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Summary 

Approximately 40% of the world's population are living at risk of malaria 

in endemic areas. Malaria kills more people than any other infectious 

disease except HIV and tuberculosis. Malaria causes more than 300 million 

clinical cases and between 1. 7 to 2.5 million deaths annually. Among 

effective low-cost strategies for its treatment, prevention and control of the 

disease there is no routine vaccine against malaria. 

In vivo experimental studies of human malaria are ethically limited, 

mainly because attacks are very unpleasant and Plasmodium Jalciparum 

infections may be fatal. So, animal models of human malaria such as rodent 

malaria infections are used for in vivo studies. Such studies help to 

understand better the immune response to malaria in animal models which 

will facilitate development of protective vaccines against and in the control 

of the disease in people. However, as the asexual blood stage infection is 

responsible for almost all morbidity and mortality associated with malaria 

the majority of studies are focused on this stage. 

In the first part of the present study the immune responses in NIH mice 

against asexual blood stages of either avirulent DK or virulent DS strains 

of P. chabaudi adami, in single or mixed infections, were examined using 

the ELISA test for the detection and measurment of cytokine and antibody 

production. The present results showed that the profile of the immune 

response in all the above infections suggests a sequential ThllTh2 CD4+ T 

cell response. Previous studies have shown that there is a sequential Th 11 

Th2 response in Plasmodium chabaudi AS infection which is reflected in 

the activation of both cell- and antibody-mediated responses. These 

findings, therefore, indicate that vaccines which induce both arms of the 

protecive immune respnse against malaria parasites could be most 

effective. The sequential Th 1 ITh2 response was supported by detecting 

early high levels of IFNy and IgG2a during the acute phase of the infection 

and later by elevation of IL-4 and IgG 1 levels during the course of 

infection compared to controls. The levels of IgG2a were at highest levels 

at or immediately after the peak parasitaemia while the levels of IgGl 

increased in later stages in the course of infection. However, a higher level 



IFNy early in the infection indicated a stronger Th 1 response in the 

avirulent DK strain infection compared to the virulent DS strain or mixed 

infections. On the other hand, in the virulent DS infection a stronger Th2 

response with higher IL-4 levels compared to the DK strain and mixed 

infections was observed in mice treated with chloroquine. 

v 

In the mixed infection, an infective dose consisting of 8x 1 03 pRBCs of 

the avirulent DK strain and 2x 1 03 pRBCs of the virulent DS strain was 

used. Despite a relatively low number of pRBCs of the DS strain in the 

infective dose the peak parasitaemia was significantly higher than that in 

the single-infection of 1 xl 04 pRBCs of the DK strain. The mixed infection 

also showed a significantly lower peak parasitaemia compared to that in 

mice given 1 x 1 04 pRBCs of the DS strain single-infection in untreated 

mice. So, it may be concluded that a higher peak parasitaemia in the mixed 

infection compared to the DK single-infection is reflected in a higher 

replication rate of the DS strain compared to the DK strain during the 

course of the mixed infecion. However, the virulent DS strain may suppress 

the immune response or the immune response does not effectively respond 

to the virulent strain compared to the avirulent strain. 

In the second part of the study the effectiveness of passively transferred 

whole immune serum, purified IgG 1 and IgG2a obtained from the DK­

infected mice was assessed, in NIH mice challenged with avirulent DK or 

virulent DS strain. IgG 1 and IgG2a were purified with protein A 

chromatography and their presence was confirmed using SDS-PAGE, 

ELISA and Western blotting tests. In all passively immunized mice peak 

parasitaemias were significantly reduced compared to control mice. The 

kinetics of IgG2a and IgG 1 production showed a sequential Th lITh2 

response in the passively immunized mice after challenge. The profile of 

antibody production was predominantly IgG2a at or immediately after the 

peak parasitaemia and higher levels of IgG 1 later during the course of 

infection which reflects switching from Th 1 to Th2 response. 

Cross-reactivity of immune serum and serum IgGl and IgG2a obtained 

from mice infected with the avirulent DK strain in mice challenged with 

the virulent DS strain was also examined. Passive transfer of IgG 1 and 

IgG2a from DK-infected mice into DS-challenged mice resulted in 

significantly reduced peak parasitaemias in DS-challenged mice compared 



to control infected mice. However, some of these passively immunized 

mice died. 
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Following passive immunization, surviving mice were challenged with a 

high infective dose of 1 xl 08 pRBCs of the DK strain or the DS strain. The 

results did not show any parasitaemia in these rechallenged mice indicating 

protective secondary responses. 

The last part of the study examined immunization of NIH mice with 

synthetic peptides whose amino acid sequences are based on the two 

multiple gene families of P. chabaudi AS. The first family is called clag in 

human P. Jalciparum and clag-like genes in animal models such P. 

chabaudi AS. The second family called the cir gene family which has 

homologuos in other rodent malaria parasites such as P. berghei and P. 

yoelii and importantly in the human malaria P. vivax. These two gene 

families more particularly cir are linked to antigenic variation and are 

thought to be involved in some aspects of the pathology of malaria through 

cytoadherence and invasion of erythrocytes by merozoites. The products of 

clag and cir genes can be considered as vaccine candidates. In this study 

three peptides were related to clag genes and designated PI, P2 and P3, and 

the two others were related to cir family designated as P4 and P5. The 

amino acid sequences of PI is conserved between clag 7 and 3 and based 

on postions 121-134 and 128-141 respectively. The P2 and P3 are specific 

for clag 7 and 3 and their amino acid sequences are based on postions 244-

257 and 246-259 respectively. The amino acid sequences of P4 and P5 are 

based on positions 102-115 for P4 and 174-187 for P 5 based on sequenced 

mRNA of cir gene of P. chabaudi AS. 

Immunization of NIH mice with these synthetic peptides resulted in 

statistically reduced peak parasitaemias compared to the controls when 

mice challenged with P. chabaudi AS. The results showed that 

immunization with PI significantly lowered the peak parasitaemia 

compared to P2 or P3. 

Using the adjuvant Titer max gold did not show more effect in reduction 

of peak parasitaemia in immunized mice compared to immunization without 

the adjuvant. 

The kinetics of IgG2a and IgG1 production probably indicated a 

sequential Th lITh2 activation in the peptide-immunized mice. However, 

the degree of efficacy afetr peptide immunization did not show complete 
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protection. In immunized mice the levels of IgG 1 and IgG2a were 

significantly higher compared to control non-immunized mice either post­

immunization or post-challenge. In immunized mice the IgG2a and IgG 1 

levels were higher post-challenge compared to post-immunization. The 

production of IgG2a and IgG 1 was significantly higher in PI-immunized 

mice compared to P2- or P3-immunized mice. The antibody production in 

P 5-immunized mice was higher than that in P4-immunized mice. In P4- and 

P 5-immunized mice anti-peptide IgG2a levels post-immunization and post­

challenge were also significantly higher than that in mice immunized with 

PI, P2, or P3. The results show that anti-peptide antibodies obtained from 

sera of immunized mice can specifically recognise similar eptitopes andlor 

probably cross-reactive epitopes present in the soluble crude antigen 

preparation of P. chabaudi AS parasites. This observation may be 

considered as an important aspect in immunization with synthetic peptides 

because these antibodies may be protective in heterologous challenges. 

In all fields of this study further experiments are required to determine 

more accurate knowledge about the immune response in mice which may 

help to develop important data for comparative immunology between 

animal models and their human counterparts. In terms of synthetic peptide 

immunization different formulations or combinations of such peptides 

which induce protective immunity are essential to design vaccine 

candidates. 
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1. General introduction 

1.1. Malaria 

Malaria is derived from an Italian word "mal-aria" which means "bad air". 

It was thought that malaria comes on the wind from swamps and rivers in 

marshy lands (Floore, 2004). Probably malaria has been recorded since the 

beginning of the written word, 6000-5500 B.C. as a deadly fever 

(Kakkilaya, 2004). The oldest material of malaria in history, to date, is 

malarial DNA from a Roman site, dating from around AD 450 (Thompson, 

2001). Malaria probably originated in Africa (Escalante et al., 1998) and 

accompanied human migration to the Mediterranean shores, India and South 

East Asia (McConnell, 2004; Thompson, 2001). Malaria parasites are 

classified into the genus Plasmodium, family Plasmodiidae, subclass 

Coccidiasina, and phylum Apicomplexa (Escalante et al., 1998). Malaria 

parasites, at some relatively early stage in their evolution, acquired asexual 

intracellular replication during adaptation to the tissue of the host, 

particularly RBCs (reviewed by Carter and Mendis, 2002; West et al., 

2000). At the same time certain lines of malaria parasites became adapted 

to live in insects and achieved a two-host life cycle and the human malaria 

parasites became adapted to the blood-feeding habits of female Anopheles 

mosquito as an invertebrate host (Epstein, 1999; Nakajima, 1994; Carter, 

2002). 

Four species of the genus of Plasmodium cause human malarias: 

Plasmodium vivax, P. ovale, P. malariae, and P. Jalciparum of which P. 

Jalciparum is the cause of almost all mortality (reviewed by Good, 2001). 

1.2. Current global picture and problems facing malaria control 

Malaria is still one of the most important parasitic diseases with an 

estimated 40% of the world's population in 101 countries at risk of 

infection. It kills more people than among other pathogens apart from 

tuberculosis (W.H.O., 2005). It is reported that there are 300-500 million 

clinical cases each year with between 1.5 to 2.7 deaths. The main victims 

are children under 5 years old, pregnant women, immigrants, and refugees 

(W.H.O., 2005). 



Chapter 1. General introduction 3 

Despite many global efforts to eradicate, control, or prevent malaria, the 

situation is serious and becoming worse. For example, malaria persisted in 

Sri-Lanka with a massive epidemic in 1968. In Madagascar 25000 deaths 

were reported in 1988 (Epstein, 1999; Nakajima, 1994). More than 90% of 

the total malaria incidence and the great majority of deaths occur in 

tropical African countries. Nine countries are in the second high-risk 

position, India, Brazil, Afghanistan, Sri-Lanka, Thailand, Indonesia, 

Vietnam, Cambodia, and China (W.H.O., 2004). Apart from malaria in 

endemic areas, between 1969 and 1999, 12 countries reported a total of 87 

cases of "Airport malaria" in people living near airports. This could be as a 

result of infected vectors brought in on flights from the endemic areas. For 

example, Airport malaria has been reported in a publican working close to 

the London's Heathrow Airport and in four workers at the Amsterdam 

airport, none of whom ever been out of the two countries (Opperdoes, 

1997). In France Airport malaria was found in four people in the vicinity of 

the Roiss Charles-de-Gaulle airport in Paris during summer 1999 (J afari et 

al., 2002). 

Due to many problems, such as vector resistance to insecticides, parasite 

resistance to anti-malarial drugs, uncontrolled immigrations, and easy 

transportation throughout the world the WHO world global eradication 

programme was finally abandoned in 1960 (Russell, 2003). Therefore, more 

investment is required in the fields of control and vaccination research 

proj ects particularly when other problems such as inadequate health 

structure, ethical limitations in human studies and clinical trials, and poor 

socio-economic conditions are considered (W.H.O., 2004). The total budget 

from all funds has been raised from SUS 85 million in 1995 to more than 

SUS 100 million through the Multilateral Initiative on Malaria (MIM). 

MIM is beginning to make more effective use of global resources through 

promoting coordinated activities. The commitment of NIAID, the National 

Institute of Allergy and Infectious Diseases, notably has increased by more 

than 150% between 1995 and 1999 and the Wellcome Trust doubled its 

expenditure (W.H.Q., 2004). Malaria victims in endemic areas occupy three 

of ten hospital beds. In Africa the cost of a single bout of the disease is 

equal to 10 working days (W.H.Q., 2004). In 1998 four United Nations 

(U.N.) agencies WHO, UNDP, UNICEF, and the World Bank, launched the 

Roll Back Malaria (RBM) programme in which the main purpose is to halve 
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the world's malaria burden by 2010 and halving it again by 2015 (W.H.Q., 

2004). A report has found that all funds from donor countries and World 

Bank remains at the range of $100 million annually which means that RBM 

will fail to meet its goal if the budget does not increase (N arasimhan, 

2003 ). 

Attempts to develop a successful vaccine, as an effective way for control, 

have faced many problems such as the complex life cycle of the parasites, 

many gene families coding for polymorphic antigens, antigenic diversity 

and variation, and unknown expression and transcription mechanisms of 

those antigens. Successful progress leading to the RBM goal needs a budget 

of perhaps $1.5-$2.5 billion annually (W.H.Q., 2004). 

1.3. Brief history of the discovery of malaria parasite life cycle 

Despite the presence of many documents in the ancient history of 

medicine which describe malaria and its symptoms, particularly its 

fever, the causative agent was not recognised until the 19th century. 

Maeckel, a German pathologist, who concluded that the black granules 

in blood, spleen, and liver of the cadavers were associated with malaria, 

made the first observation about malaria. It is now known that the black 

granule was malaria pigment. Thirty years later, Kelsch, a French 

pathologist, observed parasitized red blood cells in which pigment was 

visible (Phillips, 1995). 

Laveran (1845-1922) on the 6th of November 1880 detected the parasites 

in the blood of a soldier with malaria symptoms. He saw spheres and 

crescent forms of the parasites, when examining an infected blood sample. 

He was, in fact, looking at exflagellation of male gametes of P. Jalciparum, 

a phenomenon which was later explained by MacCallum in 1897. 

Laveran's discovery is one of the milestones in the history of medicine. 

He called them Oscilaria, a term which was replaced by Haemamoeba and 

eventually by Plasmodium by Marchiafava and Celli in 1885. In 1884, four 

years later, Laveran demonstrated the correlation of exflagellation with the 

existence of malaria parasites to Pasteur and Roux. Leuckart emphasized 

that malaria transmission might occur through on arthropod in 1877 (Bruce-
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Chwatt, 1988). Laveran in 1884 stated that there was a probability of 

mosquito transmission in malaria infection (Nobelprize.org, 2004). 

Marchiafava and Celli saw the asexual multiplicative forms of the 

parasites in patient's red blood cells in 1885. Golgi, an Italian physician, 

described the relationship between the paroxysm of fever. Indeed he had 

observed the release of the merozoites and the infected red blood cells 

bursting at time of fever (Phillips, 1995; Bruce-Chwatt, 1988). He finally 

identified P. vivax and P. malariae in 1885 (Kakkilaya, 2004). The first 

standard method of staining blood films for recognition of malaria was 

described in Romanowsky's MD thesis "The parasitology and Therapy of 

Marsh-fever" in 1891 (Bruce-Chwatt, 1988). 

5 

The mystery of the life cycle of the parasites in Anopheles and its 

transmission by mosquito bite was not solved until the 20 th of August 1897. 

At this time Ronald Ross, a British military physician in India, 

demonstrated the malarial oocyst in the gut tissue of a female Anopheles 

(Bruce-Chwatt, 1988). This observation was published in the Lancet on 

December 18, 1897 (Phillips, 1995). He concluded that anopheline 

mosquitoes could be the vectors of malaria, because he had examined the 

female Anopheles, after taking blood meal on the infected patient with 

crescent shapes in the blood. He observed all stages of bird malaria 

parasites in the mosquito Culex fatigens in 1898. 

Human malaria transmission through the mosquito was established in 

1898 when the Italian scientist, Giovani Batista Grassi, proved that human 

malaria was transmitted by only a species of Anopheles (The Columbia 

Encyclopedia, 2001). The complete development cycles of human p, 

falciparum and p, vivax was demonstrated by Grassi et al. in 1898, 

Bastianelli and colleagues described malaria stages in Anopheles claviger 

at that time. MacCallum, in Ontario, explained fertilization in 1897 (Bruce­

Chwatt, 1988). Koch then described the passage of the ookinete through the 

gut of the mosquito in 1898. Manson obtained infected anopheline 

mosquitoes with benign tertian malaria from Bignami and Bastianelli in 

1900. The mosquitoes were dispatched to London and the infected 

mosquitoes bit two people, Manson's son and George Warren, a laboratory 

assistant. They carne down with malaria two weeks later and Manson's son 

had two relapses of malaria in 1901 (Bruce-Chwatt, 1988), In 1903 Fritz 

Schaudinn mistakenly described sporozoites directly penetrating red blood 
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cells when P. vivax sporozoites are released from the salivary glands of the 

infected mosquitoes. Due to the reputation of Schaudinn this misleading 

observation was not contradicted for three decades (Phillips, 1995). During 

the 1930s malaria parasites were found in haemopoietic tissues by Huff 

during his work with bird malaria parasites. James and Tate found P. 

gallinaceum in the brain of chickens and so the term' exo-erythrocytic' was 

coined. Raffael described the exo-erythrocytic stage of the bird's malaria, 

P. elongatum, in the reticulo-endothelial cells of the bone marrow and 

internal organs in 1934 (Phillips, 1995). Mudrow-Reichenow (1950) saw 

Plasmodium in bird's tissues before its invasion of red blood cells. It was 

termed pre-erythrocytic stages in 1940. Eventually Huff and Coulston 

described the full life cycle of P. gallinaceum in 1944. Shortt successfully 

identified the pre-erythrocytic stages of P. cynomolgi, a monkey 

Plasmodium. The observation of P. vivax and P. Jalciparum became 

thereafter possible with the help of volunteers. Shortt and Garnham showed 

all stages of human malaria parasites between 1948 and 1950. 

At last the complex and mysterious life cycle of malaria parasites was 

solved after about one century of continuous investigation (Phillips, 

1995, and Bruce-Chwatt, 1988). 

1.4. Life cycle of Plasmodium 

The life cycle of Plasmodium includes three distinct stages: pre­

erythrocytic, erythrocytic stage, and sexual stage as figure 1 shows. These 

three stages are explained below. 

1.4.1. Pre-erythrocytic and liver stage 

The motile sporozoites, the infective stages of the parasite, enter the skin 

when a female Anopheles bites the host when taking a blood meal. 

Sporozoites remain in the peripheral blood for usually up to 45 minutes 

during which they actively enter the hepatocytes (Ho and White, 1999). 

However, it is suggested that sporozoites injected directly into the 

bloodstream invade hepatocytes within a few minutes (Shin et al., 1982). 

During the biting process the mosquito releases many bioactive substances 
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like anticoagulants and with them the infective sporozoites enter the 

bloodstream. 

However, it is now clear that most sporozoites do not pass directly into 

the bloodstream. Mosquitoes may deposit sporozoites in the bite site when 

they probe the skin of the host to search capillaries in which they would 

enter through a wound inflicted by the mosquito proboscis (reviewed by 

Kappe, Kaiser, and Matuschewski, 2003). Another way is that sporozoites 

can actively migrate through the cells lining capillaries (Matsuoka et al., 

2002) and other cells (Mota et al., 2001). 

