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Summary 
 
Rheumatoid Arthritis (RA) is a chronic systemic autoimmune disease characterised by 

extensive synovitis resulting in cartilage and bone erosions. Both the innate and 

adaptive immune pathways contribute to the initiation and the maintenance of the 

disease. Understanding the role of these pathways is central to develop new 

therapeutics. We have developed a murine model of RA where ovalbumin (OVA) 

specific Th1 cells induced a breach of self-tolerance and a transient monoarthritis. 

This thesis aimed firstly to create a model of chronic autoimmune polyarthritis and 

then to investigate the contribution of B cells and innate inflammation to the induction 

of arthritis. Relapse of arthritis was associated with the nature of the antigen (OVA) 

employed and the route of administration. The analysis of collagen specific B cell 

response revealed that anti-type II collagen antibodies titres rise during the induction 

of the relapse of arthritis and that they were directed against the epitope U1. Although 

typical RA autoantibodies were detected in OVA-mediated arthritis, a mild arthritis 

could be elicited in absence of antigen presenting B cells and in complete absence of 

mature B cells. B cells were not necessary in the induction of pathology even though 

their presence was associated with a higher joint histology score. Finally, this thesis 

describes that an innate inflammatory stimulus, such as LPS, elicited joint pathology 

but was insufficient to breach B and T self-tolerance. On the contrary, antigen-

specific T cell activation led to arthritis and the production of several autoantibodies 

typical of RA. The relapse and spread of arthritis developed in this thesis provides a 

useful tool to investigate the contribution of the innate and adaptive immune pathways 

in the development of autoreactive responses. A better understanding of these 

mechanisms will hopefully help to design new therapeutic intervention aiming to re-

establish immunological tolerance.  
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1.1 Rheumatoid Arthritis 

 

Rheumatoid arthritis (RA) is an inflammatory chronic and systemic disease 

characterised by extensive synovitis resulting in erosions of articular cartilage and 

marginal bone that lead to joint destruction (1). 

RA has a prevalence estimated at 1% of the world population and an incidence of 20-

50 cases every 100.000 persons/year (2). It presents a significant socioeconomic 

impact leading to direct and indirect costs to the health system and society (estimated 

€45.1 billions per year in Europe) (3).  

RA pathogenesis (Figure 1.1) is a multistep process that starts with the development 

of autoimmunity, continues with local inflammation and finally induces bone 

destruction (4). Susceptible individuals, under the influence of various genetic and 

environmental factors, develop an underlying autoimmunity that manifests as the 

presence of autoantibodies, such as rheumatoid factor (RF) and anti-citrullinated 

protein antibodies (ACPA) (4). This stage, identified as pre-articular or lymphoid 

phase, can precede the clinical manifestation of the disease by as much as ten years 

(5). It is still unclear how and why the systemic loss of tolerance is linked to a 

localised onset of inflammation in the joints (transitional phase of RA). Several 

factors may contribute including microtrauma, microvascular, neurologic and 

biomechanical-related mechanisms (6). The articular phase of disease is characterised 

by synovitis that leads to cartilage and bone damage (7). The adaptive and innate 

immune pathways are activated and contribute to the inflammatory process. An 

intricate cytokine network participates in inflammation and in perpetuation of disease 

by positive feedback loops promoting systemic disorders (8). 
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1.2 Aetiopathogenesis 

 

RA is a multi-factorial disease of unknown aetiology. Genetic, environmental factors 

and deregulated immune responses contribute to the induction and maintenance of the 

disease (4). The following sections will overview the genetic and environmental 

factors involved in RA aetiopathogenesis. 

 

1.2.1 Genes  

 

The genetic basis of RA is extremely complex. The prevalence among siblings 

increases from <1%, in the general population, to 2-4% (9). Twin studies showed a 

concordance rate for RA of 12-15% for monozygotic twins compared to 3.5% for 

dizygotic twins (10). Evidence of familial clustering demonstrated prevalence from 

2% to 12% in first-degree relatives of RA patients (11). The most important genetic 

risk factor for RA is found in the human leukocyte antigen (HLA) locus. In particular, 

the amino acid sequence QKRAA, QRRAA or RRRAA at positions 70-74 of the 

DRβ1 chain, called “shared epitope” (SE), is associated with the production of ACPA 

and with the disease (12-14). Multiple alleles in the DRB1 gene share the SE such as 

HLA-DRB1*0401, *0404, *0405, *0408, *0101, *0102, *1001 and *1402 (15). Of 

interest, the association between these alleles and RA has been observed only for 

ACPA positive patients (13). The introduction of new techniques, such as the 

genome-wide association studies (GWAS), has led to the identification of more than 

30 alleles outside of HLA genes that contribute to RA susceptibility in the last years 

(16). The second most important genetic association in Caucasian population is in the 

gene protein tyrosine phosphatase non-receptor type 22 (PTPN22). A single-

nucleotide polymorphism (SNP) encoding an arginine to tryptophan substitution 

increases the risk of RA by 40-80% (OR 1.4-1.8) (17, 18). The gene PTPN22 encodes 

a tyrosine phosphatase, Lyp, a powerful inhibitor of T cell activation. It has been 

hypothesized that the disease-associated allele would produce a protein affecting the 

threshold for B and T cell receptor signalling (19). In contrast, in the Asian population 

the gene peptidylarginine deiminases citrullinatin isoenzyme 4 (PADI4) appears to be 

the second most important susceptibility locus after HLA-DRB1 (20, 21). PADI4 is 
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one of several isoenzymes carrying the post-translational conversion of arginine 

residues to citrulline, and this may be related to the production of ACPA (22). Signal 

transducer and activator of transcription 4 (STAT4), is a member of the STAT family 

of transcription factors. The molecule plays a key role for IL-12 signalling in T cells 

and Natural Killer (NK) cells, leading to the production of interferon (IFN)-γ and the 

differentiation of Th1 and Th17 cells (23). A SNP haplotype in the third intron of 

STAT4 is associated with susceptibility to both RA and Systemic Lupus 

Erythematosus (SLE) in European populations (23). Other candidate genes associated 

with RA that GWAS revealed are cytotoxic T-lymphocyte associated antigen-4 

(CTLA-4), the α and β chain of the IL-2 receptor (IL-2RA and IL-2RB) (24), 

interferon regulatory factor 5 (IRF5) (25), the locus located between TNF receptor-

associated factor 1 and C5 genes (TRAF1/C5) (26), the gene near TNF-α -induced 

protein (TNFAIP3) (27, 28) and the co-stimulatory molecules CD40 (29) and CD28 

(30). 

 

1.2.2 Environment 

 

Several environmental factors have been studied in RA and the interaction between 

genetic and environmental factors has been demonstrated in RA. Smoking, infections, 

sex hormones, birth weight, alcohol intake and socioeconomic status can modify the 

risk for RA (31). Smoking is the strongest known environmental risk factor in RA. Of 

interest, the association is true for ACPA-positive RA rather than ACPA-negative RA 

patients (32). The risk increases with amount, duration of cigarette use and it is 

greater in males than in females (33). The number of the SE copies further modifies 

the risk. Smokers who do not carry the SE have a 1.5-fold elevated risk of developing 

ACPA and RA compared with non-smokers who do not carry the SE. This risk 

increases to 21-fold in smokers carrying two copies of the SE. Moreover, smoking 

increases the proportion of citrulline- positive cells in the lungs (34). These findings 

suggested that smoking triggers citrullination in lungs through activation of PAD 

providing a substrate for the immune activation (34).  

Other environmental factors are infectious. In particular, RA is prevalent in 

individuals with periodontitis (35). The periodontal pathogen Porphyromonas (P.) 
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gingivalis expresses PAD that citrullinates arginine in fibrin in periodontal tissue. The 

levels of antibodies against P. gingivalis have been correlated with the levels of 

ACPA in RA patients (36). Several mechanisms that characterise RA are also 

involved in periodontitis suggesting an association between these two conditions (37). 

RA is more common in females than in males. This gender association seems related 

to sex hormones, supported by the fact that RA risk and exacerbation of disease 

increase in post-partum period and amelioration of disease is common during 

pregnancy (38). Moreover, oral contraceptives may have a protective effect in the 

development of RA, however this issue remains under debate (39). Breast-feeding 

was shown to protect mothers against RA in two large case-control studies (40, 41). 

High birth weight (> 4.5Kg) was associated with a 2-fold increased risk of RA in a 

large prospective study (42). 

Alcohol intake decreased the risk for RA in two studies in a dose-dependent manner 

(32, 43). Finally, an inverse association between the socioeconomic status, measured 

by occupational class and education, and RA has also been demonstrated (44). 
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1.3 Clinical manifestations of RA 

 

Clinically RA manifests with a symmetric polyarthritis characterised by pain, 

swelling, loss of function and a morning stiffness lasting more than one hour. A 

common onset synovitis involves the metacarpophalangeal, the proximal 

interphalangeal, the wrist and the metatarsophalangeal joints, although all the joints 

may be affected (45). Several constitutional symptoms can precede the onset of RA, 

such as fatigue, malaise, weight loss, fever and depression (46). Despite articular and 

periarticular manifestations being predominant, RA can affect many other organs and 

tissues (Table 1.1). Some of these extra-articular manifestations may be related to the 

disease itself or be a consequence of the treatment (47). Moreover, autoimmune 

diseases may overlap. The incidence of extra-articular manifestations varies among 

studies from 18% to 41% of RA patients because of the lack of consensus on how to 

define them (47). There are no known reliable predisposing factors for extra-articular 

manifestations, although there is an association with male, smokers, severe arthritis, 

high levels of inflammatory markers, presence of RF, ACPA, anti-nuclear antibodies 

(ANA), and HLA-related SE (48, 49). The most common extra-articular features and 

complications in RA are summarised in table 1. Rheumatoid nodule is the most 

common extra-articular manifestation, present to up to 30% of cases, whereas many 

of the other manifestations occur in 1% of RA patients (46). Sjögren syndrome, 

anaemia and lung manifestations are relatively common (6-10% of RA patients). 

Rheumatoid vasculitis affects mainly RF-positive RA patients. It can occur in any 

organ, although it mainly manifests with cutaneous and peripheral nerve lesions (50). 

Some manifestations including systemic vasculitis, Felty’s syndrome, interstitial 

pulmonary fibrosis, neuromyopathies and amyloid may be difficult to treat. RA 

represents an independent risk factor for cardiovascular diseases, including 

myocardial infarction, cerebrovascular events and heart failure (46, 51, 52). Persistent 

inflammation, immune-complexes and altered lipid particles create the substrate for 

an accelerated atherosclerosis in RA (53, 54). RA is associated with an increased risk 

of non-Hodgkin’s lymphoma and this risk may be further increased by the 

immunosuppressive treatment (55). A relationship between smoking and development 

of lung cancer has been reported in RA (56). Finally, high disease activity and extra-
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articular manifestations have a major impact in disease outcome, morbidity and 

mortality (57). 
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1.4 Synovitis 

 

The synovial membrane is a connective tissue formed by two main layers, the 

synovial lining and the synovial sublining. The synovial lining is composed by two 

types of synoviocytes, called macrophage-like and fibroblast-like synoviocytes (FLS), 

because of their surface marker expression and morphology (58). FLS are responsible 

for the production of constituents of the synovial matrix such as collagen types I, III, 

IV and V, fibronectin, laminin, chondroitin and heparan sulphate (58). Furthermore 

FLS produce hyaluronic acid into the joint cavity providing lubrication to its 

components (59, 60). The synovial sublining is a soft, loose connective tissue that 

facilitates smooth movement of the joints. It is formed by a network of elastic fibres 

and different collagens, including collagen types I, III, IV, V and VI, fibronectin, 

laminin and proteoglycans (61). The synovial sublining contains blood and lymph 

vessels, nerve fibres and few cells including macrophages, fibroblasts and adipocytes 

(58). 

In RA the synovial membrane is characterised by cellular hyperplasia, increased 

vascularity and an infiltrate of inflammatory cells that invasively grow and destroy the 

adjacent cartilage and bone (62). The synovial hyperplasia is an increased thickening 

of the lining layer caused by the combination of cellular proliferation in situ, influx of 

cells from the circulation and disturbed apoptosis (58). The increase in synovial tissue 

mass, called “pannus”, results in increased oxygen demand and consequent local 

hypoxia. Inadequate oxygenation drives the increase in synovial angiogenesis (63). 

Pro-angiogenic factors are produced by macrophages and synovial fibroblasts such as 

CXCL8 (or IL-8), fibroblast growth factor (FGF), platelet-derived growth factor 

(PDGF), vascular endothelial growth factor (VEGF) and transforming growth factor-β 

(TGF-β) (64, 65). This process promotes further infiltration of inflammatory cells, 

production of inflammatory mediators and matrix degradation (66). 

The infiltrate in RA synovitis is composed of CD4+ T cells, B cells, plasma cells, NK 

cells, dendritic cells (DCs) and mast cells (62, 67-70). Lymphoid aggregates of 

variable size and organization level are present in 50-60% of RA patients even if they 

are not specific to the disease (71). Clear T cell/B cell segregation may be observed in 

larger aggregates. FLS appear to play a role in all major features of RA: hyperplasia, 
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inflammation and joint destruction (72). The role of most of these cells in the 

pathogenesis of RA will be discussed later in this chapter.  

Neutrophils accumulate mainly in the synovial fluid but they can be observed at the 

pannus-cartilage interface, the site of active destruction of bone and cartilage (73). 

These cells are activated and release the contents of granules, which are implicated in 

the damage of the collagen matrix (74, 75). Neutrophils-derived proteases are also 

important mediators of inflammation activating the pro-cytokine forms of TNF-α, IL-

1β and CXCL8 (76). 

Mast cells in RA are activated and release mediators including histamine, heparin, 

cytokines (IL-6, CXCL8, TNF-α), prostaglandins and leukotrienes (70, 77). Mast 

cells induce oedema and contribute to the cartilage and bone destruction inducing the 

production of metalloproteases (MMPs) (78). Their recruitment in RA tissue and fluid 

is due to several chemotactic factors, such as TGF-β, C3a, C5a, serum amyloid A and 

platelet activating factor, all detected in RA synovial fluid (79-82). 
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1.5 Role of the innate immunity  

 

The development of the inflammatory process in RA, involves many different cell 

types and a complex cytokine network. An overview of the cells involved in RA 

development will be presented in the following sections, focusing mainly on the cells 

of the innate immune response. 

 

1.5.1 Innate immune cells in RA 

 

From a functional and therapeutic point of view, the preclinical stage of RA is of great 

interest. It appears that before clinical sign of arthritis, the innate immune system is 

activated leading to the initiation of the inflammatory process (83). Cells of the 

myelomonocytic lineage differentiate into several cell types that are critically 

involved in the disease, such as monocytes/macrophages, DCs and osteoclasts.  

 

Monocytes/macrophages: Macrophages differentiate from circulating monocytes 

and have primary roles in tissues as phagocytes of invading pathogens and as 

scavengers of apoptotic debris (84). Macrophage activation results in the expression 

of chemokines and cytokines that attract other cells to the site of inflammation (84). 

Macrophages are prominent in the inflamed synovial membrane where they are 

activated (85). The central role of macrophages in RA is supported by the fact that 

conventional therapies act to decrease the levels of cytokines mainly produced by 

macrophages (86). Indeed, a correlation has been demonstrated between the tissue 

damage and the infiltrate of macrophages in the synovial membrane (87).  

Monocytes/Macrophages in RA are responsible for the: 

 

- Production of large amount of pro-inflammatory cytokines, such as TNF-α (88), IL-

1 (89), IL-6 (90), IL-15 (91), IL-18 (92), IL-23 (93) and IL-27 (94). 

- Production of chemokines that promotes monocyte influx into inflamed tissue, such 

as CXCL8, CCL3 (or macrophage inflammatory protein 1α), CCL5 (or RANTES) 

and CX3CL1 (or fractalkine) (95). 

- Overexpression of tissue degrading enzymes such as MMP9 (78) and MMP12 (96). 
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A significant part of the macrophages effector responses is mediated by cell contact-

dependent signalling with inflammatory and mesenchymal cells. Fibroblast-

macrophage interaction elicits the production of IL-6, GM-CSF, CXCL8 and 

stimulates the cartilage degradation (97). Macrophages can also be activated by cell 

interaction with T cells. In response to this interaction macrophages produce MMPs, 

IL-1α and IL-1β�� (98). Moreover, stimulated T cells produce TNF-α once in contact 

with macrophages (99). The same process has been proven for NK cells, which can 

induce monocytes/macrophages to produce TNF-α upon cell-contact interaction 

(100).  

 

Dendritic cells: DCs have the ability to present antigen to T cells, playing a central 

role in the development of both the innate and adaptive immune responses (101). 

Their ability to prime naïve T cells for help and cytotoxic function distinguishes them 

from other antigen-presenting cells (APC) (102). DCs are involved in the maintenance 

of central and peripheral tolerance (103). They are also essential in the generation of 

primary antibody response, and are powerful enhancers of NK cell cytotoxicity (103). 

Two major subsets of DC, known as myeloid DC (mDC) and plasmacytoid DC 

(pDC), are described. Both subtypes have the ability to present antigen and produce 

cytokines (104). 

In RA mDCs and pDCs can enrich synovial tissue and fluid (105, 106). They may 

contribute to RA pathogenesis in several ways: 

 

- They infiltrate synovial membrane where they may take up, process, and present 

antigen locally contributing to disease perpetuation (105). 

- They contribute to the inflammatory process secreting pro-inflammatory mediators 

(102).  

- They may drive the generation of ectopic lymphoid tissue in synovial membrane 

(102, 107, 108). 

- They may prime autoimmune responses by presenting self-antigens to autoreactive 

T cells (109-111). 
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Because of their characteristics, DCs are attractive vehicles for the delivery of 

therapeutic vaccines. In the murine model of RA collagen-induced arthritis (CIA), 

immunomodulatory DCs were able to inhibit arthritis (112, 113). Moreover, in human 

RA clinical trials have been initiated testing DCs with “tolerogenic” (TolDCs) 

functions (114). 

 

Natural Killer cells: NK cells are large, granular lymphocytes devoted to the defense 

against microbial agents and cancer cells, traditionally recognised as an important arm 

of the innate immunity, even if more recent data underpin a role also in the responses 

of adaptive immunity (115, 116). Several studies have led to ascertain that NK cells 

are involved in the pathogenesis of many immune-mediated diseases, where they may 

exert both protective and pathogenic roles. In RA NK cells demonstrated an impaired 

activity, although data on their number are controversial among the different studies 

(117-121). The subset of NK cells CD56bright, showing immunoregulatory properties, 

has been found to accumulate in the synovial membrane and fluid from RA patients 

(100, 122, 123). CD56bright NK cell subset has the great capacity to secrete a large 

amount of cytokines including TNF-α, a critical mediator in RA. IL-12, IL-15 and IL-

18, Th1 cytokines detected in RA, can in turn induce CD56bright NK cells to produce 

pro-inflammatory cytokines (124). In addition to the intricate cytokine milieu, cell-

cell interactions between different cell types in RA synovial membrane can also 

contribute to the persistence of inflammation. NK cells can interact locally and/or 

activate different cell types, for example providing co-stimulatory signals to T and B 

cells (125). In vitro RA synovial membrane experiments demonstrated that cell 

contact between NK cells and FLS provided mutual stimulation supporting NK cell 

activation, proliferation and cytokine production. This interaction also stimulated FLS 

to secrete pro-inflammatory cytokines, such as IL-15 (126). NK cells can both 

enhance and suppress DC response (127-129). However, considering the data all 

together and divergent results on experimental arthritis (125, 130, 131), whether NK 

cells play a role in the development of RA remains unclear. 

 

1.5.2 Other cells 
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Osteoclasts: Osteoclasts are multinucleated cells formed by the fusion of 

mononuclear progenitors of the monocyte/macrophage family (132). They are highly 

specialised cells in bone resorbing and remodelling throughout life (132). They have 

two machineries that allow them to resorb bone. The first is a proton/protein pump 

that creates an acidic milieu allowing the cell to solubilise calcium from bone matrix. 

The second is represented by matrix degrading enzymes such as MMPs and 

cathepsins that cleave matrix molecules (133). Synovial membrane in RA contains 

many monocytes/macrophages that can undergo osteoclast differentiation upon 

contact with the appropriate signals (134, 135). FLS and activated T cells are the cells 

that provide signals for monocytes to differentiate in osteoclasts. FLS express receptor 

activator of nuclear factor (NF)κB ligand (RANKL) that drives osteoclast formation 

(135, 136). Another source of pro-osteoclastogenic factors are activated T cells that 

produce IL-17, an important cytokine in osteoclastogenesis (137). Pro-inflammatory 

cytokines such as TNF-α, IL-6, IL-17 and IL-1, which are abundant in RA synovial 

membrane, regulate RANKL expression driving osteoclast formation (138-140). 

Indeed, RANKL is upregulated in human RA (135, 136). Of interest, osteoclasts in 

RA are strictly linked to bone damage but not to the inflammatory process as 

demonstrated by the therapeutic administration of bisphosphonates and 

osteoprotegerin, a negative regulator of RANKL (141, 142). Bone erosion in RA 

starts early and progresses rapidly during the first year and osteoclasts are the main 

actors of this process (143). 

 

Fibroblast-like synoviocytes: FLS provide nutritive plasma proteins and lubricating 

molecules to the joint cavity and cartilage (65). These cells are involved in matrix 

remodelling by producing matrix components, such as collagen, hyaluronan and 

matrix-degrading enzymes (65). RA synovial fibroblasts (RASFs) show alterations in 

morphology and an aggressive behaviour compared with those from healthy joints 

(144, 145). These changes are often referred as tumour-like transformation and reflect 

a stable activation, long-term growth and resistance to apoptosis (61). These 

characteristics may be related to pro-inflammatory cytokines (TNF-α, IL-1, IL-17, IL-

18) (146-148), growth factors (FGF, TGF-β) (65), hypoxia (149), up-regulation of 

proto-oncogenes (myc, c-fos, ras) and deficiency of tumour suppressors genes, such 

as p53 (150, 151).  
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In MRL/lpr mice, that spontaneously develop RA-like arthritis, FLS proliferate and 

invade joint structures before inflammatory cells migrate in the synovium (152). In 

another murine model, human RASFs implanted in SCID mice degrade cartilage in 

the absence of inflammatory cells (153). RASFs activation has been linked to 

microbial agents and endogenous ligands, such as RNA from necrotic cells, which 

may stimulate them via highly conserved receptors of the innate immune system, such 

as toll-like receptors (TLRs). TLRs are a family of receptors that are expressed on 

different cell types. TLR2, 3 and 4 are expressed on RASFs (154). Pro-inflammatory 

cytokines, such as TNF-α and IL-1, abundant in RA synovial fluid, enhance the 

expression of TLR2 in RASFs (155). TLR2 activation results in VEGF and CXCL8 

production upon stimulation with the ligand peptidoglycan (156, 157). Moreover, 

TLR2 and 4 activation lead to the synthesis of IL-15 in RASFs (158). In addition, 

TLR3 ligands, such as RNA, can be released from necrotic cells acting as an 

endogenous stimulus for the expression of pro-inflammatory genes in RASFs (154). 

RASFs contribute to RA pathogenesis as effector cells in inflammation also by 

chemokine secretion upon cell contact with T cells and by production of pro-

inflammatory mediators (61). RASF are also key mediators of cartilage and bone 

destruction. Indeed, they are the major source of MMPs and cathepsins that drive 

degradation of cartilage and bone (159). They can also contribute to bone erosion by 

producing RANKL and stimulating osteoclasts differentiation (160). 

 

1.6 Role of the adaptive immunity  

 

The genetic associations of RA and the presence of autoantibodies place the adaptive 

immune pathways at the center of early pathogenesis. Moreover, current therapeutic 

approaches targeting B and T cells, such as conventional and biologic drugs, strongly 

support the key role played by the adaptive immune system. An overview of T and B 

cell function in RA and animal models of arthritis will be presented in the following 

sections. 
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1.7 Evidence of T cells 

 

Several issues demonstrate that CD4+ T cells are involved in the pathogenesis of RA. 

A critical role for the adaptive immunity is supported by the genetic predisposition to 

develop RA. Indeed, it has been demonstrated an association with the haplotype 

HLADRB1 and more recently with PTPN22, CTLA4, CD40 and CD28, as previously 

discussed (section 1.2.1) (17, 18, 24, 29, 30, 161). HLADRB1 gene contains a 

sequence of amino acids in the peptide-binding pocket, the “shared epitope”, that can 

present the antigen to the T cell receptor (TCR) on CD4+ T cells (162). This issue is 

becoming of particular interest since it has been demonstrated that there is an 

association among genetic (HLA-DRB1 carriers), environmental factors (smoking) 

and autoimmunity (ACPA), as previously discussed (section 1.2.2) (163). 

In RA T cells are activated and secrete IFN-γ, IL-2, IL-12, IL-18, TNF-α and GM-

CSF, typically considered Th1 cytokines that are produced in the synovial fluid and 

expressed in the synovial membrane (164-168). Rapidly these cytokines activate 

macrophages to secrete other pro-inflammatory cytokines such as IL-1β, IL-6, TNF-α 

and IL-12, which in turn can promote the differentiation of B cells and stimulate the 

release of matrix MMPs provoking the degradation of the cartilage and the activation 

of osteoclasts leading to the bone resorption (169). Macrophages are the most 

important source of these cytokines, however, many studies demonstrate that cell 

contact interactions, between synovial T lymphocytes and adjacent macrophages or 

fibroblasts, represent an alternative route to generate cytokines (98, 170, 171). Studies 

in vitro demonstrate that T cells may acquire an active phenotype in a bystander 

manner by cytokine-driven activation and not as a consequence of antigen exposure 

(172, 173). 

The presence of activated memory CD4+ T cells in the synovial membrane, synovial 

fluid and peripheral blood of RA patients reinforces the concept that these cells are 

important in the pathogenesis of RA (174, 175). Current immunosuppressive therapies 

that indirectly regulate T cells show a significant improvement of RA. 

Corticosteroids, Methotrexate, Sulfasalazine, Leflunomide and Cyclosporine A, used 

in the management of RA, decrease the pro-inflammatory Th1-driven cytokines and 

promote the shift from Th1 to Th2 immune mediated-response (176). Biological 

therapies can also modulate T cell activation. Abatacept is a soluble recombinant 
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fusion protein comprising a fragment of the Fc domain of human Immunoglobulin 

(Ig) G1 and the external domain of the human co-stimulatory protein CTLA-4 (177). 

CTLA-4 is a molecule that competes with CD28, expressed on T cells, to bind B7 

molecules on APC. Different clinical trials demonstrated the efficacy of Abatacept in 

Methotrexate naïve RA patients (178) and in patients with moderate to severe arthritis 

with inadequate response to Methotrexate (179) or TNF blockers (180). One 

mechanism of action proposed involved the release of indoleamine-2,3-dioxygenase 

after the interaction between Abatacept and B7 molecules on DCs. This enzyme could 

modulate the function of APC, such as it should occur after the binding with 

regulatory CD25+CD4+ T cells (181, 182). Another recent study suggested that 

CTLA-4 engagement decreased the contact period between T cell and APC leading to 

a reduced T cell activation (183).  

Several murine models of arthritis explored the role of T cells. In CIA pathology is 

elicited by a joint specific antigen, homologous or heterologous type II collagen (CII), 

presented by class II major histocompatibility complex (MHCII) to specific T cells. In 

this model arthritis resembles the human disease with synovial proliferation, intense 

infiltration of mononuclear cells resulting in cartilage damage and bone erosions 

(184). Other animal models of arthritis also suggest that inflammatory immune 

stimuli, such as adjuvants (185), or components of infectious agents, such as 

streptococcal cell wall (SCW) (186), can elicit arthritis. However, in both examples 

antigen-specific T cells seem to play a role in the chronic stage of the disease (187). 

Another model where the central role of T cell in the development of arthritis is 

demonstrated is KxB/N generated from the KRN/C57BL/6 TCR transgenic (Tg) mice 

crossed with the Non-Obese Diabetic (NOD) mice. Arthritis in these mice was due to 

the development of T-cell dependent B cell responses against glucose-6-phosphate 

isomerase (G6PI), a glycolytic enzyme that is ubiquitously expressed (188, 189). 

 

Th17 cells: CD4+ T cells, upon activation and expansion, develop into different T 

helper cell subsets with different cytokine profile and distinct effector functions. Until 

recently T cells were divided into Th1 and Th2 cells (190). A third subset of IL-17 

producing T helper cells includes the Th17 cells (191). Th17 cells produce IL-17, IL-

17F, IL-22 and IL-21 (192). Initially Th1 cells were speculated to play the major 

pathologic function in the model of CIA. This view changed after the discovery that 

IFN-γ receptor deficient mice were more susceptible to CIA (193, 194). Mice 
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deficient in IL-23, cytokine required for IL-17-producing T cells, were resistant to 

CIA development; in contrast mice deficient in IL-12, required for IFNγ-producing 

Th1 cells, showed enhanced joint pathology (195). Thus, in CIA IL-23 was an 

essential mediator of arthritis, in contrast IL-12 was not critical in disease generation. 

