact of harvesting and lipid 

extraction.  Image processing systems were developed to quantify the size distribution of 

microalgae as a determinant of growth efficiency.  
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Nomenclature  

 
 
 

Symbol/Abbreviation Meaning 

A Cross sectional area (m
2
) 

Ad Drop area of culture (mm
2
) 

AFM Atomic force microscope 

Al Aluminium  

As Surface area of deposition (mm
2
) 

B. atrophaeus Bacillus atrophaeus 

˚C Degree Celsius 

C1 Initial culture concentration (cells/mL)  

C2 Final culture concentration (cells/mL)  

c3 Fuse wire length (mm) 

CAD Computer aided design 

Cc Culture concentration (CFU/mL) 

CCD Charge coupled device 

Cf Calibration factor (µm/pixel)  

CFD Computational fluid dynamics 

CFU Colony forming unit 

Chl Chlorophyll 

cm Centimetres 

CO2 Carbon dioxide 

CW Continuous wave 

C. vulgaris Chlorella vulgaris 

Cµ Turbulence model constant 

d Days of growth  

D Dark background intensity 

Dh Hydraulic diameter (m) 

DIC Differential interference contrast 

DNA Deoxyribonucleic acid 

Dp Particle density (particles/mm
3
) 

DPM Discrete phase model 

e3 Correction for combustion heat of fuse wire (calories) 

EC Electrical conductivity σ (mS/cm) 
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E. coli Escherichia coli 

F Fluorescence intensity 

FAD Flavin adenine dinucleotide  

Fm Maximum fluorescence 

Fo Minimum fluorescence 

Fv Variable fluorescence 

g Gram 

G-force Centrifugal force 

Hg Heat of combustion  (J/kg) 

hr Hour 

HEPA High efficiency particulate air 

Hz Hertz 

It Turbulent intensity  

IR Infra-red 

J Joules 

k Turbulent kinetic energy (m
2
/s

2
) 

K Kelvin  

kg Kilograms 

KrF Krypton flouride 

L Litre 

LB Lysogeny broth 

LCD Liquid crystal display 

LED Light emitting diode 

Lp Particle length (µm) 

lt Turbulent length scale (m) 

m Metres 

min Minutes 

mm Millimeter 

ms Sample mass (g) 

N0 Initial cell number (cells/mL) 

NA Numerical aperature 

NADH Nicotinamide adenine dinucleotide  

Nc Cell number in the observation field of the microscope 

Nd:YAG Neodymium-doped yttrium aluminium garnet 

Nd:YVO4 Neodymium-doped yttrium orthovandate 
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Nf Final cell number (cells/mL) 

NI National instrument 

nm Nanometres 

N. oculata Nannochloropsis oculata 

Nt Total number of cells (cells/mL) 

OD Optical density or absorbance 

P Sample spectrum  

P0 Reference spectrum  

pa Per annum 

PBR Photobioreactor 

PC Personal computer 

pH Measure of hydrogen ion activity 

ppm Parts per million 

ppt Parts per thousand 

PRF Pulse repetition frequency (Hz) 

r Growth rate (per day) 

r1 Rate of temperature rising before firing (˚C/min) 

r2 Rate of temperature rising after time tc (˚C/min) 

Ra Surface roughness (µm) 

Re Reynolds number 

rpm Revolutions per minute  

s Seconds 

S Siemens 

SD Standard deviation  

SEM Scanning electron microscopy 

SPG Small particle generator 

ta Firing time (min) 

Ta Temperature at firing time (˚C) 

Tair Air temperature (K) 

tb Time when the temperature is 60% (min) 

tc Time after the temperature become constant (min) 

Tc Temperature at time tc  (˚C) 

tf Frame or exposure time of camera (s) 

Ti Initial temperature (˚C) 

TNTC Too numerous to count 
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Tr Temperature rise (˚C) 

TTL Transistor–transistor logic 

UV Ultraviolet 

v Inlet velocity (m/s) 

Vc Culture volume (mL) 

Vp Particle velocity (mm/s) 

Vs Slide channel volume (mm
3
) 

 Volumetric flow rate (m
3
/s) 

W Watts 

Wc Calorimeter energy equivalent  (calories/˚C) 

X Width of microscopic image (pixel) 

Y Length of microscopic image (pixel) 

z Profile height 

Z Sample depth (µm) 

 Turbulent dissipation (m
2
/s

3
) 

μ Fluid viscosity (Kg/m.s) 

μm Micrometers 

ρ Fluid density (Kg/m
3
) 

σ Electrical conductivity (mS/cm) 
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Chapter 1 

 

Introduction  

 

 

 

 

1.1 Spatial distribution of microorganisms 

A spatial distribution can be defined as the way in which some object or measurand is 

arranged within an environment. By assessing and analysing the spatial distribution 

important data can be gleaned about the surroundings or how the objects are affected by 

the environment; enabling greater understanding of the object, and allowing some 

prediction about what may occur in the future, what happened in the past or under some 

given circumstances. Identifying and analysing spatial distributions and their data is 

becoming increasingly important in many disciplines such as astronomy, sociology and the 

life sciences.  For example, the cosmic microwave background radiation has been mapped, 

and produced evidence of the big bang, Figure  1.1.  

 

 

 

 

Figure  1.1 A map of the cosmic microwave background CMB from NASA's COBE satellite 

(Schiller 2009) 
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The Planck mission was initiated in 2009 with the launch of a satellite to map the 

background radiation in more detail, as can be seen in Figure  1.2 (Malik 2013). The Planck 

space mission announced that the Universe is expanding more slowly than previously 

thought, and the new estimate for the Universe’s age is 13.8 billion years. The most recent 

and best map ever of the universe can be seen in Figure  1.3 (Clavin & Harrington 2013). 

The glow is the cosmic microwave background remaining from the beginning of the 

cosmos, the colder areas are in blue and the hotter areas are in red (Buckwalter-Poza 

2014). 

 

  

 

 

 

Figure  1.3 Best map to date of the Universe seen by the Planck satellite (credit: ESA and 

the Planck collaboration) (Clavin & Harrington 2013) 

 

 

Figure  1.2 The microwave sky from Planck (Malik 2013) 
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One example of an active area of research within sociology is mapping crime data onto 

geographical maps. This allows crime hot spots to be determined with intervention 

possible (Mayer-Schonberger & Cukier 2013). Recent work even predicts where crimes 

will happen, based on analysing enormous amount of data (Grill 2013). Cracolici & Uberti 

(2009) investigated the crime activities in Italy using exploratory spatial data analysis. 

Kitchens (2013) investigated the effects of changes in the spatial distribution of policing 

forces based on the data from the national football league (NFL) for crime detection. 

 

Satellite images have been used to assess forest structures and growth (Shamsoddini et al., 

2013). Various spectral bands were used to provide data for forest inventory parameters. 

Such techniques over time allow the impact of environmental or man-made changes to be 

quantified, and if necessary remedial action taken. To reduce the use of drugs and the risk 

of later addiction, Lisita et al. (2013) used an object-based image analysis to detect the 

potential sites of illicit C. sativa drug cultivation. Cavalie et al. (2013) investigated the 

spatial distribution of water in Jupiter’s stratosphere using the heterodyne instrument of the 

far infrared (HIFI) with the photodetector array camera and spectrometer (PACS). 

Chemical Imaging (CI) is combination between digital imaging and near infrared (NIR) 

spectroscopy used to obtain spatial and spectral data. CI techniques are used in 

pharmaceutical and medical fields (Gowen et al., 2008). Amrania et al. (2011) used 

ultrafast chemical imaging systems (mid-infrared laser and micro-imaging) to investigate 

the fingerprint signatures of live cells and find the spatial distributions of chemical 

moieties in the cells. 

 

Assessing distribution of microorganisms or infectious agents is highly desirable in public 

health control. This is particularly the case if there is an outbreak and mapping infections is 

usually the only method to trace the source of the outbreak, leading to its control and 

eradication. The risk of outbreaks of water pollution caused by Cryptosporidium sp. for 

example, can be reduced by assessing the spatial distribution of the relative risk of water 

becoming contaminated in the first instance. Samadder et al. (2010) developed a risk 

potential index (RPI) to indentify locations where the risk of infection was potentially 

higher. These regions can be monitored, which is more cost effective and realistic than 

monitoring everywhere.  

 

Within the context of the current research herein, the spatial distribution of 

microorganisms was assessed over different areas and on different substrates. The 

investigation of the distribution of microorganisms on surfaces is important in evaluating 
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the contamination level and aids in selecting an appropriate method of decontamination. 

Generally, the investigation of spatial mapping of microorganisms required a sampling 

process in the beginning, detecting and then quantifying the data with statistical analysis. 

Investigation of the spatial arrangement of microorganisms gives information about the 

density and number of adhering microorganism (Busscher et al., 1991). Detection of 

microorganisms and analysing their distribution are essential in many fields in our life such 

as the food industry, health, environment and contamination control (Dickert et al., 2003). 

There are various techniques to investigate the potential distribution of microorganisms 

which are: imprint (Cohen et al., 2010), lithography (Zhao et al., 2010), culturing 

(Madigan et al., 2011), filtration (Sweetman et al., 2013), microscopic examination (Lindh 

et al., 2010), and fluorescence (Rattray et al., 2012). Of course, more than one of these 

techniques, or indeed others, could be used simultaneously.  These methods are briefly 

described. 

 

1.1.1 Imprint 

Imprint or pressing techniques are simple and relatively reliable methods used to 

investigate spatial distributions of bacteria and determine absolute counts on different 

surfaces from biological samples such as skin or wounds to inanimate surfaces such as 

worktops, cutting blades and processing equipment. This method is also used to evaluate 

contamination on medical equipment, and recently the pressing method has even been used 

to print patterns of bacteria onto agar plates using lithographic techniques (Cohen et al., 

2010). The imprint technique does not require significant preparation time, processes or 

complex equipment. The only items required are agar plates which are pressed onto the 

sample surface. Often these are filled above their top, so that the agar and sample surface 

can easily touch when placed together. Following sampling, the plates would be incubated 

for the appropriate time-temperature period depending on the likely requirements of the 

suspected contaminants. Further selectivity can be achieved with specific choice of the 

agar medium. Although some imprint techniques require complex or long procedures all 

these techniques work on the same principle - to print or remove the microorganisms from 

the surface in a definite distribution, onto a plate, replicating the same spatial distribution 

as would be seen on the sample, but reversed as in a mirrored view. Imprint techniques 

enable visualizing the distribution of microorganisms such as their location and population. 

This allows opportunities to study the cause and effect of the spatial distribution over an 

area. Understanding the spatial patterns of microorganisms may help to understand 

associated risks and thereby reduce contamination. For example, if the distribution of 
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microorganisms is assessed on say a decontamination system, within some food production 

process or operating theatre, then critical control points can be highlighted that can receive 

additional engineering solutions to reduce or eliminate the problem if the bacterial numbers 

are excessively high or above a certain threshold value.  

 

Few reports are available regarding the spatial distribution of bacteria using imprint 

techniques. Imprint techniques using velvet pads to quantify bacterial contamination in 

surgical wounds has been studied by some investigators (Raahave 1975; Craythorn et al., 

1980). Stanghellini & Rasmussen (1989) visualized the spatial distribution of bacteria on 

rhizoplane of beetroot by imprinting, which was a simple technique to identify in situ the 

location of different bacteria in the same rhizoplane. A few investigators have studied 

microarray printing (lithography) of microorganisms on agar; Weibel et al. (2005) used 

agarose stamps to imprint patterns of bacteria on agar surface. Koibuchi et al. (2009) used 

imprinting methods to evaluate the bacterial contamination of ultrasound probes; the work 

showed that the imprinting method was more suitable to detect the bacteria than swabbing 

methods. Some researchers used cell imprinting technology with polymeric materials to 

identify and detect microorganisms (Alexander et al., 2006).  

 

 

1.1.2 Filtration 

Filtration is a technique to isolate or remove contaminants from a fluid, such as water or 

air.  Microscopic particles, microorganisms or any other materials within the fluid medium 

above a certain threshold size are removed by using a micro-porous material (filter). 

Particulate matter, smaller than the pore size, may pass through the filter. Enumeration and 

removal of microorganisms by filter techniques have been studied extensively, with this 

technology used in most air filtration applications, for example in hospitals or water 

cleaning facilities. Various methods have been developed.  Jannasch (1958) studied the 

spatial distribution of planktonic bacteria by using membrane filtration techniques. The 

historical development and review of membranes has been reviewed by Goetz & Tsuneishi 

(1951) and Wolochow (1958). The use of membrane filters in aerosol analysis has been 

investigated by researchers. Webber et al. (2007) used membrane filters in the recovery of 

asbestos for transmission electron microscopy (TEM) analysis. Membrane filters were 

used in analysis of aerosols for microscopy and in the aerosol size spectra determination 

(Melo & Phillips 1974). The use of membrane filter techniques to test the potability of 

drinking water has been reported by many researchers (Bancroft et al., 1989; Habash & 
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Johns 2009). The high efficiency particulate air (HEPA) filters are used to filter the 

airborne particles. The HEPA filter is widely used in biological applications and air 

purification systems with high collection efficiency (Osaki & Kanagawa 1990). Sakuraoka 

& Madsen (2001) reported that membrane filters of pore size 0.45 µm were effective in 

removing heat resistance spores from soft drinks. Membrane filter techniques are widely 

used in dairy products (Peterkin & Sharpe 1980). The size of bacteria and other common 

particulates between around 0.0001-1000 µm can be seen in Figure  1.4 (TBH Company, 

Straubenhardt, Germany 2013), with the smaller size corresponding to gaseous molecules 

where activated carbon is one method of filtration, up to large dust particles where specific 

filters can be selected.  

 

 

 

Different filtration methods are available depending on the application that they are 

designed for, these types are (Purchas 1996; Sutherland 2008):  

 

 Gas – solid filtration for aerosol sampling and airborne analysis, such as activated 

carbon, gelatine and PTFE.   

 Solid separation from liquids requires strainers, deep bed, cartridge and membranes 

filters are used. 

 Liquid filtration separates liquid droplets such as coalescing filter. 

 Dissolved material filtration (diffusion membranes) is widely used in reverse 

osmosis, nanofiltration and ultrafiltration processes.  

 Gas separation such as dense membrane.   

 

Figure  1.4 Size of bacteria and other particulates (TBH Company, Straubenhardt, Germany 2013) 
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Since membrane filter techniques are widely used in separation of microorganisms for 

environmental analysis or in tests requiring accurate quantification, economy and 

simplicity, it is an area of interest relevant to this work, so the membrane filters are 

discussed in more detail in the next section. 

 

1.1.2.1  Membrane filtration 

Membrane filters are used for relatively accurate determination of the numbers of 

microorganisms in a liquid or air medium. This method increases the sensitivity of 

detection compared to swabbing techniques because the fluid containing the spores is 

passed through the filter and the spores are retained on the filter surface. In the membrane 

filter, the speed of the fluid being drawn through the pores can be increased by using a 

driving force (pressure or vacuum driven separation process) in addition to gravity and the 

microorganisms are trapped on the filter’s surface. The particles can easily be re-cultured 

and analysed by placing the filter on a nutrient plate and then incubating the plate. Some 

filters are placed on absorbent pads soaked in nutrient medium and dried to avoid wasting 

agar and plate preparation time. Membrane filters with different pore sizes are available, 

and the chosen pore size depends on the intended application, but generally they are 

between 0.015-12 µm (Whatman Manual 2010); microorganisms larger than the filter pore 

size are trapped on the membrane surface. The membranes are not soluble in water or 

alcohol and they are thermally stable and inflammable. Membrane filters are manufactured 

in different geometry and materials. The most common materials are: cellulose ester, 

cellulose nitrate, polymer, PTFE (Teflon), quartz, glass fibre and nylon (Sutherland 2008; 

Whatman Manual 2010). 

 

1.1.3 Microscopic examination and counting 

Microscopes are an important research technique widely used in biomedical fields, the 

microelectronics industry and other fields of science. Microscopes are used to view and 

magnify organisms and other objects. In microscopic examination, the microorganisms are 

pipetted or spread onto a glass slide, flow cell or any other plate suitable for microscopic 

viewing. The basic types of microscopes are optical microscopes, electron microscopes, 

scanning probe microscopes and scanning acoustic microscope. Optical microscopes such 

as compound, stereo, ultraviolet, fluorescence and confocal microscopes use different 

methods of lighting to illuminate the sample (Olympus 2010). An excellent overview and 

development of optical microscopy is given by Davidson & Abramowitz (2011). There are 

http://en.wikipedia.org/wiki/Scanning_acoustic_microscope
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various techniques for improving the contrast in optical microscopy, such as brightfield, 

darkfield, Rheinberg illumination, phase contrast, differential interference contrast (DIC), 

Hoffman modulation contrast, polarized light and fluorescence techniques (Mertz 2010; 

Davidson & Abramowitz 2011). It is possible to combine two techniques together as for 

example with fluorescence microscopy and phase contrast techniques. Electron 

microscopes (EM) use electrons to ―illuminate‖ and scan the specimen instead of light 

(Leamy 1982). The major types of electron microscope are: transmission (TEM), scanning 

(SEM) and the scanning transmission (STEM) microscopes (Rullgard et al., 2011). The 

scanning probe microscope (SPM) is used to study the structure of surfaces by using a 

probe tip that scans across the specimen; the most important and well known one is the 

atomic force microscope (AFM) (Yongho & Wonho 2008). The scanning acoustic 

microscopes (SAM) uses sound waves to investigate an object, using methods similar to 

the sonar principle; they are often used in the semiconductor industry and medicine and 

biological research (Miura & Yamamoto 2013).  

 

Figure  1.5 shows the SEM images of the B. atrophaeus spores treated with cold plasma 

and ozone at exposure time of 2 min. The plasma system was investigated by Watson 

(Foss-Smith & Watson 2008) and Mine (Mine 2010). Figure  1.5 (a) shows the healthy 

spores without treatment while Figure  1.5 (b) shows the killed spores. 

 

 

  

(a) Control (no treatment) (b) Cluster of the plasma treated spores  

Figure  1.5 SEM of B. atrophaeus spores 

 
 

http://en.wikipedia.org/wiki/Scanning_acoustic_microscope
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1.1.4 Culturing techniques 

In culturing, the microorganism specimen is inoculated by pipetting or looping them into a 

nutrient medium such as an agar plate or liquid broth. Then the microorganism samples are 

incubated in optimal conditions for growth and subsequent analysis. To avoid 

contamination, the culturing of microorganisms must be done in aseptic conditions 

(Madigan et al., 2011). 

 

1.1.5 Fluorescence spectroscopy  

The fluorescence spectra of spores and other microorganisms can play an important role in 

their detection and discrimination. The sample (biological or non-biological) is illuminated 

with a light that excites the fluorescence within the sample. The fluorescence is emitted at 

a wavelength that is different from the excited one, then the fluorescence spectra is 

collected with a suitable detector such as spectrometer or photomultiplier tube (PMT). 

Most materials have intrinsic or endogenous fluorophores, which emit characteristic 

fluorescence spectra which can be used to distinguish different materials from each other. 

Autofluorescence in spores and biological cells is due to some materials (auto-

fluorophores) such as aromatic amino acids (tyrosine, tryptophan and phenylalanine), 

enzymes and coenzymes (nicotinamide adenine dinucleotide (NADH), flavin adenine 

dinucleotide (FAD) and nicotinamide adenine dinucleotide phosphate (NADPH)), lipids 

and antibodies (Ramanujam 2006). Various biological and chemical materials are affected 

by electromagnetic radiation, such as UV radiation which efficiently excites natural 

fluorophores.  As an example, a wavelength of 266 nm excites amino acids, and their 

emission wavelength is usually between 300–400 nm (Sivaprakasam et al., 2004). Cyanine 

dyes such as Cy3 and Cy5 have been recently used in biological fluorescent labelling (Feng 

et al., 2006). Table  1.1 shows the intrinsic fluorophores in spores and other 

microorganisms. 
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Chlorophyll (Chl) fluorescence measurements are used to understand the photosynthesis 

process of microalgae and also to evaluate growth and oil production (Torzillo et al., 

1996). The first discovery of the fluorescence of green algae was by Kautsky & Hirsh in 

1931 (Khalida et al., 2012). A good review of chlorophyll fluorescence discovery was 

reported by Papageorgiou & Govindjee (2004). Vonshak et al. (1994) used chlorophyll 

fluorescence to estimate the effect of temperature on photoinhibition in Spirulina cultures. 

Chl fluorescence can be used to control microalgal cultivation by monitoring the 

photochemical activities (Suggett et al., 2010). Fluorescence imaging can be used to 

understand the photosynthesis processes and its associated metabolism such as herbicide 

and stomatal heterogeneity (Baker 2008).  

 

Table  1.1 Excitation and emission wavelengths of the intrinsic fluorophores (Powers & Lloyd 2004; 

Ramanujam 2006; Foss-Smith & Watson 2008) 

Fluorophore Excitation wavelength (nm) Emission wavelength (nm) 

Amino acids 

Tryptophan 280 , 295 300 , 353, 400 

Tyrosine 275 305 – 400 

Phenylalanine 260 – 280 288 – 400 

Enzymes 

FAD 450 535, 550 

NADH 290 , 350 440 , 460 

NADPH 260 , 336 450 , 464 

Proteins 

Collagen 270 – 370 300 - 450 

Elastin 290 , 325 400 

Lipids 

Phosphoplipids 436 584 

Lipofuscin 395 540 

Vitamins 

A, B6, K, D 315 – 390 300 – 510 

 



 

23 

1.2 Laser decontamination 

Another important reason for determining the spatial location of microorganisms is to 

determine methods and efficacy of inactivation, sterilization or more generally 

decontamination processes. The presence of unwanted microorganisms can lead to serious 

illness and even death. For example, foodborne illnesses (CDC 2013) in the USA affects 

48 million people pa (per annum) with 128,000 people ending up in hospital and 3000 

people dying.  Salmonella sp. kills an estimated 380 people and Listeria monocytogenes 

kills 250 pa (Scallan et al., 2011). Diarrhoeal diseases which are often foodborne infections 

kill 2.2 million people pa (Kuchenmuller et al., 2009). The World Health Organization 

(WHO) reported a 15% increasing in death rate of severe acute respiratory syndrome 

(SARS) since the epidemic was first discovered in 2002 (Kamps & Hoffmann 2013). 

Pathogenic bacteria cause approximately 40% of the 50 million deaths pa worldwide 

(Rattray et al., 2012) attributable to any cause.   

 

Consequently, identifying and detecting microorganisms and evaluating methods of 

decontamination are highly desirable.  The substrate and its associated parameters such as 

thermal and electrical properties or roughness for example, can of course determine the 

efficacy of the treatment, whether it is food, medical devices, or the environment such as 

within surgical operating theatres or even clean rooms. Lasers are one method of 

inactivation that has been investigated.  They are considered as a trusted technology in 

many decontamination fields such as medical and industrial. Watson et al. (1996) 

investigated seven different laser wavelengths (0.355-118 µm) for killing of E. coli 

bacteria, and the highest bactericidal capability was with a CO2 laser operating at 10.6 µm. 

The excimer laser radiation has high antimicrobial effects, and the bacterial reduction 

depends on the exposure time and applied energy density of the radiation and the strain of 

microorganisms (Folwaczny et al., 1998). Lee et al. (2006) reported that a 7 W diode laser 

can kill 97.7% of Streptococcus mutans in 500 µm thickness of human dentin. Laser-

induced breakdown spectroscopy (LIBS) is used to detect the contamination location and 

to decontaminate the surface using a scanning UV laser (Rehse et al., 2012). Charvalos & 

Karoutis (2001) investigated the antibacterial activity of argon fluoride (ArF) excimer laser 

at 193 nm on various strains of gram negative bacteria.  The results showed that no 

bacteria survived above a critical exposure value (8-16 J/cm
2
). The CO2 laser at irradiance 

of 50 W/cm
2
 can be used to kill 99.5% of bacterial cells (Talebzadeh et al., 1994). Nd:YAG 

lasers have a bactericidal effect of killing both pigmented and non-pigmented bacteria, and 

the killing also depends on other factors such as the population and type of microorganism, 
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tissue type and pigmentation (Meral et al., 2003). Udart et al. (2011) concluded that the 

mechanism of high power laser (940 nm) on inactivation of Escherichia coli was a thermal 

effect. Ultrashort pulsed (USP) lasers inactivate the viruses by exciting the mechanical 

vibrations of the virus capsid causing damage to the protein coat. In the inactivation of 

bacteria, the USP laser relaxes the super-coiled double stranded DNA leading to damage 

and inactivation (Tsen et al., 2012). Ward et al. (1996) reported that Nd:YAG laser 

bacterial inactivation did not depend on cell size and shape, pigmentation and Gram 

reaction. 

 

1.2.1 Introduction to the excimer laser  

Ultraviolet (UV) light is widely used for disinfection and treatment of waste and drinking 

water and to sterilize medical equipment and facilities. UV lasers and diodes with a 

wavelength in the range around 250 to 400 nm are currently used in antimicrobial 

applications (Vermeulen et al., 2008).  UV radiation is absorbed by the DNA and causes 

damage and mutation; this leads to cell killing and mutagenesis (Kochevar 1992).   

 

Excimer (excited dimer) lasers typically emit radiation in the UV region. They are 

extensively used in ophthalmic surgery, dermatological treatment, sterilization and 

disinfection, microlithography, and marking and ablation processing. Of the three types of 

excimer laser, XeCl (308 nm), KrF (248 nm) and ArF (193 nm), the KrF has proved to be 

the most mutagenic (Charvalos & Karoutis 2001), with its wavelength coinciding with the 

peak absorption to maximise cell killing. The excimer laser wavelengths are absorbed by 

biological and organic compounds with minimal thermal damage. So considering all of 

these features of excimer lasers this led to the use of KrF lasers for decontamination of 

microorganisms in this work. Although UV radiation has many useful applications, UV 

light can be hazardous are dangerous and care should be taken to prevent accidental 

exposures in its use.   

 

1.2.2 Laser marking system  

A plasma system was developed in-house by Watson et al. patented by (Foss-Smith & 

Watson 2008). The plasma system comprised laser marked electrodes that were found to 

improve the discharge stability and allowed the discharge gap to be increased so that a 

greater volume of air could be passed through the system. Hence increasing the volumetric 

decontamination rate. Additionally, Foss-Smith and Watson (2008) described enhanced 
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killing with flow shaping directed towards the electrodes. The system’s performance was 

determined by Mine (2010). However, the improved decontamination efficiency due to the 

electrodes or the influence of the electrodes with directed flow shaping on their own i.e. 

without a discharge was not evaluated.  Consequently, laser marking was used to modify 

the surface roughness of the electrodes, and assess how spores would be spatially deposited 

along the electrode length and aid the decontamination process. Surface roughness is 

described in Section  1.3.  

 

Laser marking is one of the major industrial applications for material processing. 

Depending on the laser and substrate, a thermal process is often used, utilising a high 

intensity laser beam to make contrasting marks on the surface of the sample (Ng & Yeo 

2001).  Since laser marking used in this case is a heat treatment technique, the surface 

roughness is modified, which potentially has a significant influence on the distribution and 

adhesion of the microorganisms landing on that surface. The marking quality such as 

colour, surface modification, depth and width depends on the laser parameters which are 

power intensity, scanning speed and pulse repetition frequency. Therefore, suitable laser 

parameters need to be selected to provide a good quality laser marking process. Laser 

marking systems consist of three basic parts which are: the laser source, beam delivery 

optics to direct the laser in a x-y scanning system and software to control the laser and 

scanning parameters. Different terminology is used to classify laser marking techniques 

with respect to the scanning method (i.e. how the laser is moved over the work piece).  

There are two main techniques: galvanometric scanning (dots and vectors scan) and mask 

projection (Chen et al., 2009). In the first technique, the laser beam is directed via two 

computer controlled galvanometer mirrors and a lens system to the object to be marked, 

and the second technique uses a mask which contains the shape of the pattern to be 

marked. Moreover, marking can be classified, with respect to the interaction between the 

laser beam and material, into two approaches which are surface modification and material 

removal (ablation) marking (Dahorte & Harimkar 2008).  

 

In recent years some laser marking experiments have been reported. Tam et al. (1993) 

studied Nd:YAG laser marking of integrated circuit (IC) packages. Qi et al. (2003) studied 

laser marking of stainless steel with Q-switched Nd:YAG laser. Valette et al. (2006) 

studied the influence of laser marking on the corrosion resistance for biomaterials. Dusser 

et al. (2007) investigated deep marking of metals and polymers for information coding. 

Laakso et al. (2008) investigated colour marking of stainless steel with a fibre laser. Chen 

et al. (2009) used CO2 laser marking to encode eggshells. Yasa & Kruth (2009) studied the 
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process parameters (scan speed, laser power and pulse frequency) in laser marking. New 

marking techniques in the nano-scale have been investigated by Pena et al. (2010) by using 

a diode pumped Nd:YVO4 laser on a Si wafer. The most common lasers that are used in the 

industry for marking include Nd:YAG, Nd:YVO4, Nd:YLF and Ti:sapphire solid state lasers 

(60%), CO2 (35%)  and excimer gas lasers (5%),  as well as diode semiconductor lasers 

(Gu 2006; Chen et al., 2009). Choosing the appropriate laser type depends on the 

workpiece material and required application. 

 

The main advantages of laser marking compared with conventional methods such as ink-

marking, mechanical engraving and electro-chemical methods are that they are easy to 

automate, have high efficiency and quality, produce permanent marks and have low 

operational costs (Qi et al., 2003). These reasons have elevated laser marking techniques to 

the most common method in a modern industrial technologies (Gu 2004), from surface 

modification, to copyrighting, to component identification, to marking of electronics 

components, sterilization, decoration and material processing.   

 

1.3 Surface roughness 

Surface roughness plays a significant role in many industrial, medical and engineering 

applications. Surface roughness has effects on functional attributes of material, such as 

frictional losses on surfaces and in pipes, wearing, light reflection, heat transmission, 

lubricant distributing, coating, fatigue resisting and the drag on ships and aircraft (Lou et 

al., 1999; Connelly 2006) and how bacteria interact with that surface. So the appropriate 

processes should be selected to reach the optimum surface roughness thereby providing the 

desired surface quality and finish.  Surface roughness is a measure of irregularities on the 

material surface caused by a machining processes during manufacturing or due to some 

surface modification that maybe either mechanical or chemical, generally surface 

roughness excludes waviness and form errors or flaws (Vorburger & Raja 1990). The 

roughness of a surface is a two dimensional parameter, and it is a material property that 

can be measured by profilometer instruments either by a contact (mechanical) or by non-

contact methods (optical) (Thomas 1999). The distances (height and width) between peaks 

and valleys are measured and the reading represents the roughness value. Figure  1.6 (a) 

shows profiles of the roughness. The roughness average parameter (Ra) is widely used to 

represent the roughness, which is an amplitude parameter and also known as the arithmetic 

mean or centre line average (Whitehead & Verran 2006; Mathew Mate 2008). 