Most mosquito-transmitted sporozoites are deposited as clumps within the 

skin and there is a delay in the movement away from the bite site either by 

entry into efferent capillaries or, via lymphatic drainage. In the "taxicab" 

hypothesis, it is proposed that mosquito-transmitted sporozoites quickly 

invade macrophages and other leukocytes in skin away from the bite site 

and are carried through the peripheral lymph nodes, and on to the liver via 

the draining lymph, a circuitous way, (Krettli, and Dantas, 2000) or enter 

Kupffer cells, the stationary phagocytic cells of the liver (Vaughan, et al., 

1999). This hypothesis has been supported by the fact that P. berghei 

sporozoites can enter and leave macrophages without being destroyed, and 

the presence of the extremely low percentage of infections in all attempts 

7 

to cultivate the mammalian sporozoites in hepatocytes (Krettli, and Dantas, 

2000). If mosquito-transmitted sporozoites are fortunate enough to enter the 

trunk they may be sent directly into the liver via the common hepatic artery 

(Krettli, and Dantas, 2000). Although it is known that intracellular bacteria 

and parasites typically invade host cells through the formation of an 

internalization vacuole around the invading pathogen, Plasmodium 

sporozoites have an alternative mechanism to enter cells (Krettli, and 

Dantas, 2000). It has been observed that breaching of the plasma membrane 

of the host cell is followed by a rapid repair. In contrast with the formation 

of a vacuole around the sporozoite, this mode of entry was followed by exit 

of the parasite from the host cell. Nevertheless, the actual route by which 

sporozoites reach the liver is still uncertain 
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Trophozoite 

Red blood 
cells 

8 

~ 
Salivary 
glands 

Figure 1. The Plasmodium life cycle involves three distinct stages. In the 

first stage, pre-erythrocytic stage , a female Anopheles mosquito inculates 

sporozoites into a vertebrate host's skin. The sporozoite infects 

hepatocytes and mature into schizonts which rupture and release 

merozoites. The second stage, the asexual blood stage starts when emerged 

merozoites from the liver invade eryhtrocytes and undergo asexual 

replication. In P. vivax the merozoite develops to nng form, trophozoite 

and the nucleus divides inside the trophozoite forming immature and 

mature schizonts . The mature schizont bursts and releases new merozoite 

into the blood stream. During asexual stages some merozoites differentiate 

to male (microgametocytes) and female (macrogametocytes) gametocytes. 

The third stage , sexual stage initiates when female mosquitoes take up 

gametocytes during a blood meal. In the lumen of the mosquito the 

micro gametes fertilize macrogamtes and produce zygote . A zygote changes 

to a motile ookinete which esides in the wall of the mosq ui to's gut and 

develops into an oocyst in which thousands of sporozoites can be produced. 

These sporozoites are infective stages for a vertebrate host (Menard , 2005). 

--~ 

- ~ 
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Sporozoites can stick in the liver in the presence of specific receptors on 

the cells lining sinusoids (reviewed by Kappe, Kaiser, and Matuschewski, 

2003). Sporozoites traverse several hepatocytes in the liver of the host 

before infection in vivo by disruption of the cell membranes and remain in 

the cytosol without a surrounding parasitophorous vacuole, This migration 

in the mammalian host is thought to be essential for activation of 

Plasmodium sporozoites to infect host cells and finding suitable 

hepatocytes for the next stage of the development and completion of the 

life cycle (Mota et aI" 2001; Mota et aI" 2002), Plasmodium sporozoites 

home to the liver to infect a single hepatocyte and rapidly grow and divide 

inside the hepatocyte over the following 5-15 days, depending on species, 

Eventually, the infected hepatocytes burst and each one releases merozoites 

into the blood circulation (Hviid, 2004), 

Several proteins such as the circumsporozite protein (CSP) and 

sporozoite surface protein-2 (S SP-2) contribute to the invasion process and 

are held on the surface of the parasite with glycosylphosphatidylinositol 

(OPI) as an anchor. For example, CSP binds to heparan sulphate 

proteoglycans (HSPOs) on the surface of hepatocytes (Frevert, 1994; 

reviewed by Kappe, Kaiser, and Matuschewski, 2003), 

A number of parasites do not divide and remain as hypnozoites inside the 

hepatocytes in p, vivax and P. cynomolgi. They are responsible for relapses 

of malaria, several months or years later (Krotoski et al., 1982), 

1.4.2. Erythrocytic stage (asexual blood-stage) 

Merozoites, which are released from the mature schizont (in the liver) 

discharge into the circulation and invade erythrocytes, On the surface of 

merozoite, each a little more than 2-3!lm in diameter, a protein called 

merozoite surface protein-1 (MSP-1) may be involved in initial 

recognition of erythrocyte (Chitnis and Blackman, 2000). A protein 

complex comprising four polypeptides derived from the MSP-1 

precursor, in association with two other proteins, encoded by distinct 

genes uniformly covers the merozoite surface. The bulk of this complex 

is released at time of invasion (Chitnis and Blackman, 2000). 

The proposed invasion mechanism can be summarized as follows: 
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Initially some adhesion ligands are stable residents on the merozoite 

surface such as MSP-l. Other components of the associated protein 

complex may provide the low-affinity interaction with the host cell such 

as apical membrane antigen-l (AMA-l). Alternatively some merozoite 

proteins with significant homology to members of the Duffy binding like 

erythrocyte binding protein (DBL-EBP) may be involved in this phase. 

Secondly reorientation of the bound parasite may be favoured by the 

presence of higher-avidity ligands clustered around the apical prominence 

such as P. vivax reticulocyte-binding protein-l (Pv RBP-l). 

Thirdly exocytosis of micronemal components such as 175-kDalton 

erythrocyte-binding antigen (EBA-175) and other DBL-EBPs may 

provide tight attachment and junction formation. 

Finally the parasite may be aided to drive into the nascent 

parasitophorous vacuole by the effect of anterior-to-posterior trafficking 

and/or proteolytic shedding of these and other RBC-proteins linked to 

the action of a sub-pellicular actinomysin motor (Chitnis, and Blackman, 

2000). Hence, the apical end of the merozoite contains proteins that 

have been identified as erythrocytes binding proteins for successful 

penetration and homing of the parasite (Holder et al., 1994). 

The erythrocyte is a suitable host cell for the malaria parasite because 

there IS no major histocompatibility complex molecule (MHC) 

expression, no internal defence mechanism, contains almost all 

necessary nutrients for the parasite, and helps the parasite to hide from 

many immune response mechanisms. 

The merozoite begins to grow inside the erythrocyte and the prepatent 

period begins. The prepatent period refers to the minimum time from 

infection until the first appearance of the malaria parasite in the infected 

erythrocyte as seen in (thin) blood smears. It is a character which depends 

upon the species of parasite and an infective dose (Wiser, 2003). 

10 

The parasite replication is initiated by rapid development of a vacuole in 

the merozoite to form a ring. Growth continues with the disappearance of 

the vacuole and appearance of pigment as a result of digesting and 

metabolizing haemoglobin. The parasite then occupies a portion of the host 

cell and is called the trophozoite. The nucleus of the parasite divides then 

to form a mature schizont in which numerous daughter cells from within 
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the body of single parent cell are produced, The number of these new 

merozoites depends on the species of malaria parasites, Timing for each 

asexual cycle is also species specific, It is 48 hours in tertian parasites (P, 

vivax, p, ovalae, and p, Jalciparum) and 72 hours in quartan (P, malariae), 

This timing is relevant to the cyclical fever, the hallmark of malaria of 

different species (reviewed by Wipasa et ai" 2002), 

The parasite goes through a series of asexual erythrocytic cycles, The 

time of each new generation becomes synchronous in many malaria 

parasites such as p, c, adami and p, chabaudi AS which undergo 

synchronous infections (Kim a et ai" 1992), Sequestration, a phenomenon 

in which late trophozoite/schizont stage of some malaria parasites such as 

p, Jalciparum and p, chabaudi stop circulating and adhere to endothelial 

cells of post capillary venules, usually occurs in the final third of the 

asexual erythrocytic cycle (Kima et ai" 1992), In humans p, Jalciparum 

infections sequestration could be the first stage of pathologic events 

contributing to potentially fatal disorders in many organs such as brain 

(cerebral malaria), heart, kidneys, gut, and liver, but not in p, chabaudi 

infections, So, almost all morbidity and mortality of malaria occurs in the 

erythrocytic stage (Kim a et ai" 1992; reviewed by Wipasa et ai" 2002), A 

proportion of new merozoites released from a ruptured schizont is not 

picked up by the phagocytic cells and invade new erythrocytes (reviewed 

by Moorthy, Good and Hill, 2004) and some other merozoites then 

differentiate to become gametocytes (Phillips, 2001), 

1.4.3. Sexual stage 

Gametocytes are stages infective for the female Anopheles mosquito, the 

vector. Gametocytogenesis usually starts after two cycles of schizogony in 

blood in humans (Garnham, 1988), Killick-Kendrick suggested that in 

rodent malaria infection gametocytes might arise directly from merozoites 

from the liver (Garnham, 1988), 

When Anopheles takes up the infected blood meal, gametocytes are taken 

up into the mosquito's gut. The macrogametocyte rapidly forms a 

macro gamete, but microgametocytogenesis proceeds more slowly through 

the phenomenon called exflagellation, after ten minutes, The microgamete 

nucleus usually divides into eight, each of which is motile and has a shape 
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like a flagellum of 20 /-tm length, A free exflagellated microgamete 

fertilizes a macro gamete and a pigmented zygote is formed by fusion of 

two nuclei. Within 18 hours or less after the blood meal the zygote has 

elongated to the motile ookinete, The ookinete penetrates the epithelial 

layer of the midgut with its peritrophic membrane and finally rests between 

the basal lamina and epithelial cells on the outer surface, The ookinete 

develops to become an oocyst, The oocyst may be recognized after 24-72 

hours after ingestion of the infected blood meal. The nucleus of the oocyst, 

6-8 /-tm diameter, divides repeatedly during the next 7 to 15 days post­

infective bite, A mature oocyst usually contains thousands of sporozoites, 

Sporozoites leave the oocyst into the haemocoelic fluid and migrate to the 

acinal cells of the salivary glands, 

After a day residence in the gland they will have the highest infectivity, 

which may be decreased with age, An infective bite consists of passing 

many sporozoites into the vertebrate host such as human (Garnham, 1988), 

1.5. Rodent malaria parasites 

In vivo studies of p, Jalciparum malaria in humans which lead to an 

understanding of the immune responses and development of a successful 

vaccine are very limited, This is because of different obstacles such as 

ethical problems due to the dangerous outcome of the infection, Although 

in vitro culture of p, Jalciparum is possible (Trager and Jensen, 1976), 

extrapolating any in vitro results to the in vivo situation has to be with 

caution, Although the human parasites are largely host specific, they can 

infect a few nonhuman primates and monkeys, But using nonhuman 

primates is also restricted because of availability, and expense (Phillips, 

2001), So, animal models of human malaria parasites, which are easy and 

cheap to maintain such as rodents, are being used, However, malaria 

parasites in birds or primates were studied prior to rodents, The discovery 

of rodent malaria parasites in Katanga by Vincke and Lips in 1948 opened 

a new era in malaria study (Killick-Kendrick, 1978; Kreier, 1977), These 

parasites have features of human malaria infections and today most of our 

knowledge of malaria is indebted to theier discovery and use, The mouse 

also as a rodent host has a well-characterized immune system, So, using 
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mice provides advantageous information in the study of immune responses 

against malaria parasite (Taylor-Robinson, 1995). 

The first experimental Plasmodium infection was studied in an arboreal 

rodent, Grammomys surdaster, which was infected with P. berghei. Vincke 

and Lips (1948) captured two parasitized G. surdaster and the blood of 

these infected rodents was passaged to white rats and mice and both 

produced infections. The malaria parasite was then isolated and it was 

named P. berghei (Killick-Kendrick; 1978). 

Three rodent species may coexist in the same host and locality, P. yoelii, 

P. vinckei, and P. chabaudi (Landau and Chabaud, 1994). The non-lethal 

infections by a number of rodent malaria parasites such as P. chabaudi 

chabaudi, P. c. adami, P. yoelii, and P. vinckei petteri can be used as 

appropriate models to investigate the mechanisms of acquired immunity. 

All species can be grown in laboratory mice and young rats. Maintenance 

of above three species and P. berghei with a complete life cycle is now 

possible in the laboratory (NCBI, 2004). 

1.5.1. Using P. chabaudi 

Plasmodium chabaudi was first isolated from a shiny thicket rat, 

Thamnomys rutilans, in the Central African Republic, by Irene Landau and 

Alain Chabaud in 1965. Two subspecies of this species were discovered by 

Carter and Walliker in the Congo Republic in 1976 in T. rutilans and have 

been defined as P. chabaudi chabaudi and P. c. adami (NICB, 2004). 

There are several similarities between P. chabaudi and P. Jalciparum 

during their life cycle and the pathology caused in the host (Taylor­

Robinson 1995). P. chabaudi AS strain has been widely used as an animal 

model of a P. Jalciparum infection. The similarity of P. c. chabaudi AS to 

P. Jalciparum is in the asexual blood stage where it infects normocytes, 

undergoes antigenic variation and partial sequestration in resistant inbred 

strains of mice laboratory including C57B1/6, and NIH. This parasite also 

shows recovery from the acute parasitaemia which is followed by one or 

more recrudescences (Cox, Semoff and Hommel, 1987; Gilks, Walliker and 

Newbold, 1990; Phillips, Mathers and Taylor-Robinson, 1994). However, it 

should be borne in mind that in this animal model the host is unnatural and 

artificial and also the course of infection has some differences in animal 
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models and humans, For example, in the rodent malaria parasite p, c. 

chabaudi AS, the acute parasitaemia has a higher peak parasitaemia (>30%) 

than that normally seen in P. Jaiciparum (10%). The asexual blood stage of 

P. chabaudi grows synchronously. In P. chabaudi the rupture of pRBCs 

occur between midnight and 3:00 am (Hawking, Gammage and Worms, 

1972). So, most merozoites reinvade new red blood cells between midnight 

and 08 :00 (Landau and Chabaud, 1994). Sequestration of schizont-infected 

red blood cells has been observed in mice infected with P. c. chabaudi 

(Cox, Semoff and Hommel, 1987; Gilks, Walliker and Newbold, 1990). 

Transmission electron microscopy has showed that in mice infected with P. 

c. chabaudi pRBCs were directly in contact with endothelial cells in the 

liver (Mota et ai., 2000). Using two different modifications of Giemsa's 

stain showed that P. c. chabaudi invades all red blood cells as P. 

Jaiciparum does, regardless of their age, but will prefer to invade 

metabolically young RBCs (Taylor-Robinson, 1993). 

P. chabaudi genome size, with 14 chromosomes, is estimated to be close 

to that of P. Jaiciparum at 25-30 Mb. This genome is also very AfT rich at 

approximately 80%, and comparable to that of P. Jaiciparum (NICB, 2004). 

1.5.2. The course of the infection of malaria parasite in rodents 

In the natural host, T. rutilans, the infection lasts throughout the host's 

life (Landau and Chabaud, 1994). However, the infection in experimentally 

infected rodents does not become chronic and cure occurs after a variable 

length of time (Landau and Chabaud, 1994). Following a natural infection 

in T. rutilans is very difficult because parasites are usually very scanty. 

The asexual blood stage of the malaria parasite was obtained by sub­

inoculation of pRBCs from T. rutiians into laboratory mice. This 

erythrocytic cycle lasts approximately 24 hours in P. chabaudi, P. vinckei, 

and P. yoelii (Landau et ai., 1993). 
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1.6. Overview of immunity of malaria 

Naturally acquired immunity in people who live in endemic areas is very 

slow to develop and takes between 10-15 years of exposure (Long, 1993; 

Baird, 1998). Although this immunity controls parasite replication, it can 

not eliminate the parasite from the blood completely. It is, however, 

sufficient to prevent death and decrease the impact of malaria after 

reinfection (Baird, 1998). Immune responses are generally species-, stage-, 

strain-, and variant- specific (Andrysiak, Collins and Campbell, 1986; 

Fandeur, and Chalvet, 1998). Individuals in endemic areas frequently have 

premunition, a semi-immune response, showing periodic parasitaemia and 

specific antibodies. Premunition is initially reflected in fewer clinical 

symptoms and eventually in lower parasitaemia and no symptoms (Long, 

1993; Long et al., 1994; Baird, 1998). Immune responses involve both 

antibody-dependent and cell-mediated immunity (reviewed by Wipasa et 

al., 2002). 

Immunity to malaria in the vertebrate host according to Phillips (1995) 

can be divided into three categories in which "the parasite may either 1) 

multiply and rapidly kill the host, 2) be quickly controlled and eliminated 

from the blood of the host, or 3) be reduced to low and usually sub clinical 

levels after the acute phase and persist for long periods. 

The mechanisms and factors that provide resistance or acquired immunity 

have been explored through population studies, either in vitro using human 

sera and cells, or a variety of animal models in primates and rodent hosts in 

both in vitro and in vivo studies (Phillips, Mathers and Taylor-Robinson, 

1994; Nardin and Nussenweig, 1993; Long, 1993). 

The mechanisms of malaria immunity may be divided as follows: natural 

resistance to malaria and acquired immunity. 

1.6.1. Natural resistance to malaria 

Possession of natural resistance in some individuals against malarial 

infections is largely based on genetic characteristics. The change in host's 

genome can be developed over the time through mechanisms such as 
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mutations and selective pressure which may be positive and result in 

advantages for the host (Liberles and Wayne, 2002). 

16 

Malaria infection results from the entry of the parasites into the host cell, 

first the hepatocyte, and then the erythrocyte. It involves a complex 

process in which interaction between specific receptors on the host cell 

membrane and binding sites of the parasite is required. If any cell 

membrane does not have appropriate receptors, the penetration of the 

parasite will not occur (Butcher, Mitchell and Cohen, 1973). For instance, 

absence of P. vivax malaria in people who live in West Africa results from 

a high proportion of Duffy negative individuals. This molecule, as a 

specific erythrocyte receptor, is necessary for successful entry of P. vivax 

into the host red blood cell (Miller et al., 1976). It is the same for P. 

knowlesi (Miller et al., 1975). 

Genetic mutations which are proposed to link to malaria occur almost 

exclusively in areas where the disease has been a killer. The frequencies of 

these mutations are balanced to keep them at appropriate levels. So, 

protective effects against malaria are balanced with the side effects of 

disease such as sickle cell anaemia and thalassemia (Harder, 2001). 

The presence of foetal haemoglobin, a protective factor in new-borns 

against malaria up to three months, can retard development of P. 

Jalciparum and give resistance to the parasite (Giardina et al., 1995). 

In 1949 Haldane stated the "Malaria Hypothesis". He hypothesized that 

there is a correlation between malaria endemicity and hereditary as) that 

haemoglobinopathies such as thalassaemia (Allison, 2004). The hypothesis 

suggests that malaria applies selective pressure by which a related gene is 

maintained within a population. For example, in the South West Pacific 

region there is a geographical correlation between the frequency of alpha +­

thalassaemia and the endemicity of malaria (Allen et al., 1997). So, it was 

concluded that thalassaemia provides some advantages for people who are 

living in malaria endemic areas. 

In addition to thalassaemia, glucose-6-phosphate dehydrogenase (G6PD) 

deficiency, and other enzymatic deficiencies can protect against malaria. 

The resistance will be enhanced in a host who has both thalassaemia and 

G6PD (00 et al., 1995). 

According to Tishkoff (2001) and her colleagues two variants of G6PD 

deficiency arose in Africa. They focussed on the two alleles that cause 
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G6PD deficiency. These deficiencies are known as A and Med, which 

appeared in African and Mediterranean populations respectively. The A one 

appeared within up to the past 11760 years ago and the Med one was up to 

6640 years ago. Interestingly archaeological evidences confirm that the 

presence of a dramatic lifestyle change started in Africa 12000 years ago 

due to severe change in climate and weather which provided favour 

conditions for malaria spread. So it may be concluded that natural selection 

spreads this genetic disorder for protecting the population from the fatal 

malaria in those areas (Tishkoff et al., 2001). 

If the merozoite enters the host cell, where the intracellular environment 

is unfavourable, the parasite's development will fail. For example, P. 

Jalciparum is unable to cause the severe symptoms in people who have a 

mutation in their haemoglobin gene by which valine replaces glutamic acid 

in the ~ chain of the molecule, which is resistant to breakdown by the 

parasite proteases and termed HbS (Pasvol, Weatherall, and Wilson, 1980). 

In a large case-control study in Burkina Faso it was shown that HbS also 

provides protection against clinical P. Jalciparum in homozygotes with 

29% and in heterozygotes with 92% of subjects (Modiano et al., 2001). 

