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Abstract

In this thesis, we consider the problem of long-term persistence in ecological and epidemi-
ological systems. This is important in conservation biology for protecting species at risk of
extinction and in epidemiology for reducing disease prevalence and working towards elim-
ination. Understanding how to predict and control persistence is critical for these aims. In
Chapter 2, we discuss existing ways of characterising persistence and their relationship with
the modelling paradigms employed in ecology and epidemiology. We note that data are
often limited to information on the state of particular patches or populations and are mod-
elled using a metapopulation approach. In Chapter 3, we define persistence in relation to a
pre-specified time horizon in stochastic single-species and two-species competition models,
comparing results between discrete and continuous time simulations. We find that discrete
and continuous time simulations can result in different persistence predictions, especially
in the case of inter-specific competition. The study also serves to illustrate the shortcom-
ings of defining persistence in relation to a specific time horizon. A more mathematically
rigorous interpretation of persistence in stochastic models can be found by considering the
quasi-stationary distribution (QSD) and the associated measure of mean time to extinction
from quasi-stationarity. In Chapter 4, we investigate the contribution of individual patches
to extinction times and metapopulation size, and provide predictors of patch value that can
be calculated easily from readily available data. In Chapter 5, we focus directly on the QSD
of heterogeneous systems. Through simulation, we investigate possible compressions of the
QSD that could be used when standard numerical approaches fail due to high system dimen-
sionality, and provide guidance on appropriate compression choices for different purposes.
In Chapter 6, we consider deterministic models and investigate the effect of introducing ad-
ditional patch states on the persistence threshold. We suggest a possible model that might be
appropriate for making predictions that extend to stochastic systems. By considering a fam-
ily of models as limiting cases of a more general model, we demonstrate a novel approach for
deriving quantities of interest for linked models that should help guide modelling decisions.
Finally, in Chapter 7, we draw out implications for conservation biology and disease control,
as well as for future work on biological persistence.
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Chapter 1

Introduction

1.1 The importance of population persistence

Understanding population persistence is important for both the basic science of population
biology and for management purposes. From an ecological perspective, we typically wish
to be able to predict species persistence and manage resources to minimise extinction risk;
in a disease ecology or invasive species context, we wish to be able to anticipate pathogen
persistence and design interventions to work towards reductions in prevalence or elimination.

An iconic theme in the literature is that of understanding the effects of climate change on
species persistence. For example, the Nature group launched a new journal, Nature Cli-

mate Change, in 2007, specifically dedicated to understanding climate change and its conse-
quences, noting that this represents ‘a scientific challenge of enormous importance to soci-
ety’. Climate change is expected to lead to a heightened risk of species extinction risk (e.g.
Thomas et al., 2004). However, climate change interacts with other anthropogenic drivers,
especially in the form of land-use change or habitat loss and fragmentation and competition
with invasive species, themselves possibly driven by climate change (Thomas et al., 2004).
Further threats may be seen in the emergence of novel infectious diseases and the collapse of
populations of pollinator species that are expected to lead to long-term declines in the species
that depend upon them (Gonzalez, 2013). The interactions between these factors may well
be complex, counterintuitive or highly contextual (e.g. Lafferty, 2009).

Commitment to the investigation of environmental change and its effects is also reflected
in research funding. For example, it can be seen in the decision to make ‘Living with En-
vironmental Change’ (LWEC) a priority theme for all of the UK research councils, and
the formation of the LWEC partnership of 22 major UK public sector funders and users of
environmental research, which includes the research councils and central government de-
partments, and aims to ensure that key decision-makers have access to the environmental
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research required to ‘mitigate, adapt and benefit from environmental change’.

The impacts of environmental change on species persistence also have important societal
implications (Gonzalez, 2013). Prominent examples include the impacts of climate change
on crop harvests, especially in interactions with declines in pollinator populations. However,
the notion of ecosystem services is increasingly recognised as important, emphasising the
role of ecosystems and biodiversity in contributing to human health and wellbeing (Daily
et al., 2009). The potential for environmental and societal change to lead to the emergence
of new infectious diseases, or extension in the endemic range of existing diseases, is also of
concern for humans (Cohen, 2000; Patz et al., 2005) and wildlife (Daszak et al., 2001).

In contrast to the increasing habitat fragmentation scenario currently being played out in
relation to non-human, non-livestock species in the ecological context, examining host pop-
ulations from an epidemiological perspective finds that these are typically becoming more
strongly connected, although connections typically remain heterogeneous. This is especially
true of human populations, but is also applicable to livestock that may be transported greater
distances because of improved travel connections and a more internationalised market. If
habitat fragmentation is typically thought to lead to species declines, increased host popula-
tion connectivity speeds up disease transmission, typically increasing the size of epidemics
(e.g. Balcan et al., 2009). These effects are likely to support emergence of novel diseases and
may also increase persistence (Wilson, 2004) if spread is not so fast that it leads to burnout
of susceptible individuals. The impacts of this pattern of increased human connectivity in
conjunction with reduced connectivity of wildlife habitat patches, present serious concerns
for the scientific and policy-making communities.

Designing interventions to optimise species persistence characteristics in the face of dif-
ferent levels of connectivity - for either increased persistence or elimination - requires an
understanding of how best to direct resources towards the areas of habitat or host subpopu-
lations where their impact will be greatest (Viana et al., 2014). In the conservation biology
literature, site selection algorithms are discussed as a way to choose between possible habitat
areas for reserve networks (Cabeza and Moilanen, 2001). In the epidemiological literature,
work to develop effective schemes for the allocation of vaccines is also underway (Beyer
et al., 2012). Nonetheless, despite the importance of these problems, speaking in the context
of conservation Gonzalez (2013, p206) points out that it often remains ‘difficult to predict
when and where species losses will occur, and this hampers efforts to prevent them’. This
thesis contributes to making inroads into the problems of understanding persistence in het-
erogeneous landscapes and populations.
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1.2 The role of models in understanding persistence

There are fairly obvious practical problems involved in investigating population persistence
from a classical experimental or even observational perspective. Taken at a species level,
either the species continues to exist, or it goes extinct. At best, we may be able to calculate
the time to extinction for this species when extinction occurs or track population sizes prior
to this. As Harnik et al. (2012) puts it, the impact of rarity and population size on population
extinction ‘cannot be determined through observations of species that are not yet extinct’
(p4969). This means that extinction is typically difficult to predict. An obvious solution
to this problem is to consider the problem at smaller scales by disaggregating the popu-
lation into subpopulations and tracking their persistence and extinction, such that a larger
number of data points can be collected. Nonetheless, for many species, timescale remains
a serious problem as the waiting time until subpopulation extinction still typically exceeds
that of grants, and often that of record-keeping more generally. Furthermore, although dis-
aggregation into smaller and smaller (sub)populations reduces the persistence time of each
component population and thus facilitates the collection of reasonably-sized datasets, doing
so raises the question of how to re-aggregate data in order to predict persistence times of the
metapopulation.

Modelling provides one way to gain some traction on this question. A large number of pop-
ulations can be simulated much more rapidly than their real-world counterparts, generating
large datasets from which patterns in the relationship between population and metapopula-
tion persistence can be inferred. Because it is relatively cost-effective to generate such (simu-
lated) datasets, the effects of changing model assumptions can be investigated, allowing us to
test the generality of findings. Although it remains a challenge to map these findings to real
world systems, modelling may also suggest the kinds of data that would be most informative
to collect, not just for predicting extinction per se but also for understanding correspondence
with particular patterns identified in the modelling context.

In reality, we have more measurement options at our disposal than simply recording the pres-
ence or absence of an organism or the date of its extinction. We might, for example, choose
to measure the area inhabited by an organism or the population density; in a fragmented land-
scape, we could measure the proportion of time that an area is occupied. These possibilities
raise the question of which of the potential measures provides the most valuable information
about population persistence. Here again, modelling and simulation approaches can be very
valuable by allowing us to investigate the relationship between measurable characteristics of
a population and the information that they can provide about persistence. Answers to this
question have the potential to have major contributions to the most efficient use of resources
employed in data collection. This is particularly valuable because surveillance and moni-
toring are expensive (McDonald-Madden et al., 2010) and these activities may lose out to
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interventions (Stankey et al., 2005; Viana et al., 2014). By being clearer about what kind of
data collection is required, we can better direct limited resources.

Another problem, that is situated between theory and practice, concerns the way in which
persistence is defined. When authors define systems as persistent, they typically use terms
that imply a certain permanence. For example, in defining disease reservoirs, Haydon et al.
(2002, p1469) referred to a system in which the pathogen can be ‘permanently maintained’,
while Ashford (2003, p1495) described it as one in which an infectious agent ‘survives in-
definitely’. However, we still need to translate these theoretical distinctions into a form that
remains at once faithful to the theoretical definitions and operational as a way of guiding
data collection. For example, we may decide to use an operational definition based on the
time to extinction or the probability of extinction within a target period, from a pre-specified
starting condition (Ludwig, 1999; Viana et al., 2014). As seen in the examples provided by
Odenbaugh (2005), the formalisation of concepts that is required by the modelling process
provides us with this opportunity to sharpen our operational definitions of persistence, as
well as the relationship between them and their link with theoretical definitions.

As a result, modelling can help us to understand persistence by simultaneously reducing
our reliance on the collection of large real-world datasets, by guiding our real-world data
collection towards the most productive measures, and assisting us in the formalisation of
useful operational definitions of persistence.

1.3 Research aims

The broader aims guiding the research reported in this thesis are to develop our understanding
of biological persistence, and to explore the role that modelling can play in this development.
This development is conducted through four studies that explore the effects of (1) modelling
decisions that relate to the relationship between the processes and structures of the system
and those embodied in the model and (2) measurement decisions about how to capture and
characterise persistence. The two themes of persistence and modelling decisions thus serve
as leitmotivs, reappearing in the different sections of the work. The main modelling decisions
compared are those of whether time is modelled discretely or continuously, different ways
of characterising the contribution of a patch to metapopulation persistence, different ways
of representing the distribution of system states in the long run, and the effect of modelling
differing numbers of states for each patch in a metapopulation. Persistence is characterised
in different chapters as continued existence until a pre-defined target time, mean time to
extinction, patch occupancy probability distributions in the long run, and as the existence of
a stable non-trivial equilibrium in a deterministic model. The particular research questions
addressed in each chapter are identified in the context of the particular piece of work, and
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the contribution of the answers to these questions to the overall aims is discussed in the main
discussion in Chapter 7.

1.4 Thesis structure and contribution

The main body of this thesis is structured as follows. The thesis is organised around the
central theme of modelling decisions and their effect on the conclusions that can be drawn
from studies relating to persistence. The main body of the thesis consists of a series of semi-
independent chapters, written in extended paper form, each with its own literature review
that is used to identify and justify specific research questions, a description of the methods
employed in answering them, a presentation of the findings and a discussion of their impli-
cations. As a result, some areas of theoretical background are repeated and the reader can
progress rapidly through these where indicated.

Chapter 2 provides background theory and ideas in order to assist the reader in understanding
the main contributions of the thesis. Because the work is interdisciplinary, at the juncture of
computing science, mathematical biology, and ecology, an attempt has been made to provide
sufficient background for readers with a training in any of these areas; as a consequence,
many readers will find that other aspects are covered in more depth than is required for their
own purposes. The chapter has two main sections. In the first section, some key concepts
for modelling biological populations are introduced alongside a proposed scheme for model
categorisation based on the decisions to model elements as continuous or discrete and the
level of aggregation included. There is also a subsection on the relationship between the
study of modelling decisions and research in computing science, and its fit with the area of
computational biology. The second section focuses on current definitions of persistence from
the biological literature of relevance in both deterministic and stochastic contexts. These are
used to argue that greater consistency of terminology would be beneficial for research in
this area. We make the case for research on the theme of population persistence and the
importance of considering the relationship between modelling decisions and their effects on
conclusions about persistence.

Chapter 3 consists of a stochastic simulation study using a cellular automaton approach, and
explores the effects on persistence of a single species and in the context of interspecific com-
petition, of the decision to model time as continuous or discrete. We use a simple notion
of persistence, sampling at a pre-specified census point. We show that there are quantitative
and qualitative differences in persistence between populations simulated in discrete and con-
tinuous time and argue that this modelling decision is important. We also show that the use
of a pre-specified time horizon as a measure of persistence can be misleading. This chapter
has previously been published as Mancy et al. (2013) and provides a novel contribution to
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the ecology literature by highlighting the importance of the decision to model processes in
discrete or continuous time, and specifically the difficulties of approximating continuous spa-
tial processes by discrete time simulations, especially in systems with more than one species.
From a computational biology perspective, it provides a comparison between the accuracy
of existing algorithms for simulating birth-death processes on a regular lattice, while also
employing a new version of the continuous time algorithm with reduced space complexity
compared with the classical approach employed for this kind of system.

Chapter 4 focuses on the question of how to model the contribution of a patch to metapopu-
lation persistence. We use a stochastic version of a metapopulation model with patch hetero-
geneity with a finite number of patches that become colonised and go extinct dynamically. As
our measure of persistence, we employ the mean time to extinction from quasi-stationarity.
The quasi-stationary distribution (QSD) is a description of the distribution of system config-
urations, conditioned on non-extinction, and thus captures the expected long-run states of the
system. We find expressions for the contribution of a patch to mean time to extinction from
quasi-stationarity, as well as population size. The chapter contributes to the theoretical biol-
ogy literature by providing an expression for the contribution of a patch and raising further
questions about the exact relationship between patch occupancy probability and patch value.
From a computational science perspective, it provides an illustration of the use of a com-
putational study to uncover a regularity suggesting an intervention design heuristic which
could be employed without recourse to further complex computational work. This work also
has the potential for significant contributions to real-world applications since it suggests a
relatively robust estimate of the contribution of a patch or population based on only readily
available data.

Chapter 5 focuses on the question of how to simulate the quasi-stationary distribution, as the
kind of study conducted in Chapter 4 is currently impossible for systems with a large number
of states. In this chapter, we investigate possible approaches for storing a compressed version
of the QSD in order to provide an accurate representation of the QSD without requiring
full state storage. We test different storage schemes based on different patch independence
assumptions. We find that none of these is entirely robust to increases in the number of
patches, but for specific uses, it is possible to select an appropriate scheme. The work has
applications to metapopulations that are larger than those for which numerical solutions are
feasible. From a computational biology perspective, the main novel contributions of this
chapter are in the findings about the accuracy of the schemes tested, and in the development
of the algorithms for simulating the QSD and its compressions. The findings provide a
practical tool to guide the modelling decisions of researchers interested in the QSD for these
kinds of systems, while raising engineering questions related to the possible ways to improve
upon the compression algorithms or models considered.

In Chapter 6, we consider a range of deterministic metapopulation models as a way to in-
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vestigate the extent to which these can provide useful information about the persistence of
real-world systems. We introduce a framework for explicitly linking related models, deriving
the persistence threshold for the most general models and allowing parameter values to tend
to appropriate limits to recover more specific models. The main novel contribution of this
chapter is theoretical and rests on the framework for working with models that can be con-
sidered as limiting cases of a model that subsumes them, and that underpins the derivation of
the persistence thresholds. This approach could be applied more broadly, especially to guide
modelling decisions about the states to include in compartmental models. A number of the
persistence thresholds are also new, and those including an Allee effect raise possibilities of
using deterministic models to investigate persistence. The work in this chapter arises from
considerations developed in connection with our contributions to the development of the no-
tion of reservoir capacity in Viana et al. (2014), co-authored during the period of the PhD. It
raises new questions relating to the connection between persistence thresholds in determin-
istic models and their stochastic counterparts, that could be explored computationally.

In Chapter 7, the focus is on a discussion of the findings from the main studies reported in
this thesis in relation to the overarching aims to understand persistence and the role of mod-
elling in this endeavour. The chapter begins with an overview of the findings in relation to
their possible use to guide decisions about how to model and to characterise persistence, and
their contributions to computational biology. This is followed by a discussion of possible
applications of the work in conservation biology and infectious disease control, and implica-
tions for future work on persistence. This section also includes a discussion of caveats and
suggestions for future research.
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Chapter 2

Long-term persistence: concepts
and models in ecology and
epidemiology

In this chapter, background literature is discussed in relation to two frameworks: the first
focuses on modelling decisions and model types in ecology and epidemiology; the second
on meanings of persistence. Each of these has been developed to serve as an organisational
schema for discussion of these ideas. We begin with a section on the importance of per-
sistence in ecology and epidemiology, and move on to present the two frameworks. In the
closing sections of the chapter we present two key probability theory concepts - the Gillespie
algorithm and the quasi-stationary distribution - and provide an overview of our application
of the ideas described here to the studies presented in the thesis.

2.1 Persistence in ecology and epidemiology

2.1.1 Why persistence matters

The related notions of persistence and extinction are of fundamental importance in popu-
lation ecology and infectious disease epidemiology. In population ecology, we are often
interested in whether a species or community will persist in the short or long term, and how
the answers to these questions may vary as a result of changing ecological conditions such as
habitat deterioration, climate change or conservation actions. Such questions are therefore
important for effective resource management in a range of biological systems. The response
of species to habitat disturbance such as habitat fragmentation and climate change constitute
important contemporary questions in conservation biology (see e.g. Thomas et al., 2004).
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In infectious disease epidemiology, the control, elimination and ultimate eradication of in-
fectious disease constitute the main aims of interventions. Although good progress has been
made towards elimination of formerly endemic diseases, the final push towards worldwide
eradication of many diseases remains elusive, of which polio and rabies constitute iconic
examples (Pallansch and Sandhu, 2006; Lankester et al., 2014). In addition, other diseases
such as dengue are rapidly gaining new territory to become endemic in a range of regions
across the globe (Bhatt et al., 2013). In the case where interventions to prevent emergence
(or re-invasion) fail, understanding persistence becomes important.

Nonetheless, although persistence and extinction are issues of fundamental importance in
population ecology and infectious disease epidemiology, their dynamics remain relatively
poorly theorised, at least in comparison with invasion dynamics. Persistence has usually
attracted attention in the form of considerations of time to extinction and extinction rates.
However, relevant theoretical definitions and their operational counterparts remain inconsis-
tent in the literature, and there is little consensus on terminology.

Taken together, the empirical work presented in this thesis advances research on persistence
directly and through an examination of the implications of specific modelling decisions for
the investigation of persistence. In this chapter, we provide background information and
make the case for research on persistence in ecological and epidemiological settings. The
first section of this chapter examines the relationship between models and the ‘real’ world,
focusing on modelling decisions of relevance to the investigation of persistence in population
and disease ecology. We then discuss existing notions of persistence and endemicity in the
literature, and their associations with different modelling paradigms. We argue that greater
coherence in the use of terminology relating to persistence would be valuable and propose a
model and associated terminology for work in this area.

2.1.2 Models and reality

Models of biological systems necessarily involve simplifying or idealising assumptions,
characterised by Takacs and Ruse (2011, p21) as ‘often patently false or only partially true’.
Nonetheless, Odenbaugh (2005, p251) argues that ‘models that are inaccurate can still lead
to significant truths,’ arguing that the same model might be used for a variety of purposes
and must be evaluated against the uses to which it is put, concluding that ‘insofar as models
accomplish those functions, we can count those models as successful.’ Determining which
assumptions are likely to be most productive typically requires evaluating tradeoffs that de-
pend on the aims of the model and how it is analysed or used to answer biological questions.
As Pincock (2012) points out, the mathematics itself is unable to tell us when these simplifi-
cations are appropriate for particular modelling applications. Biologists often ask themselves
questions such as the appropriate level of aggregation for modelling a system, or the number
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of biological levels that should be included (Orzack, 2012). For example, one may consider
whether it is necessary (or even desirable) to model individuals explicitly when investigating
ecological stability. Deciding how best to simplify or idealise a system when constructing a
model is therefore an important question in scientific modelling.

Although modelling is typically associated with generating explanations and predictions,
Odenbaugh (2005, p236) argues that models have at least five basic purposes in theoretical
ecology:

1. Models are used to explore possibilities.

2. Models give scientists simplified means by which they can investigate more complex

systems.

3. Models provide scientists with conceptual frameworks.

4. Models can be used to produce accurate predictions.

5. Models can be used to generate explanations.

According to this framework, when models are used to explore possibilities, their use re-
volves around exploring hypotheses relating to what a biological system might do in particu-
lar circumstances. This might result from changing parameter values to evaluate the effect1.
When they are used to investigate more complex systems, very simple and deliberately un-
realistic models are employed as ‘baselines’ and investigations focus either on evaluating
which assumptions are problematic by comparing with real-world data, or on understanding
the implications of adding or changing the assumptions in order to better reflect real-world
phenomena. In other circumstances, they may be used to provide conceptual frameworks

that can be used to ask questions and conduct experimental investigations. This usage is
sometimes thought of as a side-effect of the process of model development, but could be
deliberate: it refers to the development of concepts that result from the formalisation of
ideas required for model building. For example, it is in this way that models contributed
to the development of the concepts such as connectance and species-deletion stability. As
Caswell (1988, p35) points out, the importance of these, and related concepts, to complexity
and ecosystem stability only became clear as the original verbal theory was developed into
mathematical models. In many circumstances, models are used for the purpose of producing

accurate predictions in the sense that the models match state variables that can be measured
in the real world. Finally, models can be used to generate explanations in the sense of provid-
ing possible mechanisms by which a phenomenon occurs. Although the distinction between

1The distinction between this category and ‘generate explanations’ seems unclear insofar as these explo-
rations are characterised as leading to ‘how possibly’ explanations.
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some of these categories remains rather unclear, the point that models can serve multiple
purposes is well made.

In summary, models necessarily embody simplifications of real-world systems, and the mod-
elling decisions about which simplifications to make are important; however, these decisions
can only be made in relation to the aims of the model. That is, as Richard Levins (1985, p8,
cited in Odenbaugh, 2005) writes,

Modelers always must keep in mind that the utility of their construct depends on
the particular purpose for which it was built. There is no such thing as the true

model of a system but only more or less adequate representations of the system.

2.2 Modelling decisions

Models of population persistence need to represent both time and the population in some
way. However, each of these aspects can be modelled in a range of ways and decisions
about how they are modelled can have important implications for the conclusions that can be
drawn from the models. An additional modelling decision that is particularly important for
studying population persistence is whether to use a deterministic or stochastic model.

Several authors have discussed modelling paradigms and approaches used in ecological and
epidemiological modelling. A majority of these presentations progress by describing proto-
typical examples of each paradigm, and then comparing and contrasting these (see Keeling
and Rohani, 2007; Barrat et al., 2008; Bolker, 1997; Lion and van Baalen, 2008; Jorgensen,
2008). For example, in relation to epidemiological modelling, Barrat et al. (2008) distinguish
between homogeneous mixing models, models that incorporate social structure, contact net-
work models, multiscale models (patch or meta-population) and agent-based models, de-
scribing these as models at different ‘scales’ (p181). Focusing on spatially-explicit epidemi-
ological models, Keeling and Rohani (2007, Chapter 7), distinguish between metapopulation
models, lattice-based models, continuous-space continuous-population models, individual-
based models and networks. Bolker (1997) focuses on ecological models and distinguishes
between continuous-density models, lattice and patch models (spatially-structured models)
and simulation models, and introduces moment equation approximations. The above authors
organise their discussion around paradigmatic examples and although there is some overlap
between the types of models described by these authors, there is also an apparent arbitrari-
ness in the classification schemes and examples discussed. Some authors have attempted to
classify model types according to their features (e.g. Gertsev and Gertseva, 2004). Finally,
Berec (2002) begins by establishing a framework that is used to compare model types based
on modelling decisions.
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We take a framework-based approach that is similar to that of Berec (2002) as this creates an
explicit structure that can be used to inform modelling decisions, and that explicitly focuses
on the elements of the biological system to be modelled. In contrast to Berec (2002), who
considers continuous and discrete approaches to modelling time and space, we first address
the decision about how to model time (as discrete or continuous), and then take a hierarchical
approach to considering how the population and spatial aspects are modelled in respect of
the level of aggregation employed. In a separate section, we explore the decision of whether
to model population persistence using deterministic or stochastic processes.

2.2.1 Simple example model

Traditionally, researchers in population ecology have used differential equations to model
population dynamics, changes in the size and composition of populations and the processes
that cause these changes. For example, one of the most important models in population
biology is the Verhulst-Pearl logistic growth model. This model captures the dynamics of
population size in an environment where resources are limited. When resources are plentiful,
individuals give birth at a rate b, and die at rate d. Resource limitations are modelled in the
form of a carrying capacity, usually denoted K, representing the maximum population that
the habitat can support in the long term. Near the carrying capacity, the birth rate falls and
the death rate increases. Rates b and d are the intrinsic instantaneous birth and death rates
per capita, and are thus multiplied by the number of organisms in the population to give the
overall population rates. Defining r = b − d as the maximum rate of growth (per capita),
and x as the number of organisms in the population, the rate of change of the number of
organisms in the system is usually expressed as

dx

dt
= rx

(
1− x

K

)
. (2.1)

Dividing both sides of the equation byK and defining P = x/K, we can convert the equation
describing the rate of change of the number of organisms into one capturing the dynamics
of population density (i.e. proportion of the carrying capacity that is exhausted; 1 − P is
therefore the proportion of the resources still available). We can then write

d

dt

x

K
= r

x

K

(
1− x

K

)
⇐⇒ dP

dt
= rP (1− P ) = (b− d)P (1− P ) . (2.2)

Because the equation describes the rate of change of population density, solving it for P gives
the time evolution of the population density P . This model is mathematically equivalent
to the Levins metapopulation model, and to the standard susceptible-infectious-susceptible
model in epidemiology, as explained in more detail in Chapter 6.
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This equation demonstrates the main features of the traditional approach to dynamic popu-
lation modelling. Firstly, the model is deterministic. In it, both time and the population are
modelled as continuous variables (even in Equation 2.1 because nothing precludes the possi-
bility of non-integer organism counts). The population is modelled simply as the number of
organisms: organisms are neither discrete nor heterogeneous. Finally, if we think of K as a
measure of the number of available sites, then x is the number of sites that are occupied and
K − x is the number of unoccupied sites, and each site has two states: occupied or vacant.
We now consider alternative modelling decisions that could be made.

2.2.2 Deterministic or stochastic?

A key modelling decision, and one that takes on a particular importance for population per-
sistence, is that of whether to model the processes as deterministic or stochastic. Although
the issue of whether the universe is deterministic or stochastic constitutes an unresolved prob-
lem in philosophy of science (i.e. the question of whether ontological randomness exists), the
limits of our knowledge and the scientific process of knowledge generation mean that we of-
ten wish to include stochasticity in our models (i.e. we model epistemological randomness).
Various ways to partition stochasticity exist in the literature. For example, Bolker (2008)
distinguishes between three sources of random variability: measurement error, demographic
stochasticity and environmental stochasticity, of which the last two concern variability or
unpredictability in the underlying process itself. Measurement error refers to variability due
to difficulties of accurate measurement of real-world systems. Demographic stochasticity
refers to differences in the endogenous processes of the ecological system, such as variabil-
ity in the numbers of births and deaths in any instantiation of a controlled experiment (i.e.
variability that is not related to the variable that is controlled). Demographic stochasticity is
endogenous to the system in that individuals in the system have some control over it (e.g. in a
predator-prey model, the predator has control over prey death). Environmental stochasticity
refers to unpredictabilities in exogenous processes such as climate that occur independently
of the system that we are modelling, and that affect ecological dynamics.

In large-scale systems, the effects of demographic stochasticity may not be very important
as random effects may be expected to cancel. As a result, deterministic models capture the
dynamics of large populations better than small populations. However, in smaller popula-
tions, random effects are more important, such as when random fluctuations in population
size lead to extinction.

Stochasticity can be incorporated into model 2.1 in at least two main ways. Firstly, one could
include an error term into the differential equation to give a stochastic differential equation in
which the dynamics are partially deterministic but with variability around the deterministic
trajectory. Secondly, the dynamics could be simulated as a stochastic Markov Chain. In this
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approach, events and the time at which they occur are drawn from a probability distribution
(see Section 2.4.1). In this formulation, the system has an ‘absorbing’ state, extinction, from
which it cannot recover.

2.2.3 How to model time

The sequencing of events matters for the dynamic processes that underpin population per-
sistence. The decision about how to model time can be thought of as one about whether
it should be modelled implicitly as a discrete variable by encoding the sequential nature of
events, or explicitly as a continuous variable. Real population processes take place in con-
tinuous time in the sense that the interval between events can be arbitrarily small, and in this
sense, continuous time models more closely approximate natural processes. This is, for ex-
ample, the case when there is no a priori reason to expect that the process should take place
at discrete time intervals, for example, if modelling some cellular processes.

However, there are situations in which modelling in discrete time represents a justifiable sim-
plification. For example, many plants and animals reproduce and die according to seasonal
climatic patterns. In the case where the whole population dies at the end of one growing
season and is replaced by an entirely new population in the next season - as is the case with
annual plants and certain insect species, discrete time modelling is the more appropriate
decision. Populations following this pattern are referred to in the theoretical ecological mod-
elling literature as having non-overlapping generations. However, even in the case of species
with overlapping generations, a discrete time assumption may be realistic. For example,
many species of animals with multiple breeding seasons may still be alive and producing
offspring when their offspring begin to reproduce; however, an individual’s offspring does
not reproduce during the season in which it was born, and updating the population in discrete
time steps is therefore justifiable.

Even in cases where discrete updating is not justified biologically, discrete time may be
used to approximate continuous time by selecting a time step that is small in relation to the
biological processes under consideration. In this case, a decision needs to be made about
the scale on which to aggregate time and thus the events associated with it. Examples of
paradigms that model time as discrete are those based on difference equations and cellular
automata, whilst approaches based on differential equations and simulation approaches such
as the Gillespie algorithm model time as continuous.

2.2.4 How to model the population

A modelling decision that has attracted interest in the literature is that of whether to explicitly
model individuals (Durrett and Levin, 1994). Although organisms are discrete, they may be
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modelled as continuous, as is the case in Equation 2.1. This assumption is more appropriate
for large populations in which individuals have only a small effect on the whole. It may
also prove difficult to justify in cases where we are interested in modelling individual-level
processes such as extinction, since with continuous population densities, the population can
become arbitrarily small without becoming extinct.

A related modelling decision concerns whether to maintain individuality or aggregate the
population. In the most disaggregated models, individuals are considered as agents, pos-
sibly with their own set of characteristics, and are modelled separately. The paradigmatic
examples of this approach are individual-based models and agent-based simulation.

In situations in which individuals fall into relatively clear classes, it might be unnecessary to
model each individual separately and we can choose instead to aggregate across individuals.
This makes the modelling process more scalable because instead of modelling each individ-
ual, we instead keep a count of the number of individuals possessing specific characteristics.
For example, social structure models aggregate over individuals, according to age structure
or life stage (e.g. by distinguishing between juveniles, and adults capable of reproduction).

Another way in which organisms are often aggregated is in relation to their spatial location.
Organisms may be modelled as individuals with a given spatial location, or grouped together
in subpopulations at particular spatial locations or on a network. Models that group individ-
uals into subpopulations are known as metapopulation models; the processes that act within
and between subpopulations differ. In the simplest case, subpopulations are simply mod-
elled as occupied or unoccupied; in other metapopulation models, individuals are modelled
discretely within the subpopulations, but the processes that act within these subpopulations
differ from those acting between populations (e.g. because it is less common to come into
contact with individuals from different subpopulations than from one’s own subpopulation).

Examples of continuous population models are all of those based on differential equations;
continuous spatial models often use reaction-diffusion models based on partial differential
equations. Discrete population models include lattice, network and metapopulation models.2

Figure 2.1 shows the relationship between modelling paradigms that aggregate differently
over individuals and space, organised following our discussion.

2There is lack of consistency in the use of the terms ‘patch models’ and ‘metapopulation models’. We may
choose to model organisms at the individual level within patches, or simply model the state of the patches.
Throughout this thesis, where the focus is on the latter, we use the term ‘metapopulation model’ to refer to
models in which there is no individuality.
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Figure 2.1: Illustration of the relationship between model types resulting from decisions
about how to aggregate over individuals and space.

2.2.5 How to model states

An additional decision to be made relates to the states applicable to elements of the system
(e.g. organisms or patches). In the site-occupancy interpretation of the logistic model, sites
are either occupied or vacant. However, multiple states may be applicable: sites might be
occupied by more than one organism in multi-state models, or by organisms in different
states such as when they pass through different life stages. Models in epidemiology often
demonstrate a larger number of states, and these are explained in more detail in Chapter
6, along with a discussion of possible applications of common epidemiological multi-state
models in ecology.

In the example above, individual sites are modelled as being in one of a small number of
discrete states. However, in general, individuals themselves may have continuous charac-
teristics. For example, we could model organisms as having a continuous characteristic of
age.

2.2.6 Relationships between modelling decisions

Different combinations of modelling decisions lead to different kinds of models. For ex-
ample, one could choose to implement a metapopulation model with two or three states, in
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discrete or continuous time, and do so with or without stochasticity. These modelling deci-
sions are made through consideration of the biological system, the questions one hopes to
answer and relevant properties of the models considered, and the intellectual and physical
resources (including time, computing power, etc.) available to us to allow us to use the model
to understand the biological processes better.

Orzack (2012) argues that focusing on clarifying processes for making modelling decisions
in ecology and epidemiology is a useful endeavour. In our framework, we present models
according to the modelling decisions regularly taken by those involved in ecological and
epidemiological modelling. This approach may be more helpful than simply listing paradig-
matic examples because it highlights the similarities and differences between them, while
suggesting alternatives. Following the framework above, one would begin by identifying the
biological entities that need to be accounted for in a model, and then consider how each of
these should be modelled (and indeed whether it should be modelled explicitly at all).

There are several remaining questions that it would be useful to address in relation to the
presentation of modelling decisions in the preceding sections, but that are beyond the scope
of this thesis. Firstly, it would be useful to explore whether the modelling decisions above can
always be made independently of one another, or whether some need to be taken jointly. For
example, we might ask how decisions about modelling individuals as continuous or discrete
affect decisions about levels of aggregation. Secondly, we provide little information here on
how models associated with the different modelling decisions might be implemented, or the
kinds of uses (e.g. in the sense of Odenbaugh, 2005) they might support most effectively,
and these would also benefit from clarification.

2.2.7 Modelling decisions as a computational biology question

As a relatively young discipline, the question of what constitutes computing science has at-
tracted significant attention and answers have undergone considerable change over the past
decades. The debates on this topic typically centre on the distinctions between different re-
search paradigms, often thought of as corresponding to those of natural science, engineering
and mathematics, with the most contentious issue that of the extent to which computing sci-
ence can be considered science (Tedre, 2011). Denning traces these trends (Denning and
Freeman, 2009; Denning, 2013), arguing that in the 1950s, a science understanding of the
discipline was fairly prevalent, but that an engineering perspective then became more promi-
nent. During the 1990s, a new tendency to reconsider scientific aspects of computing science
reemerged as the result of developments in the area of computational science, and the recog-
nition that the notion of computation could also apply to ‘natural’ processes in systems such
as DNA (Denning, 2013).
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In an attempt to unify the different themes within computing science, Denning (2003) has
proposed that the discipline of computing science be characterised by guiding principles.
These ‘Great Principles’ consist of principles of design, principles relating to the mech-
anisms of computing, and practices routinely applied by practitioners. Design principles

encapsulate conventions followed in order to build good systems, focusing on concepts such
as simplicity and performance of computing systems; mechanics principles focus on funda-
mental laws and questions of computation such as computability and system coordination;
and practices relate to embodied knowledge in the form of habits or routines and include
multi-lingual programming skills, engineering practices, modelling and validation and inno-
vation. In an interview with Ubiquity, Denning (2007) commented that ‘to be a complete
computing professional, you should know the principles and be competent in the four prac-
tices.’ Denning claims that it is not through our ability to be explicit about our principles
that we should be judged, but by how we conduct our work as professionals. In Appendix
A.1, we provide illustrative examples to demonstrate how the principles and practices are
applied in the work reported in this thesis, demonstrating how this work meets the criteria
for professional work in the discipline3.

A major limitation of the framework is that it does not include any comparison with other
disciplines, be they mathematics, engineering or science, although interdisciplinary experi-
ence suggests that these practices and principles are indeed more salient (or commitment to
them stronger) among those trained in computing science, at least in comparison with those
trained in biology and ecology (the contrast with those trained in mathematics appears less
stark). The framework also appears to be more appropriate for describing the practices and
principles for applications to commercial computing science, as opposed to scientific com-
puting (interpretations of some categories for scientific computing are provided in Appendix
A.1 as necessary). Finally, the changes introduced into the framework between 2003 and
2007 appear to add additional complexity, which seems at odds with the aim of providing a
coherent structure, and the overall framework appears not to have stabilised.

Moving on from this discussion of the aspects of computing science demonstrated in our
work, in the following sections we describe background literature that helps to situate the
questions addressed in this research within domain of computing science. We argue that the
work described in this thesis contributes to the sub-discipline of computational science4, and

3By 2007, the exact content and configuration of the Great Principles had changed, and the later version can
be found on Denning’s website at http://denninginstitute.com/pjd/GP/. We refer to the 2003 version because of
its greater clarity.

4Computational science is usually considered to be inherently interdisciplinary; while it can be thought
of as the ‘fourth great domain of science’ (Denning and Rosenbloom, 2009) or alternatively the ‘third pillar
of science’ (President’s Information Technology Advisory Committee, 2005), discussions along these lines
nonetheless consider it as a component of computing science (Denning, 2005), and computational biology (as
a discipline of study or research group) is often located within departments of computing science (e.g. at the
University of Oxford and Stanford University).
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more specifically that of computational biology, using methods from experimental comput-
ing science for algorithmic development, either by comparing existing algorithms or devel-
oping new algorithms to approximate solutions to intractable problems.

According to the Society for Industrial and Applied Mathematics (SIAM Working Group on
CSE Education, 1998), research in computational science and engineering ‘focuses on the
development of problem-solving methodologies and robust tools for the solution of scien-
tific and engineering problems’. Another similar definition is provided in the report Com-

putational Science: Ensuring America’s Competitiveness (President’s Information Technol-
ogy Advisory Committee, 2005, p10) which states that ‘at one level, computational science
is simply the application of computing capabilities to the solution of problems in the real
world’, noting that it uses ‘advanced computing capabilities to understand and solve com-
plex problems’. According to the report, key elements of computational science include
algorithms, and modelling and simulation platforms designed to solve scientific problems.
For computational science in the context of biology, the National Institute of Health Bioinfor-
matics Definition Committee distinguishes between bioinformatics and computational biol-
ogy, defining the latter as ‘the development and application of data-analytical and theoretical
methods, mathematical modeling and computational simulation techniques to the study of
biological, behavioral, and social systems’ (National Institure of Health - Bioinformatics
Definition Committee, 2000).

These definitions appear to focus on research underpinned by scientific questions arising
in the natural world (applications of the methods) and engineering questions arising in the
development of the methods (methodological developments). Among these, although the en-
gineering questions suggest the development of new methods, work that compares existing
computational methods (that are or could be used to answer questions in the natural sciences)
also underpins methodological development, and is thus consistent with the general tenor of
the definitions. Indeed, as computational methods are applied to new areas, initial testing
conducted during the original development phase may prove insufficient and additional test-
ing can be extremely valuable. More explicit acknowledgement of analysis of computational
methods in the definitions above would therefore better capture research in the areas of both
computational science and computational biology.

The term experimental computing science refers to research in computing science (and its
sub-disciplines) that employs an experimental methodology based on hypothesis testing
(Tedre, 2011), and consists of structured cycles of observation, measurement and analysis
(Freeman, 2008). In her article on experimental algorithmics, McGeoch (2007) distinguishes
between problems of algorithm analysis and algorithm design: the former is concerned with
understanding how different algorithms will perform under given conditions and assump-
tions; the latter with designing better algorithms, where the term ‘better’ typically implies
faster, but may also refer to returning higher quality (more accurate or optimal) solutions
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to a given problem. McGeoch argues that experimental approaches to algorithm design and
analysis can be highly valuable as a complementary or alternative approach to asymptotic
analysis, for example, when were are interested in more than worst case asymptotics in run-
time analysis. In the experiments reported in this thesis, we compare candidate alternative
algorithms to establish which provides the best ‘explanation’ for (i.e. correspondence with)
a baseline algorithm.