Moreover, CIA was suppressed in IL-17 deficient mice and this cytokine was 

responsible for the priming of collagen-specific T cells and collagen-specific IgG2a 

production (196). The role of IL-17 in arthritis was demonstrated also in other murine 

models of arthritis such as in SKG and IL1RA deficient mice. In both models Th17 

cells were induced spontaneously and IL-17 contributed to the inflammation and the 

bone erosion (197, 198). In human RA IL-17 was detected in the synovial fluid (199, 

200). Immunostaining of RA synovium demonstrated IL-17-producing cells not only 

in the T cell rich area but also within mast cells (201, 202). IL-17 may induce joint 

degradation by producing matrix MMPs, inducing RANKL expression on T cells 

(137) and up-regulation on synoviocytes (199) and leading to increased 

osteoclastogenesis (203). A phase I trial with a humanised anti-IL-17 monoclonal 

antibody in RA patients supported neutralisation of IL-17 as a potential goal for the 

treatment of RA (204).  

 

1.8 Evidence of B cells 

 

B-cell development (Figure 1.2) initiates in the bone marrow, where stem cells 

progress through various stages of differentiation to become immature B cells (205). 

In mice approximately 10% of immature B cells overcome negative selection induced 

by reactivity with self antigens and emerge from the bone marrow expressing surface 

IgM and IgD (206). Final maturation occurs in the spleen where immature 

“transitional” B cells can still undergo negative selection (207)  Cell surface markers 

have been identified that enable different stage of development. In mice, CD24 is 

used to distinguish immature (CD24hi) from mature (CD24lo) splenic B cells (208). 

Murine splenic transitional B cells have been divided into 2 distinct populations: 

transitional type 1 (T1; CD24hi, CD21lo, CD23lo, IgMhi, IgDlo) and transitional type 2 

(T2; CD24hi, CD21hi, CD23hi, IgMhi, IgDhi) (209). T1 B cells are found in the bone 

marrow, blood and spleen but not lymph nodes, whereas T2 B cells are restricted to 
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the spleen (210). Moreover, in vivo experiments demonstrated that T1 cells give rise 

to T2 cells and mature B cells (209).  

Human immature transitional B cells have been identified and show similarities and 

differences with their murine counterparts (210). For example, the presence of 

circulating human T2 B cells suggested that they are not restricted to the spleen (210). 

Human memory B cells are generated in germinal centers (GCs) in response to T-cell 

dependent antigen (211). Within a GC antigen-specific B cells undergo somatic 

hypermutation of Ig V genes, yielding cells with increased affinity for antigen (212). 

As a result, memory B cells rapidly differentiate into high-affinity plasma cells 

following a re-encounter with the antigen (213). In peripheral blood memory B cells 

represent 40-60% of all B cells (206). CD27 represents a universal marker of human 

memory B cells to distinguish between memory B cells (CD27+) and naïve B cells 

(CD27-) (214). In turn CD27+ memory B cells can be divided into IgD+ (unswitched 

memory, usually together with IgM or alone in a minor fraction of memory cells) and 

IgD- (switched memory, predominately IgG+ or IgA+, and a small fraction of IgM+) 

(214). In the last few years a population of CD27- IgG+ memory B cells has also been 

described (215). The classification of human peripheral blood B cell subsets is shown 

in table 1.2.The relevance of B cells in RA pathogenesis is attributed to different 

mechanisms that can be summarised as follows:  

 

1. B cells are a source of relevant autoantibodies in RA 

2. B cells enrich RA synovial membrane 

3. B cells are highly efficient APCs to stimulate T cells 

4. B cells are a major source of cytokines 

5. B cells as a therapeutic target in RA 

 

1.8.1 Autoantibody Production  

 

Classically RA is considered an autoimmune disease since the production of RF was 

first observed. RF is an autoantibody directed against determinants on the Fc fragment 

of IgG molecules. It can belong to different isotypes (IgE, IgM, IgA and IgG). RF 

IgM can activate the complement system due to its pentameric structure and stimulate 

an immune response (216). About 50-80% of patients affected by RA are positive for 
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RF and high serum levels are associated with an aggressive articular disease, extra-

articular manifestations and a worse outcome (217-219). RF has a moderate 

specificity, around 66%, as it is detected in other autoimmune diseases, systemic 

infections, and in up to 10% of healthy subjects (220). Nevertheless, many differences 

exist between RF in health and disease. The former is an IgM produced by B1 cells as 

“natural” antibody that shows low affinity and polyreactivity, the last undergoes 

isotype switching and somatic hypermutation as consequence of B cells receiving 

help from T cells (221). 

The lack of high specificity of RF has stimulated the research of other autoantibodies 

more specific for the diagnosis of RA (222). 

Antibodies in RA can be classified as those associated with RA and those specific for 

RA. In the first group anti-Ra33 antibodies are the more relevant. Hassfeld described 

anti-Ra33 antibodies, directed against an antigen of 33 kDa, in approximately 36% of 

patients affected by RA (223). The molecule has been identified as the heterogeneous 

nuclear ribonucleoprotein A2. Anti-Ra33 antibodies are associated with early arthritis 

(224) and they show a high specificity (90-96%) and a low sensitivity (32%) (225). 

Among the RA-associated antibodies, ANA are detected in approximately 50% of RA 

patients and anti-dsDNA, rare in the disease, can be induced during anti-TNF 

treatment (226). Antibodies to collagen type II (anti-CII) are detected in about 30% of 

RA patients. They have a low specificity; in fact they can be found in other 

autoimmune diseases such as SLE, systemic sclerosis and recurrent polychondritis. It 

is still a matter of debate if these antibodies represent an epiphenomenon or if they 

play a role in human disease. To support the last hypothesis several issues have been 

widely discussed as the detection of high titres of anti-CII antibodies in synovial fluid 

compared with serum titres (227) or the demonstration of B cells producing anti-CII 

antibodies in RA synovia, detected also in patients lacking serum antibodies (228). 

The synovial production of anti-CII seems to be correlated with expression of HLA-

DR4 alleles and the T cell repertoire in RA patients (229). Moreover, it has been 

demonstrated that serum and synovial titres of anti-CII IgG correlate with levels of 

acute phase proteins and pro-inflammatory cytokines, such as TNF-α and IL-6 (230). 

Finally, recent work also demonstrates that immune-complexes containing anti-CII in 

human RA sera, can induce cytokine production such as TNF-α, IL-1β, CXCL8 via 

Fcγ receptor IIa expressed on macrophages (231). 
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Among the autoantibodies specific for RA, anti-BiP antibodies and ACPA appear to 

be important. Antibodies against a 78 kDa protein, identified as the stress protein 

immunoglobulin heavy-chain binding protein (BiP), are found in 64% of RA patients. 

They are highly specific for RA (specificity 96%, sensitivity 40%) (232). Anti-BiP 

antibodies are also detected in the mouse model of CIA and pre-immunisation with 

BiP suppresses the onset of the experimental arthritis (233).  

Finally, the most relevant autoantibodies appear to be ACPA. They were first 

described in 1964 as anti-perinuclear factor (APF), because they reacted with 

keratohyaline granules scattered around the perinuclear region of human buccal 

epithelial cells in indirect immunofluorescence (IIF) (234). Later on in 1979, anti-

keratin antibodies (AKA) were identified by using rat or human esophagus sections 

for detection (235). In 1993, it became clear that the antigen recognised by AKA was 

filaggrin (236) and then that APF and AKA were directed against the same citrulline-

containing proteins generated from the enzymatic reaction catalyzed by PAD (237). 

Citrullination is the critical step for the recognition of different proteins (fibrin, 

vimentin, fibronectin, collagen type II), highly expressed in the synovial membrane 

during inflammation, by ACPA (238). Anti-citrullinated vimentin antibodies are as 

sensitive as ACPA but slightly less specific in detecting RA (239). Interestingly, PAD 

enzymes were found in monocytes (PADI4) and macrophages (PADI2 and PADI4) in 

synovial fluid suggesting that citrullination may take place locally in the joint (240) 

and B cells secreting ACPA have been detected in synovial fluid from RA patients 

(241, 242). Another observation that strongly supports the role of ACPA in RA 

pathogenesis comes from genetic studies. Firstly, as previously discussed (section 

1.2.1), a haplotype of the gene encoding PADI4 was shown to be associated with an 

increased susceptibility to develop RA (22). A second line of evidence is found in the 

strong association between the production of ACPA and the presence of RA 

susceptibility HLA-DRB1 genes (243). Indeed, SE alleles predispose for ACPA 

positivity rather than for RA (243). These autoantibodies show high specificity (98%) 

and sensitivity comparable with RF (68%) (244). ACPA positive patients with 

undifferentiated arthritis have a chance of 90% to progress to full-blown RA within 3 

years (245). Of interest, they correlate with disease severity and with radiological 

progression of the disease (246). Moreover, recent studies have demonstrated the 

presence of both RF and ACPA up to ten years before the onset of RA (5, 247-249). 

The autoantibody titres increased as the onset of disease approached (5). These data 
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suggested that the adaptive immune response against autoantigens is initiated years 

before the clinical signs of the disease.  

 

1.8.2 B cells enrich RA synovial membrane  

 

New interest in B cells arose when it was demonstrated that B cells were represented 

in rheumatoid synovium (217). The histological pattern of rheumatoid synovial 

membrane is heterogeneous. Several studies confirmed the variable presence of T/B 

cell compartmentalisation, the development of high endothelial venules and follicular 

dendritic cells (FDCs) network (250-253). This process may recapitulate the 

development of lymphoid organs and therefore it has been defined ectopic lymphoid 

neogenesis (250). Evidence of tertiary lymphoid structure formation is not RA-

specific since it has been obtained in tumours and in several chronic infectious 

diseases (254). A complex interaction between hematopoietic and stromal cells is 

responsible for the persistence and the organisation of the inflammatory process. The 

first study in human RA, published by Takemura (252) in a series of 64 synovial 

biopsies, demonstrated the presence of a diffuse infiltrate of B, T, macrophages and 

DCs in 23% of cases, clusters of B and T cells in 56% and GCs with a network of 

FDCs inside in 20.3% of biopsies. Moreover, in a given patient the histological 

pattern was stable over time and it was represented in different joints with synovitis 

(255). The histological pattern might be influenced by the disease stage and the 

sampling procedure (254). Recent studies in large cohort of RA patients demonstrated 

synovial ectopic lymphoid neogenesis in 31% (n= 103) (256) and 49% (n= 86) (250) 

of the specimens after arthroscopic synovial biopsies. In the first study patients with 

synovial lymphoid neogenesis showed increased markers of systemic inflammation 

but there was no association with clinical characteristics of disease severity and the 

presence of RF or ACPA (256). Synovial ectopic lymphoid structures expressed 

activation-induced cytidine deaminase (AID), the enzyme required for somatic 

hypermutation and class-switch recombination of Ig genes suggesting that antigen-

driven antibody response may take place within GCs of secondary lymphoid tissues 

(257). Few studies focused on the contribution of chemokines that drive cell 

movement in RA synovium. The stroma has acquired in recent years the role of 

director of the immune response regulating the leukocyte recruitment and the 
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organisation within the synovium. FLS, lymphatic and blood vessels seem to exert a 

key role in the regulation of the inflammatory response and leukocyte recruitment 

(258). Of interest, FDCs, FLS and endothelial cells are the main source of CXCL13, 

also called BLC (B Lymphocyte Chemoattractant) or BCA-1 (B cell-attracting 

chemokine-1), in RA synovia (252). CXCL13 and the receptor CXCR5 promote the 

attraction of B cells in the GC. CCL21, which binds CCR7, is instead known for its 

role in the recruitment of T cells in the paracortex of the lymph node. Takemura and 

co-workers demonstrated the relationship between the progressive lymphoid 

organization in RA synovia and the expression in terms of protein and mRNA of these 

chemokines (252). FLS also produce TNF-α, IL-6 and IL-1 that promote immune cell 

recruitment and leukocyte aggregation in RA synovium. Other molecules, such as 

lymphotoxin (LT)-α, LT-β, and the heterotrimers LT-α1β2, promote inflammatory 

lymphoneogenesis and the B cell recruitment in the RA synovia. LT-β� is expressed in 

the rheumatoid synovia by B cells in the mantle zone and in the GC, while FLS 

express its receptor LT-βR (255). Of interest FLS in culture, extracted from patients 

with active RA, produced pro-inflammatory cytokines, matrix MMPs, chemokines 

attracting T cells, and cell adhesion molecules after incubation with LT-α1β2 (259).  

Using an adoptive transfer model, Weyand and co-workers studied whether the T cell 

activation could be B-dependent in the synovial membrane. These authors 

transplanted human RA synovia under the skin of SCID mice that, lacking T and B 

cells, were unable to reject the allograft. The transplanted synovia produced pro-

inflammatory cytokines. The treatment with Rituximab, a monoclonal antibody that 

depleted CD20+ B cells, provoked the disorganization of the follicular structure and 

the loss of CD4+ T cells in the synovia together with a decrease in pro-inflammatory 

cytokines production (260). In the context of therapeutic intervention few studies in a 

small number of RA patients analysed the effect of anti-TNF treatment or Rituximab 

on the synovial biopsies. In particular, disease activity was associated with 

persistency of synovial lymphoid neogenesis in 24 RA patients treated with anti-TNF 

therapy, while response to treatment was accompanied by its reversal (250). The 

treatment with Rituximab in 13 RA patients showed a high clinical response that was 

associated with decreased synovial B cells and Igs (261). Another study, involving 

only 24 RA patients undergoing sequential synovial biopsies following Rituximab 
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therapy, demonstrated a reduction in plasma cells infiltrating the synovial membrane 

as a predictor of response to B cell depletion therapy (262). 

 

1.8.3 Professional antigen presenting B cells  

 

Several studies in animal models of autoimmune diseases have investigated the role of 

B cells as highly efficient APCs and/or autoantibody producing cells; here we report 

some of these studies. Naïve B cells circulate through the blood and lymph and home 

to secondary lymphoid organs. There, they encounter their specific antigen and T cells 

specific for the same antigen. In the lymph node naïve B cells are localised in the 

follicles and T cells in the paracortex (255). B-T cell interactions (Figure 1.3) have 

been observed in the edges of lymphoid follicles in the lymph node, which resulted in 

proliferation of both cell types and GC formation (263). 

B cells can recognise the antigen, classically, through their B cell receptor (BCR). 

BCR is formed by membrane-bound Igs that show high affinity for a given antigen 

(264). The antigen, after the binding with Ig, is internalised and processed in a small 

peptide that, bound to an MHC class II molecule, is then presented to T cells 

sensitised to the same antigen. T cells can recognise the peptide through their TCR. 

Activation of naïve T cells requires co-stimulatory molecules such as ligation of 

CD40 on B cells by CD40L, a molecule expressed by activated CD4+ T cells (265). 

On the B cell side the co-stimulatory molecules CD80/CD86, ligands for CD28, are 

induced after crosslinking of the BCR. The importance of CD40L-CD40 pathway is 

shown by the lack of antigen-presenting capacity of B cells from CD40L- or CD40-

deficient mice and after blockade of the interaction with anti-CD40L antibodies (263, 

266, 267). Activation of naïve T cells requires also another signal delivered by the 

APC such as cytokines that are involved in T cell differentiation, as described in 

section 1.8.4. T-B cell cognate interaction is critical in regulating T cells activation or 

tolerance (268), B cell clonal expansion and differentiation in antibody-secreting cells 

(269).  

Studies from Lanzavecchia showed that B cells with RF specificity could capture a 

foreign antigen complexed with an antibody and present the antigen efficiently to T 

cells of the same specificity (270). In support of this hypothesis came the 

demonstration that chromatin-containing immune complexes stimulated RF+ B cells 
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engaging both the BCR and TLRs (271), establishing a critical link between innate 

and adaptive immune systems.  

Although B cells are able to prime naïve CD4+ T cells, their contribution in this 

process is debated. Early experiments using mice rendered B cell deficient by 

administration of anti-IgM antibodies suggested that T cell priming was deficient in 

absence of B cells (272-275). Moreover, conflicting results arose when B cell 

deficient mice (µMT) were generated by targeted deletion of the µ region of the IgM 

locus. In some studies B cells were not necessary for T cell priming (276-278), 

supporting the notion that T cells priming was reserved for DCs, whereas in other 

studies an impairment in T cell priming was observed (279-281). Costant et al. 

investigated in vivo the ability of DCs and B cells to take up peptide or protein 

antigens. Mice lacking B cell (µMT mice) were impaired in their priming to protein 

but not peptide antigens. Indeed, peptide antigens were taken up preferentially by 

DCs, whereas soluble proteins were taken up by antigen-specific B cells (282). 

Interesting studies on MRL/lpr mice investigated the relevance of B cells for T-cell 

activation by depleting B cell themselves or circulating autoantibodies (283, 284). 

MRL/lpr mice, that showed a lupus-like disease, developed severe nephritis, 

vasculitis, sialoadenitis and skin disease. These mice failed to develop activated 

memory T cells and pathology once rendered B cell deficient (284). On the contrary, 

in the total absence of circulating antibodies and normal B cells, MRL/lpr mice 

experienced normal T cell activation, cellular infiltration in kidney and vessels, 

suggesting that antibodies were not required for T-cell activation. The authors 

suggested that B cells, with specificity for self IgG or DNA, could present antigen and 

stimulate autoreactive T clones (283).  

The requirement for antigen-specific B cells was investigated also in a murine model 

of RA, the proteoglycan-induced arthritis (PGIA), using both B cell deficient and Ig-

deficient (mIgM) mice. Indeed, in PGIA model antigen-specific B cells were 

necessary as APCs for the activation of autoreactive T cells (285). 

Interestingly, antigen presentation by resting B cells can induce T cell tolerance. In 

experimental models T cell tolerance was induced avoiding B cell activation, for 

example using an antigen without adjuvant (286), blocking CD40 signalling (266), or 

with an antigen expressed endogenously by B cells as a transgene (287). 
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In summary, these studies show that the degree to which B cells participate in T cell 

priming or tolerance is determined by their activation state, type of antigen used, 

method of administration and the function that is evaluated in each model (280, 286, 

288). This probably reflects the fact that the involvement of each type of APC varies 

in different circumstances (268). 

 

1.8.4 B cell-related cytokine production  

  

The outcome of T-B interaction is influenced by the cytokine milieu (289). This is 

traditionally considered to be dominated by T cells polarised during the T-DC 

interaction (289-291). However, activated B cells can produce a variety of cytokines 

that may contribute to the environment such as IL-1, IL-4, IL-6, CXCL8, IL-7, IL-10, 

IL-12 and TGF-β (292-294). For example, Duddy et al. (295) demonstrated that naïve 

B cells, through both the BCR and CD40, proliferate and produce high levels of IL-6, 

TNF-α and LT, a combination that promotes GC formation and amplifies T cell 

responses. In contrast, CD40-mediated T cell stimulation, in absence of BCR 

engagement, produced high levels of the regulatory cytokine IL-10. Differently, 

memory B cells have a greater tendency to produce pro-inflammatory cytokines 

(293). Studies in animal models of autoimmune diseases demonstrated that cytokine 

production by B cells might either stimulate or inhibit pathogenic responses (296, 

297). For example, Evans et al. (298) demonstrated that transitional B cells were 

protective against murine inflammatory arthritis via the production of IL-10. IL-10 is 

a regulatory cytokine that suppresses APC and T cell activation (299). IL-10 acts as B 

cell growth and differentiation factor promoting isotype switching and plasma cell 

formation (299, 300).  

B cells with regulatory function (Breg) have been described in murine models of 

autoimmune diseases (296). In murine models of RA and multiple sclerosis, such as 

in K/BxN (301), CIA mice (302) and in experimental autoimmune encephalomyelitis 

(303, 304), Breg can both prevent the development of these diseases and reduce their 

severity.  

A novel function of B cells in promoting lymphangiogenesis and lymph node 

expansion in response to immunisation has been recently described via the expression 

of VEGF-A (305). This is of particular interest since angiogenesis is present in RA 



 41 

synovial membrane, as previously discussed (section 1.4). Moreover, B cells are able 

to produce either RANKL (306) or a precursor of osteoprotegerin (307), a soluble 

decoy receptor of RANKL and inhibitor of osteoclastogenesis, suggesting a role for B 

cells in regulating bone homeostasis.  

 

A brief introduction of B-cell mediated cytokines involved in arthritis is presented. 

 

IL-6 is a pleiotropic cytokine produced by B cells, macrophages, fibroblasts, 

endothelial and T cells. It exerts various effects in the inflammatory cascade and the 

immune responses (308, 309). Several lines of evidence showed that IL-6 is involved 

in RA pathogenesis (310). It is expressed in the synovial membrane of RA patients 

and a correlation has been found between elevated serum or synovial fluid levels and 

disease activity (311). IL-6 drives leukocytes activation and antibody production 

(309). It also stimulates osteoclast differentiation (312) and mediates systemic effects 

promoting acute phase response, anaemia, cognitive dysfunction and lipid-metabolism 

dysregulation (310, 313). Studies in CIA mice showed that IL-6 is required for the 

development of arthritis (314) and that an antibody (Tocilizumab) against IL-6 

receptor (IL-6R) inhibit CIA development (315). Tocilizumab is a humanised 

monoclonal antibody that binds to soluble and membrane-expressed IL-6R (316). It is 

approved in Europe and in the United States for the treatment of moderate to severe 

RA in adult patients who have either responded inadequately or have been intolerant 

to previous therapy with one or more DMARDs or TNF antagonists (European 

Medicines Agency (EMEA). European Public Assessment Report – RoActemra. 

EMEA website [online], 

http://www.emea.europa.eu/humandocs/PDFs/EPAR/RoActemra/H-955-PI-en.pdf 

2008). 

 

TNF-α  is a pluripotent cytokine produced by many cell types, including B cells, T 

cells and DCs Two TNF receptors have been described, TNFR1 (p55) and TNFR2 

(p75) (317). TNF-α and its receptors are highly expressed in synovial tissue and fluid 

from RA patients (318, 319). TNF plays a central role in the inflammatory process in 

RA. Indeed, it induces the production of pro-inflammatory cytokines and chemokines, 

the expression of adhesion molecules, the synthesis and release of MMPs, the 
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suppression of regulatory T cells and it regulates the bone metabolism both inhibiting 

osteoblast differentiation and up-regulating osteoclast function RANK/RANKL-

mediated (6). The development of biologic agents that block TNF-α has provided a 

major advance in RA treatment. Many anti-TNF drugs are currently available for the 

treatment of RA: Infliximab, Adalimumab, Etanercept, Golimumab and Certolizumab 

(320). Infliximab is a chimeric human-murine monoclonal antibody that consists of 

the variable region of a mouse and the Fc domain of human IgG1 (321). Adalimumab 

is a recombinant fully human IgG1 monoclonal antibody (322). Etanercept is a 

dimeric fusion protein that joints to p75 TNF receptor to the Fc domain of human 

IgG1 (323). Golimumab is a fully human anti-TNF IgG1 monoclonal antibody that 

targets and neutralises both the soluble and membrane-bound forms of TNF (324, 

325). Finally, Certolizumab is a pegylated Fab fragment of a humanised anti-TNF 

monoclonal antibody approved for the treatment of RA in combination with 

Methotrexate in 2009 (326, 327). Randomised clinical trials strongly suggested that 

TNF inhibitors effectively reduce the clinical signs of RA and inhibit the progression 

of the structural damage (320). However, the biggest disadvantages are the partial or 

no-response to the therapy and the susceptibility to infections (328). 

 

LT-α  and -β  are members of the TNF family that are required for early B cell 

differentiation and function (329). They promote lymphocytes compartmentalisation 

and GC formation (330, 331) complementary with TNF (332). In mice deficient for 

LT-α or LT-β the production of chemokines necessary for the recruitment of B and T 

cells is depressed (333). As previously described (section 1.8.2), LT−α and -β are 

differentially expressed in RA synovial membrane. These proteins form α1β2 

heterotrimers and have been implicated in ectopic lymphoneogenesis. LT-β is 

produced by B cells and its receptor has been detected in FDC and FLS (252). Braun 

et al. (259) demonstrated that LT-α1β2 induced changes in the function of FLS that 

contributed to inflammation and T cell recruitment. In particular, it induced the 

production of IL-1β, MMP1 and MMP3, T cell attracting chemokines CCL2, CCL5 

and CCL8, and cell adhesion molecules rendering FLS to efficient adhesion substrates 

for T cells. 
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1.8.5 B cells as a therapeutic target  

 

The presence of autoantibodies in RA (222), the formation of lymphoid aggregates in 

RA synovia (255) and the studies on animal models of autoimmune diseases, 

demonstrating the relevance of B cells as efficient APCs (270), suggested the 

possibility that targeting B cells in RA could ameliorate the disease. B-cell targeting 

strategies have been developed such as anti-CD20 antibodies (334). Rituximab is a 

chimeric monoclonal antibody that binds to CD20, a surface molecule expressed on B 

cells at the pre-B stage of differentiation to the mature B cells excluding stem cells, 

pro-B cells and plasma cells (335). It is the first B cell depleting agent approved in 

combination with Methotrexate for the treatment of moderate to severe active RA 

after the failure of at least one anti-TNF (336). Rituximab, has been shown to inhibit 

progression of structural damage over 2 years, and continue to inhibit joint damage in 

the long-term treatment (337, 338). Several mechanisms of action have been 

hypothesized to explain the effect of B cell depletion and they may not be mutually 

exclusive. The antibody may activate the complement cascade promoting lysis of the 

target cell, activate antibody-dependent cell mediated cytotoxicity, induce apoptosis 

or target selected B cell subsets, such as autoreactive B cells or B cells forming 

extrafollicular GCs in the synovia (339). The therapy in a low percentage of cases 

reduce serum IgM levels although no increase in overall infection was observed in a 

long term follow-up (340). Other interesting potential therapeutic targets involving B 

cells are BlyS, APRIL, Bruton’s tyrosine kinase and spleen tyrosine kinase that are 

implicated in B-cell activation and survival (335). 
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1.9 Animal models of arthritis 

 

Animal models of arthritis have been employed extensively and generate new 

knowledge that can partially be applied to RA aetiology and pathogenesis. They 

represent an invaluable tool to identify and validate innovative drugs. Several animal 

models of arthritis exist, each providing unique insight into a subtype of disease. 

There is no universal model because of the complexity of the disease. They can be 

divided into induced arthritis models, whose development is based on immunising 

animals with an autoantigen or protein in the presence of an adjuvant, and genetically 

manipulated spontaneous arthritis models. These models are summarised in table 1.3. 

The CIA model is the most commonly used for RA. It was first induced in rats (184) 

and subsequently in susceptible strains of mice (341). It is induced by intradermal 

injections of heterologous type II collagen in complete Freund’s adjuvant (CFA) 

(341). CIA is MHC class II dependent and many strains have variable degree of 

susceptibility. Clinically it is characterised by an acute erosive polyarthritis. 

Autoreactive collagen-specific T and B cells play a critical role in disease progression 

(342). In a development of the model, injection of homologous CII caused chronic 

relapsing arthritis, more akin to human RA (343, 344). The importance of antibodies 

in arthritis development is demonstrated by the resistance of CIA induction in B cell 

deficient mice (345). Moreover, the transfer of collagen specific sera and monoclonal 

antibodies against CII induced collagen-antibody induced arthritis (CAIA) (343, 346). 

Relevant collagen epitopes in murine arthritis and human RA have been identified 

(347, 348). 

Adjuvant induced arthritis was originally induced with an intradermal injection of 

mycobacteria cell walls suspended in mineral oil (349). However, this was not an 

adequate model for RA because it caused systemic acute inflammation. Thus, pristane 

induced-arthritis (pristane is the arthritogenic component discovered in mineral oil) 

was developed, and this is characterised by an acute phase with synovitis and bone 

erosion and a chronic relapsing phase of arthritis (350). This model is largely T cell 

dependent.  

Streptococcal cell wall-induced arthritis is caused by a single systemic injection of an 

aqueous suspension of cell wall peptidoglycan-polysaccharide fragments from group 
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A Streptococci into susceptible rat strains. This model is characterised by an acute 

phase, followed by a chronic relapsing secondary phase similar to human RA (186, 

351). 

Proteoglycan induced model of arthritis involves immunisation with human 

proteoglycans in susceptible mice. These animals develop severe polyarthritis and 

spondylitis (352). Activation of autoreactive T cells is dependent on antigen 

recognition by the BCR, as previously discussed (section 1.8.3). In the absence of this 

recognition, the development of arthritis is inhibited (285). Treatment with anti-CD20 

monoclonal antibody induced a reduction in antigen-specific T cell response and in 

arthritis development (353).  

A limitation of these induced-arthritis models is that they rely on breaching tolerance 

to a single joint or systemic self-antigen based on aggressive immunisation protocols 

employing the same antigen.  

Genetically modified spontaneous arthritis-models could be more beneficial in 

understanding how breach of tolerance is likely to occur in human RA. Among the 

genetically modified spontaneous models of arthritis, human TNF Tg model enabled 

investigators to study TNF-driven mechanisms of disease (354). In this model mice 

that over-express human TNF develop a chronic, erosive, symmetric polyarthritis. It 

provided a useful tool in defining the contribution of cytokines, such as RANKL, in 

the inflammatory process and bone destruction (355). A similar model is the IL-1 

receptor antagonist-deficient model that spontaneously develops an erosive arthritis 

due to excess IL-1 signalling (198). 