Malaria infections are also affected by specific diet or lack of some 

nutrients. P. berghei infection can be suppressed in rats which were fed 

only milk. Infants that are also fed only milk are resistant because milk has 

no para-aminobenzoic acid (PABA) which is a necessary growth factor for 

the parasite (Maegraith, Deegan, and Sherwood, 1952). A diet with cod 

liver oil allows mice infected with lethal P. berghei to live longer. Adding 

vitamin E reversed the effect (Godfrey, 1957). A vitamin E-deficient diet 

suppressed the infection in mice infected with lethal P. yoelii (Taylor et 

al., 1997). Low protein foods such as Cassava, yams, sugar cane, and dark 

lima beans provide some resistance to malaria. The severity of infection 

with P. yoe/ii, P. berghei, and, P. vinckei has been shown to be reduced in 

mice feeding on cassava (Ibekwe and U gwunna, 1990). Levander (1995) 

reported that the infected host erythrocyte, the parasite, or both were 

affected by an antimalarial effect of fish oil through imposing a dietary­

induced oxidative stress. 
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1.6.2. Acquired immunity to malaria 

It is now known that early events in the host response during natural 

immunity to an invasive pathogen influence the development of acquired 

immunity. So, natural immunity mechanisms playa role in bridging innate 

resistance and adaptive immunity. Non-specific responses, as essential first 

defences, are able to activate specific immunological responses via the 

release of cytokines (Choudhury et al., 2000). Induction of IL-12 secretion, 

a key cytokine which initiates Th1 responses by triggering IF Ny production 

from NK and CD4+ T cells (Gazzinelli, 1996), results from stimulation of 

cells such as macrophages (Sam, and Stevenson 1999; Stevenson et al., 

1995) and dendritic cells (DCs) (Ahuja et al., 1998). 

Despite repeated exposure during childhood to malaria and evidence of a 

variety of effector mechanisms to malaria, immunity remains incomplete 

even in adults (Baird, 1998). Immunity can be lost if these immune people 

move out of an area of endemicity. It is suggested that repeated exposure is 

necessary to maintain resistance (Winstanley, 1998). Some important 

aspects of the immune responses have been identified and are summarised 

as follows. However, in vivo immune response mechanisms in humans are 

still uncertain: 

In endemic areas, where the people are regularly exposed to P. 

Jalciparum, an acquired immunity develops in most residents. Very young 

children may also be resistant to malaria due to their maternal antibodies, 

and/or presence of foetal haemoglobin during the first six months of life 

(Well come Trust and Roll Back Malaria information booklet, 2004). 

Although an acquired immunity starts in babies, children remain at risk of 

dying up to 5 years old. There is high mortality and morbidity in children 

from 6 months to 5 years, particularly in Africa (Schwartlander, 1997). 

However, with increasing age parasite prevalence, density, and the number 

of clinical episodes progressively decline (Greenwood et al., 1987). 

Mayor et al, (2003) reported that there was a significant correlation 

between multiplicity of infection, multiple populations and clones of a 

species present in a host, and parasite density in infants, children under 4 

years of age and adults. It is also proposed that the relationship between 

multiple infections and malaria morbidity is age-dependent in highly 

endemic areas (Smith et al., 1999). Although in adults immunity never is 
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complete, an effective immunity might develop more quickly after first 

infections in adulthood than in infants and young children (Baird, 1995), In 

Indonesia there were no fatalities after two years in adults who moved from 

the areas often free of malaria to the areas where malaria is endemic 

(Baird, 1995), This suggests that lifesaving immunity developed in 2 years 

in adults who were infected due to movement to an endemic area, compared 

with 5 years in children, So, it is suggested that acquired immune response 

in adults is an age-dependent phenomenon (Baird, 1995; Jones, 1991), 

To achieve an immune response, the host has to experience multiple 

infections in which a spectrum of different antigens are presented to the 

immune system, The possible sources of these different variant antigens 

could be antigen polymorphism and antigenic variation over several years 

(Langhorne, Mombaerts and Tonegawa, 1995), 

As previously indicated rodent malaria parasites as animal models for 

human malaria, particularly the mouse, have provided valuable and 

important information in understanding the mechanisms of immunity to 

Plasmodium spp, Despite many features in common that justify using these 

animal models there are some differences between human and mice in the 

development of immune responses to malaria infection, 

In most mice strains a single infection induced a strong immunity in both 

self-curing and drug-cured infections (McColm and Dalton 1983; Jarra and 

Brown 1985) and mice more easily become immune to Plasmodium than 

humans (Favila-Castilo, Monroy-Ostria, and Tapia, 1999) whose immunity 

develops after several infections over years (Hommel, 1985), However, 

infected mice, in general, suffer higher parasitaemias than humans (Favila­

Castillo, Monroy-Ostria, and Tapia, 1999). The usefulness of mice as an 

artificial host in malaria studies might be questioned because they have 

different biological features than humans (Good, 1995) and the parasites 

are used in mice are also different. Nevertheless, using animal models in 

the light of limitations in human studies remained the best source of 

information. The main focus, therefore, in introducing knowledge of the 

immune responses to malaria in this thesis comes from studies with animal 

models. 
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1.6.2.1. Immunity to pre-erythrocytic stage and sporozoites 

It is known that most mature T -lymphocytes in mice can be separated into 

two maj or subpopulations according to their cell surface glycoproteins, 

CD4+ or CD8+. CD4+ T cells recognize and can be activated by antigenic 

molecules presented with class II MHC molecules, expressed on B cells and 

macrophages (Langhorne et al., 1989). This subpopulation promotes 

antibody production, cell mediated responses and delayed-type 

hypersensitivity reactions (Bottomly, 1988). CD4+ T cells in mice are 

functionally heterogeneous. One subset called T helper-1 (Th 1) induces 

inflammatory reactions via cytokines such as IL-2, IFNy, and TNF leading 

to cell-mediated responses. For example, IFNy plays a central role in 

protection to liver stage malaria infection by inducing infected hepatocytes 

to produce NO as a killer of the parasite (Mellouk et al., 1991). The other 

subset, called T helper-2 (Th2) subset, induces production of IL-4, IL-5, 

and IL-6 preceding antibody production (Langhorne, 1989). 

Vaccination experiments initially with animals and later in humans are the 

main sources of information about the immune responses to pre­

erythrocytic stages (reviewed by Phillips, 2001). The presence of both 

subsets is necessary for the development of protective immune responses 

against different life cycle stages of malaria parasites such as P. chabaudi 

AS (Langhorne, 1989). CD4+ T cells act as helper cells for the generation 

of CD8+ T -cells, which kill the parasites within the hepatocytes 

(Langhorne, 1989). The liver is thought to be an important multifunctional 

site in protecting a host against infectious agents such as parasites. 

Although the liver stage of a malaria infection is silent, immunologically it 

is significant (Lau, Sacci and Azad, 2001). The liver responds to 

Plasmodium infection by increasing the production of C-reactive protein 

induced by IL-1 stimulation (Nussler et al., 1991 c). Intrahepatic 

lymphocytes that are primed with P. yoelii CD3+ NK1. 1 + inhibited parasite 

growth within the hepatocyte (Pied et al., 2000). During the liver stage the 

expression of several genes may be altered in the host. Lau and colleagues 

(2001) showed that expression patterns of several host transcripts were 

altered and up-regulated in the tissue tested 24 hours after infection during 

the liver stage of P. yoelii infection compared to controls. For example, in 
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the infected spleen the expression of TNF -u was down- regulated where as 

the IFNy gene expression was increased (Lau et al., 2001). 

Irradiated sporozoites which are able to invade hepatocytes but are unable 

to complete their development in the liver (Nussenzweig et al., 1967; 

Hollingdale and Krzych, 2002) can induce protective immune responses in 

some malaria parasite infections. The role of cell-mediated including CD4+ 

T cells response to pre-erythrocytic stage in both humans and mice has 

been shown (Ferreira et al., 1986; Mellouck et al., 1991; Good and Doolan, 

1999). Irradiated sporozoites of P. berghei in mice and P. Jalciparum, and 

P. vivax in humans can induce a very strong resistance to a challenge with 

viable sporozoites (Nussenzweig, et al., 1967; Clyde, 1990). Investigations 

of the protection mechanisms to pre-erythrocytic stage in immunized 

individuals have shown a role for protective antibody. 

Serum of mice immunized with irradiated sporozoites probably contains 

invasion-blocking antibodies. This serum passively protects mice against 

sporozoites challenge (Potocnjak et al., 1980). It has been shown that 

antibodies against sporozoite surface may also playa role to neutralize the 

infectivity of sporozoites for hepatocytes, (Good and Doolan, 1999). 

Mice lacking B cells but not T cells could be immunized with irradiated 

P. berghei sporozoites, indicating a role for antibody-independent 

(cellular) immune mechanisms as well as antibody mediated protection 

(reviewed by Phillips, 2001). Protective immune responses are directed to 

the parasite-derived peptides expressed on the surface of the infected 

hepatocyte in which CD8+ T cells were the principal effectors (Hoffman 

and Franke, 1994). It is hypothesized that activated CD8+ T cells release 

IFNy and subsequently up-regulate NO production which can eliminate the 

parasites in infected hepatocytes (Hoffman et al., 1997; Doolan et al., 

1996). In BALB/c mice immunized with irradiated sporozoites and 

challenged with P. yoelii sporozoites parasite-specific CD8+ T cells induce 

a novel mechanism of adaptive immunity in which NK cell, IFNy, IL-12, 

and NO are involved. In these immunized mice blood stage parasitaemia 

was absent after the challenge (Doolan and Hoffman, 1999). Serum of mice 

immunized with irradiated sporozoites inhibited both invasion of 

sporozoites and development of exo-erythrocytes stages in vitro (Chatterjee 

et al., 1996). 
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Human volunteers protected by immunization with radiation-attenuated P. 

Jalciparum sporozoites produce CD8+ CTL directed at an epitope on the 

CSP of P. Jalciparum (Hoffman et al., 1997; Doolan et al., 1996). Specific 

CD8+ T cells for a peptide derived from the P. yoelii CPS (Py CSP) are 

also can be produced in mice which were primed with P. yoelii (Doolan and 

Hoffman, 1999; Weiss et al., 1990). A distinct mechanism of protection is 

induced in BALB/C mice by immunization with irradiated sporozoites 

which is initiated by CD8+ T cells following recognition of parasite­

derived peptide-MHC complexes on the surface of infected hepatocytes. 

This mechanism requires NK cells and is dependent on IFNy, IL-12, and 

NO (Doolan and Hoffman, 2000). 

A best-characterized antigen and major immunodominant surface antigen 

of sporozoites is the CSP (Nardin and Nussenzweig, 1993; Nussenzweig 

and Nussenzweig, 1989). It is known that motility of sporozoite is 

associated with the secretion of CSP, and it is important for successful 

penetration into the hepatocyte (Phillips, 1995). CSP induces the 

production of protective antibodies which are able to recognize the repeat 

region of CSP and protected recipient mice against a viable homologous 

sporozoite challenge (Potocnjk et al., 1980; Charoenvit et al., 1991). It is 

noteworthy that Lopez and colleagues (1996) showed that sera from people 

living in endemic areas can recognise CSP of P. Jalciparum. 

In the CSP there are two highly conserved regions in all different 

Plasmodium species called region I and region II. Both might be parasite 

ligands for binding to hepatocytes and become possible vaccine targets 

(Sinnis et al., 1996). Invasion of hepatoma cells by sporozoites was 

inhibited by anti-region I antibodies (Sinnis and Sim, 1997; Sinnis et al., 

1996). It has also been shown that peptides representing region II can 

inhibit binding of CSP to hepatoma cells and sporozoite invasion (reviewed 

by Phillips, 2001). 

An anti-CSP monoclonal antibody (MAb) gave a very high degree of 

protection against homologous challenge (Chen, Tigelaar, and Weinbaum, 

1977). Although the mechanisms by which antibody inhibits the pre­

erythrocytic stages are not clear, it seems that anti-CSP antibodies can 

inhibit sporozoite penetration into the hepatocytes (Nudelmann et al., 1989, 

Mazier et al., 1987, Mazier et al., 1986). On the other hand, it has been 

shown that such antibodies are not involved in blocking penetration by P. 
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falciparum (Mellouk et al., 1986). So, in P. falciparum infection it may be 

suggested that the antibodies may destroy the parasite in the 

parasitophorous vacuoles in post-penetration events (Mazier et al., 1988). 

It has been recently shown that y8 T cells, a minority subset of CD4+ T 

compared to CD4+ a~T cells in the peripheral blood of individuals (Salerno 

and Dieli, 1998), function as a component in cell-mediated immunity to 

experimental malaria (Ho et ai, 1990) and are increased in number during a 

malaria parasite infection in humans and rodents (Von der Weid et al., 

1996, Nakazawa et al., 1994). It is proposed that y8 T cells are components 

of early immunity directed against malaria pre-erythrocytic stages. 

However, they are not required for the induction of an effector cx,~ T cell 

immune response generated by irradiated sporozoite immunization 

(McKenna et al., 2000). y8 T cell-deficient mice show increased liver 

parasite burden compared with similarly challenged immunocompetent mice 

at 24 hours post-infection (McKenna, et al., 2000). Although y8 T cells 

playa role in the protection induced by immunization with irradiated 

sporozoites (Tsuji et al., 1994), they are not essential for clearing blood 

stage infection since y8 T cells depleted mice control a P. chabaudi blood 

stage infection (Langhorne, Mombaerts and Tonegawa, 1995). There are a 

number of possibilities for y8 T cell function. First they can recognize 

antigens directly, independent of MHC restriction (Morita et al., 1996). 

Secondly y8 T cells exert their anti-parasitic activity against the infected 

hepatocytes. It was shown that y8 T cell clone 291-H4 exhibited activity 

against pre-erythrocytic parasites in hepatocytes in mice, which were 

challenged with sporozoites (Tsuji et al., 1994, and 1996). So, data support 

the conclusion that y8 T cells have some role in the control or inhibition of 

pre-erythrocytic stages of malaria parasites. The role of y8 T cells against 

asexual blood stages is discussed later. 

1.6.2.2. Immune response to asexual blood stages 

The asexual erythrocytic stages of the parasite cause all the morbidity, 

pathology, and mortality from the disease (Phillips, 1994). Efforts have 

been made towards an understanding of the immune mechanisms which 
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could facilitate development of a protective vaccine against this stage, 

which could limit parasite growth, and consequently prevent or minimize 

clinical disease (reviewed by Wipasa et aI" 2002). Immune responses 

against asexual blood stages of malaria parasites were thought to be partly 

anti-parasite and partly anti-toxic (Sinton, 1950), but subsequently 

immunity to asexual blood stages has been redefined as anti-parasite and 

anti-disease immunity (Playfair et al., 1990). 

In mice the immune response to erythrocytic stages of infection is 

multifactorial and involves both cell-mediated and antibody-dependent 

mechanisms including the two subsets of CD4+ T cells, Th1 and Th2 

(Taylor-Robinson, 1995). During the acute primary parasitaemia 

inflammatory-type or Th1 cells, produce IFNy and IL-2, indicating cell­

mediated immunity. There is also a release of TNF -<X, and reactive oxygen 

radicals from macrophages (reviewed by Long, 1993). As the infection 

progresses the frequency of Th2 type lymphocytes increases, providing IL-

4 as a growth factor for Th2 cells, and indicating development of antibody­

dependent immunity (Langhorne, 1989). A sequential Th1 to Th2 switch 

has been shown in immunity against some strains of rodent malaria 

parasites such as Plasmodium chabaudi AS (Langhorne 1989). Some 

investigations however, suggest that T cell-mediated immune responses 

playa more significant role in resisting the acute blood stage of 

haemoprotozoan infections than was proposed before. Thus B cell-deficient 

mice infected with P. c. adami resolved their infections without 

chemotherapy (Grun, and Weidanz, 1981). It was shown that T cells but not 

B cells adoptively transferred immunity to P. c. adami (Cavacini et al., 

1989). Nude mice infected with P. vinkei petteri and Babesia microti were 

unable to resolve parasitaemia and finally died. Mice rendered B cell 

deficient by lifelong treatment with anti-)l antibody were able to control 

acute infections with three haemoprotozoan parasites: P. c. chabaudi, P. 

vinkei petteri, and B. microti (Cavacini, Parke and Weidanz, 1990). 

An imbalance in the Th 1 and Th2 responses may modify a host's immune 

response favouring of an environment in which malaria parasite can persist. 

Generally in infections caused by intracellular pathogens such as malaria 

parasites the Th 1 response has a key role in controlling diseases, 

particularly the acute phase. So, in such cases regulatory cytokine such as 
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IL-12 could playa critical role because its production inhibits IL-4 that 

promotes a Th2 response (Ahuja et ai., 1998). Many studies in P. chabudi 

AS indicated that Th 1 responses are initiated early in the course of 

infection in resistant hosts such as inbred NIH mice (Taylor-Robinson et 

ai., 1993; Taylor-Robinson and Phillips, 1993) and C57BLl6 mice 

(Langhorne et ai., 1989). However, in susceptible A/J mice (Stevenson and 

Tam 1993) Th2 response were induced earlier. 

Th 1 cells promote opsonization and phagocytosis via increasing in 

production of IgG2a (Matsumoto et ai., 2000) and IgG3 in mice (Smith et 

ai., 1997) while in humans IgG 1 and IgG3 have the main role. These 

antibodies lower parasitaemia and reduce pathology in people living in 

endemic areas (Aribot et ai., 1996; Bouharoun-Tayoun and Druilhe, 1992). 

Th2 cells induce IgG1 in infected mice with malaria parasites and in 

humans promote production of IgG4, which is involved in allergic reactions 

and control of helmintic infections (Smith et ai., 1997). 

IFNy has a central role in protection against asexual blood-stages of P. 

chabaudi AS when either produced endogenously (Su and Stevenson, 2000) 

or administered exogenously (Curfs et ai., 1993). IFNy gene knockout mice 

infected with P. chabaudi AS showed higher morbidity and severe 

mortality compared to control mice infected with wild type (Su and 

Stevenson, 2000). Yoneto et ai. (1999) showed that splenocytes of mice 

deficient in inducible nitric oxide synthase (iNOS-I-) produced an amount 

of IFNy comparable to that produced by splenocytes of wild type control 

mouse in P. berghei XAT, an irradiation-induced attenuated variant of the 

lethal strain of P. berghei NK65. However, treatment of these mice with 

neutralizing anti-IFNy antibody resulted in a lethal outcome. An early NK 

cell-mediated IFNy production is implicated in the control of asexual blood 

stages of P. chabaudi (Mohan et ai., 1997). Sam and Stevenson (1999) 

suggested that the consistent presence of higher levels IFNy and IL-12 

might contribute to the polarization of Th cell response in resistant B6 

mice. This study showed that there is a significantly higher production of 

IL-12 p70 by splenic macrophages in resistant B6 mice compared to 

macrophages in susceptible A/J mice in vitro. 
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TNFa is a pyrogenic factor responsible for fever and is incriminated in 

the pathology of cerebral P. Jalciparum malaria. The parasite, P. 

Jalciparum, induces TNFa release from monocytes during acute phase of 

the infection (Curfs et al., 1993). TNFa has both protective and pathologic 

roles in malaria infections as high levels of TNFa mRNA expression in the 

spleens of C57B1I6 mice correlate with resistance to P. chabaudi AS 

infection, and neutralizing anti-TNFa antibodies in resistant mice abrogate 

immunity (Jacobs, Radzioch, and Stevenson, 1996). In contrast, reducing 

serum TNFa in mice infected with P. berghei by neutralizing the IFNy 

results in protection from experimental cerebral malaria (Grau et al., 

1989b). In humans high levels of TNFa in children with P. Jalciparum 

malaria have been also shown to correlate with hypo glycaemia and a high 

mortality rate (Grau et al., 1989a). 

Transforming growth factor-~ (TGF-~) is thought to playa role as a major 

immunomodulatory cytokine in the successful control of malaria (Orner, 

and Riley, 1998). TGF -~ induces protective immune responses, leading to 

slower parasite multiplication early in the infection and down-regulates 

pathology of infection thereafter, in BALB/c mice. In lethal infections with 

P. berghei circulating TGF-~ was low. However, it was at significant levels 

in resolving infections with P. yoelii and P. c. chabaudi (Orner, and Riley, 

1998). 

