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| AbstraCt

We begin with an introduction which describes the thesis in detail, and then a
preliminary chapter in which we discuss rewriting systems, associated complexes and
finiteness conditions. In particular, we recall the graph of derivations I" and the 2-
complex D associated to any rewriting system, and the related geometric finiteness
conditions FDT and FHT. In §1.4 we give basic definitions and results about finite
complete rewriting systems, that is, rewriting systems which rewrite any word in a
finite number of steps to its normal form, the unique irreducible word in its congruence
class.

The main work of the thesis begins in Chapter 2 with some discussion of rewriting
systems for groups which are confluent on the congruence class containing the empty
word. In §2.1 we characterize groups admitting finite A-complete rewriting systems
as those with a A-Dehn presentation, and in §2.2 we give some examples of finite
rewriting systems for groups which are A-complete but not complete.

For the remainder of the thesis, we study how the properties of finite complete
rewriting systems which are discussed in the first chapter are mirrored in higher
dimensions. In Chapter 3 we extend the 2-complex D to form a new 3-complex Dp,
and in Chapter 4 we define new finiteness conditions F DT, and FHT, based on the
homotopy and homology of this complex. In §4.4 we show that if a monoid admits a
finite complete rewriting system, then it is of type F DT5.

The final chapter contains a discussion of alternative ways to define such higher
dimensional finiteness conditions. This leads to the introduction, in §5.2, of a variant
of the Guba-Sapir homotopy reduction system which can be associated to any com.-
plete rewriting system. This is a rewriting system operating on paths in T, and is
complete in the sense that it rewrites paths in a finite number of steps to a unique
“normal form”.



Statement

Chapter 1 covers some basic material including group presentations and rewriting
systems, related complexes and finiteness conditions, and also a discussion of complete
rewriting systems. Apart from a new proof of Theorem 1.3.4, the material in this

chapter can be found elsewhere - references are given in the text.

Chapters 2, 3, 4 and 5 are the original work of the author, with the exception
of instances mentioned in the text. The main results of Chapters 3, 4 and 5 are

contained in a paper which has been submitted for publication.

Glasgow Stuart McGlashan
January, 2002 | -
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Notation

the set of integers
the set of natural numbers

the set of non-negative integers

the free monoid on the set x

group presentation

rewriting system

the single-step relation induced by r
the reflexive, transitive closure of —,
the Thue congruence generated by r
the congruence class of a word w

the monoid defined by P

the length-lexicographic reduction ordering
the free group with basis x

the reduction ordering induced by r
the integral monoid ring of a monoid T
the kernel of the ring map ZF—ZS induced by P
the graph of derivations

the set of all positive edges in T’

the set of positive edges at a vertex w
the order of edges in star*(w)

the height function associated to P

the 2-complex of monoid pictures

2-cell in D (e, fee™)

the homology bimodule of P

the left homology bimodule of P

the relation module of P

the left relation module of P
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where p is a set of closed paths
the normal form of w
2-cell in DP, where p is a set of closed paths
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an HNN group with base G and associated
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Introduction

Every group is the homomorphic image of a free group, and as such can be
presented as a quotient of a free group by some normal subgroup. Specifying defining
relations as elements of the free group which generate this kernel will then give a
concise description of the group in terms of generators and relations. Combinatorial
group theory is concerned with the study of such presentations which may in fact
provide very little group theoretic information. The word problem asks whether we
are even able to determine whether or not two different words in the generators of

the group represent the same group element.

It was the problem of deciding whether or not two knots are the same that led
Dehn to the first statement of the word problem [19], and he was able to give a positive
solution for the fundamental groups of closed orientable surfaces by using what is now
known as the Dehn algorithm. This result has two well-known generalizations. Firstly,
Magnus [46] showed that the word problem was solvable for all one-relator groups,
and later Greendlinger [25] began the study of more general groups allowing a Dehn
algorithm solution of their word problem - these are the word-hyperbolic groups of
Gromov [26]. |

-

Solutions to the word problem of other important classes of groups have also been
given, for example for abelian groups and for braid groups [62], but the most famous
result is that of Novikov [50] and, independently, Boone [9] that there are groups with
unsolvable word problem. Moreover, it is possible to write down presentations of such

groups - a presentation involving 10 generators and 29 relations with unsolvable word

problem is given in [15, §7.2].



In his original paper, Dehn had shown that a knot was trivial if and only if the
corresponding knot group is abelian!, a fact which can be easily ascertained if a
solution to the word problem is given. Much later Waldhausen [64] showed that knot
groups have solvable word problem, and so it is indeed possible to decide whether a

given knot is trivial.

String rewriting systems have been much studied in theoretical computer science -
in semigroup and group theory they can be used to give presentations of monoids. Of
particular interest are finite complete rewriting systems, that is to say finite rewriting
systems that are both terminating and confluent, and so have normal form algorithms
which solve their word problem. For many years it was an open question as to
whether, conversely, any finitely presented monoid with solvable word problem had a
finite complete rewriting system, but Squier [59] proved this to be false. He showed
that monoids with a finite complete rewriting system were of type left and right
FP;, and then gave an example of a finitely presented monoid with solvable word
problem which was not of type left F/P;. In fact, it was implicit in an earlier paper
of Anick [3] that monoids admitting finite complete rewriting systems satisfied the
stronger finiteness conditions left and right FP,,. This result has also been proved
by Groves [27], Kobayashi [36], and Brown [12].

This thesis begins with a preliminary chapter, Chapter 1, which reviews these
concepts in detail, together with other finiteness conditions for rewriting systems
which are discussed below. Proofs of results in this chapter are given either where
similar ideas are used later in the thesis, or where references are not easily” available.
Chapter 2 is a short chapter which contains some new results on A-complete rewriting”
systems, which contain a solution to their word problem when they define groups. In
particular, Proposition 2.1.14 characterizes groups with finite A-complete rewriting
systems as those with A-Dehn presentations, a generalization of the standard notion

of a Dehn presentation. We also use Britton’s Lemma to construct some interestihg

!Dehn’s result relied on an incorrect proof of what is now called Dehn’s Lémma, and which was
finally proved much later by Papakyriakopoulos [53].



examples of such rewriting systems.

However, the main aim of this thesis is to develop the following ideas one dimension
higher. Squier [60] introduced the class of monoids of finite derivation type (FDT)
which contains each monoid with a finite complete rewriting system. It was then
shown by various authors {17, 43, 54] that F DT monoids were necessarily of type left
and right FP;, and also [18, 55] that for finitely presented groups these conditions
were equivalent. A related property finite homological type (FHT) was introduced
by Wang and Pride [66].

Roughly speaking, the properties F'DT and FHT are defined as follows. If P is
a finite rewriting system for a monoid S consisting of a set of rules r on an alphabet
X, then there is a certain 2-complex D = D(P) (the Squier complex or 2-complez of
monoid pictures) derived from P on which the free monoid F' on the set x acts on
both the left and the right. We require that the first homotopy or first homology of
D is finitely based, that is to say, there is a finite set p of closed paths in D such that
attaching 2-cells to the paths F.p.F gives a 2-complex DP which is simply-connected
(FDT) or has trivial first homology (FHT).

Both these properties are monoid invariants, that is, they are independent of the
choice of finite rewriting system for S [60, 66]. Also, a retract of an FDT or FHT
monoid will have the same property [66]. (Recall that a retract R of a monoid S is (up
to isomorphism) a submonoid of S such that there is a homomorphism (a retraction)
of S onto R which fixes R elementwise.) From the definitions, it is immediate that
an FDT monoid is FHT. An FHT monoid is also of type left and right FP; [66],
but, on the other hand, Kobayashi and Otto [42] have given an example of a ﬁnitely—
presented monoid of type left and right F'P3 which is not FHT. It remains a major
open question as to whether FHT is equivalent to FDT? [41, 66] - for groups the

two are equivalent.

The first homology group of D is in fact a natural (ZS, ZS)-bimodule (the homol-

0gy bimodule of P) which we denote by IT = II(P), and the FHT property is just the
?Pride and Otto have recently found an example of a monoid which is FHT but not FDT.




assertion that this bimodule is finitely generated. There is an important short exact

sequence
0 —I1—2-ZS.x.28 —M(P) —=0 (1)

of (ZS, ZS)-bimodules involving II. Here ZS.r.ZS denotes the free (ZS, ZS)-bimodule
with basis r, and M(P) is the relation bimodule of P introduced by Ivanov [32]. The
sequence (1) was introduced by Pride [54], apart from the injectivity of  which was |
proved by Guba and Sapir [29]. An alternative proof has been given by Otto and
Kobayashi [40], where it is also shown that the sequence remains exact upon killing
either the right or left S-action. To be more specific, applying the tensor —®z57Z to
(1) will preserve the injectivity of 7, that is, the left Z.S-module homomorphism

(n®1) : M'—ZS.r (2)

is injective, where II* = T[I®zgZ is the left homology module of P and ZS.r denotes the
free left ZS-module with basis r which is naturally isomorphic to ZS.r.ZS®;5Z [40].

We therefore have a short exact sequence

0 —I1' 57.5.r —>M! —>0 (3)
of left ZS-modules, where M'(P) = M! = M®zsZ is the left relation module [32).
An analogous exact sequence of right ZS-modules is obtained by applying Z®zs—.
For finitely presented groups the properties FDT, FHT and left-FP; are equiv-
alent, and in §1.3.4 we give a new proof of the equivalence of FHT and left-F P;.

Main results

We begin Chapter 3 by constructing a new 3-complex DP by attaching 3-cells to
certain obvious spherical subcomplexes in DP. It turns out that the second ho-
mology group of this 3-complex is also a (ZS,ZS)-bimodule, which we denote ’by
Il = II,(P, p), and this module will play the role of I one dimension higher.

We obtain a short exact sequence analogous to (1):



Theorem 3.3.1 If the homology classes of the paths in p give rise to a set of bimodule

generators of Il then there is a short exact sequence
0 —>TII, 2>ZS.p.ZS 11 —>0 (4)
of (ZS, ZS)-bimodules.

Furthermore, we shall show in §3.4 that the analogue of (2) is injective, giving the

following short exact sequence analogous to (1)

Theorem 3.4.1 If the homology classes of the paths in p give rise to a set of bimodule

generators of I then there is a short exact sequence

0 —>I1, —>ZS.p —>TI! —>0 (5)

of left Z.S-modules, where Il = II,®zsZ.

In Chapter 4 we introduce new finiteness conditions analogous to F DT and FHT.
Roughly speaking, S is F'DT; (respectively F HT5) if it is F DT (respectively, FHT)
and if for some finite rewriting system P and finite homotopy (respectively, homology)
trivializer p the second homotopy (respectively, homology) is finitely based. There
are certain subtleties involved in these definitions which we shall discuss in §5.1, where

we also describe alternatives.
In §4.2.1 and §4.2.2 respectively, we prove some invariance properties:

Theorem 4.2.1 The properties FDT; and FHT; are monoid invariants (that is,

they are independent of the choice of finite rewriting system and finite trivializer).
Theorem 4.2.2 Any retraction of an FDT5 or FHT, monoid has the same property.

It is clear that an F DT, monoid is also of type F HTj, and it turns out that for FDT
monoids the two properties FDT, and FHT; are in fact equivalent (see Remark
4.1.3)‘. Consequently, if the properties FHT and FDT turn out to be equivalent,
then the properties FDT, and FHT, will be also.

Note that for finitely presented groups the properties F DT, and FHT, are equiv-
alent. In fact (see §4.3), ‘ '



Theorem 4.3.1 For finitely presented groups the properties F DTy, FHT, and F P,

are all equivalent.

- This result is obtained by repeating the proof of the analogous result of the equivalence
of the properties FHT and left-F' P; given in §1.3.4: here we use the fact that for an
FDT group G, I, is finitely generated as a (ZG, ZG)-bimodule if and only if IT} is
finitely generated as a left ZG-module.

In §4.4 we give proofs of the following result.

Theorem 4.4.1 A monoid S which admits a finite complete rewriting system is of
type FDT, (and of type FHT;).

Thus our 3-complex DP and the correspondingly defined finiteness conditions
would seem to be correct, in that the results mirror exactly those one dimension lower,
which concern the properties FDT and FHT. However, there are certain subtleties
involved in these definitions of F.DT, and F HT, which we discuss in §5.1, where we
also describe alternatives. We also describe how the properties F DT, and F HT; relate
to finiteness conditions introduced elsewhere, namely n-dimensional homological finite
derivation type (2] and the property bi-F'P, [41]. In particular, Kobayashi and Otto
have characterized FHT monoids as finitely presented monoids of type bi-F'P; [41],
and there is an analogous characterization of F'HT, monoids as finitely presented

monoids of type bi-F P;.

Finally, the possibility of defining F DT, by studying the graph of derivations of
I" leads us to a discussion in §5.2 of a complete homotopy reduction system which we
associate to complete rewriting systems. The critical pairs of this higher dimensional
rewriting system (a variant of the Guba-Sapir reduction system [29, 39]) are shown

to correspond to the critical triples of the original rewriting system.



Chapter 1

Preliminaries

1.1 Presentations and the word problem

A word w on an alphabet x is a finite sequence of elements of x. The length |w| of
w is just the length of the sequence, and we shall use 1 to denote the word of length
zero (the empty word). The concatenation of two words w; and w; is written wyws,
and the free monoid F = F(x) on x consists of all words on x together with this

multiplication.

1.1.1 Group presentations

In combinatorial group theory, to an alphabet x of generators we associat_e a set
x~t = {z7': zex}
of formal inverses, and consider words on the alphabet xUx~!. For any such word
w = z]'zel.. .a;f;‘,
where z;€x and ¢; = +1 for each j = 1,2,...,n, we use w™! to denote the word
—En- —€1 .

—€ 1
T, "X, ] .2y

Also, we shall say that w is freely reduced if it contains no subword of the form z¢z~°

(xex, e = £1), and cyclically reduced if moreover z5' and z;°~ are distinct.

7



A group presentation is a pair G = (x;r) consisting of a set of generators x and
a set r of words in x, the relators. Two words wy and w, are said to be equivalent if
one can be converted to the other by a finite sequence of operations of the following

type, together with their inverses:
1. replace a word uv with uz®z~*v where z€x and € = +1;
2. replace a word uv with urv where rer.

The equivalence classes form a group (see [47, Theorem 1.1]), the group defined by G,
where the multiplication is that induced by concatenation of words. We say that G
is a presentation for any group which is in the same isomorphism class as the group
it defines.

A group presentation is called finite if both x and r are finite sets, and its word

problem is described as follows:

for any pair of words wy and wy in the generators x, decide whether they

are in the same equivalence class.
A Tietze transformation of G takes one of the following forms:
type I: Replace G by (x; rU{w}), where w is a word on xUx~! equivalent to 1.

type II: Replace G by (xU{z} ; rU{z"'w}), where z is a new letter not in x, and w

is some word on xUx™1.

The Tietze Theorem [33, p.49] states that two finite group presentations deﬁne— iso-
morphic groups if and only if they are Tietze equivalent, that is one can be obtained
from the other by a finite number of Tietze transformations and their inverses. If
the word problem is solvable for some finite presentation of a group G, then it is also
solvable for any other finite presentation of G {15, Corollary 1.1.10], and so we can

speak of (finitely presented) groups with solvable word problem.

In this thesis, however, we shall mostly use rewriting systems to present groups

and, more generally, monoids.



1.1.2 Rewriting systems

A rewriting system is a pair P = [x;r] where x is a set of letters and r is a set of rules
of the form r = (ryy,7_1)€ FXF, where F' = F(x) denotes the free monoid on x.
When displaying a rewriting system we shall generally write r in the form ry; =r_;.
We say that P is finite if both x and r are finite. The corresponding single-step

reduction relation
- = {(wrpw', wr_1w') : r€r and w,w'e F'}

on elements of F' is given by rewriting words according to the set of rules. The
reflexive and transitive closure of this relation is denoted by —}, and the reflexive,
transitive and symmetric closure <} is the Thue congruence generated by r. Two
rewriting systems on the same alphabet are said to be equivalent if the two sets of

rules generate the same Thue congruence.
We denote the congruence class of weF by w, so that the monoid S = S(P)
defined by P consists of these congruence classes with the multiplication
wv=uw  (u,vEF).
We say that a monoid T is presented by P if T is isomorphic to S, and is finitely
presented if it can be presented by some finite rewriting system.

The Tietze Theorem is easily extended to rewriting systems. A Tietze transfor-

mation of P takes one of the following forms:
type I: Replace P by [x ; rtU{u = v}], where u, ve€F satisfy ue>}v.

type II: Replace P by [xU{z} ; rU{z = w}] where z is a new symbol not in x, and
weF (x).

Again, two finite rewriting systems present the same monoid if and only if they are
Tietze equivalent, that is one can be obtained from the other by a finite number of

Tietze transformations and their inverses (see, for example, [60, Proposition 4.2]).
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Reduction orderings

We call an irreflexive and transitive relation > on a set A a partial order. A total
order of A is a partial order such that for distinct elements a;, a3€ A one of a;>as or

az>a; holds. We say that a partial order is noetherian if there is no infinite sequence
ap,ag,0as, ...

of elements of A satisfying a;>a;;; foreach i =1,2,3,...

Let > be some partial ordering of the free monoid F' which respects the multiplica-
tion of F', so that for all w, u, v, 2€ F with u>v we have wuz>wvz. If > is noetherian
then we say that it is a reduction order on F'. We shall say that a set of rules r is

compatible with a reduction ordering > if for each rer the relation r,1>r_; holds.

We shall need the following reduction orders on free monoids:

Definition 1.1.1 The length-reducing order is the reduction order on F' given by

writing u>v if and only if |u| > |v| for any u,veF.

Definition 1.1.2 Let b be a total order on the alphabet x. The corresponding length-
lezicographical order is the reduction ordering of F' defined as follows. For u,veF
write u >yeq v if and only if |u| > |v|, or |u| = |v], u = av’ and v = bv’, where a,bex

and v/, v'€F, and one of the following holds:
1. a>b
2. a=0band u' >, V'

Note that >, is a total order.

Definition 1.1.3 (Dershowitz [21]) Let b be a noetherian order on a set x. The
corresponding recursive path ordering from the left is the reduction order on F' defined
as follows. For u, veF write u>v if and only if u#1 and v = 1, or v = au’ and v = b/,

where a, b€x and v/, v'€F, and one of the following holds:
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1. av b and au'>2'
2. a=0>band u'>v
3. u'=t'

Noetherian and complete rewriting systems

A rewriting system P = [x;r] is said to be noetherian if there are no infinite chains
w—r w3+ -+, and such a rewriting system is said to be complete if each congruence
class contains a unique irreducible word, sometimes called a normal form. We can
then view the monoid defined by the rewriting system as the set of normal forms,
where the multiplication is given by concatenation followed by a reduction to the

irreducible.
Example 1.1.4 (Newman [49]) The rewriting system
[z, 7! (z€x); zz7 =1, z7'z =1 (zex)] ' (1.1)

is a complete rewriting system presenting the free group F(x) with basis x. The

normal forms are just the set of words which are freely reduced. 4

It is clear that any monoid with a finite complete rewriting system has solvable
word problem, as any two words are in the same congruence class if and only if they

have the same normal form!. )
Definition 1.1.5 If P is noetherian, then the partial order >, on F given by writing

Wry12 »p WTr-12

for each rer and w, 2€F is a reduction order, the reduction ordering induced by r.

1Tt was remarked in the Introduction that Knot Theory provided important motivation for the
study of the word problem. It is interesting to note, therefore, that the Freyd-Yetter proof of the
existence of the knot invariant known as the HOMFLY polynomial [23] uses a complete set of rewrite
rules to obtain the polynomial “normal form™.
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Integral monoid rings, and the ideal J
For any monoid T, the integral monoid ring ZT consists of all formal sums

Zatt (04€Z non-zero for only finitely many t€T'),
teT

with the natural multiplication

O at)O_pit) = Y oufutt’

teT teT tyeT

induced by that of T

Let F be the free monoid on the alphabet of some rewriting system defining the

monoid S. The natural epimorphism
F—S WD
extends linearly to a ring epimorphism

ZF—ZS

of the associated integral monoid rings. We will use J to denote the kernel of this

epimorphism. The following lemma is well-known.

Lemma 1.1.6

1. As an abelian group, J is generated by all elements of the form
u(ryi—ro)v (u,vEF,rer). (1.2)
2. As a (ZF,ZF)-bimodule J is generated by the elements (ryy —r_;), wherer is
in the set of rules r.