 



 

27 

 

 

 

 

(a)                                                                  (b) 

Figure  1.6  Schematic represents a) roughness profiles (Lou et al., 1999) and b) surface roughness value 

(Ra) (Mathew Mate 2008) 

  

 

 Ra can be defined by (Mathew Mate 2008):  
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Equation  1.1 

 

                                                                          

Where z is the height of the profile starting from the mean height and Ll is the sampling 

length, as shown in Figure  1.6 (b). 

 

A rough surface is often undesirable, especially if a maximum value is specified.  Often 

surface roughness needs to be minimized as much as possible, because the rough surface 

usually wears and corrodes more than smooth surfaces (Hilbert et al., 2003), which leads 

to scratch formation, and such defects may damage the workpiece. Rough surfaces also 

increase bacterial adherence and subsequently colonization which is a serious problem in 

some fields such as in the food industry and on medical equipment where contamination, 

infection and poisoning can result (Verran et al., 2010). This may be difficult in 

manufacturing because it may be too expensive to reach a very smooth or flat surface. 

Occasionally high roughness may be desirable at some level, for example if high friction is 

important or beneficial  as with say a smooth coating to stay on a pill (Rideout 2013), and 

localised surface roughness in the micro and nano-scale is useful in dental implants and for 

bone-cell interaction for implant surfaces (NovaesJr et al., 2010). 

 

Several studies investigated the effect of surface roughness on the distribution of 

microorganisms and the results are varied, some researchers said that there is a direct 
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relationship between surface roughness and adhesion of microorganisms. McAllister et al . 

(1993) demonstrated that ultra smooth polymeric surfaces do not allow bacterial adherence 

while irregularities promote adhesion. Flint et al. (2000) and Whitehead & Verran (2006) 

reported that microorganisms are retained in surface features of similar size to them. Tang 

et al. (2009) and Sousa et al. (2008) found that rougher surfaces encourage Staphylococcus 

epidermidis to adhere and colonize. While others have stated that there is no relationship. 

Tide et al. (1999) investigated the influence of grinding and polishing of welds to reach 

food industry roughness standards and found that this may have no significant influence on 

bacterial accumulation. Hilbert et al (2003) reported those microorganisms attachment on 

stainless steel surfaces did not depend on surface roughness when varied between Ra 

values of 0.01 and 0.9 µm, which is smaller than bacterial samples. 

 

Investigation of the effect of surface roughness and its influence on adhesion of 

microorganisms is important to determine the contamination level on the surfaces. The 

surface roughness of the electrodes promoted discharge stability of atmospheric plasma 

(Foss-Smith & Watson 2008). The electrode material and its roughness is a design choice, 

and selection is dependent on understanding of the potential spore distribution on the 

electrode surfaces. The laser marker Violino 2 was used to mark several metal samples, 

and a profilometer machine was used to measure the surface roughness against different 

laser marking parameters. The influence of laser marking on the surface roughness is 

described in detail in Chapter 2: Section  2.5. 

 

1.4 Bacillus atrophaeus spores 

Bacillus atrophaeus microorganisms (previously named Bacillus globigii (B. globigii) and 

Bacillus subtilis) (Buhr et al., 2008) are gram positive and aerobes. Under harsh 

environmental conditions, the bacteria can produce spores which may stay dormant for 

long periods and with high resistance to radiation, heat and chemicals. B. atrophaeus 

spores are commonly used in biodefence and decontamination tests, because they are hard 

to kill and they are very similar to B. anthrax, but non-virulent and safe to handle. The 

dimensions of the spores are 1.21 ± 0.18 µm a nominal length, 0.68 ± 0.11 µm width and 

0.97 ± 0.07 µm spherical diameter (Buhr et al., 2008). Figure  1.7 shows the structure of 

Bacillus atrophaeus spores. 

 

B. atrophaeus spores were obtained from Dr. Bill Whyte, School of Engineering, 

University of Glasgow. The concentration of the original stock was approximately 10
10 
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spores/mL. Some photographs of the B. atrophaeus spores were taken under the Nikon 

microscope (Eclipse, ME600, Japan) that was used in this work (see Chapter 3: Section 

 3.1) which can be seen in Figure  1.8. 

 

 

    

 

  

 (a)   (b)  

Figure  1.8 Microscopy of Bacillus atrophaeus spores under a) fluorescent Nikon microscope (345 nm) 

and b) bright field Nikon microscope 

 

 

1.5 Introduction to NI Vision  

Image processing is the art of automatically acquiring data from an image and enhancing 

that image to make the data or desired image artefact more evident. Image processing is 

often used in medicine, to assess product quality in industry, to capture motion in sports 

 

Figure  1.7 Structure of a Bacillus spore (cross-section), (Turnbull 1996) 
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video and photographic editing in TV and photography (Moeslund 2012). The typical 

image processing techniques include image enhancement for colour contrast, edge 

detection and noise cleaning, image restoration for geometry distortion and spatial 

filtering, and image detection and information extraction (Pratt 2007). 

 

This section introduces how image processing software was used throughout this thesis to 

process biological images rapidly to obtain results that cannot easily be determined by 

human observation. NI Vision 8.5 (National Instruments, USA) was used in this work. 

This software is able to analyse images through a series of modules that are placed together 

under one script (see Figure  1.9, the main window of NI Vision). This script can be used 

for various applications with just slight modification by adding or removing modules to 

enhance the feature.  Each module does a specific job, so the order or sequence of the 

modules is important. The analysis can be applied to one picture or many pictures 

sequentially.  

 

 

 

The images derived from the experiments were analysed using the NI software in order to 

detect the objects or particles in the image and create a database containing all of the 

relevant, desired information such as shape, size, location, texture and colour. As 

mentioned earlier, the script within NI Vision software contains modules which can be run 

to analyse and identify the particles or colonies depending on their morphology, for 

example by size or shape or colour, and all of the analysis can be saved as an image or 

exported to other programs such as Excel or Matlab for further analysis. As an example, 

the flowchart of NI steps that was applied on inoculated agar surfaces after laser treatment 

can be seen in Figure  1.10 (see Chapter 4: Section  4.1.4.1). Normally the module sequence 

 

Original image 

Modules series 

(algorithm) 

Processing 

window 

Processing 

functions 

 

Figure  1.9 Main window of NI Vision  
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is calibration and processing, then colour correction and identification and measurement 

and counting. 

 

 

Image mask (choose region of interest (ROI)) 
 

 

Colour plane extraction (colour encoding using red, green and blue (RGB)) 

 

Threshold (an image with monochrome information) 

 

 

Edge cropping of an interest area 
 

Image calibration (convert pixel to real world (pixel to µm)) 

 

Uneven illumination correction 

 

Binary image inversion (to set the pixel intensity of an object to 1or 255 and the 

background to zero, or vice versa) 

 

Filtration (separation of the particles or colonies from the background) 

 

Particles analysis and identification (for example by size, by texture, by colour 

…etc.) 

 

Measurements and calculations (for example diameter, total area …etc.) 

 

Exporting the data to another software (such as Excel or Matlab) 

 

 

Figure  1.10 Diagram of the NI Vision analysis 
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Figure  1.11 shows an example of using image processing for colony counting. Each of the 

white dots in Figure  1.11 (b) shows a colony forming unit (CFU) after incubation.  

 

 

 

(a) original image (b) processed image (colony identification) 

Figure  1.11 Image processing example using NI Vision analysis 

 

 

1.6 Computational fluid dynamics (CFD) modelling 

Fluent is a computational fluid dynamics (CFD) software package and is a simulation tool 

for many different fields of engineering and science, where modelling and design is 

required such as in fluid dynamics, electromagnetic design, thermal applications and 

combustion. A computational fluid dynamics (CFD) code was developed to model the 

flow-shape distribution and temperature profiles inside a glass system that acted as a 

decontamination chamber, known as the booster (Foss-Smith & Watson 2008).  The 

particle flow trajectories were assessed between the two electrodes for the plasma system. 

This simulation describes how the flow velocity of the particles (B. atrophaeus spores in 

this case) varies along the length of the booster or through the two aluminium electrodes 

i.e. the flow shape distribution.  The simulation was applied by using a Fluent 6.3 (ANSYS 

Inc., UK).  

 

Various models can be developed in Fluent, these are briefly described below (Dehbi 2008; 

Fluent_Guide 2009):   

 

 Standard k-epsilon model  

In this simulation, the flow is assumed to be a steady turbulent flow. The Reynolds number 

( eR , dimensionless) was calculated by Equation  1.2. 
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Equation  1.2 

 

Where ρ is the fluid density (Kg/m
3
), v is the average inlet velocity (m/s), Dh is the 

hydraulic diameter (m) and µ is the fluid viscosity (Kg/m.s). 

 

The volumetric flow rate 
.

V  (m
3
/s) was calculated as the product of the cross-sectional area 

A (m
2
) for the flow and the average inlet velocity v (m/s) as in Equation  1.3.   

   

AvV 
.

 
 

Equation  1.3 

 

 

Since the Reynolds number is large and the flow is turbulent, the physical model k – ε 

namely (standard k-epsilon model) was chosen to model the flow. The k variable (m
2
/s

2
) 

represents the turbulent kinetic energy, and ε (m
2
/s

3
) is the turbulent dissipation, given by: 
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Equation  1.4 

 

 

Where Cµ is a turbulence model constant which has a value of 0.09, and lt is the turbulent 

length scale (lt = 0.07 Dh). 

 

The turbulent energy k can be defined as: 
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Equation  1.5 

 

 

Where v is the average flow velocity and It is the turbulent intensity which is computed as: 
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Equation  1.6 

 

 

http://www.cfd-online.com/Wiki/Standard_k-epsilon_model
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Where eR  is the Reynolds number (see Equation  1.2). 

 

 Discrete phase model (DPM) 

Trajectories of the air flow and particles can be computed using DPM. In this method 

namely Lagrangian, the particles are represented by a discrete phase comprising spherical 

particles. The forces such as Saffman’s lift force and drag forces can be defined.  

 

 Boundary conditions 

In this model, the collision was assumed elastic in the DPM, so the normal and tangential 

reflection coefficients were set to 1, this means that the particle holds the momentum after 

the rebound.  

 

 Particles injection 

The flow of the particles was modelled by a stochastic tracking, which can compute more 

than one track for each particle. 

 

1.7 Microalgae 

Various detection methods and applications were developed in this thesis relevant to 

surface and air (aerosols).  Consequently, as an example for detection and growth within 

liquid, the emerging and important area of microalgae was addressed.  Microalgae are 

considered today as one of the important sources of fatty acids for human food and biofuel 

production. Chlorella vulgaris, Dunaliella and Spirulina dominate the human nutrient 

market (Pulz & Gross 2004). Microalgae are promising as an alternative biofuel source 

because of their high growth rate, doubling per day, high lipid content and their ability to 

grow in a photobioreactor or on any land or saline water which is not suitable for 

conventional agriculture and microalgae can reduce greenhouse gas emissions (Hu et al., 

2008) by absorbing CO2. Microalgae are essential for aquaculture species productivity 

(Muller-Feuga 2000) and they are considered as an alternative to fish oils as many species 

are a rich source of Polyunsaturated Fatty Acids (PUFA) and lipids (Mendoza Guzman et 

al., 2011). Third generation biofuels from microalgae are a good alternative energy source 

from the first and second generation biofuels (Nigam & Singh 2011). The processes to 

convert microalgal biomass to energy can be classified as biochemical, chemical reaction, 

direct combustion, and thermochemical (Wang et al., 2008). Biodiesel from microalgae is 

a good substitute for petroleum and an important process in biodiesel production is the 
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disruption of the microalgal cell wall to aid extraction of the lipids. Various methods are 

used for cell disruption such as: microwaves, autoclaving, bead beating, 10% NaCl, 

waterbath, blender, ultrasonic and laser treatment (Lee et al., 2010; McMillan et al., 2013). 

Other potential applications of microalgae outside of biofuels include: foods, carotenoids, 

phycobiliproteins, fatty acids, isotopic biochemicals and animal feed (Milledge 2011).   

 

All of these applications, described above, require that the microalgae counts or biomass 

concentration is known over their growth cycle.  Bowe (2007) reported that the 

microscopic counting method is the most favoured technique to measure the algal biomass. 

Cole & Tinker (1996) used laser speckle spectroscopy (LSS) to monitor the activity of 

Chlamydomonas reinhardii algae and other organisms, as LSS is a powerful tool to 

investigate the number and motion of microorganisms. Using a TV-camera with a 

microscope is a useful real time method of detection and velocity measurement of 

microalgae and microorganisms (Perner et al., 2007). Nile red staining for fluorescent 

spectroscopy is now a fast technique for detection and determination of lipids in microalgal 

cells (Duong et al., 2012) although there is no specificity over the lipid type. Bougaran et 

al. (2012) enhanced the neutral lipid content of microalgae by applying UV mutagenesis 

with flow cytometry, and a method for increasing the lipid productivity was assessed by 

Nile red staining. Flow cytometry in conjunction with lipid fluorescent dye Nile Red (NR) 

has been used to estimate the lipid cell content (De la Jara et al., 2003).    

 

1.7.1 Cultivation and harvesting systems 

Microalgae can be cultivated in open and/or closed system. The advantages of  closed 

photobioreactors over open systems is that they allow more control of the algal growth 

parameters such as light, pH, nutrients, intensity, light cycle, and contamination 

concentrations. The photobioreactor is a controlled environment that provides a high 

biomass (Chisti 2007). There are different types of photobioreactor (PBR), but the 

common designs are: tubular, column and flat (Carvalho et al., 2006). The light 

distribution within the PBR is an important issue, as the light intensity decreases 

exponentially from the surface to the centre of the PBR (Hankamer et al., 2007), so some 

designs use a thin layer approach to their design (Doucha et al., 2005), flat panel air lifts 

(Issarapayup et al., 2009) and immobilized systems (Laurinavichene et al., 2006). Katsuda 

et al. (2004) used light emitting diodes (LEDs) of different wavelengths for illumination of 

photobioreactors and reported that the red LED was suitable for the growth of 
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Haematococcus pluvialis. The light emission must coincide with the photosynthetically 

active region (PAR) of the microalgae (Janssen 2002). 

 

The recovery of microalgal biomass is an important issue due to low biomass to liquid 

ratio, which is about 0.3-5 g/L (Coward et al., 2013). The recovery of microalgae can be 

substantially more expensive than the cultivation (Molina Grima et al., 2003). Suitable 

harvesting of microalgae is an essential stage to separate the biomass for different 

microalgae production. The selection of the harvesting method is dependent on the density 

and size of microalgae and on the required products (Chen et al., 2010). The harvesting 

methods for microalgae include: gravity sedimentation (Uduman et al., 2010), flocculation 

(Danquah et al., 2009), centrifugation (Dassey & Theegala 2013), foam flotation system 

(Csordas & Wang 2004), filtration (Bhave et al., 2012), ultrasonic technique, the 

electrolytic removal (Alfafara et al., 2002) and magnetic harvesting (Prochazkova et al., 

2013). Four harvesting methods were investigated in this research: filtration, 

centrifugation, gravity sedimentation and flocculation. Filtration is a high efficiency 

recovery method, relatively economic and no chemicals are required but the efficiency 

depends on the concentration and size of the microalgae. The sedimentation recovery 

method can be used for large volumes, however it is time consuming and may need further 

processing. The centrifugal method is the most rapid method with good recovery but high 

energy consumption. The efficiency of flocculation harvesting methods depends on the 

flocculent type.  

 

1.7.2 Photosynthesis  

Light is an important factor in microalgal cultivation and should be considered when 

choosing a photobioreactor design.  Photosynthesis is the unique process in which the 

photosynthetic organisms convert the light energy to chemical energy. Microalgae are 

photosynthetic microorganisms and can be grown in marine and freshwater. Their 

photosynthetic mechanism is similar to plants, but they are more efficient in converting 

solar energy into biomass because of their simpler cellular structure (Anders et al., 2007). 

The microalgae capture the light energy as an energy source and use CO2 as a carbon 

source through the Calvin cycle (Yang et al., 2000), i.e. they use the light reaction products 

(ATP and NADPH2) to fix CO2 (Reyes-Prieto & Bhattacharya 2007). The process can be 

represented in the reaction formula (Brennan & Owende 2010): 
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2612622 666 OOHCPhotonsOHCO   Equation  1.7 

 

Photosynthesis considers the first stage of biofuel production as an increase in 

photosynthetic efficiency which will enhance biomass production hence this will increase 

biofuel production (Schenk et al., 2008). Microalgal photosynthesis is an efficient way to 

decrease the carbon dioxide concentration in the atmosphere (Karube et al., 1992). Jeon et 

al. (2005) developed a photosynthetic measurement system to investigate microalgae 

photosynthesis in terms of light intensity and spectra and algal concentration.  

 

1.7.3 Decontamination protocols for microalgae 

Decontamination is an essential factor in microalgal culturing and growing, as aseptic 

processing eliminates the growth of unwanted species and bacteria. The growing of more 

than one species may lead to depletion of the nutrients and kill or reduce the growth of 

microalgae. The culturing techniques and decontamination is an important tool in 

ecophysiological studies (Zacharias 2012). Fernandes et al., (2011) decontamination 

protocols consisted of physical treatment (brushing and cutting) and chemical treatments 

(sodium sulfonate detergent solution and germanium dioxide) to obtain unialgal cultures. 

Keller et al., (1988) used microwaves for sterilizing the culture media of phytoplankton. 

The decontamination process can include more than one method of decontamination such 

as chemical, physical or mechanical and a combination of antibiotics and disinfectant 

treatment (Xuewu & Kloareg 1992). The sterilization methods comprise: thermal/heating 

(flame, autoclaving, pasteurization), electromagnetic waves (UV, microwave, pulsed light, 

laser), chemical (ethylene oxide, ethanol, bleach) and filtration (Andersen 2005). Appendix 

E gives the protocols used for aseptic processing of the microalgae in this work. These 

methods of decontamination are similar to those that would be used for bacteria.  It should 

be realised, however, that microalgae are usually in water and are only a problem on 

surfaces if a biofilm is produced.  Bacterial biofilms are often eradicated with physical 

washing and the use of disinfectants and washing protocols.  

 

 

1.8 The scope of the thesis  

Chapter one: This chapter has given an overview of the spatial mapping techniques: 

imprint, lithography, culturing, filtration, microscopic examination, and fluorescence. 

Spatial mapping is beneficial to determine the distribution and location of pathogens, and 
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to determine the efficiency of decontamination methods. Laser decontamination is an 

effective process which can be used to kill air borne microorganisms or on surfaces, at a 

high killing rate. The importance of microalgae for biofuel and food production was 

discussed in this chapter. NI vision image processing and Fluent modelling technique that 

were used in this research were described in this chapter. 

 

Chapter two: The results of the investigation into using the laser marking system on 

aluminium and stainless steel electrodes to obtain different surface roughnesses are 

discussed. A particle aerosol generator was used to generate the spore aerosols which were 

deposited onto the surface of the electrodes. The spatial distribution of B. atrophaeus 

spores on metal electrodes was investigated using membrane filtration techniques. Another 

technique to investigate the spatial distribution of B. atrophaeus spores on surfaces was 

imprinting (pressing).  A spore laden aerosol was passed between the electrodes at two 

incident angles (10° and 30°) and the effect of flowshaping on capture of the spores 

assessed.   

 

Chapter three: The detection of microorganisms is important in health and for safety 

reasons. This chapter provides an overview of the methods that were used to identify and 

detect microorganisms. A microscopic examination was used to find the minimum 

detectable level of B. atrophaeus spores on surfaces and these results were compared to 

theoretical estimates. A flow chamber system was developed that was used for cell 

counting of microalgae in liquid. Fluorescence techniques that were used included: 

fluorescence microscopy, excimer laser and a chlorophyll analyser. These systems were 

used to investigate the spatial detection of spores on surfaces and microalgal biomass 

growth in culture. 

 

Chapter four: The aim of this work was to investigate the effects of excimer laser 

radiation from a Kr:F laser (248 nm) on bacterial and spore inactivation. The experiments 

investigated the laser inactivation efficiency on E. coli bacteria and B. atrophaeus spores 

lawned on agar surfaces by varying the number of laser pulses, the pulse repetition 

frequency (PRF) and exposure time. Additionally, the booster system (a laser based air 

decontamination system) was designed, fabricated and tested, where the air is passed 

through a chamber and exposed to the laser radiation.   

 

Chapter five: With the world becoming depleted of fossil fuels, solutions are being sought 

to provide a sustainable, global solution to fuel security. One source that is showing 
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potential to help solve this problem is extracting biofuel from microalgae. Whilst this is 

simple to demonstrate at laboratory scale, there is considerable difficulty with scaling this 

to large production capacity, and maintaining financial viability.  Many of the techniques 

for detection and decontamination developed in the early stages of the thesis are relevant to 

microalgae.  Nannochloropsis occulata and Chlorella vulgaris are being grown within the 

School of Engineering at the University of Glasgow to investigate their biofuel and food 

potential.  Every aspect of the production chain is being investigated, from optimising 

microalgal growth within photobioreactors, harvesting or dewatering the microalgae and 

component extraction. The implications of using some of the protocols and detection 

methods of earlier chapters on the pertinent processes for microalgae growth and culture 

were investigated. 

 

Chapter six:  Summarises the results, draws conclusions of the thesis, and highlights paths 

for further research in these areas. 
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Chapter 2 

 

Spatial mapping of microorganisms on surfaces 

 

 

 

 

 

2.1 Introduction to deposition of microorganisms onto surfaces 

and their resulting spatial distribution  

The spatial distribution of microorganisms is the pattern in which they are arranged over an 

area. The investigation of the microorganism’s distribution on surfaces is of importance in 

evaluating the contamination level, and it provides information on the likely way in which 

they were deposited onto that surface, which may help in optimising decontamination. 

Detection of microorganisms is essential to quantify their spatial distribution, and ideally 

the detection should not destroy their arrangement or distribution. It is also informative to 

investigate the distribution models for statistical analysis, such as how the organisms are 

arranged, this can be classified as: uniform (regular), random or clumped (aggregated).  

 

Previous work at the University of Glasgow (Foss-Smith & Watson 2008; Mine 2010) 

developed a plasma based system to kill microorganisms in air, in particular the target 

organism was Bacillus atrophaeus spores, supplied by Dr Bill Whyte, University of 

Glasgow. It was found that the angle of entry of the air into the electrodes had a significant 

effect on the system’s performance.  The system utilised laser marking to produce 

electrodes of various roughnesses; this had the effect of reducing the breakdown voltage 

between the electrodes, allowing the electrode gap to be increased and a greater volume of 

air passed through the system.  It was hypothesised that the electrode roughness also 

allowed preferential trapping of the microorganisms, allowing increased removal from the 

air stream and enhanced killing, essentially the spores were inactivated on the surface, 
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whilst other spores that remained in the air stream where exposed to the plasma treatment.  

The entry of air into the system was varied to direct the spores onto the electrode and 

improvement in killing was observed.  

 

The spatial distribution of B. atrophaeus spores on surfaces was therefore of interest to 

investigate the hypothesis of preferential trapping of the microorganisms and to determine 

how the spores were deposited onto the electrode surfaces and whether any additional 

trapping effects could be seen, understood and enhanced.  Generally, investigation of the 

spatial mapping required developing protocols to prepare the substrate surfaces of the 

specimen, establish a sampling process and methodology, detect the spores and then 

quantify the data. The spatial distribution, adhesion and observation of B. atrophaeus 

spores on metal electrodes were made by using two methods imprinting (pressing) and 

membrane filtration techniques. In these two techniques, the spatial distribution of the 

spores in an aerosol and of those deposited onto the rough surface can be determined on 

the agar and filter surfaces.   

 

Aluminium and stainless steel electrodes were produced with different surface roughnesses 

using a laser scanning system.  A Bacillus atrophaeus spore laden aerosol, generated from 

a SPG 350 particle generator (SPG 350, DOP Solutions Ltd, UK), was directed at these 

electrodes and the distribution of spores on the substrate samples assessed.  The effect of 

flowshaping on the spore distribution was investigated by varying the angle of incidence 

(10° and 30°) of the aerosol onto the sample, which were the same angles as used by Mine 

(2010). Computational Fluid Dynamics (CFD) techniques were applied to model the 

particulate flow through the electrode geometry, comprising two parallel plates a set 

distance apart. The metal samples (electrodes in this work) were prepared by a series of 

processes: grinding and polishing and laser marking. The experiments were set up to 

investigate the spore distribution on the surfaces. 

 

2.2 Sample preparation  

Preparation of the sample is a highly important step prior to modification of the surface 

finish.  It is important to have the same starting conditions so that the effects of the 

modification process can be quantified.  In this work, the grinding and polishing 

techniques were used for the sample preparation before surface modification in the 

subsequent steps.  The preparation steps starting from the initial cutting to the final 

polishing and all the other steps are equally important. The grinding and polishing 
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technique helped to ensure the same surface roughnesses for all the samples. The work 

investigated two metal samples namely aluminium and stainless steel. The procedure for 

the specimen preparation is as follows.  

 

2.2.1 Grinding 

Grinding removed irregularities and scratches on the surface and marks from the lathe 

made during cutting. The metal electrodes were cleaned with ethanol (analytical grade, 

ethyl alcohol, Fisher Scientific, UK) and rinsed with tap water to remove any oil or debris 

that remained from the cutting machine. The grinding operation was done by using a 

Beuhler semi automatic specimen preparation unit (Motopol 2000, UK). This machine is 

fully programmable, an electro-hydraulic operation and compressed air is required (4.8 

Bar), variable head speed (60-150 rpm) and base speed (30-300 rpm) and variable force (5-

200 N). This machine can grind and polish multiple samples automatically and provides an 

excellent surface finish, this is of course less time consuming compared with hand 

preparation.  Figure  2.1 shows the grinder-polisher machine. In order to clamp the metal 

samples in the rotating head of the grinder, the moulds (holders) were designed from brass 

using CAD software (SolidWorks 2010, SP 4.0, UK).  

                    

 

 
 
 
 
 
 
 
 
 

 

Figure  2.1 Beuhler semi automatic specimen preparation unit and the specimen holder  

 

 

Modification of the metal surface was done with wet grinding; the wet method uses water 

to reduce the friction and grinding dust. The grinding method was done with emery paper 
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(silicon carbide abrasive paper, Struers, Denmark). The emery papers were placed on the 

grinding rotating wheel from a course to fine grit size (P220, P500 and P800 respectively). 

After the grinding processes, all the samples were rinsed thoroughly with running water to 

remove all residues. Then the metal samples were dried with filtered compressed air. After 

this operation, the samples were ready for laser marking.   

 

2.2.2 Polishing 

Polishing is a method to produce smooth, flat and mirror like surfaces. Polishing removes 

the very small debris remaining from the grinding operation. The polished samples were 

made for control and microscopic investigation. The polishing was done by using the 

grinder-polishing machine which was used in the grinding. The polishing abrasive 0.06 µm 

syton (colloidal silica, SILCO, UK) suspension in water was used on a polishing cloth 

(colloidal silica, Kemet, UK).  

 

2.3 Laser marking system  

Before investigating the effect of the laser beam on the surface modification, it is important 

to provide information and operation of the laser marking system. The laser marking 

system used in this work consisted of four main parts which are: the laser source, the 

galvanometer mirrors to direct the laser onto the sample, controlled x-y table and the 

control software.  

 

An Nd:YVO4 (1064 nm, Neodymium-doped Yttrium Orthovandate) laser marking machine 

(Laservall, Violino 2, Italy) was used to mark the metal samples. The mean power output 

of laser was 10 W with a maximum pulse repetition frequency of 20 kHz, the maximum 

scanning speed was 200 mm/s.  The focal length of the focusing lens was 175 mm and the 

spot diameter was 30 µm (see Appendix A: Laser marker (Violino2) detailed description 

for more specifications).  Figure  2.2 shows the laser marker head and the rack which 

contains the electrical parts.  
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Figure  2.2 Laser marker head and the electrical rack  

 

2.4 Surface roughness 

Investigation of the effect of surface roughness and its influence on adhesion of 

microorganisms is important to determine the contamination level on the surfaces. This 

aids design and choice of electrode material, and allows understanding of the potential 

distribution of the spores on the electrode surfaces for different incident flow angles. The 

surface roughness (Ra) was measured using a surface profilometer Tallysurf (Surtronic 3P, 

Taylor Hobson, Denmark), this machine uses a diamond stylus tip, which moves across the 

central region of the metal surface. Figure  2.3 shows this Tallysurf machine.  

 

 

 

 

2.5 Influence of laser marking on the surface roughness  

The laser marker Violino 2 was used to mark several metal samples, and a profilometer 

machine was used to measure the surface roughness against different laser marking 

parameters. 

 

Figure  2.3 Profilometer Tallysurf machine for surface roughness measurement 



 

45 

2.5.1 Electrode marking: varying scanning speed 

An Nd:YVO4 laser marker with various scanning speeds namely 10, 50, 100 and 200 mm/s 

was used to mark aluminium and stainless steel circular discs (25 mm diameter with 10 

mm thickness) that were previously grind; this was done to modify the surface roughness. 

The beam profile from the laser is TEM00, the minimum spot diameter of the laser was 30 

µm and the focal length of the lens was 175 mm. The changeable parameters of the laser 

that can be controlled by control software Smartist 4 (Laservall, Itally) were set as shown 

in the Table  2.1: 

Table  2.1 Laser marking parameters 

Laser power 100% 10 W max 

Shot frequency (PRF) 20 kHz 

Scan speed 10, 50, 100 , 200 mm/s 

Passes 1 

 

Figure  2.4 shows the samples after laser processing, it is seen that they have different 

colours for both metal samples after laser marking with different scanning velocities. The 

top row shows the aluminium samples and the bottom row shows the stainless steel, with 

decreasing velocity from left to right of 200, 100 and 50 mm/s.  It is seen that the lowest 

velocities created a larger roughness due to the greater energy density absorbed by the 

sample per unit area and hence resulted in a darker surface.   