In contrast to CD4+ T cells it is thought that CD8+T cells have a minor 

role in asexual blood stage immunity (Langhorne, 1989). For example, it 

has been shown that ~2-microglobulin-deficient (~2-mOIO) mice, which are 

genetically blocked from expressing MHC class I, resolved P. c. adami, P. 

yoelii 17X, and P. c. chabaudi AS infections in the virtual absence of CD8+ 

T cells. So, the results showed that CD8+ T cells are not essential in 

suppression of murine malaria and that the suppression mechanism is not 

MHC class I restricted (van der Heyde et al., 1993). Podoba and Stevenson 

(1991) showed that in P. chabaudi AS infection in C57BL/6 mice, 

depletion of CD8+ T cells with monoclonal anti-CD8+ T cells antibodies 

had no effect on the early course of parasitemia or on the level of peak 

parasitemia. They showed that mice experienced two recurrent bouts of 

parasitemia during the later stage of the infection and elimination of the 

parasite required time more than 5 weeks. Further, CD8+ T cells have been 
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implicated in the pathology of P. berghei acute phase infection due to 

localized overproduction of TNFu, principally in the liver (Waki et al., 

1992). Some investigations have shown that CD8+ T cell responses in acute 

malaria may suppress the production of IL-2 and its receptor expression 

(Ho et al., 1988; Troye-Blomberg et al., 1985). 

On the other hand, there are suggestions that CD8+ T cells have a 

protective function in control of asexual blood stage of malaria parasites 

(Weidanz, Melancon-Kaplan and Cavacini, 1990). In this regard cytotoxic 

CD8+ T cells have been found, as well as CD4+ T cells, to mediate in 

elimination of infected hepatocytes in vitro and in vivo (Doolan and 

Hoffman, 1997). 

Interaction and regulation between Th 1 and Th2 responses are involved in 

effective control in malaria parasites such as P. chabaudi infection. ThO 

are designated as T cells which are able to produce both cytokines of Th 1 

and Th2 T cells (Romagnani, 1996). They will differentiate to be either 

Th 1 or Th2 cells, depending on the immediate microenvironment. 

Stimulated naIve CD4 + T cells first produce IL-2 and differentiate into 

either Th 1 or Th2 phenotypes (Mosmann and Sad, 1996). DCs, 

macrophages, and B cells are known as inducers in the differentiation of 

Th1 or Th2 when appropriate cytokines are present (Mosmann and Sad; 

1996; Banchereau et al., 2003). There are three necessary identified signals 

for T cell activation and differentiation. Contact between T cell and 

peptide/MHC Class II complexes on the surface of APCs provides the first 

signal (Muller, Jenkins and Schwartz, 1989). The presence of the co­

stimulatory molecules or cytokines such as IL-2 is an essential signal 2 

(Lafferty et al., 1988) and finally signal 3 derived as a co-stimulatory 

factor by APCs or via adjuvant which may usually control differentiation of 

T cells (Curtsinger et al., 1999). 

It is shown that in humans, DC 1 derived from peripheral monocytes 

(pDC 1), induces Th 1 differentiation and DC2, derived from CD4 +CD3-

CD11- plasmacytoid cells (pDC2), induces Th2 differentiation (Rissoan et 

al., 1999). In an in vitro study Seixas et al. (2001) showed that P. chabaudi 

infection in the mouse directly activates DCs to elicit cytokines which 

induce Th 1 response. Moreover, Bruna-Romero and Rodriguez (2001) 

showed that DCs initiate a protective immune response against the liver 

stage through activation of CD8+ and CD4+ T cells in P. yoelii infection. 
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They incubated the mature DCs with peptides containing the identified H-

2Kd-specific CD4+ and CD8+ T cells epitopes from the CSP of P, yoelii, 

These DCs were transferred to naIve BALB/c mice and specific activation 

of anti-CS CD4 + and CD8+ T cells was measured using an ELISPOT assay 

for the production of IFNYI When mice immunized by adoptive transfer of 

DCs loaded with the CS-derived CD8+ epitope and challenged with 
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P. yoelii they showed a much lower level of parasite RNA in the liver 

compared to mice transferred with DCs alone or DCs loaded with the CD4+ 

epitope. The activation of Thl response has been demonstrated in P. yoelii 

infection in which CD 11 b + cells, as APCs, could present the antigens of the 

parasite and production of Thl cytokines by CD4+ T cells (Luyendyk et al., 

2002). The migration of substantial DCs, CDll c+, cells within 5 days p.i. 

in C57BL/6 mice infected with P. chabaudi AS blood stages was shown in 

an in vivo study (Leisewitz et al., 2004). This migration was from marginal 

zone or red zone of the spleen to the white pulp which was rich in CD4+ T 

cells. Leisewitz et al., (2004) suggested that an early activation and 

engagement of DCs in infection could be critical to regulate the subsequent 

immune response. 

Reports have shown that yo T cells also have protective or 

immunoregulatory effects during the acute blood phase of malaria 

(Langhorne, Mombaerts, and Tonegava, 1995). During P. vivax (Perera et 

al., 1994) and P. Jalciparum infections in humans proliferative responses 

showed that a subset of yo T cells is increased (Goerlich et al., 1991). It 

has been proposed that yo T cells may playa role in the control of asexual 

blood stage of P. Jalciparum infection in vivo (Elloso et al., 1994). Flow 

cytometry showed that yo T cells are able to inhibit replication of the blood 

stages of P. Jalciparum parasites in a dose-dependent manner in vitro 

(Goerlich et al., 1991). Free merozoites are targets rather than parasitized 

red blood cells (pRBCs) and this inhibition requires contact between yo T 

cells and merozoites (Elloso et al., 1994). The expansion of yo T cells in 

spleen of mice infected with P. chabaudi has also been reported (Minoprio 

et al., 1989; van der Heyde et al., 1995). Resolution of the P. chabaudi 

acute phase may be related to the increase in y'i) T cells in normal mice or 

with chronic infections in B cell-deficient mice (Seixas and Langhorne, 

1999). Both NK and yo T cells contribute to the early IFNy and TNF-a 
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response 24 hours after non-lethal P. yoeiii infection (Choudhury et al., 

2000). Seixas and Langhorne reported (1999) that in double knockout mice, 

deficient in both B cells (fl-MT) and yo T cells, there is a markedly 

elevated parasitaemias compared to the single knockout mice deficient in B 

cells in a P. chabaudi AS infection. C57B1I6 mice depleted of yo T cell 

with MAbs were unable to suppress their infections (Van der Heyde et al., 

1995). So, it appeared that CD4+ a~T cells alone could not mediate early 

resolution of the infection. On the other hand, it has been suggested that 

there is no effective contribution for yo T cells to protect infected mice 

because depletion of yo T cells did not alter parasiatemia, anaemia or 

survival rates of mice infected with avirulent P. c. adami or virulent P. c. 

chabaudi CB (Sayles and Rakhmilevich, 1996). So, it seems that further 

investigations are required to determine the role of yo T cells in protection 

against malaria (reviewed by Wipasa et al., 2002). 

Antibody has been found as a major component of the protective immune 

response to the erythrocytic stages of Plasmodium in passive transfer 

experiments (Cohen, McGregor, and Carrington 1961). The efficacy of 

treatment of non-immune infected patients with immunoglobulin G from 

protected individuals has been shown in human malaria infection (Cohen, 

McGregor and Carrington, 1961). Sabchareon et al. (1991) showed that 

there is a protection of passively transferred IgG from African donors to 

Thai patients with P. faiciparum infection. The asexual blood stage 

parasitaemia declined and clearance of parasites and symptoms was as fast 

or faster than that in drug cured patients (Sabchareon et al., 1991). Control 

of a patent parasitaemia of P. falciparum has been reported using passive 

transfer of IgG from immune adults (Druilhe and Perignon, 1994). In 

endemic areas people who survived childhood infection develop immune 

responses in which parasites are maintained at low levels, and symptoms 

absent. This immunity results from production of specific antibodies to 

different antigens such as Plasmodium falciparum erythrocyte membrane 

proteine 1 (PfEMP-l) (Bull et ai., 1998; Newbold, 1999; Piper et al., 1999) 

or against antigens expressed on the surface of merozoites (Hirunpetcharat 

et ai., 1997). 

The critical role of B cells has been demonstrated in B cell deficient mice 

(fl-MT mice). These mice are able to reduce a primary acute infection of P. 
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c. chabaudi AS to low levels, but they are unable to eliminate parasites. In 

these mice the infection was remained chronic and unresolved and 

characterized by relapsing peaks of parasitaemias up to 30 to 50% of 

pRBCs (von der Weid, Honarvar, and Langhorne, 1996). The chronically 

infected mice were able to clear their infection when they were inj ected 

with B cells from immune donor mice (von der Weid, Honarvar, and 

Langhorne, 1996). This observation confirms the previous findings in 

which anti-IgM-treated BALB/c mice were unable to eliminate a primary 

infection of P. c. chabaudi AS completely and the infection remained 

chronic at a low level and switching from a Th 1 to a Th2 response failed to 

occur (Cavacini, Parke, and Weidanz, 1990; Taylor-Robinson and Phillips, 

1994; Taylor-Robinson and Phillips, 1996). In addition, fl-MT mice, which 

were cured of a first infection showed a secondary infection when they 

were rechallenged with P. c. chabaudi AS. However, the study showed that 

in the wild type control mice a secondary infection was seen only in a 

transient low patent parasitaemia. These results suggested that B cell­

dependent-mechanisms playa crucial role in protection in secondary 

infections (von der Weid, Honarvar, and Langhorne, 1996). 

Antibodies may have different roles in protection such as blocking 

invasion of merozoites into erythrocytes, promoting the uptake of 

opsonized merozoites (reviewed by Wipasa et al., 2002), neutralizing 

malaria toxins, and preventing sequestration of P. Jalciparum (Phillips, 

2001; Long, 1993). It was also shown that the adherence of the mature 

infected erythrocytes to the small blood vessels can be prevented by anti 

PfEMP-1 antibodies, and agglutination of those erythrocytes can be 

promoted (reviewed by Good, 2001). However, it seems that not all 

antibodies are protective as it is reported that polyclonal antibodies (Abs) 

specific to merozoite surface protein-2 (MSP-2), but not MAbs for the same 

antigen, enhance invasion of multiple merozoites into erythrocytes 

(Ramasamy, Ramasamy and Yasawardena, 2001; Ramasamy et al., 1999). 

Specific antibodies importantly playa role in activation of antibody­

dependent cellular inhibition (ADCI) to control parasitaemia. Antibodies 

are capable of promoting a monocyte-dependent inhibition of parasite 

growth in vitro (Druilhe and Pregnon, 1994). At the time of schizont 

rupture phagocytes bound to cytophilic specific antibodies via FC receptor 

contact with some component of merozoites and inhibit parasite growth 
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through releasing soluble mediators which are able to block the division of 

surrounding parasites (Bouharoun-Tayoun et al., 1990; Aucan et al., 2000; 

Tebo, Kremsner, and Luty, 2001). 

There is a correlation between antibody levels, mainly IgGs, and the 

degree of protection to asexual blood stage antigens in human (Astagneau 

et al., 1995; Piper et al., 1999) and mice (Hirunpetcharat et al., 1997). This 

protection is also antibody isotype-dependent. Protective immunity to P. 

Jalciparum has been reported in Saimiri sciureus monkeys which were 

treated with immune Saimiri antibodies (Gysin, Fandeur and Pereira,da 

Silva, 1982). Gysin et al, (1996) demonstrated that passive transfer of an 

IgG preparation obtained from immune African donors had a strong 

protective effect in Saimiri monkeys, which were infected with P. 

Jalciparum. Cytophilic IgG subclasses IgG1 and IgG3 but not non­

cytophilic IgG2 are involved in this protection (Groux et al., 1990; 

Bouhaoun-Tayoun, and Druilhe, 1992). However, in a study in Burkina 

Faso, Aucan and colleagues (2000) suggested that high levels of IgG2 were 

associated with low risk of infection, contributing to parasite clearance. In 

contrast, high IgG4 was associated with high risk to infection suggesting 

that IgG4 may block the protective effect of cytophilic antibody (Aucan et 

al., 2000). 

Passive transfer of MAb 302 that reacts with the C-terminal cysteine-rich 

region of P. yoelii MSP-1 (Burns et al., 1989) protected mice against 

challenge infection with the lethal strain (17XL) of P. yoelii (Majarian et 

al., 1984). In a passive transfer study Spencer Valero and colleagues 

(1998) evaluated the ability of the MAbs against P. yoelii MSP-1 in 

protection of mice against a blood stage challenge of P. yoelii YM. They 

showed that some MAbs mediated substantial reduction in parasitaemia in 

BALB/c mice which were passively transferred with such MAbs and 

infection was cleared. 

Passive transfer of both IgG1 and IgG2a from hyperimmune serum 

obtained from drug cured BALB/c mice conferred protection to P. c. 

chabaudi AJ, inhibiting the emergence of new ring forms in BALB/c mice 

(Cavinato et al., 2001). They suggested that the merozoites released from 

ruptured schizonts are the main targets for antibodies prior to red blood 

cell invasion (Cavinato et al., 2001). It was because in primary infected 

mice the generation of new ring forms was inhibited with treatment of 
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hyperimmune serum, but the number of schizont-infected erythrocytes were 

not altered and also treatment with purified IgG1 and IgG2a decreased 

reinvasion in drug cured mice challenged with a high dose of the parasite. 

Different antigens, when administered under different conditions, routes 

or doses, may selectively induce humoral or cellular immune responses 

(Parish, 1972). Infective dose is thought to have an influence on the 

balance between Th lITh2 responses in P. chabaudi infection (Taylor­

Robinson, and Phillips, 1998). Although in P. chabaudi AS, the importance 

of the balance between Th 1 and Th2 subsets and their characteristic 

cytokines is well known (Taylor-Robinson, 1995), the initial activation and 

expansion of either Th 1 or Th2 and the elements involved in vivo are not 

fully understood. In resistant NIH mice Th 1 was upregulated with an 

increasing infective dose while Th2 responses were downregulated. The 

reverse effect was seen in susceptible A/J mice, with a high-level of IL-4 

production and elevated Th2 activation correlating with a rising infective 

dose (Taylor-Robinson and Phillips, 1998). The study supported the view 

that IFNy is a key cytokine for the induction of protective immune 

responses in mice in the acute phase because of its significant production 

in resistant mice regardless of infective dose (Taylor-Robinson, and 

Phillips, 1998). 

Two different groups of CB9F 1 mice infected with P. chabaudi AS were 

cured with chloroquine when parasitaemia reached either to 0.2% or 5.9 % 

on day 5 p.i. and day 7 p.i. respectively. Mice which had suffered low 

parasitaemia showed good immunity to homologous reinfection. However, 

in mice which were not treated and suffered full parasitaemia challenge 

with a heterologous P. yoelii 17XL resulted in an acute parasitaemias with 

no development of immunity (Favila-Castilo, Monroy-Ostria, and Tapia, 

1999). In mice that suffered low parasitaemias the level of IgG2a was 

higher than those that suffered a full parasitaemias in P. chabaudi AS 

infection. Splenomegaly was not seen in mice that suffered low 

parasitaemias, but splenectomy diminished their immunity to homologous 

reinfection (Favila-Castilo, Monroy-Ostria, and Tapia, 1999). 

Although inflammatory cytokines playa role in the control of the 

disease, it is now widely accepted that overproduction or uncontrolled 

activity of such inflammatory cytokines are involved in cause of the acute 

phase of such disease (Clark and Cowden, 2003). The interaction between 
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these cytokines as an important part of the innate immune system and the 

pathogen may determine the pathology of the disease (reviewed by Clark et 

al., 2004). Proinflamatory cytokines such as TNF, IL-1, lymphotoxin, NO, 

carbon monoxide, and overactivity of the enzyme poly-(ADP-ribose) 

polymerase 1 (P ARP-1) and presence of high-mobility-group box 1 

(HMGB 1) protein in the circulation are also involved to promote pathologic 

events as studied in P. Jalciparum malaria (reviewed by Clark et al., 2004). 

1.6.2.3. Antigenic variation and cytoadherence 

Antigenic variation is a feature of some malaria parasites such as P. 

Jalciparum (Newbold, 1999) which may be identified as the ability of a 

pathogen to vary its antigens either during or between infections, enabling 

the occurrence of persistent or recurrent infections. 

Brown and Brown (1965) demonstrated that in P. knowlesi infection in 

rhesus monkeys recrudescent parasites from a single original inoculum, but 

not a clone, differed in the antigens they expressed on the infected 

erythrocytes surface compared with the infecting population (Brown and 

Brown, 1965). Expressing different variant antigens on the surface of the 

infected red blood cells occurs within a parasite clone through switching 

the expression of different variant genes (reviewed by Good, 2001). 

PfEMP 1, a variant antigen, is a cytoadherence molecule encoded by the 

var gene family. This gene family provides expression of variant PfEMP 1 

which binds to receptors on the endothelial cells such as CD36 and 

intracellular adhesion molecule one (ICAM-1) and sequester to capillary 

vessels. So, as a result of sequestration pRBCs stop circulating and the 

parasite can escape from the splenic clearance (Borst et al., 1995; Berendt, 

1993; reviewed by Newbold, 1999). So, these variant antigens playa role 

as a survival strategy for the parasite. 

Saul (1999) proposed that the primary role for variant antigens is to 

generate an immune response, which regulates parasite growth and thereby 

establishes a chronic infection. Chronicity is an important consequence of 

antigenic variation by which parasitaemia and severity are modified (Saul, 

1999). Chronicity offers an evolutionary advantage to the parasite: an 

increased probability of transmission to a new host (Snounou, Jarra and 
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Preiser, 2000). So, the chance of uptake of gametocytes by a mosquito 

vector is improved if the infection is extended. For instance, P. Jalciparum 

parasites have been detected 1-3 years after primary infection (Eyles, and 

Young, 1951). Antigenic variation evolved in the first instance to ensure 

gametocyte survival (reviewed by Kyes, Horrocks and Newbold, 2001) and 

these variant antigens with cytoadherence feature, therefore, may be also 

accounted as virulence factor. This hypothesis seems to be attractive in P. 

Jalciparum because gametocyte development is prolonged and the 

developing gametocyte spends about 7 days in the bone marrow as a 

specialized location (reviewed by Kyes, Horrocks and Newbold, 2001). It is 

also proposed that the role of the cytoadherence is ensuring that the spleen 

destroys those parasites failing to express variant antigens (Saul, 1999). 

Immune responses can be hampered in P. Jalciparum and P. chabaudi 

infection because they undergo antigenic variation (Phillips et al., 1997) 

providing that the parasites evade from effector clearance mechanisms. In 

humans, studies have shown that even in local communities of restricted 

size there are a large number of circulating variants of P. Jalciparum (Bull 

et al., 1998; Giha et al., 1999a; Giha et al., 1999b). It was therefore, 

concluded that the chronic infection could be maintained by the serial 

expression of different antigenic types and the immune response was 

associated with the development of variant-specific opsonizing antibodies 

(Brown and Brown, 1965; Brown and Hill, 1974). In a P. Jalciparum 

infection Bull and colleagues (1999) showed that a specific antibody to a 

particular antigenic variant dramatically reduced the subsequent chance 

that the individuals would become clinically ill if they were reinfected with 

the same variant. However, the presence of cross-reactive antibodies to 

specific variant antigens has been reported (Marsh and Howard, 1986). If 

these variant antigens are considered as vaccine targets, the immune system 

of adults has to recognize a high proportion of those antigens. Induction of 

cross-reactive antibodies may increase the efficacy of such vaccines 

(reviewed by Kyes, Horrocks and Newbold, 2001). 