Proof ([40]): Part 2 follows immediately from part 1.
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It is clear that each element of the form (1.2) is in the ideal J. Suppose on the other

hand that £ is an element of J. We can write £ uniquely as

n
€ = Zaiwi ’
=1

where w;€F and ¢; is a non-zero integer for each ¢ = 1, 2,.. .n, and if i#j then w;#w;.
We shall proceed by induction on the value

n

T) =) loil -

i=1

Firstly, T'(¢) = 0 if and only if £ = 0. Suppose that T'(§) > 0. Since

n
E oW = 0
i=1

we can choose a pair of integers 0 < j, k<n such that o > 0, o < 0 and W; = Wy,

and so there is a sequence of the form
wy; = u1(71)e; V1, U1(T1)—e,01 = Ua(T2)ey V2, - - oy U (Tm)emUm = Wk

describing a derivation from w; to wg, where u;,v;€F, r;€r and ¢; = £1 for 1 =
1,2,...,m. Then '

Wi — W = Z&'Ui((n)ﬂ - (Ti)—1)’vi

is in the subgroup generated by elements of the form (1.2). So is & — (w; — wy) by
induction, since T'(§ — (w; — wx)) = T'(§) — 2, and therefore £ is also. This completes

the proof. 4

In the special case where S is the trivial monoid we denote by I the kernel of the

augmentation mapping

ZF—1Z  w—1 (weF).
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1.2 Related complexes

1.2.1 The graph of derivations

The graph of derivations I' = I'(P) associated to P is a geometric interpretation of
the rewriting system, and is constructed as follows. The vertex set is the free monoid

F, and the edge set consists of all quadruples of the form
e=(w,rew) wweF, rerande==+l1

with initial, terminal and inverse functions
e = wrew', Te=wr_.w and e7! = (w,r,—¢,w').

The edge e is called positive if ¢ = 1, and we shall denote by et the set of all
positive edges. A path p of length n in I' is a sequence p = e;e,...€, of edges with
eiy1 =T1e; (i=1,...,n—1), and it is positive if it is composed of positive edges.

We say that p is closed if te; = Te,.

Sometimes it will be convenient to depict the positive edge e as
wryw —wrow',

where the subword being rewritten is underlined. As an illustration, in the graph I'
of the rewriting system (1.1) in Example 1.1.4 the edge (z, (zz~! = 1), +1, z) is more
clearly described by writing

1

T z—z?.

There is a natural two-sided action of F' on I'. The action on the vertices is given 7
by left and right multiplication in F, and for an edge e = (w,r,e,w') and z, 2'€F we
define

z.e? = (zw,r,e,w'?),

and this action extends to paths.
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Note that there is a positive edge from u to v (u,veF) if and only if u—,v, and
a path in I' from u to v describes a derivation in F' rewriting u to v using the rules
in r and their inverses. Thus u and v lie in the same connected component of I' if
and only if u&>*v, and so there is a one-to-one correspondence between the connected
components of I' and the elements of S. Note also that the abelian group generators

(1.2) of J are precisely the elements te — Te (ece).

We will denote the set of positive edges with initial vertex weF by star™(w),
and we order these edges as follows: If e = (u,r,+1,v) and f = (v/,7,+1,v') where

u,u,v,v'€ F and r,r'€r with e = ¢f = w, then write e <,, [ if:
1. u is a proper prefix of u'; or
2. w = and r,, is a proper prefix of r/;; or

3. u=u, ry; =1 and r_; <yey 77, in some chosen length-lexicographical order
<jlez On F'.

In particular, each non-irreducible vertex has a least outgoing edge which, following
Guba and Sapir [29, Definition 9.1], we call the left principal edge. We say that two
positive edges e;, eo with the same initial vertex are disjoint if they can be written in

the form

e = fl.Lfg, €2 = Lfl-fZ

for some positive edges f1, f2. Also, we say that an edge e is left-reduced (respectively,
right-reduced) if it cannot be written in the form u.f (respectively, f.u) for some non-

empty word u€F and edge f.

Example 1.2.1 Consider the vertex w = 2%z~ 'z3z! in the graph I of the rewriting

system (1.1) in Example 1.1.4. The set star*(w) consists of the edges

1,3 1 2

sz i ot Pz izr?r st

, and 22z 2%z o 2?r 2
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which for convenience we label e, f and g respectively. These edges are ordered as
e <w f <w g, 0 that e is the left principal edge. The edge g is disjoint from both e

and f, and is, moreover, right-reduced. g
The following well-known result is related to Konig’s Lemma:

Lemma 1.2.2 If P is noetherian, then for any vertex w in [ there is a bound on the

length of any positive path originating at w.

Proof: Otherwise, we may choose w,€F with w—,w; and with no bound on the
lengths of paths originating at w;. In the same way we may choose some wy€F with
w;—rws and no bound on the lengths of paths originating at ws, and so on, producing

an infinite reduction sequence w—,w;—,wy—. .., a contradiction. g

Definition 1.2.3 By Lemma 1.2.2, we can define the following height function ¢ =
JIp (called the disorder function in [28]) , which we use in §4.4 and §5.2.

¥ : F—N

w— max. length of all paths originating at w.

1.2.2 The 2-complex D and its homology

The 2-complex D = D(P) associated to P is the combinatorial 2-complex with 1-
skeleton T, to which, for each pair of positive edges e and f, a 2-cell [e, f] is attached

along the closed path -
Ole, f] = (e.uf)(re-f)(e".7f)(ce.f 7).

Remark: In the usual definition of the Squier complex, for each pair of positive edges

e and f we also attach 2-cells [e, 7], [e™, f] and [e~!, f~!] along closed paths
ole, f1] = (erf)(ref~) (e uf)(ee.f)

et f] = (etuf)(ie.f)(erf)(re.f1)
e, f1] = (eLrf)(ie.fY)(ef)(re.f).
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But the additional cells here are attached along paths which are cyclic permutations of
(Ole, f])*1, and since we are interested in the homology and homotopy of this complex
it is unnecessary to include them: In the presence of [e, f] only, the attaching paths

of the others are already null-homotopic. 1

Squier [60] in fact introduced a homotopy relation on I" which coincides with homo-
topy of this 2-complex: D is properly “the 2-complex of monoid pictures” introduced
independently by both Pride [54] and Kilibarda [34]. The term “Squier complex” was
introduced by Guba and Sapir [29, Introduction].

The two sided action of F' on I' extends naturally to the 2-cells by
w.le, flw' = [w.e, fw] (w,w'e€F, e, f positive edges).
Homology
We have the chain complex
CD): 0—C-2-C; 250y —>0 (1.3)

where the chain groups Co, C; and C, are, respectively, the free abelian groups with
bases F', the set of all positive edges, and the set of all 2-cells, and the boundary

maps are
0ie =1e—1e (e a positive edge)
and

Oole, fl = e.(tf—7f)—(te—Te) f (e, f positive edges).

The chain groups are (ZF,ZF')-bimodules where the F-action is inherited from
the two-sided action of F' on D and, moreover, the boundary maps respect this action.
It follows that the first homology group H;(D) is also a (ZF,ZF)-bimodule. It can
be shown [54, Lemma 4.1] that

J.H,(D) = Hy(D).J =0 - | (1.4)
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and so H;(D) has an induced (ZS,ZS)-bimodule structure. This is the homology
bimodule of P, denoted by II = II(P). In the short exact sequence (1) of (ZS, ZS)-
bimodules IT is exhibited as the kernel of a presentation of the relation bimodule
M(P) = J/J? of P.

If we use (D, s) to denote the connected component of D corresponding to the
element s of S, and write II, = H;(D, s), then we have the (abelian group) decom-

position

11 = (PII,. (1.5)

s€S

For a,b€S we then have a.Il;.b C I1,, with equality if @ and b are units.

In particular if S is a group then we have
a.Il,.b =11, for all a,s,be S. ‘ (1.6)
We shall require this in our proof of Theorem 1.3.4.

Bimodules

For a set X and monoid T, we shall use ZT.X.ZT to denote the free (ZT,ZT)-

bimodule with basis X. The underlying abelian group is free with basis
{t.z.t' : t,{'eT and zeX},

on which the two-sided T-action is given by writing
s.(tx.t').s =st.x.t's

for any s,s'eT.

’

The following lemma (and proof) is from a paper of Kobayashi and Otto [40

Lemma 6.1].
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Lemma 1.2.4 Let S be the monoid defined by some rewriting system, let F' be the
free monoid on its alphabet, and let ZF.X.ZF and ZS.X.ZS be the free (ZF,ZF) and
(ZS,Z.S) bimodules on some set X. If we consider ZS.X.ZS as a (ZF, ZF)-bimodule,

with F acting via the epimorphism F—S, then we have a natural epimorphism
v:ZFX.ZF—ZSXZS  w.r.2—W.az.Z (zeX,w,2€F) (1.7)

of (ZLF,ZF)-bimodules. The kernel Ker(v) of (1.7) can be written as
JX.ZF+ZFX.J.

Proof: 1t is clear that the inclusion JX.ZF + ZF.X.J C Ker(v) holds, so we must

show that the converse inclusion is also true.

If we choose for each congruence class W a representative element 1, then we can

define homomorphisms
0:ZSXZS—ZFXZF WzzZ—ib.z.2 (reX,w,z2€EF)
and
¢:ZFX.ZF—ZFX.ZF w.z.z2—w.z.z—0.2.3 (zeX, w, z€F).

of abelian groups. Note that (v + ¢) is the identity on ZF.X.ZF, mapping a basis

element w.z.z (w, z€F,z€X) to
0(w.x.2)tw.z.2-0.2.2 = 0.2.2+w.s.2—10.2.2 = w.T.2.
Now because, for any z€X and w, 2€F,

d(wz.2) = wzrz—-Dr2

= (w—®).z.z+0.2.(2 — £),
we see that Im(¢) C JX.ZF + ZF.X.J . But for any £ € Ker(v),
§=(6v+9)§ =9,

and therefore £ € JXZF + ZFX.J. g
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1.3 Finiteness conditions

1.3.1 Finite derivation type (FDT) and finite homological
type (FHT)

Let p be a set of closed paths in D. We shall denote by DP the 2-complex obtained
by attaching 2-cells [w, p, w'] along all closed paths of the form

Olw,p, w'] = w.p.w' (pep, w,w'eF).

A rewriting system P is said to be of finite derivation type (FDT) (respectively,
finite homological type (FHT)) if it is finite, and if there is some finite set p (a
homotopy (respectively, homology) trivializer) of closed paths in D such that the 2-
complex DP has trivial fundamental groups (respectively, has trivial first homology).
An equivalent formulation of the FHT property is that there is a finite set of closed
paths in D whose homology classes generate II as a (ZS, ZS)-bimodule. Note that
a homotopy trivializer is also a homology trivializer, and so if P is FFDT then it is
also FHT; as remarked in the introduction, whether the converse holds is an open
question? [42, 66]. |

The properties FDT and FHT are in fact monoid invariants in the sense that
if P and P’ are two finite rewriting systems presenting isomorphic monoids, if one
of them has the property FDT (respectively, FHT) then so does the other [60, 66];
thus we can talk about FDT and FHT monoids. These properties are also closed -

under retraction [66].

Squier [60] showed that monoids with finite complete rewriting systems are of
type F DT (see §1.4.2), and hence also FHT [54, 60]. More recently, Kobayashi [38]
has shown that monoids with a finite presentation containing one relation only are of
type F'DT); it is an open question as to whether such monoids have finite complete

rewriting systems.

2Pride and Otto have recently found an example of a monoid which is FHT but not FDT.
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1.3.2 Homological finiteness conditions

A monoid S is left-F P, (respectively, right-FP,) if Z, regarded as a left (respectively,
right) ZS-module with trivial S-action

sn=n (resp. n.s=n) (s€S,neZ),

has a partial resolution

B, On—1 2}
Ap —> Ay = —>Ag L —>0

by free left (respectively, right) ZS-modules of finite rank.

The following is a standard result of homological algebra.

Lemma 1.3.1 (generalized Schanuel’s Lemma [11, p.193]) Let

0—K P, Poy—- Pp—>M—>0
and

be ezact sequences of modules (or bimodules) where P; and P! are projective for each

t=0,1,...,n. If n is even then there is an isomorphism

P ®POoP,oP® - 0F,0K' = FePoP,oPo---@F,oK ,
otherwise there is an isomorphism

PyoP,®oP,0oP;®-- - ®P.0K = P@®PoP,oP;® --®P,0K'.

Consequently, if P; and P, are finitely generated for i<n, then K is finitely generated
if and only if K' is finitely generated. ‘ _ J
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If we splice together the sequence (3) with sequences found in [54] we obtain the

following complex

0 —II! —ZS.r —ZS.x —1LS —Z —>0, (1.8)

giving a partial resolution of Z up to dimension 2, and so if S is finitely presented, then
by the generalized Schanuel Lemma (Lemma 1.3.1 above) S is of type left-F P; if and
only if IT* is finitely generated as a left ZS-module. There is also the corresponding

sequence of right ZS-modules.

For groups the properties left- and right-F P, are equivalent for all n. However,
this is not the case for monoids in general. Cohen has given an example of a monoid
which is right-F P, for all n>0 but is not left-F P; [13]; also a monoid of type left-F P,
for all n>0 introduced by Squier [59] was later shown not to be right-FP; by Pride
and Wang [56].

Another standard result of homological algebra is the Snake Lemma, which we

shall use in Chapter 3.

Lemma 1.3.2 (Snake Lemma) Suppose we have the commutative diagram

A—>B—2>Cc—0

kb

0 A —> B C'

where both rows are exact.

Then the map D : kery—cokera defined by c—s1"'Bp~tc+ ima is a homomor-

phism. Moreover, there is an exact sequence

kero ker( kery —2> cokera — coker 8 —s coker-y.

1.3.3 FDT and FHT monoids are left and right FP;

Let p be a set of closed paths in the 2-complex D, and consider the sequence

% % 28 2>7—>0 (1.9)

ZSp-2>75r &

ZS.x
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of left ZS-modules, where the homomorphisms are defined as follows. Firstly, d, is the
augmentation homomorphism, mapping each s€S to 1, and 0, is the homomorphism

defined by the map
z—(z—1) (zex).

If for w = z125. . .z, €F we use (w) to denote the element
T1-- Tp-1-Zn+T1. . Tn-2-Tn-1+...+T1

of ZS.x, then 8, is the homomorphism defined by the map
r—{(r_1) — (T41) (rer).

Lastly, 05 is the homomorphism defined by the map
n
p'—>26iﬂz’-ﬂ'
i=1
for p = (u1,71,€1,01)-+ -(Uny Tns En, Un) EP, Where, for i = 1,2,...,n, u;, v,€F, g; = £1
and r;€r.

It is straightforward to see that (1.9) is a complex, and in fact

Theorem 1.3.3 ([17, 54]) If p is a homology trivializer then the complex (1.9) is

ezxact.

A partial resolution of right ZS-modules can be constructed in the same way, and

therefore F'DT and FHT monoids are of type left and right FPs.

1.3.4 The properties FDT and FHT for groups

It has been shown that for finitely presented groups, the properties FDT, FHT and
FP; are equivalent. This follows from the equivalence of FDT and FP3, shown by
Cremanns and Otto [18] and Pride [55], together with the following result, for which

we give a new proof:
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Theorem 1.3.4 ([55]) For finitely presented groups, the properties FHT and FP;

are equivalent.

Proof: We use the following general result. Let G be a group and let A be a
(ZG, ZG)-bimodule with an abelian group decomposition

A=PA4,

9cG
such that hi.Aj.hy = Apgn, for all hy, g,h€ G. Then A; has a left ZG-module

structure with G-action

gxa=g.a.g”!  (g€G,ac4,;).

Lemma 1.3.5 1. A®zg Z and A, are isomorphic as left ZG-modules.

2. If A, is finitely generated as a left ZG-module then A is finitely generated as a

bimodule.
Proof:

1. Regarding Z as a left ZG-module with trivial G-action, the map
P AXZ—r Ay (Zag, n)v—mZag.g“l (ag€Aq, nEL)
g€eqG geG
is bilinear, since in particular for any he@G,

w((Zag).h,n) = nz%.h(ghv)‘1 = nZ:ag.g‘l = 1/)(2%, h.n).

geG geq geqG 9€qG
Therefore 9 induces a homomorphism

1 :”A®ZGZ——>A1 Z%@l P—)Zag.g‘l

geqG geG

which is the inverse of the homomorphism
A1 —AQRzcZ a—ra®1

induced by the inclusion of A; into A. It is easily seen that these isomorphisms

respect the left G-actions.
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2. Suppose that the left module A; has finite generating set B = {by,...,bn}.

Then for any a € A, we can express a.g”'€ A; as a sum

k k
a.g‘l = Zfi(hi*bﬁ) = z&ihi.b]‘i.hgl,
i=1

i=1

where, for 1<i<k, ¢; = £1,h; € G and 1<j;<n, and so in the bimodule A we

can write
k
a= Zsihibj‘. (h{lg).
=1

Therefore B generates A as a bimodule. J

Theorem 1.3.4 now follows by applying the Lemma to the decomposition (1.5) of II,
taking account of (1.6): the bimodule II is finitely generated if and only if I’ is finitely
generated as a left-module, and this is the case if and only if S is F'P; (applying the

generalized Schanuel’s Lemma (Lemma 1.3.1) to the exact sequence (1.8)). 4

1.4 Complete rewriting systems

General references for complete rewriting systems are [8, 7, 14]. In §1.1.2, we gave
the following definition: a rewriting system P is complete if it is noetherian and
it has precisely one irreducible element in each congruence class. Therefore we can
denote by Irr(w) the irreducible word obtained by rewriting any word w, and if 2 is
another word in the same congruence class, then Irr(z) = Irr(w). We now give two

equivalent definitions.

For any weF we shall say that P is confluent (respectively, locally confluent)
at w if whenever u, ve€F satisfy w—ju and w—jv (respectively, w—,u and w—,v)
then there is some 2€ F such that u—;z and v—}2z. We shall say that P is confluent
(respectively, locally confluent) if it is confluent at w (respectively locally confluent
at w) for all weF.’ '
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In geometric terms, P is confluent (respectively, locally confluent) if whenever
there is a pair of positive paths (respectively, positive edges) in I' from weF to
vertices u and v, there are also positive paths in I' from u and v to some common

terminal vertex.

Lemma 1.4.1 (Newman [49]) Any congruence class in a confluent rewriting sys-

tem contains at most one irreducible word.

Proof: For any pair of words v and «’ lying in the same congruence class, there is
a path in I from one to the other. We shall use an inductive argument on the path
length to show that there is a pair of positive paths from 4 and v’ to some common

vertex.

If the path has length one, then the pair of positive paths consists of either the path
itself or its inverse, together with the corresponding empty path at u or u'. If the
path has length n > 1, it can be considered as the product of two non-empty paths
of length < n: a path from u to some vertex v, say, together with a path from v
to u'. By induction, there are positive paths p and ¢ from u and v respectively to
some common vertex w, say, and also positive paths ¢’ and p’ from v and u' to some
common vertex w’. Because P is confluent, there are positive paths r and ' from
w and w' to some common vertex z, say, and then pr and p'r' are a pair of positive

paths from u and ' to z.

The lemma is now straightforward to prove: if 4 and v’ are irreducible words in the

same congruence class, then there is a pair of positive paths from these words to some
common vertex, and because these paths must be empty we see that u and «’ are the

common vertex, that is, u = u'. 1
We therefore have the following characterization, due to Newman [49]:

a rewriting system is complete if and only if it is noetherian and confluent.

(1.10)
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Lemma 1.4.2 (Principal of noetherian induction) Let P be a predicate on a set
A with a noetherian order ». Suppose that whenever a€A has the property that P(a')
holds for every a'€ A with a>a', then P(a) holds. Then P(a) holds for every acA.

Proof. For suppose that P(a) does not hold for some a€A. Then by our supposition
there will be some a; €A such that a>a; and P(a,) is false. Continuing this argument

will give an infinite sequence
a>a1>=0y>ag>--*

a contradiction to our assumption that > is a noetherian order. 4

This method of induction will be used in proving Proposition 3.3.4 and Theorem 4.4.1;
we illustrate its use here by giving the well-known proof of the so-called Diamond

Lemma:

Lemma 1.4.3 (Diamond Lemma [49]) A noetherian and locally confluent rewrit-

ing system P is confluent.