Another example of spontaneously developed arthritis comes from K/BxN mice. 

These mice are generated by crossing the NOD strain with the TCR Tg KNR mice 

that recognise the ubiquitous enzyme G6PI (189). In this model, although arthritis 

initiates with T cell recognition of specific antigen, anti-G6PI antibodies have 

arthritogenic activity when transferred in healthy or lymphocyte deficient RAG -/- 

mice (301).  

The SKG model is characterised by a spontaneous mutation in the TCR signalling 

adapter molecule ZAP70, reflecting altered thymic T-cell selection (356). The ZAP70 

mutation alone is not sufficient for triggering arthritis if mice are in a pathogen-free 

environment. A severe autoimmune arthritis is induced when mice are maintained in a 

conventional environment or by the injection of zymosan or �-glucans that activate 
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APCs through TLRs. Moreover, systemic manifestations such as interstitial 

pneumonitis and vasculitis occurred. Multiple autoreactive T cell clones are involved 

in the development of the SKG model and high titres of RF, ACPA and anti-CII 

antibodies have been demonstrated (357). 

Although these models are useful for identifying the effect of specific genes in the 

arthritis development, they do not allow investigators to study the initial events 

involved in the induction of arthritis. 
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1.10 OVA-TCR-induced model of arthritis 
 

In the Garside Laboratory an elegant model of experimental arthritis has been 

developed allowing the in vivo tracking of antigen-specific T cells (358). In this 

system CD4+ T cells, that express a TCR specific for the chicken ovalbumin (OVA) 

peptide (323-339) (359) are purified from Tg mice DO11.10 and polarised towards 

Th1 phenotype (360). The adoptive transfer of Th1 cells into BALB/c recipients is 

then followed by the immunisation with OVA in adjuvant and challenge in the limb 

close to the ankle joint with heat-aggregated OVA (HAO). T cells of an irrelevant 

specificity were able to induce an arthritis, characterised by synovial inflammation 

and bone erosions (358). Although the arthritis elicited was mild, limited to the ankle 

joint and acute, the most interesting finding was the breach of B and T cell tolerance. 

This occurred even if mice were not immunised with a joint-related antigen, such as 

in CIA and PGIA models. Remarkably, RF, ACPA and anti-CII antibodies were 

detected in arthritic animals (358, 361). This finding encouraged the laboratory group 

to identify the timing, location and mechanisms of the breach of self-tolerance. Using 

this model we have demonstrated that conventional DCs mediate the breach of self-

tolerance (361), while pDCs have a regulatory role, limiting self reactivity and the 

developing pathology (362). More recently, the importance of co-stimulation on the 

development of auto-reactivity was demonstrated, as the treatment with Abatacept 

(CTLA-4-Ig) was able to inhibit the development of autoantibodies, through the 

suppression of T cell follicular migration (363). 

 

This model will be employed to answer questions relating to the role of B cells in the 

induction of arthritis. This thesis will start by describing the induction of a relapse of 

arthritis and characterising the collagen-specific B cell responses. It will continue by 

investigating the requirement of antigen-presenting B cells and autoantibodies in the 

induction of experimental acute arthritis. Finally in the last chapter the relative 

contribution of innate inflammation versus antigen-specific activation to the breach of 

T and B cell self-tolerance and pathology will be investigated. 
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The results of the chapters 3 and 5 have been published (364, 365) in peer-reviewed 

journals. 
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1.11 Thesis objectives 

 

As highlighted above, RA pathogenesis can be subdivided in three stages: 

autoimmunity, inflammation and bone destruction (4). In susceptible individuals 

environment-gene interactions promote loss of tolerance to self-proteins (16, 31). 

Autoantibodies, such as RF and ACPA, can be detected in patients before the 

development of arthritis (pre-articular phase of RA) and their levels increase as the 

onset of disease approaches (5). Different mechanisms that probably involve 

infectious triggers, local microvascular, neurologic, biomechanical, microtrauma or 

other tissue-specific pathways, induce the localisation of the inflammatory process in 

the joints (transitional phase of RA) (6). Thus, synovitis is initiated and perpetuated 

by positive feedback loops and in turn promotes systemic disorders. Both the innate 

and adaptive immune pathways integrate to promote tissue inflammation, remodelling 

and damage (218). Understanding the relative contribution of innate versus antigen-

specific pathways will help to design therapeutic strategies directed against both 

components of the innate and adaptive immune systems and aiming to re-establish 

immunological tolerance.  

Experimental models of arthritis provide an invaluable tool to understand the 

immunological pathways underpinning the disease and evaluate potential therapeutic 

agents (366). Although arthritis models do cover several aspects of human disease, 

most models resemble the articular phase of RA ignoring early events that lead to 

autoimmunity. CIA is the most commonly used arthritis model because it shares many 

similarities with human disease (341). Collagen specific B and T cell responses have 

been studied in patients with RA and antibodies, immune complexes and CII-specific 

T cells have been detected in human joints (367).  

The interest in B cells in RA has been renewed with the introduction of powerful 

therapeutic tools targeting B cells and related mediators (334). B cells exert several 

functions in RA including cytokine production, antigen presentation and the antibody 

production (297). Characterisation of the specific B cell responses might allow the 

identification of patients in the preclinical phase of disease as well as the 

understanding of the mechanism that leads to the establishment of chronic disease. 

Recently, our group has developed a murine model where Th1 cells of irrelevant 

antigen specificity induced a transient arthritis and a breach of self-tolerance (358, 
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365). It therefore provides a useful tool to investigate the contribution of single cell 

populations and immune pathways to the breach of self-tolerance and pathology. 

However, an important limitation of this model is that arthritis was acute, self-limiting 

and localised to one joint unlike human disease. 

 

The objectives of this thesis are therefore to: 

 

1. Create a model of chronic autoimmune polyarthritis 

 

To establish a novel model of chronic autoimmune polyarthritis that will be more 

applicable to human RA. This murine model will allow us to dissect the effects of 

single cell populations in the induction and maintenance of disease.  

 

2. Characterise the collagen-specific antibody responses 

  

To characterise the anti-collagen responses in terms of the major epitopes recognised 

and compare anti-CII responses from OVA-mediated arthritis with collagen-induced 

arthritis as a “gold standard” model of human disease. 

 

3. Investigate the requirement of B cells in priming T cells and in the induction 

of acute OVA-mediated arthritis 

 

To investigate the requirement of antigen presenting B cells and autoantibodies in 

OVA-mediated experimental arthritis employing Tg mice that exclude B cell antigen 

presentation and B cell deficient mice. 

 

4. Prove the relative contribution of innate and adaptive immune responses in 

OVA-mediated arthritis  

 

To confirm the relative contribution of innate versus antigen-specific pathways to the 

breach of T and B cell self-tolerance and pathology. 
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Table 1.1: Extra-articular manifestations and complication of RA 

(Table adapted from reference (47))  

Tissue or Organ Manifestation Complication 

Skin Nodules • Skin cancer 

 Raynaud’s phenomenon • Chronic leg ulcers 

 Vasculitis • Lung cancer 

Lung Interstitial lung disease • Hypertension 

 Pleuritis • Heart failure 

 Nodules • Ischemic heart disease 

Heart Valvular heart disease • Cervical myelopathy 

 Myocarditis • Atlanto-axial subluxation  

 Pericarditis • Osteoporosis  

 Nodules • Carpal tunnel syndrome 

Nervous System Mono/polyneuropathy 

Mononeuritis multiplex 

• Non-Hodgkin lymphoma 

• Anaemia  

 Vasculitis • Infections 

Eye Sjögren syndrome  

 Vasculitis  

 Episcleritis/scleritis  

Haematological  

System 

Felty’s syndrome  

Lymphadenopathy  

 Splenomegaly  

Kidney Glomerulonephritis  

 Interstitial nephritis  

 Amyloid deposition  

Muscle Myopathy  

 Polymyositis  

Constitutional  

Symptoms 

Fever, fatigue, weight loss, 

cachexia 
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Table 1.2: Classification of human peripheral blood B cell subsets 

(Table adapted from reference (205)) 

Markers  CD27 IgD IgM IgG CD38 

Transitional 
T1 - + +++ - +++ 

T2 - ++ ++ - ++ 

Naïve - ++ +/- - +/- 

Memory 

Conventional 

CD27+ 

memory 

unswitched + + + - +/- 

unswitched + - + - +/- 

switched + - - + +/- 

Unconventional 

CD27- memory 

unswitched - - + - +/- 

switched - - - + +/- 
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Table 1.3: Animal models of inflammatory arthritis 

(Table adapted from reference (368)) 

Model Species Characteristics Limits 

CIA (184, 341) Mouse, rat, 

rabbit, non-

human primate 

Acute/Chronic 

polyarthritis 

Inducible in 

susceptible strains 

CAIA (343, 346, 369) Mouse Polyarthritis Self-limiting, no T 

and B cell 

involvement 

Adjuvant-induced 

arthritis (349) 

Rat Acute symmetric 

polyarthritis 

Acute, spondylitis 

not typical of RA 

Pristane-induced 

arthritis (350) 

Mouse, rat Chronic symmetric 

polyarthritis 

Spondylitis not 

typical of RA 

Streptococcal cells 

wall-induced arthritis 

(186, 351) 

Mouse, rat Chronic symmetric 

polyarthritis 

No autoantibodies 

PGIA (352) Mouse Acute/Chronic 

Polyarthritis 

Spondylitis 

K/BxN (189) Mouse Chronic erosive 

polyarthritis 

Distribution of 

joint involvement 

SKG (356) Mouse Chronic erosive 

polyarthritis 

autoantibodies 

Systemic 

manifestations not 

typical of RA 

Human TNF 

transgenic (354) 

Mouse Chronic erosive 

polyarthritis 

No autoantibodies 

IL-1Ra -/- (198) Mouse Chronic erosive 

polyarthritis 

No autoantibodies, 

tissue inflammation 
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Figure 1.1 Pathogenesis of Rheumatoid Arthritis  

Environment–gene interactions induce the breach of self-tolerance to different 

proteins and the production of RF and ACPA. Different mechanisms that probably 

involve infectious triggers, local microvascular, neurologic, biomechanical, 

microtrauma or other tissue-specific pathways, induce the localisation of the 

inflammatory process in the joints. The clinical phase of the disease is characterised 

by synovitis leading to structural damage and systemic disorders. Image reproduced 

from reference (6). 
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Figure 1.2 Illustration of the B cell development 

Stages of the B cell maturation are indicated by their anatomical site and the 

expression of cell-surface markers. Image reproduced from reference (335). 
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Figure 1.3 Illustration of B-T cell interaction 

An illustration of B-T cell interaction. In secondary lymphoid organs B cells 

recognise and internalise antigen through the B cell receptor (BCR), a membrane-

bound immunoglobulin that has high affinity for a given antigen. The BCR generated 

signals facilitate the traffic of antigen and MHCII molecules and the generation of 

peptide-MHC complexes. Recognition of peptide-MHC complexes on B cell triggers 

CD4+ T cells to express CD40L that binds to CD40 on B cells. Crosslinking of the 

BCR by antigen induces the expression of CD86 on B cells, one of the co-stimulatory 

signals needed for naïve CD4 T cell activation.  In this context cytokines influence the 

outcome of B-T cognate interaction. 
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Chapter 2 

Materials and Methods 
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2.1 Mice 

 

BALB/c (H-2d/d) mice, between 6-12 weeks old, were either bred by the University of 

Strathclyde Biological Procedures Unit or purchased from Harlan, UK. Homozygous 

DO11.10 mice on a BALB/c (H-2d/d) background, expressing the DO11.10 TCR 

specific for chicken OVA peptide 323-339/I-Ad, were used as CD4+ T cell donors 

(359). DO11.10 Tg T cells were detectable using the KJ1-26 clonotypic antibody 

(359). Mice heterozygous for the antigen hen egg lysozyme (HEL) IgMa and IgDa 

transgenes on the BALB/c background (MD4 mice) were bred and screened by flow 

cytometry (as described in section 2.4) for their ability to bind HEL. Homozygous 

MD4 animals were used as recipients of DO11.10 CD4+ T cells (370). JHD mice 

(371) on BALB/c background were kindly donated by Prof. David Gray from the 

University of Edinburgh. JHD mice are homozygous for the deletion of JH gene. As a 

result of this modification B cells cannot assemble the heavy chain genes of the Ig, 

and B cell differentiation is blocked at a precursor stage. A complete absence of 

mature B cells in the periphery and bone marrow is observed. JHD mice were used as 

adoptive transfer recipients. All animals were maintained at either the University of 

Strathclyde Biological Procedure Unit or the University of Glasgow Central Research 

Facility in accordance with Home Office regulations, in specified pathogen free 

cages, or filter-top cages, as appropriate.  

 

2.2 Preparation of single cell suspensions from lymph nodes 

and spleens 

 

Mice were killed by cervical dislocation and various lymph nodes (LNs) (cervical, 

inguinal, popliteal, auxiliary, brachial, cervical, mesenteric and para-aortic LNs) and 

spleen were extracted in RPMI complete media (for composition, refer to the table 

2.1). Single cell suspensions were prepared by passing them through 100 µm nitex 

mesh (Cadisch and Sons) in RPMI complete media using the plunger of a sterile 5 ml 

syringe (BD Biosciences). Cell suspensions were washed with complete RPMI media 

and centrifuged at 400 x g for 5 minutes at 4°C. The pellet from spleen cell 
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suspension was re-suspended into 2 ml of red blood cell lysis buffer (Ebioscience) 

and cells were incubated for 5 minutes on ice. Spleen cells were washed with 

complete RPMI media, centrifuged (400 x g, 5 min, 4°C) and re-suspended in 

complete RPMI media. Cells were counted using a haemocytometer (Hawksley) and 

non-viable cells were excluded on the basis of trypan blue (Sigma) staining. 

 

2.3 Magnetic-activated cell sorting (MACS) 
 

CD4+ T cells were isolated by negative selection using the CD4+ T cell isolation kit 

from Miltenyi Biotec (#130-095-248) and the manufacturer’s instructions were 

followed. In detail, spleen and LNs were made to single cell suspensions, as described 

in section 2.2. The cells were then centrifuged (300 x g, 10 min, 4°C) and re-

suspended in 40 µl of MACS buffer (for composition refer to the table 2.1) per 107 

cells. Biotin-antibody cocktail,10 µl of per 107 cells, was added and incubated for 10 

minutes at 4-8°C. This antibody cocktail was directed against CD8a, CD11b, CD11c, 

CD19, CD45R (B220), CD49b (DX5), CD105, MHC-class II and Ter-119 (an 

erythroid cell marker). The incubation was followed by the addition of 30 µl of 

MACS buffer per 107 cells and 20 µl of anti-biotin labelled magnetic beads per 107 

cells to the cell suspension for 15 minutes at 4-8°C. Cells were then washed by adding 

2 ml of MACS buffer per 107 cells, centrifuged (300 x g, 10 min, 4°C) and re-

suspended up to 108 cells in 500 µl of MACS buffer for the magnetic separation. LS 

columns (Myltenyi Biotec) were placed in the MACS separator (Miltenyi Biotec) and 

prepared with by rinsing with 3 ml of MACS buffer. Cell suspension was applied onto 

the column (up to 2 x 109 per column) and the effluent (negative fraction), which 

contained unlabelled cells representing CD4+ T cells, was collected by washing the 

columns 4 times with 3 ml of MACS buffer. CD4+ enriched fraction was used for Th1 

polarisation. The positive fraction was flushed out with 5 ml of MACS buffer and 

used with spleen cells as a source of APCs for the Th1 polarisation. The cells in the 

positive and negative fraction were counted using a haemocytometer (Hawksley) and 

trypan blue (Sigma) for non-viable cell exclusion. Cells were washed, centrifuged 

(400 x g, 5 min, 4°C) and re-suspended in complete RPMI media. The percentage of 

CD4+ KJ1.26+ cells was determined by flow cytometric analysis, as described in 

section 2.4. The positive fraction and spleen cells were treated with 50 µg/ml of 
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mitomycin C (Sigma) for 1 hour at 37°C, 5% CO2 and were then washed twice with 

complete RPMI media, centrifuged (400 x g, 5 min, 4°C) and re-suspended in 10 ml 

of complete RPMI media. 

 

2.4 Flow cytometric analysis  

 

Cells were isolated from the LNs of DO11.10 mice as described in section 2.2. For 

cell surface staining, aliquots of 106 cells in 12 x 75 mm polystyrene tubes (BD 

biosciences) were washed with 1 ml of FACS buffer (for composition refer to the 

table 2.1) and centrifuged (400 x g, 5 min, 4°C). Cells were re-suspended in 50 µl of 

Fc blocking buffer (for composition refer to the table 2.1) to reduce non-specific 

binding by Fc receptors and were incubated for 10 minutes at 4-8°C. Antibodies for 

extracellular staining or appropriately-labelled isotype controls were added to each 

sample at a dilution of 1:100 in Fc block and incubated for 30 minutes at 4-8°C in the 

dark. Cells were washed twice with 1 ml of FACS buffer and centrifuged (400 x g, 5 

min, 4°C). When biotin-conjugated antibodies were used a fluorochrome-labelled 

streptavidin secondary reagent was necessary. The labelled streptavidin was diluted in 

FACS buffer and used at a concentration of 1 µg/ml for 15 minutes at 4-8°C. Cells 

were washed with FACS buffer, centrifuged (400 x g, 5 min, 4°C), followed by a final 

wash in FACS flow (BD biosciences) and centrifuged (400 x g, 5 min, 4°C). For 

intracellular cytokine staining, 2 x 105 cells per well were added in a 96-well round 

bottom microtitre plate (Costar) and incubated with 50 ng/ml of Phorbol-12-Myristat-

13-Acetate (Sigma), 500 ng/ml Ionomycin (Sigma) for 5 hours at 37oC, 5% CO2. 

Golgi-Plug (BD Biosciences) (diluted 1/1000) was added for the last 4 hours of the 

stimulation. After the incubation the cells were centrifuged (400 x g, 5 min, 4°C) and 

then stained for extracellular markers as described before. Cells were then fixed with 

100 �l of 4% paraformaldehyde (PFA) for 20 minutes at room temperature in the 

dark, washed with 250 �l of permeabilisation buffer (for composition refer to the 

table 2.1), centrifuged (400 x g, 5 min, 4°C) and re-suspended in the same buffer. 

Cells were permeabilised for 20 minutes at 4°C in the dark, centrifuged (400 x g, 5 

min, 4°C) and incubated with the antibody against the cytokine of interest. The 

antibodies were diluted in permeabilisation buffer at a concentration of 5 �g/ml and 
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cells were incubated with them for 30 minutes in room temperature in the dark. The 

cells were then washed with permeabilisation buffer, centrifuged (400 x g, 5 min, 

4°C) and re-suspended in FACS flow (BD biosciences). Cells were passed through 

nitex to remove cell clumps. Reagents are listed in the table 2.2. Data were acquired 

on a FACSCanto (BD biosciences), using the Diva software, or FACSCalibur (BD 

biosciences) using Cell Quest Pro software and analysed with FlowJo software 

(Treestar Incorporated).  

 

2.5 In vitro Th1 polarisation 

 

Th1 polarisation was based on the protocol used by Maffia et al. (358). CD4+ T cells 

and mitomycin C treated splenocytes, which represented the source of APCs, were 

isolated from DO11.10 mice as described in sections 2.2 and 2.3. In detail, CD4+ T 

cells at a concentration of 5 x 105 cells/ml were co-cultured with APCs at a 

concentration of 5 x 106 cells/ml in complete RPMI media in the presence of 0.5 

µg/ml OVA323-339 peptide (Genosys), 10 ng/ml of IL-12 (PeproTech) and 2 µg/ml of 

anti-IL-4 (RnD Systems) (372, 373). Cells were cultured in 75T tissue culture flasks 

(Nunc) for 3 days at 37°C and 5% CO2. Intracellular cytokine flow cytometric 

staining assessed the phenotype of the polarised population, as described in section 

2.4. 

 

2.6 Preparation of heat aggregated ovalbumin and bovine 

serum albumin 

 

Chicken OVA (Sigma) or BSA (Sigma) were diluted in PBS (for composition refer to 

table 2.1) at a concentration of 20 mg/ml and were incubated at 100°C for 2 hours 

until aggregated. The denatured solidified OVA or BSA were washed with PBS and 

centrifuged (450 x g, 5 min, 4°C). Supernatant was discarded and aggregated OVA or 

BSA was re-suspended at 20 mg/ml in PBS. HAO or heat aggregated BSA (HABSA) 

were stored at -20°C until required. Before use, they were sonicated for 5 minutes on 
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ice until clumps were broken down and the mixture could pass through a 27 G needle 

in order to be injected. 

 

2.7 Induction of acute OVA-mediated arthritis in BALB/c 

mice  

 

The experimental model of OVA-mediated acute arthritis was developed by Maffia et 

al. (358). LNs from DO11.10 mice were pooled and CD4+ T cells were purified by 

negative selection, as described in sections 2.2 and 2.3. Th1 cell polarisation was 

induced by culturing CD4+ T cells with APCs in presence of OVA323–339 (Genosys), 

IL-12 (PeproTech) and anti-IL-4 (RnD Systems), as described in section 2.5. The 

proportion of Tg Th1 IFN-γ producing cells was determined by flow cytometric 

analysis as described in section 2.4. Recipient mice were injected intravenously (i.v.) 

with 2 x 106 Th1 DO11.10 cells. One day following the adoptive transfer recipient 

mice were immunised subcutaneously (s.c.) in the scruff with 100 µg of chicken OVA 

(Sigma) emulsified with CFA (Sigma). Ten days after immunisation mice were 

challenged (primary challenge) with a s.c. injection close to the ankle joint, in one 

hindlimb with 100 µg of HAO in 50 µl of PBS. Control mice received PBS instead of 

s.c. HAO. Other control mice received an i.p injection of 100 µg HAO. The mice 

were monitored daily for clinical signs of arthritis and were scored according to table 

2.3. Paw thickness was measured using a dial calliper (Kroeplin). Mice were 

sacrificed 7 days after challenge by cervical dislocation. Hind limbs were removed, 

fixed in 10% neutral-buffered formalin (Sigma) for 14 days and sent to the 

Histopathological Department of the Veterinary School of Glasgow University for 

histological analysis. They were stained with Heamatoxylin and Eosin (H&E) and 

toluidine blue. The joint histopathology was scored by two blinded observers based 

on inflammation, synovial hyperplasia and cartilage/bone erosion on a scale from 0 to 

3, giving a maximum of 9 per joint (361, 374) as described in table 2.4 and showed in 

figure 2.1. Peripheral blood was collected into heparinised capillary tubes (Hawksley 

& Sons Ltd) either by cardiac puncture or venesection, the plasma separated by 

centrifugation at 450 g for 10 minutes and stored at -20°C until analysis. Serum 

samples were analysed for the presence of anti-OVA, anti-CII antibodies, and RF by 
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ELISA as described in section 2.14. When collagen-specific B cell response was 

compared in CIA and OVA-mediated arthritis (chapter 3, section 3.3.6), serum 

samples were analysed also for the presence of anti-U1, anti-J1, anti-C1 and anti-

Citrullinated C1 (Cit-C1) antibodies by ELISA as described in section 2.14. Serum 

from mice with CIA was kindly donated by Dr Carl Goodyear from the Division of 

Clinical Neuroscience, University of Glasgow. Triple helical peptides U1, J1, C1 and 

Cit-C1 were kindly donated by Prof. Rikard Holmdahl from the Karolinska Institutet 

of Stockholm. Table 2.5 shows the peptide sequences. 

 

2.8 Induction of acute OVA-mediated arthritis in mice with 

different B cell repertoire 

 

When the role of B cells was analysed (chapter 4), acute OVA-mediated arthritis was 

induced, as described in section 2.7, in different recipient animals such as mice with 

normal B cells (BALB/c), in mice with B cells that could not present antigen and or 

induce autoantibodies (MD4), and in mice without mature B cells (JHD). Mice were 

monitored daily for clinical signs of arthritis and joint histology was performed at day 

7 after challenge, as described in section 2.7. Serum samples were analysed for the 

presence of anti-OVA, anti-CII antibodies and ACPA by ELISA as described in 

section 2.14. CD4+ T cell proliferation was assessed by flow cytometry employing the 

Click-iT Edu proliferation assay, as described in section 2.16.  

 

2.9 Induction of acute OVA-mediated arthritis with innate 

and/or antigen specific stimulation 

 

When the contribution of the innate and antigen-specific pathways was analysed 

(chapter 5) BALB/c mice, that previously received the transfer of OVA-specific Th1 

cells and the immunisation with OVA (as described in section 2.7), were challenged 

s.c. in their limb close to the ankle joint with 100 µg of HAO, 25 µg of LPS 

(lipopolysaccharide, from Salmonella enterica serotype abortus equi (Sigma)) or a 

combination of HAO and LPS diluted in 50 µl saline (SAL). In some experiments 
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animals were challenged s.c. in their limb with 100 µg of HABSA. Control mice 

received a similar injection of 50 µl SAL. Seven days post challenge recipient mice 

were killed by cervical dislocation. Serum samples were analysed for anti-OVA, anti-

CII, RF, anti-DNA, anti-KLH antibodies by ELISA and ANA by IIF, as described in 

sections 2.14 and 2.15. CD4+ T cell proliferation was assessed by tritiated thymidine 

([3H]TdR) incorporation, as described in section 2.16. Hind limbs were removed and 

decalcified in 5.5% EDTA solution in a phosphate buffer pH 7.4 for 14 days. Tissue 

sections were cut and stained with monoclonal antibody KJ1.26, as described in 

section 2.12. 

 

2.10 Induction of a relapse of OVA-mediated arthritis  

 

After the development of acute arthritis, as described in section 2.7, recipient mice 

received a secondary challenge at day 34 after the first HAO challenge. Mice were 

monitored daily for the clinical signs of arthritis by the clinical score according to the 

table 2.3 and the paw thickness measured using a dial calliper (Kroeplin). Animals 

were bled via the tail vein and serum samples were stored at –70°C until they were 

analysed for the presence of antibodies. Mice were sacrificed by cervical dislocation, 

hind limbs were removed, fixed in 10% neutral-buffered formalin (Sigma) for 14 days 

and stained with H&E and toluidine blue. 

 

When the secondary challenge was systemic (chapter 3, sections 3.3.2 and 3.3.3) 

recipient mice received an intraperitoneal (i.p.) injection with 100 µg of HAO or 200 

µg of CII (Sigma) and 5 µg of LPS (from Salmonella enterica serotype abortus equi 

(Sigma)). Control mice received an i.p. injection of HAO or CII and LPS but they 

were not immunised and HAO-challenged. Animals were bled at day 7, 34 and 41 

after the first HAO challenge and serum samples were analysed for the presence of 

anti-CII antibodies and RF by ELISA as described in section 2.14. Mice were 

sacrificed by cervical dislocation 7 days after the systemic secondary challenge. 

 

When the secondary challenge was local (chapter 3, section 3.3.4) mice received a 

periarticular s.c. injection (50 µl) of 100 µg HAO or 200 µg CII (Sigma) in 
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incomplete Freund’s adjuvant (IFA) (Sigma) in the controlateral ankle. Control 

animals received a local injection of 50 µl IFA in PBS or PBS. Animals were bled at 

day 7, 34 and 57 after the first HAO-challenge and serum samples were analysed for 

the presence of anti-OVA, anti-CII and anti-U1 antibodies by ELISA as described in 

section 2.14. Mice were sacrificed by cervical dislocation three weeks after the 

secondary local challenge.  

 

2.11 Passive transfer 

 

Sera for the passive transfer were obtained from BALB/c mice with OVA-mediated 

chronic arthritis. The sera were pooled and 150 µl in a single day or 200 µl in two 

consecutive days were injected i.v. into naïve BALB/c animals. Control mice received 

an i.v. injection of normal mice serum (Biosera). Recipient animals were sacrificed by 

cervical dislocation one day after the passive transfer and peripheral blood was 

collected into heparinised capillary tubes (Hawksley & Sons Ltd) by venesection, the 

plasma separated by centrifugation at 450 g for 10 minutes and stored at -20°C until 

analysis. Serum samples from donor arthritic mice, recipient mice and naïve BALB/c 

mice were analysed for the presence of anti-CII and anti-OVA antibodies by ELISA 

as described in section 2.14. 

 

When 200 µl of sera were injected in two consecutive days, mice were bled at day 2 

and 14 after the passive transfer, monitored daily for the clinical signs of arthritis by 

the paw thickness measured using a dial calliper (Kroeplin GmbH, Germany) and 

limbs were removed from recipient mice 14 days after passive transfer, fixed in 10% 

neutral-buffered formalin (Sigma) for 14 days and stained with H&E and toluidine 

blue. 

