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SUMMARY 

Understanding coevolution between phenotypic variation and other traits is of 

paramount importance in explaining the origin and maintenance of polymorphism in 

natural populations. We tested whether the apostatic selection hypothesis can explain 

the evolution of plumage polymorphism in raptors and owls. Results in neither of 

these bird groups supported this: plumage polymorphism was not more common in 

taxa hunting avian or mammalian prey, nor in migratory species. In contrast, we 

found that polymorphism was related to variables such as population size and range 

size, as well as breeding altitude and breeding latitude. 

The Common Buzzard shows three plumage colour polymorphisms, which differ in 

their lifetime reproductive success. This species has previously been suggested to 

mate maladaptively with respect to which colour morph it chooses as a mate. We 

compared the observed mating pattern of mating with one's mother's phenotype by 

using a demographically structured population model as a basis for an evolutionary 

invasion analysis. The mating strategies competing with the observed one were 

random, mating with one's own phenotype, mating with an individual dissimilar to 

one's mother's phenotype and mating to maximise fitness. We showed that buzzards 

do indeed appear to mate maladaptively but only if we assume that the genes for 

mate choice "are aware of' which phenotype they reside in. If this is not the case, 

due to potential genetic constraints, buzzards do mate adaptively although the 

observed strategy appears to be 'the best of a bad job. ' 
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The detrimental effects of inbreeding are well known, and they have been shown to 

be associated with lower levels of reproductive success, higher levels of parasitism 

and differences in disease susceptibility. To better understand large fitness 

differences between morphs in the colour polymorphic common buzzard, Buteo 

buteo, we investigated differences in the levels of internal relatedness between 

morphs. As the common buzzard mating system is non-random and the light and 

dark morph individuals are less abundant than the intermediates, it could be the case' 

the extreme colour morph individuals are more inbred. However, no differences were 

found in levels of inbreeding. 

In birds, the physiological and behavioural consequences of colour polymorphisms 

are not widely known. Here we used an experiment to investigate the effect of this 

melanin-based polymorphism on nest defence behaviour in the common buzzard. 

Among males, light morphs were found to be significantly more aggressive to a 

perceived threat of nest predation than either intermediate or darkly coloured birds, 

while there was a non-significant tendency for the reverse among females. The level 

of aggression observed for each member of a pair was independent of the level of 

aggression shown by the other member. These results illustrate that polymorphisms 

can be associated with alternative reproductive tactics in birds, and suggest a possible 

link between the biochemistry of melanin production and individual behaviour. 

For most species living in seasonal environments, timing is an important determinant 

of the success of a breeding attempt. Individuals also face a trade off between current 

and future reproduction. Here we investigated whether colour morphs differed in 

their timing of breeding. Light-light and dark-dark pairs were found to breed earlier 
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Summary 

than the population mean, with light-dark pairs fledging chicks slightly later. 

Differences in reproductive strategies between morphs may account for the observed 

differences. 
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Chapter 1 

GENERAL INTRODUCTION 
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Chapter 1 

Colour Polymorphism 

The Oxford dictionary definition of a polymorphism is: "the existence of two or 

more forms that are distinct from one another but contained within the same breeding 

popUlation." 

Evolutionary ecologists focussed on stable genetic polymorphisms and the processes 

that lead to and maintain them during the 1950s and 60s (Dobzhansky 1970). This 

led to theoretical predictions concerning the evolutionary dynamics and ecological 

mechanisms involved. As a noticeable phenomenon colour polymorphisms were an 

obvious choice for study. Colour polymorphism, the occurrence of two or more 

distinct colour phenotypes within a population, has been described in a wide range of 

taxa. For vertebrates all major taxa contain species, which exhibit this phenomenon 

(Fish, Horth 2003; Amphibians, Hoffman and Blouin 2000; Reptiles, Sinervo and 

Lively 1996; Birds, Theron et al. 2001; Mammals, Ritland et al. 2001). 

In invertebrates there are well-documented cases in marine isopods (Merilaita 2001) 

and molluscs (Singh 1981; Cook 1990, 1992). 

In humans, perhaps the best-known case is that of the balanced polymorphism for 

sickle cell anaemia (Allison 1955, 1964). In areas where malaria is prevalent, 

individuals that are heterozygous for the sickle cell gene are less susceptible to the 

disease than homozygote non-carriers, the other homozygote being lethal. This is a 

classic case of heterosis or heterozygote advantage. 

5 



Four main hypotheses have been proposed to explain the evolution of colour 

polymorphism in birds (Galeotti et al. 2003). 

1. Apostatic selection 

Chapter 1 

This is a type of frequency-dependent selection where it is advantageous for the 

mutant morph to be different from the majority of other morphs (Paulson 1973; 

Rohwer 1983; Rohwer & Paulson 1987). Prey are less 'familiar' with this morph and 

they do not have an 'avoidance image' for this rare morpho Selection will favour the 

rare morph until a balance between morphs is achieved, mediated by the prey. This 

theory is often proposed to explain polymorphism in raptors and skuas (Rohwer & 

Paulson 1987). 

2. Disruptive selection 

A balanced colour polymorphism may arise if disruptive selection favours the 

extreme individuals in a normally distributed population (Greene et al. 2000). 

Camouflage or crypsis in a heterogeneous habitat may result in different morphs 

being selected for (Galeotti & Cesaris 1996). The main group for which the mimetic 

function of colour polymorphism has been proposed is the herons (Murton, 1971; 

Caldwell, 1986). However, some authors find no relationship between morph and 

habitat background (Itoh, 1991). 

3. Non-random mating 

Fisher (1930) stressed, the existence of a permanent polymorphism implies a 

selective balance between the two (or more) alternative morphs, both enjoying some 

selective advantage but also suffering some disadvantage. Colour polymorphism may 
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arise from some preferences in mate-choice. Female choice for conspicuous males 

may evolve if bright colour is an honest signal coupled with higher predation 

pressure. Lower quality males are unable to produce this costly trait and become a 

more cryptic morph (Endler 1980, 1983, 1987). 

Disassortative mating may also lead to polymorphism (Lowther 1961; Murton et al. 

1973). One possible reason for disassortative mating is to aim at optimal outbreeding 

if genetically diverse offspring are favoured. Disassortative mating can maintain 

polymorphisms by favouring rare morphs, frequencies will then change over time. 

4. No selection 

Colour polymorphism may be a neutral non-adaptive trait genetically correlated to 

another ecological trait, i.e. pleiotropy. Alternatively, the colour polymorphism may 

be neutral per se. If this were true then it would be expressed in large predators, free 

from predation pressure, and there does not appear to be any good evidence for this. 

These mechanisms are not mutually exclusive and may operate simultaneously in 

natural populations. 

One of the best understood and much studied avian cases is the colour polymorphism 

in the lesser snow goose, Chen caerulescens caerulescens (Cooke et al. 1995). The 

existence of light and dark plumage morphs seems to be an historical phenomenon. 

The two morphs appear to have evolved in allopatry and contact between them was 

re-established in the recent past. Despite clear differences in colour, there appears to 

be no functional difference between morphs (Cooke et al. 1985). Young birds 

imprint on their parents' morph and this helps to maintain morph segregation by 
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positive assortative mating. Where mixed colonies occur and offspring are 

sometimes raised by parents of different morph, thereby pairing up with the 'wrong' 

morph themselves, no appreciable difference in fitness has been found (Cooke et al. 

1995). 

Another well-known example is the three species of Stercorarius skua that breed in 

the Northern Hemisphere and show plumage polymorphism. Of the three, the Arctic 

Skua (Stercorarius parasiticus) is perhaps the most studied. O'Donald (1983) in his 

study of a colony in Shetland, argued that sexual selection occurred with respect to 

morph because females showed a preference for pairing with melanic morphs. 

However, natural selection appeared to be acting on light morph males due to their 

earlier age at first breeding. Further work on other skua colonies has failed to find 

similar patterns of mate choice and life history (Phillips & Furness 1998). 

Finding the genetic basis for colour polymorphism has been almost entirely lacking, 

but one species where the basis is known is the White-throated sparrow Zonotrichia 

albicollis. It occurs in two morphs, having either a white or tan eye stripe. Birds with 

a white stripe have a dominant peri centric inversion on chromosome 2 (Thomycroft 

1975). Behavioural differences between morphs have been shown and include 

differing levels of extra-pair mating and differing levels of aggression (Tuttle 2003). 

Ninety-five percent of pairings are mixed-morph due to strong negative assortative 

mating. The population comprises of about half heterozygotes, which are white and 

half homozygous recessives. This population structure is the predicted equilibrium if 

one homozygote is fitter than the other (Falk and Li 1969) and the double inversion 

'white-white' may be nearly lethal, as they are extremely rare. 
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In the Ruff, Philomachus pugnax, there is a genetic polymorphism that is associated 

with alternative mating behaviour at leks (Lank et al. 1995). Males of the two 

alternative tactics also exhibit differences in colouring of the elaborate breeding 

plumage. By rearing ruffs in captivity, Lank et al. (1995) showed that the morph 

development was consistent with a single~locus, two~allele autosomal genetic 

polymorphism. 

Considering how these examples of avian colour polymorphisms fit into the four 

categories (apostatic selection, disruptive selection, non-random mating and no 

selection) listed by Galeotti et al. (2003), reveals that relatively little is known about 

the actual selection pressures leading to colour polymorphism. The lesser snow 

goose case possibly comes under the 'no selection' theory, with the ruff and white

throated sparrow being examples of non-random mating. The arctic skua is possibly 

a case of apostatic selection. 

KrUger & Lindstrom (2001) have previously shown that the different morphs of 

buzzard have markedly different lifetime reproductive success, with intermediate 

individuals being almost twice as successful as the other two morphs. These less fit 

morphs appear to be maintained by Mendelian segregation, with the mode of 

inheritance appearing to be at a single-locus with two alleles, intermediates being the 

heterozygous form. Thus, this apparent heterozygote advantage in buzzards is most 

like the scenario that we see in the human example of sickle cell anaemia (Allison 

1955, 1964). 
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Chapter 1 

KrUger et al. (2001) suggested that buzzards mated maladaptively with respect to 

morpho Light and dark individuals should preferentially pair up to produce all 

intermediate offspring. However, they showed that individuals preferentially paired 

up with birds of the same phenotype as their mothers, thereby meaning that light 

birds and dark birds would never pair up even though these pairings would produce 

only intermediate, maximally fit offspring. Young birds imprinting on the mother's 

phenotype most likely maintained this maladaptive mating. 

Study Species 

The Common Buzzard (Buteo buteo) is a medium-sized raptor (measurements: 

length 50-57cm, wingspan 113-128cm and weight 525-1364g (Cramp & Simmons 

1980;del Hoyo et ai. 1994» found throughout the Palearctic region, from the Canary 

Islands through to Japan (see Fig. 1.1). Common Buzzards occur from sea level up to 

an altitude of approximately 1000 metres. They utilise a wide range of habitats, the 

only requirement being small patches of trees for roosting and breeding, although 

they have been recorded as nesting on the ground. Northern populations of buzzards 

are either fully or partially migratory. Wintering areas include sub-Saharan Africa, 

South East Asia and India. The degree of reversed sexual dimorphism is much less 

than in some species in the Family Accipitridae. Females are only 5-10% heavier and 

larger than males (Cramp & Simmons 1980). 

The nominate race B. b. buteo which occurs in western Europe has the most variable 

plumage of any of the European Accipitridae (Glutz von Blotzheim et al. 

1971;Cramp & Simmons 1980;del Hoyo et al. 1994). Three colour morphs have 
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been described and are readily identifiable in the field. These morphs are termed 

intermediate (Fig. 1.2), dark (Fig. 1.3) and light (Fig. 1.4). 

[:Z. 

. -
• Breeding range 

• Winter range 

Figure 1.1: The distribution of the Common Buzzard (Buteo buteo). 
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Figure 1.2. Intermediate Morph Buzzard. 