Proof: We use noetherian induction on F', where the order is the reduction order >,

induced by the rules.

Let w be an element of F', and inductively assume the rewriting system is confluent at
any vertex w'€ F' with w>,w’. Suppose that w—}u and w—}v hold for some u,veF,
so there are positive paths p and ¢ in I" from w to u and v respectively. We want to
deduce that P is also confluent at w, that is, there is some z€F' such that u—}z and

V2.
Firstly, if w is irreducible, then © = v = w and we can just take z to be w.

Suppose on the other hand that w is not irreducible. If either of the paths is empty,
say w = u, then we can again just take 2 = v, so we can assume that both paths
are non-empty and can therefore be written as products p = ep’ and ¢ = fq', where
e and f are positive edges and p/,q’ are positive paths. Since P is locally confluent,

there is some w'€F such that re—}w' and 7f—%w'.
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Figure 1.1: The Diamond Lemma

Because Te—*u and Te—jw’ hold, by inductive assumption there is some u'€F such
that u—?u' and w'—}u'; similarly, there is some v'€F such that v—}v' and w'—=v'.
Also, because w'—>iu’ and w'—}v' hold, there is some z€F such that u'—}z and

v'—*z. We therefore have (see Figure 1.1)
u—*u'—tz  and vz

thus P is confluent at w, and the lemma follows by noetherian induction
(Lemma 1.4.2). ‘ | 4

Thus we have the alternative characterization:

a rewriting system is complete if and only if it is noetherian

and locally confluent. (1.11)

The class of monoids which have finite complete rewriting systems has no known
alternative characterization, although as we have seen such monoids must be finitely

presented and have solvable word problem. We also have the following result:

Theorem 1.4.4 (Anick-Groves-Squier [3, 27, 59]) A monoid with a finite com-
plete rewriting system is of type left and rigﬁt FP,.
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In fact Squier [59] showed that such monoids were of type left and right FP3, and
Groves [27] gave the more general result; later it was realized that this result was
contained in work already published by Anick [3]. Other proofs have been given by
Kobayashi [36], and Brown [12].

Corollary 1.4.5 (Squier [59]) There are finitely presented monoids with solvable

word problem which do not have finite complete rewriting systems.

Squier proved this by appealing to known examples of finitely-presented groups with
solvable word problems which are not of type F'P;, for example groups studied by
Stallings [61] and Abels [1]. Abels’ example is a group of matrices, which we shall
consider in §A.1, and Stallings’ group is shown to have solvable word problem in [4].
Squier also gave his own examples of finite rewriting systems with solvable word

problem for monoids which are not left FP;.
Critical pairs

The characterization (1.11) prompts the study of local confluence.

Definition 1.4.6 A pair of positive edges with the same initial vertex form a critical

pair if either:

1. One of the pair is both left- and right-reduced (a critical pair of inclusion type );

or

2. One of the pair is left-reduced but not right-reduced, the other is right-reduced
but not left-reduced, and they are not disjoint (a critical pair of overlapping

type).

Remark 1.4.7 We are trying here to emphasize the geometric interpretation of
rewriting systems - the usual definition of a critical pair would only be the termi-
nal vertices of one of our critical pairs (of edges), that is, the two possible results of

rewriting the initial word.
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Example 1.4.8 Consider the rewriting system (1.1)
xux;zz'=1,z'r=1 (zex)]

of Example 1.1.4 defining the free group with basis x. Each critical pair is of over-

lapping type and is in the star of a vertex zz 7'z or z7lzz~! (zex):
T x_l
/ /
zz lz zlz !
I or I
zz”lz zlgz?
X T~

Note that any pair of edges in star*(w) (weF) are either disjoint or are a translate
of a critical pair by the two-sided action of F'. A critical pair as defined above is a
pair of edges corresponding to the two different ways of rewriting a word composed

of the (non-disjoint) left-hand-sides of two rules.

Definition 1.4.9 A resolution of a critical pair (e, f) is a pair of positive paths from

Te and Tf to some common vertex; we say that a critical pair is resolvable if it has

a resolution.

Example 1.4.8 is particularly simple as its critical pairs are resolved immediately

(that is, with empty paths).
Example 1.4.10 The rewriting system given by the rules
ac = ca, caaa = aa, bacb =1

on the alphabet a, b, c has one critical pair of inclusion type,

7

bach

f
bacb

1

beab
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and also three of overlapping type, for example

aac
caai
caggq
caaca -

(As mentioned previously (Remark 1.4.7), elsewhere these critical pairs would usually

be written as the pairs (1, bcab) and (a?c, ca’ca) respectively.)

The following two paths give a resolution of the critical pair of overlapping type, to

the vertex ca?:

agc — aca

caa

7

caaca - cacaaq cecaaq

The critical pair of inclusion type cannot be resolved, since the terminal vertices are

distinct irreducibles. a

Proposition 1.4.11 (Knuth and Bendix [35]) A noetherian rewriting system is

complete if and only if all the critical pairs are resolvable.

Proof: A noetherian rewriting system is locally confluent if and only if each critical

pair is resolvable. J

Hence the result that the rewriting system (1.1) given in Example 1.1.4 is complete,

since the critical pairs are resolved.

1.4.1 The Knuth-Bendix completion procedure

Let P = [x;r] be a finite rewriting system where r is compatible with some total

reduction order > on F - note that P is always equivalent to such a rewriting system,
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for example if we choose some length-lexicographical ordering of F', then we can
replace each rule rer for which r4y%;,,7-1 with the rule (r_;,741). If P is not
complete then applying the Knuth-Bendix procedure [35] will produce an equivalent

complete rewriting system P, but which in general will have an infinite set of rules.

The procedure is as follows. For each non-resolvable critical pair (e, f) we can
choose a pair of positive paths p, and ps from 7e and 7f respectively to different
irreducibles. Let r' denote the set of rules obtained from r by adding for each such
critical pair (e, f) a rule (7pe, Tpy) if Tpe>7py, otherwise adding the rule (7py, Tpe).
Since P is not complete, r'#r, but the rewriting system [x;r'] is equivalent to P.

(More generally, we can add any finite set of rules

{ul =71, U2 = V2,.. '}
which allows us to resolve the critical pairs, provided that u;>wv;, and of course that
u;e>ry; for each 1 =1,2,....)

Put r = r¢, and then for all n>1 we define r,, to be rj,_,, and

ro =

n>0

The rewriting system P, = [X;I'] is equivalent to P, and is compatible with the
original noetherian order on F. But it is also complete, for any critical pair arises

from a pair of rules found in r, for some n>0, and is therefore resolvable using a rule _

o
inr, =rp41Cre.

Example 1.4.12 Consider the rewriting system consisting of the set of rules

r={zz'=1 z'z=1, zr=1}
on the alphabet z,z~!, which is compatible with the length-lexicographic ordering
based on the ordering z~'>z. There are four critical pairs, all of overlapping type:

two arising from the rules zz=! = 1 and £~z = 1 which are immediately resolved as
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in Example 1.4.8, and the critical pairs

T and I

Applying the Knuth-Bendix procedure, we obtain the set r; of rules by adding the
rule 27! = z to r. There are two new critical pairs (of inclusion type) which arise

from the introduction of this rule, namely

7 7

zz~! z1

[ and I
gzl 71

™~ ™~

1 1 ’

and they are both easily resolved by the path zz — 1.

Thus in this case the Knuth-Bendix procedure terminates with a complete rewriting
system after adding a single rule. This rewriting system is a presentation of the group

of order two, which in fact has the simpler complete rewriting system
[9; 99 =1].
-

Example 1.4.13 It has been shown that the rewriting system consisting of the set

of rules
r=r9 ={ za=atz, st=tr, wzy=I1, zb=bz, ab=1 }

on the alphabet a,b,t,z,y has no equivalent finite complete rewriting system [60,
Corollary 6.8]. Therefore in this case the Knuth-Bendix procedure will not terminate
in a finite number of steps. The rewriting system is compatible with the recursive path

ordering > from the left (Definition 1.1.3) induced by the ordering z>a> bty :
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1. za>atz holds because zba and za>tx (za>tz holds because z>t and za>r,

and za>z because a>1);
2. wt>tz holds because z>t and zt>z  (2t>z holds because t>1);

3. zb>bzx holds because z>b and zb>z  (zb>z holds because b>1).
Forn=1,2,3,..., let
r, = rp_1U{at™b = 1}.

By [60, Lemma 6.2(b)], the relation at"b«}1 holds for each n, and so the rules
I,I;,Ts,... all generate the same Thue congruence. We use P, to denote the rewriting

system with the rules r,, on the alphabet a, b, ¢, x.

For n=0,1,2,3,..., the rules r, give rise to the single critical pair

atxt™d
zat"b

Il
zat™b

™~

x

which (for n>1) does not arise from the rules r,_;. In each case the critical pair can

be resolved by the path
atzt t" b — at?ztt" 2 — - = at™zb > at™ bz >z .

in F(Pn+1).

Thus this sequence of rewriting systems can be produced by applying the Knuth-

Bendix procedure to P,. It is only the union

Py = [a;b7t7x; Urn]

n>0

which is complete. ' 4
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1.4.2 The property FDT

Throughout this section we shall assume that for a complete rewriting system P, p is
a set of closed paths in I" obtained by choosing resolutions of each critical pair. The

following observation is fundamental to our study of complete rewriting systems.

Remark 1.4.14 The boundary of each 2-cell o in DP has a unique maximal vertex
w, and minimal vertex z, with respect to the reduction ordering >, on F', and the
boundary of o consists of two positive paths from w, to 2,. These paths will come
from resolutions of either critical or disjoint pairs, according as to whether o arises

from the trivializer p or not.

Moreover each 2-cell is uniquely determined by the two edges at its maximal vertex,
and we can therefore denote each 2-cell o by [w,; (e, f)] where e <, f are the
corresponding edges in start(w,). We shall use this notation when studying complete

rewriting systems in §3.3, §4.4 and §5.2.

Example 1.4.15 Consider the vertex w = zzz 'z in the graph I' of the complete
rewriting system in Example 1.4.12 consisting of the rules r; on the alphabet z,z7.

The set star*(w) consists of the three edges

zzz lz—z 7, o, zxz z—zT

which for convenience we label e, f and g respectively. The 2-cell [w; (e, g)] is in the

2-complex D, and is attached along the closed path

z 1z

®

VAR

w

N
1
/!
T
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If p is chosen to contain the closed paths

z !

-

zzz~! zz™!

I and I
zzz ! Tz lz —zx

\1;

in DP. a

Theorem 1.4.16 (Squier [60]) The set p is a homotopy trivializer, and therefore
a finite complete rewriting system has the property FDT.

We need the following two lemmas.

Lemma 1.4.17 Any pair of positive paths p,q from a single vertex to its irreducible

will give rise to a closed path pq~! which is null-homotopic.

Proof: This is proved by noetherian induction on F', where the order is the reduction

order >, induced by the rules.

Suppose that p = e;.. .6y, and ¢ = fi...f, are two positive paths from weF to Irr(w),
and assume inductively that for any w'e€F satisfying w>,w' and positive paths r,s
from w' to Irr(w') (= Irr(w)) we have that rs~! is null-homotopic. We want to

deduce that the closed path pg~! is also homotopically trivial.

If w is irreducible, then both paths are empty, and the result is obvious. Otherwise,
both paths are non-empty. If e; = f; then by inductive assumption the closed path

€. ..emfrl...fo ! is null-homotopic and the result follows. If not, then there is a 2-cell
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5N

).

Irr

Figure 1.2: Construction used in Lemma 1.4.17

[w; (e1, f1)] in DP with boundary e;p'q'! f;"!, say, where p’ and ¢’ are positive paths.
Let us choose some positive path r from 7p' = 7¢' to Irr(w). If we use =~ to denote

the relation “homotopic with endpoints fixed” then we can write (see Figure 1.2)

p = figp e em
~ fi q’p"lp’r (by inductive assumption)
~ fig'r
~ q (by inductive assumption).

Thus any pair of positive paths from w to Irr(w) give rise to a null-homologous path,

and the lemma now follows by noetherian induction (Lemma 1.4.2). ] 4

Lemma 1.4.18 For any path p from u to w (u, weF),

P~ qugyt

holds for any pair ¢, and g, of positive paths from u and w respectively to Irr(u) =
Irr(w).

Proof: We use induction on the length n of p. If p is empty, then by Lemma 1.4.17
P~ quq,. If n > 0 then we can write p = e°p/, where ecet and € = £1, and if we
write v = Te° and choose some positive path g, from v to the irreducible (z, say),

then we have
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Figure 1.3: Proof of Lemma 1.4.18

1. € ~ q,q; !, because

(a) if € = +1 then by Lemma 1.4.17 we have g, ~ eqy;

(b) if e = —1 then again by Lemma 1.4.17 we have eq, ~ g,; and
2. (by the inductive hypothesis) p' ~ g,q".
Therefore (see Figure 1.3)
P=eP ~quly Wl ¥ 0y’
and the result follows by induction. ) 4

Proof of Theorem 1.4.16 If p; and p, are paths with the same initial and terminal

vertices (u and v, say) then we can choose positive paths g, and g, to the irreducible.

By Lemma 1.4.18 we have
-1 ~
P1 = quq,  =Dp2.

It follows immediately that any closed path in DP is homotopically trivial, and so p

is indeed a homotopy trivializer. 4
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Example 1.4.19 Let P be the complete rewriting system in Example 1.4.13 with

the infinite set of rules. Each critical pair is of the form

atxt™b
zat™b

I
zat™b

\ .
and can be resolved by the path
atztt" b — at’ztt" b — -+ — at™igh = at™ bz - 3.

By Theorem 1.4.16, the set of closed paths of the form

atgtt" b —>- .- > at?ztt"2b

- ~
za "b atn+1 :L‘_b
I e
rat™b at™ b

~,—

for n>0 is a homotopy trivializer of D.
1.4.3 Groups with finite complete rewriting systems

There are many groups which are known to have finite complete rewriting systems, for
example free groups of finite rank (Example 1.4.8), finitely generated abelian groups, -
the Heisenberg group [33], and a group studied by Greendlinger [61]. Dekov [20] has
shown that torus-knot groups have such rewriting systems, as do one-relator groups

with a finite presentation of the form
(xU{a,b} ; a~ b abw ) (1.12)

where w is a word on the generators x Ux™!.

Groves and Smith [28] have investigated how the property of being presented by a

finite complete rewriting system behaves under various group-theoretic constructions
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(subgroups, quotient groups, group extensions and HNN-extensions) and used the

results to prove:

Theorem 1.4.20 ([28]) Constructible solvable groups have finite complete rewriting

systems.

The following questions have so far been unanswered:

Open Question 1.4.21 ([28]) If a group G has a finite index subgroup with a finite
complete rewriting system, then G itself has a finite complete rewriting system. Is the

converse true?

Open Question 1.4.22 ([65]) Suppose that H, and Hy are groups and that the free
product Hy x Hy has a finite complete rewriting system. Is it always true that Hy, and

H, themselves have finite complete rewriting systems?

Because of the following result, a positive answer to the second question would also

give a positive answer to the first:

Theorem 1.4.23 (Pride and Wang [56]) Let H be a subgroup of finite indez n in
a group G. If G has a finite complete rewriting system, then so does the free product
H x F,_1 of H with the free group of rankn — 1.

We also mention the following open questions, regarding two much-studied classes

of groups which are of type F' Py, and have solvable word problems:

Open Question 1.4.24 ([38]) Do all finitely generated one-relator groups have a

finite complete rewriting system?

Open Question 1.4.25 ([52]) Do all hyperbolic groups have finite complete rewrit-
ing systems? Hyperbolic groups are particular examples of automatic groups, which
were introduced by Cannon and Thurston [22]. Do all automatic groups have a finite

complete rewriting system?



Chapter 2

A-complete rewriting systems

Abstract

We introduce A-complete rewriting systems which give solutions to A-word problems.
In §2.1.1 we characterize monoids which have a finite A-complete rewriting system
as those monoids with a A-Dehn presentation, and in §2.2 we describe a method of
obtaining A-complete rewriting systems for certain groups which are H N N-extensions
whose base groups have complete rewriting systems, and we use this to obtain some

interesting examples.

2.1 J)-solvable word problems

Definition 2.1.1 The A-word problem of a rewriting system will be to decide for
any word w whether or not w is congruent to the empty word. We shall say that a ~
rewriting system has a A-solvable word problem if there is an algorithm which solves

its A-word problem.

The following proposition shows that this property is a monoid invariant, so we
can extend the above definition to say that a finitely presented monoid has A-solvable

word problem if each of its finite rewriting systems does.

Proposition 2.1.2 If P and Q are finite rewriting systems which define isomorphic
monoids then P has A-solvable word problem if and only if Q does.

41
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Proof: By the Tietze Theorem (Theorem 1.1.1), it is enough to show that the result

is true whenever Q is obtained from P by a single Tietze transform.

1. Suppose that a type 1 Tietze transformation is applied to P = [x;r] to give the
rewriting system Q = [x;r'], where r’ is obtained from r by adjoining a rule
u = v with u+>}v. Because the congruences <3; and <}, are the same, any
algorithm solving the A-word problem for P also solves the A-word problem for

Q, and vice versa.

2. Suppose that a type 2 Tietze transformation is applied to P = [x;r] to give the
rewriting system Q by adding a new letter y and rule y = z for some word z on
the alphabet x. Recall from §1.1.2 that the homomorphism of free monoids on
the alphabets of the respective rewriting systems which identifies the letters in

x and maps y to z induces an isomorphism
S(Q)—S(P).

A word w on the alphabet xU{y} of Q is therefore congruent to the empty word
(with respect to the rules of Q) if and only if w'<}1 holds, where w' denotes
the word obtained from w by rewriting each instance of the letter y according

to the rule y = 2.

It follows easily that Q has A-solvable word problem if and only if P does.. 1

Definition 2.1.3 We shall say that a rewriting system is A-complete if it is noethe-

rian, and the empty word is the unique irreducible in its congruence class.

Proposition 2.1.4 If a monoid has a finite A-complete rewriting system then it has

A-solvable word problem.

Proof: Suppose that P is a finite A-complete rewriting system. Because P is noethe-

rian, any word w can be rewritten in a finite number of steps to an irreducible word



43

w*, say, and then since the empty word is the unique irreducible in its congruence

class, w1 if and only if w* = 1. 4

Obviously, if a rewriting system has solvable word problem then it has A-solvable
word problem. Example 2.1.5 shows that the converse does not hold in general; it
is true, however, if we restrict our attention to the class of groups (Proposition 2.1.6
below).

Example 2.1.5 The following rewriting system was shown by Tsejtin [63] to have
unsolvable word problem (the congruence class containing the word aaa is a non-

recursive subset of the free monoid on the given alphabet).
alphabet: a,b,c,d,e
rules: ac=ca, ad=da, de=edb, caaa=aa, -cdca=cdcae,
bc=cd, dc=cd, ce=eca, daaa=aa.
Because there are no rules whose left or right hand side is the empty word, the empty

word is in the congruence class consisting only of itself; an algorithm to solve the

A-word problem is then just to check whether or not a word is the empty word.

Proposition 2.1.6 A group G with A-solvable word problem has solvable word prob-

lem.

Proof: Suppose that G has a rewriting system P with some algorithm solving the _
A-word problem. For each letter z in the alphabet x of P we can choose a word w,€F
such that Tw, = 1 : since G is a group we know that such words exist, and we can

check using the algorithm whether or not any word weF satisfies Tw = 1.

We wish to describe an algorithm which solves the word problem for G. We claim that
any pair of words u and v = ;2. ..z, (where z;€x for i = 1,2,.. .n) are congruent
with respect to the rules r if and only if uw,,,.. .w,, <51. We can check this fact, since
we have assumed an algorithm recognizing words that are congruent to the empty

word.
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For suppose that u and v are congruent. Then

UWyg, . . Wy 5 VWg,...Ws
= I1...TpWg,.. . We,

OF Ty Tp-1Wg,_y. - Wey

«x 1.

On the other hand, suppose that uw;,...w,, is congruent to the empty word. Since

G is a group, zw, is congruent to the empty word if and only if w,2 is also, and so

v O uWg,.. WeT1.. Ty

OF UWg,,. . Wz T2. . .Tn

©F UWg, Tn

U
" This proves our claim. A

Thus, as regards the word problem, finite complete rewriting systems for groups
seem to give unnecessary information. Indeed, as mentioned in §1.4, there are known
examples of finitely presented groups with solvable word problem but without any ~

finite complete rewriting system. The following questions present themselves:

Open Questibn 2.1.7 ([8, 16]) Does every finitely presented group with solvable

word problem have a finite A\-complete rewriting system?