 

2.12 Immunohistochemistry (IHC) 
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Tissue sections (6-10 �m) were cut from decalcified limbs in 5.5% EDTA solution in 

a phosphate buffer pH 7.4 and frozen in OCT embedding medium (Miles, Elkhart, 

Indiana, USA) on a cryostat microtome (ThermoShandon). Sections were mounted 

onto SuperFrost slides (BHD) before being allowed to air-dry and stored at –20°C 

until further processing. Slides were brought to room temperature, fixed in acetone for 

10 minutes and the sections outlined with a wax pen to allow addition of solutions 

without cross contamination. The remainder of the staining process was carried out in 

a humidified, darkened chamber. To quench endogenous peroxidase activity, sections 

were incubated with 0.1% azide/3% H2O2 for 45 minutes, changing the solution three 

times. After washing in PBS, sections were stained with monoclonal antibody KJ1.26 

diluted 1:1600 in TNB blocking buffer (for composition refer to the table 2.1) for 30 

minutes, before being washed in TNT buffer (for composition refer to the table 2.1) 

(2x). Subsequently, sections were incubated with streptavidin-horseradish peroxidase 

(SA-HRP, from TSATM kit, Invitrogen Ltd) diluted 1:100 in TNB blocking buffer 

for 30 minutes before washing in TNT buffer (2x). Sections were then incubated in 

biotinylated tyramide diluted 1:50 in amplification diluent (both from TSATM kit, 

Invitrogen Ltd) for 10 minutes. Sections were washed three times in TNT buffer. SA-

HRP was added again for 30 minutes before washing in TNT buffer (3x). Enzymatic 

activity was detected with 3,3’-diaminobenzidine (DAB) substrate (Vector) before 

washing in H2O, followed by incubation with DAB enhancing solution (Vector) for 

approximately 10 seconds and a wash in H2O. Harris haematoxylin (Vector) was used 

to counterstain before rinsing in H2O and dipping in acid alcohol, tap water, 

bicarbonate then tap water. Sections were subsequently exposed to 70% ethanol, 95% 

ethanol (2x), then 100% ethanol for dehydration before clearing in Histoclear (BS & S 

Ltd) and immediate mounting in Histomount (BS & S Ltd). Multiple fields of the 

different joints were analysed by a blinded observer.  

 

2.13 Biacore assay 

  

Analysis was performed using a Biacore 2000 Surface Plasmon Resonance system, 

sensor chip CM5 and BIA evaluation software. Hepes-buffered saline (HBS-EP) (for 

composition refer to the table 2.1) was used as running buffer and maintained over the 
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sensor surface. Immobilisation of bovine CII (Sigma) and U1 peptide was performed 

according to previously described principles (375). The carboxylated dextran matrix 

on the sensor surface was activated with 0.2 M N-ethyl-W- (3-diethylaminopropyl) 

carbodiimide and 0.05 M N-hydroxysuccinimide injected for 7 minutes at a flow-rate 

of 5 µl/min. Specific surfaces were obtained by injecting bovine CII (20-500 µg/ml) 

or U1 peptide (100-500 µg/ml) in 10 mM sodium acetate buffer pH 5 for 5 minutes at 

a flow-rate of 5 µl/min. The immobilisation procedure was completed by injecting 

three times 35 µl of 1M ethanolamine hydrochloride at a flow-rate of 5µl/min to block 

remaining ester groups. Serum samples from OVA-mediated arthritis, CIA and 

control animals were diluted 1:10 in HBS buffer and injected using a flow rate of 5 

µl/min. The surface was regenerated by injecting 40 µl of 10 mM glycine-HCl pH 1.5 

at a flow rate of 20 µl/min. The antigen/antibody interaction generated a binding 

profile with an on-rate, which corresponded to the association, and an off-rate that 

identified the dissociation of the complex. The on-rate represents the molecular 

recognition and the off-rate is indicative of the stability of the complex. The 

antibody/antigen complex stability (% remaining) was calculated early and late in the 

dissociation phase following injection of the analyte by expressing the “stability late” 

as a percentage of “stability early”. The stability late was calculated with the average 

response at 280 sec after buffer injection and the stability early was the average 

response from the first 5 sec after buffer injection (376). 

 

2.14 Enzyme-linked immunosorbent assay (ELISA) 

 

Immunol 2 plates (Costar) were coated with antigen, reported in table 2.6, in 0.05 M 

carbonate buffer pH 9.3 (50 µl per well) and incubated at 4°C overnight. Plates were 

then washed three times with ELISA wash buffer (for composition refer to the table 

2.1). Non-specific protein binding was blocked by ELISA blocking buffer (200 µl per 

well) (for composition refer to the table 2.1) for 1 hour at 37 °C. Then plates were 

washed with ELISA wash buffer (3x) and incubated with mice serum (50 µl per well) 

for 1 hour at 37 °C. Serum samples were added either in serial dilution or single 

dilution using the ELISA sample buffer (for composition refer to the table 2.1). After 

the incubation, the plates were washed (4x) with ELISA wash buffer before adding 
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the detection antibody (100 µl per well) peroxidase-conjugated goat anti-mouse 

IgG2a (Southern Biotech) diluted 1:10000 or peroxidase-conjugated goat anti-mouse 

total IgG (Jackson InnonoResearch Laboratories) diluted 1:5000 at 37 °C for 1 hour. 

After washes (5x) in ELISA wash buffer plates were incubated with 3, 3',5,5'-

tetramethylbenzidine peroxidase (TMB) substrate (Kirkegaard & Perry Laboratories) 

(50 µl per well) for the appropriate time. The reaction was stopped by the addition of 

10% H2SO4 (50 µl per well). Absorbances were read at OD450 using a microplate 

reader (Molecular Devices).  

 

When ACPA levels were tested, the DIASTAT Anti-CCP2 kit (Axis-Shield) was used 

(362). The protocol was the same of the standard ELISA described above except for 

the plate that was already coated with highly-purified synthetic cyclic citrullinated 

peptides containing modified arginine residues. The secondary antibody was 

substituted with alkaline phosphatase-conjugated goat anti-mouse IgG (CALTAG 

Laboratories) diluted 1 in 1000 in PBS.  

 

When anti-ssDNA antibodies were tested, plates were coated with poly-L-lysine 

(Sigma P8920) at 50 µg/ml in carbonate buffer (100 µl/well), incubated 1 hour at 

37°C, then overnight at 4°C. DNA was boiled for 10 minutes and quenched on ice to 

obtain single stranded DNA. Plates were washed three times in ELISA wash buffer 

and incubated with thymic calf DNA Type I (Sigma) at 10 µg/ml in carbonate buffer 

(50 µg/well) for 2 hours at 37°C. Plates were washed three times in ELISA wash 

buffer. Non-specific protein binding was blocked by 3% BSA in PBS (200 µl per 

well) for 1 hour at 37 °C. The rest of the protocol was the same of the standard ELISA 

described above. 

 

The composition of the antigen, antibodies and the buffers used are listed in the tables 

2.1 and 2.6. 

  

2.15 Indirect Cellular Immunofluorescence 
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Cellular IIF was carried out with murine fibroblasts (clone L929) in order to detect the 

production of ANA. Cells were cultured in complete Dulbecco’s modified Eagle 

Media (Sigma) (for composition refer to the table 2.1), at 37°C in a humidified 

atmosphere of 5% CO2. Fibroblasts were grown to confluence (4 x 106 cells) and 

transferred at a concentration of 3 x 104 /well on 13 mm coverslips in 24 well tissue 

culture plates (Costar). Plates were incubated overnight at 37°C to allow cells to grow 

on the coverslips. The coverslips were removed from the wells and after washing in 

PBS, cells were fixed in PBS containing 1% PFA for 10 minutes at +4°C. After 

washing with PBS, cells were incubated with the permeabilsation buffer (for 

composition refer to the table 2.1) for 5 minutes at room temperature. All the 

following steps were performed at room temperature. Coverslips were washed with 

PBS and incubated with blocking reagent (for composition refer to the table 2.1) for 

15 minutes. Sera from BALB/c mice challenged with HAO + LPS, HAO, LPS or 

SAL were diluted from 1/20 to 1/100 in blocking reagent plus 0.1 % saponin and 

incubated in darkness for 30 minutes. After washing the coverslips in blocking buffer, 

they were incubated with FITC-labelled anti-mouse IgG (SAPU) diluted 1:20 in 

blocking reagent with 0.1% saponin in darkness for 30 minutes. After washing the 

coverslips in 1% blocking buffer, they were mounted and counterstained with DAPI 

(Vector). Fluorescence was analysed with a Nikon, Eclipse E60 microscope. Pictures 

were analysed with MetaMorph software (Offline, version 4.6r3). 

 

2.16 Proliferation assay  

 

To measure the relative ability of CD4+ T cells to proliferate in response to various 

antigens the incorporation of the nucleoside analogue 5-ethynyl-2´-deoxyuridine 

(Edu) during active DNA synthesis was employed using the Click-iT®EdU Alexa 

Fluor® 488 Cytometry assay kit (Invitrogen). Detection was based on a copper 

catalyzed reaction between an azide and an alkyne (377, 378). The Edu contained the 

alkyne and the Alexa Fluor® 488 dye contained the azide. Mice were killed by 

cervical dislocation and popliteal LNs were harvested for in vitro restimulation. 

Single cell suspensions were prepared from the popliteal LNs, as described in section 

2.2. 2.5 x 105 cells in 200 µl were added in each well of a 96-well microtitre plate that 
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contained either complete RPMI media, or complete RPMI media with 1 mg/ml of 

chicken OVA or 50 µg/ml of CII (Sigma) and were incubated for 72 hours at 37°C, 

5% CO2, as previously described (362). After 48 hours, Edu (Invitrogen) was added to 

each well at a concentration of 5 µg/ml. After 72 hours the cells were centrifuged 

(400 x g, 5 min, 4°C), washed twice with FACS buffer, and stained for the surface 

marker CD4, as described in section 2.4. They were then washed twice with blocking 

reagent (for composition refer to the table 2.1), fixed with 4% PFA (20 minutes at 

room temperature in the dark), washed with blocking reagent and centrifuged (400 x 

g, 5 min, 4°C). Following this, they were re-suspended in the Click-iT™ reaction 

cocktail prepared according to manufacturer’s instructions and incubated for 30 

minutes at room temperature in the dark. Cells were then washed with blocking 

reagent, centrifuged (400x g, 5min, 4°C) and re-suspended in FACS flow (BD). Data 

were acquired using a FACS Canto (BD), using the Diva software, or FACSCalibur 

(BD) using Cell Quest Pro software, and analysed with FlowJo software (Treestar). 

 

T cell proliferation was also assessed in a primary immune response in absence of 

antigen presenting B cells (chapter 4, section 4.3.3). In this experiment naïve 

BALB/c, MD4 and JHD mice were immunised s.c. in the scruff with 100 µg of 

chicken OVA (Sigma) emulsified with CFA (Sigma). Seven days later mice were 

killed by cervical dislocation. Peripheral LNs (pLNs) were extracted in RPMI 

complete media. Cells from the pLNs were made into a single cell suspension, as 

describes in section 2.2, and cultured for 72 hours with OVA (1 mg/ml), CII (50 

µg/ml) or complete RPMI. Their ability to proliferate was assessed by flow cytometry 

employing the Click-iT Edu proliferation assay, as described above. 

 

When antigen-specific proliferation was investigated in mice treated with LPS and/or 

HAO (chapter 5, section 5.3.4) it was assessed by [3H] TdR incorporation. In detail, 

cell suspensions from the popliteal LNs were cultured in complete medium either 

alone, or with 1 mg/ml OVA or with 50 µg/ml of CII for 72-120 hours in flat-

bottomed 96-well tissue culture plates. Proliferation was assessed by addition of 1 

µCi/well [3H] TdR for the last 18 hours of culture. DNA-bound radioactivity was 

harvested onto glass fibre filter mats and the thymidine incorporation was measured 

on a 1205 Betaplate scintillation counter. The amount of radioactivity measured in a 
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scintillation counter is proportional to the number of proliferating cells, and the 

readout is counts per minute (cpm) per well. Stimulation index was calculated with 

the ratio cpm experimental/ cpm background unstimulated. 

  

2.17 Statistics 

 

Data were analysed using the GraphPad Prism® software. To test normality of data 

sets the D’Agostino and Pearson omnibus test was used. To test if the means of two 

samples were different the Mann Whitney test was used for non-normally distributed 

data sets. To compare the means of more than two samples Kruskal-Wallis test was 

used. When the interaction of two independent variables was tested two-way ANOVA 

was employed. A value of P < 0.05 was considered as significant. The number of 

symbols used indicated the level of statistical significance; for example: * p < 0.05, 

** p � 0.01, *** p ��0.001, **** p ��0.0001. 

  



 72 

Table 2.1 Buffers  

Buffer Constituents 
PBS 

 
8 g NaCl, 1.16 g Na2HPO4, 0.2 g KCl, 0.2 g KH2PO4 
in 1 L of distilled water, pH 7.4 

Incomplete RPMI RPMI-1640 medium 
Complete RPMI 

 RPMI-1640 medium, 10% FCS, 2 mM L-glutamine, 
100 IU/ml penicillin, 100 µg/ml streptomycin 

MACS buffer 2% FCS, 2 mM EDTA in PBS 
FACS buffer 2% FCS, 0.05% NaN3 in PBS 
Fc blocking buffer Supernatant from 2.4G2 hybridoma cultures, 10% 

Mouse serum, 0.01% NaN3 
Permeabilisation 
buffer (for Flow 
Cytometry) 

0.5% saponin, 1% FCS, 0.05% NaN3, 2 mM EDTA in 
PBS, pH 8.0 

TNB blocking 
buffer 

0.1 M Tris-HCl pH 7.5, 0.15 M NaCl, 0.5% blocking 
reagent in distilled water 

TNT wash buffer 0.1 M Tris-HCl pH 7.5, 0.15 M NaCl, 0.05% Tween-
20 in distilled water 

Hepes-buffered 
saline 

0.01 M Hepes, 0.15 M NaCl, 3 mM EDTA and 
0.005% surfactant P20, pH 7.4 

ELISA wash buffer 0.05% Tween 20 in PBS 
ELISA blocking 
buffer 

10% FCS in PBS 

ELISA sample 
buffer 0.2% FCS, 0.05% Tween 20 in PBS 

Complete 
Dulbecco’s 
modified Eagle 

Dulbecco’s modified Eagle medium, 10% FCS, 2 mM 
L-glutamine, 100 IU/mL penicillin, 100 µg/mL 
streptomycin  

Permeabilisation 
buffer (for IIF) 

2% FCS, 2 mM EDTA, 0.1% saponin in PBS, pH 8.0 

Blocking reagent 1% BSA in PBS 
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Table 2.2: Flow Cytometry reagents  

 

  

Antigen Isotype Supplier Label 

CD4 Rat IgG2a,κ BD FITC, PE 

B220 Rat IgG2a,κ BD FITC, PE 

IFN-γ Rat IgG1,κ BD APC 

OVA-TCR 

(KJ1.26) 
Mouse IgG2a BD 

Biotin, 

FITC 

IgMa Rat IgG2a,κ BD Biotin 

HEL N/A N/A Biotin 

Streptavidin-FITC  BD  

Streptavidin-PE  BD  
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Table 2.3: Clinical scoring system of arthritis 

Score Clinical finding (each limb could receive a score of ≤5 points) 

0 Normal 

1 Mild redness and swelling of the ankle joint 

2 Moderate redness and swelling of the ankle joint 

3 Severe redness and swelling of ankle joint 

4 Loss of function of the ankle joint 

5 Maximally inflamed limb with involvement of multiple joints 
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Table 2.4: Joint Histopathology Score  
 

Score Inflammation Synovial 
Hyperplasia Cartilage/Bone Damage 

 
 
 
1 

Mild infiltration 
of inflammatory 
cells (< 50) in 
synovium and 
periarticular 
tissue of affected 
joints 

Mild infiltration 
of pannus in 
marginal zone 
of affected 
joints 

Mild loss of toluidine 
blue staining with no 
obvious chondrocyte loss 
and/or mild small areas of 
marginal zone/periosteal 
resorption 

 
 

2 

Moderate 
infiltration of 
inflammatory 
cells (50-200) in 
the affected 
joints 

Moderate 
infiltration of 
pannus (2-3 
layers) in the 
affected joints 

Moderate loss of toluidine 
blue staining with focal 
chondrocyte loss and/or 
moderate areas of 
marginal zone/periosteal 
resorption 

3 

3 
 
 

Severe 
infiltration of 
inflammatory 
cells (> 200) in 
the affected joint 

Severe 
infiltration of 
pannus (> 3 
layers) in the 
affected joints 

Severe loss of toluidine 
blue staining with 
multifocal chondrocyte 
loss and/or severe 
resorption of medullary 
trabecular and cortical 
bone, and/or destruction 
of joint architecture  
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Table 2.5 Peptide Sequences 
 
Peptide Peptide sequence 
U1 GPBGPBGPBGPBGPBG-LVGPRGERGFB-GPBGPBG-εACA 
J1 GPBGPBGPBGPBGPBG-MBGERGAAGIAGPK-GPBGPBG-εACA 
C1 GPPGPPGPPGPPGPPG-ARGLTGRBGDA-GPPGPPG-εACA 
Cit-C1 GPPGPPGPPGPPGPPG-ACitGLTGCitPGDA-GPPGPPG-εACA 
 
Amino acids are abbreviated as follows: G, Glycine; P, proline; B, hydroxyproline; L, 

leucine; V, valine; R, arginine; F, phenylalanine; εACA, ε-amonohexanoic acid-

lysine-lysine-tyrosine-glycine-OH; M, methionine; E, glutamic acid; A, alanine; I, 

isoleucine; K, lysine; T, threonine; D, aspartic acid; Cit, citrulline.  

 

  



 77 

Table 2.6 ELISA antibodies 

Antibody to be 
detected 

Antigen coated in 
the plate Detection antibody used 

Anti-CII IgG2a Bovine collagen 
type II 
(4 µg/ml) 

Goat anti-mouse IgG2a-HRP 
(1:10000) 

Anti-CII IgG Bovine collagen 
type II 
(4 µg/ml) 

Goat anti-mouse IgG-HRP 
(1:5000) 

Rheumatoid Factor 
IgG2a 

Purified mouse 
IgG1  
(1 µg/ml) 

Goat anti-mouse IgG2a-HRP 
(1:10000) 

Anti-OVA IgG Chicken 
Ovalbumin  
(20 µg/ml) 

Goat anti-mouse IgG-HRP 
(1:5000) 

Anti-OVA IgG2a Chicken 
Ovalbumin  
(20 µg/ml) 

Goat anti-mouse IgG2a-HRP 
(1:10000) 

Anti-U1 IgG U1 (4 µg/ml) Goat anti-mouse IgG-HRP 
(1:5000) 

Anti-J1 IgG J1 (4 µg/ml) Goat anti-mouse IgG-HRP 
(1:5000) 

Anti-C1 IgG C1 (4 µg/ml)  Goat anti-mouse IgG-HRP 
(1:5000) 

Anti-Citrullinated 
C1 IgG 

Citrullinated C1  
(4 µg/ml) 

Goat anti-mouse IgG-HRP 
(1:5000) 

ACPA IgG Citrullinated 
peptide 

Alkaline phosphatase-labelled 
anti-mouse IgG (1:1000) 

Anti-ssDNA IgG2a thymic calf DNA 
Type I (10 µg/ml) 

Goat anti-mouse IgG2a-HRP 
(1:10000) 

Anti-KLH IgG2a KLH  Goat anti-mouse IgG2a-HRP 
(1:10000) 
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Figure 2.1 Joint histopathology scoring system 

Representative haematoxylin/eosin and toluidine blue stained sections prepared from 

the joints of normal mice (A, E, I) and arthritic mice (B, C, D, F, G, H, J, K, L).  

Panels A-D show joint inflammation with score 0 (no cell infiltration, A), 1 (mild 

infiltration, B), 2 (moderate infiltration, C) and score 3 (severe cell infiltration, D). 

Panels E-H show synovial hyperplasia with score 0 (no synovial hyperplasia, E), 1 

(mild synovial hyperplasia, F), 2 (moderate synovial hyperplasia, G), and 3 (severe 

synovial hyperplasia, H). Panels I-L show cartilage/bone damage with score 0 (no 

cartilage/bone damage, I), 1 (Mild loss of toluidine blue staining with areas of 

marginal cartilage depletion, J), 2 (moderate loss of toluidine blue staining with focal 

areas of chondrocyte loss, K), and score 3 (severe bone erosion, L). Panels A, E, F, I, 

J, K original magnification X10; panels B and L original magnification X20; panels 

C, D, G, H original magnification X40. 

  

A C B D 

H G F E 

I J K L 
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Chapter 3 

Characterisation of the anti-collagen antibody 

response in a model of relapsing arthritis 
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3.1 Aim and rationale 

 

In this chapter a relapse of arthritis was induced in the model of OVA-mediated 

arthritis and the associated collagen specific B response was characterised. A model 

of experimental acute arthritis has been previously established where autoimmunity is 

elicited by antigen specific T cells (358). In this model, Tg T cells, specific for the 

antigen OVA, mediated the development of arthritis and the production of RF, ACPA 

and anti-CII antibodies, resembling the humoral features of human disease (358, 362, 

365). However, a limitation of this model was that the arthritis was acute, self-limiting 

and localised in the ankle joint. To be more applicable to human disease, the model 

would ideally reach a chronic stage affecting several joints. Thus, the aims of this 

study were firstly, to develop a model of chronic OVA-mediated polyarthritis, rather 

then acute-limited arthritis; secondly, characterise the anti-CII response elicited in this 

model in terms of the B cell epitopes recognised; and finally to compare anti-CII 

responses from OVA-mediated arthritis with CIA as a ‘gold standard’ model of 

human RA. 
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3.2 Introduction 

 

RA is an inflammatory chronic and systemic disease characterised by extensive 

synovitis resulting in erosions of articular cartilage and marginal bone leading to joint 

destruction (379). Animal models of RA differ in several aspects from human disease 

but they may reproduce some features of the disease allowing the study of particular 

characteristics of the pathogenesis that can be translated to human disease. They are 

also used to evaluate potential new therapeutic targets. Numerous animal models of 

RA exist and there is no “universal model” since they all differ in comparison to RA 

with respect to several aspects such as disease onset, chronicity, pattern of joint 

involvement, severity of synovitis, autoantibody profile or extraarticular 

manifestations (342, 366). CIA is the most widely used murine model of RA that 

allows the dissection of the pro-inflammatory mechanisms contributing to pathology. 

However, an important limitation of the CIA model is that the collagen response and 

the pathology are stimulated by exogenously injected collagen administered in a 

potent adjuvant, whereas human RA is characterised by a spontaneous breach of self-

tolerance. In this regard the experimental model of OVA-mediated arthritis has been 

established where anti-collagen antibodies are induced by OVA-specific T cells in 

absence of collagen immunisation (358). In order to create chronicity different animal 

models of arthritis used distinct strategies. Chronicity can be induced with either 

protocols of immunisation with an antigen in the presence of an adjuvant or genetic 

manipulations. Antigen-induced arthritis (AIA), for example, is an acute arthritis 

induced with the intraarticular injection of an irrelevant antigen, such as mBSA, in 

animals pre-immunised firstly with mBSA in CFA and then with mBSA in IFA. 

Chronic arthritis in AIA animals is induced by a second intraarticular injection of 

mBSA (380). In the CIA model the development of chronic arthritis is dependent on 

the dose of CII, the presence of the adjuvant IFA and the generation of the collagen 

specific B cell response (381). Indeed, low doses of CII or IFA alone induce only 

acute disease. CIA can also be reactivated by the systemic injection of LPS in a dose-

related fashion (382). The relevance of the collagen specific B cell response in this 

model has been demonstrated since B cell depleted animals are resistant to CIA and 

passive transfer of antibodies to healthy mice caused arthritis, an effect that was 

replicated by anti-CII-specific monoclonal antibodies (343, 345, 346). The anti-CII 
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response has been widely studied both in CIA and human RA. Synthesis of 

recombinant triple helical peptides and use of monoclonal antibodies have allowed the 

identification of predominant collagen epitopes and their relevance to disease (347, 

348). The epitope J1 (aa 551-564), for example, is prevalent in murine CIA rather 

than human RA (383). C1 epitope (aa 359-370) is shared between human and murine 

RA. Antibodies against the epitopes J1 and C1 are arthritogenic since the injection of 

single or combination of monoclonal antibodies that bind the epitopes resulted in 

arthritis development in BALB/c animals (383) and in relapse of chronic arthritis in 

mice with mixed BALB/c and B10 backgrounds (347). The C1 epitope is also 

recognised in its citrullinated form (Cit-C1) in RA with a prevalence of 40% in a 

cohort of 286 patients (384). Moreover, citrullinated collagen has been recently 

demonstrated in RA synovial fluid (385). U1 epitope is formed by 11 amino acids (aa 

494-504) of the triple helical CII and colocalise with α1β1/ α2β1 integrin binding site 

(386). Anti-U1 antibodies have been detected in patients with early RA, especially 

those with erosive arthritis (387). They correlate also with disease progression in 

murine CIA and the injection of a monoclonal antibody against U1 can induce both 

cartilage damage (387) and the relapse of arthritis in chronic arthritic mice (347). Of 

interest, monoclonal antibody anti-U1 reacts with the intact rat cartilage matrix in vivo 

demonstrating its accessibility by immunoglobulins (386). 

 

3.3 Results 

 

First, I induced the model of acute OVA-mediated arthritis and I showed that the local 

primary HAO challenge was necessary to stimulate the anti-collagen response. In 

order to establish a model of chronic arthritis, animals previously immunised with 

OVA and challenged with HAO, received a secondary challenge (re-challenge) once 

the acute arthritis had resolved. Different approaches were employed in the secondary 

challenge. In the first approach I elicited both the innate and adaptive immune 

response with a systemic (i.v.) injection of HAO or CII and LPS. In the second 

approach mice were injected with a local periarticular (s.c.) injection of HAO or CII 

in IFA in the other ankle. All mice were monitored daily for signs of arthritis, such as 

erythema, swelling and loss of function. Joint histology and autoantibodies were 
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analysed. After I induced a relapse of arthritis the anti-CII antibody response was 

investigated in terms of the epitopes recognised, the ability to induce arthritis by 

passive transfer and the affinity of these antibodies compared to that produced in 

murine CIA.  

 

3.3.1 Induction of OVA-mediated acute arthritis 

 
The experimental protocol used to induce OVA-mediated acute arthritis is shown in 

figure 3.1. CD4+ T cells were isolated from DO11.10 mice and polarised toward a 

Th1 phenotype as previously described (sections 2.2, 2.3 and 2.5). Figure 3.2 shows 

representative FACS plots of Tg CD4+ T cells polarised toward a Th1 phenotype, 

identified by the antibodies KJ1.26 and IFNγ. One day following the adoptive transfer 

of DO11.10 Th1 cells BALB/c mice were immunised (s.c.) with OVA emulsified 

with CFA. Ten days later mice were challenged in one hindlimb with a s.c. injection 

close to the ankle joint of 100 µg HAO. The first HAO challenge induced an acute 

arthritis localised only to the ankle joint that persisted for approximately 7 days 

characterised by increased paw swelling (Fig. 3.3A) and clinical score (Fig. 3.3B) 

compared with un-challenged mice. Joint histology of acute arthritis displayed 

synovitis (Fig. 3.4A-B), cartilage depletion and bone erosion assessed by the loss of 

toluidine blue staining (Fig. 3.4D-E) compared with histology of un-challenged mice 

(Fig. 3.4C and F). The joint histopathology score of HAO challenged mice was higher 

compared with that of control mice (Fig. 3.4G). 

 

3.3.2 Systemic primary challenge did not induce anti-collagen 

antibodies  

The model of acute OVA-mediated arthritis, developed by Maffia, is characterised by 

the presence of anti-collagen II antibodies (358). I aimed to assess if the anti-collagen 

response was related to the route of antigen administration. Thus, some mice, which 

received the DO11.10 Th1 cells and the OVA immunisation, were challenged with a 

systemic i.p. injection of 100 µg HAO rather than the local s.c. injection. I compared 

the antibody levels in mice with acute OVA-mediated arthritis (challenged by the 

local HAO injection) with those in mice challenged by the systemic HAO injection. 
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Anti-collagen II IgG antibodies could be detected only in mice that received the 

challenge in the limb compared with mice that received the systemic HAO challenge 

and negative control mice (un-challenged mice) (Fig. 3.5A). On the contrary, anti-

OVA IgG antibodies could be detected in both experimental groups compared with 

negative control mice. More anti-OVA antibodies could be detected in mice that 

received HAO in the limb compared with those in mice that received the systemic 

HAO injection (Fig. 3.5B).  

 

3.3.3 Systemic secondary challenge did not induce a relapse of 

arthritis  

 

In order to induce a relapse of arthritis the experimental protocol of OVA-mediated 

acute arthritis was modified (Fig. 3.6). Acute arthritis was induced as described in the 

section 2.7. At day 34 after the primary HAO challenge, some animals received a 

systemic i.p. secondary challenge with either 100 µg of HAO or 200 µg of CII and 5 

µg of LPS. Control mice (naïve mice) received the systemic injection of OVA or CII 

and LPS but they were not immunised and HAO challenged. Three of five mice with 

a history of acute arthritis that received the systemic secondary challenge with HAO 

and LPS were found died in the cage the day after the secondary challenge. The other 

two mice of the same group appeared unhealthy because of shreking shivers and they 

were euthanised. These animals were observed post-mortem and an enlarged spleen 

was detected. No other apparent abnormalities were evident. The experiment was 

continued with only one experimental group of mice re-challenged with CII and LPS 

and the respective control group of naïve mice. The other control group of naïve mice 

injected systemically with HAO and LPS was not used. The secondary challenge with 

CII and LPS did not affect the paw thickness (Fig. 3.7A) and the clinical score (Fig. 