Figure 1.3. Dark Morph Buzzard 
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Chapter I 

Figure 1.4. Light Morph Buzzard 

Buzzards are usually monogamous and established pair bonds can last a lifetime 

(Cramp and Simmons 1980). Pairs occupy territories in late winter and laying occurs 

between late March and early May. Mean clutch size is roughly 2.6 (1-6) eggs 

(Cramp and Simmons 1980) and incubation lasts for 33-38 days. Females do most of 

the incubation while the male provisions with food. Chicks fledge 33-38 days after 

hatching (Cramp and Simmons 1980) but are fed by the parents for up to several 

weeks. 
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Study Site 

Data on Common Buzzards has been collected since 1989 in a 300 km2 area in 

Eastern Westphalia, Germany (see Fig. 1.5). This area lies between the towns of 

OsnabrOck and Bielefeld. The area consists of three main habitats. In the north the 

area is heavily cultivated with a mosaic of agricultural fields, forest patches and 

meadows. Running diagonally through the middle is the Teutoburger Wald, which is 

a low-mountain forested area. In the south, there is another cultivated area, 

interspersed with forest patches that mainly consist of Scots Pine due to a more 

sandy soil type. 

Fig. 1.5. Map showing the location of the study area 
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Questions addressed in this Thesis 

This thesis investigates the evolution and life history consequences of colour 

polymorphism in the Common Buzzard. This study builds on the earlier work by 

KrUger et al. (2001) and extends it in various ways to further investigate the puzzle 

of the large fitness difference between the different morphs in the Common Buzzard. 

To put this phenomenon into a broader evolutionary context, Chapter 2 is a 

comparative analysis of raptors and owls and investigates whether traits associated 

with colour polymorphism are consistent with the avoidance-image hypothesis 

(Paulson 1973; Rohwer & Paulson 1987). This hypothesis suggests that a mutant 

new predator morph will invade a population because the prey does not recognise the 

new morph as readily as a predator compared with a common morpho 

Once the polymorphism has arisen a mechanism is required to maintain it in a 

population. Assortative mating is one such mechanism. Buzzards have been shown to 

assortatively mate with respect to colour morpho Chapter 3 consists of a modelling 

approach to assess whether buzzards do indeed mate maladaptively as has been 

previously proposed (KrUger et al. 2001). 

Structured populations without a panmictic mating system may be more likely to 

suffer from differing levels of inbreeding. Inbreeding and its effects have been shown 

to have strong repercussions for lifetime reproductive success (Keller & Waller 
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2002). Chapter 4 investigates whether differences in morph reproductive success are 

attributable to differing levels of inbreeding between the morphs. 

Sometimes different morphs have different behaviours (Tuttle 2003). Chapter 5 

investigates behavioural differences between morphs and their potential effect on life 

history. Another behavioural trait is the timing of breeding and its association with 

variation in reproductive output. In Chapter 6, I investigate whether the timing of 

breeding can account for differences in reproductive output between morphs. 

Chapter 7 consists of a general discussion of the work embodied in this thesis. 
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Chapter 2 

Chapter 2 

THE EVOLUTION OF PLUMAGE POLYMORPHISM IN 

BIRDS OF PREY AND OWLS: THE APOSTATIC 

SELECTION HYPOTHESIS REVISITED 

This chapter forms the basis of a paper published as Fowlie, M.K. & KrUger, O. 

2003. The evolution of plumage polymorphism in birds of prey and owls: the 

apostatic selection hypothesis revisited. Journal of Evolutionary Biology 16, 577-

583. 
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ABSTRACT 

Coevolution between phenotypic variation and other traits is of paramount 

importance for our understanding of the origin and maintenance of polymorphism in 

natural populations. We tested whether the evolution of plumage polymorphism in 

raptors and owls was supported by the apostatic selection hypothesis using ecological 

and life history variables in birds of prey and owls and performing both cross taxa as 

well as independent contrast analyses. For both bird groups, we did not find any 

support for the apostatic selection hypothesis: plumage polymorphism was not more 

common in taxa hunting avian or mammalian prey, nor in migratory species. In 

contrast, we found that polymorphism was related to variables such as population 

size and range size, as well as breeding altitude and breeding latitude. These results 

imply that the most likely evolutionary correlate of polymorphism in both bird 

groups is population size. This means that different plumage morphs might simply 

arise in larger populations most likely due to a higher probability of mutations. 



Chapter 2 

INTRODUCTION 

Phenotypic polymorphism independent of sex and age is found in a variety of taxa: 

fish (Franck et ai., 2001), reptiles (Losey et ai., 1997), birds (Huxley, 1955; Theron 

et ai., 2001) and mammals (Ritland et ai., 2001). Phenotypic polymorphism can be 

restricted to parts of the body (hom type: Gulland et ai., 1993, throat colour: Sinervo 

& Lively, 1996) or mean that entirely different skin or plumage phenotypes coexist 

in a population (O'Donald, 1983; Ritland et ai., 2001). The evolution and persistence 

of phenotypic polymorphism has challenged evolutionary ecologists for decades 

(Darwin, 1859; Mayr, 1963; Pemberton et ai., 1991; Lank et ai., 1995; Seehausen et 

ai., 1999). The challenge lies in explaining why directional selection on a trait as 

important as skin or plumage colour has failed to eliminate variation or, alternatively, . 

why different morphs may be actually selected for. 

Plumage polymorphism is especially common among certain bird taxa (Le Corre, 

1999), such as birds of prey (Falconi formes), owls (Strigiformes) and skuas 

(Stercorariidae). Since these three groups are predatory, the widespread occurrence 

of polymorphism in these taxa has prompted evolutionary ecologists to propose 

hypotheses concerned mainly with foraging. The most widely accepted hypothesis is 

termed apostatic selection hypothesis or the avoidance-image hypothesis (Paulson, 

1973; Rohwer, 1983; Rohwer & Paulson, 1987). The logic behind this hypothesis is 

appealing: a mutant new predator morph will invade a population because prey does 

not recognise the new morph as readily as a predator compared to a common morpho 

This selective advantage will lead to the new morph becoming more common until a 

frequency-dependent eqUilibrium is reached and the population is dimorphic 
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(Rohwer & Paulson, 1987). Support for this hypothesis would be if polymorphism 

was positively correlated with prey size (from insects over reptiles to birds and 

mammals) or hunting method (from preying on defenceless prey with low escape 

potential to prey with both high defence and escape potential). 

While there has been some empirical support for the apostatic selection hypothesis 

(Paulson, 1973; Rohwer & Paulson, 1987), it has never been tested on a large scale 

or using modem comparative analysis techniques. However, it is clear now th~t a 

.' 

comparative analysis should address the problem of phylogenetic inertia, which 

biases any cross-taxa comparison (Harvey & Pagel, 1991). The fact that no thorough 

test of the avoidance-image hypothesis has been done so far is surprising, because 

the theory makes two clear predictions, which can easily be tested. First, 

polymorphism should be higher in species hunting birds or mammals (prey that has 

good vision as well as learning capabilities). Second, polymorphism should be higher 

in migratory species than in resident species, because migrants, being absent from a 

habitat for part of the year, invade a monomorphic population more easily. 

As an alternative hypothesis, we tested whether polymorphism is merely a 

consequence of large population sizes, i.e. a presumably larger gene pool. Support 

for this hypothesis would be a positive correlation between polymorphism and 

measures of the gene pool such as population size and range size. 

Our aim in this paper is hence straightforward: we test whether the two predictions of 

the apostatic selection hypothesis hold and, more generally, what the ecological or 

life history correlates of plumage polymorphism in birds of prey and owls are. 
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MATERIALS AND METHODS 

We collected data on the 237 species in the family Accipitridae (true hawks) and on 

58 species of owls (order Strigiformes) from the literature (mainly Thiollay, 1994; 

del Hoyo et al., 1996; Konig et al., 1999; KrUger, 2000; Ferguson-Lees & Christie, 

2001). The dependent variable polymorphism was measured as the number of. 

plumage morphs described for each species in Ferguson-Lees & Christie (2001) and 

Konig et al., (1999). For those few species were an almost continuous variation in 

plumage has been reported, we entered the maximum number of morphs described in 

any species plus one (four for both birds of prey and owls). In addition, we included 

24 predictor variables for birds of prey and 21 for owls (Table 2.1). A global world 

population estimate for each bird of prey species was obtained from Ferguson-Lees 

& Christie, 2001) and although such estimates get increasingly crude with increasing 

abundance, most birds of prey are now rare enough to make usefully accurate 

estimates. Egg volumes were estimated from egg length and breadth measurements 

in Schonwetter (1967-1992) and the approximation for egg volume provided by Hoyt 

(1979). Prey size categories were used to reflect prey size and in most cases there is 

about an order of magnitude in weight between prey size categories. The variable 

hunting method was included in order to reflect the energetic cost of hunting and the 

aerial skill level needed. The habitat preference variable was ranked from closed 

canopy habitat to increasingly more open and less productive habitat, hence there is 

some overlap with the habitat productivity variable. Global breeding range size was 

calculated for each species from information in Ferguson-Lees & Christie (2001) for 
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birds of prey and by overlaying the distribution maps of owls with world country 

maps and calculating the breeding range size from this comparison. 

We performed both cross taxa analysis treating each taxon as an independent data 

point as well as calculating phylogenetically independent contrasts, using the method 

of Felsenstein (1985), as implemented in CAlC (Purvis & Rambaut, 1995). We 

included a cross taxa analysis because although formerly believed to yield erroneous 

conclusions (Harvey & Pagel, 1991), there is recent evidence that cross taxa a!lalyses 

.' 

can be as statistically valid and as biologically informative as independent contrasts 

(Price, 1997; Harvey & Rambaut, 2000). The comparative analyses for birds of prey 

were based on the osteological phylogeny of genera by Holdaway (1994) and a 

molecular phylogeny of species by Wink & Sauer-GUrth (2000). For owls, we used a 

molecular phylogeny of species provided by Wink & Heidrich (1999). All three 

phylogenies provide estimates of branch lengths that were used in the analyses. 

We developed multivariate stepwise regression models for both groups in SPSS. The 

models for independent contrasts did not include an intercept, as recommended by 

Harvey & Pagel (1991). To address the problem of mUlticollinearity, we looked at 

tolerance levels and only included variables above 0,1 tolerance, as reco~mended by 

Hair et al., (1995). Models were only considered valid if residuals were distributed 

normally (James & McCulloch, 1990). 
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Table 2.1 Explanatory variables included in the analyses and their description. 

Variable Description Birds of Owh 
prey 

Body weight Log body weight [g] + + 

Body size Body size from tip of bill to tip of tail [cm] + + 

Wingspan Wingspan [cm] + 

Wing length Wing length [cm] + + 

Tail length Tail length [cm] + 

Sex size dimorphism Male wing length over female wing length cubed + + 

Sex plum. dimorphism Scored from 0-4 (KrUger & Davies 2002) + + 

Population density Number of breeding pairs/IOO km2 + + 

Population size Log world population estimate in breeding pairs + .. 
Breeding system -l=polygyny,O=monogamy,l=polyandry + + 

Egg volume Estimated egg volume [ml] + + 

Clutch size Mean clutch size + + 

Incubation time Mean incubation time [days] + + 

Fledging time Mean fledging time [days] + + 

Reproduction rate Mean number of chicks fledged/pair and year + + 

Prey l=fruits, 2=insects, 3=snails, 4=frogs, 5=lizards, + + 
6=snakes, 7=fish, 8=rodents, 9=birds, lO=small carrion, 
l1=mammals, 12=large carrion 

Prey specialisation Scored from 1 (opportunist) to 4 (extreme specialist) + + 
(KrUger 2000) 

Hunting method Scored from 1 (only searching) to 4 (attacks on agile + + 
prey with defence potential (KrUger 2000) 

Habitat preference l=tropical forest, 2=subtropical & temperate forest, + + 
3=woodland, 4=freshwater habitats, 5=coastline, 
6=marsh, 7=savannah, 8=grassland, 9=mountain, 
1 O=semi -desert 

Habitat productivity Productivity in g carbon m-2 per year (Reichle 1.970) + + 

Breeding altitude Median breeding altitude above sea-level [m] + + 

Breeding latitude Median breeding latitude [0] + + 

Migration pattern Scored from 0-4 (KrUger & Davies 2002) + + 

Range size Log global breeding range size [km2
] + + 
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RESULTS 

Birds of prey 

Out of the 237 species, 72 or 30% showed some degree of polymorphism. Across 

species, the number of morphs described was significantly correlated with eight out 

of the 24 explanatory variables (Table 2.2). The degree of polymorphism increased 

with sexual plumage dimorphism, world population size, reproduction rate, 

migration pattern and range size while it decreased with incubation and fledging 

period as well as habitat productivity. This first analysis supported the second 

prediction of the avoidance-image hypothesis that migratory species should be more 

polymorphic. Across genera, the correlation pattern changes considerably. Seven out 

of the 24 explanatory variables were significantly correlated with the degree of 

polymorphism (Table 2.2). across species, namely that polymorphism increased with 

sexual plumage dimorphism and reproduction rate. Polymorphism decreased with 

body weight, body size, wingspan and wing length. In addition, polymorphism 

decreased with prey size, contrary to the prediction made by the avoidance-image 

hypothesis. These results were not changed when the carrion-feeders were excluded 

from the analysis (feeding on large dead prey renders predator recognition 

impossible and might bias results). 
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Table 2.2: Cross taxa correlations between polymorphism and explanatory variables 

for birds of prey. 