Our analysis in this thesis focuses on modelling decisions that are made as a biological model
is translated into a form that can be simulated or solved numerically. A useful way to dis-
tinguish between different kinds of modelling decisions for scientific computing is via the
CoSMoS framework. This framework (Andrews et al., 2011; Stepney and Andrews, 2015)
employs key concepts of domain, domain model, platform model, simulation platform and
results model. The domain refers to the real-world system under consideration; in our con-
text, this is an ecological or epidemiological system. The domain model expresses existing
understanding (and assumptions) of the biological system at an appropriate level of abstrac-
tion for the research questions that will be investigated using the simulation. It is, however,
biological: it does not contain any of the details of the implementation of the simulation and
is used to separate the science from the implementation details of the simulation platform.
The platform model is an engineering derivation from the domain model, described in a
form that can be easily translated into the technologies of the simulation platform. It should
therefore specify engineering design decisions, detailing the structures, behaviours and inter-
actions of the domain model in a form that can be implemented (e.g. for an implementation
in Java, in the form of classes, or for an implementation in Matlab in the form of matrix data
structures). It also incorporates the necessary parameters to conduct the experimental work,
and any implementation constraints and assumptions. The simulation platform provides the
encoding of the platform model in a way that experiments can be conducted; for example, in
Alden et al. (2012), the simulation platform consists of the Java source code of the simulator
itself. The platform also includes any auxiliary code required to run the experiments and
process the output into a form that can be interpreted. Finally, the results model specifies
how simulation outputs can be interpreted in relation to the real-world system. Its contents
are compared to the domain model to establish the extent to which the simulation output
corresponds to that of the real-world domain. The relationship between the domain model
and the domain is therefore analogous to that between the simulation platform and the results
model.

The work in this thesis focuses on a particular aspect of the CoSMoS framework. Specifi-
cally, we take the domain model as given: the lattice logistic model and Spatially Realistic
Levins Model are taken directly from the ecological literature. Our interest is in decisions
made in order to construct the platform model. However, there are at least two kinds of
decisions that can be made at this stage: mathematical assumptions in the form of decisions
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that affect the mathematical properties of the platform model and thus potentially the output;
and engineering decisions affecting the implementation of the model (in source code) and
that influence readability, structure and runtime. Our main interest is in the former kind of
design decisions. These may be driven by the constraints of the implementation platform
(e.g. hardware constraints such as memory or software constraints such as maximum array
sizes) or by less constraining influences such as ease of implementation.

Although we are conscious of the question of engineering decisions in our practice (see Ap-
pendix A.1), our primary research interest is in the effects of modelling decisions that consist
of (or entail) mathematical assumptions that may affect the output of simulations and numer-
ical problem solutions, and thus the scientific conclusions that are drawn from them. Despite
the fact that these kinds of decisions can affect scientific conclusions (e.g. Ruxton and Sar-
avia, 1998), they are made in the translation of the domain model to the platform model, and
are typically paid little attention in work by practising scientists. As Hogeweg (1988, p88)
points out ‘in many modeling efforts little attention is given to choosing a suitable modeling
formalism: the choice is most often made on the basis of habit within a certain research
area (e.g., in insect population dynamics discrete timestep models are most often used even
in the case of overlapping generations, whereas in other population-dynamics areas con-
tinuous models abound, even in the case of nonoverlapping generations).’ More recently,
Polack (2014), referring to agent-based models for scientific applications, has commented
that ‘most reported computer simulations are judged to be valid if they produce something
like the expected results’. Indeed, two recent articles, one published in a biological jour-
nal (Wilson et al., 2014) and another in a cross-over journal publishing ‘big data’ research
in biology (Hastings et al., 2014), concerning best practices for scientific computing, focus
almost solely on engineering decisions. The questions of modelling decisions thus appear
to be of more interest to applied mathematicians and researchers with strong involvement
in computing science (such as Hogeweg and Stepney; see references above). Our specific
contributions to the computational biology literature are described in Chapter 7, the main
Discussion.

2.3 Persistence

In this section, we discuss notions of persistence that can be found in the literature. We
focus primarily on the infectious disease context, while acknowledging a parallel literature
on persistence in ecological models. Much of the work on infectious disease epidemiology is
centred around understanding epidemics. Work on disease invasion is thus well developed,
and theory focuses most notably on the basic reproduction number. The basic reproduction

number of an infectious disease, denotedR0, is defined as the number of secondary infections
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arising from a single case, in a fully susceptible population. It is particularly useful for
understanding disease invasion: in deterministic models, a disease invades when R0 > 1.
In contrast, disease persistence remains relatively under-theorised. A range of definitions
of disease persistence and endemicity exist, although the relationship between these is not
always clear. In this section, we discuss existing definitions of disease persistence and their
connections with related notions in the literature.

In order to structure this discussion, we introduce a compartmental model that describes dis-
ease dynamics at the population level, and use this to interpret existing definitions. Although
compartmental models are common in the epidemiological literature (as discussed in more
detail in Chapter 6), they are typically used to describe the infection state (susceptible, infec-
tious, recovered, etc.) of individuals. In the model proposed here, and illustrated in Figure
2.2, the states describe the status of a disease or pathogen in a given population as absent,
epidemic or endemic; the associated processes are those of invasion, establishment and fade-
out, with persistence used to describe the process that maintains the pathogen in the endemic
state.

Absent

EpidemicEndemic

Introduction 
without 
invasion

Establishment

Fade-out

Fade-out
Invasion

Figure 2.2: Compartmental model of population disease states.

Initially, a pathogen is absent from the population. When it is introduced, it either quickly
fades out without generating an epidemic or invades the population (growth in pathogen
numbers) and enters the epidemic state. If the epidemic does not fade out (fall in pathogen
numbers to zero) directly from the epidemic state, it establishes itself in the population and
persists in the endemic state for some time (pathogen numbers either constant or cyclical).
Ultimately, it fades out to become once again absent from the population (fall in pathogen
numbers to zero).

This discretisation of status into three states is necessarily a simplification; however, it cor-
responds to the implicit discretisation embedded in much of the language used to describe
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population-level disease status (e.g. Nasell, 1995; Castle and Gilligan, 2012). Indeed, al-
though some authors (Gilligan and van den Bosch, 2008) illustrate disease processes in ways
that suggest a continuous context (see Figure 2.3 in which, for example, it is not clear at
which time point one would consider the disease represented by the yellow line to have
entered the endemic state), states are often referred to as discrete.

We now consider definitions of endemicity and persistence. Focusing on verbal descrip-
tions, a range of definitions of endemicity and persistence can be found in the literature. For
example, Gilligan and van den Bosch (2008) consider persistence criteria and time to ex-
tinction, but appear to use the term persistence to refer to both duration of an epidemic and
persistence in an endemic state. In another definition, Onstad and Kornkven (1992, p. 561)
define endemicity as ‘the persistence or constant presence of a pathogen in an ecologically
proper spatial unit over many generations’ while Hagenaars et al. (2004, p. 349) describe
persistence as ‘the ability of an infectious disease to avoid extinction’. Both of these defi-
nitions focus on the process of persistence once the endemic state is reached, although the
timescales over which this might occur are left open. A definition that relates to determinis-
tic modelling is that of Castle and Gilligan (2012), who state that ‘a pathogen is considered
to persist if the infection levels reach stable endemic equilibrium values’ (p. 6), a definition
that encompasses both establishment and persistence.

Although a number of definitions thus exist, the tendency in most of the literature appears
to be to use the language of endemicity and persistence without formally defining it. In
addition, verbal definitions are transformed into operational definitions in different ways
according to the type of study in which they are employed. The operational definitions can
be grouped into three main categories, associated with studies using deterministic models,
stochastic models, or a data driven approach.

2.3.1 Operational definitions in deterministic models

Among authors studying deterministic models of disease persistence, the most common ap-
proach is to refer to the asymptotic or steady state, or to the endemic equilibrium of a system
(Kermack and McKendrick, 1927; Jeger and van den Bosch, 1993; Sun et al., 2012; Li et al.,
1999; Post et al., 1983; Roberts, 2007). A similar definition can be found in Cunniffe and
Gilligan (2010) who define the ‘endemic level of infection’ as the proportion of infectious
individuals as time tends to infinity (i.e. limt→∞ I). The endemic equilibrium is generally
found by setting the differential equations governing the disease systems equal to zero, and
then solving either analytically or numerically and focusing on non-zero stationary solutions;
where this is impossible, authors may simply consider whether a non-zero equilibrium ex-
ists. In other words, an endemic situation is operationalised as one in which the model has a
non-trivial equilibrium solution.
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Figure 2.3: Conceptual illustration of three scenarios following introduction of an infectious
agent. Redrawn from Gubbins et al. (2000); Gilligan and van den Bosch (2008).

2.3.2 Operational definitions in stochastic models

As explained in Nasell (1995), no steady state exists in (stochastic) Markov models as ex-
tinction is certain in the long run. Research using stochastic models therefore tends to oper-
ationalise endemicity in relation to persistence beyond predefined time points. For example,
Onstad and Kornkven (1992) consider that a pathogen persists if it is still present after 1000
time units. In more applied work, time windows may be chosen according to known charac-
teristics of target populations. For example, Keeling and Gilligan (2000) also use a fixed time
window to differentiate between endemic persistence and epidemics in a stochastic model of
bubonic plague in rodent populations, with endemic persistence defined as post-introduction
persistence beyond 10 years. Thus, although they differentiate verbally between invasion and
persistence, this information is not included in the operational definition. Hagenaars et al.
(2004) allow external re-infection, and take a slightly different approach, operationalising
persistence in the form of the fade-out fraction, defined as the ‘expected proportion of time
that the disease is extinct in a system’ (Hagenaars et al., 2004, p351). This definition allows
more than a binary distinction between realisations that went extinct and those that did not;
however, it relies on an external source of infection with known frequency of re-infections.

More generally, setting a specific time window only allows us to distinguish between real-
isations in which extinction occurred and those in which it did not (although over multiple
realisations, proportions can be calculated). In fact, even Hagenaars et al.’s (2004) definition
relies on a capture window. The time window approaches also fail to capture the distinction
between instantiations that were near extinction at the time when persistence is evaluated; if
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a falling population is considered to be a sign of having left the endemic state (in line with
deterministic definitions), such approaches overestimate persistence in the endemic state.

Other measures of persistence have been considered in the literature. For example, in their
simulation study, Jesse and Heesterbeek (2011, p14) considered ‘the infectious agent to be
persistent in a simulation if it is still present in the population after twice the expected life
span of the host’ but conceded that ‘the choice of twice the expected life span is arbitrary’.
They justify their choice by noting that ‘within this number of time steps the infectious agent
has survived two generations of hosts, and has spread between the patches’.

A more mathematically rigorous alternative would be to consider a disease to be endemic
in the case where the quasi-stationary distribution (QSD) is reached. The quasi-stationary
distribution is the distribution of systems states, conditioned on non-extinction. It is defined
formally in Section 2.4.2and explored in more depth in later sections, especially Chapter
5. Nasell (2005, p. 204) argues that it is the ‘counterpart to the endemic infection level in
the deterministic model’. It therefore provides a corresponding definition in the stochastic
context to that of Castle and Gilligan’s (2012) definition for deterministic systems.

Using the notion of the QSD is helpful for a number of reasons. Firstly, once a system has
entered the QSD, extinction times are known to be exponentially distributed (Artalejo, 2012).
This means that the full distribution of extinction times is captured by a single parameter,
the mean time until extinction, usually denoted Tm. The characteristics of this distribution
mean that 1/Tm gives the rate at which populations go extinct, a quantity that may be easier
to measure in real populations since it does not rely on the extinction of all comparable
populations.

2.3.3 Operational definitions in data-driven work

Examples of operationalisations of endemicity in empirically-driven work tend to focus on
levels of infection. In addition to definitions that allow us to identify whether or not a system
is in an endemic state, another question of interest is that of the proportion of the host pop-
ulation that is infected (either symptomatically or asymptomatically) in the endemic state.
For example, Hay et al. (2009) follow earlier work in considering three classes of endemic-
ity and three levels of malaria endemicity within the stable risk class. Levels of endemicity
within stable risk areas were categorised as low (less than 5% of the population with blood-
detectable parasites), intermediate (between 5% and 40%) and high (over 40%). However,
the split between classes appears rather arbitrary.
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2.3.4 Other related definitions

Similar definitions have been discussed in the literature on critical community size and dis-
ease reservoirs. Bartlett (1957a) introduced the notion of critical community size to capture
the idea that larger host populations are more able to support the persistence of pathogens
than smaller populations. Critical community size was defined as the population size ‘for
which the chance of fade-out after a major epidemic is 50 per cent’ (Bartlett, 1957a, p. 56),
thus referring to the host population threshold above which the chance of fade-out was below
50%. This definition appears to encompass the processes of both establishment and persis-
tence, while setting a threshold for persistence. However, the notion of critical community
size is problematic both conceptually and because it is difficult to operationalise (Viana et al.,
2014). From a conceptual point of view, the notion of population size fails to capture other
epidemiological characteristics of relevance such as connectedness of subpopulations; fur-
thermore, the terms ‘fade-out’ and ‘major’ are vague; finally, while the definition employs
the point of 50% probability of persistence, the distribution around persistence probabilities
remains unspecified. It is not clear how to link the notion of a critical community to disease
outcomes of interest: for example, it is unclear why we should be more interested in a 50%
chance of ‘fade-out’ than, say, persistence until such time as there is an X% risk of transmis-
sion to the target population. Further, measuring critical community size is, by definition,
problematic since it requires several instances of fade-out in communities of different sizes.
For many diseases, conducting such measurements is unrealistic.

In more recent work on critical community size, Nasell (2005, p. 210) formalised Bartlett’s
definition such that the critical size is defined as ‘that value of N for which the probability of
extinction after waiting for one quasi-period T0 equals 0.5’. In the case of Bartlett’s (1957a)
definition, the starting point for the waiting times is after a ‘major epidemic’ whereas Nasell
(2005) defines the waiting times as starting from an initial distribution matching that of the
quasi-stationary distribution. In the context of this discussion, Nasell’s (2005) definition
therefore focuses on persistence once in the endemic state.

Other related definitions can be found in the literature on disease reservoirs. For example,
Ashford (1997, 2003, p1495) proposed to define a reservoir as an ‘ecological system in which
the infectious agent survives indefinitely’, whereas Haydon et al. (2002, p1469) defined a
reservoir as ‘one or more epidemiologically connected populations or environments in which
the pathogen can be permanently maintained and from which infection is transmitted to
the defined target population’. According to the first of these definitions, a reservoir could
therefore be defined as an ecological system in which a pathogen is endemic; in the second,
the endemic status of the reservoir is the same, but the reservoir is defined in relation to a
specified target population of interest (see also Viana et al., 2014).
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2.3.5 Persistence and model types

The discussion in the preceding section demonstrates that although definitions of persistence
and endemicity exist, they are made operational in a range of ways. Some of these relate
to whether processes are considered to act deterministically or stochastically. In the deter-
ministic case, persistence is a relatively simple concept implied by the existence of a stable
non-trivial equilibrium. However, if we believe that real-world systems are stochastic, this
means that this definition cannot be instantiated in the real world. In the stochastic case,
different ways of operationalising persistence have emerged, focusing on the existence of a
population until a particular time horizon, the time to extinction of a population, the critical
size of a community required to support a population that persists with a given probabil-
ity (usually 50%). These different operationalisations make comparisons between different
studies difficult. For example, if a particular paper reports 50% persistence until a time hori-
zon of 100 years, and another paper persistence until 25 years, there is no way to compare
these findings.

In addition to operational differences, there is little consensus on use of terminology. Some
authors use the term persistence to refer to the process from the point of initial introduction
to extinction, whereas others use it to refer to the process only once the endemic phase is
reached. This makes it particularly important to interrogate the operational definitions used
when comparing the findings from different studies.

It seems likely that work on persistence would benefit from a more unified approach in
which terminology is used more consistently, and operationalisations of persistence are more
clearly delineated. A better mapping between definitions of persistence and meaningful
disease outcomes of relevance to practitioners and those working to control disease would
clearly be beneficial. The framework proposed in Figure 2.2 provides a partial resolution
to these issues through clarifying the terminology. According to this framework, the term
persistence should be reserved for describing the situation of having reached a stable state in
a deterministic model, or the process of continued existence of a population once the QSD
has been reached. Similarly, referring to an organism as being endemic therefore corresponds
to it having reached a stable state in deterministic models or in the stochastic case, of being
in the quasi-stationary phase.

The framework formalises the states and transitions discussed in the literature and clarifies
the distinctions between them, while providing a standardised language for discussing these
ideas. This should be beneficial for the comparison of studies of persistence, as well as
in making modelling decisions about how to choose an appropriate definition. Additional
questions relate to whether there are situations in which different definitions of persistence
can be considered comparable, and how to re-interpret data from existing studies in such a
way that they can be compared. It would also be valuable to consider more explicitly the
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appropriateness of specific definitions for particular aims.

2.4 Probability theory and simulation concepts

Two key probability theory ideas are applied several times in the thesis, and these are now
introduced. The first of these is the Gillespie algorithm; the second is the quasi-stationary
distribution.

2.4.1 Gillespie algorithm

Much of the work in this thesis is concerned with stochastic simulation in continuous time.
These simulations rely on the Gillespie algorithm and variants of it, as applied to spatially
explicit systems. More specifically, they all use variants of the Direct Method described in
Gillespie (1977), used to generate a statistically correct trajectory of a stochastic equation.
Based in probability theory, this algorithm was originally made popular in its use for the
simulation of chemical and biochemical reactions, and there remains a strong interest in its
use and improvements in the biochemical and chemical literature (Sanassy et al., 2014); its
use is also common in the ecological literature (Black and McKane, 2012).

The simulation algorithm employs the average rates of reactions or events that can take place
in the system. In the context of an ecological system, these might be birth or death events; in
the context of metapopulations, they are colonisation and extinction events. The algorithm
uses properties of the exponential distribution which allow us to sample separately the time
until the next event and the event that occurs.

We denote the events that could occur (e.g. births and deaths) by Em, up to a total of EM
events. If organisms have the same event rates, the number of organisms that could undergo
each event is denoted hm, while the rate at which each organism undergoes this event is
denoted cm. Note that if organisms have different event rates - either because they have
different inherent rates or because of ecological effects such as overcrowding - then we
typically allocate a separate birth and death rate to each organism and hm = 1 for all events.
We sum over each of the M events to calculate the total event rate rate E0 =

∑M
m=1 cmhm.

The algorithm is described procedurally in Algorithm 2.1. The first step is to sample the
time until the next event τ . This follows an exponential distribution with rate parameter E0,
and can be sampled from this distribution5. The next step is to decide which event should
occur. For this, we need to work out the probabilities of the different events, which we
do by dividing by the total rate. We then select an event probabilistically, in proportion to

5This can be achieved by drawing a number r1 from the uniform distribution on the interval (0, 1) and
calculating τ = (1/E0)ln(1/r1).
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its probability. We can think of the event probabilities as covering the unit interval, and
generate a random number r2 on the interval [0, 1) and use it to choose the event ν that spans
the section of the interval containing r2.

Algorithm 2.1 Gillespie algorithm, direct method
1: while t < tmax do

2: Compute event rates Em and total event rate E0

3: Generate r1, r2 ∼ U(0, 1)

4: Compute time to next event τ = (1/E0)ln(1/r1)
5: Update time: t← t+ τ

6: Choose event Eν for which
∑M−1

m=1 Em/E0 < r2 ≤
∑M

m=1Em/E0

7: Update system state: perform event Eν

8: end while

More computationally efficient algorithms have been developed; these are reviewed in Sanassy
et al. (2014). For example, although the original algorithm used a linear search to select the
next event (line 6), improvements use more efficient search algorithms with better scaling
properties. In addition to these improvements to the exact algorithm, approximate methods
have been developed. The most commonly used approximation is that of tau-leaping (or
τ -leaping; Gillespie, 2001). In this approximation, instead of simulating each event individ-
ually and updating rates after each event, we simulate together all of the events expected to
take place within the time interval [t, t+τ ). The process is shown in Algorithm 2.2. Because
the number Km is unbounded, it is necessary to check that unrealistic (or negative) values
are not reached before conducting the updating step. The approximation is appropriate when
the state of the system does not change too much during the time interval τ . A method for
efficient step size selection is explained in Cao et al. (2006).

Algorithm 2.2 Gillespie algorithm, tau-leaping approximation
1: while t < tmax do

2: Compute event rates Em
3: Choose a time step τ
4: For each event Em, generate an event count Km ∼ Poisson(Emτ)

5: Update system state: perform each event Em a number Km times
6: Update time: t← t+ τ

7: end while
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2.4.2 The quasi-stationary distribution

The concept of the quasi-stationary distribution is usually invoked in systems modelled as
Markov chains with at least one absorbing state. In the context of population dynamics, a
Markov chain might be used to model the number of organisms in a system, and the ab-
sorbing state would correspond to the extinction state of the species. Intuitively, the quasi-
stationary distribution describes the long-run distribution of system states (e.g. patch occu-
pancy states or number of individuals present), prior to extinction.

Pollett (2012) explains that the idea of the quasi-stationary distribution (or conditional lim-
iting distribution) can be traced back to Yaglom (1947). However, he notes that the idea
actually had deeper roots in ecology and evolution, noting that Wright (1931) had already
referred to a limiting conditional distribution of gene frequencies. A very early use of the
term quasi-stationarity can also be found in the epidemiological literature in work by Bartlett
(1956, 1957b), who referred to an ‘an effective or quasi-stationarity’ (Bartlett, 1957b, p.38),
and according to Pollett (2012), coined the term quasi-stationary distribution in his 1960
work (Bartlett, 1960). A formal definition and general theory became available in the early
1960s (Pollett, 2012), with a continuous-time version of the theory developed in Darroch and
Seneta (1967).

We now define the QSD more formally, employing a combination of the notation used in
Artalejo (2012) and de Oliveira and Dickman (2005). Specifically, we define a regular time-
homogeneous Markov process X = {X(t); t ≥ 0} on a countable state space S (in the
finite case, this is of dimension m). The state space S consists of a set ST of transient states
among which the process evolves until it hits a set of one or more absorbing states SA; thus
S = ST ∪ SA. Without loss of generality, the states can be labelled such that SA = {0}, and
in the finite state case, the transitory states are labelled ST = {1, 2, ...,m}. In other words,
the Markov process takes the values σ = 0, 1, 2, ...,m, with the state σ = 0 absorbing.

In a first definition, we allow time to tend to infinity and consider the probability of the chain
being in a particular state, conditioned on non-extinction. Note that the distribution defined
in this way is also referred to as the quasi-limiting distribution (QLD) (see e.g. Méléard and
Villemonais, 2012). We use pσ(t) to denote the probability that X(t) = σ for some σ in the
transient set σ ∈ ST , given some particular initial state X(0) (i.e. pσ(t) = P{X(t) = σ ∈
ST | X(0) = j ∈ ST}. The survival probability PT (t) =

∑
σ≥1 pσ(t) = 1 − p0(t) is the

probability that the process has not become trapped in the absorbing state by time t (i.e. is
still in the transient set). Allowing t to tend to infinity, if it exists, the probability density
distribution given by the vector π in which πσ = limt→∞

pσ(t)
PT (t)

is a QSD.

In a second definition, we start with a probability distribution for the states of the Markov
chain and run the chain forwards. The initial probability distribution is a quasi-stationary
distribution if for all future time until extinction, the probability distribution of states in
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which the chain finds itself is unchanged (i.e. is time independent). Formally, we denote the
time to extinction by T = inf{t > 0 | X(t) ∈ SA, X(0) ∈ ST}, corresponding to the lower
bound on the time that the process enters the absorbing state. Suppose that a = {aσ;σ ∈ ST}
denotes a probability distribution over the transient states defined by aσ = P{X(t) = σ}.
Now, if there exists an initial distribution π defined as πσ = P{X(0) = σ}, such that
for all transient states σ ∈ ST and for all future times t ≥ 0 until extinction at time T ,
P{X(t) = σ | T > t} = πσ, then π is called a quasi-stationary distribution.

In the case where the state space is finite, the two definitions are equivalent (Vere-Jones,
1969; Méléard and Villemonais, 2012). Furthermore, when the chain is finite and irreducible
(i.e. every transient state can be reached from every other state), the existence of a unique
QSD is guaranteed (Darroch and Seneta, 1967). These conditions are fulfilled by the models
considered in this thesis.

Computing the QSD

The standard approach for obtaining the QSD is based on eigenvector analysis. This ap-
proach is provably exact up to the limits of numerical approximation in obtaining eigen-
values. The QSD is found numerically from the appropriate generator matrix (see Nasell,
2001b, for a clear explanation of why this is the case). For the full chain (including ex-
tinction), the generator matrix Q in the discrete time case consists of the state transition
probabilities matrix in which qrs is the transition probability from state r to state s. In the
continuous time case, the transition rate matrix or (infinitesimal) generator matrix Q is based
upon the transition rates: off-diagonal elements qrs are given by the transition rates from r

to s while diagonal elements are defined such that row sums are zero, i.e. qrr = −∑s 6=r qrs.
For the SRLM, defining ν = 2n for notational simplicity, Q has dimension ν × ν. The gen-
erator matrix for the continuous case where the zero state is absorbing (rates out of this state
are zero) is

Q =




−∑s 6=1 q0s 0 0 · · · 0

q10 −∑s 6=1 q1s q12 · · · q1ν

q20 q21 −∑s6=2 q2s · · · q2ν

...
...

... . . . ...
qν0 qν1 qν2 · · · −∑s6=ν qνs




In order to obtain the quasi-stationary distribution, we employ the sub-matrix of the generator
matrix corresponding to the transient states ST . The sub-generator matrix QST is obtained
from the full generator matrix by removing the row and column corresponding to transitions
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in and out of the absorbing state and has dimension (ν − 1)× (ν − 1):

QST =




−∑s 6=1 q1s q12 · · · q1ν

q21 −∑s 6=2 q2s · · · q2ν

...
... . . . ...

qν1 qν2 · · · −∑s 6=ν qνs




The QSD is then obtained by calculating the left eigenvector of QST corresponding to the
most non-negative real eigenvalue and by dividing each element by the sum of the elements
so that the entries sum to one6.

2.5 Models and persistence definitions in this thesis

Two main theoretical domain models, drawn from the ecological literature, are employed in
this thesis. These are illustrated in Figure 2.4. In Chapter 3, we use a cellular automaton
model on a torus, in which organisms live on a regular grid of sites and can die, or give birth
into any one of the eight neighbouring sites (as indicated by the ‘live’ blue cell and arrows).
In Chapters 4, 5 and 6, we use that Spatially Realistic Levins Model, a sample landscape
for which is illustrated in Figure 2.4 (b). In this model, a landscape is made up of patches
(representing areas of habitat, or populations of hosts). Each patch can become colonised by
organisms from other patches, or go extinct.

We now provide an overview of the models and persistence definitions used in the studies
included in this thesis, summarised in Table 2.1. Firstly, we note that throughout this thesis,
we assume that the real world is stochastic, that biological processes occur in continuous
time, that individual organisms are discrete and diverse, and that their interactions are spa-
tially heterogeneous. We consider models that embody these assumptions as providing the
best representation of real world systems; we then test the effects of changing these and other
modelling decisions on the variables of interest.

Three main theoretical models are used in this thesis: a lattice logistic model in Chapter 3;
the spatially-realised Levins model in Chapters 4, 5 and 6; and the original Levins model
in 6. In relation to the modelling decisions made, we use stochastic implementations of
these models in Chapters 3, 4 and 5, where they are implemented as a Markov chain, and
deterministic models in Chapter 6. Time is modelled as continuous in all chapters, and we
also compare with discrete-time models in Chapter 3. In all chapters, the population status
is modelled in relation to pre-specified sites or patches. In Chapter 3 we think of each patch

6The ordering is often ambiguous in the literature: the generator matrix must first be constructed and the
sub-generator obtained from it; this guarantees the correct values on the diagonal.
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(a) Cellular automaton on a torus.
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(b) Sample landscape for Spatially Realistic Levins
Model (SRLM).

Figure 2.4: Visual representation of models used in the thesis

Table 2.1: Overview of questions and definitions of persistence used in studies described in
the thesis.

Chapter Persistence questions or
problems addressed

Model Definition of
persistence

Chapter 3 How are persistence and co-
existence affected by decisions
to model under continuous ver-
sus discrete time?

Lattice logistic model,
stochastic, simulations
using cellular automa-
ton on torus

Persistence until
pre-specified time
(1000 time units)

Chapter 4 How to quantify the impor-
tance of a patch to persistence
in a heterogeneous metapopu-
lation?

Spatially Realistic
Levins Model (basic
and general version),
stochastic, numerical

Mean time to
extinction from
quasi-stationarity,
metapopulation size

Chapter 5 How does compressing the
QSD for large, heterogeneous
systems affect estimates of per-
sistence?

SRLM, stochastic, sim-
ulation

Mean time to ex-
tinction from quasi-
stationarity

Chapter 6 How does the introduction of
additional patch states influ-
ence persistence thresholds in
metapopulation models?

Levins model (with and
without Allee effects),
SRLM, deterministic,
analytic

Existence of a sta-
ble, nontrivial solu-
tion
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as hosting a single individual; in Chapters 4, 5 and 6 patches host whole populations, but the
internal dynamics of the population are not modelled (i.e. we aggregate over individuals and
partially aggregate over space). In Chapters 4 and 5 we consider only two states per patch;
in Chapter 3, patches can be inhabited by either a single species, or one of two species; in
Chapter 6, a larger number of patch states is considered.

In relation to the definitions of persistence, in Chapter 3, we use a simple time horizon
approach. In Chapters 4 and 5 we are concerned with the QSD and measure mean time to
extinction from quasi-stationarity and in Chapter 4, also consider metapopulation size. In
Chapter 6, we work with deterministic models and consider persistence in relation to the
existence of a stable non-trivial equilibrium.

2.6 Conclusion

In this chapter, we have presented two frameworks for describing modelling decisions and
definitions of persistence. The first constitutes an attempt to classify ecological and epi-
demiological models in a way that moves beyond the usual approach of presenting a range
of model types by describing paradigmatic examples. Instead, we present modelling ap-
proaches according to the decisions made about how to represent relevant aspects of the
world by those involved in ecological and epidemiological modelling. It might, therefore,
be helpful in guiding modelling decisions and their reporting. We also consider how un-
derstanding modelling decisions fits within the computational biology literature, and explain
that attempts to understand the effects of modelling decisions made during the translation
from the (biological) domain model to the platform model form the basis for legitimate com-
puting science research questions. The second framework, shown visually in Figure 2.2,
helps to clarify the language used in work on population persistence, and might be used to
provide a standardised terminology for relating persistence concepts found in the literature.
In the final sections of this chapter, we introduced two probability theory concepts that are
used repeatedly in the thesis - the Gillespie algorithm and the quasi-stationary distribution
- before providing an overview of the ways in which all of the concepts discussed in the
chapter relate to the studies in the following sections.
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Chapter 3

Discrete and continuous time
simulations of spatial ecological
processes predict different final
population sizes and interspecific
competition outcomes

Cellular automata (CAs) are commonly used to simulate spatial processes in ecology. Al-
though appropriate for modelling events that occur at discrete time points, they are also
routinely used to model biological processes that take place continuously. We report on a
study comparing predictions of discrete time CA models to those of their continuous time
counterpart. Specifically, we investigate how the decision to model time discretely or contin-
uously affects predictions regarding long-run population sizes, the probability of extinction
and interspecific competition. We show effects on predicted ecological outcomes, finding
quantitative differences in all cases and in the case of interspecific competition, additional
qualitative differences in predictions regarding species dominance. Our findings demonstrate
that qualitative conclusions drawn from spatial simulations can be critically dependent on the
decision to model time discretely or continuously. Contrary to our expectations, simulating
in continuous time did not incur a heavy computational penalty. We also raise ecological
questions on the relative benefits of reproductive strategies that take place in discrete and
continuous time.1

1The original publication, Mancy et al. (2013), can be obtained at
http://dx.doi.org/10.1016/j.ecolmodel.2013.03.013
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3.1 Introduction

Cellular automata (CAs) are commonly used to simulate dynamic spatial processes in ecol-
ogy, contributing to developments in both applied and theoretical research. In a simple CA
model of birth-death processes, individuals inhabit discrete sites, usually organised in a grid
formation. Time progresses in discrete steps and an update scheme specifies how individuals
die or give birth into neighbouring sites at each step. For example, in the applied literature
CAs have been used to simulate the spatial distribution of insect colonies (Perfecto and Van-
dermeer, 2008; Vandermeer et al., 2008) and the effect of plant-soil feedbacks on relative tree
abundance (Mangan et al., 2010), while in microbial ecology, Fox et al. (2008) used a CA
to investigate the way in which plasmids invade bacterial populations. In contrast, Laird and
Schamp (2008) used a CA to explore theoretical questions relating to differences between
interspecific competition in spatial and non-spatial (homogeneous mixing) contexts while
Roxburgh et al. (2004) investigated mechanisms leading to long-term species coexistence
in the context of the intermediate disturbance hypothesis. In addition, CAs have been used
to validate simplifications required to solve models analytically, such as in the theoretical
work on population self-structuring reviewed in Lion and van Baalen (2008), as well as in a
range of publications on the evolution host-parasite interactions (see e.g. Kamo and Boots,
2004; Best et al., 2011, for parasite virulence and host resistance respectively), the evolution
of altruism (e.g. Lion and van Baalen, 2007) and the evolution of reproductive effort (Lion,
2010).

Among the assumptions embodied in CA models is that of discrete time. This in turn intro-
duces the need to make additional assumptions in the form of modelling decisions regard-
ing the update scheme used to govern the order in which sites are considered and events
take place. When these modelling decisions are made carefully, CAs can form appropriate
models for discrete time spatial processes. However, they are often employed to simulate
continuous time ecological processes or models, frequently without acknowledgement that
this introduces an additional layer of approximation. Fortunately, these continuous processes
can be simulated directly using a discrete space version of the Gillespie algorithm (Gillespie,
1977)2. Following this algorithm, time is continuous in the sense that it progresses in arbi-
trarily small steps, the length of which varies according to event rates, and these are limited
only by the precision of the computer on which it is implemented. Although a little more
mathematically involved than discrete time approaches, the implementation of this algorithm
reduces the number of modelling decisions and thus allows a stronger focus on the biology
while enhancing comparability between studies. Once understood, the approach can also be
applied to non-spatial and continuous space problems, as well as to evolutionary problems

2The Gillespie algorithm and the τ -leaping approximation referred to in the following paragraphs are de-
scribed in Section 2.4.1.
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(see e.g. Meier et al., 2011).

Decisions about whether to simulate in continuous or discrete time, and in the latter case
which update scheme to use, are not simply technical but should be made in direct relation
to the dynamics of the biological system under study. In order to compare studies and make
informed decisions about which approach to use, it is important to understand any disparities
in predictions between continuous and discrete time simulations, especially in the case where
CAs are used to model continuous time processes. Although it is known that CA update
schemes (the order in which events are considered) can affect ecological dynamics (Ruxton
and Saravia, 1998), differences in ecologically meaningful predictions between CAs and
corresponding continuous time simulation approaches have never been tested.

In this chapter, we assume stochastic real world processes that occur in continuous time with
exponentially distributed waiting times between events, taking as a case study the asymmet-
ric logistic model of population growth on a lattice (Matsuda et al., 1992). We regard this
model as our benchmark and consider discrete time CA simulations as approximations to this
model. Specifically, we simulate this model stochastically in continuous time and compare
outcomes with those of simulations conducted using two probabilistic CA update schemes, a
range of time step sizes and two methods for converting between the rates used in continuous
time models and probabilities required for discrete time simulation. We conduct two exper-
iments, focusing in the first on a single species and in the second on competition between
two species. In both experiments, we report long-run population sizes, and in the context of
interspecific competition, also predictions regarding coexistence and competitive exclusion,
using these outcomes to highlight disparities between discrete and continuous time.

In the following sections we consider some of the modelling decisions that need to be made
when using CAs, emphasising the conversion from rates to probabilities required to approx-
imate continuous processes. We describe our experimental protocol, provide findings from
our two experiments and conclude with modelling recommendations.

3.2 Modelling decisions of cellular automata

Provided that time steps are chosen carefully so that they match the periodicity of real
ecological events, discrete time simulations can be appropriate when simulating ecologi-
cal processes that occur synchronously (e.g. reproductive cycles in cicadas) or where there
are strong cyclical patterns (e.g. due to seasonality). Their use becomes more difficult to
justify when modelling continuous processes (e.g. disease transmission) or to validate an-
alytic simplifications in continuous time models. Nonetheless, justifications for employ-
ing discrete time simulations, decisions regarding particular choices of update scheme and
method of converting rates to probabilities are rarely reported (although see Best et al., 2011;
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Ovaskainen and Hanski, 2003a, for articles including this information). This makes replica-
tion almost impossible, as well as hindering comparisons between studies and the interpreta-
tion of any conflicting findings. In this study, we investigate the extent of these problems by
simulating the same system in continuous and discrete time, taking a continuous time model
as our benchmark. We limit our discussion to one or more species living on a finite grid, and
assume ecological processes that take place continuously according to a well-understood
model.

Simple CA models of ecological processes are usually constructed in the following way:
organisms live on a grid of sites; time progresses in discrete time steps and at each itera-
tion individuals persist, die, or give birth into neighbouring sites according to a set of local

transition rules. In probabilistic models, event probabilities are often dependent on the con-
figuration of occupied and empty sites in the neighbourhood. CAs are relatively straightfor-
ward to implement, requiring limited mathematical or modelling knowledge (Berec, 2002;
Breckling et al., 2011) but their very ease of implementation belies a range of complexities.
Specifically, important modelling decisions arise as a result of the discrete nature of time:
these concern the order in which events are executed and the way in which event rates are
converted to probabilities.

The issue of event ordering arises because in discrete time, events may occur simultaneously
at the same site (e.g. two births into the same site) and decisions thus need to be made
about the order in which events should take place and how to resolve competition. An up-

date scheme is therefore used to determine event ordering. A large number of schemes have
been proposed and comparisons between these in the computing science, theoretical physics
and ecological literature demonstrate important differences in dynamics and steady state out-
comes (e.g. Manzoni, 2012; Ingerson and Buvel, 1984; Lumer and Nicolis, 1994; Schönfisch
and de Roos, 1999; Cornforth et al., 2002; Ruxton and Saravia, 1998).

Event frequency in continuous time is typically characterised by event rates and the assump-
tion that waiting times between events are exponentially distributed. For use in CA models,
these rates must be converted into event probabilities. We use two different approaches in
our study, one that allows for multiple events and one that allows only a single event per time
step ∆t. In the first, we make use of the fact that for a process with exponentially distributed
waiting times, the number of events within a specified time window follows a Poisson dis-
tribution. Thus, we sample the number of events from a Poisson distribution with parameter
r∆t where r is the instantaneous rate (note that this only makes sense for births). When
discrete time is viewed as an approximation to a continuous process, this is similar to the
τ -leaping idea proposed by Gillespie (2001). The second conversion is a cruder approxima-
tion that allows a maximum of one event per time step, bringing the simulation into line with
most common CA approaches (see e.g. Best et al., 2011, for a study where this conversion is
described explicitly). Probabilities in this approach are computed from rates as described in
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Section 3.3.3. System dynamics are expected to differ between conversion approaches and
although it is known that reducing the time step should limit this effect (see e.g. Schönfisch
and de Roos, 1999), it is unclear how small ∆t needs to be before particular (qualitative and
quantitative) properties of ecological models are indistinguishable.

3.3 Experimental protocol

Following Ruxton and Saravia’s (1998) comparison of CA update schemes, we take as a case
study one of the simplest spatial models, the asymmetric logistic model of population growth
on a lattice. We simulate a stochastic version of this model for different birth and death rates
using a model with exponentially distributed waiting times between events. This is compared
to simulations using two CA update schemes, a range of time steps and two methods used
to convert from rates to probabilities. In our analysis, we consider the continuous time
simulation as our benchmark and the discrete time simulations as approximations to this. In
Experiment 1, we simulate a single species and consider differences in long-run population
sizes and probability of extinction. In Experiment 2, we consider two species and compare
interspecific competition outcomes. Simulations are conducted for 1000 time units and 100
repetitions unless otherwise stated.

3.3.1 Continuous time model

The lattice logistic model describes population growth that is regulated by the local avail-
ability of empty sites. In the standard version of the model, organisms live on an infinite
network of sites, each of which is connected to n randomly-selected neighbours. Organisms
have two fundamental behaviours - birth and death - governed by rates, and can only give
birth if there is an empty site in their neighbourhood (Matsuda et al., 1992)3. We simulate
the stochastic version of this continuous time model as a Poisson process. This is imple-
mented in the form of a spatial version of the Gillespie algorithm (Gillespie, 1977) that
resembles the algorithm proposed by Stundzia and Lumsden (1996) and that we refer to as
Gill. The algorithms used are described formally in Appendix B.1 and the code is available
from (http://rebeccamancy.github.io/gillespie-cellular-automaton/).

3In some versions of the lattice logistic model, death rate is also related to the density of neighbours. In
the version we implement, death occurs at a constant rate independent of overcrowding while reproduction is
limited by resource constraints.
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3.3.2 Cellular automaton update schemes

We compare the outcomes of our continuous time simulations to those of a range of CAs. We
select two update schemes among those considered by Ruxton and Saravia (1998), deliber-
ately choosing schemes in which site order is random and that differ in the level of structure
introduced (Schönfisch and de Roos, 1999) to investigate the effects of update timing and
event orderings.