Cytoaherence also is an important virulence and pathogenic factor 

contributing to the manifestations of malaria, the disease (Baruch et al., 

1997). Adhesion of erythrocytes infected with P. Jalciparum to vascular 

endothelium and to uninfected red blood cells (rosetting) may be involved 

in the pathogenesis of severe malaria (Chen et al., 1998). In humans 
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accumulation of the parasite in large numbers in different organ beds or 

causing occlusions in the small blood vessels of those organs (Holt et aL, 

1999; Bourke et aL, 1996) damages those organs leading to severe disease 

or death (reviewed by Kyes, Horrocks and Newbold, 2001), 

In rodent malaria, erythrocytes infected with p, c, chabaudi AS adhere to 

CD36 in vitro (Mota et aL, 2000), Pre-treatment of rat endothelial cells 

with IFNy, up-regulates expression of ICAM-1 and VCAM-1, as possible 

receptors for pRBCs (Faveeuw et ai" 2000), Mota and colleagues (2000) 

also showed that erythrocytes infected with p, c, chabaudi AS bound to 

CD36 particularly pRBCs containing mature trophozoites and schizonts in a 

IFNy-dependent manneL Many similar features of sequestration of Y c, 

chabaudi model and p, Jalciparum have been revealed by in vivo 

characterization of the interaction between p, c, chabaudi AS and the 

tissues of different organs (Mota et aL, 2000), 

It has been shown that a region at the right end of chromosome 9 in p, 

Jalciparum is implicated in the binding of the infected red blood cells to 

the endothelial cell receptor CD36 (Holt et aL, 1999), Bourke and 

colleagues (1996) observed that the deletion of the right end of 

chromosome 9 during prolonged p, Jalciparum in vitro cultivation is 

associated with loss of ability to cytoadhere to melanoma cells and greatly 

lowered gametocyte production, The relevant gene in this region is called 

cytoadherence linked asexual gene (clag), and is expressed in erythrocytic 

stage of some malaria parasites such as p, Jalciparum, The first gene 

characterizing clag is identified on chromosome 9 and its protein product 

(CLAG9) was implicated in cytoadhesion of Y Jalciparum pRBCs to host 

endothelial cells (Holt et aL, 1999), Targeted gene disruption of clag 

resulted in great reduction of the binding of Y Jalciparum-infected 

erythrocytes to CD36 (Trenho1me et aL, 1999; Holt et ai" 1999), Other 

clag genes on chromosomes 2 and 3 have also been described in p, 

Jalciparum, and designated clag2, clag3, 1 and clag3,2 and two clag-like 

genomic DNA sequences were identified in Yvivax (Gardiner et aL, 2004; 

Holt et aL, 2001), 

Some recent studies have created some doubts about the role and products 

of clag genes, Holt et aL, (1999) indicated other possible roles for clag 

other than cytoadherence to endothelial receptors, They suggested that clag 

may be involved in other processes of cellular adhesion such as binding the 
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sporozoite to hepatocytes or in the binding of merozoites to erythrocytes. 

Recent studies have proposed other possible locations for products of the 

clag gene. Kaneko et al, (2001) suggested that some translated proteins of 

members of clag gene family such as proteins encoded by clag3.1 and 

clag3.2 genes were associated with a protein assembly in rhoptries. 

Antisera were used in Western blotting and immunofluorescence 

experiments from mice immunized with peptides specific for clag9 

products, showed that these clag9 products are localized to the rhoptry of 

P. Jalciparum (Gardiner et al., 2004). It is, therefore, proposed that clag9 

products are involved in trafficking of adhesion molecules or in the 

remodelling of the erythrocytes so that these proteins can be trafficked to 

the right location where they can participate in invasion into the new red 

blood cell (Gardiner et al., 2004). Ling et al, (2004) indicated that clag9 

product is part of the RhopH complex on the surface of merozoite. After 

erythrocyte invasion by the merozoite clag9 product transfers to the ring 

stage and still associated with RhopH complex, a high-molecular-mass 

protein complex of merozoites (rhoptry). So, it may be suggested that the 

primary role for the complex is remodelling the pRBCs after invasion by 

the merozoite, as the results also did not show direct role in cytoadherence 

and sequestration. 

A wider examination of the clag genes using current sequence databases 

has shown several clag-like genes in other Plasmodium species. In P. 

chabaudi a single clag-like gene was identified which corresponds to part 

of exons 8 and 9 and intron 9 of P. Jalciparum clag sequences (Holt et al., 

2001). Two clag-like genes were shown in P. yoelii and several fragments 

of clag-like sequences were identified for P. berghei (Holt et al., 2001). 

Janssen and colleagues have discovered a major gene family, cir, in the 

rodent malaria parasite, P. chabaudi, using genome survey sequencing 

(2001). They have also identified homologues of this family in two other 

rodent malaria parasites, P. yoelii (yir) and P. berghei (bir). More 

importantly these gene families are homologous to the vir gene family in 

the human malaria parasite P. vivax (Janssen et al., 2002). Vir gene family 

encodes an immunovariant protein (del Portillo et al., 2001). 
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1.6.2.4. Immunity to sexual stages 

It is thought that both antibody-dependent and antibody-independent 

mechanisms have protective roles against sexual stages in different host­

parasites combinations (Hoffman, 1996). Protection to sexual stages may 

prevent fertilization when the protective factors corne in with the blood 

meal in the midgut of the mosquito (reviewed by Phillips, 2001). 
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Acquired immunity to sexual stages has been discussed as transmission 

blocking immunity, and cross-immunity between asexual and sexual stages. 

It has been reported that some specific monoclonal antibodies to PfEMP-1 

have cross-reactivity and can agglutinate multiple strains (Gamain, Miller, 

and Baruch, 2001). In P. Jalciparum and P. vivax in man, and P. cynomolgi 

infection in monkey transmission blocking activity may reduce infectivity 

of gametocytes to mosquitoes, both by antibody, and cytokines such as 

IFNy, TNFCf and NO (Phillips, 1995). 

Measuring the production of IgG antibody to PfEMP-1 in residents from 

an area where malaria is endemic, Papua New Guinea showed that there is 

an increase in anti-PfEMP-1 prevalence with age. This mirrors the decline 

in both the prevalence and the density of asexual and transmission stages in 

erythrocytes (Piper, Roberts and Day, 1999). In addition to IgG role in 

reducing the density of asexual stages it may have an immunoregulatory 

role in the production of gametocytes, either by reduction of their 

proliferation or by an effect on gametocyte maturation (Piper, Roberts and 

Day, 1999). 

1.7. Immunization studies 

Immunization studies help to recognise and evaluate vaccine candidates 

that may provide protection against malaria infections. 

Immunization could be a major way for controlling and preventing 

infectious diseases such as malaria. The main goal is to identify, andlor 

synthesize protective vaccines against malaria for all people who live in 

high-risk situations, particularly in endemic areas. Vaccination is one of 

the most important components of new strategy presented in 1992 to W.H.O 

as Roll Back Malaria (RBM) for malaria control. 
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(http://www.mja.com.au/public/issues. 2004). In endemic areas children up 

to five years are at high risk of death. So, in endemic areas a vaccine with 

50% efficacy for one to five years could substantially reduce all-cause 

child mortality (http://www.mja.com.au/public/issues. 2004). Vaccines 

against malaria would be a cost-effective public health tool to reduce the 

burden of disease, and will be an essential component of successful global 

control. Effective vaccines, as a group, represent the single most cost­

effective public health intervention (W.H.O., 2004). 

Almost all efforts in the field of malaria vaccine development are directed 

to P. Jalcipaum as the most dangerous human malaria parasite (Reviewed 

by Phillips, 2001). Although many advanced vaccines against a variety of 

pathogens are available, there is no routine vaccine for malaria. However, 

today the hope is that an effective vaccine will be available within the next 

7-15 years. Sites for development and evaluation include USA, Colombia, 

Switzerland, Australia, Papua New Guinea, Gambia, and Tanzania (Perry, 

2001; Well come Trust and Roll Back Malaria information booklet, 2004). 

An effective vaccine theoretically should mimic but accelerate natural 

immunity processes. In areas endemic for malaria natural immunity 

(reviewed by Good, 2001) is induced and developed by multiple exposure 

to parasites over the years (Baird, 1998). However, a non-natural immunity 

theoretically refers to immune mechanisms induced by a vaccine which do 

not need to any great extent by natural exposure and could be highly 

effective (reviewed by Good, 2001). Moreover, this immunity may be 

induced following recognition of antigens which are not normally exposed 

to the immune system naturally. During natural immunity acquiring 

specific antibodies against different variants of PfEMP-1 takes several 

years in an individual who lives in an endemic area. Whereas a vaccine 

designed based on immunogenic epitopes of PfEMP-1 may induce non­

natural immunity. These immunogen epitopes could be cryptic epitopes 

which are not recognized after infection but can be presented as 

immunogenic components to immune system in non-native forms and can 

be used as a part of multivalent vaccine (reviewed by Good, 2001). 

In current researches malaria vaccines are divided into three types: pre­

erythrocytic vaccines, asexual blood stage vaccines, and sexual or 

transmission blocking vaccines (TBV) (Anders and Saul, 2000; reviewed by 

Phillips, 2001). Pre-erythrocytic, anti-sporozoite, vaccines are designed to 



--

I 

Chapter 1. General introduction 39 

prevent infection. Anti-asexual blood stage vaccines are designed to reduce 

severity and complicated manifestations of the disease i.e, reducing 

morbidity and mortality among children up to five years in Africa. Several 

vaccine candidates are currently undergoing clinical and field-testing 

(reviewed by Webster and Hill, 2003). Finally, TBV vaccines are designed 

to stop the development of the parasite in the mosquito, and thereby 

reducing or eliminating transmission of the disease in humans. 

1. 7.1. Immunization and vaccines against pre-erythrocytic stages 

Immunization with irradiated sporozoites in humans and animal model 

systems can induce sterile immunity to sporozoite challenge (Doolan and 

Hoffman, 1999). The first vaccination of human volunteers using 

irradiation-attenuated sporozoites of P. falcipaum and P. vivax induced 

complete protection (Clyde, 1975; Clyde, 1990). This level of vaccine 

efficacy created a strong hope that an effective malaria vaccine would be 

developed (Anders, and Saul, 2000). But it is not practical because for 

vaccination of each individual a huge number of infected mosquitoes are 

required (reviewed by Phillips, 2001). 

Although the irradiated-sporozoite based-vaccines can elicit both 

protective antibody-dependent and cell-mediated immunity to malaria 

(Rodrigues, Nussenzweig and Zavala, 1993; Nussenzweig and 

Nussenzweig, 1989), providing irradiated-sporozoites on a large scale is 

not yet possible. Therefore, only using subunit vaccines or synthetic 

peptides would provide possibility to obtain amounts of selected 

immunogenic malaria antigens that may be used in immunization studies 

(Bruna-Romero et al., 2001). 

The important epitopes identified on particular malarial protein molecules 

could be isolated and sequenced. These epitopes can be synthesised and 

may be used as potent vaccines. The synthetic peptide vaccines, which 

would be small and soluble, have to be attached to a carrier protein or 

hapten to make them more immunogenic. The appropriate orientation of the 

immunogen and the attached carrier protein, are the important keys for 

favourable presentation to the immune system for effective elicitation of 

the immune response. 
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Polyclonal T cells are able to kill the liver stage of P. yoelii by prior 

immunization of donor mice with Pyl in vitro. Pyl is a synthetic peptide 

that corresponds to aT-helper epitope within the CSP of P. yoelii. BALB/c 

and C57BL/6 mice immunized with Pyl also showed specific T-cel1 

proliferation and antibody production (Renia et al., 1991). 

The importance of a single epitope for inducing an immune response has 

been demonstrated in immunized B 1 0 (I-Ab) mice with the recombinant 

baculovirus-expressed P. Jalciparum CSP. The lymph node cells of the 

immunized mice were challenged in vitro with a series of overlapping 

synthetic peptides. Only a single epitope aspargine-alanine-aspargine­

proline (NANP)n, from CSP was immunodominanat. This peptide could 

also reproducibly elicit a significant proliferative response from immunized 

lymph node cells in vitro (Good et al., 1990). However, there was only 

limited success in phase I and phase II clinical trials with synthetic and 

recombinant vaccines containing the B-ce11 epitope NANP (Engers, 

Bergquist and Modabber, 1996). 

According to Roggero and colleagues (1995) long polypeptides of 104 and 

102 amino acids corresponding to N - or C-terminal of P. Jalciparum CSP 

induced neutralizing antibodies in mice which prevented P. Jalciparum 

sporozoites penetrating into hepatoma cells, HepG2-A 16, in vitro. 

CS-specific T helper cells and CTLs could be obtained after a single 

immunization in vitro in the lymph node cells culture (Blum- Tirouvanziam 

et al., 1994). The results confirmed the possibility of generating CSP­

specific MHC class I-restricted T cell responses due to their adequate 

processing and presentations in the context of MHC class I (Eberl et al., 

1999). In a following study it was confirmed that immunization of BALB/c 

mice with P. berghei CSP 242-310 induced high titres of anti-peptide 

antibodies which also recognize the native P. berghei CSP (Roggero et al., 

2000). 

A chimaeric protein mixture, consisting of a fusion between the CSP and 

the hepatitis B surface antigen (HBsAg) that is expressed in yeast has been 

designed by GlaxoSmithKline and the US Army (Kester et al., 2001). This 

mixture can form a HBsAg particle in the presence of unmodified HBsAg 

which is called the RTS,S vaccine (Richie and Saul, 2002; Kester et al., 

2001). 



Chapter I. General introduction 41 

The vaccine furthest along in testing is known as "RTS,SI AS02A". In this 

vaccine AS02A is an experimental oil in water adjuvant containing 

monophosphryllipid A (3D-MPL) and the saponin QS21. RTS,S vaccine 

with ASOA adjuvant elicits a better protective response (Richie and Saul, 

2002). This vaccine has proved safe in children during trials in the Gambia 

in which the efficacy during the first 9 weeks of follow-up was estimated 

to be 71 % but decreased to 0 % over the next 6 weeks (Bojang et al., 

2001). A more developed RTS,S vaccine, a hybrid product containing 

repeat and C-terminus of CSP regions, fused to the hepatitis B surface 

antigen vaccine in a complex adjuvant mixture (reviewed by Phillips, 2001) 

was able to reduce prevalence of parasitaemia in adults by 65% for two 

months in a field trial in Gambia. However, Alonso et al, (2004) also 

evaluated the efficacy of RTS,SI AS02A vaccine in Mozambique reporting 

that this subunit vaccine confers protection in children aged 1-4 years 

against both infection and range of clinical illness caused by P. Jalciparum. 

There were 57.7% efficacy for severe malaria and 45% for extending time 

to first infection in two cohorts of children aged 1-4 years in a phase IIb 

randomized controlled trail (Alonso et al., 2004). 

Among antigens in the liver stage P. Jalciparum liver-stage antigen 3 

(PfLSA-3) has been shown to display promising antigenic, immunogenic, 

and protective properties in Aotus monkeys (Perlaza et al., 1998) and 

chimpanzees (Ben Mohamed et al., 1997; Daubersies et al., 2000). PfLSA-1 

DNA immunization also induces potent Th1 responses with protection 

against heterologous P. yoelii challenge in mice (Sauzet et al., 2001). 

More recently clinical trials are being run based on another strategy 

called prime-boosting in which the host can be primed by a DNA-vaccine 

followed with boosting with a recombinant modified antigen. This 

immunization strategy has been evaluated in murine, non-human primate, 

and human studies (reviewed by Dunachie and Hill, 2003). For example, in 

murine malaria priming with plasmid-DNA encoding the entire P. berghei 

CS antigen followed by a boosting immunization with recombinant 

modified vaccinia virus Ankara (MV A) carrying the same antigen induced 

strong level of CD8+ T cells which was associated with an increase 

observed efficacy against P. berghei sporozoite challenge from 0-20 % to 

80-100 % (Schneider et al., 1998). 
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In humans priming the immune response with a DNA vaccine and 

heterologous boosting of the response with recombinant MV A induced high 

levels of specific CTL response (reviewed by Webster and Hill, 2003), 

Moorthy et al. (2004) reported that in a prime-boost vaccination no 

clinically relevant laboratory abnormalities and no severe or serious 

adverse events related to vaccination were seen in 29 Gambian men aged 

18-45 years. A single-boost after the final vaccination expanded the 

effector T cell pool to a similar or higher numbers than that after the 

primary vaccination. This vaccine includes thrombospondin-related 

adhesion protein (TRAP) construct, includes CD8+ and CD4+ T cell 

epitopes from pre-erythrocytic p, Jalciparum antigens and three carriers of 

construct-plasmid DNA and 2 recombinant MV A and fowlpox strain 9 

(FP9). A series of heterologous prime-boosting immunization trials are 

underway in Oxford, England. For example in a DNA-vaccine followed by 

boosting with a MV A vaccine an excellent safety profile for the vaccines 

was seen in over 150 subjects in total (Moorthy and Hill, 2002). Studies in 

sub-Saharan Africa showed that the most potent inducers of circulating 

effector T cells seen to date were DNA/MV A and FP9/MV A regimens 

(Moorthy et al., (2004). 

1. 7.2. Immunization and vaccines against asexual blood-stages 

The immune response to the asexual erythrocytic stage of malaria is least 

well understood. So, immunization and vaccine development studies face 

more challenges than to other stages (reviewed by Good, 2001). The lack of 

an established human challenge, the limitation of available animal models, 

and unclear protection mechanisms are examples of such challenges 

(reviewed by Moorthy, Good and Hill, 2004). However, as almost all 

symptoms and deaths of malaria come from this stage, it is therefore an 

important target for a vaccine (reviewed by Good, 2001). Immunization 

against asexual blood stages needs special necessary requirements such as 

high titres of antibody because parasites reside within erythrocytes and 

immune clearance mechanisms have access to pRBCs only for a short time 

(Mahanty, Saul and Miller, 2003). 
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An effective vaccine against this stage must limit growth of the parasite, 

because the level of parasitaemia is in general proportional to the severity 

of malaria (Miller, Good, and Milon, 1994), 

Asexual blood-stage vaccines may be classi fied into two groups, anti­

invasion and anti-complication vaccines (reviewed by Moorthy, Good and 

Hill, 2004), 

The most interesting anti-invasion vaccine candidates for asexual stages 

are MSP-1 and AMA-1 antigens, Both have homology in all Plasmodium 

spp including rodent models and this has allowed their vaccine potential to 

be assessed in several animal models (Anders, and Saul, 2000), 

MSP-1 is known as a vaccine candidate due to its role in the initial 

recognition and invasion of RBCs (reviewed by Wipasa et ai" 2002) and as 

a target for the immune response, A fragment of MSP-1, MSP-1 19 , including 

two C-terminal epidermal growth factor (EGF) like-domain, has been 

shown to induce inhibitory antibodies targeting the first of the EGF domain 

and subsequently reduces growth of p, Jalciparum in vitro (Chappel, and 

Holder, 1993), As this fragment is not a strong immunogen the larger MSP-

142 polypeptide that is cleaved to generate MSP-119 and a 33 kDa part, has 

been examined, These polypeptides were found to be safe, immunogenic 

and induce antibodies that inhibits invasion in vitro (Anders, and Saul, 

2000). 

A recombinant protein vaccine comprising p, Jalciparum ring erythrocyte 

surface antigen (PfRESA), MSP-1, and MSP-2 formulated in an oil-based 

adjuvant, has been tested in Papua New Guinea between 1998 and 1999. 

This vaccine reduced p, Jalciparum density in children by 62 % without any 

harmful side effect (Genton et al., 2003). The vaccine potential of MSP-4/5 

is being studied and has shown protection in immunized mice to challenge 

with p, yoelii YM. This antigen has some common structural feature with 

PfMSP-4 and PfMSP-5 (Anders, and Saul, 2000). 