Cross species Cross genera 

Variable n r n r 

Body weight 197 -0.078 62 -0.263* 

Body size 237 -0.085 65 -0.253* 

Wingspan 232 -0.070 65 -0.277* 

Wing length 232 -0.047 65 -0.271 * 

Tail length 232 -0.049 65 -0.133 

Sexual size dimorphism 232 -0.038 65 0.014 

Sexual plumage dimorphism 237 0.186** 65 0.420*** 

Population density 145 0.036 59 -0.070 

Population size 237 0.263*** 65 0.156 

Breeding system 237 -0.027 65 -0.042 

Egg volume 163 -0.083 57 -0.194 

Clutch size 190 0.084 59 0.116 

Incubation time 148 -0.254** 52 -0.187 

Fledging time 141 -0.177* 50 -0.195 

Reproduction rate 115 0.193* 48 0.301 * 

Prey size 232 -0.102 64 -0.318* 

Prey specialisation 232 -0.048 64 0.025 

Hunting method 232 0.004 64 0.006 

Habitat preference 237 0.011 65 -0.211 

Habitat productivity 237 -0.129* 65' 0.194 

Breeding altitude 237 0.071 65 -0.148 

Breeding latitude 237 0.122 65 0.034 

Migration pattern 237 0.198** 65 -0.026 

Range size 237 0.216*** 65 0.121 

* p < 0.05, ** p < 0.01, *** p < 0.001 Only two correlations were also found 
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The independent contrast analysis at the species level identified three explanatory 

variables that co-evolved with the degree of polymorphism (Table 2.3). The multiple 

regression model was highly significant (F3,5o = 7.555, P < 0.0001) and explained 

31.2% of the variation in polymorphism degree. Polymorphism increased with sexual 

plumage dimorphism and world population size while it decreased with breeding 

altitude. 

Shifting to the genera level, the independent contrast analysis identified two 

"" 

explanatory variables, which co-evolved with polymorphism (Table 2.3). The 

corresponding model was highly significant (F2,38 = 7.299, P = 0.002) and explained 

38.9% of the variation in polymorphism degree. Polymorphism increased with both 

world population size and breeding latitude. World population size was also a 

predictor in the species' contrast model. In addition to these two variables which 

entered the model, polymorphism was also significantly correlated with breeding 

system, reproduction rate, incubation and fledging period and range size. 

Polymorphism increased from polygynous over monogamous to polyandrous 

breeding systems, increased with reproduction rate and range size while it decreased 

with incubation and fledging period. 
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Table 2.3: Multiple regression models for birds of prey species (top) and genera 

(bottom). The s.e. are 0.248 and 0.049 respectively and residuals are normally 

distributed. 

Variable 13 s.e t p R2 

Species contrasts (n = 53) 

Sex plumage dimorphism 0.334 0.115 2.912 0.005 0.179 

Breeding altitude -0.0003 0.0001 2.199 0.033 0.257 

Population size 0.169 0.084 2.012 0.048 0.312 

Genera contrasts (n = 40) 

Population size 0.228 0.064 3.563 0.001 0.325 

Breeding latitude 0.007 0.003 2.144 0.043 0.389 

27 

Collinearity 

0.960 

0.963 
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Owls 

Out of the 58 species included, 29 or 50% showed some degree of polymorphism. 

Across owl species, the degree of polymorphism was related to eight out of the 21 

explanatory variables (Table 2.4). Polymorphism increased with migration pattern 

while it decreased with body weight, body size, wing length, incubation and fledging 

period, prey size and hunting method. Again, correlations with prey size and also 

hunting method were negative, contrary to the prediction made by the avoidance

image hypothesis. However, like in the birds of prey cross-species analysis, m~re 

polymorphic species were also more migratory. 

The independent contrast analysis produced a multiple regression model, which 

included three explanatory variables, namely range size, wing length and habitat 

preference (Table 2.5). The model was highly significant (F3,54 = 12.696, P < 0.0001) 

and explained 41.4% of the variation in polymorphism. Polymorphism increased 

with range size and more open, less productive habitat while it decreased with wing 

length. Range size was also a significant correlate in the raptor genera contrast 

analysis. 
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Table 2.4: Cross species correlations between polymorphism and explanatory 

variables for owls. 

Variable n r 

Body weight 58 -0.291 * 

Body size 58 -0.306* 

Wing length 58 -0.279* 

Sexual size dimorphism 58 0.124 

Sexual plumage dimorphism 58 0.015 

Breeding system 48 0.164 

Population density 49 0.178 

Reproduction rate 47 0.059 

Egg volume 48 -0.226 

Clutch size 58 -0.117 

Incubation time 58 -0.423*** 

Fledging time 58 -0.295* 

Prey size 58 -0.331 * 

Prey specialisation 58 0.051 

Hunting method 58 -0.404** 

Habitat preference 58 0.001 

Habitat productivity 58 0.079 

Breeding altitude 58 -0.115 

Breeding latitude 58 -0.110 

Migration pattern 58 0.264* 

Range size 58 0.194 

* p < 0.05, ** p < 0.01, *** P < 0.001 
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Table 2.5: Multiple regression model for owl species contrasts (n = 57). The s.e. is 

0.279 and residuals are normally distributed. 

Variable 

Range size 

Wing length 

Habitat preference 

~ s.e. t 

0.694 0.140 4.968 

-0.008 0.002 3.758 

0.157 0.063 2.506 
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0.001 

0.001 

0.015 

0.173 

0.345 

0.414 

Collinearity 

0.946 

0.782 
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DISCUSSION 

Our comparative analyses do not support the apostatic selection hypothesis (Paulson, 

1973; Rohwer & Paulson, 1987). Neither in birds of prey nor in owls was any 

variable related to foraging a significant predictor of polymorphism levels. For this 

hypothesis to be supported, we would have predicted a positive correlation between 

prey size and/or hunting method and polymorphism level. This is due to the fact that 

birds and mammals constitute not only the largest prey categories but were also 

assumed to be those prey types which could learn to recognise a predator and hence 

would select for polymorphism in the predator (Paulson, 1973; Rohwer, 1983). One 

could argue that earlier studies (Paulson, 1973; Rohwer, 1983), proposing the 

apostatic selection hypothesis relied on cross taxa analysis whereas we used 

independent contrasts. However, even in the cross taxa analyses wehave done here, 

prey size was negatively related to polymorphism levels: this means that species 

hunting insects, amphibians and reptiles had higher polymorphism levels compared 

to those hunting birds and larger mammals. This already indicates that rather than 

prey, population size might be important because species feeding on smaller prey can 

achieve higher local and global population sizes than species feeding on large prey 

(Newton, 1979, see also below). Species feeding on a variety of prey (generalists) 

should be able to achieve higher population sizes than feeding specialists, but we did 

not find any significant negative correlation between prey specialisation level and 

plumage polymorphism. The other prediction made by the apostatic selection 

hypothesis, that migratory species should be more polymorphic than resident species 

(Rohwer & Paulson, 1987) is supported by the cross taxa analysis of birds of prey 
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and owls (we found a positive correlation between migration pattern and 

polymorphism level in both groups), but for both taxa there was no correlation using 

independent contrasts. 

Our results strongly indicate that polymorphism is related to population size in birds 

of prey, and also in owls. While we did not have a world population estimate for 

owls, one strong predictor of polymorphism levels in owls was range size, which is 

known to be tightly correlated with population size in many raptors (Ferguson.-Lees 

.. 
& Christie, 2001). Other predictor variables also indicate the paramount importance 

of population size. In birds of prey, polymorphism decreased with breeding altitude 

and increased with breeding latitude. Clearly, species breeding at lower altitude can 

achieve a larger range size and population size and it is well known that species' 

ranges increase from the equator to the poles (Rapoport's rule, Rapoport, 1982). 

Even habitat preference, an important predictor variable for owls, might be related to 

population size. We found that owls preferring more open, less productive habitats 

had a higher polymorphism level than those living in closed forests. This might 

reflect again larger ranges and populations in temperate species compared to tropical 

rainforest species. 

One might argue that if population size is such an important variable linked to 

polymorphism, why is polymorphism not much more common among passerine 

species, many of which attain far larger population sizes than any raptor? This 

ignores that predation is a powerful selection pressure. Predation however, does not 

greatly affect birds of prey and owls since even in the smaller species, predation 

pressures are weak, certainly compared to other bird groups. The notion that 
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polymorphism is more common in birds of prey, owls and skuas might simply also 

reflect that these three groups do not face ~trong selection from predation to reduce 

phenotypic variability. While we are the first to admit that inferences from 

comparative analyses should be treated with caution, because these types of analyses 

cannot distinguish between cause and effect (see, however KrUger & Davies, 2002) 

and the problem of differences in data quality between species, we believe that our 

main conclusion about the importance of the apostatic selection hypothesis is not 

greatly affected by these limitations. 

Finally, sexual plumage dimorphism was a significant positive predictor for 

polymorphism levels in birds of prey. This indicates that sexual selection might be a 

precursor for phenotypic diversity, because plumage differences between the sexes 

are often assumed to be the result of sexual selection (Andersson, 1994; Barraclough 

et al., 1995). If errors occur during recombination, the sex-linked genes responsible 

for dimorphism might become integrated into other chromosomes and polymorphism 

might arise independent of sex (Thome et ai., 1997). 

In conclusion, our results show that polymorphism simply arises more readily in 

large populations, but this says nothing about the mechanisms to retain it within a 

population. It is unlikely that such an obvious phenotypic trait is selectively neutral, 

hence there might be species-specific mechanisms to maintain phenotypic diversity. 

They can vary from mating preferences (O'Donald, 1983; Phillips & Furness, 1998), 

mating strategies (Lank et al., 1995; Sinervo & Lively, 1996), balancing genetic 

inheritance (KrUger et ai., 2001), to a combination of different selection pressures 

(Forsman & Shine, 1995; Losey et ai., 1997; Franck et ai., 2001). The appealing and 
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simple hypothesis that prey learns to recognise a predator which in tum selects for 

phenotypic diversity is unlikely to be generally true. 
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Chapter 3 

ARE BUZZARDS MATING MALAD APTIVEL Y? 

MODELLING THE INTERACTION BETWEEN MATING 

STRATEGIES AND POPULATION DEMOGRAPHY 

This chapter forms the basis of a paper in review in Evolution as: 

Fowlie, M.K., Lindstrom, J. & KrUger, O. Are buzzards mating maladaptively? 

Modelling the interaction between mating strategies and population demography 
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ABSTRACT 

The Common Buzzard shows three plumage colour polymorphisms, each one having 

significant differences in lifetime reproductive success. It has previously been shown 

to mate maladaptively with respect to which colour morph it chooses as a mate. Here 

we compare the observed mating pattern of mating with one's mother's phenotype 

by using a demographically structured population model as a basis for an 

evolutionary invasion analysis. Two scenarios were modelled, (i) preferred mates are 

always available, and (ii) mate availability depends on the prevailing demography in 

the population. The mating strategies competing with the observed one are random, 

mating with one's own phenotype, mating with an individual dissimilar to one's 

mother's phenotype and mating to maximise fitness. We show that buzzards do 

indeed appear to mate maladaptively but only if we assume that the genes for mate 

choice are aware of which phenotype they reside in. If this is not the case due to 

potential genetic constraints, buzzards do indeed mate adaptively although the 

observed strategy appears to be 'the best of a bad job.' We also show that mate 

choice has implications for the population demography, which in tum affects an 

individual's ability to secure preferred mates. 
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INTRODUCTION 

Choosing a mate is one of the most important decisions in an individual's lifetime. 