3.7B). Histology of ankle joints was performed 7 days after the secondary challenge 

and it did not show any sign of synovitis (Fig. 3.8A-B). As expected control mice did 

not show any clinical or histological sign of arthritis (Fig. 3.7A-B and Fig. 3.8C-D). 

The joint histopathology score (Fig. 3.8E) did not show any difference between the 

two experimental groups. Serum samples were collected at day 7, 34 and 41 after the 

first HAO challenge and analysed for the presence of anti-CII antibodies and RF (Fig. 

3.9A-B). Anti-CII antibodies were first detected at day 7 after the primary HAO 
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challenge compared with control mice (Fig. 3.9A). They increased with time even in 

the absence of arthritis (arthritic mice day 7 vs arthritic mice day 34). Mice that 

received the systemic re-challenge with CII + LPS (day 41) exhibited the highest 

levels of anti-CII antibodies compared with those of other animals HAO challenged 

(day 7 and day 34). Control mice injected with CII + LPS did not produce significant 

levels of anti-CII antibodies 7 days after the administration. 

Mice with acute arthritis HAO-mediated (day 7) showed RF compared with control 

mice. RF persisted at the same levels at day 34 after the primary HAO challenge 

although in absence of disease. Mice that received the systemic re-challenge with CII 

+ LPS (day 41) exhibited the highest levels of RF compared with those of other 

animals HAO challenged (day 7 and day 34). As expected control mice did not 

exhibit RF (Fig. 3.9B). 

These data demonstrated that systemic secondary challenge with CII and LPS did not 

induce chronic arthritis. Autoantibodies produced after the primary HAO challenge, 

such as anti-CII and RF, were not transient but persisted in the animals even in 

absence of disease.  

 

3.3.4 Induction of a relapse of arthritis after local secondary HAO 

challenge  

 

Since I was not able to induce the chronic disease with the systemic challenge I 

developed a different experimental protocol in mice that had previously displayed 

acute arthritis and associated breach of self-tolerance (Fig. 3.10). At day 34 after the 

initial HAO challenge, animals were randomized to receive a local periarticular (s.c.) 

injection, close to the ankle joint in the limb that was not previously injected with 

HAO, CII or PBS in IFA, or PBS alone. Re-challenge with HAO or CII in IFA 

increased significantly paw thickness (Fig. 3.11A) and clinical score (Fig. 3.11B) 

compared with those of mice re-challenged with PBS + IFA or PBS. Three weeks 

after the secondary challenge the paw swelling and clinical score in the joints from 

mice treated with HAO or CII in IFA decreased; thus animals were sacrified to assess 

joint histology. Animals were not observed for a longer period, thus chronicity of 

arthritis was not verified. Re-challenge with IFA alone did not induce a significant 
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paw swelling compared with PBS injected mice (Fig. 3.11A). IFA secondary 

challenge seemed to have a similar effect of primary HAO challenge in terms of 

clinical score, while the paw swelling in mice that received IFA secondary challenge 

was higher than that observed after primary HAO challenge at days 2, 3 and 4 after 

the injection. Importantly, the joint swelling observed in HAO or CII in IFA re-

challenged animals was localised to more than 4 joints, restricted to the injected paw 

and persisted for more than three weeks. Pictures of paws injected with local 

secondary challenge are shown in figure 3.12.  

 

On histological examination at day 57 post primary challenge mice re-challenged with 

HAO + IFA exhibited an arthritis characterised by synovial hyperplasia and 

inflammatory cell infiltration. Cartilage damage and bone erosions were also observed 

in mice re-challenged with HAO + IFA, assessed by loss of toluidine blue staining 

(Fig. 3.13A). Injection with CII + IFA induced a mild joint infiltrate and moderate 

cartilage depletion (Fig. 3.13B). Injection of either IFA alone or PBS did not induce 

significant histopathological articular changes (Fig. 3.13C-D). The histology score of 

the joints from animals re-challenged with HAO + IFA was higher than that from the 

joints of mice re-challenged with CII +IFA, PBS + IFA, and PBS alone. There was 

not significant difference between the score of the joints that received CII + IFA and 

that of the joints injected with IFA alone or PBS (Fig. 3.14). 

These data demonstrated that mice with a history of acute OVA-mediated arthritis 

challenged locally with HAO + IFA developed a relapse of arthritis localised to 

different joints in the injected paw. Joint inflammation lasted approximately three 

weeks. Since animals were not observed for a longer period I was not able to verify 

the chronicity of the model. Animals challenged with CII + IFA developed a 

significant paw swelling localised to the joints of the injected paw but the 

histopathology score was not different from that in PBS injected mice. 

 

3.3.5 Assessment of antibody production in the new model of 

relapsing arthritis  

 



 87 

After I induced a relapse of arthritis I aimed to assess the antibody response and the 

production of anti-collagen antibodies during the induction of the flare. For this 

purpose serum samples were collected at day 7, 34 and 57 after the first HAO 

challenge and analysed for the presence of anti-OVA and anti-CII IgG antibodies. 

Serum from naïve animals was used as control. 

Mice re-challenged with HAO + IFA, CII + IFA, PBS + IFA or PBS had previously 

received OVA Tg T cell transfer, OVA/CFA immunisation, then HAO and therefore 

exhibited similar levels of anti-OVA IgG antibodies at day 57 post primary HAO 

challenge that were higher than those observed in naïve animals (Fig. 3.15A-B).  

Anti-CII antibodies were first detected at day 7 after HAO challenge compared with 

naïve mice, which corresponded to the acute arthritis. Anti-CII antibodies at day 34 

after primary HAO challenge were higher than that in mice at day 7 after challenge, 

even though mice were in clinical remission. At day 57 after the first HAO challenge 

anti-CII antibodies could be detected in all of the animals (with a history of acute 

arthritis) compared with naïve animals. Only mice that received the secondary 

challenge with HAO + IFA showed more anti-CII antibodies compared with that from 

mice at days 7 and 34. Moreover, these mice exhibited the highest levels of anti-CII 

antibodies compared with those of animals re-challenged with CII + IFA, IFA + PBS 

or PBS (Fig. 3.15C-D). These data demonstrated that mice with a relapse of arthritis 

elicited by local injection of HAO + IFA produced more anti-collagen antibodies than 

all other animals. In the time course experiment the titre of these antibodies increased 

progressively from day 7 to day 34.  

 

3.3.6 Characterisation the anti-collagen antibody response in OVA-

mediated arthritis 

 

Type II collagen is one of the major constituents of the articular cartilage matrix 

proteins. Anti-CII antibodies can be directed toward different epitopes and this could 

be crucial for their pathogenicity because certain epitopes are more associated with 

arthritis than others (347, 348, 383). Some epitopes recognise privileged sites of CII 

that are dominant targets of CII-specific B cells. Different triple helical peptides, C1, 

J1, U1 and Cit-C1, identified as relevant B cell epitopes in murine CIA and human 
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RA (383, 386), were tested in the sera of our model of acute arthritis (day 7) and mice 

with CIA (Fig. 3.16). Only anti-U1 antibodies were tested also in mice with a 

previous history of acute OVA-mediated arthritis (day 34) and mice with a relapse of 

OVA-mediated arthritis (day 57) (Fig. 3.16E). Sera from mice with CIA contained 

high levels of anti-CII, anti-C1, anti-J1 and anti-U1 antibodies compared with those 

from OVA-mediated acute arthritis and naïve animals (Fig. 3.16A-D). Animals with 

acute arthritis induced by Th1 OVA-specific cells contained significant levels of anti-

CII antibodies compared with those in naïve animals (Fig. 3.16A). Anti-C1 and anti-

J1 antibodies could be detected in sera from mice with acute OVA-mediated arthritis 

only at one dilution point compared with naïve mice  (Fig. 3.16B-C). Mice with 

OVA-mediated acute arthritis (day 7), those with OVA-mediated arthritis at day 34 

and mice with a relapse of OVA-mediated arthritis (day 57) showed anti-U1 

antibodies compared with naïve mice (Fig. 3.16D-E). In particular, anti-U1 levels 

increased significantly from day 7 to day 57. Mice with relapse of OVA-mediated 

arthritis (day 57) and mice with CIA displayed comparable titres of anti-U1 antibodies 

(Fig. 3.16E). Neither CIA mice nor HAO-challenged mice produced anti-Cit-C1 

antibodies (Fig. 3.16F).  

These data demonstrated that anti-CII antibodies in CIA and OVA mediated arthritis 

mice recognised different epitopes and the major epitope in OVA mediated arthritis 

has been identified in U1. 

 

3.3.7 Serum passive transfer from OVA-mediated arthritis to naïve 

mice did not induce arthritis 

 

Anti-CII antibodies are believed to be arthritogenic in murine CIA, in fact transfer of 

serum containing these antibodies can induce arthritis in healthy animals (346, 383, 

387). Bovine or rat CII, used to immunise animals in model of CIA, elicits an 

antibody response specific for CII. These antibodies against foreign collagen are 

believed to cross-react with self collagen and become pathogenic (387, 388). In our 

model of arthritis I demonstrated the breach of self-tolerance toward collagen and the 

production of anti-CII and anti-U1 antibodies. Thus, I investigated first the possibility 

to transfer antibodies from mice with a relapse of OVA-mediated arthritis (day 57) 
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(donor mice) to naïve mice (recipient mice), then the ability of these antibodies to 

induce arthritis in naïve animals by passive transfer. Different approaches were used. 

In the first experiment 150 µl of serum from mice with OVA day 57 was injected i.v. 

in naïve BALB/c animals. Recipient animals were sacrificed one day after the passive 

transfer to assess serum antibodies. Anti-CII antibodies were not detected in recipient 

animals after the passive transfer (Fig. 3.17A). Thus, the experiment was modified 

and in the second experiment 200 µl of serum from mice with OVA day 57 or normal 

mice serum was injected i.v. in two consecutive days in naïve BALB/c animals. Anti-

CII and anti-OVA antibodies were detected in recipient animals the day after the 

passive transfer (Fig. 3.17B-C). Once I was able to transfer antibodies to recipient 

mice, the experiment was repeated and antibodies were measured in the system at day 

2 and 14 after passive transfer. Recipient mice were monitored for 2 weeks by paw 

thickness and joint histology was performed on day 14 after passive transfer. Anti-

OVA could be detected in recipient mice 2 and 14 days after passive transfer, while 

anti-CII antibodies were detected only at day 2 because their levels decreased at day 

14 (Fig. 3.18A-B). Paw thickness and joint histology in all recipient animals did not 

reveal significant signs of synovitis after the passive transfer (Fig. 3.19A-C).  

These data demonstrated that the injection of sera from arthritic mice in healthy 

animals transferred transiently anti-CII antibodies and it did not induce the arthritis.  

 

3.3.8 Affinity of anti-collagen type II antibodies in the model of OVA-

mediated arthritis 

 

Since anti-CII antibodies were not able to transfer disease I investigated the affinity of 

anti-collagen antibodies in our model of arthritis and compared this with those 

produced in murine CIA. Antibody affinity is one of the parameters affecting 

pathogenicity. Assays such as ELISA are routinely used to detect antibodies that bind 

to a specific antigen. However, this technique does not give information about the 

strength of the binding (the affinity of the antibodies) and the dynamic of complex 

formation. For this purpose the Biacore system (BIAcore 2000 instrument, GE 

Healthcare) (375) was used, allowing us to measure the interaction characteristics 

between antigen and antibody. This interaction is measured in terms of association 
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(on-rate) and dissociation (off-rate) of the complex. The early and late off-rate of the 

complex give an estimate of the antibody/antigen complex stability and the antibody 

affinity, as described in section 2.13.  

Immobilisation of bovine CII and U1 peptide in different flow cells sensor surface 

chips produced a gradient surface with 400-10000 Response Unit (RU) and 170-2000 

RU respectively. Binding curves generated when CII protein was used demonstrated 

that only serum from mice with CIA bound CII protein compared with sera from mice 

with a relapse of OVA-mediated arthritis (day 57) and control animals (Fig. 3.20A). 

Since I did not observe any binding of serum from OVA mediated arthritis with the 

whole collagen protein, I immobilised the U1 peptide on the flow cells sensor surface. 

Figure 3.20B shows the binding profile with the on-rate, the early and the late off-rate 

generated with the immobilisation of the U1 peptide. The stability of the complex 

anti-U1/U1 was similar in the serum from mice with a relapse of OVA-mediated 

arthritis and from CIA mice, and that was in turn greater than that observed in 

negative control mice (Fig. 3.20C). 

These data suggested that the affinity of anti-U1 antibodies in our model of relapsing 

OVA-mediated arthritis might be comparable to that produced in murine CIA.  
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3.4 Discussion 

 

In this chapter a relapse and widespread of arthritis was induced in the model of 

OVA-mediate arthritis. The anti-collagen antibody response was investigated during 

the induction of the flare. 

Previous studies (358, 362, 365) established a model of experimental arthritis where 

an irrelevant antigen, OVA, drives a breach of self-tolerance toward different 

antigenic specificities, such as collagen, IgG and citrullinated peptides that are 

characteristic of RA. Interestingly, I observed that the HAO challenge must be 

administered s.c. proximal to the joint. Other routes of injection failed to induce anti-

CII responses despite an equivalent anti-OVA reaction (389), indicating that a large 

Th1 response was itself insufficient and the articular environment was necessary as a 

source of relevant antigen. Indeed, the autoimmune response elicited in these mice is 

a peculiar characteristic that distinguishes this animal model from CIA where CII is 

administered to cause the immune response specific for the same antigen and the 

pathology. The model of OVA-mediated arthritis had several limits, firstly the 

pathology was acute and limited to the ankle joint, then arthritis did not always reach 

the same degree of severity in terms of paw thickness, histopathology score and 

antibody levels. The first aim of this chapter was to try to develop a model of chronic 

polyarthritis. Different animal models of RA developed chronic disease with distinct 

strategies. Since our model of arthritis is antigen-driven I employed two approaches 

with OVA or CII in the presence of an adjuvant such as LPS or IFA to induce the 

chronic disease. I showed that the induction of a relapse of autoimmune arthritis was 

dependent on the nature of the antigen used and the route of administration in the 

secondary challenge. In particular, systemic secondary challenge with CII and LPS 

was not sufficient to induce a relapse of disease. There could be a variety of reasons 

for this failure, such as the antigen itself or the adjuvant employed, the dose of CII or 

LPS, and the route of injection of the secondary challenge. Of interest, the first HAO 

challenge stimulated an anti-collagen response that was not transient but persisted 

even in absence of disease and increased after the secondary challenge. This 

experiment omitted two control groups of mice adoptively transferred and HAO 

treated with no re-challenge (PBS and LPS). Thus, it did not allow to observe mice in 
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absence of re-challenge and to dissect the contribution of LPS in the secondary 

challenge. The reason for this omission was that, as a first approach, I decided to 

design my controls to determine if the same treatment had some effect in naïve mice. 

Since the experiment failed no other mice were used for further control experiments. 

Of a note, arthritic mice that received the systemic challenge with HAO and LPS died 

two days after the injection. I hypothesized that Tg T cells OVA-specific were 

recalled in the peritoneum where they might be responsible, together with LPS, for a 

cytokine storm that caused the death of the animals. Indeed, the local secondary 

challenge induced a relapse of arthritis that was more severe then that observed after 

the first challenge. Mice were killed after 3 weeks from the local secondary challenge 

when the paw thickness decreased and it seemed that the paws were recovering from 

the arthritis. This experiment had not a control group that could be observed for a 

longer period of time in order to characterise the evolution of the disease in terms of 

chronicity. This control group will definitely be important in future experiments. Both 

HAO and CII in IFA induced the clinical signs of an arthritis localised in the ankle, 

tarsum, metarsophalangeal and proximal interphalangeal joints of the hind paws. Of 

interest, the other paws did not show clinical signs of arthritis and this was limited to 

the paws that received the secondary challenge. Ideally the involvement of joints at 

distant sites from injection would suggest a systemic response to the local challenge. 

Tertiary lymphoid structures were not observed in the joint histology although the cell 

infiltrate has not been characterized in this view. Local secondary challenge with 

HAO differed from CII re-challenge in the joint histological damage and in the 

autoreactive response. In fact, HAO re-challenge induced a more aggressive disease 

in the affected joints showed by a higher histopathological score than those in joints 

from mice treated with CII or IFA alone. Moreover, mice injected with CII + IFA 

displayed a significant paw swelling compared to control mice but the joint 

histopathology score was not different from control mice. It would be important in 

future experiments to prove the presence of DO11.10 T cells in these affected joints 

by immunohistochemistry. The highest autoreactive response was elicited in arthritic 

mice that received HAO in the local secondary challenge compared with the other 

control groups. I hypothesised that collagen is exposed and/or released from the 

inflamed joint during the primary challenge when there is the first evidence of breach 

of self-tolerance (358). Moreover, an increase of anti-CII antibody titre was 

demonstrated even in the absence of clinical signs of arthritis. When the animals 
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received the secondary HAO challenge autoreactive collagen B cells were elicited 

again and a higher antibody response toward collagen was produced together with the 

aggressive detectable relapse of arthritis. However, it is not possible to invoke a 

definitive cause and effect relationship between the secondary challenge and the 

autoreactive response because this experiment omits a control group of animals that 

did not receive the adoptive trasfer of Tg T cells. Although, human disease and the 

experimental model differ substantially, the onset of autoimmunity in RA (5, 247) 

may precede the full-blown disease in the so-called “pre-articular or lymphoid phase” 

(4), likewise in our model the autoimmune response was evident in absence of 

arthritis and preceded the relapse.  

The second aim of this chapter was to characterise the collagen specific B cell 

response. B cells producing anti-CII are present in RA synovium and synovial fluid 

(390). Anti-CII antibodies have been detected both in serum and joint of patients with 

RA (227, 228, 390) and immune complexes containing anti-CII have been 

demonstrated in the cartilage (391). Anti-CII antibodies in human RA and murine 

models can be directed toward different epitopes. Some of these epitopes are shared 

between CIA and human RA, such as C1 and U1. Others are prevalent in murine CIA 

such as the epitope J1 (383). I demonstrated that mice with OVA-mediated acute and 

mice with a relapse of arthritis exhibited anti-U1 antibodies and differed from CIA in 

the production of anti-J1 and anti-C1 antibodies. This can be explained by the 

different nature of autoimmune response elicited. In fact, murine CIA is elicited by 

exogenous collagen in the context of specific MHC class II molecules (367, 392); on 

the contrary in OVA-mediated arthritis the collagen response is induced in absence of 

collagen injection resembling human RA. Future experiments should be performed to 

assess if the collagen response in this model is MHC class II dependent. 

Although mice with OVA-mediated arthritis produced anti-CII and anti-U1 

antibodies, passive transfer of serum to healthy animals did not transfer the arthritis. 

In CAIA pathology was elicited in naïve mice by CII-specific polyclonal sera (346) or 

purified monoclonal antibodies (393, 394). Monoclonal antibodies against the 

epitopes C1, J1, D3 and U1 induced a mild arthritis in naïve mice only in the presence 

of LPS, whereas if injected as a cocktail induced a severe arthritis (393). Thus, several 

variables could explain the failure of these preliminary experiments to induce arthritis 

in naïve mice by serum passive transfer, such as the absence of adjuvant or LPS in the 

experimental protocol employed, as well as the magnitude, specificity and the affinity 
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of the antibody response generated in the OVA-mediated arthritis model. In OVA-

mediated acute arthritis, serum concentration of anti-CII and anti-U1 antibodies were 

lower than that detected in CIA mice. The antibody affinity is an important parameter 

because it determines some effector functions such as immune complex formation. I 

was not able to detect any stable antibody-antigen interaction in serum of OVA-

mediated arthritis when the CII protein was used in the Biacore experiment. There are 

a number of possible explanations; firstly CII may be partially denatured on the chip 

making it poorly recognisable by sera from OVA-mediated arthritis. Secondly, the CII 

epitopes recognised by antibodies could be obscured by immobilisation on the sensor 

surface chip. Importantly, serum from mice with a relapse of OVA-mediated arthritis 

showed the same binding affinity to the antigen U1 compared with that from CIA 

serum. Thus, a possible explanation for the failure to induce arthritis by serum passive 

transfer could be related to the greater magnitude of anti-CII response than OVA-

mediated arthritis and the different antibody specificity rather than the affinity. 

However, I cannot exclude that other autoantibodies are required to induce disease or 

that other cell types, such as T cells or DCs (361) may be necessary to induce arthritis. 

Future experiments should use different and more sophisticated approaches such as 

the administration of an adjuvant or LPS to further amplify the immune response in 

recipient mice, and/or the employment of mAb specific for the U1 peptide. A positive 

control with a CIA serum, from mice with a BALB/c background, would show that 

the model works.  

In this chapter I demonstrated firstly that the administration of HAO in the primary 

challenge has to be local to induce anti-CII antibodies because the systemic injection 

does not induce autoantibodies. Thus, I can speculate that in this experimental model 

the local (joint) environment is essential to cause the breach of self-tolerance. Then, 

although I was not able to create a chronic model, I induced a relapse of OVA-

mediated arthritis. In particular, only the local secondary challenge with HAO+IFA 

was able to induce the relapse of arthritis that was localised to more than one joint in 

one limb and lasted longer then the first episode of acute arthritis. The nature of the 

antigen used and the local environment were the main factors responsible for the 

relapse. This is of particular relevance since in human disease the antigen (one or 

more) is unknown and the contribution of the local environment is supposed, but not 

definitely proved, to be important. The relapse of arthritis was associated with the 

production of anti-CII antibodies and I characterised the collagen-specific B cell 
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response identifing U1 as the major epitope recognised. Antibody response may be 

directed towards different epitopes of the same protein (collagen) and some of these 

epitopes were recognised in both RA and CIA and correlated with severity. Thus, the 

epitope U1 seems to be shared also between the murine model of OVA-mediated 

arthritis and human disease. Moreover, anti-U1 antibodies from mice with a relapse of 

OVA-mediated arthritis showed high affinity, an ability that might confer them an 

advantage in the effector functions such as the immune complexes formation, the 

complement fixation and the tissue damage. 

In the next chapter, the role of B cells in the induction of experimental arthritis will be 

investigated. 
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Figure 3.1 Experimental schedule for assessing the induction of acute 

arthritis  

One day following the adoptive transfer of Th1 DO11.10 cells BALB/c mice were 

immunised s.c. in the scruff with OVA emulsified with CFA. Ten days later mice 

were challenged with a s.c. injection close to the ankle joint, in one hindlimb, with 

100 µg of HAO. Control mice were immunised with OVA and received PBS in the 

primary challenge instead of HAO. Mice were sacrificed one week after the primary 

challenge (day 7) to assess joint histology and antibody production.   

  



 97 

 
Figure 3.2 Polarisation of DO11.10 CD4+ T cells  

Representative FACS plots of CD4+ Th1 cells. In the left panel lymphocytes from 

LNs were identified on the basis of size and granularity. In the middle of the figure 

the double positive population of KJ1.26+ CD4+ cells was gated. On the right side of 

the figure the gate identify the Th1 population represented by IFNγ+ CD4+ T cells. 
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Figure 3.3 Clinical signs of acute arthritis  

Hind paw thickness (A) and mean clinical score (B) in mice immunised with OVA 

and challenged ten days later with HAO. Control mice were immunised but they were 

not challenged. A significant increase in paw swelling and clinical score was observed 

in mice challenged with HAO compared with control mice. *, HAO vs Negative 

control. Statistical analysis was performed by Mann-Whitney U test. Data represent 

median and IQR (n = 3 mice per group). Similar results were obtained in 2 identical 

experiments (n = 12 mice in all). 
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Figure 3.4 Joint histology and histopathology score of acute arthritis 

Representative haematoxylin/eosin and toluidine blue stained sections prepared from 

the joints of BALB/c mice immunised with OVA and HAO challenged (A-B, D-E) 

and un-challenged mice (C and F). Images from panel A and D belong to the same 

section shown in figure 2.1H; image from panel B is the same shown in figure 2.1G. 

The histopathology score (G) was higher in HAO-challenged mice compared with 

that in control mice. Original magnification X40. In panel G *, HAO vs Negative 

Control. Statistical analysis was performed by Mann-Whitney U test. In panel G data 

represent median and IQR (n = 3 mice per group). Images and data shown are 

representative of 3 identical experiments (n = 12 mice in all).  
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Figure 3.5 Anti-CII and anti-OVA antibodies in mice after local and systemic 

primary challenge 

Mice were immunised with OVA and challenged ten days later with either a systemic 

or a local s.c. injection in one limb of HAO. Serum samples were collected at day 7 

after the primary HAO challenge and analysed for the presence of anti-CII and anti-

OVA antibodies. Anti-CII antibodies (A) were detected only in mice challenged 

locally with HAO compared with those that received the systemic challenge and 

negative control mice. (B) Anti-OVA antibodies were produced from both mice that 

received the local and systemic HAO challenge compared with negative control mice. 

At one dilution point mice that received the local HAO challenge displayed higher 

levels of anti-OVA antibodies compared with those from mice that received the 

systemic HAO challenge. *, OVA/HAO limb vs systemic challenge HAO; § 

OVA/HAO limb vs negative control; ζ, systemic challenge HAO vs negative control. 

Statistical analysis was performed by 2-way Anova with Bonferroni’s multiple 

comparisons test. Data represent mean ± SD (n = 4 mice per group). Similar results 

were obtained in 2 identical experiments (n = 24 mice in all). 
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Figure 3.6 Experimental schedule for assessing the induction of chronic 

arthritis through the systemic secondary challenge 

One day following the adoptive transfer of Th1 DO11.10 cells BALB/c mice were 

immunised s.c. with OVA/CFA and ten days later they were challenged s.c. with 

HAO in one hindlimb. At day 34 after the HAO challenge, mice received a secondary 

challenge with either 100 µg of HAO or 200 µg of CII and 5 µg of LPS. Control mice 

received the systemic injection of OVA or CII and LPS but they were not immunised 

and HAO challenged. Mice were sacrificed one week after the secondary challenge 

(day 41) to assess joint histology and antibody production.  
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Figure 3.7 Clinical signs of arthritis in mice after the systemic secondary 

challenge 

Hind paw thickness (A) and mean clinical score (B) in mice re-challenged with CII 

and LPS. No significant increase in paw swelling and clinical score was observed in 

mice re-challenged with CII and LPS and control mice. Mann-Whitney U test was 

used for the comparison between the two groups. Data represent median and IQR (n = 

5 mice per group). Similar results were obtained in 2 similar experiments (n = 20 

mice in all). 
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Figure 3.8 Effect of systemic secondary challenge on joint histopathology 

Representative haematoxylin/eosin stained sections prepared from the joints of mice 

re-challenged with CII + LPS (A-B) and control mice (C). The systemic injection of 

CII + LPS did not induce any sign of synovitis such as cell infiltration, synovial 

hyperplasia and cartilage/bone erosions. The joints of control mice did not exhibit any 

inflammatory reaction. The joint histopathology score (D) was similar in the two 

experimental groups. Original magnification was X40 except panel C X20. In panel D 

statistical analysis was performed by Mann-Whitney U test and data represent median 

and IQR (n = 5 mice per group). Images and data shown are representative of two 

similar experiments (n = 20 mice in all).  
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Figure 3.9 Anti-CII antibodies and Rheumatoid Factor in mice after systemic 

secondary challenge 

Serum samples were collected at day 7, 34 and 41 after the first HAO challenge and 

analysed for the presence of anti-CII antibodies and Rheumatoid Factor. (A) Anti-CII 

antibodies were revealed at day 7 after the primary HAO challenge compared with 

control mice. Mice HAO challenged displayed significant levels of anti-CII antibodies 

even in the absence of arthritis at day 34 after primary challenge when compared with 

mice HAO challenged at day 7. Levels of anti-CII antibodies from mice re-challenged 

with CII + LPS were higher than those from mice HAO challenged (day 7 and day 
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34). (B) Rheumatoid factor was detected in arthritic mice HAO challenged (day 7) 

compared with control mice. Likewise, RF was observed in mice at day 34 after HAO 

challenge compared with control mice. Arthritic mice that received a systemic 

secondary challenge with CII + LPS showed higher levels of RF compared with those 

from mice 7 and 34 days after primary HAO challenge. *, Arthritic mice day 7 vs 

Negative Control; § Arthritic mice day 34 vs Arthritic mice day 7; # Arthritic mice 

CII + LPS day 41 vs Arthritic mice day 7; ‡ Arthritic mice CII + LPS day 41 vs 

Arthritic mice day 34. Statistical analysis was performed by 2-way Anova with 

Bonferroni’s multiple comparisons test. Data represent mean ± SD (n = 5 mice per 

group). Similar results were obtained in 2 similar experiments (n = 20 mice in all). 
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Figure 3.10 Experimental schedule for assessing the induction of chronic 

arthritis through the local secondary challenge 

One day following the adoptive transfer of Th1 DO11.10 cells BALB/c mice were 

immunised s.c. with OVA + CFA (day -10) and challenged with a s.c. injection close 

to the ankle joint with 100 µg of HAO (day 0). At day 34 after the primary HAO 

challenge, mice were injected with a local (periarticular) s.c. injection of 100 µg HAO 

or 200 µg CII in IFA. Control mice received an injection of IFA in PBS or PBS. Mice 

were sacrificed 3 weeks after secondary challenge (day 57) to assess joint histology 

and antibody production.   
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Figure 3.11 Clinical signs of arthritis in mice after the local secondary 

challenge 

Hind paw thickness (A) and mean clinical score (B) in mice re-challenged locally 

with HAO, CII or PBS in IFA, or PBS alone. There was a significant difference in 

both paw swelling and clinical scores between mice re-challenged either with HAO or 

CII in IFA and those injected with IFA or PBS. The increased paw swelling and 

clinical score in mice re-challenged with HAO or CII in IFA persisted more than 3 

weeks. * CII+IFA vs PBS; § HAO+IFA vs PBS; # CII+IFA vs PBS+IFA; ς 

HAO+IFA vs PBS+IFA; ^ PBS+IFA vs HAO primary challenge. Statistical analysis 

was performed by 2-way Anova with Bonferroni’s multiple comparisons test. Data 
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represent mean ± standard error (n = 5 mice per group). Similar results were obtained 

in 2 identical experiments (n = 40 mice in all). 
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Figure 3.12 Paws of mice after local secondary challenge 

Photographs of hind paws of mice re-challenged with HAO + IFA (A-B), CII + IFA 

(C-E), PBS + IFA (F-H) or PBS (I-K). Black arrows indicate representative sites of 

joint swelling. An arthritis localised to more than 4 joints is evident in one hind paw 

of mice re-challenged locally with HAO (A-B) or CII in IFA (C, E). Panels A, D, G 

and J show the controlateral paws that did not receive the secondary challenge. 
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Figure 3.13 Effect of local secondary challenge on joint histopathology 

Representative haematoxylin/eosin and toluidine blue stained sections prepared from 

the joints of mice re-challenged locally with HAO + IFA (A), CII + IFA (B), IFA + 

PBS (C) or PBS (D).  