Ling and colleagues (1994) expressed the C-terminal parts of the P. yoelii 

EGF -like domains in MSP-1 in bacteria. Immunization of mice with the 

above recombinant protein induced a protection against a challenge of p, 

yoelii. It is known that structural determinants of MSP-1 which are formed 

by two EGF-like modules together are critical for the immunogenicity of 

the protein (Ling, Ogun and Hoder, 1995), Mice were only protected when 

they were immunized with both modules of the EGF -like domains but not 
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with a single module (Ling, Ogun and Holder, 1995). In this regard, the 

specificity of the immune response was shown in BALB/c mice immunized 

with the two EGF -like modules from MSP-l of P. yoelii YM strain. These 

mice were protected against a homologous but not a heterologous P. yoelii 

sporozoite challenge (Renia et al., 1997). 

Burns et al. (2003) used a combined formulation of C-terminal EGF -like 

domain of PcMSP-l, a fragment functional in merozoite invasion, and the 

ectodomain of PcAMA-l, a fragment contributing to erythrocyte binding 

activity as a vaccine candidate in C57BL/6J mice. They showed that 

immunization with both PcAMA-l and PcMSP-l induced a high level of 

protection to P. c. adami challenge, although efficacy was dependent on 

antigen dose, adjuvants, and immunization protocols. 

Among anti-complication vaccines PfEMP-l, the main ligand for 

adherence, sequestration and subsequence severity of malaria, and glycosil 

phosphatidyl inositol (GPI) have been assessed and showed protection from 

severe disease (reviewed by Moorthy, Good and Hill, 2004). However, 

these did not show clear pathway in use of such vaccines because this 

findings were not yet reproducible by other investigators. 

Although a large numbers of blood stage antigens have been identified, 

the number of human clinical trials is too few. This situation causes delays 

to rapid progress. So, the capacity for vaccines testing in endemic regions 

needs to be expanded (Mahanty, Saul and Miller, 2003). 

1. 7 .3. Immunization against sexual stages and TBV vaccines 

TBV s may only interrupt, and reduce the transmission of malaria. Such 

vaccines are unable to induce protective immunity. TBVs can prevent the 

transmission of malaria by inducing antibodies against antigens of sexual 

stages in humans which act in the blood meal in the gut of mosquitoes and 

subsequently reduce deaths in most malaria endemic areas (Carter et al., 

2000; Carter, 2001). Constructs of TBV candidates for both P. Jalciparum 

and P. vivax have been successfully tested in animal systems (Carter 2001). 

Antigen candidates for TBV vaccines are: P. Jalciparum-ll (Pfs 11), 

Pfs230, Pfs25, and Pfs28 molecules (Carter et al., 2000). Two highly 

characterized antigens, including P. vivax-25 (Pvs25) and Pfs25, have been 
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tested. It has been shown that Pvs25 produced in Sacccharomyces 

cerevisiae elicits antibodies in mice, rabbits, and non-human primates. 

These antibodies can efficiently block transmission in membrane feeding 

assays. There is also preclinical data for Pfs25 expressed in P. pastoris 

(Ballou et al., 2004). Most target antigens that are being currently studied 

are: (a) pre-fertilization antigens in the gametocyte, (b) post-fertilization 

antigens expressed on the zygote, and (c) late-midgut-stage antigens such 

as chitinase which is required for ookinete penetration through peritrophic 

membrane (reviewed by Phillips, 2001). 

Despite the fact that post-fertilization antigens would not be exposed to 

the immune response in the patient and so antibody responses would not be 

boosted after natural infection, some post fertilization antigens such as 

Pfs25 have been examined (reviewed by Phillips, 2001). Antibodies against 

Pfs25, Pvs25, and Pvs28 have been shown to block transmission of P. 

Jalciparum (Kaslow, 1997) and P. vivax to mosquitoes completely (Hisaeda 

et al., 2000). Immunogenicity in non-human primates has been tested for 

Pvs25 (Arevalo-Herrera and Herrera, 2001). Phase I clinical trials have 

been conducted at the Malaria Vaccine Development Unit, National 

Institutes of Health (NIH, USA) (reviewed by Hisaeda and Yasutomo, 

2002). 

Regarding late-midgut-stage antigens such as chitinase it has been found 

that inhibition of chitinase can block both parasite infectivity in 

mosquitoes and transmission (Shahabuddin et al., 1993). The ookinete has 

to recognise two types of receptors on the midgut epithelium and surface. 

So, these receptors may be potential TBVs (reviewed by Phillips, 2001). 

1. 7.4. Multivalent vaccines 

Multivalent vaccines, which are comprised from optimized different 

antigen components and their sequences, are necessary to mimic the 

naturally acquired resistance to malaria in people (Rainczuk et al., 2003a 

and b). Optimal components of a multivalent vaccine sequences can be 

identified using a method called expression library immunization (ELI) 

(Smooker et al., 2000). This technique enables screening of a pathogen's 

genome and determining vaccine candidates (Smooker et al., 2000; Melby 
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et aI" 2000), ELI with a p, c, adami genomic library significantly protects 

mice against asexual blood-stage of a lethal p, c, adami DS challenge 

(Smooker et aI" 2000), In a DNA vaccination using three different libraries 

of p, c, adami DS T cells responses specific to native malarial antigens or 

epitopes of the parasite were determined, Sera obtained from mice 

vaccinated with genomic libraries promoted the opsonization of p, c, 

adami-infected erythrocytes by murine macrophages in vitro, Over three­

vaccine trials protection after lethal challenge with p, c, adami DS ranged 

from 33 to 50%, These results showed that protective epitopes or antigens 

were expressed within the libraries and that ELI induces responses specific 

to p, c, adami malaria, 

Mueller and collegues (2005) has developed a genetically modified p, 

berghei which may use as a protective experimental malaria vaccine, They 

disrupted a targeted gene, DIS3, which is essential for early liver-stage 

development in p, berghei and obtained a uis3-deficient sporozoite, These 

genitically-modified sporozoites are able to infect hepatocytes but are 

unable to establish asexual blood stage infection in vivo in C57BLl6 mice, 

Immunization with uis3-deficient sporozoite induced complete protection 

in mice challenged with wild sporozoite of p, berghei, So, as DIS3 of 

rodent malaria parasite and human p, Jalciparum show 34% amino acid 

sequence identity, this principle study indicates possibility of development 

attenuated malaria parasites which may open another feasible hope to 

develop an effective malaria vaccine, 

1.8. Projects aims 

The aims of the present study were first to carry out a detailed 

examination of the immune responses of mice infected with either virulent 

or avirulent p, chabaudi adami, single and mixed-infections, and secondly 

an investigation of the protective role of IgG subclasses, IgG 1 and IgG2a, 

in those infections through passive immunization and finally evaluation of 

the efficacy of some synthetic peptides as possible vaccine candidates in 

NIH mice immunized against p, chabaudi AS challenge, 
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Comparison of the immune responses in NIH mice in avirulent and 

virulent infections. 
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A better understanding of immune responses against malaria parasites, 

particularly asexual blood stage of the parasite is one of the main factors to 

facilitate efforts leading to control of the disease through vaccine 

development. The present study has aimed to determine the nature of and 

compare the immune responses in mice infected with avirulent DK, or 

virulent DS strains of P. c. adami and mixed infections of both strains. The 

association between IgG2a production and CD+ Th 1 and IgG 1 and Th2 

responses were also examined as previous studies have suggested (Taylor­

Robinson et aI, 1993; Smith and Taylor-Robinson, 2002; Stevenson, 1988; 

Langhorne et al., 1989). This included monitoring the course of infection, 

parasitaemia levels, cytokines and specific IgG subclasses productions in 

the acute and chronic phases of infections. In the virulent infections studies 

were done in either drug-treated or untreated mice. 

It is reported that the size of the infective dose influences in balance 

between Th lITh2. Taylor-Robinson and Phillips (1998) showed that in 

resistant NIH mice infected with P. chabudi increasing the infective dose 

enhanced the Th 1 response and IFNI' and reduced Th2 and IL-4 production. 

F avila-Castilo, Monroy-Ostia and Garci-Tapia (1999) reported that mice 

that suffered low parasitaemias developed good immune response to 

homologous reinfection when ascending parasitaemias were stopped by 

treatment. In the present study the effect of a low infective dose in 

induction of the immune response and the dynamic of the course of 

infection compared to that in mice given a higher infective dose in the 

virulent DS infection were also examined. 

Determination of the immune responses when NIH mice were infected 

with an mixed infective dose containing both P. c. adami DK and P. c. 

adami DS 

Mixed infection studies may develop more useful knowledge about the 

immune response dynamics of the infection or alteration in immune 

responses (Snounou et al., 1992). In the present study the immune response 

of NIH mice to a mixed infection consisting avirulent DK, and virulent DS 
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strains was examined, This helps to identify whether there is any cross­

reactions or alteration in immunity in context of sequential Th 1 and Th2 

responses, 
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The effect of in host-competition between two different strains in a mixed 

infection on proliferation rate of each parasite may be evaluated by 

comparison of peak parasitaemia between mixed and single infection of 

those parasites (De Roode et ai" 2003), So, the results presented here 

examined any effect of a low proportion of virulent DS strain in a mixed 

infective dose including the DK strain in the outcome of the course of their 

mixed infection, 

The amelioration of clinical course of P. Jalciparum has been shown in 

humans when previously infected with p, vivax (Maitland et ai" 1997). The 

present study also examined any amelioration in the outcome of infection 

with the virulent DS when the avirulent DK strain is present in the 

infective dose. 

The effects of the passive transfer of sera and purified IgG subclasses 

from avirulent strain in both virulent and avirulent infections 

Many experiments in animal models have confirmed that passive transfer 

of serum (reviewed by Phillips, 2001) and specific-parasite IgGs (Smith 

and Taylor-Robinson, 2002; Narum et al., 2000) can confer protection to 

asexual blood stage of malaria in humans or rodent malaria. Using passive 

transfer experiments the present study examined the degree of the 

protectivity of immune serum and purified IgGl and IgG2a in either 

avirulent or virulent infections. However, as the immune serum or purified 

IgG subclasses were obtained from mice infected with DK strain. So, using 

these sera or IgGs provide determination of any cross-reactivity in 

recipient mice which were challenged with the virulent DS. 

Purified IgG 1 and IgG2 were also obtained from sera collected on two 

different days p.i. day 15., after the resolution of peak parasitaemia or on 

day 55 pi. determination of differences effects of above purified IgGs on 

the course of infection in avirulent or virulent infections in terms of 

collection time was examined. 
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Peptide immunization 

A member of clag gene family of P. Jalciparum showed high similarity to 

one of the gene survey sequences (GSS) in P. chabaudi (Janssen et al., 

2001). Janssen et al.(2002) also identified another gene family in rodent 

malaria prasites such as cir in P. chabaudi which is homologous to vir in P. 

vivax. The features of clag gene products make them important contributors 

to pathology of malaria through cytoadherence, sequestration and also 

probably invasion to red blood cells(Ling et al., 2004; Gardiner et al., 

2004; and Holt et al., 2001). Trenholme et al, (2000) suggested that clag9 

product might be a candidate molecule for an anti-disease vaccine. So, it 

may be concluded that in P. chabaudi, antigens encoded by clag genes may 

have the same roles. 

The present studies has aimed to evaluate immunization of mice with the 

synthetic peptides which were designed and produced based on two 

families clag and cir (see 1.6.2.3) gene families in rodent malaria parasite, 

P. chabaudi AS in NIH mice. The present study provides information about 

potency or efficacy of such peptides as vaccine candidates. These peptides 

may be used in multivalent vaccines or use in other vaccination strategies. 



Chapter Two 

Materials and Methods 
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2.1. Mice 

Female outbred NIH mice were used and purchased from Harlan 

(Bicester, UK). They were kept in the Joint Animal Facility, (JAF), at 20-

24 Co and 50-60% humidity. They were brought to the JAF between 4-6 

weeks of age, and acclimatized for a minimum one week when their weight 

was approximately 25 g. Depending on the experiment the mice were kept in 

artificial light from 1900 to 0700 and fed with standard diet (Beekay 

Universal Ltd, UK) before infection and on diet CRM (S. & S. Scotland 

Ltd) after infection. 

2.2. Parasites 

A new focus of rodent malaria parasites was found in captured thicket 

rats, Thamnomys rutilans, in forest galleries in Brazaville in 1966 (Adam et 

al., 1966). Three species of P. yoelii, P. vinckei, and P. chabaudi 

may coexist in the same host, T. rutilans. 

P. chabaudi AS was also isolated from adult T. rutilans from La Maboke, 

Central African Republic, in 1969 (Walliker, Carter and Morgan, 1971). In 

this study Plasmodium chabaudi adami DK (avirulent), P. c. adami DS 

(virulent), and P. chabaudi AS were used. They were all obtained from 

Professor David Walliker (University of Edinburgh, UK). 

2.3. Parasite maintenance 

For long term storage the parasites have been maintained by 

cryopreservation. The infected blood with usually 15-25 % parasitaemia 

containing ring stages, the most useful stage for freezing and thawing, was 

collected into sodium heparin (1000 i.u.lml, Evans Medical Ltd.) in 

phosphate buffered saline (PBS, pH 7.2) at 10 i.u. heparin per ml of blood 

from mice. The infected blood was diluted 1: 1 with a solution of sorbitol­

glycerol (38% glycerol, 2.9% sorbitol, and 0.63% NaCl). The mixture was 

then aliquoted, 0.3 ml into each cryopreservation ampoules (Oriener, UK), 

labelled with the WEP code and a number, and was snap frozen by 

immersing in liquid N2 (-196 CO), and stored in canisters. 
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For experimental purposes the parasites were maintained by sub-passage 

through susceptible mice (see below), 

2.4. Recovering parasites from cryopreservation (liquid N2) 

The capsule containing the cryopreserved infected blood was taken from 

liquid N2 and the blood thawed in a 37 CO water bath (Gallencamp) or by 

hand, To the thawed blood 0,3 ml 17% sorbitol was added dropwise, The 

mixture was then inoculated intraperitoneally (i.p.) into a mouse. 

2.5. Challenge infection (from the subpassage-infected mouse) 

Infected mice were sacrificed in a C02 chamber and bled by cardiac 

puncture. Infected blood was added into a syringe which contains sodium 

heparin (1000 i. u.lml) in PBS (pH 7.2) at 10 L u. heparin per ml of blood 

from mice. The parasitaemia of the donor mouse was determined by 

examination of a Giemsa's (Gurr BDH Ltd, England) stained thin blood 

smear. The infected blood was subsequently diluted to give the required 

concentration of the parasitized red blood cells (pRBCs). Here, each 

infective dose was 1 x 104 pRBCs for P. c. adami DS and 1 x 1 0 5 pRBCs for 

P. c. adami DK in 0.25 ml PBS Lv. For passive immunisation experiments 
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1 x 1 04 pRBCs were used for both strains. In the mixed infection 

experiments the infective dose was 1 x 1 04 pRBCs containing 8 x 103 pRBCs 

of P. c. adami DK and 2x 1 03 from P. c. adami DS. In this latter experiment 

some mice were infected with P. c. adami DS at 2 xl 03 pRBCs as a control 

group for determination of the immune response in mice when they were 

infected with a low infective dose. 

For reinfection, mice were injected with 1 x 1 07 to 1 x 1 08 pRBCs, Lp 

depending on the experiment. For intravenous (Lv.) inoculation mice were 

previously warmed in a warm box. Non-infected red blood cells were added 

to the diluent of PBS to avoid spontaneous lysis of infected RBCs at a very 

low concentration. 
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2.6. Chloroquine treatment 

In some cases sub-curative dose of chloroquine (chloroquine disulphate 

salt, Sigma) was given i.p. to the mice infected with virulent DS parasites. 

Mice weighing 25 grams were received 0.1 ml chloroquine at 6mg/ml 

(24mg/Kg). 

2.7. Determination of parasitaemia 

Parasitaemia was determined by daily examination of Giemsa's stained 

thin blood smear viewed under oil immersion (GUff, BDH, England). The 

stain was diluted to 10 times in Giemsa's buffer pH 7.2. Blood smears were 

normally taken between 08.00-11.00 hours each day by piercing the tip of 

the tail with a needle (needle was replaced for each group). A drop of the 

infected blood was placed at one end of a glass microscope slide (BDH, 

England), smeared, dried at room temperature (R T), fixed in 100% 

methanol (Analar, BDH, England), and then stained for 10-15 minutes. 

2.8. Presentation of parasitaemia 

For each day, the parasitaemia was determined for each mouse as the 

percentage of infected erythrocytes. The mean percentage parasitaemia of 

each group was then calculated. The mean parasitaemia was also expressed 

as the geometric mean (mean 10giO pRBCs per 10 5 RBCs) for each group. 

2.9. Collection of serum 

Mice were sacrificed in a C02 chamber and bled by cardiac puncture. The 

blood was allowed to clot at R T and was then put into the cold room for at 

least one-hour to give better contraction of the clot. The serum was 

separated from contaminating RBCs by centrifugation for 5 minutes at 

6000g. Normally the sample was then aliquoted into 20111 volumes in small 

Eppendorf tubes (Griener, UK), labelled, and stored at -20Co until 

required. In some cases serum was aliquoted in larger volumes. 
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For collection of small serum samples the mice were warmed in warm 

box, and blood was collected (up to 100111) by pricking the end of the tail. 

The number of bleeds for each mouse was equal within each group, and of a 

frequency to avoid inducing anaemia from repeated bleeding of an 

individual mouse. 

2.10. Spleen cell culture 

Whole spleen cell suspensions from infected or naIve mice were 

separately cultured with pRBCs, RBCs, medium, or concanavalin A (Con 

A, Sigma, UK) at equal numbers and volume. Con A is a polymeric plant 

component, commonly used as a non-specific polyclonal T cell activator 

and a mitogen (Zhang et al., 1996). All spleen cell samples were prepared 

in medium of RPMI 1640 (OIBCO/ Technology, UK) supplemented with 

10% foetal calf serum (FCS) as complete medium, (Lab. Tech. 

International, UK). ConA (Sigma, stock at 1mg/ml) was added at 5l1g/ml 

(final concentration 0.511g per well). 

Spleen cell culture contains several steps as follows: 

Mice were sacrificed and spleen aseptically removed into complete RPMI 

1640 in a Class II hood. The spleen was then teased gently through a tea 

strainer in a petri dish (Oriener, UK) in complete RPMI 1640. The resultant 

suspensions including splenocytes were harvested with a sterile Pasteur 

pipette allowing tissue debris to sediment. All separated spleen cell 

suspensions were centrifuged for 10 minutes at 1200 g at 4 Co, and 

resuspended in 0.3 ml of Boyle's solution which was prepared at ratio of 

1:9 from one volume of 0.17 M tris-HCl pH 7.65 and nine volumes from 

0.16 M ammonium chloride to lyse erythrocytes. After 3 min. incubation at 

R T the spleen cells were centrifuged at 1200 g for 5 min at 4 Co, washed 

three times with RPMI or PBS, and the pellets rsuspended in 10 ml of 

complete RPMI 1640. 

Adjusting the number of spleen cells: The number of viable splenocytes 

was calculated by diluting 10111 of the resuspended washed spleen cells in 

190111 of 0.2% Trypan blue (Sigma, USA) in PBS. Dead cells could not 

exclude the dye. The suspensions were incubated for 2-3 min at R T and 

examined using a Neubauer Haematocytometer under phase contrast 
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microscope (Diavert Leitz, Germany). The cell concentrations were 

adjusted to 5 x 1 06 viable cells Iml. The cell suspension was transferred into 

triplicate wells of sterile 96 well flat-bottom tissue culture plates (IW AKI, 

Japan). The final volume of each well was 200l-ll. All experimental wells 

were set up as described. 

