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Abstract 

Abstract 

Parasitic dinoflagellates of the genus Hematodinium have been reported from a 

number of commercially important crustacean hosts, including the Norway 

lobster, Nephrops norvegicus, from the coastal waters of Scotland. Several 

methods for detection of the parasite have been developed but each has associated 

drawbacks. As part of this study, an enzyme linked immunosorbent assay 

(ELISA) has been developed for the detection of the parasite in the haernolymph 

of N. norvegicus and other crustaceans. The ELISA is a simple, sensitive, and 

reproducible assay, with a detection limit of 5x 104 parasites ml-1 haernolymph. 

To further investigate low-level Hematodinium infection in N. norvegicus and 

other crustacean hosts, a set of Hematodinium-specific polymerase chain reaction 

(PCR) primers and DNA probes have been developed, based on Hematodinium 

ribosomal DNA (rDNA) regions. In the PCR assay, a diagnostic band of 380 bp is 

produced in the presence of parasite DNA. The limit of detection of the assay was 

found to be I ng DNA, which is equivalent to 6 parasites. The DNA probes 

detected Hematodinium cells in a range of tissues from N. norvegicus and from 

the crab Carcinus maenas. 

The level of genetic similarity between nine jsolates of Hematodinium originating 

from several species of Crustacea from the UK was examined. PCR was used to 

amplify and sequence the 3' of the small sub-unit (SSU) and the first internal 
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Abstract 

transcribed spacer (ITS 1) of the parasite rDNA complex. Analysis of the SSU and 

ITS I sequences revealed that both the regions are highly conserved (92.2 % or 

greater) between isolates examined, and that there is no apparent geographical 

separation of isolates. The results suggest that the same species of Hematodinium 

infects a number of crustacean species from different geographical locations. 

Hematodinium perezi, the parasitic dinoflagellate of the blue crab Callinectes 

sapidus, has been successfully isolated and cultured in vitro. Although the in vivo 

form of this parasite is morphologically and molecularly very different from that 

of the Hematodinium sp. infecting N. norvegicus, a number of similar life cycle 

stages were observed in vitro. These included syncytial networks, filamentous 

trophonts, and gorgonlock colonies. The isolation and in vitro culture of H. perezi 

and the Hematodinium sp. infecting N. norvegicus allowed the internal and 

external enzyme profiles of both species to be examined using the API ZYM 

system and biochemical assays, leading to the identification of several enzymes 

that may have pathogenic importance during Hematodinium infections. 

Differences in the secretion of acid phosphatase and leucine arylamidase by the 

two Hematodinium sp. studied may account for their different levels of virulence 

and infectivity. 

A ciliate infection of wild and laboratory-held N. norvegicus was discovered 

during the course of this project. Extensive damage to heart muscle tissue was 

observed in affected lobsters. The ciliate was identified as belonging to the genus 
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Mesanophrys, based on silver carbonate impregnation of oral structures. However, 

molecular sequence data (ITS I and ITS2) indicated that the ciliate sequences have 

100 % identity with rDNA sequences from Orchitophrya stellarum, a ciliate 

parasite of sea stars. Since the morphology of 0. stellarum differs from that of 

Mesanophrys, the possibility arises that the previous studies have misreported the 

molecular data. Otherwise, it must be concluded that morphological features 

cannot be used to discriminate between closely related ciliate species. 

The initiation of in vitro cultures of the ciliate isolated from N. norvegicus 

allowed the investigation of proteolytic factors that may be involved in the 

initiation and progression of its infection. The ciliate was found to secrete a 

number of proteases into the culture medium, and these are exclusively of the 

metallo type. They have gelatinolytic and azocaseinolytic activities and are active 

at the physiological temperature and haemolymph pH of the host. Secreted 

proteases were selective in the degradation of several host proteins, including the 

myosin heavy chain, which is a common structural component of all lobster 

muscle tissues. Consequently, these proteases may have multiple roles in the 

invasion and progression of this ciliate infection, or in assisting nutrient uptake by 

the ciliate. 

The results of these studies are discussed in terms of the technical development of 

diagnostic assays for Hematodinium, their potential application in examining the 

prevalence and transmission of this parasite in N. norvegicus and other 

iii 



Abstract 

crustaceans, and the potential pathogenic mechanisms involved in parasitic 

infections of N. norvegicus. 
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Chapter One - General Introduction 

Chapter I 

General Introduction. 

1.1 The Norway lobster Nephrops norvegicus (L. ) 

The sub phylum Crustacea (phylum Arthropoda) contains over 26,000 species 

dwelling in a wide range of habitats. The Norway lobster Nephrops norvegicus 

(L. ) belongs to the infraorder Astacidea and family Nephropidae. The Norway 

lobster is a bottom-dwelling, burrowing decapod crustacean, which is common in 

European waters. It has been recorded from depths of around 10 to almost 900 

metres, though it is more often found in waters of 30 to 200 metres (Farmer, 1975; 

Chapman, 1980; Atkinson, 1987; Abello et al., 1988). It appears to have a wide 

adaptability to temperature and salinity and is present in NE Atlantic waters from 

southern Greenland to off the NW African coast, and in the Mediterranean 

(Fanner, 1975; Merella et al., 1998). However, its distribution is restricted by its 

requirement for soft sediments in which to construct burrows (Chapman, 1980). 

Due to its commercial importance, large numbers and relative ease of capture 

throughout the year, it has become the model species for research into a number 

of important biological processes such as feeding (Loo et al., 1993), reproduction 

(Farmer, 1974a) and behaviour (Atkinson and Naylor, 1976). 
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Chapter One - General Introduction 

Up until the early 1950s N. norvegicus was considered to be a nuisance species 

and was discarded by fishermen working in the Firth of Clyde (Bailey et al., 

1986) and adjacent waters (Briggs, 1997). However in recent years, N. norvegicus 

has become one of the most important shellfish stocks fished in the Northeast 

Atlantic. UK landings for this species are currently worth around E68.5 M per 

annum at first sale (Sea Fish Industry Authority, 2001), making it one of the most 

valuable lobster resources in the world. The main fishing grounds for N. 

norvegicus in Scotland consist of the Firth of Clyde (W. Scotland), the Firth of 

Forth (E. Scotland), the North and South Minches (N. W. Scotland), the Noup (N. 

Scotland), the Fladen (N. E. Scotland), and the Fam Deeps (S. E. Scotland) 

(Anon. 2001). The majority of Scottish landings are from trawler capture, with the 

smaller sized lobsters being processed at sea and sold on return to land as "scampi 

tails". However, in some areas trawling is not practical or possible. Larger 

lobsters are usually caught by baited creels set within inshore sheltered waters 

(where there may sometimes be conflicts between trawling and creeling interests). 

These lobsters are landed live and supply a lucrative export market to continental 

Europe. 

The reproductive cycle of the Norway lobster greatly influences its availability for 

capture. Mating occurs just after moulting by the female, which takes place from 

May through to August (Farmer, 1974a). The female stores the sperm packet 

transferred from the male until egg laying occurs in August and September 

(Fanner, 1974a). Subsequently, there is an incubation period during which the 
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fertilized eggs are carried on the pleopods of the female lobster. This incubation 

period lasts until the following April/May when the planktonic larvae are released. 

During this incubation period, females reside in their bur-rows and are unavailable 

for capture, which causes a strong bias in the sex ratio of catches (Farmer, 1974b; 

Chapman, 1980). 

1.2 Crustacean diseases 

1.2.1 Non-infectious diseases of crustaceans 

An example of a non-infectious disease is that of idiopathic muscle necrosis, a 

condition for which the cause is unknown since infecting microorganisms have 

never been observed in the necrotic foci. It occurs in several marine and 

freshwater crustaceans when experiencing sub-optimal environmental conditions, 

such as hypoxia, hypo- and hypersalinity, hypo- and hyperthermia, hyperactivity, 

overcrowding and exposure to air and stress associated with handling. Necrotic 

lesions occur in the abdominal muscles of affected individuals, with associated 

infiltration of haemocytes. Lesions show disorganization of myofibrils, loss of 

sarcomeres and disintegration of interfibrillar mitochondria. The condition has 

been reported in the freshwater crayfish Cherax tenuimanus, in which it is thought 

to be due to air exposure (Evans et al., 1999); in the brown shrimp Penaeus 

aztecus, due to host metabolic reactions caused by temperature and anoxia- 

induced stress (Rigdon and Baxter, 1970); in kuruma shrimp, Penaeusjaponicus, 
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due to overcrowding in harvest nets (Momoyama and Matsuzato, 1987); and in 

the freshwater prawn Macrobrachium rosenbergii, due to hyperactivity and 

hypoxic water conditions (Akiyama et al., 1982). Recently, Stentiford and Neil 

(2000) reported a post-capture idiopathic muscle necrosis of Norway lobsters 

from the West coast of Scotland. In this description, Scottish lobster wholesalers 

encountered economic losses due to mortality of lobsters during live storage and 

transport. Necrosis of abdominal muscle tissues was apparent within hours of 

capture and progressed to complete opacity of the abdominal musculature within a 

number of days. Affected tissues displayed a progressive disruption of sarcomere 

organization, loss of z-line material and infiltration of necrotic region by 

granulocytes. In addition, there was a reduction in the major contractile proteins 

of the affected abdominal muscle tissues. 

The majority of diseases in crustaceans, however, are caused by pathogens of 

bacterial, viral, fungal and protozoan origin, largely in intensive rearing 

conditions. 

1.2.2 Bacterial infections of crustaceans 

Low levels of bacterial epibionts are present and occur naturally on the outer 

surfaces of all crustaceans, most having no detrimental effect to the host. 

However, colonisation of the body surfaces by filamentous bacterial species such 

as Leucothrix mucor, which is commonly observed on both natural and cultured 
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marine crustaceans, can be a serious problem by interfering with gas exchange 

across gill and egg membranes (Stewart, 1993). Incidents of chitinolytic shell 

disease (also known as rust disease, black spot and brown spot) have been 

reported among crustaceans living in degraded environmental conditions such as 

aquaculture settings (Prince et al., 1993) or polluted environments (Young and 

Pearce, 1975; Sawyer, 1991). Loss of the epicuticle outer layer of the crustacean 

exoskeleton occurs as a result of proteolytic bacterial activity, predatory or 

cannibalistic attack, chemical attack, and the abrasive action of the host's 

interaction with the sediment. The underlying chitin-containing procuticle is then 

exposed and shell degeneration occurs. Bacteria belonging to the genera Vibrio, 

Pseudomonas, Alteromonas, Aeromonas and Pasteurella have all been reported to 

be involved in the disease syndrome (Getchell, 1989). The disease is not thought 

to be fatal in its initial stages, but mortality results in the later stages due to an 

inability of the animal to moult and also to septicaernia when pathogenic bacteria 

gain entry through lesion sites. Incidents of shell diseases are common in wild 

populations of crustaceans: Baross et al. (1978) reported a 76 % incidence in 

female tanner crabs, Chionoecetes bairdi, off the Oregon coast, and Vogan et al. 

(1999) reported a high prevalence in the edible crab, Cancer pagurus, from 

Swansea bay in South Wales. 

Bacteria have been isolated from the haernolymph of apparently healthy 

crustaceans (Colwell et al., 1975; Lightner, 1977) indicating that haernolymph is 

not a sterile environment and that the host immune system is able to control low- 
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level bacterial infection (Brock and Lightner, 1990). In contrast, Bang (1970) and 

Johnson (1976) reported that bacteria are not present in the haernolymph of 

crustaceans. However, what is clear is that stress plays an important role in 

bacterial disease initiation and progression. Most internal bacterial infections are 

caused by invasion of the haernolymph by gram-negative Vibrio species (Lightner 

and Lewis, 1975). Symptoms and pathology of infection include lethargy, black or 

brown cuticular lesions, tissue necrosis and melanization of appendages (Aguirre 

Guzman and Ascencio Valle, 2000). Large numbers of bacteria can be observed in 

the haernolymph of severely affected individuals. Many cultured shrimp species 

(Penaeus monodon, P. merguiensis, P. japonicus) suffer major outbreaks of 

vibriosis attributed to poor water quality and aquaculture management (Lightner, 

1996). Vibriosis has also been reported in Homarus americanus (Bowser et al., 

198 1) and Callinectes sapidus (Johnson, 1976). 

Gaffken-da is the most important disease caused by gram-positive bacteria. It is a 

fatal condition of Canadian origin, where it is endemic in stocks of H. americanus 

(Stewart et al., 1966). However, outbreaks of infection in H. gammarus have 

occurred regularly in European waters in recent years (Alderman, 1996). The 

disease is caused by the proliferation of Aerococcus viridans var. homari in the 

haemocoel and haemolymph, resulting in depletion of circulating haernocytes 

(Johnson et al., 1981). The bacterium is resistant to destruction within haemocyte 

phagosomes, possibly due to its acidic polysaccharide capsule (Johnson et al., 

1981). The bacterium is also resistant to agglutinins, and its growth is stimulated 
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by haernolymph serum (Cornick and Stewart, 1968). The clotting ability of the 

haernolymph is also lost in infected lobsters. Time to death appears to be 

temperature-dependent, as infected lobsters held at low temperatures (4 *Q 

survive longer than those held at higher temperatures. Several decapod crustacean 

species can become infected by A. vifidans, and in some it has only a low 

virulence, so they may act as a reservoir for the pathogen (Stewart and Rabin, 

1970). 

1.2.3 Viral diseases of crustaceans 

The first viral disease of a marine crustacean was reported by Vago (1966), for the 

swimming crab Liocarcinus (as Macropipus) depurator, and since then over 30 

species of virus have been identified infecting crustaceans in both wild and culture 

conditions (Brock and Lightner, 1990). Viruses have been associated with disease 

in penaeid shrimp, the blue crab C sapidus, the swimming crab L depurator, and 

members of the crab genera Carcinus and Paralithodes (Johnson, 1984; Brock 

and Lightner, 1990; Sindermann, 1990). Viral disease has emerged as an 

extremely serious economic problem for shrimp farming around the world 

(Lightner and Redman, 1998). Many viruses have been found to have deleterious 

effects on aquacultured shrimps, while they have no effect on natural populations. 

The occurrence of a virus in a crustacean does not necessarily mean that a disease 

will develop since many viruses are latent throughout large parts of the crustacean 

life cycle, and indeed a small number have never been associated with any 
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pathological condition. Crustacean viral infection is usually associated with stress 

from high temperature, overcrowding and pollutants. Recently, the first viral 

disease of a lobster host has been reported by Behringer et al. (2001) as a herpes- 

like DNA virus infecting haemocytes of wild Caribbean spiny lobsters Panulirus 

argus, in the Florida Keys. It was suggested that the social grouping behaviour of 

this lobster may facilitate disease transmission by water-borne particles, direct 

contact or ingestion of infected tissues. 

1.2.4 Fungal diseases of crustaceans 

Fungal infections occur frequently in marine crustaceans, usually resulting from 

invasion of injured or stressed hosts, with eggs and larvae being particularly 

vulnerable. Fungal infections are also commonly associated with shell disease 

outbreaks, either alone or in conjunction with bacterial-induced lesions. An 

example of this is burned spot disease of the European crayfish. In this, fungal 

hyphae grow within the cuticle causing breaching and dark lesions, which permit 

secondary bacterial invasion to occur. The tanner crab, Chionoecetes bairdi, is 

subject to a condition described as black matt disease (BMD), caused by the 

ascomycete, Trichomaris invadens. Initially this was reported as a fungal infection 

of external surfaces only. However Sparks (1982) revealed that the infection was 

not only restricted to external surfaces, but was invasive, with fungal hyphae 

penetrating the thick cuticle and proliferating within underlying epidermal and 

connective tissues surrounding internal organs. The disease seems to be genus- 
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specific (Chionoecetes), with both C. opilio and C. tanneri being infected to a 

lesser extent (I-libbits et al., 1981). The blue crab, Callinectes sapidus, is affected 

by sponge disease caused by Lagenidium callinectes. Up to 25 % of the egg mass 

of affected crabs is destroyed, and on occasion larvae can also be affected 

(Sindermann, 1990). Infections by L callinectes have also been reported for 

Cancer magister larvae (Armstrong et al., 1976) and on the eggs of the estuarine 

shrimp Palaemon macrodactylus (Fisher, 1983). Fungal disease caused by 

Fusarium sp. is common in the aquaculture of prawn and shrimp species. They 

are considered as opportunistic fungal pathogens which cause fouling of the gills 

and cuticle. Probably the most serious example of a fungal disease of wild 

crustaceans is the European crayfish plague caused by the phycomycete 

Aphanomyces astaci. This condition was first reported from Italian crayfish 

Astacus astacus in 1865. The fungal condition then spread rapidly throughout 

European populations of A. astacus, also infecting A. leptodactylus and 

Austropotamobius pallipes by the late 20'h century (Johnson, 1983). North 

American crayfish species show resistance to A. astaci, but have been found to act 

as carrier hosts. 

Another important group of crustacean fungal pathogens are the Microsporidia, 

with over 140 species documented to infect all crustacean Orders (Brock and 

Lightner, 1990). These amitochondrial intracellular parasites were formerly within 

the kingdom Protozoa (Protista) but have now been placed within the kingdom 

Fungi, based on DNA sequence evidence that they are more related to 
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conventional fungi (Cavalier-Smith, 1998). They occur in shrimps, crabs and 

lobsters where they are obligately parasitic and frequently cause extensive 

mortalities. Common symptoms of infection include the whitening of body 

musculature, in particular the abdominal flexor muscles, which gives rise to the 

term "cotton tail" for this condition. The whitening is due to the invasion and 

necrosis of muscle fibre cells by the n-dcrosporidian after its initial entry to the 

host through the midgut epithelium. Infection is thought to be due to spore 

ingestion; spores then hatch and initially infect the gut wall, then the infection 

spreads to other tissues and organs. Once inside the target host cell, asexual 

schizogony takes place followed by sporogony, resulting in the production of 

sporonts that divide to form sporoblasts and ultimately to form spores, which can 

infect other host cells (Canning, 1977). Microsporidians have been observed to 

infect crustacean skeletal muscle (Dennis and Munday, 1994), the hepatopancreas 

(Kabre, 1992), the gut wall (Kelly, 1979) and reproductive tissues (Baticados and 

Enriquez, 1982). The identification of microsporidian infection is problematic 

however, as this group can resemble several other pathogens including protozoa. 

1.2.5 Protozoan parasites of crustaceans 

Sparks (1985) concluded that protozoan parasites are the most common cause of 

disease in invertebrates. Protozoan parasites are thought to exist in all but a few 

decapod crustaceans due to their abundance and versatility. The 

sarcomastigophoran parasite Paramoeba pemiciosa is an example of an important 
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protozoan pathogen. It causes grey crab disease in the blue crab C sapidus, 

resulting in a seasonal infection along the Eastern coast of the USA (Johnson, 

1977). The parasite multiplies in connective tissues, haemal spaces and in the 

haemolymph, impacting a grey colouration to the ventral surface of infected 

individuals. The parasite causes commercially significant mortalities of crabs both 

in wild populations and when held in holding tanks (Sawyer et al., 1970; Johnson, 

1988). 

Opportunistic free-living ciliates have been reported to parasitize several 

crustacean species around the world. The first report of ciliates infecting 

crustaceans was by Cattaneo (1888) in which Anophrys maggii was found in the 

haemolymph of a European shore crab (Carcinus maenas) from Italy. Several 

other ciliate species are known to be important crustacean parasites. The 

scuticociliate Anophrys haemophila causes "bumper car" disease in the American 

lobster H. americanus (Cawthorn et al., 1996). The term "bumper car" refers to 

the rapid motility of the ciliates in vitro and in vivo at low temperatures. The 

ciliate was first observed as a pathogen of captive H. americanus held in a flow- 

through system (Aiken et al., 1973). Epizootics of this disease have been 

documented to occur in the winter months in Maine and New Brunswick, with 

mortalities of up to 25 % (Shelburne and Bean, 1991; Loughlin et al., 1994). 

Affected lobsters have reduced muscle mass, poor meat quality and an unsavoury 

flavour (Loughlin et al., 1993). Recently, mass mortalities of krill (several 

euphausiid species) have been reported and attributed to parasitic ciliates of the 
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genus Collinia (G6mez-Guti6r-rez et al., 2003). This ciliate was observed to 

consume all the hosts' tissues and to rupture the cephalothorax, killing the host 

within 40 hours of infection. 

The taxonomy of ciliates is confusing and often contentious, and has undergone 

many changes, especially recently in the light of genetic research. The description 

of several ciliates resembling Anophrys maggii (Cattaneo, 1888) following its 

initial discovery, are a good example of this problematic issue. The genus 

Anophrys was previously established for a free living scavenging ciliate A. 

sarcophaga, found in a marine aquarium (Cohn, 1866). Substantial confusion then 

followed, with incomplete or poor morphological descriptions of several ciliates 

of the genus Anophrys infecting crustaceans (Poisson, 1930; Bang, 1962; Bang et 

al., 1972). These early descriptions were made without the use of silver 

impregnation methods that allow precise staining and identification of ciliary 

structures. Groli6re and Leglise (1977) then described a ciliate from Cancer 

pagurus as a new species, Paranophrys carcini, without any reference to the 

previous descriptions of ciliates infecting crustaceans. Following this, De 

Puytorac and Groli6re (1979) reported basic differences between A. sarcophagi 

and A. maggii, and grouped P. carcini with A. maggii as Paranophrys maggii, 

suggesting that all previously described crab haemolymph ciliate parasites from 

European waters should be designated as this. Armstrong et al. (1981) reported a 

Paranophrys infection in dungeness crabs (Cancer magister) from Oregon in the 

US, and speculated that the ciliate was probably P. maggii from Europe. Hibits 
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and Sparks (1983) also described a Paranophrys sp. infection, this time in the 

isopod Gnorimosphaeroma oregonensis from Alaska. Based on the morphology 

of protargol-stained ciliate oral structures, a new genus, Mesanophrys, was 

erected by Small and Lynn (1985). This was defined by the second oral 

polykinetid being roughly equal in length to the first, and the forward part of the 

oral dikinetid ending at the level of the third oral polykinetid. A. maggii and P. 

carcini were then placed in this new genus. Since the construction of this genus 

there have been several descriptions of crustacean ciliate infections of the genus 

Mesanophrys; Morado and Small (1994) reported M. pugettensis from dungeness 

crabs, and Messick and Small (1996) reported M. chesapeakensis from blue crabs. 

Both descriptions were attributed to separate species based on minor differences 

in protargol-stained oral structures, the host species and geographical location. 

However, Goggin and Murphy (2000) surprisingly found no differences in the 

highly variable first and second internal transcribed spacers (ITSI/ITS2) of the 

ribosomal DNA gene complex from M. pugettensis and M. chesapeakensis, 

suggesting either that the ITS sequences are highly conserved and cannot be used 

to discriminate between species, or that they are both the same species of 

Mesanophrys. In addition, Wiqchowski et al. (1999) reported a Mesanophrys sp. 

ciliate infecting the isopod Sadutia entonzon. They suggested that all nominal 

Mesanophrys species should be referred to as M. maggii, based on strongly 

overlapping morphometric characteristics between described species, unless new 

information on host specificity, life cycle or biochemical dissimilarity indicates a 

taxonomic difference. 
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The discovery of a ciliate in a new host raises issues of parasite host specificity 

and species diversity. This has occurred in the present study since a Mesanophrys- 

like ciliate was discovered in N. norvegicus. The opportunity was therefore taken 

to include studies of its identity and virulence within the scope of the project aims. 

1.2.6 Dinoflagellate parasites of crustaceans 

The dinoflagellates occur as essential components of phytoplankton, and can be 

both parasites and symbionts of marine invertebrates (Shields, 1992). 

Dinoflagellates are principally biflagellated with characteristic transverse and 

longitudinal flagella, cortical alveoli and tubular mitochondrial cristae. The 

dinoflagellates are composed of motile and non-motile forms, pigmented and non- 

pigmented types, solitary and colonial species, and armoured and naked forms. Of 

2000 recognised species of dinoflagellate, over 140 species are parasitic (Drebes, 

1984). Parasitic dinoflagellates are known to infect a wide range of marine 

organisms including fish, tunicates, molluscs, annelids, protozoa, algae and 

crustaceans (reviewed in Shields, 1994). The first report of a parasitic 

dinoflagellate was by Pouchet (1884), in which he described appendicularian 

tunicates parasitized by Gymnodinium pulvisculus. Uttle else was discovered 

about parasitic dinoflagellates until a substantial monograph was produced by 

Edouard Chatton in 1920 and reviewed in the 1930s (Chatton and Poisson, 1931). 

Jean and Monique Cachon (Chatton's students) continued his work, describing the 

life history and structure of many parasitic dinoflagellates (Cachon and Cachon, 
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1987). Parasitic species occur in around 35 genera, encompassing the four orders 

of dinoflagellates (Phytodiniales, Gymonodiniales, Blastodiniales, and 

Syndiniales). 

The orders Blastodinia and Syndinia contain at least 25 species of dinoflagellate 

parasites of crustaceans. There are seven families forming the Blastodinia 

(Cachon and Cachon, 1987), but only two contain parasites of crustaceans. 

Members of the family Blastodiniae are extracellular marine parasites occurring in 

copepod guts. The mode of infection is not known but is believed to involve the 

ingestion of dinospores that develop into the trophont form and then divide 

through several vegetative stages into a sporocyst, eventually releasing dinospores 

(Chatton, 1920). Host castration is a common consequence of infection. The 

family Chytriodinidae contains four genera that parasitize crustaceans, which live 

as ectoparasites on the eggs of euphausiids, copepods, and penaeid shrimps. The 

parasitic dinospore attacks, penetrates and consumes the host egg in a period of 1- 

2 hours, after which sporulation occurs. Consequently, the reproductive dynamics 

of infected species are greatly affected by this parasite (Wickham, 1986). 

The Syndinidae are osmotrophic parasites of the cytoplasm and body cavity. Four 

genera of the Syndinidae parasitize crustaceans: Actinodinium, Trypanodinium, 

Syndinium and Hematodinium. The Actinodinium and Trypanodinium are not well 

documented. Actinodinium apsteini was found in the stomach wall of the copepod 

Acarti clausi (Chatton and Hovasse, 1938), while Trypanodinium ovicola 
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parasitizes the eggs of several species of copepods (Chatton, 1920). Three species 

of the genus Syndinium parasitize crustaceans and are found in the soft tissues and 

haernal spaces of hosts. Infection of copepods by the type species S. turbo 

(Chatton 1920) is thought to occur by ingestion of dinospores. The dinospore 

penetrates the gut wall and develops into a plasmodium, which grows and causes 

muscle degeneration and host castration leading to death (Shields, 1994). 

1.2.7 Hematodinium species infecting crustaceans 

Members of the genus Hematodinium are predominantly parasites of decapod 

crustaceans. There are two described species of Hematodinium, although several 

Hematodinium-like infections in decapods probably warrant new species 

descriptions based on rDNA sequence information (Hudson and Adlard, 1996). 

The type species, Hematodinium perezi, was originally described as infecting the 

portunid crabs Carcinus maenas and Liocarcinus depurator from France (Chatton 

and Poisson, 193 1). It was found in only four out of 3570 individuals examined. A 

second species, H. australis, from the Australian sand crab, Portunus pelagicus, 

was described by Hudson and Shields (1994). Hematodinium-like infections have 

been reported for a wide range of crustacean species including Callinectes sapidus 

from the US East coast waters of Florida, Maryland, Virginia, and Georgia 

(Newman and Johnson, 1975; Messick, 1994; Messick and Shields, 2000; Lee, 

2001). Hematodinium infections have also been found in Cancer irroratus, C. 

borealis and Ovalipes ocellatus from the New York Bight on the Eastern seaboard 
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of the US (MacLean and Ruddell, 1978); Cancer pagurus from France and the 

Channel Islands (Latrouite et al., 1988; Stentiford et al., 2002); Necora puber 

from the West coast of France (Wilhelm and Mialhe, 1996); Scylla serrata 

(Hudson and Lester, 1994) and Trapezia aerolata from the East coasts of 

Australia (Hudson et al., 1993); Chionoecetes bairdi (Meyers et al., 1987; Eaton 

et al., 1991; Love et al., 1993) and Chionoecetes opilio (Taylor and Khan, 1995) 

from the Baring Sea and South East Alaskan waters. Benthic amphipods infected 

by dinoflagellates similar in appearance to Hematodinium species have also been 

described (Johnson, 1986; Messick and Shields, 2000) suggesting their 

involvement as a secondary or intermediate host in the life cycle of 

Hematodinium. 

Hematodinium infection is thought to be a gradual process, with early and 

moderate infections hard to diagnose because circulating trophonts resemble 

immature haernocytes. In advanced infections the haemolymph is milky white in 

colour due to the number of trophonts present in the circulating haemolymph. As 

the parasite cells proliferate there is marked degeneration of the hepatopancreas 

and muscle tissues, and a general congestion of the gill filaments and haernal 

sinuses with circulating parasites. There is also a marked reduction in the numbers 

of circulating host haemocytes, even though Hematodinium is not found 

intracellularly. Respiratory dysfunction indicated by reduced oxygen-carrying 

capacity of the haemolymph results in lethargy of the host crustacean (Taylor et 

al., 1996). 
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1.3 Hematodinium infection of the Norway lobster 

During the early 1980s, routine investigations into the biology of the Norway 

lobster N. norvegicus in the Firth of Clyde led to the discovery in the spring 

months of a number of lobsters in a moribund state with an opaque rather than the 

normal translucent appearance, and white coloured haemolymph. The condition 

was first thought to be moult-related as this takes place in both the female and 

male between March-April. By 1987 the poor appearance and condition of these 

lobsters had also evoked comment from fishermen and food processors, with at 

least one catch of lobsters refused at market. A sampling programme was 

therefore instigated to monitor the incidence and geographical extent of this 

condition around the West Coast of Scotland. This led to the discovery of non- 

motile protozoan parasites in the haemolymph of severely infected lobsters (Field 

et al., 1992). The parasite was identified as a dinoflagellate resembling 

Hematodinium perezi. Hematodinium infection of Norway lobsters has since been 

identified in the Irish Sea (Briggs and McAliskey, 2002) and the Swedish 

Skagerrak (K. Frohlund, Havsfiskelaboratoriet Sweden, personal communication). 

At present these are the only descriptions of Hematodinium infection in a lobster 

host, and their genetic similarity to each other is not known. 

Several studies have shown that there is a seasonal pattern of infection between 

February and July with peak numbers of infected animals occurring between 

March and May (Field et al., 1992; Appleton et al., 1997; Field et al., 1998). In 
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the Clyde Sea Area, the proportion of infected lobsters was observed on occasions 

to be as high as 80 % of the total trawl catch (Field et al., 1992), with female 

lobsters being found to have a higher infection prevalence than males (Field et al., 

1992; Stentiford et al., 2001b). 

Hematodinium infection in the Norway lobster results in a reduced swimming 

performance of the host (Stentiford et al., 2000a), and to the depletion of glucose 

levels in the host haemolymph. This is thought to be due to the parasite cells 

circulating in the haemolymph affecting the carbohydrate dynamics of the tissues, 

thus causing the release of crustacean hyperglycaemic hormone (CHH) 

(Stentiford et al., 2001a). Infection also changes the plasma free amino acid 

profiles, and causes alterations in muscle sarcolemmal structure and disruption of 

myofibrillar bundles (Stentiford et al., 2000b). In contrast, little or no research has 

been carried out on how Hematodinium infects the lobster, or the mechanisms of 

host immune reaction evasion by the parasite. Because of the dearth of 

information, the possible mechanisms for host immune reaction evasion were 

investigated in this study. 

The Hematodinium species infecting N. norvegicus has been continuously 

cultured for a number of years using a balanced salt solution (Nephrops saline), 

supplemented with 10% (v/v) foetal calf serum (Appleton, 1996; Appleton and 

Vickerman, 1998). A proposed life cycle consists of the development of 

filamentous trophonts, which aggregate into unusual colonies of plasmodia, called 
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"gorgonlocks", followed by continual cell differentiation into arachnoid trophonts, 

clump colonies, arachnoid sporonts, sporoblasts and finally dinospore release 

(Appleton, 1996; Appleton and Vickerman, 1998). Dinospore release has only 

rarely been observed and recorded in vivo with dinospores exiting the host at sites 

of cuticle damage, particularly in the gills (Appleton et al., 1997). 

In contrast to the above studies on the culture of the Hematodinium sp. from N. 

norvegicus, little is known of the life cycle stages of the type species H. perezi 

from C sapidus, due to a lack of success with in vitro culture systems (J. Shields, 

VIMS, personal communication). There is however, considerable information on 

the virulence and effect of H. perezi on C sapidus survival, as artificial infection 

can be achieved by injection of infected haemolymph (Shield and Squyars, 2000). 

Artificial infection of naYve Norway lobsters by ingestion of infected tissues, and 

by inoculation of infected haemolymph and culture stages have all been attempted 

without success. Therefore the natural mode of Hematodinium infection of 

Norway lobsters is unknown. The lobster may ingest spores while suspension 

feeding, or dinospores may gain access during the host moulting period. Resting 

cyst stages may also be present in the sediments, infecting lobsters during ecdysis. 

Other possible routes of Hematodinium transmission include cannibalism and 

lobsters feeding on a secondary host of the parasite. 
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Methods used to diagnose Hematodinium infection in N. norvegicus have 

previously included visually recognizing infected lobsters based on the dull 

orange colouration of the carapace and appendages (Fig. 1.1 and 1.2). However, 

this method lacks sensitivity and only the heaviest infections can be identified. A 

more reliable and quantitative technique is based on pleopod examination (Field 

and Appleton, 1995), in which the pleopod is assessed under low power 

microscopy for the aggregation of parasites. The severity of infection is assigned a 

stage on a scale from I through IV (Field and Appleton, 1995). This has been used 

to show that Hematodinium infection progresses from stage I with low 

haernolymph burdens to stage IV, in which large numbers of spores outnumber 

host haernocytes. Pleopod examination has proved to be reliable as a field method 

for identifying advanced infections, but it is unable to detect low-level tissue and 

haernolymph infections, and also requires a degree of training, careful 

interpretation and standardization. 