(A) The injection of HAO + IFA induced an arthritis characterised by cell infiltration, 

synovial hyperplasia and cartilage/bone erosions, assessed by loss of toluidine blue 

staining. Mice re-challenged with CII + IFA displayed a mild cell infiltration and 

moderate cartilage depletion (B). The joints of mice injected with IFA + PBS (C) or 

PBS (D) did not exhibit significant inflammatory reaction or cartilage erosion. Image 

from panel B2 is the same shown in figure 2.1F; images from panel D2 and D3 

belong to the same section shown in figure 2.1A and I. Original magnification X10 

except panel D4 X20. Images shown are representative of 2 identical experiments (n = 

5 mice per group and 40 mice in all).   
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Figure 3.14 Effect of local secondary challenge on histopathology score 

The histopathology score of the joints in animals re-challenged with HAO + IFA was 

higher than the score of the joints that received CII +IFA, PBS + IFA, and PBS alone. 

* HAO + IFA vs CII + IFA; § HAO + IFA vs PBS + IFA; # HAO + IFA vs PBS. 

Statistical analysis was performed by Kruskal-Wallis test. Data represent median and 

IQR (n = 5 mice per group). Similar results were obtained in 2 identical experiments 

(n = 40 mice in all). 
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Figure 3.15 Anti-OVA and Anti-CII IgG antibodies in mice after local 

secondary challenge 

Serum samples were collected at day 7, 34 and 57 after the first HAO challenge and 

analysed for the presence of anti-OVA and anti-CII IgG antibodies. Sera from mice at 

day 7 and day 34 are pooled because they belong to one group of 20 mice. At day 34 

after primary HAO-challenge mice were randomised to receive the secondary 

challenge. (A) All animals immunised with OVA exhibited similar levels of anti-

OVA antibodies that were higher than that in naïve mice. Sera were diluted 1 in 

32000. (*, naïve vs day 57 HAO + IFA; #, naïve vs day 57 CII + IFA; § naïve vs day 

57 PBS + IFA; ^, naïve vs day 57 PBS). (B) Anti-OVA antibodies from mice re-

challenged with HAO + IFA, CII + IFA, PBS + IFA or PBS were all at the same 

levels at day 57 after the primary HAO challenge. (C) At day 7, 34 and 57 after 

primary HAO-challenge all mice exhibited anti-CII antibodies compared with naïve 

mice. Their levels increased with time even in the absence of arthritis at day 34 after 

primary HAO challenge. Mice that received the secondary challenge with HAO + IFA 

showed more anti-CII antibodies compared with that from mice day 7 and mice day 

34. Sera were diluted 1 in 50. (*, naïve vs day 7; #, day 7 vs day 34; § day 34 vs day 

57 HAO + IFA; ^ day 7 vs day 57 HAO + IFA). (D) At day 57 mice that received the 
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local secondary challenge with HAO + IFA exhibited the highest levels of anti-CII 

antibodies compared with those from animals re-challenged with CII + IFA, PBS + 

IFA or PBS (*, HAO + IFA vs CII + IFA, PBS + IFA or PBS). Statistical analysis 

was performed by 2-way Anova with Bonferroni’s multiple comparisons test. Data 

represent mean ± SD (n = 5 mice per group). Similar results were obtained in 2 

identical experiments (n = 40 mice in all). 
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Figure 3.16  Antibody response to CII and different triple helical peptides 

(A-F) Antibodies against CII and peptides C1, J1, U1, Cit-C1 were tested in sera from 

mice with OVA-mediated acute arthritis (day 7) (●), CIA (□) and naïve mice (△). In 

panel E anti-U1 antibodies were tested also in mice with previous history of acute 

arthritis (OVA day 34) and in mice with a relapse of OVA-mediated arthritis (OVA 

day 57).  

(A) Sera from mice with CIA contained high levels of anti-CII compared with sera 

from OVA-mediated acute arthritis and naïve mice. Sera from OVA-mediated acute 

arthritis showed anti-CII antibodies compared with naïve mice. (B) Sera from mice 
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with CIA contained high levels of anti-C1 compared with naïve mice and OVA-

mediated acute arthritis. Mice with OVA-mediated acute arthritis displayed a 

significant production of anti-C1 antibodies compared with naïve mice at the serum 

dilution of 1 in 50. (C) Sera from mice with CIA contained high levels of anti-J1 

compared with naïve mice and OVA-mediated acute arthritis. Mice with OVA-

mediated acute arthritis displayed a significant production of anti-J1 antibodies 

compared with naïve mice at the serum dilution of 1 in 50. (D) Mice with CIA and 

OVA-mediated acute arthritis produced significant levels of anti-U1 antibodies 

compared with naïve mice. (E) Mice with OVA-mediated acute arthritis (day 7), mice 

with OVA-mediated arthritis at day 34 and mice with a relapse of OVA-mediated 

arthritis (day 57) showed anti-U1 antibodies compared with naïve mice. Anti-U1 

antibodies increased from day 7 to day 57. Mice with a relapse of OVA-mediated 

arthritis and mice with CIA displayed comparable titres of anti-U1 antibodies. In 

panel E sera were diluted 1 in 100. (F) Neither CIA mice nor OVA-mediated acute 

arthritis showed anti-Cit-C1 antibodies. *, CIA vs naïve mice; Φ, CIA vs OVA/HAO 

day 7; §, OVA/HAO day 7 vs naïve mice; � OVA day 7 vs OVA day 34; ° OVA day 

34 vs naïve mice; ⌘ OVA day 57 vs naïve; ∞ OVA day 34 vs OVA day 57; ^ OVA 

day 7 vs OVA day 57. Statistical analysis was performed by 2-way Anova with 

Bonferroni’s multiple comparisons test. Data represent mean ± SD (n = 5 mice per 

group). Similar results were obtained in 2 identical experiments (n = 30 mice). 
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Figure 3.17  Effect of serum passive transfer on anti-CII and anti-OVA 

antibodies in naïve mice 

(A) Anti-CII antibodies were not detected in recipient animals after passive transfer of 

150 µl serum from mice with a relapse of OVA-mediated arthritis. Ns indicates not 

significant. (B) Anti-CII and (C) anti-OVA antibodies were detected in recipient 

animals after the passive transfer of 200 µl serum in two consecutive days from mice 

with a relapse of OVA-mediated arthritis. Sera were diluted 1 in 100 for the detection 

of anti-CII antibodies and 1 in 1000 for anti-OVA antibodies. *, Recipient mice vs 

negative control. Statistical analysis was performed by 2-way Anova with 

Bonferroni’s multiple comparisons test. Data represent mean ± SD (n = 3 mice per 

group for each experiment).  
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Figure 3.18 Anti-OVA and anti-CII antibodies in recipient mice after 2 and 14 

days from serum passive transfer 

(A) Anti-OVA antibodies were detected in recipient animals 2 and 14 days after 

passive transfer of 200 µl serum from mice with a relapse of OVA-mediated arthritis 

Sera were diluted 1 in 1000. (B) Anti-collagen II antibodies could be detected in 

recipient mice after 2 from passive transfer compared with control mice. Sera were 

diluted 1 in 100. *, Recipient mice day 2 vs negative control; § Recipient mice day 14 

vs Negative Control. Statistical analysis was performed by 2-way Anova with 

Bonferroni’s multiple comparisons test. Data represent mean ± SD (n = 3 mice per 

group).  Similar results were obtained in 2 identical experiments (n = 18 mice in all). 
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Figure 3.19 Effect of serum passive transfer on paw thickness and joint 

histopathology in naïve mice 

(A) Hind paw thickness did not differ in mice that received serum passive transfer 

from mice with a relapse of OVA-mediated arthritis and in control mice that received 

normal mice serum. Statistical analysis was performed by Mann-Whitney U test. Data 

represent median and IQR (n = 3 mice per group). (B-C) Representative 

haematoxylin/eosin stained sections prepared from the joints of naïve BALB/c mice 

after the passive transfer of serum from OVA-mediated arthritis mice (B) or normal 

mice serum (C). The injection of serum from mice with a relapse of OVA-mediated 

arthritis or normal mice serum did not induce significant inflammatory reaction or 

cartilage erosion in naïve animals. Original magnification X20. Similar results and 

images were obtained in 2 identical experiments (n = 18 mice in all).  
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Figure 3.20 Biacore assay: Affinity of anti-CII antibodies 

(A) Binding curves generated with immobilisation of CII protein and injection 

(arrows) on the flow cells sensor surface of serum samples from CIA, mice with a 

relapse of OVA-mediated arthritis (OVA day 57) and control animals. Serum from 

mice with CIA bound CII protein compared with sera from mice with a relapse of 

OVA-mediated arthritis (day 57) and control animals. (B) Binding curves generated 

with immobilisation of U1 peptide and the injection on the flow cells sensor surface 

of serum samples from CIA, OVA-mediated acute arthritis (OVA day 7), mice with a 

previous history of OVA-mediated arthritis  (OVA day 34), mice with a relapse of 

OVA-mediated arthritis (OVA day 57), and control animals. (C) Sera from OVA day 

57 and CIA mice exhibited the highest stability of the complex anti-U1 antibodies/U1 

antigen. *, OVA day 57 vs negative control; §, CIA vs negative control. Sera were 

diluted 1 in 10. Statistical analysis was performed by 2-way Anova with Bonferroni’s 

multiple comparisons test. Data represent mean ± SD (n = 3 mice per group). Similar 

results were obtained in 3 identical experiments (n = 27 animals in all). 
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Chapter 4 

B cells in the induction of OVA-mediated arthritis 
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4.1 Aim and rationale 

 

In this chapter Th1-OVA specific cells induced experimental arthritis in absence of 

antigen-specific B cells or in complete absence of mature B cells. CD4+ T cell 

proliferation was analysed in absence of antigen presenting B cells.  

The model of OVA-mediated arthritis is characterised by the breach of self-tolerance 

and the production of autoantibodies such as RF, ACPA and anti-CII antibodies (358, 

361, 364). Despite the fact that the presence of these antibodies makes this animal 

model of interest for its similarity with human RA, it does not clarify the contribution 

of B cells in arthritis. This is of particular relevance because current therapeutic 

approaches aim to target B cells and B cell mediators (334, 395, 396). Thus, 

understanding the fine role of B cells both in human and in animal models of RA will 

help to design better therapeutic strategies.  

Therefore, the aim of this chapter was to investigate the role of B cells in the 

induction of arthritis. For this purpose I modified the original model of OVA-

mediated arthritis (358). In particular, the adoptive transfer of Tg Th1-OVA specific 

cells was performed in recipient animals with different B cell repertoires: BALB/c 

mice with normal B cells, MD4 mice with B cells that could not present antigen to 

CD4+ T cells and produce antibodies (370), and JHD mice characterised by the 

absence of mature B cells (371). 
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4.2 Introduction 

 

Several lines of evidence support an important role for B cells in the pathogenesis of 

RA, as previously discussed (section 1.8) (217). These can be summarised as follows:  

 

1. B cells are a source of relevant autoantibodies in RA 

2. B cells enrich RA synovial membrane 

3. B cells are highly efficient APCs to stimulate T cells 

4. B cells are a major source of cytokines 

5. B cells are a therapeutic target in RA 

 

RA has been considered an autoimmune disease since the production of 

autoantibodies was first observed (216). RF and ACPA are the most relevant 

antibodies in RA for their diagnostic and prognostic value. RF is detected in RA 

patients in about 50-80% of cases and high serum levels are associated with an 

aggressive articular disease, extra-articular manifestations and a worse outcome (217). 

ACPA show high specificity, 98%, and sensitivity comparable with RF. Of interest, 

they correlate with disease severity and with radiological progression of the disease 

(246). Moreover, recent studies have demonstrated the presence of RF and ACPA 

many years before the onset of RA (5, 247) suggesting that the presence of these 

autoantibodies can predict or interfere with the development of disease. Also anti-CII 

antibodies have been detected in human RA although in a low percentage of cases 

(227, 228).  

The contribution of B cells in human RA has also been proven with the demonstration 

of their presence in the synovial membrane. The histological pattern of rheumatoid 

synovia is heterogeneous with a variable presence of synovial T-B aggregates 

demonstrated in 31-73% of the specimens after arthroscopic biopsy in active joints 

(250, 256).  

Activated B cells produce pro-inflammatory cytokines, such as IL-6, TNF-α  and 

RANKL, which may contribute to joint inflammatory environment, bone erosions and 

amplification of T cell responses (295).  
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B cells are highly efficient APCs to stimulate T cells and allow optimal CD4+ T cell 

memory (268). Studies on mice depleted of B cells allowed analysis of T cell priming 

in the absence of B cells. Early experiments using mice depleted by treatment with 

anti-IgM suggested that naïve T cells could not be primed in absence of B cells (272, 

273, 275). Later studies using mice genetically depleted of B cells, created by targeted 

deletion of the µ region (µMT) or JH region (JHD) of the IgM locus, have given 

conflicting results concerning the importance of B cells in T cell priming (276, 397). 

For example, Liu et al. demonstrated that immunisation of JHD mice failed to prime 

CD4+ T cells for either clonal expansion or delivery of immunological help for 

antibody production (397). In another interesting study, the authors showed that 

primed JHD LN cells proliferated poorly in response to antigen compared with 

primed normal BALB/c LN cells (398). The proliferative response was restored when 

purified JHD CD4+ T cells were stimulated with antigen presented by splenic 

adherent cells from BALB/c, which consisted of DCs and macrophages. Moreover, 

JHD T cells primed by normal B cells provided little or no help for isotype switching, 

IgG production and failed to produce IL-4 in response to B cells compared with 

normal T cells (398). 

Several studies dissected the contribution of B cells in murine models of autoimmune 

diseases. For example, in MRL/lpr mice, murine model of SLE, B cell deficient mice 

did not show activated or memory T cells (284). On the contrary, in the presence of 

normal B cells, but in the absence of circulating antibodies, MRL/lpr mice 

demonstrated T cell activation (283). 

Similarly, the requirement for antigen-specific B cells was investigated in the 

experimental model of PGIA using B cell deficient mice, such as JHD and Ig-

deficient (mIgM) mice (285). Of interest, both JHD and mIgM mice were completely 

resistant to PGIA, confirming the necessity of B cells in the initiation of PGIA. 

Moreover, the authors demonstrated that antigen presentation by B cells was critical 

for the efficient activation of autoreactive T cells. Both primed autoreactive T cells 

and autoantibodies were required to induce PGIA into SCID mice.  

All these evidences supported the idea that targeting B cells could be effective in 

human RA treatment. Indeed, different therapeutic strategies that target B cells 

(Rituximab) or B cell mediators (Tocilizumab and Atacicept) demonstrated to be 

effective in RA (334, 395, 399).  
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Rituximab is a chimeric monoclonal antibody that binds to CD20, a surface molecule 

expressed on B cells at the pre-B stage of differentiation until the mature B cells 

excluding stem cells, pro-B cells and plasma cells (336). Rituximab is the first B cell 

agent approved for the treatment of adult RA patients with moderate to severe disease 

after the failure of an anti-TNF. Its use in combination with Methotrexate ameliorates 

the disease. Rituximab can also inhibit the progression of structural joint damage in 

RA patients over 2 years (337, 338). 

Despite all of these findings, the exact contribution of B cells in the induction and 

maintenance of RA remains unclear (217). 

The aim of this chapter was to investigate the role of B cells in the induction of OVA-

mediated arthritis. For this purpose, I employed recipient animals with different B cell 

repertoires: MD4 and JHD mice. Homozygous MD4 Tg mice have a BCR specific for 

the antigen HEL (370), thus B cells could not recognise through the BCR any other 

antigen, such as OVA or self antigens. Inducing OVA-mediated arthritis in MD4 mice 

allowed me to study the development of arthritis in a situation where B cells were 

present, lymphoid architecture was normal but in the complete absence of antibodies 

and antigen-specific B cells. JHD mice contained a genetic modification, the deletion 

in the J gene of the heavy chain in the Ig variable region (371). As a result of this 

modification B cells could not assemble the heavy chain genes of the Ig and B cell 

differentiation was blocked at a precursor stage. A complete absence of mature B cells 

was observed in the periphery and bone marrow. The precursor B cell number was 

also affected in the bone marrow and there was no IgM or IgG in the sera of these 

mice. T cell development was not affected in JHD mice. 

 

4.3 Results 

 

As reported previously the adoptive transfer of Th1 OVA-specific cells, followed by 

immunisation with OVA and challenge with HAO in BALB/c mice, caused a 

transient arthritis characterised not only by joint inflammation and tissue damage but 

also by the production of RA-related autoantibodies, such as RF, ACPA and anti-CII 

antibodies (358, 362, 365). Moreover, in the previous chapter I demonstrated that the 

relapse of arthritis in this animal model was associated with increased autoreactive B 
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cell response (364). However, the production of autoantibodies does not clarify if 

these autoantibodies contribute to the induction of joint pathology or if they are only 

epiphenomena. Thus, I aimed to investigate if B cells were essential in the induction 

of arthritis. For this purpose pathology was induced in BALB/c mice, with normal B 

cell repertoire, in MD4 mice (370), in absence of antigen specific B cells, and in JHD 

mice (371), in complete absence of mature B cells. 

 

4.3.1 Induction of arthritis in BALB/c, MD4 and JHD mice 

 

Mice with different B cell repertoires such as BALB/c, MD4 and JHD mice were 

employed to study the involvement of B cells in the induction of experimental 

arthritis. Arthritis was elicited in different recipient animals with transfer of Th1-

polarised OVA-specific Tg T cells followed by OVA immunisation and HAO 

challenge, as previously demonstrated (358). BALB/c mice HAO-challenged 

developed an increase in the paw thickness (Fig. 4.1A) and the clinical score (Fig. 

4.2A) that was evident from day 1 to day 6 after challenge compared with those in un-

challenged animals.  

MD4 mice HAO-challenged exhibited a paw swelling evident only at day 6 after 

challenge (Fig. 4.1B) and a higher clinical score at days 5 and 6 (Fig. 4.2B) compared 

with those in MD4 un-challenged animals.  

No significant increase in paw thickness and clinical score was observed in JHD mice 

HAO-challenged compared with those in respective un-challenged mice (Fig. 4.1C 

and Fig. 4.2C).  

BALB/c and MD4 mice HAO-challenged showed similar levels of paw swelling and 

clinical score (Fig. 4.1D and Fig. 4.2D). On the contrary, a greater paw swelling and 

clinical score was demonstrated in BALB/c and MD4 mice HAO-challenged 

compared with respective JHD mice at days 4, 5 and 6 post-challenge (Fig. 4.1D and 

4.2D). Of interest, BALB/c mice injected with PBS showed reduced paw thickness 

and clinical score compared with respective JHD and MD4 mice at days 2 and 3 after 

injection (Fig. 4.1E and Fig. 4.2E).  

On histological examination, BALB/c mice immunised and challenged with HAO 

exhibited in the ankle joint cell infiltration, synovial hyperplasia (Fig. 4.3A) and 
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cartilage depletion (Fig. 4.3B) compared with un-challenged BALB/c mice (Fig. 

4.3C-D). Of relevance, joints from both MD4 (Fig. 4.3E) and JHD mice (Fig. 4.3I) 

immunised with OVA and challenged with HAO showed an infiltrate and synovial 

proliferation. Small cartilage and bone erosions were also demonstrated in both 

groups by loss of toluidine blue staining after HAO-challenge (Fig. 4.3F,J). Joints 

from MD4 and JHD mice injected with PBS did not exhibit cell infiltrate (Fig. 

4.3G,K) or cartilage/bone depletion (Fig. 4.3H,L). The joint histopathology score of 

BALB/c mice HAO-treated was greater than those detected in MD4 and JHD mice 

HAO-treated (Fig. 4.4). BALB/c, MD4 and JHD mice challenged with HAO 

exhibited a higher score compared with that observed in respective un-challenged 

mice.  

These data demonstrated that HAO-challenge could elicit in the joints cell infiltration, 

synovial hyperplasia and cartilage/bone damage in the absence of antigen-specific B 

cells or in complete absence of mature B cells. However, the pathology detected was 

mild, in terms of histopathology score, compared with that observed in BALB/c 

animals with a normal B cell repertoire.  

 

4.3.2 Antibody production in arthritic mice 

 

After I induced the experimental arthritis I aimed to assess the antibody response in 

different recipient animals. For this purpose serum samples were collected at day 7 

after HAO challenge and analysed for the presence of anti-OVA, anti-CII antibodies 

and ACPA IgG. BALB/c mice immunised with OVA and challenged with either 

HAO or PBS exhibited similar levels of anti-OVA antibodies (Fig. 4.5A). On the 

contrary MD4 and JHD mice, HAO-challenged or un-challenged, did not show 

significant production of anti-OVA antibodies compared with respective BALB/c 

mice (Fig. 4.5A). BALB/c mice HAO-challenged, as previously demonstrated (358, 

361, 364, 365), produced anti-CII antibodies compared with MD4 and JHD mice 

HAO-challenged (Fig. 4.5B). Of a note, different experiments with the same protocol 

revealed that the levels of anti-CII antibodies, in terms of optical density, did not 

reach always the same magnitude, as showed in the two panels of figure 4.5B. Of 

interest, sera from BALB/c, MD4 and JHD mice HAO-treated were compared also for 
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the presence of ACPA, an important hallmark in human RA. I demonstrated that 

BALB/c mice HAO-challenged exhibited high levels of ACPA compared with MD4 

and JHD mice HAO-challenged (Fig. 4.5C). 

These data demonstrated that MD4 and JHD mice could not produce antibodies 

during the development of arthritis while arthritic BALB/c mice showed characteristic 

antibodies of RA. 

 

4.3.3 Proliferative response of OVA and Collagen-specific T cells 

 

CD4+ T cell proliferation was analysed in animals with different B cell repertoire in 

response to antigen stimulation. For this purpose draining LN cells from BALB/c, 

MD4 and JHD mice were cultured in vitro with either medium, OVA or CII. Antigen-

specific proliferation was analysed at 72 hours by flow cytometric staining for EdU 

incorporation as previously described (chapter 2, section 2.15). Figure 4.6A outlines a 

representative flow cytometric plot used to identify the lymphocyte population, which 

was gated on blastic CD4+ cells. The gate was drawn with the backgating analysis that 

provides a tool to view if the gate was positioned correctly showing the final gated 

population within the population of its ancestors. Proliferating cells corresponded to 

the cells double positive for the expression of CD4 and Edu-Alexa-fluor 488 (Fig. 

4.6B). Stimulation with OVA resulted in CD4+ T cell proliferation from BALB/c, 

MD4 and JHD animals HAO challenged compared with un-stimulated cells 

(Medium). A higher CD4+ T cells proliferation was detected from BALB/c animals 

HAO challenged compared to those derived from BALB/c un-challenged mice. 

Similar findings were observed in MD4 and JHD mice HAO challenged compared 

with un-challenged mice. However, no significant difference was demonstrated in the 

proliferation of CD4+ T cells between arthritic BALB/c and MD4 or JHD mice (Fig. 

4.6C).  

Stimulation of draining LN cells with CII did not result in significant CD4+ T cell 

proliferation in BALB/c, MD4 or JHD mice (Fig. 4.6).  

Since the contribution of B cells in T cell proliferation could be different in a primary 

and secondary immune response, I investigated the ability of CD4+ T cells from 

BALB/c, MD4 and JHD mice to proliferate in response to OVA antigen in a primary 

immune response. For this purpose other mice were immunised s.c. with OVA in 
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CFA. T cell proliferation was analysed after in vitro re-stimulation with OVA or 

medium. Of interest, CD4+ T cells proliferated after OVA re-stimulation from 

BALB/c (Fig. 4.7A), MD4 (Fig. 4.7B) and JHD mice (Fig. 4.7C). Indeed, I 

demonstrated a higher proliferation of CD4+ T cells from BALB/c animals compared 

to that derived from MD4 and JHD mice (Fig. 4.7D).  

These data indicated that CD4+ T cells primed in the absence of antigen presenting B 

cells could proliferate in response to OVA antigen. However, in a primary immune 

response a higher proliferation of CD4+ T cells was observed in the presence of 

normal B cell repertoire. 
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4.4 Discussion 

 

In this chapter a mild arthritis was induced in an animal model of arthritis in the 

absence of antigen-presenting B cells and in complete absence of mature B cells. 

CD4+ T cell proliferation was also analysed in absence of antigen presenting B cells. 

B cells are critically important in RA because of their pleiotropic effects. Indeed B 

cells produce pro-inflammatory cytokines, such as IL-6 and TNF-α (295), secrete 

antibodies that are key mediators in RA (217) and participate in synovial ectopic 

lymphoneogenesis (252). B cells can also regulate T cells, being essential in their 

ability to present antigen and regulate their expansion (273, 285). B cells can 

influence T cells providing other co-stimulatory (OX40L) signals that give a stimulus 

to survive (400). Of a note, B cells might also have regulatory function controlling T 

cell differentiation and autoimmune disorders (302). 

Thus, the aim of this chapter was to assess the B cell requirement in the induction of 

experimental arthritis. For this purpose, I modified the original model of OVA-

mediated arthritis (358) using the adoptive transfer into recipients animals with 

different B cell repertoire: BALB/c, MD4 and JHD mice. Homozygous MD4 mice 

contained only B specific for HEL and could not present any other antigen to CD4+ T 

cells or produce antibodies directed against other specificities (370). On the other 

side, JHD mice were B cell deficient (371). I demonstrated that BALB/c mice HAO 

challenged showed an acute arthritis, detected by the increased paw thickness, clinical 

score and joint histology, compared with BALB/c mice PBS injected. JHD mice HAO 

treated displayed a similar paw thickness and clinical score compared with PBS 

treated mice. A similar finding was evident for MD4 mice in the first days after 

challenge. On the contrary the joint histology, performed at day 7 post-challenge, 

showed a mild arthritis in both MD4 and JHD mice HAO treated compared with PBS 

injected mice. Clinical and histological data are partially contradictory and I have 

hypothesized that the swelling/clinical score in all HAO and PBS injected mice might 

indicate two responses elicited after the injection. The first response appeared after 2-

3 days post-injection and this was regardless of HAO/PBS injection. Of note, no skin 

oedema was evident the day after the injection. I have speculated that this initial 

response was not specific and caused by the trauma of the injection. The second 
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response appeared at days 4-6 post-injection and it might be related to the arthritis as 

shown by the histological analysis. However, no joint histology was performed at 

days 2-3 post injection to verify this hypothesis. Moreover, other issues, such as the 

low specificity of the clinical assessment, might be responsible for these data. Of 

interest, BALB/c mice PBS injected showed reduced clinical scores compared with 

respective MD4 and JHD mice in the first two days post-PBS injection. These 

reduced scores in BALB/c mice might be related to the presence of B cells with 

regulatory function in this context. Otherwise, different cells, such as T cells, in MD4 

and JHD mice might favour the initial response.  

One of the limits of OVA-mediated acute arthritis model is that the anti-CII response 

is variable, as highghlited previously. For this reason I described two identical 

experiments where the anti-CII response was different even if the levels of anti-CII 

antibodies were always higher than that in un-challenged BALB/c mice. These 

differences might be biologically relevant. As expected, MD4 and JHD mice did not 

produce significant amounts of autoantibodies, such as anti-CII and ACPA. Thus, 

autoantibodies did not contribute to the mild pathology observed in MD4 and JHD 

mice. These results were in contrast with other studies where antigen-presenting B 

cells and autoantibodies were required for the initiation of the disease (284, 285). 