 

 

 

 

 (a) (b) (c)  

Figure  2.4 The top row shows the aluminium electrodes and the bottom row shows the stainless steel 

electrodes, with decreasing laser scanning velocity from left to right a) 200, b) 100 and c) 50 mm/s 
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The values of the surface roughness against different scanning speeds were measured by 

the tallysurf machine, as shown in Table  2.2. The measurements were taken along the 

surface of electrode, and the standard deviation (SD) was found from five measurements.  

With reduced scanning speed the roughness increased and was greater for the aluminium 

samples. 

 

 

 Table  2.2 Measured surface roughness Ra (mean ± SD) of aluminium and stainless steel 

samples for different scan speeds (5 measurements)  

 Scanning speed (mm/s) Ra (µm), Aluminium Ra (µm), Stainless steel 

200 0.71 ± 0.05 1.37 ± 0.57 

100 1.12 ±  0.22 1.48 ± 0.14 

50 1.32 ± 0.45 2.55 ± 0.16 

10 3.03 ± 0.42 4.07 ± 0.91 

Unmarked Ra (µm) 0.28 ± 0.02 0.33 ± 0.02 

 

 

The increased roughness is due to the increased exposure time on the same area, thereby 

increasing the temperature gradient and input energy on the sample surface.  The colour 

change can be appreciated by incident photons being more diffusely scattered and absorbed 

in the increasing crevice size with increasing roughness.  

 

2.5.2 Microscopic examination of surface texture 

To understanding the mechanism of the marking process, some photographs of the 

sample’s surface were taken using an optical microscope (Nikon Eclipse, ME600, Japan), 

with an objective magnification of 20X (Nikon EPI, NA= 0.8, Japan). Figure  2.5 and 

Figure  2.6 show the surface of the aluminium and stainless steel samples unmarked as the 

control and marked with a scanning speed of 200 and 50 mm/s respectively.  From the 

photographs, it is evident that the laser used in this experiment had a significant effect on 

the metal samples. For a scanning speed of 50 mm/s, deeper marks on the surface were 

seen because the laser beam was irradiated for a longer time on the same area thereby 

inducing a higher temperature on the material surface, this caused the solidified structures 

and the cavity formation to form a texture that looked like a cauliflower surface. With 

increased scanning speed to 200 mm/s, the texture of the surface seemed smoother and less 
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solidified material was observed, this means that the laser beam did not penetrate as 

deeply. 

 

 

   

(a) (b) (c) 

Figure  2.5 Stainless steel samples a) unmarked, b) marked with scanning speed of 200 mm/s and c) 

marked with scanning speed of 50 mm/s 

           

 

   

(a) (b) (c) 

Figure  2.6 Aluminium samples a) unmarked, b) marked with scanning speed of 200 mm/s and c) 

marked with scanning speed of 50 mm/s, (b) and c) are photographs taken through a green filter) 

 
 

2.5.3 Overlap of laser pulses  

The laser marking technique is illustrated in Figure  2.7. The laser beam is moved over the 

electrode surface, and the traces overlapped between two successive pulses. 
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The marking patterns showed that there was an overlap between two subsequent pulses. 

Figure  2.8 represents a schematic of the laser marking overlapping and Figure  2.9 shows 

the overlap between the pulses in the direction of the laser beam on a stainless steel sample 

for scan velocities of 200 and 50 mm/s.  

 

 

 

 

 

Figure  2.9 Overlap of laser spots on stainless steel surface marked with scanning speed of 200 mm/s 

(top) and 50 mm/s (bottom) 

 

Figure  2.8 The overlap of laser spots  

 

Figure  2.7 Schematic of the laser marking technique on the metal electrode shows the marking tracks 
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2.5.4 Electrode marking: varying scanning speed and laser power 

In this work, a sheet of stainless steel (AISI 316) was cut into several specimens (8x40x1 

mm
3
). The surface of the samples was marked with different laser scanning speeds (50, 

100, 150 and 200 mm/s). The laser marker was fired at 100% output power (10 W) and 

75% output power (7.5 W), while the pulse repetition frequency remained unaltered (20 

kHz). The surface roughness was investigated using a Tallysurf machine, and it was 

measured ten times for each sample and the average of measurements was taken, the 

results can be seen in Table  2.3.    

 

Table  2.3 Surface roughness of stainless steel samples against different scanning speeds, 

where the samples were marked with laser output power of 100% (10 W) and 75% (7.5 W) 

Scanning speed (m/s) 
Ra (average, µm) 10 W 

output power 

Ra (average, µm) 7.5 W 

output power 

200 0.64 0.56 

150 0.68 0.61 

100 0.76 0.74 

50 1.6 1.42 

Unmarked Ra ( µm) 0.053 

 

 

The results showed that the surface roughness increased significantly when the scanning 

speed decreased, and a higher surface roughness was obtained when the laser marker was 

fired with 100% power (10 W).  Figure  2.10 shows the roughness plotted as a function of 

scanning velocity. The same marking parameters and techniques were used to mark more 

stainless steel samples, but the scanning speeds were varied as 50, 75, 100, 125, 150, 175 

and 200 mm/s to prove that the roughness decreased exponentially with the higher 

scanning speeds, as shown in Figure  2.11. The error bars show the standard deviation for 

the 10 measurements for each scanning speed.   
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Figure  2.11 Surface roughness and laser scanning speeds for stainless steel samples marked with a 

laser output power of 10 W, the error bars show the standard deviation (n = 10)  
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Figure  2.10 Surface roughnesses and laser scanning speeds for stainless steel samples marked with 

laser output power 100% (solid line) and 75% (dashed line), the error bars are the standard deviation 

taken from an average of ten data points 
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2.5.5 Electrode marking: varying scanning speed pulse repetition 

frequency 

The stainless steel samples were marked at different pulse repetition frequencies PRF (10, 

15 and 20 kHz), for various scanning speeds (50, 100, 150 and 200 mm/s). After laser 

marking, the surface roughness of each sample was measured ten times and the average 

was taken. The results from the experiment showed that the surface roughness decreased 

with increasing PRF, as the energy per pulse is decreasing at high frequencies. The 

roughness measurements with different laser parameters were plotted in Figure  2.12.   

 

 
 

 

2.5.6 Laser marking of wire mesh 

An Nd:YVO4 laser marker was used to mark a sheet of copper wire mesh with a measured 

mesh size of 180µm.  The wire mesh was marked to see how the laser energy modified the 

surface, and for filtration applications (see Chapter 5: Section  5.10.3.4). The parameters for 

laser marking were: 10 W laser power, PRF of 20 kHz and a scanning speed of 100 mm/s. 

Figure  2.13 shows the laser system and the mesh, the laser treated regions are clearly 

identifiable. Figure  2.14 shows a close up of the laser marked (left) and untreated regions 

(right) of the mesh, the image was taken through a Nikon microscope. Impurities are 

evident on the untreated side but all of these were removed after laser treatment. 
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Figure  2.12 Surface roughness of stainless steel samples against pulse repetition frequencies for given 

laser scanning speeds, the error bars show the standard deviation (n =10)  
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   Figure  2.13 Wire mesh sheet processed under laser marking machine (left) and normal view of the 

mesh after marking, dark circles indicate laser treatment (right) 

 
 
 

 

 

2.6  Spatial mapping techniques 

The current work investigated spatial mapping of spore laden bioaerosols being passed 

through the electrodes that can be used to generate plasma and kill the spores. Two simple 

techniques were used to investigate the potential distribution of the spores.  The samples 

produced from the laser processing were fitted into a plastic tube and exposed to an aerosol 

stream of the spore; spore recovery from the aluminium disks was then achieved using 

membrane filters and imprinting techniques.   

 

Figure  2.14 Wire mesh marked (left) and unmarked (right), the arrows indicate impurities, 

objective magnification of 20X  
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2.6.1 Inherent antibacterial activity of the metal disc (electrode) 

The metal discs/electrodes (unmarked) were tested to see if they had any inherent 

antibacterial activity, before using them in the main experiments, and to determine the 

natural reduction in viability over time. The electrodes were cleaned before the test by 

mixing 70% isopropanol solution (2-Propanol, Stratlab Ltd., UK) with 30% sterile distilled 

water in a beaker. The discs were soaked in the prepared solution for at least 20 min.  After 

soaking, the discs were removed from the solution using a sterile forceps and rinsed with 

sterile distilled water to remove any chemical residue, and then the disks were allowed to 

air dry in a laminar air flow cabinet before use.  

 

The lysogeny broth (LB) agar nutrient was pored into a Petri dish (see Appendix D: 

Preparing agar plate). A dilute suspension (100 µL at a concentration of 10
8
 mL

-1
) of the 

spores was spread on an agar plate and allowed to dry thoroughly, then the sterile discs 

were placed or pressed on the agar surface. The agar plate with discs still in position were 

incubated at 37˚C overnight to see if a zone of inhibition was produced. After incubation, 

the surface showed growth close to the discs indicating no antibacterial activity from the 

material, see Figure  2.15. The yellow colonies are the B. atrophaeus spores after overnight 

incubation.  

 

All of these procedures were done under sterile conditions to avoid contamination, and also 

the discs were sterilized after the experiment using 1:10 trigene dilution (Trigene, 

Medichem International Ltd, UK) for 10 min, as per the manufacturer instructions so that 

they could be used again.  

 

 

 

Figure  2.15 Inherent antibacterial test of the metal disc  
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2.6.2 Microorganism aerosol generator  

Biological aerosols (bioaerosols) are airborne particles which may consist of 

microorganisms such as bacteria, spores and viruses. In the atmosphere, harmful 

microorganisms can be inhaled and infect humans or animals and may land on plants 

causing disease. Biological warfare agents are usually delivered in aerosol form 

(Heimbuch et al., 2009) as this is the most effective way to distribute the pathogens into 

the environment. A good review of biological aerosol was given by Ho (2002). There are 

several techniques available for generating and measuring bioaerosols, starting from 

simple test methods like the aerosol generator and settling chambers to special techniques 

such as flow cytometry (FCM), lidar technology (Brown et al., 2011), fluorescence in-situ 

hybridization (FISH), and fluorescent aerodynamic particle sizer (FLAPS).   

 

In this work, the generation and flow system used to generate the spore laden aerosols 

consisted of three main parts: particle aerosol generator (Laskin, SPG-300, UK), flow 

chamber and a high-efficiency particulate air (HEPA) filter. The flow chamber consists of 

the decontamination tube of inner diameter 34 mm and 300 mm length and the aerosol 

outlet pipe. HEPA carbon filters (Viva air purifier, VIA2/8, UK) were cut and fitted into 

this pipe. The view of the aerosol generator with flow chamber is shown in Figure  2.16.  

 

 

 

 

Figure  2.16 General view of the aerosol generator system 

http://en.wikipedia.org/wiki/Particulate
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2.6.2.1 Calibration of the aerosol generator 

The Laskin aerosol generator produces a well defined particle aerosol which can be seeded 

with microorganisms, the aerosol size is up to 2 µm. The aerosol generator is portable, 

highly stable, easy to work as it just requires compressed air, and is ideal for a wide range 

applications such as filter testing and aerosol investigations.  

 

It is necessary to adjust the aerosol generator to know the ideal pressure and volume flow 

rate to satisfactorily flow the particles through the system and hence find the optimum 

concentration of the microorganisms for the specific applications.  The volumetric flow 

rate of the aerosol can be controlled by varying the outlet pressure of the aerosol generator. 

Figure  2.17 shows the relationship between the outlet pressure and the volumetric flow 

rate. The optimum outlet pressure was 0.75 bar for a volumetric flow rate around 50 L/min. 

The outlet pressure was set to 0.75 bar, above this value the pressure built up inside the 

flow chamber and the air sampler stopped working. 

 

 

 

2.6.2.2 Ideal concentration of the B. atrophaeus spores inside the aerosol 

generator 

This experiment was planned to find the ideal concentration of microorganisms needed to 

put inside the tank at the optimum outlet pressure (0.75 bar). Serial dilutions of the original 

stock culture (10
10

 spore/mL) were made to obtain different concentrations, and then 5 mL 

of each culture was mixed with 495 mL of sterile distilled water in the aerosol generator, 

 

Figure  2.17 Outlet pressure versus the volumetric flow rate for aerosol generator calibration 
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so the final spore concentration was between 10
2
-10

6
 CFU/mL, as shown in Table  2.4, see 

Appendix F: serial dilution protocol of Bacillus atrophaeus, for more details about the 

dilution protocol. 

 

Table  2.4 Ideal concentration test of B. atrophaeus suspension inside the aerosol generator tank 

Serial dilution factor 
Concentration in stock 

culture (CFU/mL) 

Concentration inside the aerosol 

generator tank (CFU/mL) 

1:10
-2 

10
8 

10
6
 

1:10
-3

 10
7
 10

5
 

1:10
-4 

10
6
 10

4
 

1:10
-5

 10
5
 10

3
 

1:10
-6 

10
4
 10

2
 

1:10
-7

 10
3
 10

1
 

 

 

The concentration tests were done by pumping the spore suspension from the aerosol 

generator to the flow chamber, and then the aerosolized spores were collected by the air 

sampler (Sartorius, MD8 airscan, Germany) at the output of the flow system, the air 

sampler maximum air inlet was 50 L/min. Although the spores are harmless, the 

experiment was set up in the fume cupboard for extra safety. A schematic diagram of the 

experiment can be seen in Figure  2.18. 

 

 

 

  

 

The air sampler collected the air on the gelatine membrane filter (0.8 µm pore size, 80 mm 

diameter, Sartorius, UK). The sampling time was 3 min for all of the prepared 

concentrations. Figure  2.19 shows the air sampler with the gelatine filter unit. The gelatine 

 

Figure  2.18 Schematic drawing of the ideal concentration experiment setup 
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filter retained the microorganisms which after the sampling time are ready for processing 

and counting. The air sampling procedure is described in detail in Figure  2.20. The 

flowchart shows steps of the air sampling process, generally the decontaminated air is 

collected with the air sampler and the contaminants are collected with a gelatine membrane 

filter and all the gelatine filters are transferred into the nutrient agar plates, and the plates 

are incubated for the growth assessment. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure  2.19 The air sampler and the gelatine filter unit 
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Test running (parameters setting for example sample time, air flow rate 

and filter type) 

 

Air sampling 

 

After sampling, the gelatine filter unit was removed from the adaptor 

 

 

A gelatine filter unit was fitted to the aluminium adaptor of the air 

sampler without touching the filter (only the outer edge) to avoid 

contamination or damage 

 

The adaptor to the hose (inlet) of the air sampler was connected 

 

A disposable plastic holder (top part of the filter unit) was removed 

 

  The gelatine filter was pressed on surface of the agar plate for one 

minute 

 

Adhering and dissolving the gelatine filter (the filter become transparent 

on the agar surface) 

 

The filter and the plate were incubated at 37 ˚C 

Quantification (colony counting) 

 

Air sampler switched on 

 

 Figure  2.20 Air sampling procedure diagram 
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2.6.2.3  Results of ideal concentration of the B. atrophaeus suspension 

The number of colonies counted on the agar plates for each concentration is shown in 

Table  2.5. The number of colonies (190) that was observed on the agar plate for the 

concentration of 10
4
 CFU/mL was the order of the optimal number to get on the plate of B. 

atrophaeus (Sutton 2006), and also 10
3
 CFU/mL was acceptable with 57 colonies detected. 

For plates with concentrations higher than 10
4
 CFU/mL, the number of colonies was too 

numerous to count (TNTC). While, too few counts were observed for a concentration of 

10
1
 and 10

2
 CFU/mL. Hence a concentration of 10

4
 CFU/mL was chosen. 

 

 

Table  2.5 Result of ideal concentration of B. trophaeus 

suspension inside the aerosol generator tank 

Concentration (CFU/mL) CFU 

10
6
 TNTC 

10
5
 510 

10
4
 190 

10
3
 57 

10
2
 20 

10
1
 11 

 

 

2.6.3 Membrane filtration technique  

The use of membrane filters offers a simple technique for sampling and counting the 

microorganisms in an air or a liquid solution. It is easy to use and does not need any 

expensive equipment or long preparation processes. The advantages of membrane filtration 

techniques compared with other traditional methods such as spread and pour plate 

techniques are: the microorganisms are easily and accurately quantified because the 

membrane permits a good separation of CFU, and this method is suitable for sampling a 

large volume of fluid. These advantages make membrane filters applicable to a wide range 

of uses for separation and enumeration of the particles, fluid sterilization and aerosol 

analysis. In this work, the effect of the laser induced surface roughness (Ra) of the metal 

samples on the spore adhesion was determined using the membrane filtration technique. 
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2.6.3.1  Experimental set up of the membrane filtration 

The experimental set up consists of the particle generator, the flow chamber (as described 

in Section  2.6.2) and the metal discs and their holders. The holder was made from a 

Polytetrafluoroethylene (PTFE); it simply holds the disc in the flow chamber without any 

screws. A schematic of the experiment is shown in Figure  2.21, and the disc and its holder 

can be seen in Figure  2.22. 

 

 

 

 

 

The aerosol generator and flow system were used to create a stream of spores that were 

directed into the flow cavity at an inlet velocity of 5 m/s, an air flow rate of 50 L/min and 

an air pressure of 0.75 bar on the aerosol generator. The contaminated air from the aerosol 

generator was passed to the metal disk. After exposure to the aerosol for 3 min, each disc 

 

Figure  2.22 Disc with the holder 

 

Figure  2.21 Schematic drawing of the membrane filtration experiment 
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(where the material was chosen on the basis of its suitability to be used as electrode 

material - aluminium and stainless steel) was picked up aseptically and placed in a bottle 

(Duran) containing 20 mL of sterile distilled water. The effect of laser exposure time can 

be seen in Chapter 2: Section  2.5.1. The bottles were shaken at 100 rpm for three hr at 25 

˚C in a controlled environment incubator shaker (New Brunswick Scientific, G25, USA) to 

resuspend the spores in the liquid. Figure  2.23 shows the samples and the shaker. 

 

 

  

 

After shaking, 10 mL of the 20 mL sample culture was taken and filtered through a 

membrane filter of 0.45 µm pore size, 47 mm diameter (Cellulose nitrate membrane, 

Whatman, UK) using compressed air or a vacuum source to provide faster filtration. The 

filter apparatus consists of two main parts: the filtration assembly and filtering flask. The 

filtration assembly consists of a filter funnel, filter support pad and O-rings, and filter base, 

see Figure  2.24. After the sample was completely drawn through the filter, sterile distilled 

water was used to rinse the funnel assembly to remove any spore residue. The filter was 

placed on the LB agar surface plate. Some electrode samples were used as controls for 

assaying and received no treatment.  All the agar plates were incubated at 37 ˚C for 24 hr 

and analysed for growth. 

 

 

Figure  2.23 The samples inside the shaker 
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2.6.3.2  Results and discussion of the membrane filtration 

It is seen from Figure  2.25 and Figure  2.26 that the numbers of colony forming units 

(CFUs) increased with increasing surface roughness as can be seen from surface roughness 

values in Table  2.6. The highest adhesion was on the stainless steel samples (Figure 

 2.26(c)), although it is not the roughest surface it may be the surface features were of 

similar sizes to the spores. The spore size is 1 µm and the surface roughness of the disc 

with the highest recovery was 1.67 µm, this is in agreement with other results from other 

researchers showing that the bacterial cells are retained in a surface features of similar size 

to them (Whitehead & Verran 2006).   

 

 

Table  2.6 Measured surface roughness Ra of aluminium and stainless steel samples for 

different scan speeds  

 Scanning speed (mm/s) Ra (µm), Aluminium Ra (µm), Stainless steel 

200 0.67  1.35 

100 1.09 1.67 

50 1.33 2.45  

Unmarked Ra (µm) 0.23 0.31 

 

 

Figure  2.24 Membrane filter apparatus 
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The difference in the level of microorganisms adhered to the discs between samples of 

high and low surface roughness (smooth surface) was significant. Figure  2.27 shows the 

numbers of CFUs against different laser marked scanning speeds, and Figure  2.28 shows 

the numbers of CFUs against roughness. The experiment was repeated and the error bars 

are the standard deviation for four readings. 

 

 

Figure  2.26 Agar plates with recovered B. atrophaeus for stainless steel samples (a) unmarked (b) 

marked with scan speed 200 mm/s, (c) marked with scan speed 100 mm/s and (d) marked with scan 

speed 50 mm/s 

 

Figure  2.25 Agar plates with recovered B. atrophaeus for aluminium samples (a) unmarked (b) 

marked with scan speed 200 mm/s, (c) marked with scan speed 100 mm/s and (d) marked with scan 

speed 50 mm/s 
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A value of Ra nearly equal to 0.2 µm was reported as the threshold surface roughness value 

below which there is no significant difference in bacterial adhesion due to the large size of 

most bacteria (Carrera et al., 2008). The German institute for standardization (DIN, 

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

Ra (µm)

N
o

. 
o

f 
 C

F
U

s

Aluminum

Stainless steel

 

Figure  2.28 Number of colony forming units recovered from aluminium and stainless steel samples 

against roughness, the error bars show the standard deviation for four readings  

0

10

20

30

40

50

60

70

80

90

100

Unmarked 200 100 50

Scan speed (mm/s)

N
o

. 
o

f 
 C

F
U

s

Aluminum

Stainless steel

 

Figure  2.27 Number of colony forming units recovered from aluminium and stainless steel samples 

for different of laser marking speeds (n = 4) 
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Deutsches Institut für Normung) subscribes to a value of Ra ≤ 0.8 µm for diary machine 

(Flint et al., 2000). These results agree with the results of this work, when the polished 

discs (Ra < 0.2 µm) were used as control no colonies attached on the disc surface. Figure 

 2.29 shows the polished aluminium and stainless steel discs and the incubated agar plate 

(control).  

 

 

  

Figure  2.29 Polished aluminium and stainless steel discs and the incubated agar plate showing no cell 

recovery (control) 

 

These results are in agreement with other workers, showing that there is a relationship 

between adhesion and increased surface roughness (Sousa et al., 2008). This can be 

explained in that the spores colonizing the grooves or depressions probably get more 

protection from adverse environmental effects, in this case the airstream in which the 

spores were moving and they are stuck within these grooves.  In this experiment, the laser 

processing caused raised profiles (grooves) on the metal surface, resulting in increase 

spore-surface contact area, thereby the spores are retained on the rough surface due to an 

increased binding energy (Whitehead & Verran 2006). It was observed in Figure  2.27, 

counts of spores on stainless steel surface marked with scan speed 50 mm/s decreased. It 

could be expected that higher roughness value, resulting in surface with the features 

influenced on the microorganism retention, and there may be an optimal roughness for 

microbial attachment (Verran & Boyd 2001). The level of spore adhesion on stainless steel 

samples was more than aluminium, this may be due to the stainless steel absorbing the 

incident laser more than aluminium resulting in deeper markings thereby increased spore 

adhesion; some researches reported that stainless steel is an attractive surface for adhesion 

compared with others metals (Flint et al., 2000).   

 

For statistical analysis, the experiments above were replicated and repeated ten times for 

the different surface roughnesses of the aluminium and stainless steel samples, and the 

effect of surface roughness on bacterial adhesion was evaluated by colony counting. Due to 
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some errors during filtration the results from this experiment were more variable.  

Observed errors included: the filter membrane breaking, microorganisms accumulating on 

the filtration assembly due to the system possibly not being rinsed efficiently, and during 

incubation it was possible that the filter lifted off from the plate and no nutrients diffused. 

So, consequently the numbers of colonies slightly varied for the 10 times of the 

experiment. This can be seen in Figure  2.30, some plates were uncountable or showed 

large deviation of CFU per membrane with respect to the others plates.  

 

 

 

 

The uncountable plates were removed from the analysis, and the number of colonies 

greater than 80 per membrane filter were recorded as too numerous to count (TNTC) 

(Sutton 2006). Figure  2.31 shows the results before and after rejection of outliers. 

 

 

 

 

 

 

 

 

 

Figure  2.30 B. atrophaeus colonies on membrane filters after incubation on agar plates for 

aluminium discs marked with a laser scan speed of 10 mm/s. Results from one experiment 

indicating variation 
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(c) 

Figure  2.31  Number of CFUs recovered from the aluminium sample, a) and b) showing some errors of 

filtration and c) final results after removing the outliers 
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2.6.4  Imprinting (pressing) technique 

A spore laden aerosol was passed through an electrode assembly, designed to operate as a 

plasma for air cleaning and purification (Mine 2010), to determine the spatial distribution 

of spores on the electrode surface and over the disc used in Chapter 2: Section  2.6.3.1.  In 

the present case, the spatial variation of microorganisms deposited onto the electrode 

surface with different inlet flow angles was investigated. After appropriate exposure time, 

the electrodes were pressed into nutrient agar plates and the plates were incubated 

overnight to determine the spatial distribution of the spores.  

 

2.6.4.1  Imprint technique with small discs 

5 mL aliquot of B. atrophaeus culture was added to 495 mL of sterile distilled water inside 

the aerosol generator tank, the final concentration of the spores was 10
4
 spore/mL. The 

experimental setup is the same as previously described in the membrane filter protocols 

(see Figure  2.21, Section  2.6.3.1). The inoculated air from the aerosol generator was 

passed over the electrode discs for various exposure times (1, 2, 3, 4, 5, 6, 8 and 10 min). 

After each exposure to the aerosol, the circular discs were picked up using the sterile 

forceps and the inoculated surface of the disc was placed onto the agar surface at different 

places according to the exposure time labelled on the plate. The discs were pressed into 

place gently for approximately 5 s and then removed, as shown in Figure  2.32. After all the 

experiments were finished, the agar plates were incubated at 37 ˚C overnight and 

subsequently investigated for growth.  

 

 

 

 

 

Figure  2.32  Schematic drawing of the circular discs pressed onto the agar surface  
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2.6.4.2  Results from imprint with small discs experiment 

After the incubation, the results, as would be expected, showed that the spore numbers on 

the discs depended on the exposure time. The first place inoculated onto the agar surface 

i.e. circle marked 1 or 2 min showed few colonies, while the last circles  8 or 10 min 

showed the most growth, as shown Figure  2.33, there was no growth on the control discs 

that did not receive any spore deposition. A disadvantage of this technique is that the 

numbers are not readily quantifiable. 

 

 

 

2.6.4.3  Experimental set up of the imprint technique using the long 

electrodes 

The setup of the experiment can be seen in Figure  2.34, which consists of three main parts: 

the particle aerosol generator, the flow cavity and a HEPA filter, similar to the 

experimental system described in Section  2.6.3.1 for the membrane filtration. 

   

 

 

Figure  2.34 The flow system  

                                        

Figure  2.33 Circular discs pressed on the incubated agar plate for different exposure times 
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The flow cavity was designed in-house (Mine 2010). A CAD design of the flow cavity is 

shown in Figure  2.35 and a detailed photograph of the actual flow cavity is shown in 

Figure  2.36, which comprises an inlet nozzle with a variable flow entry angle, two parallel 

aluminium electrodes 200x30x3 mm
3
 with an air flow gap of 3 mm between them, 

electrode holders and outlet nozzle.  

 

 

 
 

 

 

Figure  2.36 The flow cavity system  

 

( a) CAD design of the flow cavity  

 
 

 

(b) CAD design of air flow inlet and outlet nozzles (different view) 

 

Figure  2.35 CAD design of the flow cavity system 
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2.6.4.4  Generation of the spore aerosol and flow 

The air flow stages and preparation of the microorganisms was done as previously 

described in Sections  2.6.2 and  2.6.2.2. The contaminated air from the aerosol generator 

was passed between the aluminium electrodes at different angles, 10° and 30° in this work. 

The air in the flow tubes was pumped out through HEPA filters into the atmosphere so the 

air was harmless. The experiment was conducted with two different speeds of air flow 2.5 

and 5 m/s. 

 

After exposure to the aerosol for about 15 min, the Al electrodes were picked up aseptically 

and the inoculated surface was placed onto the agar in the Petri dishes (240x240 mm
2
) and 

pressed gently into place with sterile forceps, the electrodes were left on the agar surface 

for about 10 min. Figure  2.37 shows the electrodes pressed onto the agar plate.  After 10 

min the electrodes were removed from the agar and the plates were incubated at 37 C° for 

24 hr and analysed for growth. 

 

 

 

 

2.6.4.5  Results of the imprint experiment 

The spatial distribution of spores at incident angles of flow shaping of 10° and 30° with air 

flow speed of 2.5 m/s is shown in Figure  2.38. The number of colonies was higher on the 

electrode end near to the input side (i.e. the flowshaping side) and decreased gradually 

 

Figure  2.37 Imprinting of aluminium electrodes 
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along the electrode length until the output end of the electrode.  Interestingly, when the air 

flow speed was increased to 5 m/s (the results can be seen in Figure  2.39) with an inlet 

angle of 10°, the number of spore colonies on the two ends of the electrodes were higher 

than in the middle region. While with an inlet angle of 30° the colony numbers were higher 

on the electrode end nearer to the input side (i.e. the flowshaping side) and the middle 

region and gradually decreased along the electrode surface.  

 

 

 

 

 

 

 

       

 

 

Figure  2.39 Incubated agar plate after exposing the Al electrodes to spore laden aerosol with 10° 

inlet flow angle (left) and 30° (right), aerosol flow speed of 5 m/s. The inlet is the bottom right 

hand corner of the photograph 

           

 

 

Figure  2.38 Incubated agar plate after exposing the Al electrodes to spore laden aerosol with 10° 

inlet flow angle (left) and 30° (right), aerosol flow speed of 2.5 m/s. The inlet is the bottom right 

hand corner of the photograph 
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The results from the imprinting experiments were analysed in NI vision. Figure  2.40 shows 

the effect of the inlet flow shaping nozzle angle on the number of colony forming units 

(CFUs) over different regions of the electrodes. For example, the measurements say at 60 

mm is the number of CFU between 40 and 60 mm. 

 

 

 

(a) 

 

(b) 

 

Figure  2.40 Number of colony forming units detected along the length of the aluminium sample for 

different inlet flow angles of 10° and 30° at an aerosol flow speed of a) 2.5 m/s and b) 5 m/s. The error 

bars show the standard deviation (n = 3) 
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2.6.5 CFD modelling 

Computational Fluid Dynamics (CFD) models were developed to predict the particle 

(Bacillus atrophaeus spores) flow trajectories through two electrodes.  The objective of the 

modelling was to track the particulate flow through the electrodes, and to determine the 

velocity profile and spatial concentration of particles. Figure  2.41 shows the schematic 

diagram of the model. 