Theoretical and empirical studies show that the choice can have strong repercussions 

on reproductive fitness (Kokko 1998; West & Packer 2002), in both the short and the 

long term. Optimality is predicted in mate choice but real examples remain rare 

(Andersson 1994). The potential advantages of discriminating between mates are 

many and include species recognition, improved offspring viabil.ity, gaining a mate 

with better parental ability, or mate that better complements its partner. The majority 

of genetic models for mate choice concentrate on the heritable aspects of mating 

success and viability, however it is possible for non-genetic benefits to favour mate 

choice too (Kirkpatrick & Ryan 1991; Thornhill & Alcock 1983). Demonstrating 

genetic benefits from mate choice has not been easy and those that are found are 

often of minor consequence or unclear (Doty & Welch 2001; Brooks 2000; Jones et 

al. 1998). This, coupled with the fact that females may allocate differential resources 

to offspring (Cunningham & Russell 2000), can blur some supposed genetic benefit 

results. However, by examining the reverse situation i.e. the effects of inbreeding, 

(Keller & Waller 2002), where deleterious effects are known (Slate et al. 2000) we 
. . 

can clearly see the potential of genetic benefits from mate choice. Indeed, mate 

choice can take the form of avoiding certain individuals, or individuals can mate with 

individuals dissimilar to themselves to maximise the heterozygosity of their offspring 

(Brown 1997). 

Life-history theory would predict that individuals should maximise the reproductive 

value of offspring depending on their state or the environment (Brommer et al. 
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2000). Sex allocation theory does this for the manipulation of offspring sex (Hardy 

2002), but examples of the parental manipulation of other offspring states where 

fitness differences occur are rare. 

In the common buzzard (Buteo buteo), the benefits of mate choice are unusually 

clear. European buzzards are highly variable in colour and three main morphs have 

been distinguished (Glutz von Blotzheim et ai. 1971;Melde 1983). The frequencies 

of morphs tend to vary across Europe; nevertheless some genera~isations can be 

made. The dark morph is always the rarest morph ranging from 0.1 % (Dittrich 1985) 

to 17% (Zang et al. 1989). The light morph is slightly more common than the dark 

morph ranging from 2.3% (Dittrich 1985) to 21 % (Zang et ai. 1989). The 

intermediate morph is always the most common ranging from 60% (Zang et ai. 

1989) to 98% (Dittrich 1985). Of the three morphs, those of intermediate colour 

enjoy much higher lifetime reproductive fitness than the two extreme morphs 

(KrUger & Lindstrom 2001a), being both more fecund and longer lived. 

KrUger et ai. (2001) recently showed that plumage color seemed to be controlled for 

at a single locus with light birds having two pale form alleles and dark b~rds two 

dark, with intermediates being heterozygous. It was· also proposed that the common 

buzzard appears to mate maladaptively due to the fact that light and dark birds do not 

preferentially pair up to produce all intermediate offspring, thereby seemingly 

maximising their lifetime reproductive fitness. Their mate choice modelling showed 

that only the strategy of pairing with one's mother's phenotype produced a good fit 

with the data. It was argued that this strategy was being maintained by the imprinting 

of the offspring on the mother, this species recognition cue then having secondary 
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effects on mate choice later in life. Here we compared the observed strategy to four 

others by using a more rigorous evolutionary invasion analysis approach (pairing at 

random, pairing to maximise fitness, pairing with own phenotype and pairing with a 

phenotype dissimilar to one's mother) to see if individuals do indeed mate 

maladaptively, how different the different strategies would actually be, and how the 

resulting demographies would differ. 

MA TERIALS AND METHODS 

The overall fitness of the mother's phenotype strategy was compared against four 

others: random pairing, pairing to maximise fitness, pairing with one's own 

phenotype and pairing with an individual dissimilar to one's mother. Random pairing 

is a self-explanatory strategy, in which a female is assumed to accept any available 

male. In the maximising fitness str,ategy both light and dark morphs preferentially 

pair up with each other to produce the all intermediate offspring. Intermediate birds 

preferentially pair up with light birds to produce 50% intermediate and 50% light 

offspring. Finally, it is also possible that individuals follow the kind of assortative 

mating where they preferentially pair up with a mate of a similar phenotype or one 

that is dissimilar from their mother. 

As the buzzard colour morphs differ not only in their fecundity but also in their 

survival (KrUger & Lindstrom 2001a), to be able to compare the strategies, the 

number of offspring produced by a given morph was weighted by the reproductive 

values of the different offspring morphs (Caswell 2001). This weighted sum gives us 
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a fitness measure that takes into account the effectiveness of a given offspring to 

convey parental genes into future generations. The reproductive values of offspring 

produced into different morphs were calculated by finding the left eigenvector, v, of 

the transition matrix (Caswell 2001) separating between juvenile individuals and 

breeding adults of each morph: 

0 0 0 FLL FIL 0 

0 0 0 Fu FI/ FD/ 
0 0 0 0 F/D FDD A= (1) 

PYL 0 0 PAL 0 0 

0 PY/ 0 0 PAl 0 

0 0 PYD 0 0 PAD 

Here, each fecundity entry F ij, is formed by calculating: 

(2) 

where aij is the probability that a male of morph i pairs up with a female of morph j 

(this probability is thus dependent on the mate choice strategy and the frequency of 

the desired partners within the population), Bi denotes the probability that an 

offspring of morph i is born for this pair aij (KrUger et al. 2001), Pi is the survival 

probability for a new-born individual to enter into the yearling age-class, andJi gives 

the morph-specific female fertility. PYi and PAi values denote morph-specific annual 

survival probabilities for yearlings and adults, respectively. As we do not have direct 

estimates for the survival of offspring from fledging until their first breeding attempt, 

we used the value 0.536 (Cramp & Simmons 1980) as was done in an earlier analysis 

based on the same study (KrUger & Lindstrom 2001a). Morph specific adult survival 

values (PAi) were 0.482 for light, 0.722 for intermediate and 0.466 for dark birds. 
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These values are calculated from observed individuals within the study population 

(KrUger & Lindstrom 2001b). For morph-specific fertilitY,h, we used the weighted 

average (age-specific fertilities weighted by the sample size) over the breeding career 

of light, intermediate and dark females: 0.93, 1.67, and 0.54, respectively. Assuming 

50:50 sex ratios among offspring, we divided these fertility values by two as we are 

modelling only the demography of female part of the population. The fitness Aij for a 

female of morph i under mating strategy j then becomes 

where M denotes the part of morph-specific fertility producing an offspring of a 

given morph, and rj are the reproductive values of the corresponding morph's 

yearlings which are then used to weight the value of a given offspring. 

(3) 

However, the different reproductive values of offspring of different morphs is not the 

only determinant of a given mate choice strategy - also the population demography 

changes if different mate choice strategies are assumed and consequently, different 

frequencies of desirable partners are available (see Table 3.1 for illustration of this 

point). Therefore, two different scenarios were used. 'Free market', where 

individuals are always able to pair with their preferred choice under each of the four 

strategies, and 'Real Life', where the demography of the resident strategy influenced 

the availability of partner. 
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The overall fitness value for a given strategy under a given scenario was calculated 

as the sum of the three morph fitnesses under that strategy (see Appendix), as all 

morphs contribute to the strategy. Preference values for each possible pairing were 

assigned. These were based on the morph frequencies of a given population coupled 

with a weighted probability depending on the strategy and partially derived from the 

reproductive values. 

The stable age structure of the population following a resident strategy was 

calculated as the right eigenvector, W, of the transition matrix (Eq. 1) (Caswell 2001). 

Invasion analysis of each strategy was then performed, assuming that the mutant 

strategy is initially so rare that its effect on the population demography can be 

ignored (Houston & McNamara 1999). This involved introducing a mutant of one 

strategy into the resident strategy and seeing that given the population demography 

whether the mutant strategy's expected fitness was greater than that of the resident 

strategy. As the strategy fitness was calculated using the reproductive values, an 

invasion thus means that a mutant strategy would increase in numbers in a population 

of individuals following the original, resident strategy (see, e.g., McNamara 1993, 
. 

Houston & McNamara 1999). As the invasion criteria are based on the reproductive 

values derived from the transition matrix, the invasion analysis was deterministic and 

density-independent. This was for two reasons, firstly the observed population on 

which the model was based is relatively stable (population growth rate is close to 1) 

and therefore the assumptions of the matrix analysis are not violated (KrUger & 

Lindstrom, 2001). Secondly, as the population is so stable, a convincing analysis of 

possible density dependencies in life-history traits is impossible - especially as the 
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resolution of the analysis should probably be at the morph level given the huge 

differences between the morphs. It was assumed that once a strategy had invaded the 

population stable age structure would stabilize before another strategy invasion 

would happen. The actual numerical values of strategy fitness are not informative as 

they are not comparable between strategies due to the way in which the left 

eigenvectors, v, of the matrices were calculated (they are relative contributions to 

long-term population growth, and scaled so that a chosen stage is given a value of 1; 

Caswell 2001). However, an invasion hierarchy using all possibl~ combinations of 

resident and mutant strategies can be built, indicating which strategy can invade 

which. It is also important to note that each successive invasion changes the 

population demography thereby altering the ratio of morphs, which in tum influences 

mate choice and the ability of new strategies to invade. 

RESULTS 

Under the 'free market' scenario (Fig. 3.1a) pairing with an individual dissimilar to 

one's mother is invaded by all the four other strategies. ,The next best strategy is 

pairing with one's own phenotype, invaded by three others. This is invaded by 

pairing with one's mother's phenotype which in tum is invaded by random pairing 

which is invaded by maximise fitness strategy. 

Under the 'real world' scenario (Fig. 3.1b) pairing with an individual dissimilar to 

one's mother is invaded by the four other strategi~s. The next best strategy is random 

pairing invaded by three others. Of these three strategies invading random mating, 

mother's phenotype can only be invaded by maximise fitness strategy. Random 
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mating can also be directly invaded by maximise fitness strategy. If random mating 

is invaded by mate with your own phenotype strategy, this can be invaded by 

mother's phenotype strategy which in tum can be invaded by maximise fitness 

strategy, or it can be directly invaded by maximise fitness strategy. This gives a 

hierarchy of strategies with respect to fitness. Table 1 shows the changes in 

proportions of the different states depending on the strategy. For example the 

proportion of intermediate adults (ai) varies from 0.52 under pairing with own 

phenotype strategy to 0.72 under pairing with phenotype dissimilar to mother's. 
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a) 

------------------------~Time----------------------~~~ 

b) 

-------------Time-----------I ... ~ 

Fig. 3.1 Invasion hierarchies for the two different scenarios "free market" (A), and 
the "real world" (B). A strategy further away in time can always invade the strategy 
that was previously the resident one, and the arrows therefore show which strategy 
could mutate to which. 
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Table 3.1: Stable age structures (w), Reproductive values (v) and Population growth 

rates (l) for each mate choice scenario. 

State Random Non Own Mother Max 
mother 

w jd 0.0406 0.0267 0.0630 0.0545 0.0394 
jl 0.0485 0.0326 0.0667 0.0631 0.0483 
ji 0.0888 0.0776 0.1217 0.1175 0.0905 
ad 0.0832 0.0587 0.1084 0.0971 0.0803 
al 0.1036 0.0750 0.1187 0.1165 0.1027 
ai 0.6354 0.7294 0.5216 0.5514 0.6388 

v jd 1.0000 1.0000 1.0000 1.0000 1.0000 
jl 1.7940 1.7994 1.8310 1.9496 1.5663 
ji 10.8772 13.9144 99.1170 7.9120 8.9584 
ad 1.1254 1.0920 1.2189 1.1987 1.1274 
al 2.0189 1.9650 2.2318 2.3370 1.7658 
ai 12.2407 15.1945 120.8150 9.4840 10.0993 

l 0.8239 0.7995 0.8924 0.8776 0.8253 
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DISCUSSION 

We have compared different mate choice strategies in the cpmmon buzzard by the 

means of invasion analysis based on an individual-based long-term data set and 

demographic modelling. As the common buzzard shows genetic, persistent colour 

polymorphism where individuals of intermediate pigment enjoy much higher lifetime 

reproductive success than either of the extreme morphs, it is of interest to see 

whether the individuals aim to maximise the number of maximally fit offspring 

produced (KrUger & Lindstrom 2001; KrUger et al. 2001). If parents can produce 

offspring into different states, they are expected to maximise the sum reproductive 

value of their offspring instead of their number (Houston & McNamara 1999). 

Appealing as this idea is, good examples are rare. As the expected fitness value of 

the different types of offspring in buzzards depend heavily on their state (morph), 

this situation serves us as an unusual opportunity to study strategy fitness based on 

reproductive values. Our analysis ~hould therefore reveal the mate choice strategy 

that is realistically as close to an evolutionary optimum as can be shown, based on 

empirical data. 