However, several differences between the model of OVA-mediated arthritis and the 

other models of RA may explain this difference. For example, in the model of PGIA 

the nature of antigen used, human proteoglycan, and the protocol of immunisation 

were different from those employed in OVA-mediated arthritis. PGIA is dependent on 

antigen-specific B cells and autoantibodies are required for the initiation of disease 

but are insufficient to transfer disease (285).  

I was also interested in investigating the requirement of antigen presenting B cells in 

this animal model. B cells could act as APC by internalising antigen through the BCR 

or by formation of immune complexes and their internalisation through FCγR 

expressed on professional APCs. Moreover, B cells with RF specificity could capture 

a foreign antigen complexed with an antibody via their membrane Ig receptors and 

present the antigen efficiently to CD4+ T cells of the same specificity (270). A 

decrease of T cell effector and memory responses was documented in the absence of 

B cell antigen presentation (272, 275, 279). Weyand and co-workers demonstrated 

that T cell activation was B-dependent in human synovial membrane transplanted into 
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SCID mice (260). Thus, CD4+ T cell proliferation was analysed in arthritic BALB/c, 

MD4 and JHD mice. Of interest, CD4+ T cells from BALB/c, MD4 and JHD mice, 

immunised and challenged with OVA, proliferated in response to OVA antigen 

without significant differences among the different strains. This result could be 

attributed to the presence in the draining LN of other APCs rather than B cells. T cells 

generated a memory population after OVA stimulation and HAO challenge in vivo, 

which persisted in absence of antigen. This population was ready to proliferate after 

the encounter with the antigen in vitro. It would be relevant to analyse if the T cell 

population that proliferated was that one transferred (DO11.10) or if it belonged to the 

host. Indeed, DCs are the predominant APC population for the initial expansion of 

CD4+ T cells (401). Our group demonstrated that DCs were the major presenter of 

antigen in the model of OVA-mediated arthritis (361). This cell population was also 

sufficient to induce B and T autoreactive responses (361). It would be interesting in 

future experiments to isolate DCs from the model and use them as a positive control 

to increase the APC function. On the contrary, previous studies in the model of OVA-

mediated arthritis showed that pDCs could limit arthritis and autoimmunity (362). 

I did not observe any CD4+ T cell proliferation in response to CII stimulation. This 

result is in contrast with previous experiments that demonstrated successful induction 

of CII-specific T cells in arthritic BALB/c mice (361, 362, 365). Technical problems 

in the assay might explain these data, such as a low concentration of CII or Edu, a 

short duration of incubation and/or a high background in the well with medium rather 

than the true absence of T cell proliferation. The wells with medium alone seemed to 

contain proliferating CD4+ T cell; this paradoxical effect might be related to the 

presence in these wells of APCs loaded with OVA that might stimulate CD4+ T cells.  

Several studies demonstrated that in a primary immune response T cells expansion 

and differentiation were affected in B cell deficient mice (272-274). The same finding 

was proven with mixed bone-marrow chimeric mice in which the B cell compartment 

was deficient in MHC class II (402). Moreover, an impaired CD4+ T cell memory 

generation and cytokine production was observed in the absence of B-cell derived 

MHC class II (402). Thus, I aimed to confirm these data analysing CD4+ T cell 

proliferation in BALB/c, MD4 and JHD mice immunised with OVA in CFA. Indeed a 

higher proliferation of CD4+ T cells was detected in the presence of normal B cells 

compared with that observed in the absence of antigen presenting B cells, such as in 

MD4 and JHD mice. This result was in agreement with data from literature where 
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primed JHD LN cells proliferated poorly in response to the antigen compared with 

primed normal BALB/c LN cells (397, 398).  

In this chapter I demonstrated that B cells were not necessary in the induction of 

OVA-mediated arthritis, however their presence was associated with a more severe 

arthritis confirmed by the joint histopathology score. This result could be due to the 

presence of autoantibodies, pro-inflammatory cytokines B cell-related that might 

contribute to inflammation, and/or the activation of autoreactive T cells. It would be 

interesting in future experiments to explore the role of B in the model previously 

described of relapsing arthritis. 



 134 

 
Figure 4.1 Hind paw thickness in BALB/c, MD4 and JHD mice after HAO 

challenge 

(A) BALB/c mice HAO challenged showed increased paw swelling compared with 

un-challenged animals. (B) MD4 mice presented an increased paw swelling at day 6 

after HAO challenge compared with MD4 un-challenged animals. (C) JHD mice 

HAO challenged did not exhibit a significant paw swelling compared with JHD un-

challenged mice. (D) BALB/c and MD4 mice HAO challenged showed comparable 

levels of paw swelling that were greater than that in JHD mice. (E) BALB/c mice 

injected with PBS showed reduced paw swelling compared with respective JHD and 

MD4 mice at days 2 and 3 after the injection. ∞, BALB/c OVA/HAO vs BALB/c 

OVA/PBS;�, ∨ MD4 OVA/HAO vs MD4 OVA/PBS; *, BALB/c OVA/HAO vs JHD 

OVA/HAO; § MD4 OVA/HAO vs JHD OVA/HAO; °, BALB/c OVA/PBS vs JHD 

OVA/PBS; �, BALB/c OVA/PBS vs MD4 OVA/PBS. Statistical analysis was 

performed by 2-way Anova with Bonferroni’s multiple comparisons test. Data 

represent mean ± SD (n = 5 mice per group). Similar results were obtained in 3 

identical experiments (n = 90 mice in all). 
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Figure 4.2 Clinical score in BALB/c, MD4 and JHD mice after HAO 

challenge 

(A) BALB/c mice HAO challenged exhibited a higher clinical score than that in un-

challenged animals. (B) MD4 mice HAO challenged showed a higher clinical score 

compared with that in MD4 un-challenged mice. (C) Joints from JHD mice HAO 

challenged and PBS treated displayed a similar clinical score. (D) BALB/c and MD4 

mice HAO challenged showed similar level of clinical score and this was higher than 

that in JHD mice. (E) BALB/c mice injected with PBS exhibited a lower clinical 

score than that in JHD and MD4 mice at day 2 post-injection. �, BALB/c OVA/HAO 

vs BALB/c OVA/PBS;� ∨, MD4 OVA/HAO vs MD4 OVA/PBS; *, BALB/c 

OVA/HAO vs JHD OVA/HAO; § MD4 OVA/HAO vs JHD OVA/HAO; °, BALB/c 

OVA/PBS vs JHD OVA/PBS; �, BALB/c OVA/PBS vs MD4 OVA/PBS. Statistical 

analysis was performed by 2-way Anova with Bonferroni’s multiple comparisons test. 

Data represent mean ± SD n = 5 mice per group). Similar results were obtained in 3 

identical experiments (n = 90 mice in all). 
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Figure 4.3     Joint histology of BALB/c, MD4 and JHD mice 

Representative haematoxylin/eosin and toluidine blue stained sections prepared from 

the joints of BALB/c (A-D), MD4 (E-H) and JHD mice (I-L) challenged with HAO 

(A,B,E,F,I,J) or PBS (C,D,G,H,K,L).  

Joints from BALB/c mice HAO challenged showed an inflammatory reaction with 

cell infiltration, synovial hyperplasia (A) and cartilage depletion (B) compared with 

un-challenged BALB/c mice (C-D). Both MD4 (E) and JHD mice (I) immunised with 

OVA and challenged with HAO displayed in their joints an inflammatory reaction and 

synovial hyperplasia. Bone erosions were also evident in both groups by loss of 

toluidine blue staining (F,J). MD4 and JHD mice injected with PBS did not exhibit 

joint inflammation (G,K) or cartilage/bone damage (H,L). Original magnification X20 

except in panels E and F original magnification X40. Images shown are representative 

of 3 identical experiments (n = 5 mice per group and 60 mice in all).  
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Figure 4.4 Joint histopathology score in BALB/c, MD4 and JHD mice 

The joint histopathology score was higher in BALB/c mice HAO challenged 

compared with that of joints from MD4 and JHD mice HAO treated. BALB/c, MD4 

and JHD mice HAO challenged exhibited a higher score compared with respective 

un-challenged mice. ^, BALB/c OVA/HAO vs MD4 OVA/HAO; *, BALB/c 

OVA/HAO vs JHD OVA/HAO; �, BALB/c OVA/HAO vs BALB/c OVA/PBS; �,�

MD4 OVA/HAO vs MD4 OVA/PBS; ⌘, JHD OVA/HAO vs JHD OVA/PBS. 

Statistical analysis was performed by Kruskal-Wallis test. Data represent median and 

IQR (n = 5 mice per group). Similar results were obtained in 3 identical experiments 

(n = 60 mice in all). 
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Figure 4.5 Anti-OVA, Anti-Collagen antibodies and ACPA in BALB/c, MD4 

and JHD mice 
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 (A) BALB/c mice immunised with OVA and challenged with HAO or PBS produced 

anti-OVA antibodies compared with respective MD4 and JHD mice. (B) Anti-CII 

antibodies are shown from two identical experiments. In both B panels BALB/c mice 

HAO-challenged produced anti-CII antibodies compared with MD4 and JHD mice 

HAO-challenged. (C) BALB/c mice HAO challenged showed ACPA compared with 

both MD4 and JHD mice HAO treated. In panel C sera were diluted 1 in 100. ^, 

BALB/c OVA/HAO vs MD4 OVA/HAO; *, BALB/c OVA/HAO vs JHD 

OVA/HAO; #, BALB/c OVA/PBS vs MD4 OVA/PBS; °, BALB/c OVA/PBS vs JHD 

OVA/PBS. Statistical analysis was performed by 2-way Anova with Bonferroni’s 

multiple comparisons test. Data represent mean ± SD (n = 5 mice per group). The 

horizontal line in each panel represents the minimum optical density for each ELISA 

that is considered valid. Similar results were obtained in 3 identical experiments (n = 

90 mice in all).  
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Figure 4.6 Proliferative response of OVA and Collagen-specific T cells in a 

secondary immune response 

Representative flow cytometric plots identify a blastic population of lymphocytes (A) 

and a population of CD4+ cells stained for Edu (B) following stimulation with OVA. 

(C) CD4+ T cells from BALB/c, MD4 and JHD animals HAO challenged proliferated 

after the in vitro stimulation with OVA compared with un-stimulated cells (medium). 

A higher proliferation was observed in all animals HAO challenged compared to that 

in un-challenged mice. No significant difference was detected in CD4+ T cell 

proliferation between arthritic BALB/c and MD4 or JHD mice. CD4+ T cell, from all 

BALB/c, MD4 or JHD mice, stimulated with collagen II did not proliferate. *, 

BALB/c OVA/HAO: OVA vs MEDIUM; §, MD4 OVA/HAO: OVA vs MEDIUM; #, 

JHD OVA/HAO: OVA vs MEDIUM; ∞, BALB/c OVA/HAO vs BALB/c OVA/PBS; 

�, MD4 OVA/HAO vs MD4 OVA/PBS; ⌘, JHD OVA/HAO vs JHD OVA/PBS. 

Statistical analysis was performed by 2-way Anova with Bonferroni’s multiple 

comparisons test. Data represent the mean of triplicate samples ± SD (n = 5 mice per 

group). Similar results were obtained in 2 identical experiments (n = 60 mice in all). 
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Figure 4.7 Proliferative response of OVA-specific T cells in a primary 

immune response 

Representative flow cytometric plots identify a blastic population of CD4+ cells 

stained for Edu following stimulation with OVA in BALB/c (A), MD4 (B) and JHD 

(C) mice. (D) Stimulation with OVA resulted in proliferation of CD4+ T cells from 

BALB/c, MD4 and JHD mice compared with un-stimulated cells (Medium). A higher 

proliferation of CD4+ T cells was detected from BALB/c animals compared to that 

from MD4 and JHD mice. *, BALB/c OVA vs MEDIUM; §, MD4 OVA vs 

MEDIUM; #, JHD OVA vs MEDIUM; ^ BALB/c OVA vs MD4 OVA; ° BALB/c 

OVA vs JHD OVA. Statistical analysis was performed by 2-way Anova with 

Bonferroni’s multiple comparisons test. Data represent the mean of triplicate samples 

± SD (n = 3 mice per group). Similar results were obtained in 2 identical experiments 

(n = 18 mice in all). 
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Chapter 5 

Innate and Antigen-specific pathways to the breach of 

self-tolerance in OVA-mediated acute arthritis  
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5.1 Aim and rationale 

 

Some of the experiments described in this chapter, such as the induction of arthritis, 

the joint immunohistochemistry and the proliferation assay have been performed by 

Dr. Mohammad Nickdel and by myself. Other experiments, such as the assessment of 

the antibody production, have been performed only by myself. 

In this chapter the contribution of the innate and antigen-specific pathways were 

analysed in the murine model of OVA-mediated acute arthritis. Indeed, inflammation 

alone was insufficient to breach T and B cell self-tolerance. In contrast, antigen-

specific T cells could induce arthritis together with autoreactive T and B cell 

responses (365). 

The circumstances that precipitate a breach of self-tolerance and lead to autoimmune-

mediated synovial inflammation are central to the understanding of the disease and 

the development of novel therapeutics.  

In particular, there is interest in the role of antigen-specific T cell–mediated 

inflammation in the pathogenesis of rheumatoid synovitis (403-406) leading in turn to 

autoreactive B cell responses.  

Previous work demonstrated that Th1 cells of an irrelevant antigen-specificity were 

able to break self-tolerance to joint-specific antigens and induce a transient arthritis in 

BALB/c mice, recapitulating several features of human disease (358). In the previous 

chapters I demonstrated that arthritis in this model was associated with the generation 

of RA-related autoantibodies, although pathology could be elicited also in the absence 

of B cells. Indeed, these responses were dependent on local administration of HAO 

that could act as both an antigen-specific and/or a general innate inflammatory 

stimulus. Both mechanisms could in theory promote autoimmunity in RA.  

Thus, the aim of this chapter was to dissect the relative contribution of innate 

inflammation versus antigen-specific activation to the breach of T and B lymphocyte 

self-tolerance and pathology observed in this model. For this purpose OVA-mediated 

arthritis was induced either by an innate inflammatory stimulus alone (LPS), by an 

antigen that activate OVA-specific T cells (HAO) or a combination of both (365).  
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5.2 Introduction 

 
The innate immune system is activated in arthritis. Several experiments in murine 

models of arthritis and human disease have demonstrated the importance of the innate 

immune cells in initiating the disease, promoting the adaptive immune responses and 

antibody production (83). Some of the critical actors of the innate immune system in 

RA, as previously discussed (sections 1.5.1 and 1.5.2), are summarised and described 

as follows:  

 

1. Macrophages  

2. Dendritic Cells 

3. Toll-like receptors  

4. Complement system 

5. Fc receptors 

6. Synovial fibroblasts 

 

Macrophages enrich the RA synovial membrane (87). Their activation in RA results 

in the expression of chemokines and pro-inflammatory cytokines (83). Of interest, 

conventional therapies in RA, such as prednisone, Methotrexate, Sulfasalazine, 

Leflunomide and biologic drugs like Rituximab and anti-TNF decrease the number of 

macrophages in RA synovial sublining and their cytokine production (407). A 

significant correlation has also been found between the reduction of macrophages and 

the clinical improvement measured with the disease activity score (84, 407). 

 DCs are antigen-presenting cells to T cells, playing a major role in the development 

of both innate and adaptive immune responses (401). DCs contribute to the 

inflammatory process by the production of cytokines and differentiating naïve T cells 

into Th1, Th2 or Th17 cells (408). Both mDCs and pDCs are represented in RA 

synovial tissue with different status of maturation (105). Synovial fluid of RA patients 

contains significant number of mDCs and pDCs compared to blood (409). Treatment 

with Methotrexate and Infliximab in RA patients reduced the number, maturation and 

function of mDCs and increased the number of peripheral blood pDCs (410-412). In 

the murine model of OVA-mediated arthritis the depletion of pDCs enhanced the 

severity of arthritis and the autoreactive B and T responses against CII (362). On the 



 145 

contrary, in the same murine model the depletion of mDCs decreased the severity of 

the disease and the autoimmune responses (361). The pathogenic role of DCs has also 

been confirmed in another murine model of arthritis where the disease was induced by 

the transfer of collagen-pulsed DCs into susceptible mice (413). New therapeutic 

strategies in RA are exploiting the “tolerogenic” function of DCs. TolDCs are 

generated in vitro by genetic or pharmacological modification (114). They are 

characterised by low expression of co-stimulatory molecules, low production of pro-

inflammatory cytokines and high secretion of immunosuppressive molecules (114, 

409). Of interest, TolDCs demonstrated beneficial effects in murine models of RA 

(112, 113). Thus, their adoptive transfer into RA patients represents a possible 

therapy, although several issues regarding their application in human disease (such as 

the antigen-specificity, the route, the dose and the safety) remain to be addressed 

(114). 

Toll-like receptors are a family of receptors that are expressed on different cell types. 

Cell surface TLRs include TLR1, 2, 4, 5 and 6, while TLR 3, 7, 8 and 9 are inside the 

cell on the endosomal membrane (414). The TLR system recognises pathogen-

associated molecular patterns (PAMPs) including LPS (TLR4), peptidoglycans 

(TLR2, 1 and 6), unmethylated CpG DNA motifs (TLR9) from bacteria and RNA 

(TLR3 and 7) from viruses (414). TLR signals may induce the expression of type I 

interferons and genes involved in the inflammation, proliferation and protection 

against apoptosis (415). Several TLRs are expressed in RA joint. For example, 

synovial fibroblasts and macrophages express TLR2 and 4 (416, 417). Studies in vitro 

demonstrated that microbial TLR ligands might activate synovial fibroblasts and 

macrophages and increase RANKL expression, pro-inflammatory cytokines, such as 

IL-6 and CXCL8, and matrix MMPs (65, 157). Endogenous TLR ligands or damage-

associated molecular patterns (DAMPs), such as tenascin-C, high-mobility group box 

chromosomal protein-a (HMGB1) and fragments of hyaluronic acid may be released 

during the inflammatory process and activate innate immune cells (414). These data 

support the potential benefit of targeting TLR as a therapeutic approach in RA. In 

fact, murine models of arthritis, such as CIA and IL-1RA deficient mice, treated with 

a TLR4 antagonist demonstrated an amelioration of arthritis (418). Chaperonin 10 is a 

TLR4 antagonist that has been employed in a clinical trial in RA. This treatment 

appeared safe and efficacious in the short term (419). 
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The complement system is a key mediator of inflammation in RA (420). It is 

composed of a family of plasma proteins that opsonizes pathogens and dying cells, 

enhances phagocytosis and antigen presentation and recruits cells to the area of 

inflammation (421). ACPA may activate both the classic and alternative pathways of 

the complement cascade in vitro (422). In RA patients peripheral blood levels of C3 

and C4 fragments are increased compared with those detected in healthy controls. Of 

interest, a significant reduction of these levels has been found after anti-TNF 

treatment (423). On the contrary, in synovial fluid of RA patients a reduction of C3 

and C4 fragments has been demonstrated suggesting complement consumption (424). 

Moreover, levels of C5a and C5b-C9 complex are increased in the blood and synovial 

fluid of RA patients compared with those detected in osteoarthritis (OA) patients 

(425). Thus, therapies that target complement proteins may be effective in RA. 

Eculizumab is a monoclonal antibody that inhibits the cleavage of C5 into C5a and 

C5b preventing their release and the formation of C5b-C9 complex (426). In a phase 

II trial a significant clinical improvement in RA patients has been demonstrated (83). 

Immune complexes are abundant in RA joints and they are important mediators of the 

inflammatory process (248). They bind to FcγRs that are capable of activating DCs 

and macrophages. Increased levels of activating FcγRs have been demonstrated in the 

plasma and the synovial tissue of RA patients compared with healthy controls (427). 

Indeed, suppression of FcγR pathway may be another attractive therapeutic strategy in 

RA. 

Activated synovial fibroblasts produce several cytokines, MMPs and chemokines 

playing a crucial role in the maintenance of inflammation. Indeed, they are 

responsible for cartilage and bone damage (153, 428). 

Despite all of these findings, the exact contribution of the innate immune pathways in 

arthritis remains unclear. 

Thus, the aim of this chapter was to investigate the role of the innate and the adaptive 

immune responses in OVA-mediated arthritis. For this purpose mice were challenged 

with LPS, an innate inflammatory stimulus, the antigen HAO, or a combination of 

both.  
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5.3 Results 

 

Both the innate immune system and the adaptive immune responses are activated in 

human RA and represent potential therapeutic targets. The pathology observed in the 

murine model of OVA-mediated arthritis was strictly dependent on the transfer of 

antigen-specific T cells (358). However, innate inflammation could contribute to joint 

pathology. Thus, I aimed to investigate the role of antigen-specific (HAO) and innate 

inflammation (LPS) in the pathogenesis of OVA-mediated arthritis. For this purpose 

BALB/c mice that received the transfer of OVA-specific Th1 cells and the 

immunisation with OVA, were challenged with either HAO, LPS or a combination of 

both. Control mice received an injection of SAL. 

 

5.3.1 Induction of arthritis 

 

Arthritis was induced in BALB/c mice by adoptive transfer of Tg T cells polarised 

toward a Th1 phenotype followed by OVA/CFA immunisation and HAO primary 

challenge. Control mice in the primary challenge received LPS, the combination of 

HAO and LPS or SAL. Mice were observed in terms of paw thickness and clinical 

score and killed 7 days after the primary challenge. Mice challenged with HAO, HAO 

+ LPS or LPS displayed a significant increase in the paw thickness and clinical score 

compared with mice that received SAL. I did not observe any difference in the paw 

thickness and clinical score between HAO and LPS challenged mice or HAO and 

HAO + LPS treated mice (Fig. 5.1A-B). 

Histology revealed a moderate infiltration of cells and moderate synovial hyperplasia 

in the joints of mice HAO, HAO + LPS or LPS challenged (Fig. 5.2B-D). Toluidine 

blue staining showed a mild/moderate loss of staining in joints from mice LPS 

challenged (Fig. 5.2F) and severe loss of staining with multifocal bone erosions in 

joints from mice HAO or HAO + LPS challenged (Fig. 5.2G-H). Joints from control 

mice that received SAL in the primary challenge had no cell infiltration, synovial 

hyperplasia or cartilage/bone damage (Fig. 5.2A and E). 

Joint hisopathology score was similar in mice HAO, HAO + LPS or LPS challenged 

but higer than that in mice that received SAL (Fig. 5.3). 
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These data demonstrated that both HAO and LPS could elicit arthritis in this murine 

model. 

 

5.3.2 Identification of TCR Tg T cells by immunohistochemistry 

 

The adoptive transfer of Tg T cells in recipient mice allows localising the cells by the 

specific antibody KJ1.26. Using immunohistochemistry I was able to identify KJ1.26+ 

T cells in the joints of mice challenged with the combination of HAO and LPS (Fig. 

5.4D). Few KJ1.26+ T cells were also found in the joints of LPS- or HAO-challenged 

animals (Fig. 5.4B-C). I was unable to find Tg T cells in the joints of un-challenged 

mice (Fig. 5.4A). However, the number of KJ1.26+ T cells was not quantified in the 

different joints, and no statistical test was performed. 

These data indicated that OVA-specific T cells could be recruited in the arthritic 

joints of mice challenged with antigen-specific and/or innate inflammatory stimulus.  

 

5.3.3 Antibody production  

 

Serum samples were collected at day 7 after the primary challenge and analysed for 

the presence of anti-OVA IgG2a and arthritis-associated antibodies such as anti-CII 

IgG2a antibodies, RF IgG2a, ANA and anti-single stranded (ss) DNA IgG2a. 

All animals showed anti-OVA antibodies because they received the immunisation 

with OVA/CFA. Mice that received in the secondary challenge HAO or HAO + LPS 

displayed higher levels compared with those that received LPS or SAL (Fig. 5.5A).  

Anti-CII antibodies were demonstrated in mice HAO + LPS or HAO –challenged 

compared with mice LPS-challenged or un-challenged mice (Fig. 5.5B). Likewise, RF 

was detected in the serum of mice treated with HAO + LPS or HAO compared with 

mice that received LPS or SAL (Fig. 5.5C). 

I next investigated the presence of ANA that may be detected in human arthritis. They 

can be found in several autoimmune diseases like RA and SLE (222). Different 

nuclear staining patterns, performed on Hep2 cell lines, can be associated with 

different diseases. For example, a homogenous nuclear staining is characteristic of 
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anti-DNA or anti-histone antibodies. It is important to distinguish nuclear from 

cytoplasmic staining because the latter is less frequent and specific of disease. ANA 

were detected by indirect cellular immunofluorescence on fibroblast cultures using 

sera from all mice as previously described (429) (Fig. 5.6A-D). The fluorescence 

pattern was restricted to nuclei as revealed comparing FITC with DAPI staining. 

Fluorescence was not detected in the cytoplasm of fibroblasts (Fig. 5.7A-B). A 

staining was found in the sera of mice challenged with HAO + LPS (Fig. 5.6A) and 

HAO alone (Fig. 5.6B). No staining was observed on fibroblast nuclei incubated with 

sera from LPS-challenged (Fig. 5.6C) and un-challenged mice (Fig. 5.6D). Serial 

dilutions of representative sera from mice HAO-challenged with arthritis were 

performed and the staining was demonstrated at the dilution of 1/20 (Fig. 5.8A), 1/40 

(Fig. 5.8B). A mild staining was detected when sera were diluted 1 in 80 (Fig. 5.8C). I 

didn’t detect any staining at the dilution of 1/100 (Fig. 5.8D).  

Since ANA are a family of antibodies with different specificities, they needed to be 

further characterised. Among these, anti-ssDNA antibodies were assessed by ELISA. 

Anti-ssDNA antibodies may be detected in autoimmune disease and they are less 

specific than anti-dsDNA for the diagnosis of SLE. Of interest, I detected only in the 

sera from mice challenged with HAO + LPS or HAO alone compared with mice 

treated with LPS or un-challenged (Fig. 5.5D). Since I demonstrated the presence of 

different autoantibodies in mice challenged with HAO ± LPS, I hypothesized that B 

cells could be polyclonally activated by the cytokine milieu in a non-antigen specific 

manner and therefore produce antibodies directed toward different specificities. Thus, 

I investigated the presence of antibody against an irrelevant antigen, KLH, in the sera 

of these mice. Interestingly, I could not detect anti-KLH antibodies in the sera from 

challenged or un-challenged mice (Fig. 5.5E).  

Finally, some mice received in the primary challenge HABSA instead of HAO to 

further investigate if the production of anti-CII antibodies was stimulated only by the 

antigen HAO. Indeed, anti-CII antibodies were detected in the serum from mice 

HAO-challenged compared to that from mice HABSA-challenged (Fig. 5.5F). 

These data demonstrated that antigen-specific stimulation of T cells of an irrelevant 

specificity resulted in autoantibody production compared with that induced by innate 

inflammation.  
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5.3.4 Proliferative response of OVA and Collagen-specific T cells 

 

CD4+ T cells proliferation in response to OVA and CII stimulation was assessed in 

BALB/c mice that received in the primary challenge HAO + LPS, HAO, LPS or SAL. 

Stimulation with OVA resulted in CD4+ T cell proliferation from mice challenged 

with HAO and HAO + LPS compared with those from mice LPS challenged and un-

challenged mice (SAL). On the contrary, no significant difference was observed in 

proliferation of CD4+ T cells between mice challenged with HAO + LPS and those 

treated with HAO alone (Fig. 5.9A). 

Stimulation of draining LN cells with CII resulted in significant CD4+ T cell 

proliferation in mice that received HAO + LPS compared with those from mice 

challenged with HAO, LPS or SAL (Fig. 5.9B).  

These results demonstrated that Ag-specific stimulation of T cells of an irrelevant 

specificity, in the presence of a second inflammatory stimulus, could induce the 

breach of self-tolerance with autoreactive T cell proliferation. In contrast, innate 

inflammation alone was insufficient to breach T cell self-tolerance. 
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5.4 Discussion 
 

In this chapter the relative contribution of the innate and the antigen-specific 

pathways to the pathology observed in OVA-mediated acute arthritis was analysed. 

Innate inflammation could induce experimental arthritis but was insufficient to breach 

T and B cell self-tolerance. In contrast, the stimulation of OVA-specific T cells led to 

arthritis and the production of autoreactive T and B cells.  

Current biologic therapies indirectly modulate T cells renewing the interest in this cell 

population in RA (430, 431). However, there are several unknowns regarding their 

specificity, the phenotype and function, their activation in an antigen-specific or 

innate inflammatory environment, the recruitment to the joint and the T-cell-

dependent autoantibody production (431). Moreover, the innate immune system is 

activated in RA (83). Indeed, both the components of the innate immune system and T 

cells are potential therapeutic targets.  

Therefore, the aim of this chapter was to compare the role of Ag-specific versus 

innate stimulation in the pathogenesis and the breach of self-tolerance detected in the 

murine model of OVA-mediated arthritis.  