 

 

 

 

The electrodes were created and meshed with Gambit 2.4 (Fluent Inc., UK) and modelled 

with Fluent 6.3 (ANSYS Inc., UK). The 3D simulation with standard k-ε model for 

turbulent simulation and discrete phase model were used to solve the particle flow on 

rough surfaces. See Chapter 1: Section  1.6 computational fluid dynamics (CFD) modelling 

for more details.  

 

The particles/aerosol was released from the inlet surface of the electrodes with a velocity 

of 5 m/s and pressure 0.75 bar, to match the experimental conditions. The dispersion of 

particles due to the turbulent fluctuations in the flow was modelled by a stochastic tracking 

approach. The diameter of the particles (Bacillus atrophaeus) was 1 µm and the density 

was 1201 kg/m
3
 (Carrera et al., 2008). Figure  2.42 shows a view of the meshed electrodes. 

 

 

 

 

Figure  2.42 The meshed electrodes schematic 

 

Figure  2.41 The electrode pair schematic 
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According to the CFD calculations, the particles were uniformly moved on the rough 

surface although the flow was turbulent; this is due to the small particle size (1 µm 

diameter) so the particles just follow the air stream. There was turbulence in the particle 

velocity near the inlet side and the edges due to the turbulent field in the boundary layer 

but the flow became smoother in the middle of the gap between the Al electrodes towards 

the outlet side. The variation in the aerosol velocity profile (on the inlet and outlet side) 

along the electrode length can be seen in Figure  2.43. The input velocity is 5 m/s compared 

to the output velocity (4.5 m/s). 

 

 

 

 
 
 

 

 
Figure  2.43 Velocity profile on the inlet and outlet side of the Al electrodes. 

 The flow velocity in units of m/s 
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The velocity profile at the vertical plane cutting through the outlet can be seen in Figure 

 2.44; the figure shows a zoom view on the outlet side (a), and the velocity profile with an 

air flow gap of 3 mm between the two electrodes (b).   
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(b) 

 
Figure  2.44 a) Velocity profile on the outlet side across the electrode, and b) particle velocity 

distribution on the outlet side between the electrodes, across the middle section of the gap 
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Figure  2.45 shows the stream lines of the spore flow and their residence time in a particular 

system that starts from the electrode inlet (time 0) and flows towards the outlet (exit time 

gives the residence time).  

 

  

(a) 

 

 

(b) 

 

Figure  2.45  a) Spore stream lines and b) their residence time,  path length is the electrode 

length (200 mm) 
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The concentration of the spores along the electrode length can be seen in Figure  2.46. It is 

seen from the concentration results that the particles are distributed all over the electrode 

surface but it seems to be considerably higher near the electrode edges, and the 

concentration on the inlet side and along the electrode length was higher than on the outlet 

side.  This is in agreement with the experimental investigation into the bacterial deposition 

between the electrodes, Section  2.6.4.5. The concentration of the spores on the outlet side 

can be seen in Figure  2.47. The Fluent model revealed that the spore numbers were higher 

near the edges of the electrode outlet more than in the middle of the electrode.  

 

 

 

 

             

Figure  2.47 Concentration of the aerosol spores at the electrodes outlet, the gap length is 3 mm 

           

Figure  2.46 Concentration of the aerosol spores on the electrode surface (inlet side is on the left)  
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Chapter 3 

 

Spatial detection of microorganisms on surfaces and 

microalgae in liquid 

 

 

 

 

 

 

Quantification and enumeration of microorganisms or microalgae is important in 

microbiological analysis, food and drink industries and environmental monitoring. The 

detection of microorganisms is important to avoid and identify health and safety problems 

(Liu 2008), and some pathogenic microorganisms which can be used as biological warfare 

agents (Ivnitski et al., 1999). There are different techniques used to identify and detect 

microorganisms such as microscopic counting, culturing techniques, flow cytometric 

techniques (Wilks et al., 2013), immunological detection methods (Schloter et al., 1995), 

biosensors (Leonard et al., 2003), chlorophyll fluorescence sensing (Obata et al., 2009; 

Fernandez-Jaramillo et al., 2012), chromatography (Noelia Isabel et al., 2013), capillary 

electrophoresis CE (Desai & Armstrong 2003), DNA molecular techniques (Babalola 

2003) and adenosine 5′-triphosphate (ATP) bioluminescence (Yue & Bai 2013). In many 

detection fields, two or more techniques need to be combined for accurate identification. 

However, easy, fast, inexpensive and reliable methods are required. In this chapter, various 

methods were used to cover some of these requirements and included: microscopic 

examination, use of a flow cell and fluorescence techniques. This chapter discusses the 

detectable level of B. atrophaeus (B. globigii) spores on rough, polished and glass surfaces 

by using microscopic detection. The fluorescence spectra measurements were investigated 

with an in house fluorescence microscope, excimer laser and a chlorophyll analyser was 

used to detect microalgae in water. A flow chamber system was developed for 

instantaneous cell counting of algal culture, and the captured microscopic images were 

analysed using NI vision software.  
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3.1 Probability of detection B. atrophaeus spores over an area 

on rough aluminium surface 

The accuracy of counting microorganisms is an important part of any detection process, 

this is further complicated if there is a cocktail of particles and various microorganisms.  

For example, cell counting by epifluorescence microscopy and by direct microscopy were 

found to give more than one log (CFU/cm
2
) higher than the cultivation method (Fuster-

Valls et al., 2008). The accuracy of counting is dependent on many variables including the 

spatial distribution of the microorganisms, clustering, and their concentration.  In the 

present case, this work was designed to find the minimum detectable level of spores. The 

efficiency of microscopy detection of B. atrophaeus spores deposited on an aluminium 

sample was investigated. Aliquots (50 µL) of the B. atrophaeus spore suspension of 

concentrations of 10
3
, 10

4
, 10

5
, 10

6
 and 10

7
 CFU/mL were pipetted onto the surface of 

rough aluminium discs (25 mm diameter) of average surface roughness Ra =2 µm, 

measured with profilometer Tallysurf (Surtronic 3P, Taylor Hobson, Denmark). The 

culture drop ~ 8 mm diameter and ~ 1.4 mm high was dried for ~ 3-6 hr to allow 

evaporation without spreading, the spore distribution on the aluminium was then observed 

and the spores counted.  The area around the culture drop was marked to ease locating the 

position of the drop during microscopic examination, as shown in Figure  3.1.   

 

 

 

The samples were examined using a differential interference contrast (DIC) microscope 

(Nikon Eclipse, ME600, Japan) in the dark field mode. Figure  3.2 shows the microscopic 

setup. An introductory examination of the samples was done using low magnification 

 

Figure  3.1 Drop of B. atrophaeus culture on different areas of aluminium disc (10
3
 and 10

7
 CFU/mL) 
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objectives of 5X or 10X (Nikon EPI, 0.4 NA, Japan) in order to locate the drops. Then a 

high magnification objective (100X) was used. The magnification power of the eyepiece is 

equal to 10X, and the overall optical magnification of the microscope is the product of 

objective magnification and eyepiece magnification. The microscopic inspection procedure 

was carried out using a manual scanning technique, starting at the edge of sample drop 

then continuing towards the centre then to the other edge, both in the horizontal and 

vertical direction, as shown in Figure  3.3. Each square represents the screen area at the 

magnification used with dimensions of 3072x3840 pixel. It was important to convert the 

screen dimensions from pixel to micrometer. The image calibration was done by using a 

stage graticule micrometer (Pyser-SGI, 100 µm in 10 µm divisions, UK), and the 

calibrated factor was found to be 0.0355µm/pixel (see Appendix C: microscope 

calibration). At least 20 discs for each B. atrophaeus density were used and more than 40 

measurements were taken both in the horizontal and vertical direction, these 80 images, 

taken with a CCD camera (Nikon, DXM1200, Japan) mounted on the microscope, were 

examined. 

 

 

 

  

 

 

Figure  3.2 Nikon Eclipse ME600 microscope with Nikon camera DXM1200 
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3.1.1 Results of B. atrophaeus spores over an area on rough aluminium 

surface 

After microscopic examination, the results showed that at the edge of the drop a large 

number of spores had accumulated, as shown in Figure  3.4. This is agreement with 

Cardoso et al. (1998) who reported that E. coli accumulated at the edge of a drop of urine. 

The deposition of particles at the drop edge in the ring pattern is called the coffee-ring 

effect. This phenomena is due to the capillary flow during the drying processes, the 

particles suspended in liquid flow from the drop centre to the edge as evaporation proceeds 

(Yunker et al., 2011). To accurately determine the spore counts in the high density regions, 

the data was analysed using image processing software (NI Vision 8.5, National 

Instruments, USA) and compared with manual counting procedures. The threshold value of 

detection was set to 1 µm to correspond to the size of the spores.  The image intensity was 

optimised to try and distinguish between spore clusters; this was problematic but the 

occurrence of these clusters was relatively low, placing higher confidence on the detected 

counts.  The steps for this process are detailed in Chapter 1: Section   1.5. 
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Figure  3.3 A systematic model used for microscopic analysis of aluminium samples inoculated 

with different concentrations of B. atrophaeus in a water droplet 
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(a) at the edge (b) at another edge 

  

(c) between the edge and the centre (d) at the centre 

Figure  3.4 Microscopic distribution of B. atrophaeus spores from a culture drop (10
7
 CFU/mL) on an 

aluminium surface. The thick white mark in (a) and (b) is the spores at the edges. Nikon Eclipse 

microscope ME600. Nikon camera DXM1200 

 
 
 

The data in Figure  3.4 was analysed with NI Vision (see Chapter 1: Section  1.5) to 

estimate the number of spores over the drop area. The results can be seen in Figure  3.5. 

Analysis of the microscopic images showed that the number of spores decreased away 

from the edge of the drop and towards the middle, then increased again in the centre. And 

after that the spore number increased again towards the other edge, showing some 

symmetry as would be expected. It is seen that the counts were about 14 times greater at 

the edge than the first minimum, and about 4 times that at the centre. 
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3.1.2 B. atrophaeus suspension of different densities 

Further tests were done to find the number of spores for different culture concentrations. 

Aliquots of B. atrophaeus suspension (50 µL) were made for different densities namely 

10
3
, 10

4
, 10

5
, 10

6
 and 10

7
 CFU/mL. The spores were counted using the same microscope 

system as described in Section  3.1 and NI vision, and the results can be seen in Table  3.1. 

The results showed that the minimum detectable level was ≥10
4
 CFU/mL, and below that 

concentration no spores were seen.   

 

 

Table  3.1 Observed value of B. atrophaeus (CFU/area) on aluminium discs for different culture 

concentrations. The spores were taken per unit area (observation field of the microscope) of 0.0148 mm
2
 

Concentration (CFU/mL) B. atrophaeus (CFU/area, average)  

10
2
 0 

10
3
 0 

10
4
 1 

10
5
 3 

10
6
 17 

10
7
 135 

 

 

Figure  3.5 Distribution of B. atrophaeus spores from an evaporated drop on an aluminium surface 

(10
7
 CFU/mL). The errors were calculated from the standard deviation of 20 reading (θ = π) 
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Theoretical calculations were done to compare the likely deposited number with the results 

from experimental detection. The average number of spores per surface area of deposition 

(CFU/area) was estimated by the following relation: 

 

 

d

fscc

A

CACV
numberSpore

2


  
 

Equation  3.1 

 

 

Where Vc is the volume of culture (50 x 10
-3

 mL), Cc is the concentration of the culture 

(CFU/mL), As is the surface area of deposition (0.0148 mm
2
) or observation field of the 

microscope (3072x3840 pixel), Cf is the calibration factor (0.0355 µm/pixel) and Ad is the 

drop area (50 mm
2
).  

 

A comparison of the expected and observed spores/area can be seen in Table  3.2. The 

theoretical calculations showed that the applied spore numbers were slightly greater than 

the experimental counts, but there is no significant difference between them (P< 0.93) as 

confirmed by using student’s t-test (Excel, 2007).  

 

 
 

 

3.1.3 Detecting spores outside of the drop region 

Spores were detected away from the drop’s edge even though the spores are attracted to 

this region, as shown in Figure  3.6. This may be due to spore dispersal during pipetting or 

Table  3.2 Observed and expected values of B. atrophaeus spores per unit area (0.0148 mm
2
) on Al disc 

Concentration (CFU/mL) 

 

B. atrophaeus (CFU/area)  

Observed value 

B. atrophaeus (CFU/area)  

Expected value 

10
2
 0 0.0015 

10
3 

0 0.015 

10
4
 1 0.15 

10
5
 2 1.5 

10
6
 12 15 

10
7
 135 150 
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due to contamination during microscopic examination, sample preparation or microfluidic 

motion during the evaporation process.  

 

 

 

3.1.4 Alignment of B. atrophaeus on aluminium surface 

The effect of the surface roughness of the aluminium on alignment of the spores could be 

observed in some areas. The spores covered the scratches and irregularities in the same 

direction as the surface defects. The spatial arrangement of spores was observed using the 

Nikon microscope with a Wollaston prism and polarizer. Figure  3.7 shows the results of 

the spore alignment on the aluminium surface, coinciding with surface defects, these were 

approximately 2 µm roughness. The surface defects may increase the microorganism 

retention (Verran et al., 2010), and the relative sizes of the defects to the size of the spore 

cells affect its attachment (Whitehead et al., 2005). So as a consequence the aluminium 

discs were polished to remove these irregularities and determine the resulting spore 

distribution.  

 

 
 

 

 

Figure  3.6 Arrows indicate the B. atrophaeus spores outside of the drop’s edge, on the right hand side  
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  Figure  3.7 B. atrophaeus alignment on rough surface of aluminium sample, coinciding with surface defects 

 



 

88 

3.2 Microscopic detection of B. atrophaeus spores over an area 

on polished aluminium disc 

Aliquots (50 µL) of B. atrophaeus spore suspension of 10
6
 and 10

7
 CFU/mL culture 

densities were pipetted on to the surface of polished aluminium disc (Ra= 0.95 µm) (see 

Chapter 2: Section  2.2.2: Polishing). The counts were done by taken 20 images on different 

locations of the aluminium sample, and following the same procedure for counting as 

described in Section  3.1. Figure  3.8 and Figure  3.9 show the results of the microscopic 

distribution of B. atrophaeus on the polished aluminium discs for the different deposition 

concentrations. Without surface defects there was no apparent spatial geometry of the 

spores, they were distributed randomly over the sample. There was no significant 

difference in the results for the different deposited spores either on the rough or smother 

surface (see Table  3.2). 

 

Surface defects on the aluminium had an effect on the drop shape. Large defects 

(unpolished disc, Ra ~ 2 µm) led to circularly shaped drops, but smaller surface defects 

(polished disc, Ra < 2 µm) provided irregular shaped drops because of the reduce contact 

angle. 
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(a) at the edge (b) at another edge 

  

(c) between the edge and the centre (d) at the centre 

Figure  3.8 Microscopic distribution of B. atrophaeus spores (10
7
 spore/mL) from a culture drop on a 

polished aluminium disc. Nikon Eclipse, Normasky ME600 (bright field mode). 100X objective EPI, 

NA= 0.8. Canon camera DXM 1200 
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(a) at the edge (b) at another edge 

  

(c) between the edge and the centre (d) at the centre 

Figure  3.9 Microscopic distribution of B. atrophaeus spores (10
6
 spore/mL) from a culture drop on a 

polished aluminium disc. Nikon Eclipse, Normasky ME600 (bright field mode). 100X objective EPI, 

NA= 0.8. Canon camera DXM 1200 

 

3.3 Glass microscope slides 

The experiments examining the spore distribution from a drop of culture, following 

evaporation, were repeated on glass using dried and fresh samples. A drop (50 µL) of B. 

atrophaeus culture was laid on the glass microscope slides. Even though the same volume 

of culture was used the drop was ~ 10 mm in diameter which was larger than for 

aluminium (8 mm), and ~ 1 mm high.  This was due to the contact angle with these 

different materials. The concentrations of the spores were 10
3
, 10

4
, 10

5
, 10

6
 and 10

7
 

CFU/mL. The slides were kept in the fume-cupboard for about 4 hr to dry. The observation 

was conducted using a Leitz Wetzlar microscope (Orthoplan 2.2, Germany) at 60X 

objective (NA=0.85, Maopta, Czech), as the Leitz Wetzlar microscope is more suitable for 

examining spores on glass surface than Normasky. The observation field was 240x360 µm. 
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The spores were detected more easily than on the metal surfaces. The results showed that 

again the spores were attracted to the edge, as shown in Figure  3.10, Figure  3.11 and 

Figure  3.12, which show the spore distribution for 10
7
, 10

6
 and 10

5
 CFU/mL respectively. 

 

 

 

 

  

(a) at the edge (b) at another edge 

  

(c) between the edge and the centre (d) at the centre 

Figure  3.10 Microscopic distribution of B. atrophaeus spores (10
7
 CFU/mL) from a culture drop on a 

glass surface. Leitz Wetzlar microscope, 60X objective, NA=0.85. Canon camera D1000 
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(a) at the edge (b) at another edge 

  

(c) between the edge and the centre (d) at the centre 

Figure  3.11  Microscopic distribution of B. atrophaeus spores (10
6
 CFU/mL) from a culture drop on a 

glass surface. Leitz Wetzlar microscope, 60X objective, NA=0.85. Canon camera D1000 

  

(a) at the edge (b) at another edge 

  

(c) between the edge and the centre (d) at the centre 

Figure  3.12  Microscopic distribution of B. atrophaeus spores (10
5
 CFU/mL) from a culture drop on a 

glass surface. Leitz Wetzlar microscope, 60X objective, NA=0.85. Canon camera D1000 
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The spore numbers were quantified using the same protocol as described in Section  3.1 and 

Equation  3.1. Table  3.3 shows the counts of B. atrophaeus spores experimentally observed 

and the theoretically expected values. No significant difference was observed between the 

theoretical and experimental results by using the student t-test P <0.98 (P <0.05 is required 

for statistical significance), and the results showed that there is good agreement between 

the observed and the expected values.  

 

 

 

 

The number of spores in Figure  3.10, Figure  3.11 and Figure  3.12 was analysed using NI 

Vision 8.5 (National Instruments, USA) (see Chapter 1: Section  1.5 Introduction to NI 

vision). A spatial plot can be seen in Figure  3.13. The spore number over the drop area was 

similar to the counts in Section  3.1.1 (see Figure  3.5), but the spore number on glass was 

greater at the centre and smaller at the edge than on aluminium surface.  

 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

Table  3.3 Counts of B. atrophaeus on the glass slide samples. Area is the observation field of the 

microscope which was 0.0864 mm
2
 

Concentration (CFU/mL) 

 

B. atrophaeus (CFU/area)  

Observed value 

B. atrophaeus (CFU/area)  

Expected value 

10
2
 0 0.0054 

10
3
 0 0.054 

10
4
 1 0.54 

10
5
 5 5.4 

10
6
 47 54 

10
7
 537 544 
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Counts of B. atrophaeus were made on the glass microscopic slide using fresh samples 

without drying. The drops were placed over the slides and left for a few seconds for 

stability. There was no cover slip, so it was hard to control the depth of focus and 

determine the counts accurately. Microscopic examination showed that several circular 

rings surrounded the centre. Figure  3.14 shows the patterns of B. atrophaeus on the glass 

surface. The lines on the microscopic slide were generated as part of the drying process. 

 

 

 

 

 

 

Figure  3.13 Distribution of B. atrophaeus spores from an evaporated drop on a glass surface (10
7
 

CFU/mL). The errors were calculated from the standard deviation of 20 reading (θ = π) 
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(a) at the edge (b) at another edge 

  

(c) between the edge and the centre (d) at the centre 

Figure  3.14 Microscopic examination of B. atrophaeus (not dry) of 10
7
 spore/mL on the glass surface. 

Phase contrast microscope ( Zernike, X5Z-H, China). 40X objective, NA=0.65. Digital camera (Canon, 

D450, Japan) 

 

3.4 Microscope modification for fluorescence 

Some simple techniques were used to enhance microscope performance for illumination 

and detection. 

 

3.4.1 Detection of aerosolized B. atrophaeus deposited onto glass 

microscope slide 

Recently, more attention has been paid to the use of light emitting diodes (LEDs) in 

bioaerosol sensing (Davitt 2006), and they are capable of exciting the chemical 

composition of Bacillus atrophaeus (Li et al., 2004). It was decided to investigate the use 

of a LED in the microscopic as a rapid detection method of aerosolized Bacillus 

atrophaeus deposited onto glass. Glass slides were inoculated with the aerosolized Bacillus 

atrophaeus spores. An aerosol of 10
7
 CFU/mL of Bacillus atrophaeus spores was passed 

through the flow chamber (see Chapter 2: Section  2.6.2: Microorganism aerosol generator) 
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for about 10 min. The slides were first observed using the Zhummell microscope (XSZ-H, 

China) and a conventional halogen light source. The images of the spores were blurry, and 

it was hard to recognise and detect the aerosolized spores at such low densities with a 

standard optical microscope and illumination. So it was decided to replace the halogen 

light source of the Zhummell microscope with a light emitting diode (LED). The LED 

(Luxeon, LXK2, USA) is low cost, with long operational lifetime and controllable output 

intensity. The input voltage was 3 V, input current was 1500 mA and the output power was 

750 mW. The spectrometer (Photon Control, SPM002, Canada) was used to determine the 

peak spectral wavelength range from 400-460 nm, and the peak wavelength was at 450 nm. 

The LED was attached to a Peltier cooler (SuntekStore, TEC1-12709, UK) to dissipate the 

heat. The LED unit was attached to an aluminium holder and placed in the illumination 

chamber at the base of the microscope, as can be seen in Figure  3.15. The simplified 

diagram of the modified laboratory microscope can be seen in Figure  3.16. The filters were 

used to prevent the emission breaking into the output fluorescence i.e. the excitation filter 

was used to remove the unwanted out-of-band LED light and the emission filter was used 

to remove the unwanted fluorescence.  

 

 

 

 

Figure  3.15 The LED set-up mounted at the illumination source of the Zhummell 

microscope, the arrow indicates the LED unit 
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The LED was connected to the operating circuit (Solarox, KS1400, UK). Figure  3.17 

shows the circuit diagram. The input voltage was 9 V DC supplied from the power supply 

(Altai EP-613, UK). The brightness of the LED was controlled via a 5 V TTL signal 

supplied from a function generator (Thurlby Thandar Instruments-TTi, TGP110, UK), and 

the TTL signal was connected to the pulse width modulation (PWM) input of the circuit. 

The circuit unit was placed inside an aluminium box, and some holes were drilled through 

the box for the TTL control signal and the other wire connections. Figure  3.18 shows the 

LED driver and the circuit unit. 

 

 

Camera 

Emission filter 

530-650 nm 
 

Objective 

Subject plane 

Condenser 

Excitation filter 
410-450 nm 

Dark field annulus 

LED 

Figure  3.16 Dark field transmission and fluorescence microscope diagram 
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Figure  3.19 shows micrographs of Bacillus atrophaeus spores taken with the conventional 

halogen bulb and using the modified microscope, for comparison. The LED illuminated 

samples produced higher quality images than the conventional illumination source, 

because the LED has a narrower spectral output than the conventional bulb, and the 

emission and transmission filter were appropriate for detection. 

 

        

 

Figure  3.18 Front view of the LED unit and the operating circuit inside the box 

 

 

Figure  3.17 Diagram of the LED circuit connection (Solarox_Manual 2011) 
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a) Halogen bulb b) Luxeon power LED 

Figure  3.19  B. atrophaeus spores imaged in the conventional light microscope and the modified 

microscope using a high power LED (40X objective) 

 

3.4.2 Fluorescence microscope 

The Nikon microscope (ME600, Japan) was developed with assistance from a Nikon 

representative.  The mercury bulb unit was replaced with a UV mercury bulb. The UV 

mercury bulb has different emission wavelengths ranging from 380 to 420 nm, so filters 

are used to select a narrower wavelength range for illumination and fluorescence. A 

fluorescence filter cube unit was added to the head of the Nikon microscope. Bacillus 

atrophaeus spores are naturally fluorescent (autofluorophores) (Sarasanandarajah 2007), 

they fluoresced when excited by UV light. For example, the wavelength range 266-355 nm 

excites the NADH, tyrosine, phenylalanine and other natural fluorophores (Sivaprakasam 

et al., 2004). The fluorescence of B. atrophaeus spores was high i.e. the detection was very 

good at a wavelength of 340 nm. Figure  3.20 shows the detection of B. atrophaeus spores 

with the Nikon microscope operated in the differential interference contrast mode and the 

fluorescence mode. The powerful UV bulb enabled the spores to be more easily detected 

than with a standard optical microscope. 

 

  

a) with convential mercury bulb illumination b) with UV mercury bulb illumination 

Figure  3.20 Microscopic images of B. atrophaeus on a glass surface using a Nikon microscope 
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3.5 Fluorescence spectra measurement  

Fluorescence spectroscopic measurements are simple, sensitive (Donard et al., 1989), 

reliable and cheap for detection and identification techniques of microorganisms (Shahzad 

et al., 2009), proteins (Lakowicz 2009), heavy metal (Prestel et al., 2000), DNA (Danielli 

et al., 2008), dissolved organic matter (Murphy et al., 2010), food product analysis 

(Sikorska et al., 2008) and plant photosynthetic performance (Baker & Rosenqvist 2004). 

It is a fast method compared to culturing techniques which need many hours (~ 24-48 hr) 

to grow the spores or bacteria. A rapid technique is required in urgent contamination 

situations. Additionally, fluorescent techniques can often be used without regents or dyes 

which is a disadvantage in many applications. In this experiment, the effect of excimer 

laser radiation on fluorescence of B. atrophaeus spores was investigated to see if auto-

fluorescences could be detected with sufficient excitation energy and a simple detection 

system. The excimer laser used in this work was a Krypton Fluoride (KrF) device with a 

transition wavelength of 248 nm (GAM Laser Inc., EX5, USA), the maximum pulse 

energy is 38 mJ with a maximum pulse repetition rate of 200 Hz. For detailed 

specifications see Appendix B: Excimer laser (GAM laser, EX5). 

 

Figure  3.21 shows a schematic of the system used, and the experimental setup can be seen 

in Figure  3.22. The agar plate was positioned inside a Perspex safety box at 45˚ to the 

excitation axis, in front of the laser beam. The fluorescence spectra from the spores was 

detected and recorded with the spectrometer (Photon Control, SPM002, Canada) through 

the optical fibre. 

 

 

 

Figure  3.21 Schematic of the fluorescence spectra measurement system 

Excitation light 

Emission light 

    Focusing lens 
Sample  

(Agar plate) 
 

Excimer laser 

Optical fibre 

Spectrometer 

Safety box 
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The background reference spectrum collected with the excimer laser irradiating just the 

agar in the Petri-dish is shown in Figure  3.23 (a). It is seen that there is significant noise 

within the spectrum. The spectrum of laser with the average background reference off is 

shown in Figure  3.23 (b). Then the agar plate was removed and replaced with an 

inoculated plate, 200 µL of B. atrophaeus spores. The plate was exposed to the excimer 

laser beam at a repetition rate of 20 Hz and 17 mJ laser energy over 5 min, and the 

spectrum was detected and recorded by the spectrometer with an exposure time of 3000 

ms. The measurements were repeated five times each time with a fresh culture of B. 

atrophaeus samples, and the average spectra was taken. The fluorescence measurement 

can be expressed by the relationship (Photon_Control 2009): 

 

 

 
 DP

DP
F






0

 
Equation  3.2 

 

 

Where F is the fluorescence, P is the sample intensity (W/cm
2
), P0 is the reference 

intensity (W/cm
2
) and D is the background intensity (W/cm

2
). 

 

Figure  3.22 Experimental setup of fluorescence spectra measurement 
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3.6 Results of the fluorescence spectra measurement  

Figure  3.24 shows the average fluorescent spectra of the laser irradiated agar plate 

compared to that measured with spores. It is seen that the excimer laser with an emission 

wavelength of 248 nm is excellent for B. atrophaeus spore excitation. The fluorescence 

 

(a) 

 

(b) 

Figure  3.23 Emission of excimer laser a) with background reference and b) without background 

reference (bottom)  
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spectrum with spores was longer than the reference spectrum. It can be seen from the graph 

that the florescence spectra of B. atrophaeus spores are covered by a band which had two 

peaks at around 361 and 384 nm, with a completely different structure around this region. 

This is possibly due to either NADH fluorescence or it corresponds to the aromatic amino 

acids, because their excitation wavelength is in the range 250-450 nm and their emission 

wavelength is in the range 300-460 nm (Richards-Kortum & Sevick-Muraca 1996; 

Ramanujam 2006). There is also some additional spectral structure around 600 nm, 

although this is relatively small. 

 

 

 

3.7 Chlorophyll fluorescence measurements 

Rapid detection of microalgae in water provides information on cell detection and cell 

numbers. Microscopy counting techniques are often used but they are somewhat laborious. 

Chlorophyll fluorescence is widely used in photosynthesis measurements (Vonshak et al., 

1994) and can be used to provide an estimate of biomass and cell numbers. Chlorophyll 

fluorescence is used as a proxy for microphytobenthic biomass (Jesus et al., 2006). The 

variable to maximum fluorescence ratio (Fv/Fm) is used to investigate the fluctuation of 

nutrient supply on the photosynthetic efficiency (Lippemeier et al., 2001). The Fv/Fm ratio 

is widely used to measure the maximum photochemical yield of Photosystem II (PSII) 

(Masojidek et al., 2010), and decline of this ratio means that the microalgal cells may 

become stressed (Vonshak et al., 1994). The PEA (plant efficiency analyser) fluorometers 

from Hansatech are widely used in Chl a fluorescence analysis, these instruments have 

 

Figure  3.24 Fluorescence intensities (F) against excitation-emission wavelengths 
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high temporal resolution and data acquisition capacity, they are very fast and have low 

power consumption (Strasser et al., 2000). 

 

This experiment was designed to find the relationship between the algal florescence and 

cell counts compared to microscopy techniques. Two identical photobioreactor tubes were 

used for culturing as shown in Figure  3.25. The culture volume was approximately 1000 

mL (100 mL N. oculata culture medium, 900 mL tap water, 0.5 mL F/2 phyto nutrients 

(Reefphyto, UK)). Sea salt (20 g) was added to the culture, and the salinity was maintained 

at ~ 25 ppt. The illumination for the tubes was supplied by a fluorescent lamp (14 W), the 

lamp was placed between the two tubes for 12 hr on and 12 hr off. Two air pumps supplied 

continuous air agitation and the temperature was 26 ± 2 ˚C.  