A parallel idea in evolutionary ecology is that of sex allocation theory (Hardy 2002). 

In this, individuals manipulate the sex ratio of their offspring depending on 

environmental conditions and the quality of mate to maximise the reproductive value 

of those offspring. Individuals can do this either pre- or post zygotically. As morph 

determination has a simple genetic basis and we have no information on differential 

allocation to chicks of different morphs, we believe that mate choice is the only 

means available to maximise the reproductive value of offspring. 
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We modelled the mate choice in two different scenarios, under "free market" where 

the desired type of mate is always available, and under the "real world" scenario 

where the number of available mates is limited by demography and competition by 

the other individuals. 

In both of these scenarios, pairing with an individual dissimilar to your mother is the 

worst strategy for a buzzard to use. This is due to the fact that because intermediate 

morphs are the most prevalent, not only is an individual most lik.ely to be an . 

intermediate but so is its mother. So by pairing with an individual dissimilar to it's 

mother a bird is more likely to pair with an individual that is detrimental to its 

reproductive success, i.e., one of the extreme morphs. 

Under a 'free market' scenario (Fig 3.1a) where each individual is always able to 

find its preferred choice, the observed mate choice strategy of preferentially pairing 

up with one's mother's phenotype (KrUger et al. 2001) appears to be profoundly 

maladaptive. Random mating will invade because this gives individuals a slightly 

higher chance of pairing the optimal partner, and mating to maximise fitness strategy 

also invades. However, this scenario is flawed because frequencies of the different . 
colour morphs vary within the population (see Table 3.1) and so the chances of 

actually getting your preferred partner are much lower. 

However, under the 'real world' scenario (Fig 3.1b) where an individual's choice is 

influenced by observed differences in morph frequencies governed by the population 

demography, the mother's phenotype strategy is only invaded by mating to maximise 

fitness strategy. 
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Thus, the mate choice strategy that the buzzards seem to follow in nature where they 

prefer their mother's phenotype (KrUger et al. 2001) appears at first glance to be 

maladaptive: individuals do not make the seemingly correct choice of passing as 

many genes to the next generation as possible. However, implicit in the maximising 

fitness strategy is the assumption that genes for mate choice are aware of the 

phenotype that they reside in. Light individuals should prefer dark ones, and vice 

versa, however the intermediate individuals should prefer light mates over dark ones 

to avoid producing the worst offspring combination. An individllal must therefore 

assess its own colour before making a decision with regard to potential partners, and 

this strategy is not a simple rule of thumb. For the plastic nature of this strategy to 

evolve, a very close link between genes for mate choice and those for color 

polymorphism would have to exist. Due to crossovers during recombination and 

other copying errors it may not be possible to maintain such a tight linkage between 

the two sets of genes, and therefore the evolution and/or maintenance of this strategy 

in a population is perhaps impossible (Ayala 1976). 

The mother's phenotype strategy is a general rule applicable to all individuals 

irrespective of morph and seemingly can be maintained by the imprintin.~ of 

individuals on their mothers from an early stage in their development. Genetic 

constraints imposed on the buzzards mean that although individuals could improve. 

their lifetime reproductive success by using the maximise your fitness strategy, they 

may be unable to do so. So within the imposed constraints individuals are in fact 

mating optimally and maximising the sum of their offspring reproductive value even 

though at first glance they appear not to do so. 
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Symbols used in the equations: 

L = Light Morph, D = Dark Morph, I = Intermediate Morph 

V = Reproductive Value, F = Fecundity, 

CAl CEI Cc = Preference choice, with A>B>C 

R = Random Mating Strategy 

X = Maximise Fitness Strategy 

o = Pair with one's own phenotype strategy 

S = Pair with mother's phenotype strategy 

Mx = Probability that mother was morph x 

Chapter 3 

Wx = Proportion of birds in population of morph x, derived from the stable age 

structure 

Yx = Proportion of young of morph x produced in a given scenario 

To illustrate the calculations involved in determining t~e fitness of a morph under a 

certain mating strategy, we show how we calculated the fitness for Light individuals 

under Random mating. The rest of the situations modelled were solved in the same 

way. Light individuals can only produce light or intermediate offspring from pairing 

with any of the three available morphs. The fitness accrued from producing light 

offspring is calculated as (VLFL [(CAWLYL ) + (CAWIyL )]). Here the probability of 

encountering a given mate (Wx ) is coupled with the proportion of light young 

produced in that mating (YL )· In the random mating scenario the preference value of 
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a particular pairing (C A ),each value is equal irrespective of the choice. This 

weighted sum of light offspring produced when pairing either with light or 

intermediate partner is then multiplied by the fecundity of the light adult (FL ) and 

finally scaled by the reproductive value of the light offspring (VL ). The same steps 

are repeated for calculating the production of intermediate offspring by a light bird: 

fitness for light birds under a random mating strategy. Similar equations are 

generated for intermediate and dark birds and the combined total value for the three 

morphs give us a strategy fitness value. 

Equations are given for strategy fitness for light and intermediate morphs only . 

. Equations for the dark morph are essentially the same as for light. Strategy equations 

for pair with a dissimilar phenotype to mother are the inverse for those shown for 

Pair with mother's phenotype strategy. 

The fitness for Light and Intermediate individuals under Random Mating Strategy 

can be shown as: 

LR = (VIFL [(CAWIYI ) + (CAWDYI )]) 

+ (VLFL [(CAWLYL ) + (CAWIYL )]) 

IR = (VIFI [(CAWIYI ) + (CAWLYI ) + (CAWDYI )]) 

+ (VLFI [(CAWIYL) + (CAWLYL)]) 

+ (VDFI [(CAWIYD) + (CAWDYD)]) 
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The fitness for Light and Intennediate individuals under Maximise Fitness Strategy 

can be shown as: 

Lx = (VLFL [CCBWIYL) + CCCWLYL)]) 

+ (VIFL [CCAWDYI ) + CCBWIYI )]) 

Ix = (VnFI [CCBWIYD) + CCCWDYD)]) 

+ (VLFI [CCAWLYL) + CCBWIYL)]) 

+ (VIFI [CCAWLYI ) + CCBWIYI ) + CCCWDYI )]) 

The fitness for Light and Intennediate individuals under Pair with Mother's 

Phenotype Strategy can be shown as: 
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The fitness for Light and Intermediate individuals under Pair with Own Phenotype 

Strategy can be shown as: 

La = (VLFL [(CAWLYL) + (CBWIYL)]) 

+ (VIFL [(CBWIYI ) + (CBWDYI )]) 

Ia = (VIFI [(CAWIYI ) + (CBWLYI ) + (CBWIYI )]) 

+ (VLFI [(CBWLYL ) + (CAWIYL)]) 

+ (VDFI [(CBWDYD) + (CAWIYD)]) 
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Chapter 4 

LEVELS OF INBREEDING IN THE COLOUR 

POL YMORPHIC COMMON BUZZARD 

This chapter forms the basis of paper in preparation as Fowlie, M.K. & Amos, 

W. Levels of inbreeding in the colour polymorphic common buzzard (Buteo 

buteo). 
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ABSTRACT 

The detrimental effects of inbreeding are well known, and they have been 

shown to be associated with lower levels of reproductive success, higher levels 

of parasitism and differences in disease susceptibility. To better understand 

large fitness differences between morphs in the colour polymorphic common 

buzzard, Buteo buteo, we investigated differences in the levels of internal 

relatedness between morphs. As the common buzzard mating system is non-
.. 

random and the light and dark morph individuals are less abundant than the 

intermediates, it could be the case the extreme colour morph individuals are 

more inbred. However, no differences were found in levels of inbreeding. We 

conclude that inbreeding depression does not explain differences in lifetime 

reproducti ve success in the common buzzard. 
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INTRODUCTION 

When close relatives mate, their offspring frequently suffer from reduced 

fitness. This phenomenon is known as inbreeding depression. The detrimental 

effects of levels of inbreeding on traits relating to individual fitness have been 

studied for several decades (Allendorf & Lear~ 1986; Duarte et al. 1996; Keller 

& Waller 2002). Inbreeding depression reflects the consequences of increased 
., 

homozygosity for alleles that affect fitness. It occurs through the superior 

performance of heterozygote genotypes (heterozygote advantage) and/or the 

build up of deleterious recessive alleles (Charlesworth & Charlesworth 1987, 

1999). Evidence exists to support both these mechanisms for inbreeding 

depression, however partially recessive deleterious mutations explain most 

cases observed in Drosophila (Charlesworth & Charlesworth 1999). 

There is evidence for inbreeding depression in several captive vertebrate 

populations (Lacy et al. 1993) and it has been documented in a number of 

natural populations too, including invertebrates (Chen 1993; Saccheri et al. 

1998), reptiles (Madsen et al. 1996; Olsson et al. 1996), birds (Be~sch et al. 

1994; Keller et al. 1994; Keller 1998), and mammals (Coltman et al. 1998; 

Coulson et a1.1998). Typically, the effects found are reduced survival and 

fecundity. 

Costs incurred through inbreeding appear to be great enough that individuals 

have evolved mechanisms by which to avoid them. These include mate choice 
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based on kinship related cues (Pusey and Wolf 1996; Bull and Cooper 1999), 

divorce (Hatchwell et al. 2000) and sex biased dispersal (Pusey 1987). Very 

small populations where inbreeding avoidance is not always possible can even 

be at risk of extinction due to inbreeding depression (Saccheri et al. 1998). 

There is some theoretical evidence that inbreeding is more likely in structured 

or mate choice limited populations compared to situations where individuals 

mix more freely (O'Donald 1960; Balloux, Amos & Coulson unpublished 

manuscri pt). 

In the colour polymorphic common buzzard (Buteo buteo) there are three 

morphs: light, intermediate and dark. Mating in the common buzzard has been 

shown to be non-random (KrUger et al. 2001) meaning that panmictic mixing 

of genes is unlikely. Birds preferentially pair with individuals of the same 

phenotype as their mothers, and this is potentially maintained by imprinting on 

the mother's phenotype (KrUger et al. 2001). O'Donald (1960) suggested that 

this type of imprinting might result in different levels of inbreeding between 

morphs. The polymorphism appears to be maintained genetically, controlled by 

a single locus, with intermediates being heterozygous (KrUger et al. 2001). In 

addition the morphs have markedly different lifetime reproductive success 

(LRS). Intermediate birds are almost twice as successful as the other two 

morphs (KrUger & Lindstrom 2001). However the exact reasons for these life

history differences between morphs are not clear. Morphs differ in their levels 

of aggression (Chapter 5) and their timing of breeding (Chapter6), the 

intermediate birds occupy better breeding territories (KrUger 2002), and the 
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predation risk by goshawk is heaviest to the light morph (KrUger 2002). 

However, it is unlikely that any of these factors provide a sufficient 

explanation for the large fitness differences between the morphs, especially 

because they do not affect the morphs in a similar way. One further possibility 

for the poor performance of light and dark individuals is that they are more 

inbred than the intermediate individuals. Here we quantify the degree of 

inbreeding in the different morphs of the common buzzard. 

MA TERIALS AND METHODS 

A buzzard population comprising of 35 to 101 breeding pairs per year has been 

monitored continuously since 1989 in a 300-km2 are in Eastern Westphalia, 

Germany. 

During the 2001 and 2002 breeding seasons, nests were climbed during the 

chick rearing stage, blood samples were taken from the brachial vein and 

individuals were assigned a morpho Adults were caught using mist nets. 

DNA Extraction 

DNA from the blood was extracted using an ammonium acetate method. 

Fifteen III of a blood/lysis buffer mixture was digested at 37°C overnight in 250 

III of digestion buffer (20mM EDTA, 50 mM Tris, 120 mM NaCl, 1 % SDS, pH 

8.0) with 50 Ilg of Proteinase K. After digestion, an equal volume of 4 M 
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ammonium acetate was added, the mixture was vortexed and then left at room 

temperature for 25 minutes. Then samples were then spun at 13000 rpm for 15 

minutes and the pellet discarded. Two volumes of 100% ethanol were added to 

the supernatant, the mixture was vortexed and then spun at 13000 rpm for 20 

minutes. The supernatant was discarded and the pellet washed in 70% ethanol 

and then air-dried for 30 min. The DNA pellet was dissolved at 65°C for about 

an hour in 50 - 150 JlI of low EDTA TE buffer, depending on the size of the 

pellet. 