Open Question 2.1.8 ([8, 16]) Is there a group with a finite A-complete rewriting

system but with no finite complete rewriting system?

We could also rephrase Open Questions 1.4.24 and 1.4.25 as follows.
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Open Question 2.1.9 Do all finitely generated one-relator groups have a finite A-

complete rewriting system?

Open Question 2.1.10 Do all hyperbolic groups have finite A-complete rewriting

systems? Do all automatic groups have finite A-complete rewriting systems?

2.1.1 )-Dehn presentations

In the next section we discuss some examples of groups with finite A-complete rewrit-

ing systems, but first we give an alternative description of such groups.

Definition 2.1.11 ([44]) A group presentation (x ; r) is called a Dehn presentation
if it is finite, and if the following holds:

whenever a word w on the alphabet xUx™! is non-empty and satisfies
W = 1, then either w is not freely reduced, or w contains a subword u
for which there is a word v of shorter length such that uwv™! is a cyclic

conjugate of an element of rUr—1,

For any group presentation G = (x; r) we can construct a length-reducing (and
therefore noetherian) rewriting system

G = [xUx!; ] | (2.1)

whose rules consist of all free reductions zz~! = 1,z7!'z = 1 (z€x) together with
all rules of the form u = v where uv™! is a cyclic permutation of some relator or its -
inverse, and v has strictly shorter length than u. If G is a Dehn presentation, the
empty word is the only irreducible element in its congruence class, and therefore Gir is
A-complete. This rewriting system performs the Dehn algorithm [44] and, of course,
any group with a Dehn presentation has a solvable word problem. The fact that
groups with Dehn presentations have A-complete rewriting systems has been noted
before (see [8, 45] and the references therein). In [45] some results on the classes of
groups which have particular types of length-reducing A-complete rewriting systems

are given.
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Dehn [19] originally showed that the fundamental groups of closed orientable sur-
faces of genus n>2 have such presentations. More recently, Gromov [26] introduced
the notion of word hyperbolic groups, and stated that this class of groups coincides
with the class of groups which admit a Dehn presentation. Proofs of this result have

been given elsewhere, for example in [58].

A characterization theorem for groups with a finite A-complete rewriting
system.

We shall generalize the idea of a Dehn presentation as follows.

Definition 2.1.12 We shall call a group presentation
G=(x;r)

a A-Dehn presentation if it is finite, and if for some reduction ordering > on the free
monoid F(xUx™1) the following holds:

1. zz~, 27 z>1 for all x€X; and

2. if w = 1, where weF (xUx™') is non-empty, then either w is not freely reduced,
or w contains a subword u for which there is a word v such that u=v and uv~!

is a cyclic conjugate of an element of rUr".

Thus a Dehn presentation is a A-Dehn presentation where we can choose the
length reducing order (Definition 1.1.1). On the other hand the next example shows '
that there are groups which have a A-Dehn presentation for some non-length reducing

reduction order but which do not have any Dehn presentation.
Example 2.1.13 Consider the group with presentation
G = (a,b,c; abc = cba).

Greendlinger [25] gave this as an example of a presentation that was not a Dehn

presentation. In fact it is known that this group has no Dehn presentation; Gromov



47

observed that any abelian subgroup of a word hyperbolic group containing an element
of infinite order is finite-by-cyclic ([26] - for a proof of this see [58, Corollary 3.6]),
whereas the subgroup generated by ab and cb is free abelian of rank two. However, it

does have a finite complete rewriting system, discovered by Otto [51]:

alphabet: a,a71,b,b7%,¢c,c?

rules: as~'=1, ala=1, a~lch = bca™t, abc = cba,
bbl=1, b lb=1, ac™! = b~lc lab,
ccl=1, cle=1, a b l=clla e

i

Dekov [20] gave another proof that this rewriting system is noetherian by showing
that it is compatible with the recursive path ordering from the left > induced by the

partial ordering on the alphabet given by writing

avb~pe, avc™t, a~ocIph, o byt

of the alphabet. For example ac~!>~b~1c~ab holds because a>b~! and ac'>c~lab;

the latter holds because abc™* and ac™!>ab; this time the latter holds because ¢~ 1>b.

It is easily checked that each rule is either a free reduction or can be obtained from

a cyclic permutation of abc = cba, and it follows that G is a A-Dehn presentation. _

Proposition 2.1.14 The class of groups with finite A-complete rewriting systems

coincides with the class of groups which have a A-Dehn presentation.

Proof: In the same way that a finite (length-reducing) A-complete rewriting system ’
(2.1) can be constructed from a Dehn presentation, we can construct a finite -

complete rewriting system from any A-Dehn presentation.

Conversely, suppose that G is a group with finite A-complete rewriting system P =
[x; r]. Since G is a group, for each z€x we can choose words w, on x such that
TW; = WyZ = 1. Introducing new monoid generators x~! = {z~! : z€x} by type 2

Tietze transformations gives the equivalent finite rewriting system

P =xuxt; 1,
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where r' =rU {z7! = w, : z€x}.

Then P’ is also noetherian, since the new rules only operate on the new generators,

replacing them with words on x: any hypothetical infinite sequence

W We—rp Wa—Pps *°

! would involve only a finite number of applications of the

involving words on xUx~
new rules, and so we could easily derive a corresponding infinite reduction sequence
for P, a contradiction.

1

It is also A-complete, because any word w on xUx~' can be rewritten in a finite

number of steps to a word w' on x, and then w+%1 holds if and only if w'+}1. We
can then rewrite w to the empty word as follows:
w—pw' =11
(We are again using the fact that the homomorphism of free monoids which identifies
x and maps each z71€x! to the word w, on x induces an isomorphism
S(P")—S(P)
-see §1.1.2.)

Now write
g= (X; f)?

where # = {r.;r_} : rer} U {w,z : zex}, and let >, be the reduction ordering on
F(xUx™!) induced by the set of rules r’ of P’ (Definition 1.1.5). If some non-empty
word w on xUx™! is equivalent to the empty word, then, as P’ is A-complete, w can

be rewritten to the empty word, and so:

1. w>1:in particular, zz7!>x1 and 2~z 1;

2. w must contain a subword r;, the left-hand side of some rule in r, or a letter

IB_l

(z€x), where there is a relator r1172; or z~'w;! in G with r1>ur_; or
1w, respectively.

Thus G is A-Dehn, and we are done. ‘ | J
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2.2 Producing )\-complete rewriting systems from
complete rewriting systems

In this section we introduce a method of constructing A-complete rewriting systems
for HNN groups whose base groups have certain complete rewriting systems with nice
properties. It relies on Britton’s Lemma (Lemma 2.2.2), which describes the structure

of words that are equivalent to 1 in HNN groups.

We use this method to construct some interesting examples, and remark on the
possibility of using similar constructions to search for an answer to Open Ques-
tion 2.1.8.

2.2.1 HNN-extensions

Let G be a group with group presentation G = (x;r), and suppose that A and B
are isomorphic subgroups. Let a;, as, ... be words on x representing a generating set
of A, and let by, by, ... be words representing the images of this generating set under

some isomorphism ¢ : A—B. If t¢x is some new letter, then the group presented by
(xU{t} ; rU{t art = by, t7last = by,...}) (2.2)

is an HNN-exztension of G with stable letter t, associating subgroups A and B (by
the isomorphism ). We call G the base group, and we denote the HNN-extension
by Gxp.axp, or just G*axp if the isomorphism is understood. We shall generally

abbreviate the presentation (2.2) to

(G|t; t T ait =by, t7lagt = by,...).

Lemma 2.2.1 ([57, p.412]) The group homomorphism induced by the inclusion of

the presentation (x;r) of the base group into (2.2) is injective. 4

This group construction has become very important since it was first introduced

by Higman, Neumann and Neumann [30] (where the above Lemma was first proved,
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and then used to give some embedding theorems). In particular, the combinatorial
arguments used by both Boone and Novikov to give groups with unsolvable v&ord prob-
lems were later seen to be contained in the more general theory of HNN-extensions,
and Britton [10] was able to use the following lemma to considerably simplify Boone’s

construction:

Lemma 2.2.2 (Britton’s Lemma [10]) Consider the presentation (2.2). If w is a
word involving the stable letter t which is equivalent to 1, then w contains a subword of
the form t~'ut or of the form tut™1, where u and v are words on xUx™! representing

elements of the subgroups A and B respectively. J

Let Py be a finite complete rewriting system for a group H, with words u, v on
the alphabet x such that

{..ou}Luu?...} and {..,v71,1,0,0%...}.
are sets of irreducible words. Then these sets are sets of normal forms of the infinite
cyclic subgroups generated by @ and 7 are, respectively.

By associating the cyclic subgroups (@), () under the isomorphism induced by the

map u—v, we can form the HNN-group
G = Hx@me)-

Theorem 2.2.3 The rewriting system Q obtained from Py by adding new letters t -
and t~! together with the additional rules

ttl=1, tlu=ovt"l, t7lul=9p"t1
tlt=1, tv=ut, tv~! =yt

is a A-complete rewriting system for G.

Proof: We first show that the new rewriting system is noetherian. Let F(F) be the
free monoid on the alphabet

F={@: wisaword on the alphabef x}.
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(Note that for two words w; and w; on x, (W;)(W.) is not equal to W ws,.)

We can use the reduction order on F(x) induced by the rules of Py to give a noethe-

rian partial order b on the alphabet FU{t,t™} as follows:
1. t*>w for € = +1 and each letter w € ﬁ;

2. 17)'1 > 1’172 if ’U)l—);’wg but ’LU17£’U)2.

Any word w on the alphabet xU{t,t7'} of Q is of the form
w = witwot®. . Wt Wpyq

where ¢; = £1 and w; is a word on x for i = 1,2,...,n. Let w be the corresponding

word
W = Wt wat®2. . .{Ente"ﬁn+1

on the alphabet FU{t,t~1}.

For any two words w and z on the alphabet of Q we then write w2z if and only
if w>,Z, where >, is the recursive path ordering from the left (Definition 1.1-3) on
F(FU{t,t"'}) induced by the partial order &. It remains to show that the rules of Q
are compatible with this reduction ordering on F(xU{¢,t7'}). This is easily checked.
Firstly, |

r41>7—1 holds for each rule r in Py, since 7y, >7_; immediately gives

F.’.]_ >>;’Y_1.
The additional rules are seen to be compatible as follows.

1. For ¢ = £1, t*47°>1 holds because t°t~¢>,1 by definition.

2. The relation t~u>=vt~! holds because t~!u>,vt"1, since t~! > v and t~1u>,t~1;

the relation t~'%>,t~! holds because u>,1.
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3. The relation t~u~!>vt holds because t'u>,vtL, since t~1 > v and t1u>,t71;

this latter holds because u>,1;

4. The relation tv>ut follows from the fact that o>, ut, because ¢ > % and tv>,t;
this latter holds because v>,1.

5. The relation tv='>u"'¢ holds because tFTh,z’FIt, because ¢ > u-! and tg>-,>t;

——r

this latter holds because v=1>,1.

Therefore @ is indeed noetherian, and it remains to show that the empty word is the

unique irreducible in its congruence class.

Suppose that w is an irreducible word which is congruent to the empty word. If w
contains the letter ¢ or ¢t~ then by Britton’s Lemma, it must contain a subword of the
form t~lwt or tw't~! where w,w' are words on xUx™! representing elements of (&),
(v), respectively, and so it will not be irreducible - a contradiction. If on the other
hand w does not contain any instances of the letter ¢ or the letter ~!, then by Lemma,
2.2.1 we see that it is the empty word, which is therefore the unique irreducible in its

congruence class. J

2.2.2 Some examples

Baumslag-Solitar groups

The infinite cyclic group has a finite complete rewriting system consisting of the rules

zz7!=1 and zlz=1

1

on the alphabet z,z~". For each pair of integers p and ¢, the normal forms of the

subgroups generated by ZP and T? are, respectively,
{z*? : keZ} and {z*7:keZ},
and so by Theorem 2.2.3, the HNN-group with the presentation

Gpq = (z,t; taPt™! = 29) . | (2.3)
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obtained by associating these subgroups has the following A-complete rewriting sys-

tem:

alphabet: z,z7%,t,t7!

rules: zzl=1, ¢t 2P =2%"},
tlr =1, tlz?P=x"%"",
tl=1, tz? = 2Pt
tTit=1, tz?=z7P¢

This rewriting system is not complete, since for example a critical pair of the form

29t~ 11
el

1 Pyt

t-lgp=lpg=1

t1gp-1

will not generally be resolved.

In fact G(p,q) is the standard presentation of the Baumslag-Solitar group G y,q), for

which finite complete rewriting systems have been exhibited elsewhere [22, §7.4].

A small cancellation group

The free group F3 with basis {a,b,c} has a complete rewriting system of the form

(1.1), whose rules consist of all free reductions.

The normal forms of the cyclic subgroups generated by ¢ and cb='a~'ba are, respec- -

tively, the sets
{c*:keZ} and {(cb~'a"'ba)* : keZ},
and so by Theorem 2.2.3, the HNN-group with the presentation
{a,b,c,d; a b~ labc 1dcd). (2.4)

obtained from F3 by associating these cyclic subgroups has the following A-complete

rewriting system:
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alphabet: a,a',b,b7%,¢c,c!,d,d!

rules: aa l=1, ala=1, dlc=cblathad™?,
bbl=1 blb=1 dlc!=a'b"labc1d™,
ccl=1 cle=1, deb~ta lba = cd,

dd-'=1, d'd=1, da b labc!=c"1d.

But (2.4) is the standard presentation of the fundamental group of a closed ori-
entable surface of genus 2, which was shown by Dehn himself to be (what we now
call) a Dehn presentation (see [62, §6.1.4]). Therefore this group admits a different

A-complete rewriting system of the form (2.1) which is length reducing.

A group whose isoperimetric function grows faster than any simple expo-
nential.

For each pair (p,q) of integers, the Baumslag-Solitar group G,, with presentation
(2.3) has a finite complete rewriting system [22, §7.4] on the alphabet z,271,¢,t7},

moreover where the normal forms of the cyclic subgroups generated by Z and ¢ are,

respectively,
{z* : kezZ} and {t* : kez}.

Again we can use Theorem 2.2.3 to construct A-compete rewriting systems for the

HNN-groups formed by associating these subgroups. In pafticular, the group
G12%(z)=)

has a finite A-complete rewriting system. This group has presentation
(z,t,s; tat™! =22, t = szs™!)

from which we can remove the generator ¢ by a type 2 Tietze transformation to get

the presentation

(z,5; 2") = z?),
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where we use the notation zt to denote the word tzt~!. This presentation was shown
by Gersten [24] to have an isoperimetric function' growing faster than the function

E, for all >0, where E, is the function N— N defined recursively by writing
E.(n) = 2810 Ey(n) = n.

2.2.3 Remarks concerning Open Question 2.1.8

The Anick-Groves-Squier Theorem (Theorem 1.4.4) tells us that if a group has a finite
complete rewriting system then it is of type F P,,. Therefore, in order to answer Open
Question 2.1.8, one might attempt to find a finite A-complete rewriting system for a

non—FPoo group.

Proposition 2.13 (b) of Bieri’s book [5] states that if a group G is of type FP, and
has isomorphic subgroups of type F'P,_,, then an HNN extension G* s~p obtained by
associating these subgroups is itself of type F'P,. As a consequence, the construction
used in Theorem 2.2.3 will only produce A-complete rewriting systems for groups
which are of type F Py the base group is always of type F P, since it is required
to have a finite complete rewriting system, as are the cyclic subgroups which are

associated (see, for example, [5, Proposition 2.7}).

However, we do not need the associated subgroups to be cyclic, or indeed to have a
finite complete rewriting system for the base group; the requirements of Theprem 2.2.3
just allow a general result to be given. We might hope to use the same method,
that is, using Britton’s Lemma to examine the irreducible words congruent to the
empty word, in specific cases of non-FP,, groups. The author has tried (but not
succeeded) to produce a A-complete rewriting system for Abels’ group in this way
(see the appendix, §A.1).

soperimetric functions give some idea of the complexity of word problems (see [26]): for A-
complete rewriting systems this function describes, in terms of the length of any word w satisfying
w = 1, the minimum number of applications of rules that one needs to allow in order to be certain
that w can be rewritten to the empty word. '



Chapter 3

A 3-dimensional complex and its
homology

Abétract

We begin by attaching 3-cells to the 2-complex DP to form a 3-complex, which we
denote DP. We show that the second homology group of this new 3-complex has, like
the first homology of D, a natural (ZS,ZS)-bimodule structure. In §3.3 we exhibit
this bimodule as the kernel of a presentation of IT (the short exact sequence (4)), and

in §3.4 we give the short exact sequence (5).

3.1 A 3-dimensional complex

Let D be the Squier complex and let p be a set of closed paths. Recall ffom §1.3.1
that DP is the 2-complex obtained by attaching 2-cells [w, p, w'] (p€p, w, w'€F) along
all closed paths of the form

Ow,p,w'] = w.pw'.

We now extend DP to form the 3-complex DP: the 2-skeleton is just DP, and the
construction is completed by adding 3-cells as follows. For each positive edge f and
each 2-cell o, where 9o = €}'...e5* (eicet, g; = £1,i = 1,...,n), 3-cells [f,o] and

[0, f] are attached to the 2-skeleton by mapping their boundaries to, respectively:

56
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Nz

A

. ~1f0o

Figure 3.1: Boundary of the 3-cell [f, o]

Lf.e Lf.e N
Jore; [f,ei Je; foie; —[f.eil frei
bl Tf.e; 7f.€;
g, =1 Ei = -1

Figure 3.2: A 2-cell of D

1. the 2-cells ¢f.0c and —7 f.0, together with 2-cells €;[f, ;] for 1<i<n according
to the diagram Figure 3.1, where ¢;[f, ;] is the 2-cell shown in Figure 3.2.

2. 2-cells 0.4f and —o.7 [ together with 2-cells —¢;[e;, f] for 1<i<n.

Remark 3.1.1 Note the similarities to the construction of the 2-complex D, where )
for each pair of positive edges e and f, 2-cells [e, f] are attached to I' by mapping
their boundaries to the closed paths composed of the edges e..f and —e.7f together

with the edges re.f and —te.f.

Remark 3.1.2 For e, f,gcet the added 3-cells [e, [f, g]] and [[e, f], g] are cubes, as

shown in Figure 3.3.
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Figure 3.3: A cube

The 2-sided action of F' again extends naturally to the 3-cells. For [f, o] and [o, f]
(feet, o a 2-cell), and u,ve F,

u.[f,0)v=[u.f,ov] and wu.o, flv=[u.0, f0].

3.2 The 2-dimensional homology of the 3-complex
Dp
We now expand the chain complex C(D) in §1.2.2 to get the chain complex

&

c@?): 0—CP-2-Cct 20,20, —>0

associated to DP. Here C¥ is the free abelian group with basis the set of all 3-cells and
C? is the free abelian group with basis the set of all 2-cells [u, p, v] (p€p, u, vEF). The

map 0, restricted to Cy is Oz, and a 2-cell [u, p, v] (where u, v€F and p = fi f2.. . fom .
(6; = 1, f;€ee*t, i=1,...,m) is a path in p) is mapped to

Zézuf,'u eC,.
i=1
We define 05 as follows. If feet and o is any 2-cell with

n
S0 = Ze,-e,- (e; = %1, e;cet, i=1,...,n)
i=1
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then

&5lf,0] = (Lf—Tf)-0+g€i[f, el (31)
and _

o, 1] = 0. ~7) —}:[ . 52

Again these chain groups are (free) (ZF, ZF')-bimodules, where the F-action is
inherited from the two-sided action of F on DP, and the boundary maps are (ZF, ZF)-
bimodule homomorphisms. For future reference we note in particular that C} is free

with basis
p={p=[1,p,1] : pEp}. (3.3)

We now examine the second homology group

PP — Z2(ﬁ)
H(Dr) = B,(DP)

where Z,(DP) = Kerd, and B,(DP) = Imd,. Again Hy(DP) is a (ZF, ZF)-bimodule,
the F-action induced by the two-sided action of F' on the bases of the chain groups.

Recall that J denotes the kernel of the ring homomorphism ZF—ZS.
Lemma 3.2.1 J.Hy(DP) =0 and H,(DP).J = 0.