 

 

 

The fluorescence was measured by a Hansatech system (Hansatech Instrument Ltd, Handy 

PEA, UK). The fluorescence analysis was based on the measurement of the variable 

fluorescence (Fv) to the maximum fluorescence (Fm), where Fv = Fm- Fo and Fo is the 

minimum fluorescence level (fluorescence origin). The ratio Fv/Fm is found. Figure  3.26 

shows the fluorescence parameters. The samples were collected using the sampling vessels 

as can be seen in Figure  3.27. To obtain the maximum fluorescence, the microalgal culture 

samples were dark adapted for around 10-15 min before the experiments. Three readings 

were measured every two days over a period of 14 days, and averaged for each sample of 

fresh algal suspension. The fluorescence signal was recorded over 30 s exposure times. 

The wavelength range was from 550-700 nm, and centred at 650 nm. 

 

Figure  3.25 A photobioreactor setup for fluorescence measurements 
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3.8 Results of chlorophyll fluorescence measurements 

Figure  3.28 shows a screen capture of the PEA plus software for one sample. The software 

recorded the data of three measurements for the same sample; the three graphs represent 

the fluorescence measurements over time. The relationship between the fluorescence Fv/Fm 

and the growth period of algae can be seen in Figure  3.29 and Figure  3.30 shows (Fv/Fm) as 

a function of the cell counts obtained from microscopy experiments. The results showed 

 

Figure  3.27 A photosynthesis efficiency analyser (PEA) Hansatech instrument 

 

 

Figure  3.26 The fluorescence parameters of the PEA fluorimeter (Hansatech 2007) 



 

106 

that the fluorescence increased with growth time i.e. with increasing algal biomass. 

Consequently Fv/Fm can be used to investigate the cell growth of the fresh samples easily, 

reliably and quickly.  From the investigation, Fv/Fm slightly decreased after ~ 8 hr of the 

test, which was may be due to the effect of nutrient depletion or for other reasons such as 

decreased illumination or aeration in the small test vessels of 4 mL or due to reduced 

microalgal vitality.  The range of Fv/Fm was around 0.5 to 0.7, and for healthy microalgae 

Masojidek et al. (2010) suggests Fv/Fm  is 0.6 – 0.8. The correlation of the Fv/Fm with 

microscopy measurement of the cell concentration was excellent with R
2
= 0.991. 

Consequently, this system could be used instead of laborious, microscopy counting 

methods. 

 

 

 

 

 

 

Figure  3.28 The screen of PEA plus software  
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Figure  3.30 Variable fluorescence (Fv) and maximum fluorescence (Fm) ratio for different dilution factor 
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Figure  3.29 Variable fluorescence (Fv) and maximum fluorescence (Fm) ratio at various days of growth 

measured by a Hansatech instrument  
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3.9 The flow chamber for cell microscopy 

A flow chamber is a microscopic plastic slide which consists of a flow channel, as shown 

in the schematic given in Figure  3.31. The flow chamber is a low cost and simple method 

to allow rapid cell counting. The cells are counted and analysed under the microscope 

without any special preparations, as the fluid is pumped through the chamber. The flow 

chamber reduces the time to prepare the microscopic slide as with conventional methods 

by using pipettes. There is no need to use cover slips or use a small amount of culture to 

avoid cells floating.  

 

 

 

 

The flow system consisted of a flow cell (µ-Slide I 0.1 Luer, Ibidi, Germany), air pressure 

pump (TCS Micropumps Ltd., UK), valves, soft plastic tubing and adapters. The flow cell 

was placed on the microscope stage as shown in Figure  3.32. The culture of cells was 

pumped from the cell culture beaker to the inlet channel of the flow cell, and the output 

from the flow cell was fed back into the beaker. The examination was done using a light 

microscope (Zhumell XSZ-H, 10X, 0.25 NA, China). The resulting photographs were 

viewed using NI image processing software. The setup of the experiment can be seen in 

Figure  3.33.  

 

 

 

 

Figure  3.31 Schematic of the flow cell (Ibidi 2010) 
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An initial test was done with the flow cell by starting the flow then switching off the pump 

to observe the cells under the microscope in a fixed position without motion. The images 

were viewed in the processing window of the NI vision software. There was some noise 

from the background in the resultant images, so the images were filtered and to separate 

the algae cells from the background. The particle filters function in NI vision was used to 

remove the unwanted particles by subtracting the original images and the background noise 

to extract the image of the cells. Figure  3.34 shows the results before and after filtering.  

 

Figure  3.33 A flow cell system setup  

 

 

Figure  3.32 The slide under the microscope 
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a) Original image 

 

b) Background noise 

 

c) Image after analysis 

Figure  3.34 Counting of algal cells using a flow slide 

 

 

The algae cells were moved through the channel of the flow slide and the movement was 

recorded as a video and photographs. Figure  3.35 shows the results. The particle filter 

analysis was used to remove the noise and extract the content for the moving cells, as can 

be seen in Figure  3.36. 

 



 

111 

  

a) Video b) Image 

Figure  3.35 N. oculata algae in the flow slide 

 

   

a) Original image 

 

b) Background noise 

 

c) Image after analysis 

Figure  3.36 Counting of the moving algal cells in the flow slide using NI vision program 
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The particle analysis function in NI vision was applied to determine the track length of the 

particles. The velocity of particles Vp was calculated using Equation  3.3. The exposure 

time of the camera (tf) was ¼ of second. 
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Equation  3.3 

 

 

The density of particles Dp was calculated using Equation  3.4 and Equation  3.5.  
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Where Nc is the number of cells in the field of view and Vs is the volume of the flow 

channel of the slide (X= 3888 pixel, Y= 2592 pixel and the depth Z= 3 µm). The calibration 

or conversion factor Cf to convert from pixels to micrometer was 0.120688 µm/pixel (see 

Appendix C: microscope calibration).  

 

The results showed that the track length of the particles (Lp) was about 5-6 µm. The 

velocity of particles Vp was 0.02 mm/s. The density of particles Dp was 2 x 10
5
 

particles/mm
3
. So this technique is perfect for cell growth observation and counting in real 

time and within defined speed and flow rate.  
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Chapter 4 

 

 Antimicrobial  effects of excimer  laser on  E. coli  and  

B. atrophaeus 

 

 

 

 

 

The aim of this work was to investigate the effects of excimer laser radiation on bacterial 

and spore inactivation. The first experiments investigated the laser influence on E. coli 

bacteria and B. atrophaeus spores lawned on agar surface. While in the other experiments, 

the influence of excimer laser radiation on a spore laden aerosol both inside the resonator 

cavity (booster) and external to the cavity was investigated.  The experimental results were 

assessed using NI Vision software and Fluent (CFD package). The microbiological tests 

showed that the antimicrobial activity of the KrF excimer laser was highly significant both 

on surfaces and in air. 

 

4.1 Excimer irradiation treatment of E. coli on agar surfaces 

The experiments were designed to investigate the killing efficiency of excimer laser 

radiation at 248 nm on E. coli. The optical density and growth of E. coli bacteria were 

measured as well. 

 

4.1.1 Culturing E. coli and optical density (OD) measurements 

The most common method to rapidly determine the growth of E. coli bacteria is the 

spectrophotometry method. In this method, the spectrometer is used to measure light 

scattered by a suspended culture (i.e. an optical density), and then using a calibrated, 

standard curve the cell number can be found.  



 

114 

4.1.1.1  LB broth preparation  

LB nutrient broth (lysogeny broth) has been a widely used as a nutritionally rich medium 

in molecular microbiology to grow cultures; it is popular with bacteriologist due to the 

rapid growth it allows.  The composition of its ingredients are: trypton (10 g/L), yeast 

extract (5 g/L) and sodium chloride (5 g/L) (Sezonov et al., 2007).  The difference between 

the nutrient broth and nutrient agar is that the broth has more nutrients than the agar so it is 

useful to grow a large number of cells for a range of experiments.  The broth media, unlike 

agar, is not suitable to isolate different cells or colonies. The nutrient broth can be solid 

(agar) by adding a gel extracted from red seaweed (Bauman et al., 2012). 

 

LB broth was prepared by adding a 25 g of LB broth powder (Oxoid, UK) to a 1000 mL of 

distilled water, and mixed well using a shaker (Stuart, UK) until completely dissolved. 

Then the solution was autoclaved (Prestige Medical, Classic 2100, UK) for 30 min at 120 

C˚ for sterilizing. 

 

4.1.1.2  E. coli colony isolation and LB broth culture preparation 

Escherichia (E. coli BL21) was supplied by Dr. Roger Parton, Division of Infection and 

Immunity, IBLS, University of Glasgow. In the beginning, a single colony of E. coli was 

isolated from a stocked agar plate (starter culture) by using a sterilized loop, and was re-

plated by streaking it on a fresh LB agar plate and incubating overnight at 37 ˚C.  It is not 

efficient to inoculate directly from the plate or glycerol stock that has been stored for a 

long time, as this may lead to detrimental effects on the plasmid.  After incubation, a single 

colony of E. coli was picked using a sterilized loop and added to the LB broth (20 mL 

universal bottle), and then the LB broth bottle was incubated over night at 37 ˚C. Figure 

 4.1 shows the LB broth without E. coli (before the culturing) and with E. coli after 

incubation. 

 



 

115 

 

4.1.1.3  The optical density (OD) measurement 

i. Introduction to optical density (OD) measurements 
 

Spectrophotometry is a measurement of transmitted or reflected light by the sample as a 

function of the wavelength of the light source. Spectrophotometry includes the use of 

spectrophotometer instruments, namely a photometer to measure the light intensity and a 

spectrometer to produce different wavelengths.  A spectrophotometer can be used to 

measure the density of the culture suspension or solids within a liquid. The instrument 

works by passing the light beam through the sample which absorbs an amount of light, 

then by measuring the light intensity with a detector at a given wavelength, the optical 

density (also called the turbidity and absorbance) can be found. In this research, OD 

represents a measure of the light that is absorbed by the bacterial cell suspension at 600 nm 

wavelength. When the OD is high, the transmittance is low, i.e there is a higher 

concentration of bacterial cells in the suspension.     

     

The growth curve of E. coli against incubation time can be divided into several phases as 

shown in Figure  4.2. The first is the lag phase which occurs directly after culturing with a 

fresh medium, here the bacteria can still adapt or acclimatise to the new medium. Then the 

bacterial cell starts to divide rapidly during the exponential phase. Then the stationary 

phase starts, during which the cell density remains constant due to exhausted nutrients, at 

this point the growth rate equals the death rate. During the death phase (decline phase), the 

cell density decreases with time as the cells start to lyse as there are no nutrients available 

for them. 

 

 

Figure  4.1 LB broth without E. coli (left) and with E. coli (right) 

 

http://www.biology-online.org/dictionary/Transmittance
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ii. Experimental setup of the optical density (OD) measurement 
 

A quartz cuvette (Fisher Scientific, UK) measuring 12.5x7.5x45 mm (as shown in Figure 

 4.3) was filled with 1 mL of LB broth as a reference. The optical density of the blank 

reference was measured by using a spectrophotometer (Biochrom WPA, Biowave 

CO8000, UK).  A blank is the broth that is identical to the broth sample except without any 

E. coli that absorbs the light, i.e. the scale is read as zero absorbance. Then, a quartz 

cuvette was filled with 1 mL of E. coli culture and placed inside the spectrophotometer; the 

amount of light passing through the cuvette was measured. The optical density (OD) 

readings were measured over the time of the experiment with continuous sampling around 

every 20 min, and then the same experiment was repeated but the sampling or streaking 

was taken around every 60 min periodically with the optical density measurement. For 

each optical density, a serial dilution was made and an aliquot of E. coli culture (100 µL) 

was streaked on a pre-pored LB agar plate and all the plates were incubated overnight. 

Then, the number of CFUs on each plate was counted and multiplied by the dilution factor 

to obtain the number of bacterial cells per millilitre in the original culture sample. These 

values were used to prepare a standard calibration curve of cell numbers of E. coli against 

optical density. 

 

 

Figure  4.2 Typical growth curve for E. coli (Brown 2000) 
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iii. Results from the optical density (OD600) measurements for E. coli 
 

Results of the OD measurements can be seen in Figure  4.4. The figure shows the standard 

curve for the relationship between the optical density and cell concentrations, the 

measurements have been taken periodically between OD and numbers of cells over a 

period of around 20-30 min. From this curve, the optical density reading can be converted 

to the number of E. coli cells per millilitre (cells/mL). Since OD values are the cell 

concentration or density, the OD increased over time due to the cell growth.  

 

In this experiment, the measured optical density of E. coli culture was equal to 0.4, and by 

comparing this reading with the calibration curve, the concentration of E. coli was nearly 2 

x 10
8
 cells/mL, i.e. the density of E. coli that were spread onto the plates was 2 x 10

8
 

cells/mL, yielding an average cell coverage of ~ 3.1 x 10
5
 cells/cm

2
. 

 

 

Figure  4.3 Quartz cuvette and the spectrophotometer 
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4.1.2 E. coli experimental test protocol and setup  

The pre-poured LB agar plate was inoculated with 200 µL of E. coli, and the E. coli culture 

was distributed evenly all over the plate by using a sterilized spreader. Consequently, the 

approximate cell concentration on the agar plate was 6 x 10
5
 cells/cm

2
. The inoculated agar 

plate with the holder was placed in front of the laser beam output inside the Perspex safety 

box. A view of the experimental setup is shown in Figure  4.5 and a schematic drawing can 

be seen in Figure  4.6. 

 

The excimer laser was turned on until it had warmed and stabilized (see Appendix B: 

GAM EX50_KrF Excimer laser operational procedure). Through the experiments the laser 

was set to work at a pulse repetition frequency (PRF) rate of 100 Hz with a laser output 

pulse energy of 37 mJ and the number of pulses was increased from 1 to 10 pulses. The 

agar plate was marked into four regions for four separate laser exposures.   

 

Another experiment was done with the same setup. The excimer laser was set to fire at 

fixed power (37 mJ) for 10 second and 1 minute with PRF of 100 Hz. All the procedures 

were done under sterile conditions. After the experiments, the laser treated agar plates were 

incubated over night for growth and analysis at 37°C. The experiment was done in 

duplicate for more accurate results.  

 

 

Figure  4.4 The optical density (OD600) and cell concentration of E. coli were measured around 

every 20 min  
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4.1.3 Results from surface treatment using excimer laser of E. coli test 

Figure  4.7 shows the areas of clearing on the agar plates after incubation and the killing 

effect of the excimer laser radiation on E. coli and the control plate that did not receive any 

irradiation. The treatment process showed a significant influence on killing and completely 

destroyed the E. coli in the beam hit area of the agar, as no growth was observed in the 

area exposed to the laser beam. It is seen that the area of clearing increased with the 

number of pulses. The inactivation achieved was 13% for one laser pulse and 60% for ten 

laser pulses (see section  4.1.4.3).  Interestingly, the reduction in E. coli was apparent even 

in unexposed areas to laser light, indicating that scattering of the UV light was sufficient to 

affect other regions of the plate.  This is clearly seen in plates (d) – (j). It should be noted 

that previous work by Ward et al. (1996) had shown that there was no recovery from the 

treated microorganisms after laser treatment, even after incubation of these regions for up 

to 2 weeks.    

 

Figure  4.6 Schematic diagram of excimer laser set-up and agar plate inoculated with E. coli  

 

Figure  4.5 Experimental set-up of the excimer laser and agar plate inoculated with E. coli  
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Figure  4.7 E. coli treated to excimer laser radiation of different pulse number a) 1, b) 2, c) 3, d) 4, e) 

5, f) 6, g) 7, h) 8, i) 9, j) 10 pulses and k) control (no laser radiation) 
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Figure  4.8 shows the effect of a 10 s and 1 min laser exposure at a fixed power (1.8 W, 100 

Hz) on the agar plate lawned with E. coli. The results show that the excimer laser had 

excellent kill efficiency on the micro-organisms, where there was no growth in the area 

which was directly exposed to the laser beam. The resultant picture also shows that there is 

considerable overlap between the regions that were treated the two different exposures, 

with these regions being considerably larger than the beam size itself. The area of laser 

beam was 12 mm
2 

(2 mm by 6 mm), and the clearing area was approximately 1200 mm
2 

(40 mm diameter) for 10 s and 2800 mm
2
 (60 mm diameter) for 1 min. This means that the 

laser beam was less than about 5% of the total area of inactivation, and this is likely due to 

the laser scattering or thermal effects.  

 

 

 

 

4.1.4 Surface treatment analysis using the NI Vision software 

Microscopy is an important method used in biological applications for example colony 

counting and classifying microorganisms, but in some analyses this requires processing 

large numbers of samples, the use of a microscope becomes time consuming and 

automation can benefit the speed of data acquisition with image analysis software.  NI 

vision 8.5 (National Instruments, USA) was used to process the images in this work (see 

Chapter 1: Section  1.5 Introduction to NI vision). 

 

 

Figure  4.8 Fixed power for 10 seconds and 1 minute at 100 Hz PRF 
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4.1.4.1  Inactivation area analysis 

Figure  4.9 shows the image analysis of the inactivation areas (white regions on the right 

plate) on one of the sample plates after laser treatment and incubation (left plate). This 

figure corresponds to data that was collected from the excimer laser surface treatment 

experiments (Section  4.1.3). 

 

 

  

               

Figure  4.9 E. coli plate treated to excimer laser radiation (left) and Image processing of inactivation 

areas on the plate (right). The micro-colonies in Area 2 are either contaminant CFUs or hardier E.coli 

 

 

The inactivation areas were recorded in a script and then the NI Vision information was 

analysed using Microsoft Excel 2007, the results can be seen in Figure  4.10. From this 

graph, the results clearly show that UV light is a very effective decontamination tool. With 

increasing number of laser pulses, the areas of inactivation increased over the agar surface.  

Measurement of the area of inactivation is based on the image spatial calibration and these 

values are equal to a number of pixels, where every pixel represents one square unit in the 

real world. After calculation of this area, the average of areas was taken for each sample of 

the treated agar plate. 
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4.1.4.2  Ellipse major and minor axes analysis 

The length and width of the treated area, i.e. major and minor axis of the elliptical axes of 

the treated areas were measured. The area of inactivation was separated from the 

background (white regions in Figure  4.9, right plate), and the length or path of the outer 

perimeter of the area was determined (the dashed line in Figure  4.11). Then, the major and 

minor axes of this ellipse were measured and averaged as shown in Figure  4.12 for each 

area of clearing.  The experiment was done twice and the error bars show the standard 

deviation of the average of eight values. The graph shows that as the number of laser 

pulses was increased, the length of the axes increased and thereby the lethal damage on E. 

coli. 

 

 

Figure  4.11 Schematic drawing of processed area with NI vision software 

 

 

Figure  4.10 Treated areas against number of laser pulses, the experiment was done in duplicate 

and the error bars represent standard deviation of the average (n = 8) 
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4.1.4.3  Single colony to total colonies analysis on the agar surface 

Although there were clear areas of inactivation of the GAM laser against E. coli on the 

agar surface, there seemed to be some effect on the background lawn of microorganisms 

that were not in the exposed region of the plate.  To examine and quantify this effect in 

more detail, the agar plate was divided into many regions for ease of counting and to 

obtain an estimation of the results. The analysis was based on detection of ―holes‖ i.e. no 

colonies (the white regions) inside each region, and then the ratio of the colony area to the 

entire scanned area (total area of the colonies) in each region was found through a series of 

processing operations.  The average was taken for all the regions for each plate.  Figure 

 4.13 shows a comparison of randomly selected areas inside the treated agar plate with 

either 1 (a), 10 (b) pulses or the control (c) i.e. no pulses.  The results from the NI vision 

analysis can be seen in Figure  4.14. 

 

    

 

Figure  4.12 Major (■) and minor axes (●) of the inactivation areas against the number of laser pulses 
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(a) (b) (c) 

Figure  4.13 Processed, binary images comparing the treated area on agar surface with a) 1 pulse and 

b) 10 pulses compared to c) the control (the area of clearing is the white region)  

 
 

 

 

The results from Figure  4.14 indicate that the kill efficiency of the laser radiation away 

from the laser exposed area at 1 pulse was around 13% then the killing percentage 

increased to around 60% when the number of laser pulses increased to 10.   

 

4.2 Killing of B. atrophaeus spores on LB agar surface with the 

excimer laser experiments  

The killing efficiency of the excimer laser was investigated against B. atrophaeus spores 

on the agar surface. The experimental setup was similar to that used for the E. coli 

 

Figure  4.14 Ratio of the single colony area to the total area of colonies against number of laser 

pulses, control indicates (no laser radiation). The error calculated from the standard deviation over 

five readings  
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experiments (see Section  4.1.2). The microbiological experiments were done under sterile 

conditions. LB nutrient agar plates were lawned with 200 µL of 1x10
8
 CFU/mL B. 

atrophaeus spores and spread evenly, yielding a spore concentration of ~ 3 x 10
5
 

spores/cm
2
. The inoculated plate was placed in front of the laser beam at a distance of 150 

mm, and exposed to various laser pulses (1, 2, 5 and 10 pulses, and 0 for the control). The 

laser was operated at a PRF of 100 Hz and the laser energy was 37 mJ. The agar plate was 

exposed clockwise from its designated top. 

 

Another test was done on similarly lawned agar plates with B. atrophaeus spores. The 

plates were exposed to a fixed laser power for 10 s, 1 and 10 min and 0 (positive control) at 

100 Hz. Then the PRF was decreased from 100 to 20 Hz to investigate the effect of 

repetition rate of the excimer laser on the inactivation of spores. And the inoculated plate 

was exposed for 10 s and 1 min. 

 

4.2.1 Results from increasing number of pulses 

The results in Figure  4.15 show that there was little clearing or inactivation of the spores 

on the plate that were treated with 1 pulse, however, the clearing increased with the 

number of pulses, as can be clearly observed in the agar plate treated with 2, 5 and 10 

pulses. A comparison between the areas of clearing that were achieved from the E. coli 

experiments and these against B. atrophaeus indicate that B. atrophaeus spores are more 

resistant than E. coli bacteria to the laser irradiation at 248 nm.   

 

 

 

 

Although the effect of the excimer laser was significant and obvious in the inactivation of 

spores, more analysis was done to quantify the area of clearing dependency with the 

number of laser pulses. The previous steps (see NI Vision diagram, Chapter 1: Section  1.5) 

 

Figure  4.15 Agar plates lawned with B. atrophaeus spores and treated with a different number of pulses 

from the excimer laser a) 1 pulse, b) 2 pulses, c) 5 pulses, d) 10 pulses and e) control (no laser radiation) 
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were applied for determining the areas of clearing and the results can be seen in Figure 

 4.16.   

 

 
 

4.2.2 Results from fixed power exposure test 

B. atrophaeus spores were successfully inactivated by the laser with a fixed power of 64 

mW, at 100 Hz and with a varied exposure time of 10 s, 1 and 10 min, as shown in Figure 

 4.17. When the exposure time was increased to nearly 10 min, the laser irradiation was 

sufficiently high that the agar melted. The arrow on the Figure  4.17 (c) indicates the 

damage observed after 10 min, or see Figure  4.17 (d) for a close up view of this damage. 

So the treatment time should be not more than 7 min for this type of laser, or the PRF 

should be reduced to decrease the incident power. 

 

 

 

 

Figure  4.17 Agar plates lawned with B. atrophaeus spores and treated with excimer laser of fixed 

power for a) 10 seconds, b) 1 minute and c) 10 minutes at 100 Hz PRF 

 

Figure  4.16 Area of inactivation against number of laser pulses, ■ indicates area of the laser beam 

(2 mm x 6 mm). The error bars for four readings 
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4.2.3 Results of varying the pulse repetition frequency  

To see the effect of the PRF of the excimer laser on spore inactivation, the PRF was 

decreased from 100 to 20 Hz. Although, the exposure time (10 s and 1 min) was the same 

as in the previous experiment (Section  4.2.2) with fixed power. The area of clearing 

decreased significantly, as shown in Figure  4.18. In conclusion, the area of clearing 

increases with increasing PRF, as laser pulse energy increases.   

 

 

 

 

 

Figure  4.18 Agar plate lawned with B. atrophaeus spores and exposed to 37 mJ laser pulses for 10 

seconds (top) and 1 minute (bottom) at 20 Hz PRF  

 

Figure  4.17 (d) A close up view of the laser damage on the agar plate 
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4.3 The Booster system for air decontamination 

4.3.1 Introduction to the booster system 

The booster system was designed to act as a laser based air decontamination system where 

the air is allowed to flow into a chamber that is exposed to laser radiation.  Ideally the 

booster is positioned inside the laser cavity and exploits all aspects of the laser system for 

enhancing decontamination. Alternatively the chamber could be positioned outside of the 

laser cavity but will be less effective because the irradiance is lower. The idea of the 

booster system was originated by Watson (2007). The advantages of the booster system are 

its potentially high performance, safe operation, reliability and it can be easily located into 

an air flow. The three main components of the external decontamination system and testing 

stage are as sketched in Figure  4.19 (a) and include:  

 

 Inoculation stage: a particle generator is used to produce an aerosol of 

microorganisms. 

 Decontamination stage: the booster chamber and the laser system to treat the 

aerosol. 

 Collection stage: the treated air samples are collected with an air sampler, 

incubated and analysed or a particle counter can be used.   

 

Figure 4.19 (b) shows a schematic of the booster and its position relative to the mirrors of 

the laser cavity and where the decontamination occurs.   

 

 

 

 

Figure  4.19 (a) External booster system stages   
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4.3.2 Glass booster system  

The glass booster was fabricated from fused quartz material (SiO2) by the glass blower 

Willy McCormack, University of Glasgow. Figure  4.20 shows a photograph and CAD 

drawing of the glass booster. The glass booster was 50 mm long and the internal diameter 

was 18 mm, more details can be seen in the CAD image in Figure  4.21. 

 

 

 

 

 

 

Figure  4.20 Glass booster 

 
 

Figure 4.19 (b) Laser Booster for enhanced air decontamination 
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4.3.2.1  Microbiological experiment with the external glass booster 

system with the excimer laser  

i. Setup of the experiment 

 

500 mL of 10
4
 CFU/mL culture of B. atrophaeus was placed in the aerosol generator tank 

(Laskin, SPG-300, UK). An outlet pressure of 0.5 bar was selected for the generator, the 

flow speed was 3 m/s and the flow rate was 50 L/min. The particle generator was 

connected to the inlet of the glass booster chamber, and the outlet of the booster was 

connected to the air sampler (Sartorius, MD8 airscan, Germany) which required a flow rate 

of 50 L/min for operation. Figure  4.22 shows the experimental setup. The glass booster 

was lined axially in front of the excimer laser, the output energy of the laser was 35 mJ and 

the PRF was 100 Hz. when all parts of the booster system (glass booster, excimer laser, 

particle generator, air sampler, beam dump, and piping) were connected the system was 

ready for the experiments.  

 

 

 

Figure  4.21 CAD drawing of the glass booster  
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ii. Experimental Procedure  

 

The particle generator and the air sampler were switched on and the control samples 

(without laser treatment) were taken for 2 and 4 minutes. After the control sample, the 

excimer laser was switched on and the test samples were taken for the same sampling 

times.  The laser was operated at 35 mJ and 100 Hz. The test samples were collected by the 

air sampler on the gelatine membrane filter (pore size of 0.8 µm, 80 mm diameter, 

Sartorius, UK). The air sampler draws the aerosol through the gelatine filter which collects 

and retains the micro-organisms for sampling periods (the gelatine viability was 

maintained of around 30 minutes). See chapter 2: Figure  2.20 the air sampling procedure 

summarize this process.  

 

4.3.2.2  Results of the glass booster system with the excimer laser 

experiment 

The results using the glass booster external to the laser cavity can be seen in Figure  4.23. 

The colonies were counted using NI Vision software.  For 2 min collection time, the 

number of colonies collected was 110 CFUs compared to 226 CFUs in the control, giving 

an inactivation percentage of 51.33%.  While for the 4 minutes treated sample, the number 

 

Figure  4.22 Glass booster experiment setup 
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of the colonies was 14 CFUs compared to 113 CFUs in the control (87.61% inactivation). 

These results were relatively good as only ~ 10% of the inoculated air was treated by the 

laser beam because the beam area of the excimer laser was 12 mm
2
 (beam profile 2 x 6 

mm) and the cross sectional area of the glass booster chamber was 113 mm
2 

(12 mm in 

diameter). 

 

 

 
 

4.3.2.3  Flow shape distribution using Fluent  

The Computational fluid dynamics (CFD) package Fluent 6.3 (ANSYS Inc., UK) was used 

to investigate the air flow and particle trajectories along the length of the glass booster. 

This is important as it is critical to know where the microorganisms are flowing and 

whether they will receive sufficient exposure during their residency time within the laser 

beam.  For the simulation steps see Chapter 1: Section  1.6 Computational fluid dynamics 

(CFD) modelling. The glass booster was designed in a CAD package (SolidWorks 2010, 

SP 4.0, UK), and the booster model was exported into Gambit 2.4 (ANSYS Inc., UK). The 

solid volume of the booster was successfully meshed with tetrahedral and hexahedral mesh 

shapes; the final meshed geometry can be seen in Figure  4.24. 

 

Figure  4.23 Glass booster experiment (top row) a) control and b) treated plate for 2 minutes, 

(bottom row) c) control and d) treated plate for 4 minutes 
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After meshing, the model was imported into Fluent. The particle aerosol (B. atrophaeus 

spores of 1 µm diameter) was released from the inlet of the glass booster. The boundary 

conditions were specified as: three inlet velocities of 0.5, 3 and 5 m/s, operating pressure 

equal to 0.15, 0.5 and 0.75 bar respectively. The volumetric flow rates were 9, 50 and 90 

L/min for inlet velocities of 0.5, 3 and 5 m/s respectively. 

 

The flow field and the particle tracking were analysed in 2D (Figure  4.25) and 3D (Figure 

 4.26). For the lowest velocity of 0.5 m/s (Figure  4.25 (a) and Figure  4.26 (a)), the flow of 

the particles seemed steady and smooth with little aerosol deposition in the bottom region 

of the booster, such deposition is undesirable because the laser beam is located central to 

the longitudinal axis of the chamber, any microorganisms deposited in this region would be 

hard to kill as the laser exposure is low. At the two end regions of the booster, there were a 

quite few of spores landing or depositing on the beam inlet and outlet region of the booster. 