The primers used were specifically designed for buzzards. The 11 primers used 

for the analysis were Bbu03, BbulO, Bbull, Bbul4, Bbul6, Bbul7, Bbu22, 

Bbu30, Bbu35, Bbu42, and Bbu46. 

The PCR was performed on a Hybaid PCR machine. The thermal profile for 

the PCR consisted of an initial step at 94°C for 2 minutes, followed by a cycle 

of 94°C for 45s, 48°C for 45s, 72°C for 50s, with 12 repeats, then a cycle of 

89°C for 30s, 48°C for 45s, 72 for 50s with 22 repeats. The final cycle had an 

extended period of 5 minutes at 72°C. 

0.005 JlI of radioactive p
32 

was added to each product. Products were run on 

acrylamide gels for up to 3 hours depending on the size of product. Gels were 

developed using a phosphoroimaging machine. Gels were scored blind with 

respect to individual and morpho 
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Estimation of parental Similarity 

Internal relatedness (IR) is a measure of inbreeding based on allele sharing 

where the frequency of every allele counts towards the final score, thereby 

allowing the sharing of rare alleles to be weighted more than the sharing of 

common alleles. This method was developed by Queller & Goodnight (1989) 

based on genetic correlations between two individuals but has been applied to 

data in which, at each locus, two alleles rather than two pairs are compared 

(Amos et al. 2001) 

The basic formula simplifies to: 

(2H - Lfi 
(2N - Lfi ), 

where, H is the number of loci that are homozygous, N is the number of loci 

andJi is the frequency of the ith allele contained in the genotype. 

When calculated over several loci the values are approximately normally 

distributed and centred more or less on zero for individuals born to 'unrelated' 

parents, with negative values suggesting re'latively 'outbred' individuals and 

high positive values being suggestive of inbreeding. 
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Parental similarities were calculated using an EXCEL macro written in 

VISUAL BASIC. An overall IR value was calculated and then a jack-knife 

approach was used removing each locus sequentially to examine single locus 

effects. ANOVAs were performed on the resulting data using MINITAB 12.1 

(Minitab Inc, 1998). 

RESULTS 

Distributions of IR values were normally distributed within each morph (Fig. 

4.1) 

There was no difference between colour morphs with respect to their overall IR . 

values if= 0.70; d.! = 2; p = 0.501) (Fig. 4.2). 

The jack-knifing approach removing each locus sequentially showed no single 

locus effects on IR values (Fig 4.3). However the locus Bbu17 had a slightly 

stronger effect than the other loci if= 1.55; d.! = 2; p = 0.218) 
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DISCUSSION 

In a non-random mating system, such as the one described in the common 

buzzard (KrUger et al 2001), one might expect that the less numerous types 

(like the morphs in buzzards) can be relatively more inbred than the individuals 

belonging to the majority. In the common buzzards the dark and light morphs 

are less abundant than the intermediates (10, 30 and 60%, respectively) .. Here 

we analysed levels of internal relatedness using polymorphic microsatellites. 

We found no difference in the levels of inbreeding between the morphs. 

This result therefore lends further support to the earlier observations that 

assortative mating within the colour morphs is either not very strong, or as 

suggested (KrUger et al 2001) is not the main cue at all that the individuals use. 

If, as modelling results show, they use mother's phenotype as a basis of mate 

choice, the result of finding no difference in the levels of inbreeding between 

the morphs is understandable: most individuals in the population have an 

intermediate mother. This leads to a very efficient and continuous gene flow 

between the extreme colour morphs and the intermediates. 

Dispersal distances for juveniles in the study population are not known. 

However, ringing recoveries in Great Britain and Germany suggest that the 

majority of individuals remain within 50 km of their natal territory (Cramp and 

Simmons 1980). While this distance is not great, this, coupled with an almost 

continuous distribution throughout Europe may mean that close relatives are 
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unlikely to breed together. It is also possible that the extreme colour morph 

individuals have to disperse on average further than the intermediates as it has 

been shown (KrUger and Lindstrom 2001) that the intermediates occupy better 

breeding territories. It is to be expected therefore that they are better in intra

specific competition and can take over a breeding territory more easily than the 

light and dark individuals. 

Some species of birds have been shown to possess mechanisms of kin 

recognition (Hatchwell et al. 2001), which are assumed to have evolved for the 

purpose of inbreeding avoidance. Whether buzzards possess these mechanisms 

is not known. However, given that individuals appear to imprint on their 

mother's phenotype, an image based recognition system seems unlikely. 

Previous studies have shown a relationship between levels of inbreeding and 

differences in reproductive success (Keller 1998; Slate et al. 2000). Buzzard 

morphs show a marked difference in levels of reproductive success, however 

differing levels of inbreeding appear not to account for these observed 

differences. 

It appears that the mating strategy, possibly coupled with dispersal, prevents 

differing levels of inbreeding between morphs. This is despite buzzards 

occurring in a structured population and also possessing a possible imprinting 

mechanism. 
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Chapter 5 

MORPH SPECIFIC AGGRESSION IN THE COMMON 

BUZZARD 

This chapter forms the basis of a paper in preparation as Fowlie, M.K., KrUger, O. & 

Russell, A. Morph specific aggression in the Common Buzzard (Buteo buteo). 
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ABSTRACT 

In birds, polymorphisms tend to be genetically determined and colour-related, but the 

physiological and behavioural consequences of such polymorphisms are not widely 

known. Throughout much of Europe, the common buzzard (Buteo buteo) is found in 

three distinct colour morphs, light, intermediate and dark. We have previously 

shown that this polymorphism has a genetic basis and that intermediate morphs have 

significantly higher reproductive success than either of the other two colour morphs. 

Here we use an experiment to investigate the effect of this melanin-based 

polymorphism on nest defence behaviour in the common buzzard (Buteo buteo). 

Among males, light morphs were found to be significantly more aggressive to a 

perceived threat of nest predation than either intermediate or darkly coloured birds, 

while there was a non-significant tendency for the reverse among females. The level 

of aggression observed for each member of a pair was independent of the level 

aggression shown by the other member. These results illustrate that polymorphisms 

can be associated with alternative reproductive tactics in birds, and suggest a possible 

link between the biochemistry of melanin production and individual behaviour. 
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INTRODUCTION 

Polymorphisms, in which individuals of the same sex and species show two or more 

distinct size or colour forms in the same population, occur at low levels in a wide 

variety of animal taxa (insects, Majerus 1998; fish, Regan 1961, birds, Theron et al. 

2001 and mammals, Ritland et al. 2001). Polymorphisms may arise as a 

consequence of non-genetic and genetic factors and may have dramatic 

consequences for reproductive behaviour. 

Many polymorphisms result from a genetically monomorphic, conditional strategy 

where high-status individuals become the dominant morph and low-status individuals 

the subordinate morph (Gross 1996) or are environmentally controlled (Horth 2003). 

However polymorphisms may be condition independent and genetically controlled, 

in which individuals are predetermined to become a particular morph (Tsubaki et al. 

1997). 

~ 

In birds, polymorphisms tend to have a genetic basis and often involve differences in 

colour, but our knowledge of the physiological and behavioural repercu·ssions of 

such differences is limited. The two best known examples are the ruff (Philomachus 

pugnax) (Lank et al. 1995) and the white-throated sparrow (Zonotrichia albicolls) 

(Tuttle 2003). In the ruff the colour polymorphism is associated with different 

reproductive tactics, where males either employ independent or satellite tactics at 

lekking sites (Lank et al. 1995). White-throated sparrows occur in two colour morphs 

having either a white or tan eyebrow. The morphs are caused by a chromosomal 

inversion (Thomeycroft 1966). Differences in male behaviour has been observed 
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between morphs, with white males being more aggressive, giving less parental care 

and spending less time mate guarding (Tuttle 2003). 

A potential third example exists where morphs exhibit different behaviours. 

Throughout much of its range, the Common Buzzard occurs in three colour morphs: 

light, intermediate and dark, although there is some variation within each of these 

categories. The polymorphism appears to be maintained genetically being controlled 

by a single locus, with intermediates being heterozygous (KrUger et al. 2001). In 

addition, the morphs have markedly different lifetime reproductive success. 

Intermediate birds are almost twice as successful as the other two morphs, and light 

birds do considerably better than dark individuals (KrUger & Lindstrom 2001). The 

reasons for this extreme trichotomy in reproductive success and longevity are not 

known. Using the behavioural response to a perceived predator, we test the novel 

hypothesis that aggressiveness, a trait known to be under the influence of circulatory 

testosterone levels, differs among colour morphs. 

MATERIALS AND METHODS 

A buzzard population comprising between 35 to 101 breeding pairs per year has been 

monitored since 1989 in a 300km
2 

area in Eastern Westphalia, Germany. Breeding 

performance and reproductive state were assessed by repeated visits to each nest. In 

the breeding seasons of 2001-2003, we carried out an experiment to test the level of 

aggressive response by light, intermediate and dark individuals to a perceived 

predator. 
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This experiment was conducted by placing a stuffed Eagle Owl (Bubo bubo) at the 

forest edge within 50 metres of a nest (n = 53) during the chick-rearing period; eagle 

owls are known to present a significant threat to young and adult buzzards (KrUger 

pers. comm.). Once one of the pair was observed to have seen the owl, i.e. by 

circling above the owl or by alarm calling, an hour was given for the pair to mount a 

defensive response. Birds were watched from a distance of roughly 50 metres by 

hidden observers using binoculars. 

The response was categorised in to three differing behaviours. A score of 1 was 

given if an individual did nothing more than circle above the owl and alarm call. A 

score of 2 was assigned if an individual made some attempt to attack but did not 

make contact with the owl. If the buzzard made contact then it was given a score of 

3. 

The sex of the buzzards at each nest were assigned using morphological (females are 

on average 5-10% larger and heavier than males), behavioural (females are 
~ 

responsible for almost all incubating) and genetic data. The number of chicks in each 

nest were counted and their age at the time of the experiment was calculated by back 

dating from their eventual date of fledging. 

Data were analysed using two Ordinal Logistic regressions (one for each sex) in 

Minitab 12.1 (Mintitab Inc, 1998). In each analysis, level of aggression was fitted as 

the response term, while individual morph was fitted as the primary explanatory 

factor. In each analysis, we also controlled for the age and number of chicks, as well 

as the level of aggression shown by an individual's partner. However, these potential 
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confounding factors were dropped from models if their p value exceeded 0.1, 

indicating they explained a non-significant proportion of the total variation. Finally, 

using Fisher's Exact test, we also examined the level of response within intennediate 

coloured birds, to detennine whether those lighter than average were more or less 

aggressive than those darker on average. In this case, we combined aggression levels 

one and two and compared these with three. 

RESULTS 

Male morph had significant effect on aggression (G = 15.82; df. = 2; p <0.001. 

Goodness of fit deviance X2= 63.19; p = 0.94). Light morphs were significantly more 

aggressive than either dark morphs (z = -2.95, p = 0.003) or intennediates morphs (z 

= -2.68, p = 0.007). There was no difference in aggression between dark and 

intennediate birds (z = -1.51, P = 0.13). (Fig. 5.1a). Chick age and chick number had 

significant or near significant effects on overall male aggression (z = 2.00; p = 0.046, 

-
and z = 1.87; P = 0.061 respectively). In contrast, there was no association between 

the level of aggression shown by a male and that shown by its partners.' 
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Figure 5.1: (a) Mean aggression for male morphs (±S.E.). (b) Mean aggression for 

female morph (±S.E.). 
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Figure 5.2: (a) Mean aggressive response of darker intermediate males versus lighter 

intermediates. Lighter individuals were significantly more aggressive (p = 0.005) and 

(b) Mean aggressive response of darker intermediate females versus lighter 

intermediates. There was no difference between them (p > 0.05). 

Overall, female morph had no effect on aggression (G = 1.09; d./. = 2; p > 0.5. 

Goodness of fit deviance "l= 1.14; p = 0.57). However, in contrast to males, there 
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was a strong tendency for dark mOl-phs to be more aggressive than either light 

morphs (z = 1.88; P = 0.060) or intermediate morphs (z = 1.92; p = 0.055). (Fig 

5.lb). The aggression levels of females were unaffected by chick age (z = 0.21; P = 

0.0.83), number (z = 1.01; p = 0.31) or the level of aggression shown by their partner 

(z = -1.142; P = 0.15). 