Proof: We will only show that J.H,(DP) = 0; the other equality is obtained similarly.
Suppose that £ is a 2-cycle, say

{= Zeioi € Z,(DP) (i ==1 and o; a 2-cell, i = 1,...,n),
i=1

where fori=1,...,n

ks
820',' = Z(Sije,-j (5ij = ﬂ:l, ’eij€e+, ] = 1, .. .,ki).
Jj=1
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l(,

Figure 3.4: Homologous 2-chains

Then
. n ki
0= 626 = ZS,;Z&,;J. e,-j. (34)
i=1  j=1

By (3.1), if fee* then (¢f — 7f)o; is homologous to the 2-chain

k;
_Zdij [f7 eij]‘

=1

(see Figure 3.4). and it follows that

(uf = 7f)-£+ By(DP) = —Ze,z £, ;] + Ba(DP).

But by comparison with (3.4),

zszz [faez, =0,
i=1

and so (¢f — 7f).€ is null-homologous. By Lemma 1.1.6, J is generated as an abelian

group by elements of the form ¢f — 7f (feet), and it follows immediately that
J.H2 (ﬁ) =0. -4

It follows that there is an induced (ZS, ZS)-bimodule structure on the second

homology with the action

w(é+By(DP))o = u.£.v+By(DP) - (£€Z,(DP), u,veF).
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We denote this bimodule by II; = II,(P, p).

Clearly Bi(D)CB,(DP)CZ:1(D) = Z;(DP). Note that the quotient

B, (D)

A(DP) = B (D)

has a (ZF,ZF)-bimodule structure, and in fact as a submodule of H;(D) we can
deduce from (1.4) that

JA(DP) = A(DP).J =0,

so that A(DP) also has an induced (ZS, ZS)-bimodule structure. This module is

generated by the elements

52[1vpa 1] +BI(D) (pep),
and so we have an epimorphism

v:Z8.p.LS—ADP)  p—by[1,p, 1]+ Bi(D).

Clearly A(DP) = II if and only if H;(DP) = 0, that is, if and only ifpisa homology

trivializer.

3.3 The basic short exact sequence

Theorem 3.3.1 If the homology classes of the paths in p give rise to a set of bimodule

generators of II then there is a short ezact sequence
0 —I, 2+75.p.Z8 211 —>0. (3.5)
of (ZS,ZS)-bimodules.

The proof we give here was inspired by the methods used by Kobayashl and Otto [40]

to give the exact sequence (1) in the introduction.
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Let ZS.p.ZS be the free (ZS, ZS)-bimodule with basis p, which we can consider
as a (ZF,ZF)-bimodule via the homomorphism of F' onto S. Then since C} is the
free (ZF, ZF)-bimodule with basis the set p of 2-cells attached along paths in p (3.3),

we can define a (ZF, ZF)-homomorphism
p: CodCY—ZS.p.ZS (3.6)

which maps C; to 0 and a 2-cell u.p.v = [u, p, v] (u, v€F and p€p) is mapped to @.p.v.
Let KP denote the (ZF,ZF)-bimodule Kerop.

Lemma 3.3.2 We can write KP = Cy + JP.ZF + ZF.p.J.

Proof: This follows immediately from Lemma 1.2.4. 4

It is clear from the definition of the boundary map 85 that B,(DP) C KP (see (3.1)
and (3.2)). Also, the restriction of 8, to K® sends K® onto B (D) (if we apply 8, to
(3.1) where o = [1,p,w] (wWEF, pep) the left-hand-side is mapped to 0, giving

(of —7f).Bopw = -52251‘[f, e;] € By(D)

i=1

so that 8y(J.p.ZF) C B,(D); similarly, 8,(ZF.p.J) C B;(D) ) and, moreover, since
3203 = 0, By(DP) is in the kernel of this homomorphism. Therefore we have a

complex

0—B,(DP) 2% KP —2~ B, (D) —>0. @B

We shall show that if p is a homology trivializer then B,(DP) is precisely the
kernel of the epimorphism 8, : KP— B, (D), so that (3.7) is a short exact sequence.
We first prove the following lemma.

Lemma 3.3.3 Let q be another homology trivializer of D. If the sequence
0 — By(DA) 25 k9 2. B, (D) —»0

is ezact, then so is (3.7).
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Proof: Let £ be a 2-cycle in KP. By Lemma 3.3.2 we can write { as a sum

m m+n
§= §I+Z5i(l’ei—7'ei)'[1,pia w;]+ Z &ilwi, pi, 1].(te; —Te;)
=1 i=m+1

where ¢ is a 2-chain in Co(D) and, fori = 1,...,m+n, g; = =1, w;€F, e; is a positive
edge in D and p;€p.

Suppose that, for some i€{1,...,m +n}, dp; = f'... ,‘:", where for j = 1,.. .,k
d; = £1 and f; is a positive edge in D. If i<m then because of the 3-cell es, [1, i, wi]]

we have

k
(ve;—7e;).[1, pi, wi] = —Zéj[ei, filwi  (modulo By(DP)),
j=1

and if m < i then because of the 3-cell [[w;, p;, 1], €;] we have
k
[w;, pi, 1].(ce;—Te;) = Z(Sjwi.[ i e (modulo By(DP)).
Jj=1

Thus £ is homologous to some 2-cycle {, say, in Co(D), and since Co(D)CK? by

hypothesis we can write ¢ as the boundary of some 3-chain w in C3(D9).

But because p is also a homology trivializer, for each geq we can choose a 2-chain
t
Za&- (0 =1 and g a 2-cell, for i = 1,...,¢)
i=1

in Cy(DP) with boundary the 1-cycle arising from the closed path ¢, and if in the
3-chain w we replace each 3-cell of the form [f, [u,q,]] or [[u,q,v], f] (u,veF, f a
positive edge) with the 3-chain

Za’i[f’ [U, Siy ’U]] or Zai [[u’ Gis ’U], f]

respectively, then we obtain a 3-chain in C3(DP) with the same boundary {. Therefore
£€B,(DP), and the sequence (3.7) is exact. ¥
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[[w; (e, f)], 9] [9, [w; (e, f)]

VRV

Figure 3.5: Typical 3-cells in DP

or

Proposition 3.3.4 If p is a homology trivializer, then the sequence (3.7) is ezact.

Special case: We assume that P = [x;r] is a complete rewriting system such that r is
compatible with some length-lexicographical ordering <., of F', and p is a trivializer

obtained by choosing resolutions of the critical pairs of r (see Remark 1.4.14).

Suppose € is a 2-cycle in KP. We will show that ¢ is null-homologous by an
inductive argument, for which we first need to order the 2-cells in DP. In what
follows we shall use the notation for 2-cells introduced in Remark 1.4.14. We give the

2-cells of DP the noetherian total order described by writing [w; (e, f)] <.[w'; (¢!, f')]
if:

(i) w <pez w' ; or
(ii) w=w'and f <y f';or
(iii) w=w', f=fand e <, €.

Remark 3.3.5 Note that each 3-cell in DP is of one of the two types shown in Fig-
ure 3.5, where weF and e, f, gcet with e, f€start(w). The boundary of each 3-cell
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will therefore consist of three 2-cells with maximal vertex w.tg or ¢tg.w respectively,
together with 2-cells with lesser maximal vertices under the length-lexicographic or-

dering of F.

We can express £ uniquely as a sum

m
£=) nio;
i=1

where m>0, oy,..., 0 are distinct 2-cells, and n,, ..., n,, are non-zero integers.

Suppose that & is non-zero, that is m > 0, and that the 2-cell o, is maximal, so
that o; < o1 for ¢ = 2,...,m. Then according to the following procedure we can
always replace n,01 with a 2-chain composed of lesser 2-cells to obtain a homologous
2-cycle &', say. Because & — £'€B,(DP)CKP, we have &' = £ — (€ — ¢')eKP also.
If we inductively assume that any such 2-cycle (whose maximal 2-cell with non-zero
coeflicient is beneath o) in our ordering) is null-homologous, then we immediately
deduce that ¢ itself is null-homologous. The special case of the proposition follows
by noetherian induction (Lemma 1.4.2) on the set of all 2-cycles in KP, ordered by

their maximal 2-cell with non-zero coefficient.

(I) Suppose first that we can write o, = te.0] where e€et and o] = [w; (f, g)] for
some weF and f, g€start(w). Then '

Os(e, 1) = o1+ [te.w; (e.w, te. f)] —[te.w; (e.w, te.g)]+¢

where ( is a 2-chain composed of 2-cells with maximal vertices which are beneath
te.w in the length-lexicographical order on F, and so o, is homologous to the

2-chain
—[ce.w; (e.w, te.f)]+[e.w; (e.w, te.g)] — ¢

composed of lesser 2-cells under the ordering described above. Therefore up

to homology we can remove n;0; from £, replacing it with a 2-chain &', say,

composed of lesser 2-cells.
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(II) If we cannot write oy as in (I), and if oy = [w; (e, f)] for some weF, then
there is no g€star®(w) satisfying g <, e and such that g is disjoint from e.
Suppose instead that there is an edge g€start(w) satisfying f <,, g with f and

g disjoint. In this case oy is homologous to the 2-chain
[w; (6, g)] - [w; (f’ g)] +<

where ( is a 2-chain composed of 2-cells with lesser maximal vertices. Since
we now have [w; (e, g)], [w; (£, 9)] > o1 we do not want to simply replace n;o;
as in (I). However, we know that 52§ = 0, and since o; is maximal it follows
that the elementary 1-chains e and — f arising from ¢; must be cancelled in the
boundary map by edges from 2-cells with the same maximal vertex. In fact,

part of £ must consist of a 2-chain

k
£ = n101+25i[w; (e f3)] (e; = £1,¢;, fi€start(w),i=1,...,k)

1=1

of 2-cells with maximal vertex w, with

. _
ni(e— )+ _eilei—f;) = 0. | - (3.8)

i=1 .
Again since o is maximal, we cannot have f <,, f; for any 1€{1,.. .k}, and so

¢’ is homologous to a 2-chain

. k
ny([w; (e, 9)]—[w; (f, g)])+Zei([w; (es, 9)]—[w; (fi, 9)])+¢'

where (' is a 2-chain consisting of 2-cells whose maximal vertices are beneath
w in the length-lexicographic order. But because of (3.8), we can cancel the
terms in the first part of this 2-chain to be left with ¢’, and thus we may again

(up to homology) replace part of £ including n,0, with a 2-chain composed of

lesser 2-cells.
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(III) Next, suppose o1 = [w; (e, 9)] and there is an edge f€star*(w) disjoint from
both e and g and satisfying e <, f <y, ¢ (so e and g must themselves be

disjoint, and o, is a 2-cell from D), but that there is no such edge satisfying

f <w e or g <, f. In this case we have

[w; (e, f)] < o1 < [w; (£, 9)]-

As in part (II), because all the edges in star*(w) have to cancel under the

boundary map, part of £ is a 2-chain

¢ = n101+25i[w; (€, 9)] (e; = £1, and e;€start(w),i=1,...,k)

consisting of all 2-cells with maximal vertex w and with their boundary including

g, and where e; <, e for all i =1,.. ., k since oy is maximal. We then have

k
n + Zsi =0,
=1

as this sum expresses the coefficient of the edge g in X3 (more precisely, in

52(—5 )). Then ¢’ is homologous to the 2-chain

([ (e, f)]+w3 (£, 9) +Zez [w; (i, F)]+[w; (£, 9)])+C

k
=(n1+zsi)[w;(f,g)]+n1[w f)]+Zez (esr )1+

._.’n,l[’w, (6 f ]+Zgz e'uf)]+<7

where ( is a 2-chain consisting of 2-cells with maximal vertices beneath w in the
length-lexicographical order. Therefore we can again (up to homology) replace

a part of £ including n,0;, with a 9-chain composed of lesser 2-cells only.
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(IV) Next suppose that o1 = [w; (f, 9)] where f, gestar®(w) are again disjoint, but
that now there are no other edges in star*(w) which are disjoint from both f
and g. The coefficient of g in B¢ must be 0, and therefore 2-cells of the form
[w; (e, g)] must also be represented in &, where e <,, f and e and f arise from

some critical pair. Then oy is homologous to a 2-chain

[w; (6, g)] - [w; (67 f)] +<

where ( is a 2-chain consisting of 2-cells with maximal vertices beneath w in the
length-lexicographical order. Therefore we can again (up to homology) replace

nyo; in & with a 2-chain composed of lesser 2-cells only.

(V) The remaining possibility is that the maximal 2-cell oy, can be written in the
form wu.[w; (e, f)].v where w,u,vEF with u and v irreducible, and (e, f) is a

critical pair. Since € = 0 it follows that £ — n,o, must include a 2-chain of the

form
k
Zsjuj.[w; (e, Hl.v; (ej = 1 and uj,v;eF for j =1,...,k)
o= .
where 4; =% and v; = for all j = 1,...,k, and such that
k
> e [w; (e, )1-0; = —ma.[w; (e, f)].0
j=1

But for each j = 1,...,k we must have either u;#u or v;#v, and because P is

complete either u <pes u; and v<y;ev;, or U<y, u; and v <yeg v;, from which

it follows that o7 < u;.[w; (e, f)].v;, a contradiction. a
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Remark 3.3.6 The above proof does not require the set r to be finite, since we may
in any case assume that the set star*(w) of any weF is well-ordered. This is because
w has at most a finite number of subwords, and if there is a pair of positive edges
(u,7,+1,v), (u,7',+1,v) (where u,v€F and r,r'er) in star™(w) which rewrite the

same subword then
(’U,, T, +1, ’U) <w (ua T,’ +1, ’U) if r <llez 7'{_1 y

so that the ordering of such edges in star*(w) is well-founded. It follows that the
2-cells of DP are well-ordered even if the set of rules r and the homology trivializer p

are both infinite.

General case: Let P = [x;r| be a finite rewriting system, with homology trivializer
p. We can assume that r is compatible with some length-lexicographical order on
F and we can complete r using the Knuth-Bendix completion procedure (§1.4.1),
obtaining a complete (but possibly infinite) rewriting system P® = [x;r*®] with
rCr> and where r® is also compatible with the order on F. Then the 2-complex
D(P>) has trivializer p* obtained by choosing resolutions of all the critical pairs of
r®, and by the Special Case and Remark 3.3.6 the sequence

0 Bz (W) inel. K o

By(D(P*®)) —=0 (3.9)
is exact, where K® = Cy(D(P®)) + Jp®.ZF + ZF.p>.J. We will deduce from this

and Lemma 3.3.3 that the corresponding sequence for D(P)P is also exact.

There is a natural inclusion of D(P) into D(P>), with a retraction p of D(P>)
onto D(P) given by some choice of a path in D(P) from r4; to r_; for each rule
r€(r™ —r):

if p(u, 1, +1,v) = €. . .e5r and p(u', ', +1,v") = fi.. .o foru,v,u,v'eF
and r,7'€r™ (e;, f; positive edges in D and ¢;,6; = £1 fori =1,...,m
and j =1,...,n) then the 2-cell [(u,r,+1,v), (v, 7, +1,v")] is mapped by
p to the subcomplex composed of the 2-cells
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[e1,f1] ~[ea,f1] [e3,f1]
4 Y

1

—[e1,f2] [e2,f2] —[ea,f2]

Figure 3.6: The subcomplex in Example 3.3.7

Example 3.3.7 As as illustration, if say m =3 and n = 2, withe; =e3 =6, =1
and €4 = §, = —1, then the subcomplex will be as shown in Figure 3.6, where as in

§3.1 the sign indicates the orientation of the 2-cell. a

Let q denote the set of closed paths {p(p) : pep®}. The retraction p can be
extended to a map of D(P®)P* onto D(P)2. A 2-cell [u,p,v] (u,vEF,pep) will
be mapped to the 2-cell [u, p(p),v], and for a positive edge f in D(P*°) mapped to
pof = eit...etm (e; = £1 and e; a positive edge in D(P) for ¢ = 1,...,m) the 3-
cells [f, [u, p, v]] and {[u, p,v], f] will be mapped to the subcomplexes composed of the
3-cells

{les; [u, p(p), v]] : 1<i<m} and {[[u, p(p), v], €] : L<i<m}

respectively. Similarly, those 3-cells whose boundaries consist only of 2-cells in D(P>)
are mapped to subcomplexes composed of 3-cells whose boundaries consist only of
2-cells in D(P). We do not need to describe the map p completely as we are mainly

concerned with the induced chain map

p: C(DP=)P) —CDP))

which is as follows (where for brevity the chain groups and boundary maps of
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C(D(P>)?P™) are distinguished by the superscript —*):

00

5.‘?0 Coo a1
1

P~z yeR e o 03° o
C(D(P=)P™) : 0 — (C°)*" —> C°®(C5°)P Co—>0
lﬁ lﬁs lﬁz ; lﬁl "
C(D(P), q) :0 —> C:? % CgEBC;l & Cl o Co 0

For a positive edge e in D(P*) with pe = ef'...ef» (¢; = £1 and e; a positive
edge in D(P) fori=1,...,m)

m
pre = E Ei€;,
=1

and if f is another positive edge in D(P>) with pf = f*...fim (§; = +1 and f; a
positive edge in D(P) for j = 1,...n) then
pole, f1 =D ) eidjles, fi]-
i=1 j=1
To complete the description of jy, a free abelian group generator [u, p,v] of (C$°)P™
(u,vEF, pep™) is mapped to [u, p(p), v]. Next, in D(P>®)P™ let e be a positive edge
and o a 2-cell with

m n
pre= E €i€; and poo = E d;0;
j=1

i=1

where (fori=1,...,mand j =1,...,n) ,6; = %1, and ¢; is a positive edge and o}

a 2-cell in D(P)9. Then ps3 is defined by putting

psle, 0] = Zzei‘sj[ez‘;%] and pslo, €] = Zzﬁifsj[aj,ei]-

i=1 j=1 i=1 j=1
Since the retraction p respects the two-sided action of F' on the chain groups, there
is an induced (ZS,ZS)-bimodule epimorphism II(’P°°)—+H(’P). Therefore q is a

homology trivializer of D(P), and we will use the exactness of (3.9) to show that

3

0— By(D{P)E) 2% K1 B, (D(P)) —> 0 | (3.10)
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is also exact.

Suppose that £ is a 2-cycle in K9, written as

m m+n
E=8+) ei(iei—Te;) [, ¢, wil+ Z eilwi, g, 1. (ces—7e;)
i=1 i=m+1

where £'€Cy(D(P)) and (for i = 1,...,m+n) g; = %1, ¢; is a positive edge in D(P),
w;€F and ¢;€q.

Now for each g€q choose some Gep*™ such that p§j = q. For each edge f of g,
p(f)f1 is a closed path in D(P*°) and so gives rise to the 1-cycle p;(f) — f. Hence,
since p® is a homology trivializer, there is a 2-chain cy(q) in Co(D(P*)P*) with

boundary
0ca(q) =) _(bf ).
fFEG
Note that prca(g) is a 2-cycle, because

Bapaca(q) = 1105°c2(q) = Z(ﬁlf—ﬁlf) =0.

feq

Consider the 2-chain

¢ =84 cilvei—e).([L, @, 1]+ca(g:))wi

i=1

m+n

+ ) ewi (1, G, 1]+ ca(q:))-(ves —Tes)

t=m+1

in K*. Since for any ¢g€q

0 (1,6, 1]+e(q) = D_f+D _(of=f) = (hif) = &[L,q,1]

feqd  feg feq

we have

0P =0, =0
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so that (e K* is a 2-cycle.

Moreover,
m m+n
Pl = £+ _eiliei —Ter)prca(@)wi+ Y Eiwipaca(as).(rei — 7€)
=1 i=m+1

= ¢ modulo (By(D(P)9)),
because, as in the proof of Lemma 3.2.1, if z is any 2-cycle and e a positive edge, then
both (te — 7€).2 and 2.(te — Te) are null-homologous.
As the sequence (3.9) is exact we know that { is the boundary of some 3-chain w,
say, in C§° = C3(D(P>)P™). But then the 3-chain p3w in C3 = C3(D9) has boundary
O3 p3w = P205 w = po(

which is homologous to £, and therefore £ is a 2-boundary and the sequence (3.10) is

exact also. The proposition now follows because of Lemma 3.3.3. _|

Proof of Theorem 3.3.1: If H;(DP) = 0 then we have the following commutative
diagram:

0 —> By(DP) —2% gp — % . B(D) —>0

Lo

0 — Z,(DP) % Cr&CE 2 Z(D)—>0

where all vertical maps are inclusions and both rows are exact. From the Snake

Lemma (Lemma 1.3.2) we immediately have the short exact sequence (3.5), with

®: II, = coker(By—2Z;) — coker(KP—Cy®CY) = ZS.p.ZS

29 + Bs — QO(Zz) (ZzEZg('I—);)).

where ¢ is the homomorphism (3.6), and
v : ZS.p.ZS = coker(KP—Co®Cy)—coker(B,—2;) =11

is the natural homomorphism taking each p€p to the homology class of the corre-

sponding 1-cycle. a
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3.4 Killing the left or right action

Let IT, (respectively II3) denote the left ZS-module I1,®zs7Z (respectively, the right
Z.S-module Z®zsIl>).