For the higher velocities 3 m/s and 5 m/s (Figure  4.25 (b and c) and Figure  4.26 (b and c)), 

the particle flow became more dispersive within the booster and this means that there is 

more chances of killing the microorganisms. However, the rate of aerosol spore deposition 

increased at the bottom of the chamber; this is undesirable in this region as it is away from 

the central axis and the position of the laser beam. 

 

Figure  4.24 Mesh of the glass booster 
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a) At inlet velocity of 0.5 m/s 

 

b) At inlet velocity of 3 m/s 

 

 

c) At inlet velocity of 5 m/s 

 

Figure  4.25 Flow distribution inside the glass booster with various inlet velocities (2D) 
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a) At inlet velocity of 0.5 m/s 

 

b) At inlet velocity of 3 m/s 

 

c) At inlet velocity of 5 m/s 

 

Figure  4.26 Flow distribution inside the glass booster with various inlet velocities (3D) 
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4.3.3 Stainless steel booster system 

While the glass booster (Section  4.3.2) successfully demonstrated the concept, the killing 

was relatively low because of the booster’s short length and consequently the short 

residency time of the spores. Hence longer systems were designed and fabricated. Two 

stainless steel boosters were made from stainless steel tubes of length (inflow to outflow) 

430 and 720 mm, and the internal diameter for both tubes was 12 mm (external diameter 

was 15 mm). The 25 mm windows were made from fused quartz (Lapmaster Quartz 

Optical Flats, UK). The two windows were placed at each end of the booster to pass the 

laser beam, and the distance between the windows was 600 mm and 870 mm for the short 

and long systems respectively. Windows at either end allowed the option for detecting the 

radiation transmitted, and hence absorbed, through the system. The optical holders were 

made from stainless steel, 15 mm rubber O-rings were placed between the holder and the 

window to prevent damage. The pipes were joined together by a brass 15 mm compression 

tee fittings (Conex, UK). This prevented warping of the tube as no welding was necessary.  

The stainless steel boosters are shown in Figure  4.27. 

 

 

 

 

4.3.3.1  Microbiological experiments with the stainless steel booster 

system and excimer laser  

The experiment was done to investigate the stainless steel booster performance with 

excimer laser treatment at 248 nm.  The protocol and setup of the experiment were the 

same as that used in the glass booster experiment (see Section  4.3.2.1).  The B. atrophaeus 

 

Figure  4.27 Stainless steel boosters 
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spore laden aerosol was pumped into the inlet of the booster, and the air sampler was 

placed at the outlet. The excimer laser was passed into the booster through the input 

window and a beam dump was placed behind output window. Figure  4.28 shows the 

experimental setup, and Figure  4.29 shows a schematic diagram of the experiment. The 

experiment was done in triplicate to provide more accurate results. The system was run for 

2 min. 

 

 

 

 

 

 

Figure  4.29 Excimer laser and the stainless steel booster schematic drawing 

 

 

Figure  4.28 Excimer laser and the stainless steel booster experiment setup 
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4.3.3.2  Results of the experiment with the stainless steel booster system 

and excimer laser treatment 

In this experiment, the rate of killing using the excimer laser was very high and effective 

against B. atrophaeus spores. Clearance of the spores was more than in the glass booster 

experiment, because of the increased length of the booster and resulting increased 

residence time of the spores during the treatment, hence the inactivation level was 

significant. The residence (transit time) for the spores inside the stainless steel booster was 

143 ms for the short one (430 mm length measured from inlet to outlet with an air velocity 

of 3 m/s) and 240 ms for the long one (720 mm length measured from inlet to outlet with 

an air velocity of 3 m/s), while for the glass booster it was only 17 ms (50 mm length 

measured from inlet to outlet with an air velocity of 3 m/s). As well this, the internal 

diameter of the stainless steel tube (12 mm) was narrower than the glass booster (18 mm), 

and this gave improved coupling with the laser beam profile. Although it should be 

mentioned that the beam profile for the laser was rectangular (2x6 mm) so the geometrical 

coupling was still not optimised. 

 

The treated plates were incubated over night. Then, the colony counts on the plates were 

quantified using NI vision software; the results of the experiment can be seen in Table  4.1. 

For the short stainless steel booster, the reduction of the B. atrophaeus spores exposed to 

the excimer laser was 97.54% and 99.80%, at 100 and 200 Hz respectively. While for the 

long stainless steel booster, the rate of reduction was over 99.80% for both 100 and 200 Hz 

treatments. For both lengths of stainless steel boosters, the killing percentage increased 

significantly with increasing pulse repetition frequency. 
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4.3.3.3  Results from the Fluent analysis 

The flow was analysed inside the stainless steel booster using the Fluent package.  The 

particles were released at the inlet of the booster with initial velocities of 3 and 5 m/s.  The 

results of the particle trajectory profile showed that at a distance of around 100 mm from 

the input window (the right side of the graph) there were microorganisms landing on the 

bottom of the tube.  At the booster ends (near the two windows), the air flow seemed low 

which would result in reduced circulation of the air in these regions. Figure  4.30 (a) and (b) 

show the flow shape distribution inside the stainless steel tube with inlet velocity of 3 m/s 

and 5 m/s, respectively.  

 

 

 

Table  4.1 Reduction of B. atrophaeus spores exposed to the excimer laser at 100 and 200 Hz (n = 3) 

Short stainless steel booster (600 mm) 

Sample CFUs 

Control 

CFUs  

100 Hz 

Reduction % CFUs 

Control 

CFUs  

200 Hz 

Reduction % 

1 1937 52 97.32  2017 4 99.80  

2 1570 36 97.71  1430 3 99.79  

3 1450 35 97.59  1493 3 99.80  

Average 97.54±0.0019%  99.80±0.0001% 

 

Long stainless steel booster (870 mm) 

Sample CFUs 

Control 

CFUs  

100 Hz 

Reduction % CFUs 

Control 

CFUs  

200 Hz 

Reduction % 

1 1653 1 99.94  1543 1 99.94  

2 1580 3 99.81  1651 0 100  

3 1773 5 99.71  1755 1 99.94 

Average 99.82±0.0012%  99.96±0.0014% 
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a) An initial velocity of 3 m/s 

 

b) An initial velocity of 5 m/s 

Figure  4.30 Flow distribution inside the stainless steel booster (short) with different initial velocities (3D). 

Inlet side is on the right 

 

4.3.4 Internal cell booster system 

The excimer laser was modified by the laser manufacturer (GAM Laser Inc., USA) so that 

an intracavity cell was placed towards the rear mirror. A CAD drawing of this modification 

can be seen in Figure  4.31.  The aim of this modification was to pass the contaminated air 

between the resonator cavity where there is a greater laser irradiance and was the original 

embodiment of the idea by Watson (Foss-Smith & Watson 2008). The internal cell was 
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made from the stainless steel material. The internal booster was placed inside the laser 

cavity after the active medium, and separated by a Brewster window to prevent laser cavity 

contamination. Photographs of the position of the internal cell inside the laser systems are 

shown in Figure  4.32 

 

This modification whilst safe and efficient was unfortunately not in line with that requested 

of the manufacturer. The inlet and outlet of the aerosol were located adjacent to each other 

rather than at opposite ends of the system as with the previous designs tested externally. 

Consequently, there was insufficient distance for the air flow between the inlet and outlet 

resulting in a very short residence time. The inoculated air intersects with the laser beam in 

a very small area equal to the beam width and not along the laser beam axis.  However, 

experiments were done to determine the effect of using an intracavity booster system.  

 

 

 

 

 

 

Figure  4.31 CAD drawing of the internal cell booster (supplied by GAM) 



 

143 

 

 
 

 

Figure  4.32 Views of the excimer laser with the internal cell booster 

 

 

4.3.4.1  Microbiological experiments of the internal cell system with the 

excimer laser  

The experiments were designed to study the excimer laser sporicidal effect inside the 

resonator cavity. 500 mL of 10
4
 CFU/mL culture of B. atrophaeus was placed in the 

aerosol generator tank. The inoculated air was passed through the internal booster and 

treated with the excimer laser radiation. The sampling time was 2 min. Figure  4.33 shows 
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the schematic drawing of the experiment, and the experimental setup is shown in Figure 

 4.34. 

 

  

 

Two different positions of the control measurement (see Figure  4.35) were taken (before 

and after the spore laden aerosol passed through the internal booster), this allowed 

estimating the potential losses of the spores through the cell and the pipes. In the first 

treatment, the control samples were taken before the spores passed through the internal 

booster, and the PRF was set to 20 and 200 Hz for subsequent treatment. In the second 

treatment, the control samples were taken at the aerosol output near the collector (air 

sampler), for different values of PRF (15, 20, 100 and 200 Hz). The experiments were 

done in triplicate to reduce the error and to obtain the average killing.  After sampling, all 

the laser treated plates were incubated over night at 37 ˚C for growth and subsequent 

analysis.  

 

Figure  4.34 The experimental setup of the internal cell booster 

 

Figure  4.33 Schematic drawing of the internal cell booster 
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4.3.4.2  Results of the internal cell booster system with the excimer laser 

experiment 

The laser radiation provided a significant sporicidal action to B. atrophaeus even though 

the residence time was short. The results of the first part of the experiment (the control 

position at the air flow input (point A)) can be seen in Table  4.2.  

 

 

Table  4.2 B. atrophaeus treated to the excimer radiation in the 

internal booster experiment (the control samples were taken at the 

aerosol input (point A)) at a pulse energy of 37 mJ and PRF of 20 

and 200 Hz 

Laser at PRF of 20 Hz 

Sample Control - CFUs CFUs % of killing 

1 4000 644 83.9 

2 4000 284 92.9 

3 6000 207 96.6 

Average 91.13% 

 

Laser at PRF of 200 Hz 

Sample Control - CFUs CFUs % of killing 

1 4000 224 94.4 

2 6000 131 97.8 

3 5400 300 94.5 

Average 95.57% 

 

 

Figure  4.35 Schematic diagram showing the different positions where the controls were taken. The 

control samples were taken before and after the aerosol passed through the booster 

A 

B 
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The results from the second part of the experiment (where the control samples were taken 

at the aerosol output (point B)) are given in Table  4.3. Due to limitation of the internal 

booster and unsatisfactory design by the laser maker, the results showed that there was a 

small decrease in the spore numbers. So the results (first and second part) mean that the 

reduction in the microorganism’s number is not only due to the laser interaction but were 

in fact due to the deposition within the system.   

 

Table  4.3 B. atrophaeus spores treated to the excimer radiation in the internal booster 

experiment (the control samples were taken at the aerosol output (point B)) with flow rate of 

35 L/min 

PRF (Hz) Control 

CFU 

Sample 1 

CFU 

Control 

CFU 

Sample 2 

CFU 

Average of killing (%) 

15 190 190 243 241 0.82 

20 210 208 190 187 1.27 

100 190 188 280 272 1.96 

200 200 187 175 153 9.54 

 

This showed minimal killing, but there was some dependency on PRF, indicating some 

effect albeit small. Consequently, the protocol of the previous experiments was modified 

by decreasing the compressed air pressure (0.5 bar to 0.25 bar), thereby decreasing the 

aerosol flow rate to increase the residency time of the spores in the internal cell, so the 

exposure time would be longer. The results showed there was a little increase in the 

efficiency of killing (from about 2 to 9.9% for 100 Hz treatment and from 9.5 to 30.6% for 

200 Hz treatment). The results are shown in Table  4.4. 

 

Table  4.4 B. atrophaeus spores treated to the excimer radiation in the 

internal booster experiment (the control samples were taken at the 

aerosol output (point B)) with flow rate of 20 L/min 

Laser at PRF of 100 Hz 

Sample Control (CFUs) CFUs count % of killing 

1 143 129 9.8 

2 126 109 13.5 

3 142 133 6.3 

Average 9.9% 

 

Laser at PRF of 200 Hz 

Sample Control (CFUs) CFUs count % of killing 

1 182 89 51.1 

2 149 118 20.8 

3 145 116 20.0 

Average 30.6% 
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4.3.5 External and internal boosters comparison 

The external boosters (glass and stainless steel) and the internal cell booster (stainless 

steel) were designed and made to investigate the efficiency of the excimer laser to kill the 

aerosolized microorganisms, B. atrophaeus in this case. This comparison allowed 

assessment of the different boosters’ performances, and data were collected from the 

results in the previous sections. Figure  4.36 (a) and (b) shows the summary of the 

percentage of inactivation efficiency (reduction of the spore concentration due to exposure 

to laser radiation) of the excimer laser for various boosters operating at PRF of 100 and 

200 Hz respectively. The results indicate that the excimer laser has a high inactivation 

capacity of B. atrophaeus spores in air using the booster system (over 97%). The 

comparison between the boosters showed that the percentage killing significantly increased 

using the external stainless steel booster system. A longer length of the booster allowed for 

a longer residency time and a good interaction between the laser beam and the 

microorganisms.  

 

a) At PRF of 100 Hz  

 

b) At PRF of 200 Hz  

Figure  4.36 Percentage of killing of the excimer laser for various boosters at PRF of 100 and 200 Hz  
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Chapter 5 

 

 Detection and growth of microalgae  

 

 

 

 

Biofuel is a potential replacement for a petroleum fuel, generally derived from sustainable 

resources (Griffiths & Harrison 2009). They are carbon neutral and produce fewer 

emissions than petrochemicals. The experiments were executed on the microalgal species 

Nannochloropsis oculata and Chlorella vulgaris. Techniques of microalgal detection were 

previously investigated (Chapter 3: Sections  3.7 and  3.9). This chapter lays the precursor 

for using some of these techniques for detection of microalgae in liquid and development 

of further techniques to quantify processes relating to biodiesel production from 

microalgae.  The effects of different environmental conditions on the growth of these 

microalgae were investigated. Dewatering and extraction techniques were investigated. 

This chapter focuses on algal cultivation, harvesting and the oil extraction. Figure  5.1 

shows the algal biomass and oil production stages. Decontamination processes previously 

investigated play a potentially important role in maintaining microalgae growth without 

contaminants, which can reduce growth and purity of harvested components. 

 

 

 

Figure  5.1 Schematic represents the algal biomass and oil production stages  

 



 

149 

5.1 Algal growth 

The effect of various parameters on algal growth to obtain the optimal growth conditions 

was investigated. The important parameters that effect the growth include: light, 

temperature, nutrients, circulation, salinity, and CO2 gas. The system of algal biomass 

production can be seen Figure  5.2.  

 

 

 

 
 

5.1.1 Photobioreactors (PBR)  

Photobioreactors (PBRs) allow algal growth by supplying light to a bioreactor. PBRs were 

built in-house in the Mechanical Engineering workshop to investigate and optimize the 

algal growth. There were three designs that were used: a vertical tubular PBR, a column 

vertical-tube PBR, and a large tank PBR. The tubular PBR was made from acrylic 

material. It consisted of six tubes arranged vertically (60 mm diameter, 500 mm length, 6 L 

total volume), and the tubes surrounded a fluorescent light of 9 µmol/m
2
/s light intensity 

(14 W, 525 mm long, white (Ryness Lighting & Electrical Ltd, UK)). The culture inside 

the tubes is circulated by air bubbles using an air pump (Hailea, ACO-308, China) with a 

six way airline manifold (Hailea, China). The circulation is important to circulate the 

culture between the light and dark areas and to decrease the sedimentation, and provide a 

gaseous CO2 input. Figure  5.3 shows the tubular PBR. Another tubular PBR was designed, 

consisting of one tube, see Figure  5.4. The length of the tube was 1090 mm, and the 

diameter was 177 mm with volume ~ 27 L. Other researchers use a diameter less than 200 

mm to allow the light to reach the centre of the tube. The air is pumped in the long tube at 

the bottom by an air pump (Aqua, AP2 Interpet, UK). 

 

   

Alga Cultivation 

Culture   Nutrients   Water   Salt   Light   Circulation   

 

Figure  5.2 Schematic drawing of algal biomass production 
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Figure  5.3 The tubular vertical photobioreactor with six parallel tubes 

 

 

 

The tank PBR is made from a glass material (200 L), see Figure  5.5. The culture media is 

circulating by using an air pump (Hailea, ACO-308, China) with four ring diffusers (KD, 

UK). Either a fluorescent light of 37 µmol/m
2
/s light intensity (Crompton lighting (58 W), 

F58TB, Hungary) or a special growth light of 74 µmol/m
2
/s light intensity (Sunmaster dual 

spectrum (250 W), SL.U46.DSP, USA) were placed over the tank. 

 

Figure  5.4 The vertical column photobioreactor 
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5.1.2 Sample preparation for microscopy 

The microalgal culture Nannochloropsis oculata (Reefphyto, UK) was grown, cultivated 

and harvested within the School of Engineering, at the University of Glasgow inside the 

photobioreactors (PBR) described in Section  5.1.1. The density and growth rate of the 

algae was examined and quantified using an optical microscope (Leitz Wetzlar, Orthoplan, 

Ploemopak 2.2, Germany) with a 25X objective (NA 0.4, Zhumell, China). A 30 µL 

sample of algae was transferred from a stock culture using a pipette, and dropped over a 

microscopic slide of 26x76 mm size (Deltalab, Spain). The coverslip of 0.17 mm thickness 

(Smethwick, UK) was placed over the sample drop. Figure  5.6 shows the preparation of 

the microscopic slide. 

 

     

Figure  5.6 Microscopic sample preparation 

 

5.2 Algal counting 

The cell density and growth rate of algae under different environmental conditions was 

usually measured once per day. The Leitz Wetzlar microscope was used for the algal 

 

Figure  5.5 A large glass tank PBR 
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counting. The same technique was used throughout the experiments, unless otherwise 

stated. The formula derived for algal counting (cell per mL) is: 
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Equation  5.1 

   

   

Where Nt refers to the total number of cells per millilitre, X and Y represent the size of the 

microscopic image (X = 1280 pixel, Y = 960 pixel) over the experiments, and Cf refers to 

the calibration factor which was 0.085 µm/pixel for the objective lens of 25X (see 

Appendix C: microscope calibration). The variable Z represents the distance between the 

top of the slide and the coverslip i.e. the depth of sample.  

 

The growth rate,  r, was calculated using the following equation (Suchar & Chigbu 2006): 
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Equation  5.2 

 

 

Where Nf is the final cell number, N0 is the initial cell number, and d is the days of growth. 

 

5.3 The effect of salinity on cell density  

Salinity is an important parameter that effects algae growth (Renaud & Parry 1994). The 

effect of ordinary salt and sea-salt on Nannochloropsis oculata (N. oculata) and their 

concentration on growth was investigated. Both salt samples were purchased from a local 

supermarket. The constituents of the salt contain 98% sodium chloride and 2% minerals. 

The salinity was measured with an electrical conductivity (EC) meter (Hanna Instruments, 

HI 8733, UK). 

 

5.3.1 Salinity calibration curve 

The salinity of the algal culture was measured using a conductivity meter, see Figure  5.7. 

A calibration curve was made to obtain standard EC (σ) measurements for a range of sea-
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salt concentrations. The EC values against different concentrations of salt solution can be 

seen in Figure  5.8. The EC meter gives the readings in milliSiemens per cm (mS/cm), and 

with some calculations they can be converted into salt concentration in parts per thousand 

(ppt) which is a more common measured for salinity. To convert mS/cm to ppt the 

following calculations were done: 

 

mS/cm x 1000 = µS/cm 

µS/cm x conversion factor (0.67) = mg/L or parts per million (ppm) 

ppm/1000 = ppt 

 

 

 

 

Figure  5.8 Calibration curve of electrical conductivity (EC) 

 

 

Figure  5.7 Salinity measurements using the conductivity meter 
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The optimum range of salinity for N. oculata is approximately 25-35 ppt,  (Renaud & 

Parry 1994), and N. oculata can be grown in high salinity up to 50 ppt (Das et al., 2011). In 

the salinity calibration experiment, the salt concentrations to give ideal salinities were 

found to be within the range of 20 to 40 g per litre. 

 

5.3.2 Ordinary salt and sea salt experiment 

In this study, the effect of ordinary salt and sea-salt on Nannochloropsis oculata (N. 

oculata) growth was investigated. The algal suspension (100 mL) was cultured in the 

photobioreactor tubes containing 900 mL tap water at different salt concentrations, as 

given in Table  5.1: 

 

The photobioreactor was illuminated by a fluorescent lamp (16 hours on / 8 hours off), and 

the air flow was supplied to one of the tubes using an aquarium air pump (Aqua air, AP2 

Interpet. UK). The experiment setup is shown in Figure  5.9. The growth was examined 

every day and the microalgae were counted using a Leitz Wetzlar microscope using the 

protocol described in Section  5.2. 

 

 

 

Figure  5.9 The tubular PBR for salinity experiment 

Table  5.1 List of the salt concentrations used in the photobioreactor 

Tube Salt  

1 No salt (control) 

2 20 g/L ordinary salt 

3 40 g/L ordinary salt 

4 20 g/L sea salt 

5 40 g/L sea salt 

6 20 g/L sea salt + circulation 
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5.3.3 Results of salinity experiment 

The results of the salt concentration on the density and growth rate can be seen in Figure 

 5.10. It is obvious from the average growth rate taken over 20 days (Figure  5.10 (b)) that 

the algae were affected by 20 g sea and ordinary salt to the same degree. The optimal 

growth was observed with a sea salt concentration of 20 g with air circulation, while the 

lowest growth was observed with the control sample (no salt and no aeration). The data 

represents the average growth rate (Equation  5.2) ± standard error, based on ten readings.  

 

 

 

 

 

b) Average growth rate of N. oculata algae with different salt concentrations 

 

Figure  5.10 Effect of salinities on N. oculata 
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a) Density of N. oculata algae as a function of time 
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5.3.4 Growth with different salt concentrations, with/without an 

evaporation correction factor 

The 6 tube photobioreactor was used to cultivate the N. oculata with different salt 

concentrations namely 25, 30, 35, 40, 45, and 50 g/L for six tubes respectively. Each tube 

contained 100 mL culture, 900 mL water and 0.5 mL of F/2 phyto nutrients (Reefphyto, 

UK). It was observed that there were different evaporation rates in each tube during the 

cultivation time. This was probably due to the different velocities of the supplied air and 

possible due to preferential sunlight on one side of the PBR. Figure  5.11 shows the 

experimental setup. 

                       

 

  

Figure  5.11 PBR at the beginning of the experiment (left) and at the end of cultivation period (16 

days) (right) 

 

The consequences of evaporation were investigated. The N. oculata cells were counted 

every 2 days; the results can be seen Figure  5.12, which shows the cell density without 

taking account of the evaporation loss of water per day. The cell density was corrected by 

multiplying the cell number by the volume of the culture after evaporation and divided by 

the original culture volume. Figure  5.13 shows the corrected data for the evaporation. The 

results obtained from this test showed that the cell density decreased with increased 

salinity range. The cell densities of samples with high salt concentration, declined at the 

end of the cultivation period, indicating possible cell death. 



 

157 

 

 

 

 

5.4 Nutrient concentration experiment   

In this experiment the effect of the nutrients supplied on cell growth was investigated. 50 

mL algal stock culture was mixed with 950 mL tap water in each PBR tube, then F/2 phyto 

nutrient (Reefphyto, UK) was added to the culture as shown in Table  5.2. 
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Figure  5.13 The corrected data for evaporation of N. oculata  
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Figure  5.12 N. oculata densities for different salinities without evaporation correction factor  
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The culture was illuminated with a 14 W fluorescent light, and air circulation was used. 

The temperature was kept at a range 15-20 ºC, and the salinity was kept at 30 ppt. Figure 

 5.14 shows the PBR after assembly. 

 

 

 

 

5.4.1 Results of nutrient experiment 

The experiment was run for ten days, and the cells counted every two days. Figure  5.15 

shows the cell density over the experimental period. The growth in tube 1 (no nutrient) was 

high over the six days but started to decline and the cells died due to nutrient depletion, and 

the culture was not as green as in the other tubes, see Figure  5.16. Tubes 2 and 3 had the 

highest growth among the others tubes. The amount 0.5 mL is recommended from the 

           

Figure  5.14 The tubular PBR for nutrient experiment 

Table  5.2 Nutrients in the six tubes of PBR 

PBR tube Nutrient 

1 0 (control) 

2 0.5 mL (standard) 

3 1 mL 

4 2 mL 

5 4 mL 

6 6 mL 
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supplier and double this amount (1 mL) showed similar growth, and when the amount was 

increased further the cell density did not increase. 

 

 

 

 

 

Another effect of the nutrient concentration was on the cell size. The cells of tube 1 were 

very small compared to the other cells that received nutrients, as can be seen in Figure 

 5.17.  

 

Figure  5.16 The control tube (no nutrient) is on the left side (tube 1-5 from left to right)  

 

 

Figure  5.15 Cell density over time with various nutrient conditions 
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Figure  5.17 N. oculata cells without nutrients (left) and with 6 mL nutrients (right) (25X Zhumell 

objective) 

 

For further investigation to the changes in cell size, the algal photographs were processed 

using the image processing software NI vision 8.5 (National Instruments, USA). The 

average cell diameter and the average cell area for each sample were calculated, as can be 

seen in Figure  5.18 and Figure  5.19 respectively. Doubling the nutrient concentration to 1 

mL/L produced a higher cell density (see Figure  5.15), and the increase of nutrients above 

this did not seem to produce a higher cell density, but did produce larger cell. All of these 

data were corrected for evaporation rate. 

  

 

 

 

 

Figure  5.18 Cell diameter changing over the period of optimal nutrient experiment 
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5.5 Air velocity effect 

During the previous experiment (Section  5.3.4), it was noted that the evaporation rate 

varied. The effect of the gas inlet velocity on evaporation and growth rate was 

subsequently examined. The 6-tube PBR was set-up as shown Figure  5.20. Each tube 

contained 950 mL tap water, 50 mL culture, 0.5 mL F/2 phyto nutrients, 20 g/L sea salt (30 

ppt salinity) and the tubes were irradiated by the 14 W fluorescent light. 

 

  

Figure  5.20 The 6-tubes PBR at the beginning of the test (left) and the end of the test (right) over 22 

days for the air flow experiment  

 

Figure  5.19 Cell area changing over the period of optimal nutrient experiment 
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The PBR tubes were supplied with air flow using an air pump (Hailea, ACO-308, China) 

through the 6-manifold (3 mm inner diameter) with adjustable taps, see Figure  5.21. The 

air velocity was measured using an anemometer (Skywatch, Xplorer 2, USA), and the air 

velocities were set to either 1, 2 and 3 m/s for two tubes. 

 

 

 

 

The microalgae concentration in the PBR tubes was counted every two days, the samples 

were examined under the microscope and ten pictures were taken for every tube. The 

evaporation volume was considered in correcting for the algal concentration in this 

experiment. The results can be seen in Figure  5.22. The tube that was provided with an air 

velocity of 3 m/s (volume flow rate of 2 x 10
-5

 m
3
/s) had the highest cell density. 

 

 

 

Figure  5.22 Counted cell density for various air velocities 

 

 

Figure  5.21 Six tube manifold and supply tubing 
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Evaporation of the culture for the different air velocities can be seen in Table  5.3. The 

results showed that there was a small difference in the water volume for the same velocity, 

possibly due to direct sunlight from a window. The results in Table  5.3 were averaged and 

can be seen in Figure  5.23. 

 

 

 

 

It is seen that culture volume reduced, i.e. evaporation increased, with increasing aeration. 

This appeared to be linear (R
2
 = 0.999) from 1 to 3 m/s. 

 

5.6 Glass tank experiments 

Whilst the 6 tube PBR was designed to investigate parametric variation, little biomass was 

grown in the 1 L tubes. Consequently, a large PBR was produced to grow larger quantities 

of biomass for testing. A glass tank (1230x400x470) mm with a volume capacity up to 200 

L was used to cultivate N. oculata algae. 
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Figure  5.23 The average volume of the water for the different velocities, error bar shows 

an average of two readings 

 

Table  5.3 Volume of the water for different velocities at the end of the growth 

period (~ 20 days). The original volume of the culture was 1000 mL 

PBR tube Air velocity (m/s) Volume (mL) 

1 1 800 

2 1 850 

3 2 700 

4 2 720 

5 3 600 

6 3 600 
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5.6.1 Fluorescent and grow light experiment 

In order to evaluate the algal growth under two different lighting conditions, the N. oculata 

algae were cultivated in the glass tank illuminated by a fluorescence lamp and the spectrum 

lamp. The algal culture of 17 L was cultivated in the large glass PBR containing 177 L tap 

water with 97 mL of F/2 phyto nutrient medium. The culture was grown in water with 

salinity of around 30 ppt and at the temperature of 20 ± 3 °C. The culture was circulated 

using an air pump (Hailea, ACO-308, China) with four ring diffusers (KD, UK). The 

culture was grown first with natural daylight and then additional photon input was 

provided with a fluorescent light of 58 W (37 µmoles/m
2
/s) (Crompton lighting, F58TB, 

Hungary), then the fluorescent lamp was replaced by a dual spectrum lamp of 250 W (74 

µmoles/m
2
/s) (Sunmaster dual spectrum, SL.U46.DSP, USA). Figure  5.24 shows the 

experimental setup.  

 

                       

  

Figure  5.24 A glass tank with a fluorescent lamp (left) and a dual spectrum lamp (right) 

 
 

5.6.2 Results of fluorescent and grow light experiment  

The algal cell density was counted everyday using the microscopy technique (Section  5.2). 

It was observed that the growth was slow over the first two weeks of the experiment, so the 

fluorescent lamp was provided and more nutrient was added. A significant increase in cell 

density was noticed, as can be seen in Figure  5.25. Later the growth rate became almost 

steady (day 28), so the fluorescent lamp was replaced with a dual spectrum lamp. There 

was a significant influence on the growth rate and higher cell counts were seen compared 

with that achieved with the fluorescent lamp. 
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5.6.3 Grow light experiment 

The same experiment as in Section  5.6.1 was repeated with the dual spectrum lamp only, 

the experimental setup can be seen Figure  5.26. The algal cell density was measured daily, 

the culture grow significantly faster as can be seen from the results in Figure  5.27 

compared to Figure  5.25. The growth reached a cell density of 3x10
9 

cell/mL within 10 

days (Figure  5.27), while the growth reached that on day 24 in the previous experiment 

(Figure  5.25). 