Because of these limitations of the inspection methods, an immunological 

approach to infection diagnosis was pursued (Field and Appleton, 1996). Such 

antibody-based diagnostic assays have been used in a wide range of applications 

to detect pathogens of marine inhabitants, including Taura syndrome in the 

penaeid shrimp (Poulos et al., 1999), Penaeus monodon-type baculovirus in 

Penaeus monodon (Hsu et al., 2000) and Cryptocaryon irtitans in barramundi, 

Lates calcarife (Bryant et al., 1999). 
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A polyclonal rabbit antibody was raised against a mixed in vitro culture of 

vegetative forms of the Hematodinium species infecting N. norvegicus (Field and 

Appleton, 1996). The antibody was first assessed to have good specificity for the 

parasite, and then employed as part of an indirect fluorescent antibody technique 

(IFAT). This demonstrated that apparently uninfected lobsters, as assessed by the 

pleopod method, harboured both low level haemolymph infection, and tissue-only 

infection, outside the main season (Field and Appleton, 1996). More recently, a 

Western immunoassay blotting technique was developed utilising the original 

polyclonal anti-Hematodinium antibody, and this has been used to detect low- 

level tissue-based infections in a given population (Stentiford et al., 2001c). This 

study failed to detect infected animals in the summer months, which may indicate 

that infection is not carried over to the next season. Alternatively, the sensitivity 

of the Western blot method may not be sufficient to detect small numbers of 

parasite cells, or it may be the case that the parasite shows a preference for certain 

tissues during early infection. However, previous studies using the IFAT 

procedure did demonstrate tissue-based Hematodinium infection in lobsters 

outside the peak season (Field and Appleton, 1996). Both the IFAT and Western 

blot procedures offer greater sensitivity than previous methods but are relatively 

long and complex to perform. Consequently, it would be beneficial to develop an 

antibody-based assay that has the potential for processing large numbers of 

samples in a short time, and for detecting both low level and advanced infections. 

This was therefore one of the major aims of this study. 
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The recent expansion of molecular diagnostic methods, such as the polymerase 

chain reaction (PCR), which display levels of sensitivity and specificity, 

irrespective of life cycle stage, far beyond any existing technique, has permitted 

the recent identification of several marine pathogens. These include Marteilia 

sydneyi in the Sydney rock oyster (Kleeman and Adlard, 2000), Perkinsus 

marinus in the Eastern oyster (Reece et al., 1997; Robledo et al., 1999) and 

Haplosporidium nelsoni in oysters (Stokes and Burreson, 1995). PCR also 

provides a method for detection of a parasite, despite the presence of host DNA. 

In addition, very small amounts of DNA can be detected by exponential 

amplification of a particular region of the genome. DNA techniques can also be 

used to eliminate misidentification of infective agents. Thus Bower et al. (1993) 

reported a disease of spot prawns Pandalus platyceros, caused by bacteria and a 

dinoflagellate-like parasite. However, the parasite was later identified as 

belonging to the Haplosporidia, based on antibody binding affinities and DNA 

sequence analysis (Reece el al., 2000). 

A PCR-based assay for the detection of Hematodinium infection in decapod 

crustaceans was developed by Hudson and Adlard (1994), although primers were 

designed in conserved ribosomal gene regions and as such were not specific to 

Hematodinium species. Sequencing of ribosomal gene internally transcribed 

spacer regions (ITS) from several presumptive species of Hematodinium 

originating from different geographical locations and hosts (N. norvegicus, 

Callinectes sapidus, Chionoecetes opilio and C. bairdi), demonstrated that 
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substantial sequence variation exists among the isolates, and that Hematodinium 

species remain genetically and geographically distinct from each other (Hudson 

and Adlard, 1996). This assumption, however, was based on single Hematodinium 

samples from each host crustacean. Moreover, strain differentiation within the 

same host species, or differentiation in different host species in the same 

geographical location, was not analysed. More recently, a second PCR-based 

assay has been developed for H. pered from blue crabs, again based on conserved 

ribosomal gene regions (Gruebl et aL, 2002). However, no DNA-based probes 

have yet been developed to identify and localise Hematodinium parasites within 

infected crustacean tissues. 

Thus a major aim of this study was to develop a suite of molecular diagnostic 

tools that will facilitate investigation of low-level Hematodinium infection, 

secondary host identification and transmission issues, all of which are currently 

unresolved. In conjunction with the development of molecular diagnostics, the 

sequencing of parasite rDNA gene regions has facilitated investigation of the level 

of genetic diversity of Hematodinium sp. infecting N. norvegicus and other 

crustaceans in UK waters, and this represents another aim of this project. 
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1.4 Aims of this project 

For the reasons identified in the sections above, the following specific aims of the 

project were formulated: 

To develop the Western blot method into a sensitive, multi-sample diagnostic 

ELISA for the detection of Hematodinium infection in N. norvegicus and other 

crustaceans (Chapter 2). 

* To develop a set of PCR primers and a DNA probe for the diagnosis of 

Hematodinium infection in N. norvegicus and other crustaceans (Chapter 3). 

* To investigate the level of genetic variation between isolates of Hematodinium 

from the UK (Chapter 4). 

To initiate in vitro cultures of Hematodinium perezi from the blue crab 

Callinectes sapidus, and to document the early culture life cycle stages 

(Chapter 5). 

0 To investigate possible virulence factors that Hematodinium parasites may 

possess (Chapter 6). 
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0 The discovery and identification of a ciliate parasite infecting N. norvegicus 

is reported (Chapter 7). 

* The successful in vitro culture of this parasitic ciliate has allowed the 

investigation of proteolytic enzymes produced by the ciliate (Chapter 8). 
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Figure 1.1 Photograph showing upper view of healthy (A) and He"tatodinium- 

infected (B) N. norvegicus. Infected lobsters are a bold orange colour and have a 

"cooked appearance". 

Figure 1.2 Photograph showing underside of healthy (A) and Hernalixiinium- 

infected (B) N. norvegicus. The body and appendages have a bleached appearance 

apart from a vivid red banding pattern on the claws (arrows). 
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Chapter 2 

Development and application of an Enzyme-Linked Immunosorbent Assay 

(ELISA) for the diagnosis of Hematodinium infection in N. norregicus and 

other crustaceans. 

2.1 Introduction 

The Norway lobster (Nephrops norvegicus) supports a major commercial fishery 

in the Northeast Atlantic and in the Mediterranean. In Scotland, lobster 

populations harbour an infection by a parasitic dinoflagellate of the genus 

Hematodinium (Field et al., 1992). Infection of N. norvegicus by Hematodinium 

species was initially diagnosed by the dull orange colouration of the carapace and 

appendages; such animals were also observed to be in a moribund state with 

milky white haemolymph (Field et al., 1992). However this diagnostic method 

lacks sensitivity and only the heaviest infections can be identified. A more 

sensitive method was later developed in which the pleopod is examined under low 

power light microscopy for the aggregation of parasites in the vasculature (Field 

and Appleton, 1995). The severity of infection is staged against a five-point scale, 

from apparently uninfected to a fully patent infection. The pleopod method has 

proved to be reliable as a field method for identifying advanced infections, but it 

is unable to detect low-level haemolymph infection, and also requires a degree of 

training and standardisation. 
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Immunodiagnostic techniques have been applied to detect several pathogens of 

marine organisms (Bryant et al., 1999; Poulos et al., 1999; Hsu et al., 2000). An 

indirect fluorescent antibody technique (IFAT), developed using a polyclonal 

rabbit antiserurn raised against a mixed in vitro culture of vegetative forms of 

Hematodinium found infecting N. norvegicus, has been used to show that some N. 

norvegicus harbour infections outside of the main infective season (Field and 

Appleton, 1996). More recently, a Western blot method has been developed using 

the polyclonal anti-Hematodinium antiserum and applied to study the occurrence 

and progression of infection (Stentiford et al., 2001c). Both immunoassays offer 

greater sensitivity and specificity than the previous diagnostic methods, but are 

time-consuming and complex procedures, requiring trained personnel to carry 

them out. Following a pilot study, an enzyme linked immunosorbent assay 

(ELISA) using the polyclonal anti-Hematodinium antiserum has been further 

developed and calibrated as part of the present study, and the results are reported 

in this chapter. It has the potential to screen large numbers of samples in a short 

time, and has a greater sensitivity than the Western blot procedure. The assay can 

also be used to screen other crustacean haemolymph samples for the presence of 

Hematodinium. 

29 



Chapter Two - ELISA Diagnosis 

2.2 Materials and Methods 

2.2.1 Collection and maintenance of experimental lobsters 

Norway lobsters (Nephrops norvegicus) were caught by otter bottom trawl (70- 

mm mesh size) at locations south of Uttle Cumbrae in the Clyde Sea Area (55.41* 

N, 4.56' W). The lobsters were transported in a cool, damp environment after 

capture, then maintained in a closed seawater system at 10 T and 33 ppt salinity 

prior to experimental study. 

2.2.2 Haemolymph preparation and development of assay 

Haemolymph samples were withdrawn from the base of the fifth pereiopod using 

aI ml disposable syringe and 25-gauge needle, allowed to clot, frozen at -20 'C 

and thawed once. All subsequent treatments were performed at 22 'C. The 

haemolymph samples were vortexed and a 15 gI aliquot of each haernolymph 

sample was then diluted in 285 pI of distilled water. From this, 100 gI was 

transferred into each of 2 wells of a 96-well microtiter plate (Immulon 4 HBX) so 

that for each haemolymph sample the ELISA was carried out in duplicate. After 

an initial incubation for 30 min, plates were washed 4 times with PBS (pH 7.2) 

with 0.05 % (v/v) Tween 20. Plates were then incubated for 30 min with 100 

gl/well rabbit anti-Hematodinium antiserum (1/2000 dilution) (see Field and 

Appleton, 1996 for antiserurn production). Plates were again washed 4 times, 
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followed by a third incubation for 30 min with 100 gl/well goat anti-rabbit 

horseradish peroxidase conjugated antibody (11500 dilution)(Diagnostics 

Scotland). Plates were washed 4 times and 100 gl TMB substrate (3,3', 5,5'- 

tetramethyl benzidine)(Dynex Technologies) applied for colour development by 

incubation for 20 min in darkness. The optical density (OD) of the wells in the 

microtiter plate was then measured at 690 nm with an ELISA reader (Titertec 

Multiscan). 

2.2.3 Sensitivity and comparison of assay with other methods 

For determining the sensitivity of the ELISA test, a haemolymph sample was 

taken from a lobster that gave a positive result in the routine ELISA assessment, 

but displayed no external signs of infection. An aliquot of this sample was diluted 

1: 1 in marine anticoagulant (450 mM sodium chloride, 100 mM glucose, 30 mM 

trisodiurn citrate, 26 mM citric acid and 10 mM EDTA pH 4.6,1020 mOsm kg-1) 

and transfer-red into an Improved Neubauer counting chamber. Parasite cell 

numbers were counted and the numbers per ml estimated using standard 

procedures. The sample was frozen to -20 "C, then thawed and six aliquots were 

serially 2-fold diluted and assayed by the ELISA procedure above. A sample of 

uninfected haemolymph was assayed by the same method and a comparison of the 

OD values from infected and uninfected haemolymph was performed by the 

Mann-Whitney U test. Significance was considered to be at p<0.05. 
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A routine assessment of infection was made on a sub-sample from 2 monthly 

trawls using both the pleopod staging method of Field and Appleton (1995) and 

Western blotting of haernolymph samples, as described by Stentiford et al. 

(2001c). These assessments were then compared with the results from the ELISA 

conducted on the same haernolymph samples. Haemolymph samples from lobsters 

testing positive for Hematodinium infection by the ELISA method alone were 

assayed by the IFAT technique of Field and Appleton (1996) to confirm infection 

status. In this instance, the bovine serum albumin (BSA) used during the washing 

steps was replaced by an equivalent amount of porcine gelatin, because the anti- 

Hematodinium antibody reacts with BSA on Western blots (Stentiford et al., 

2001c). 

2.2.4 Specificity of antiserum 

Cultures of the dinoflagellates Alexandrium tamarense (CCAP 1119/5) and 

Gymnodinium catenatum (CCAP 1117/5) were obtained from the UK Culture 

Collection of Algae and Protozoa (CCAP). Samples of cell suspensions (1 x 105 

cells) were centrifuged at 400 x g, the resultant cell pellet was resuspended in 100 

gI sample buffer (62.5 mM Tris-HCI pH 6.8,12.5 % glycerol, 1.25 % 6- 

mercaptoethanol). Haemolymph or hepatopancreas tissue samples were obtained 

from the following Hematodinium-infected and uninfected crustaceans: Norway 

lobster from the Clyde Sea Area, the North Minch (N. W. Scotland), the Fladen 

grounds (N. E. Scotland), the Skagerrak (W. Sweden); edible crab (Cancer 
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pagunts) from Guernsey; blue crab (Callinectes sapidus) from the East Coast of 

America; snow crab (Chionoecetes opilio) from Newfoundland. A 50 RI 

haemolymph sample or a 100 mg tissue sample were resuspended in 100 RI 

sample buffer. The dinoflagellate, haernolymph and tissue samples were then 

assayed by the Western blotting technique (Stentiford et al., 2001c) to assess 

reactivity of the polyclonal anti-Hematodinium antiserum against other 

dinoflagellates and other species of Hematodinium from different crustaceans. 

2.2.5 Application of assay 

The ELISA was used to estimate the prevalence of Hematodinium in Norway 

lobsters from the sample site within the Clyde Sea Area by obtaining bi-monthly 

haernolymph sub-samples from 50 animals from Sept 2002 to July 2003. Samples 

were obtained and assayed according to section 2.2.2. 

2.3 Results 

2.3.1 Evaluation, sensitivity and specificity of assay 

The ELISA was able to detect the presence of Hematodinium in haemolymph 

samples. There was a degree of antibody binding in uninfected samples but this 

was considerably lower than for both low-level and advanced infected samples 
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(Fig. 2.1). Importantly for routine use, the difference between positive (low-level 

infections and above) and negative samples was visible by eye. 

Serial dilutions of a haemolymph sample with a known number of parasites 

present were used to detennine the sensitivity of the assay (Fig. 2.2). The lowest 

density sample that was significantly different from the uninfected haemolymph 

sample was taken to represent the limit of detection of the assay (5 x 104 parasites 

(ml haemolymph) -1). 

The reactivity of the polyclonal anti-Hematodinium antiserum to free-living 

dinoflagellates and other species of Hematodinium infecting different crustaceans 

was investigated using the Western blot method (Fig. 2.3). The polyclonal 

antiserum gave positive multiband smears for all Hematodinium infected samples 

from the Norway lobster, edible crab, blue crab and snow crab. Uninfected 

Norway lobster and crab haemolymph samples as well as Alexandlium tamarense 

and Gymnodinium catenatum did not react with the antiserurn (Table 2.1). 

2.3.2 Comparison of diagnostic methods 

The diagnosis of Hematodinium species infection in 2 monthly sub-samples of 30 

lobsters taken at times before the seasonal peak of infection, assessed by the 

pleopod, Western blot and ELISA methods, is shown in Table 2.2. By the pleopod 

method, all lobsters were assessed to be uninfected but by the antibody-based 
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methods a number of animals were found to be infected. All haemolymph 

infections identified by Western blotting were also found to be positive by 

ELISA, but conversely not all infections identified by ELISA were detected by 

Western blotting. Comparison of the ELISA and MAT results on these samples 

however, gave the same positive infection diagnosis (data not shown). 

2.3.3 Seasonality of infection 

The prevalence of infected N. norvegicus assessed by ELISA in bi-monthly trawl 

catches from the study site in the Clyde during the period September 2002 to July 

2003 is shown in Figure 2.4. The results confirm previous prevalence estimates 

(Field et al., 1992; Stentiford et al., 2001b), with a seasonal pattern of infection 

that peaks between January and May. 

2.4 Discussion 

The results obtained show that the ELISA is a sensitive and specific diagnostic 

test for the presence of Hematodinium parasites in the haemolymph of the Norway 

lobster. In common with the Western blot method of Stentiford et al. (2001c), it 

can detect both low-level and advanced infections. Moreover, it offers significant 

advantages over the Western blot procedure in terms of its sensitivity, simplicity 

and the number of samples that can be assayed. Importantly for routine use, the 

difference between positive and negative samples was visible by eye. The 
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sensitivity of the ELISA has been determined to be 5x 104 parasites (ml 

haemolymph) -1, making it more sensitive than the Western blot procedure by a 

factor of four. This is consistent with the observation that several low-level 

infections identified by the ELISA were not detected by the Western blot. 

Similar ELISA tests have been developed for detection of crustacean biomarkers 

such as lectins (Agundis et al., 2000), agglutins (Jayasree et al., 2000), 

hyperglycaernic hormone (Chang et al., 1998), and the MrNV nodavirus, which 

causes white tail disease of commercially important prawns (Romestand and 

Bonami, 2003). However the method described in this chapter is the first ELISA 

for a dinoflagellate parasite of crustaceans. The ability of the ELISA to test 

multiple samples within a short period, without sophisticated analytical 

equipment, is a significant development. Previous immunological methods such 

as the MAT and Western blot are complex and time-consuming. The ELISA 

requires only a small volume of haemolymph to conduct the test; host lobsters 

need not be damaged, and if necessary the sampled animals can be kept alive for 

further observation under laboratory conditions. 

The ELISA will be particularly useful in the identification of Hematodinium 

species infection in previously unexamined N. norvegicus stocks as specificity 

experiments show that the polyclonal antiserum reacts to Hematodinium infection 

in N. norvegicus from four geographically separate fishing grounds; the Clyde Sea 

Area, North Minch, Fladden and the Irish Sea. In addition, the ELISA could also 
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be used to identify Hematodinium infections in other crustacean species as the 

primary anti-Hematodinium antibody is also reactive to Hematodinium species 

infecting edible crabs, blue crabs and snow crabs (Fable 2.2). 

The finding by Bushek et al. (2002) that the polyclonal. anti-Hematodinium 

antiserum used in this study is reactive against antigens of the oyster pathogen 

Perkinsus marinus raises interesting issues concerning the phylogenetic 

relatedness of Hematodinium and Perkinsus. However this does not affect the 

usefulness of the antiserum in detecting Henzatodinium in crustaceans as 

Perkinsus marinus is exclusively a mollusc pathogen. In addition, the antiserum 

has been tested against two free-living dinoflagellates (Alexandrium tamarense 

and Gymnodinium catenatum) with no positive cross-reaction being evident. 

37 



Chapter Two - ELISA Diagnosis 

Dinoflagellate/haemolymph/tissue 
samples 

Hematodinium infected N. norvegicus 
from the Clyde Sea area, North Minch, 
Fladen, Irish Sea and Sweden 

Hematodinium Infected C pagurus, C 
sapidus, C opilio 
Uninfected N. norvegicus, C pagurus, 
C sapidus, C opilio 
A. tamarense (CCAP 1119/5) G. 
catenatum (CCAP 1117/5) 

Reaction with polyclonal anti- 
Hematodinium antiserum 

+ 

+ 

Date Pleopod Western blot ELISA 

lobster (% prevalence) (% prevalence) (% prevalence) 

caught 
10/10/00 0 

06/11/00 0 

13.3 26.6 

16.6 20.0 
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Table 2.1 Specificity of polyclonal anti-Hematodinium antiserum against other 

Hematodinium and dinoflagellate species. 

Table 2.2 Comparison of Hematodinium infection diagnosis in a sub-sample of 

30 lobsters (each sample date) by pleopod assessment, haemolymph Western blot, 

and haemolymph ELISA. 



Figure 2.1 Section of ELISA plate showing advanced infection (A), low-level 

infection (B), uninfected (C), and negative control (D) ELISA reactions. 

Figure 2.2 Sensitivity of ELISA for Hematodinium. Infected haemolymph from 

an infected Norway lobster was serially 2-fold diluted and assayed by the ELISA. 

Uninfected haemolymph assayed by the ELISA had a mean OD value of 0.037 with a 

standard deviation (SD) of 0.008. Data points represent means ± SD (n=6). 

* Indicates P<0.05 between uninfected and infected haemolymph. 



Figure 2.3 Western blots of hepatopancreas samples from N. norvegicus from 

Sweden (A) and C. pagurus from the English Channel (B) using anti-Hematodinium 

antiserum. Lanes I and 6: molecular weight marker; lanes 2 and 9: positive control 

infected N. norvegicus hepatopancreas; lanes 3 and 8: uninfected N. norvegicus and 

C. pagurus samples, respectively; lanes 4 and 5: infected N. norvegicus samples; lane 

7; infected C pagurus sample. 

Figure 2.4 ELISA-derived infection prevalence for sample site in the Clyde Sea 

Area from bi-monthly haernolymph samples from 50 lobsters. 
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Chapter 3 

Development and application of a PCR-based assay and DNA probes for the 

diagnosis of Hematodinium infection in N. norvegicus and in other 

crustaceans. 

3.1 Introduction 

Infection of the Norway lobster (N. norvegicus) by a parasitic dinoflagellate of the 

genus Hematodinium has been described from a number of locations around the 

West Coast of Scotland and the Irish Sea (Field et al., 1992; Briggs and 

McAliskey, 1996; Appleton et al., 1997; Field et al., 1998). Recently, the edible 

crab Cancer pagurus in UK waters has also been found to harbour Hematodinium 

(Stentiford et al., 2002). Parasitic Hematodinium species have been reported 

infecting a number of decapod crustaceans including Callinectes sapidus 

(Newman and Johnson, 1975; Messick, 1994; Messick and Shields, 2000), 

Chionoecetes bairdi (Meyers et al., 1987; Love et al., 1993), Chionoecetes opilio 

(Taylor and Khan, 1995), Necora puber (Wilhelm and Mialhe, 1996), Ovalipes 

ocellatus (MacLean and Ruddell, 1978), and Portunus pelagicus (Hudson and 

Shields, 1994). In each of the above examples, infection by Hematodinium 

species has been shown to have serious consequences for the host decapod 

population. 
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Diagnosis of infection by Hematodinium in the Norway lobster has previously 

been made by the pleopod method of Field and Appleton (1995), and by a number 

of immunoassays (Field and Appleton 1996; Stentiford et al., 2001c; Small et al., 

2002; Chapter 2 of this thesis). All are useful techniques, but each has drawbacks 

in terms of ease of use, the low number of samples that can be assayed, or the 

sensitivity of the assay. In addition, the polyclonal antibody that is used in the 

immunoassays was raised against an in vitro culture of Hematodinium, 

introducing the possibility that the antibody may not recognise other life cycle 

stages of the parasite that may exist in a host animal. 

The expansion of molecular diagnostic methods, such as the polymerase chain 

reaction (PCR) and DNA probes, which display levels of sensitivity and 

specificity that are far greater than pre-existing techniques, and detect all the life 

cycle stages, has permitted the identification of several marine pathogens. These 

include Marteilia sydneyi in the Sydney rock oyster (Kleeman and Adlard, 2000), 

Perkinsus marinus in the Eastern oyster (Reece et al., 1997; Robledo et al., 1999), 

Haplosporidium nelsoni in oysters (Stokes and Burreson, 1995), and 

Hematodinium in decapod crustaceans (Hudson and Adlard, 1994). Hudson and 

Adlard (1996) found substantial sequence variation within the first internal 

transcribed spacer (ITS1) of ribosomal DNA (rDNA) among different species of 

Hematodinium infecting N. norvegicus, C bairdi, C sapidus, and also other 

dinoflagellates. This provides a sound basis for the development of specific PCR 

primers that can be used to identify Hematodinium infection in N. norvegicus as 
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the primers used in the Hudson and Adlard (1994) study were based on conserved 

rDNA sequences (SSU and 5.8S). This chapter describes the use of these in the 

development and application of a PCR-based assay and DNA probes for the 

diagnosis of Hematodinium infection in N. norvegicus and other crustaceans. 

3.2 Materials and Methods 

3.2.1 Specimen preparation 

Norway lobsters Nephrops norvegicus were caught as described in section 2.2.1. 

Haemolymph samples were assayed for the presence of Hematodinium by ELISA 

(Chapter 2). Haemolymph samples were taken from infected lobsters and frozen 

at -20 'C prior to DNA extraction. For lobsters having a low level infection as 

indicated by ELISA, a sub-sample of the same haemolymph was used to estimate 

parasite cell numbers per ml of haemolymph using an Improved Neubauer 

counting chamber. Tissue samples from infected and uninfected lobsters were 

retained for DNA extraction and also fixed in Davidson's seawater fixative (20 ml 

formalin (40 %), 10 ml glycerol, 10 ml glacial acetic acid, 30 ml 100% ethanol, 

30 ml seawater) for 24 hours, dehydrated in ethanol and embedded in paraffin 

wax. Several other samples of haemolymph and tissue from crustacean species 

common in the LJK were also retained for DNA extraction. Tissues from a shore 

crab Carcinus maenas potentially infected with Hematodinium from the English 

Channel were also fixed in Davidson's seawater fixative and embedded in 
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paraffin. To investigate possible secondary hosts of Hematodinium, amphipods 

(Orchomene nanus) were captured in baited traps from the Fairlie channel area of 

the Clyde Sea Area (55.45.9' N, 4.52.5" W) according to the method of Moore 

and Wong (1995). Individual 0. nanus were either frozen at -20 'C or preserved 

in 100 % ethanol prior to DNA extraction from whole animals. 

3.2.2 DNA extraction 

Genomic DNA was extracted from 100 gl haemolymph samples and 100 mg 

tissue samples taken from crustacean species used in this study, and from 

individual 0. nanus, according to standard procedures (Sambrook et al., 1989). 

Briefly, samples of haemolymph, tissue, or whole amphipod, were homogenised 

in 250 [d extraction buffer (50 mM Tris, 5 mM EDTA, 100 mM NaCl, pH 8), 100 

gI of 10 % SDS (w/v) and Proteinase-K (0.28 ng Al-) and incubated at 56 "C for 

18-24 h. DNA from an in-vitro culture of Hematodinium was also extracted. 5 ml 

of in vitro culture (approx 1x 106cells) was centrifuged at 1000 xg for 4 min at 4 

*C. The resulting cell pellet was resuspended in 250 gI extraction buffer, 100 gI of 

10 % SDS (w/v) and 10 gI Proteinase-K (10 gg ml-) and incubated at 56 T for 

18-24 h. DNA was purified by a single step standard phenol/chloroform (1: 1) 

extraction, precipitated in 550 Al 100% ethanol using 20 Al 5M NaCl, and 

resuspended in 50 Al sterile deionised water. DNA concentrations and purity were 

estimated by measuring the 260/280 optical density ratios using a 
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spectrophotometer (Gene Quant II, Pharmacia Biotech) and adjusted to be 

between 0.1 and 100 ng for experimental use. 

3.2.3 Primary amplification, cloning and sequencing 

The first internal transcribed spacer (ITS 1) and flanking 3' region of the 18S 

rDNA complex were amplified independently from two Hematodinium genomic 

DNA templates, using the forward primer 5' GIT CCC CTr GAA GGA GGA 

ATr C 3' and reverse primer 5' CGC ATT TCG CTG CGT TCT TC 3. Primer 

sequences and amplification conditions were as described by Hudson and Adlard 

(1994). 680 bp amplification products were run on 1.5 % (w/v) agarose gels, 

stained with ethidiurn bromide and viewed under UV illumination; images were 

obtained using a gel documentation system (Appligene). Each amplification 

product of approximately 680 bp was excised from the agarose gel and purified by 

the use of a QIA-quick gel extraction kit (Qiagen). Purified amplification products 

were ligated into the pGEMT-Easy plasmid vector (Promega) (7 Al amplification 

product, I jil vector, 10 jil ligation buffer, I jil DTr solution, 1 jil T4 DNA ligase, 

2 Hr at 16T), and used to transformed Eschetichia coli (strain JM 109) by heat 

shock (8 jil ligation reaction, 100 Al cell suspension, 42 T for 45 sec) according 

to the manufacturer's instructions. Transformed cells were plated onto LB agar 

(bacto-agar (1.5 % w/v, in LB medium (NaCl, 10 g 1-1; bacto-tryptone, 10 g 1-1; 

yeast extract, 5g 1-1, pH 7.5)), containing ampicillin (50 Rg ml-1), isopropyl-beta- 

D-thiogalactopyranoside (IPTG)(40 pg ml-) and 5-bromo-4-chloro-3-indolyl- 
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beta-D-galactopyranoside (X-gal)(100 gg ml-1) and grown overnight at 37 'C. 

Positive transformations were identified by blue/white selection and selected 

colonies were grown overnight in LB medium containing ampicillin (50 gg ml-1). 

Recombinant plasmids were purified using a miniprep kit (Qiagen) according to 

the manufacturer's instructions. Plasmid DNA concentrations and purity were 

estimated by measuring the 260/280 optical density ratios. Ligation of correct 

product was confirmed by restriction enzyme digestion (Eco RI) and analysis of 

products on agarose gels. Bi-directional sequencing of 2 clones from a single PCR 

reaction from each template was performed by MWG-AG Biotech (Germany). 

3.2.4 Primer and probe design 

The nucleotide sequences obtained were aligned using the software programmes 

ClustalX 1.81 (Thompson et al., 1994) and BoxShade 3.21 (http: //www. ch. embne 

t. org/software/BOX_form. html). Sequences were compared for similarity to those 

of other dinoflagellates by BLAST in Genbank. Suitable priming regions for PCR 

exhibiting specificity for the Hematodinium sp. from N. norvegicus were 

identified from the sequence alignments (Fig. 3.1), and by comparison with 

previously published Hematodinium sp. sequences (Hudson and Adlard, 1996). 

Four oligonucleotides, designated 18S FI, 18S F2,18S R1, and ITS RI (Table 

3.1) were chosen for PCR and construction of PCR-generated DNA probes. These 

were synthesised commercially (MWG-AG Biotech, Germany). 
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3.2.5 PCR sensitivity and specificity 

The sensitivity of the Hematodinium-specific primers 18S F2 and ITS RI for use 

in total genomic DNA sample screening by PCR was assessed by serial dilution of 

a genomic DNA sample from an infected lobster. The number of Hematodinium 

cells in the infected haemolymph sample was estimated using an improved 

Neubauer haemocytometer, and total DNA was extracted by previously described 

methods (section 3.2.2). The amplification reaction mixtures contained 0.1-100 ng 

genomic DNA, 10 mM Tris-HCI, pH 9.0,50 mM KCL, 0.1 % Triton X-100 (v/v), 

1.5 MM M902,100 gM of dNTPs, 10 pmol each primer, 1 unit of Taq 

polymerase (Promega), and sterile deionised water to a final volume of 20 R1. 

Reactions were overlaid with 10 gl of mineral oil. Thermal cycling conditions 

were as follows: denaturation at 94 'C for 30 sec; primer annealing at 57 *C for 1 

min; chain extension at 72 'C for 1 min; repeated for 35 cycles, with a final cycle 

incorporating a7 min extension. A 10 gl aliquot of each PCR reaction was 

checked for amplification products by 1.5 % (w/v) agarose gel electrophoresis and 

ethidium bromide staining. Images were captured by a UPV gel documentation 

system. 

PCR primers were tested for specificity against genomic DNA samples isolated 

from Hematodinium-infected and uninfected Nephrops norvegicus and Cancer 

pagunis, several other crustacean species common to the UK (detailed in Table 

3.2), a Mesanophrys-like ciliate found infecting N. norvegicus, the free-living 
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dinoflagellates Gymnodinium catenatum (CCAP 1117/6) and Alexandrium 

tamarense (CCAP 1119/5), and the protozoan parasites Leishmania major, 

Plasmodiumfalciparum and Trypanosoma brucei. 

3.2.6 Verify PCR assay and secondary host investigation 

Samples of haemolymph were obtained from N. norvegicus sampled from the 

Clyde Sea Area, the Fladen and North Minch fishing grounds in Scotland, the 

Irish Sea, and the Swedish Skagerrak fishing grounds. Total genomic DNA from 

100 gl haemolymph samples was extracted as described in section 3.2.2, and PCR 

reaction conditions were the same as described in section 3.2.5. Heart, 

hepatopancreas, gill and claw tissue samples were taken from low level-infected 

and advanced-Hematodinium-infected lobsters, genomic DNA was extracted from 

100 mg tissue samples and the PCR assay was performed under the conditions 

described above. Total genomic DNA was extracted from individual amphipods 

(Orchomene nanus) and the PCR assay was carried out as described in section 

3.2.5. 

3.2.7 Labelling of DNA probes 

The DNA probes were synthesized by incorporation of digoxygenin-11-dUTP 

(Roche) during PCR using primer sets 18S MATS R1 and 18S FI/18S RI, and 

100 ng of genomic DNA template (extracted from parasite cells from an in vitro 
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culture of Hematodinium). Locations and sequences of the primers used to 

synthesize the probes are given in Table 3.1 and Figure 3.2. Reaction conditions 

were followed as suggested by the manufacturer, with annealing temperatures of 

52 'C and 56 'C ( based on G+C content) being used with primers 18S F2/ITS 

R1 and 18S F1/18S Rl, respectively. Incorporation of digoxygenin (DIG) was 

indicated by an increase in molecular mass as analysed on ethidium bromide- 

stained agarose gels, and the labelled PCR product was gel-extracted and purified 

using a QlAquick gel extraction kit (Qiagen). Probe concentration was estimated 

by side-by-side comparison of a diluted series of the probes and a DIG-labelled 

control in a spot test on nylon membranes. 

3.2.8 DIG-labelled probe specificity 

The specificity of Probe I (constructed using primers 18S F2 and ITS RI located 

in the 18S and ITSI rDNA regions) was determined by dot-blot hybridisations. 