Theorem 3.4.1 If the homology classes of the paths in p give rise to a set of bimodule

generators of II then there is a short exact sequence

0 I, —ZS.p I 0 (3.11)
of left ZS-modules.

Remark 3.4.2 A similar sequence of right ZS-modules involving I1§ can also be 0b-

tained.

We first prove several lemmas, and we need the following definition.

Definition 3.4.3 (Kobayashi and Otto [40]) The leftmost path p(w) from w to
the minimal element @ in the congruence class of w with respect to some chosen
length-lezicographical ordering of F' is defined as follows. First for each pair (W, )

(weF,zex) we choose an arbitrary path pi(0x) from @z to WZ. The leftmost paths

are then defined recursively as follows:
(i) if w =D then p(w) is the empty path at w; or

(ii) if w#® and w = ux for some u€F and zex then p(w) is defined

to be (pi(u).z)pi(Uz).

Lemma 3.4.4 (Kobayashi and Otto [40]) The leftmost paths have the property
that for all wy, w.€F,

pi(wi1wz) = (pr(w1)-w2)pr(Wrw2).- (3.12)



(6]

Proof: This identity is proved using induction on the length n of ws. Firstly, ifn =0
then (3.12) reduces to p(w1) = pi(w;). Suppose on the other hand that n>1 and
that by inductive hypothesis (3.12) holds whenever the length of the second word is

less than n. We can write ws = whz where r€x and wy€F. Then
p(wiws) = (pi(wiws).-z)pi(wrwhe)
= ((p(wr).wy) (p1(Wrws)).x)pi (wy whz)
= (Pt(w1)-w2)pz(’t71\1w2)-

The lemma, follows by induction. N

Example 3.4.5 Consider the following complete rewriting system for the free abelian
group of rank 2.
alphabet: a,a71,b,b7!

rules: aa”'=1, b h=1, ba~! = a1,
ala=1, ba=ab, b~la =ab7t,
=1, ba®=a?, b lal=a"lbL.

This rewriting system is compatible with the length-lexicographic ordering induced
by the order b~*>b>a"! > a, and the normal forms consist of all words of the form
w = a™b"™ where m and n are integers. For each such word there are unique paths

pi(wa®) and py(wb°) (¢ = %1) to the corresponding normal form - these paths do not
2p2, '

use the rule b%a? = a

The leftmost path p;(b%a®) from the vertex b%a? to the normal form a?b? is the path
bbaa — baba — abba — abab -—) a’b?

(Since p;(b%a) is the path

bba — bab — ab® ).

This example shows that the leftmost path is not generally the same as the path
composed of left principal edges (see § 1.2.1), which in this case is the single edge

2
b’a” — a?b’.



76

Lemma 3.4.6 The left ZF-homomorphism
3 ®1 : Zy(DP)RzrZ—(Co®CY)QzrZ

is injective, where p is a homology trivializer of D and — denotes the inclusion
Z,(DP)—(C2®CY).

Proof: For each edge e there is a 1-cycle z;(e) corresponding to the closed path

pi(te)lep(re), and for any weF we have
zi(ew) = z1(e).w.

(By Lemma 3.4.4, pi(te.w) = (pi(ce).w)pi(iéw) and py(Te.w) = (pi(re).w)p(Few), so
that in writing down the l-cycle z;(e.w) we can cancel the edges corresponding to

the paths p;(tew) = pi(Tew).)

Next, since p is a homology trivializer, for each right-reduced positive edge f =
(u,r,+1,1) (uEF, rer) we can choose a 2-chain c,(f) with boundary doco(f) = 21 (f),
and, for ¢ = +£1,v€F, we define co(f¢.v) to be ecy(f).v. Then to each 2-cell o of DP
with boundary

n _
By = Z(S,-e,- (e;ce™ and §; = £1fori=1,...,n)
=1

we can associate a 2-cycle

2(0) =0— Z5ic2(ei)

with the property that 23(0.w) = 25(0).w for all weF. The homomorphism of abelian
groups & : Co®CE—Z,(DP) defined by mapping o to z3(o) is therefore a homomor-
phism of right ZF-modules.

Suppose that

é' —_ ZE,‘O‘Z' € Zz(i)—p)
=1
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where (for i =1,...,n) &; = +1 and o; is a 2-cell with
~ ki
Op0; = Z&z—jeij (ei]. €e’ and 5ij =#1forj=1,.., k,,)
—

Then since

n k; .
ZZeiéijeij = 626 =0
i=1 j=1

we have

(r_.) 6 Zezaz ZZE, .Co 611) = Z‘Ezo—z - {

i=1 j=1

and so & is a retraction, with k< the identity map of Z,(DP). Because & is a right

ZF-homomorphism, we have a group homomorphism
k®1: (CQ@C§)®ZFZ—-)ZQ (ﬁ)@zpz

But then (k®1)((—)®1) = (k(—)®1) is the identity map of Z,(DP)®zrZ and there-
fore (—)®1 is injective. ¥

Therefore, we have the following commutative diagram with exact rows:

B3(DP)®zrZ — KP®zrZ B,(D)®zrZ —0 -

1 l 1

00— 2, (ﬁ)@zy‘z _— (C2€BC§)®ZFZ — Z1(D)®zrZ — 0
Let L denote the kernel of the left ZF-homomorphism
—®1 : Bi(D)®zrZ—Z1(D)QzrZ

where < denotes the inclusion By(D)—Z,(D). By the Snake Lemma there is a

homomorphism

d : L—TI} (2 coker(Bs(DP)®zrZ— Z5(DP)®gzr 1))



where for b€ B, (D)

d(b:®1) - (22+ Bx(DP))®1
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where z,€Z,(DP) is such that 2®1 has the same image in (Co®CY)®zrZ as some

lift of 5,®1 in KPQ®zrZ, and there is an exact sequence

L—% I1L(DP) — ZS.p — I1{(D) —> 0.

(3.13)

Lemma 3.4.7 L is generated as a left ZF-module by elements of the form

E(f —Tf)®1
where £ is a 1-cycle and f is a positive edge.
Proof: First note that £.(of — 7f) is a 1-boundary, for if
€= is,-e,- (eicet and g; = £1 fori=1,...n)
i=1

then
3zzn:€i[6i,f] = Zn:fi(ei-(bf —7f) — (cei — 7€:).f)
- = (i) -0t s
= &(f —7f).
Also £.(uf — 7f)®1EL, since in Z,(D)®zel we can write
E0f —T)®L = £uf®l ~Erf®l

= (Rl -¢®1
= 0.

Now suppose that some 1-boundary

C = Bzzei[ei, f,,]eBl(D) (Ci, fiée+ and E; = +1fori= 1; ves
=1
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is such that 0 = (®1 holds in Z;(D)®zrZ. In C1(D)®zrZ we may write
0 = (®1
n
= Zei(ei.(l,fi —7fi) — (&; — 7€;).f;)®1
=1

= Zei(bei —7¢;).fl®1
i=1

where if (for i = 1,...,n) f; is the edge (u;, 7, +1,v;) (u;, v;EF, r;€r) then we use f;
to denote the right-reduced edge (u;,7;,+1,1). Now as a (ZF, ZF)-bimodule, C;(D)
is freely generated by edges of the form (1,7,+1,1) (r€r), and so Ci(D)®zrZ is
naturally isomorphic to the free left ZF-module ZF'r, the isomorphism mapping (®1

to
n
ZE,'(LG,' —T7€;)u;.m; = 0.
=1
It follows that we can partition the indexing set {1,...,n} as a disjoint union

LULU. . Ul,,
where i, j€li (k € {1,...,m}) if and only if r; = r;, so that for each k¥ we must have
> ei(vei—Te)ui =0 (3.14)
i€l .
and
0 = 010 Z eiles, fi]
(iely)

= 0 Z 6i(€i-ui((7”i)+1 - (Ti)—1) - (Lei - Tei)'fz")

(i€ly)
= 0 Z gi€i-ui((ri)+1 — (rs)-1) (by (3.14))
(i€lx)
= (B ) eieit)-((3%)41 — (s)-1)
(i€lx)
where s = ((sx)+1, (Sk)-1) = 7; for all i€I}.. Since ZF has no zero-divisors it follows

that > 1,Ei€i-Ui is & 1-cycle, which we denote by &.
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But consider the 1-boundary
(= a2zn:5i[ei, fil-
i=1
In B,(D)®zrZ we have
(el = En:aze,-[e,-, el = i@zei[ei, filvi®l = (®1
i=1 i=1

and since

o
E Sk +1— Sk) )
k=1

we can write

(®1=C®1 = &.((s5)+1—(5%)-1)®1L. 5

k=1

Proof of Theorem 3.4.1: It suffices to show that the map d in the exact sequence
(3.13) applied to a generator {(vf —7f)®1 (£ a 1-cycle and fee™) of L is zero. Since
p is a homology trivializer of D there is some 2-chain (€ Co®CP such that §,¢ = £.
‘Then ¢.(of — 7f) €KP is such that ¢.(of — 7f)®1 satisfies
(3:81)(C.(ef ~T)®L) = £.(uf ~7 )@
But in (Co®CY)®zrZ
Cf=1)®l = (uf®l—(7f®1
= (®1-(®1
= 0.

It follows easily from the definition of d that d(£.(¢f — 7f)®1) =0 a



Chapter 4

Some new finiteness conditions

Abstract

In this chapter we introduce new finiteness conditions F' DT, and F HT,, and prove
that they are invariants of finite presentations, finite trivializers and of retractions.
In §4.4 we show that monoids with finite complete rewriting systems are F DT, and
FHT,. '

4.1 The properties F'DT, and FHT,

Definition 4.1.1 We shall say that the finite rewriting system P is of second order
finite derivation type (FDT3) if:

1. it is of type FDT;

2. for some finite homotopy trivializer p of D the 3-complex DP has a finite set X
of spherical subcomplexes such that attaching 3-cells to the set F.X.F gives a

3-complex with trivial second homotopy groups.

Definition 4.1.2 We shall say that the finite rewriting system P is of second order
finite homological type (FHT3) if:

1. it is of type FHT;

81
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2. for some finite homology trivializer p of D there is a finite set Y of 2-cycles
whose homology classes generate the (ZS, ZS)-bimodule I, = H(DP).

It is immediate from the definitions that if a finite rewriting system has the property
F DT, then it has the property F'HT; also.

Remark 4.1.3 Suppose that for some rewriting system P we choose a subset T of
F containing a unique representative of each congruence class. If p is some set of

closed paths in D then there is the Hurewicz homomorphism [48]

EPra(DP, w)— H(DP) (4.1)
weT
which maps the homotopy class of a continuous map of S2 into DP based at weY
to the homology class of the corresponding 2-cycle. Furthermore if p is a homo-
topy trivializer, so that DP is simply-connected, then by the Hurewicz Isomorphism

Theorem [48] the above homomorphism is in fact an isomorphism.

Thus if p is a homotopy trivializer of D and if X is a set of spherical subcomplexes
of DP, then the 3-complex obtained by attaching 3-cells according to the set F.X.F

has trivial second homotopy groups if and only if the homology classes of the 2-cycles
arising from the set X generate the bimodule IT; = H(DP). In particular, we deduce
that |

for rewriting systems which are of type F DT, the properties F'DT, and
FHT, are equivalent.

Consequently,

if the properties FFDT and FHT turn out to be equivalent!, then the
properties F'DT; and FHT; are also equivalent.

1A recent example of Pride and Otto shows that this is not the case.
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4.2 Invariance properties

4.2.1 Invariance of finite presentation and trivializer

We shall say that a finitely presented monoid S has the property F DT, (respectively,
FHT;) if some finite rewriting system P = [x;r] of S is of type F.DT;, (respectively,
FHT,). Taking account of Remark 4.1.3, this amounts to saying that for some finite
homotopy (respectively, homology) trivializer p of D, the (ZS, ZS)-bimodule I;(D, p)

is finitely generated.

Theorem 4.2.1 The properties FDT, and FHT, are monoid invariants, that is,

they are independent of the choice of finite rewriting system and finite trivializer.

Proof: Suppose that Q = [y;s] is another finite rewriting system presenting S, with

finite homotopy or homology trivializer q. By a result of Ivanov [32, Proposition 1.7]
the (ZS, ZS)-bimodules

M(P)®ZS.y.ZS  and  M(Q)®ZSx.ZS

are isomorphic, where M denotes the relation bimodule (see §1.2.2). By adding free
summands to the sequence (1) for P and then splicing with (4) we obtain an exact

sequence:

0 —II;(P,p) —= ZS.p.ZS —> ZSx.ZS®ZLS.y.ZS —— - - -

M(P)®ZS.y.ZS —0

A similar sequence can be constructed for the pair (Q, q). Then applying the gener-

alized Schanuel Lemma (Lemma 1.3.1) to these two sequences, we deduce that
II,(P,p) ® ZS.q.ZS ® ZS.x.ZS & ZS.y.ZS

and
,(Q,q) ® ZS.p.ZS & ZS.s.ZS & ZS x.ZS

are isomorphic as (ZS, ZS)-bimodules.Therefore I, (P, p) is finitely generated as a
(ZS,ZS)-bimodule if and only if [I5(Q, q) is. J
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4.2.2 Invariance under retraction

Theorem 4.2.2 A retract of an FDT, (respectively, FHT;) monoid is also of this
type.

Proof.Suppose that 7 : S— R is a retraction of monoids. If S is finitely presented
then we can choose finite rewriting systems P = [x; r] and Py = [xo; ro] for S and R re-
spectively, and such that xoCx, roCr and there is a homomorphism p : F(x)— F(x,)
such that p(z) = z for all z€x, and also (p(r41), p(r—1))€ry for each rer (see [66,

Theorem 3.3]). We can therefore extend p to a retraction
p:D=D(P) — Dy =D(P,)

of 2-complexes.

Suppose that p is a (finite) set of closed paths in D, and let po = p(p). By
enlarging p if necessary, we can assume that poCp. By [66, Lemma 3.3}, if p is a ho-
motopy (respectively, homology) trivializer for D, then py is a homotopy (respectively,

homology) trivializer for Dj.

We can then extend p again to give a retraction
p: (DP)—(D§°)

which induces a chain map from the chain complex of DP to the chain complex of Dp,
and then induced homomorphisms on homology. In particular, we have a surjective

(group) homomorphism
Px - HZ (P7 p) *}H2 (PO) pO)
which respects the bimodule structures: for any s1,s,€S and [¢]€Il(P, p) we have

pe(s1.[€].52) = m(s1)-pu[€].m(s2).

It follows that the image of a (finite) set of generators of the (ZS,ZS)-bimodule
IT,(P, p) will generate IT(Po, po) as a (ZR, ZR)-bimodule. | J
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4.3 The properties F DT, and F HT; for groups

For an FHT monoid S we may splice the exact sequences (5) and (1.8) of left ZS-
modules arising from some choice of finite rewriting system and homology trivializer

to obtain the partial resolution

0 —>I1, —>ZS.p —>ZS.xr —>ZS.x —>ZS —>Z —>0 (4.2)

of the trivial left ZS-module Z. As in §1.3.2 we can use the generalized Schanuel’s

Lemma (Lemma 1.3.1) to deduce that

S is of type left FPy if and only if 11, is finitely generated as a left ZS-

module.

Theorem 4.3.1 For finitely presented groups, the properties FDT,, FHT, and F P,

are equivalent.

Proof: Since for finitely presented groups the properties F DT and FHT are equiv-
alent §1.3.2), by Remark 4.1.3 the properties F DT, and F'HT; are also equivalent.

We now show the equivalence of FHT, and FP,. Let P be a finite rewriting system
defining a group S, and let D have a finite homotopy trivializer p. As remarked
above, S is F'P, if and only if I1} is finitely generated as a left module. The bimodule
I, has a decomposition analogous to (1.5), namely as a direct sum of the second
homology groups of each connected component of DP, so as in §1.3.4, we can apply
Lemma 1.3.5 to see that I, is finitely generated as a bimodule (that is, S is FHT5)

if and only if IT, is finitely generated as a left module, and the result follows. 4

4.4 Monoids with finite complete rewriting sys-
tems are F'DT;

This section contains two proofs of the foilowing result:
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Theorem 4.4.1 A monoid with a finite complete rewriting system is of type FDT;.

The first uses homology, which was seen in Remark 4.1.3 to be an adequate description
of the second homotopy of DP when p is a homotopy trivializer. The second proof

uses pictures to study the homotopy directly.

4.4.1 2-cycles at critical triples

Throughout this section, we assume that P is a finite complete rewriting system, and
that p is some finite homotopy trivializer arising from a choice of resolution of each
critical pair. Because of the choice of p, the boundary of each 2-cell in DP consists
of a pair of positive paths with common initial and terminal vertices, and we shall
again use the notation [w; (e, f)] for 2-cells, where we F and e, fé€star® (w), which was
introduced in Remark 1.4.14. Recall that >, denotes the reduction ordering induced

by the rules of P; thus for v,w€F, we write

wr-v if w—pv  but  vFw.

We shall extend this notation to 2-cells and 2-chains, writing o>,0’ for 2-cells o
and ¢’ if their respective maximal vertices w and v, say, satisfy w>.v, and {>.¢ for
2-chains £ and ( if for each 2-cell o' represented in ¢ there is some o represented in
¢ such that o0’

From the construction of DP, for any weF and triple of edges e,f,g €star*(w)
with at least one disjoint from the remaining pair, there is a 3-cell whose boundary

gives rise to a 2-cycle £ ) of the form

f(e,f,g) = ['w; (ea f)]+[U); (f’ g)]—[w; (e, 9)]+C(e,f,g) (4-3)

where ((c,1,g) i @ 2-chain satisfying &7, 6)>r((e,1,9) (€€ Remark 3.3.5). Moreover, we
can suppose that the number of terms in (. 4,q) is not greater than k — 1, where k>4

is the maximal length of the boundary of any 2-cell in DP.

The critical pairs of a rewriting system are described in Definition 1.4.6; similarly,

we may consider the critical triples:
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Definition 4.4.2 A triple of positive edges with the same initial vertez form a critical

triple if either:
1. One of the triple is both left- and right-reduced; or

2. One of the triple is left-reduced but not right-reduced, one of the remaining pair

of edges is right-reduced but not left-reduced, and no single edge is disjoint from
the other two.

Example 4.4.3 The rewriting system given in Example 2.1.5 has a single critical

triple (of type 2):

cdcaea?
A
cdcaaa
“
c2dad < cdcaaa
~
cdcaaa
N
cda®

We want to show that there is also a 2-cycle with boundary of the form (4.3) for
each critical triple of edges (Definition 4.4.2), but we first need the following technical

definition and lemma.

For any we€F we shall say that P(w) holds if for any pair p = e;...e;, and

q = fi...fa of positive paths from w to Irr(w) there is a 2-chain whose boundary
is the 1-cycle Y i~ e; — > 7, f; arising from the closed path pg~—!, and which can be
written as either

1. [w; (e, f1)] +¢ (if we assume that e; <, fi), or
2. 4 (ifel =f1),

where ( is a 2-chain which, if non-zero, contains only 2-cells with maximum vertices

beneath w in the reduction order >,.
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Lemma 4.4.4 For all weF, P(w) holds.

Proof: The proof is by noetherian induction on F' using the reduction order >,

induced by the rules r.

Let weF, and assume inductively that P(w') holds for each w'e€F satisfying w>,w'.
We want to deduce that P, holds.

If w = Irr(w) then P(w) holds since we may just take the trivial 2-chain 0.