 

 

 

Figure  5.26 A large glass tank with the grow lamp 
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Figure  5.25 Cell count of N. oculata in a large glass PBR using two different lamp sources. Data were 

corrected for evaporation  
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5.7   N. oculata growth dependency on temperature 

5.7.1   Practical experiment 

Temperature is an important growth parameter for microalgae. In this experiment the N. 

oculata growth was investigated whilst monitoring the temperature. The algal culture was 

cultivated for 12 days in the PBR. K-type thermocouples (Reotemp, USA) were attached to 

each tube of the PBR, as can be seen in Figure  5.28. The thermocouples were connected to 

a data acquisition board and PC. The temperature values were collected every 300 s. The 

temperature measurements showed that some tubes were slightly higher in temperature. 

Figure  5.29 shows the temperature profiles; the tubes A and F were ~23-24 ˚C, and both 

had the highest cell density, as can be seen in Figure  5.30. The other tubes were ~21-

22.5˚C. 

 

 

Figure  5.28 Experimental setup for the temperature effect experiment 
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Figure  5.27 Cell count of N. oculata in a large glass tank illuminated with the grow lamp 
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The results showed that Nannochloropsis growth rate increased with temperature, and the 

temperature levels over 22 ˚C are suitable to efficiently grow the microalgae.  

 

5.7.2   A Fluent model of PBR temperature distribution 

Fluent 6.3 (Ansys Inc., UK) was used to simulate the temperature of a PBR. A schematic 

view of the PBR system can be seen in Figure  5.31. The PBR was kept inside a chamber to 

simulate a closed environment. 

 

Figure  5.30 Microalgal density versus cultivation time 
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Figure  5.29 Temperature measurements for the six tubes of PBR 
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The simulation assumptions were: The optimum growth rate of the microalgae was ~ 15- 

25 ˚C, so the initial temperature was assumed to be Ti = 15 ˚C (288 K) which is nearly 

equal to the ambient temperature inside the laboratory as measured during the experiments. 

The temperature of the chamber walls was assumed to be the same as the initial or ambient 

temperature Ti and the external temperature To was around 26 ˚C (300 K). The properties 

of the culture (algae and water) inside the PBR assumed to be the water properties. For 

simplification, the PBR model was one vertical tube, made from acrylic plastic material, 

with length of 500 mm, inner diameter of 6 mm and wall thickness of 3 mm. The air was 

assumed to be supplied from the bottom with an air velocity of 2 m/s and at temperature of 

Tair ~17 ˚C (290 K).  

 

The one tube was meshed with gambit 2.4 (Fluent Inc., UK) before modelling with Fluent. 

The system was modelled in Fluent using a discrete ordinates (DO) model. After running 

the simulation, Figure  5.32 shows the results of the temperature profiles. The maximum 

temperature was around 300 K at the wall of chamber. The temperature of the PBR wall 

was 288-290 K, and the temperature at the centre of PBR was found to be 295 K. 

 

The temperature of the air, Tair, was increased from 290 to 295 K. The results of this 

simulation showed that the wall temperature of the PBR increased from 290 to 297 K, and 

the temperature at the PBR centre was increased from 295 to 300 K. Figure  5.33 shows the 

temperature distributions after increasing the temperature. 

 

 

 

 

PBR Ti 

Tair 

 

Figure  5.31 A schematic drawing of the PBR system 

To 
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Figure  5.33 Results showing the temperature distribution of the PBR. The air temperature Tair = 295 K 

 

Figure  5.32 Results showing the temperature distribution around and inside of the PBR. 

Temperature (x100 K). The air temperature Tair = 290 K 
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This provides an initial model that can be expanded to incorporate temperature control of 

the PBR and assessment of local temperature gradients to ensure that the microalgae are 

kept at their optimal temperature to enable optimal growth.  

 

5.8 Chlorella vulgaris experiments  

Microalgae have recently been investigated for their potential for biofuel production, but 

algae and microalgae have been used for food for thousands of years. One species of 

microalgae suitable for food is Chlorella vulgaris. Chlorella contains healthy omega-3 and 

omega-6 fatty acids, and it is commonly found in nutritional supplements. Experiments 

were carried out on Chlorella vulgaris to determine its potential as a food source and to 

develop further methods for analysis and detection.  

 

5.8.1 Cultivation 

Chlorella vulgaris (SAG 211-11b) (from the University of Göttingen, Germany) was 

grown and cultivated within the School of Engineering, University of Glasgow. The 

Chlorella vulgaris (C. vulgaris) algae were received on an agar slope, as can be seen in 

Figure  5.34. 

 

 

 

A loop of C. vulgaris was isolated from the agar, and the culture transferred into the 

nutrient media 3N-BBM+V (culture collection, UK) for cultivation. Before inoculation, the 

nutrient culture was made up from the stock solutions of different ingredients, listed in 

Table  5.4 with their respective contributions per 1 litre.  

 

 

Figure  5.34 Chlorella vulgaris on agar slope 
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The nutrient solutions were mixed with 1000 mL of sterilized distilled water in a sterilized 

glass beaker, and then the solution was divided into nine containers. 15 mL was made up in 

six universal tubes, 2 mL in one beaker and 1 mL in two beakers. Figure  5.35 shows 

nutrient samples inoculated with Chlorella. 

 

      

  

Figure  5.35 Universal tubes with 15 mL culture media (left) and a glass beaker with 2 mL culture 

media (right) 

 

5.8.2 Nutrient concentration experiment for C. vulgaris 

Because of previous experiments possibly linking microalgal size with nutrient 

concentration (Section  5.4), this experiment was repeated for C. vulgaris. The experiment 

was setup in the tubular PBR with four tubes; the air was supplied from an air pump 

through the four way manifold and a capsule air filter (Whatman, polycap , UK) was fitted 

at the air pump for ambient air filtration, as shown in Figure  5.36. The air was filtered to 

reduce the risk of contamination of the culture through any airborne microorganisms. This 

is particularly important if the microalgal crop is to be used for food applications.          

Table  5.4 The nutrient media 3N-BBM+V (modified bold basal medium with 3-fold nitrogen 

plus vitamins) 

Nutrient stock Nutrient solution (mL/L) 

NaNO3  10 

CaCl2.2H2O  10 

MgSO4.7 H2O  10 

K2HPO4.3 H2O  10 

KH2PO4  10 

NaCl  10 

Trace element solution  6 

Vitamin B1  1 

Vitamin B12  1 
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The 14 W fluorescent light was cycled through 12 hours on and 12 hours off. The 

temperature range was 20-22 ˚C during the day time and 17-19 ˚C during the night-time.  

 

 

 
 

75 mL of Chlorella culture was mixed with the sterilized distilled water and nutrients to a 

final volume of 1000 mL in each tube. The cultivation period was 7 days, and the 

evaporation of the culture was determined. The nutrient amounts are shown in Table  5.5. 

 

 

 

 

5.8.3 Results of nutrient concentration experiment for C. vulgaris 

The Chlorella densities over the cultivation time can be seen in Figure  5.37. The standard 

concentration of nutrients gave the highest Chlorella cell density and the lowest value was 

with the control tube, with no added nutrients. The size of the algae was measured using NI 

Table  5.5 Nutrient amount (%) in the PBR tubes (1000 mL) 

 Tube 1 

(Control) 

Tube 2 

(Half amount) 

Tube 3 

(Normal amount) 

Tube 4 

(Double amount) 

Algal culture 75 mL 75 mL 75 mL 75 mL 

3N-BBM+V 

Nutrients 

0 mL 

(0%) 

34 mL 

(50%) 

68 mL 

(100%) 

136 mL 

(200%) 

 

 

 

 

Figure  5.36 Nutrient experiment for C. vulgaris and air filtration on the pump 
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vision 8.5 (National Instruments, USA), and the results can be seen in Figure  5.38. The 

standard concentration had the largest cells among the other concentrations.     

 

 

 

 

5.9  Algal diameter distribution of N. oculata 

In order to determine the cell diameter, N. oculata algae were cultivated in a photo- 

bioreactor in salty water (30 ppt) under the illumination of fluorescent light. The culture 
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Figure  5.38 The effect of nutrient concentration on the Chlorella size. The cell diameter represents an 

average of ten measurements. Tube 1 (0%), Tube 2 (50%), Tube 3 (100%) and Tube 4 (200%) 
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Figure  5.37 The effect of nutrient concentration on the Chlorella growth. The cell density represents 

an average of ten measurements. Tube 1 (0%), Tube 2 (50%), Tube 3 (100%) and Tube 4 (200%) 
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was circulated by an air pump at a temperature between 20-22˚C. F/2 phyto nutrients were 

added during culture growth. The cell density was counted every two days using a light 

microscope (Section  5.2); the cell density was 1x10
9
- 3x10

9 
cell/mL at harvesting time. 

The photographs for algal counting were analysed using the NI vision software. The 

measurements for cell diameter can be seen in the histogram in Figure  5.39. From the 

results, the cell diameter was about 1 - 7 µm. 7 µm is a bit large for N. oculata, so it may 

be that the cells clustered and the software counted them as a large single cell or it may be 

contaminates. Figure  5.40 shows the N. oculata size distribution. 

  

 

 

 

The data for cell counting for each day of the experiment was processed to evaluate the 

changes in cell diameter with days of growth. The cell diameter on days 2 and 10 can be 

 

Figure  5.40 A microscopic view of different cell sizes of N. oculata algae (25X) 

 

 

Figure  5.39 Diameter distribution of N. oculata 
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seen in Figure  5.41 and Figure  5.42 respectively. The results showed that the average cell 

diameter of N. oculata algae increased from ~1.5 to ~5 µm at end of the experiment, i.e. a 

greater change in cell sizes can be seen after 10 days of the cultivation period. 
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Figure  5.42 Diameter of N. oculata on day 10 
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Figure  5.41 Diameter of N. oculata on day 2 
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5.10  Harvesting techniques  

Biomass harvesting of microalgae is a solid-liquid separation process, and it represents the 

highest percentage of the total production cost (20-30%) (Gouveia 2011). Various methods 

of recovering the biomass were assessed, including: sedimentation, flocculation, 

centrifuging and filtration. It should be noted that more than one method may be required 

to separate the algal biomass from the suspension. The experiments were performed on N. 

oculata taken from the 6 tube PBR and glass tank (Sections  5.4 and  5.6). Microscopic 

examination was used to quantify the biomass yield. The algal harvesting process consists 

of two stages, as shown in Figure  5.43, solid separation and dewatering. All processes of 

harvesting will be explained in detail in the following sections. 

 

 

 

 

5.10.1    Sedimentation 

Sedimentation, also called gravity sedimentation, is the simplest and cheapest method of 

separation in algal harvesting. However, natural sedimentation is a very slow process, the 

settling velocities range from 0.1-2.6 cm/h (Choi et al., 2006). In the sedimentation 

process, the cells settle down to the bottom of PBR due to the gravitational and fluid drag 

forces (Harith et al., 2009). The experiments were arranged using different methods to 

investigate the sedimentation rate and cell recovery. 

 

5.10.1.1 Algal sedimentation using universal tubes  

The N. oculata sample (4 x 10
8
 cells/mL) was taken from the PBR using a peristaltic water 

pump (Cole Parmer Instrument, 7524-05, US), as shown in Figure  5.44. The culture was 

transferred into universal tubes (25 mL), the overall height of the sample tube was 95 mm 
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Figure  5.43 Schematic drawing of harvesting process 
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and 25 mm in diameter. Then the tubes were shaken for three minutes using a whirly mixer 

(Vortex-Genie 2, USA) to mix the contents, see Figure  5.45.  

 

 
 
 

 
 
 

The experimental set up can be seen in Figure  5.46. The algal samples were put on a stand 

in front of a camera (Canon EOS 1000D, Japan), and the samples were illuminated using a 

light box and glass diffuser.  

 

Figure  5.45 Whirly mixer with algal samples 

 

 

Figure  5.44 Extraction of N. oculata sample from a PBR 
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Images of the algal samples were captured over five days (120 hr) to determine the 

sedimentation process. The microscopic examination of samples was taken every 24 hr. 

The biomass yield (% cell recovery or cell settling) was calculated using Equation  5.3 

(Harith et al., 2009): 

 

100 (%) cov
1

21 



C

CC
ttimeateryreCell  

 

Equation  5.3 

 

Where C1 is the initial concentration of the culture and C2 is the final concentration at time 

t. The sample was taken from the cell suspension at a depth of ~20 mm. The total depth 

was ~90 mm. 

 

The results of biomass yield can be seen in Table  5.6. High cell recovery was obtained in 

the fourth and fifth days of the experiment. 

 

 

Table  5.6 Biomass yield from sedimentation experiment using a universal tubes 

Time (hour) Biomass sedimented yield 

(% Cell recovery) 

24 41.2  

48 56.8  

72 76.8  

96 91.1  

120 94.3  

 

 
 
 

 

Figure  5.46 Experimental set up of universal tubes sedimentation 
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Figure  5.47 shows the samples during the sedimentation process from 24 hr to 120 hr 

respectively. And Figure  5.48 shows the comparison between the control samples (0 hr) 

and the samples after 120 hr. 

 

 

     

a) 24 b) 48 a) 72 a) 96 a) 120 

Figure  5.47 N. oculata samples during sedimentation process from 24 to 120 hr respectively 

 

 

            

Figure  5.48 N. oculata samples at 0 hr (left) and 120 hr (right) during sedimentation process 

 
 
 

5.10.1.2 Algal sedimentation in conical flasks  

In this experiment, N. oculata samples were settled in three 1000 mL beakers as shown in 

Figure  5.49 to increase the biomass collected. The overall height of the flask was 220 mm 

and 130 mm in diameter at the base. The beakers were investigated every day over a period 

of 120 hr, and liquate samples taken from the top layer of the culture were examined 

microscopically. 
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Figure  5.49 N. oculata inside the conical flasks at 0 hr (left) and 120 hr (right) during  

sedimentation process 

 

The cell recovery was determined using Equation  5.3. Obviously from the results in Table 

 5.7, the biomass yield increased with time. This indicates a high cell recovery i.e. a good 

harvesting of N. oculata after 120 hr of natural sedimentation with no additional energy 

input. The major disadvantage of this process is the time for separation. 

 

 

  
 

5.10.1.3  Glass tank sedimentation experiment 

N. oculata was cultivated inside the glass tank PBR (see Section  5.6). The set up of the 

experiment can be seen in Figure  5.50. During sedimentation, photographs of the tank were 

captured using a digital camera (Canon, EON-D1000, Japan) and saved on the laptop. The 

cells were grown up until they reached a concentration of approximately 10
9 

cells/mL, then 

the air circulation was stopped and the culture was settled for 120 hr. Photographs were 

taken every 30 min. The same procedure was followed as for cell recovery calculation 

detailed in Section  5.10.1.1. 

 

 

Table  5.7 Sedimentation of N. oculata inside the conical flasks 

Time (hour) Biomass yield 

(% Cell recovery) 

24 25.7  

48 45.3  

72 70.3  

96 83.7  

120 96.2  
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Figure  5.51 shows the results of sedimentation of N. oculata, the clarity of the culture was 

obvious after 120 hr. The results of the microscopic examination of sedimentation can be 

seen in Table  5.8. When the length of time increased, a higher concentration of the algal 

layer was deposited on the bottom of the tank. The upper layer can be drawn off and the 

deposited layer can be collected, for harvesting and oil extraction processes.  

 
          

      

Figure  5.51 Sedimentation process for a large glass tank at 0 hr (left) and 120 hr (right)  

 
 

The biomass yield was lower than in previous experiments because the water was much 

deeper and even more time would be required for greater biomass yield. 

Table  5.8 Microscopic examination of sedimentation for a large glass tank 

Time (hour) Biomass yield 

(% Cell recovery) 

24 20.5  

48 37.4  

72 47.4  

96 60.3  

120 70.5  

 
 
 
 
 
 
 
 
 

 

Figure  5.50 Sedimentation setup for a large glass tank 
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5.10.2  Chemical flocculation 

In order to increase the rate of sedimentation, flocuulants were used in algae harvesting. 

The flocculants join many algal cells together and create particles of a larger size, which 

are then deposited at a faster rate. The flocculants used in this research include albumin, 

gelatine and bentonite. The experimental protocol was the same as that used in the natural 

sedimentation experiments, Section  5.10.1.1. Dosages of 100, 400, 700 and 1000 mg/L of 

each flocculent (albumin, gelatine, bentonite) were added to universal tubes containing 25 

mL of alga culture. Figure  5.52 and Figure  5.53 show the samples after 24 hr of 

observation.  

 

 

  

(a) at 0 hours (b) at 24 hour 

Figure  5.52 Bentonite at varying dosages (top row) and gelatine at varying dosages (bottom row) 

 (left to right, control, 100, 400, 700 and 1000 mg/L) 

 

                                                                                      

  

(a) at 0 hours (b) at 24 hour 

Figure  5.53 Control samples (top row) and albumin at varying dosages (bottom row) 

 (left to right, control, 100, 400, 700 and 1000 mg/L) 

 



 

183 

The cell recovery was calculated by microscopic examination using Equation  5.3, and the 

results can be seen in Table  5.9. From the results, all of the flocculants successfully 

accelerated the separation of the algae from the culture, but the percentage of cell recovery 

was not very high. Albumin and gelatine at lower concentrations accelerated the 

sedimentation rate as compared to the control without flocculent, and the optimum dose 

was about 100 - 400 mg/L. But increasing the dosage had no increased effect on the 

flocculation process. This means that there is an optimum dose for the flocculent and no 

effect after that level, this is in agreement with other work (Molina Grima et al., 2003; 

Uduman et al., 2010). Bentonite at a higher concentrations increased flocculation 

compared to the control.  

 

 

5.10.3   Filtration 

Filtration can be used to remove the algal cells from the liquid medium. The N. oculata 

culture was filtered using two methods: a cotton cloth and a membrane filter. The N. 

oculata culture was cultivated inside the glass tank of ~ 170 L of water. The phyto nutrient 

was added to the tank over the cultivation period. The growth lamp was attached over the 

culture to get a suitable illumination for growth, and the tank was aerated using an air 

pump, as previously described. The experiment was run for 14 days until a high 

concentration of algae was obtained. Figure  5.54 shows the growth results. The algal 

samples were prepared for dewatering using a filtration method. 

Table  5.9 Chemical flocculation results over a period of 24 hr (n = 1) 

Chemical flocculent (mg/L) 
Biomass yield 

(% Cell recovery) 

Albumin  

100  32.1  

400  52.2  

700  14.3  

1000  13.3  

Gelatine  

100  23.8  

400  32.7  

700  14.2  

1000  19.2  

Bentonite 

100  23.1  

400  27.3  

700  30.0  

1000  35.0  

Control (without flocculent) 21.3  
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5.10.3.1 Vacuum filtration 

Membrane filtration is the most suitable method for harvesting small algal cells (< 30 µm) 

compared to other conventional filtration methods (Petrusevski et al., 1995). The paper 

filtration process can be enhanced by applying a vacuum. The vacuum filtration was 

carried out using a vacuum flask (Buchner flask) connected to the pump (Watson Marlow, 

M-501, United States), as shown in Figure  5.55.  The filter paper of 0.45 µm pore size 

(Whatman, UK) was chosen to recover the algae. For comparison, cotton cloth filters were 

used. The algal culture was added to the top of the funnel in different volumes (1, 5, 10 and 

15 mL), and the pump was turned on for 2 min filtration time.    

     

 

 

 

Figure  5.55 Filtration apparatus and the pump  
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Figure  5.54 Algal growth for filtration experiment, the error bars are the standard deviation 

of ten samples 
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5.10.3.2 Vacuum filtration results 

The algal biomass recovery by the paper filter was efficient and rapid for the volumes of 1, 

5 and 10 mL. The recovery of 15 mL algal culture was slow because of the relatively large 

volume of water and hence the greater number of algae, clogged the filter. Figure  5.56 

shows the paper filter covered with a wet biomass cake.  The cloth filters retained the algae 

rapidly without blocking the pores, but the cell recovery was less than the filter paper. The 

low recovery may be due to the algal cells penetrating through the cloth because of large 

pore size. The cloth is not suitable for this type of filtration; furthermore, the cloth did not 

fit probably inside the apparatus. Figure  5.57 shows the paper and cloth filters with filtered 

algal biomass after passing 1, 5 and 10 mL of culture (initial concentration of ~ 1.85 x 10
9
 

cell/mL). 

 

 

 

 

 

Figure  5.57 Algal biomass cake collected on paper (left) and cloth (right) filters for 1, 5 

and 10 mL sample 

 

Figure  5.56 Filter paper inside a Buchner funnel and covered with a wet algal biomass  
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After filtration, the filters were dried inside an incubator (Carbolite 20-701666, UK) at 

80°C for 1 hr. To determine the biomass concentration, the filters were weighed on scales 

(Ohaus, AS120, USA) and compared with the original, unused filter weight. Table  5.10 

shows the biomass recovery after drying the filters. From the results, it is evident that a 

higher biomass was recovered using the paper filters than the cloth filter.  

 

 

 

 

Further investigation using a vacuum filtration was done to determine the algal biomass 

productivity i.e the dried biomass per volume per day. Figure  5.58 shows that the dried 

biomass increases with the cultiviation time, as would be expected. These are good results 

as the lipid productivity increases with dried biomass weight (Griffiths & Harrison 2009). 

Furthermore, this is an efficient and simple method to collect the biomass. 

 

 

 

 

 

Figure  5.58 Algal biomass productivity per day (initial concentration of ~ 1.85 x 10
9
 cell/mL).  

The error bars are the standard deviation of three samples  

Table  5.10 Vacuum filtration of N. oculata algae, filtration time of 2 min 

 1 mL 5 mL 10 mL 

Paper 7.2 mg 10.5 mg 15.3 mg 

Cloth 2.5 mg 4.7 mg 7.4 mg 
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5.10.3.3 Cloth filtration 

A liquate of algal slurry was pored over a cloth filter, the samples were left near the 

window to aid evaporation. After 24 hr, the algal cakes were harvested manually by a 

scraper. The biomass cake was about 40 g/L dry wt. Figure  5.59 shows the dewatering of 

N. oculata using a cotton cloth filtration with drying at room temperature.    

 

 

  

Figure  5.59 N. oculata biomass harvesting using a cotton cloth before dewatering (left) and drying at 

room temperature (right) 

5.10.3.4 Mesh filtration 

The algal slurry was passed through marked wire mesh (see Chapter 2: Section  2.5.6) and 

cloth with a wide pore size to avoid filter clogging. The pore size was 180 µm and 10 µm 

for the mesh and cloth filter respectively. The harvesting efficiency was not very high and 

the harvesting process was continuous without any blinding to the filters. After filtration, 

the algal particles built up over the filters and were easily removed using a manual scraper. 

The filtered liquid was too light a green colour and did not clear completely due to some 

biomass passing through the pores, so it was used again for the algae cultivation. Figure 

 5.60 shows the wire mesh and cloth filters. 

 

 

 

Figure  5.60 Wire mesh (left) and cloth (right) filters  
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Figure  5.61 shows microscopic images of the filters. The algae formed clusters over the 

filter apertures without blocking the pores; there was no need for backwashing the filters, 

so it is possibly suitable for large scale harvesting in slurry form. 

 

  

  

Figure  5.61 Microscopic images of the wire mesh (top) and cloth filters (bottom) covered with the 

microalgal biomass 

  

5.10.4  Centrifuging 

Centrifugal cell recovery is fast and often the preferred method in alga harvesting, but it is 

energy intensive  (Molina Grima et al., 2003). Three types of centrifuges were used: 

WIFUG Lab Centrifuge (500E, UK), an Eppendorf Centrifuge (5415D, UK) and an 

Extreme Raw Power Centrifuge (WVO Designs, USA). The first centrifuging process 

investigated using two types of centrifuging tubes: a 25 mL for the WIFUG Lab centrifuge 

(500E,UK) and a 0.5 mL for Eppendorf centrifuge (5415D, UK), as can be seen in Figure 

 5.62.                             
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Figure  5.62 WIFUG Lab Centrifuge 500E (top row) and Eppendorf Centrifuge 5415D (bottom row) 

 

The test tubes of N. oculata were centrifuged at 1000G for various running times, and at 

5000G and 10000G for 5 min. Table  5.11 shows the centrifugal parameters.  

 

 

 
 

5.10.4.1 Results of centrifugation test 

Centrifugation of N. oculata separated the microalgal cells and they settled to the bottom 

of the test tubes, as can be seen in Figure  5.63 (a) and (b).  

Table  5.11 Centrifugal parameters (25 mL tube WIFUG centrifuge, 0.5 mL tube 

Eppendorf centrifuge) 

Sample volume (mL) Centrifugal force  

(G-force) 

Time (min) 

25 1000G 5 

25 1000G 10  

25 1000G 15  

25 1000G 20  

0.5 5000G 5  

0.5 10000G 5  
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a) The algae separated gradually with increasing 

running time (15, 10, 5 min and control from left 

to right)  

b) The microalgal cake settled to the bottom of 

the tube 

Figure  5.63 N. oculata microalgal after centrifuging at 10000G 

  

To evaluate the harvest efficiency, a 50 µL sample of the supernatant layer for each sample 

was examined under the microscope. Table  5.12 shows the biomass recovery (see Equation 

 5.3 for calculations). A centrifugal force at 5000G for 5 minutes were the best centrifugal 

parameters.  

 

 

 

5.10.4.2 Microscopic examination of centrifuging experiment 

Liquate samples from the top (supernatant layer) and from the bottom of the centrifugal 

tubes were examined under the microscope. For 5 min centrifuging, the algal concentration 

from the upper layer was much less than the bottom layer as can be seen in Figure  5.64. 

For 20 min centrifuging, the total biomass in the sample was recovered as can be seen in 

Table  5.12 Running parameters and results for centrifuging process 

Centrifugal force Harvest efficiency % Time (min) 

WIFUG centrifuge (25 mL tube) 

1000G 47.8  5 

1000G 68.8  10 

1000G 77.7  15 

1000G 89.3  20 

Eppendorf centrifuge (0.5 mL tube) 

5000G 100  5 

10000G 100  5 
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Figure  5.65. The bottom layer was highly concentrated, so it required to be resuspended in 

water for counting.  

 

 

  

Figure  5.64 Microscopic images of N. oculata after 5 min of centrifuging WIFUG centrifuge.          

The bottom layer (left) and top layer (right)  

 
 

  

Figure  5.65 Microscopic images of N. oculata after 20 min of centrifuging WIFUG centrifuge.        

The bottom layer (left) and top layer (right)  

 

 

The second centrifuging process was investigated using an Extreme Raw Power centrifuge 

(WVO Designs, USA) working a G-force of 2150G (rpm of 4500). The algal culture was 

fed from the large glass tank (155 L) to the centrifuge. Figure  5.66 shows the experimental 

setup. In one and a half hours, the whole volume of cultured water was centrifuged. After 

centrifuging, the algal biomass was deposited on the inner surface of the centrifuge, as can 

be seen in Figure  5.67, and this harvesting method was very effective in obtaining a high 

concentration algal paste.   
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Figure  5.67 N. oculata algal paste after centrifuging at 2150G 

                

5.10.5   Dewatering of algae 

A wet algal suspension was dried by placing it in a large flat tray (400x450x70 mm) 

(Figure  5.68). The suspension was left to dry at room temperature. It is possible to put the 

tray near the window to expose it to solar radiation for increased water evaporation. This 

process is easy, very cheap and consumes no extra energy, but it needs time for complete 

drying of the algae. The drying time for the tray was 2-4 days during summer time (~23˚C) 

and 5-7 days at winter time (~10 ˚C). The algal flakes were removed by scrubbing the tray 

with a scraper.   

 

 

Figure  5.66 A large algal PBR and a centrifuge setup 
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Figure  5.68 Drying of algae on the tray with low cell density (left) and high cell concentration (right) 

 

 

Another method of dying the algae was by using thermal radiation. It is a fast and very 

effective technique for dewatering the algae. The algal slurry was collected from the tank 

as can be seen in Figure  5.69. The very high density of algal cells in the slurry made the 

cell counting impractical, so the culture was diluted twice (by a factor of 10
2
) for 

microscopic examination. After dilution, the average cell concentration in the original 

slurry was calculated to be 10
12

 cell/mL. Figure  5.70 shows the results of the microscopic 

examination of algal slurry. Interestingly, if the microalgae are 1 µm in diameter and 

assumed to take up a volume of 1 µm
3
, then the maximum number of cells per mL is 10

12
.  

Packing spheres (e.g. cannonballs), however, is a well-known problem, and under the right 

conditions, it may be possible to have a cell number slightly greater than this. 

 

 

   

Figure  5.69 The algal slurry 
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a) 10
14

 cell/mL b) 10
12

 cell/mL 

Figure  5.70 Microscopic photographs of algal slurry before and after dilution respectively 

 

A 50 g sample of wet algal paste was taken from the slurry and spread into a container 

(200 mm diameter), which was then placed inside the incubator (Carbolite, PIN120, UK) at 

80 °C for around 4 hr. A 39.7 g algal cake was obtained after heating, and the value of 

energy consumed for the drying was 346 kJ. Figure  5.71 shows the algal slurry after and 

before drying. 

 

 

  

Figure  5.71 Algal slurry (left) and algal cake after drying by thermal radiation (right) 

 

5.10.6   Laser marking 

Various potential strategies for dewatering using roughened surfaces were considered. To 

assess the effect of surface roughness on microalgae adhesion, two samples of Perspex 

were laser processed. The material was cut into 400x30x5 mm sheets. An Nd:YVO4 laser 

marker (Laservall, Violino 2, UK) was used to mark the Perspex sheet at scanning speeds 

of 20, 40, 60, 80 and 100 m/s. The laser marking increased the surface roughness, and in 

general higher speeds produced higher roughnesses (see Chapter 2:  Section  2.5). The 

sheets were put inside a tray containing the algal culture for 24 hr. Then the samples were 

removed from the culture by tilting the tray. The algal culture was attached on the Perspex 
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surface and there was greater attachment on the areas marked with laser as can be seen in 

Figure  5.72.  

  

Figure  5.72 Algae attached to Perspex strip, higher adhesion when surface roughness increased, in the 

highlighted circular regions, from left to right  

 

Two aluminium electrodes (200x30x3) mm (see Chapter 2: Section  2.6.4.3), one of which 

was marked with the laser to increase the surface roughness to ~1.5 µm, and the other left 

untreated, and used as the control, were soaked in the algal culture for 10 min, and the tray 

was tilted to remove the culture from the electrodes. The attachment of the microalgae over 

the marked surface was higher compared to the control sample i.e. the smooth surface. 