The first scheme introduces structure by fixing the order of birth and death events and through
delayed updating. At each generation, a new random site order is generated which is then
used to execute death at all occupied sites and then birth at all occupied sites probabilistically,
after which the population is updated for the next generation. The scheme is implemented as
RFd2S and RFd2M following the naming conventions in Ruxton and Saravia (1998)4. The
second scheme introduces less structure since event ordering is random and updates are fully
asynchronous. We generate a list of (site, event) pairs, executing these in a new random
order at each generation and updating the state of system after each event. In Ruxton and
Saravia (1998) this scheme is referred to as RR1 and is implemented here for the two forms
of rate conversion as RR1S and RR1M .

3.3.3 Rate conversion

We use two methods to convert rates: in the first, multiple births are permitted whereas in
the second, an additional layer of approximation is introduced since at most one birth is
performed. In the first approach, referred to as multiple births,5 we draw a number of events
nν where nν ∼ Poiss(r∆t) where, as previously, r represents the instantaneous rate and
∆t is the time step. This conversion makes the assumption that births within a time step are
independent6. In the second, we assume that multiple births within a time step never occur
so Pr(nν > 1) ≈ 0 and thus that Pr(nν = 1) ≈ 1 − Pr(nν = 0) = 1 − e−r∆t (see e.g.
Fleurence and Hollenbeak, 2007). Multiple births versions of the algorithms are suffixed M
and single births S.

4In the CA algorithm names, the first letter refers to site ordering, the second to event ordering, and the
number to whether updating takes place immediately (1, because a single array is required) or with a delay (2,
as two arrays are required). Specifically, R refers to the random order in which sites are visited, Fd indicates
that the order of birth and death events is fixed with death occurring first, 2 indicates that two arrays are used
to store the configurations to allow delayed updating, and the final letter (see 3.3.3) refers to the approach to
rate conversion. The same scheme is referred to as RF2 in Ruxton and Saravia (1998), where no birth-first
schemes are considered.

5This method is applied only to births as each site is only visited once per generation so death can occur at
most once.

6A similar approach, known as τ -leaping, is used in approximations of the standard Gillespie algorithm
(Gillespie, 2001).
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3.3.4 General model parameters

In our experiments, we consider Gill as our benchmark and compare with the four CA
update schemes RFd2S, RR1S, RFd2M and RR1M , explained in Appendix B.1. We sim-
ulate all schemes for 1000 time units on a regular square lattice of 100×100 sites using a
neighbourhood consisting of the 8 nearest neighbours (Moore neighbourhood) and wrapping
boundaries in the form of a torus to mimic the infinite lattice of the theoretical model7. We
refer to the population after 1000 time units as the final population; in many cases this cor-
responds to the pseudo-steady state of the system although time to convergence depends on
parameter values. We run 100 stochastic repetitions of all simulations and report summary
statistics where appropriate. Except where otherwise indicated, all populations start with
1000 individuals randomly distributed across sites. In each experiment, we hold the intrinsic
birth rate of organisms constant at b = 1 and vary the death rate in steps of 0.1 from 0.1 to
1.0 inclusive8, giving death-to-birth ratios, denoted δ, in the range 0.1 to 1.0. We test time
step values in the set {20, 2−1, 2−2, 2−3, 2−4, 2−5, 2−6}. The simulation code is programmed
in Java and the full code release is available from http://rebeccamancy.github.io/gillespie-
cellular-automaton/, with post-processing conducted in R.

3.4 Experiment 1: Single population

In Experiment 1 we explore final population sizes underGill and the four CA update schemes.
Final population sizes under Gill for the different death-to-birth ratios (δ) are shown in Fig-
ure 3.1, demonstrating small variance between runs. In general, populations with lower
values of δ are larger, and for values of δ = 0.6 and below, the population grows rapidly and
reaches quasi-stationarity; extinction occurs slowly for δ = 0.7 and rapidly for higher values
(see Figure 3.2). We refer to the transition between persistent populations and population
extinction that occurs between δ = 0.6 and δ = 0.7 as the persistence threshold (Adler and
Nuernberger, 1994).

Comparing final population sizes and proportion of runs extinct between Gill and the CA
algorithms, qualitative patterns differed little between the two single birth algorithms and
we focus on RFd2S. For all parameter values, RFd2S underestimates final population size
and the largest differences in mean final population size occur for the longest time steps and
intermediate values of δ. The finding that the largest deviations are found for the longest

7Our choice of network topology is motivated by the prevalence of square lattices in the literature; we
acknowledge the arguments for the use of hexagonal lattices (Birch, 2006; Birch et al., 2007; Holland et al.,
2007; White and Kiester, 2008). The implemented model diverges from the theoretical model in that latter
assumes an infinite random regular network rather than an orthogonal lattice.

8A similar approach is used by Ruxton and Saravia (1998) in choosing a death rate for their simulations;
however, we test the full range of death rates throughout.
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Figure 3.1: Box plot showing final population sizes for death-to-birth ratios δ under Gill.
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Figure 3.2: Time series plot showing mean and range for δ = 0.7 (lower line) and δ = 0.6
(upper line) under Gill.

time steps is expected. The deviation for intermediate values of δ can be explained by the
occupancy level of grid: at these values, occupancy is around 50% and population size is
more sensitive to differences between the algorithms than at lower δ values where lack of
available sites dominates algorithm effects. Because final populations under Gill are small
for δ = 0.7, differences between Gill and RFd2S are also small, even though all RFd2S
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runs actually went extinct for the four longest time steps (see Figure 3.3b for proportions of
runs extinct by t=1000 under RFd2S).
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(a) RFd2S: Population size underestimate
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(b) RFd2S: Algorithm bias and number of runs extinct

Figure 3.3: Plots of (a) difference in average population size (including extinct runs) for
Gill−RFd2S (shading highlights difference in final population size) and (b) percentage al-
gorithm bias (upper value in each cell; shading highlights size of algorithm bias) and number
of extinct runs out of 100 under RFd2S (lower value). Negative values represent underesti-
mates compared with Gill.

Figure 3.3b shows algorithm bias, the proportion under-estimate of final population size
compared with Gill for RFd2S. Strongest bias was found for δ close to the persistence
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Table 3.1: Maximum time step size giving indistinguishable final population sizes as Gill
(2-tailed student t-test, unequal variances at the 5% level); – indicates that final population
sizes differed for all of the time steps considered; N/A indicates populations that went ex-
tinct for both simulation approaches; * indicates that this algorithm did not correctly predict
extinction for these values.

δ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
RFd2S 2−3 2−4 2−5 2−6 – – – N/A N/A N/A
RR1S 2−6 – – – – – – N/A N/A N/A
RFd2M 2−6 2−6 2−6 – 2−6 2−5 2−3 N/A N/A N/A
RR1M – – – – – – – * * *

threshold, and was worst for longer time steps. The highest levels of algorithm bias are ex-
plained by the higher extinction rates of RFd2S than Gill; nonetheless, even for parameters
where populations did not go extinct under either algorithm, bias increases as we increase
step size and towards the persistence threshold. Comparing the proportion of runs that went
extinct under Gill (Figure 3.3b) with those of RFd2S (Figure 3.1) shows that populations
simulated under Gill are more resilient and this difference is most obvious at δ = 0.7 (31%
runs extinct under Gill compared with 71% under RFd2S and 67% under RR1S for the
shortest time step).

Similar patterns were seen in the relationship between accuracy and parameter values for the
multiple births scheme RFd2M , except that this algorithm overestimated population sizes
for all parameter values apart from δ = 0.7 (Figure 3.4). In contrast, the RR1M scheme
gave large overestimates of final population size for all parameter values, and no run went
extinct. The difference between the two multiple birth versions of the algorithms is very
marked: although simulating multiple births improves estimates when updating is delayed
until the end of a generation (RFd2M ) it produces large overestimates when updating takes
place immediately (RR1M ). Under the RFd2M scheme, the increase in birth rate due to
multiple births is partially compensated by the increase in death rate since all organisms are
considered for death at the next time step. Under RR1M , births can take place into sites
that have already been evaluated for death during the current generation and are therefore
not evaluated for death until the following generation. In other words, the effective birth rate
is increased much more than the corresponding death rate for RR1M ; this algorithm gives a
poor approximation of Gill and we consider it no further.

Finally, we consider the minimum time step required to generate final population sizes that
are statistically indistinguishable from those of Gill on the basis of t-tests. Table 3.1 shows
that RFd2S performed slightly better than RR1S, but this effect is largely due to the fact
that sizes under RFd2S represent the highest point in each birth-death cycle as population
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Figure 3.4: Percentage algorithm bias for RFd2M (upper value in each cell) and number of
runs extinct out of 100 (lower value). Negative values represent underestimates compared
with Gill; shading highlights absolute algorithm bias.

size is measured after births. To simulate final population sizes that are statistically indis-
tinguishable from Gill, an unidentified step size below below 2−6 is required for RR1S for
all δ > 0.1, whereas this is the case for RFd2S only for δ close to the persistence threshold.
Among the multiple birth schemes, RFd2M performed better (i.e. closer to Gill) than both
single birth schemes for values of δ close to the persistence threshold, but less well than
RFd2S for low δ. The impact of simulating multiple births in RFd2M also had a greater
positive effect on algorithm bias for larger step sizes where the largest errors were found
under the single births version. This is because with larger step sizes Gill tends to generate
more cases of multiple births within the equivalent of a time step, so the single birth schemes
are more inaccurate for larger step sizes.

In conclusion, Experiment 1 demonstrated relatively large discrepancies in final population
sizes between the continuous and discrete time simulations, and these differed with time
step and death-to-birth ratio. Time steps need to be reduced to values of 2−3 or smaller
for final population sizes to be statistically indistinguishable from those of the Gillespie
simulator, although required step size depended on both the update scheme and δ. It is
therefore important for researchers who simulate in discrete time to be explicit about the time
step and update scheme employed. The multiple births versions of the algorithms RFd2M
and RR1M allowed us to emulate the multiple births within a time step that can occur under
Gill; this appeared to be a helpful strategy under RFd2M , at least for values of δ near the
persistence threshold, but not underRR1M where it introduced heavy bias. Overall, the step
sizes required to accurately approximate continuous time are small, they have a complex
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relationship with other model parameters and the computational cost of simulation under
sufficiently small step sizes is high.

3.5 Experiment 2: Interspecific competition

We now investigate the outcomes of interspecific competition between two species. The
question of interspecific competition is of importance in a range of practical contexts such as
when predicting the spread of invasive species and has also been studied extensively in the
mathematical biology literature (see Vandermeer and Yitbarek, 2012, for a recent example in
a spatial context). For a range of simple deterministic models where competition is for a sin-
gle resource, it can be shown that there are four possible biological outcomes at equilibrium:
extinction of both species, competitive exclusion of species one by species two, competitive

exclusion of species two by species one and coexistence (Levin, 1974). The competition
model under logistic growth in the non-spatial case for species subscripted 1 and 2 can be
written as

ṗ1 =(b1p0 − d1)p1

ṗ2 =(b2p0 − d2)p2

where p represents the population density (subscript zero indicating density of empty sites),
b the birth rate and d the death rate. The equilibrium condition can be found by solving
simultaneously for ṗ1 = ṗ2 = 0, also showing that coexistence is possible only when the
two species have exactly the same death-to-birth ratio δ1 = δ2 and that a slight disadvantage
for either species eventually leads to its competitive exclusion. We therefore also expected
our spatial model to be sensitive to small deviations around this point. Since the conversion
from continuous to discrete time introduces fine adjustments to birth and death rates, any dif-
ferences between update schemes and methods of modelling time are likely to be apparent
around this point. The decision to simulate at this point implies that differences uncovered
in the experiments described below constitute a worst case scenario; however, we believe
that they constitute a relevant and realistic one. For example, it is not unreasonable to as-
sume that death-to-birth ratios of invasive species will be similar to those of native species.
Furthermore, many of the studies in the theoretical literature that use CAs to validate ana-
lytic simplifications (e.g. Lion and van Baalen, 2007) are concerned with the evolution of
altruism, where fine adjustments of birth and death rates for otherwise similar species are of
particular interest.

We simulate interspecific competition for a range of birth-to-death ratios, holding constant
the relationship between species such that δ1 = δ2 and with starting populations of 1000
for each species. We use the same range of birth and death rates as in Experiment 1 for



3.5. Experiment 2: Interspecific competition 47

species one and allocate exactly half these rates to species two, referring to species one as
having higher population turnover. We investigate the range of parameter values for which
the CA models predict the same interspecific competition outcomes as Gill. In line with the
stochastic nature of our simulations in which all populations would ultimately go extinct, we
consider that qualitative predictions are the same when in both algorithms the same species
dominates over 50% of runs at time 1000 in the sense of having larger population size.

Figure 3.5 shows final population sizes for Gill. Both species went extinct in all runs for
values of δ of 0.8 and above. For values of 0.5 and below, the population with the higher
population turnover (species one) demonstrated larger final population sizes, although the
difference failed to reach statistical significance for δ = 0.5. In contrast, for δ = 0.6, the
species with slower population turnover showed higher average population sizes. For δ =

0.7, species one went extinct in most runs, and species two also tended towards extinction,
but more slowly. Overall, higher population turnover is the more effective strategy for low
values of δ while lower population turnover is the preferred strategy near to the persistence
threshold. Time series plots showed that for persistent runs (δ < 0.7), the mean population
sizes were stable, although variability between runs was large.
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Figure 3.5: Box plot showing final population sizes for the two species under different death-
to-birth ratios δ under Gill.

We now examine the conditions under which the CA schemes give the same qualitative
predictions as Gill. Figure 3.6 shows the results of interspecific competitions for RFd2S
and RFd2M (findings for RR1S were very similar to RFd2S and are not shown). Overall,
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Figure 3.6: Interspecific competition for RFd2S (top panel) and RFd2M (bottom panel).
The upper two values in each cell represent the final population size for species one and two
respectively with bold type used to highlight the larger of the two values. The bottom value
in each cell gives percentage of runs in which species one dominated at time 1000. Shading
indicates parameter sets giving the same qualitative predictions as Gill.

RFd2M performed better than RFd2S, making the same qualitative predictions as Gill for
a larger range of parameter values (for all values of δ for step sizes 2−2 and smaller). In
contrast, RFd2S predicted an advantage for the population with slower turnover for larger
step sizes and all values of δ, and for lower values of δ this advantage was strong. Under
RFd2S, step size needed to be reduced to 2−4 before qualitative predictions concurred with
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Gill for any of the parameter values for which Gill predicted an advantage for species 1.
Figure 3.7 highlights the differences in competitive outcomes between the update schemes
and shows the time series plots for Gill, RFd2S and RFd2M for δ = 0.1 and for the CA
models, a time step of size 1. The time series differs very considerably between Gill (top)
and RFd2S (middle), but much less between Gill and RFd2M (bottom).
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Figure 3.7: Time series plots (mean and range) for Gill, RFd2S and RFd2M , δ = 0.1.
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We conducted robustness testing with different initial population sizes, starting one species
with a population size of 10 or 100 and the other with size 1000. Under Gill, the simu-
lations showed that for large differences in initial population size, population turnover no
longer dominated competitive outcomes, and populations with larger population sizes had
the advantage. This effect seemed to be due to the species with larger initial size dominating
the grid in early stages. In the standard Gill simulation with equal starting population sizes,
higher population turnover led to a larger number of births at the perimeter of populated
areas giving the species more rapid access to unoccupied territories where the birth rate was
reduced less by competition. This effect was compounded by the resulting faster increase
in population size leading to a higher species-level birth rate for the larger population. With
the same starting populations, both the discrete time models tended to under-predict the final
size of the population with faster turnover (species one) compared with Gill; these discrete
time models thus performed better when species two had larger initial size since this initial
imbalance in population sizes also led to dominance by species two under Gill.

We also conducted robustness tests to check values that deviated slightly from δ1 = δ2 by
reducing death-to-birth ratios of species one by rδ of 5%, 10%, 15% and 20% thus giving
species one less of an advantage under Gill. Although the simulation paradigms differed
less as we moved away from δ1 = δ2, differences were still apparent for RFd2S for all rδ for
some time steps and values of δ. For RFd2M , differences were seen for the 5% deviation
from equality only. These tests showed that predictions remained sensitive to the update
scheme used for death-to-birth ratios deviating from δ1 = δ2.

3.6 Discussion and conclusions

Our findings illustrate the importance of the decision to model time continuously or dis-
cretely, as well as the role of update scheme and step size when using CAs to approximate
continuous time models or processes. Experiment 1 showed that in comparison with Gill,
RFd2S and RR1S underestimated final population sizes for a single species, while RFd2M
and RR1M gave overestimates. Although simulating multiple births in RFd2M led to an
improvement over the single births version, the same was not true of RR1M which made
large overestimates of population sizes. Algorithm bias varied as a function of death-to-
birth ratio, and differences were most apparent at values close to the persistence threshold.
Experiment 2 demonstrated differences in interspecific competition as a function of update
scheme, step size and death-to-birth ratio. In order to provide the same qualitative prediction
as Gill about species dominance at time 1000, both RFd2S and RR1S required small step
sizes, although none of the values tested were sufficiently small for δ = 0.4 or δ = 0.5. In
contrast, RFd2M predicted interspecies competition outcomes fairly accurately, with a step
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size of 2−2 being sufficiently small for all δ values.

Our findings also demonstrate the importance of timescale: it is obvious from Figure 3.7
that selecting an earlier or later time at which to sample final population sizes would lead to
different comparisons between the algorithms from those shown in Figure 3.6. The dynamics
differ considerably between the algorithms and while more extended runs show that Gill has
reached a quasi-stationary equilibrium, RFd2S has reached a steady state with extinction
of species one in all runs, and RFd2M has not yet converged. In Gill, species two is more
sensitive to extinction due to the smaller population sizes, and in 100 longer runs (not shown),
species two first went extinct around time 33,000 while no populations of species one, the
species with higher population turnover, had gone extinct by time 50,000.

Although the importance in ecological modelling of selecting an appropriate CA update
scheme has been highlighted previously for single species models (Ruxton and Saravia,
1998), the particular question of differences between continuous and discrete time simu-
lations, and the role of update schemes in the approximation of continuous time processes
have not been explored. This is despite the pervasive use of CA models in the literature. Our
simulations demonstrate that the decision to model in continuous or discrete time matters,
and that choice of CA update scheme affects both final population sizes and the outcomes
of interspecific competition. As an approximation of the continuous time approach, the
RR1M scheme failed to provide accurate predictions for any of the step sizes examined and
this scheme should be avoided. More interestingly, step size had important effects on final
population sizes and competitive outcomes, and to achieve accurate predictions across the
range of values of δ, very small step sizes were required. Halving step size also doubles
execution time (i.e. execution time scales poorly with step size, and the algorithm runs in
O(2n) time where n is the inverse of the step size, i.e. 1/∆t), so selecting a step size that is
sufficiently small to guarantee accurate approximation to Gill requires considerable compu-
tational power. We tested our code on two machines9, and although we did not specifically
aim to optimise our code, runtime for Gill was shorter than all CA update schemes for time
steps of 0.5 and smaller, and on the second of the two machines, was shorter thanRFd2M for
all step sizes. We suggest that whenever continuous time is assumed the Gillespie simulator
approach should be selected. As noted in the introduction, this approach has the advantage of
reducing the number of modelling decisions, enhancing comparability between studies and
allowing researchers to direct their focus towards biological processes rather than techni-
cal implementation. Where CAs are nonetheless employed, we recommend that researchers
be explicit about both their choice of update scheme and step size, and that they conduct
robustness tests to check sensitivity to these parameters.

9Tests were conducted by running simulations in serial with other CPU load minimised to essential pro-
cesses on (1) an iMac7,1 Intel Core 2 Duo @ 2.8 GHz with cache size 4 MB running java version 1.6.0 35 and
(2) an Intel(R) Xeon(R) CPU E5606 @ 2.13GHz with cache size 8192 KB running java version 1.6.0 24.
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The differences between discrete and continuous time and the effect of update schemes have
not been explored for stochastic simulations of interspecies competition. Our simulations
demonstrated that RFd2S and RR1S required very small step sizes in order to accurately
predict competitive outcomes, and for large step sizes both made large qualitative errors
about species dominance for two species with the same death-to-birth ratio. In contrast,
RFd2M made relatively accurate predictions regarding species dominance with realistic step
sizes. This result is perhaps surprising given the smaller step sizes required in the single
species experiment and in light of Caron-Lormier et al.’s (2008) findings that in a contin-
uous space paradigm, differences in predictions became worse for more complex systems.
However, the disparity between our findings and those of Caron-Lormier et al. (2008) can
probably be explained by the limitations that the space available put on the degrees of free-
dom in our system.

The finding that the results of interspecific competitions can be so sensitive to modelling
assumptions is of concern. Although different modelling paradigms often lead to quanti-
tatively different predictions, we also find that modelling decisions affect qualitative con-
clusions about the direction of competitive advantage in interspecific competition. When
modelling interspecific competition, it is therefore important to choose update schemes and
model parameters with care. We recommend that the decision to simulate interspecific com-
petition in discrete or continuous time should be informed by, and ideally correspond to,
the biological processes under consideration. Nonetheless, RFd2M appears to represent a
possible approximation for the continuous time lattice logistic model of population growth.
The recommendations that researchers should explicitly state the update scheme and step
size apply as for single species simulations.

Throughout this chapter, we have assumed that CAs are used as an approximation to continu-
ous time models or processes, using Gill as a benchmark. However, if we consider both dis-
crete and continuous time models as accurate representations of different real world systems,
their predictions can also be interpreted from an ecological perspective. Our findings raise
questions about the value to populations of different reproductive strategies. For example,
comparing the proportion of runs that went extinct under Gill and the two update schemes
RFd2S and RFd2M we find that populations of organisms with synchronised reproductive
cycles are more sensitive to extinction events than those with continuous reproduction, and
for long cycles (large time steps) this is true even when multiple births are possible. In
the context of interspecific competition, our simulations showed advantages of slower pop-
ulation turnover in populations of organisms with highly synchronised reproductive cycles
whereas faster turnover had the competitive advantage for continuously reproducing species,
except near the persistence threshold.

In conclusion, we recommend that researchers exercise caution if using CAs to simulate
continuous time processes by checking that their conclusions are not sensitive to the time
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step chosen, that they justify and explicate their modelling decisions in full with reference
to the biological system considered, and ideally that they use continuous time models to
simulate continuous processes.
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Chapter 4

The contribution of a patch to
persistence in a stochastic
metapopulation model

To design effective interventions for conservation biology or endemic disease control, we
require accurate predictions of the effect of interventions on persistence. In simple metapop-
ulation models, patches or populations are modelled as either occupied or unoccupied (in-
fectious or susceptible), and interventions such as habitat creation or population vaccination
can be conceptualised as patch creation or removal respectively. Several authors have pro-
posed ways to measure the value of a patch to metapopulation persistence in deterministic
and stochastic models, but the accuracy with which they can be used to predict the effect on
mean time to extinction or metapopulation size in stochastic models remains untested. In this
chapter, we compare predictors of patch contribution for stochastic measures of persistence
from the quasi-stationary distribution. Using a numerical approach, we show that the relative
effect of patch removal on mean time to extinction is well approximated by the probability
of patch occupancy in the quasi-stationary distribution raised to a power η ≈ 2, and provide
a similar measure of the relative effect of patch removal on metapopulation size. Under the
appropriate assumptions, the contribution of a patch can therefore be closely approximated
by information routinely collected by ecologists and epidemiologists without the need for
complex model fitting. The findings are robust to changes in the model within the spatially
realistic Levins model framework, provided patch area has a similar effect on colonisation
and extinction rates. The findings should help design interventions such as habitat regenera-
tion in conservation biology or vaccination in the context of endemic disease.
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4.1 Motivation

To manage biological systems effectively, either to support long-term species survival or to
hasten elimination of endemic disease, we need to be able to predict the effect of potential
interventions. In the case where they are carried out sequentially, it would also be valuable
to be able to predict the effect of interventions on measurable outcomes in order to conduct
effective adaptive management of these systems (Holling, 1978; Stankey et al., 2005).

Metapopulation models in which organisms are either present or absent from patches or pop-
ulations have often been used in ecology and epidemiology. A patch can be thought of as an
area of habitat or a relatively distinct host subpopulation that is susceptible to disease. The
use of presence-absence models can be motivated by a lack of detailed data on population
sizes or by computational limitations. In ecology, a species is modelled as either present
or absent from habitat patches; in epidemiology, presence or absence of infection is consid-
ered in relation to the host populations making up the metapopulation. Interventions in real
systems generally aim to optimise either persistence times or abundance: for species con-
servation, interventions usually aim to optimise system characteristics for long persistence
times or high species abundance; for disease elimination, we design interventions with the
aim of shortening time until disease extinction in the metapopulation or reducing infection
prevalence.

One example of a real-world system and associated intervention is that of dog rabies de-
scribed in Beyer et al. (2012). The system consists of 75 villages in Tanzania where dog
rabies is endemic, and the intervention takes the form of dog vaccination programmes. The
system can be conceived of as a metapopulation in which patches consist of dog populations
at particular locations (dogs typically live with an owner, and owners live in villages); the
size of a patch corresponds to the number of susceptible dogs in the village (e.g. similar to
the landscape shown in Figure 2.4 (b)). Dogs can move between villages, and do so as a
function of the distance between villages, and infectious dogs transmit rabies between vil-
lage dog populations in this way. The scientific question centres on the problem of making
decisions about which dogs to vaccinate, given a limited number of vaccine doses. For this
purpose, it would be useful to have a guiding heuristic that enables us to prioritise dog pop-
ulations for the delivery of vaccines. From a computing science perspective, the problem is
interesting because finding the probability of rabies being present in each village dog popu-
lation in the endemic (quasi-stationary) regime, and thus the effect of vaccinating the dogs
in this village, is computationally intractable using standard techniques.

In order to design effective interventions in a metapopulation context, it would be valuable
to have a heuristic to guide our selection of patches or populations to help optimise the effect
of these interventions. These heuristics should help us to choose between interventions,
but rely on being able to establish the contribution of individual patches to metapopulation
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persistence. Obviously measures of patch contribution should therefore support accurate
predictions about the importance of a patch; however, in order to have maximum impact,
they should also be relatively simple to compute from available data.

4.2 Characterising patch value

In this section, we provide a brief overview of existing work to characterise the value of a
patch in a metapopulation framework. To date, most of the theory has been conducted using
a deterministic framework in which long-term persistence is either certain or the system
ultimately tends to extinction. A common approach is to establish a persistence threshold
that separates these two regimes; metapopulation size can then be evaluated in the case
where persistence is guaranteed1. Hanski and Ovaskainen (2000) introduce a measure of
patch value Vi that captures the contribution of a patch to metapopulation capacity λM , at the
threshold between persistence and extinction. Metapopulation capacity itself measures the
capacity of a fragmented landscape to support long-term species persistence.

In contrast, in many standard stochastic population models, extinction is the ultimate fate of
the metapopulation even if it persists for a long time. Instead of a persistence threshold, we
can consider whether the metapopulation enters a quasi-stationary regime, the characteristics
of that regime, and the mean time to extinction from quasi-stationarity. The quasi-stationary
distribution is defined as the probability distribution of system states (i.e. particular patterns
of patch occupancy) conditioned on non-extinction, once the effect of initial conditions has
been lost (see Section 2.4.2 for a formal definition). Given a parameterised metapopulation
model, provided the system is not too large, the full state transition matrix can be constructed
and methods for finding the quasi-stationary distribution and mean time to extinction are
well understood (Darroch and Seneta, 1967; Nasell, 1996, 1999, 2001a; Artalejo, 2012).
Although the quasi-stationary distribution can be thought of as serving a similar role for
stochastic systems as the long-run (or steady-state) solution for deterministic systems, its
characteristics differ in a number of respects. As a result, it is generally unclear whether
conclusions about persistence that are drawn from deterministic models apply to stochastic
models, and the stochastic situation needs to be investigated separately.

The effect of particular patches on determining extinction times and the distribution of states
in the quasi-stationary regime has attracted little systematic attention. Additional definitions
of patch value in a stochastic model are provided in Ovaskainen and Hanski (2003b), with

1Assuming that the deterministic system is described by a set of differential equations, a persistent system is
often defined as one with a stable nontrivial equilibrium solution, in which case metapopulation size is is given
by a single number. A nontrivial long-run solution may take more complex forms such as cyclical patterns;
however, these issues are beyond the scope of this chapter as the deterministic version of the model used here
does have a stable equilibrium state.
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patch value considered in relation to contributions to colonisation events wi, to metapopula-
tion size ui, and to time to extinction ti. However, there has been little exploration of how
one might evaluate these measures in the absence of a fully parameterised metapopulation
model, the construction of which is technically involved and requires considerable data. Fur-
thermore, computing the full state transition matrix is also only possible for relatively small
systems (for a metapopulation in which each patch has only two states and n patches, the
full state transition matrix has dimension 2n× 2n), and memory limitations mean that this is
infeasible for systems with more than around 20 patches. As a result, alternative approaches
for estimating patch values would be highly valuable.

One option is to test the possibility of using deterministic patch value measures such as Vi to
predict the contribution of patches to relevant stochastic outcomes. The extent to which Vi
is a useful measure for this purpose has not been addressed. Other possible measures can be
found in an applied context. Beyer et al. (2012) test a range of algorithms for vaccine allo-
cation in a metapopulation model (with individuality), implicitly using patch value measures
that combine the ‘risk’ of a patch becoming infected and of it generating new infections.
A further alternative is to investigate the potential of using measures based on the quasi-
stationary distribution. Day and Possingham (1995) note that for a discrete-time metapop-
ulation model (with 8 patches both of equal and different sizes), the ranking of patches
according to their probability occupancy in the quasi-stationary distribution was identical to
that of the effect of their removal on 100-year extinction probability. Despite their comment
that ‘this suggests that, in some circumstances, the quasi-stationary probability of occupancy
is a good measure of the importance of a patch for metapopulation persistence’ (Day and
Possingham, 1995, p345), the relationship appears not to have been explored further.

Our main aim in this chapter is to compare predictors of the effect of patch removal on the
mean time to metapopulation extinction Tm and metapopulation size in the quasi-stationary
regime Sπ. These predictors are derived from both deterministic patch value measures and
measures based on the quasi-stationary distribution. We evaluate their accuracy as predictors
of the ‘true’ value of a patch for these outcomes, the size of the effect on measurable system
outcomes, as well as the ease with which they can be computed. In the next section, we
provide more information on the metapopulation model employed, the overall experimental
procedures and implementation, the persistence outcome measures Tm and Sπ, and the pre-
dictors tested. We then present our results and discuss the accuracy of the predictors and the
relative ease with which they can be calculated.
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Table 4.1: Symbols used in the SRLM

Symbol Explanation
pi(t) Probability that patch i is occupied at time t
Ci(t) Colonisation rate of patch i at time t
Ei(t) Extinction rate of patch i at time t
X(t) Occupancy vector of the stochastic model i at time t
Xi(t) Occupancy of patch i at time t in stochastic model
c, e Species-specific colonisation and extinction parame-

ters
Ai Size (area) of patch i

4.3 Materials and methods

4.3.1 Model

Throughout this study we use as a case study a stochastic version of the Spatially Realistic
Levins Model (SRLM) introduced by Hanski and Gyllenberg (1997). This model is illus-
trated in Figure 2.4 (b) and is chosen in part because it explicitly models patch heterogeneity
but also because it has been used for examining questions relating to both long-run per-
sistence and extinction times from quasi-stationarity, and because deterministic patch value
measures are most developed for this model. Similar models have also been considered in
relation to the quasi-stationary distribution (Day and Possingham, 1995; Pollett, 1999, 2001)
and extinction times from quasi-stationarity. Although most applications have been in the
area of conservation biology, it can also be used to model infectious disease (Ovaskainen and
Grenfell, 2003; Viana et al., 2014). The model is relatively general, such that where findings
are robust to parameter values and functional forms used, they are likely to be applicable to
a wide range of practical problems.

The SRLM is a deterministic metapopulation model in which a landscape is modelled as a
collection of n discrete patches that can either be occupied or unoccupied by the species of
interest (notation is shown in Table 4.1). The dynamics of each patch i in the system are
governed by a differential equation of the form

dpi(t)

dt
=Ci(p(t))(1− pi(t))− Ei(p(t))pi(t) (4.1)

where p is a vector of length n representing the probability occupancy of each patch i while
Ci and Ei are functions determining colonisation and extinction rates as a function of patch
occupancies at time t. We consider two versions of the model. The first is a specific version,
in which the particular functional forms for colonisation and extinction rates used here are
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taken from Ovaskainen (2003). Specifically, the patch colonisation rate is given by Ci =

c
∑

j 6=i e
−αdijAjpj(t), where c is the species-specific colonisation parameter, 1/α is the mean

migration distance, Aj the area of a parent patch, dij is the distance between patches (and
e here is the base of the natural logarithm). In other words, a daughter patch i becomes
colonised at a rate Ci given by the sum of the colonisation rates cij of i by another occupied
parent patch j; these rates in turn are proportional to the area of the parent patch j and
inversely proportional to its distance to the daughter patch i being colonised. The patch
extinction rate is simply a function of the patch area and is given by Ei = e/Ai where
e is a species-specific extinction parameter, such that patch extinction rates are inversely
proportional to the area of the patch2. In full, this model can thus be written:

dpi
dt

= c
∑

j 6=i

e−αdijAjpj(1− pi)−
e

Ai
pi. (4.2)

In some sections, we also consider a more general model:

dpi
dt

= c
∑

j 6=i

e−αdijAζimi Aζemj pj(1− pi)−
e

Aζexi
pi. (4.3)

The original model can be recovered from the more general model by setting ζim = 0 and
ζem = ζex = 1. The purpose of this extension can be thought of as constituting robustness
testing of the findings in the earlier sections.

There are two quantities of particular interest for this study that are used in the literature on
the deterministic SRLM. Hanski and Ovaskainen (2000) introduced the idea of metapopula-
tion capacity λM , a measure of the propensity of a landscape to support long-term persistence
of an organism. They explained that in the case where colonisation rates are given by the sum
of the contributions from other patches (as in Equations 4.2 and 4.3) it can be found as the
leading eigenvalue of a matrix M defined as mij = 0 for i = j and mij = cij/Ei otherwise.
Metapopulation capacity defines a persistence threshold λM = δ (Hanski and Ovaskainen,
2000; Ovaskainen, 2003), where δ = e/c is a species-specific parameter that captures the
relative tendency of the species to colonise new patches or for patches to go extinct. The
threshold gives the condition under which the differential equations describing the system
have a stable non-trivial steady state. In the experiments described here, we use the relation-
ship between λM and δ to normalise our results, as described below. The second quantity of
interest relates directly to patch value. The patch value Vi measures the relative contribution
of patch i to λM at the persistence threshold. This measure of patch value can be calculated
directly as the difference between the metapopulation capacity of the full landscape and that
of the reduced landscape Vi = λM − λM,i. Ovaskainen and Hanski (2003b) also show that

2In the ecological case, patch sizes correspond to areas; in epidemiology, they represent host population
sizes.
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Vi may be closely approximated by the ith element of the left leading eigenvector of matrix
M; this approximate measure is called Ṽi.

We follow Barbour et al. (2014) in translating the versions of the SRLM to the stochas-
tic context. We consider as an appropriate stochastic version the metapopulation model of
Alonso and McKane (2002). This stochastic model is a continuous-time Markov chain on
patch occupancy vectorsX described byX(t) = (X1(t), ..., Xn(t)) where

X →X + δni at rate Ci(X)(1−Xi); (4.4)

X →X − δni at rate Ei(X)Xi, (4.5)

in which δni is the vector of length n with 1 at position i and zero elsewhere. This model was
implemented in both the specific and general forms described above.

4.3.2 Experimental setup

We now explain the experimental setup and parameter values. The main aim of the compu-
tational experiment was to assess the accuracy of predictors of the contribution of a patch
to the outcome measures of mean time to metapopulation extinction from the QSD Tm and
population size Sπ in the quasi-stationary distribution. In other words, we assume that our
system starts in the quasi-stationary regime for all measures, a reasonable assumption for
metapopulations that have been in existence for a long period of time. In order to assess
patch contributions, we required information on the true contribution of patches, in order
to compare with predictors. The true contribution of a patch was defined as the difference
between Tm and Sπ calculated for a baseline landscape and for the landscape obtained by
removing patch i. We began by generating the set of landscapes. The true contribution, un-
der different parameter values, was found by computing the QSD for these landscapes and
calculating Tm and Sπ from it; for each landscape we then removed each patch in turn and
re-computed the relevant statistics. This gave us the true contribution of a patch to these
outcomes. Predictors were always calculated on the basis of the original landscapes (i.e. be-
fore patch removal). Stochastic patch value predictors were calculated from the QSD, while
deterministic predictors were computed from the landscape and parameter values. The over-
all process used is shown in Figure 4.1. We now provide more detail on the experimental
procedure, initially explaining how we set up the landscapes and moving on to explain the
parameter values tested.

The same set of landscapes was used for all the experiments reported in this chapter and
we began by generating these landscapes. For each number of patches considered, we first
generated 100 sets of patch centres located according to complete spatial randomness, within
a 5 × 5 unit area (following Hanski and Ovaskainen, 2000). Then, for each set of patch
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Figure 4.1: Overall experimental procedure.

centres, we generated patch areas: all areas equal, exponentially distributed and log normally
distributed. Patch area for all landscapes was scaled so that the total area of each landscape
was 6.25 square units, representing 25% of the 5 × 5 area. For each number of patches,
ranging from 4 to 10, this resulted in a set of 300 landscapes (100 for each of the different
patch area distributions).

The total area covered by the patches was selected as 25% in an attempt to avoid heavy over-
lap between patches (Ovaskainen, 2003, takes a similar approach). No additional correction
for patch overlap was conducted, and although all patch centres were within the 5 × 5 area,
patch boundaries were allowed to extend beyond it. Scaling of patch area was necessary
because of the relationship between rates of colonisation and extinction and patch area, so
increasing the total area with the number of patches would have increased patch colonisation
rates and decreased patch extinction rates, resulting in more persistent systems for land-
scapes with more patches. We chose to investigate three different patch area distributions
in order to verify that our results were robust to this factor (log normally distributed patch
areas were used in Hanski and Ovaskainen, 2000). Before scaling, the rate parameter of the
exponentially distributed patch areas was 1; for log normally distributed patch areas, the log
mean was 0 and the log of the standard deviation was 1. Landscapes were generated using
the statistical programming languageR (R Core Team, 2012) and stored as comma separated
value files for use in the different experiments.

The robustness of patch value predictors to changes in the overall level of persistence was
considered to be important, because in the context of real interventions, we are unlikely to
know the absolute level of persistence of a system a priori. As a result, we tested the effect
of patch removal at different persistence levels as set by the ‘persistence parameters’, c and
e. Because the ratio of these parameters δ = e/c sets the deterministic persistence thresh-
old in relation to the value of λM for a given landscape, we decided to consider parameter
combinations for e and c at this value, as well as above and below it. For the study, and for
each landscape, we calculated the relevant statistics for a range of δ values, ranging from
δ = 0.1λM (high persistence because λM � δ) to δ = 1.9λM (low persistence). We tested
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Table 4.2: Parameter values

Parameter Value Description
n 4-10 Number of patches in original landscapes
Number of landscapes 100 Number of randomly generated land-

scapes (per number of patch centres and
patch area distribution)

Patch area distributions 3 All equal, exponentially distributed, log
normally distributed; total area = 6.35
units

α 1 1/mean migration distance

this by varying both e and c; however, the results obtained by fixing e and varying c were
the same as those obtained by fixing c and varying e and we only report findings for the case
of varying e while keeping c = 1 fixed (this has the conceptual advantage of meaning that
δ = e/c = e for all experiments). In the original experiment, the migration parameter α was
set to 1; in the robustness testing section, a value of α = 0.5 was also used.

To compute the QSD, we used the standard linear algebra approach that is described in
Chapter 5, where the focus is on the QSD itself is more central (see Section 2.4.2). This
approach involved the construction of the full transition matrix for the Markov chain and the
evaluation of relevant eigenvectors of this matrix. In order to set the parameter values e and c
in relation to the metapopulation persistence threshold λM , the matrix M was required, and
this was computed and stored at this stage, along with patch values Ṽi and the steady state
probabilities of the differential equations. The main code used to generate M, to compute
the transition matrices and find the quasi-stationary distribution was written in Matlab and
run on a cluster managed by the University of Glasgow. The QSD was coded as a vector of
state identifier and associated probability and stored in a comma separated value file.

Once the QSD had been computed, post-processing was conducted to calculate additional
statistics and to combine the data produced in a form that was appropriate for analysis and
again stored as comma separated values. Post-processing used Java for speed. The processed
data were then read into the statistical programming language R (R Core Team, 2012), and
the ggplot2 plotting system (Wickham, 2009) used to produce figures.