Adjusting the number of pRBCs and RBCs 

Parasitized red blood cells were used as an antigen and uninfected red 

blood cells as a control. They were washed two times with PBS to remove 

all the plasma. The parasitaemia was determined to calculate the percentage 

pRBCs. The total number of RBCs was adjusted at the same number when 

they were added to each well in a 96 well culture plate. ConA was added at 

51-lg/ml (final concentration was 0.5I-lg/well) as a positive control and 

complete RPMI 1640 medium was used as negative control. The plates were 

then incubated for 72 hours in 5% C02 in air in a 37 CO incubator (Flow 

laboratory, UK). The supernatants from each well were then collected and 

stored at -20Co until required for enzyme linked immunosurbent antigen 

test (ELISA) quantification of cytokine production. 

2.11. Splenocytes proliferation assay 

To evaluate proliferative responses of splenocytes a separate plate was 

set up. Whole spleen cells suspensions from infected or naIve mice were 

separately cultured with either pRBCs, RBCs, medium, or ConA at 2001-l1 

per well. The samples were prepared in complete medium RPMI 1640. The 

number of spleen cells was 5x10 6 /ml. After 60 hours incubation, 0.51-lCi 

(37KBq) eH] thymidine (Amersham) was added to each well, and the plate 

was incubated for a further 12-18 hours. The cells were harvested on a 

filter Mats (lCN Biomedical. Inc., U.S.A) and later in the study on a 

printed filtermat (W ALLC, Finland) by a harvester machine (Flow 

Laboratories, Norway and later Tomtec, Hamden, CT). Uptake of eH] 

thymidine was measured by liquid scintillation (Opstiscint Hisafe, Wallac, 

England) in a beta-scintillation counter detecting the beta activity present 

in each sample and presented as count per minute (c.p.m). All samples were 
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set up in triplicate to calculate a proliferative response as an arithmetic 

mean. 

Stimulation index 
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Stimulation index presents the ratio of the proliferative responses (p.r.) 

between the test samples, spleen cells from infected mice, and control 

groups. This test shows the effect of secondary response of T cells present 

in the cultures when they expose to identify pRBCs. The degree of this 

proliferation can be compared with controls including spleen cells from 

naIve mice exposed to pRBCs or naIve RBCs. In this study stimulation 

index was calculated by using the formula below: 

SI = p.r. pRBCs+f/ p.r m+f, or p.r ConA+f/ p.r m+f. 

In this formula pRBCs+f is the p.r. of splenocytes from infected mice 

exposed to the specific antigens, pRBCs, divided by the response of the 

same splenocytes exposed to medium only. ConA+f is p.r. for splenocytes 

from infected mice exposed to ConA divided by the response of the same 

splenocytes exposed to medium only. 

2.12. Preparation of pRBCs and RBCS lysates 

In normal light condition schizogony in P. chabaudi usually occurs 

around 01:00. However, when infected mice are kept under a reversed 

light-dark cycle condition (12 hours of light between 019:00 to 07:00) 

schizogony occurs between 11: 00 and 13: 00. Mice were kept in reverse 

light because the pRBCs can be collected in the morning between 08: 3 0 and 

10:30 hours when the parasites are mostly at the late ring/trophozoite 

stage. P. c. adami DS and DK strains and also P. chabuadi AS antigens 

were prepared as crude antigens from whole blood cells enriched for 

mature trophozoite/schizont pRBCs, using the method described by 

McDonald & Sherman (1980). Infected mice were bled when the 

parasitaemia was between 25 to 40% and most parasites were at the late 

ring/trophozoite stage and then cultured in vitro to trophozoite/schizont 

stage. The heparinized (10 i. u./ml) blood was washed twice in 5% foetal 

calf serum (FCS) in RPMI 1640 medium, and resuspended to a 10% 

haematocrit in the same medium and cultivated using the candle jar method 
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of Trager and Jensen (1976). Volumes of 1.5 ml of the 10% w/v suspension 

in medium were dispensed in 35-mm petri dishes (cell-cult, Sterilin). The 

petri dishes were placed in a humidified glass dessicator, the candle was lit 

and the lid put on with the stopcock open until the flame extinguished when 

the stopcock was immediately closed providing a gas phase of 

approximately 3% CO2 and 15-17% O2. The parasites were cultured until 

they had reached the late trophozoite/scizont stage which normally takes 

two hours. The maturation process was followed by examining Giemsa's 

stained thin blood smear every 45 minutes. The parasites were then 

harvested, washed in 5% FCS RPMI 1640 medium (200g for 10 min), and 

resuspended to their original volume in sterile PBS. The suspensions were 

run through Whatman CF11 powdered cellulose columns (Beutler et at., 

1976) to remove leukocytes. The filtrate was subsequently collected and 

washed with PBS. The pellet, containing the parasites, was restored in PBS 

to its original volume and then freeze-thawed five times. Each freeze­

thawing cycle entailed snap freezing the blood cells in liquid N2 and then 

immediately defrosting using a waterbath at 37 Co. The rapid transition of 

the temperature causes fracturing of the RBCs and release of the parasites' 

components. The freeze-thawed preparation was centrifuged at 1500g for 

10 min., and the supernatant was collected. This is termed the pRBCs 

lysate and was stored in 50j.!1 aliquots at-20Co until required. Non-infected 

red blood cells lysate was similarly prepared and used as a control antigen. 

2.13. Determination of Protein Concentration 

The protein concentration of lysates prepared from both pRBCs and RBCs 

was determined. This technique was also used for determining protein 

concentration of fractions, prepared in peptide conjugation and also for 

purified immunoglobulins, which were used in passive immunization 

experiments. The method was adapted from Sedmak and Grossberg (1977) 

using Coomassie Protein Assay reagent (Pierce). 

Standards of known protein concentration were prepared from 2mg/ml 

stock of Bovine Serum Albumin (BSA, Pierce chemical Co.). Serial 

dilutions were made with a range of 2.5 to 40j.!g/ml in PBS. The unknown 

protein concentration of lysates, either pRBCs or RBCs, was diluted at 

1: 1 00, 1: 1000, and 1: 1 0000 in PBS. From each standard and sample 

---
~ . 
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150~d/well were pipetted into separate wells of a 96 well plate. Coomasie 

proteins assay reagent (Pierce) was then added (150Il1/well) to each well. 

The plate was shaken for 30 seconds using a plate shaker. The plate was 

then read in an ELISA reader at 600 nm (Biolinx Dynatech). The protein 

concentration was determined by plotting the results against the standard 

curve. 

2.14. Determination of optimal antigen concentration 
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Determination of optimal antigen concentration was done for all ELISA 

tests for antibody levels during the study. Lysates of pRBCS and RBCs 

were diluted at 1 :2, 1 :20, and 1 :200llg/ml in coating buffer NaHC03, O.lM, 

pH 8.2 (Analar, BDH, England). These different lysate dilutions were 

coated at 50Ill/well in a 96 well plate, and incubated (Dynex, Immulon, 

4HX, USA) overnight at 4 Co. The plates were subsequently washed 3 

times with 0.05% Tween (BDH, England) in PBS pH7.2, and then non­

specific binding sites were blocked with 10% FCS PBS at 200 III per each 

well, covered, and incubated for 1 hour at 37 Co. The plate was then 

washed two times with 0.05% Tween/PBS, and 50 Ill/well of dilutions of 

sera at 1: 100, 1: 1000, and 1: 1 0000 in 10% FCS PBS from immune and 

control mice were added, covered, and incubated at 37 CO for 3 hours. 

After washing 4 times with 0.05% Tween/PBS, 50 Ill/well Biotinelated 

anti-mouse IgG at 1: 1 00000 (whole molecule, Sigma) in 10% FCS PBS 

were added, covered, and incubated at 37 Co for 1 hour. Washing 6 times 

with 0.05% Tween/PBS followed, and then diluted Streptavadin-peroxidase 

(1: 1 000), at 1 00 Ill/well in PBS 10% FCS were added, covered, and 

incubated for 1 hour at 37 Co. The plate was then washed 8 times with 

0.05% Tween/PBS, after which 3,3',5,5'-tetramethylbenzidine (TMB, 

microwell KPL, USA) substrate at 1 00 Ill/well were added and the colour 

(blue) allowed to develop. The plate was read at 630 nm with reference 

filter of 405 nm using Biolinx Dynatech software. The plate was covered to 

prevent evaporation, and blocking was for reduction of non-specific 

binding. Each sample was tested in triplicate and the blank wells contained 
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10% FCS PBS. For determination of optimal concentration of conjugated 

peptides the same process was carried out. 

2.15. Cytokine analysis by ELISA (sample from supernatants) 
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Purified anti-mouse cytokine, either interferon-gamma, IFNy, or 

interleukine-4, IL-4, (PharMingen, U.S.A) monoclonal antibody, was 

diluted in 0.1 M N aHC03 pH8.2 as a coating buffer at 2llg/ml. The antibody 

solution was added at 50111 to each well in a 96-well plate, covered, and 

incubated overnight at 4Co in the cold room. The plates were subsequently 

washed 3 times with 0.05%Tween in PBS pH7.2, and then blocked with 

10% FCS PBS at 200 III per each well, covered, and incubated for 1 hour at 

37 Co. After blocking, the plate was washed two times with 0.05% 

Tween/PBS. Serial dilutions of recombinant cytokine standards (for IFNy 

stock was at Img/ml, and for IL-4 stock was at 0.5mg/ml, PharMingen) and 

the culture supernatants were added to the wells at 50Ill/well, covered, and 

incubated at 37C o for 3 hours. After incubation the plate was washed 4 

times with 0.05% Tween/PBS, and 50IlI/well of Biotinelated rat anti mouse 

cytokine (IFN, and IL-4, at 2llg/ml PharMingen) in 10% FCS PBS were 

added, covered, and incubated at 37Co for 1 hour. After washing 6 times, 

diluted Streptavadin-peroxidase (1: 1 000), 100 Ill/well in 10% FCS PBS 

1: 1000 were added, the plate covered, and incubated for 1 hour at 3 7Co. 

The plate was then washed 8 times with 0.05% Tween/PBS, and then 100 

Ill/well of TMB substrate were added and the colour allowed to develop. 

The plate was read at 630 nm with reference filter at 405 nm using Biolinx 

Dynatech software. 

2.16. Cytokine analysis by ELISA (samples from sera) 

The technique was followed as previously described except for sera 

dilutions. Sera were diluted at 1:5 for IFNy and at 1:2 or neat for IL-4 if 

there was sufficient serum. 
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2.17. Determination of specific antimalarial IgG 

Lysates of pRBCs and RBCs (control) were diluted to 20llg/ml as antigen 

in coating buffer NaHC03, 0. 1M, pH 8.2., coated, covered, and incubated 

in a 96 well plate (Dynex, Immulon, 4HX, USA) at 50Ill/well overnight at 

4Co. The plate was washed 3 times with 0.05%Tween in PBS pH 7.2, 

blocked with 10% FCS PBS at 200 III per each well, covered, and incubated 

for 1 hour at 37Co. Two washes followed with 0.05% Tween/PBS, and then 

5 ° Ill/well of ei ther 1: 1 00 or 1: 1000 dilution of the sera in 10% FCS PB S 

from the infected and control mice were added, covered, and incubated at 

37 Co for 3 hours. After washing 4 times with 0.05% Tween/PBS, 50Ill/well 

anti-mouse IgG biotinelated (whole molecule), at dilution of 1: 1 00000 in 

10% FCS PBS were added, the plate covered, and incubated at 37 Co for 1 

hour. The plate was washed 6 times with 0.05% Tween/PBS, and then 

diluted Streptavidin-peroxidase (1: 1 000), 100 Ill/well in PBS 10% FCS 

were added, covered, and incubated for 1 hour at 37 Co. Washing 8 times 

with 0.05% Tween/PBS followed, and then 100 Ill/well TMB substrate were 

added and the colour allowed to develop. The plate was read at 630 nm 

with reference filter at 405 nm using Biolinx Dynatech software. For 

detecting the IgG subclasses, IgG 1 and IgG2a, the same technique was 

used. However, the concentrations of secondary biotinelated anti IgG1 or 

IgG2a were at 2llg/ml and added at 50ll1/well in 10% FCS PBS. 

For determination of anti-peptide antibodies 1 mg of each peptide was 

conjugated to 1mg BSA in 0.5 ml conjugated buffer for coating on the 

ELISA plates. This conjugation was carried out because peptide does not 

stick on the ELISA plate. Each conjugated peptide with BSA was diluted at 

20 Ilg/ml in coating buffer as described above. 
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2.18. Passive immunization with serum 

2.18.1. Preparation of immune serum 

Mice were infected with P. c. adami DK and their sera were collected for 

use in passive immunization experiments. Mice were infected with P. c. 

adami DK at 1 xI 05 pRBCs and divided into two groups. 

On day 15 post-infection mice of the first group were sacrificed and sera 

were collected. Mice in the second group were reinfected at 1 x 1 07 pRBCs 

on day 40 p.i., and their sera were collected two weeks later on day 55 p.i. 

2.18.2. Passive immunization and challenge of NIH mice 

Two different groups of mice were infected with P. c. adami DK at 1 x 104 

pRBCs and immediately each mouse given 500f.tl of immune serum from 

either day 15 or 55 p.i., 

To determine any cross-reaction, other mice were infected with P. c. adami 

DS at 1 x 104 pRBCs and passive immunization was carried out as above. 

Mice in the control group were given 500 f.tl of PBS. Previous work has 

been shown that the course of infection is the same in mice given PBS as 

those given normal mouse serum. 

2.19. Synthetic peptide immunization 

Synthetic peptides: 

Peptides for immunization were commercially prepared by Genosphere 

biotechnologists according to the order of Dr M. Barrett University of 

Glasgow. These peptides contain sulfhydryl as free binding site by which 

they can be conjugated with a carrier protein and so their amino acid 

sequences are artificially initiated with cystein. The sequences of amino 

acids of these linear peptides are based on clag 7 and 3 of P. chabaudi AS 

and are shown below (see Chapter Six): 

PI: CYAKKPITQLRYGKT 

P2: CQSHFTINYRIRQVI 
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P3:CSGRVLPRPLYDELQ 

P4: CKINQHPNKKFGTND 

P5: CSQKASEFVKSFKEL 

A set of experiments was set up as follows to determine immune 

responses in mice immunised with the synthetic peptides. 

2.19.1. Preparation of conjugated peptides 
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Although small molecules, haptens, such as small peptides are able to 

interact with products of an immune response, they cannot stimulate an 

immune response. So, coupling peptides with a carrier protein make them 

immunogenic which can induce specific immune response. In this study 

mariculture keyhole limpet haemocyanin, mcKLH (imject maleimide 

activated immunogen conjugation Kit, Pierce) and BSA (Pierce) were used 

as carriers. 

A standard protocol for hapten-carrier conjugation with the imject 

activated immunogen kits was done as follows: 

Up to 2mg of sulfhydryl-containing peptide were dissolved in 200 to 500!J.I 

of conjugation buffer (see Appendix). For quantitation of the conjugation 

small amount (10-20 !J.I) of this peptide solution has to be saved. 

2mg of pre-activated carrier protein (one vial in the kit) were dissolved 

with 200 !J.I deionised distilled water. The peptide may be added as a solid 

to the activated carrier solution if it is freely soluble. To obtain complete 

and efficient coupling a molar excess of hapten over the carrier protein is 

required. So, because the synthetic peptides have a molecular weight more 

than 2000 Dalton, then 2mg (~1 !J.mole) of hapten was added to 2mg of 

carrier protein, which has ~ 0,7!J.moles of maleimide group. 

Both solutions of the peptide and mcKLH were mixed immediately and 

allowed to react for 2 hours at R T. 

Puri fication of conjugation by gel filtering: 

Removing ethylenediamine tetraacetic acid, EDT A, (Sigma) carried over 

from the activated carrier proteins is a necessary step because it is an anti­

coagulant substance and should not be inj ected into laboratory animals. 

This process contains the following steps: 
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The contents of one bottle of dry blend purification buffer salt (0,083 M 

sodium phosphate buffer, 0,9 M NaCI, pH 7,2 with proprietary stabilizer) 

were dissolved in 60ml degassed, deionised water, Any unused buffer can 

be stored at 4C 0, 
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The top and bottom caps from one D-salt™ desalting column were removed 

allowing storage solution to drain, 

A D-salt™ cross-linked dextran gel filtration column was used, Gel is 

suspended in 0,02% sodium azide as a preservative, Molecular weight cut­

off for the column is 5000, Sodium azide will also be removed as well as 

EDT A in the final conjugates prior to their use as immunogens, 

The column was washed with 3 to 5 column volumes of purification buffer. 

The hapten-carrier mixture, 0,5ml, was applied directly to the top of the 

disc, Sometimes mcKLH formed a precipitate during conjugation, When 

this happened the precipitated material was centrifuged, the supernatant 

collected and applied to the desalting column and the precipitated was 

saved, After collecting fractions the precipitate was combined with the 

collected fractions, When the reaction volume was greater than 0,5 ml, a 

second desalting column for another 0,5ml sample size was used, 

Each fraction was separately collected in a tube in which 0,5ml of 

purification buffer was added, Absorbance of each fraction was measured 

at 280nm using a spectrometer (Thermospectronic, Heyiosy, U ,K,) to find 

the fractions containing the conjugate, The hapten-carrier conjugate was in 

the first absorbance peak detected, The dead volume of a 5ml-gel filtration 

column is approximately 2,OmI. So, the conjugate-containing fractions will 

begin to elute after this volume, All fractions containing acceptable levels 

of the conjugate were pooled, They can be stored at -20CO until required, 

2.19.2. Quantitation of conjugation 

The degree of successful conjugation between hapten and carrier protein 

was examined using a microwell plate protocol as following: 

Ellman's reagent (5,5' -dithobis-[2-nitrobenzoic acid], Pierce) can react 

with sulfhydryl groups to produce a chromophore with maximum 

absorbance at 412nm, 
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Using the protocol a standard curve was made with known quantities of 

cysteine (Sigma), For this 10111 of varying concentrations of cysteine were 

added in place of the peptide to wells containing 200111 of conjugation 

buffer, The total number of peptide sulfhydryl groups present before and 

after conjugation was estimated by this assay, The cysteine produced a 

similar response to a peptide containing one free sulfhydryl group, A 

comparison of the absorbance of all samples after modification with 

Ellman's reagent gaves an estimate of the number of free sulfhydryls 

present on the peptides before and after conjugation, Because disulfide 

bonds can form during even short-term storage of the peptide, the initial 

assay of the non-conjugated peptide was done immediately after 

preparation, The same assay was carried out for the prepared conjugated 

peptides, which had been reacted for 2 hours at RT, So, the assay was done 

separately for non-conjugated and conjugated peptide as follows: 

Conjugation buffer was added at 200111 to each appropriate well of a 96-

well plate (Dynex, Immulon, 4HX, USA), For wells which were used as 

blanks 210111 of conjugation buffer were added to the wells, 

Hapten solution was added at 10111 to each of the wells containing buffer. 

A solution of Ellman's reagent was made (lmg/ml reagent in buffer), 20111 

of this solution were added to each well with peptide and blank, The plate 

was incubated for 15 minutes at R T, Absorbance of all wells was 

determined at 412 nm using Biolinx Dynatech Software, 

The same protocol was carried out to measure the absorbance of conjugated 

peptide after they had been prepared, 

2.19.3. Peptide immunisation 

Adjuvants promote the immune response in immunization protocols, In 

this study Titermax gold adjuvant was used (Sigma) instead of Freund's 

complete because the latter is not recommended for use in mice, 

Titermax gold adjuvant has a water-in-oil formulation in which oil forms 

the continuos phase in the emulsion, It is considerably easier to emulsify 

than Freund's adjuvant, resulting in less viscosity which makes it easier to 

inject through small needles, To prepare 1 ,Oml of the emulsion containing 
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immunogen and adjuvant, 0.5ml of immunogen is required. So, a ratio of 

1: 1 water-in-oil emulsion is usually optimum. 