So suppose that w#Irr(w), and that p = e,...e,, and q = f,...f, are positive paths
from w to Irr(w). Thus m,n>1, and so either e; = f,, in which case by our inductive
hypothesis there is a suitable 2-chain with boundary corresponding to the closed path
€a...emfit...f7", or there is a 2-cell [w; (e1, f)] with boundary e;p'(¢') ™! fi}, say, for
some positive paths p’, ¢'. If we choose a positive path r from 7p’ = 7¢’ to Irr(w) then
by inductive assumption there are 2-chains {, and {;, whose boundaries are 1-cycles
arising from the closed paths e;. . .e,,r~1(p)~! and fy...for"1(¢') ! respectively, and

with [w; (€1, f1)]>rCe;»Csi- (This construction is described by Figure 1.2.)

Then [w; (e1, f1)] + Ce; — ¢, is a suitable 2-chain for this pair of paths , and so P(w)

holds. The lemma now follows by noetherian induction (Lemma 1.4.2). 2

We shall now show that there is also a 2-cycle with boundary of the form (4.3)

for each critical triple of edges.

Suppose that (e1, €2, €3) is a critical triple of edges at weF with e; <, €2 <4, €3.
Then for 1<i<j<3 there is a 2-cell [w; (e;, ¢;)] with boundary e;p; ,jq{,jle;l say, where
pi; and g;; are positive paths. If for 1<i<j<3 we also choose positive paths Tij
from 7p;; to Irr(w), then by Lemma 4.4.4 there exist 2-chains ¢y, {; and (3 whose
boundaries are 1-cycles corresponding to the closed paths p, s, 57 2Pra, 12712750 Pra

and g, 375571205, respectively, from which we can construct the 2-cycle

Elerenes) = [W; (€1, €2)] —[w; (€1, €3)]+[w; (e, €3)]+C1+Co+ G,

which is of the form (4.3), because £, ¢, e)=r(1 + (2 + s



89

Let X be a set consisting of such a 2-cycle g for each critical triple (e, f, )
of positive edges. For a pair of 2-cycles z, 2’ we shall write 2~x2' if z — 2/ is in the
sub-bimodule of the (ZF, ZF)-bimodule Z,(DP) generated by B,(DP) and X.

Any triple of positive edges at some vertex, where no edge is disjoint from the
other pair, is a translate of a critical triple by the two-sided F-action. Therefore, by
our choice of the set X there is now a 2-cycle § s ) of the form (4.3) for any weF
and triple (e, f,g) of positive edges in star*(w) (w€F) such that

Eete) = Wi (& ]+ [w; (f, 9] = [w; (e, 9)]+(erte) ~x 0,

where &(c,1,9)>r((e.1,9)- Moreover, there is a constant ¢ (depending on the choice of set
X and the maximal length of the boundary of any 2-cell in DP) which bounds the

number of terms in each such 2-cycle.

4.4.2 Proof of Theorem 4.4.1

We shall show that the homology classes of the set X generate II,.

Let £ be a 2-cycle. We can write £ as

m
€ = Zn,ﬂi
1=1

where m>0, o1,...,0n are distinct 2-cells, and n,,...,n,€Z — {0}. Each 2-cell can

be written as 0; = [w;; (fi, gi)] for i = 1,..., m, where w;eF and fi» gi€start(w;).

Denote by Q = Q(¢) the set of 2-cells of the form [u; (e, f)] where u€F is a
descendant of one of the vertices w,, ..., w,,, that is

m
u€ U{UEF : w—"v},
i=1
and e, f€star® (u). Because I' is locally finite, it follows from Lemma 1.2.2 that Q is
finite. We partially order 2 as follows: For u;€F and positive edges e;, ei€star® (u;)

(i = 1,2) we write [ug; (e1,€1)] < [u2; (eé,eg)] if
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(i) ug>ruy; or
(ii) u; =up and €] <y, €3 ; OF

(iii) u; = up, €] = €3 and e; <y, €.

Next, choose some bijection
¥:0—{1,2,..,]Q|}

which is compatible with this ordering, and define

GED I

=1

Suppose that £ is non-zero (that is, m > 0), and assume that ¥(o;) > 9(0;) for
all 1 < i<m. If the edge f; is not the left principal edge e at w;, then we can replace

nyo, with a 2-chain

1 (['wl; (ea gl)] - [wl; (e’ fl)] - <(e,f1,91))

where 01> (e, f1,01)> £1Ving a 2-cycle ¢’ with £&'~x& and ¥(¢') < ¥(¢).

Otherwise f; is left principal, and so because o is mé,ximal it is the only 2-cell
represented in £ with the edge g; in its boundary. Since £ is a 2-cycle it follows that

ny = 0, a contradiction. By induction, £~x0. y

4.5 An alternative proof of Theorem 4.4.1 using
homotopy

Again let P be a finite complete rewriting system, and p a finite trivializer arising
from a choice of resolution of each critical pair. To study the second homotopy of DP

we shall use pictures:
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4.5.1 Pictures

In this subsection we shall only review the material that we shall need; more details

and proofs can be found in, for example, [6, 31]. A picture P over DP consists of the

following:

1.

2.

3.

A disc D%
Disjoint discs dy, ..., dm in the interior of D%

A finite number of disjoint arcs o4, ..., a,. Each arc lies in the closure of D? —
(dyUdyU---U d,) and is either a simple closed curve having trivial intersection
with the boundaries of the discs D?,dy,...,dn, or is a simple non-closed curve
whose intersection with the boundaries of these discs consists of its endpoints

only.

Each arc has a normal orientation indicated by a transverse arrow and is labelled

by a positive edge of Dp,

. Travelling around the boundary dd; of each interior disc d; reading the edges

labelling the arcs with endpoints on the boundary will give the boundary of a
2-cell in DP. If we cross an arc labelled by a positive edge e in the direction of

its normal orientation then we read e; otherwise we read e™!.

The regions of P are the connected components of

n m
p*—@D*ulJdiuJ ey)
=1 j=1
and each region is labelled by an element of F': If we travel across an arc labelled

by a positive edge e in the direction of its normal orientation then we move from

a region labelled e to a region labelled Te.

We define 0P to be 0D?. By travelling around this boundary we read a closed
path in the 1-skeleton I' of Dr. We say that P is spherical if this is the empty path,
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which is to say that no arc meets 0P: When a picture is spherical we call the region
surrounding 8P the outer region, and OP is not drawn. The area of P is the number

m of interior discs, and the components of P are the connected components of

n m
U dz U U «; .
i=1 j=1
We say that P is connected if it has at most one component.

Suppose we embed a circle in P — U;d; so that it meets the arcs in only finitely
many transverse intersections. Then the part of P enclosed by this circle is said to be
a subpicture of P. There is a 2-sided action of F on the collection of pictures induced

by the action of F' on the labels of the regions and arcs.

Each picture describes a continuous map of the disc into the 2-skeleton of DP in the
following way. Each interior disc maps onto the 2-cell whose boundary corresponds
to the boundary of the disc, each arc maps onto the mid-point of the edge labelling
it, and each region is mapped in some way to the vertex w labelling it and a subset
of

{e,e”! : eestar (w)}.

If P is a spherical picture then we may assume that all of P is mapped to the vertex
weF which labels the outer region, so that P describes a continuous map of the
2-sphere S? into Dr. The homotopy class of P is the corresponding element of the
second homotopy group m2(DP,w), and in fact every element of the second homotopy
groups of DP can be represented in this way by a spherical picture. We shall use £(P)
to denote the 2-chain obtained by reading the labels on each interior disc of a picture
P.

Example 4.5.1 The connected spherical picture in Figure 4.1 describes a map of S2

onto the boundary of the 3-cell [, (£, f']] (e, f, f'€e?), and &(P) is the 2-cycle

e, fluf' = 7elf, f1= e, f-f 1+ e, 7.~ e, flof' + vellf, £
= (e—Te)lf, 1+ e .~ le,of.f]+ e, fL0of = 7F),
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esfLf!

Figure 4.1: A spherical picture

where the coefficient gives the orientation of the 2-cell. The outer region is labelled
secfuf’, and the labelling of the unmarked edges and regions follows from the labelling

of the interior discs.

Suppose that T is a subset of F' containing a unique representative of each con-
gruence class. The Hurewicz homomorphism (4.1) maps the homotopy class of a
spherical picture P with outer region labelled by some weF to the homology class of

the 2-cycle £(P). Since p is a homotopy trivializer then the above homomorphism is
in fact an isomorphism, as noted in §4.1.

4.5.2 3-cells at critical triples

Since a spherical picture over DP describes a continuous map of S? into the 2-skeleton

of the augmented Squier complex, we can describe the attaching map of each 3-cell

in DP in this way.

From our choice of trivializer p, and by the construction of DP, for any weF and

triple of edges e, f, g€start(w) with at least one disjoint from the remaining pair
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{wi(£.9)]

TR

[wi(e.9)]

€1

Figure 4.2: Spherical picture at triple (e;, ez, €3)

there is a 3-cell whose attaching map can be described by a spherical picture of the
form shown in Figure 4.2 for some subpicture Q, with the outer region labelled w,
and all other regions labelled by vertices v; satisfying dv; < dw, where ¥ is the height
function (Definition 1.2.3). Furthermore, we can assume that the area of this picture
is not greater than k -+ 2, where k>4 is the maximum length of the boundary of any
2-cell.

We shall now give a set of spherical pictures describing the attaching ma,ps of a
set of 3-cells at each critical triple (Definition 4.4.2), and which have the same form

as in Figure 4.2. We need the following lemma:

Lemma 4.5.2 For any pair of positive paths p = e;...e, and ¢ = fi.. ..fn from the
same initial vertex wEF to Itr(w) there is a picture over DP with boundary pg~*
with only one region labelled w and such that any other region is labelled by some

veF with 9v < Yw, where ¥ is the height function.

Proof: The proof is by noetherian induction on F with the reduction order >,

induced by the rules r.

Let weF and assume inductively that for any w'eF satisfying w>,w' and pair of
paths r, s from w' to Irr(w') there is a picture over DP with boundary rs~! with only
one region labelled w' and such that any other region is labelled by some veF with

Jv < Jw’. We want to construct a suitable picture for w.
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el

—t) I
L

Y
€2...€m faeSn

Irr(w)
Figure 4.3: Construction used in the proof of Lemma 4.5.2

If w = Irr(w) then p and g are both the empty path at w and we just take the empty

picture with a single region labelled w.

So suppose that w#Irr(w), and that p = e;. . .ep, and ¢ = fi...f, are a pair of positive
paths from w to I rr(w), with m,n>1. If e; = f, then there is by inductive hypothesis
a picture P with boundary e,...enf;1...f;! where a single region is labelled 7e;, and
all other regions labelled by some veF with dv < d7re; < Jw. A suitable picture
can be obtained from P by simply adding an arc with label e; = f; as shown in

Figure 4.3.

Otherwise, there is a 2-cell [w; (e, f1)] with boundary e;p'(¢’) "1 fi! for some pair of
positive paths p' and ¢'. If we choose a positive path r from 1p' = 7¢' to Irr(w)
then by our inductive assumption we have pictures P and Q with boundaries P =

es...emr 1(p') 7t and 0Q = ¢'rf;1...f;! giving the picture shown in Figure 4.4.

The lemma follows by noetherian induction (Lemma 1.4.2). J

Proposition 4.5.3 We can construct a spherical picture of the form shown in Figure

4.2 for each critical triple (e1, ez, e3) of positive edges at weF.

Proof. For 1<i < j<3 there is a 2-cell [w; (e;, e;)] with boundary e;p; ;¢; ej" say,
where p; ; and ¢;; are positive paths. If we also choose positive paths r;; from 7p; ; to
Irr(w) then by using Lemma 4.5.2 we can construct a spherical picture of the form

shown in Figure 4.5 from pictures P;,[P;,P; which have boundaries p, 7, sr 2p11,



l fwi(er,f1)] I

1

{3
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Figure 4.4: Second construction used in the proof of Lemma, 4.5.2

€1
[wile1,e2)] 0 [wi(e1.e3)]
X/ \
w

[wi(ez2,e3)]

Figure 4.5: Spherical picture at a critical triple.
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R

Figure 4.6: Cancelling pair

QuaT1aT5ap;s and gasT2sT1 54, respectively. Then there is only one region labelled w,

and every other region is labelled by some veF satisfying Jv < Jw. 4

We choose such a spherical picture for each critical pair, and we claim that 3-cells
attached according to this set of pictures together with their translates under the
9-sided action of F trivialize the second homotopy groups of DP, so that S is of type
FDT,. Note that this choice has given us a set X of spherical pictureé of the form

shown in Figure 4.2 for every triple of positive edges in star™(w) for every weF.

4.5.3 Operations on pictures

Let X be the chosen set of spherical pictures, one for every triple of positive edges in
start(w) for some weF. By an X-picture we will mean either a picture P from X,

or —P, the picture obtained by a planar reflection of P.

We allow the following operations on spherical pictures.
(A) Deletion of a closed arc which encircles no arcs or discs (a floating circle).
(B) Deletion of a cancelling pair, a subpicture of the form shown in F‘igure 4.6.

(C) Bridge move: see Figure 4.7.

(D) Replace(X), the replacement of an interior disc with label a 2-cell [w; (£, f')]
where weF and f, f'€start(w) are not left principal edges. If we let e denote

the left principal edge at w then this operation is carried out as follows. First
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Figure 4.8: Insertion of X-picture

we insert the appropriate X-picture corresponding to the triple (e, f, f') into
the original picture as shown in Figure 4.8. Next, a series of bridge moves can
be applied to obtain the picture shown in Figure 4.9, and we then delete the

cancelling pair to finish with the picture shown in Figure 4.10.

Operations (A), (B) and (C) do not change the homotopy class of the picture IP.
This is also true of operation (D) if there are 3-cells whose attaching maps correspond
to the X-pictures, for then we are essentially just pushing the image of P across the

appropriate 3-cell.

4.5.4 A 2-dimensional Dehn-type algorithm

Let P be a spherical picture over DP whose regions are labelled by a set of vertices

wy, Wa, . - ., WnEF'. Following [6] we shall use a type of “2-dimensional” Dehn algorithm
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Figure 4.10: Result of replace(X)

to show that P is X-equivalent to the empty picture. The algorithm consists of a series

of transformations of the original picture which we now describe.

Firstly we remove any floating circle in P. If there is an interior disc with label
a 2-cell [w; (f, f')] for some weF and positive edges f, f'€star*(w) neither of which

are left principal then we can perform an operation (D) and we are done.

Otherwise, choose some connected spherical subpicture of P, and in this subpicture
choose a region that is labelled by some vertex (w;, say) that is maximal with respect
to the height function 9. If this region is bounded by a pair of discs and arcs of
the form as in Figure 4.11 where o = [wy; (e, f)] (for edges e, festar™ (w,) with e
left principal) has boundary epg™ f~! where p, q are positive paths, then by a series
of bridge moves this subpicture can be transformed to a subpicture containing a

cancelling pair as shown in Figure 4.12. and we can now remove the cancelling pair,

at the same time removing the region with label w;.
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Figure 4.12: New subpicture containing a cancelling pair

On the other hand it is possible that the region with label w; is bounded by more
than 3 interior discs and arcs as shown in Figure 4.13, where the arcs are labelled
alternately by the left principal edge e at w and by edges f, f',...€start(w,) — {e}.
In this case, we can perform a bridge move between two arcs labelled by e to obtain

a subpicture of the form shown in Figure 4.11, which again leads to the removal of a

cancelling pair.

It is also possible that the region labelled by w, is the outer region of the spherical
subpicture. If this subpicture is of the form shown in Figure 4.14 for some subpicture
Q, then by applying bridge moves we can obtain the picture shown in Figure 4.15.
from which we can remove the cancelling pair. If the subpicture is of the form shown

in Figure 4.16 we can similarly apply bridge moves to isolate a cancelling pair which

we then remove.

Lemma 4.5.4 For any spherical picture P any sequence of tmnsfoﬁnations will ter-

minate in a finite number of steps.
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Figure 4.13: The maximal region bounded by more than two discs

Figure 4.15: After performihg bridge moves on Figure 4.14



102

Figure 4.16: The maximal region is the outer region (case 2)

Proof: For any given u€F let A(u) denote the subgraph of I' formed by taking the

union of all positive paths originating at u. As its vertices A(u) has the set
vert(A(uw)) = {vE€F : u—}v}

of descendants of u and the edge set is
{e,e7! : eestar(v), u—}v}.

Because I is locally finite, it follows from Lemma 1.2.2 that A(u) is finite. We denote
by Q = Q(P) the set of 2-cells of the form [u; (e, f)] with

n
= Uvert(A(wi))C F and e, festar™ (u)
=1 :

where wy, . .., W,EF are the labels of the regions of P. Again this set is finite.

Note that each single transformation of a picture either removes a cancelling pair, or

uses an X-picture to replace a subpicture with a single disc, with label a 2-cell o, say,

with a subpicture containing only discs labelled by 2-cells in  which are beneath o
in the partial ordering introduced in the proof of the special case of Proposition 3.3.4.

We must show that this process terminates in a finite number of steps.

First, we choose some bijective function -

’w : Q—‘){l’ 27 RS ] |Q|}
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requiring only that for 2-cells o, 0’€Q we have ¢o < ¢o' if 0 < 0.

Based on the values assigned by 1 to each 2-cell of 2 we define another function
¥ : T—NU{0}

by extending to the set of interior discs the function
+o—k¥?

where k + 1 is the maximum area of any X-picture.

To prove the lemma, note that applying a single transformation to any picture Q in
T will either reduce the value of ¥(Q) by 2k’ for some 1<i<|Q| (if we have removed
a cancelling pair), or will reduce the value of ¥(Q) by k' while increasing the value
by adding less than k(k(~D), ]



Chapter 5

Alternative viewpoints

5.1 Competing finiteness conditions

5.1.1 An alternative definition of FHT,

Our definition of F'DT3 seems to allow the possibility of further development of these
ideas, for example we could study the third homotopy groups of a 4-complex obtained
by attaching 3-cells to the 3-complex DP in order to trivialize the second homotopy

groups, together with certain “obvious” 4-cells.

On the other hand, in our definition of FHT, we only require that for some finite
homology trivializer p the bimodule IT;(P, p) is finitely generated. In this situation,
where p may not be a homotopy trivializer, if the Hurewicz homomorphism (4.1) is
not surjective then it may be that we are not in fact able to kill the second homoloéy
by attaching 3-cells DP.

Without being able to realize this geometrically, it is not clear how we could define
a property FHT3 by studying a 4-complex based on DP. An alternative definition of
FHT, would require that not only the bimodule II, was finitely generated, but that
we could attach a finite set of 3-cells to trivialize the second homology. This problem

does not exist with the definition of the property FHT because any 1-cycle arises
from a (finite) set of closed paths.
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5.1.2 The property bi-F' P,

Following Otto and Kobayashi [41], we say that a monoid S is of type bi-FP, if the
monoid ring ZS (thought of as a (ZS, ZS)-bimodule by left and right multiplication)
has a partial resolution of length n by free (ZS, ZS)-bimodules of finite rank.

Applying the functor —®zsZ to such a resolution will give a partial resolution
of the trivial left ZS-module Z (2ZS®zsZ) by finite rank free left ZS-modules [41].
Thus if a monoid is of type bi-F P, then it is necessarily of type left-F'P,. Similarly,
applying Z®zs— will show that such a monoid is also of type right-FP,. On the
other hand, Kobayashi and Otto [42] have given an example of a monoid which is
both left and right F'P,, but is not of type bi-F P;.

In [41] it is shown that there is a partial resolution of ZS by free (ZS,ZS)-

bimodules analogous to (1.8), but constructed using the short exact sequence (3),

giving the characterization
FHT monoids are those finitely presented monoids of type bi-F P;.

By splicing this partial resolution with the short exact sequence (4) arising from some
choice of finite homology trivializer, we immediately have the analogous characteri-

zation

FHT, monoids are those finitely presented monoids of type bi-FPy.

5.1.3 Homological finite derivation type

Alonso and- Hermiller [2] have introduced the alternative finiteness conditions n-
dimensional homological finite derivation type (HF DT,) for all n>0, and have shown
that a monoid S of type left and right FP, is necessarily of type HF DT,,. However,
the example mentioned above due to Kobayashi and Otto of a monoid which is both
left and right F Py but not of type FH T or FDT shows us that (in particular)

the property HF DT; is not equivalent to either FHT or F DT, nor is the property
HF DT, equivalent to FHT; or FDT,.
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5.1.4 A finiteness condition for higher dimensional rewriting
systems

In order to extend the notion of finite derivation type and finite homological type one
dimension higher, we have defined a 3-complex DP based on D and studied its second
homotopy and homology. We now outline another approach (as suggested in [36, 43])
which is to consider some kind of finite derivation type on some new graph based on
the derivations of a higher dimensional “rewriting system” which operates on paths
in I

In the next section (§5.2), we describe such a rewriting system on paths, or ho-
motopy reduction system, which can be associated to any finite complete rewriting
system. The new graph of derivations of this system (introduced in [17]) would have
as its vertices the set of all paths in T, and there would be edges which correspond

to pushing a subpath across a 2-cell in DP.