4.3.3 Persistence measures

Because we are interested in long-term persistence, we consider two primary outcome mea-
sures: mean time to extinction from quasistationarity Tm and metapopulation size Sπ in the
quasi-stationary regime. These two outcomes are chosen primarily for the practical reason
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that their optimisation is often considered as an aim in interventions designed to support
long-term species persistence or disease elimination. However, there are also methodolog-
ical advantages to this choice. Mean time to extinction from quasi-stationarity is relatively
well understood, and it is known that extinction times from quasi-stationarity are exponen-
tially distributed, thus mean time to extinction is a sufficient statistic to characterise the full
distribution of extinction times (Ovaskainen and Meerson, 2010). In addition, both can be
found numerically from the transition rates matrix and knowledge of other system parame-
ters, so stochastic simulations of system dynamics are not required.

The notion of mean time to extinction itself is straightforward. The mean time to extinction
from quasi-stationarity is given by the product of the extinction rates from states with only
one patch occupied and their probabilities in the QSD, summed over all one-patch states
(Artalejo, 2012). It is thus calculated directly from the QSD and patch extinction rates.

The notion of metapopulation size requires more explanation as it could be assessed in a
number of ways (Ovaskainen and Hanski, 2003b). We might, for example, be interested in
the expected number of occupied patches in the quasi-stationary distribution or in species
abundance or disease prevalence in the quasi-stationary regime. In this chapter, we consider
abundance or prevalence, and population size is modelled by taking a weighted average of
patch occupancy in the quasi-stationary distribution, where patch weight corresponds to the
area of patch or population size. Mathematically, we can define size in the quasi-stationary
regime as Sπ =

∑
i sip

π
i , where pπi represents the probability that patch i is occupied in the

quasi-stationary distribution, and si is a weighting of associated with the particular patch3.
We choose si = Ai, so Sπ represents the expected area that is occupied, or in the epi-
demiological context where Ai represents the number of individuals in host population i, Sπ

represents the expected number of cases.

Because we are interested in designing interventions, the focus of our attention is not on
Tm and Sπ per se, but rather in how these values change when patches are removed4. We
therefore use the proportional change (or percentage reduction) in Tm and Sπ, calculated by
dividing the raw difference by the original value, and denote these ∇Tm and ∇Sπ respec-
tively. Thus, for a particular patch i, ∇Tm = (Tm − Tm,i) /Tm and ∇Sπ = (Sπ − Sπi ) /Sπ

(where Tm,i and Sπi denote the mean time to extinction and metapopulation size with patch i
removed).

3Throughout this chapter, we use an asterisk to denote the deterministic steady state value and a superscript
π to denote the value in the quasi-stationary regime. Note that by setting weights to si = 1 for all i, then
Sπ represents the expected number of occupied patches in the quasi-stationary distribution. The number of
occupied patches might be a useful measure in a disease metapopulation situation if we need to know how
many locations are likely to be infected at any one time and thus how many doctors are required to treat
individuals.

4One might also consider the case of patch creation, but we choose to focus on patch removal, corresponding
to a situation in which one needs to select the least harmful patch in the case of habitat destruction or to an
intervention to remove a population from the pool of susceptible individuals through vaccination.
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4.3.4 Predictors of patch value

In this section, we explain the patch value predictors that we consider. Several measures
of the value of a patch have been proposed. Fairly naively, one might simply use the area
of a patch (or population) Ai as a predictor of its contribution to persistence; this measure
might capture patch effects relatively well when patch areas are heterogeneous and area is
important in extinction and colonisation dynamics; however, for patches of equal size, it
obviously provides no information. One might also choose a measure of patch centrality
such as the mean distance to other patches; this may be useful when patches are clustered
but would provide little information when patches are equally spaced5. In this chapter, we
consider Ai but not patch centrality.

A possible predictor derived from deterministic models is the steady state probability of
patch occupancy p∗i ; this may provide useful information when the system has a non-zero
steady state but will provide no information about patch value below the persistence thresh-
old as it will be zero for all patches in this case. As discussed earlier, more complex measures
have also been proposed for deterministic models. Also in the context of deterministic mod-
els, and as described above, another possible measure of patch value is Vi, capturing the
contribution of a patch to metapopulation capacity at the persistence threshold λM = δ. We
use both of these measures as predictors in this chapter.

Although no measures of patch value have been proposed specifically for stochastic models
of this type, Day and Possingham’s (1995) finding that the probability of patch occupancy
probability in the quasi-stationary distribution pπi is closely related to probability of extinc-
tion over a fixed period suggests that there may be a similar relationship with time to extinc-
tion. The finding in Day and Possingham (1995) related only to the ranking of patches rather
than to any specific value, and the functional form of the relationship between probability
occupancy and the effect on mean time to extinction is currently unknown. Further, whether
and how the relationship extends to metapopulation size has not been explored. In this chap-
ter, we consider pπi as a predictor, as well as various functions of it, motivated by our findings
during the exploratory work carried out during the early stages of this study. Specifically, we
consider (pπi )η for different values of η.

4.4 Findings

We are interested in our ability to predict the effect of patch removal on time to extinction
and metapopulation size on the basis of what we know about a system that we assume to

5The situation for equally-spaced patches is not the same as that of equally-sized patches because the aver-
age distance from a patch near the edge of a landscape is higher than from a patch located near the centre.
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be in the QSD. We are also interested in how likely it is that we will be able to detect the
effect of patch removal. In this section, we discuss the findings of the numerical experiment
and compare the different predictors, as well as the size of the effect for different parameter
values. Although we tested the effects of patch removal on original landscapes with between
4 and 10 patches, comparison of the results for different numbers of patches made almost
no difference to the findings, and in the sections using the specific model, we only report
findings for n = 10. In conducting robustness testing, we chose to run the calculations on
patch networks with n = 5 because of the number of computations required for this stage of
the work.

4.4.1 Predictors of time to extinction

We begin by focusing on questions relating to the effect of patch removal on the mean time to
extinction. We address two main questions: firstly, the auxiliary question of the relationship
between the ratio λM to δ derived from the deterministic model and time to extinction in the
stochastic model; and secondly, that of the relative accuracy of predictors of the effect of
patch removal on time to extinction. We first consider the specific model in Equation 4.2.

In relation to the first question, as explained earlier λM is the persistence threshold of the
deterministic model such that for λM > δ, the system persists. We were interested in inves-
tigating if a similar phase transition occurred for Tm in the stochastic system as we passed
through this threshold. At least for the particular model we have tested, we see no evidence
of a phase transition at λM = δ, and for all three patch area distributions, metapopulation
extinction times grow rapidly as we decrease δ for a fixed λM for the landscape. This effect
is strongest for uniform patch areas.

It may seem surprising that the metapopulations with the highest values of λM appear to have
the shortest extinction times; however, this is because we set e as a function of λM so we
are not comparing different landscapes for the same values of e and c. This finding therefore
informs us that a larger landscape capacity does not fully compensate for lower persistence
parameters. In other words, metapopulations with faster turnover (higher λM and higher
δ) persist for less time than systems with slower turnover (lower λM and lower δ). As one
would expect, we see less variability in mean extinction times for equal patch areas than for
exponentially distributed and log normally distributed patch areas.

The second question is that of the best predictor of the effect of patch removal on mean
metapopulation extinction time. We tested the predictors p∗i , p

π
i , (p

π
i )η, Ai, Vi for η = 2, as

explained in Subsection 4.3.4. The most important finding in this section is that among the
predictors tested, the effect of patch removal is best predicted by (pπi )2. More precisely, the
proportional change in time to extinction is well approximated by this predictor, i.e. ∇Tm ≈
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Equal Exponential Log Normal
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Figure 4.2: The dependence of Tm on persistence as determined by changes in values of e
(note logarithmic scale; each line represents a landscape).

(pπi )2. Figure 4.3 shows the relationship between this predictor and the outcome variable
across persistence levels. For log normally distributed patch areas, although the correlations
are lower than for equal patch areas, the relationship is roughly linear and there is limited
heteroscedacity. Importantly, patches with the largest effect are predicted accurately at all
levels of persistence. In the case of equal patch sizes, the approach slightly underestimates
the effect of patch removal (i.e. it is conservative); however, the ranking of patches is still
very good and the relationship remains roughly linear with only limited heteroscedacity.

Figure 4.3: The relationship between (pπi )2 and ∇Tm for n = 10. Parameters α = 1 and
c = 1 fixed; e is selected to change overall system persistence in relation to λM .

For comparative purposes, other predictors are shown in Appendix C.1. Perhaps the most in-
teresting comparison is with patch values Vi. Although there is a positive correlation between
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this predictor and the effect of patch removal on time to extinction, there is a lot of scatter,
and in the case of uniform patch areas, the measure actually provides very little information.

In order to formalise the differences between the predictors we considered the bias and root
mean squared errors of the predictions, as well as the Pearson and Spearman correlation for
(pπi )2 and Vi. These analyses were calculated on a per landscape basis. Whereas the Pearson
correlation gives us a measure of the correspondence between the true effect of removing a
patch and the raw values of (pπi )2 and Vi, the Spearman correlation measures the extent to
which the ordering of patches is the same6. Figures 4.4 and 4.5 show the bias and root mean
squared error associated with the two predictors (pπi )2 and Vi, demonstrating more formally
the overall better predictions due to (pπi )2 and reduced variance, especially for the highest
levels of persistence in which there is strong bias in patch value estimates for Vi (for each
landscape, there are n values, corresponding to the removal of each of the patches).
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Figure 4.4: Estimator bias of (pπi )2 and Vi as predictors of∇Tm for n = 10.

Figure 4.6 shows Pearson correlation coefficients of the two predictors Vi and (pπi )2 calcu-
lated on a per landscape basis (i.e. for each landscape, a correlation coefficient is calculated
for the vector containing the predictor for each patch i and the true patch contribution). Over-
all, it is clear that (pπi )2 performs better than Vi at the level of individual landscapes, with
overall better accuracy (the lowest median across all landscape types and levels of persis-
tence was r = 0.99, in contrast to r = 0.58 for Vi) and fewer outliers. This effect is most
pronounced for equal patch areas and for lowest persistence, but accuracy is also poor for Vi
at the highest persistence level for all landscape types.

Figure 4.7 shows Spearman rank correlations, and shows that Vi makes better predictions
about ordering than about the proportional effect of patch removal. Nonetheless, (pπi )2 still

6This would be a useful consideration if we were interested only in prioritising patches.
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Equal Exponential Log Normal

●●●

●

●
●●●
●
●

●●●
●
●
●
●

●●●
●
●
●
●

●●●●●
●

●

●

●●

●

●●
●●

●

●
●

●
●●

●●●
●

●

●●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●●●

●
●

●

●
●

●●

●

●
●
●●

●●

●

●● ●● ●●

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

(p
i π) 2

V
i

0.1 0.4 0.7 1 1.3 1.6 1.9 0.1 0.4 0.7 1 1.3 1.6 1.9 0.1 0.4 0.7 1 1.3 1.6 1.9

Persistence

R
M

S
E

Figure 4.5: Root mean squared error of (pπi )2 and Vi as predictors of∇Tm for n = 10.
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Figure 4.6: Pearson correlations for (pπi )2 and Vi as predictors of∇Tm for n = 10.

performs better both on average and in the sense of having a lower number of outliers (the
lowest median across all landscape types and levels of persistence was r = 0.99, in contrast
to r = 0.78 for Vi).

For the specific model, we conclude that when the desired outcome is the expected time to
metapopulation extinction, the best predictor of patch value is (pπi )2. In addition to being the
most accurate predictor of the effect of patch removal on extinction times and the most robust
to the variations in patch area distribution and persistence, this measure has the advantage of
being easy to compute from real-world data. One can compute the measure without the need
to parameterise an underlying model since the value of a patch according to this measure
is simply the square of the proportion of time that it is occupied in the quasi-stationary
distribution. In contrast, measures such as p∗i and Vi require parameterising the underlying
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Figure 4.7: Spearman correlations for (pπi )2 and Vi as predictors of∇Tm for n = 10.

model, and more involved computation.

General SRLM model

To examine the robustness of the above findings, we now consider the more general model
in Equation 4.3. We tested three values for each of the ζ parameters of 0, 1 and 2, and two
values for the migration parameter of α of 0.5 and 1.0. Setting each of the ζ parameters
to zero corresponds to eliminating the effect of patch area on this aspect of system dynam-
ics; a value of 2 increases the importance of patch area on the relevant aspect of system
dynamics. Changing the value of α changes the dependence of patch colonisation rates on
distance: as α falls, the impact of distance approaches linearity; for higher values of α, the
falloff in colonisation processes with distance is rapid (thus patch centrality or isolation has
a stronger effect for higher values of α; low values of α allow us to approach the mean-field
approximation).

Overall, the patterns in the accuracy of the patch values were qualitatively similar for α = 1

and α = 0.5. Because this parameter controls the shape of the dispersal kernel (i.e. how
distance from the sending patch affects the rate of patch colonisation), it is perhaps unsur-
prising that it is unimportant for systems with low persistence, since very few colonisation
events occur before metapopulation extinction. However, even for highly persistent systems
(δ = 0.1λM ), the qualitative patterns were similar. The measure (pπi )2 generally outper-
formed Vi in making predictions about the effect of patch removal on mean time to extinction
and (pπi )2 improved as a predictor where extinction rates were more dependent on patch area.
The main exception to this pattern was for parameter sets where both extinction and coloni-
sation rates were independent of the characteristics of the patch i (i.e. ζim = 0; ζex = 0). For
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Figure 4.8: The relationship between ∇Tm and (pπi )2 for different values of ζim, ζem, ζex for
log normally distributed patch areas. The top figure shows high persistence, the middle figure
intermediate persistence λM = δ and the bottom figure shows low persistence; n = 5 and
α = 1.0. The coloured boxes in the top left of each scatter plot show root mean squared error
(RMSE) (see top box; light shading indicates low RMSE) and Spearman correlation (bottom
box; dark shading indicates high correlations). Facets labelled 0,1,2 on the right-hand side
of plots give ζem values.

these parameters, only the characteristics of the sending patch were involved in determining
extinction and colonisation rates. We conclude, therefore, that in the situation where one
believes that patch extinction occurs at a constant rate independent of patch characteristics,
and patch colonisation is determined solely by the characteristics of neighbouring patches,



4.4. Findings 71

Figure 4.9: The relationship between∇Tm and Vi for different values of ζim, ζem, ζex for log
normally distributed patch areas and n = 5 and α = 0.5. Explanation as for Figure 4.8

the probability occupancy in the QSD should not be used as a predictor of patch value. Note,
however, that these figures use the true Vi, rather than the estimate Ṽi, which will be less
accurate. Vi provided better ranking of patches than pπi , as tested using the Spearman corre-
lation coefficient, across a broader parameter range (compare the second of the two values
in the inset boxes to the top left of the scatter plots).

Considering these robustness tests in more detail, Figure 4.8 shows the relationship between
∇Tm and (pπi )2 for different values of ζim, ζem, ζex and three persistence levels for log nor-
mally distributed patch areas. We can see a positive correlation between these for most values
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considered. The corresponding figures for equal sized patches are omitted as these showed
a strong linear relationship between (pπi )2 and ∇Tm for all parameter values, with slight un-
derestimates of patch value for all parameters and a slight trend towards better predictions
at higher persistence. The comparison between the situation with log normally distributed
patch areas and equal patch areas suggests that the approximation (pπi )2 is robust to changes
in parameter values provided patch areas are relatively uniform. The situation is more com-
plex for more diverse patch areas. We now consider the case of log-normally distributed
patch areas in more depth, noting that this distribution gives rise to highly diverse patch
areas.

For log-normally distributed patch areas, a relatively clear pattern emerged in which for
some values, an η of two (i.e. squaring the pπi values) was too high (e.g. top right of top
panel), whereas for other parameters, it was too low (e.g. bottom left of top panel). That
is, an exponent of 2 did not always lead to a linear relationship between patch value and
∇Tm. Further investigations demonstrated that under most of the parameter sets tested, there
was nonetheless a linear relationship between log(pπi ) and ∇Tm, but that the slope of the
relationship was dependent on the parameters. Specifically, we noted that a relationship of
the form y = axη + ε roughly held for all parameter sets (with different error terms ε) apart
from ζ = {0, 1, 0}, {0, 2, 0}, in which colonisation and extinction rates were dependent on
patch characteristics only for other patches Aj : j 6= i. The linear relationship also held
better where all ζ values were at least one.

4.4.2 Refined estimation of η

This suggested a way of finding an appropriate exponent η for the different parameter values
ζ, α and the effect of patch removal on persistence, based on fitting a simple linear regression
to find the slope of the logged data (i.e. one slope calculated for each panel). An additional
multiple regression model could then be fitted in order to understand the relationship between
the metapopulation parameter values7 and the exponent η. Should the relationship between
metapopulation parameters and η prove to be linear, we would then be able to provide an
estimate of patch value as (pπi )η where η = aζim + bζem + cζex + dα+ epπ + ε, in which pπ

represents system persistence (see below).

As a result of these considerations, we tested whether a better fit could be obtained by
using a power η other than two, chosen as a function of the metapopulation parameters
ζim, ζem, ζex, α, and persistence pπ. Choosing a measure of persistence for this purpose is
tricky: although in earlier sections we have used the relationship between λM and δ to char-

7In keeping with the earlier sections, references to (metapopulation) parameters relate to the parameters of
the simulation model (i.e. the biological parameters); we use the term coefficients to refer to the parameters
estimated using the regression model.
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acterise persistence, in the real world, this information would not be available unless the
stochastic metapopulation model was fitted. Since one of the valuable characteristics of the
patch value measure (pπi )η is that the stochastic model does not need to be fitted, it would
be a pity to lose that advantage in this process. As a result, we chose to use the expected
proportion of occupied patches in the QSD, denoted simply pπ, as a proxy of system per-
sistence, since this measure can also be readily calculated from raw presence-absence data.
We fitted a simple linear regression to log(∇Tm) and log(pπi ) for each panel in Figure 4.8 to
obtain an estimate of the ‘true’ η value as the slope of the relationship between the logged
data. We then fitted a multiple linear regression model predicting η as a linear function of the
metapopulation parameters and interaction terms between these. We did this by splitting the
metapopulation parameter combinations into a training and holdout set, fitting the model on
the training set and testing it on the holdout set. We compared four different models, taking
as the baseline model a model with a constant value of η = 2.
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Figure 4.10: Histograms of the RMSE in predicted η values for the holdout set using (a)
the baseline prediction of η = 2 and (panels b,c,d) multiple regression models fitted to the
training set. The three models are fitted to the training set using a multiple linear regression
of η on the metapopulation parameters, where η is found as the slope of the simple regression
line of log(∇Tm) on log(pπi ).

Figure 4.10 shows the distribution of RMSE in predictions of η on the holdout set, conducted
for 1000 random segmentations of the data into training and holdout sets, and for the four
different models. It is clear from the figures that including information about the parameter
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values leads to better estimates of η (panels b, c, d) than simply choosing a fixed value of 2
(panel a), but there is little difference between the accuracy of other three models. All models
show bimodal error distributions. This is because a small number of parameter values require
very high η values (notably ζ = (0, 2, 1), especially where α = 0.5) and in these cases, η
is predicted poorly by a linear model; when these fall into the holdout set, predictions for
these values are bad, skewing the mean error and generating a bimodal distribution of errors.
The problematic parameter combinations represent cases where there is a specific parameter
combination of ζ values, high persistence, and less of an effect of distance on colonisation
(closer to complete mixing). Fundamentally, this appears to be because the relationship
between η and the predictor variables is non-linear in the interaction between the ζ values, α
and persistence. Fitting a non-linear model is beyond the scope of the current work but this
may be a fruitful avenue for future research. In order to generate good predictions, additional
data points are likely to be required at the high persistence end.

We thus conclude that using an appropriate power of pπi works particularly well when patches
have roughly equal areas. Where this is not true, it is still effective where the effect of patch
area is similar on immigration, emigration and extinction (i.e. ζim ≈ ζem ≈ ζex). However,
the approach remains relatively effective provided the effects of the size of a patch are at
least as strong on immigration and extinction as they are on emigration, i.e. provided that
system dynamics are not dictated primarily by the occupancy status of ‘other’ patches. In
the case where patch area effects are seen solely (or primarily) on emigration, the status of
other patches is the main determining factor in system dynamics. As a result, (pπi )η fails
to capture sufficient information about the system. The situation becomes increasingly bad
as the system becomes more persistent. In this case, patch heterogeneity comes into play
primarily when a patch is the sending patch (i.e. when a patch is playing a role in the
colonisation of other patches); when the network of patches is relatively full, then (pπi )η

overestimates the importance of a patch because the patch will rarely be required to re-
colonise other patches in a well-occupied network.

The situation is particularly bad when ζim = ζex = 0 and ζem > 0, and for these parameter
combinations, the relationship between log(pπi ) and ∇Tm is no longer close to linear. This
corresponds to a system in which patch colonisation depends only on the sending patch
and patch extinction occurs at a constant rate. The first of these criteria seems biologically
plausible in circumstances where establishment is not dependent on patch size (e.g. when
all patches are sufficiently large to allow establishment). The second criterion of extinction
rates that are independent of patch size may occur in systems where human intervention
causes patch extinction at a rate that is independent of patch size (e.g. rapid ‘stamping out’
of rare disease outbreaks through effective interventions) or where patch extinction is caused
by external environmental shocks that are equally effective in causing extinction in large and
small patches.
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One possible suggestion for those hoping to use this technique in the case of highly persistent
systems where the required relationship between ζ values does not hold, might be to attempt
to select the boundaries between patches in such a way that these remain roughly equal
sized, although further testing is required to establish whether patch grouping in a way that
it motivated by reasons that are non-biological changes the conclusions outlined here.

4.4.3 Predictors of metapopulation size

The second response variable of interest is that of mean metapopulation size in the quasi-
stationary regime Sπ, corresponding to the time-averaged number of infections at quasi-
stationarity in the infectious disease context. Specifically, we are interested in the effect on
Sπ of the removal of patch i. Firstly, we examine∇Sπ as a function of persistence parameters
to explore whether there is a phase transition around λM = δ, and then consider a range of
predictors of the effect of patch removal on metapopulation size.
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Figure 4.11: The proportion of the total area occupied in the QSD as a function of the
persistence parameters.

Firstly, Figure 4.11 shows that there is no phase transition around λM = δ in the proportion
of the total patch area occupied in the QSD. This result is similar to that for the mean time
to metapopulation extinction.

We now consider potential patch value measures that might be used to predict the effect of
patch removal on mean metapopulation size in the QSD. On the basis of the findings from
the first part of the study where we predicted the effect of the removal of patch i on Tm,
we hypothesised that four possible measures might be enlightening: pπi and the proportion
of the total area in the QSD due to patch i, denoted pπAi =

pπi Ai∑
j p
π
j Aj

, as well as versions of
both of these measures employing the square of the pπi values. As previously, the measures
employing raw pπi values resulted in non-linear relationships with Sπ (see Figure C.5 in
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Appendix C.2). Figure 4.12 shows the relationship between the measures using the squared
pπi values and∇Sπ.

Figure 4.12: The relationship between potential measures and∇Sπ.

Although neither of the measures performed well across the range of persistence parameters,
the first performed well for low persistence, and the second for high persistence. We there-
fore hypothesised that a combined measure might be effective. Specifically, we propose to
approximate Sπ by Ui, defined as follows:

Ui ≈ min

{
(pπi )2 ,

(pπi )2Ai∑
j

(
pπj
)2
Aj

}
. (4.6)

Figure 4.13 shows the relationship between Ui and∇Sπ, showing generally good correspon-
dence. We note that this measure performs also performs better than Vi as a predictor of∇Sπ
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(see Appendix C.2, Figure C.6).

Figure 4.13: The relationship between Ui and ∇Sπ.

As previously, we now show the bias, root mean squared error, Pearson and Spearman cor-
relations for this predictor and compare with Vi. Figure 4.14 and 4.15 show the bias and
root mean squared error associated with the two predictors Ui and Vi. Overall patterns in the
bias as a function of the persistence parameters are very similar between the two predictors,
but bias is stronger for Vi, and the direction of bias is systematically an underestimate for
Ui for equal patch areas, meaning that for this situation, Ui underestimates ∇Sπ. RMSE is
systematically higher for Vi.
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Figure 4.14: Estimator bias of Ui and Vi as predictors of∇Sπ.
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Equal Exponential Log Normal
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Figure 4.15: Root mean squared error of Ui and Vi as predictors of∇Sπ.

Figure 4.16 shows the range of correlation coefficients, calculated for each landscape indi-
vidually, of the two predictors Ui and Vi and demonstrates that Ui performs better against
this criterion across the range of persistence parameters and has fewer outliers. Figure 4.17
shows Spearman rank correlations, with similar conclusions as above, although Vi performs
better in terms of patch rankings than it does for the Pearson correlations. The lower corre-
lations for Ui for the most persistent landscapes are due to the small effect of patch removal
for these values, making it difficult to detect a linear relationship. For exponentially and
log normally distributed patch areas, there is a small number of outlier landscapes for which
there is only a very low correlation or negative correlation (2 out of 100 landscapes for each
patch size distribution).
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Figure 4.16: Pearson correlation between Ui and Vi as predictors of∇Sπ.
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Figure 4.17: Spearman correlation between Ui and Vi as predictors of∇Sπ.

4.4.4 Predicting sensitivity to patch removal

Figure 4.18 shows the effect of patch removal on mean time to metapopulation extinction as
a function of the initial occupancy levels, demonstrating that the largest proportional effect
on Tm of patch removal occurs for the highest occupancy levels. This suggests that the most
important effects on time to extinction of the metapoulation are likely to occur for near-full
occupancy; however, it is unlikely that these changes will be detected in the short term as
these systems also have the longest time to extinction, so their effectiveness cannot be used
to inform incremental interventions.
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Figure 4.18: The effect of patch removal on Tm for different initial mean occupancy levels
in the QSD (n = 10). Each line represents the removal of patch zero for one landscape.

Figure 4.19 shows the effect of patch removal on metapopulation size (prevalence or abun-
dance) at different initial occupancy levels, demonstrating that patch removal generally had
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the largest proportional effect on metapopulation size in the QSD when the mean propor-
tion of patches occupied in the original landscape was just under half. Shading indicates the
change in the proportion of patches occupied in the QSD as a proportion of those occupied
in the original landscape, showing a similar trend to that of the effect on metapopulation
size. This finding implies that we are most likely to observe the effect of patch removal on
landscapes that are initially just under 50% occupied.
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Figure 4.19: The effect of patch removal on mean metapopulation size for different initial
mean occupancy levels in the QSD (n = 10). Each line represents the removal of patch zero
for one landscape.

4.5 Discussion

In this chapter we sought to compare predictors of the effect of patch removal on the mean
time to metapopulation extinction from quasi-stationarity Tm and metapopulation size in the
quasi-stationary regime Sπ. The findings show that the best predictor of percentage change
∇Tm is (pπi )η with η ≈ 2, and that the best predictor of ∇Sπ is our combined measure Ui.
These findings strike us as surprising in their simplicity and accuracy. In effect, they tell us
that if we are willing to assume only that our real world system is in the quasi-stationary
regime and that the system is well-modelled by a presence-absence SRLM with functional
forms for colonisation and extinction similar to those found to give good accuracy here, then
the effect of patch removal on both∇Tm and∇Sπ can be predicted with good accuracy from
only information on the probability of patch occupancy.

Presence-absence data that can be used to compute occupancy probability is collected rou-
tinely by ecologists and epidemiologists. Where the above assumptions regarding quasi-
stationarity and the applicability of an SRLM model with appropriate functional forms are
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met, this suggests that presence-absence data can be used almost directly to choose between
possible interventions, without the need for complex model fitting.

In the case where the primary object of study is a model, the findings also have practical
implications. Firstly, they reduce the number of necessary calculations required for estimat-
ing ∇Tm and ∇Sπ. In order to find the true value of these outcome measures, computations
need to be conducted for both the original landscape and for the landscape with each patch be
removed, leading to n+1 computations (where n is the number of patches). If one is willing
to approximate patch value by the square of the probability occupancy in the QSD, a single
QSD computation can be carried out. While this may not make much difference if parameter
values are known fairly accurately (and the number of computations is thus n+1 as above), if
parameter values are estimated and one wants to conduct a sensitivity analysis, this may be a
significant advantage, allowing much wider exploration of the parameter space. In addition,
computing the full QSD for large systems raises other computational issues because of the
number of possible states. What this finding suggests is that it may be sufficient to simulate
according to an algorithm that tracks a reduced version of the QSD from which pπi can be
accurately reconstructed, potentially reducing the required storage very considerably.

A number of possible extensions to this work would be valuable for future investigation. The
most obvious extension is to conduct robustness testing for the measure of metapopulation
size, along similar lines to that conducted for Tm above. Additional suggestions include
testing the robustness of these findings to alternative patch groupings, systems with a larger
number of patches, and whether the QSD assumption is appropriate for metapopulations
that are below the critical threshold for persistence. In more detail, it would be valuable to
test to what extent the pπi heuristics described here are robust to the way in which patches
are grouped. A practical problem in applying patch models with real world data is that it
is often difficult to know exactly where to situate patch boundaries, such that it would be
useful to know whether this is in fact an important concern. Furthermore, grouping patches
in an appropriate way would reduce the computational cost of calculating patch values in the
QSD. In systems with a large number of patches (e.g. the 75 villages considered in Beyer
et al., 2012), this would be highly valuable. An alternative approach in this latter case would
be to test to what extent approximations to the QSD that remain plausible for the number of
patches under consideration provide accurate predictions of patch value.

Another area worthy of investigation is that of the extent to which reliance on the QSD
concept, when intervening on a system is valid, especially below the persistence threshold.
In this chapter, we have assumed that a system is initially in the quasi-stationary regime,
and that it immediately falls into the new quasi-stationary regime of the modified landscape
once a patch is removed. Obviously the first assumption may not be true in the real world,
where even many long-standing systems may in fact be in a transient phase; in addition,
recovery of the new QSD after patch removal may be fast or slow. None of these concerns
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are considered in the current work, and it is unknown to what extent their consideration
may lead to qualitative or quantitative differences in the conclusions drawn. Extensions,
perhaps applying the ‘ratio of expectations’ (Artalejo and Lopez-Herrero, 2010) instead of
or in addition to the QSD, would therefore be valuable.

Finally, it would be helpful to analyse the predictors discussed here from a more mathemat-
ical perspective as this may help to shed light on the conditions under which the predictors
fail, and also perhaps develop more accurate predictive measures (e.g. by combining pπi and∑

i 6=j p
π
j ).

4.6 Concluding remarks

The work reported in this chapter shows that even under relative minimal assumptions re-
garding metapopulation model structure and certain assumptions about the quasi-stationary
nature of the processes under consideration, it is possible to predict with relatively high ac-
curacy the effect of patch removal on mean time to metapopulation extinction and metapopu-
lation size. Furthermore, the data required to enable these predictions are routinely available
for ecological and epidemiological systems.
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Chapter 5

Simulating quasi-stationary
behaviour for heterogeneous
systems

In ecology and disease ecology, we are often interested in the long run behaviour of living
systems such as species distribution or endemic prevalence. In stochastic models, the notion
of the quasi-stationary distribution (QSD) formalises this idea. Although the QSD can be
readily obtained for small systems of arbitrary heterogeneity and approximations are avail-
able for relatively homogeneous large systems, the same is not true for intermediate sized
heterogeneous systems in which states are not exchangeable. Simulating the QSD is a pos-
sible approach, but it rapidly becomes infeasible to store all states as the number of possible
system states becomes large. Employing small systems in which the QSD can be found ex-
actly, we first demonstrate the appropriateness of an existing algorithm for simulating the
QSD of a particular heterogeneous system and provide a partial solution to overcome lim-
itations of the algorithm for systems with weak persistence. We then compare a range of
options for storing an approximation to the QSD that could be extended for use with larger
heterogeneous systems where full storage is not possible. Although the accuracy of none of
the approximations was fully robust to increases in the number of states, for specific aims,
compression approaches can be selected. For examining common system states, a Bayesian
clustering approach provides the best approximation among those tested. For improved ro-
bustness to increases in the number of states, and for examining time to extinction or analysis
of near-extinction states, we suggest the use of a simpler system in which states are grouped
by the number of occupied patches.
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5.1 Introduction

In ecology and disease ecology, we are often interested in the long-run behaviour of stochas-
tic living systems. Long-run behaviour may be interesting either in and of itself, or as the
starting point for understanding future system dynamics. For example, we may be interested
in long-run endemic prevalence of an infectious agent or the population size or spatial distri-
bution of a species; alternatively, in the case where the system has already persisted for some
time, we may wish to know the expected time to extinction. In classical ecological theory,
long-run characteristics of a system have been investigated via analysis of the steady state of
deterministic differential equations, which are also sometimes employed as a starting state
for simulating future system evolution. However, in stochastic systems which may persist
for a long time but must ultimately go extinct, methods for investigating long-run behaviour
have been more varied.

Long-run dynamics in stochastic systems have been investigated through a variety of tech-
niques. An intuitive approach for stochastic models is to simulate system behaviour, allowing
simulations to run for a long time before measurements are taken; however, the length of the
required burn-in period is often non-obvious and the question of how to account for extinct
runs can be problematic. A more mathematically rigorous approach is to use the quasi-
stationary distribution (QSD) of the process (Yaglom, 1947; Vere-Jones, 1969). The QSD is
defined as the limiting distribution of system states, conditioned on non-extinction, as time
tends to infinity. If we imagine that we simulate a large number of runs of the process, it cor-
responds to the distribution of states of the non-extinct runs, after the initial conditions have
been ‘forgotten’. It is therefore particularly useful when the system is expected to rapidly
enter the quasi-stationary regime and persist in it for a long time before eventually going
extinct (Day and Possingham, 1995).

The QSD has often been invoked as having the potential to contribute to problems in ecology,
disease ecology, evolution and epidemiology. For example, Pollett (1996) argues that it has
the potential to be useful in wildlife management, especially for predicting persistence and
the distribution of population sizes, and Ovaskainen and Hanski (2003a) point out its useful-
ness for understanding extinction risk. Indeed, Day and Possingham (1995) also comment
that the QSD is more useful than models that only capture time to extinction as it includes ad-
ditional information about the system dynamics before extinction is reached. Other authors
have commented that properties of the QSD might be able to explain the stabilisation of cer-
tain biological traits among populations of some endangered species (see work by Renault,
Ferrière and Porter cited in Méléard and Villemonais, 2012). In the context of epidemiology,
Billings et al. (2013, p7) note that ‘the existence of a quasi-stationary distribution peaked
at the endemic point produces a meta-stable state in which the population fluctuates in a
neighborhood around the same endemic point’ suggesting possibilities for explaining char-
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acteristics of endemic disease. In a further application in an evolutionary ecology context,
Collet et al.’s (2010) work suggests applications to the stabilisation of traits under natural
selection.

Despite suggestions regarding its potential contributions to applied problems, most work on
the QSD is found among the mathematical literature and ecological applications are rela-
tively rare. In fact, relatively little has changed since Pollett and Stewart (1994) commented
that much of the progress at that time had been concerned with deriving conditions for the
existence of quasi-stationary distributions, primarily for abstract birth-death processes.

We now describe a small number of examples of the application of the QSD to ecological
problems. Among early examples, Nasell (1991) used the QSD to test whether the deter-
ministic mosquito population size threshold for persistence of malaria in the Ross model
was useful for making predictions in stochastic models, finding that the persistence thresh-
old was unsatisfactory for small population sizes. Other early examples can be found in
the literature on metapopulation processes. For example, an early application to explaining
ecological patterns can be found in Gyllenberg and Silvestrov (1994). These authors inves-
tigated the potential of the QSD to explain the core-satellite species hypothesis, originally
proposed by Hanski (1982), which predicts that at a particular point in time, a species should
be either present in most sites or only in a small fraction of sites, as found in a number of
natural situations. Their work showed that for a patch model with spatial heterogeneity, and
under a range of parameter values, core-satellite species distributions in the QSD matched the
bimodal distributions predicted by the hypothesis. In a second early application to metapop-
ulation theory, Day and Possingham (1995) used the QSD to examine extinction probabilities
of a population of malleefowl, Leipoa ocellata, in the Bakara region of southern Australia.
These authors investigated a range of hypothetical scenarios to explore the importance of
migration, the size of patches, their spatial location and their removal on persistence and
patch occupancy showing that for this metapopulation, variation in patch area had a larger
effect on 100-year extinction probability than the explicit spatial location of patches.

More recently, Steinsaltz and Evans (2004) have used the QSD to explain mortality plateaux,
the empirically observed slowing of the death rate of individuals in extreme old age. The
authors demonstrate that mortality plateaux can arise as a generic consequence of the ten-
dency of the system to converge to a quasi-stationary distribution; they also show that early
life mortality may be more flexible than generally acknowledged. In a population ecology
context, Drake et al. (2011) use the notion of the QSD to predict a two-phase population
extinction process according to which extinction before and after the QSD is reached differ
and provide an empirical demonstration of the existence of this two-phase population extinc-
tion process with the cladoceran zooplankton Daphnia magna. In epidemiology, Billings
et al. (2013) use the QSD to quantify the effect of intervention scenarios on disease elimi-
nation, demonstrating that for their model, elimination was accelerated more by increasing
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the number of individuals treated than by treating more frequently. They also demonstrated
that for their system, a random treatment time schedule led to more rapid mean extinction
time than a regular schedule because as a disease nears the extinct state, rapid intervention
pulses allowed by the random scheme can prevent it relaxing to the endemic regime. In our
own work, explained in Chapter 4, we explored Day and Possingham’s (1995) suggestion
that the occupancy of patches in the QSD of a metapopulation model may be suggestive of
their contribution to population persistence and found the form of this relationship.

In order to capitalise on the possibilities of the QSD for understanding biological systems, it
would be highly valuable to have a method of obtaining the QSD that is appropriate for the
systems under consideration. In this chapter, we focus on the technical problem of simulating
the QSD for heterogeneous systems, and specifically for metapopulation models consisting
of heterogeneous patches. To date, applications of QSD properties to understanding even
moderately-sized heterogeneous systems have remain very limited. Among the examples
described in the previous paragraphs, Gyllenberg and Silvestrov (1994) consider a metapop-
ulation model with only three patches while Day and Possingham (1995) consider a system
of eight patches and comment that the study of much larger systems is effectively impossi-
ble. Heterogeneity is either not a factor considered in the more recent examples above, or
modelling is simplified to lower dimensional measures such as marginal distributions (i.e.
in a metapopulation either individual patch occupancy probabilities or number of occupied
patches). In fact, even Gyllenberg and Silvestrov (1994) and Day and Possingham (1995)
report some of their findings in terms of the marginal distributions, rather than full system
state probabilities comprised of patch occupancy configurations for the full system. Other
more recent work that does incorporate heterogeneity in larger systems (e.g. McVinish and
Pollett, 2013c) also presents some results in terms of patch occupancy probabilities.

A tension exists between our ability to compute and interpret the QSD for heterogeneous
models and the acknowledgement that when elements of the system have different charac-
teristics, it is insufficient to model only marginal distributions and instead the state of every
patch or individual must be modelled explicitly (McVinish and Pollett, 2013b).1 The prob-
lem of fully representing all system states in the QSD suffers from what Blanchet et al.
(2014) refer to as the ‘curse of dimensionality’. For example, for a landscape consisting of
n patches, in which every patch can either be occupied or unoccupied, there are 2n − 1 pos-
sible states (excluding the extinction state). Speaking in this context, McVinish and Pollett
(2013c, p694) note that, ‘there is, therefore, a need for metapopulation models that are able to
reflect the dynamics and heterogeneity of real metapopulations and yet are sufficiently sim-
ple to allow analysis’. Two major obstacles remain in the use of the QSD for understanding

1Note that in the models considered in this chapter, the notion of state can refer to either the state of
each patch (occupied or vacant) or the state of the full system. Whenever this is ambiguous, we qualify the
term by referring to either patch state or system state. The terms system configuration and patch occupancy
configuration refer to the overall system state.
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ecological systems: its computation and its interpretation. These problems result primarily
from the large number of possible system states, causing both computational difficulties and
making interpretation complex.

In relation to the first difficulty of computing the QSD, the distribution is typically obtained
directly from the generator matrix, a matrix describing the transition rates between states,
as explained in more detail in later sections. However, since the dimension of the generator
matrix grows as mn×mn for metapopulations in which each of n patches can exist in one of
m states, evaluating the required eigenvector rapidly becomes computationally intractable.
Several approximation methods have been described in the literature (see e.g. Kurtz, 1976;
Pollett and Stewart, 1994; Groisman and Jonckheere, 2012; Nasell, 1991, for diffusion and
truncation approximations, simulation approaches and a review of approximations). Diffu-
sion approximations are most useful for large, homogeneous systems; the other methods may
be useful for some kinds of heterogeneous systems but remain problematic for the system
we consider.