Marking the surface with the laser increased the surface roughness and hence improved the 

attachment, Figure  5.73 showing the results. This was not investigated further but may 

open up opportunities for new methods of separation.  

 

 

  

Figure  5.73 The control sample (top) and the laser marked sample (bottom)  
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5.11  Biofilm formation 

The algal biofilm grew naturally on the wall and lid of the PBR during the cultivation 

period, as can be seen in Figure  5.74. These biofilms were easily harvested compared to 

suspended algae harvesting. The biofilms on the lid and the walls were harvested by a 

small scrapper.  

 

 

Small layers of biofilm were cut and assessed microscopically, as can in Figure  5.75. The 

results showed that the biofilms were a good source of high concentrated biomass. The 

layers attached to the walls of the tubes were more highly concentrated biomass than that 

returned from the lid. Figure  5.76 and Figure  5.77 show the results. 

 

 

  

 

Figure  5.75 Biofilm on the microscopic slides 

           

Figure  5.74 Biofilm growing on the lid and wall of PBR 
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Figure  5.76 Microscopic examination of the biofilm attached to the wall (left) and lid of the PBR (right)  

 
 
 

 
 

 Figure  5.77  Biofilm edges under viewed microscoply from the wall (left) and lid (right) of the PBR 

       

 

The atomic force microscope (AFM) is an important instrument for surface roughness 

measurements with high resolution and accuracy at the nanoscale (De Oliveira et al., 

2012). The AFM (VEECO Dimension 3100, USA) with tapping mode (non-contact mode) 

was used to scan the biofilm of microalgae; Figure  5.78 shows the AFM and the biofilm 

growth on the photobioreactor PBR wall. Figure  5.79 shows the analysis of the biofilm 

surface. The thickness of biofilm was 1.4 µm and the surface roughness Ra was 231 nm.  
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Figure  5.78 AFM view (left) and biofilm on PBR wall (right) 

 
 
 

 

 

Figure  5.79 AFM scanning window shows the image and the surface roughness of N. oculata biofilm 
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5.12  Oil extraction 

The oil extraction from the microalgae is the main feature in the production of biodiesel 

fuel. The microalgae contain a lipid-profile suitable for biodiesel (Nascimento et al., 2013). 

Type and amount of fatty acids in microalgae such as oleic, palmitic, stearic, iso and 

linoleic are attractive components in fuel production (Demirbas & Demirbas 2010). 

Various techniques were investigated for oil extraction of N. oculata algae including: 

pressing, blending and solvent extraction. 

 

5.12.1   Oil extraction with chemical solvents (methanol, isopropanol and 

ethanol) 

The algal biomass was obtained from the previous work (see Section  5.10.5). The dried 

algae were ground into a powder and put inside the incubator (Carbolite, PIN 120, UK) at 

80 °C for 5 hr to remove the moisture (an initial moisture content of 80% and a final 

moisture content of 19.6% after being dried). The moisture content determined by oven 

drying method i.e. the biomass loss after drying. Figure  5.80 shows the algal powder inside 

the incubator. Three algal samples of 5 g were mixed with 25 mL of three different 

solvents (a proportion of 1:5 g/mL). The organic solvents included methanol (Prolabo, 

France), iso-propane alcohol (Sigma Aldrich, France) and ethyl alcohol (Fisher Scientific, 

UK). The three samples were stored overnight in the fume cupboard at ~ 21 °C. 

 

 

   

Figure  5.80 Dried algae on the scale (left) and the algal powder inside the incubator 

 

After soaking for 24 hr, the algal mixtures were stirred for 5 hr using a magnetic stirrer 

(Stuart, CB-302, UK) as shown in Figure  5.81. Then the mixtures were heated on the hot 

plate magnetic stirrer for 2 hr at 50 °C and 166 rpm. The heating increases the oil 

extraction efficiency and evaporation process. The mixtures were subsequently allowed to 
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settle down for 2 hr. Figure  5.82 shows the samples after settling, there were two layers, 

the top layer is the oil-solvent and the bottom layer is the algal biomass residue. 

 

 

 

 
 
 

The algal biomass residue was separated from the oil-solvent solution by the cloth 

filtration as can be seen in Figure  5.83, and the algal biomass residue was washed with 10 

mL of solvent to remove the residual oil. After filtration, each sample from using the three 

different solvents was put inside the hot water bath (Grant Instruments Ltd., SBB Aqua 12 

Plus, England) at 50 °C to evaporate the solvents from the oil. Figure  5.84 shows the setup 

of the hot water bath. 

   

Algal biomass residue layer    

Oil - -Solvent solution layer   

 

Figure  5.82 Oil-solvent layer (top) and biomass layer (bottom) 

 

Figure  5.81 The samples on the magnetic stirrer 
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5.12.2   Results of oil extraction using the chemical solvents 

The extracted oil using iso-propane alcohol can be seen in Figure  5.85. The % oil yield for 

the three different solvents was evaluated and the results can be seen in Figure  5.86. The 

oil yield % was measured by weight, the extracted oil was highest using a methanol solvent 

(19.2%), followed by isopropanol (11.6%) then ethanol (11.4%). 

 

 

 

Figure  5.85 Microalgal oil production by the chemical solvent - isopropanol 

 

Figure  5.84 Water bath to evaporate the organic solvents 

 

 

Figure  5.83 Filtration process to separate the algal biomass from oil-solvent solution 
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5.12.3  Oil extraction by pressing 

A homemade expresser was used for the oil extraction process of the fresh water algae and 

the dried algae. A schematic of the pre-press and press stages can be seen in Figure  5.87. 

The expresser was fabricated from aluminium, and was 50 mm high and 25 mm in 

diameter. The cylindrical column was placed inside the holders, where the microalgae were 

positioned. The algal culture was filtered out with a cotton cloth, then liquate of 2 g of wet 

algal biomass was squeezed using the expresser. Figure  5.88 shows the expresser and the 

algal sample after pressing. At some stage in the expression, some liquid (lipid with water) 

was coming out from the expresser. Further processes should separate the lipid from the 

water.   

 

 

 

Centrifuging 
or 

Filtration 

 

Drying 

 

Oil 
 

Press 

 

Cake 
Pre-Press 

Figure  5.87 Schematic of press stages 

 

Figure  5.86 Oil yield by chemical solvents  
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Figure  5.88 The expresser and the algal sample 

                    

The same pressing procedure was repeated but with dried algal biomass of 1.5 g. The 

amount of lipid was low, which may be due to over drying of algae, as lower lipid content 

with increasing drying time is observed up to 240 min (Vijayaraghavan & Hemanathan 

2009). Figure  5.89 shows the expresser with the algal biomass cake. 

 

 

                                                      

 

 

A microscopic examination using an optical microscope (Nikon Eclipse, ME600, Japan) 

was done on the algal biomass before and after pressing. A small needle was put over the 

sample which ruptured the cell walls and released lipids, as can be seen in Figure  5.90. 

Figure  5.91 and Figure  5.92 show the algae before and after pressing respectively. The 

pressing ruptured the cells and released their contents.  

 

 

 

Figure  5.89 Algal biomass cake sample after pressing 
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Figure  5.90 Cell rupturing using a needle  

 
 

     

Figure  5.91 Algal biomass before pressing 

 

     

Figure  5.92 Algal biomass after pressing 

 

5.12.4   Blending using a food mixer 

Two 200 mL samples of algae were subjected to mechanical solid shear forces using a 

food mixer (120 W, Asda XB982, UK). The algal culture was blended for 4 min. Figure 

 5.93 shows the algal culture after blending. 
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The same experiments were repeated to disrupt the cells. 80 mL of the algal culture was 

blended for 2, 4 and 6 min. Figure  5.94 shows the experimental setup.  

 

 

 

 

5.12.5   Results of mechanical solid shear 

A mechanical cell disruption process was effective in breaking down the cell walls and 

releasing the lipids. As can be seen in Figure  5.95, the oil layer rises to the top of culture. 

Further investigation on the top layer of the culture was done by taking some microscopic 

photographs as can be seen in Figure  5.96. From the microscopic results, the blended 

samples showed that the cell contents had been released, as compared to the control.  

 

Figure  5.94 The algal culture with the hand blender 

 

Figure  5.93 The blended algal culture by using a hand blender, the bottle on the right side is the 

original stock 
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Figure  5.95 The algal culture cells after blending for 4 min  

                       

  

Figure  5.96 The microscopic images of the control without treatment (left) and the disrupted cells after 

blending for 4 min (10X LOMO objective) 

 
 

The rotating blades of the blender were successful in the rupturing N. oculata cell wall. As 

shown in Figure  5.97, some cells were destroyed totally and there was some pitting on the 

walls of other cells. Figure  5.98 shows the average disruption of three samples with 

different treatment time. The average disruption was 92.44% of the initial intact cells for 6 

min of treatment. The efficiency of disruption increased with treatment time. 

 

  

Figure  5.97 Microscopic images showing the damage of N. oculata cells with a blender (25X Zhumell 

objective) 
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5.13   Oxygen bomb calorimeter  

The calorific value of microalgal biomass collected from the glass tank (Section  5.10.5) 

was measured with an oxygen bomb calorimeter (Parr, 1431, USA). After assembling the 

calorimeter apparatus, 1 g of dried algae powder was put inside the combustion vessel and 

ignited. Figure  5.99 shows the oxygen bomb calorimeter system. The temperature readings 

were measured every 1 min for 5 min before the bomb firing, and on the 6
th

 minute the 

bomb was ignited. Then the temperature measurements were continued at 1 min interval 

until the temperature became constant, as can be seen in Figure  5.100.  

 

 

  

Figure  5.99 Oxygen bomb calorimeter (left) and the oxygen combustion vessel (right)  

 

Figure  5.98 Mechanical cell disruption using the blender, the error bars are the average of 

standard deviation of the three samples 
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After the combustion was completed, the gross heat of combustion Hg (calories/gram) was 

calculated using the temperature readings in Figure  5.100 and the calorific equation Hg 

(Parr instruction manual 2013 ). After calculation, the calorific value of the N. oculata 

algal powder was found to be 33.968 MJ/kg. It can be seen that the algal powder has large 

energy density compared with flaxseed (30.297 MJ/kg) but it is lower than petroleum 

which is 43 MJ/kg. 
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Equation  5.4 
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Equation  5.6 

Where: 

ta = Firing time (min) 

tb = Time when the temperature is 60% of the total increase (min) 

tc = Time at which the temperature become constant (min) 

Tr = Temperature rise (˚C) 

Ta = Temperature at time of ignition (˚C) 

Tc = Maximum temperature, temperature at time tc (˚C) 

r1 = Rate at which the temperature rising before firing (˚C/min) 

r2 = Rate at which the temperature rising after time tc (˚C/min) 

e3 = Correction for combustion heat of fuse wire (calories) 

c3 = Fuse wire length = 100 mm 

Wc = Calorimeter energy equivalent = 2426 calories/˚C 

ms = Sample mass = 1 g 

 

Figure  5.100 Temperature readings for the calorimeter  
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Chapter 6 

 

Conclusions and future work 

 

 

 

 

 

Chapter 1 includes the background and the literature review of the research. Spatial 

mapping techniques were explained in a broader context and its relationship to bacterial 

contamination. The foundations of the image processing NI vision and computational fluid 

dynamics (CFD) software, which are important for analyses for the work in other chapters, 

was described. 

 

 Chapter 2 Spatial mapping of microorganisms in air and surfaces is important to allow 

detection of the particles and microorganisms in filtration and decontamination 

applications. From the results, laser marking with low scanning speeds caused higher 

surface roughness due to the increased exposure time and hence deep cavity formation. 

Higher laser power led to higher surface roughness; and increasing PRF decreased the 

surface roughness. The temperature effect on the surface with other laser parameters 

should be investigated for further studies. 

 

This work was investigated to determine spore adhesion to electrode surfaces that formed 

part of a plasma decontamination system.  In general, the rougher surfaces seemed to 

promote bacterial attachment compared to smooth surfaces. Membrane filtration and 

imprinting with different inlet flow angles were used to investigate the spatial variation of 

spores and microorganisms deposited via an aerosol to the electrode surfaces. Membrane 

filtering and imprinting techniques are simple methods of analysis that do not need 

complex equipment or control. Also developing complex protocols for accurate 

distribution and visualization of the microorganisms is time consuming. Further 

investigations should focus on developing imprinting techniques with microscopic 
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detection systems that offer the potential of real-time detection, or using different rapid 

detection techniques such as fluorescence methods to compare with the imprinting 

technique. The system utilising the excimer laser (Chapter 4: Section  4.3.2.1) and a 

spectral imaging system could be used to instantaneously map the spore distribution.  

 

Chapter 3 investigates spatial detection methods of microorganisms. The first method 

utilised an optical microscope, which, of course is a highly effective technique for 

quantification and enumeration of microorganisms. Advantages of this method are its low 

cost, simple sample preparation and high detectable level. On rough surfaces, and in spite 

of long drying time (5 to 7 hr) it was less time consuming compared to other examination 

methods. On the other hand, because B. atrophaeus samples were on a rough surface, it is 

difficult to distinguish between the spores and the irregularities on the aluminium discs; it 

was noted that the spores distributed on the rough surfaces were in the same direction as 

the surface grooves. The other limitation of this technique is that the detecting efficiency is 

low when the density of spores <10
3
 CFU/mL. This method gave improved understanding 

of the spore distribution over the surface. Future suggestions to make the visualisation of 

the samples relatively simple could include labelling the spore samples with fluorescent 

ester dyes. Combined with this approach, image processing software is needed to speed up 

the identification and counting procedures.  Work would need to address the spectral 

content of the fluorescence signal and identify whether the signal is emanating from the 

spore or other contaminants in the sample.  For example, it is not unknown for spores to be 

carried by water droplets, on fabric or dust.  The spore carrier will also have a fluorescent 

signal.  Such work would be important in clean rooms and hospital environments where 

real time detection of contaminants provide a significant advantage to cleanliness and 

reduced risk of infection.   

 

The second method of detection was with the fluorescence measurements via LED 

excitation of the Bacillus atrophaeus, fluorescence spectra of the Bacillus atrophaeus with 

the excimer laser and chlorophyll fluorescence of microalgae in water. The results showed 

that these methods can be used an alternative method to the conventional counting 

techniques offering the potential for improved performance and counting accuracy. The 

same high power Luxeon LED (450 nm) to the LED used herein was used for fluorescence 

excitation of biofluorophores by  Kurilcik et al. (2006). For future work, LEDs and 

excimer laser emissions could be used for production of fluorescence from airborne 

microorganisms, with appropriate detection systems produced.  
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The third method was a direct microscopy technique, using the flow chamber. The 

counting of microalgae culture was accomplished by passing the microalgae in liquid 

culture through a small flow chamber positioned under the microscopic objective. The 

results demonstrated that this method enables counting of microorganisms easily and 

rapidly in their natural environment. The limitation of the flow chamber depends on the 

depth of the slide, so an objective with large depth of field is needed. Flow cytometry is a 

standard technique for cell counting. Future work will focus on using the flow cytometry 

for microorganism quantification and identification. 

 

With the techniques developed and suggested, there is a distinction between microscopic 

based techniques that provide a high degree of accuracy and recognition over small 

volumes.  However some applications require analysis of much larger volumes.  Detection 

of spores in clean rooms or hospital operating theatres is much harder problem.  It would 

be interesting to scale up some of the technologies researched in this thesis to apply them 

to much larger volumes and greater throughput.  It is likely that sensitivity to detection will 

be reduced and hence a larger number of microorganisms would be needed before 

detection was possible. 

 

Chapter 4: The excimer laser was able to kill spores and bacteria rapidly. Exposing 

microorganisms seeded on agar plates to laser radiation is an established method for 

determining the biocidal capacity of a laser.  It is a simple procedure, provides relatively 

rapid results, allows quantitative assessment of the laser’s efficacy and is reproducible.  In 

the present case, excimer laser radiation at 248 nm was used to inactivate E. coli vegetative 

cells and B. atrophaeus spores on LB agar plates. The same wavelength to our laser for 

inactivation of B. atrophaeus spores on packaging boards was used in (Warriner et al., 

2000). Images of the areas of clearing and the region between the areas of clearing were 

analysed and this provided an accurate method of determining the laser inactivation 

efficiency. The antimicrobial activity of the KrF excimer laser was highly effective and, 

over the range investigated, the area of clearing increased linearly (after the second pulse) 

for treatment against E. coli at a rate of 16.95 mm
2
/pulse. The area of clearing against B. 

atrophaeus was not linear and much smaller than that observed against E. coli (11.9 

mm
2
/pulse for 10 pulses).  

 

In this study, the decontamination methods of airborne microorganisms in a glass and a 

stainless system were investigated. The KrF laser radiation was effective in destruction of 
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the DNA of B. atrophaeus, as high inactivation was obtained and no growth was observed 

after the treatment. The percentage of killing increased significantly with increasing the 

length of the booster, as the residency time of the spores interacting with the laser beam 

increased. Fluent modelling allowed spore distributions analysis dependency on the flow 

shaping. The inactivation was investigated using the pulse repetition frequency PRF either 

20 Hz or 100 Hz.  Spetlikova et al. (2010) reported that a higher pulse repetition frequency 

gave faster inactivation. Li et al. (2010) investigated the effect of the UV-LED radiation on 

the E. coli biofilm, and reported that the PRF of 100 Hz gave the highest disinfection of the 

microorganisms. Although, this frequency is not standard for all cases, further 

investigation is needed (Wengraitis et al., 2013). Further work should be done to optimise 

the micro-organisms’ path to allow optimal laser killing inside the chamber of the glass 

booster. In conjunction with optimising the flow, optical components could be used to 

expand the beam over the cross sectional area of the booster cavity. The length of the 

booster can be extended to increase the inactivation efficiency of the microorganisms. The 

effect of the plasma on decontamination should be investigated and compare with UV 

light. The risk of outbreaks of the Ebola virus and warning that the virus could mutate to 

become airborne would be desirable (Buckwalter-Poza 2014), further research into the 

inactivation of viruses can be investigated using the laser based system for effective 

inactivation of surfaces.  Of course the system is relevant for any airborne microorganisms, 

but the system needs further evaluation to identify its true potential.  The impact of the 

spores on the free-plasma electrodes was evaluated, but greater analysis of the effect of the 

plasma on spores could be done.  It is known that the spores bounce along the electrodes 

when the plasma is off, but there behaviour is not known with the plasma operating.  

Perhaps debris of the spores could be detected along the length of the electrode after 

treatment.   

 

Various aspects of the system can be modelled mathematically.  Developing such models 

of the laser – spore or laser – microorganism interaction would help elucidate the killing 

mechanism and allow the process to be more easily identified and hence optimised.    

 

Chapter 5: Production of biofuel from microalgae may significantly impact the world’s 

climate and food security, where some microalgae have been eaten for centuries and 

biolipids canbe extracted and converted into biofuel.  Third generation biodiesel 

production from microalgae is a potential replacement for a petroleum fuel, and is 

essentially carbon neutral.  In this study algal cultivation, harvesting and oil extraction 

were investigated, where these processes form the basis of a microalgal biorefinery. The 
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effect of environmental conditions on the growth of the microalgal species 

Nannochloropsis oculata and Chlorella vulgaris were studied. The air flow speed was 

effective on the cell growth, as increasing the velocity (i.e circulation) increased the 

number of cells, probably due to even illumination and sufficient gas exchange. The 

optimal growth was obtained with salinity concentration of 30 ppt, while the lowest growth 

was observed with no salt (the control sample). The effect of nutrients on N. oculata 

growth showed that increasing the nutrients increased the cell size but did not increase the 

cell density.  Lipid production should be quantified with nutrient and CO2 supply. 

 

The flow chamber system can be directly coupled to a photobioreactor allowing 

instantaneous measurements of the cell size, allowing some prediction to be made over the 

best time to harvest the microalgae.  Lipid detection systems would provide information on 

optimal growth conditions and harvest times.  Future research could also investigate 

suspended tokens or discs to grow algal biofilms and investigate the various related 

parameters to optimise algal densities, such as immersion period and other growth 

parameters.  

 

The centrifuging technique was very effective at harvesting the microalgae, but further 

investigation between the centrifugal parameters and cell recovery is needed and to 

identify less expensive, alternative methods. The filtration by vacuum (using filter 

membranes) and by gravity (using cloth) was investigated. Both methods produced high 

cell recovery and are inexpensive. The vacuum filtration is preferred due to the relative 

ease and rapidity of the process, around 2 min, but the cloth filtration was more suitable for 

higher concentrations of microalgae. Additional evaluation of the flocculation ability of 

albumin, gelatine and bentonite is needed to obtain faster sedimentation rates at a relatively 

low cost. Further investigation on the energy required for the microalgal growth and 

harvesting techniques is essential to identify commercially viable strategies. 

 

Lipid extraction from microalgae was investigated with organic solvents. The results 

showed that the algal dried biomass contains about 11-19 % oil. The effect of mechanical 

blending on the cellular disruption and lipid release was investigated. The mechanical solid 

shear was effective in the rupturing of N. oculata wall, and the disruption rate increased 

with time. However further experiments on the microalgal biomass production and lipid 

content should be investigated under controlled environmental conditions, with the 

objective to reduce the required energy for the processes. A system to monitor temperature 

was partially developed as a step towards this goal. A Fluent model was developed to 
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assess the temperature distribution of a PBR. Instrumentation to measure the real time 

growth of microalgae in the 6 tube PBR would allow greater data collection rates and 

faster experimentation towards optimal growth conditions. Further research on sustainably 

producing the biofuel from microalgae is needed which will ultimately lead to work on a 

larger commercial scale, where the concept of microalgal biorefineries can be developed to 

solve the global problems of energy and food security. 
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Appendices 

 
Appendix A:  Laser marker (Violino2)  

 

 

i. Detailed description specification 

Laser output characteristics 

Emission Wavelength 1064 nm 

Pump Source Wavelength 808 nm 

Gain Medium Nd:YV04 

Q-Switch Frequency 10 - 200 KHz (programmable) 

Pulse Width 10 - 35 ns 

Pulse Energy up to 0.4 mJ 

Avg Output Power 10W cw 

Transverse Mode Low order mode 

Peak Power up to 50 kW 

Beam Diameter 1/e2 (unfocused) 5 mm 

Beam Divergence < 0.5 mrad 

Beam Symmetry Circular 

Beam Polarity Linear ( > 100:1)  

Power supply unit  

Dimensions 

(W x D x H) 

7" x 19.75" x 17.5" 

(18 x 50 x 49 cm) 

Weight 57 lbs (26 kg) 

Electrical Connection 220 VAC-4A 

Electrical Consumption 800 W max 

Cooling 
Air with 

thermo-electric 

Laser resonator  

Dimensions f85 mm x 402 mm 

Dimensions with 

Scan 4 Head 

(W x H x L) 

4.8" x 7" x 23" 

Weight without 

Scanning Head 
13 lbs (6 kg) 

Weight with 

Scanning Head 
22 lbs (10 kg) 

Red Diode Beam 

for Positioning 
635 nm Class 3A 

Scanning head  

Focal Length 6" (160 mm) 

Working 

Field Size 

4.3" x 4.3" 

(110 x 110 mm) 

Frontal Distance 185 mm 

Resolution (16 bit) 1.7 μm 

Focal Spot Diameter 30-50 μm 

Marking Speed  

(roman-s character .04" high 1.2 mm) 
250 Char/Sec 
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ii. Laser marking operational procedure  

 

1. Start the EHT (extreme high tension) power. 

2. Wait until the status screen shows ready. 

3. Remove the cap from the lens.  

4. On the control box, turn key to start position, and check the red laser beam for 

alignment showing. 

5. Start the computer and select laser editor (Smartists 4) program. 

6. Switch on fume extractor. 

7. Edit drawing file and test the specimen drawing with the red beam. 

8. Alter Z axis until red laser has minimum diameter i.e. the laser be in good focus on 

the specimen. 

9. Shut protective doors. 

10. Safety goggles or face mask suitable for the wave length should be worn within 

sight of laser marking. 

11.  Switch key to on position in the control box and press enable switch/ indicator. 

12. Start program to start the marking. 

13. Don’t move the specimen when the laser marker is work, the eye damage could 

result from the right reflections from any surface in the path of the beam. 

14. After marking or when the program stopped disable the laser by using the enable 

switch/ indicator in the control box. 

15. Switch the key to off position and switch off the laser marker and the PC. 

16. Put the safety label in the area when the laser marking under progressing to warn 

who enter to the area. 

 

 

Appendix B:  GAM EX50 - KrF excimer laser operational procedure 

 

Operation of this laser requires the presence of at least one trained personnel.  At least one 

of the authorised keyholders should be made aware of the laser being used, experiments to 

be done and the protocol being implemented. This laser is a Class IV laser; with the beam 

contained within the protective enclosure it is a Class I laser.  Always operate the laser 

with the correct safety eyewear on and as a Class I laser.   
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1. Before starting the laser, check that the laser is connected to the UPS 

(Uninterruptible power supply) which generates a mains isolated voltage and 

frequency, and check the voltage is set to 230 V at 50 Hz. 

2. There are three switches on the laser all of which must be turned on.  This includes 

one turn key switch, one flip/lever switch, and an emergency stop switch (which 

usually remains on). 

3. Switch on the computer (which drives the laser) and open the laser operation 

program called ―EX50‖. 

4. Once the program starts, it will automatically induce a warm up of the laser which 

takes around 8 min. 

5. Once the laser has warmed up and no errors are observed on the screen, check that 

the gas pressure and temperature are at the correct operational region of the laser: 

Gas pressure ~2400 torr, and operational temperature 20 ±4 ˚C. 

6. Once the parameters are checked and cleared take off the silver end cap of the laser 

at the output coupler of the laser.  Make sure the connecting tube to the enclosure is 

safely secured. 

7. Set the desired parameters of the laser on the computer which include: continuous 

operation or defined number of pulses (in which case the number of pulses), the 

PRF and continuous voltage mode (in which case the voltage input) or continuous 

energy mode (in which case the energy output). 

8. Once you have finished using the laser, close the program down by going to ―file‖ 

and ―exit‖.  The laser will then go into a cool down mode. Leave the laser cooling 

by itself for 20 min plus/minus 5 min.  Then switch off the lever/flip switch and the 

turn key.  

 

 

Appendix C:  Microscope calibration 

 

Calibration of the objective lens of microscope was done by using a graticule (Pyser-SGI, 

UK). A graticule is a microscopic slide with divisions (100 µm, 10 divisions). The 

following procedure was followed for calibrating the graticule for the 10X objective: 

 

 Place a graticule on the microscope stage and focus the objective on it then take the 

photograph. Export the photographs to NI vision software. 

 Select two points on the graticule as shown in Figure C.1 
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 Calculate the distance between these two lines, for example the distance covered 8 

divisions so the full length is 8 x 10 µm = 80 µm. Write this value in the calibration 

scale.  

 In the NI vision software, use image calibration unit: simple calibration. The 

software will convert the value from pixel coordinates to real-world coordinates i.e. 

µm, and this value represents the calibration factor Cf for the specific objective. 

 Repeat the calibration procedure for the other objectives of the microscope. 

 

 

Appendix D:  Prepare Agar plate 

 

 500 mL LB Agar bottle 

 Petri dishes  

 Hot water bath 

 Bunsen burner 

 

1. Warm the agar bottle after loosening the cap in the hot water bath (around 50˚C) 

until it becomes liquid.  

2. Open the cap and pass the neck of the bottle over a Bunsen flame for sterilizing. 

3. Open the Petri dish lid as little as possible and pour the agar until it just covers the 

dish bottom (~ 15 mL), if there are bubbles on the surface remove these by rapidly 

passing the Bunsen flame over the plate.  

4. Cover the dish immediately and let the agar solidify at room temperature (about 10-

20 min). Store the agar plates upside down under refrigerated conditions. 

 
Figure C.1 Calibration the image with graticule 
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Appendix E:  Microalgal aseptic handling procedure 

 

To avoid contamination of the microalgal cultures (N. oculata and Chlorella vulgaris in 

this research), the following protocols were followed:  

 

- Latex cloves were worn and changed frequently during the experiment, and a laboratory 

coat was worn. The working area was inside the fume cupboard.  

- The working surfaces were sprayed with ethanol (70% ethanol and 30% distilled water) 

and wiped with a clean paper towel.   

- Disposable microscopic slides and pipette tips were used. 

- Bunsen burners were used to flame sterilize equipment during the inoculation process i.e. 

the equipment (outer surfaces of flasks, loop and forceps) was flamed before and after its 

use.  

- All the equipments (PBR, glassware, tubing with valves etc) used in the microalgae 

growth experiments were sterilized in trigene disinfectant (Trigene, Medichem 

International Ltd, UK) with 1 part to 200 parts of water and wiped with a sterile brush, and 

then rinsed with distilled water.  In some cases for larger volumes, washes were done with 

running tap water, where contamination was less of an issue and repeated several times. 

- A Whatman polycap capsule air filter was used to filter the air supply fed into the PBR. 

Hands were washed before and after the experiments with the antibacterial soap (Kimcare 

general 6331, Kimberly-Clark Ltd, UK). 

 

 

Appendix F:  Serial dilution protocol of Bacillus atrophaeus  

 

The serial dilution of microorganisms and spreading the diluted microorganisms on the 

nutrient plate is an ideal and the simplest method for counting live microorganisms. The 

number of microorganisms is very high in the original sample, so when sampling or 

spreading the samples directly without dilution the colonies will grow next to or on top of 

each other and they are too numerous to count (TNTC). The microorganisms should be 

reduced (diluted) to allow accurate enumeration.  

 

The diluted protocol was done by preparing a number of sterile universal flasks filled with 

9 mL of sterile distilled water. Then 1 mL of the original sample of B. atrophaeus spores 

was withdrawn using a pipette and added to 9 mL of the first flask, this would produce a 

10-fold dilution (10
-1

). The new culture solution was mixed to obtain an even mixture, then 

1 mL of this culture was withdrawn and put into another universal flask containing 9 mL of 
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sterile distilled water, this would produce a 100-fold dilution (10
-2

), this was repeated until 

the required dilution was reached i.e. a countable number of microorganisms colonies is 

obtained in this case. The steps of the dilution protocol are shown in Figure F.1. It should 

be noted that the spore samples were provided by Dr Bill Whyte and were kept under 

refrigerated conditions to maintain them as spores.   

 

 

 

 

 

Figure F.1 Protocol of serial dilutions 
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