Samples of 100 ng (2 AI) of genomic DNA from Hematodinium-infected 

haemolymph from N. norvegicus, C sapidus and C opilio were heat-denatured 

(95 'c, 5 min), spotted onto nylon membranes and fixed by UV crosslinking 

(120,000 A joules/ cm2 for 30 sec). Genomic DNA extracted from N. norvegicus 

itself, and a Mesanophrys-like ciliate found infecting N. norvegicus were also 

heat-denatured and spotted onto nylon membranes and fixed by UV crosslinking. 

Membranes were prehybridised in 10 ml of 2x SSC (20 x SSC =3M NaCl, 0.3 

M Na-citrate, pH 7.0), 50 % (v/v) formamide, 5x Denhardt's solution and 100 gg 
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ml-1 herring sperm DNA at 42 "C for 2h in 35mm x 300mm glass bottles in a 

rotating hybridisation oven. The prehybridisation buffer was replaced with 10 ml 

hybridisation buffer (2 x SSC, 50 % (v/v) formamide, 5x Denhardt's solution, 

100 gg ml-1 herring sperm DNA and I% Dextran sulphate (v/v)) containing 50 ng 

ml-1 DIG-labelled DNA probe and was incubated with the membrane overnight at 

42 *C in 35mm x 300mm glass bottles in a rotating hybridisation oven. Removal 

of unhybridised probe was achieved by two 5 min washes in 2x SSC at room 

temperature and two 15 min washes at 42 T with 0.1 x SSC (all washing volumes 

were 20 ml). Following equilibration in 20ml maleic acid buffer (100 MM maleic 

acid, 150 mM NaCl, pH 7.5), membranes were blocked for 30 min at room 

temperature in 10 ml blocking buffer (maleic acid buffer plus I% (w/v) blocking 

reagent: Roche). Membranes were incubated at room temperature with anti-DIG- 

alkaline phosphatase antibody (Roche) diluted 1: 5000 in blocking buffer followed 

by removal of unbound antibody with two 15 min washes in washing buffer (20 

ml, maleic acid buffer plus 0.3 % (v/v) Tween 20). After equilibration in 10ml 

detection buffer (100 mM Tris-HCI, 100 mM NaCl, 50 MM MgC12, pH 9.5), the 

membrane was incubated at room temperature in the dark for 2-6 h in 5 ml 5- 

bromo4-chloro-3-indolyl phosphate/nitro blue tetrazolium (NBT/BCIP) diluted in 

5ml detection buffer (1150 dilution of stock solution). The reaction was stopped 

with a TE buffer (10 mM Tris-HCI, 1 mM EDTA, pH 8.0) wash. All washing, 

immunodetection and resolution steps were performed in plastic cassettes. 
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3.2.9 In situ hybridisation 

Paraffin-embedded tissue sections from Hematodinium-infected N. norvegicus 

and C. maenas were cut at 6 gm, placed on salinized slides and baked for 45 min 

at 60 *C. Sections were deparaffinized (xylene, 2 min), rehydrated in an ethanol 

series (I min each ethanol grade, 100,90 and 70%), washed in distilled water and 

permeabilized with 10-50 gg ml-1 Proteinase-K (0.5 ml) in TNE buffer (50 mM, 

Tris-HCI, 10 mM NaCl, 1 mM EDTA, pH 7.4) for 30 min at 37 T in a humid 

chamber. Proteolysis was inactivated by two I min washes in 20ml Ix PBS 

followed by equilibration in 20ml 2x SSC. Samples were prehybridised in 500 gl 

prehybridisation buffer (see section 3.2.8 for details of prehybridisation and 

hybridisation buffers) in a humid chamber for 60 min at 37 'C. The 

prehybridisation buffer was replaced with 50-100 gI hybridisation buffer 

containing 0.1 ng jX1 heat-denatured DIG-labelled probe. After applying glass 

coverslips, sections were placed on a heating block at 95 *C for 5 min to denature 

the target DNA, then immediately put on ice for 5 min and allowed to hybridise 

overnight in a humid chamber at 42 T. Post-hybridisation washes included 2x 

SSC at room temperature, twice for 5 min, and 0.1 x SSC at 42 T once for 10 

min, followed by equilibration in maleic acid buffer (all 20 ml, see section 3.2.8). 

Sections were blocked with 500 gl blocking buffer (see section 3.2.8) at 37 'C for 

15 min followed by incubation for Ih at 37 'C with 500 gl of dilute anti-DIG- 

alkaline phosphatase antibody (Roche) diluted 1: 1000 in blocking buffer. 
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Unbound antibody was removed by two 5 min washes in 20 ml washing buffer 

followed by one 5 min wash in 20ml detection buffer (see section 3.2.8). 

NBT/BCEP was diluted (1150 dilution of stock solution) in detection buffer and 

200 gl added to sections and incubated at room temperature in the dark for 2-6 h. 

The reaction was stopped with a 20 ml TE buffer wash. Slides were washed in 

double distilled H20 and counterstained with 1% (w/v) eosin for I min, followed 

by ethanol dehydration (I min each ethanol grade, 100,90 and 70%), and 

mounted in aqueous mounting medium (histomount). Hybridisation conditions 

were optimised by varying the concentration (10-50 gg ml-1) and length of 

incubation (15-60 min) of Proteinase-K, and the concentration of DIG-labelled 

DNA probes (0.1-1 ngul-1 heat-denatured DIG-labelled probe). Negative controls 

included samples without the addition of DIG-labelled probe and uninfected tissue 

sections. 

3.3 Results 

3.3.1 Hematodinium rDNA sequences 

Efficient amplification of Hematodinium ribosomal DNA was achieved using the 

nucleotide primers previously described by Hudson and Adlard (1994). The 680 

bp products from PCR amplifications (using template DNA samples from the 

Hematodinium in vitro culture and infected haemolymph) were successfully 

cloned into a plasmid vector, sequenced and aligned (Fig. 3.1). The 3' end of the 
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18S gene was almost conserved between both isolates, apart from one nucleotide 

variation at position 213 bp. The 5' region of ITS1 showed a number of 

nucleotide variations between the isolates, and this sequence variation is 

addressed in Chapter 4. 

3.3.2 PCR primer design, sensitivity and specificity 

A new forward primer was synthesised (18S F2) which was specific to an area 

within the V9 domain of the 3' end of the 18S gene (80-102 bp upstream of the 

18SATS I boundary) (Fig 3.1). The V9 domain had previously been shown to be 

highly conserved between Heniatodinium species when compared with other 

dinoflagellates (Hudson and Adlard, 1996). A new reverse primer was also 

synthesised (ITS RI), specific to an area within the ITSI sequence 256-277 bp 

downstream of the 18SATSI boundary. The positions and sequences of primer 

sets are shown in Figures 3.1,3.2 and Table 3.1. Amplification of DNA from 

Hematodinium-infected N. norvegicus haemolymph using the primer pair 18S F2 

and ITS RI led to the production of a diagnostic band of 380 bp from I ng or 

more DNA (Fig. 3.3). This band was not produced using a sample of 100 ng DNA 

from uninfected haemolymph. Based on initial cell counts of the parasite numbers 

in the haemolymph, I ng genomic DNA is equivalent to 6 parasite cells. The 

Hematodinium-specific PCR primer pair did not generate a PCR product of 

appropriate size when any of the genomic DNA preparations from two 

dinoflagellate species, a Mesanophrys-like ciliate found infecting N. norvegicus, 
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several protozoan parasites and a number of crustacean species were used in the 

PCR assay (Table 3.2). However the primer pair did generate an appropriate 

signal when PCR reactions were performed with genomic DNA templates 

prepared from Hematodinium-infected N. norvegicus haemolymph and 

Hematodinium-infected C. pagurus hepatopancreas tissue. 

3.3.3 Verify PCR assay for Hematodinium 

Hematodinium infection in N. norvegicus haemolymph samples from the Clyde 

Sea Area, N. Minch and Fladen were detectable by PCR (Fig. 3.4). Hematodinium 

infection was also detected in N. norvegicus haemolymph samples from the Irish 

Sea and the Swedish Skagerrak. Variation in PCR product intensity was observed 

between haemolymph samples from the different locations, probably reflecting 

differences in parasite loading of the samples (as rDNA sequences were identical 

over the oligonucleotide primer regions used, see Ch 4). To assess the ability of 

the PCR-based assay to detect Hematodinium in tissues of infected lobsters, 

genomic DNA preparations from heart, hepatopancreas, gill and claw tissue were 

evaluated by the PCR assay. Claw tissue consistently produced a very intense 

PCR product from both low-level and advanced infections (Fig. 3.5). 
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3.3.4 Hematodinium infection in Orchomene nanus 

Amphipods (0. nanus) were collected from the Hunterston channel in the Clyde 

Sea Area on August 2001, March 2003 and August 2003. Genomic DNA samples 

were prepared from each animal and assayed by PCR for the presence of 

Hematodinium. The PCR assay on the August 2000 samples indicated that 5/13 

amphipods were potentially infected with the Hematodinium parasite (Fig. 3.6), 

however, when this was repeated with a larger sample number obtained in March 

2003 and August 2003 no indication of infection was observed by PCR (Table 

3.3). 

3.3.5 DNA Probe I speciflcity 

Using dot-blot hybridisations, 50 ng ml-1 DIG-labelled DNA Probe 1 produced a 

strong signal for Hematodinium species from N. norvegicus. A very slight signal 

was produced for Hematodinium samples from C. sapidus and C opilio (Fig. 3.7). 

However, no signal was observed for DNA samples from N. norvegicus or from a 

Mesanophrys-like ciliate infecting lobsters. 

3.3.6 In situ hybridisation 

DNA Probes I and 2 hybridised to parasite cells present in paraffin-embedded 

myocardial heart tissue sections, prepared from Hematodinium-infected N. 

55 



Chapter Three - Molecular Diagnosis 

norvegicus (Fig. 3.8). There was negligible background hybridisation observed for 

both DNA Probes used. A marked increase in signal intensity was observed when 

using Probe 2 compared to Probe I against parasites in heart tissues (Fig. 3.8), and 

several other Hematodinium-infected N. norvegicus tissues. Alteration of DIG- 

labelled Probe 1 concentration and incubation time did not enhance hybridisation 

and, as a result, signal intensity. Because of this, only Probe 2 was used in further 

hybridisation studies. No signal was observed for negative control samples 

without DNA Probe 2 in the hybridisation buffer (Fig. 3.9). Probe 2 hybridised 

well with parasite cells in the haernal space of the hepatopancreas and gill 

filaments from infected N. norvegicus (Fig. 3.10). Probe 2 also hybridised well to 

presumptive Hematodinium cells present in haernal space of the hepatopancreas 

and gill filament tissue sections from C maenas (Fig. 3.11). 

3.4 Discussion 

Methods developed for the diagnosis of Hematodinium infection in the Norway 

lobster include the examination of lobsters for signs of gross infection by carapace 

discoloration, aggregation of parasite cells in the pleopods, and several 

immunoassays. In this study molecular probes were developed and applied for the 

diagnosis of Hematodinium infection in N. norvegicus and other crustaceans. The 

rDNA gene repeat was chosen as target region for the design of molecular probes 

based on Hudson and Adlard's (1996) finding that there was a significant degree 

of sequence variation between Hematodinium sp. However, the rDNA sequences 
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obtained were never deposited in GenBank or any other databases, hence 

amplification and sequencing of Hematodinium isolates from N. norvegicus was 

carried out as part of this study. Cloning of the 3' end of the 18S and 5' end of the 

ITSI rDNA genes from Hematodinium species infecting N. norvegicus revealed 

that the 3' end of the 18S gene was conserved (apart from one polymorphic 

nucleotide site) between the two isolates used in the study, but the ITS 1 sequences 

showed some nucleotide variation. This issue is addressed in Chapter 4. The 

primer set 18S F2 and ITS R1 efficiently amplified parasite DNA in the presence 

of host DNA, resulting in the production of a diagnostic band of 380 bp from 

genomic DNA samples of at least 1 ng, equivalent to 6 parasite cells. The PCR 

assay was further validated by amplification of parasite DNA from samples of 

Hematodinium-infected N. norvegicus haemolymph from geographically separate 

areas in UK waters, and from Sweden. The differences in PCR product intensity 

(Fig. 3.4) may represent different levels of infection, or a different seasonal 

pattern of infection from the Clyde Sea Area, as the host moult period has been 

implicated in Hematodinium infection seasonality (Field et al., 1992), and N. 

norvegicus moulting is thought to vary between geographical location in UK 

waters (J. Atkinson, personal communication). Sequence analysis in Chapter 4 

confirms that no substantial intraspecific variation of parasite rDNA occurs 

between the sample locations, which would affect oligonucleotide binding and 

PCR amplification success. The primers used did not produce any amplification 

signal when DNA templates prepared from several other crustacean species were 

used, indicating that these primers can be used to investigate whether the 
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Hematodinium species infecting N. norvegicus is found in other crustaceans. The 

finding that genomic DNA samples derived from claw tissue repeatedly gave a 

very strong PCR product from both low-level and advanced infections suggests 

that this should be the tissue of choice to use when conducting infection 

prevalence screening in N. norvegicus using the PCR assay. Furthermore, it also 

suggests that the parasite may reside in claw muscle tissues during early infection, 

before entering the haernolymph and infecting other tissues. 

The DIG-labelled DNA Probe I constructed using the same primers as used for 

the PCR assay spanning the 18S and ITS 1 rDNA regions is a sensitive probe that 

is able to selectively detect Hematodinium DNA from N. norvegicus, compared 

with that of Hematodinium sp. from C sapidus or C opilio. However, the level of 

Hematodinium infection in samples of C sapidus or C opilio was not quantified, 

and the apparent probe specificity may be due to parasite DNA template 

availability. During in situ hybridisation the probe was able to localise individual 

parasites in lobster tissues. However, the signal from the probe was weak and 

could not be improved by either incubating the section with a higher concentration 

of probe or by increasing the incubation time. In contrast to this, Probe 2 

constructed using primers 18S FI and 18S R1, which amplify conserved 18S 

rDNA only, gave a very intense signal when hybridising to parasite cells within 

paraffin-embedded sections suing the same reaction conditions at Probel. 

Kleeman et al. (2002) reported variations in sensitivity and signal intensity 

between different 18S/ITSI-based DIG-labelled probes for Martelia sydneyi and 
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M. refringens. This suggests that the observed difference in signal intensity 

between Hematodinium Probes 1 and 2, may reflect the availability of target 

sequence, since ITS regions are excised from the mRNA in the cell cytoplasm 

prior to ribosomal construction, and as such are not available for probe 

hybridisation. Alternatively, the shorter length of Probe 2 may assist in increased 

binding to target sequences and result in an increased signal. Probe 2, based on 

18S rDNA conserved between all species of Hematodinium, efficiently hybridised 

to parasites in the hepatopancreas and gill tissues of N. norvegicus and C maenas. 

Consequently, Probe 2 could be used to confirm and investigate Hematodinium 

infections in a wide range of crustaceans once possible cross reactivity with host 

tissues are eliminated. 

The PCR primers developed were used to investigate 0. nanus as a possible 

secondary host or transmission vector for Hematodinium. This amphipod species 

is known to be a generalist scavenger, with a preference for crustacean carrion 

(Moore and Wong, 1995), and as such will feed on deceased N. norvegicus with 

large numbers of parasite cells present. Furthermore, the lack of success in 

transmission experiments with cultured Hematodinium cells and infected 

haernolymph (Vickerman, 1994) indicates that an undiscovered intermediate host 

may be required for completion of the parasite life cycle and its ability to infect N. 

norvegicus (Appleton and Vickerman, 1998). Some amphipods are known to 

predate on crustaceans, alive or dead (Templeman, 1954; Scarratt, 1965), and 

have previously been reported to be infected by dinoflagellates (Johnson, 1986). 
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Messick and Shields (2000) also suggested that several amphipods collected 

during prevalence studies for Hematodinium in C sapidus were potentially 

infected with this parasite. Analysis of samples of 0. nanus collected from the 

Clyde Sea Area and assayed by PCR revealed that in August 2001,5/13 

amphipods were positive for the presence of Hematodinium. However, no 

individual amphipods were retained for in situ hybridisation to localise the 

parasite. The positive signal produced by PCR was most probably produced by 

infective Hematodinium cells in 0. nanus tissues as opposed to the gut contents, 

as amphipods were held alive for 72 h in order for the stomach contents to be 

purged. However the possibility of parasite cells adhering to the exterior surface 

of the amphipod cannot be ruled out. When amphipod sampling and the PCR 

assay were repeated in March 2003 and August 2003, no Hematodinium DNA 

could be detected. 

The combined use of the PCR primers and DNA Probe 2 will prove valuable in 

elucidating the life cycle of Hematodinium in N. norvegicus. Several life history 

stages of Hematodinium from N. norvegicus have been described from in vitro 

cultures (Appleton and Vickerman, 1998), but of these only a few forms have 

been observed during natural infection in the lobster. It has been suggested by 

Appleton and Vickerman (1998), that ingestion of Hematodinium dinospores 

takes place during suspension feeding by the lobster (Loo et al., 1993), and that 

initiation of infection takes place after penetration of the gut wall by the 

dinospores. Others have suggested that damaged cuticle tissues of crustaceans 

60 



Chapter Three - Molecular Diagnosis 

during moulting may be the site of parasite entry (Eaton et al., 1991). The portal 

of entry of PKX (Phylum Myxozoa) in salmonids, has recently been identified by 

in situ hybridisation (Morris et al., 2000), supporting the use of DNA probes 

developed for Hematodinium to address this question by looking at low-level 

naturally and experimentally infected lobsters, and also to identify life history 

stages previously unseen. 
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Table 3.1 Oligonucleotide primer sequences and annealing positions, designed to 

bind to Hematodinium 18S and ITS I regions of the rDNA gene complex for use in 

PCR and construction of DNA probes. 

Table 3.2 Use of Hematodinium-specific PCR primer set 18S F2 and ITSI RI 

against other dinoflagellate, ciliate, protozoa and decapod crustacean DNA samples. 

+= Single amplification product of 380 bp; no amplification product or 

amplification product of incorrect size. 

Table 3.3 Comparison of possible Hematodinium infection prevalence in 

secondary host 0. nanus assessed by the PCR assay. 
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Primer Sequence 5'-3' Position Purpose 
18S FI GTTCCCCTTGAAGGAGGAATTC 216-238 bp upstream Probe 2 

18SATS I boundary 
18S F2 CAGTTTCTGGAAGTGGCAGCTG 80-102 bp upstream PCR and 

18S/ITS I boundary probe I 
18S RI AGCTGCCACTTCCAGAAACT 81-101 bp upstream Probe 2 

18SATS1 boundary 
ITS RI GAAGGGAAGGGGAGAAGAAGC 256-277 bp downstream PCR and 

18S/ITS I boundary probe I 

Genomic DNA template PCR 
Dia nosis 

Alexandrium tamarense CCAP 1119/5 - 
Gymnodinium catenatum CCAP 1117/6 - 
Mesanophrys-like ciliate - 
Plasmodiumfalciparum 3137 - 
Trypanosoma equiperdium wt 
Leishmania major wt - 
Carcinus maenas - 
Necora puber - 
Cancerpagurus - 
Maja squinado - 
Liocarcinus depurator - 
PaRurus bemhardus - 
Hem, atodinium-infected N. norvegicus + 
Henwtodinium-infected C pagurus + 

Date 
(mo/yr) 

Infection prevalence in 
a nanus by PCR 

08/2001 5/13 
03/2003 0/40 
08/2003 0/40 
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Figure 3.1 Alignment of amplified Hematodinium nucleotide sequences 

consisting of (A) the 3' end of the 18S and (B) the 5' end of the first internal 

transcribed spacer (ITS1) region of the ribosomal DNA gene complex from 2 

isolates. Isolate NnHeml; Hematodinium from a continuous in-vitro culture first 

isolated in 1992, NnHem2; Hematodinium-infected N. norvegicus haernolymph 

sample from 2000. Nucleotide region underlined in 18S sequence indicates V9 

domain. Bold shading indicates PCR primers 18S F2 and ITS Rl. Dots represent 

conserved nucleotide, dashes represent missing nucleotide. 

Figure 3.2 Diagram showing position of oligonucleotide primers for use in PCR 

and construction of DNA probes. 
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NnHeml GTTCCCCTTGAAGGAGGAATTCCTAGTAAGCGCGAGTCATCAGCTCGTGCTGATTACGTC 
NnHem2 ............................................................ 

CCTGCCCTTTGTACACACCGCCCGTCGCTCCTACCGATTGAGTGATCCGGTGAATAATTC 

18SF2 
GGACGGCAGCCTTTTCCAGTTTCTGGAAGTGGCAGCTGGAAGTTTAGTGAACCTTATCAC 

TTAGAGGAAGGAGAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATT 

................................ A ......................... 

NnHeml CGCACGAATAATCAATAAAAAACACCGTGAACCTTGGCCATTAGCACGAGCAAAAAAGCG 
NnHem2 ............................................................ 

B 
CATGCGCATGCTGCATGCCCCCGCCGCCGCCGCCGCCTCCGCTGTGTGTGTGTGTGTGTG 

--GGGGTGTTTGTGTGTGCGCGTTCGTGCTACTAAGGGCTGTGAGAGATGGGGAACCACC 
TG ........................................... T .............. 

TCTCCAAATATTTCTCCAGGCCCACGTTTGTTTTCCTTATAATAACTCTCTAATTTCACT 

................... ........................................ 
ITS Ill 

TATTCAATTATAACTAAGCTTCTTCTCCCCTTCCCTTCTTCGTCCAGAAGAAGAAGAAGG 

AGGAGGAGGAGGAGGAGGGAGGCTATATATATAATTTTCAATTTAGAAA 
G ................... A. T .......................... 

18S FI ISS F2 
0--* 0-> 

18S 

4 
18S RI 

ITS1 

. 4--* 
US RI 
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Figure 3.3 Sensitivity of PCR assay for detection of Hematodinium infecting N. 

norvegicus. Lane 2: 100 ng ýtl-' N. norvegicus host DNA control; Lanes 3-7: Infected 

haemolymph DNA template concentrations, 100,50,10,1,0.1 ng gl"; Lanes I and 8: 

100 bp molecular weight marker. 

Figure 3.4 Verification of PCR assay on Hematodinium-infected N. norvegicus 

haemolymph samples from different geographical locations. Lane 1,100 bp 

molecular weight marker; lanes 2-4,100 ng ýtl" total genomic DNA from the Clyde 

Sea, Haden and North Minch, respectively. Lane 5, N. norvegicus host DNA control 

(100 ng RI*I); lanc 6, Ilematodinium DNA control from in vitro culture (50 ng gl-'). 
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Figure 3.8 Hybridisation of Probe I (A) and Probe 2 (B) to Hernatodinium 

parasites (arrows) in myocardial heart tissue sections of N. norvegicus. M 

myocardium; E= epicardium. Scale bar 100 ýLrn. 
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Figure 3.9 In situ hybridisation control reactions on Hematodiniurn-infected N. 

non, egicus heart tissue sections when Probe 2 is present (A) and absent (B) from 

hybridisation buffer. M= myocardium; E= epicardium. Scale bar 100 ýim. 
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Figure 3.10 Hybridisation of Probe 2 to Hematodinium cells in the haernal space of 

hepatopancreas (A) and in the gills (B) of N. norvegicus tissue sections. Ht 

hepatopancreatic tubule; arrows = parasite cells. Scale bar 100 lm. 
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Figure 3.11 Hybridisation of Probe 2 to Hernatodinium cells in the haernal space of 

hepatopancreas (A) and in the gill tips (B) of Carcinus maerias tissue sections. 

Material supplied by Dr. G. Stentiford. CEFAS Weymouth Laboratory. Ht 

hepatopancreatic tubule; arrows = parasite cells. Scale bar 10 ýLrn. 
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Chapter Four - Genetic Variation 

Chapter 4 

Genetic variation of Hematodinium species infecting crustaceans in the UK. 

4.1 Introduction 

Several marine crustaceans are parasitized by a dinoflagellate of the genus 

Hemato&nium. The type species, Hematodinium perezi, was first described by 

Chatton and Poisson (1931) infecting Carcinus maenas and Portunus depurator. 

H. pered has since been recorded from Callinectes sapidus (Newman and 

Johnson, 1975). A second species, H. australis has been described infecting 

Portunus pelagicus (Hudson and Shields, 1994). Hematodinium-like 

dinoflagellates have also been reported infecting a number of crustacean species 

(Meyers et al, 1987; Latrouite et al., 1988; Field et al, 1992; Taylor and Khan, 

1995; Wilhelm and Mialhe, 1996; Stentiford et al., 2002), but little work has been 

done to ascertain how similar these dinoflagellates from different crustacean host 

species are to each other, and to the type species. 

Molecular sequence information has been used on many occasions to supplement 

marine morphological taxonomy. Examples include the phylogenetic position of 

Perkinsus (Goggin and Barker, 1993), Marteilia refringens (Berthe et al., 2000) 

and several dinoflagellates (Fensome et al., 1999). The non-coding internally 

transcribed spacer (ITS) regions of the ribosomal DNA (rDNA) complex are 
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generally assumed to evolve faster than the transcribed small subunit (SSU) 

rDNA gene (11illis and Dixon, 1991; U and Graur, 1991). Sequence variation in 

the ITS region has been reported between species of trematodes (Anderson and 

Barker, 1993), fungi (Lee and Taylor, 1992) and Apicomplexa (Goggin, 1994). 

Ribosomal DNA sequence variation has also been successfully used to 

discriminate between toxic and non-toxic Alexandrium tamarense and 

Pseudonitzschia species (Scholin et al., 1994; Higman et al., 2001), the 

geographical location and virulence of Perkinsus marinus strains (Robledo et al., 

1999; Reece et al., 2001), and for the identification of cold and warm water 

strains of Cryptocaryon irritans (Diggles and Adlard, 1997). 

Hudson and Adlard (1996) analysed partial SSU and USI rDNA sequences of 

Hematodinium species from Nephrops norvegicus, Callinectes sapidus, 

Chionoecetes bairdi and C opilio. They reported substantial sequence variation 

within the ITSI region between samples from different hosts, and suggested that 

the Hematodinium sp. infecting Nephrops norvegicus was distinct from the others. 

However, sequence variation between different samples from the same species 

host, or sequence variation in and between similar geographical locations was 

never addressed. 

In this study the SSU and ITS I rDNA sequences from isolates of Hematodinium 

infecting N. norvegicus and a number of other crustacean species in UK waters 
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are compared to assess the level of nucleotide sequence variability in relation to 

geographic location, host species and sample history. 

4.2 Materials and Methods 

4.2.1 Isolates 

Ten isolates of Hematodinium sp. were obtained: five infected haemolymph 

samples from the Norway lobster, Nephrops norvegicus; one infected tissue 

sample from the edible crab Cancer pagurus; two in vitro culture samples of 

Hematodinium sp. from N. norvegicus and the hermit crab, P. bernhardus, 

respectively; a potentially infected amphipod, Orchomene nanus; and a sample of 

H. perezi-infected haemolymph from a blue crab. All isolates originated from 

crustaceans in UK waters apart from the blue crab sample from Virginia on the 

East coast of the USA (Fig. 4.1 and Table 4.1). Infected haemolymph, 

hepatopancreas tissue and cell culture samples were collected and stored as 

described in Chapters 2 and 3. 

4.2.2 DNA extraction, and amplification 

DNA was extracted from the samples (Table 4.1) according to the methods 

described in section 3.2.2. Amplification of the 3' end of the SSU, the complete 

]TSI and the Yend of the 5.8S gene was achieved using the forward primer (5' 
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GTT CCC CTT GAA GGA GGA ATT C Y) and reverse primer (5' CGC ATF 

TCG CTG CGT TCT TC Y) previously described by Hudson and Adlard (1994). 

The amplification reaction mixtures contained 100 ng genomic DNA, 10 mM 

Tris-HCI, pH 9.0,50 mM KCL, 0.1 % Triton X-100 (v/v), 1.5 MM M902,100 

gM of dNTPs, 10 pmol each primer, 1 unit of Taq polymerase (Promega), and 

sterile deionised water to a final volume of 20 gl. Reactions were overlaid with 10 

gl of mineral oil. Thermal cycling conditions were as follows: denaturation at 94 

'C for I min; primer annealing at 52 'C for 1 min; chain extension at 72 T for 3 

min; repeated for 35 cycles, with a final cycle incorporating a7 min extension. 

Amplification products were run on a 1.5 % (w/v) agarose gel, stained with 

ethidium bron-dde and viewed under a UV light source. 

4.2.3 Cloning and sequencing 

Cloning and sequencing of PCR amplification products was as described in 

section 3.2.3. Two PCR clones of each isolate were generated and sequenced 

independently. Multiple sequence alignments were constructed using the software 

programmes ClustalX 1.81 (Thompson et al., 1994) and BoxShade 3.21 

(http: //www. ch. embnet. org/software/BOX_fonn. html). 

73 



Chapter Four- Genetic Variation 

43 Results 

4.3.1 Sequence alignment 

The ten Hematodinium isolates were subjected to sequence analysis of the 3' end 

of the SSU and the ITSI. of the ribosomal DNA complex. A single fragment of 

approximately 680 bp was amplified from all ten parasite isolates, independent of 

host origin. The nucleotide sequence of the 3' end of the SSU and ITSI were 

aligned (Fig. 4.2). The position of the 3' end of the SSU was determined by 

comparison with Hematodinium isolates previously sequenced (Hudson and 

Adlard, 1996). The end of the ITS I region was determined by comparison with an 

alignment of H. perezi and several Perkinsus and Prorocentrum species (K. 

Hudson and K. Reece, VIMS, personal communication). This facilitated the 

alignment of rDNA ITS I sequences from UK isolates of Hematodinium (Fig. 4.3). 

The lengths of the ribosomal DNA regions are therefore approximations. 

4.3.2 Analysis of the ribosomal SSU region 

All sequences were similar, having at least 98.62 % homology. The 3' end of the 

SSU sequences of Hematodinium isolates were 216 bp in length, except for the 

hermit crab (Pagurus bernhardus) in vitro culture isolate (PbHeml), which was 

215 bp due to a deletion at nucleotide position 7 (Fig 4.2). The sequence from 

PbHeml also showed a transversion (A>T) at nucleotide position 13 compared to 
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the other isolate sequences. The isolates NnHem2, NnHemNM1 and OnHeml 

showed transitions at nucleotide positions 92 and 167 (A>G, G>A) over the SSU 

3' sequence, whereas the isolates NnHeml, PbHeml, NnHem2 and CsHeml had 

a transversion at nucleotide position 204 (A>C) when compared to the other 

isolate sequences. The 3' SSU sequence from Callinectes sapidus showed a 

transition (T>C) at nucleotide position 129. The G+C (guanine + cytosine) 

content of the SSU sequences varied between 50.5 % and 51.4 %, although in the 

majority of isolates it was 50.5 % or 50.9 % (Table 4.2). 

4.3.3 Analysis of the ribosomal ITSI region 

The ITS I region of different Hematodinium isolates varied in length between 330 

and 352 bp (Table 4.2). The G+C content also varied between 46.0 % and 47.8 

%. The aligned ITS I sequences of Hematodinium isolates from the UK showed 

several nucleotide insertions, transitions and transversions, with nucleotide 

deletions and insertions being the most common source of sequence dissimilarity 

(Fig. 4.3). The similarity matrix revealed that the overall sequence similarity was 

high, with isolates CpHeml and NnHemFI being 100 % identical, as were the 

isolates NnHemF2 and OnHeml (Table 4.3). The isolates NnHemFI and 

NnHemF2 exhibited 99.72 % homology, differing only by I transversion, as did 

NnHemF2 and CpHem 1. The ITS 1 sequence of H. perezi was very different from 

all UK-originating Hematodinium isolates and differed by 60.2 % over its length. 
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4.4 Discussion 

This study represents the first analysis of SSU and ITS1 rDNA sequences from 

Henzatodinium sp. parasites infecting several crustacean species common in UK 

waters. It has previously been documented that the 3' end of the SSU rDNA gene 

was completely conserved between several Hematodinium species from different 

crustacean hosts and geographic origins (Hudson and Adlard, 1996). However, 

rDNA sequence examination has revealed several differences in nucleotide 

sequences at the 3' end of the SSU between groups of Hematodinium isolates 

used in this study (Fig. 4.2). It is unlikely that these are sequencing errors as 

duplicated PCR and sequencing reactions for each isolate gave identical results. In 

addition, the nucleotide differences observed are common to several isolates that 

were amplified, cloned and sequenced at different times during this study. 

In contrast to the relatively high homology within the SSU rDNA, the non- 

transcribed spaces (ITS) of rDNA genes can show great variation. ITS regions 

have been observed to vary among species within a genus or among populations 

(Lee and Taylor, 1992). Hudson and Adlard (1996) previously reported that the 

ITS I sequence of the Hematodinium sp. from N. norvegicus was only 22.7 % 

similar to ITS I sequences from. H. perezi from C sapidus. This large variation is 

consistent with the many different morphological features observed between both 

species of Hematodinium. The ITS I sequence of H. perezi used in this study was 

only 39.8 % similar to the other Hematodinium spp. sequenced, supporting the 
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finding of Hudson and Adlard (1996) that it is distinct from other Hematodinium 

species. 

Hematodinium infection of N. norvegicus has been reported from several 

locations on the West Coast of Scotland (Field et al., 1992). Analysis of rDNA 

ITS1 sequences from Norway lobsters from different locations (Fig. 4.1) has 

established no significant pattern in the geographical distribution of genetic strains 

of the parasite from geographically separate sites of the Clyde, North Minch and 

Haden. None of the lobster-derived isolates were 100 % identical to each other 

and they had varying homologies between 92.94 % and 99.72 %. However, the 

two isolates from the Haden were 99.72 % similar to each other, having only 1 

nucleotide difference. 