In some situations with heterogeneity, the use of sparse matrix approaches may be helpful.
Note that although the transition matrix for our model has dimension mn−1 × mn−1, it is
sparse. Each entry of the transition matrix represents a one-step transition rate, and is set to
zero if the transition is not possible; if we assume that each patch can be in one of two states
(i.e. m = 2), then the full transition matrix has dimension 2n−1 × 2n−1. In each system
state, each patch is either occupied or unoccupied, and exactly one transition is possible for
each patch. This means that from any system state, there are n possible transitions: exactly
one of the n patches must transition from occupied to unoccupied or vice versa. Therefore,
there are n possible transitions out of each of the 2n−1 non-extinction states, giving a total
of 2n−1 × n non-zero entries in the transition rates matrix of the chain with the extinction
state removed. The generator matrix required for calculating the QSD has non-zero entries
on the diagonal and thus an additional 2n−1 entries. To store the matrix in a sparse format,
each non-zero entry is represented by a pair of integer values (r, c) indicating the row and
column, along with a floating point entry indicating the rate, and thus requires 2n−1× (n+1)

entries.

van Doorn and Pollett (2013) review methods for the calculation of eigenvalues and eigen-
vectors of sparse matrices, basing their discussion on their implementation in MATLABr.
The Matlab implementation is based upon ARPACK (ARnoldi PACKage), a numerical soft-
ware library that can be used to find a small number of eigenvalues and corresponding eigen-
vectors of large sparse or structured matrices2. To find the eigenvalues and eigenvectors of

2van Doorn and Pollett (2013) refer to LAPACK (Linear Algebra PACKage), apparently in error
since this library is used for dense matrices; however, details of the methods in their discussion ap-
pear correct and correspond to those of ARPACK. Note that other interfaces exist in scientific environ-
ments such as SciPy and GNU Octave. ARPACK itself is written in Fortran77, and is available from
http://www.caam.rice.edu/software/ARPACK/.
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sparse matrices, ARPACK uses the Implicitly Restarted Arnoldi Method (IRAM; Lehoucq
et al., 1998) and according to the documentation, a small number k of eigenvalues can be
computed in order O(νk) operations (where the full transition matrix has dimensions ν×ν).
A major advantage of the package is that it is able to use any matrix representation. This
means that sparse matrix representations are supported, and in fact, a function can be used
instead to calculate matrix entries on-the-fly, making it unnecessary to explicitly represent
the matrix at all (although this would increase the number of operations).

The use of these methods significantly increases the size of the problems that can be solved.
However, the QSD itself grows exponentially; as a result, the space complexity of any algo-
rithm to compute the QSD is limited by the storage requirements of the output, and is thus
at least order O(2n) for our system. Although the exact values at which these issues become
intractable depends on the hardware and software used, important technical issues arise for
biologically plausible problems (such as the 75 villages in Beyer et al., 2012). van Doorn
and Pollett (2013) discuss approximate truncation methods for infinite systems, which may
be appropriate for systems that are too large for the QSD to be found in full. These methods
proceed by computing the QSD for increasing subsets of the states, where the full system
is represented in the limit. However, these authors note that for systems like ours that are
multidimensional, determining an appropriate state-space enumeration required to allow in-
cremental subsetting is a non-trivial problem. In addition, pinpointing a way to conduct this
subsetting of the state space that allows subsets to capture the dynamics of interest may re-
quire simulation; if a simulation is required, it seems sensible to explore methods in which
the computation of the QSD is concurrent with the simulation.

Another problem is that as the number of states increases, the probability associated with any
one state in the QSD typically becomes very small, and is subject to errors due to the limits of
floating point representations. An approach that allows us to store counts of state visitations
rather than probabilities should avoid this problem and would therefore be valuable. Finally,
once a large number of states is possible, it is questionable whether any genuine biological
insight can be gained from their examination as the size of the state space makes interpreta-
tion difficult. For these reasons, we now consider simulation, associated with forms of QSD
compression for larger systems.

Apparently independently, Aldous et al. (1988) and de Oliveira and Dickman (2005) both
describe an algorithm for simulating the QSD. The former authors prove its convergence to
the QSD as time tends to infinity and the latter demonstrate that it provides accurate results
for the marginal distribution of the number of occupied sites in the context of the contact pro-
cess model commonly used in the physics literature. These authors thus verify the accuracy
and convergence of the algorithm (in reasonable time) only for the marginal distribution of
the number of occupied sites for a system with limited heterogeneity. It is therefore currently
unclear whether the algorithm converges in reasonable time for simulating the full QSD. In
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addition, the heterogeneity of biological systems is often much greater than that modelled by
the contact process, and the convergence of the algorithm for this situation remains unveri-
fied. Furthermore, even if the algorithm is effective, although it requires less memory than
the eigenvector approach, storing the full list of system states requires an array of length 2n,
and approximations are required beyond around n = 32. Yet real ecosystems may contain
many more patches (e.g. the system considered in Beyer et al., 2012, consists of 75 vil-
lages). It would therefore be beneficial to have an approach that allows us to model the QSD
for intermediate sized systems in a way that accurately reflects the true QSD, but that does
not rely on storing the full list of system states.

In relation to the second difficulty of interpretation, especially in the case of heterogeneous
systems, once the QSD is obtained, its dimensionality remains problematic for understand-
ing how to use it to make inferences about real-world systems. This becomes a problem
where we wish to do more than extract low-dimensional measures such as the mean time to
extinction from the QSD or marginal distributions, and perhaps want to know about common
system configurations or configurations close to metapopulation extinction. In cases where
the distribution is highly skewed towards a very small number of common configurations in
the QSD, these can be visualised individually. However, where it is not the case, it would be
valuable to be able to represent the most important information from the QSD in a reduced
or compressed form.

In this chapter, we explore ways to resolve the problems of computation and representation
by finding a way of simulating the QSD for heterogeneous systems that employs a com-
pressed form that is amenable to drawing biological conclusions. We conduct two main
experiments. In the first experiment, we examine whether the algorithm described in Aldous
et al. (1988) and de Oliveira and Dickman (2005) provides an acceptable approximation
of the QSD in reasonable simulation time, not just for the number of occupied patches3 as
tested by de Oliveira and Dickman (2005), but for the full QSD of patch occupancy con-
figurations. In a second experiment, we examine a range of simplified models of the QSD
that could be extended to larger systems, referred to as compressions, to establish whether
these provide acceptable approximations. We consider the accuracy of compressions of the
full QSD and on estimations of a simpler measure, the mean time extinction from quasi-
stationarity, since this can be derived directly from the QSD. We use as a study system the
Spatially-Realistic Levins Model (SRLM) introduced by Moilanen and Hanski (1995), a
patch-occupancy model that is common in ecology and in which patches (and thus system
states) are non-exchangeable.

This work should have multiple benefits for ecology and epidemiology. For example, resolv-
ing the issues of computation and representation should contribute to model parameterisation

3de Oliveira and Dickman (2005) refer to the number of occupied patches as an ‘order parameter’, using
physics terminology.
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by making more information accessible for fitting, to our understanding of theoretical prob-
lems such as the core-satellite species distribution, and to making predictions about endemic
prevalence, all for systems in which heterogeneity and system size make standard techniques
inappropriate. In the following sections, we explain the experimental procedure, present the
findings of the simulation experiments, and discuss the findings in light of earlier work.

5.2 Materials and methods

The key question addressed in both experiments reported in this chapter is that of the accu-
racy of a simulated approximation to the exact QSD, in the context of a spatially heteroge-
neous system. The QSD can be found numerically from the eigenvectors of the generator
matrix for systems comprising a small number of patches and we consider the QSD found
in this manner as the exact QSD (it is exact up to the limits of numerical accuracy). We
then compare simulated approximations to the exact QSD. The experimental protocol for
the experiments is shown in Figure 5.1. In the following sections, we describe the spatially
heterogeneous dynamic system used in this chapter, the numerical method used to obtain the
exact QSD, the simulation algorithm, and details of the experimental setup. The description
of the SRLM model and QSD are provided here for convenience; readers who have read
Chapters 2 and 4 may proceed directly to Section 2.4.2.
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Figure 5.1: Overall experimental protocol.

5.2.1 Model

We use a stochastic, continuous time version of the SRLM as a case study throughout this
chapter4. This model was chosen because it has been used for examining questions relating
to both long-run persistence and extinction times from persistence, and because it explicitly

4This is the same as the less general form of the model employed in Chapter 4 and presented in Equation
4.2. Readers who have read Chapter 4 may progress to Section 5.2.2.
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Table 5.1: Symbols used in the SRLM

Symbol Explanation
pi(t) Probability that patch i is occupied at time t
Ci(t) Colonisation rate of patch i at time t
Ei(t) Extinction rate of patch i at time t
X(t) Occupancy vector of the stochastic model at time t
Xi(t) Occupancy of patch i at time t in stochastic model
c, e Species-specific colonisation and extinction parame-

ters
Ai Size or area of patch i

models heterogeneity in the size and distances between patches. Similar models have been
considered in relation to the QSD (Day and Possingham, 1995; Pollett, 1999, 2001).

The SRLM is a deterministic metapopulation model in which a landscape is modelled as a
collection of n discrete patches that can either be occupied or unoccupied by the species of
interest (notation is shown in Table 4.1). The dynamics of each patch i in the system are
governed by a differential equation of the form

dpi(t)

dt
=Ci(p(t))(1− pi(t))− Ei(p(t))pi(t) (5.1)

where p is a vector of length n representing the probability occupancy of each patch i while
Ci and Ei are functions determining colonisation and extinction rates as a function of patch
occupancies at time t.

The particular functional forms for colonisation and extinction rates used here are taken from
Ovaskainen (2003). The patch colonisation rate is given by Ci = c

∑
i 6=j e

−αdijAjpj(t),
where c is the species-specific colonisation parameter, 1/α is the mean migration distance,
Aj the area of a parent patch, dij the distance between patches (e here is just the natural
logarithm of 1). In other words, a daughter patch i becomes colonised at a rate Ci given by
the sum of the colonisation rates cij of i by another occupied parent patch j; these rates in
turn are proportional to the area of the parent patch j and inversely proportional to its distance
to the daughter patch i being colonised. The patch extinction rate is simply a function of the
patch area and is given by Ei = e/Ai where e is a species-specific extinction parameter, thus
patch extinction rates are inversely proportional to their area.
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5.2.2 Simulation algorithm

In this study, we compare the exact QSD, computed using the standard linear algebra ap-
proaches explained in 2.4.2, with simulated approximations. Several algorithms have been
proposed for simulating the QSD (see de Oliveira and Dickman, 2005, for a review). We
use the simulation algorithm described in Aldous et al. (1988) and de Oliveira and Dickman
(2005) to simulate the QSD. According to the algorithm, the Markov chain Xt is approxi-
mated by a chain X∗t . First, an initial state is drawn uniform randomly among the 2n − 1

permissible states. The simulation of X∗t then proceeds as would be the case for Xt until
the chain enters the absorbing state (metapopulation extinction); X∗t then transitions to a
non-absorbing state (as described below) and continues in the usual manner with the same
transition probabilities until it again visits the absorbing state. At regular census intervals,
the state of the chain X∗t is recorded. Storage is conducted in different ways in the com-
pressions (see Section 5.2.3), but in the full storage variant, this leads to a histogram of state
counts representing the current approximation to the QSD. When X∗t enters the absorbing
state, a new state is chosen by drawing from the distribution of state counts in the current
representation of the QSD (although see below for a slight adjustment used in early stages of
simulation). In order to progress between states, we employ a continuous-time spatial ver-
sion of the Gillespie algorithm (Gillespie, 1977), akin to that described in Mancy et al. (2013)
and in Chapter 3. Note that although the simulation itself is in continuous time, states are
stored at discrete census points. This approach facilitates comparisons with approximations
described later. The algorithm is shown in pseudo-code in Algorithm 5.1.

We implemented two versions of the full storage algorithm for the purposes of code verifi-
cation. In the first, using Matlab, we constructed the full 2n − 1 × 2n − 1 transition rates
matrix for the Markov chain X∗t , drawing rates directly from the matrix to simulate state
transitions. In the second version, coded in Java, we calculated patch colonisation and ex-
tinction rates on the fly on the basis of current patch occupancy. The latter version increased
the number of calculations required during the simulation because rates needed to be recom-
puted after each event (rather than being computed once and stored in the transition rates
matrix); however, it reduced the memory overheads since only n transition rates needed to
be stored. The storage requirements of the first version scaled poorly and the latter version
(the computational complexity of which is considered in more detail in the following sec-
tion) scaled significantly better as the number of patches increased so this version was used
in the experiment. The process of coding two versions, using two different languages (and
their associated procedural / scripting versus object-oriented paradigms) and different data
structures, led to greater confidence in the correctness of the code as differences in output
led to more thorough checking of both versions.
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Algorithm 5.1 simQSD. The simulation runs until the specified number of events is reached.
For each event, a time lapse is simulated and the previous state recorded in the QSD repre-
sentation according to the number of census intervals that have passed while in this state,
then the current time is updated. A new state is simulated and the system is updated accord-
ingly unless this represents the extinction state, in which case a new state is drawn randomly
from the non-extinct states. In the revised version of the algorithm, this new state is drawn
uniform randomly for numRandJumps times; after this it drawn from the current QSD rep-
resentation. The current time, system state, rates and QSD representation are assumed to be
accessible to the algorithm and are not explicitly passed in the methods.

1: initialiseSystem() I Initialise time, state, rates and QSD representation
2: while event < numEvents do I Keep simulating until numEvents reached

3: τ ← getNextTime() I Draw a time increment τ
4: numCensusPoints← getCensusPointsPassed(τ )
5: if numCensusPoints > 0 then
6: updateQSD(numCensusPoints) I Update QSD representation with current state
7: end if
8: time← time + τ I Update time

9: state← getNextStates()
10: if state = 0 then I If moving into the extinction state
11: state← selectNewState() I Select a new non-extinct state
12: end if
13: updateState(state)
14: updateRates()

15: end while
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5.2.3 Compressions of the QSD

The main aim of this chapter was to consider possible compressions that would allow for
the simulation of the QSD for larger systems. We tested three possible types of compression
in comparison to the exact QSD. This was conducted for systems with a small number of
patches for which the exact QSD can be obtained, by examining trends in accuracy as the
number of patches was increased. The approaches were tested for three different distributions
of patch areas, representative of different levels of system heterogeneity.

As explained above, the full QSD has dimension 2n, and thus its storage rapidly becomes
intractable as n increases. Under the stochastic SRLM model, all system states are reachable
and thus the probability of any particular state is strictly greater than zero in the QSD (so
we cannot simply ignore states with zero probability). Furthermore, a priori, we have no
particular reason to expect that there will be equiprobable states in the QSD, so we cannot use
an obvious grouping to reduce storage requirements. In general, in developing compressions,
we must be willing to accept information loss (i.e. compressions of the QSD are expected to
be lossy). The computational question arising is thus one of how to capitalise on statistical
regularities in the the model that allow us to compress the information contained in the
QSD while retaining the features of relevance for biological applications. In the simulation
approach that we use, a representation of the QSD is required both as the output of the
algorithm, and during the simulation. The latter situation is the case because whenever the
system goes extinct, the chain is restarted by drawing form the current representation of the
QSD. This means that any compression of the QSD influences the eventual output directly,
but also during the simulation process when chains are restarted.

As it was unclear whether any existing compression algorithms (such as those used for com-
pressing images or audio files) would be effective for this purpose, we decided to begin our
search with compressions that are implicit in representations of the QSD in the ecological
literature, and variants of these. Specifically, the ecological literature contains examples in
which the QSD is represented by patch occupancy probabilities. This candidate compression
corresponds to the assumption that patch occupancy is statistically independent (knowing
that one patch is occupied does not tell us anything about the probability occupancy of any
of other patches in the system). Since the colonisation rate of patches in the SRLM model is
a function of the occupancy of surrounding patches, knowing that a particular patch is occu-
pied changes our expectations about the occupancy of other patches, especially in the close
neighbourhood of this patch. Assumptions of patch occupancy independence are therefore
always a simplification; however, they allow us to store a compressed version of the QSD.
There are different ways in which patch occupancy can be considered to be independent, and
those implemented are described below.

The main aim of this chapter can be considered as one of identifying particular patch inde-
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pendence assumptions that allow for sizeable compressions of the QSD representation while
retaining an acceptable level of accuracy across systems with high and low levels of hetero-
geneity. In the first of the compressions, no patch occupancy dependencies are stored; in the
second, the dependencies that are stored are pre-specified (dependencies are ignored once
the number of occupied patches is specified); in the final approach, certain dependencies are
captured, but in a manner where we do not have to pre-specify which these are, as they are
determined by the data. The different compression algorithms are described below, and the
corresponding storage format is shown in Figure 5.2 in an illustration with 5 patches; in the
explanation that follows, we refer to rows and columns with reference to Figure 5.2.

1. Full simulation: As described in Section 5.2.2. The full QSD consists of a histogram
of census point counts per system state and a total number of census points. These
are stored in the form of an array of size 2n − 1 (or a hashmap up to this size), plus
an integer value. This representation thus has a memory footprint of size 2n (i.e. the
space complexity is O(2n)). States can be generated from the representation directly
by drawing these with probabilities proportional to the state histogram counts. The
number of operations required to write to the QSD representation is O(n) and drawing
a state from the representation is O(2n).

2. Independent patches: In this compression, at each census point, we increment by one
an occupancy counter for each occupied patch. This algorithm treats occupancy of
patches as fully independent, and has a memory footprint of size n + 1 (an array
containing the census counter per patch, plus a count of total census points; the lat-
ter saves summing the occupancy counts every time a state is to be drawn from the
representation). In other words, the space complexity is O(n). The number of oper-
ations required to write to the QSD representation is O(n) and drawing a state from
the representation is O(n). When a state is drawn from the compression, each patch
is considered in turn and is chosen to be occupied with probability proportional to the
occupancy count of that patch in the representation; rejection sampling is employed to
exclude draws of the extinction state.5

3. Independent patches by occupancy: In this compression, we assume independence of
patch occupancy once we have conditioned on the number of occupied patches. Stor-
age consists of a vector of length n holding a count of the number of census points at
which 1, 2, ..., n patches were occupied, and an n×n array of census counts per patch,
conditional on the number of occupied patches. In Figure 5.2, columns correspond
to counts in which the same number of patches was occupied, and individual entries

5This compression is closely related to the marginal distribution of patch occupancy probabilities; however,
the representation itself is used to generate states when re-starting the chains after extinction so in general does
not correspond to the marginal distribution of the full QSD.
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to census counts per patch (the entries in the first column indicate that one patch was
occupied at 3 census points; patch 1 once, and patch two twice). The total number
of census points is also stored as an integer, and the memory footprint of the storage
for this compression is thus n + n2 + 1; the space complexity is O(n2). The number
of operations required to write to the QSD representation is O(n) and drawing a state
from the representation is O(n). Note that the final column in the array, representing
full system occupancy, is not actually required as the counts are always equal to the
corresponding vector value; however, it is included for algorithmic simplicity. States
are drawn from the compression by first drawing a number of occupied patches from
the row vector; rejection sampling is then used, drawing the occupancy state of each
patch from the corresponding column, rejecting where the total number of occupied
patches does not correspond to that drawn from the vector.

4. Independent patches by cluster: A clustering algorithm is used to cluster similar states
(see below for details). Storage for each cluster k, up to a maximum of Kmax clusters,
consists of the number of census points for which the occupancy state vector is allo-
cated to that cluster, and a counter per patch within the cluster. In the Java code, each
cluster is an object consisting of an overall integer cluster count and a vector contain-
ing the patch occupancy counts within the cluster. This approach assumes that patch
occupancy is independent within a cluster, and allows similar states to be grouped to-
gether where similar is defined over the individual patch occupancies (in contrast to
the number of patches occupied in independent by occupancy). Including the storage
of the total number of census points, this compression has a memory footprint of size
nK + K + 1 where K ≤ Kmax is the number of clusters used; the space complex-
ity is O(nK). Assuming that Kmax > n, the number of operations required to write
to the QSD representation is O(Kmax) and drawing a state from the representation is
O(Kmax).

The number of operations in the simulation of the stochastic SRLM (without considering
operations required to compute the QSD) scales as O(n2 + n) per transition in our imple-
mentation. For the simulation, we use the Gillespie Direct Method (Gillespie, 1977). As
Ramaswamy et al. (2009) point out, the computational cost of simulation is dominated by
the number of operations required to sample the next event and to update the rates once this
has occurred. A more detailed explanation follows.

To sample the next event, we store all the rates out of the current state in an array. Because
each transition affects a single patch, and each patch has only one possible transition, this ar-
ray has length equal to the number of patches; using linear search, selecting from it therefore
scales as O(n). In our system, updating the rates dominates the computational complexity.
Specifically, every extinction or colonisation event affects the colonisation rate of all unoccu-
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Figure 5.2: Illustration of system storage for a system with five patches after 10 census
points for full storage and the three compressions, given states labelled such that system state
one is [10000], for the hypothetical chain: [11000] [01000] [11000] [11000] [10000] [11000]
[01000] (then extinction and uniform random jump to full state) [11111] [11111] [11111]. In
independent patches by cluster, three clusters are used and the first records states [01000] and
[11000]. Colours for the different forms of storage are used throughout the chapter.

pied patches (since the colonisation rate of any patch is given by the sum of the contribution
from all other patches), so all colonisation rates need to be recomputed at each transition.
The extinction rate of a patch is independent of the state of other patches and does not need
to be recomputed on new events. (This simplification was not actually made in our code,
however, because we were satisfied with the speed at which the code ran without making
this improvement.) Denoting by m ≤ n the number of occupied patches, setting the rate
for an unoccupied patch therefore requires summing over the contributions of each of the m
occupied patches, giving a total of (n−m)m operations of this type (each of which is, itself,
O(1)); for occupied patches, we require m rate calculations. The worst case arises when the
network is around half-full, i.e. for m = (n + 1)/2. The total number of rate computations
required is then (n2 +n+1)/4. This means that the time complexity of the simulation scales
as O(n2 + n).

The overall time complexity of the algorithm in 5.1 depends on the relative complexity of
the drawing from the QSD representation (required only intermittently when the system
goes extinct), the need to simulate enough state transitions to allow exploration of the state
space, and the complexity of the simulation itself. Although the number of events required
is not known a priori, we simulated for 2n× 1000 events (the number of events thus varying
according to the number of patches); if all states had been equally likely, this would have
meant that on average, the simulator would have sampled each state 1000 times. For the sizes
of systems used, this proved not to be prohibitive; for larger systems, a different stopping
criterion would be required. This might be based on convergence of the QSD representation;
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most applications are likely to focus primarily on the probability associated with common
states, and convergence for these should happen much more quickly than for rare states. The
overall space complexity is dominated by the storage requirements for the QSD, since the
space complexity of the simulator itself scales asO(n) (one needs to keep track of the current
state of the n patches and the probability of a transition in each of them). In this study, we
focus on compressions to reduce the space complexity of the problem.

Clustering algorithm

For independent patches by cluster, we use a clustering algorithm to construct a model of
the probability distribution of system states by grouping together similar patch occupancy
configurations. Our aim is to model the data in a manner that avoids us having to store the
states in full.

The data produced by the simulator consist of a sequence of system states which can be writ-
ten as patch occupancy vectors Xt of length n with elements Xt,i ∈ {0, 1} where i denotes
the patch and t the census point counter. We begin by making the assumption that these
vectors are drawn from a model in which similar states are grouped into clusters, denoted k.
Each cluster is characterised by a cluster probability and a probability distribution over patch
occupancy vectors. Specifically, each cluster k has a parameter πk corresponding to the prob-
ability of selecting this cluster and a vector θk of patch occupancy probabilities associated
with it. Within each cluster we assume independence between the occupancy status of indi-
vidual patches: an occupancy vector is modelled as resulting from n independent Bernoulli
trials, each with its own probability of success θk,i. This assumption implies that although
patches are independent within each cluster, they are not independent overall. In fitting the
model, we wish to learn π and the patch occupancy probability vector θk associated with
each cluster.

In the Bayesian clustering approach employed, we treat the unknown parameters π and θk
as random variables. Specifically, we assume that the patch occupancy probability vector
associated with the cluster θk is distributed as the product of beta distributions; for each
patch, θk,i ∼ Beta(a, b) (in which a and b are fixed hyper-parameters).6 Similarly, we treat
the probability of each cluster as a random variable π assumed to be distributed according to
a Dirichlet(φ/K, ... , φ/K) (in which the φ is the hyper-parameter). Note that sampling from
p(θ|a, b) returns a vector of parameters for independent Bernoulli draws (one for each patch)
while sampling from p(π|φ) returns a vector that constitutes a parameter of a multinomial
distribution. In other words, we make the assumption that the data X were generated by a

6The patch occupancy probability vector associated with the cluster θk is distributed according to the prod-
uct of the individual patch occupancy probabilities because we assume patch occupancy independence within
clusters.
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process that proceeds as follows

1. Sample π from p(π|φ) (i.e. sample a multinomial from a Dirichlet)

2. For each cluster k, sample θk from the product of beta distributions p(θk|a, b)

3. For each data point to be generated Xt, where t is in 1..M

(a) Sample its source cluster (a single observation drawn from the multinomial with
parameter π) and set an indicator variable ztk = 1

(b) For each patch i, sample Xt,i (draw once from the Bernoulli distribution param-
eterised by θk,i).

In order to use the data to fit the model, we need to introduce the indicator variable zmk which
is 1 if the mth object originates in the kth cluster, and zero otherwise (together these values
form the variable z with dimensions m× k). Using ∆ to denote the vector containing all the
hyper-parameters, and applying the model inference version of Bayes rule (without the nor-
malisation constant, i.e. posterior ∝ likelihood × prior), fitting the model now corresponds
to the inference problem

p(z,θ,π |X,∆) ∝ p(X|z,θ,π,∆) . p(z,θ,π|∆) (5.2)

∝ p(X|θ, z) . p(z|π) p(θ|∆) p(π|∆) (5.3)

The proportionality in line 5.3 holds due to the independence assumptions of selecting the
cluster and drawing a patch occupancy state from it inherent in the model.

We wish to sample from the posterior defined in Equation 5.3. Gibbs sampling is appropriate
for models of this kind as it is possible to compute the conditional distributions analytically.
We note that due to conjugacy, θ and π can be marginalised from the conditional distribution
required to sample z and it is thus unnecessary to sample them directly. We denote the set of
data up to and including the mth data point by X and the number of data points allocated to
cluster k as ck. Now, assuming that we have already allocated all of the data points in X to
a cluster and that these cluster assignments are stored in z, the probability of assigning the
(m+ 1)th data point to cluster k is given by normalising the expression

p(zm+1,k = 1 |Xm+1,X, z,∆) ∝ ck + φ
K

φ+m

n∏

i=1

[
a∗ki

a∗ki + b∗ki

]Xm+1,i
[

b∗ki
a∗ki + b∗ki

]1−Xm+1,i

(5.4)

by dividing by the sum of over all clusters k. Note that a∗ki = a +
∑

t ztk Xt,i and b∗ki =

b+
∑

t ztk (1−Xt,i).
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A Gibbs sampler would then proceed as follows. We would initialise z randomly, sampling
data points and reallocating them to clusters according to the probabilities in 5.4. However,
the size of the state space means that it is not possible to store the data points in each cluster
explicitly in order to perform this resampling (and indeed, doing so would be contrary to
our aims). As a result, we are obliged to use an algorithm where states are allocated to
a cluster as they are generated by the metapopulation simulation model and store only the
information required for the inference. We allocate patch occupancy state vectors to clusters
by proceeding as follows.

1. The first vector X1 is allocated to the first cluster.

2. The remaining vectors X2, ...,XM are allocated to one of the Kmax clusters following
5.4.

Note that in the case of empty clusters, ck = 0 so the expression becomes

p(zm+1,k = 1 |Xm+1,X, z,∆) ∝
φ
K

φ+m

n∏

i=1

[
a

a+ b

]Xm+1,i
[

b

a+ b

]1−Xm+1,i

. (5.5)

During the clustering process, we need to draw from the model in order to generate a new
state every time the metapopulation simulation goes extinct. To do this, we take the most
recent version of the model, draw a cluster with probability proportional to ck (ignoring
clusters that are unused) and then draw a state on the basis as a set of independent draws
of a Bernoulli distribution on the patches, with parameter a∗ki

a∗ki+b
∗
ki

. Rejection sampling over
states is used until a non-zero state is drawn because the QSD only contains non-extinct
states. The same approach is applied when we draw from the clustered model to generate an
approximate QSD for comparison with the exact QSD.

5.2.4 Experimental setup

In this section we explain the experimental setup and parameter values. We begin by explain-
ing how we set up the landscapes; however, the same set of landscapes is used as in Chapter
4 and the reader can thus skip the next two paragraphs. We then explain the parameter values
tested.

The same set of landscapes was used for all the experiments reported in this chapter. For
each number of patches considered, we first generated 100 sets of patch centres located
within a 5× 5 unit area according to complete spatial randomness (Hanski and Ovaskainen,
2000). Then, for each set of patch centres, we generated patch areas according to three
distributions: all equal area, drawn from an exponential distribution and drawn from a log
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normal distribution. Patch areas for all landscapes were scaled so that the summed area of
patches was 6.25 square units, representing 25% of the total. For each number of patches
(n = {3, .., 10}), this resulted in a set of 300 landscapes.

The total area covered by the patches was selected at 25% in an attempt to avoid heavy
overlap between patches; following Ovaskainen (2003), no additional correction for patch
overlap was conducted, and patches were allowed to extend beyond the 5 × 5 boundary.
Scaling patch area was necessary because the rates of colonisation and extinction are pro-
portional to patch area, so increasing the total area with the number of patches would have
increased patch colonisation rates and decreased patch extinction rates, resulting in more
persistent systems. We chose to investigate three different patch area distributions in order
to verify that our results were robust to this factor (log normally distributed patch areas were
included following Hanski and Ovaskainen, 2000). Before scaling, the rate parameter of the
exponentially distributed patch areas was 1; for log normally distributed patch areas, the log
mean was 0 and the log of the standard deviation was 1.

Our main aim was to compare the accuracy of the different compressions as the number of
patches increased. In conducting the experiments described, we simulated for the different
patch size distributions and also varied persistence by changing colonisation-to-extinction
ratio as a robustness check. Specifically, the parameters α = 1 and c = 1 remained fixed
throughout while e was varied between 0.1 and 1.0 in steps of 0.1. Unless otherwise stated,
we simulated for 2n×1000 events (the number of events thus varying according to the number
of patches), giving an expected number of 1000 events per system state if drawn according to
a uniform random distribution. We recorded the state with a census interval of 0.1 time units
throughout. At the start of each simulation, the initial state was chosen uniform randomly
among states; uniform random initiation states were also chosen to restart the simulation for
the first few extinction events (more details are provided below). For independent patches
by cluster, we used a baseline value of φ = 0.5, and a = b = 0.001 unless otherwise noted.
The small values of a and b mean that the data is very dominant (which is clear from the
equations for a∗ and b∗) and equal values mean that we start from the a priori position that
patches are equally likely to be occupied as vacant.

To compare the different approaches, we represented the QSD in all cases as a vector. For the
full simulator, this simply required the normalisation of the census count data; for the other
approaches, the QSD was constructed by drawing a number of states from the compres-
sion corresponding to the original number of events simulated and normalising the resulting
histogram7. During post-processing, we compared the vector representations of the exact

7The number of events was typically fewer than the number of census points during the original simulation
so the raw number of counts per state was lower for the histograms constructed from the compressions than
in the full simulation. However, as discussed later, increasing the length of the simulation and the number of
draws appeared not to result in a systematic improvement when tested for independence by occupancy.
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QSD to those of the normalised full simulation and those drawn from the compressed repre-
sentations. To test the correspondence between two vectors, we needed to select a distance
measure. A number of measures have been suggested for comparing probability distributions
(Cha, 2007); however, we could find no study in the literature that considered whether these
measures were comparable between vectors of different lengths, an important consideration
since we wished to understand the performance of the different algorithms for different num-
bers of patches. We therefore tested a range of distance metrics (see Appendix D.1) for bias
in measuring the distance between uniform random vectors of different lengths. The only
measure among those tested for which the mean distance was not sensitive to the length of
the vector was the Pearson correlation coefficient r (or more properly, the Pearson distance
1− r), and this was used for the majority of the comparisons in the remainder of this study.
Post-processing to obtain distance statistics between vectors was conducted in Java. Figures
were made in the statistical programming language R (R Core Team, 2012), using ggplot2
(Wickham, 2009).

5.3 Accuracy of the full simulation

In Experiment 1, we tested the correspondence between the full simulated QSD and the ex-
act QSD derived from the eigenvector calculations. Our findings show that for the SRLM,
the algorithm proposed by de Oliveira and Dickman (2005) does produce an accurate ap-
proximation of the full QSD in reasonable time (i.e. not solely for an order parameter of the
system, as considered by these authors). However, refinements were required in the case of
systems with low persistence in which the exploration of the state space is highly dependent
on initial conditions.

Some of the Figures in this section serve as illustrations. For these, a sample landscape with
5 patches was used, and this is shown in Figure 5.3.

5.3.1 Algorithm refinement for least persistent systems

Informal testing prior to conducting the full experiment showed that the algorithm proposed
in de Oliveira and Dickman (2005) appeared to be effective for simulating not just the
marginal distribution of the number of occupied patches, but also the full QSD. However,
it sometimes failed when the system had low persistence because the full state space was not
explored sufficiently thoroughly. Figure 5.4 illustrates two runs (a and b) of the algorithm
for the landscape shown in Figure 5.3 and parameters leading to low persistence, compared
with the exact QSD. The problem in the run shown in (b) appears to be to not visiting certain
states at all in the simulator.
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Figure 5.3: Sample landscape with five patches and log normally distributed patch areas.

In order to encourage better exploration of the state space, we increased the number of times
that chains were restarted in a state drawn uniform randomly from all states. The number
of random jumps required depended on the persistence of the system described by e and the
number of patches n, and in all experiments described below, the number of times a uniform
random state was chosen upon extinction was set to be 20× n× e.
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Figure 5.4: Two runs of the baseline algorithm for the landscape shown in Figure 5.3 and
parameters giving low persistence.
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5.3.2 Trend as n increases

We begin by providing an illustration of the accuracy of the algorithm (all discussion from
here on uses the modified version of the algorithm described in Subsection 5.3.1 above).
Figure 5.5 shows a histogram and scatterplot comparing the corresponding exact QSD and
the full simulation method for a high persistence system for the landscape in Figure 5.3. For
this example, the Pearson correlation coefficient between the two vectors is r = 0.999898,
showing excellent correspondence. We choose a system with 5 patches for this illustration
because it becomes difficult to interpret the histogram for the QSD with more patches. Al-
though the particular parameter values illustrated give a better accuracy than the average
for this number of patches (lower accuracy is achieved for systems with lower persistence
across all patch size distributions), if we increase the number of patches to ten, this correla-
tion is fairly typical, and thus it is representative of the accuracy for the larger systems which
constitute our main interest in this work.
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Figure 5.5: Left panel: State probabilities of exact QSD and full simulation (refined algo-
rithm). Right panel: Scatter of state probabilities of full simulation against exact QSD. Both
for the landscape shown in Figure 5.3 (e = 0.1, α = 0.5).

Figure 5.6 shows the median Pearson correlation coefficient between the numerical QSD and
the full simulation for a range of values of n and e. At least as far as n = 10, the full sim-
ulation improves in accuracy as n increases. The convergence of the full simulated QSD to
the numerical QSD depends on the total number of events and the number of random jumps.
Greater accuracy could therefore be achieved by simulating for longer, and particularly for
low persistence, by including a higher number of random jumps. Among the 8000 simulation
runs used to produce Figure 5.6, the lowest correlation coefficient was for a landscape with
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four patches and log normally distributed patch areas and was r = 0.8736, leaving 23.68% of
the variance unexplained; nonetheless the bottom 1% of correlations contained all values of
n. For equal patch sizes, the correlations between the numerical QSD and the full simulation
were slightly lower (overall median r = 0.9991 and lowest r = 0.8332, as opposed to over-
all median r = 0.9997 or 0.5991% of the variance unexplained for log normally distributed
patch areas).
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Figure 5.6: Algorithm accuracy in the form of median Pearson correlation between the true
QSD and full simulation for different values of n and persistence e, shown on the right-hand
axis (in all figures, persistence decreases as we move down the panels).

5.4 Accuracy of QSD compressions

The driving question in Experiment 2 is that of whether there is a compressed form of the
QSD that provides an approximation to the QSD from the point of view of accuracy and that
supports greater understanding of the system. As expected, all of the three compressions de-
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scribed above (independent patches, independent patches by occupancy, independent patches
by cluster) were less accurate than the full simulation. Although all compressions began to
improve as n increased for some parameter values, there were also parameter sets for which
all tended to become worse, and this trend was most consistent (although not most marked)
for more diverse patch areas.

5.4.1 Relationship between compressions

We begin by comparing the accuracy (with respect to the exact QSD) of the simplest com-
pressions - independent patches and independent by occupancy - to the accuracy of the
full simulation. These compressions have a small memory footprint and are also straight-
forward to implement. Overall, Figure 5.7 shows that the full simulation performs much
better than the two compressions, and independent patches is markedly worse than inde-
pendent patches by occupancy. Aside from overall higher accuracy, independent patches
by occupancy demonstrates similar patterns to independent patches, and we therefore only
discuss the simpler compression in detail. For independent patches, the median correlation
between the numerical QSD and the simulated QSD is r = 0.9197 over all parameter values.
Nonetheless, for this compression algorithm, there were 15 landscapes with three patches
and one with 4 patches for which the correlation coefficient between the numerical QSD
and the simulated QSD was negative, with one correlation as low as r = −0.7081. All of
these had relatively high e values (e ≥ 0.4), showing that the largest errors occurred for
small, poorly persisting systems. This may indicate that the number of random jumps at the
beginning of the simulation was insufficient for these parameters in small systems.

Figure 5.7 also shows that as e changes, the importance of the assumptions of patch occu-
pancy independence change for these compressions, and these assumptions are most prob-
lematic for intermediate values of e. When e is low, the landscape is relatively well occupied;
colonisation of new patches is thus dependent on patches becoming available, a process that
relies on patch extinction, which in turn is independent of surrounding patch status. As a re-
sult, the patch independence assumption is relatively unproblematic for low values of e (the
median correlation for e = 0.1 across all n is r = 0.9920). When e is high, the system is in
the ‘subcritical range’ and its dynamics are driven by patch extinction: in this situation, most
events within the same chain (i.e. events not due to system extinction and the re-allocation of
a new non-zero state) are independent patch extinctions, and the independent assumption is
again not particularly problematic. In between these extreme values of e, patch colonisation
forms an important part of the system dynamics and thus the patch independence assumption
breaks down.

We now compare compressions with a comparable memory footprint: independent patches
by occupancy and independent patches by cluster where the maximum number of clusters
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Figure 5.7: Algorithm accuracy of the full simulation, independent patches and independent
patches by occupancy.

is equal to n. Figure 5.8 shows that for the same memory footprint, independent patches by
occupancy is more accurate than independent clusters with Kmax = n, and this advantage
grows as n increases, especially for equal patch areas and log normally distributed patch
areas for intermediate persistence.

In independent patches by cluster withKmax = n, all available clusters were always used. In
order to verify that this effect was not simply due to the choice of the φ parameter that governs
the tendency to start new clusters in the clustering algorithm, and which had been set to
φ = 0.5 originally, we tested the same approach with φ = 0.25 (leading to a lesser tendency
to use all clusters). We also wished to ensure that clusters were being used effectively.
Because of the randomness associated with the generation of new clusters, it is possible for
clusters to be created for uncommon patch configurations and attract only a small number
of additional states to the cluster during the process of the simulation. Such clusters are,
in effect, ‘wasted’ insofar as they store minimal information about the QSD. We therefore
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Figure 5.8: Comparison of compressions with similar memory footprint.

tested the compression allowing 1.25 × n clusters, using the original φ value. The results
from these tests are shown in Figure D.2 in Appendix D.2. These tests revealed that there was
no systematic improvement due to these adjustments and independent clusters by occupancy
still began to outperform clustering as n increased.

In order to further explore the accuracy of the clustering approach, we kept the original φ
value, and increased the number of clusters to Kmax = {n2, n3}. Figure 5.9 shows that there
were significant improvements by allowing up to n2 clusters, and for some parameter values,
small additional improvements when allowing n3 clusters.

In order to understand the findings from this test, we plotted cluster usage (see Figure 5.10),
finding that clusters were fully used for Kmax = n, that they tended towards full usage
for Kmax = n2, but that only a small proportion of the available clusters was used for
Kmax = n3, presumably explaining the small gains in accuracy with respect to n2 clusters.
As a result, we also tested additional φ parameters for n3 to see whether we could achieve
higher levels of accuracy by using more of the available clusters. We tested φ = 5, but saw
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Figure 5.9: Comparison of adjustments to maximum number of clusters.

limited improvement, and as a result tested φ = 100 and φ = 500. Figure D.3 in Appendix
D.2 shows the results of this comparison for exponentially distributed patch areas. Overall,
correlations with the full simulator are very similar, and are still improving as the number of
patches increases towards n = 10.