A closed path in this new graph will correspond to a 2-cycle in DP, and so this
method is related to our earlier study of the second homology of this 3-complex, and
it is possible that they are equivalent. The advantage of our earlier approach is in
obtaining the short exact sequence (4) which allows us to relate the properties FHT),
and F DT, to homological finiteness conditions, and the invariance property (Theorem

4.2.1) can be proved easily using homological algebra together with known results.

5.2 A complete homotopy reduction system for
complete rewriting systems

Suppose that P is a finite complete rewriting system, and let p be a homotopy
trivializer given by resolutions of the critical pairs associated with the set of rules r.
As we have already noted (Remark 1.4.14), the boundary of each 2-cell o consists of

two positive paths arising from resolutions of either disjoint or critical pairs, according

as to whether o is in D or not.
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We now describe a homotopy reduction system for DP: a “rewriting system” on
paths in DP, which operates by pushing subpaths across 2-cells. It will turn out that
this homotopy reduction system is complete in the sense that in a finite number of

steps it will rewrite any path to a unique irreducible path sharing the same endpoints
(see Theorem 5.2.2).

A single-step homotopy reduction, applied to subpaths of paths in DP, will be of one
of two types:

1. For any ecet we allow reductions of the form

(a) ee™l~ 1, (where 1,, denotes the empty path at te); and
(b) ele~ 1, .

2. For any pair e, f€star* (w) there is a 2-cell in DP with boundary of the form
epg ' f7

where p and g are positive paths ending at some vertex z, say, which resolve

the pair (e, f). If e <, f holds we allow the reductions
(a) f~epg™!, and
(b) ft~rgple™t,

illustrated by Figure 5.1.

We use the notation ~+* to denote the reflexive and transitive closure of the
relation ~+ on paths in T'.

Proposition 5.2.1 The homotopy reduction system just given is noetherian, that is,

we can only perform a finite number of single-step homotopy reductions on any given

path p.
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w W —2> Wo
fl -
wy wy >

Figure 5.1: Single-step homotopy reduction (type 2)

Proof: First note that each single-step homotopy reduction either removes an edge-
pair efe~¢ (ece’, € = £1) (a Type 1 reduction), or replaces a subpath f¢ ( feet,
£ = +1) with a subpath consisting of one edge ¢* where ecstar® (.f) satisfies e <, f,
together with edges of the form ¢° (gee*, § = £1) satisfying g < Uif, where 9
denotes the height function (Definition 1.2.3) (a Type 2 reduction). We show that

this process must terminate in a finite number of steps.

For the given path p, by Lemma 1.2.2 and the fact that [ is locally finite, the set
A = A(p) = {v€F : v<,w for some vertex w of p}

of descendants of vertices in p is finite, and again because I' is locally finite the set
Q = Q(p) = {ece™ : e, Tec A}

of positive edges between vertices in A is also finite. Firstly, we can order A in some
arbitrary way as A = (v1,%,...vj4)) , but requiring that if Jv; < Jv; then i < j , and
then we can order § as

Q = (61, €2,.. CIQI)
= (evl,l’ €y1,2y ¢+« o evl,kvl 3 Cug,ly e« oy evIA],klel)

where the edges indexed by v;€A are those edges with initial vertex v;, and then

according to the ordering of edges in start(v;):
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if €y;j <wi Cuviks then we require that j < k.

Now we consider the set = = Z(p) of all finite paths with the same initial and terminal
vertices as our original path p and composed of edges e with e€{2 and € = +1, and

define a function
k
p— € 3 .
P:E—No  eF...eff E n
Jj=1

where n is the maximum length of the boundary of any 2-cell in DP.

To prove the proposition, note that applying a Type 1 single-step homotopy reduction
to any path ¢ in E(p) will reduce the value of 1)(g) by 2n’ for some i > 0, and that a
Type 2 reduction will reduce the value 1(q) by n' for some i > 1 while increasing the
value by adding less than n(n®1) ; clearly this process must terminate, as we have

associated with any sequence of single-step reductions on an arbitrary path a strictly

decreasing sequence in Nj. y
Theorem 5.2.2 The system is complete.

Proof: The only irreducible paths are those composed of left principal edges and

that have no spurs (subpaths of the form ...efe~*... , where ecet and & = +1);
these are the unique edge-paths of shortest length between two points in a connected
component of the maximal forest of left principal edges in I'. a

Remark 5.2.3 Homotopy reduction systems were introduced by Kobayashi [36], who
considered more general complete homotopy reduction systems. The system that
we have associated to a complete rewriting system is a variant of the Guba-Sapir
reduction system (29, 39], in which the type 2 single step homotopy reductions are
restricted to only those reductions which push an edge across a 2-cell from D. The
advantage of extending this as we have done is that the overlapping rules of the new
homotopy reduction system are easily described (§5.2.1), and then there is a nice

partial resolution (5.1) of Z extending the partial resolution (1.9).
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5.2.1 Critical pairs of the homotopy reduction system

Associated to any finite complete rewriting system P we have described a complete
homotopy reduction system based on a natural homotopy trivializer p of D given
by choosing resolutions of the critical pairs. We shall now examine the overlapping
pairs of the homotopy reduction system, that is, the pairs of single-step homotopy
reductions that can operate on non-disjoint subpaths. The analogue of the result
(1.10) that a noetherian rewriting system is complete if and only if it is confluent
holds for homotopy reduction systems, as does the Diamond Lemma (Lemma 1.4.3),

and therefore each overlapping pair can be resolved by positive homotopy reductions

to some common path in I'.

Overlaps of Type 1 reductions

These overlaps occur on subpaths of the form ee~le or e lee™! (e€et), and are

immediately resolved (to e or e! respectively).

Overlaps between Type 1 and Type 2 reductions

Suppose that we can perform a type 2 reduction
f~epg

on a positive edge f, where ece™ and p and q are positive paths. Then, for example,
we have overlaps between the reductions

Ly and ff Tt~ epg™' f7N

This overlap is resolved easily as follows:
epq_lf-l el epq_lqp—le_l s epp_le_l ¥ el an* ]-Lf' ,
Overlaps of Type 2 reductions

These overlapping pairs are of four typeé (see [37]), and occur when we have edges

e, f,g in start(w) with e <, f <,, g, so that there is a choice of two different Type
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2 reductions at g (and, similarly, at g—!). The first three are inessential overlapping
pairs and are shown to be easily resolved, and the final type of overlapping pair will

be seen to correspond precisely to translates of the critical triples of P.

1. Suppose firstly that e, f and g are all disjoint. Then we can write w as w =
(e')(ef")(eg") for some €, f', g'ce’ such that e = €'.uf'.1g’, f = 1€’.f'.tg’ and
g =e’..f'.g’, and the overlapping pair can be resolved along the following pair
of positive reductions:

hi: g ~ e(reif.¢") (e .Lf'Tg")?
~ e(re.flag)(reTf.¢)(re . f'.rg) M (e o f'Tg))
and
ha: g ~ f(e'Tf.g')(ee.f'.rg)™
~ e(re.flag) (e Tf'ig) (€S g) (e fTg) T
~ e(re.fl.ig') (e .Tf1g') " (e T f1g')
(re'rf'.g') (e .Tf'rg) 7 (e f"7g)
~ e(re.flag)(reTf.¢) (e T f'rg) (e frg')
w e(re.flug)(reTf.g) (€ T f'rg’) " |
(e.7f'7g)(re.f'.7g) 7 (e Lf'Tg)
~ e(re.flug)(re'Tf.g') (T . f'.rg") " (€ L f'Tg') T

which is illustrated in Figures 5.2 and 5.3 (the reduction h; is on the left and
hy is on the right).

2. Next suppose that e is disjoint from f and g, which arise from some critical pair.

We can write w as w = te'w’ for some w'€F and e’'ce* such that e = ¢'.w’, and



eliflig ———e'Lf'rg’

el Lflig! e w'if'rg
Te'uf'rg > relLf'Tg

el Lflog oo Le'bf"rg’
Te'l,f'Lg' .......................................... Te'Lf'Tg'
Te’Tf'Lg, — TC’Tf’Tg'

eiflig ——e'Lf'Tg’

[PIY L7 r— e'sf'rg

e!rfiig ——>e'tfirg’

Le'Lf'Ly' ................... Le'Lf"rg’

Te'if'ig’

e'Tflig ——>e'rfirg’

Te'Tfig

[P LY — w'f'rg'
Te'tflrg’

PPEZ Y LIy — w'rflrg
Te'rf g’ - Te'tf'rg

Figure 5.2: Resolution of type 1 overlap

-
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Le,Lf'Lg, .................. Le’Lf’Tg'
re'uf'ig

Le'Tf'Lg' .................. Le'—rf"rg'
Te'rflig’ re'rf'rg'

TN 7 — we'of'rg’
TeLfig Te'vf'rg

Le’Tf’l:gl .................. LB'Tf’Tg'
Te'Tfig' Te'rf'rg

TR Y Qe w'if'Tg'
Teiflig | P orelufiry

PP (I J— w'rf'rg
re'rflig —> re!Tf'Tg’

Figure 5.3: Resolution of type 1 overlap (continued)

.
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there are also edges f’, g’€start(w') such that f = te’.f and g = t€’.¢’. By our
choice of p, the edges f’ and g¢' are resolved along positive paths p = fi...fm
and ¢ = g1...9» on the boundary of a 2-cell in DP to some vertex z. We may

resolve this overlapping pair along positive homotopy reductions as follows (see
figure 5.4): |

hi: g ~ e(re.g')(e.Tg")™!

~ e(te.f'pg ) (e .Tg)
and

ha: g ~ flepg™)

v elre )(rf) oS fo S T)

et P ) ) e ) )

(ce-fo- . -fmgz g7 ")
o e(rel f)(e 71N e f) (re fu) (e f)
(€'.Tfi)(re-fo) (¢ .7 fo) " (ce-fs. . . fmgr 07 ")

" e(re.f) (.7 f) e ) (re fu) (€T fi) e T f)

(1€ f2) (€7 fa) . (¢ -7g1) (7€ 91) " (€ g) ") -
e(re’ f;)(fe'.ﬁ foo s Fmng e g7V (€ 00)"

= e(re . (f'pgY))(rg)-L

3. Next suppose that g is disjoint from both e and f , which arise from some critical
pair. We can write w as w'tg’ for some weF and g'cet such that g = w'.¢/,
and there are edges €', f'€star*(w') such that e = ¢’ g’ and f = f'.ug'. Again

we suppose that the edges e’ and f' at w' are resolved along positive paths
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W rrevevesemnmnnienriaaenns we'rg’ W o e'rg
4 v e '
Papy! eererssesisescsnsninn e rq Pt re'rg'
Te'w g Te'w i
re . f!
Te'.q elrfl
Te'Tf! re'rf!
7€e.p *
* ez

Figure 5.4: Resolution of type 2 overlap

p=e...em and ¢ = fi...f, on the boundary of a 2-cell to some vertex z. This
overlapping pair can be can be resolved along the following positive homotopy

reductions:
hi: g ~ e(re.g')(e.Tg")!
~  e(er.1g’)(rer.g')(er.7g") " (¢! . Tg")
=" e(p1g)(zg)(p ) (¢ rg')
and
ha: g~ f(rf.g)(f .rg)?
~* flawg)(z9) (g g ) (f'7g) 7
~* e(pg'q.9')(2.9') (g7 79" (€pg  7g') !

~* e(pig')(z.g')p~ g ) (¢ Tg) !

4. (critical overlap) Lastly suppose that none of the edges e, f or g are disjoint

from the other two. Then we have the pair of homotopy reductions shown



QW oreereeereenens g ........... w '7-91
e N\
P T ————— re'rg'
pig’ prg
* *
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Figure 5.5: Resolution of type 3 overlap

Figure 5.6:

. f
N
Te Tf * 2 f.9
* Wk
Ze,f

Critical overlap
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in Figure 5.6 across 2-cells arising from the trivializer p. Since the reduction
system is complete this pair can be resolved, and in fact there is a pair of positive

homotopy reductions
g~"er.

where r is the irreducible path which we obtain by performing homotopy re-

ductions on the path pg~1.

Remark 5.2.4 Note that the critical overlaps of this homotopy reduction system
correspond precisely to the critical triples (Definition 4.4.2) of the original rewriting

system, together with their translates under the two-sided action of F.
5.2.2 Homology

In [37], the critical overlaps which are not translates of others under the two-sided
action of F are called the substantial critical pairs of the homotopy reduction system.
It is shown that in the case when the homotopy reduction system obtained from p is

complete, we can extend the partial resolution (1.9) to dimension 4:

25.c—2-25p > 7Sr 2> 25x 2> 75 27— (5.1)

where ¢ denotes, as above, the set of substantial critical pairs of the homotopy re-

duction system. .

Since the substantial critical pairs correspond to the set of critical triples of the
rewriting system, we have the corollary that a monoid with a finite complete rewriting
system is of type left F'P; (and also right FP,). While this is clearly a weaker
result than that given in the Anick-Groves-Squier Theorem (Theorem 1.4.4), it is
still interesting in itself: in (5.1) the basis p corresponds to the critical pairs of
the rewriting system, whereas the basis of the free module one dimension higher

corresponds to the “critical pairs” of a higher dimensional rewriting system.
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We shall not discuss this in detail; we just mention it as an interesting alternative
to our method of extending the partial resolution (1.9) to dimension 4 in Chapter 3

by introducing a new 3-complex based on D and studying its second homology.



Appendix A

Appendix

A.1 Abels’ group

Abels’ group [1] is a finitely presented group which is not of type F Ps, and so by the
Anick-Groves-Squier Theorem (Theorem 1.4.4) it has no finite complete rewriting
system. We begin this subsection by showing that one of its subgroups does have
a finite complete rewriting system, and we can use this as a base to give a finite

A-complete rewriting system for an HNN-group.

Using the abbreviation [z, y] for the word z~ 'y~ lzy,

_ a,b,c,d,e 5 [ae], b=]a,c], [a,b], [c,b]
H < d=lce], [cd], [ed], [b,d]>

is a presentation for the group of matrices with integer entries and 1’s on the diago-
nal [1]. We can add by a type 1 Pietze transformation the new generator t = [a,d] =
[b,€]. These generators correspond to matrices with 1’s on the diagonal and a 1 in

the entry labelled by the corresponding capital letter:

1 ABT
1 C D
1 E
1

119
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so that, for example, we identify b with the matrix

1010
100
10
1

From this we can derive the rewriting system Py for #, consisting of the alphabet

-1 -1 -1 - - -
a,a ’b,b ’c’c ’d7d 176,6 17t’t 17

together with the following set of rules:

Wa® = o'b dy = v di¢ = 2d
ca = ablc iy = bd ec = cdle
cla = abc! eb = btle elc = cde™!
ca”l = a b elp = bte! ec’! = clde
cla7! = aWle!  eb ! = blte ele! = ¢ ldle!
da = atld e~ 1p-1 = plt-le! te = it
dla = atd™! ey = Pt
da!' = atd edd = de
d—-la—l — a—lt—ld—l dﬁtb —_ tbdﬂ
ela® = abe!
e = a'tt et = tel

where the superscripts # and * may take the values —1 or +1 on each side of a rule,

together with the set of rules of the form
xf =1 (e ==%1,2€{g,b,c,d,e,t})

describing free reductions.

Proposition A.1.1 The rewriting system Py, for is complete.

Proof: The rules have been chosen in order that any word on the generators is

rewritten in a finite number of steps to a word of the form

a®tPcrt def (A.1)
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where a, 8,7, 0, ¢, T€Z. To show that it is noetherian we can check that the rules are
compatible with recursive path order from the left (Definition 1.1.3) induced by the

partial order

et o dt >t b ¢t b bt b ot
on the alphabet. For example, ca>ab~'c holds because c>a and ca>b'c, the latter
being true because ¢>b! and ca-c, again the latter holding because a-1.

The fact that Py is complete follows easily by checking that all the critical pairs are
resolved. For example caa™! can be rewritten to either ¢ or ab-'ca™!, thus forming a

critical pair which can be resolved by the path
ab~lea™' = ab~'a be — aa~ b b — b~ 1be .

-

Remark A.1.2 If we wanted to verify that Py is a rewriting system for the group
of matrices we are studying we would also need to show that each matrix can be
represented by a word of the form (A.1) - this is not difficult to check. The standard
presentation of the group of 3x3 upper triangular integral matrices with 1’s on the

diagonal (the integral Heisenberg group) is derived in a similar manner in [33, §5.4].

We want to use 'Py to produce a A-complete rewriting system by forming an HNN
extension.

Lemma A.1.3 The subgroups (agb,c?,e) and {a?,b,c,e) of H are isomorphic.

Proof: Any word on the generators a, b, ¢® and e will be rewritten to an irreducible

word of the form
a®bP P dPl e

where a, 3,7,0,€, TEZ, whereas any word on the generators a?, b, ¢ and e will be

rewritten to an irreducible word of the form

aPP Ot d’e
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where «, 8,7, 0, €, TEZL.

It is then straightforward to show that these subgroups are, respectively, the

groups of matrices of the form

1 * * % 1 px x %
1 px p* 1 * =
and
1 =% 1 *

1 1

with integers in the entries marked with a x. There is an isomorphism

{a,b,,e)—{(a?, b, c,e)

given by
la B 7 1l pa B 7
1
py pé — 1 v 6
1 € 1 €
1 1
again where a, 8,7, 0,¢,T€Z. y

We can then form the HNN-extension

G=(H|z;z 'ax =0d [z,b], zca™' = &, [z,€])

with base group H and stable letter x associating the subgroups (a, 'b,c”,e> and
(aP,b,c,e) according to the isomorphism described in Lemma A.1.3. We can ex-

tend Py to obtain a rewriting system Pg for G by adding the letters z, 7!, together
with the set of rules .

iz =1 oy = P 7l = dz!
zla = aPz7! ~1ep -1 zhdr = da
= i = ¢z zd = dPx
z7la™! = a Pzl gTle? = lg! zd™l = dPx
za? = ax e = cPx
rza P = a‘lx IIIC_]' = ¢ Pg xﬂeb — ebxﬂ
' = ot

(again § and b may take the values +1 or —1).
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Proposition A.1.4 The rewriting system Pg is A-complete.

Proof: First, the rewriting system noetherian, since it is compatible with the recur-

sive path ordering from the left induced by the partial order
aFla bt actl attt qdt! qetl q g,
Now suppose that w is a non-empty irreducible word such that W = 1. Since Py is

complete, we can assume that w contains instances of the letters z, z~!. By Brittons’

Lemma (Lemma 2.2.2) w must contain a subword of the form
et dPe s

or of the form
raP* Pt dPef 7,

where a, 3,7, 0, €, TEZ, and this contradicts the assumption that w is an irreducible

word. r

Remark A.1.5 Note that Pg is not complete. For example, the two single edges
zca — Pza  and  zea — zab~le

rewrite the word zca to two distinct irreducible words.

Remark A.1.6 Abels [1] has shown that the group with the presentation
.

A=(G|z; 27z =, zez™! = &)

is not of type F'P;, and therefore by the Anick-Groves-Squier Theorem it has no finite
complete rewriting system. On the other hand A is a presentation of the group of

matrices of the form

1 x =*
x ok
*

-l ¥ X ¥
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where the entries marked with * take values in the ring of rational numbers with
denominator a power of p, and with positive units on the diagonal. As such, the

group has solvable word problem.

Exhibiting a finite A-complete rewriting system for this group would therefore give
an example of a group with such a rewriting system but without any finite complete
rewriting system, thereby answering Open Question 2.1.8. Unfortunately, A does
not define an HNN-extension with base group the group presented by G, and so we
cannot use Britton’s Lemma to derive a A-complete rewriting system for Abels’ group
using Pg. This statement can be justified by considering the word w = [a, [ab, 271 ¢z]]

which is not equivalent to 1 in G. In A, however, it is equivalent to 1, since because

z corresponds to the matrix

10 00
1 00
1/p 0

1

w describes the commutation of the matrices
1

10
1(1) and

O OO
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