Hematodinium infection has also been reported from the edible crab Cancer 

pagurus from the English Channel (Stentiford et al., 2002). Morphologically, the 

parasite cells from N. norvegicus and Cancer pagurus are very similar, and are 

present in host crustaceans as uni-, bi and multinucleate forms of comparable size. 

Parasite cells have comparable condensed chromatin profiles, lipid droplets, 

trichocysts, mitochondria and speckled matrix organelles. The pathology of 

infection is similar in both crustacean hosts, with several tissues infiltrated by 

large numbers of parasite cells. The claw muscle of N. norvegicus shows a large 

parasite infiltration, although Z-lines of the sarcomeres remain intact (Stentiford 

et al., 2000b). In contrast, the sarcomeres from claw muscle fibres of C. pagurus 
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showed severe disorganisation of filaments in the region of the Z-line, indicating 

differences in parasite virulence or host susceptibility. This study indicates that 

the species of Henzatodinium infecting C pagurus from the English Channel is 

the same as Hematodinium species infecting N. norvegicus from locations on the 

West Coast of Scotland. Consequently, the differences seen in pathology between 

the crab and lobster may be due to factors of host susceptibility rather than 

parasite strain difference. 

The discovery of a number of Hematodinium-infected amphipods of the species 

Orchomene nanus, detailed in Chapter 3, section 3.2.6, and the confirmation of 

infection via sequence analysis in this chapter may, be highly significant with 

regard to the life cycle of the parasite. Scavenging amphipods have previously 

been reported to harbour dinoflagellate parasites (Johnson, 1986; Messick and 

Shields, 2000), and may act as a reservoir or intermediate host. The 

Hematodinium isolate from 0. nanus from the Clyde was 100 % identical to an N. 

norvegicus isolate from the Fladen, and very similar to other N. norvegicus 

isolates. The fact that 0. nanus and N. norvegicus inhabit the same environment 

supports this conclusion. Further studies are warranted to investigate prevalence 

of Hematodinium infection in 0. nanus and its possible involvement in disease 

transmission. 

Prolonged culture of Hematodinium may result in genetic divergence similar to 

the natural variation observed in isolates obtained from field samples of infected 
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animals. The in vitro culture samples of Hematodinium from the Norway lobster 

(NnHeml), and the hermit crab (PbHeml), serially cultured for 9 and 5 years, 

respectively, showed diverse ITSI genetic variation when compared to recent 

isolates from N. norvegicus (Table 4.3). The Hematodinium trophonts found 

infecting P. bernhardus had a nucleus, caseiform organelles and speckled matrix 

organelles similar in structure to those in the Hematodinium species from N. 

norvegicus (Appleton et al., 1997). During culture however, life cycle stages of 

the parasite were noticeably different to the Hematodinium species from the N. 

norvegicus (K. Vickerman, Glasgow University, personal communication), 

consistent with the sample having the highest ITSI sequence divergence in this 

study. Consequently, genetic differences of the parasite may be reflected in 

variations in virulence or morphology. On the other hand, repeated passage in the 

laboratory may select for a certain genetic variant that can adapt well to culture 

conditions. Sequencing of several field isolates prior to and after prolonged 

culture is necessary to elucidate whether strain selection takes place. 

In order to investigate fully the extent of Hematodinium species diversity, many 

isolate sequences from each sample locality are needed to examine variation 

within the population, and then between populations. This study was limited in 

sample size, but ITS1 rDNA sequences obtained indicate that there is no 

systematic geographical distribution of genetic strains of the parasite in 

crustaceans dwelling in UK waters. Furthermore, it appears that the same 

Hematodinium species can infect different crustaceans in different localities. As 
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this study has shown a high ITS sequence similarity between all UK 

Hematodinium isolates, targeting other gene sequences and the utilisation of 

techniques such as restriction fragment length polymorphism (RFLP) and 

amplified fragment length polymorphism (AFLP) may be useful in future studies 

to facilitate genetic characterization of samples and interpret the apparent limited 

genetic variation of Hematodinium sp. in UK waters. 
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Table 4.1 Origin and details of Hematodinium isolates used in this study. 

Table 4.2 Sequence length and G+C content (%) variation of the 3' end of 

the SSU and ITS I regions of ribosomal DNA sequences from Hematodinium 

isolates. 
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Abbreviation Crustacean Sample Date Infection Parasite sample 
host location obtained diagnosis method source 

NnHeml N. norvegicus Clyde Spring Pleopod In vitro culture 
1992 

NnHem2 N. norvegicus Clyde May 2001 ELISA Haemolymph 

NnHem3 N. norvegicus Clyde June 2001 ELISA Haernolymph 

NnHemFI N. norvegicus Fladen June 2001 ELISA Haernolymph 

NnHemF2 N. norvegicus Haden June 2001 ELISA Haernolymph 

NnHemNMI N. norvegicus N. Minch June 2001 ELISA Haernolymph 

CpHeml. C pagurus Guernsey Winter ffistology/Western Hepatopancreas 
2001 blot tissue 

PbHemI P. bernhardus Clyde July 1996 EFAT In vitro culture 

OnHeml a nanus Clyde August PCR Whole 
2001 amphipod 

CsHeml C. sapidus USA November Haemolymph Haemolymph 
2001 smear 

Sample YSSU ITSI 
Length G+C Length G+C 

NnHeml 216 50.9 347 47.8 
NnHem2 216 50.9 330 46.1 
NnHem3 216 50.5 348 47.7 
NnHemFI 216 50.5 350 47.4 
NnHemF2 216 50.5 350 47.4 
NnHemNMI 216 50.5 344 47.7 
CpHeml 216 50.5 350 47.4 
PbHeml 215 51.2 331 46.2 
OnHeml 216 50.5 350 47.4 
CsHeml 216 51.4 352 46.0 
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Table 4.3 Similarity matrix (% homology) for aligned ITSI DNA sequences 

shown in Fig. 4.3. 
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NnHem NnHe NnHem NnHem NnHem NnHem CpHem Pbliem OnHem 
I m2 3 FI F2 NMI III 

NnHeml 100-00 93.50 98.59 98.02 97.74 98.02 98-02 93.22 98.59 

NnHem2 100.0 93.50 93.22 92.94 94.35 93.22 99.44 92.94 0 

NnHem3 100.00 98.87 98.59 97.74 99.15 92.94 98.59 

NnHemF I Mon 9971) oRn, ). innnn 99-72 

NnHemF 100.00 98.02 99.72 92.37 100.00 
2 
NnHem 100.00 97.74 93.79 98.31 
NMI 

CpHeml 100.00 94.35 99.72 

PbHeml 100.00 92.37 

OnHeml 100.00 
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Figure 4.1 Geographical location of sample collection sites in the UK waters. 
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Figure 4.2 Alignment of consensus nucleotide sequences of amplified SSU 

and ITSI ribosomal DNA from all Henzatodinium isolates. Dots represent 

conserved nucleotides. Gaps generated by alignment are shown by dashes. The 

single line indicates the SSU region and the double line represents the 5.8S 

region. 
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NnHem3 1 CTAGTAAGCGCGAGTCATCAGCTCGTGCTGATTACGTCCCTGCCCTTTGTACACACCGCC 
CpHeml 1 ............................................................ 
NnHemFl 1 ............................................................ 
NnHemF2 1 ............................................................ 
OnHeml 1 ............................................................ 
NnHeniNMI 1 ............................................................ 
NnHeml I ............................................................ 
PbHeml 1 ............ T ............................................... 
NnHem2 1 ............................................................ 
CsHeml 1 ............................................................ 

NnHem3 61 CGTCGCTCCTACCGATTGAGTGATCCGGTGAATAATTCGGACGGCAGCCTTTTCCAOTTT 
CpHeml 61 ............................................................ 
NnHemFl 61 ............................................................ 
NnHemF2 61 ............................... C ............................ 
OnHeml 61 ............................... G ............................ 
NnHemNM1 61 ............................... G ............................ 
NnHeml 61 ............................................................ 
PbHeml 60 ............................................................ 
NnHeM2 61 ............................................................ 
CsHeml 61 ............................................................ 

NnHem3 121 CTGGAAGTGGCAGCTGGAAGTTTAGTGAACCTTATCACTTAGAGGAAGGAGAAGTCGTAA 
CpHeml 121 ............................................................ 
NnHemFl 121 ............................................................ 
NnHemF2 121 ................................................ A ........... 
OnHeml 121 ................................................ A ........... 
NaHerrNM1 121 ................................................ A ........... 
NnHeml 121 ............................................................ 
PbHeml 120 ............................................................ 
NnHem2 121 ............................................................ 
CsHeml 121 ....... c .................................................... 

NnHem3 181 CAAGGTTTCCGTAGGTGAACCTGAGGAAGGATCATTCGCACGAATAATCAATAAAAAA-C 
CpHeml 181 ............................................................ 
NnHemFl 181 ............................................................ 
NnHemF2 181 ............................................................ 
OnHeml 181 ............................................................ 
NnHemNM1 181 ............................................................ 
NnHeml 181 ....................... c .................................... 
PbHeml 180 ....................... C .................................. A. 
NnHem2 181 ....................... C .................................... 
CsHeml 181 ....................... C .................... G.. A ...... T. T. -T 

NnHem3 240 ACCGTGAACCTTGGCCATTAGCACGAGCAAAAAAGCGCATGCGCATGCTGC-ATGCCCCC 
CpHeml 240 ............................................................ 
NnHemFl 240 ............................................................ 
NnHemF2 240 ............................................................ 
OnHeml 240 ............................................................ NnHernNM1 240 ............................................................ 
NnHeml 240 ............................................................ 
PbHeml 240 ............................................................ 
NnHem2 240 ............................................................ 
CsHeml 239 TTTA. T. TTT. C. CA.. CA. A.. TTCA. CGTG. -C. TT. GC. ATTA ... A. G. C. A. TA. 

NnHem3 299 GCCGCCGCCGCCGCCTCCGCTGTGTGTGTGTGTGTGTGTG--GGGG ----- TGTTTGTGT 
CpHeml 299 ........................................ TG .................. 
NnHemFl 299 ........................................ TG .................. NnHemF2 299 ........................................ TG .................. OnHeml 299 ........................................ TG .................. NnHemNM1 299 ........................................ TG .................. NnHeml 299 ........................................ TG .................. PbHeml 299 ............................................................ NnHem2 299 ............................................................ CsHeml 299 TAGCTA.. TA. T. AG. GG. GC. GTG ...... TG.. TAC. ACT. CTACTTCT. AC. C.. AG 
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Figure 4.2 Continuation. 



Chapter Four - Genetic Variation 

NnHem3 352 GTG --- CGCGTTCGTGCTACTAAGGG-CTGTGAGTGATGGGGAACCACCTCTCCAAATAT 
CpHeml 354 ............................................................ 
NnHeInFl 354 ............................................................ 
NnHemF2 354 ............................................................ 
OnHeml 354 ............................................................ 
NnHerrNml 348 ............................................................ 
NnHeml 350 .................................. A ......................... 
PbHeml 338 ............................................................ 
NnHem2 338 ............................................................ 
CsHeml 359 C.. AACT.. ACA. ACA ... G.. CCCCT.. C. TGC.. G. A.. AG. AGTAGCT.. T. CGGGG 

NnHem3 408 TTCTCCAG-CCCACGTTTGTTTTC-CTTATAAT--AACTCTCTAATTTCACTTATTCAAT 
CpHeml 410 ............................................................ 
NnHeMFI 410 ............................................................ 
NnHemF2 410 ............................................................ 
OnHeml 410 ............................................................ 
NnHeinNM1 404 ............................................................ 
NnHeml 406 ........ G ................................................... 
PbHeml 394 ............................................. C .............. 
NnHem2 394 ............................................................ 
CsHeml 419 GTGAGG. TA. GGT. G. A.. ACA. G. C.. CC. CTG ..... CTCC.. CC ... G. T. G. TT. 

NnHem3 464 TATA--ACTAAGCTTCTTCTCCCCTTCCCTTCTTCGTCCAGAAGAAGAAGAAGGGGGAGG 
CpHeml 466 ...................................................... A ..... 
NnHemFl 466 ...................................................... A ..... 
NnHemF2 466 ....................................... T .............. A ..... OnHeml 466 ....................................... T .............. A ..... 
NnHemNM1 460 ....................................... T .............. A ..... 
NnHeml 463 ...................................................... A ..... 
PbHeml 450 .... TA ...................................................... 
NnHem2 450 .... TA ...................................................... 
CsHeml 479 CCATAA.. AC. A. A ... CTAAT--... AGC. A ... A.. TT. CTCTGCTCC ---------- 

NnHem3 522 AGGAGGAGGAGGGAAGTTATATATATAATTTTCAATTTAGAAAATTTTAGCGATGAATGC 
CpHeml 524 .............. G ............................................. 
NnHemFl 524 .............. G ............................................. 
NnHemF2 524 .............. G ............................................. 
OnHeml 524 .............. G ............................................. 
NnHeroNM1 518 .............. G ......... G ................................... 
NnHeml 521 .............. G. C ........................................... 
PbHeml 504 .............. G ............................................. 
NnHem2 504 .............. G ............................................. 
CsHeml 527 CTTTC. C.. G. AT. G. GCT. TCT. CA.. CG. ATG. C ....... .... 

NrlHem3 582 CTTGGCTCGGGTTACGAT 
CpHeml 584 .. C ............... 
NnHemFl 584 .. c ............... 
NnHemF2 584 .. c ............... 
OnHeml 584 .. c ............... 
NnHemNMI 578 .. c ............... 
NnHeml 581 .. C ............... 
PbHeml 564 .. c ............... 
NnHem2 564 .. c ............... 
CsHeml 586 .. C ............... 
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Figure 4.3 Alignment of consensus nucleotide sequences of amplified ITSI 

ribosomal DNA from UK isolates of Hematodinium. Dots represent conserved 

nucleotides. Gaps generated by alignment are shown by dashes. 
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NnHemF2 1 CGCACGAATAATCAATAAAAAA-CACCGTGAACCTTGGCCATTAGCACGAGCAAAAAAGC 
OnHeml 1 ............................................................ 
NnHeMNM1 1 ............................................................ 
NnHeml 1 ............................................................ 
NnHemFl 1 ............................................................ 
CpHeml 1 ............................................................ 
NnHem3 1 ............................................................ 
NnHem2 1 ............................................................ 
PbHeml 1 ...................... A ..................................... 

NnHemF2 60 GCATGCGCATGCTGCATGCCCCCGCCGCCGCCGCCGCCTCCGCTGTGTGTGTGTGTGTGT 
OnHeml 60 ............................................................ 
NnHemNM1 60 ............................................................ 
NnHeml 60 ............................................................ 
NrlIieMF1 60 ............................................................ 
CpHeml 60 ............................................................ 
NnHem3 60 ............................................................ 
NnHem2 60 ............................................................ 
PbHeml 61 ............................................................ 

NnHemF2 120 GTGTGGGGGTGTTTGTGTGTGCGCGTTCGTGCTACTAA. GGGCTGTGAGTGATGGGGAACC 
OnHeml 120 ............................................................ 
NriHerr, NMI 115 ............................................................ 
NnHeml 117 ................................................ A ........... 
NnHemFl 120 ............................................................ 
CpHeml 120 ............................................................ 
NnHem3 119 ............................................................ 
NnHem2 109 ............................................................ 
PbHeml 110 ............................................................ 

NnHemF2 180 ACCTCTCCAAATATTTCTCCAG-CCCACGTTTGTTTTCCTTATAATAACTCTCTAATTTC 
OrlHeml 180 ............................................................ 
NnHen=l 174 ............................................................ 
NnHeml 176 ...................... G ..................................... 
NnHemFl 180 ............................................................ 
CpHeml 180 ............................................................ 
NnHem3 178 ............................................................ 
NnHem2 164 ............................................................ 
PbHeml 165 ........................................................ C ... 

NnHenlF2 239 ACTTATTCAATTATA--ACTAAGCTTCTTCTCCCCTTCCCTTCTTCGTCCTGAAGAAGAA 
OnHeml 239 ............................................................ 
NnHemNMI 233 ............................................................ 
NnHeml 236 .................................................. A ......... 
NnHemFl 239 .................................................. A ......... 
CpHeml 239 .................................................. A ......... 
NnHem3 237 .................................................. A ......... 
NnHem2 223 ............... TA ................................. A ......... 
PbHeml 224 ............... TA ................................. A ......... 

NnHexnF2 297 GAAGGAGGAGGAGGAGGAGGAGGGAGGTTATATATATAATTTTCAATTTAGAAA 
OnHeml 297 ...................................................... 
NnHenMl 291 ................................... G .................. 
NnHeml 294 ........................... C .......................... 
NnHemFl 297 ...................................................... 
CpHeml 297 ...................................................... 
NnHem3 295 ..... G ................... A ............................ 
NnHem2 283 ...................................................... 
PbHeml 284 ...................................................... 
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Chapter 5 

Isolation and in vitro culture of Hematodinium perezi from the blue crab 

Callinectes sapidus. 

5.1 Introduction 

In 1997, the blue crab, Callinectes sapidus (Fig. 5.1) supported the largest 

commercial fishery within the Chesapeake Bay, Virginia, USA, and the second 

largest fishery in Virginia, USA (Kirkeley, 1997). However, major reductions in 

crab catches have occur-red since 1998. These have been attributed to fishing 

pressure, environmental processes and disease. Hematodinium perezi is a parasitic 

dinoflagellate that infects C. sapidus along the East Coast of the United States. 

Epizootics have been reported from high salinity waters in Florida (30 % 

prevalence, Newman and Johnson, 1975), from Maryland and Virginia (70-100 % 

prevalence, Messick 1994; Messick and Shields, 2000) and from Georgia (Lee, 

2000). In all cases these authors reported a detrimental effect on the local blue 

crab fishery. Experimental infection of blue crabs has shown that the parasite is 

highly pathogenic and multiplies quickly to kill its host (Shields and Squyars, 

2000). 

Many free-living dinoflagellates (some of which are involved in harmful algal 

blooms) have been isolated, cultured in vitro and documented (Usup et al., 1994; 
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Jensen and Moestrup, 1997). However, only one parasitic dinoflagellate, a 

Hematodinium species from the Norway lobster, Nephrops norvegicus, has been 

maintained in continuous culture. This was achieved using a balanced salt solution 

(Nephrops saline) supplemented with 10 % (v/v) foetal calf serum (Appleton and 

Vickerman, 1998). In culture, the parasite undergoes a series of developmental 

changes, suggested to correspond to those taking place in the infected host, which 

culminate with the production of macrospores and microspores (Fig. 5.2). Efforts 

to infect lobsters experimentally using different culture-derived life cycle stages 

have so far been unsuccessful (Vickerman, 1994). A partial progression of the life 

cycle of a Hematodinium species infecting Alaskan tanner crabs, Chionoecetes 

bairdi, has also been reported. This consisted of single, binucleate, and 

multinucleate plasmodia parasite cells which differentiate into vegetative cells, 

later giving rise to dinospores (Meyers et al., 1987). 

Although the species of Hematodinium infecting the blue crab, H. perezi, has been 

maintained within host individuals for over 7 months by sequential injection of 

infected haemolymph (Shields and Squyars, 2000), no in vitro cultures have yet 

been established. Since long-term passage of H. perezi requires substantial space, 

time and logistical support, the development of in vitro cultures offers several 

advantages for studies of the life cycle of this parasite. A collaborative visit to the 

laboratory of Dr. J. Shields to study H. perezi in blue crabs offered the 

opportunity to initiate and maintain cultures of H. perezi, and hence to examine its 
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life cycle, and compare it with that of the Hematodinium species isolated from N. 

norvegicus. 

5.2 Materials and Methods 

5.2.1 Crab collection 

Blue crabs were caught in Wachapreague Creek, Virginia, USA, using otter trawls 

or commercial crab pots. Crabs were transported to the Virginia Institute of 

Marine Science (VIMS) in ice-chilled coolers. 

5.2.2 Diagnosis of infection 

Crab haemolymph was withdrawn from the arthrodial membrane at the junction 

of the basis and the ischium of the 50' pereiopod using a sterile disposable 251/2- 

gauge needle and aI ml syringe, following sterilization of the cuticle with 70 % 

(v/v) ethanol. One drop of haemolymph was mixed (1: 1) with neutral red solution 

(0.25 % (w/v) in isolation medium). The isolation medium consisted of a 

physiological saline buffer (MAM: Modified Appleton Medium) adapted from 

Appleton and Vickerman, (1998), containing NaCI 19.31 g 1-1; KCI 0.65 g 1-1; 

CaC12 1.38 9 1-1; MgS04 1.73 g 1-1; Na2SO4 0.38 g 1-1; HEPES 0.82 g 1-1, adjusted 

to pH 7.8 and autoclaved. To this, glucose (1.0 mg ml-) was added, along with 

penicillin (500 mg 1-1) and streptomycin (500 mg 1-1) to suppress bacterial 

89 



Chapter Five - H. perezi Culture 

contamination, and the isolation medium was sterile filtered (0.2 gm). The stained 

cell suspension was then examined for Hematodinium as a wet smear at 200 x 

magnification. Infected crabs identified by this technique were then held 

individually in aquaria at 20 'C to 21 'C, and 24 ppt salinity. 

5.2.3 Parasite isolation 

Hematodinium cells were separated from host haemocytes by the addition of I ml 

infected haemolymph to 9 ml MAM buffer (detailed above) in sterile 25 cm2 

tissue culture flasks, and were incubated for 30 min at 23 'C. Previous attempts at 

in vitro culture using this method of parasite cell isolation and purification (J. 

Shields, VIMS, unpublished data) indicated that during initial incubations, crab 

haemocytes adhere to the plastic surfaces of culture flasks, leaving only parasite 

cells in suspension in the media. This finding was exploited in the present 

procedure. Parasite cell suspensions were transferred into new sterile culture 

flasks and incubated at 23 'C for a further 30 min. The remaining parasite cell 

suspensions in the culture flasks were pooled, and centrifuged at 400 xg for 10 

min at 22 'C. The resulting parasite cell suspension was washed three times with 

MAM buffer. For the initial parasite isolation, a minimum of 3 flasks were 

prepared from each crab. 
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5.2.4 Parasite culture 

Isolated parasites were resuspended in MAM buffer supplemented with 10 % 

(v/v) foetal calf serum (FCS) (sterile filtered), glucose and antibiotics. Cell 

density was assessed using a haernocytometer and adjusted to give Ix 106 cells 

ml-1. Cell suspensions (1 ml) were incubated in 24 well culture plates at 23 'C. 

Over a period of 12 days, different life cycle stages from different isolates were 

observed. These were photographed under transmitted light or Hoffman 

modulation contrast using an Olympus IX50 microscope mounted with a Nikon 

DXM 12000 digital camera. 

5.3 Results 

5.3.1 Initial isolation of H. pered 

Parasites found in the haemolymph of 3 infected blue crabs were used to initiate 

multiple cultures from each isolate. Parasite cells in the haernolymph were round 

in appearance with several (>3) refractile granules contained within the cell (Fig. 

5.3). The selective uptake of neutral red by H. perezi cells in haemolymph 

samples provided a rapid method of screening blue crab haemolymph samples for 

the presence of the parasite (Fig. 5.4). Isolation of H. pered cells from infected 

haernolymph by repetitive short-term culture was effective, with host haemocytes 
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adhering to the bottom of tissue culture flasks within a few minutes of adding 

infected haernolymph to the isolation medium. 

5.3.2 Parasite forms in early in vitro cultures 

The following descriptions of life cycle stages of H. perezi are based on the 

terminology used by Appleton (1996) and Appleton and Vickerman (1998) for the 

developmental forms of Hematodinium sp. from the Norway lobster (Fig. 5.2). 

The round parasite cells found in blue crab haemolymph are believed to be 

circulating ovoid plasmodial cells (sporoblasts). These were purified and cultured 

in isolation medium supplemented with 10 % (v/v) FCS as described above. The 

cultures had an initial cell density Ix 106 cells ml-1 unless otherwise stated. 

Parasites developed into three different forms over an observation period of 12 

days, depending on the original isolate and cell density. 

In the first isolate, sporoblasts settled onto the floor of culture wells and began to 

aggregate into clump colonies (Fig. 5.5). When the density of parasites was 

increased to 3x 106 cells ml-1, the cells did not aggregate into colonies but formed 

a matt-like covering of the well floor (Fig. 5.6). Aggregations of sporoblasts 

formed cytoplasmic extensions from a central mass of the cells (Fig. 5.7). These 

"gel-like" cytoplasmic extensions were observed to expand and extend in a radial 
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manner from the central cell mass (Fig. 5.8), thus resembling an arachnoid 

sporont. 

In the second isolate, aggregates of sporoblasts produced thin cytoplasmic threads 

between colonies, forming a spider-like web or arachnoid stage (Fig. 5.9). The 

cytoplasmic threads of neighbouring colonies converged and fused, producing a 

network that covered the base of the culture well. The majority of cells were 

aggregated, with only a few remaining as single cells in culture. The sporoblast 

cells appeared to have interdigitated to form a central mass of nucleated 

cytoplasm (Fig. 5.10). This culture form was very delicate, and any swirling 

motion of the medium within the culture well caused the cytoplasmic network to 

disintegrate. 

In the third isolate, parasite cells settled onto the bottom of the wells with an even 

distribution. After 10 days in culture the cells elongated to form filamentous 

trophonts (Fig. 5.11). This life cycle stage displayed noticeable movement, both 

horizontally along the surface of the well and also vertically up into the medium. 

In many instances filamentous trophonts would aggregate into the gorgonlocks 

form (Fig. 5.12) (so-named by Appleton and Vickerman (1998) because of its 

resemblance to the head of the mythical gorgon). Over a period of 9-12 days in 

culture, several parasite cells were found to be differentiating and elongating, 

indicative of developmental changes to the filamentous trophonts form. 
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5.4 Discussion 

Despite the fact that parasitic syndiniid dinoflagellates of the genus 

Hematodinium can have a devastating impact on several crustacean fisheries 

(Meyers et al., 1987; Field et al., 1992; Messick, 1994; Wilhelm and Mialhe, 

1996; Stentiford et al., 2002), their life cycles are still poorly understood. The 

successful initiation of cultures of H. perezi from the blue crab provides the 

opportunity to rectify this situation. 

The selective uptake of the vital stain, neutral red, by H. perezi cells was observed 

during screening. The stain was localised in the refractile granules contained 

within the cells, which indicates that these organelles are of endosomal origin. 

The three different in vitro developmental stages of H. perezi observed in this 

study resemble several in vitro culture stages of the Hematodinium species from 

the Norway lobster (Appleton and Vickerman, 1998). Aggregations of 

presumptive sporoblasts formed arachnoid sporonts, then arachnoid networks 

developed by the fusing of cytoplasmic threads from neighbouring aggregations. 

Meyers et al. (1987), when trying to culture a Hematodinium species from the 

tanner crab, Chionoecetes bairdi, observed monolayers which were similar in 

appearance and description to arachnoid networks, indicating that this may be the 

common vegetative form of Hematodinium species. Moreover, network-like 

parasite life cycle stages have been observed in abdominal muscle and in 
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hepatopancreas tissues from infected Norway lobsters (Field and Appleton, 1995; 

Field and Appleton, 1996). 

The third stage observed resembles the filamentous trophonts that occur in in vitro 

cultures of Hematodinium from the Norway lobster (Appleton and Vickerman, 

1998). Aggregation of filamentous trophonts into gorgonlock colonies occurred 

only after macrospores and microspores germinated, and transformed into 

multinucleate filaments. Intriguingly, no motile dinospores were observed in the 

initial parasite cell suspensions used to initiate cultures. Possible explanations for 

this are that there may have been several post-spore cells in the cell suspension 

that were able to differentiate into the filamentous trophonts, or the haemolymph 

may have contained a small population of dinospores from an earlier infection 

circulating with the sporoblasts, and that these transformed into filamentous 

trophonts when cultured. Ultrastructural studies of the developmental forms 

accruing in culture are required to establish the cell structure and morphology in 

H. perezi. 

The filamentous form of H. perezi observed in vitro is similar to the rare 

vermiform. plasmodium. stage observed in the haemolymph of infected blue crabs 

by Shields and Squyars (2000), and arising from dinospore germination in the 

host. A progression through several other life history stages has subsequently been 

observed in other in vitro cultures of H. perezi that have been maintained for 

longer periods (>60 d) (J. Shields, VIMS, personal communication). 
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The successful initiation of in vitro cultures of H. perezi will facilitate the study of 

many aspects of its life history, morphology, growth characteristics, life cycle and 

transmission under different temperature and salinity regimes. The cultures will 

also provide a source of life cycle stages for transmission studies in crabs and 

other species. 
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Figure 5.1 The American blue crab Callinectes sapidus. Scale bar = 10 cm. 

Figure 5.2 Schematic diagram of the proposed life cycle of Hernatodinium sp. 

from Nephrops norvegicus, based on observations of in Otro cultures (Appleton 

and Vickerman, 1998). The principal multiplicative form in vitro is the 

filamentous trophont (1), which undergoes growth and differentiates into other 

developmental forms (2-10). 
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Figure 5.3 Haemolymph smear from a blue crab, Callinectes sapidus, infected 

with Hematodinium perezi. Parasite sporoblasts (arrows) with refractile granules 

are distinguishable from host haemocytes (Hc), which have adhered to the 

substratum. Scale bar = 10 gm. 

i1 

Figure 5.4 A sporoblast of H. perezi stained with neutral red. The cellular 

granules have become enlarged by the uptake of the dye and have distorted the 

outer cell surface. Host haernocytes (Hc) remain unstained. Scale bar = 10;. Lm. 
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Figure 5.7 Cytoplasmic extensions (arrows) beginning to develop from a 

clump colony of H. perezi after 6 days in culture. Scale bar = 200 gm. 

Figure 5.8 An arachnoid sporont of H. perezi with a radial amoeboid "gel- 

like" perimeter (arrows) composed of cytoplasmic extensions, after 6 days in 

culture. Scale bar = 200 ;. Lm. 
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Figure 5.9 Aggregates of H. perezi sporoblast cells after 6 days in culture 

have produced thin cytoplasmic threads (arrows) forming a net%%ork bet%%een the 

aggregations. Many of the cytoplasmic threads are not attached to the substratum 

Scale bar = 500 ýLrn. 

Figure 5.10 A cytoplasmic network of H. perezzi under increased magnification, 

after 6 days in culture. Scale bar = 50 ýLrn. 
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Figure 5.11 Filamentous trophonts (Ft) of IL perezi. from an II -day culture. 

Scale bar = 100 l. Lm. 

Figure 5.12 A gorgonlock colony (Gc) of IL perezzi formed from the 

aggregation of several filamentous trophonts after II days in culture. Note that 

several cells are irregular in shape (arrows) and beginning to elongate and 

differentiate, possibly into filamentous trophonts. Scale bar = 100 gm. 
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Chapter 6 

Possible virulence factors produced by Hematodinium species. 

6.1 Introduction 

Parasitic dinoflagellates of the genus Hematodinium have been recorded infecting 

several species of decapod crustaceans such as the harbour crab Liocarcinus 

depurator (Chatton and Poisson, 1931), the sand crab Portunus pelagicus 

(Hudson and Shields, 1994), the blue crab Callinectes sapidus (Newman and 

Johnson, 1975), the edible crab Cancer pagurus (Latrouite et al., 1988), several 

crabs of the genus Chionoecetes (Meyers et al., 1987; Taylor and Khan, 1995; 

Bower et al., 2003) and the Norway lobster Nephrops norvegicus from the West 

Coast of Scotland (Field et al., 1992) and the Irish Sea (Briggs and McAliskey, 

2002). 

In the Norway lobster, Hematodinium infection is proposed to progress (after 

initial parasite entry by as yet unidentified means) from a tissue-based latent 

infection to a patent infection, with the parasite multiplying to large numbers in 

the haemolymph (Field and Appleton, 1995; Stentiford et al., 2001c). However, 

mechanisms that aid the survival of the Hematodinium parasite, and enable it to 

evade the innate immune response in tissues and haemolymph of the host are at 

present unknown. 
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Several pathogens have been shown to possess virulence factors that assist 

invasion and colonisation of the host, evasion of host defences and the spread of 

infection (Moss et al., 1995). Mechanisms include antiphagocytic capsules, 

selective and specific adherence factors, extracellular enzymes, endo- and exo- 

toxins, and substances that alter phagocyte functions (Roth et al., 1995). Acid 

phosphatases (AP) have recently been identified as having an important role in 

microbial pathogenesis. Studies of membrane-bound and secreted AP from 

several intracellular parasites including, Leishmania spp. (Gottlieb, 1980; Gottlieb 

and Dwyer, 1981 a), Trypanosoma cruzi (Pereira et al., 1985), Toxoplasma gondii 

(Vivier and Petiprez, 1972) and Coxiella bumetii (Baca et al., 1993) suggest that 

they play a crucial role in their survival within host phagocytic cells. Similarly, 

the acetosporan oyster parasite Bonamia ostreae has AP levels equivalent to those 

found in several Leishmania species (Hervio et al., 1991). Another apicomplexan 

oyster parasite, Perkinsus marinus, has also been shown to contain and secrete AP 

(Volety and Chu, 1997). 

Extracellular parasites such as Entamoeba histolytica (Talamds-Rohana et al., 

1999) and L mexicana promastigotes (Lovelace et al., 1986) have been found to 

secrete AP into their surrounding environment. It has been hypothesised that these 

parasite-derived acid phosphatases inhibit the production of host-derived 

superoxide ions (Remaley et al., 1984) and can act as virulence markers between 

isolates (Lovelace and Gottlieb, 1986; Katakura and Kobayashi, 1988; Singla et 

al., 1992). 
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Shields et al. (2003) demonstrated that the enzymatic profile of haemolymph from 

blue crabs infected with H. pered differs from that of uninfected haemolymph, 

with AP, napthol AS-BI phosphohydrolase and P-galactosidase all elevated in 

infected sera. While high AP activity was detected in infected whole 

haemolymph, cell-free serum had no detectable activity, indicating that AP 

activity is located intracellularly in the parasite. 