Finally, differences in morph-related levels of male aggression were also mirrored 

within the intermediate category, with lighter than average intei1nediates being more 

aggressive than darker than average intermediates (Fisher exact test, p = 0.005). (Fig. 

5.2a). However, this was not the case among females, although the number of darker 

than average birds was small in this case (Fisher exact test, p = 0.98). (Fig. 2b). 

DISCUSSION 

Here we show that for male Common Buzzards morph explains differences in 

aggression between light individuals and the other two morphs. Within the 

intermediate morph the extent of melanin pigmentation also explains the variation in 

aggressive behaviour. Also chick age at the time of the experiment and chick number 

had slight effects on aggression. 

A slight effect of chick age and chick number is to be expected, as the investment 

that individuals have given to that given breeding attempt is greater and so worth 

greater defence. 
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For females there was no significant difference in aggression between morphs 

although there was a strong tendency for dark females to be more aggressive. Chick 

number, age and the aggressive response had no effect on behaviour. 

For both sexes sample sizes of dark individuals were very low due to the low levels 

of recruitment and the poor chances of dark individuals reaching the chick rearing 

stage. 

For males, observations suggest that dark morphs are the least aggressive with the 

reverse being true for females. 

In vertebrates, differing levels of melanin deposition in plumage, pelage or skin is 

predominantly responsible for the observed colour morphs. Animals manufacture 

melanins from amino acid pre-cursors with special pigment cells called melanocytes 

(Jawor & Breitwisch 2003). These amino acid pre-cursors are also utilised in a wide 

variety of other biochemical pathways and it is unclear whether there is a trade-off in 

melanin utilisation between integument and other biochemical processes. 

Several studies have examined melanin based sexual ornaments and their 

consequence in mate choice, lifetime fitness and behaviour. While sexual ornaments 

are discrete areas, easily identifiable, some studies have used plumage wide 

characteristics in their assessment of life history trade-offs (Roulin 1999; Niecke et 

al. 2003). 
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Testosterone is an important regulator of melanin pigmentation in feathers, scales, 

fur and hair and also controls competitive and aggressive behaviour in males (Jawor 

& Breitwisch 2003). In House sparrows (Passer domesticus), the black bib is 

enlarged by testosterone during the moult (Gonzalez et al. 1999, Evans et al. 2000). 

However in European Starlings (Sturnus vulgaris) testosterone has the reverse effect 

and high levels inhibit melanin deposition (Witschi and Miller 1938). As starlings 

have a high concentration of melanin throughout their plumage they are perhaps a 

better comparison for buzzards than other species. If this is the case for buzzards then 

light individuals should have high levels of testosterone thereby leading to increased 

aggression in males in terms of intra-specific interactions and anti-predator defence. 

This certainly seems to be the case and this result is reinforced by the subtle 

differences seen within the intermediate morphs, where the lighter birds are more 

aggressive. 

What are the consequences of this potentially large difference in testosterone level? 

Light morphs by being very aggressive may suffer more risk in terms of interactions 

with other individuals and predators thereby reducing their longevity. Also, higher 

levels of testosterone may destabilise pair bonds thereby reducing reproductive 

output. Light birds may also incur a physiological cost by having high levels of 

testosterone, as testosterone also acts an immunosuppressant. 

For dark males the picture is less clear. If they are indeed less aggressive then this 

will affect their ability to compete for mates and territories, which will obviously 

have detrimental effects on their lifetime reproductive success (LRS). 
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Intermediate birds are the most successful in terms of LRS and may well have 

achieved a balance between melanin deposition and testosterone, and as a 

consequence, levels of aggression. A middling level of testosterone would have 

neither of the adverse effects of the other two morphs. 

Buzzard morphs are constrained by their genetics and mate choice (Chapter 3) and 

this possibly has knock on effects in terms of their biochemistry, leading to the 

observed differences in lifetime reproductive success. Hormonal testing of 

individuals of known morph is needed to establish levels of testosterone and its 

effects on morph behaviour. 
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Chapter 6 

TIMING OF REPRODUCTION V ARIES WITH COLOUR 

MORPH IN THE COMMON BUZZARD. 

This chapter forms the basis of a paper submitted as Fowlie, M.K., Lindstrom, J., 

KrUger, O. & Russell, A. Morph specific aggression in the Common Buzzard (Buteo 

buteo). 
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ABSTRACT 

For most species living in seasonal environments timing is an important determinant 

of the success of a breeding attempt. Individuals also face a trade off between current 

and future reproduction. In the colour polymorphic common buzzard (Buteo buteo) 

there is large variation between morphs in their lifetime reproductive success where 

the intermediate morph is almost twice as successful as the two "extreme morphs. 

Here we investigated whether colour morphs differed in their timing of breeding. 

Light-light and dark-dark pairs were found to breed earlier than the population mean, 

with light-dark pairs fledging chicks slightly later. Differences in reproductive 

strategies between morphs possibly account for the observed differences. 
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INTRODUCTION 

The seasonal timing of reproduction is a trait that can have large repercussions on 

lifetime fitness across a wide range of animal taxa (Clutton-Brock 1988; Schultz 

1993; Olsson and Shine 1997). By far the largest body of such work has focussed on 

birds (Nilsson 1999). Generally, earlier breeding is associated with larger clutches, 

more fledglings, and in the longer term more recruits from first clutches than those 

individuals breeding later (Perrins 1970; MacColl & Hatchwelt" 2002). Finally, early 

breeding may not only be beneficial for offspring, but also for the parents, allowing 

them a longer post-breeding period in which to replenish resources and enhance 

survival to the following year (Nilsson and Svensson 1996). 

There have been two mechanisms proposed to explain seasonal variation in single 

fitness components: the date hypothesis and the parental quality hypothesis 

(Brinkhof et al. 1993; Nilsson 1999). The date hypothesis predicts that the timing of 

breeding affects all pairs the same with respect to the value of a fitness component. 

-
However, individuals will vary in their trade-offs between current and future 

reproduction and this will, to some extent, be dependent on differences in quality 

between parents and territories (Nilsson 1999). Therefore individuals may employ 

different tactics to maximise fitness. The parental quality hypothesis predicts that 

variation in phenotypic characters of the parents (e.g. age or breeding experience, 

Srether 1990) or environmental quality (e.g. the quality of territory, Alatalo et al. 

1986) will lead to differences in the timing of breeding. 
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Throughout much of its range the Common Buzzard (Buteo buteo) occurs in three 

colour morphs: light, intermediate and dark. The polymorphism appears to be 

maintained genetically, controlled by a single locus, with intermediates being 

heterozygous (KrUger et al. 2001). In addition the morphs have markedly different 

lifetime reproductive success (LRS). Intermediate birds are almost twice as 

successful as the other two morphs (KrUger & Lindstrom 2001). However the exact 

reasons for these life-history differences between morphs are not clear. Here we 

examine whether the colour morph of an individual and/or the pair combination has 

an effect on the eventual fledgling date of a reproductive attempt, thereby elucidating 

a potential mechanisms for differences in reproductive success found earlier (KrUger 

& Lindstrom 2001). 

MATERIALS AND METHODS 

A buzzard population comprising 35 to 10 1 breeding pairs per year has been 

-
monitored since 1989 in a 300-km2 area in Eastern Westphalia, Germany. During 

each breeding season, repeated visits to each nest established the morph combination 

of each breeding pair, the number and morph of chicks and their eventual fledging 

date. Exact hatching dates, clutch size and growth rates of chicks was not known due 

to nest-site location constraints, and so date of fledging, for first attempts only, was 

used as a proxy for lay date. 

All pairs with successful breeding attempts in the years 1991 to 2003 were used in 

the analysis (n = 536). 
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Statistical analyses 

The effect of individual morph on fledge date was analysed using a linear mixed 

model with a normal error structure in GENS TAT 5, release 4.1 (GENSTAT, 

Rothamstead Experimental Station, Harpenden, UK). A linear mixed model with a 

normal error is similar to a general linear model except that it allows both fixed and 

random terms to be fitted (Schall 1991). Random terms take into consideration 

repeated sampling of the same individual and of different individuals within the same 

territory. In the analysis, fledge date (calculated as the number of days before or 

after the mean in each year) was fitted as the response term, while maternal, paternal 

and territory identities were fitted as random terms. Maternal identity (p < 0.01) and 

paternal identity (p = 0.1) were maintained as random terms, but territory identity 

was dropped as it had a negative component of variance, indicating that it explained 

none of the variation in the analysis. 

In GENSTAT, the significance of explanatory terms in linear mixed models is 

assessed by their Wald Statistics, which are distributed approximately ~s X2 for each 

term fitted last in the model. 
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RESULTS 

There are nine potential pairing combinations in the common buzzard, corresponding 

to the three morph types and whether it is the male or female that carries that certain 

morpho However, some of these potential categories were combined. First, we 

combined dark-light and light-dark pairings due to their rare occurrence (n = 4). 

Second, previous analyses have shown that intermediate-intermediate pairings are 

most successful, but we have no a priori reason for suspecting""that the success of 

mixed pairings containing one intermediately coloured bird and one light/dark bird 

will vary systematically with respect to the sex of the intermediate or the colour of 

the other pair member. This notion was confirmed through preliminary analysis that" 

fledge date was unaffected by whether it was the male or female that was 

intermediate or whether the other member of the pair was dark or light (X2 = 1.35, 

dJ. = 3, p = 0.72). We consequently combined all dark-intermediate, intermediate

dark, light-intermediate, and intermediate-light pairings into a single category. 

Analysis of the final five morph-pair combinations revealed highly significant 

differences in fledge date (X2 = 19.27, dJ. = 4, P = 0.001, Figure 6.1). However, our 

prediction that the most successful pair combinations (i.e. intermediate-intermediate) 

would fledge chicks earliest was not upheld. Instead, dark-dark pair combinations 

fledged their young significantly earlier than light-light combinations and both 

fledged young significantly earlier than all other pair combinations. 
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Fledge dates are related to the number of chicks fledging, with single chicks fledging 

significantly earlier than two chicks, which in tum fledge earlier than three (X2 = 

33.87, dJ. = 2, P < 0.001, Figure 6.2). Dark-dark and light-light pairings fledge less 

offspring than other combinations (X2 = 25.18, dJ. = 4, P < 0.001, Figure 6.3). 

However, these differences are unlikely to fully explain why dark-dark and light

light pairings fl~dge chicks earlier than other combinations, for colour-morph 

combination effects remain significant even after fledging number has been 

controlled for statistically (X2 = 13.26, d.f. = 4, P = 0.010, Figure 6.4). 
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Figure 6.1: The five morph pairings analysed for mean fledging date. Means ± 1 S.E. 

D refers to dark, L to light and I to intermediate (see also below). 
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Figure 6.3: DarklDark and LightlLight pairings fledge fewer chicks than other morph 

combinations. Means ± 1 S.E. 
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DISCUSSION 

For most species living in seasonal environments, timing of reproduction is very 

important for breeding success (Daan et al. 1988). In birds, it has been shown that 

delays in the onset of a reproductive bout often result in lowered breeding success 

(Daan et al. 1988) and that individuals often assess several cues before commencing 

a breeding attempt (Svensson 1995). Here we analysed the effects of timing of 

breeding in the common buzzard. As it has been shown, the three colour morphs 

have very different LRS (KrUger & Lindstrom 2001), and it therefore of interest to 

see whether differences in timing of reproduction possibly contribute to these 

differences in LRS. 

When intermediate morphs breed, there is no significant effect of their partner's 

morph on the date of chick fledging. In contrast, significant differences in fledge date 

were observed when either of the two extreme morphs (light and dark) bred with 

their own morph or that of the other extreme. Light-light and dark-dark pair 

combinations both fledged young earlier than all other pair combinations, while 

dark-light pair combinations fledged young at a similar time to intermediate pair 

combinations. 

Light pairs and dark pairs produce fewer fledglings per breeding attempt (KrUger & 

Lindstrom 2001, this study). Buzzards' clutch size varies from 1-5, with a three-day 

delay between the laying of each successive egg in a clutch (Cramp and Simmons 

1977). Thus, differences in fledge date may in part be a consequence of differences 
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in clutch size rather than lay date per se. For example, since nest mates fledge at the 

same time (personal observations), if light-light or dark-dark pair combinations lay 

smaller clutches than other pair combinations then they will automatically fledge 

chicks earlier. Differences in clutch size may also lead to further differences in 

fledge date, since many chicks may grow more slowly than few chicks. 