The memory footprint of the clustering approach with Kmax = n3 grows as n3, in compar-
ison with the full simulator, that grows as 2n. However, for the largest number of patches
tested n = 10, n3 = 1000 is almost equal to 2n = 1024, so there is almost no saving
from using the clustering. In addition, the computational overhead of calculating the clus-
tering probabilities significantly reduces the value of this approach (the full simulator ran
faster than the clustering approach for these parameter values), and selecting an appropriate
value for φ is also difficult. In summary, for the model under consideration and the number
of patches used in our experiment, the clustering approach appears to lose accuracy as n
increases, unless Kmax is similar to the number of states.
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Figure 5.10: Proportion of available clusters used for landscapes with exponentially dis-
tributed patch areas.

5.5 Selection of a compression

In summary, none of the compressions tested is robust to increases in the number of patches
and the experiments suggest that extrapolation beyond the number of patches tested is there-
fore difficult. All the compressions become less accurate as n increases towards n = 10,
at least for some part of the parameter range, especially for intermediate persistence, and
it is interesting to compare this situation to that of the full simulation which became more
accurate for higher values of n. The compression that is least susceptible to this problem is
independence by occupancy, where errors begin to reduce at higher n values in some parts of
the parameter range, and may ultimately do so for all levels of persistence with sufficiently
large numbers of patches. Although this means that it is not possible to provide guidance
on a single best approach, one possible resolution to the problem is to select a compression
according to what we hope to learn about the system. In this section, we provide guidance
on preferred approaches according to this criterion and the number of states in the system.

5.5.1 Compression for overall accuracy

In some circumstances, we may be interested in obtaining the most accurate representation
of the QSD. This might be the situation if we are hoping to draw from the QSD to generate
starting conditions for a simulation, or if we wish to use the representation of the QSD for
parameter estimation (e.g. if we have a real world dataset consisting of a set of states that are
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Figure 5.11: More detailed comparison of independence by occupancy with clustering with
Kmax = n2.

assumed to be drawn from the QSD and wish to conduct parameter estimation).

For small enough systems, the full QSD can be obtained numerically from the leading eigen-
vector of the generator matrix. This approach ultimately breaks down due to memory limita-
tions. These first appear in relation to the storage required for the generator matrix, which has
dimensions 2n × 2n. Sparse representations are possible since the generator matrix is sparse
and becomes more so as n grows although whether these can be used to find eigenvectors
depends on the programming language and implementation. This numerical approach may
also break down due to numerical inaccuracy as the number of states becomes large and the
eigenvectors more difficult to calculate without rounding errors. For example, Java supports
arrays holding a maximum of 231 elements (about 2.1 billion = 2,147,483,647). The full
generator matrix for 15 patches has 1,073,741,824 entries (including 0th state) and is there-
fore the largest that can be stored in full in Java. (Although sparse representations may be
possible, at least some packages, including the JAMA package, that can be used to calculate
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eigenvectors do not have provision for sparse matrices.)

Once the numerical approach is no longer feasible, the full simulation can be used. Since the
representation of the full QSD requires 2n integer records (of census counts per state), it is
possible to use this approach for larger numbers of states than the numerical approach, but
this eventually breaks down because of memory limitations or because the maximum array
size is reached. The theoretical maximum in Java is thus 31 patches, although in practice
some elements may be allocated to array headers and size count, so the safe maximum is
n = 30, provided computer memory allows. We note that it is preferable to store census
counts rather than proportions of visits per state due to possible rounding error inaccuracies
with the small values required by proportions.

Because the simulation time required for convergence of the algorithm may be related to the
characteristics of the system (e.g. to the level of heterogeneity in patch area), the simulation
should be run until longer runs result in limited change in the QSD properties. For example,
one might test the correlation between the QSD when the simulation is run for E events and
2 × E events, and between 2 × E events and 3 × E events and stop when the difference
between the two correlations falls below a threshold value ε. In some systems, convergence
may be slow and testing in this way is a useful check. Also, the system may appear to have
converged to another distribution when the full state space is not explored. Therefore, testing
different numbers of initial random jumps may also be important, especially for systems with
low persistence.

Up until this point, we have been using the Pearson correlation as a measure of the accuracy
of the QSD. This measure was selected because it is unbiased with respect to the number of
states (see Appendix D.1), and because it captures the relationship between all state probabil-
ities. It provides an overall measure of the relationship between two QSDs that allows us to
derive the coefficient of determination (i.e. the proportion of variance explained); however,
it is not always intuitive to interpret in terms of the magnitude of errors. In this case, other
measures such as the root mean squared error (the mean state-wise error), maximum error
or total error may provide more useful information. Figure 5.12 shows total error (square
root of the sum of the squares of the error for each state probability) for the full simulator,
independence by occupancy and the clustering approach with Kmax = n2. The total error
decreases as n increases for both the full simulator and independence by occupancy. For
example, for log normally distributed patch areas, the median total error for n = 10 is small
(across all values of e it is 0.06072858). Obviously the root mean squared error per state is
much lower.
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Figure 5.12: Median total error calculated as square root of sum of square errors.

5.5.2 Compression for extinction times and extinction paths

In some situations, we may be less interested in the overall accuracy of the QSD itself, and
instead wish to use it to understand other system properties. One reason that the QSD is
helpful is that the mean time to extinction from quasi-stationarity is well understood and
can be found directly from the extinction rates from states in which only patch is occupied,
and their state probabilities in the quasi-stationary distribution. It is therefore natural to
ask whether any of the proposed compressions allows us to gain a good understanding of
extinction times and how the approximations change as n increases.

Figure 5.13 shows proportional absolute error in mean time to extinction from quasi-stationarity
for the full simulation and independent patches by occupancy. The independent patches
by occupancy compression has the advantage of explicitly storing all of the near-extinction
states. The percentage error for the full simulation reduces as the number of patches increases
while the percentage error is more-or-less constant for independent patches by occupancy.
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Figure 5.13: Proportional absolute error in mean time to extinction from quasi-stationarity.

As we reach higher numbers of patches, the error grows for the clustering algorithm with
Kmax = n2, showing lack of robustness to increasing the number of patches and should be
avoided for this purpose. Returning to independent patches by occupancy, although the me-
dian error for equal patch areas is only around 2%, for log normally distributed patch areas,
it is around 14% (across all parameter values). Interestingly, the errors are smallest in the
part of the parameter range for which the Pearson correlation coefficient demonstrated great-
est divergence. For very high persistence (e = 0.1), the errors are relatively high, mostly
because the near-extinction states will be visited only rarely in this situation, so longer sim-
ulation times may be required (i.e. a larger number of events should be simulated). If one
wanted to investigate extinction times specifically, it may be best to continue simulating until
each of the near-extinction states had been visited a pre-specified number of times.

To test this, we ran independence by occupancy for an order of magnitude more events and
drew as many states as the original number of census points. This led to almost no improve-
ment in the Pearson correlation coefficient (i.e. overall accuracy). However, it resulted in
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improvements in the prediction of mean time to extinction from quasi-stationarity for the
more persistent systems. Compared with the full simulation run for the original number of
events, the longer simulation made better predictions for equal patch areas for e = 0.1, 0.2

and similar errors for other values of e. For exponentially and log normally distributed patch
areas, the longer simulation performed slightly better for e = 0.1, with little improvement
for lower persistence (and even possibly some worsening for the least persistent systems).
For persistent systems and those with equal patch areas, independence by occupancy gives
acceptable errors in estimation of mean time to extinction. For less persistent systems, the
error does not grow as n increases, although overall errors are fairly large.
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Figure 5.14: Mean of absolute error in mean time to extinction from quasi-stationarity, as a
proportion of true Tm.

In addition to extinction times, we may be interested in likely extinction paths. For ex-
ample, if we are interested in applying interventions to eliminate an infectious disease in a
metapopulation, we might be interested in knowing where the infection is most likely to be
when it comes close to elimination (e.g. is present in only one or two patches) as this might
help us to ensure that resources are available in this location to finally eliminate it. For this,
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independent patches by occupancy is also the preferred compression as it explicitly stores
these states as separate. One can use the compression to investigate the most likely patch
occupancy patterns close to extinction (with one or two patches occupied).

5.5.3 Compression for occupancy patterns

Another possible QSD application of interest might be in investigating patterns representing
the most likely configurations in the endemic or long-term state for persistent systems. The
full QSD is not very helpful for supporting this kind of understanding as it contains infor-
mation on the probability of each state individually. The clustering algorithm, however, is
ideal for this purpose as it allows us to investigate common configurations, and can be used
at different levels of granularity (i.e. for different numbers of clusters). Figure 5.15 shows
how this might be used in practice. In this example, the two most common clusters consisted
of one shown in the left panel representing 47% of the census points in which most patches
were occupied most of the time, and the small, isolated patch about 70%; and a second clus-
ter (b) corresponding to 35% of the census points in which all patches apart from the small
isolated patch were occupied. The next most common cluster only represented 16% of the
census points, with the remaining clusters accounting for less than 5% of the census points
(not shown).
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Figure 5.15: Probability occupancy (darker shading representing higher probabilities) of
each patch in the two most common clusters in the cluster representation of the QSD for an
example landscape with 5 patches and e = 0.1, and counts of the number of census points
(out of 452537 census points during the simulation, using n clusters).
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This approach is powerful for providing an overview of the system in a way that goes beyond
simply plotting the occupancy probability of individual patches. A more nuanced picture can
be gained by using a larger number of clusters; however, there is a trade-off between the level
of detail that these represent and the insight that can be gained. Figure 5.16 shows that as
more clusters are used, we begin to see that most of the time we expect the system to have
either 3 or 4 patches occupied, but that all 5 patches is also common. The fourth most
common cluster shows three patches occupied almost all the time and the isolated patch
occupied only a small proportion of the time.
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Figure 5.16: Probability occupancy of each patch (darker shading representing higher prob-
abilities) in the two most common clusters in the cluster representation of the QSD for an
example landscape with 5 patches and e = 0.1 with counts of the number of census points,
using n3 clusters.
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5.6 Discussion

In summary, for small systems, the QSD can be found numerically from the eigenvector of
the generator matrix. For slightly larger systems, it can be simulated using the full simulator.
For larger systems still, our findings suggest that recommendations regarding an appropriate
compression depend on the aims of the study.

For these larger systems, if one is interested in closely approximating the QSD, none of the
compressions tested demonstrated good scaling with the number of patches for all levels of
persistence when tested using the Pearson correlation; however, growth in the inaccuracy in
independent patches by occupancy appeared to have slowed down, and had actually started
to improve for lower levels of persistence. Furthermore, the median total error under this
compression had started to decrease for all persistence levels by n = 10, suggesting that
the Pearson correlation is much more sensitive to differences between two vectors than the
median total error; in addition, the total median error values are small (e.g. 0.06 for n = 10,
log normally distributed patch areas, averaged over values of e). Ultimately, whether this
approximation is considered to be sufficiently accurate depends on the ecological questions
one hopes to address.

If one is interested in mean time to extinction, the only algorithm for which errors were no
longer growing as n increased to around 10 was independent patches by occupancy; how-
ever, the proportional error in the absolute value was relatively high. Nonetheless, there was
systematic bias in the estimates of time to extinction in the direction of overestimation for
this compression (see Figure 5.17); underestimates are rare and even the worst are small. We
can therefore conclude that this compression provides reasonable estimates for mean extinc-
tion times for more persistent systems and that we can expect it to increasingly overestimate
extinction times as the system becomes less persistent. In a disease ecology setting in which
one attempts to control disease by making the system less persistent, this situation is unlikely
to be particularly problematic: as one applies interventions to reduce the persistence of the
system, predictions of mean time to extinction become progressively more conservative. As
a result, although these predictions may not lead to an optimal allocation of intervention re-
sources, and may lead to some resource wastage, their tendency to overestimate persistence
should lead to more rather than less effective policy. In the context of conservation biol-
ogy, these overestimates of persistence may be thought of as potentially more problematic;
nonetheless, most systems for which such models are appropriate are likely to be relatively
persistent compared with those considered here. This compression is also useful for inves-
tigating extinction paths since it explicitly encodes the near-extinction states. This may be
useful in epidemiology to ensure that resources are available in the appropriate locations for
elimination campaigns to be effective.

If one is interested in the endemic or long-run situation for more persistent systems, using
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Figure 5.17: Median relative difference in estimates of Tm from independent patches by
occupancy compared with those from the exact QSD (normalised by exact Tm, for log nor-
mally distributed patch areas) and showing 95% of the values (darker ribbon) and the full
range (lighter ribbon).

a clustering approach may be more appropriate. The clustering algorithm used here allows
the automatic grouping of common system states into clusters that are more amenable to
visualisation than the full set of system states, a useful approach for gaining familiarity with
the system. This may also be helpful for exploration of parameter space when attempting
to fit models since one would expect most real world data on patch occupancy to fall within
the most common clusters. For example, if particular patch occupancy combinations for a
model are vanishingly rare under particular parameter values, observing these combinations
repeatedly would suggest that a model fails to capture the real world; this information could
easily be missed if we traced only the number of occupied patches. Information that can be
used to compare model predictions of common QSD states and real world data will become
available well before direct information on total system extinction. In fact, although datasets
that consist of multiple time points will lead to better parameter estimates, the QSD should
support model fitting based on a small number of snapshots for systems that are believed to
be in the quasi-stationary regime. This obviously presents an important practical advantage
over fitting methods that require time series data or turnover information
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Specifically in relation to the deterministic SRLM, we note that the steady state solution of
the differential equations for this model corresponds structurally to the first compression,
independent patches. However, we have shown here that this compression provides a poor
approximation to the full QSD. The question addressed in this chapter arose because we
wished to initialise stochastic simulations in a state drawn from the stochastic equivalent
of the deterministic steady state. Our results demonstrate that drawing such states from the
deterministic steady state would be misleading: for example, extinction times from this com-
pression are highly inaccurate (for the least persistent systems, the median error is around
25%, and errors for persistent systems e = 0.1), increase with n up to about an order of
magnitude greater at 250% for n = 10, and something similar should apply to initial con-
ditions drawn from the deterministic steady state. This conclusion is likely to generalise to
other systems in which there is heterogeneity, and we thus caution against the use of the
deterministic steady state for this purpose, at least for the SRLM and systems with impor-
tant heterogeneities. This problem is likely to be even more acute if there is an Allee-like
effect in the metapopulation since under these conditions, time to extinction from the de-
terministic mean may differ markedly from that from the QSD. Although the deterministic
equilibrium is the same in the two cases, the QSD mass will focus much more heavily on the
near-extinction states in the presence of an Allee-like metapopulation effect.

It would be valuable in future research to further investigate possible schemes for the com-
pression of the QSD. For example, we might wish to combine the independence by occu-
pancy scheme with that of the clustering algorithm, perhaps using clustering to characterise
different occupancy states conditioned on the same number of occupied patches. It is cur-
rently unclear why independence by cluster was outperformed by independence by occu-
pancy, and the extent to which this was due to the sampling process (according to which it
was not possible to resample according to the usual Gibbs sampling approach) or rather due
to characteristics of the particular system. Understanding the answer to this question may
lead to better approaches. It would also be useful to consider the refinement of the origi-
nal algorithm described here which includes re-starting the chain in a state drawn uniform
randomly a number of times to see whether a less ad hoc approach can be developed, by
exploring the convergence of different algorithms. For example, we begin with a QSD rep-
resentation with zero counts for all states and initialising with some counts per state might
be another way of encouraging state space exploration. Finally, it would be useful to have
a more sophisticated measure of the correspondence between two QSD representations for
the kind of system considered here. We have considered any two states as equally different
from one another; however, for this kind of system, it would make more sense to consider,
for example, states only differing in the occupancy of one patch, as more similar than states
with very different numbers of occupied patches or no overlap in the patch occupancy.
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5.6.1 Concluding remarks

The QSD can be used to investigate theoretical questions such as explanations of the core-
satellite species distributions (Gyllenberg and Silvestrov, 1994) or the existence of mortality
plateaux (Steinsaltz and Evans, 2004). It can be used in the context of model fitting, and is
especially valuable where the system can be considered to be in the quasi-stationary regime
and only a small number of system snapshots are available. It can be used to make predictions
about common system states of a system that has reached endemicity, as well as paths to
extinction and time to extinction from quasi-stationarity. These are valuable for practical
applications such as disease control and conservation biology in which selection of the most
appropriate patches for interventions is a key question of importance. To this end, the QSD
of full states clearly provides more information than either the patch occupancy probability
or the number of occupied patches.

In this chapter, we have provided a first attempt to simplify the simulation of the QSD in
a way that can be employed with intermediate sized systems in which heterogeneity is an
important consideration. The simulation approaches employed here are expected to be useful
for ecologists, in part because they require minimal mathematical knowledge. In addition,
if a simulation approach is already being used, it is easier to integrate into this a process
for computing the QSD than to use a separate mathematical approach for this purpose. For
example, one might choose to use a simulation approach to explore future scenarios, but
need to test this with appropriate starting conditions; first simulating the QSD allows such
initial conditions to be selected in a theoretically rigorous way.
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Chapter 6

Persistence thresholds in related
multi-state ecological and
epidemiological models

Persistence thresholds have attracted attention as a possible way to establish the conditions
required for metapopulation persistence, and have obvious practical value in both ecology
and infectious disease contexts. Thresholds have typically been derived separately for dif-
ferent compartmental models. In this chapter, we first show how standard compartmental
models for investigating persistence in epidemiology (namely the SIS, SEIS and SIRS)
can be interpreted in the ecological and metapopulation context, and vice versa. In relation
to the metapopulation structure, we focus on the original Levins and spatially realistic Levins
models; for the former, we also apply both weak and strong Allee effects. We then explain
the connection between the compartmental models by connecting them through the SIIS
model that subsumes the specific models in the limit as we allow parameter values to vary.
We use this connection to obtain persistence thresholds by first deriving these for the over-
arching model and then exploring how they change as parameter values tend to the limits
that allow us to recover the specific models. The persistence threshold for several of these
models has not been derived previously, while for the others, our approach for obtaining the
threshold is new. We argue that investigating concepts of interest through the use of more
general models, we can gain additional insight into the biology of different systems, and can
quantify the effect of modelling decisions in relation to the choice between compartmental
models.
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6.1 Introduction

Predicting persistence under different conditions is important for the management of bio-
logical populations. Persistence thresholds have attracted attention as a way of formalising
the distinctions between populations that are expected to persist and those that are not and
thresholds have been derived for a range of classical and spatially-explicit models (e.g. Cob-
bold and Lutscher, 2014; Lloyd-Smith et al., 2005; Hanski and Ovaskainen, 2000). For
conservation purposes, it would be helpful to be able to evaluate a critical amount of habitat
required for long-term persistence of a particular species; in the context of infectious dis-
eases, assessing the reduction in host population required for pathogen elimination is key to
vaccination and similar public health campaigns.

In the previous chapters, we have used stochastic models to investigate persistence. In this
chapter, one aim is to explore possible approaches to understanding persistence using deter-
ministic models. We provide the derivation of novel persistence thresholds in the context of
multi-state models. Nonetheless, perhaps a more important contribution of this work is in
the more general framework formed by connecting model types and deriving mathematical
expressions for important concepts using it. Viewed from this perspective, our threshold
derivations illustrate this approach that relies on viewing compartmental models as a family
in which some members are limiting models of a more general model. This approach helps
us to connect and understand particular findings in relation to persistence thresholds, while
raising new questions, and should be valuable in future work for guiding the selection of
particular model structures.

Our discussion of persistence thresholds is motivated by a need to understand persistence in
compartmental models in a range of application contexts. This kind of model is common in
the epidemiological literature: in models of this type, individuals move sequentially through
disease states. A simple example is the SIS model, according to which an individual moves
from the state of being susceptible, to an infectious state, and then returns to the susceptible
state. Compartmental models also appear in the ecological literature on metapopulation
persistence (e.g. Hanski and Ovaskainen, 2000) where two states are typically employed,
as well as in relation to system persistence in the context of successional dynamics with
more states (Feng and DeWoody, 2004). Therefore we begin by relating models that have
been employed in the epidemiological literature - in which these models have been well
formalised - to the dynamics of metapopulations, viewed from both an epidemiological and
an ecological perspective. That is, for each model, we consider different applications in
epidemiological and ecological contexts.

The motivation for viewing persistence thresholds from the point of view not of separate
models but families of models is based upon our view that this approach can lead to addi-
tional insights, and can be used to guide model selection. Although persistence thresholds



6.2. Compartmental models 124

have been derived for models from these families, in which there may be more than two
states, these thresholds have typically been addressed separately for the different models.
Consideration of these different models in Roberts (2007) highlights the importance of mak-
ing an informed choice of the disease classes to include in compartmental models and the
relationship between these classes. Nonetheless, in his review of persistence thresholds,
Roberts (2007) treats different disease models in different sections of the discussion.

In the following sections we begin by making the link between simple compartmental mod-
els of relevance for persistence in the infectious disease literature and those used in ecology.
We briefly discuss the correspondence between the Levins model and Logistic model of
population growth, extensions to a spatially-realistic context, and the role of Allee effects
in these models. We then show the connections between these models, showing how the
other models can be considered as limiting cases of the SIIS model. We then provide some
background on existing work on persistence thresholds in these kinds of models, including
work on metapopulation capacity. In the main section of the chapter, we provide exam-
ples of the derivation of persistence thresholds for SIIS models in a spatially-implicit and
spatially-explicit context, with and without an Allee effect in the non-spatial version, and
show how these can be used to derive the corresponding thresholds for related models. We
conclude with a discussion of the implications of the approach and limitations in relation to
the differences between deterministic and stochastic models. Some of the discussion in this
chapter, especially in earlier stages, is likely to be familiar to those with a background in
epidemiological modelling, although some of the links identified are likely to be new. Some
aspects of the description of the Spatially Realistic Levins Model are also covered in earlier
chapters, and the reader may progress through these rapidly.

6.2 Compartmental models

Compartmental models, in which individuals are modelled as being in one of a number of
discrete disease states, are common in epidemiology. In this section, we introduce basic
models and consider their application in an ecological context. In the literature on disease
invasion and epidemics, individuals are typically modelled as progressing from a susceptible

state (labelled S) to an infectious state (labelled I) in which they are able to infect other
individuals; typically, they then progress to a removed state (labelled R) in which they can
no longer be infected (either through death or recovery with immunity), and the full progres-
sion is denoted by the state labels: SIR. Sometimes, an additional exposed state (labelled
E), precedes full infection, modelling a delay in the onset of infectiousness, resulting in an
SEIRmodel. In contrast to epidemic models, models of persistence require the inclusion of
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Model Epidemiological
individual
example

Epidemiological
metapopulation
example

Ecological
metapopulation
example

SIS / Presence-absence

Susceptible
Vacant

Infectious
Occupied

Repeat infections, e.g.
common cold rhinovirus

Diseases that infect only
a small proportion of
susceptible individuals,
thus causing little or no
population level immu-
nity

Organisms that use habi-
tat cyclically between
presence and absence
(and where habitat can
be re-inhabited immedi-
ately following extinc-
tion)

SEIS / Maturation

Susceptible
Vacant

Exposed
Maturing

Infectious
Occupied

Diseases with incuba-
tion period before infec-
tiousness occurs

Diseases with long in-
cubation period: popu-
lations are infected long
before being able to in-
fect other populations.
Population-level immu-
nity not acquired (e.g.
only a small proportion
of susceptibles infected,
causing limited immu-
nity (e.g. rabies))

Social animals that re-
quire an establishment
period before colonising
new territories.

SIRS / Regeneration

Susceptible
Vacant

Infectious
Occupied

Recovered
Regenerating

Diseases that procure
waning immunity (e.g.
influenza)

Diseases that infect a
large proportion of a
population, and procure
immunity, but this is
lost at population level
(e.g. due to population
turnover; childhood dis-
eases such as measles)

Organisms that ex-
haust environmental
resources; the environ-
ment must regenerate
before recolonisation

SIIS / Successional

Susceptible
Vacant

Infectious 1
Occupied 1

Infectious 2
Occupied 2

Repeat infections (rather
like SIS) but where
each infection has two
stages (e.g. a more and
less infectious stage)

As SIS but with two
stages of population in-
fectiousness (e.g. a
more and less infectious
stage)

Successional dynamics
in which a habitat is
available for colonisa-
tion by different species
in turn (e.g. grass-bush-
tree)

Table 6.1: Illustrations of different compartmental models with, in the figures, epidemiolog-
ical terminology (above) and ecological terminology (below).
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longer-term processes, for example by allowing re-infection1, and the compartmental models
change from being linear to cyclical, modelling the processes by which individuals transi-
tion back to the susceptible state, giving rise to SIS, SEIS, SIRS and SEIRS models. In
the simplest case, the SIS model, susceptible individuals alternate between susceptible and
infected states, as might be the case for the common cold rhinovirus.

In making the connection between epidemiological and ecological models, it is useful to
think about the epidemiological process from the point of view of the pathogen. In this view,
individual humans constitute patches of ‘habitat’ for the pathogen: after being colonised,
these are occupied until the host clears the disease as its immune system forces pathogen ex-
tinction. The dynamics can therefore be viewed as a colonisation-extinction process in which
habitat patches (hosts) are either vacant (susceptible) or occupied (infectious). Conceptual-
isation as an SIS or a colonisation-extinction process is therefore a matter of perspective:
the two models are mathematically equivalent.

The connection between SIS and colonisation-extinction models raises the question of the
scale on which these models focus. Although compartmental models are typically applied
to individual hosts in the epidemiological literature, we could model the infection status
of populations in a similar manner: a population can be considered as a habitat patch and
modelled as being susceptible or infectious (able to export infection to other patches). In
other words, compartmental models can model habitat or host populations at different scales.
For example, in an epidemiological context, the SIRS model describes a process according
to which individuals or populations receive infection, become infectious and then recover
to acquire immunity, finally returning to a susceptible state. In an ecological context, this
corresponds to what we refer to as the ‘regeneration model’ describing a process in which
a habitat patch is colonised, remains occupied for a time before local extinction occurs due
to habitat deterioration, and the patch spends some time in a state of regeneration before
returning to a vacant state ready for re-colonisation. Table 6.1 illustrates a range of models
instantiated in an ecological context, where the focus is on the occupancy state of habitat
patches, and in the epidemiological context in which the focus is on either individuals or
populations. The table also includes the SIIS model that we shall consider in more detail
in later sections as a model that subsumes the other models. However, the SIIS can also
be interesting in its own right as a model that captures, for example, the situation when an
infectious phase has two stages with different levels of infectiousness, possibly with different
durations. This may arise if there is a acute infectious period and much longer chronic period
because the host never entirely clears the infection (and thus never entered a recovered state),
during which it can transmit at a reduced rate.

1Longer-term processes may, instead, be modelled by incorporating demographic change in which new
susceptible individuals emerge not through waning immunity but through reproduction (see e.g. what Hethcote,
2000, refers to as the ‘classic endemic model’).
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6.3 A family of compartmental models

In this section, we provide background information on models used for the population struc-
ture for the compartmental models employed in later sections of the chapter. We begin
with the logistic growth model, and move on to the metapopulation models used here: the
Levins model, and the Spatially Realistic Levins Model (SRLM). The former is a standard
model in the ecological literature and the latter is used in earlier chapters. The subsection
on the SRLM is deliberately fairly detailed. Although the description of the model itself
has been provided in earlier chapters, here we attempt to present the persistence threshold
of this model in a much more intuitive fashion than in the literature to date. The reader may
progress to Subsection 6.5.1, or indeed to Section 6.4, if this material is already familiar.

6.3.1 Logistic growth and Levins models

A basic model in the ecological literature is the logistic growth model. According to this
model, growth rates are high when population sizes are small, modelling rapid growth due to
the availability of resources, and fall to zero as resources are exhausted at higher densities.
The rate of change of the number of organisms in the population N is described by the
differential equation

dN

dt
= ρN

(
1− N

K

)
(6.1)

in which ρ denotes the intrinsic per capita growth rate and K the carrying capacity (the
maximum number of individuals that can be supported by the habitat).

A model that is mathematically equivalent to the logistic growth model is the Levins model
(Levins, 1969, 1970). This is a patch occupancy metapopulation model in which identical
patches in an infinite network are modelled as either occupied or vacant. Vacant patches
are colonised by occupied patches (or by individuals from occupied patches, but individuals
are not explicitly modelled) at rate c, and go extinct or ‘recover’ at rate r (note that in this
chapter, we use r - instead of e as used in other chapters - to denote the per capita extinction
or recovery rate in line with our use of epidemiological terminology here). It is spatially
implicit because connectivity is not modelled explicitly, nor is there any heterogeneity in
connectivity between patches; as a result, there is no heterogeneity in patch colonisation
or extinction rates. The model forms the basis of much of the work on metapopulation
theory, for example providing a conceptual framework for understanding the relationship
between habitat fragmentation and community persistence (Amarasekare, 1998). The model
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is typically written

dp

dt
= cp (1− p)− rp (6.2)

where p denotes the proportion of occupied patches.

Caughley (1994) and Amarasekare (1998) point out that this model is also a logistic model
and that it is mathematically equivalent to the standard logistic growth model, where K =

1− r/c and ρ = c− r. As a result, we can write a re-parameterised version of the model in
which

dp

dt
= (c− r)p

(
1− p

1− r/c

)
. (6.3)

See Appendix E.1 for the full derivation.

6.3.2 Spatially realistic Levins model

In an adaptation of the original Levins model, Moilanen and Hanski (1995) developed the
Spatially Realistic Levins Model (SRLM), used in Chapters 4 and 5 of this thesis. The SRLM
differs from the original Levins model in that it captures heterogeneity in patch character-
istics in both colonisation and extinction, and is no longer limited to an infinite number of
patches, and it is in these senses that it is more realistic. Patch extinction and colonisation are
governed by rates that depend on patch characteristics such as patch area or the connectivity
of patches. In the general version of the SRLM, the dynamics of the probability occupancy
of patch i is described by the differential equation

dpi(t)

dt
= Ci(p(t))(1− pi(t))− Ei(p(t))pi(t) (6.4)

The SRLM incorporates additional heterogeneity in relation to original Levins model, al-
though this comes at the expense of increasing complexity. Although it has not been used
very extensively outside of its original area of application, it has the potential to be used
more widely. The model was intended to capture metapopulation dynamics in a fragmented
landscape, and was first used to model the presence or absence of the Glanville Fritillary
Butterfly in grassy meadows. However, it can be thought of as a model of other heteroge-
neous systems at a range of scales. Taking foot-and-mouth disease as an example, a ‘habitat’
patch might consist of a region, a herd of cows, an individual cow or even areas of the cow’s
body (its mouth and feet). At each of these scales, each patch could be susceptible (vacant)
or infectious (occupied). In addition, in the SRLM, patches can be heterogeneous in the
characteristics that influence both infection rates (e.g. connectivity to other patches) and
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extinction rates (e.g. size). As a result, it would be possible to model differences in the prob-
ability of becoming infected of the different body parts. In another scenario, a patch might
represent a group (e.g. an age-class) of individuals, where the value of the model is in its
ability to capture the difference between stronger interactions within than between groups.
The value of the SRLM is in the extent to which it captures heterogeneity in both the connec-
tivity of patches and their individual characteristics, and the effects of these on colonisation
and extinction processes2. It is interesting to note that the notion of a metapopulation means
that the question of whether a disease is epidemic or endemic becomes a matter of scale: an
epidemic at a small scale might correspond to endemicity at a larger scale.

Definition of metapopulation capacity

In this section, we explain background work on persistence in the SRLM. We attempt clarify
the definitions in earlier work as well as making more explicit the connections between the
definition of metapopulation capacity, the intuition behind its interpretation in relation to
persistence, and its calculation. In the penultimate paragraph of 6.5.1 below, we also clarify
the relationship between the metapopulation persistence capacity λM , the metapopulation
invasion capacity and the next generation matrix interpretation of the basic reproduction
number R0.

Persistence in the SRLM is related to metapopulation persistence capacity, denoted λM , de-
fined as a measure of the capacity of a fragmented landscape, comprising patches, to support
the long-term persistence of a species in the absence of external imports (Viana et al., 2014).
It can be considered as a measure of effective habitat availability (ecology) or host abundance
(epidemiology), weighted to account for factors such as patch or local host population sizes
and connectivity, that influence extinction rates within patches or populations and transmis-
sion between them. Here we attempt to provide an intuitive explanation of the measure and
its relationship with the persistence threshold. Given the general SRLM in Equation 6.4, and
assuming that we can write the colonisation terms Ci = cC ′i and Ei = rE ′i for some c, r > 0,
Ovaskainen and Hanski (2001) defined the measure as

λM = sup
p∈Ω

(
min
i

[
(1− pi)
pi

Ci(p)

Ei(p)
δ

])
(6.5)

in which Ω represents the set of vectors p and δ = r/c. One can read the expression as
follows: λM is the supremum over all possible occupancy vectors p of the product of δ and
the colonisation-to-extinction rates ratio in the patch i for which this value is minimised (i.e.
for the patch that is growing slowest from this occupancy vector).

2Network models are often used in the epidemiological literature to capture heterogeneous contact pro-
cesses; however, they less commonly include heterogeneities in recovery (disease extinction) processes. See
e.g. Wilkinson and Sharkey (2013)
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The parameters c and r are intended to represent species-specific characteristics and C ′i and
E ′i are functions that describe colonisation and extinction as a function of the landscape
characteristics. In order to see the value of extracting the parameter δ, we can write the
expression as

λM = sup
p∈Ω

(
min
i

[
(1− pi)
pi

cC ′i(p)

rE ′i(p)

r

c

])
(6.6)

in which the c/r cancels with the r/c and we are left with an expression for the metapopula-
tion capacity that is independent of the characteristics of the particular species, thus consti-
tutes a measure of the landscape. Thus, unless the functions C ′i or E ′i are a function of other
species-specific parameters, this formulation allows for the assessment of the landscape ca-
pacity independently of the individual species in question. Viana et al. (2014) follow Frank
(2005) and define a similar measure

λ′M = sup
p∈Ω

(
min
i

[
(1− pi)
pi

Ci(p)

Ei(p)

])
. (6.7)

Now, λ′M is species-specific in that it constitutes a measure of the metapopulation capacity
from the perspective of a particular species. However, it has the advantage of being easier to
interpret.

In relation to the work in the current chapter, metapopulation capacity is of interest because
it allows us to define a persistence threshold: if for a specific landscape, λM > δ, then a
population with species-specific parameter δ persists; otherwise it goes extinct. In the case
of λ′M , we have instead the persistence condition λ′M > 1. The persistence criterion can now
be written in the following way: a species persists in the metapopulation if and only if there is
a probability occupancy vector p ∈ Ω such that for all i, the colonisation-to-extinction ratio
from p is greater than one, i.e. ∃ p ∈ Ω s.t. ∀i, (1−pi)Ci(p)

piEi(p)
> 1. In other words, there must be

a system state from which every patch is more likely to be colonised than go extinct. If we
consider the differential equation again, this means that (1− pi)Ci(p) > piEi(p), i.e. dpi

dt
>

0, that is, that occupancy probability is increasing for every patch. Put another way, there
must be a p such that the system is growing for all i. The measure λM therefore provides
us with information on the size of the excess colonisation rate (in relation to extinction rate)
of the weakest patch when we start from the conditions in which the probability occupancy
of this patch is growing fastest. So λM is a measure of the fastest rate of growth of the
probability occupancy of the weakest patch, across different initial conditions p. In this
sense, it provides a measure of the rate at which a particular system can tend towards a
non-trivial solution.

We now explain the calculation of metapopulation capacity for simple SRLM models. For
systems in which the rate at which a patch is colonised is given by a linear combination of
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the colonisation rates from the donating patches, λM can be found as the leading eigenvalue
of a matrix M. In order to write a matrix M, we need to be able to express the rate at which
a patch becomes occupied as a linear combination of the contribution from other patches,
because the matrix represents a linear operator. The matrix has elements (mij) =

C′i(p)

E′i(p)
=

r
c
Ci(p)
Ei(p)

. This also suggests a relationship between λM and the eigenvalues of matrix M.
Specifically, the eigenvalues of the matrix relate to the rates of change in different directions,
the largest eigenvalue tells us the rate of change in the probability occupancy in the direction
of fastest growth.

6.4 Links between different multi-state models

In the sections above, we described links between ecological and epidemiological models.
Independently of whether they are used to model ecological or epidemiological processes,
additional links can be made between the models with a different compartmental structure.
These links are typically not made: epidemiological compartmental models are typically
considered separately without making any explicit links between them (e.g. by considering
SIR and SEIR as separate models). In the applied literature, the most appropriate model is
usually selected for a particular disease and biological question of interest (Hethcote, 2000);
in the theoretical literature, models are compared as discrete entities and either discussed
separately or their properties compared (see e.g. recent discussions in Melesse and Gumel,
2010; Sun et al., 2012). Curiously, there seems to be little or no acknowledgement in the
literature of the nested relationship of these models.

In order to explain the nested nature of the different compartmental models discussed here,
we start with the SIIS model shown in Table 6.1. Using the terminology from epidemiol-
ogy, in this model, there are two infectious compartments through which organisms progress
sequentially (i.e. once infected, organisms must pass through the first and second of these
in turn). This model allows us to model different levels of infectivity at the different stages
of disease progression or might represent the effects of symptom evolution that cause dif-
ferent socialisation patterns that impact transmission at different disease stages (applications
in metapopulation and ecological contexts are described in Table 6.1). Despite these pos-
sible applications, SIIS models are relatively rare in the epidemiological literature. Their
consideration appears to have remained largely at the level of mathematical theory (see e.g.
Melesse and Gumel, 2010, for a variant of the SEIRS model with an arbitrary number
of infectious compartments), or is associated with studies of stochastic systems using the
‘method of stages’ approach (see e.g. Lloyd, 2001; Conlan et al., 2010), in which multi-
ple infectious stages serve to transform the distribution of waiting times in the infectious
compartment to give a more realistic distribution (Cox and Miller, 1965).



6.4. Links between different multi-state models 132

In the sections that follow, we show how SIIS models with two (or more) infectious com-
partments can be employed in an additional way, to provide insight into the relationship
between simpler models, namely the SIS and SEIS and SIRS models. This is achieved
by considering each of the SIS, SEIS and SIRS models as a limiting case of the SIIS
model. In writing the SIIS model, we split the infectious state into two stages, I1 and I2,
with corresponding infectiousness cI1 and cI2 . Rates of transition out of the two infectious
compartments are now labelled rI1 and rI2 , denoting recovery from each of the compart-
ments. The model is illustrated in the left-hand panel of Figure 6.1. Because every individual
who enters I1 must also pass through I2, we need concern ourselves with only one of these
states in our consideration of persistence. Focusing on the first infectious compartment, the
dynamics of the proportion of patches in this state pI1 for the SIIS Levins model can be
written

dpI1
dt

= (cI1pI1 + cI2pI2) (1− pS)− rI1pI1 . (6.8)

The SIS model can be recovered from the SIIS model by allowing the rate of transition
between the first and second infectious state rI1 (or between the second infectious state and
the susceptible state rI2) to tend to infinity. The SEIS model can be recovered from the
SIIS by allowing the rate of infection from the first infectious state cI1 to tend to zero
and the SIRS model by applying the same process to the rate of infection from the second
infectious state cI2 . The relationship between the models, using both the epidemiological
and ecological terminology, is shown in Figure 6.1.

SIS

SIRS

SIIS

SEIS

Susceptible
Vacant

Infectious 1
Occupied 1

Infectious 2
Occupied 2

c1 ! 0 c2 ! 0

r2 !1

r2pI2

r1pI1

(c1pI1 + c2pI2)(1� pS)

Figure 6.1: Relationship between compartmental models, in which cI1 , cI2 give the coloni-
sation rates from I1 and I2 respectively; similarly for the recovery rates from these compart-
ments rI1 , rI2 .

The idea of treating the SIS, SEIS and SIRS models as limiting cases of the SIIS forms
the basis of the derivations in the following sections where it is applied to both the Levins
model and the SRLM. We choose to examine the example of persistence thresholds within
these models in line with the aims of the thesis. However, the main aim of chapter is broader
than these specific models: we argue that by treating certain compartmental models as lim-
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iting cases of more general models, we gain the ability to explore the connections between
them in ways that might, firstly, help us to understand properties of the models (such as
persistence), and that, secondly, can be used to guide modelling decisions about the appro-
priateness of particular compartmental structures for specific purposes.

6.5 Persistence thresholds and their problems

In this section, we outline two problems of persistence thresholds in deterministic models.
The first of these relates to the application of persistence thresholds to stochastic systems,
whereas the first relates to their usual mode of calculation. The first of these problems arises
because of the binary nature of persistence thresholds: just above the persistence threshold,
population sizes can be arbitrarily small. In stochastic systems, these arbitrarily small popu-
lations would be expected to go extinct very rapidly, and as a result, the persistence threshold
does not provide a good measure of persistence.