This chapter provides information on the enzymatic profiles of Hematodinium 

spp. from N. norvegicus and C sapidus, and in particular on the identification, 

characterization and ultrastructural location of AP activity in the Hematodinium 

sp. infecting N. norvegicus. 

6.2 Materials and Methods 

6.2.1 Collection and maintenance of experimental animals 

Norway lobsters (Nephrops norvegicus) were caught by otter bottom trawl (70 

mm mesh size) at locations south of Little Cumbrac in the Clyde Sea Area (55.41* 

N, 4.56* W). The lobsters were transported in a cool, damp environment after 

capture, then maintained in a closed seawater system at 10 *C and 33 ppt salinity 

prior to use in experimental work. Blue crabs (Callinectes sapidus) were obtained 

form Virginia, USA, as described in section 5.2.1. 
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6.2.2 Diagnosis of Hematodinium infection and parasite isolation 

Haemolymph samples were withdrawn from the base of the fifth pereiopod using 

a disposable I in] syringe and 25-gauge needle following sterilisation of the 

cuticle with 70% (v/v) ethanol. Norway lobsters with advanced infections were 

identified by the gross body colour method of Field et al. (1992). To confirm 

infection status, 100 pl samples of haemolymph from lobsters were subjected to 

ELISA, as described by Small et A (2002) and in Chapter 2. Serum samples 

from infected and uninfected Norway lobsters were prepared by immediately 

centrifuging withdrawn haemolymph samples at 400 xg for 10 min at 4 'C. The 

cell free serum was removed, filtered (0.2 gm) and frozen at -80 'C prior to 

experimental analysis. Infected blue crabs were identified by examining 

individual crab haemolymph smears for the uptake of neutral red solution by 

parasite cells, as described in section 5.2.2. 

Parasites were isolated from the haemolymph of blue crabs as described in section 

5.2.3. Parasites were isolated from the haernolymph of Norway lobsters by a 

similar technique: 0.25 ml of infected haernolymph was added to 10 ml of 

isolation medium in sterile 25 cm 2 tissue culture flasks, which were then 

incubated for 30 min at 8 *C. For initial parasite isolation, a minimum of 4 flasks 

were prepared from each lobster. The isolation medium consisted of autoclaved 

balanced Nephrops saline (Appleton and Vickerman, 1998, containing NaCl, 

27.99 g 1-1; KCI 0.95 g 1-1; CaC12 2.014 9 1-1; MgS04 2.465 g 1-1 ; Na2SO4 0.554 g I- 
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1; BEPES 1.92 g 1-1) adjusted to pH 7.8, with penicillin G (10 U ml-1) and 

streptomycin (10 tig ml-) added to inhibit bacterial contamination. The medium 

was then filter sterilised (0.2 gm). After initial incubation for 30 min, parasite 

suspensions were transferred into new sterile 25 cm 2 culture flasks and incubated 

at 8 *C for a further 30 min. Isolates were then pooled and centrifuged at 400 xg 

for 10 min at 4 *C; the resulting parasite suspension was then washed three times 

with isolation medium. 

6.23 Preparation of parasite lysates 

After resuspending the purified parasites in isolation medium, their cell density 

was assessed using a haemocytometer and was then adjusted to give a range of 

cell densities (1-10 x 106 cells ml-1). Crude cell lysates were prepared by freezing 

and thawing the sample twice. The cell free lysate was prepared by freezing and 

thawing the sample twice, followed by centrifugation (10,000 xg for 10 min at 4 

*C). The resulting supernatant fraction represented the cell-free parasite lysate 

used in this study. This was filtered through a 0.2 gm filter and stored frozen at - 

80 OC. 

To investigate AP activity in cell membrane and soluble components of crude cell 

lysates, aliquots of crude lysates (10 x 106 cells ml-1) were centrifuged at 10,000 x 

g for 10 min at 4 'C. The resulting supernatant (soluble fraction of the crude 

lysate) was removed, and filtered (0.2 gm) prior to experimental use. The 
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remaining cell debris pellet was washed three times with isolation medium, and 

was then resuspended in the original cell sample volume of isolation medium (to 

give the all membrane fraction). All three samples (crude lysate, soluble fraction 

and cell membrane fraction) were assayed for AP activity as described in section 

6.2.6. 

6.2.4 Parasite culture 

Isolated Hematodinium sporoblast parasites (section 6.2.2) were resuspended in 

isolation medium supplemented with 10% (v/v) heat inactivated foetal calf serum 

(FCS). Cell density was assessed using a haemocytometer and adjusted to give I 

X 106 or 2x 106 cells ml-1. Cell suspensions (2 ml) were incubated in triplicate in 

12 well culture plates at 8 'C for 7 days (for Hematodinium cells derived from the 

Norway lobster), or 23 'C for 6 days (for Hematodinium cells derived from blue 

crabs). Cultures were checked for contamination daily. On day 6/7, the cell 

suspensions in each well were collected, and cell viability was assessed using 

trypan blue (0.25% w/v in isolation medium) for Hematodinium cells derived 

from the Norway lobster, and both trypan blue and neutral red solution (0.25% 

w/v in isolation medium) for Hematodinium cells derived from blue crabs. 

Parasites were separated from the cell culture medium by centrifugation at 800 xg 

for 10 min. The cell-free culture medium was removed, passed through a 0.2 gm 

filter and frozen at -80 *C. Culture medium in which no Hematodinium cells had 

been incubated was used as a control. 
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6.2.5 AN ZYM enzyme analysis 

Parasite cell lysates, the isolation medium and culture media used were assayed in 

duplicate (from each of 3 cultures/media samples) using the manufacturer's 

(BioMdrieux) protocol for the following enzymes: alkaline phosphatase, esterase 

(C4), esterase lipase (C8), lipase (C14), leucine arylarnýidase, valine arylamidase, 

cystine arylamidase, trypsin, oc-chymotrypsin, acid phosphatase, napthol-AS-BI- 

phosphohydrolase, (x-galactosidase, 0- galactosidase, 0-glucuronidase, (x- 

glucosidase, 0-glucosidase, N-acetyl-p-glucosaminidase, cc-mannosidase, oc- 

fucosidase. Briefly, 65 gl of the sample was added to each cupule and the test 

strips were incubated for 4h at 37 'C. Following incubation, 1 drop of ZYM A 

(API; tris-hydroxymethyl-aminomethane, hydrochloric acid, sodium lauryl 

sulphate, H20) and ZYM B (API; fast blue BB, 2-methoxyethanol) was added to 

each cupule and the reaction was allowed to proceed for 5 min. The test strips 

were then read and the results scored using the following scale: 0, negative 

reaction; 1, weak positive; 2-3, positive reaction; 4-5, strong positive reaction. 

6.2.6 AP assay 

AP activity in Hematodinium cell lysates, culture medium, and serum from 

infected Norway lobsters was assayed using the colorimetric method of Bodley et 

aL (1995), with minor modifications. The assay is based on the release of p- 

nitrophenol (PNP) and inorganic phosphate UP) from p-nitrophenylphosphate 
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(PNPP) by the AP enzyme. The substrate, p-nitrophenylphosphate, was prepared 

at a concentration of 40 mg ml-1 in 1M sodium acetate at pH 5.5. The assay was 

initiated by the addition of 100 pl cell lysate/cell culture medium, or 50 gl lobster 

serum, to 10 gI substrate solution. Samples were incubated for 2-8 h at 37 'C. The 

resulting yellow-coloured reaction product was measured at 405 nrn on a 

microtiter plate reader (Titerkek Multiscan MCC/340). 

Controls comprised isolation and cell culture media without the addition of 

Hematodinium cells, and uninfected Norway lobster serum. The activity of AP 

enzyme was determined using an extinction coefficient of 1.83 x 10 4 M-1 cm-1 and 

a path length of 0.4 cm on the plate reader. Activities were expressed as the 

amount (mol) of PNP formed per hour by the volume of sample assayed. 

Statistical analysis of the enzymatic activities in the culture media with different 

densities of Hematodinium cells, and the lobster serum samples was performed 

using the Mann-Whitney U test. Significance was considered to be at p<0.05. 

6.2.7 AP histochemistry 

Haemolymph smears from a Hematodinium-infected lobster were air-dried and 

stained using the simultaneous azo dye coupling method for AP (Burstone, 1958) 

as detailed in Bancroft (1967). The recommended substrate, naphthol AS-BI 

phosphate was used along with hexazonium pararosanilin as the diazonium salt. 

The combination of hexazonium pararosanilin and naphthol AS-BI phosphate 
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allows the accurate localization of AP as a bright red reaction product at the sites 

of enzyme activity. Following the localization of AP, the smears were lightly 

stained with haernatoxylin (Cara zi, 1911) as a nuclear counterstain. 

63 Results 

63.1 Hematodinium cell culture 

Hematodinium sporoblast cells were observed to aggregate into clumps in the 

bottom of cell culture wells. This clumping of cells prevented cell density 

measurements. Measurement of lactate dehydrogenase (as a marker of cell 

integrity), by the method of Denton (1996) was attempted, but the cell culture 

media used gave a strong positive result, eliminating this as a viability indicator. 

However, cell viability was consistently over 99 % based on trypan blue/neutral 

red staining. 

6.3.2 API ZYM enzyme proriles of Hematodinium cell lysates and cell 

culture media 

The results of enzymatic activities of Hematodinium (from the Norway lobster) 

and H. perezi (from the blue crab) cell lysates are shown in Tables 6.1 and 6.2. 

Cell lysates of Hematodinium were strongly positive for acid phosphatase, and 

were positive for napthol-AS-BI-phosphohydrolase and (X-fucosidase. Weak 
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positive reactions were observed for esterase (C4), leucine arylamidase, P- 

glucuronidase, cc-glucosidase, P-glucosidase and N-acetyl-p-glucosaminidase. 

Negative reactions were obtained for all other enzymes of the API ZYM system. 

Cell lysates of H. pered had a similar profile, with strong positive activity 

observed for acid phosphatase, and weak positive activity for esterase (C4), 

napthol-AS-BI-phosphohydrolase and N-acetyl-p-glucosaminidase. In contrast to 

the lysates of parasites from the Norway lobster, strong positive reactions were 

observed for leucine arylan-ddase. Negative reactions were observed for all other 

enzymes tested. Negative reactions for all enzyme reactions were obtained from 

both of the cell isolation media used in this study. 

Enzymatic activities of Hematodinium from the Norway lobster and H. pered cell 

culture media are shown in Tables 6.3 and 6.4. Strong positive reactions for 

several enzymes were observed for the control Hematodinium-free culture 

medium, which prevented them being assayed in the Hematodinium cell culture 

mediums. Measurable increases in enzyme activity between control culture media 

and Hematodinium cell culture media were observed with acid phosphatase (weak 

positive to strong positive) and napthol-AS-131-phosphohydrolase (weak positive 

to positive). H. perezi cell culture media were observed to have only one enzyme, 

leucine arylamidase, with a measurable difference in activity between control and 

cell culture media (positive to strong positive). 
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6.3.3 AP activity in Hematodinium cell lYsates 

No AP activity was detected in the isolation medium that was used to make 

Hematodinium cell suspensions for lysate experiments. AP activity, directly 

proportional to cell density was observed for crude cell lYsates (Fig. 6.1). 

Fractionation of crude Hematodinium cell lysates into soluble and membrane 

components allowed the distribution of intracellular AP activity to be examined 

(Fig. 6.2). The soluble and membrane components accounted for 69.5 ± 1.4 % and 

33.0 ± 1.7 %, respectively, compared to the total crude lysate activity. 

63.4 AP activity in Hematodinium cell culture medium 

A low level of AP activity was detected in the control, Heniatodinium-free, cell 

culture media (0.17 ± 0.02 nmol 0 100 gl sample-') and was attributed to 

enzymatic activity remaining in the FCS present in the medium. However, a cell 

density-dependent enzyme activity was observed in Hematodinium culture media 

after 7 days incubation (Fig. 6.3). Levels of AP activity in culture media seeded 

with Ix 106 cells ml-1 (0.38 ± 0.02 nmol h-1 100 gl sample-') and 2x 106 cells ml- 

1 (0.50 ± 0.03 nmol 0 100 lil sample-') were both significantly higher than in the 

control media (Mann-Whitney U test: p=0.01). 
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6.3.5 AP activity in Hematodinium -infected N. norvegicus serum 

Cell-free serum from patently Hematodinium-infected Norway lobsters had 

significantly higher AP activity (4.00 ± nmol h" 50 pl sample-) than was present 

in cell-free haemolymph from uninfected lobsters (as confirmed by PCR, see Ch 

3) (0.33 ± 0.03 nmol 0 50 gl sample-) (Fig. 6.4) (Mann-Whitney U test: p 

0.001). 

6.3.6 Localisation of AP activity in Hematodinium cells 

Light microscopic examination of Hematodinium cell smears stained for AP 

activity using the described procedure indicated that the enzyme is localised to 

cytoplasmic granules and to the membrane surrounding the cell nucleus (Fig. 6.5). 

No deposition of reaction product was detectable in the nucleus, or associated 

with the outer membrane or any other cellular structures. 

6.4 Discussion 

In the present study, enzyme profiles of two species of the parasitic dinoflagellate 

Hematodinium from N. norvegicus and C sapidus have been characterized. In 

particular, intracellular and extracellular AP activity in Hematodinium cells from 

N. norvegicus have been analysed. 
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The API ZYM system has been used successfully to identify and type a number of 

medically important bacterial pathogens (Poh and Loh, 1985; Poh and Loh, 1988; 

Hermosa de Mendoza et al., 1993; Heroldova et al., 2001), fungal pathogens 

(Youngchim et al., 1999; Malinowski et al., 2001), and yeasts (Garcfa-Martos et 

al., 2000). Thus, as well as providing information on the cellular metabolism of 

this parasite, the pattern of enzyme activities may be useful in helping to 

differentiate different species of Hematodinium. 

Cell lysates of Hematodinium from the Norway lobster and the blue crab showed 

different patterns of enzymes present within the parasite cells, with those of H. 

perezi having high levels of both AP and leucine arylanýiidase activity, while 

Hematodinium from N. norvegicus has high levels of AP, but only very low levels 

of leucine arylamidase. Differences also exist in the secretion of enzymes, as 

reflected in the composition of the culture media used. Cell culture medium from 

blue crab H. perezi had no AP activity but high levels of leucine arylamidase 

activity, while that from Norway lobster Hematodinium had high AP activity but 

no detectable leucine arylamidase activity. This finding indicates that AP is 

located intracellularly and is not secreted by H. perezi. This is consistent with the 

result reported by Shields et al. (2003), that this enzyme is detectable in whole 

haemolymph but not in the cell-free serum from an infected crab. However, 

measurements of AP activity in the cell-free serum were obtained from only one 

infected individual, and needs to be repeated in order to confirm the absence of 

AP secretion by H. perezi in vivo. The reasons for H. perezi not secreting AP are 
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unclear at present, but the results suggests that this species may have other 

mechanisms for evading the host immune reaction, as indicated by leucine 

arylamidase secretion (see below). 

Cell culture medium from blue crab H. perezi was found to have high levels of 

leucine arylamidase activity. The fact that AP activity was high in the cell lysates 

but absent in culture medium indicates that there was no significant cell death in 

the media. Such cell death, if it had occurred, may have given rise to false positive 

measures of enzyme secretion. This strongly suggests that the extra-cellular 

leucine arylamidase activity detected in the medium is the result of genuine 

secretion, rather than cell death. Extracellular N-terminal proteolytic activity by 

leucine arylamidase has been observed in several pathogens (Grehn et al., 1991; 

Dettori et al., 1995; Farto et al., 1998), has been used to identify Clostridium 

difficile (Kudhair et al., 1986), and has been implicated as a virulence factor in a 

Vibrio strain infecting turbot (Farto et al., 1998). This may also be the case for H. 

perezi, since Shields and Squyars (2000) have shown that experimentally-infected 

blue crabs (1 x 105 H. perezi cells/crab) die on average between 14 and 40 days 

post-inoculation, and have a mortality rate of 86 %. Eaton et al. (1991) also 

reported experimental infection of tanner crabs following injection of naturally- 

generated dinospores of their Hematodinium sp. In contrast, experimental 

infection of Norway lobsters with its associated Hematodinium sp. has never been 

successful (Vickerman, 1994; Appleton and Vickennan, 1998). Thus, the 

discovery that H. perezi cells secrete an aminopeptidase may be linked with its 
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increased virulence when compared to the Hematodinium sp. from N. norvegicus. 

This warrants further investigation. 

In this study, both Hematodinium species have been shown to possess high 

intracellular AP activity, but only one species, that from the Norway lobster, has 

been found to secrete AP during in vitro culture (Fig. 6.3). This finding is 

substantiated by the elevated levels of the enzyme measured in cell-free serum 

from infected lobsters (Fig 6.4). 

In many microorganisms, AP activity is associated with pathogenic mechanisms 

and virulence. Studies on AP from Leishmania donovani (Remaley et al., 1984), 

Entamoeba histolytica (Talamds-Rohana et al., 1999), Coxiella burnetii (Baca et 

al., 1993), and Legionella micdadei (Saha et al., 1985) suggest that they may play 

an important role in the modulation of the host immune response, while De 

Jonckheere and Dierickx (1982) have shown increased AP levels in pathogenic 

species of Naegleriafowleri compared to non-pathogenic species. Leishmania AP 

has been shown to inhibit superoxide ion production by human neutrophils 

(Remaley et al., 1984). Likewise, B. ostreae (Hervio et al., 1988), P. marinus 

(Volety and Chu, 1995), and rickettisiales-like organisms (Le Gall et al., 1991), 

all of which contain or secrete AP, have been observed to interfere with the 

production of superoxide radicals (02-) by host bivalve haemocytes in vitro. 
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Reactive oxygen species (ROS) are produced by stimulated haemocytes from 

many aquatic organisms, including fish (Higson et al., 1984; Secombes et al., 

1988), molluscs (Dikkeboom et al., 1987; Pipe, 1992) and crustaceans (Bell and 

Smith, 1993,1994) during the respiratory burst. Hence the secretion of AP by 

Hematodinium cells may cause suppression of ROS production by lobster 

haemocytes by dephosphorylating the enzymes involved in manufacture of ROS, 

such as protein kinase C. Studies involving the measurement of possible inhibition 

of ROS by Hematodinium AP are needed to clarify this potential pathogenic role. 

Although AP is classically considered to be a lysosomal marker, it has an extra- 

lysosomal distribution in several organisms. The enzyme has been found on the 

surface membrane of Leishmania donovani promastigotes (Gottlieb and Dwyer, 

1981b), in the dense granules and rhoptries of Toxoplasma gondii (Metsis et al., 

1995), in the dense bodies of Bonamia ostrea (Hervio et al., 1991), in the 

periplasmic space of C burnetii (Baca et al., 1993), and in the vacuoles and at the 

amoeba-host cell interface of E. histolytica (Ventura-Jugrez et al., 2000). 

Localisation studies on Hematodinium cells indicate that AP is associated with 

cytoplasmic vesicles (Fig. 6.5). Fractionation studies support this, as they indicate 

that enzyme activity is predominantly within the soluble fraction, with 

approximately 30 % being membrane-associated (Fig. 6.2). Such vesicles might 

represent lysosomes as Hematodinium cells have previously been shown to 

possess micropores (Appleton and Vickerman, 1996) that may permit 

endocytosis. Alternatively, such vesicles may contain soluble enzyme destined for 
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exocytosis. Characterisation of secreted, soluble, and membrane associated AP 

forms is needed to clarify its role in Hematodinium. 

It is worth considering that many important cellular processes are controlled by 

phosphorylation and dephosphorylation of proteins. Phosphatases are involved in 

DNA synthesis (Brautigan, 1992), cell cycle regulation (Freeman and Donoghue, 

1991) and signal transduction (Walton and Dixon, 1993). Consequently 

Hematodinium AP may be involved in the sequence of events that lead to cell 

division, although the enzymes would function internally and should not be 

detectable in culture medium or in the host serum. 

It is also possible that the enzymatic profiles of the Hematodinium species 

investigated may be influenced by life cycle stage and culture conditions. 

Although the in vitro cultures of both parasites consisted of morphologically 

similar sporoblast cells, the in vitro life cycle of H. perezi has not been fully 

documented and may differ from that of Hematodinium sp. from N. norvegicus 

(Appleton and Vickerman, 1998). H. pered cells were cultured at 23 *C while 

those of the Hematodinium sp. from N. norvegicus was cultured at 8 T. Although 

the two culture media had the same basic constituents, some were at different 

concentrations, and the H. perezi medium contained glucose and a different 

source of FCS. Thus differences in salt concentration, glucose and FCS may have 

influenced the catalytic activities of the enzymes assayed. 

119 



Table 6.1 Enzymatic activities of Norway lobster Hematodinium cell lysates 

(1 X 106 ml-1) detected by the API ZYM system. ++, strong positive; +, positive; 

weak positive; -, negative. 

Table 6.2 Enzymatic activities of blue crab Hematodinium pered cell lysates 

(1 X 106 ml-1) detected by the API ZYM system. ++, strong positive; +, positive; 

weak positive; -, negative. 
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Enzyme 

Alkaline phosphatase 
Esterase (C4) 
Esterase lipase (C8) 
Lipase (Cl4) 
Leucine arylamidase 
Valine arylamidase 
Cystine arylamidase 
Trypsin 
cc-chymotrypsin 
Acid phosphatase 
Napthol-AS-BI-phosphohydrolase 
cc-galactosidase 
0- galactosidase 
P-glucuronidase 
cc-glucosidase 
P-glucosidase 
N-acetyl-p-glucosaminidase 
(x-mannosidase 
(x-fucosidase 

Enzyme 

Alkaline phosphatase 
Esterase (C4) 
Esterase lipase (C8) 
Lipase (C14) 
Leucine arylamidase 
Valine arylamidase 
CYstine arylarnidase 
Trypsin 
cc-chymotrypsin 
Acid phosphatase 
Napthol-AS-BI-phosphohydrolase 
(x-galactosidase 
0- galactosidase 
P-glucuronidase 
(x-glucosidase 
P-glucosidase 
N-acetyl-p-glucosan-dnidase 
cc-mannosidase 
cc-fucosidase 

Isolation Cell Vsate 
medium OXIO MI-1) 

+ 

+ 

++ 
+ 

+ 
+ 

+ 
+ 

+ 

Isolation Cell Vsate 
medium OXIO ml-) 

+ 

++ 

++ 
+ 

± 
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Table 6.3 Enzymatic activities of Norway lobster Hematodinium cell culture 

media (1 x 106 ml-1) after 7-day incubation, detected by the API ZYM system. ++, 

strong positive; +, positive; ± weak positive; -, negative. 

Table 6.4 Enzymatic activities of H. pered cell culture media (1 x 106 MI-1) 

after 6-day incubation, detected by the API ZYM system. ++, strong positive; 

positive; ± weak positive; -, negative. 
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Enzyme 

Alkaline phosphatase 
Esterase (C4) 
Esterase lipase (C8) 
Lipase (C14) 
Leucine arylamidase 
Valine arylamidase 
Cystine arylamidase 
Trypsin 
(X-chymotrypsin 
Acid phosphatase 
Napthol-AS-BI-phosphohydrolase 
(x-galactosidase 
0- galactosidase 
P-glucuronidase 
oc-glucosidase 
P-glucosidase 
N-acetyl-p-glucosatninidase 
cc-mannosidase 
oc-fucosidase 

Control Cell culture 
culture medium 
medium (IX106 MI-1) 

++ ++ 

± ++ 

±+ 

±± 

±± 
±± 
±± 
±± 

Enzyme 

Alkaline phosphatase 
Esterase (C4) 
Esterase lipase (C8) 
Lipase (C14) 
Ixucine arylamidase 
Valine arylarnidase 
Cystine arylamidase 
Trypsin 
(x-chymotrypsin 
Acid phosphatase 
Napthol-AS-BI-phosphohydrolase 
cc-galactosidase 
0- galactosidase 
P-glucuronidase 
cc-glucosidase 
P-glucosidase 
N-acetyl-p-glucosaminidase 
cc-mannosidase 
cc-fucosidase 

Control Cell culture 
culture medium 
medium IX106 MI-1) 

+ ++ 

± 
± 

± 
± 

±± 
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Figure 6.1 AP activity of crude Hematodinium cell lysates. Mean ± SD, N=5. 

Assay incubation time: 6 h. 

Figure 6.2 Determination of AP activity in Hematodinium cell lysates (10 x 

106 cells ml-1). Data are represented as percentage of activity associated with each 

fraction, where activity of 100% (crude lysate) is equivalent to 3.02 ± 0.023 nmol 

h-1 100 gl-1 sample PNP formed during the 6h assay incubation time. Mean ± SD, 

N=5. 
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Figure 6.3 AP activity of Hematodinium culture media with initial densities of 

0,1 and 2x 106 cells ml-1 after 7-day incubation. Mean ± SD, N=5. Assay 

incubation time: 8 h. Data are representative of three separate experiments. 

Figure 6.4 AP activity of serum samples from 6 Hematodinium-infected and 

uninfected N. norvegicus. Mean ± SD, N=24- Assay incubation time: 3 h. 
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Figure 6.5 Light micrograph of Hematodinium cells showing AP activity as a 

red reaction product (arrows) localised in single, bi- and tri-nucleated parasites. 

N= nucleus. Scale bar = 10 gm. 
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Chapter Seven - Ciliate Infection 

Chapter 7 

Identification of a parasitic ciliate infecting the Norway lobster (Nephrops 

norvegicus). 

7.1 Introduction 

Parasitic ciliates have been reported infecting many inhabitants of marine 

environments, such as fish (Jessop, 1995; Munday et al., 1997; Traxler et al., 

1998; Inglesias et al., 2001), sea stars (Up6de, 1907; Byme et al., 1997; Stickle 

et al., 2001), and bivalve molluscs (Bower and Meyer, 1993; Elston et al., 1999; 

Karatayev et al., 2002). In contrast, reports of systemic infections of Crustacea by 

ciliated protozoa are relatively rare, but have received recent attention due to their 

detrimental impact on several ecologically and economically important crustacean 

species (Morado and Small, 1995). Several species of the marine scuticociliate 

Mesanophrys (synonyms Anophrys, Paranophrys) have been described from a 

variety of crabs (Cattaneo, 1888; Poisson, 1930; Bang et al., 1972; Armstrong et 

al., 1981; Sparks et al., 1982; Morado and Small, 1994; Messick and Small, 

1996), as well as isopods (Hibbits and Sparks, 1983; Wi4chowski et al., 1999), 

and in the American lobster A. haemophilia (Aiken et al., 1973; Cawthorn et al., 

1996). Systen-dc ciliate infections of freshwater crayfish by Tetrahymena 

pyriformis (Edgerton et al., 1996), of prawns by Parauronema sp. (Couch, 1978) 

and of krill by Collinia sp. (G6mez-Gutidrrez et al., 2003) have also been 
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observed. In addition, a number of ciliates have been observed in association with 

aquatic hosts, predominantly as ectocommensal organisms (Corliss, 1979). 

The occurrence of ciliated protozoa in Norway lobsters has previously been 

observed in association with an infection by the dinoflagellate Hematodinium 

(Field et al., 1992; Field and Appleton, 1995; Appleton, 1996), but these ciliates 

were never described in detail. In the present study, a systemic parasitic ciliate 

infection was discovered in two individual Norway lobsters during routine 

investigations into the seasonal prevalence of Hematodinium infection; the first 

soon after capture from the Clyde Sea Area, and the second after being held in 

captivity for 14 days (after capture from the Clyde Sea Area) in a running 

seawater system at the University of Glasgow. These findings provided an 

opportunity to compile the first complete report on the morphology, associated 

histopathology and ribosomal DNA (rDNA) sequence data for a parasitic ciliate 

found in the haemolYMph and tissues of Norway lobsters. 

7.2 Materials and Methods 

7.2.1 Sample collection and infection monitoring 

Norway lobsters were caught as described in section 2.2.1. Following sterilisation 

of the cuticle with 70 % (v/v) ethanol, haemolymph samples were withdrawn 

from the base of the fifth pereiopod using a disposable 1 ml syringe and 25-gauge 
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needle. A drop of haernolymph was then smeared onto a poly-L-lysine-coated 

slide and viewed under light microscopy for the presence of ciliate parasites. Bi- 

monthly samples of haemolymph from 50 freshly caught lobsters from August 

2002 until August 2003 were analysed for the presence of the ciliate after its 

initial discovery in two lobsters in November 2001. 

7.2.2 Histology 

Samples of heart, gill, hepatopancreas and tail muscle tissue were removed from 

the two infected lobsters. Tissues were preserved in 10 % (v/v) formol saline, 

followed by standard dehydration through a graded alcohol series and embedding 

in paraffin wax. Sections of 6 pm thickness obtained from each tissue were 

stained in haematoxylin and eosin (H & E) prior to examination. 

7.23 Ciliate culture 

Following sterilization of the cuticle with 70 % (v/v) ethanol, haemolymph 

samples were withdrawn aseptically from the base of the fifth pereiopod using aI 

ml disposable syringe and 25-gauge needle. The parasites were isolated in 3.5 cm 

well plates with 0.2 ml infected haemolymph added to 5 ml culture medium in 

each well. 
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The culture medium consisted of 10 % (v/v) foetal calf serum, heat inactivated 

(FCS) in autoclaved balanced N. norvegicus saline (Appleton and Vickerman, 

1998, containing NaCl, 27.99 g 1-1; KCI 0.95 g 1-1; CaC12 2.014 g 1-1; MgSO4 2.465 

g 1-1; Na2SO4 0.554 g 1-1; IHEPES 1.92 g 1-1) adjusted to pH 7.8, with penicillin G 

(10 U ml-1) and streptomycin (10 pg ml-1) added to inhibit bacterial 

contamination. The medium was then filter sterilised (0.2 gm). Cultures were 

incubated at 8C. 

7.2.4 Pyridine silver carbonate staining 

Ciliates cultured in N. norvegicus saline supplemented with 10 % (v/v) FCS and 

antibiotics were used for ammonical silver carbonate staining as described by 

Femdndez-Galiano (1994) with slight modifications. Briefly, 2 ml of ciliate 

culture (5 x 104 cells ml-1) was added to 0.5 ml formaldehyde, 7.5 ml of double 

distilled H20 (ddH20) was then added and the ciliates were pelleted by 

centrifugation at 400 xg for 5 min. The supernatant was discarded and the 

remaining cell pellet was resuspended in 10 ml of ddH20 and centrifuged at 400 x 

g for 5 min. This washing step was repeated four times to remove any salts from 

the culture medium. To the fixed ciliates in 0.5 ml ddH20 in a 40 ml beaker, the 

following were added in strict order; 3 drops formalin (40 % w/v), 5 ml ddH20, 

20 drops bacteriological peptone solution (5 g bactopeptone dissolved in 100 ml 

ddH20, with the addition of 25 drops formalin (40 % w/v)), 10 drops pyridine, 2 

ml ammoniacal silver carbonate solution (see Femdridez-Galiano, 1994), 10 ml 
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ddH20. The suspension was mixed and the beaker was placed in a water bath at 

65 *C for approximately 15 min until the solution darkened to a brown black 

colour. The impregnated ciliate cell suspension was then centrifuged at 100 xg 

for 2 min, the supernatant was removed and the residual ciliate suspension was 

placed on slides and viewed under a microscope. Morphometric measurements of 

stained ciliates were taken using the computer package NIH Image (Scion 

Corporation). 

7.2.5 Electron microscopy (carried out by Kelly Bateman, EM Unit, The 

Centre for Environment, Fisheries and Aquaculture Science (CEFAS) Weymouth 

Lab, Weymouth, Dorset DT4 8UB) 

Ciliate cells were fixed in 2.5 % (v/v) glutaraldehyde in 0.1 M sodium cacodylate 

buffer (pH 7.4) and 1.75 % (w/v) sodium chloride for 2h at room temperature. 

Fixed ciliates were washed in 0.1 M sodium cacodylate buffer (pH 7.4) before 

being post-fixed in I% (w/v) osmium tetroxide in sodium cacodylate buffer (pH 

7.4) for I h. Samples were rinsed in buffer and then dehydrated through a graded 

acetone series. SEM samples were critical point dried and sputter coated in a layer 

of gold approx 5 nm thick. TEM samples were infiltrated with Epon premix resin 

812 and polymerised in an oven overnight at 60 *C. Semi-thin sections (1-2 Am) 

were stained with toluidine blue, and ultrathin sections (70-90 nm) were collected 

on copper grids and stained using uranyl acetate and Reynolds lead citrate. 
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Preparations were examined using a JEOL 1210 transmission electron microscope 

and a JEOL 5200 scanning electron microscope. 

7.2.6 rDNA amplification and sequencing 

Ciliate genomic DNA was extracted from an in vitro culture according to standard 

procedures (Sambrook et al., 1989). Briefly, 1x 105 cells were centrifuged at 

1,000 xg for 4 min at 4 IC. The resulting cell pellet was resuspended in 250 RI 

extraction buffer (50 mM Tris, 5 mM EDTA, 100 mM NaCl, pH 8), 100 Rl of 10 

% (w/v) SDS and Proteinase-K (0.28 ng pl-1) and incubated at 56 'C for 18-24 h. 