However, differences between clutch sizes and chick growth rates are unlikely to 

explain fully the differences in morph-related fledge dates observed in this study. 

This is because, morph-related differences in fledge date remained significant even 

after controlling for differences in the number of offspring fledging. The question 

remains, why should dark-dark and light-light pairings fledge chick earlier than any 

other pair combination? This question is especially interesting given that the extreme 

morphs have been shown to have a lower lifetime reproductive fitness and have been 

assumed to be of a lower quality (KrUger & Lindstrom 2001). By constantly 

producing smaller clutches light-light and dark-dark morph combinations may be 

able to attain breeding condition earlier than other pair combinations and thus begin 

reproduction at an earlier date. This is unlikely however, as it cannot explain why 

light-dark combinations fledge chicks later. 

Interestingly, despite the apparent low quality of light and dark birds (KrUger & 

Lindstrom 2001), light - dark pairings appeared to fledge chicks later than other pair 

combinations, and to have greater success than light-light and dark-dark pairings. 

These findings have two intriguing implications. First, reproductive success in 

buzzards in not simply a consequence of parental quality, but also chick quality, with 

intermediate chicks having greater survival than non-intermediate chicks. Second, 
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since intermediate offspring have a higher lifetime reproductive fitness they may take 

longer to raise to fledging. Light - dark pairings produce more chicks than either 

dark - dark or light -light pairings and such chicks will always be intermediate. 

Either way, light birds would appear to benefit from mating with dark birds and vice 

versa, in order to produce intermediate offspring. Given this option it would be 

expected for light - dark pairings to be common, since they will typically produce 

larger broods than light -light or dark - dark pairings. However, it appears that 

buzzards are constrained from this option, through their mate recognition system 

being based on maternal phenotype (see Chapter 3). 

What must be remembered however, is that most dark pairs and light pairs never 

reach the chick stage of reproduction, let alone fledge chicks. Therefore the sample 

of light-light and dark-dark pairs is probably biased towards to the higher quality 

individuals. 

Another possibility is that different morphs have different moult strategies. Buzzards 

generally undergo a complete moult each season but some remiges are frequently left 

unmoulted (Forsman 1999). Light individuals have less melanin in their feathers and 

this leads to increased abrasion and wear (Bonser 1995). In Ural owls (Strix 

uralensis) there has been shown to be a trade-off between reproductive effort and 

moult (Pietiiiinen 1984) and perhaps this also occurs in buzzards. However more 

information on differences in moult between morphs is required. 

Our results seemingly contradict the hypothesis that higher quality birds breed earlier 

in the season and attain higher fitness. This idea assumes that, as has been 
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previously shown, light and dark birds are of lower overall reproductive quality. Our 

results therefore suggest that early reproduction need not be confined to higher 

quality individuals, and may be selected among low quality individuals or 

individuals in circumstances where their chances of success is low. Whether or not 

individuals are selected to breed early will depend on the trade-off between early 

reproduction, clutch size and reproductive success. Our results provide no support 

for the lay-date hypothesis, but lend strong support for a 'parental quality 

hypothesis'. However, the assumption of existing parental quality hypothesis 

assumes that early reproduction is associated with high quality, we highlight that this 

may not always be the case. 

Further work is needed in terms of recording clutch size, hatch date and growth 

curves of each chick morpho These data will lead to a more precise understanding of 

the different strategies that the different morphs appear to use with respect to the 

timing of breeding. 
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Evolution and Maintenance of colour polymorphism 

Cases of colour polymorphism fall into three broad categories: 

1) Examples where a polymorphism is known to exist but no details are known 

about life history, fitness differences or the mechanism. e.g. Jacobin cuckoo 

(Clamator jacobinus). 

2) Cases where species exhibiting colour polymorphism are well studied, however, 

reasons for the polymorphisms and differences lJetween mOrPhs are not well 

understood ego the common guillemot, Uria aalge (Jeffries & Parslow 1976; 

Harris et al. 2003) 

3) Finally, examples where differences between morphs are known. These include 

cases where the genetics of the system are known (Lank et al. 1995; Tuttle 2003). 

The common buzzard falls into this category as the parent-offspring 

combinations strongly suggest a simple Mendelian mechanism for the 

inheritance, and the fitness differences between the morphs have been 

documented (KrUger et al. 2001). 

For colour polymorphism to exist at all it first has to evolve .~nd subsequently has to 

be maintained in the population. The comparative analysis in Chapter 2 shows that 

the 'classic' explanation for colour polymorphism in raptors and owls, 'the 

avoidance image hypothesis' (Paulson 1973; Rohwer & Paulson 1987) doesn't seem 

to hold true. Population size was shown to be important for the assumed initial 

mutation to occur but the maintaining mechanisms can not be found with the data 

available for this analysis. Considering the spread of polymorphism in a population 

after the initial mutation, a neutral mutation will only spread by genetic drift. 
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However, this is far less likely in larger populations (Crow and Kimura 1970). It is 

therefore more likely that either this mutation brings some benefits and spreads 

through the population, or an "evolutionary trap" may cause the maintenance. A 

likely example of the latter mechanism is provided by the common buzzard 

polymorphism: even though the polymorphism is detrimental to two of the morphs, 

due to the genetic constraints buzzards are unable to "break out". If the buzzards 

were to escape from this "evolutionary trap" by behavioural means, this would 

require strict assortative mating with the same phen()type only. However, this would 

quickly "empty" the pool of intermediate individuals from the population (Jacquard 

1974), and would lead to speciation via reproductive isolation. Therefore, the mere 

existence of all three colour morphs in a population tells us that assortative mate 

choice with own phenotype only, can not be the case. Thus the idea of an 

"evolutionary trap" is an intriguing possibility and may also be the case in other 

species. Other long-term studies are needed to reveal the possible extent of this 

occurrence. 

Mate choice 

When the different morphs in a population have different survival probabilities and 

different fecundities as in common buzzards, mate choice can not be studied in 

isolation from population demography: mate choice affects the population structure 

as different mate choice strategies produce different offspring combinations. A 

demographically explicit population model coupled with an invasion analysis 

revealed that what had been suggested as being maladaptive (Kruger et al. 2001) was 
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in fact not. Revealing as this sort of an approach can be, it can not be adopted in a 

majority of cases as not enough is known about the morphs. One of the only other 

well-studied systems is that of the side-blotched lizard (Uta stansburiana) where 

there is a three morph mating system. Frequency-dependent selection and the among-

year changes in morph fitnesses suggest that male interactions drive a dynamic 

'rock-paper-scissors' game (Sinervo & Lively 1996). 

Mate choice in the common buzzard is complex and, is based on several criteria 

including phenotype and population structure. Modelling of the mate choice 

strategies showed that the observed strategy was not the fittest strategy. However 

genetic constraints mean that they appear to do the 'best of bad job'. 

This result has important implications for our understanding of the adaptiveness of 

individual choice and the evolution of mating systems. What at first appears 

maladaptive (Kruger e~ al. 2001) is in fact not when mate choice is studied in a 

demographic context. Caution is warranted when assessing the adaptiveness of mate 

choice strategies that have the potential to affect population demography if the 

consequences to population structure are not taken into account. . 

Behavioural and fitness consequences of colour polymorphism, 

Levels of inbreeding have been shown not to differ between morphs and hence are 

not a factor in differences in lifetime reproductive success between colour morphs 

(Chapter 4). Other studies have found a strong association between inbreeding and 

differences in reproductive success (Slate et al. 2000), parasite load (Coltman et al. 
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1999) and disease susceptibility (Acevedo-Whitehouse et al. 2003). However despite 

assortative mating and possible imprinting the extreme morphs do not suffer from 

higher levels of inbreeding. 

In Chapter 6, I showed that different morph pairings exhibit differences in the timing 

of reproduction. Different morphs may employ different strategies for reproduction 

to solve the trade off between current and future reproduction. Differing strategies 

may explain the lower chick number fledged by the e.xtreme morphs. However, more 

information on parental care and clutch sizes is needed to clarify this. 

In Chapter 5, I examined differences in aggression between morphs. These 

differences are perhaps a direct consequence of colour per se. Therefore, colour can 

be associated with long term effects on an individual's longevity either through 

increased competitive interactions and/or by physiological mechanisms. 

Intermediates appear t~ have the balance of testosterone correct and this may be a 

factor towards their superior performance. Darks are the least aggressive and are 

possibly inferior in intra-specific competition for territory and mates, whereas lights 

are highly aggressive but may suffer from higher predation b~ goshawks (Accipiter. 

gentilis) (KrUger 2002). Other examples of behavioural traits associated with colour 

morph are found in the side-blotched lizard (Uta stansburiana), where males of 

different morph have different mating strategies (Sinervo and Lively 1996) and i~ the 

damselfly (Mnais costa lis) where males employ either 'fighter' or 'sneaker' tactics 

(Tsubaki et al.1997; Plaistow & Tsubaki 2000). 
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Future Work 

Even though the buzzard data set forming the basis of this work is rather extensive, 

there are gaps in it that leave ample space for future work. Individual growth curves 

for morphs throughout development would be necessary to assess differences in 

growth. Morphs may exhibit different growth strategies that have consequences later 

in life. Females may also differentially allocate food depending on· the offspring 

morph combination in a nest, or parents of different morphs may differ in their 

parental ability. 

We currently do not know the recruitment rate of individuals in the study population. 

The colour ringing of birds which is now underway will over time lead to a better 

understanding of where fledglings from the study site go. This will help further in 

addressing the questions about the proximate mechanisms causing the fitness 

differences between the morphs. 

To ascertain with certainty the mating strategy that common ~uzzards use, and to 

find out for instance whether different morphs are truly genetically of different 

quality, a series of cross-fostering experiments could be carried out to examine mate 

choice. However, this is problematic for two reasons. Firstly, to have a large enough 

sample size for all three morphs the number of chicks needed to be swapped would 

be in the hundreds and the logistics involved would be enormous. Secondly, if 

pairing with mother's phenotype is indeed what buzzards use then cross-fostering 
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experiments would change the direction of evolution of mate choice and demography 

of the population and for ethical reasons this would be unacceptable. 

One of the major assumptions in this work has been the negligible level of extra-pair 

copulations in the buzzard. Other raptors are known to have low levels (Newton 

1979) and it has been assumed that buzzards do not differ. However the means to 

fully test this assumption are now available through microsatellite genotyping of both 

chicks and adults. For all nests monitored only a tiny fraction of offspring have been 

produced that are the 'wrong' morph for the parents that are producing them (Fig 

7.1). This may suggest that occasionally individuals are unfaithful to their social 

partner. If this is the case one would expect female buzzards to seek extra-pair 

copulations with those males that would maximise intermediate offspring production. 

However, as with mate choice individuals may be constrained from this by 

imprinting. 
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Table 7.1: Parent-offspring phenotype frequencies for all successful broods. Mean 

observed morph frequencies (%) and predicted means based on Mendelian 

segregation (in parentheses). 

Morph Offspring morph frequencies (%) 

combination of N D I L 

parents .. 

D*D 2 100 0 0 

(100) (0) (0) 

D*I 71 43.7 56.3 0 

(50) (50) (0) 

D*L 8 0 100 0 

(0) (100) (0) 

1*1 294 17.0 66 17.0 

(25) (50) (25) 

I*L 159 1.3 48.4 50.3 

(0) (50) - (50) 

L*L 33 0 o . 100 

(0) (0) (100) 
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In Great Britain colour morphs in the common buzzard are entirely absent or at least 

occur at such low levels as to be negligible. Only the intermediate morph occurs. 

This raises the interesting possibility that the UK population has somehow managed 

to overcome the 'evolutionary trap' that the mainland European population is in. 

The most likely explanation is that the gene for colour has been duplicated at least 

once (Dulai et al. 1999). This then would mean that homozygotes would occur only 

very rarely. Once the area of the genome that codes for colour is established then 

comparisons between popUlations can be carried out to see if this is true. A measure 

of gene flow through Europe would also allow us to speculate on whether this 

phenomenon may spread to almost eliminate colour polymorphism over time. A 

better understanding of gene flow would also allow us to assess the extent to which 

the UK population is reproductively isolated. 

Finally, Theron et al. (2001) have recently found the genetic basis of the melanic 

form of bananaquit (Coereba flaveola) , it wHl be interesting to discover if differences 

in the melanocortin-l receptor are also responsible for the mq,rphs present in the 

common buzzard. 
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