In relation to the second problem, the typical approach to understanding population persis-
tence in deterministic models consists of evaluating the stability of steady state solutions.
It consists of finding the steady state solutions by solving for dp/dt = 0; the stability of
these solutions is then found by considering the derivative with respect to p at the solution
and if the derivative is less than zero, the solution is stable. This fact can then be used to
establish the parameter range under which the solution is stable (see e.g. Case, 1999, for
an accessible explanation). A related approach, based on the Jacobian of the next genera-
tion matrix (NGM), can be used in the case where there are a large number of states, or in
metapopulation models including the SRLM (see e.g. Feng and DeWoody, 2004).

The application of this approach can be used at any steady state solution. In many models,
including the two-state version of the Levins model and the SRLM, only two stable solutions
are possible. In this case, the invasion and persistence thresholds are equal and the deriva-
tion of the ‘persistence’ threshold often actually proceeds by finding the invasion threshold
by showing the conditions under which the trivial solution is unstable (instead of the condi-
tions under which the non-trivial solution is stable), presumably because this simplifies the
mathematics involved. Although this simplifies the mathematics, it does not necessarily lead
to as much biological insight. For example, the SIRS model has only two possible stable
solutions; as a result, we can evaluate the invasion threshold as this must be the same as the
persistence threshold. For the SIRS model, with β the contact rate between susceptible and
infectious individuals, and r the recovery rate, and ν denoting the rate at which recovered in-
dividuals return to the susceptible state, the set of differential equations governing the system
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is

dS

dt
= νR− βSI dI

dt
= βSI − rI dR

dt
= rI − νR. (6.9)

Invasion occurs if the number of infectious individuals increases, i.e. if dI
dt
> 0

βSI − rI > 0 ⇐⇒ βS

r
> 1. (6.10)

At the beginning of an epidemic, one can assume that the number of susceptibles is ap-
proximately equal to zero, so we obtain the condition β/r > 1, equivalent to the expected
threshold of R0 > 1, and because there are only two stable solutions, we can also conclude
that disease will persist for R0 > 1. However, although the assumption of a completely
susceptible population is sensible for disease invasion, it is clearly problematic in the case of
long-term disease persistence, and deriving the persistence threshold in this manner provides
little direct insight into the biological mechanisms of persistence. The result is particularly
troubling because although as one would expect, the steady state prevalence is lower in the
SIRS model than the SIS model, the persistence threshold is the same for the two models
Thus, although it is typically easier to find the persistence threshold by first obtaining the in-
vasion threshold (e.g. because of the relative ease of substituting the trivial solution into the
derivative), this functions only because of a mathematical property of the model, and little
biological insight about persistence is gained. It would therefore be instructive to have an
approach that provides more information about persistence and the counterintuitive findings
such as the correspondence of the persistence threshold in the SIS and SIRS models.

The definition of persistence threshold provided by Hanski and Ovaskainen (2000) considers
the persistence threshold directly in relation to the stability of the nontrivial solution, and is
therefore more robust to situations in which persistence can occur even when invasion is not
possible (e.g. when there is an Allee effect). Nonetheless, presumably for reasons of analytic
tractability, most of the work carried out by these authors focuses on the SRLM without an
Allee effect. In this situation, they show that the persistence threshold (corresponding to the
existence of a non-trivial steady state) can be derived as the leading eigenvalue of a matrix,
that they call a ‘landscape matrix’; in other situations, the threshold can be found numerically
(Ovaskainen and Hanski, 2001).

6.5.1 Allee effects

First described in the 1930s, an Allee effect can be said to exist when there is a positive
relationship between individual fitness and population size (or density) (Allee, 1931). This
means that populations go extinct when rare, making initial invasion difficult and persistence
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of small populations unlikely. As noted by Boukal and Berec (2002), the most commonly
cited cause is that of the difficulty of finding an appropriate mate in low density populations
of sexually-reproducing individuals. However, other causes are reviewed in Berec et al.
(2007) and include inbreeding depression, tendency not to be pollinated, or the minimum
group size required to raise offspring, search for food or avoid predator attacks (Boukal and
Berec, 2002).

A distinction in the literature exists between strong and weak Allee effects (see e.g. Brassil,
2001). Strong Allee effects occur when there is a threshold population size or density below
which population growth is negative. In the case of weak Allee effects, there is no threshold
and growth rate is a positive function of population size, at least at small population sizes.
From a mathematical perspective, a strong Allee effect means that the extinction state is a
locally stable equilibrium point of the system for all parameter values (McVinish and Pollett,
2013a). Allee effects can also apply to birth or death processes, or both. For example, in-
ability to find a mate affects birth rate while the existence of a minimum group size required
to avoid predator attacks relates to death processes. Multiple effects may be present simul-
taneously. Berec et al. (2007) reviews possible interactions between Allee effects and their
combined role in contributing to persistence.

Allee-like effects have also been discussed for metapopulations. In this context an Allee
effect refers to a reduction in the colonisation capacity of patches when few patches are oc-
cupied. More precisely, the growth rate of the metapopulation due to exports from individual
patches is an increasing function of overall occupancy at low levels of occupation (McVin-
ish and Pollett, 2013a). Amarasekare (1998) reviews evidence supporting the existence of
metapopulation level Allee effects. Zhou and Wang (2004) show that an Allee-like effect
in a metapopulation can emerge from an imposed Allee effect at the local population level.
While the inclusion of an Allee effect has a negative effect on persistence in general, Brassil
(2001) provide an illustration of a model in which the effect is much stronger when applied
to metapopulations than in the case of single, fully-mixed population. Further, McVinish and
Pollett (2013a) show that habitat degradation can have much stronger effects on populations
with a metapopulation level Allee effect than those without. In the case of metapopulations,
Allee effects can be implemented as affecting colonisation or extinction processes, or both.

Although Allee effects have been discussed most commonly in a conservation biology con-
text, they have also been invoked as being important in epidemiology. Most discussion
relates to the effect of pathogens on host species subject to an Allee effect. In this con-
text, the additional burden of disease can reduce numbers of a species sufficiently to cause
extinction (Haydon et al., 2002; Hilker et al., 2009). Although such effects are rarely men-
tioned, Allee effects may also be present directly within pathogen and parasite populations.
In sexually-reproducing parasites, many of the causes described in Berec et al. (2007) still
apply. However, even in asexual pathogen populations, Allee effects may still apply. For
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example, it is likely that they could be caused by reductions in genetic variation when popu-
lation sizes are small. This effect could be compounded by the increased probability of gene
fixation in small populations due to drift (this mechanism is suggested by its existence in
other clonal organisms such as vegetatively reproducing plants Fischer et al., 2008). Other
mechanisms in asexual pathogens could be those typically considered in the context of co-
operation. For example, slime moulds can reproduce sexually in the amoebae state but also
asexually through cellular budding and through sporulation mechanisms. In order to repro-
duce through spores, they need to cooperate to form a fruiting body, something that requires
a minimum population size. Similar kinds of cooperative behaviours have been invoked in
the case of Pseudomonas aeruginosa, a common disease-causing bacterium.

Boukal and Berec (2002) review different functional forms for incorporating Allee effects
into population dynamic models. In later sections, we follow Amarasekare (1998) in the
incorporation of a strong Allee effect, and Tabares and Ferreira (2011) for the incorporation
of a weak Allee effect.

In addition to the persistence threshold, Ovaskainen and Hanski (2001) also discussed the
invasion threshold. The metapopulation invasion capacity gives rise to the threshold con-
dition λI > δ above which the trivial equilibrium state is unstable, meaning that a single
small local population is able to invade an otherwise empty network. In cases correspond-
ing to the Levins model, the invasion threshold is the same as the persistence threshold, and
the approach is closely related with the next generation matrix (NGM) approach applied in
epidemiology (Diekmann et al., 1990; van den Driessche and Watmough, 2002; Heffernan
et al., 2005). The elements of the NGM tell us the mean persistence time of a patch or pop-
ulation multiplied by the rate of infection of other patches per unit time, thus the expected
number of exported infections during the lifetime of the population infectiousness. The el-
ements of matrix M, in contrast, tell us the rate at which a patch becomes infected by a
specific other patch (rather than infects another patch), multiplied by the expected time that
this patch will remain infectious. Feng and DeWoody (2004) also define a slightly different
matrix M̃ that also has λM as its leading eigenvalue. Like the NGM, this approach is based
upon the analysis of the Jacobian matrix at the trivial solution. So although the approaches
correspond in the case of Levins-type models in which λI = λM > 0, they diverge when the
assumptions of these models are broken. That is, the definition of metapopulation capacity
threshold allows there to be an occupancy level from which the system shrinks, provided it is
growing for at least some p. For example, in the case of a strong metapopulation-level Allee
effect, there is a threshold below which the metapopulation shrinks.

In the remainder of this chapter, we use the re-parameterised version of the Levins model
(Eqn. 6.3), and the SRLM (Eqn. 6.4) in its usual format. All of the models that we use here
are deterministic and their relationship with stochastic models is explored in Section 6.7. We
follow Amarasekare (1998) in the choice use the re-parameterised Levins model because the
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structural similarity between this version and the logistic model makes it easier to include
Allee effects in a way that is consistent with those described in the literature.

6.6 Derivation of SIIS thresholds

In this section we illustrate the utility of viewing models of interest as limiting cases of more
general models by deriving the persistence thresholds for spatially implicit and explicit SIIS
models and using these to find the corresponding thresholds for SIRS and SIS models.
Although we do not explicitly derive these for SEIS models, they can be derived in a similar
way as for the SIRS model. For the spatially-implicit model, we derive the persistence
threshold with no Allee effect, a weak Allee effect and a strong Allee effect.

6.6.1 Levins model

We begin by deriving the persistence threshold for the SIIS Levins model. The first step
is to write the model in the non-standard form. Reformulating the model facilitates the
incorporation of an Allee effect in later sections, and in the interests of consistency, we use
the nonstandard form throughout. We begin by writing the model in Equation 6.8 in terms
of pI1 only. We use two facts: firstly, that pI1 + pI2 + pS = 1; and secondly, because in our
model we assume that rates of leaving each of the infectious states are constant, this implies
that the time spent in pI2 is proportional to that of pI1 and we can write pI2 =

rI1
rI2
pI1 . We

obtain

dpI1
dt

= (cI1pI1 + cI2pI2) (1− pI1 − pI2)− rI1pI1 (6.11)

= (1− pI1 − pI2)cI1pI1 + (1− pI1 − pI2)cI2pI2 − rI1pI1 (6.12)

=
(

1−
[
1 +

rI1
rI2

]
pI1

)
cI1pI1 +

(
1−

[
1 +

rI1
rI2

]
pI1

)
cI2

rI1
rI2
pI1 − rI1pI1 (6.13)

=
(
cI1 +

rI1
rI2
cI2

)(
1−

[
1 +

rI1
rI2

]
pI1

)
pI1 − rI1pI1 . (6.14)

We can now re-arrange this model to write the SIIS model in the same nonstandard form as
for the SIS model (i.e. as shown in Equation 6.3) as follows (see Appendix E.2 for the full
derivation):

dpI1
dt

=
(
cI1 +

rI1
rI2
cI2 − rI1

)
pI1


1−

(
1 +

rI1
rI2

)
pI1

1− rI1rI2
cI1rI2+rI1cI2


 . (6.15)

As in the SIS version, K = 1 − r/c = 1 − rI1rI2
cI1rI2+rI1cI2

and since this represents the car-
rying capacity it is restricted to be positive (0 < K < 1), implying that c > r. Now,
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(
1 +

rI1
rI2

)
pI1 = pI1 + pI2 is the sum of the infectious patches, showing the structural sim-

ilarity between this expression and the SIS version. We can simplify the expression by
defining β = cI1 +

rI1
rI2
cI2 − rI1 . Now the expression reads

dpI1
dt

= β


1−

(
1 +

rI1
rI2

)
pI1

K


 pI1 . (6.16)

In order to find the conditions for the existence of a stable non-trivial steady state, we first
need to find the non-trivial steady state solution and then evaluate the derivative of the dif-
ferential equation at this point. Firstly, we observe that at the steady state, either p∗I1 = 0 (i.e.
the trivial steady state), or

1− 1

K

(
1 +

rI1
rI2

)
p∗I1 = 0 ⇐⇒ p∗I1 =

K

1 +
rI1
rI2

. (6.17)

Differentiating, and evaluating at the nontrivial equilibrium, we obtain

D(p∗I1) =
∂

∂pI1

dpI1
dt

∣∣∣∣
p∗I1

= β

[
1− 2

K

(
1 +

rI1
rI2

)
p∗I1

]
(6.18)

= β

[
1− 2

K

(
1 +

rI1
rI2

)(
K

1 +
rI1
rI2

)]
(6.19)

= − β. (6.20)

For the non-trivial steady state to be stable, we require D(p∗I1) < 0, that is cI1 + cI2
rI1
rI2

> rI1 ,
thus obtaining the persistence threshold for the SIIS model.

We now consider the limits of this threshold for the SIS and SIRS limiting cases of the
model. Recall that we can recover the SIS model by allowing rI2 →∞. It is straightforward
to see that in this case, we obtain the persistence threshold of cI1 − rI1 > 0. Similarly, we
recover the SIRS model by allowing cI2 → 0, again obtaining a persistence threshold of
cI1 − rI1 > 0. We can now see that we obtain the same persistence threshold for SIS as for
SIRS because both of these processes have the same effect in the limit on the cI2

rI1
rI2

term in
the expression of the threshold.

6.6.2 Levins model with strong Allee effect

We now consider a modification of the Levins model involving a strong Allee effect. We first
apply an Allee threshold 0 < A < K to both infectious compartments, such that for pI1 +

pI2 =
(

1 +
rI1
rI2

)
pI1 < A, growth is negative. Following the formulation in Amarasekare
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(1998), the dynamics of pI1 can be written

dpI1
dt

= β


1−

(
1 +

rI1
rI2

)
pI1

K






(
1 +

rI1
rI2

)
pI1

K
− A

K


 pI1 (6.21)

= β
(

1− γ

K
pI1

)( γ

K
pI1 −

A

K

)
pI1 (6.22)

where we define the constant γ = 1 +
rI1
rI2

to simplify the expression. There are now three
steady state solutions, two of which are the same as previously, and a third unstable solution
at p∗I1 = A/γ.

We multiply out to facilitate differentiation, differentiate and evaluate at the nontrivial steady
state to obtain

D(p∗I1) =
∂

∂pI1

dpI1
dt

∣∣∣∣
p∗I1

=
β

K

[
2γpI1 − A−

3γ2

K
p2
I1

+
2γA

K
p2
I1

]
(6.23)

=
β

K


2γ

(
K

1 +
rI1
rI2

)
− A− 3γ2

K

(
K

1 +
rI1
rI2

)2

+
2γA

K

(
K

1 +
rI1
rI2

)


(6.24)

= β

(
A

K
− 1

)
. (6.25)

Substituting back in for β and K, simplifying and factoring the expression appropriately, we
obtain

D(p∗I1) = A

(
β

K

)
− β (6.26)

= A

(
cI1 +

rI1
rI2
cI2

)
−
(
cI1 +

rI1
rI2
cI2 − rI1

)
(6.27)

= (A− 1)

(
cI1 +

rI1
rI2
cI2

)
+ rI1 . (6.28)

Now, for the nontrivial solution to be stable, we require D(p∗I1) < 0, giving us a persistence
threshold for the model of (1− A)

(
cI1 +

rI1
rI2
cI2

)
> rI1 . In other words, the colonisation

part of the expression, cI1+
rI1
rI2
cI2 must compensate for the factor (1−A), making persistence

more difficult.

We can now recover the threshold for the SIS and SIRS models, with and without a strong
Allee effect, by allowing the relevant parameters to tend to 0 or∞. We obtain the persistence
thresholds for the SIS and SIRS models as previously as cI2 → 0 and rI2 → ∞, in both
cases obtaining the persistence threshold in Amarasekare (1998) for the SIS model with
strong Allee effect. In order to obtain the threshold for the SIIS model without an Allee
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effect, we allow the Allee threshold, A to tend to zero.

The fact that the threshold is the same for the SIRS model with a strong Allee effect as
for the SIS model may initially seem surprising. However, this is the case because we
have applied the Allee threshold to pI1 + pI2 . In other words, both infectious compartments
contribute to persistence in relation to the Allee threshold, and this is still the case, even when
we allow cI2 → 0, in which the second compartment is now the recovered compartment. This
means that we consider recovered patches as contributing to persistence. In order to avoid
this, we would need to apply the Allee threshold to the first infectious compartment, pI1 only.

The model, when applying the Allee threshold to the first infectious compartment only, can
be written

dpI1
dt

= β
(

1− γ

K
pI1

)(pI1
K
− A

K

)
pI1 . (6.29)

Applying the same procedure as above, we obtain the following expression for D(p∗I1)

D(p∗I1) =
∂

∂pI1

dpI1
dt

∣∣∣∣
p∗I1

= β

(
A

K
− 1

γ

)
(6.30)

which differs only in the denominator γ. Rearranging the expression we obtain the threshold
condition

(
rI2

rI1 + rI2
− A

)(
cI1 +

rI1
rI2
cI2

)
>

rI1rI2
rI1 + rI2

. (6.31)

Now, allowing rI2 → ∞ to obtain limrI2→∞D(p∗I1), we obtain the SIS threshold as (A −
1)cI1 > rI1 as before. However, allowing cI2 → 0, we obtain the SIRS threshold for this
model as

(
rI2

rI1 + rI2
− A

)
cI1 >

rI1rI2
rI1 + rI2

(6.32)

which differs from the original threshold for the SIRS model without Allee effect. Allowing
A→ 0 recovers the thresholds for the models without an Allee effect, as previously.
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6.6.3 Levins model with weak Allee effect

For completeness, we consider the Levins model with a weak Allee effect. Following Tabares
and Ferreira (2011), this can be written

dpI1
dt

= β

(
1− pI1 + pI2

K

)( ε
K

(pI1 + pI2)
)
pI1 (6.33)

= β
(

1− γ

K
pI1

)(εγ
K
pI1

)
pI1 (6.34)

in which 0 < ε < 1 is the factor moderating the rate of growth.

In this case, the thresholds can be derived by following the same procedures as in the previous
sections. The non-trivial solution is stable provided εβK > 0. Since ε and K are positive by
construction, the persistence threshold condition is β > 0. This threshold is thus the same
as in the model without an Allee effect. This is as we would expect: the weak Allee effect
influences the rate at which growth occurs in a low-density population, but does not change
its sign. The SIS and SIRS limiting cases of the model also have the same persistence
threshold as in the case with no Allee effect.

The SIIS model with a strong Allee effect is the most general of the models considered as
it subsumes other models of interest as limiting cases and thus can be used to explore the
whole family of related models by allowing the relevant parameters to vary.

6.6.4 SRLM SIIS

In this section, we derive persistence threshold of the SRLM for SIIS dynamics, and show
how the threshold under SIRS and SIS can be recovered as for the Levins model. We
do not include an Allee effect, so the invasion threshold is known to be the same as the
persistence threshold; however, the threshold for the SIRS and SIIS models has not been
derived previously.

Figure 6.2 shows the SIIS dynamics of a single patch under the SRLM model. The relevant
equation for the dynamics of the probability piI1 that patch i is found in first infectious state,
can be written

dpiI1
dt

=

(
cI1
∑

j 6=i

e−αdijAjpjI1 + κcI1
∑

j 6=i

e−αdijAjpjI2

)
piS −

rI1
Ai
piI1 (6.35)

=
cI1
Ai

[(∑

j 6=i

e−αdijAjAipjI1 + κ
∑

j 6=i

e−αdijAjAipjI2

)
piS −

rI1
cI1
piI1

]
. (6.36)
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Figure 6.2: SIIS model. Dynamics and rates for a single patch i.

In this system, Ai represents the area of patch i (or the number of individuals in the popula-
tion), α is the inverse of the mean migration distance and i and j denote the patches within
the system. In a similar way to in the Levins model, the parameters cI1 , cI2 , rI1 , rI2 relate to
colonisation and recovery rates from the two infectious compartments; however, the coloni-
sation rates now additionally depend on the distance between patches dij and the dispersal
distance 1/α and the area of both the sending patch Aj and receiving patch Ai. Patch recov-
ery rates depend on not only rI1 and rI2 , but also patch area Ai. In order to follow the same
threshold derivation process as for the SIS model in Feng and DeWoody (2004), we define
κ as the ratio of cI1 to cI2 colonisation parameters, such that cI2 = κcI1 . We now proceed by
first writing the differential equation solely in terms of piI1 and then solving for the steady
state of the system. Furthermore, because patches must transition through all states and the
Ai cancel in the expression, as before we also have piI2 =

rI1
rI2
piI1 and since state probabilities

must sum to one we also have piS = 1−
(

1 +
rI1
rI2

)
piI1 .

Using the these relationships, we can write the dynamics of the first infectious state for patch
i solely in terms of piI1 and refactored to write in matrix form, giving (recall that we defined
γ = 1 +

rI1
rI2

)

dpiI1
dt

=
cI1
Ai

[(∑

j 6=i

e−αdijAjAipjI1 + κ
∑

j 6=i

e−αdijAjAi
rI1
rI2
pjI1

)(
1−

(
1 +

rI1
rI2

)
piI1

)
− rI1
cI1
piI1

]

(6.37)

=
cI1
Ai

[
(MpI1)i

(
1 +

κrI1
rI2

)(
1− γ piI1 −

rI1
cI1
piI1

)]
. (6.38)
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In this form, we can see that at the steady state, we have either cI1
Ai
p∗i1 = 0 or

p∗i1 =

(
Mp∗I1

)
i
(γ)
(

1 +
κrI1
rI2

)

(
Mp∗I1

)
i

(
1 +

κrI1
rI2

)
+

rI1
cI1

. (6.39)

By analogy with the SIS case, we can write an iterative map

pn+1
iI1

=

(
Mpn

I1

)
i
(γ)
(

1 +
κrI1
rI2

)

(
Mpn

I1

)
i

(
1 +

κrI1
rI2

)
+

rI1
cI1

(6.40)

which converges if and only if the leading eigenvalue λM of M

λM

(
1 +

κrI1
rI2

)
>
rI1
cI1
. (6.41)

It is now interesting to compare this threshold with that from the standard Levins model for
the SIIS dynamics. Recalling that we chose κ =

cI2
cI1

, we can now write the threshold as

λM

(
cI1 +

rI1
rI2
cI2

)
> rI1 . In other words, we have a very similar threshold for the SRLM

as for the Levins model, with the exception that the SRLM includes the factor of λM . We
can now calculate the persistence conditions for the SIRS and SIS models by taking limits
of this expression, as we did previously for the Levins model. In both cases, we recover the
threshold of λM >

rI1
cI1

.

6.6.5 Comparison of thresholds

A comparison of the thresholds under the different models is shown in Table 6.2. Reading
across the rows in the table, it shows that the persistence thresholds under the weak Allee
effect are same as those in the model without Allee effect. This occurs because the weak
Allee effect decreases the growth rate at small populations sizes but does not alter its sign.
The thresholds with a strong Allee effect include a factor of (1 − A); the threshold in these
cases forms a constraint for the metapopulation to be growing above this threshold.

Reading down the table, we see that in the case of no Allee effect, our derivations lead us to
the same threshold for the SIS model as shown in Amarasekare’s (1998) earlier work. We
have shown that same threshold arises for the SIRS model, and for both the SIS and SIRS
with a weak Allee effect. In relation to the model with a strong Allee effect, the derivations
based on finding these thresholds as limiting cases of the SIIS model allow us to recover the
SIS persistence threshold found by Amarasekare (1998) but also give us the threshold for
the SIIS and SIRS model. This approach has the advantage of demonstrating that the same
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SIS SIRS SIIS

No
Allee

cI1 > rI1 cI1 > rI1

(
cI1 +

rI1
rI2
cI2

)
> rI1

Strong
(a)

(1−A)cI1 > rI1 (1−A)cI1 > rI1 (1−A)
(
cI1 +

rI1
rI2
cI2

)
> rI1

Strong
(b)

(1−A)cI1 > rI1

(
rI2

rI1+rI2
−A

)
cI1 >

rI1rI2
rI1+rI2

(
rI2

rI1+rI2
−A

)(
cI1 +

rI1
rI2
cI2

)
>

rI1rI2
rI1+rI2

Weak
Allee

cI1 > rI1 cI1 > rI1

(
cI1 +

rI1
rI2
cI2

)
> rI1

SRLM λM >
rI1
cI1

λM >
rI1
cI1

λM

(
cI1 +

rI1
rI2
cI2

)
>

rI1
cI1

Table 6.2: Persistence thresholds for the family of compartmental models. The strong Allee
effect has two versions: (a) where the threshold is on pI1 +pI2 and (b) where is it on pI1 only.

threshold arises for the SIS as for the SIRS models because both rI2 → ∞ and cI2 → 0

have the same effect on the cI2
rI1
rI2

term in the expression, which tends to zero in both cases.
Comparisons between the Levins and SRLM models show that for the latter there is the
additional factor of λM . This can be thought of as accounting for factors such as patch sizes
and connectivity that influence extinction rates within populations and colonisation between
them in this more realistic model.

One implication of the findings for work on persistence is that models with a strong Allee
effect may be more appropriate for considering persistence in stochastic systems. Since in the
cases with no Allee effect and a weak Allee effect, the equilibrium proportion of infectious
individuals can become arbitrarily small even above the persistence threshold, the threshold
may not be particularly informative about real populations in which stochastic extinction
is likely to occur rapidly in such cases. In this case, the model with a strong Allee effect,
in which a minimum (non-zero) population threshold can be defined, may provide more
sensible predictions about persistence thresholds in stochastic settings.

6.7 Discussion and conclusions

In this chapter, we presented a new overarching framework for considering the relationships
between various kinds of models. We began by discussing the relationship between compart-
mental models used in epidemiology and ecology and their possible interpretations in the two
contexts, at the individual and metapopulation scales. Although some of these connections
have been noted, the discussion presented here is much more comprehensive. It is helpful
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because it can be used to guide the interpretation of findings from one application area into
the other when the models used are mathematically identical. The use of compartmental
models in ecology is generally less standardised than in epidemiology, and this discussion
may suggest new opportunities to employ the findings from epidemiological theory. It also
makes more explicit the connection between compartmental models at different scales.

As part of this discussion, we clarified the definitions of metapopulation capacity in earlier
work, as well as making more explicit the connections between the definition of metapop-
ulation capacity, the intuition behind its interpretation in relation to persistence, and its cal-
culation. We also clarified the relationship between the ecological concepts of metapopula-
tion persistence capacity λM and metapopulation invasion capacity, and the epidemiological
concept of the basic reproduction number R0 as viewed from the next generation matrix
perspective.

In a second aspect of making explicit the connections between model types, we showed
how a set of models that are typically considered separately - namely the SIS, SEIS and
SIRS models - can be considered as a family of models through their connection with
the more general SIIS model. Perhaps because of the deliberate discretisation of states in
compartmental models, the connections between these models into a family have typically
gone unacknowledged. Yet we believe that viewing the connections explicitly can have
multiple benefits for ecological and epidemiological theory.

In order to demonstrate one potential use of the connection between models within this
family, we considered persistence thresholds as an example. We described how the standard
approach for establishing the persistence threshold for the simple SIRS model makes use of
mathematical facts that not only obscure the reasons for which the persistence threshold in
the SIRS model is the same as that for the SIS model, but also fail in the case of a strong
Allee effect. We add to the family of Levins models versions with strong and weak Allee
effects, and the Spatially Realistic Levins Model (SRLM).

We then provided derivations of persistence thresholds that make use of the relationship
between models in the family. First considering the Levins model for SIIS dynamics with
no Allee effect, a strong Allee effect and a weak Allee effect, we derived the respective
persistence thresholds. To our knowledge, these derivations are new for the SIIS model.
We then allowed the relevant parameters to tend to the appropriate limits to recover the SIS
and SIRS model thresholds, showing that in the case of the SIS model, these correspond
to earlier results. Because of the mathematical equivalence between the Levins and logistic
growth models, these thresholds also apply to the logistic growth model. We derived the
persistence threshold for the SRLM under SIIS dynamics (with no Allee effect) and showed
how this can be used to extract the persistence thresholds for the SIS and SIRS. The
derivation for the SIIS and SIRS models is new, and we showed that in the SIS case,
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the threshold corresponded to earlier results. We commented on the connection between
the persistence threshold for the Levins and SRLM models. For the thresholds that have
been derived previously for SIS models, we note that the approach taken here, deriving the
thresholds for a more general model and deriving thresholds for simpler models from it, is
new.

We have shown that by considering specific models as limiting cases of more general models,
we can gain useful information about the relationships between persistence thresholds within
the family. Specifically, we showed using this approach why the persistence threshold in
Levins models is the same for SIS as it is for SIRS models: the two processes by which the
SIIS tends to the SIS and SIRS models have the same effect on the terms of the expression
of this threshold. Further, we derived the persistence threshold of the Levins model under
both weak and strong Allee effects, showing that for the models in the family, the thresholds
differ between those with a weak and strong Allee effect, and for some models, also depend
on the application of the Allee threshold to one or both of the infectious compartments.
Although we did not provide derivations for the SEIS model, obtaining the thresholds for
this model from the SIIS model follows a similar approach to the SIRS model, but where
cI1 →∞. To make this more meaningful, instead of writing the differential equation for pI1 ,
it is probably clearer to write the differential equation for pI2 . In the case of the SRLM, we
derived the persistence thresholds for the model without an Allee effect under the different
dynamics.

The approach taken here allowed us to explore connections between the concept of interest,
persistence thresholds, within a specific family of models. We note that although deriving
the thresholds for the SIIS model was more complex than doing so for either of the indi-
vidual models SIS or SIRS (or SEIS), it was more efficient than doing so for each of the
models independently. The approach could be extended to other concepts of interest such
as invasion thresholds or equilibrium values, or more generally to other families of models.
In addition to shedding light on the connection between thresholds derived in the chapter,
the relationship between thresholds for the Levins model and SRLM suggest hypotheses re-
garding the persistence threshold for the version of this model with Allee effects that could
be explored in future work. In other words, the approach leads us not only to new questions
but also new suggestions regarding their answers. In addition, the question arises of how
persistence thresholds are affected by Allee effects that apply only to one of the infectious
components, or that affect only colonisation or extinction but not both.

Another possible application of the approach is that of providing guidance about the most ap-
propriate model structure for a particular application. We noted earlier that choices between
different models within the family are rarely well motivated in the literature. In his review
of persistence thresholds, Roberts (2007) treats different disease models in separate sections:
the SIRS model is considered apart from a model with a carrier class in which some individ-
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uals recover from acute infection into a class from which they are able to transmit infection
at a reduced rate. Consideration of these different models highlights the importance of mak-
ing an informed choice of the disease classes to include in compartmental models and the
relationship between these classes. For example, the carrier model demonstrates that the
inclusion of a carrier class can lead to different conclusions about disease persistence and
suggests that decisions about which disease classes to use should be made carefully when
considering persistence thresholds. For example, we may wish to ask whether it is important
to allow recovered individuals to continue to transmit disease by changing from an SIRS to
an SIIS model in which the two I compartments have different transmission rates, and how
this changes persistence. Analogous questions can be asked when considering persistence
thresholds in ecology, such as that of the extent to which persistence affected by allowing
regenerating habitat to be re-colonised at low rates. The connections between models can
therefore be used to explore the sensitivity of findings to the particular choice of model. Our
framework allows us to quantify the effects of selecting, for example, an SIRS model as
opposed to an SIIS model in which the second infectious compartment demonstrates less
infectivity than the first.

Mathematical and other challenges remain in order for the benefits of the approach to be fully
realised. In relation to the SRLM and SIIS version thereof, the assumptions made in the
above sections imply that this threshold can only be derived in this way for a particular family
of models. Specifically, the derivation can be extended to models with an arbitrary number
of infectious states, provided that the time spent in each state (or the rate at which patches
leave the state rn) is constant, and thus can be written as proportional to the time spent in
the first infectious state. The rate could, nonetheless, be a different function of Ai such as

1
Ani

. A similar situation is true for the colonisation parameters, which must again be constant.
In order to employ the derivation using matrices, the colonisation rate of a patch must be
a linear function of the colonisation potential of the donating patches. Incorporation of an
Allee effect therefore remains for future work. A threshold exists even if these conditions
are not met in the proportionality of the rates; however, it is no longer possible in these cases
to write a matrix M and the threshold must then be found numerically.

In relation to the implications of these findings for persistence, an important consideration
is that of the extent to which persistence threshold derived for deterministic models such as
these apply to stochastic systems. Their application to stochastic models suffers from at least
two problems. Firstly, one can be above the persistence threshold in a deterministic model
and yet equilibrium values can be arbitrarily close to zero. This is particularly problematic in
the case of the SIRS model in which equilibrium values are reduced by the existence of the
R compartment, yet the persistence threshold remains unchanged. The question of the effect
of a recovered stage (or, symmetrically, an exposed stage) on real-world persistence remains
unclear. The analysis of the model without an Allee effect suggests that this will depress
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the number of observed cases, but should not affect persistence. On the other hand, one
might argue that depressing the number of infectious agents should make populations more
susceptible to stochastic fluctuation and lead to the prediction that even if these systems can
persist in a deterministic model, they should show a strong tendency to rapid extinction in a
stochastic model. It may be possible to investigate which of these explanations corresponds
to real-world systems by making comparisons between the model with an Allee effect that
applies to only one of the infectious stages and one that applies to both. More generally,
the use of an Allee threshold should assist with the problem of arbitrarily small equilibrium
population sizes. In order to account for arbitrarily small population sizes in deterministic
models, one could use a model with a strong Allee effect, setting the Allee threshold to a
population size that is expected to be sufficiently large to avoid rapid stochastic extinction.

The second problem in relation to applications in a stochastic setting is that of the intro-
duction of additional infectious states. The direct stochastic equivalent of the deterministic
model assumes exponentially distributed waiting times until the transition from one state to
another. However, the use of multiple exponentially distributed waiting times together for a
single process gives rise to a gamma distribution. It remains for future work to establish the
extent to which this affects persistence in relation to the thresholds calculated here.
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Chapter 7

Discussion

The main aims of this thesis were to develop our understanding of biological persistence, and
to explore the role that modelling can play in this development. This was achieved through
four studies that explored the effects of (1) modelling decisions that relate to the relationship
between the processes and structures of the system and those embodied in the model and (2)
measurement decisions about how to capture and characterise persistence. The main mod-
elling decisions compared were whether time is modelled discretely or continuously, differ-
ent ways of characterising the contribution of a patch to metapopulation persistence, different
ways of representing the long-run distribution of system states, and the effect of changing the
states through which a patch transitions. Persistence was characterised in different chapters
as continued existence until a pre-defined target time, mean time to extinction, patch occu-
pancy probability distributions in the long run, and as the existence of a stable non-trivial
equilibrium in a deterministic model. We now provide an overview of each of the chapters.

7.1 Overview

Chapter 3 consists of a stochastic simulation study using a cellular automaton approach, in
which organisms live on a regular lattice, and explored the effects on persistence and inter-
specific competition of the decision to model time as continuous or discrete. The model was
simulated stochastically as a cellular automaton in continuous and discrete time, considering
discrete time as an approximation to the ‘true’ model in continuous time. We used a spatial
version of the Gillespie Algorithm for the continuous time approach and a range of update
rules in the discrete time approach. Population dynamics were modelled according to a lat-
tice logistic growth model, selected to facilitate comparison with other work on the effect of
update schemes in the literature, especially Ruxton and Saravia (1998). We used initial pop-
ulation sizes of 10, 100 and 1000 on a 100×100 grid and as a simple persistence measure, we
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use a time horizon of 1000 time units, with a census taken at this point. We found quantita-
tive and qualitative differences in persistence between populations simulated in discrete and
continuous time, and that qualitative conclusions about species dominance can depend on the
decision to model time in one of these two ways. We argued that it is important to consider
the decision about how to model time when asking ecological questions of this type. Further,
we noted that the discrete time approach also entails additional modelling decisions about the
ordering of births and deaths, and an appropriate conversion mechanism between continuous
and discrete time which may also affect persistence conclusions. We also showed, using a
sample run, that the time-horizon approach to measuring persistence can be misleading in
the sense that extrapolations to different time horizons can be qualitatively different depend-
ing on the rate of population growth or decline; conclusions drawn from this measure are
strongly affected by the horizon selected, and it is therefore rather unsatisfactory as a way
of characterising persistence. This chapter has previously been published as Mancy et al.
(2013) and provides a novel contribution to the literature by highlighting the importance of
the decision to model processes in discrete or continuous time, and specifically the difficul-
ties of approximating continuous spatial processes by discrete time simulations, especially
in systems with more than one species.

From the perspective of computational biology, the chapter describes a comparison between
existing simulation algorithms used in contemporary computational biology, including ecol-
ogy and epidemiology1. Our aim was thus not to develop new algorithms or improve upon
existing algorithms but to conduct a computational experiment to support us in providing
guidance on modelling decisions that must be made when constructing simulation platforms
for studying biological systems. Our main interest was in the correspondence between the
output of these algorithms, rather than on their algorithmic complexity or speed of exe-
cution. From an experimental algorithmics perspective, the key question of the chapter is
analytic, focusing on the conditions under which a collection of algorithms in which time
was discretised, are able to provide acceptable accuracy as approximations to a benchmark
algorithm that assumed continuous time. Another way of thinking about this problem, in
the language of Polack (2014), is that the question is one of the validation of simulation
models (in discrete time) in comparison with a simulation model (in continuous time) that is
already accepted as valid. This work contributes to the computational biology literature by
demonstrating a methodological point: choosing a discrete-time formalism in construction
the platform model, as opposed to a continuous-time one, can have important implications
for the biological conclusions drawn.

1The algorithms used in this literature are rarely made fully explicit, making it difficult to assess whether the
fine-level details of the implementation (e.g. the data structures employed) of our algorithms are new; however,
distinguishing between abstract algorithms (as typically expressed in pseudocode) and coded implementations
(McGeoch, 2007), computational approaches that with the same or very similar abstract descriptions exist in
the literature.
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Chapters 4 and 5 focus on persistence using the notion of the quasi-stationary distribution.
The real-world problems from ecology and epidemiology that provided our initial motivation
for investigating the QSD were whether it is possible to predict (1) the expected persistence
time and (2) the effect on expected persistence time of the removal of a particular patch, of
an ecological or epidemiological system that has already persisted for a long time and thus
might reasonably be assumed to be in the quasi-stationary regime. The expected persistence
time from quasi-stationarity can be found from the QSD, while the contribution of a patch to
the QSD (and thus to persistence time) has not been investigated previously. From a compu-
tational biology perspective, the main computational problem posed by these questions is that
the memory requirements for the representation of the QSD (and thus for its computation)
make the problem intractable, even for modestly-sized inputs. For the model we consider,
the size of the algorithm output (i.e. the QSD) is determined by the input in the form of the
number of patches n; specifically, the space requirements of representing the output scale as
O(2n). Because the issue of dimensionality is seen in the size of the required output, it is
inherent to the problem itself (although it can be worsened by inefficient algorithms), and
algorithmic developments need to focus on useful computable approximations to the QSD.
This work in these chapters therefore addresses the classical question underpinning much of
computing science of ‘what can be (efficiently) automated’ (Denning et al., 1989) as applied
to the computation of biologically useful approximations to the QSD and related quantities,
for a particular class of ecological models. It contributes to the computational biology litera-
ture by providing an analysis of the accuracy of a range of algorithms for approximating the
QSD.

From a biological perspective, Chapter 4 focuses on the question of how to model the contri-
bution of a patch to metapopulation persistence. The theoretical model on which the study is
based is the spatially realistic Levins model (SRLM), that models a metapopulation as a fi-
nite collection of patches that can either be occupied or vacant. We used a stochastic version
of the model in which patches are colonised and go extinct according to characteristics such
as their area and spatial location. As our measure of persistence, we employed the mean time
to extinction from quasi-stationarity. We used a standard numerical approach to calculate the
mean time to extinction from quasi-stationarity for randomly-generated landscapes under a
range of parameter values. We calculated the difference between the mean time to extinc-
tion for the original landscapes, and from each landscape with a single patch removed, in
order to obtain a measure of the contribution of the individual patch to metapopulation per-
sistence. We then tested a range of measures of patch value that have been proposed in the
literature. Our findings show that under the standard SRLM, the square of the proportion of
time that a patch is occupied in the QSD provides a good approximation of the proportional
contribution of the patch to mean time to metapopulation extinction, clearly out-performing
the patch value measures proposed by Ovaskainen and Hanski (2001); Ovaskainen (2003).
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Testing with a more general version of the SRLM in which patch characteristics were raised
to arbitrary powers to give their effect on emigration, immigration and extinction showed
that the findings generalise relatively well in most parts of the parameter space evaluated,
although for some parameter sets, it was preferable to raise the occupancy probability to a
different power. The chapter contributes to the theoretical literature by identifying this con-
nection and raising further questions about the exact relationship between patch occupancy
probability and patch value. Perhaps more importantly, this work has the potential for signif-
icant contributions to interventions and real-world applications to either protect or eliminate
populations since it suggests a relatively robust estimate of the contribution of a patch or
population based on only readily available data.