DNA was purified by a single step standard phenol/chloroform (1: 1) extraction, 

precipitated in 550 Al 100% ethanol using 20 Al 5M NaCl, and resuspended in 100 

Al sterile deionised water. DNA concentrations and purity were estimated by 

measuring the 260/280 optical density ratios using a spectrophotometer and 

adjusted accordingly. The first internal transcribed spacer (ITSI), 5.8S gene and 

second internal transcribed spacer (ITS2) of the ribosomal gene complex were 

amplified using oligonucleotides previously described to amplify rDNA from 

scuticociliates (Goggin and Murphy, 2000). The amplification reaction mixtures 

contained 100 ng genomic DNA, 26.6 mM Tris-HCI, pH 8.8,13.3 mM KCI, 13.3 

MM (NI14)2SO4,2.6 MM MgS04,2 gg BSA, 0.13 % (v/v) Triton X-100,100 PM 

dNTPs, 7.5 pmol each primer, I unit of Pfu DNA polymerase (Promega), and 

sterile deionised water to a final volume of 15 gl. Reactions were overlaid with 10 

lil of mineral oil. Thermal cycling conditions were as follows: denaturation at 94 
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'C for I min; primer annealing at 55 "C for 1 min; chain extension at 72 T for 5 

min; repeated for 30 cycles, with a final cycle incorporating a7 min extension. 

Amplification products were run on 1.5 % (w/v) agarose gels, stained with 

ethidium bromide and viewed under UV illumination and images obtained using a 

gel documentation system (Appligene). Each amplification product of 

approximately 750 bp was excised from the agarose gel and purified by the use of 

a QIA-quick gel extraction kit (Qiagen). 

Purified amplification products were ligated into the pGEMT-Easy plasmid vector 

(Promega), and used to transform Escherichia coli (strain JM 109) as described in 

section 3.2.3. Sequencing of selected plasmids was performed by MWG-AG 

Biotech (Germany). Three independent PCR, cloning and sequencing reactions 

were performed for the ciliate DNA isolate. The consensus sequence was 

compared to known sequences stored in GenBank using the Basic Local 

Alignment Search Tool (BLAST) routine (Altschul et al., 1990) available through 

the National Center for Biotechnology Information (NCBI). Multiple sequence 

alignments were constructed with similar sequences using the software programs 

ClustalX 1.81 (Thompson et al., 1994) and BoxShade 3.21 (http: //www. ch. emb 

net. org /software/BOX-fonn. html). 
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7.3 Results 

7.3.1 Prevalence of ciliates in N. norvegicus 

The ciliate infection of lobsters was originally discovered in 2 lobsters in 

November 2001. Bi-monthly sampling and analysis of haernolymph smears from 

50 lobsters from August 2002 until August 2003 failed to identify any further 

lobsters that were infected with ciliates. 

7.3.2 Histopathology 

Hemocytopenia characteristic of crustacean ciliate infections was indicated by the 

complete lack of haemocytes in haemolymph samples removed to initiate in vitro 

cultures. Examination of H&E stained tissue sections revealed a systemic 

infection of both lobsters, with ciliates present in several tissues. The heart had 

numerous ciliates present in the lumen and connective tissues of the myocardiurn 

tissues, but not in the epicardium (Fig. 7.1) Myocardial muscle and connective 

tissues were greatly reduced (when compared with uninfected animals, see Field 

1992), possibly indicating tissue lysis or consumption by the ciliates. Ciliate cells 

were found in large numbers in the haernal spaces of gill filaments, leading to 

disruption of internal gill structures (Fig. 7.2). In the hepatopancreatic tissues, 

ciliate cells were observed in the haemal spaces between the tubules (Fig. 7.3), 

where few if any host haemocytes were present. The abdominal muscle tissues 
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were necrotic, with many ciliate cells invading the tissue and with areas of tissue 

lysis. This was apparent as an increase in the separation of fibre bundles adjacent 

to the ciliates (Fig. 7.4). 

7.3.3 Morphology and cell structure of the ciliate 

The ciliates were uniformly fusiform in shape, having a tapering anterior end and 

a rounded posterior end. Live ciliates were very active and flexible, continually 

moving forward and stopping to change direction. Ciliates were observed to have 

a contractile vacuole (Fig. 7.5) and a caudal cilium (Fig. 7.6) at the posterior end. 

Ten equally spaced somatic kineties spiralled round the surface of the cell (Fig 

7.7). Silver impregnated ciliate cells were between 39-48 gm long, and between 

12-24 gm, wide, with one macronucleus and one micronucleus (Fig. 7.8, Table 

7.1). The oral polykinetids (OPKI, OPK2, OPK3) and oral dikinetids (ODKb and 

ODKc) of the ciliate were highly ordered ciliary fields positioned at the anterior 

end between kineties 1-10 (Fig. 7.8). Oral polykinetid I (OPKI. ) was the most 

anterior of the oral structures, with a mean length of 4.4 gm. Fragmentation of 

OPKI was not observed. Oral polykinetid 2 (OPK2) was slightly smaller in length 

(3.5 gm). Oral polykinetid 3 (OPK3) was notably smaller in length (1.9 gm) with 

several pairs of kinetosomes aligned perpendicular to the long axis of the body. 

Oral dikinetid structures were composed of ODKb (7.2 gm) and ODKc, however 

only ODKb was routinely observed by this staining technique. The ODKb 

structure originated immediately posterior from OPK2, and proceeded in a curve 
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posteriorly around the cytostome to the ODKc segment. The ODKc segment was 

rarely stained, consisting of several pairs of kinetosomes aligned in a "Y" 

configuration at the posterior end of ODKb. 

Several mitochondrial structures were observed between the somatic kineties 

surrounding the ciliate cell (Fig. 7.9). Many vesicles were observed within the 

cytoplasm of the cells (Fig. 7.10), and an irregular distribution of possible 

mucocysts was also observed. 

7.3.4 rDNA sequence comparison 

The three independent PCR, cloning and sequencing steps resulted in identical 

rDNA sequences. BLAST searches of GenBank indicated that the ciliate 

consensus sequence was identical to Orchitophrya stellarum (GenBank accession 

numbers AF107773, AF107774, AF107775 and AF107776), and very similar to 

Mesanophrys pugettensis (AF107777) and M. chesapeakensis (AF107778). 

Multiple sequence alignments revealed that the ITS1,5.8S and ITS2 rDNA 

sequences of the ciliate under study were the same as those of 4 isolates of 

Orchitophrya stellarum. Both M. pugettensis and M. chesapeakensis were also 

identical over ITSI, 5.8S and ITS2 regions. Because of this, Orchitophrya 

stellarum (AF107773) and M. pugettensis (AF107777) were used in the multiple 

alignment generated to represent the identical sequences identified (Fig. 7.11). 

The rDNA sequence descriptions by Goggin and Murphy (2000) allowed the ITS l 
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(140 bp), 5.8S (119 bp) and rrS2 (236 bp) domain lengths to be calculated for the 

ciliate. The consensus sequence of the experimental ciliate differed by 9.2 % in 

the ITSI (8 transversions, 2 transitions, 2 additions, I deletion) and 5.0 % in the 

ITS2 (3 transversions, 6 transitions, 3 additions) from that of the Mesanophrys 

sequences held in GenBank. The 5.8S gene was completely conserved in all 

sequences. 

7.4 Discussion 

The morphological characteristics of live and silver-stained specimens of the 

ciliate found infecting Norway lobsters are consistent with those of the genus 

Mesanophrys (Small and Lynn, 1985). Moreover, comparison of this ciliate with 

other species of Mesanophrys that have been stained with silver impregnation 

techniques (Small and Lynn, 1985; Morado and Small, 1994; Messick and Small, 

1996; WizLchowski et al., 1999), indicate that all have similar structural features 

and are closely related. 

The ciliate has a mean body length of 48.2 ± 4.6 gm. and width of 17.5 ± 2.9 gm 

(N = 47) when stained by the pyridine-silver-carbonate method. The smallest 

(39.2 gm length, 12.5 ti width) and largest (57.9 tLm length, 24.5 gm width) 

morphometric cell measurements from this study are of comparable length and 

width to M. chesapeakensis (37.6 gm, 13.4 gm), M. pugettensis (59.0 tim, 17.8 
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gm), and M. carcini (44 gm, 13 gm), but more closely resemble M. maggii (47.8 

ILm, 18.6 gm) Cattaneo (18 8 8). 

The ciliate detected in the Norway lobster has a single macronucleus, a single 

micronucleus, and 10 somatic kineties, similar to ciliates within the genus 

Mesanophrys. Its OPM and OPK2 are of approximate equal length to each other, 

with OPKI slightly larger (4.4 gm, 3.3 gm respectively, Table 7.1). OPK3 is the 

shortest oral structure (1.9 gm) in length, but is the widest. The biometric 

measurements made are slightly smaller than those of pyridine-silver-stained M. 

pugettensis, which are OPKI 4.8 gm, OPK2 3.9 gm, and OPK3 1.5 gm (Morado 

and Small, 1994). Those authors also noted that in early stomatogenesis of M. 

pugettensis a fourth transitional ciliary field occurs, suggesting that the first oral 

polykinetid (OPKI) is composed of two functionally related segments. As a 

result, M. pugettensis was described as a new species. Wi4chowski et al. (1999) 

also observed OPKI segmentation in Mesanophrys sp. from the isopod Saduria 

entomon, but interpreted it as a general character linked with stomatogenesis, 

suggesting that it should not be used as a specific character. As only the silver 

carbonate staining technique was employed during this study, and protargol 

staining was not attempted, the fine detail of the kinetosomal structure of the oral 

apparatus was not observed and cannot be commented upon. 

Relatively few ciliate infections of wild crustacean populations have been 

documented (Cattaneo, 1888; Poisson, 1930; Morado et al., 1999; Lavall6e et al., 
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2001; G6mez-Guti6ffez et al., 2003). Of those that have been, very small numbers 

of infected individuals have been recorded. Poisson (1930) found only 0.2 % (7 of 

3000) of shore crabs Carcinus maenas, with histophagous ciliates, while Lavallde 

et al. (200 1) recorded a prevalence of 0.39 % for Anophryoides haemophila in the 

American lobster Homarus americanus. However, Hibbits and Sparks (1983) 

reported a higher prevalence of 14 % (5/37) for Paranophrys infection of the 

isopod Gnorimosphaeroma oregonensis. A Paranophrys-like ciliate had 

previously been observed in aquaria-held, Hematodinium-infectcd Norway 

lobsters (Field et al., 1992; Field and Appleton, 1996) and on only one other 

occasion was it identified from a freshly caught lobster (Appleton, 1996). The 

present study failed to identify any further infected Norway lobsters within wild 

stocks, indicating that the affected individuals came from a localised short-term 

infection event. Thus it is concluded that the incidence of ciliate infection is very 

low and that probably the host lobsters were compromised in some way and so 

were susceptible to infection. 

The available data suggest that ciliates of the genus Mesanophrys are considered 

to be facultative histophages, with infection of crustaceans being opportunistic in 

nature. The route of entry for ciliates into lobsters is not known but Morado et aL 

(1999) suggest that shell condition and size are important factors for M. 

pugettensis infection of dungeness crabs. Unfortunately, the condition of the 

infected Norway lobsters was not noted at the time of ciliate infection diagnosis. 

Experimental infection studies are needed to establish the route of infection. 
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Expansive host tissue penetration and destruction are common observations in 

infections by Mesanophrys (Armstrong et al., 1981; Sparks et al., 1982; Hibbits 

and Sparks, 1983; Messick and Small, 1996), Tetrahymena (Edgerton et al., 

1996), and Collinia (G6mez-Guti6rrez et al., 2003) infections of crustaceans. The 

ciliate infecting Norway lobsters was found in several tissues causing extensive 

damage, particularly in the myocardial regions of the heart. The normal 

architecture of musculature had completely degenerated and tissue necrosis was 

apparent. Armstrong et al. (1981) suggested that extracellular lysosomes provide 

chemical means for disrupting tissues and cells during Mesanophrys infection of 

dungeness crabs. The ciliate from the Norway lobster had several mucocysts, the 

contents of which are released by exocytosis. The possible secretion of lysosomal 

enzymes that facilitate tissue destruction and consumption is addressed in Chapter 

8. 

Ribosomal DNA sequences from the ciliate infecting Norway lobsters were found 

to be identical over the ITS 1,5.8S and ITS2 regions to Orchitophrya stellarum 

sequences held in Genbank (Fig. 7.11). 0. stellarum is a scuticociliate parasitic 

castrator of male sea stars of the family Asteriidae from the North Atlantic and 

Pacific (UpMe 1907; Leighton et al., 1991; Claereboudt and Bouland, 1994; 

Byrne et al., 1997). It was first described by Cepade (1907) infecting the sea star 

Asteracanthion rubens from France. The ciliate was very rare and only 3 out of 

the several thousand sea stars sampled were infected. The ciliate has a pointed 

anterior and a rounded posterior, with a granular structure of the cytoplasm and 
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one macronucleus and one micronucleus. Its length is between 35-65 Rm, and it 

has a width of 12-26 gm. Its oral structures are at the anterior end and consist of 3 

oral polykinetids and an oral dikinetid. The ciliate infecting Norway lobsters 

appears morphologically similar to this description, but importantly, however, 0. 

stellarum is reported to have between 18-20 somatic kineties (Up6de 1907; 

Claereboudt and Bouland, 1994; Stickle et al., 2001), whereas the ciliate studied 

here has only 10 (Figs. 7.7 and 7.9). 

Differences in the ITS regions between strains and species of ciliates have 

previously been observed. Diggles and Adlard (1997) reported that 4 wild isolates 

of the parasitic ciliate of fish, Cryptocaryon irritans, differed by up to 4% in 

ITSI. Additionally, two species of Tetrahymena differed by 3% in the ITS1 and 

10 % in the ITS2 (Engberg et al., 1990). ITSI sequences from C. irritans have 

also been observed to alter rapidly with passage in the laboratory, and differed by 

5.9 % over the period of 1 year from initial isolation (Diggles and Adlard, 1997). 

However, Goggin and Murphy (2000) noted that M. chesapeakensis isolated from 

Callinectes sapidus from the Atlantic Ocean, and M. pugettensis from Cancer 

magister from the Pacific Ocean had no differences in both ITS and the 5.8S 

ribosomal regions, yet both ciliates were held in culture for 18 months. 

In summary, morphologically, the ciliate parasite of the Norway lobster is very 

similar to members of the genus Mesanophrys, but rDNA sequences suggest a 

puzzling affinity with 0. stellarum. The ciliate sequences identified in Genbank 
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and used in the multiple alignments were obtained by the same researcher, and 

there is the possibility that samples were mislabelled resulting in the incorrect 

cataloguing within GenBank, which would explain the present inconsistency. 

Alternatively, there may be different rDNA sequences in the macro and 

micronucleus of the ciliate resulting in preferential amplification; however 

identical triplicate sequencing reactions obtained in this study and by Goggin and 

Murphy (2000) indicate that this is not the case. The data also suggests that the 

number of somatic kineties that a ciliate possesses may not be a robust 

morphological feature when identifying closely related species. Sequencing of the 

ITS regions of all nominal Mesanophrys and 0. stellarum species in conjunction 

with silver impregnation staining techniques will be essential in order to resolve 

this issue. 
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Table 7.1 Biometric characteristics for pyridine-silver-carbonate impregnated 

ciliates from an in vitro culture. All dimensions are in gm. 
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Character Mean SD Nfin Max N 
Body length 48.2 4.6 39.2 57.9 47 
Body width 17.5 2.9 12.5 24.5 47 
No. somatic kincties 10 000 47 
Micronuclcus length 2.6 0.4 1.5 3.5 47 
Micronucleus width 1.9 0.4 1.3 2.9 47 
Macronucleus length 10.6 0.4 8.0 15.4 47 
Macronucleus width 8.6 1.2 6.1 11.4 47 
OPKI length 4.4 0.5 3.0 5.5 41 
OPK2 length 3.5 0.3 2.8 4.2 41 
OPK3 length 1.9 0.2 1.3 2.3 41 
ODKb length 7.2 1.2 5.2 10.7 41 
Distance from OPKI-OPK3 10.3 0.9 8.0 11.9 41 
Distance from OPKI-OPK2 8.1 0.8 6.3 9.9 41 
Distance from OPK2-OPK3 5.6 0.4 4.5 6.8 41 
Distance anterior end-OPK3 12.5 1.4 8.4 15.6 41 
Distance anterior end-ODK 16.1 1.7 13.3 19.4 41 
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Figure 7.1 Ciliates (arrows) present in the haemal spaces and lumen of 

myocardial heart tissue. The myocardial muscle and connective tissues are greatly 

reduced when compared to heat tissues from healthy individuals (see Field, 1992). 

H and E staining. L= lumen-, H= haemocytes in lumen; M= myocardial muscle. 

Scale bar = 100 lim. 

Figure 7.2 Large number of ciliates (arrows) packing a gill filament. C= 

cuticle; Ct = connective tissue. H and E staining. Scale bar = 100 gm. 
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Figure 7.3 Ciliates (arrows) present in the haemal spaces between the tubules 

in the hepatopancreas. Hs = haemal space; TI = tubule lumen. H and E staining. 

Scale bar = 100 gm. 

Figure 7.4 Abdominal deep flexor muscle with ciliates (arrows) invading 

spaces between muscle bundles. 1-- area of lysis. H and E staining. Scale bar 

100 ltm. 
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Figure 7.5 Live specimen of a ciliate from in Otro culture. Note the 

contractile vacuole (Cv) and the granular appearance of the cytoplasm (Cý). An = 

anterior end, Po = posterior end. Differential interference contrast. Scale bar =5 

I. M. 

Figure 7.6 Scanning electron micrograph of a : ihate trorn in Otro culture. 

Note the oral apparatus (arrow) at the antenor end. Cc = caudal cilium at the 

posterior end. Scale bar =5 ltm. 
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Figure 7.7 Pyridine-silver-carbonate impregnated ciliates from in vi . tro 

culture. Upper (A), lower (B), and anterior end (C) of ciliates showing 10 somatic 

kinetles (Sk) on outer surface of cell. Arrowhead = oral polykinetid structures*, 

arrow = first oral polykinetid, M= macronucleus. Scale bar = 10 gm. 
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Figure 7.8 Pyridine-silver-carbonate impregnated ciliate from in vitro culture 

showing oral apparatus. M= macronucleus; m= micronucleus, OPK I= first oral 

polykinetid; OPK2 = second oral polykinetid-, OPK3 = third oral polykinetid-, 

ODKb = oral dikinetid b; ODKc = oral dikinetid c. Scale bar = 10 ýLrn. 
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Figure 7.9 Transmission electron micrograph of a ciliate from in varo culture. 

M= mitochondrial structures adjacent to the inner cell surface in-between 

kineties; K= kineties; V= vesicles. Scale bar =5 ýtm. 

Figure 7.10 Transmission electron micrograph of a ciliate from in vitro culture. 

K= kinetic; V= vesicles, arrow = possible mucocysts and associated vesicles. 

Scale bar =5 jtm. 
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Figure 7.11 Multiple alignment of rDNA sequences from the first internal 

transcribed spacer (ITS I), 5.8S and second internal transcribed spacer (ITS2) of 

the ciliate under investigation (Exp. ciliate), Orchitophrya stellarum (GenBank 

accession number AF107773) and Mesanophrys pugettensis (AF107777). Note 

that 0. stellarum (AF107773) from a seastar Asterias amurensis in Japan, is 

identical to rDNA sequences for 0. stellarum from Asterias vulgaris from Prince 

Edward Island, Canada (AF107774); Pisaster ochraceus from British Columbia, 

Canada (AF107775); and Asterias rubens from The Netherlands (AF107776). 

Also note that M. pugettensis (AF107777) is identical to M. chesapeakensis 

(AF107778). Dots indicate conserved nucleotides; dashes indicated missing 

nucleotides; letters indicate substitutions. Box indicates conserved 5.8S gene 

sequence. 
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Exp. ciliate 
0. stellarum 
M. pugettensis 

Exp. ciliate 
0. stellarum 
M. pugettensis 

1 ACACATTCAATAATGAAACACCTTAAC-TTAAGTTCTTGAAGGCGTGTTTTGAAGTAATT 
1 ......................................................... ** 
I ........................... C ................ T ......... A.. 

ý.. 

60 TATTATGGAAAAACCGCTTTCATTTCTTAAACAAACTTTTAATAAAAACAACATAACCAA 
60 ............................................................ 
60 ACC ... T.. G.. -. A ....................................... C ..... 

ITSI 

Exp. ciliate 120 AATAAAATCTAAACAAAAA TTTTCAACGGAGGATATCTTGGTTCCCATATCGA 
0. stellarum 120 .............. 

..::.................................. M. pugettensis 119 .............. . .................................. 

Exp. ciliate 
0. stellarum 
M. pugettensis 

Exp. ciliate 
0. stellarum 
M. pugettensis 

180 TGAAGAACGCAGCCAAATGCGATACGCAATGCGAATTGCAGAATTCCGCGAGTCATCAGA 
180 ............................................................ 
179 ............................................................ 

5.8S 

ITS2 

240 TCTTTGAACGCAAGTGGCGTGGGATAAACAATACCCCAGCATGTTTGTTTCAGTGTGTT 
240 ............................................................ 
239 ............................................................ 

Exp. ciliate 300 AGGAATCATATATCTTAATGCGATTGAGAAGTCTAACTTTTCTCTCGTTAAATATGAAAG 
0. stellarum 300 ............................................................ 
M. pugettensis 299 ............................ GGA ..... T. C ..................... 

Exp. ciliate 360 CGCTGAATCGTTCAGTGCCGATCGAAGTAGTCACTACTCGCTAGTGATCTCGATTGTGCT 
0. stellarum 360 ............................................................ 
M. pugettensis 359 ............................................................ 

Exp. ciliate 420 ATACTGAGGATTCACTACAGCGACTTTTTTTAAAATTAAATATCTCCTCTCAACACCTGA 
0. stellarum 420 ............................................................ 
M. pugettensis 419 ............................ ACA ... C ......................... 

Exp. ciliate 480 AATCAAGCAAGAACAC 
0. stellarum 480 ................ 
M. pugettensis 476 ................ 
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Chapter 8 

Characterisation of proteases secreted by a ciliate parasite of the Norway 

lobster. 

8.1 Introduction 

Histophagous ciliates of the genus Mesanophrys have been described parasitizing 

several crustaceans, including the shore crab Carcinus maenas (Cattaneo, 1888), 

the edible crab Cancer pagurus (Groli6r and Leglise, 1977), the dungeness crab 

Cancer magister (Morado and Small, 1994) and the blue crab Callinectes sapidus 

(Messick and Small, 1996). A histophagous ciliate identified to be of the genus 

Mesanophrys has now been found infecting Norway lobsters (Nephrops 

norvegicus) from Clyde Sea Area in Scotland (see Chapter 7). 

It is important to understand how such histophagous ciliates establish themselves 

within their crustacean hosts. One proposal is that they enter via existing lesions 

of the epidermal surface of the host, and once inside they spread through the body 

and multiply to high densities in tissues and haernolymph. Morado et al. (1999) 

report an example of this for Mesanophrys pugettensis infecting the dungeness 

crab, where the ciliate enters via lesions associated with the moult cycle. 
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In several parasitic infections, proteins released by the pathogen are found to play 

multiple roles in the establishment and progression of the disease. For example, 

parasite proteases have been found to degrade host extracellular matrix proteins, 

thus facilitating spread of the parasite within host tissues (Schulte and Scholze, 

1989). Many bacterial, fungal and protozoan marine pathogens are known to 

secrete proteases during in vitro culture; examples include Aeromonas 

salmonicida, the causative agent of fish furunculosis in salmon (Rockey et al., 

1988), the crayfish pathogen Aphanomyces astaci (SOderhlill and Unestam, 1975), 

and the oyster parasite Perkinsus marinus (La Peyre and Faisal, 1995; La Peyre et 

al., 1995). Parasitic scuticociliates of many fish species have also been reported to 

secrete proteases (Lee et al., 2003). 

Proteases secreted by these pathogens are also thought to be directly responsible 

for many of the clinical signs associated with the diseases, such as tissue 

destruction and necrotic lesions. Several reports of Mesanophrys infections in 

crustaceans have indicated that the ciliate infiltrates and consumes host tissues 

and haemocytes (Poisson, 1930; Bang et al., 1972; Messick and Small, 1996). 

The discovery of a parasitic ciliate infecting Norway lobsters, and isolation of the 

ciliate in vitro, has allowed the proteolytic factors that may play a role in its 

establishment and progression to be investigated. 
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8.2 Materials and Methods 

8.2.1 Isolation and culture of parasitic ciliate 

Routine screening of N. norvegicus from the Clyde Sea Area for the parasitic 

dinoflagellate Hematodinium led to the discovery and identification of a ciliate 

infection in a number of lobsters (see Chapter 7). Haemolymph samples were 

withdrawn aseptically from the base of the fifth pereiopod using aI ml disposable 

syringe and 25-gauge needle following sterilization of the cuticle with 70 % (v/v) 

ethanol. Infections with ciliates were identified by viewing haernolymph smears 

under low power light microscopy. Parasitic ciliates were isolated in 3.5 cm well 

plates with 0.2 ml infected haemolymph added to 5 ml culture medium in each 

well. The culture medium consisted of 10 % (v/v) heat inactivated foetal calf 

serum in autoclaved balanced Nephrops saline (Appleton and Vickerman, 1998, 

containing NaCl, 27.99 g 1"'; KC1 0.95 g 1-1; CaC12 2.014 9 1-1 ; MgS04 2.465 g 1-1; 

Na2SO4 0.554 g 1-1; HEPES 1.92 g 1-1) adjusted to pH 7.8, with penicillin G (10 U 

ml-) and streptomycin (10 pLg ml-) added to inhibit bacterial contamination. The 

medium was then filter-sterilised (0.2 gm) after addition of all constituents. 

Cultures were incubated at 8 'C. Serial sub-culturing gave rise, in time, to axenic 

cultures. 

Experimental sub-cultures for protease analysis were initiated with the addition of 

IX 105 ciliates to 5 ml culture medium in 3.5 cm well plates, in quadruplicate, and 
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were maintained at 8 'C. Cultures were checked for contamination daily. Cell 

viability was assessed by viewing cultures under phase contrast. The total volume 

of medium in each well was collected on days one, three, five and seven. The 

aliquots were centrifuged at 400 xg for 10 minutes and 4.9 ml supernatant was 

collected, passed through a 0.2 pm filter and frozen at - 80 'C. The remaining cell 

pellet was resuspended in 100 gl culture medium and 10 gl of this was mixed with 

10 gl 1% (w/v) formaldehyde (in Ix PBS) to immobilise the ciliates. Ciliates 

were counted using an Improved Neubauer counting chamber and the numbers 

per ml were estimated using standard procedures. 

8.2.2 Preparation of ciliate lysates 

Ciliates from an in vitro culture were collected, and the cell density was estimated 

as described above. The resulting ciliate suspension (5 x 104 cells 100 [tl-') was 

washed three times with Nephrops saline before being resuspended in 100 gl 

Nephrops saline. Cell lysates were prepared by freezing and thawing the sample 

three times, followed by centrifugation (10,000 xg for 10 min at 4 'C). The 

supernatant fraction of the cell lysate was carefully removed, filtered through a 

0.2 gm filter and stored frozen at -80 *C. 
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8.2.3 Spectrophotometric assay for protease activity 

Protease activities in ciliate culture medium samples were assayed by the method 

of Sarath et al. (1989). Azocasein substrate Q% w/v) was prepared by dissolving 

azocasein (Sigma) in 0.1 M Tris-HCI, pH 8.0 followed by centrifugation at 10,000 

xg for 10 min. The supernatant (substrate) was removed and stored on ice prior to 

use. The assay was initiated by the addition of 75 gl of ciliate culture medium 

sample to 125 gl substrate solution. Samples were incubated for 18 h at 37 "C. 

The reaction was then terminated by the addition of 600 gl ice cold 10 % (w/v) 

trichloroacetic acid (TCA), after which the mixtures were kept at 4 'C for 30 min. 

The samples were centrifuged at 9,000 xg for 5 min to pellet the precipitated 

proteins (including undigested azocasein). 0.6 ml of the supernatant was removed 

and mixed with 0.7 ml 1.0 M NaOH, and the absorbance, of the mixture read at 

440 nm on a spectrophotometer. One unit of protease activity was defined as the 

enzyme activity resulting in an absorbance of 1.0 in aI cm cuvette, under the 

conditions of the assay. Controls comprised cell culture media without the 

addition of ciliates. Each sample was assayed in triplicate. 

8.2.4 Substrate-impregnated SDS-PAGE 

The proteases in the ciliate culture medium and in ciliate lysates were separated 

using non-denaturing substrate gel electrophoresis according to the method of La 

Peyre et al. (1995), with minor modifications. Gelatin was added to the 8% (w/v) 
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acrylarnide resolving gel at a final concentration of 0.2 % protein (w/v). Ciliate 

culture mediumflysate samples (5 gl) were mixed with 15 gl of electrophoresis 

sample buffer (62.5 mM Tris-HCI, pH 6.8, containing SDS (2 % w/v), 0- 

mercaptoethanol (5 % w/v), glycerol (10 % w/v) and 0.004 % pyronin Y) before 

loading onto gels containing co-polymerised gelatin. Electrophoresis was 

performed using a BioRad mini-Protean system at 30 mA constant current, 

containing the Tris-glycine buffer, for 90 min at 4 'C. After electrophoresis, the 

resolved gels were incubated with shaking in Triton X-100 (2.5 % v/v in distilled 

H20) for 30 min at 4 'C to remove SDS and reactivate the resolved proteases. To 

detect proteolytic activity, the gels were incubated in 0.1 M Tris-HCI pH 8.0 for 

4-12 h at 37 'C. The gels were fixed and stained with Coomassie blue, then 

destained until clear bands were apparent where hydrolysis of embedded substrate 

had occur-red. Apparent molecular weights of the proteases were determined from 

their mobility relative to known protein standards. 

8.2.5 Effect of inhibitors on protease activity 

Stock solutions of phenylmethylsulphonyl fluoride (PMSF, 200 mM), pepstatin A 

(I mM), and 1,10-phenanthroline (200 mM) were prepared in 100 % methanol. A 

stock solution of N-(N-(L-3-trans-carboxirane-2-carbonyl)-L-leucyl)-agmatine (E- 

64,10 mM) was prepared in 100 % ethanol. Stock solutions of leupeptin (10 MM) 

and ethylenediaminetetraacetic acid (EDTA, 500 mM) were prepared in 0.1 M 

Tris-HCI pH 8.0. Stock solutions of all the inhibitors were diluted in 0.1 M Tris- 
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HCI pH 8.0 to the appropriate working concentration as listed in Table 8.1. Ciliate 

culture medium with the maximum protease activity (after 7 days of culture) was 

used in the inhibitor studies. To quantify the effects of the inhibitors, each of the 

appropriately diluted inhibitors was incubated for Ih at 37 "C with 100 gl of 

ciliate culture medium. To this was added 125 gl of azocasein substrate solution, 

and the samples incubated for 18 h at 37 *C. The proteolytic activity was 

measured spectrophotometrically as described in section 8.2.3. The samples were 

compared with assays run in the absence of inhibitors. The effect of each inhibitor 

was assayed in triplicate. 

To investigate the possible differences in inhibitor susceptibility between 

proteolytic bands, ciliate culture medium samples were resolved by gelatin-SDS- 

PAGE as previously described in section 8.2.4, with minor alterations. The 

supernatant-sample buffer mixture was loaded across all wells of the gelatin-SDS- 

PAGE mini-gel. After electrophoresis and Triton X-100 treatment, the gel was 

sectioned into six 1.5 cm vertical strips, and the strips were incubated individually 

in 5 ml of 0.1 M Tris-HCI, pH 8.0, containing the appropriate inhibitor for 6h at 

37 *C. The gels were fixed and stained with Coomassie blue, then destained. 

Inhibitor concentrations were as detailed in Table 8.1. 
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8.2.6 Effect of temperature and pH on protease activity 

The effect of temperature on protease activity in ciliate cell culture medium 

samples was examined spectrophotometrically as described in section 8.2.3. The 

procedure was identical, apart from incubating the substrate-sample mixtures at 8, 

25 and 37 "C for 18 h. For each temperature, samples were assayed in triplicate. 

The effect of pH on protease activity in ciliate culture medium samples was 

examined spectrophotometrically and by substrate-impregnated SDS-PAGE. For 

the spectrophotometric assay, azocasein substrate (3 % wIv) was dissolved in 0.1 

M Tris-HCI pH 7.0, followed by centrifugation at 10,000 xg for 10 min. The 

supernatant was removed and the pH increased by the addition of 10 M NaOH. 

Samples of substrate at pH 7.0 and 8.0 were removed and stored on ice prior to 

use. Ciliate culture medium samples (75 gl) were mixed with 125 gl substrate 

solution at the different pH values, and incubated for 18 h at 37 "C. Protease 

activity was measured as described in section 8.2.3. Controls comprised culture 

media without the addition of ciliates. Each substrate sample was assayed in 

triplicate. Ciliate culture medium samples were subjected to gelatin SDS-PAGE, 

and washed in Triton X-100 as described in section 8.2.4. Each gel was sectioned 

into respective sample lanes and incubated individually in 5 ml of 0.1 M Tris-HCI 

at pH 7.0 and 8.0 for 6h at 37 'C. The gels were then stained and destained as 

described in section 8.2.4. 

156 



Chapter Eight - Ciliate Proteases 

8.2.7 Effect of proteases on host muscle proteins 

The effect of proteases present in ciliate culture medium, on host tissue proteins 

was investigated using a sample of abdominal flexor muscle from the Norway 

lobster. Briefly, 100 mg of abdominal flexor muscle was homogenised in 500 gl 

0.1 M Tris-HCI pH 8.0, followed by centrifugation at 3,000 xg for 10 min. The 

muscle protein supernatant was removed and placed on ice prior to use. Samples 

of protein supernatant (20 gl) were mixed with 20 gl ciliate culture medium (day 

7) and 20 gl 0.1 M Tris-HCI pH 8.0. Reaction mixtures were incubated at 8 'C for 

15 h. Controls included the incubation of 0.1 M Tris-HCI pH 8.0, with protein 

supernatant, ciliate culture medium, and un-inoculated culture medium under the 

same conditions. Protein degradation was evaluated by standard SDS-PAGE 

(Sambrook et al., 1989). 