For this purpose experimental arthritis was induced by an inflammatory stimulus, 

such as LPS, HAO that stimulate Tg OVA-specific T cells or a combination of both.  

Both the innate inflammatory mediator LPS and the specific antigen HAO were able 

in the primary challenge to induce a transient acute arthritis assessed by the increased 

paw thickness, clinical score and the joint histopathology without any significant 

difference. Of interest, the challenge with HAO and/or LPS was associated with the 

accumulation of OVA-specific T cells in the arthritic joints. One of the limits of this 

experiment is that the number of Tg T cells was not assessed in the different joints 

and it is not possible to definitely correlate their finding with the arthritis in LPS and 

HAO treated mice.  

In contrast to the clinical and histopathology findings, the autoreactive response was 

different in LPS and HAO challenged mice. LPS-challenge had no effect on 

autoantibody responses; while HAO-challenge was associated with the production of 

different autoantibodies such as anti-CII, RF, ANA and anti-ssDNA antibodies, all 

immunological features of human autoimmune diseases (403). It would be interesting 

to confirm the ANA detection with Hep2 cells because they are the standard method 
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of detection, and to further characterise ANA looking for anti-dsDNA and antibodies 

to extractable nuclear antigens. Moreover, future experiments should verify the 

presence of immune complex kidney deposition because anti-DNA antibodies may be 

associated with them.  

The combination of HAO + LPS did not induce a more severe arthritis in terms of 

joint histology but induced CII-specific T cell proliferation that was not evident in 

mice LPS-challenged. Moreover, mice treated HAO + LPS showed an increase in the 

autoantibodies levels, suggesting that an innate inflammatory stimuls may amplify the 

autoimmune response without apparent change in the pathology observed. 

It has been previously demonstrated that in CIA treatment of mice with LPS without 

specific Ag (CII) over 140 days failed to induce arthritis. Both CII and LPS were 

required for the development of arthritis, and the enhanced levels of antibodies as well 

as the cytokines induced by LPS alone were insufficient to induce arthritis (382). In 

RA there are several lines of evidence of the permanent activation of the innate 

immune system as demonstrated for example by the expression of pro-inflammatory 

cytokines such as TNF-α, IL-6 and IL-1 (4). Innate immune cells, such as 

macrophages and DCs, are activated by the presence of pattern recognition receptors 

(PRRs) that recognise molecular structures conserved during evolution PAMPS and 

DAMPs (83). The TLR system recognises several PAMPS including LPS through 

TLR4 (414). TLR4 signals are mediated by MyD88 and TRIF that lead to the 

activation of NF-κB and the MAP kinases. The latter are involved in the transcription 

of genes related to inflammation, proliferation and suppression of apoptosis (414). In 

RA synovial tissue macrophages and fibroblasts express TLR2 and 4 compared with 

levels expressed in OA (416, 432). In addition, synovial fluid and peripheral blood 

monocytes from RA patients express TLR2 and 4 compared to negative controls 

(416). A number of studies have demonstrated TLR-dependent amplification of 

autoimmune arthritis (414). Thus, data from literature and our experiments seem to 

suggest that TLR driven responses alone are unable to create the necessary 

environment for initiation of autoreactivity. This has implications both for antigen-

specific therapeutics aimed at tolerance induction and for PRR targeted therapy e.g. 

Chaperonin 10 (433) that seek inflammation suppression.  

The more interesting aspect of the model of OVA-mediated arthritis is the generation 

of autoimmunity rather than the joint histopathology that reveals only a mild self-
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limiting monoarthritis. The breach of self-tolerance is one of the most intriguing 

unexplained mechanisms in human autoimmune diseases. We have the possibility to 

study this aspect in a murine model where autoimmunity was elicited with a 

sophisticated protocol employing an irrevant antigen (such as OVA) but in complete 

absence of self antigens (such as collagen). The site of injection (systemic versus 

local) and the nature of the antigen (HAO versus HBSA or LPS) are important in this 

model for both the joint pathology and the autoreactive responses. Other animal 

models of RA rely on this approach of local immunisation protocols, such as AIA 

with mBSA (380, 434, 435) or zymosan-induced arthritis, the last one caused by an 

intrarticular injection of zymosan (436, 437). The issue that the site of injection is 

important to generate the autoimmune response is of great interest since in human 

disease the first events surrounding the breach of self-tolerance are not known. 

Of interest, autoantibodies were isotype switched indicating that this B cell response 

was T-cell-dependent. However, how OVA-specific T cell may help collagen-specific 

(or IgG, ssDNA) B cell is unknown. Several hypotheses were developed such as the 

possibility that local damage caused the exposition of self antigens which could then 

activate autoreactive T and B cells. However, LPS caused the same joint damage that 

could create an environment responsible for the release of self antigens rendering this 

hypothesis unlikely. Otherwise, OVA-specific T cell might help collagen-specific B 

cell in a bystander manner generating locally a cytokine milieu or autoreactive B cells 

could acquire OVA non-specifically because it was associated with a self antigen in a 

‘hapten-carrier’ manner (438). Such mechanisms might be relevant for B cells with 

RF reactivity that could bind and internalise antigens (self or foreign) in the context of 

an immune complex and present them to T cells while reciprocally receiving their 

help (270). 

In this chapter I demonstrated that innate inflammatory stimulus alone was associated 

with joint pathology but not with T and B autoreactive responses. This mechanism 

could be similar to that one responsible for reactive arthritis that differs deeply from 

autoimmune arthritis. However, T and B cell responses were mildly amplified by the 

innate inflammatory stimulus in combination with HAO. Joint histology in human RA 

is neither specific nor diagnostic although lots of efforts in recent years tried to 

characterise histological modifications of synovitis during the treatments. 

Nevertheless, the study of the alterations of immune-mediated pathways in RA 

allowed generating new therapeutic interventions. In this regard murine models 
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provide invaluable tools to understand the events underlining immunological 

pathways leading to autoimmunity.  
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Figure 5.1 Effect of innate versus antigen-specific challenge on clinical signs 

of arthritis in mice 

Hind paw thickness (A) and mean clinical score (B) in BALB/c mice challenged with 

LPS, HAO, a combination of HAO and LPS or sham injected with saline (SAL). 

There was a significant difference in both paw swelling (A) and clinical scores (B) 

between mice challenged with HAO, LPS, or both and those injected with SAL. There 

was not significant difference in paw swelling and clinical scores between mice 

challenged with HAO + LPS and HAO. *, HAO + LPS vs SAL; §, HAO vs SAL; #, 

LPS vs SAL. Statistical analysis was performed by 2-way Anova with Bonferroni’s 

multiple comparisons test. Data represent mean ± SEM (n = 5 mice per group). 

Similar results were obtained in 3 identical experiments (n = 60 mice in all) that were 

performed in conjunction with Dr Nickdel. 
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Figure 5.2 Effect of innate versus antigen-specific challenge on joint 

histopathology in mice 

Representative haematoxylin and eosin (A-D) and toluidine blue (E-H) -stained 

sections prepared from the joints of recipient mice challenged with saline (A, E), LPS 

(B, F), HAO (C, G), or HAO + LPS (D, H). Moderate cell infiltration and synovial 

hyperplasia were observed in the joints from mice challenged with the combination of 

HAO and LPS (D). Joints from mice that received LPS (B) or HAO (C) challenge 

displayed mild cell infiltration and synovial hyperplasia, while those that received 

saline exhibited no local inflammation (A). Severe bone erosions were detected by 

A B 

D C 

E F 

G H 
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loss of toluidine blue staining in the joints of mice challenged with combination of 

HAO and LPS (H). Joints of mice challenged with either LPS (F) or HAO (G) 

exhibited mild/moderate loss of toluidine blue staining and joint erosions. The joints 

of mice that received saline displayed normal cartilage/bone integrity (E). Black 

arrows indicate the sites of inflammation and joint damage. Original magnification 

X20, except in panel H original magnification X40. Images shown are representative 

of 3 identical experiments (n = 5 mice per group and 60 mice in all).  
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Figure 5.3 Joint histopathology score in mice following innate versus antigen-

specific challenge 

Histopathology score of joints from mice un-challenged (SAL), challenged with LPS 

or HAO alone or a combination of HAO + LPS. The histopathology score was similar 

in challenged mice (LPS, HAO, HAO + LPS) but it was higher when compared with 

un-challenged animals (SAL). *, HAO + LPS vs SAL; §, HAO vs SAL; #, LPS vs 

SAL. Statistical analysis was performed by Kruskal-Wallis test. Data represent 

median and IQR (n = 5 mice per group). Similar results were obtained in 3 identical 

experiments (n = 60 mice in all). 
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Figure 5.4 Detection of transgenic OVA-specific T cells in joints following 

innate or antigen-specific challenge 

Representative immunohistochemical staining of the ankle joint sections prepared 

from the joints of recipient mice challenged with saline (A), LPS (B), HAO (C), or 

HAO + LPS (D). KJ1.26+ T cells were detected in the joints of mice challenged with 

HAO + LPS (D). This was also evident in mice challenged with HAO (C). Few 

KJ1.26+ T cells were detected in the joints of LPS-challenged animals (B). No 

KJ1.26+ T cells were found in un-challenged mice (A). Black arrows indicate KJ1.26+ 

T cells in the ankle joints. Original magnification X20. Images shown are 

representative of 3 identical experiments (n = 5 mice per group and 60 animals in all) 

that were performed in conjunction with Dr Nickdel. 
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Figure 5.5 Anti-OVA, Anti-type II collagen, Rheumatoid Factor, anti-ssDNA 

and anti-KLH antibodies following innate or antigen-specific challenge 

Anti-OVA, anti-CII, RF, anti-ssDNA, anti-KLH antibody levels were measured in the 

sera of mice challenged with Saline, LPS, HAO, HAO + LPS or HABSA (anti-CII 

only) by ELISA. (A) All mice immunised with OVA produced anti-OVA antibodies, 

with the highest levels in mice challenged with HAO or HAO + LPS compared with 

LPS-challenged mice. Mice challenged with HAO + LPS showed significant levels of 

anti-CII (B), RF (C) and anti-ssDNA antibodies (D) compared with LPS-challenged 

and un-challenged mice. Challenge with HAO alone induced anti-CII, RF and anti-

ssDNA at levels that were greater than those in mice either challenged with LPS 
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alone, or un-challenged mice. Anti-KLH IgG2a antibodies (E) were not revealed in 

the sera of challenged and un-challenged mice. (F) Anti-collagen antibodies were 

measured in some mice challenged with HABSA. No production of significant levels 

of anti-collagen antibody was observed in these mice compared with un-challenged 

mice. ^, HAO vs LPS; °, HAO + LPS vs LPS; *, HAO + LPS vs SAL; §, HAO vs 

SAL; ç, HAO vs HABSA. Statistical analysis was performed by 2-way Anova with 

Bonferroni’s multiple comparisons test. Data represent mean ± SEM (n = 5 mice per 

group). The horizontal line in the panels represents the minimum optical density for 

each ELISA that is considered valid. Similar results were obtained in 3 identical 

experiments (n = 60 mice in all).  
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Figure 5.6 Anti-nuclear antibodies following innate or antigen-specific 

challenge 

Intracellular staining on fibroblast cultures, using sera from BALB/c mice following 

challenge with HAO + LPS, HAO, LPS or saline. Sera of mice challenged with HAO 

+ LPS (A) or HAO (B) demonstrated a considerable reaction to nuclear components 

of fibroblast cells. No staining was observed on fibroblast incubated with sera from 

LPS challenged (C) and un-challenged mice (D). Original magnification X40. Similar 

results were obtained in 3 identical experiments. 
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Figure 5.7 Anti-nuclear antibodies detected by intracellular staining on 

fibroblast cultures 

Intracellular staining on fibroblast cultures, using sera from BALB/c mice HAO 

challenged. The fluorescence pattern was restricted to nuclei as revealed comparing 

FITC (A) with DAPI staining (B). Fluorescence was not detected in the cytoplasm of 

fibroblasts. Original magnification X40. Similar results were obtained in 3 identical 

experiments. 
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Figure 5.8 Titre of anti-nuclear antibodies detected by intracellular staining 

on fibroblast cultures 

Intracellular staining on fibroblast cultures using serial dilutions of sera from BALB/c 

mice HAO-challenged. The staining was observed when serum was diluted 1 in 20 

(A) 1 in 40 (B) and 1 in 80 (C). No staining was observed at the dilution of 1/100 (D). 

Original magnification X40. Similar results were obtained in 3 identical experiments. 
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Figure 5.9  Effect of innate versus antigen-specific challenge on in vitro 

proliferative response of OVA- and CII-specific T cells 

CD4+ T cell proliferation in response to OVA and CII antigens was assessed by 

incorporation of tritiated thymidine from mice challenged with HAO + LPS, HAO, 

LPS, or saline. Stimulation with OVA (A) resulted in a higher proliferation of cells 

from mice challenged with HAO ± LPS compared to those from LPS-challenged or 

un-challenged mice. Mice challenged with HAO + LPS and mice challenged with 

HAO alone exhibited a similar proliferation of lymphocytes. (B) A higher 

proliferation of lymphocytes was observed from mice challenged with HAO + LPS 

compared with those from HAO-challenged, LPS-challenged or un-challenged mice 

after CII stimulation. Statistical analysis was performed by 2-way Anova with 

Bonferroni’s multiple comparisons test. Data represent the mean of triplicate samples 

± SEM (n = 5 mice per group). Similar results were obtained in 3 identical 

experiments (n = 60 mice in all) that were performed in conjunction with Dr Nickdel. 

 

  

0.0

0.5

1.0

1.5

2.0

2.5

3.0

SAL LPS HAO HAO+LPS

S
t
im

u
la

t
io

n
 I

n
d

e
x

0

3

6

9

12

15

SAL LPS HAO HAO+LPS

S
t
im

u
la

t
io

n
 I

n
d

e
x

A. Ovalbumin 

B. Collagen 

* 

* 

* 



 166 

Chapter 6 

Summary, Conclusions and Future Work  
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As highlighted in chapter 1, RA is a chronic autoimmune disease associated with 

progressive disability, systemic complications and socioeconomic costs (6). The 

innate and adaptive immune pathways contribute to the initiation and maintenance of 

the disease inducing the breach of self-tolerance and promoting tissue inflammation, 

joint remodelling and damage. B cells are critical in these processes as suggested by 

the presence of antibodies many years before the onset of the disease, their ability to 

present antigen efficiently to CD4+ T cells, produce pro-inflammatory cytokines, 

participate to synovial ectopic lymphoneogenesis and by the efficacy of B cell 

depletion treatment (297). However, the fine role of these pathways is not well 

defined. Animal models of arthritis are invaluable tools to generate new knowledge in 

RA pathogenesis and validate innovative drugs (366). Previous studies established a 

model of acute autoimmune arthritis where antigen specific T cells drive the breach of 

self-tolerance and the pathology (358). 

This thesis aimed to develop a novel experimental model of autoimmune chronic 

polyarthritis that would allow investigating the requirement of B cells in the induction 

of experimental arthritis and dissecting the contribution of innate inflammation versus 

antigen-specific activation to the pathology. A better understanding of the relative 

involvement of the innate and adaptive immune pathways will hopefully help to 

design novel therapeutic strategies directed against components of the innate and 

adaptive immune systems and aiming to re-establish immunological tolerance.  

 

The first objective of this thesis was to create a new model of chronic autoimmune 

polyarthritis where the B cell responses could be assessed and characterised. The 

experimental model of OVA-mediated arthritis was employed because it is ideal to 

study autoimmunity. One of the major limitations of this model was that arthritis was 

mild, acute and self-limiting. Unfortunatley, I was unable to induce chronic 

autoimmune polyarthritis, however, I induced a severe relapse of arthritis that was 

localised to more than four joints in the injected paw and lasted for three weeks. The 

flare of arthritis was dependent on the antigen HAO in adjuvant and the route of 

administration. The exact nature of antigen in RA is unknown even if citrullinitated 

proteins seem to represent the main target of the autoimmune response. The first 

events that cause the breach of self-tolerance are not fully elucidated; mechanisms 

such as molecular mimicry with foreign antigens have been hypothesized. In our 

experimental model the first episode of arthritis was elicited by OVA antigen in the 
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context of a Th1 environment. It is peculiar that only the same antigen (HAO and not 

collagen) was able to induce the relapse of the disease. I can speculate that in the 

secondary challenge the exposition to the OVA antigen may elicit an immune 

response that caused a more severe arthritis than the first one. Future experiments 

should aim to follow the model of relapsing arthritis long enough to verify the 

chronicity and possibly induce arthritis at distant sites from injection.  

Human RA is a chronic autoimmune inflammatory disease, thus a reliable animal 

model should recapitulate chronicity and autoimmunity to offer the possibility to 

study the pathways that lead to the breach of tolerance and the maintenance of 

disease. The relapse of OVA-mediated arthritis was associated with the production of 

autoantibodies such as anti-collagen antibodies. However, this experimental model of 

arthritis relies on a sophisticated protocol of Tg Th1 cells adoptively transferred in 

recipient mice followed by OVA immunisation, primary HAO challenge and 

secondary challenge; thus several factors may influence the breach of self-tolerance. 

Therefore, it would be important in future experiments to employ a control group of 

animals without the adoptive transfer of Tg Th1 cells in order to address the role of 

the secondary challenge in the autoreactive B cell response. The collagen specific 

antibody response, assessed during the induction of the relapse of arthritis, was 

compared with that in CIA model as a “gold standard” model of human RA. 

Interestingly, after the initial breach of self-tolerance, anti-CII antibody titres rise 

despite arthritis disappeared after the acute phase. This aspect is intrugiung since in 

human RA autoimmunity may appear many years before the onset of the joint disease 

and may be linked to the development of the chronic course of pathology. The 

analysis of collagen-specific B cell response revealed that anti-CII antibodies in OVA 

mediated arthritis and CIA mice recognised different epitopes. The major epitope in 

OVA-mediated arthritis has been identified in U1, while anti-CII antibodies from CIA 

mice recognised also J1 and C1 epitopes. Some of these epitopes are shared between 

human RA and murine arthritis, such as U1 and C1. Anti-U1 antibodies can bind to 

the intact rat cartilage matrix in vivo showing that the epitope is exposed to the 

immune system for immune complex formation in the joint (386). In future studies it 

would be interesting to test whether anti-U1 antibodies bind also human RA cartilage 

in vitro, this would demonstrate that the epitope U1 is not only shared between 

different species but also that is localised in the joint, the main tissue target of the 

disease. Moreover, I would verify if the injection of monoclonal antibody against U1 
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could induce a relapse of arthritis in OVA-mediated arthritis. This data ideally would 

reinforce the hypothesis that the epitote U1 is arthritogenic. The identification of the 

B cell epitopes on CII is relevant because it may reveal the dominant target structure 

of cartilage directed autoimmunity occurring in RA (386, 439). Moreover, it will 

hopefully help to understand if anti-CII antibodies are involved in the pathogenesis of 

autoimmune arthritis and whether/how they can cause the destruction of their target 

tissue. In conclusion, the results presented in chapter 3 provided a novel tool that will 

allow researchers to investigate cells and molecules involved in the induction of 

relapse of arthritis. 

 

The production of autoantibodies observed in OVA-mediated arthritis does not clarify 

if B cells or antibodies contribute to the induction of arthritis or are only 

epiphenomena. To fully address the requirement of B cells in the induction of 

pathology, arthritis was elicited in recipient animals with different B cell repertoire: 

BALB/c mice with normal B cells, MD4 mice with B cells that could not present 

antigen to CD4+ T cells and produce antibodies (370), and JHD mice characterised by 

the absence of mature B cells (371). Chapter 4 shows that acute mild arthritis, 

investigated by joint histology, could be elicited in absence of antigen-specific B cells 

and in complete absence of mature B cells. Analysis of serum from MD4 and JHD 

arthritic mice confirmed that autoantibodies were not required for the induction of 

pathology. In fact, while BALB/c mice HAO-challenged produced ACPA and anti-

CII antibodies, MD4 and JHD mice did not.  

The next step was to analyse CD4+ T cell proliferation from mice with a different B 

cell repertoire in the context of a primary immune response and during arthritis. As 

mentioned in chapter 4, previous studies in murine models showed contradictory data 

concerning the importance of B cells in T cell priming and pathology. The results 

presented in this thesis revealed that T cells primed in the absence of B cells could 

proliferate in response to antigen. However, in a primary immune response a higher 

proliferation of CD4+ T cells was observed in the presence of normal B cell 

repertoire. Thus I can speculate that targeting B cells with current therapeutic 

strategies may partially affect CD4+ T cell proliferation. It would be interesting in 

future experiments to verify the relative contribution of Tg CD4+ T cells and host 

CD4+ T cells to the proliferation observed during the induction of OVA-mediated 

arthritis.  
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It was concluded that B cells were not necessary in the induction of OVA-mediated 

arthritis, however their presence was associated with a higher joint histopathology 

score that was probably related to their pleiotropic functions. As previously 

mentioned the induction of the flare in OVA-mediated arthritis was associated with an 

increased autoreactive B cell response. Thus, future studies should investigate the B 

cell requirement during the relapse of arthritis.  

 

As outlined in chapter 1, another objective of this thesis was to prove the relative 

contribution of innate and adaptive immune responses in OVA-mediated arthritis. 

Several studies demonstrated that the innate immune system is activated in RA (83). 

Infections have been implicated in triggering inflammation. TLRs are central players 

in sensing infections recognising PAMPS, including LPS, and activating synovial 

fibroblasts and macrophages (414). They may represent important targets for 

therapeutic intervention. HSP10/chaperonin 10 is a negative regulator of TLR4 

signalling, suppressing cytokine production in cells derived from RA synovium (440). 

Indeed, the recombinant analogue of chaperonin 10, XToll, is being tested in a phase 

II clinical trial for RA and it seems well tolerated and efficacious in the short term 

(419). 

Thus, experimental arthritis was induced either by an innate inflammatory stimulus, 

such as LPS, by an antigen that activated OVA-specific T cells (HAO) or a 

combination of both. Therefore, Chapter 5 outlines that LPS alone elicited an 

inflammatory process localised in the joint but was insufficient to breach B and T 

self-tolerance. On the contrary antigen-specific activation could induce both arthritis 

and the production of several antibodies such as RF, anti-CII, ANA and anti-DNA. 

The detection of anti-DNA antibodies in human disease is associated with SLE where 

they can form immune complexes and deposit in the kidneys. Anti-DNA antibodies 

can also be detected in RA patients after anti-TNF treatment in complete absence of 

lupus-like symptoms (441). Thus, it would be interesting to assess immune complexes 

deposition in kidneys of OVA-mediated arthritis mice. 

Although the activation of autoreactive B and T cell responses was strictly dependent 

on antigen-specific stimulation, the combination of HAO and LPS caused a marked 

autoimmune response. 

It would be interesting in future studies to test the role of TLR4 in OVA-mediated 

arthritis. Its expression in the synovial membrane would give new insights on the role 
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of the innate immune pathway in the acute and relapsing model of arthritis. The next 

step would be blocking in vivo TLR4 signalling using soluble TLR4 (442) or MD-2 

mimetic peptide that interacts and inhibits TLR4 (443). The monoclonal antibody NI-

0101, developed by NovImmune, has also been found to inhibit TLR4 activation 

(http://www.novimmune.com). Treatment of CIA with a TLR4 antagonist suppressed 

clinical and histological signs of arthritis without influencing the adaptive anti-CII 

response (418). Moreover, it could be important to investigate other TLRs, such as 

TLR2. Interestingly, in a murine model of arthritis, SCW model, the acute phase of 

arthritis was TLR2 dependent, while in the chronic phase TLR4 activation contributed 

to cartilage damage and bone destruction by inducing MMP release and activating 

osteoclasts (444). In a recent study blockade of TLR2 was found to inhibit the 

spontaneous release of inflammatory cytokines by intact RA synovial explant cultures 

(445).  

 

The circumstances that precipitate a breach of self-tolerance are central to the 

understanding of the first events occurring in RA. However, not all RA patients 

exhibit autoantibodies before and during RA. Thus, it is possible to speculate that 

different mechanisms underpin the induction and development of disease in different 

patients. Subsets of patients, seronegative and seropositive patients affected by either 

acute or chronic arthritis, could benefit of different therapeutic strategies. It would be 

useful to identify which patients will take advantage from targeting either component 

of the innate and adaptive immune pathways. Moreover, it would be useful to identify 

patients in the pre-clinical phase of the disease, such as for example seropositive 

persons carrying one or more risk factors for the development of RA (smoking or a 

particular genotype). This could allow adopting a primary prevention consisting of 

measures taken to prevent disease such as stop smoking, treat/prevent comorbidities, 

such as infections (vaccines?), periodontitis, hypercholesterolemia and obesity.  

 

Indeed, based on data from this thesis, it could be possible that T-B cell interactions in 

a secondary lymphoid organ led to the breach of self-tolerance with the induction of a 

systemic autoimmune response. However, this was not sufficient to induce joint 

pathology since a local stimulus such as HAO was required to obtain an acute 

arthritis. B cells in this phase were required for the autoimmune response but not for 

the induction of arthritis, as demonstrated in chapter 4. Nevertheless, their presence 
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was associated with a higher joint histopathology score compared with that in mice 

without antigen presenting B cells, autoantibodies or mature B cells. On the other 

side, the stimulation of the innate pathway could cause the induction of joint 

pathology but not the autoimmune response, as demonstrated in chapter 5. The 

activation of both innate and adaptive immune systems could elicit arthritis with an 

increased autoimmune response. 

 

In conclusion, in this thesis it was elicited a relapse and spread of arthritis, in terms of 

more joints involved only in the injected paw, in the model of acute autoimmune 

OVA-mediated arthritis. Moreover, B cell requirement was investigated in the 

induction of the acute phase of arthritis. In addition, in this thesis the contribution of 

innate inflammatory stimulus to the breach of self-tolerance was dissected. This 

model, with some future development, will provide a useful tool to dissect the 

contribution of both the adaptive and innate immune pathways during the 

development of the chronic phase of arthritis. Understanding the roles of both the 

innate and adaptive immune responses hopefully will help to design new therapeutic 

strategies that could be validated in the autoimmune model of OVA-mediated 

arthritis.  

 

6.1 Future Work 
 

It would be interesting to try to reply to the following questions: 

 

Is the model of relapsing OVA-mediated arthritis chronic? 

• To verify the chronicity of the model: adoptive transfer of Tg Th1 cells in 

BALB/c mice, immunisation with OVA/CFA, primary challenge with HAO, 

local secondary challenge with HAO+IFA. Assess paw thickness, clinical score, 

joint histology and autoantibodies at different time points for the animals life-

span. 

 

Are Tg DO11.10 T cells that I adoptively transferred in recipient mice detected in 

arthritic joints from mice with a relapse of arthritis? 
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• To verify the presence of Tg T cells in joints from arthritic mice and characterise 

the infiltrate in terms of the presence of T cells, B cells, neutrophils, DCs by IHC.   

 

Are Tg DO11.10 T cells that I adoptively transferred in recipient mice those cells that 

cause the autoreactive B cell response in the model of relapsing OVA-mediated 

arthritis? 

• To employ a control group of animals without the adoptive transfer of Tg Th1 

cells in order to address the role of the secondary challenge in the autoreactive B 

cell response.  

 

May Tg DO11.10 T cells that I adoptively transferred in recipient mice cause the 

autoreactive T cell response in the model of relapsing OVA-mediated arthritis? 

• To analyse the T cell proliferation after CII stimulation in vitro by incorporation 

of tritiated thymidine. 

• To verify the source (host or donor) of proliferating CII-specific T cells in vitro 

employing the marker KJ1.26 that identifies Tg T cells from DO11.10 mice. 

 

Is the U1 epitope arthritogenic? 

• To induce a relapse of arthritis in OVA-mediated arthritis by the injection of 

monoclonal antibody against U1 epitope in the presence of LPS or adjuvant. 

• To induce arthritis in naïve mice by passive transfer of serum from mice with a 

relapsing arthritis in the presence of LPS or adjuvant, or by the injection of 

monoclonal antibodies against U1 epitope in the presence of LPS or adjuvant.  

• To test whether monoclonal antibody against U1 epitope bind in vitro human 

cartilage from patients affected by RA undergoing joint replacement. 

 

Are B cells necessary in the induction of the relapse of arthritis? 

• To induce relapsing OVA-mediated arthritis in animals with different B cell 

compartment: BALB/c, MD4 and JHD mice. 

 

Considering the presence of ANA and anti-ssDNA antibodies in mice with OVA-

mediated arthritis, are anti-dsDNA autoantibodies present in the sera and kidney?  

• To confirm the presence of ANA employing Hep2 cells. 
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• To further characterise ANA evaluating the presence of anti-dsDNA and 

antibodies to extractable nuclear antigens by ELISA 

• To assess immune complexes deposition containing anti-DNA in kidneys of 

OVA-mediated arthritis mice. 

 

Is OVA-mediate arthritis TLR-driven? 

• To evaluate the expression of TLR2 and 4 in the infiltrate of joints from both 

acute and relapsing OVA-mediated arthritis by IHC. 

• To block TLR2 or TLR4 signalling using antagonists in both models of acute and 

relapsing OVA-mediated arthritis in vivo: assess paw thickness, clinical score, 

joint histology, autoantibodies and CII-specific T cell proliferation. 
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