From a computational point of view, our aim was to find a representation of the contribution
of patch that avoided the problem of the space complexity by circumventing the necessity
to compute the QSD. We used an experimental computing science approach to compare
different candidate measures of patch contributions found in the literature, as well as other
measures that employed these. Working with computationally tractable systems for which
the true (patch) contributions could be established, our approach involved a search for reg-
ularities in the relationship between these candidate measures and true contributions. The
experimental approach taken was iterative: initial candidate measures were derived from the
literature and tested for their relationship with true contributions; based on these findings,
adjusted candidate measures were developed and again tested. Although we tested candidate
measures that would have required complex model fitting before application to real-world
problems (thus requiring computational science in their application), we found that the best
of the candidate measures could be easily calculated directly from real-world data. Interest-
ingly, our computational biology study thus allowed us to suggest a heuristic that, at least
in principle, can be used in applied biological contexts without recourse to further use of
computational science methods. The study contributes to the computational biology litera-
ture by showing the relationship between the ‘exact’ and the heuristic in the context of an
ecological model. More generally, it provides a demonstration of the use of computational
biology techniques to identify simple relationships in models. These relationships, in turn,
can be thought of as hypotheses for empirical, real-world testing, thus demonstrating the role
of computational biology in the generation of scientific hypotheses. In addition, the study
provides a demonstration of the use of computational biology techniques to uncover simple
principles that can act as heuristics to guide interventions in the systems represented, that no
longer require complex modelling efforts.

This work on patch contributions demonstrates the potential of the QSD to contribute to our
understandings of persistence; however, it has typically remained under-utilised in practi-
cal applications, probably in part because of the difficulties associated with the exponential
growth in the state space for heterogeneous models.
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In Chapter 5, we focus on the problem of simulating biologically useful approximations to
the full QSD. We take as our starting point an existing computational science method for
simulating the quasi-stationary distribution that has been described previously in the physics
literature. In this literature, the simulation algorithm described is applied to two models of
interest in the physics literature (de Oliveira and Dickman, 2005; De Oliveira and Dickman,
2006). Our aim in the work described here was to further develop this algorithm to simulate
approximations to the quasi-stationary distribution of an ecological model that incorporates
higher levels of heterogeneity than those in the physics literature, and to do so in ways that
are useful to practising ecologists. This chapter therefore takes an engineering approach to
algorithm development, with experiments conducted to compare candidate approximations.
Although de Oliveira and Dickman (2005) describe their work as providing an algorithm for
computing the quasi-stationary distribution, the distribution tracked in the simulations pro-
vided as illustrations of the approach is not that of the full system, but a marginal distribution:
instead of computing the probability distribution of site occupancy patterns, they compute
the probability distribution of the number of occupied patches. In other words, they reduce
the dimensionality of the problem by considering site occupancy patterns as equivalent. The
introduction of heterogeneity in the ecological model in our work meant that it was no longer
appropriate to consider these patterns as equivalent, and the marginal distribution thus fails
to capture the information of interest.

In this chapter, we therefore considered computationally tractable candidate compressions
of the QSD. From an experimental algorithmics perspective, the problem is one of algo-
rithm design, and focused on the development of algorithms for approximating the QSD that
have lower space complexity. Our study shows that for examining common system states,
a clustering approach provides the best approximation among those tested. For examining
time to extinction, while also permitting an analysis of near-extinction states, we suggest
the use of a simpler system named ‘independent patches by occupancy’. From a biological
perspective, the findings reported provide a practical tool to guide the modelling decisions of
researchers interested in the QSD for these kinds of systems. From a computational biology
perspective, the work in this chapter contributes to the literature through the development of
algorithms for the simulation of the QSD for a model used in the ecological literature, and
through guidance on how to choose between these algorithms for particular applications, as
well as by raising engineering questions related to the possible ways to improve upon the
compression models considered. We note that the model is very closely linked with other
lattice and network models, and we expect that these algorithms (or close variants of them)
should be more widely useful.

In Chapter 6, we considered a range of deterministic metapopulation models as a way to
investigate the extent to which these can provide useful information about the persistence
of real-world systems. Specifically, we considered the notion of persistence thresholds for
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the Levins model and SRLM2. Persistence was operationalised as the existence of a stable
nontrivial equilibrium in the model. As part of our discussion, we clarified the definitions
of metapopulation capacity of the SRLM provided in earlier work, as well as making more
explicit the connections between the definition of metapopulation capacity, the intuition be-
hind its interpretation in relation to persistence, and its calculation. We also clarified the
relationship between the ecological concepts of metapopulation persistence capacity and
metapopulation invasion capacity, and the epidemiological concept of the basic reproduction
number R0 as viewed from the next generation matrix perspective.

In relation to persistence, we investigated the effect on persistence thresholds of modelling
decisions regarding the states through which a patch progresses. Using epidemiological ter-
minology to describe these processes, we extended the original presence-absence or susceptible-
infectious-susceptible (SIS) model to capture an additional state. We introduced a model in
which each element transitions through a second infectious state (SIIS), that rarely appears
in the literature, as a way to link models with two and three states. This model subsumes
the model with an exposed state (SEIS) and that with a recovered state (SIRS), as well
as the SIS in the limit. This framework allowed us to derive new persistence thresholds
and obtain existing ones by first deriving these for the SIIS model and then allowing key
parameters to tend to limits that allowed us to recover more specific models. The ability
to do this becomes important for making modelling decisions when we are not certain, for
example, about whether individuals or patches that are recovered are still infectious, even
if at a lower rate (and thus whether an SIIS or SIRS model is more appropriate). It also
allows us to explore the relationship between persistence thresholds for models with differ-
ent numbers of states and those with and without Allee effects that cause populations to go
extinct when occupancy is low. These suggest that including an Allee threshold in models
may make them more appropriate for the application of deterministic persistence thresholds
to stochastic models. The main novel contribution of this chapter rests on the framework that
underpins the derivation of thresholds for linked models that can be considered as limiting
cases of a more general model. This approach could be applied more widely, such as to guide
modelling decisions about which states to include in compartmental models. A number of
the persistence thresholds derived are also new. The work in this chapter arises from consid-
erations developed in connection with our contributions to the development of the notion of
reservoir capacity in Viana et al. (2014), co-authored during the period of the PhD.

We now discuss the implications of these studies for future work on biological persistence
and the role modelling can play in that endeavour.

2The Levins model is a simpler version of the SRLM in which there are infinite, identical patches, and is
mathematically equivalent to the logistic growth model, a spatial version of which was employed in Chapter 3
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7.2 Implications for future work

7.2.1 Model types and persistence

The investigations carried out in this thesis have highlighted the distinctions between deter-
ministic and stochastic models for studying persistence and the tradeoffs between modelling
decisions. Specifically, deterministic models fail to capture the fact that extinction is eventu-
ally certain, while relevant stochastic concepts such as the quasi-stationary distribution suffer
from the difficulties of a very large state space. It would therefore be helpful to explore ways
to improve our understanding of both deterministic and stochastic systems to overcome these
problems.

Due to the lower complexity of deterministic models, to better understand the persistence
of biological populations, it would be valuable to learn more about how to map between
deterministic and stochastic models, since the most obvious mapping is problematic because
deterministic models predict persistence even for arbitrarily small populations. One possi-
bility is to consider including a strong Allee effect, the threshold for which might depend on
population size, in considering persistence of stochastic populations. It would be helpful to
know, for example, how to set the threshold of the Allee effect to obtain information about
mean time to extinction. An alternative approach might consist of using complementary in-
formation, perhaps by combining information on the persistence threshold and stability of
the steady state solution. This may be appropriate since higher persistence in stochastic mod-
els might be expected to be associated with situations in which the nontrivial steady state is
both relatively large (far away from extinction) and one that a system returns to strongly and
rapidly following perturbations.

In relation to stochastic approaches, work to improve the tractability of the quasi-stationary
distribution would be valuable. Work on tractable simulation approaches remains very under-
developed, yet could provide practical solutions to problems of the complexity of the state
space. We have shown that it is possible to provide relatively good estimates of the QSD
for heterogeneous systems of intermediate size through simulation that employs compressed
versions of the QSD, and it should be possible to improve the schemes presented here. For
example, it seems likely that an approach that uses the clustering algorithm for clustering
states, after conditioning on the number of occupied patches. Other developments might be
found in the way in which QSDs are compared. In our work, we compared the probability
distribution of discrete states; however, it is reasonable to consider some of these states as
more similar than others (e.g. a state in which all patches of a relatively large system are
occupied and one in which all except one are occupied are more similar to one another than
either is to one in which a single patch is occupied). It would be very valuable to develop
more sophisticated measures of the distance between QSD representations that take account
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of this similarity, and to explore the accuracy of existing and new algorithms for simulating
the QSD with respect to these. A second alternative is to establish the statistical relationships
between aspects of interest of the QSD, such that the information that we require can be
obtained directly. For example, here we have shown simple predictors of the contribution of
a patch to metapopulation extinction times and size. The extent to which these relationships
hold in different models, the mathematical reasons for the identified relationships (i.e. how
to formalise and understand patch values), and the exploration of other possible relationships
of interest would therefore represent a valuable endeavour.

The applicability of the QSD to some of the questions investigated here should also be con-
sidered in more detail. For example, once a system has been perturbed (e.g. by patch re-
moval), the distribution of states immediately following perturbation may show little resem-
blance to the QSD into which the system eventually relaxes, and the time taken for this to
occur is important if we are to make predictions about likely future states following pertur-
bation or to apply several interventions in sequence. The question of transients therefore be-
comes important (Hastings, 2004). It also remains unclear how well a system is represented
by the QSD in the case of systems below the critical threshold. The ratio of expectations
(Artalejo and Lopez-Herrero, 2010), which is the distribution of system states conditioned
on non-extinction from a given starting state better captures this situation; however for un-
known starting states, the ratio of expectations must be calculated for all initial conditions,
and the state space is thus even larger than that of the QSD.

7.2.2 Questions arising from possible applications

The study in this thesis that appears to have the strongest policy implications is the chapter
on patch values. This work provides a very simple heuristic that could be used to guide
interventions; however, the applicability of this heuristic to the real world remains to be
demonstrated, and at present, it would be wise to treat it with considerable caution. Firstly,
in relation to real world systems and policy questions, it would be very valuable to consider
in more detail the extent to which particular systems map to the models discussed in this
thesis, both in the context of ecological and epidemiological systems, since the patch value
heuristics proposed here work better under some model assumptions than others (e.g. when
the importance of the characteristics of the ‘parent’ or sending patch are similar or less
strong than those of the receiving patch). In attempting to map these systems to those in
the real world, it would be helpful to consider exactly what is meant by each of the states,
and whether, for example, we should choose to consider that a patch is occupied from the
point of invasion or from the point at which a population becomes ‘established’ there (the
latter seems to have a better mathematical foundation since we know that extinction times are
exponentially distributed once the QSD is reached). At least a partial answer to this question
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could be found through a simulation approach using an individual-based model.

The extent to which the findings hold in systems with individuality is also an important ques-
tion that needs to be addressed, although we note that for similar systems, Ovaskainen and
Hanski (2004) find good correspondence. Additional difficulties arise in measuring the rele-
vant information to parameterise the model. For example, patches are often poorly delimited
in real systems. As a result, it would be extremely valuable to explore the extent to which
choosing the boundary of patches matters to the heuristics described here. Exploring this by
considering different patch groupings may be a good way to use the existing framework to
explore these questions. In addition, few systems are truly closed (there are typically imports
of pathogens or organisms from external sources), and it would be useful to understand the
extent to which these can be incorporated into the work described here.

Extensions to the current work also include the consideration of additional patch states (e.g.
exposed, recovered) and whether the patch contribution changes as a function of these. It
would also be useful to extend to multi-species models. A further extension would be to
explore the effect of non-exponentially distributed waiting times in simulating transitions
between states.

7.3 Concluding remarks

In summary, in this thesis, we have explored a range of theoretical and practical issues per-
taining to biological persistence through four studies focusing on different measures of per-
sistence and the effect of modelling decisions on the conclusions that can be drawn from
them. From the broad perspective of understanding persistence, the main contributions of
the thesis are in highlighting the extent to which different measures of persistence - includ-
ing those defined by time horizons, mean time to extinction from quasi-stationarity, and the
existence of a stable nontrivial deterministic steady state - can lead to different conclusions
about biological persistence. In relation to modelling decisions, the contribution is in the
demonstration of the importance of the choice of discrete or continuous time, of ways of
modelling the contribution of a patch, of particular assumptions underpinning compressions
in simulating the QSD, and of which compartments are included in compartmental models
with multiple states and the functional forms governing how metapopulation growth relates
to occupancy (with or without Allee effects). The sections above outline priorities for future
research that we hope will contribute to the further development of theory and to conserva-
tion biology and infectious disease control.
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Appendix A

Chapter 1

A.1 Great principles of computing science

In this appendix, we describe how we have employed the principles of computing science
explained in Denning (2003).
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Table A.1: Application of principles of design

Principle My application

Simplicity
Forms of abstraction and structure
that overcome the apparent com-
plexity of applications

Use of object-oriented code for the main simulations,
use of style sheets for the figures in R/ggplot

Performance
predicting throughput, response
times, bottlenecks, capacity plan-
ning

Code written to manage memory (e.g. via simulation
to avoid reliance on storing full transition matrix in
Chapter 5)

Reliability
Redundancy, recovery, check-
points, integrity, system trust

The simulation platform was not mission critical and
therefore reliability was a lesser concern than for
many commercial applications. Nonetheless, code
was developed such that simulation output was stored
separately from error messages. Error files were pro-
duced by the architecture managing the different con-
current simulations (cluster), as well as directly by the
simulator code, the latter of which contained Java er-
rors as well as checkpoint information. These allowed
us to conduct searches within output files using the
‘grep’ command and keywords such ‘error’ to iden-
tify if there had been any problems during the running
of the simulations.

Evolvabililty
Adapting to changes in function and
scale

Many versions of the code were written, and the fi-
nal structure was chosen so that the most obvious
new functionality could be added in a straightforward
manner. For example, in Chapter 5, the QSD rep-
resentations were stored as different instantiations of
an abstract class, so that new compressions could be
added without modifying other code.

Security
Access control, secrecy, privacy,
authentication, integrity, safety

The issue of security was largely irrelevant for this
work; instead, a commitment to code sharing and doc-
umentation was preferred.
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Table A.2: Application of principles of mechanics

Principle My application

Computation
What can be computed; limits of
computing

Consideration of the limits of computation in calcu-
lating the QSD.

Communication
Sending messages from one point
to another

Denning includes file compression in this category,
and although communication was not our primary
concern in using compression in Chapter 5, this fits
in this category.

Coordination
Multiple entities cooperating to-
wards a single result

Different runs of the simulator under different param-
eter values used to answer scientific questions.

Automation
Meaning and limits of automation,
performing cognitive tasks by com-
puter

For example, a machine learning approach employed
in Chapter 5 to cluster system states.

Recollection
Storing and retrieving information

Output files were stored by the name of the code ver-
sion and the experiment, and a combination of param-
eter values, so that their contents could be easily iden-
tified.
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Table A.3: Application of practices

Practice My application

Programming
Computing professionals
must be multilingual, facile
with numerous programming
languages, each attuned to
its own strategies for solving
problems

Four main computer languages were used in the work de-
scribed in this thesis.

1. The main code of simulations was developed in Java.
This was appropriate because these were liable to up-
dating and the modular structure of object-oriented
programming made this a sensible approach. In addi-
tion, the relative speed and open source nature of the
language suited the application and scientific compu-
tation areas.

2. Matlab was used as appropriate for rapid prototyping,
and also for numerical solutions to differential equa-
tions and matrix problems.

3. R was used as this language is appropriate for final
statistical processing of simulation output and con-
struction of figures.

4. Unix / Linux shell scripting was used to coordinate
the simulations. The cluster on which most of the
work was conducted required this language.

Engineering systems
To produce a valuable benefit
for users; also an engineering
component concerned with
the modules, abstractions, re-
visions, design decisions and
risks; and an operations com-
ponent configuration, man-
agement and maintenance of
the system

1. Benefit for users: The main users of the simulation
platforms described in the thesis are the developers
and collaborators, as well as readers of the research
publications resulting from the work. The systems
are successful insofar as this has been possible and
that they can be employed for future research.

2. Engineering: The systems have been designed in
ways that allows their reuse.

3. Operations: The simulation platforms have been
maintained and will be made available online.
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Practice My application

Modelling and validation
Building models of systems
to make predictions about
their behaviour under vari-
ous conditions; and designing
experiments to validate algo-
rithms and systems

In scientific computing, computing practitioners construct
models not of computer systems, but of natural systems.
The main aim of the work in this thesis was to build mod-
els that make predictions about the behaviour of these sys-
tems under a range of conditions. To do this, experiments
were designed and executed to validate these models. In
most parts of the thesis, approximations are compared to
a baseline model. One aspect that is not reported in de-
tail is that when developing the simulators themselves (as
opposed to the full simulation platform), two copies of the
code were developed and compared. In Chapter 3, two ver-
sions were developed, each in Java, but by two independent
researchers. In Chapter 4 and Chapter 5, one version of the
simulator to produce the full QSD was developed in Mat-
lab by constructing the full 2n × 2n transition rates matrix
for the system, and a second version was developed in Java,
with transition rates calculated on the fly as a function of
the current system state. The existence of two independent
versions of each of the simulation platforms allowed us to
identify bugs much more easily than if a single system had
been developed.

Innovating
Exercising leadership to de-
sign and bring about last-
ing changes to the ways that
groups and communities op-
erate. Innovators watch for
and analyse opportunities, lis-
ten to customers and deliver
promised results

Customers, in the context of scientific computation, are typ-
ically practising domain scientists. The three computational
chapters of this thesis each constitute a response to prob-
lems raised by scientists, mostly in informal discussions I
have had with them. The focus on methodological ques-
tions of interest to practising scientists should help to sup-
port lasting changes in practice among this group.

Applying
Working with practitioners in
application domains to pro-
duce computing systems that
support their work

The practitioners in the application domains of the work in
this thesis are mostly scientists in ecology and epidemiol-
ogy. The work in this thesis has been conducted in discus-
sion with members of this group.
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Appendix B

Chapter 3

B.1 Algorithms

The algorithms Gill, RFd2S, RFd2M and RR1S are explained below using the notation in
Table B.1. The algorithms are described for multiple species, where the species is denoted
by an identifier in the form of the subscript i. All algorithms take the following arguments
(additional arguments are described in the text of each algorithm): the maximum time tmax
and habitat occupancy A, a data structure in which the index represents site and the entry is
either empty or holds the value of i for the species living at the site. Superscripts r and p
represent rates and probabilities respectively.

B.1.1 Gill

The Gill algorithm (space constrained Gillespie with multiple species) is presented in Algo-
rithm B.1. In addition to tmax and A, it takes as arguments a set S of species, two vectors
containing the per capita birth and death rate for each species br and dr, and a vector N
containing the total number of organisms of each species currently inhabiting the grid.

The algorithm iterates until the maximum time is reached (outer while loop) and has three
main sections: lines 5-9 compute the relevant population level rates, lines 10-23 compute the
next event and lines 24-25 compute the elapsed time. In lines 5-9 the population level birth
and death rates (Br and Dr) are computed for each species by multiplying per capita rates
by the number of organisms of that species, and the total event rate λ is computed as the
sum of all event rates (over all species). In lines 10-23, species are considered in turn and
the probability δ ∈ [0, 1) that the next event is a death of the current species is computed by
normalising the species death rate; the probability β ∈ [0, 1) that the next event is a birth of
the current species is calculated analogously. The algorithm then compares δ and β to the
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Table B.1: Symbols used in algorithms

Symbol Description Algorithms

i Species identifier All

t, tmax Time, maximum time All

A,B Habitat occupancy; index gives site and
entry contains species identifier i

All

bri , d
r
i Per capita birth and death rate for species

i
Gill

Br
i , D

r
i Total population birth and death rate

summed over individuals of species i
Gill

Ni, N Number of individuals of species i, total
number of organisms

Gill

τ Time until the next event under Gill Gill

λ Total event rate Gill

S Set of species Gill

β, δ Probability that the next event is a birth,
death (summed over all species)

Gill

bpi , d
p
i Per capita probability of birth and death

within a given timestep
RFd2S, RFd2M ,
RR1S

∆t Size of a timestep (fixed value) RFd2S, RFd2M ,
RR1S

E List of (site, eventType) pairs RR1S

C List of (species, site) pairs for occupied
sites

RFd2S, RFd2M
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Algorithm B.1 Gill algorithm for multiple species.

1: Gill(tmax, A,S, br, dr, N)
2: t← 0.0
3: while t < tmax do I Keep simulating until tmax reached
4: λ← 0.0, lwb← 0.0, p← rand()

5: for i ∈ S do I Set up rates
6: Br

i ← briNi

7: Dr
i ← driNi

8: λ← λ+Br
i +Dr

i

9: end for

10: for i ∈ S do I Simulate next event; loop over species, exiting on event
11: δ ← Dr

i /λ
12: β ← Br

i /λ
13: if p ≤ δ + lwb then
14: doDeath(i, A,N) I Kill random member of species i
15: break I Exit for loop
16: end if
17: lwb← lwb+ δ
18: if p ≤ β + lwb then
19: doBirth(i, A,N) I Random member of species i attempts birth
20: break I Exit for loop
21: end if
22: lwb← lwb+ β
23: end for

24: τ ← −ln(rand())/λ I Simulate elapsed time
25: t← t+ τ I Update time

26: end while
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uniformly random number p ∈ [0, 1) (generated in line 4), executing a single event if this
value plus the current lower bound lwb is greater than or equal to p (a death at line 14 or
a birth at line 19). When an event takes place the for loop is exited via a call to break

(ensuring that exactly one event is executed per iteration of the while loop). The time to
the next event τ is then computed by drawing from an exponential distribution with mean λ
(line 24) and time t increased by this amount (line 25).

The call to doDeath(i, A,N) (line 14) randomly selects a site in A occupied by an organism
of species i, sets this site to be empty and decrements the population count Ni. Similarly, the
call to doBirth(i, A,N) (line 19) randomly selects a site in A occupied by an organism of
species i and chooses with uniform probability between neighbouring sites; if the chosen site
is unoccupied a birth takes place into this site and the population count Ni is incremented.

Note that if the site into which a birth is due to take place is already occupied, the birth event
does not take place. The same is true of all the algorithms presented here.

This algorithm is based upon the Direct Method (DM) (Gillespie, 1977). However, be-
cause different organisms have different birth rates as a function of the occupancy of their
neighbourhood, the original DM method would have required computing the birth and death
event rate for every organism on the grid (i.e. 2 × N rates where N is the total number of
organisms). The birth rate of each organism also depends upon the occupancy of its neigh-
bourhood, and with the Moore Neighbourhood, computing these rates entails assessing the
occupancy of the 8 neighbouring cells. These would then need to be updated after an event
took place (Potential ways of avoiding the need to update all event rates, since only those of
organisms in the direct neighbourhood of an event would be affected, are reviewed in Slepoy
et al., 2008; Sanassy et al., 2014). The main innovations in the algorithm that we employ are
based on the following reasoning. Firstly, all organisms of the same species have the same
death rate. This means that it is not necessary to compute or store the rates for each organism
individually. Instead, we can store and compute only m species-level death rates and choose
the organism to which a death applies in two steps: firstly, we select a species according to
the species-level death rates, and then we choose the organism to which it applies uniform
randomly within the organisms of this species. When a death occurs, we update the count of
the number of organisms of that species and the overall species-level death rate. Secondly,
all organisms of the same species have the same constitutional birth propensity, and their ac-
tualised birth rate depends only on the probability of a potential birth occurring into a vacant
cell. Focusing on a single individual, the rate at which that individual tries to give birth (its
constitutional birth propensity) multiplied by its probability of actually achieving a success-
ful birth, is equivalent to the rate at which it gives birth successfully. Since all organisms
of the same species have the same birth propensity, we can first select a species according
to the species-level birth propensity (given by the product of the number of organisms of
that species and the constitutional birth propensity of the species), select an organism of that
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species uniform randomly, select its birth site uniform randomly from those in its neighbour-
hood and only implement birth should that site prove to be unoccupied. This means that we
never have to compute (or store) birth rates as a function of the occupancy of the neighbour-
hood, and in fact requires us to keep track of only the number of organisms of each species
(a vector of length m) and the site at which each resides (a vector of length N , where N is
the total number of organisms in the system).

As a result, the space complexity of the algorithm scales as O(n2) in the size of the lattice
(where n is the number of sites per side) and O(m) in the number of species. The number of
operations required per (actualised) event depends on the overall occupancy: at high occu-
pancy, birth events are generated but not effected as births are due to take place into occupied
sites. However, these probabilities are independent of the size of the lattice n, so are constant
in n per actualised event. The number of operations per proposed event scales as O(m) in
the number of species (species selection), as O(n2) in the size of the lattice (in the worst
case of a single species and full grid, we have to loop over all organisms of that species, i.e.
all sites), but is constant in the number of sites in the neighbourhood as occupancy is only
computed for the site into which birth is due to take place.

Algorithm B.2 RFd2S algorithm for multiple species.

1: RFd2S(tmax, A,∆t, b
p, dp)

2: t← 0.0
3: while t < tmax do I Keep simulating until tmax reached
4: B ← A
5: C ← getSites(A)
6: shuffle(C)

7: for (i, site) ∈ C do I Consider sites for death
8: if dpi ≥ rand() then
9: doDeath(B, site)

10: end if
11: end for

12: for (i, site) ∈ C do I Consider sites for birth
13: if bpi ≥ rand() then
14: doBirth(i, B,B, site)
15: end if
16: end for

17: t← t+ ∆t I Update time
18: A← B I Update array for next generation
19: end while
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B.1.2 RFd2S algorithm

Algorithm B.2 shows RFd2S. As with Gill, this algorithm takes arguments tmax and A, as
well as the time step ∆t and two vectors containing the per capita birth and death probability
per time step for each species bp and dp. These vectors are calculated from br and dr using
the standard conversion from rates to probabilities: bpi = 1 − e−∆t bri (and analogously for
dp).

Time progresses in regular steps ∆t (each constituting a generation) until tmax (while
loop). At each generation, A is copied into B (line 4), then the set of occupied sites C is
computed as a list of (species, site) pairs and the order of sites is randomised using a Knuth
shuffle1 (lines 5-6). Lines 7-11 execute death events (all deaths are executed before moving
on to births): for each (species, site) pair in C, a random number is drawn and if this is less
than or equal to the probability of death of the species at that site, a death is executed on B.
Lines 12-16 execute birth events in a similar way.

The overloaded procedures doDeath(A, site) and doBirth(i, A,B, site) work as follows.
The procedure call doDeath(B, site) (line 9) eliminates the organism at the given site in
B (note that B and A are the same until the first death has taken place). In procedure call
doBirth(i, B,B, site) (line 14), if the given site is not occupied by species i in B (this
occurs if the organism originally at the site in A used to construct C has died at lines 7-
11) then nothing happens, ensuring that organisms that have died can no longer give birth;
otherwise a neighbouring site σ is selected with uniform probability and if σ is unoccupied
in B, a birth of species i takes place into site σ in B. On completing a generation B is copied
into A (line 18).

B.1.3 RR1S algorithm

RR1S is presented in Algorithm B.3, and takes the same arguments as RFd2S. At each ∆t

increment (generation) the set of all (site, eventType) pairs is calculated where eventType is
either a birth or a death (line 4). The order of these pairs is randomised (line 5). In lines 6-16,
(site, eventType) pairs are considered in turn. It is possible that a pair (site, birth) follows
a pair (site, death) and the focal site is then unoccupied; this is tested for in line 7. For an
occupied site (lines 7 to 16), we obtain the species i at the site (line 8). If the current event
is a death, with probability dpi we call doDeath with argument A, thus affecting this data
structure directly. If the current event is a birth, we call doBirth with probability bpi with A
twice, so that births take place on A directly.

1Although strictly speaking, shuffling the site ordering for death events is actually unnecessary since death
events take place independently of one another.
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Algorithm B.3 RR1S algorithm for multiple species.

1: RR1S(tmax, A,∆t, b
p, dp)

2: t← 0.0
3: while t ≤ tmax do I Keep simulating until tmax reached
4: E ← getEvents(A) I Make list of (site, eventType) pairs
5: shuffle(E)

6: for (site, eventType) ∈ E do
7: if isOccupied(site, A) then I Check if site occupied
8: i← getSpecies(site, A) I If occupied, get species at site
9: if eventType = death ∧ dpi ≥ rand() then

10: doDeath(A, site)
11: end if
12: if eventType = birth ∧ bpi ≥ rand() then
13: doBirth(i, A,A, site)
14: end if
15: end if
16: end for

17: t← t+ ∆t I Update time for next generation
18: end while

B.1.4 Multiple births RFd2M and RR1M

The multiple births algorithmsRFd2M andRR1M differ only slightly from the single births
version, and therefore only RFd2M is shown in Algorithm B.4. Firstly, instead of calculat-
ing the probability of birth within a timestep, a number of births m is drawn from a Poisson
distribution with mean ∆tb

r
i (line 13) and correspondingly the algorithms take br as an argu-

ment (in place of bp, line 1). Secondly, doBirth(i, B,B, site) is called m times (where m
represents the number of births to attempt and may be zero) at line 14-16 (if m = 0, the loop
is never executed).

Note that Algorithm B.4 differs from Algorithm B.2 only in the way births are performed,
i.e. line 14 in Algorithm B.2 performs zero or one birth and lines 14-16 in Algorithm B.4
perform zero, one or more births.
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Algorithm B.4 RFd2M algorithm for multiple species.

1: RFd2M(tmax, A,∆t, b
r, dp)

2: t← 0.0
3: while t < tmax do I Keep simulating until tmax reached
4: B ← A
5: C ← getSites(A)
6: shuffle(C)

7: for (i, site) ∈ C do I Consider sites for death
8: if dpi ≥ rand() then
9: doDeath(B, site)

10: end if
11: end for

12: for (i, site) ∈ C do I Consider sites for death
13: m← PoissRand(∆tb

r
i ) I Poisson random number of births

14: for j ∈ [1..m] do
15: doBirth(i, B,B, site) I Birth of i if still present on B and site σ empty
16: end for
17: end for

18: t← t+ ∆t I Update time for next generation
19: A← B
20: end while
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Appendix C

Chapter 4

C.1 Alternative predictors of ∇Tm

C.1.1 pπi

Figure C.1 shows a quadratic relationship, explaining why the square of pπi gives a good
prediction of∇Tm.

Figure C.1: The relationship between pπi and ∇Tm (parameters as in Figure 4.3).

C.1.2 p∗i

In Figure C.2, we see a similar relationship between p∗i (the probability occupancy of the
patch at deterministic steady state) and ∇Tm as for in Fig. C.1 for the highest levels of
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persistence; however, the p∗i values are less predictive just above the deterministic persistence
threshold (i.e. (p∗i )

2 underestimates patch values. Unsurprisingly, p∗i provides no information
at all about the relative value of a patch at and below this threshold.

Figure C.2: The relationship between p∗i and ∇Tm (parameters as in Figure 4.3).

C.1.3 Ai

Figure C.3 shows the predictive value of the relative area of a patch for predicting∇Tm. For
obvious reasons, in the case of equal patch areas, this measure provides no useful informa-
tion about patch removal. The area of the patch shows more potential as a useful predictor
below the deterministic threshold for exponentially and log normally distributed patch areas
than above. This makes sense because below the deterministic persistence threshold, patch
extinction events are more common than colonisation and whilst patch colonisation is de-
pendent on the areas of other patches, extinction events depend only on the area of the patch
itself. Nonetheless, as a predictor of patch value, Ai is not robust to patch area distributions.
One would also expect it to make better predictions in the case where persistence is primar-
ily due to low extinction rates, as opposed to high colonisation rates (i.e. for systems with
slow patch turnover), which could be adjusted using parameter e and c as shown here, or by
varying the mean migration distance 1/α.

C.1.4 Vi

Figure C.4 shows the relationship between patch values Ṽi (Hanski and Ovaskainen, 2000)
and relative change in mean time to extinction. The figures show that for equal patch areas,
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Figure C.3: The relationship between Ai and ∇Tm (parameters as in Figure 4.3).

patch values tend to cluster into two groups of those of about Ṽi ≈ 0 and those of about Ṽi ≈
0.5. For exponentially and log normally distributed patch areas, Ṽi values are demonstrate
greater spread and there is a positive correlation between patch values and the effect of
their removal on metapopulation persistence. However, except at the two highest levels of
persistence, Ṽi underestimates the effect of removal on Tm, and there is considerable scatter
for all persistence levels.

Figure C.4: The relationship between Vi and ∇Tm (parameters as in Figure 4.3).

Note that the values plotted here are are approximate Ṽi values from the matrix M rather
than the ‘true’ Vi values (the distinction is explained in the main text).
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C.2 Alternative predictors of ∇Sπ

C.2.1 pπi and proportion of Sπ due to patch i

Figure C.5: The relationship between potential measures using the raw pπi values and Sπ.

In Figure C.5 we see a similar quadratic relationship between these predictors and Sπ as
previously with Tm.

C.2.2 Vi and V π
i

As was the case for Tm, the predictor Ṽi makes a poor job of approximating the Sπ values.
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Figure C.6: The relationship between Ṽi and Sπ.

C.2.3 p∗

Figure C.7: The relationship between p∗ and Sπ.

As expected, the predictor p∗ provides no information below the persistence threshold. Above
this threshold, it has a similar shape to pπ but is overall less accurate.
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Appendix D

Chapter 5

D.1 QSD comparison statistics

We tested four statistics for comparing the exact QSD with the approximations. The QSD of
the SRLM can be thought of as a vector of probabilities of length 2n equal to the number of
states, where n is the number of patches. In order to test whether the different approximations
improved or became worse as n increased, we required a statistic that measured the distance
between two approximations in a way that was comparable between systems with different
numbers of patches. A number of measures have been suggested for comparing probability
distributions (Cha, 2007).

In order to establish the most appropriate statistic for our purposes, we tested the follow-
ing four statistics: the Pearson r correlation coefficient, the root mean squared error (rmse),
the angle between the two vectors described by the two approximations, and the Kullback-
Leibner divergence, each described below. To achieve this, for each n, we first simulated
100 vectors of length 2n by drawing a value in the interval [0, 1) for each entry. We then
normalised the vectors by dividing by the sum of the elements to give a uniform random
probability vector. Every vector in the set was compared to every other vector using each
of the statistics selected. Findings are presented below. We selected the Pearson correla-
tion coefficient as this measure did not suffer from the limitation of bias and thus allowed
comparisons between QSD accuracy at different values of n.

In the definitions provided below, we denote the true distribution byX and the approximation
by Y .
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Figure D.1: Box plots showing the statistics considered for vectors of length 2n.

D.1.1 Pearson correlation coefficient

The Pearson product moment correlation coefficient, usually denoted r, measures the strength
of the linear relationship between two variables. Values of the coefficient range from −1,
when there is a perfect negative linear relationship, to +1 when there is a perfect positive
linear relationship; a value of 0 indicates that there is no linear relationship between the two
variables. It is defined as:

r =
cov(X, Y )√

var(X)
√
var(Y )

=

∑l
i=1(Xi − X̄)(Yi − Ȳ )√∑l

i=1(Xi − X̄)2

√∑l
i=1(Yi − Ȳ )2

.

In the case of perfect correspondence between the two representations of the QSD, we would
obtain r = 1 (in fact, the state probabilities would in fact lie on the line y = x although
Pearson’s correlation coefficient does not test the slope of the line).

D.1.2 Root mean square error

The root mean square error (rmse) or root mean square deviation (rmsd) is often used to
compare values predicted by a model and those that are actually observed. In the case of
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perfect correspondence, its value is zero. It is defined as:

rmse =

√∑L
i=1(Xi − Yi)2

L
.

It measures the mean of the square of the distance between the predicted value and the
observed value, and is rescaled by taking the square root to measure the mean distance in the
original units. Although the rmse is often used for the purpose of comparing observed values
to those predicted by a model, it has the disadvantage of being scale dependent. (Note that
the rmse is robust to changes in the number of states when used to compare non-normalised
vectors. Here we are normalising to generate a probability distribution; doing so reduces the
degrees of freedom of the distribution.)

D.1.3 Angle between vectors

If the vectors representing two distributions are the same, then the angle between those vec-
tors (in 2n-dimensional space) should be zero. The angle between the two vectors can be
found from the dot product or scalar product. The dot product of two vectors is defined as

X · Y =||X|| ||Y || cos(θ)

in which ||X|| represents the magnitude of the vector X and θ the angle between the vectors.
Rearranging the formula, and calculating the magnitude of the vector in the usual way, gives
the angle. This measure corresponds to Equation 26 in Cha (2007).

D.1.4 Kullback-Leibler divergence

The Kullback-Leibler divergence or discrimination information (Kullback and Leibler, 1951;
Kullback, 1987) is a non-parametric measure of the difference between two probability den-
sity distributions, P and Q, used in information theory and probability theory. For discrete
probability distributions, it is defined as

DKL(P ||Q) = E
[
log

(
p(x)

q(x)

)]
.

More specifically, it measures the divergence of Q from P as the information that is lost
when Q is used to approximate P . Put another way, this corresponds to the expected number
of additional bits required to code samples from P when using a code based on Q, rather
than using a code based on P directly. Typically, one thinks of P as the ‘true’ distribution
of data, observations, or a precisely calculated theoretical distribution whereas Q denotes a
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theory, model, description, or approximation of P . This measure corresponds to Equation
48 in Cha (2007).

D.1.5 Findings

Of the statistics tested, only Pearson’s correlation coefficient was shown to be unbiased in
the sense of giving the same mean value independent of the number of patches. However,
the variance was higher for smaller n.

D.2 Robustness testing

We include here additional figures representing robustness testing, referred to in the main
text.
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Figure D.2: Comparison of adjustments to clustering parameters with Kmax ≈ n.
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Appendix E

Chapter 6

E.1 Correspondence between Levins and logistic growth

model

The following manipulation shows that the re-parameterised Levins model is equivalent to
the original model. The first line is found by substituting K = 1 − r/c, ρ = c − r and
p = N/K into the standard logistic model dN

dt
= ρN

(
1− N

K

)
.

dp/dt = (c− r)p
[
1− p

1− r
c

]
(E.1)

= (c− r)p
[
1− cp

c− r

]
(E.2)

=

[
(c− r)− (c− r)cp

c− r

]
p (E.3)

= [(c− r)− cp] p (E.4)

= [c− r − cp] p (E.5)

= [c(1− p)− r] p (E.6)

= cp(1− p)− rp. (E.7)

The last line is the standard formulation of the Levins model from Equation 6.2.
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E.2 Derivation of non-standard form of SIIS Levins

model

We proceed by analogy with the derivation in E.1.

dp1

dt
= c1

(
1−

[
1 + r1

r2

]
p1

)
p1 + c2

(
1−

[
1 + r1

r2

]
p1

)
r1
r2
p1 − r1p1 (E.8)

=
(
c1 + r1

r2
c2

)(
1−

[
1 + r1

r2

]
p1

)
p1 − r1p1 (E.9)

=

[(
c1 + c2

r1

r2

)(
1−

(
1 +

r1

r2

)
p1

)
− r1

]
p1 (E.10)

=

[(
c1 + c2

r1

r2

)
− r1 −

(
c1 + c2

r1

r2

)(
1 +

r1

r2

)
p1

]
p1 (E.11)

=

[(
c1 + c2

r1

r2

− r1

)
−
(
c1 + c2

r1

r2

)(
1 +

r1

r2

)
p1

]
p1. (E.12)

We are now searching for a factor that we can pull out of the expression that represents the
rate of colonisation minus the rate of recovery. We proceed as follows by multiplying the top
and bottom of the right-hand term in the bracket by

(
c1 + c2

r1
r2
− r1

)
:

=



(
c1 + c2

r1

r2

− r1

)
−

(
c1 + c2

r1
r2
− r1

)(
c1 + c2

r1
r2

)(
1 + r1

r2

)
p1

(
c1 + c2

r1
r2
− r1

)


 p1. (E.13)

=

(
c1 + c2

r1

r2

− r1

)
p1


1−

(
c1 + c2

r1
r2

)(
1 + r1

r2

)
p1

(
c1 + c2

r1
r2
− r1

)


 (E.14)

=

(
c1 + c2

r1

r2

− r1

)
p1


1−

(
1 + r1

r2

)
p1(

c1+c2
r1
r2
−r1

)
(
c1+c2

r1
r2

)


 (E.15)

=
(
c1 + r1

r2
c2 − r1

)
p1


1−

(
1 + r1

r2

)
p1

1− r1r2
c1r2+r1c2


 . (E.16)

The transition between the penultimate and last line is simply based upon a re-arrangement
of the denominator of the fraction.
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