8.3 Results 

8.3.1 Protease activity and ciliate growth in vitro 

Ciliate density increased approximately 10-fold over 7 days in culture. Ciliates 

were always observed to be mobile and viable when cultures were examined daily 

under phase contrast. Measurement of lactate dehydrogenase (as a marker of cell 

integrity), by the method of Denton (1996), was attempted, but the culture media 

used gave a strong positive result, eliminating this as an additional indicator of 
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viability. Protease activity in ciliate culture medium samples was detected as early 

as I day post-inoculation, and increased over days 3,5, and 7. This increase in 

activity correlated closely with the increase in ciliate density (Fig. 8.1). No 

proteolytic activity could be detected in un-inoculated culture medium. 

83.2 Detection of proteases in ciliate culture medium and lysates by gelatin 

SDS-PAGE 

The presence of multiple protease activities in ciliate culture medium and lysate 

samples was confirmed by gelatin SDS-PAGE. Twelve zones of hydrolysis with 

estimated molecular masses ranging from 20 to 220 kDa were detected in the 

culture medium samples, while only 8 areas of distinct hydrolysis were evident in 

lysate samples, with estimated molecular masses ranging from 20 to 220 kDa 

(Fig. 8.2). The profile of protease activities in the ciliate lysate differed not only in 

a reduction of bands of gelatin hydrolysis (notably the absence of the 50 kDa band 

(band 7) observed in ciliate culture medium samples), but also in intensity of 

gelatin digestion. The low molecular mass bands (20-50 kDa) appeared faint, 

while the high molecular mass bands (70-220 kDa) were very intense. 

8.3.3 Effect of inhibitors on proteases present in the ciliate culture medium 

Pre-incubation of ciliate culture medium samples with protease inhibitors before 

measuring the effect by the spectrophotometric assay, revealed marked inhibition 
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of protcolytic activity when samples were incubated in the presence of 10 MM 

1,10-phenanthroline (2.5 ± 8.8 % activity) (Table 8.1). Partial inhibition was 

observed with the addition of EDTA (42.9 ± 3.3 % activity, 10 mm). However, 

addition of the inhibitors PMSF, Pepstatin A, E-64 and Leupeptin had no effect on 

the proteolytic activity of culture medium samples. The activities of all proteases 

separated by gelatin SDS-PAGE were completely inhibited when the post- 

electrophoresis activation buffer contained 10 mM 1,10-phenanthroline (Table 

8.1). The inclusion of 10 mM EDTA in the incubation buffer inhibited totally the 

majority of proteases apart from the 3 largest proteases, which were partially 

inhibited in apparent activity. Addition of the inhibitors PMSF, Pepstatin A, E-64 

and Leupeptin did not detectably inhibit hydrolysis of gelatin. 

8.3.4 Effect of temperature and pH on protease activity in ciliate culture 

medium 

In order to investigate the effect of temperature on enzyme activity, protease 

activity in ciliate culture medium samples was assayed by the spectrophotometric 

assay at different temperatures. Protease activity could be detected at 8 'C (2.17 ± 

0.48 U ml-1), and increased 4.5 fold to 9.77 ± 0.19 U ml" when the assay was 

performed at 37 *C (Table 8.2). Spectrophotometric measurements of protease 

activity indicated that the hydrolysis of azocasein was highest at pH 8.0 (7.42 ± 

0.22 U ml-1) when using 0.1 M Tris-HCI as the buffer. Decreasing the pH to 7.0 

resulted in a reduction of protease activity (6.45 ± 0.23 U ml-1). Gelatin SDS- 
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PAGE of ciliate culture medium samples revealed 12 distinct zones of hydrolysis 

using 0.1 M Tris-HCI at pH 7.0 and 8.0 (data not shown). However, the 

hydrolysis was more intense at pH 8.0. 

8.3.5 Host protein degradation by proteases; present in ciliate culture 

medium 

The multiple proteases present in the ciliate culture medium samples were shown 

to have a selective effect on several abdominal flexor muscle proteins (lane C, 

Fig. 8.3) In particular, the myosin heavy chain and one of the troponin I family of 

proteins were completely degraded. There was also degradation of several 

unidentified muscle proteins with masses in the range of 100-120 kDa. However, 

the paramyosin, actin and other muscle proteins remained unaffected. Degradation 

of the FCS protein component of the culture medium secreted proteases, was 

apparent in ciliate culture medium samples (lane D, Fig. 8.3) but not in non- 

inoculated control culture media (lane E, Fig. 8.3). 

8.4 Discussion 

Parasitic proteolytic enzymes are proposed to be involved in parasite nutrition, 

anti-coagulation and evasion of the host immune system (McKerrow, 1989). They 

are also thought to play a key role in the processes of penetration and migration 

through host tissues (Klemba and Goldberg, 2002). The extensive tissue 
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infiltration and damage observed during Mesanophrys infections in crustaceans 

(Armstrong et al., 1981; Sparks et al., 1982; I-libbits and Sparks, 1983; Messick 

and Small, 1996) also indicates that proteases may be involved in such processes. 

The results of this study show that the Mesanophrys sp. ciliate multiplied during 

in vitro culture, with density increasing 10-fold over the 7-day period of the 

experiment. Comparable increases in ciliate numbers have been observed in 

experimental infections of Cancer pagurus and Cancer magister with 

Mesanophrys sp. (Bang et al., 1972; Cain and Morado, 2001). A number of other 

marine ciliates have been cultured under axenic conditions (Hanna and Lilly, 

1971; Nerad and Daggett, 1992), including several ciliate parasites of aquatic 

hosts (Ekless and Matthews, 1993; Morado, 1993; Sterud, 1998; Inglesias et al., 

2003). Ciliate densities of the scuticociliate fish pathogen Philasterides 

dicentrarchi have been observed to multiply 5-fold over 7 days (reaching a 

plateau phase after 3 days) during in vitro culture using a similar seeding density 

to that used in the present study (Inglesias et al., 2003). However the culture 

volumes were only 0.5 ml, and this may have limited further growth due to 

limited nutrients and the build-up of waste products. 

Associated with the increase in ciliate growth in vitro was the release of 

extracellular proteins that possess proteolytic activity. As the Mesanophrys 

ciliates in this study appeared viable at all inspections, and in exponential growth 

when the experiment was terminated (day 7), the extracellular proteases detected 
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in the culture medium were interpreted as having been secreted. The linear 

relationship of protease secretion with time suggests that the secreted proteases 

did not accumulate in the medium, possibly indicating that the enzymes were 

degraded, or had an autocrine function. 

Inhibitory studies using both spectroscopic and substrate impregnated SDS-PAGE 

methods (Table 8.1) indicate that the proteases secreted by the ciliate are of the 

metallo class, with complete and partial inhibition of activity observed using the 

inhibitors 1,10-phenanthroline and EDTA, respectively. Metalloproteases 

produced by several protozoan parasites are thought to contribute to the invasion 

and degradation of host tissues (McKerrow et al., 1993), and thus play an 

important role in the progress of the disease. Metalloproteases have been 

documented from a number of marine pathogens during in vitro culture, including 

the piscine haernoflagellate Cryptobia salmositica (Zuo and Woo, 1998), the 

bivalve pathogen Vibrio alginolyticus (Nottage and Birkbeck, 1987), the fish 

pathogen Aeromonas salmonicida (Arnesen et al., 1995), and, significantly, the 

scuticociliate parasite of fish Uronema marinum (Lee et al., 2003). In the study of 

Lee et al., metalloprotease secretion was detected as early as 10 min in ciliate cell 

suspensions by fluorescence polarization, and they suggest that metalloproteases 

are involved in the pathogenesis of ciliate infection in fish. Other species of 

ciliates such as Tetrahymena pyriforinis and T. thennophilia have previously been 

shown to contain and secrete proteases (Banno et al., 1983; Straus et al., 1992). In 

these examples, it is proposed that the proteases are involved in both intracellular 
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and extracellular digestion. Furthermore, lysosomal-released enzymes from T. 

thennophilia have been implicated in the process of extracellular digestion and 

parasite nutrition, with proteolytic enzymes facilitating the release of host 

particulate and soluble nutrients (Florin-Christensen et al., 1985; Tiedtke and 

Rasmussen, 1988). Therefore, the enzymes released by this Mesanophrys sp. may 

facilitate nutrient uptake, both in vitro and in vivo. 

Many parasitic protozoa contain or secrete multiple proteases, examples being the 

clam parasite Pseudoperkinsus tapetis (Ordds et al., 2001), and the oyster parasite 

P. marinus (La Peyre et al., 1995). In the present study, the proteases observed in 

the ciliate culture medium migrated as 12 distinct proteolytic bands on gelatin 

SDS-PAGE gels having molecular masses of between 20 to 200 kDa. Substrate 

gel electrophoresis depends upon the regeneration of proteolytic activities 

following electrophoresis, however it is possible that some proteases may be 

inactivated by clectrophoresis and are therefore undetected. The estimated 

molecular weights of the proteolytic enzymes resolved are an approximation due 

to the electrophoretic technique, and purification of the proteases from the culture 

medium is required for accurate determination of molecular weights. 

The substrate specificities of individual enzymes were not examined but warrants 

further investigation as the proteases secreted have been shown to act in a 

selective manner on host tissue proteins. Proteases present in the culture medium 

were observed to be active at 8 *C, and had maximum activity at pH 8.0 but also 
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had significant activity at pH 7.0 (87.3 %), indicating that at the physiological 

temperature and pH range of lobster tissues and haemolymph the proteolytic 

enzymes would be active. 

During Mesanophrys infections, expansive host tissue penetration and destruction 

are common observations (Armstrong et al., 1981; Sparks et al., 1982; Hibbits 

and Sparks, 1983; Messick and Small, 1996). The present study has shown that 

proteases present in ciliate culture medium selectively degrade the myosin heavy 

chain along with one of the troponin I family of proteins from N. norvegicus 

abdominal flexor muscle in vitro. Several unidentified muscle proteins with 

masses in the range of 100-120 kDa were also degraded, but the paramyosin, actin 

and other muscle proteins remained unaffected by the proteases. It has been 

suggested that the multiple proteases secreted by Perkinsus marinus degrade gut 

epithelium and basement membranes of the eastern oyster, Crassostrea virginica, 

favouring parasitic invasion and spread in oyster tissues (La Peyre et al., 1996). 

The myosin heavy chain proteins are present in all muscle groups and also other 

tissues within the lobster host, and thus proteases secreted by the ciliate in vivo 

will degrade these tissues, facilitating tissue penetration and consumption. 

Hemocytopenia is a classic symptom of advanced ciliate infections in crustaceans 

(Cattaneo, 1888; Armstrong et al., 1981; Sparks et al., 1982; Cain and Morado, 

2001). A recent study has shown that experimental infection of dungeness crabs 

with Mesanophrys pugettensis resulted in a marked reduction in haemocyte 
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numbers 6 days post-inoculation, with differential cell counts indicating that 

intermediate granulocytes were more rapidly depleted than other cell types (Cain 

and Morado, 2001). It is known that extracellular proteins can modify the immune 

system of the host. An example of this is the 64 kDa protease and extracellular 

proteins secreted by A. salmonicida, which suppresses the humoral immune 

response of Atlantic salmon, Salmo salar, resulting in leucopenia and allowing the 

bacteria to spread via the circulatory system and invade other tissues (Ellis et al., 

1981; Hussain et al., 2000). Extracellular proteins from A. salmonicida are also 

reported to induce degranulation of eosinophilic granular cells, releasing 

vasoactive compounds leading to acute shock in Atlantic salmon (Ellis et al., 

1981). Similarly, the pathogenic haernoflagellate Cryptobia salmositica secretes a 

metalloprotease which can directly lyse fish erythrocytes causing anaemia (Zuo 

and Woo, 2000), while the proteases secreted by the apicomplexan oyster parasite 

P. marinus compromise oyster host defence mechanisms by inhibiting haemocyte 

motility and degrading plasma lysozyme and hernagglutinins (Garreis et al., 

1996). Therefore the depletion of haemocytes, and in particular granulocytes, 

during Mesanophrys infections of crustaceans, attributed to consumption by 

ciliates, may also be due in part to the effect of secreted proteases and this 

possibility warrants further study. 
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Table 8.1 Effect of inhibitors on the activity of proteases present in ciliate 

culture medium. Activity of 100% is equivalent to 7.08 ± 0.33 U mi". Mean ± SD, 

N=3. 

Table 8.2 Effect of temperature on the activity of protcases present in ciliate 

culture medium. Mean ± SD, N=3. 
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Inhibitor Concentration Protease Inhibition of 
activity gelatin SDS- 
(% Control) PAGE digestion 

Control (OAM Tris-HCI) pH 8.0 100 ± 4.6 None 
Control (Ethanol) 94.5 ± 6.1 None 
Control (Methanol) 95.9 ± 2.9 None 

Serine protease/Cysteine 
protease inhibitors: 
PMSF 1 mm 94.6 ± 2.4 

10 mm 92.0 ± 2.8 None 
Leupeptin 1 AM 94.4 ± 2.9 

10 gm 91.1 ± 3.7 None 

Cysteine protease inhibitor: 
E-64 1 pm 97.5 ± 5.2 

10 ILM 94.2 ± 2.5 None 

Aspartic protease inhibitor: 
Pepstatin AI RM 92.5 ± 4.4 None 

Metallo-protease inhibitors: 
1,10 phenanthroline 1 mm 41.4 ± 3.8 

10 mm 2.5 ± 8.8 Complete 
EDTA 1 mm 87.0±3.6 

10 mm 42.9 ± 3.3 Partial 

-I Assay temperature ("C) Protease activity (U ml ) 

8 2.17 ± 0.48 

25 6.23 ± 0.31 

37 9.77 ± 0.19 
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Figure 8.1 Changes in ciliate density and protease activit) in culture medium 

during the experimental time period of 7 days. Mean ± SD. N=3. 

Figure 8.2 Detection of proteases in ciliate culture medium (A i. and ciliate crude 

Iýsates (B), by gelatin-SDS-PAGE. The molecular mass AI%Vý standards are I 

indicated on the left in kilodaltons (kDa), arrows indicate areas ofhýdrolysis. 
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Figure 8.3 Digestion of deep abdominal flexor (DAF) muscle proteins by 

proteases present in ciliate culture medium. Lane A. molecular mass standards. sizes 

are indicated on the left in kilodaltons (kDa). lane B. DAF protein sample incubated 

in the absence of ciliate culture medium. lane C. DAF protein sample incubated in the 

presence of ciliate culture medium: lane D. ciliate culture medium sample: lane E. 

un-inoculated (control) culture medium sample. Note the degradation of DAF muscle 

proteins in lane C (arrows). Also note the reduced intensit% (dwestion) of FCS 

proteins in the ciliate culture medium sample (lane D) compared to the control 

medium sample (lane E). MHC, myosin heavy chaiw P, param)osin: Ac. actin. Tnt. 

Troponin I family. 
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Chapter 9 

General Discussion 

The results presented in this thesis describe a number of technical developments 

that provide opportunities for further research on the parasitic infections of the 

Norway lobster and have provided new insights into a number of aspects of their 

genetic identity, infectivity and virulence, but they have also identified several 

unresolved issues. 

Within the Clyde Sea Area there is a detailed knowledge of the epidemiology of 

Hematodinium infection of N. norvegicus, with several studies documenting the 

seasonal pattern of infection (Field et al., 1992; Field et al., 1998; Stentiford et al., 

2001c), and the effects on host tissue function and physiology (Field et al., 1995; 

Taylor et al., 1996; Stentiford et al., 2000b, 2001a), and behaviour (Stentiford et 

al., 2000a, 2001d). In contrast to the detailed knowledge for this N. norvegicus 

fishery, the information available for other N. norvegicus stocks around the UK 

coast is limited to basic prevalence studies, e. g. for the Irish Sea (Briggs and 

McAliskey, 2002). In part, this is due to the fact that a simple diagnostic assay 

has not been available. Chapter 2 describes the development of such an assay, 

which uses previously obtained polyclonal anti-Hematodinium antiserum in an 

enzyme linked immunosorbent assay (ELISA). This diagnostic method can be 

used for detection of the parasite in the haemolymph of affected lobsters, and is 
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particularly useful for screening large numbers of samples. It will therefore 

facilitate the investigation of the prevalence of Hematodinium infections in N. 

norvegicus and other crustacean stocks around the UK and elsewhere. 

Among the questions that may be addressed by such surveys are: does the 

seasonal pattern of infection of N. norvegicus observed in the Clyde Sea Area also 

occur in other locations, and if so does it show any systematic shift with latitude 

or with geographical area? At the only other location where the infection peak has 

been identified, in the Swedish Skagerrak, it occurs in the autumn (in contrast to 

the spring peak found in the Clyde Sea Area) (K. Frohlund, Havsfiskelaboratoriet 

Sweden, personal communication). Therefore, it is to be expected that differences 

will also be found between the various Scottish locations that support important 

fisheries. 

Fisheries surveys of this kind, using the ELISA screening assay, can make an 

important contribution to the interpretation of the biology of this parasite. As an 

example, consider the speculated link between infection and the moulting cycle of 

the host. Available evidence suggests that the N. norvegicus populations in 

Northem Scotland moult at a later time in the year than the Clyde population, due 

to their higher latitudes Q. Atkinson, University of Glasgow, personal 

communication). If this proves to be so, an opportunity is provided to test the 

hypothesis that the infection peak is linked to the stresses of moulting. If a causal 

link exists, then the infection peak should also occur at a later time at higher 
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latitudes. Other important insights into the factors that influence the seasonality or 

route of transmission of Hematodinium may also be obtained in such ways. 

The development and implementation of a PCR assay and DNA probes for the 

detection of Henzatodinium, based on the amplification or recognition of DNA 

from the parasite (Chapter 3), provide a further level of sensitivity and specificity 

in the diagnosis of this parasite. These techniques offer a number of opportunities 

not only for investigating the epidemiology of Hematodinium infection in greater 

detail, but also for comparing the identity of parasites obtained from various host 

species and at different locations. 

Applying molecular diagnostic methods to the study of Hematodinium infection in 

N. norvegicus will enhance our knowledge of the life cycle of this parasite. In 

particular they will facilitate low-level infection diagnosis in the lobster, which is 

critical for the investigation of latency and for deten-nining the sequence of life 

cycle stages. Furthermore, molecular probes could help investigate the mode of 

Hematodinium transmission, which at present is unknown, although it has been 

suggested that dinospores are the most likely infective stage (Appleton and 

Vickerman, 1998). The molecular probes will also be an important tool for 

investigating whether other crustacean species such as amphipods act as 

secondary hosts in the life cycle of Hematodinium, and are involved in its 

transmission to N. norvegicus. 
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Clarifying the spatial distribution of genetic variation within Hematodinium sp. 

infecting crustaceans common to UK waters (Chapter 4) is essential for a proper 

interpretation of potential virulence differences. While Hematodinium infections 

have previously been recorded from a variety of crustacean species at several 

locations around the UK (Field et al., 1992; Field et al., 1998, Stentiford et al., 

2002), the present study found no substantial strain variation in relation to either 

the geographical distribution of one host (N. norvegicus), or to a range of different 

crustacean hosts. This finding has a number of consequences for interpreting the 

virulence of Hematodinium infection in different hosts. Thus the severe disruption 

caused by Hematodinium infection to Cancer pagurus (Stentiford et al., 2002), 

compared to the much less distinct disruption caused to abdominal muscles of N. 

norvegicus (Stentiford et al., 2000b) has been ascribed to the former harbouring a 

more virulent strain. However, the present study indicates that these two 

crustacean hosts are infected by strains of Hematodinium that have complete 

genetic identity over the first internal transcribed rDNA gene region (ITS I), and 

hence should probably be ascribed to a single species. Therefore differences in 

virulence must be due either to differences in host susceptibility, or to the 

expression of different virulence-related genes by the same parasite species in 

different hosts. 

This study is the first to report and confirm Hematodinium infection of N. 

norvegicus from the North Minch and Fladen fishing grounds, situated on the 

North West and North East of Scotland, respectively (Chapters 2,3 and 4). It has 
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previously been suggested that limited water mixing and flushing within confined 

bodies of water such as the Scottish Sea lochs, the fjords of Alaska, and the 

shallow lagoons on the East coast of America may be contributing factors in the 

increased prevalenccs of Heniatodinium in N. norvegicus, C bairdi and C 

sapidus, respectively (Shields, 1994). Associations with changing temperatures 

and salinities, and also with pollution are thus implied. However, since the North 

Minch and, in particular the Fladen fishing grounds are offshore, and hence 

subject to strong tidal conditions, any association of Hematodinium epizootics 

with the conditions within confined water bodies cannot be strong, and such 

claims may in fact be misleading. This highlights the need to apply caution when 

linking infection episodes with possible degradation of the environment. 

The results of attempts to initiate in vitro cultures of H. perezi from the blue crab, 

Callinectes sapidus, (Chapter 5) show that this parasite has life cycle stages that 

are morphologically similar to those of the Hematodinium sp. from N. norvegicus 

(Appleton, 1996; Appleton and Vickerman, 1998). However, in both species only 

a few of the stages that occur in vitro have also been observed in vivo (Newman 

and Johnson, 1975; Field and Appleton, 1995; Field and Appleton, 1996; Shields 

and Squyars, 2000). This discrepancy between growth of the parasites in vivo and 

in vitro hinders the comprehensive analysis of their life history progression, and 

further attention is required to both the composition of the culture media and the 

growth conditions. 
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Appleton (1996) suggested that the Hematodinium culture medium might not have 

essential elements needed for efficient parasite growth and differentiation, as the 

time period between sporogenic events was lengthy. In addition, enrichment of 

the culture medium with amino acids was observed to alter the size and the 

number of nuclei in filamentous trophonts, indicating that media constituents can 

alter parasite morphology. Likewise, MacIntyre et al. (2003) reported that 

Perkinsus marinus culture medium supplemented with oyster tissue extracts had a 

pronounced effect on the differentiation of parasite cells, resulting in the 

appearance in vitro of P. marinus cells that were morphologically comparable to 

those observed within host oyster tissues. Consequently, those involved in the 

future culture of Hematodinium sp. may want to replace the artificial foetal calf 

serum component of the medium with host haemolymph or tissue extracts, and to 

determine if this has an effect on parasite morphology and life cycle events. 

During the course of routine examinations of Hematodinium infection in N. 

norvegicus, a parasitic ciliate was observed in the haemolymph of a number of 

lobsters (Chapter 7). Silver carbonate impregnation techniques that stain the 

nuclear and oral structures as well as the infraciliature, along with electron 

microscopy studies indicate that, on morphological criteria, the ciliate is a 

member of the genus Mesanophrys. However ribosomal DNA sequence analysis 

point to an affinity with Orchitophrya stellarum, a ciliate parasite of sea stars. 

Both ciliates cause extensive tissue damage to their respective hosts. 
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It is worth noting that within the live trade market, Norway lobsters are held in 

impoundments for preconditioning prior to transport abroad. In such confined 

situations, the likelihood of infectious disease outbreaks is high. Thus reports of 

parasitic ciliates involved in significant post-harvest losses of the American 

lobster, Homarus americanus, (Aiken et al., 1973) are an indication that the ciliate 

identified in this study may pose a significant threat to Norway lobsters held in 

impoundments. Further prevalence studies are required to address whether this is 

an issue for concern. 

Evidence presented in this study has suggested that certain Hematodinium sp. 

(from C sapidus and N. norvegicus) can be distinguished from each other by 

internal and extracellular enzyme activity (Chapter 6). Enzymatic profiles have 

been used to type other pathogens (Poh and Loh, 1985; Grehn et al., 1991; 

Garcfa-Martos et al., 2000) and may be applied to type Hematodinium sp. 

However, C. sapidus has been shown to be molecularly (Hudson and Adlard, 

1996; and Chapter 4 of this study) and pathologically (Shields and Squyars, 2000) 

very different from the Hematodinium sp. infecting N. norvegicus. Thus it is 

unsurprising that internal and external enzyme profiles of the two species are 

different. 

The secretion of the enzymes acid phosphatase and leucine arylamidase by the 

Hemarodinium sp. (Chapter 6) may aid parasite survival by mediating their 

nutrition and/or by allowing them to evade the host immune response. The first 
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suggestion is supported by the studies of Appleton and Vickerman (1996), who 

identified circulating sporoblasts that possessed micropores that participated in 

endocytosis. Thus the secreted enzymes may play a role in host tissue 

degradation, allowing products to be intemalised through the micropores. 

Endosomal compartments have been observed in H. pered via staining with 

neutral red (Chapter 5) further substantiating this as a possible method of parasite 

cell nutrition. 

The second suggestion is that the enzymes contribute to evasion of the host 

immune response. Both acid phosphatasc and proteascs have been identified as 

important for parasite survival of the host immune response (discussed in 

Chapters 6 and 8). Crustaceans possess an innate immune system, which when 

triggered by microbial cell wall components, initiates the synthesis of several 

antibacterial peptides, the activation of the prophenoloxidase system, the release 

of several cell adhesion proteins from granulocytes, and phagocytosis of invading 

microorganisms (Th6mqvist and WerMill, 1997). This study (Chapter 6) has 

shown that the Hematodinium sp. infecting N. norvegicus secretes acid 

phosphatases that may be involved in inhibition of oxygen radicals produced from 

the oxidative burst of haemocytes. Further studies are required to establish 

whether Hematodinium sp. possess other immunomodulatory enzymes such as 

superoxide dismutase and catalase (both of which catalyse superoxide and 

hydrogen peroxide into water and oxygen). In addition, measurement of immune 
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system markers in Hematodinium-infected N. norvegicus may elucidate the 

pathogenic mechanisms of parasite development. 

Evidence presented in the current study suggests that the pathogenicity of the 

Hematodinium sp. from N. norvegicus and C sapidus, and of the Mesanophrys sp. 

ciliate isolated from N. norvegicus may be correlated with proteases released by 

the parasites. The Hematodinium infection in N. norvegicus is considered to be a 

gradual process spanning a period of almost one year, with tissue invasion 

occur-ring before patent haernolymph infections are detectable (Field and 

Appleton, 1995). Additionally, it has not been possible to infect lobsters 

experimentally (Vickerman, 1994). Both these features corTelate with an absence 

of secretion of proteases by the Hematodinium sp. from N. norvegicus (Chapter 

6). 

In contrast, H. perezi from C sapidus, which has been found to contain and 

secrete proteases, is readily transmittable to naYve blue crabs and causes 

mortalities in as little as 14 days after injection of infected haemolymph (Shields 

and Squyars, 2000). In a similar way, the Mesanophrys sp. of ciliate identified 

infecting Norway lobsters (Chapter 7) was also found to secrete a number of 

metalloproteases, which were selective in the degradation of several host proteins 

(Chapter 8). Since experimental infection of other crustaceans by Mesanophrys 

sp. is nearly always fatal, and the time to death is rapid, this reinforces a 

relationship between proteolytic activity and virulence. 
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Thus the conclusion can be drawn that the Hematodinium sp. from the Norway 

lobster is less aggressive than these other highly proteolytic species in its mode of 

infection and replication. Its action appears to be largely by a combination of 

functional starvation and hypoxia due to the large number of parasites that 

consume the tissues and circulatory system (Taylor et al. 1996; Stentiford et al., 

2001a). However, the possibility cannot be excluded that it produces differential 

effects in different tissues, perhaps by triggering the release of intrinsic proteolytic 

enzymes (e. g. in the claw muscles). Finally it can be envisaged that the morbidity 

induced by Hematodinium facilitates secondary infections by other pathogens, and 

it is the effects of these that are ultimately fatal. 

The present findings therefore focus attention on these more subtle aspects of the 

pathogenicity of Hematodinium infections of N. norvegicus, and their effect on 

the host immune response. These are among the more important questions to be 

addressed in the next phase of research on this parasite. 

Future prospects 

A recent meeting on The Future of the Clyde Fisheries at UMBS Millport in 

February 2004, attended by all stakeholders from fisherman to processors and 

regulatory bodies, has highlighted the importance of scientific knowledge about 

the Norway lobster for the survival and profitability of the industry. The Clyde 

Sea Area is now a single-species fishery for N. norvegicus, which is coming under 
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greater pressure as EU regulations restrict the capture of white fish such as cod. 

At the same time increasing numbers of smaller 'prawns' are being taken, in an 

attempt to maintain profits. However, the scientific work on the biology of 

Hematodinium infection in N. norvegicus, which has identified annual peaks of 

infection that sometimes can exceed 50% prevalence and are greatest in smaller 

animals, suggests a possible scenario in which the whole stock is driven towards a 

catastrophic collapse. 

The need for proper management of these prawn stocks in the Clyde has therefore 

become increasingly urgent, and in an innovative move the stakeholders have 

agreed to set up a local management group with the aim of exploiting the fishery 

in a sustainable manner. As part of their management plan, a regular scientific 

assessment of the stock is to be implemented, including screening for 

Hematodinium using the most sensitive methods available such as those 

developed in this project. This will allow decisions to be made about restricting 

fishing activities, by week-end bans or by closed fishing zones, in order not only 

to conserve stocks, but also to prevent animals of reduced quality (including those 

infected with Hematodinium) from entering the supply chain, and thus threatening 

consumer confidence. 

These developments in responsible management may represent a model for other 

fisheries around the world that become threatened by over-exploitation. Since 

infections become increasingly important factors in causing mortality when stocks 
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are depleted, knowledge about them is important not only from a purely biological 

perspective, but also in order to inform management decisions in economically- 

important and heavily exploited fisheries. 
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ABSTRACT: Norway lobsters Nephrops norvegicus from the 
coastal waters of Scotland are seasonally infected by a para- 
sitic dinoflagellate of the genus Hematodinium. An enzyme- 
linked immunosorbent assay (ELISA) has been developed 
for the detection of the parasite in the haemolymph of N. 
norvegicus. The ELISA is simple to perform with a detection 
limit of 5x 101 parasites m171 haemolymph. The ELISA is 
currently being used to study the prevalence and seasonality 
of Hematodinium infection in N. norvegicus and other crus- 
tacean hosts. 
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The Norway lobster Nephrops norvegicus supports a 
major commercial fishery in the Northeast Atlantic. 
Lobster populations of this region harbour an infection 
by a parasitic dinoflagellate of the genus Hemato- 
dinium (Field et al. 1992). Infection of N. norvegicus 
by Hematodinium species was initially diagnosed by 
the dull orange colouration of the carapace and ap- 
pendages; such lobsters were also observed to be mori- 
bund with milky white haemolymph. However, this 
diagnostic method lacks sensitivity as only advanced 
infections can be reliably identified (Field et al. 1992, 
Stentiford et al. 2001a). A more sensitive method was 
later developed in which the pleopod is examined 
under low power light microscopy for the aggregation 
of parasites in the vasculature (Field et al. 1992, Field & 
Appleton 1995). The severity of infection is staged 
using a 5-point scale, from uninfected to the most 
advanced infection. The pleopod method is a reliable 
field method for identifying advanced infections, but it 
is unable to detect low level haemolymph infection, 

*E-mail: 9909258s@student. gla. ac. uk 

and also requires a degree of training and stan- 
dardisation. 

Immunodiagnostic techniques can detect several 
pathogens of marine organisms (Bryant et al. 1999, 
Poulos et al. 1999, Hsu et al. 2000). An indirect fluo- 
rescent antibody technique (IFAT) developed using a 
polyclonal rabbit antiserum. raised against an in vitro 
culture of several vegetative forms of Hematodinium 
from Nephrops norvegicus showed that some N. nor- 
vegicus harbour infections outside of the main infec- 
tive season (Field & Appleton 1996). More recently, a 
Western blot method has been developed using the 
polyclonal anti-Hematodinium antiserum and applied 
to study the occurrence and progression of infection 
(Stentiford et al. 2001b). Both immunoassays offer 
greater sensitivity and specificity than the previous 
diagnostic methods, but are time-consuming and com- 
plex procedures, requiring trained personnel. Hence 
an enzyme-linked immunosorbent assay (ELISA) has 
been developed which can screen large numbers of 
samples in a short time and has greater sensitivity than 
the Western blot procedure. 

Materials and methods. Collection and maintenance 
of lobsters: Norway lobsters Nephrops norvegicus 
were caught by otter bottom trawl (70 mm mesh size) 
at locations south of Little Cumbrae in the Clyde Sea 
Area (55.4 1*N, 4.56* W). The lobsters were transported 
in a cool, damp environment after capture, then main- 
tained in a closed seawater system at 10*C and 3D. 
salinity prior to experimental study. 

Haemolymph preparation: For routine assessment, 
haemolymph samples were withdrawn from the base 
of the fifth pereiopod using a1 ml disposable syringe 
and 25-gauge needle, allowed to clot, frozen to -20*C 
and thawed once. All subsequent treatments were per- 
formed at 22*C. The haemolymph samples were vor- 
texed and a 15 ill aliquot of each haemolymph sample 
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was then diluted in 285 pI of distilled water. From thi, 
100 pI was transferred into each of 2 wells of a 96-ý%,,.! 
microliter plate (Immulon 4 HBX); for each haeiiiý - 
lymph sample the ELISA was carried out in duplica,, 
After initial incubation for 30 min, plates were wash(ý(i 
4 times with phosphate -buffered saline (PBS) (pH 7 '2i 
with 0.05 % v/v Tween 20. Plates were then incubat(, (j 
for 30 min with 100 pI well-' rabbit anti- Hema todini u in 
antiserum (1/2000 dilution) (see Field & Appleton 1996 
for antiserum production). Plates were again washed 
4 times, followed by a third incubation for 30 min with 
100 pl well-' goat anti-rabbit horseradish peroxiclase 
conjugated antibody (1/500 dilution) (Diagnostics Scot- 
land). Plates were washed 4 times and 100 pl TMB 
substrate (3,3', 5,5'-tetramethyl benzidine) (Dynex 
Technologies) applied for colour development by incu- 
bation for 20 min in darkness. The optical density (OD) 
of the wells in the microliter plate was then measured 
at 690 nm with an ELISA reader (Titertec Multiscan). 

Sensitivity of ELISA: For determining the sensitivity of 
the ELISA test, a hdemolymph sample was taken from a 
lobster that gave a positive result in the routine ELISA 
assessment, but displayed no external signs of infection. 
An aliquot of this sample was diluted 1: 1 in marine anti- 
coagulant 1450 mM sodium chloride, 100 mM glucose, 
30 mM trisodium citrate, 26 mM citric acid and 10 mM 
EDTA pH 4.6,1020 mOsm kg-1) and transferred into 
an Improved Neubauer counting chamber. Parasite cell 
numbers were counted and the numbers per ml esti- 
mated using standard procedures. The sample was 
frozen to -20'C, then thawed and 6 aliquots were serially 
2-fold diluted and assayed by the ELISA procedure 
above. A sample of uninfected haemolymph was as- 
sayed by the same method and a comparison of the OD 
values from infected and uninfected haemolymph was 
performed by the Mann-Whitney U-test. Significance 
was considered to be at p<0.005. 

Comparison of techniques for detection: Routine 
assessment of infection was made on a sub-sample 
from 2 monthly trawls using both the pleopod staging 
method of Field & Appleton (1995), and Western blot- 
ting of haemolymph samples described by Stentiford et 
al. (2001b). These assessments were then compared 
with the results from the ELISA conducted on the same 
haemolymph samples. Haemolymph samples from 
lobsters testing positive for Hematodinium infection 
by the ELISA method alone were assayed by the IFAT 
technique of Field & Appleton (1996) to confirm infec- 
tion status. In this instance, the bovine serum albumin 
(BSA) used during the washing steps was replaced 
by an equivalent amount of porcine gelatin, because 
the anti- Hernatodinium antibody reacts with BSA on 
Westei n blots (Stentiford et al. 2001 b). 

Results. Evaluation and sensitivity of ELISA: The 
ELISA could detect the presence of Hematodinium in 

C 
Fig. 1. Section of ELISA plate 
showing (A) advanced infection, 
(B) low-level infection, (C) unin- 
fected, and (D) negative control 

ELISA reactions 

haemolymph samples. There was some antibody bind- 
ing in uninfected samples but this was considerably 
lower than for both low-level and advanced infection 
samples (Fig. 1). 

Serial dilutions of a haernolymph sample with a 
known number of parasites present were used to 
determine the sensitivity of the assay (Fig. 2). The 
lowest density sample that was significantly different 
from the uninfected haemolymph sample was taken 
to represent the limit of detection of the assay (5 x 104 
parasites ml-1 haemolymph). 

Comparison of diagnostic methods: The diagnosis 
of Hematodinium species infection in 2 monthly sub- 
sets of 30 lobsters taken at times before the seasonal 
peak of infection, assessed by the pleopod, Western 
blot and ELISA methods, is shown in Table 1. By the 
pleopod method, all lobsters were assessed to be unin- 
fected but by the antibody based methods a number of 
individuals were found to be infected. All haemolymph 
infections identified by Western blotting were also 
found to be positive by ELISA, but conversely not 
all infections identified by ELISA were detected by 
Western blotting. Comparison of the ELISA and MAT 
results on these samples however, gave the same posi- 
tive infection diagnosis (data not shown). 

Discussion. The results obtained show that the 
ELISA is d sensitive and specific diagnostic test for the 
presence of Hematodinium parasites in the haemo- 
lymph of the Norway lobster. In common with the 

Tdble 1. Comparison of Hematodinium infection didgnosis 
in a sub-sample of 30 lobsters by pleopod assessment, 

haemolymph Western blot, and haemolymph ELISA 

Ddte Pleopod Western blot ELISA 
(d/mo/yr) (prevalence) (prevalence) (prevalence) 

10/10/00 0/30 4/30 8/30 
06/11/00 0/30 5/30 6/30 
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The finding by Bushek at al. (2002) that the poly- 
clonal anti-Hematodinium antiserum. used in this study 
is reactive against shared antibody binding epitopes 
on cells of the oyster pathogen Perkinsus marinus 
raises interesting issues concerning the affinity of 
Hematodinium and Perkinsus. However, this does not 
affect the usefulness of the antiserum, in detecting 
Hematodinium in crustaceans as P. marinus is exclu- 
sively a mollusc pathogen. 

0.25 

0.2 

C, 0.15 
c" 
to 
Cl 0.1 0 

0.05 

Log parasite density in haernolymph (x1O3 MI-1) 

fig. 2. Sensitivity of ELISA for Hematodinium. infected haemo- 
lymph from an infected Norway lobster was serially 2-fold 
diluted and assayed by the ELISA. Uninfected haemolymph 
assayed by the ELISA had a mean optical density (OD) value 
of 0.037 with a standard deviation (SD) of 0.008. Data points 
represent means * SD (n = 6). *p < 0.005 between uninf ected 

and infected haemolymph 

Western blot method of Stentiford et al. (2001b), it can 
detect both low-level and advanced infections. More- 
over, it offers significant advantages over the Western 
blot procedure in terms of its sensitivity, simplicity and 
the number of samples that can be assayed. Impor- 
tantly for routine use, the difference between positive 
and negative samples was visible by eye. 

The sensitivity of the ELISA has been determined to 
be 5x 104 parasites m171 haemolymph, making it more 
sensitive than the Western blot procedure by a factor 
of 4. This is consistent with the observation that several 
low-level infections identified by the ELISA were not 
detected by the Western blot. 

The ability of the ELISA to test multiple samples 
within a short period, without sophisticated analytical 
equipment is a significant development. Previous im- 
munological methods such as the IFAT and Western 
blot are complex and time-consuming. The ELISA 
requires only a small volume of haemolymph to con- 
duct the test; host lobsters need not be damaged, and if 
necessary the sampled individuals can be kept alive 
for further observation under laboratory conditions. 

The ELISA will be particularly useful in the identifica- 
tion of Hematodinium sp. infections in previously unex- 
amined Nephrops norvegicus stocks. In addition, the 
ELISA could be used to identify Hematodinium infec- 
tions in other crustacean species, since Stentiford et al. 
(2002) have shown that the primary anti-Hematodiniwn 
antibody is also reactive to a Hematodinium-like parasite 
of the European edible crab Cancerpagurus. 
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AbstTact 

The edible crab (Cancer pagurus) supports a large and valuable fishery in UK waters. Much of the catch is transported live to 
continental Europe in specially designed live-well ('vivier') vehicles. During the winter of 2000/2001, many trap-caught crabs from 
Guernsey, Channel Islands, UK, were reportedly moribund and pink in colour. These crabs generally died before and during vivier 
transportation. We provide histological, immunological, and molecular evidence that this condition is associated with infection by a 
Hernatodinium-like dinoflagellate parasite similar to that previously reported in C. pagurus and to an infection causing seasonal mass 
mortalities of the Norway lobster (Nephrops norvegicus). Pathologically, every altered host bore the infection, which was charac- 
terised by very large numbers of plasmodial and vegetative stages in the haernolymph and depletion of reserve cells in the he- 
patopancrcas. Due to the hyperpigmentation of the carapace and appendages, we have called this infection 'Pink Crab Disease' 
(PCD). Similar llematodiniwn infections cause 'Bitter Crab Disease' in tanner and snow crabs, which has had a negative effect on 
their marketability. At present, little is known about the seasonality, transmission, and market impact of this infection in 
C pagurus. 0 2002 Elsevier Science (USA). All rights reserved. 

Keywords: Gancerpagurus-, Crab fishery; Dinoflagellate; Hemalodiniwn; Histopathology; Nephrops norvegicus-, Mortality; Parasite; PCD; Pink Crab 
Disease 

1. Introduction 

The edible crab (Cancer pagurus) is one of the most 
valuable shellfish species captured in European waters, 
with a large fishery existing in the waters surrounding 
the United Kingdom (landings of over 27,000t, worth 
E32m in 1999-UK Sea Fisheries Statistics, 1999). Of 
the crabs landed in the United Kingdom, some are 
processed and sold locally, while a significant quantity, 
around 14,000 t in 1999 (UK Sea Fisheries Statistics, 
1999), are transported live to continental Europe in 
specially designed live-wells known as 'viviers. ' To en- 
sure sale, exported crabs must be alive and in good 
condition on arrival at market. 

Crustaceans are often exposed to an array of stressors 
during and after capture, which include crowding, me- 

Corresponding author. 
E-mail address. g. d. stcntiford@cefas. co. uk (G. D. Stcntiford). 

chanical damage to the cuticle, and exposure to light, 
air, and heat (see Chang et al., 1999; Jussila et al., 1997; 
Morris and Airriess, 1998; Paterson and Spanoghe, 
1997; Stentiford and Neil, 2000). Another important 
stressor is infection by pathogens (for review, see 
Thompson, 1983). Considerable post-capture mortali- 
ties in holding tank conditions have been reported from 
decapods following epizootic infections by viruses (Ar- 
cier et al., 1999), bacteria (Cheng and Chen, 1998; 
Stewart, 1980), and ciliates (Armstrong et al., 1981; 
Bang et al., 1972; Cawthorn, 1997). In other cases, large- 
scale mortafities have occurred due to unknown agents 
or to idiopathic phenomena (see Anderson et al., 1990; 
Lindqvist and Mikkola, 1978; Stentiford and Neil, 
2000). 

The parasitic dinoflagellates of marine crustaceans 
are known to inhabit the eggs, stomach, soft tissue, and 
haernal sinuses of their hosts (Shields, 1994). Infections 
by parasitic dinoflagellates of the genus Hematodiniwn 

0022-2011/02/$ - see front matter 0 2002 Elsevier Science (USA). All rights reserved. 
PIT: S0022-2011(02)00028-9 
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have been reported in a number of commercially im- 
portant crustacean hosts (Field et al., 1992; Hudson and 
Lester, 1994; Hudson and Shields, 1994; Maclean and 
Ruddell, 1978; Messick, 1994; Meyers et al., 1987; 
Newman and Johnson, 1975; Taylor and Khan, 1995; 
Wilhelm and Boulo, 1998; Wilhelm and Mialhe, 1996). 
Latrouite et al. (1988) have also reported an infection 
by a Hemalodiniwn-like parasite in populations of 
C pagurus taken from the English Channel, the Irish 
Sea, the Bay of Biscay, and the west coast of Scotland. 
In these cases, the haernolymph and muscle of affected 
crabs assumed a pink colouration, with the meat having 
an irregular texture and a bitter taste when cooked. 
Similar features of infection have been ascribed to He- 
matodiniwn infections in tanner crabs (Chionoecetes 
bairdi and C. opilio), where the condition, termed 'Bitter 
Crab Disease' renders the meat unmarketable (Meyers 
et al., 1987; Taylor and Khan, 1995). 

During the autumn and winter 2000, creel-caught 
C. pagurus from the west coast of Cornwall and from 
the island of Guernsey displayed an altered colour- 
ation (pink hypcrpigmentation) with a general mor- 
bidity. These crabs would usually die following 
handling, pounding, and subsequent vivier transpor- 
tation. Signs of this condition were also noted in 
animals taken directly from creels. We provide histo- 
logical, ultrastructural, and molecular evidences that 
PCD is associated with an infection by a Hemalodi- 
nium-like dinoflagellate which is probably the same as 
that described by Latrouite et al. (1988) and provide 
recommendations for future monitoring and patho- 
logical studies. 

2. Methods 

Cancer pagurus were captured from the south coast of 
Guernsey (UK Channel Islands; 49*24'N, 203Y-2043'W) 
using conventional crab pots. Crabs were transported to 
the shore, following which tissues and organs were re- 
moved from crabs showing signs of PCD (morbid, 
pink hyperpigmented carapace) and from apparently 
healthy crabs. These were prepared for light and 
electron microscopy, immunological parasite detec- 
tion, and molecular characterisation using standard 
methods. 

2.1. Histopathology 

Crabs were anaesthetised by chilling to 4 *C. For 
histopathology, the hepatopancreas, claw muscle, gill, 
gonad, hindgut, and heart of infected and uninfected 
crabs were removed and placed immediately into Da- 
vidson's seawater fixative (see Hopwood, 1996). Fixa- 
tion proceeded for 24 h before samples were transferred 
to 701/6 industrial methylated spirit (IMS). 

For electron microscopy, small pieces of tissue were 
fixed in 3% glutaraldehyde in 0.1 M sodium cacodylate 
buffer (pH 7.4) with 1.75% sodium chloride for 2h at 
room temperature (21 *Q. Fixed tissue samples were 
rinsed in 0.1 M sodium cacodylate buffer with 1.75% 
sodium chloride (pH 7.4) and post-fixed in 1% osmiurn 
tetroxide, reduced with 1.75% potassium ferrocyanide in 
0.1 M sodium cacodylate buffer for Ih at 4 'C. Speci- 
mens were washed in three changes of 0.1 M sodium 
cacodylate buffer and stained en bloc in 0.5% aqueous 
uranyl acetate for I h. Following dehydration through 
an acetone series, specimens were embedded in epoxy 
resin 812 (Agar Scientific-pre-mix kit 812). Semi-thin 
sections (1-2pm) were stained with toluidine blue for 
viewing with a light microscope, suitable areas were 
identified and ultrathin sections (70-90nm) of these 
areas were cut and mounted on uncoated copper grids. 
Sections were stained with uranyl acetate and Reynolds 
lead citrate (Reynolds, 1963) and were examined using a 
JEOL 1210 transmission electron microscope. 

2.2. Immunological characterisation 

A 70mg sample of Davidson's-seawater-fixed C 
pagurus hepatopancreas was macerated in 300 gl sample 
buffer (62.5 mM Tris-HCI pH 6.8,12.5% glycerol, 1.25% 
P-mercaptocthanol) and heated at 95 'C for 4 min. Lanes 
on a standard acrylamide gel (12.5%) were loaded with 
either 20 0 of whole sample or 20 gI of supernatant from a 
centrifuged sample (I 7,000g, 2 min). These were analysed 
for the presence of Hemalodiniwn antigens using a poly- 
clonal antibody raised against the Nephrops norvegicus 
isolate of Hematodinium (see Field and Appleton, 1996) 
applied by the Western blotting method of Stentiford 
et al. (2001c) with Hematodinium-infected N. norvegicus 
haemolymph run as a positive control (see Stentiford 
et al., 2001c). Hematodinium-positive samples generally 
appeared as multiple-bands or smears due to the reaction 
of numerous parasite proteins to the polyclonal antibody 
(as described by Stentiford et al., 2001c). 

2.3. Molecular characterisation 

Aliquots of 100mg samples of fixed C pagurus he- 
patopancreas from asymptornatic crabs and those 
showing the signs of PCD, were homogenised separately 
in 500pl extraction buffer (SO mM Tris, 5mM EDTA, 
100 mM NaCl, and pH 8), 200 pI of 10% SDS, and 20 gl 
Proteinase-K (10 pg/ml) and incubated at 56 "C for 24 h. 
DNA was purified by phenol/chloroform extraction, 
ethanol precipitated, and resuspended in sterile deion- 
ised water. PCR reactions were performed in 20 0 total 
reaction volume by adding 2pl of IOX reaction buffer 
(final concentration lOmM Tris-HCI, pH 9,50mM 
KCI, 0.1% Triton X-100), 1.2gl MgC'2 (final concen- 
tration 1.5mM), IgI dNTP mix (final concentration 
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I OOpM). I pl each of forward and reverse primers (final 
concentration 0.5pmolpl 1). volume of target DNA to 
approximately 100ng. I unit of Taq polymerase. and 
sterile deionised water to a final volume of 50p]. Reac- 
tions were overlaid with 10pl mineral oil. 

Thermal cycling conditions were as follows: dena- 
turation at 94 ýC for I min: primer annealing at 522 'C for 
I ininý chain extension at 70 'C for 3 min, repeated for 35 

cycles with a final cycle incorporating a7 min extension. 
Primer sequences were as described by Hudson and 
Adlard (1994). Amplification products were run on a 
1.5'Vý, agarose gel, stained with ethidium bromide and 
viewed under a UV light source. 

3. Results 

3.1. Gros. s clinical signs oj PCD 

Crabs showing clinical signs of PCD were moribund 
and were reported to die quickly following capture and 
during transit. Heavily infected crabs typically displayed 
hyperpigmentation (pink) of the carapace and discol- 
ouration (yellowing) of the arthrodial membranes and 
the genital pores. This yellowing %%as later found to be 

due to the creamy consistency and colouration of the 
haemolymph caused by infection with large numbers of 
single, bi-, and multi-nucleate plasmodia. Internally, 
organs and tissues were friable, with creamy multicel- 
lular parasite deposits covering their outer surfaces. 

3.2. Histopathology 

Histologically, during severe PCD, the haernal si- 
nuses of the hepatopancreas was heavily dilated and 
filled with large numbers of plasmodial cells of the 
parasite which had condensed chromatin profiles (Fig. 
1). The hepatopancreatic tubule cells of infected crabs 
were relatively devoid of lipid reserves and in a number 
of specimens, hepatopancreatic tubule cells appeared 
degenerate with plasniodial forms of the parasite ob- 
served within the lumen of the tubules (Fig. 2). Due to 
the severely dilated haernal sinuses, haemolymph vessels, 
and their associated fixed phagocytes were rarely ob- 
served. 

Pathological changes to the muscles of the claw and 
the body cavity were extensive. In the claws of infected 
crabs, muscle tissue was almost completely replaced by 
large numbers of plasmodia, with only small islands of 
identifiable muscle fibres remaining (Fig. 3). Intense 

Fig. ]. Hepatopan,: reas ot crab ý, kith PCID. Note the dilated haernal sinuseý filled Nkith masses of'parasitie pl,,, mo, lial cil, (Ili % ': "CII Lfflll A-01110cli 
fixed phagocýtes %kere rarely observed and reserve cells Acre not observed in the inter-tubular connective matrix. I ubule cell. s ýkcrc olten seen to be 
deý oid of lipid reserves (arroA s). Haernatoxylin and Eosin, 5 pm section. Bar - 200 pm. 
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multi-focal inflammatory granulomas were commonly 
seen in the claw tissue of heavily infected crabs (Fig. 4). 
Similar encapsulation responses were observed in the 
myocardiUm and occasionally in the pericardium of the 
heart (Fiu- 5) and in the connective material surround- 
ing the gut (Fig. 6). Melanised nodules were rarely ob- 
served within the gill lamellae. Reserve (RI) cells were 
not observed in any crabs showing the signs of PCD. 
The ovary offernale crabs showing the signs of PCD was 
heavily infiltrated by masses of parasitic plasmodial 
cells. Vitellogenic oocytes were not observed in any of 
the infected female crabs studied (Fig. 7). 

3.3. t7trustructure 

Electron microscopy revealed that the haemolymph 
and tissues of crabs with PCID harboured a Hemalodi- 
nium-like dinoflagellate parasite similar to that previ- 
ously described in N. nori-egicus (Field et al.. 1992). 
I'lasmodia typically had condensed chromatin profiles 
(tip to S nuclei per plasmodia), abundant lipid droplets, 
niembrane-bound trichocysts. and mitochondria. and a 
surrounding alveolar membrane. The centriolar appa- 
ratus was observed in a number of parasites (Fig. 8). 
Plasmodia were frequently found in close association 
with the outer surface of the hepatopancreatic tubules 
and with the muscle sarcolemma. Remnants of degen- 
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erated host tissue (such as atrophied mitochondria, 
myelin bodies, and membranous material) were often 
found surrounding plasmodia at the periphery of the 
remaining tissue (Figs. 9 and 10). The pathology of 
muscle breakdo\vn was characterised by a severe disor- 
ganisation of filaments in the region of the Z-Iine (Fig. 
11) followed by an increase in the sub-sarcolemmal 
space (see Fig. 10). 

3.4. Immunological characterisation 

Western blots of proteins extracted from the he- 
patopancreas of crabs with PCD were performed using a 
primary antibody raised against Heinatodinhon isolated 
from N. norregicus. Tissue from infected crabs showed a 
clear positive reaction to this polyclonal anti-Hcmato- 
dinhan antibody, characteristically as a multi-band 
smear (Fig. 12). 

3.5. Molecular characterisation 

PCR amplification of the first internal transcribed 
spacer OTSI) region of ribosomal DNA and flanking 3' 
end of the small subunit (SSU) was achieved using pri- 
mer sequences previously used for the diagnosis of He- 
matodinhon infections in other crustacean species 
(Hudson and Adlard, 1994). A single 680bp arnplifica- 
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Fig. 5. Heart ot'crab A ith PCD. Note the pericardium (P) a nd the niýocardium (M) containing a large melanised granuloma (arrow). In some crabs, 
multiple granulomas were observed throughout the myocardium and occasionally within the pericardium. Haematoxylin and Eosm, 5pm section. 
Bar - -)Opm. 

tion product was produced in crabs showing the symp- 
toms of PCD, while no reaction product was seen in 
crabs asýrnptornafic for PCD (Fig. 13). 

4. Discussion 

4J. Acliologý 

The histological, ultrastructural, and molecular data 
presented in this study have shown that PCD is caused 
by a parasitic dinoflagellate of the genus Hemaiodinhan 
and formally confirms the presence of this parasite in the 
English Channel fishery for C pagurus. Furthermore. 
application of Henzatot; inium-specific primers led to the 
appearance ofa 680 bp PCR amplification product from 
the ribosomal DNA of this parasite, suggesting a strong 
similarity to the Henzalodinhan strains isolated from 

other crustacean species (see Hudson and Adlard, 1994). 
It is highly likely that this is also the same organism as 
previouslý reported to colonise the haernolymph of C 
pagurus captured from various European locations 
(Latrouite et al., 1988) and similar to that reported from 
a number of other commercially important crustacean 
hosts (Field et al., 1992, Hudson and Lester, 1994; 
Hudson and Shields, 1994ý Maclean and Ruddell, 1978; 
Messick. 1994: Meyers et al., 1987; Newman and 

Johnson. 1975ý Taylor and Khan, 1995ý Wilhelm and 
Boulo, 1998). Whether this parasite is the same as the 
Hematodinium-like species thought to be responsible for 

commercially significant declines in populations of vel- 
vet swimming crab (Necora puber) from the English 
Channel remains to be shown (see Wilhelm and Mialhe, 
1996). 

Uni-cellular, bi-cellular, and multi-cellular (up to 5 

nuclei) stages of the parasite were observed in the hae- 

molymph and within the tissue interstices of crabs with 
PCD. In their description of the type species, Hemato- 
dinium perezi, in portunid crabs captured from French 

waters, Chatton and Poisson (1931) describe motile 
stages within the haemolymph (a similar finding to that 
of Newman and Johnson, 1975ý Messick, 1994 and 
Shields and Squyars, 2000, in C. sapidus). In addition, 
Appleton and Vickerman (1997) have described motility 
in the Heinatodinium sp. isolated and cultured from N. 
norregicus, suggesting that such motile forms may rep- 
resent the earlv trophont stages in all Hematodinhan 
species. Observations of fresh haemolymph preparations 
of low-level Heinatodinium infections are required if 
these findings are to be confirmed. In addition, further 
molecular and ultrastructural comparisons of Heinato- 
ditihim-like sp. to the type species (H. perc_-i) are re- 
quired to apply accurate taxonomic status to these 
isolates. 
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Fig 6. Transýerse section through the hindgut ofcrab Aith PCD. The gut lumen (L) contains food matcnal and multipic langc mclanised granulonia 
, Aere commonlý seen in the connecti%e tissue (C) (long arrow). Separation ofgut epithelium (short arrow) from basement membrane is likelý to be an 
artefact of tissue preparation. Haematoxýlin and Eosin, 5pm section. Bar - Wpm. 

Anecdotal reports suggest that PCD may show a 
seasonal epizootiology, with peak infection occurring 
during the winter and the spring, and with a latent in- 
fection or absence during the summer and early autumn 
(G. D. Stentiford, personal observation). Observations 
on the prevalence of Hematodinium infection in other 
crab species also suggest highly seasonal disease out- 
breaks, with peak infection occurring over a relatively 
narrow tirne period, followed by a longer period of 
undetectable or low level prevalences (see Messick and 
Shields. 20W Shields, 1994). Studies on Scottish N. 
noriegicus populations have revealed similar features of 
11cmatodinium infection epizootiology (Field et al., 
1992,1998: Stentiford et al., 2001b), 

viously been reported in X nori, egicus (Stentiford et al., 
1999,2000,200 1 a) and in CU11i17CCICS sapidus (Whitting- 

ton et al., 1997). Histology revealed that the tubule cells of 
the hepatopancreas were frequently degenerate, possibly 
explaining the presence of parasitic plasmodia within the 
lumen of tubules themselves. This feature of Hcmatodi- 

nium infection has also been reported in N. noj-j, egj'(-jj, y 
(Field and Appleton, 1995). The significance of the pres- 
ence of parasites within the tubule lumens is not presently 
known, though this may reflect a possible route of 
transmission (via the gut) to other hosts. In addition to 
their presence within the lumens of the tubules, parasites 
were also observed in close association with the myoepi- 
thelial layer surrounding these tubules. Whether these 
cells are attached to the tubule surface or whether their 
presence is an artefact of tissue preparation is difficult to 
elucidate. However, similar features of Hematodinium sp. 
infection have previously been reported in N. norveiýicus 
(Field and Appleton, 1995). In this species, it has been 

suggested that the hepatopancreas and other tissues may 
represent the seat of latent 11cmatodinium infection (Field 
and Appleton, 1995,1996. Stentiford et al., 2001c). Fur- 
ther studies of apparently uninfected C pagurus, possibly 
out of the main infection period for this disease may allow 
such latent stages to be located. 

4.2. Pathology 

Crabs infected with PCD revealed significant altera- 
tions from the normal structure of muscle and hepato- 
pancreatic tissue. The alteration in the lipid content of 
hepatopancreas tubule cells during, PCID is consistent 
with a progressive parasite-induced physiological star- 
vation. The absence of reserve (R I) cells in the connective 
tissue throughout crabs Nvith PCD confirms this hypoth- 
esis. Similar effects of Hematodinium infection have pre- 
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,i of parasitic plas 

nýi Losin, 5 pm section. Bar = 50Pm 

F ig. S. Bi-nucleate parasitic plasmodium in the haemolymph of a crab with PCD. Note the presence of lipid droplets (L), trichocN is (T), mIt0- 

chondria (M). ýacuoles (V), centriole apparatus (C). and a surrounding aheolar membrane (arrow). Parasites typically contained between one and 
four nuclei iN). TENI, scale bar =I pm. 
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Fig, 9. Para sit ic plasm odial cells at the periphery of a hepatopancreatic tubule. Note the clo,: oI parasites (arrows) and tubule cells (T). 

Parasitic plasmochal cells filled the haernal spaces (H). Haernatoxylin and Eosin, 5 pm section. Bar -- 50 pm. 

Fig. 10. Claw muscle ofcrab %kith PCD Parasitic plasmodial cells (P) were often seen in close association with the sarcolernmal membrane (arrows) 

which was often well separated from the contractile muscle blocks. Note the presence ofmitochondria at the muscle peripher) (M) and the presence 
ofZ-fines in %arious states ofdegeneration (arroA and asterisk). Cellular debris ofhost and parasite origin %%as commonly seen on the surface ofthe 
sarcolemma (D). TENI, scale bar -I pm. 
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TEM. scale bar -I pm. 
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head) from hepatopancreas of crab exhibiting the symptoms of PCD 
i PCD +ve). No amplification product was seen in uninfected crabs 
(PCD -ve). DNA marker also shown. 

Fig 12 %ýesicrn Not A hcpatopan, rca., i:,,: n ýi, ib %ýith N 1) (( 
pagurio i using anti- Heniatodinhan (ex-Nephrops nort egicus) polvclonal 
primarý antibody Multiple band or smear reactions were seen i, n PCD 

Muscle tissue, particularly that found within the 

+Ne crabs. No reaction Nkas seen in PCD -ve crabs. In %itro cultured claws, was almost Completely destroyed in crabs with 
11cinatodinhon (ex-N. nortegicus) was used as a positive control. PCD, with 'islands' of apparently unattached muscle 
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tissue surrounded by masses of parasitic plasmodial 
cells. Granuloma-like foci of hyalinocytes were observed 
within the remaining blocks of claw muscle and also 
within the heart and surrounding the gut. Such foci have 
been described as aggregations of flattened hyaline cells 
encapsulating foreign material and which lead to the 
deposition of melanin either on the object or within the 
haemocyte matrix. In the case of parasite infection, the 
parasite is destroyed as the inner layers of these foci 
become necrotic (Smith and S6derhall, 1986). Such en- 
capsulating lesions have previously been recorded in the 
gills and heart of Hematodiniwn-infected N. norvegicus 
(Field and Appleton, 1995; Field et al., 1992), their 
presence thought to indicate a previous microbial or 
parasitic infection. Whether these lesions relate to the 
original infection site of Hematodiniwn sp. has not been 
shown to date. Interestingly, these melanised encapsu- 
lation responses were rarely observed in the gill lamellae 
of crabs with PCD. As such, if these lesions do mark the 
infection route of Hematodiniwn sp., it is possible that 
this route differs between C pagurus (via the gut) and N. 
norvegicus (via the gills). Further studies are required to 
elucidate the route of entry of this parasite to its re- 
spective hosts. 

Ultrastructurally, the remaining intact muscle fibres 
showed an exaggerated separation of the sarcolemma 
from the contractile myofibrils at the fibre periphery. 
However, in contrast to the infection in N. norvegicus, 
where the Z-lines of the sarcomeres remain intact 
(Stentiford et al., 2000), the sarcomeres from the muscle 
of crabs with PCD showed severe disorganisation of 
filaments in the region of the Z-line. Loss of Z-1ine 
material is reported to occur in a number of patholog- 
ical and physiological conditions (Kumudavalli Reddy 
et al., 1975) and apparently represents an early step in 
normal premoult atrophy in crustaceans (Mykles and 
Skinner, 1990a). The calcium-dependent proteases in- 
volved in premoult atrophy are localised in the sarco- 
plasm (Mykles and Skinner, 1990b) and it is conceivable 
that severe disruption of the muscle during PCD in 
C. pagurus may assist in the activation of these prote- 
ases. Alternatively, proteases of parasitic origin may be 
responsible for the differential breakdown of muscle 
within crab and lobster hosts. The reason for the dif- 
ference in the breakdown characteristics of muscle in 
PCD and in Hematodiniwn infection of N. norvegicus 
warrants further investigation. 

4.3. Potential conmiercial impact 

PCD has the potential for considerable commercial 
impact at several levels. Henzatodinim is ultimately fatal 
to its N. norvegicus host (Stentiford et al., 2001b), with 
seasons of high infection prevalence at a particular site 
being linked to reductions in landings per unit effort in 
the following season (Field et al., 1998). Additionally, 
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Hematodinium infections of C bairdii (Meyers et al., 
1987), C opilio (Taylor and Khan, 1995), C sapidus 
(Messick and Shields, 2000; Shields and Squyars, 2000), 
and N. puber (Wilhelm and Mialhe, 1996) have been 
associated with large commercial losses. As little is 
known about the prevalence and seasonality of PCD in 
the field, no inference can be made as to its likely role as 
a mortality factor in the fishery. However, due to the 
severe pathology associated with PCD in C pagurus, 
similar effects as those observed within the fisheries for 
C bairdii, C opilio, and C sapidus may manifest 
themselves in populations of C pagurus which harbour 
PCD. The current study has also shown that Hemato- 
dinium sp. infections are likely to disrupt the reproduc- 
tive ability of infected crabs. Whilst the presence of 
infection per se may be expected to cause significant 
population effects (through increased natural mortality), 
at present, little is known about how sub-lethal levels of 
infection may impact upon the reproductive output of 
host species. Further research into the reproductive 
status of infected C pagurus, coupled with monitoring 
of offshore and inshore sites and a retrospective analysis 
of landings data would facilitate study of the potential 
for such effects on commercial stocks. 

In addition to their reduced survivability during 
holding and transportation, the quality and yield of 
meat from crabs infected with PCD is also of potential 
commercial significance. The severe pathology associ- 
ated with the hepatopancreas ('brown meat') and the 
claw muscle ('white meat') is likely to cause considerable 
alteration in the yield, texture, and appearance of these 
tissues. Previous studies on the biochemical composition 
of Hematodiniwn-infected N. norvegicus tissues also 
suggests that disruptions in the normal carbohydrate 
and amino acid profiles of these tissues may be impli- 
cated in the 'bitter' taste of the meat that accompanies 
this and other Hematodiniwn infections (Meyers et al., 
1987; Stentiford et al., 2001a, b). The cooking of He- 
matodinium-infected and uninfected tanner and snow 
crabs under batch conditions has been suggested to 
cause tainting of the whole batch (see Meyers et al., 
1987). The batch preparation of uninfected C pagurus 
with those infected with PCD may be expected to cause 
similar effects. 

4.4. Future studies 

The mode of transmission of Hematodiniwn infec- 
tions in the field is the subject of some conjecture. 
However, a number of studies have suggested that there 
is a significant risk of spread through in-transit culling 
and disassembly of the catch at sea (see Hudson and 
Shields, 1994; Love et al., 1993; Taylor and Khan, 1995). 
Anecdotal evidence suggests that the potential for the 
spread of PCD via these practices, and others that in- 
volve the use of crabs as bait for the capture of other 
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species, is significant. This is noteworthy when consid- 
ering the suggested route of entry (via the gut) for the 
parasite causing PCD. Knowledge gained via studies on 
the transmissibility of the Hematodinium species causing 
PCD may be applied to improve current commercial 
capture and holding practices, which may to some ex- 
tent be facilitating transmission of this parasite in the 
field. 
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