For mixing of the immunogen and titermax an emulsifier (Ultra-Turrax 

T25, Janke& Kunkel GMBH & Co. KG) was used as follows: 

After Titermax gold was vortexed, 0.5ml was loaded into small plastic 

Bijoux. The immunogen suspension was pushed into the Titermax gold 

tube. The amount of immunogen was divided into two equal volume and 

each volume (0.25ml) was pushed into the tube contains the adjuvant. 
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The mixture was emulsified using a dispersing tool attached to the 

emulsifier which rotates from 8000 to 24000 per minute. Each course of 

emulsifying was run for one minute. The procedure, emulsifying, was 

continued until the thick emulsion developed. The mixing was complete if a 

drop of the emulsion did not disperse on the surface of water. 

2.19.4. Injection and bleeding mice 

Day 0: An initial injection of 75~g immunogen per mouse (150~1 of the 

emulsion) was made. The route of injection was i.p. 

Day 14: The first boost was done with the same sample size. 

Day 21: Mice were bled from the tail vein and antibody response was tested 

using ELISA. T second boost was also injected at the same dose, and 

ELISA test was done one week later. 

2.19.5 Challenge with the parasite 

Two weeks after the final boost the mice were challenged with 1 x 1 05 

pRBCs i.p. of P. chabaudi AS. Parasitaemia was monitored by daily 

examination of Giemsa's stained thin blood smear. Sera from the 

challenged mice were collected regularly to follow antibody levels. 
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2.20. Passive immunisation with IgG subclasses purified from serum 

To determine the role of IgG 1 and IgG2a subclasses in control of 

infections in mice infected with two strains of P. c. adami DK and DS, both 

IgG subclasses were purified from whole serum using protein A 

chromatography. Each mouse in test group was injected 50IJg of IgGl or 

IgG2a in 200IJI of PBS. 

2.20.1. Preparation of immune serum 

Immune serum was obtained by infecting NIH mice with P. c. adami DK 

described earlier (see passive immunization with serum, 2.18.). 
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2.20.2. Isolation and purification IgG 1 and IgG2a from serum 

For purification of the specific IgG 1 and IgG2a from serum an affinity 

chromatography technique was used as described below, 
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Recombinant protein A Sepharose (Amersham Biosciences, U,K,) is derived 

from a Staphylococcus aureus and contains five regions that bind to the Fc 

region of IgG, In a column, protein A is immobilized to Sepharose as an 

affinity ligand and free regions can bind to the Fc of antibody, Two 

molecules of IgG can be bound to one molecule of immobilised protein A, 

Native protein A and recombinant have the same specificity for the Fc 

region, but the recombinant protein A has been engineered to include a C­

terminal cysteine enabling a single-point coupling when the protein is 

immobilised to Sepharose, Therefore, single-point coupling often provides 

an enhanced binding capacity, In this study HiTrapTM rProtein A flow fast 

was used (Amersham Bioscinces, U,K,). HiTrap rProtein A FF column, 

made of polypropylene, is prepacked ready to use in an affinity 

chromatography. It provides separations to purify antibodies from different 

sources such as serum. 

Purification: Buffers were prepared using deionised distilled water and 

were filtered by passing them through a 0.451lm filter. 

In pH dependent chromatography which was used in the present study 

different IgG subclasses were bound to the column depending on different 

pH of the buffers. IgGs bind to the protein A over a wide pH range in the 

column. Recommended buffers and their pH were set as follows to separate 

and purify IgGl and IgG2a subclasses: 

Binding buffer: 20 mM sodium phosphate monobasic (Sigma), pH7 was for 

IgG2a. 

For mouse IgG 1 sodium chloride (AnalaR, BDH) up to 4 M was added to 

the binding buffer, 20 mM sodium phosphate, to achieve efficient binding, 

pH 8. 

Elution buffer: a solution of 20mM tri-sodium citrate (AnalaR, DDH) was 

used. For IgG2a, pH 4, and for IgG 1 pH 5.8 to 6 were used. 

As a safety measure, to preserve the activity of acid liable IgG when using 

very acidic elution buffers, 60-2001l1 of 1 M Tris-HCI, pH 9.0 were added 

to the eluted fractions as they were collected. This results in an 

approximately neutral final pH. 
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Sample preparation: All samples were adjusted to the composition of the 

binding buffer. The samples were diluted with binding buffer and 

centrifuged immediately before being applied to the column. This prevents 

clogging of column when large volumes of serum are loaded. 

Applying samples: A peristaltic pump (Pharmaci fine chemicals, p-l, 

U.K.) was used for operating the column. A flow rate of 1 ml/min was used 

according to the manufacturer's instruction. The collection tubes were 

prepared by adding 60-200111 of 1 M Tris-HCl, pH 9.0 to each tube. 

The pump tubes were filled with binding buffer. The stopper was removed 

and the column was connected to the pump. Adding buffer into the column 

through pump was drop to drop to avoid introducing air into the column, 

The twist-off end was removed. The ethanol preservative was washed out 

with at least 5 column volumes of distilled water or binding buffer. 

The column was regenerated with at least 5 column volumes of relevant 

elution buffer according to each subclass of IgG. For each subclass a 

separate column was used avoiding any contamination and non-specific 

binding. The columns were connected in series because higher capacity was 

required. 

The column was equilibrated with 5-10 column volumes of binding buffer. 

The sample, 1 ml, was applied by pumping it onto the column and washed 

with 5-10 column volumes of binding buffer until no material appears in 

the effluent. Interaction between the IgG 1 and the ligand is weaker than 

IgG2a so, for IgG 1 washing was not more than 5 times avoiding any 

decrease in the yield. 

The protein of interest, IgG 1 or IgG2a was eluted with 5 column volumes 

of relevant elution buffer. 

Storage: The columns were washed with five column volumes of 20% 

ethanol to prevent microbial growth using the supplier stopper, sealed, and 

stored them at 4 CO. 

Protein concentration: Protein concentration tests were done for all 

purified samples using Coomassie plus reagent (see2.13 ,), 
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2.20.3. Concentration and buffer exchange of the IgG fractions 

The samples (purified IgG fractions) were collected in sodium citrate as 

an elution buffer. To make samples safer the buffer was exchanged with 

PBS. This was carried out using ultrafree-4 centrifugal filter and tube units 

(Millipore Corporation, U.K.). This device has 4ml capacity with the cut 

off molecular weight of 30000 for its membrane. All molecules with a 

higher molecular weight cannot pass through the membrane of the tube. 

A 4ml sample was poured into the Ultra centrifugal filter unit and placed 

into the tube included. The assembly was centrifuged at 2800 g. 

The device was removed and the sample was recovered from the bottom of 

the concentrate pocket with a pipette. 

The concentrated sample was then diluted to 4 ml by PBS, pH 7.4, so that 

the buffer will be exchanged. This process was usually carried out three 

times. Finally the sample contained IgG fraction in PBS and would be 

ready for immunization. All recovered fractions for each sample were 

pooled and protein concentration test was performed. 

2.20.4. Confirmation of the presence of IgGl and IgG2a 

The eluted fractions were pooled and the presence of both IgG 1 and IgG2a 

was evaluated separately using three different techniques a) sodium 

dodecyl sulphate, (lCN, biomedicals, Inc. U. S .A) polyacrylamide 

(Amresco, U. S.A) gel Electrophoresis, SAD-PAGE, b) ELISA, and 3) 

Western blotting. 

2.20.4.1. SDS-PAGE (mini gel) 

The samples: The samples were a) standard IgGl and IgG2a 

( P h arM i n g en, U . K . ) , b) r a in bow ™ colo u red pro t e in mol e cuI a r 

weight marker (Amersham Pharmaciabiotech, U.K.), and c) 

isolated fractions of IgGl and IgG2a. 
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Fractionation of the samples: The samples were fractionated and isolated 

by vertical slab electrophoresis using SDS-P AGE. The composition of 

separating and stacking gels are detailed in the Appendix. 

First the separating gel was loaded. The stacking gel was then poured and 

immediately a clean Teflon comb was inserted in the gel. The prepared 

SDS-P AGE gel was 8% (w/v) acrylamide. 

Loading the samples: The samples were mixed with sample buffer (see 

Appendix) at a volume ratio of 2: 1, 20111 of each sample and 10111 of the 

sample buffer, and heated at 100 Co for at least 5 minutes using a hot plate 

(Grant, UBD, England). The samples were then centrifuged at 8500 g for 1 

minute in a microcentri fuge. After removing the comb the wells were 

washed with deionised water to remove any unpolymerised acrylamide and 

the samples were loaded at I5-201l1 into the bottom of the wells using a 

Hamilton microlitre syringe. The samples were separated on the gel at 120 

V using an electric power supply (Bio-Rack, U .K). Running the gel at 120 

V was continued until the colour of the sample buffer reached the bottom 

of the resolving gel. 

Staining the gel: The glass plate was removed from the apparatus and the 

gel was stained usually overnight in Coomassie brilliant blue, which 

contains methanol/acetic acid solution for fixing. The gel was destained 

using a destainng buffer (see Appendix). The gel can be autoradiographed 

or used to establish a Western blot. 

2.20.4.2. Western blotting 

Western blotting is an extremely useful technique for the 

identification and quantitation of specific proteins in mixtures 

when they are not radiolabeled. This technique was used to 

confirm the presence of the purified IgG subclasses. In this 

technique electrophoretically separated components are transferred 

from a gel to a solid support. The purified IgG was attached to the 

solid phase and the secondary antibody was used to determine the 

specific reaction between the target antibody and the secondary 

antibody. The reaction was detected using ECL system. 

Western blotting contains different steps as follows: 
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Preparation of the samples by SDS-PAGE: The samples were run on the 

gel using SDS-P AGE technique as described above. The gel was rinsed and 

any beads of liquid were removed by wiping. 

Transfer of proteins from SDS-polyacrylamide gel to solid phase: The gel 

can be transferred to the solid support, which is here a nitro cellulose 

membrane (Millipore, U.K.). The membrane orientated by placing a cut on 

the left-hand bottom corner. The proteins transferred from the gel become 

covalently bound to the membrane. After transfer the glass plates holding 

the gel are removed and briefly the gel is soaked in water or transfer 

buffer. The gel and its attached membrane were sandwiched between pieces 

of Whatman 3MM paper, usually three pieces were used for each side of 

the membrane. The gel was orientated so that the mark on the membrane 

corresponds to the bottom left-hand corner of the gel. All the papers and 

the membrane were soaked in a transfer buffer (seeAppendix) containing 

Tris, glycine, and methanol. The sandwich was then placed between 

graphite plate electrodes, with the membrane on the anodic side, All air 

bubbles must be squeezed out because transfer of the protein would be 

affected. The apparatus, a tank containing the gel and the membrane, was 

connected to the power supply as described before. To transfer the proteins 

of the gel on the membrane the power supply a voltage of 20 V may be 

applied overnight. For more rapid transfer a current of 400m Amperes for 1 

hour can be applied. 

Temporary staining: After turning off the electric current the membrane 

was washed with PBS and stained with Ponceau S (Sigma) which takes up 

to 10 minutes. This staining checks whether electrophoretic transfer is 

complete. The membrane was then washed with PBS and the rainbow™ 

marker (see 2.20.4.1), purified standard IgG1, and IgG2a transferred onto 

membrane. 

Blocking the membrane: Non-specific binding was blocked on the 

membrane. For this the membrane was packed in a plastic bag with PBS 

supplemented with 10 % FCS and put on a shaker (Grant. Boeker, England) 

for at least 1 hour at 37CO or overnight at 4CO. 

Adding the secondary antibody: The membrane was washed 3 times with 

0.05% Tween 20 in PBS and biotinelated anti-mouse antibody conjugated 

2llg/ml as the secondary antibody. 
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Adding extraavidin proxudase: After three times washing with 0.05% 

Tween 20 in PBS extravidin peroxidase was added at 1: 1 000 and the 

memrane was put on RT for 1 hour. 
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Detection: Detection: Specific anti-mouse IgGl or IgG2a reactive bands 

were visualized with the EeL detection system (Amersham, UK) which is 

10 times more sensitive than other colorimetric methods. Briefly, The EeL 

chemiluminescence reagent was added onto the membrane as instructed by 

the manufacturer after 3 times washing with 0.05% Tween 20 in PBS. This 

elicits a peroxidase-catalyzed oxidation of luminol and subsequently EeL, 

where the proxidase labeled protein is bound to the antigen on the 

membrane. The resulting light is detected on the film (X-ray) in minutes, or 

often seconds. The molecular weight of the detected bands can be measured 

by comparing them with rainbow™ coloured protein molecular weight 

marker (Amersham Pharmaciabiotech, U.K.). 

2.21. Statistical analysis 

The results presented here are expressed as standard error mean (±SEM) 

for each set of values in each experiment. SEM can be obtained when 

standard deviation divides by square root of the sample size for each time 

point at which a number of sample were tested. SEM is reversibly 

correlated with the sample size and it shows that the sample size was 

enough at each time point for statistical analysis. However, when SEM is 

too smal for any time pont it is not shown. 

When comparison between two groups at the same time point is 

considered, student t-tests were performed i. e., comparison of mean % 

prasitaemia between two groups at the time of peak parasitaemia. 

For identifying significant differences when data were compared between 

more than two groups, data were compared and analysed using Two-way, or 

One-way ANOV A tests. When two different variables are considered i.e., 

OD and time, Two-way ANOV A was performed. One-way ANOV A was 

performed when only one variable i.e., OD was considered. Two-way or 

One-way ANOV A show whether or not there are significant differences 

between all tested groups. If the above tests show any significant 

difference between all groups then significant difference between two 

particular groups, whether test sample or control, can be evaluated with 
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appropriate post-tests. In the present study for Two-way ANOV A, 

Bonferroni and for One-way ANOVA, Tukey's tests were performed as 

relevant post-tests. A significant result was considered to be when the P 

value was < 0.05 in all experiments. For performing all statistical tests 

software Prisem 3 was used. 
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Chapter Three 

Comparison of the immune response in NIH mice 

infected with the avirulent DK and the virulent DS 

strains of Plasmodium chabaudi adami. 
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3.1. Introduction 

Asexual blood stages of malaria parasites are responsible for almost all 

morbidity and mortality of the disease (reviewed by Wipasa, 2002). So, a 

better understanding of the immune responses against these stages is an 

important step towards development of effective vaccines to reduce clinical 

disease and prevent death. 

Acquired immunity to the asexual blood stages of malaria in mice 

involves both cell-mediated and antibody-dependent mechanisms through 

activation of two subsets of CD4+ T cells, Th1 and Th2 (De Souza, 1997). 

In avirulent self-resolving infection of P. chabaudi AS and P. c. adami, a 

sequential Th lITh2 response was observed of which Th 1 subset is 

responsible for control of the acute phase of the patent parasitaemia and 

Th2 is activated when infection becomes chronic (Langhorne, 1989; Smith 

and Taylor-Rabinson, 2003; Stevenson and Tarn, 1993). In a virulent 

infection of P. yoelii, a failure to induce adequate activation of both Th 1 

and Th2 subsets resulted in a fatal outcome. (De Souza et al., 1995 and 

1996). 

In mice infected with P. chabaudi AS, IgG2a is a predominant antibody 

during the primary ascending parasitaemia followed by up-regulation of 

IgG1 in the chronic phase as a result of CD4+ Th1 to Th2 switching 

(Taylor-Robinson and Phillips, 1994; Taylor-Robinson and Smith, 1999). 

So, it seems that antibody-dependent immune response is responsible for 

the elimination of the P. chabaudi AS after the acute phase (Smith and 

Taylor-Robinson, 2003; McDonald and Phillips, 1980). 

In P. chabaudi AS infection, high levels of IFNy production were observed 

before the peak parasitaemia in resistant C57Bl/6 mice (Meding et al., 

1990). In susceptible BALB/C mice, infection with non-lethal P. yoelii 

resulted in an immediate IFNy response while infection with lethal P. yoelii 

did not. However, in resistant CBAIJ mice an initial burst of IFNy was 

observed in both lethal and non-lethal infections (Shear et al., 1989). 

Smith and Taylor-Robinson (2003) compared the immune responses in 

mice infected with two close genetic matches of paired parasites from 

virulent and avirulent strains: lethal P. chabaudi 7/F1 with non-lethal P. 

chabaudi AS and lethal P. yoelii 17XL with non-lethal P. yoelii 17XNL 

strains. They assessed the induction of humoral immunity by the different 
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parasites in a genetically homogeneous host population, NIH mice, Non­

lethal infections were characterized by significant early and late up­

regulation of IgG2a and IgG 1, respectively. In contrast, for lethal 

infections, a slower, reduced IgG2a response correlated with a rapidly fatal 

outcome prior to any significant synthesis of IgG 1. It is, therefore, 

proposed that the sequential up-regulated synthesis of parasite-specific 

IgG2a (cytophilic) and IgGl (non-cytophilic) is associated with immunity 

to blood stage malaria infections and is influenced by the prevailing 

Th1/Th2 cytokine balance in mice (Abbas, Murphy and Sher, 1996). 

In an immunization study in which BALB/c mice were drug-cured and 

challenged with a high inoculum of ring-infected erythrocytes or mature 

trophozoites of P. c. chabaudi AJ, parasitaemia did not decline until the 

time of erythrocyte rupture (Cavinato et al., 2001). This suggests that 

effector mechanisms operate immediately before reinvasion. The same 

result was seen when mice were challenged with schizont-pRBCs. So, the 

results support the idea that merozoites andlor mature schizonts from P. c. 

chabaudi AJ are the principal targets of effector mechanisms in drug-cured 

mice. Cavinato et al. (2001) also showed that purified IgG 1 or IgG2a from 

hyperimmune serum, detected by flow cytometry, limited re-invasion when 

mice were treated with these antibodies. However, IgG2a had a stronger 

protectivity. This study also demonstrated a sequential up-regulation of 

specific anti-parasite IgG2a and IgGl. 

Cytokines are the principal mediators of the induction and regulation of 

immune responses. For example, it is known that T cell-originating IFNy is 

central to the induction of IgG2a production while IL-4 has the same role 

for production of IgG 1 (Stavnezer, 1996). Cytokines have important roles 

as co-stimulatory signals in the affinity maturation process during B-cell 

differentiation to develop an antibody response (Garraud et al., 1997). So, 

the influences of IFNy and IL-4 in terms of IgG2a and IgG 1 production in 

malaria infection refers to their functions as co-stimulators. An early 

significant production of IgG2a by mice infected with non-lethal P. yoelii 

17XNL is probably related to a very early IFNy synthesis in infection with 

the avirulent parasite (De Souza et al., 1997). IFNy up-regulates the 

expression of FcyRI on macrophages resulting in an increase of IgG2a­

mediated opsonization (Boehm et al., 1997). 
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Biologically active IFNy is a homodimer glycoprotein of two 21 to 24-

kDa subunits (Greenlund et al., 1993). This molecule can bind to a specific 

receptor expressed on all nucleated cells (Valente et al., 1992). The main 

sources for IFNy are activated Th 1 CD4+ T cells (Mosmann and Coffman, 

1989), NK cells and CD8+ cytotoxic T cells (Sad, Marcotte and Mosmann, 

1995). 

IFNy is a cell-mediated immunity factor (Paul and Seder, 1994) with a 

major immunoregulatory role such as in the differentiation of CD4+ T cells 

to the Th1 phenotype (Paul and Seder, 1994). Briefly, stimulated cells, 

such as macrophages, produce IL-12 that induces production of IFNy by 

naIve CD4+ T cells in a positive feedback loop in which Th1 differentiation 

is maintained. Thus, the IFNy produced from CD4+ Th 1 or IL-12-activated 

NK cells induces the production of IL-12 by macrophages creating a 

constant stimulus for Th1 differentiation. So, IFNy appears to be a 

secondary cytokine to IL-12 which is a director of cell-mediated immunity 

(Trinchieri, 1995). 

IFNy also plays an important role in resistance to asexual blood stages of 

malaria by killing parasites through phagocytosis by activated macrophages 

(Ockenhouse and Shear, 1984). IFNy also activates macrophages to release 

reactive oxygen molecules. Activated macrophages destroy intra­

erythrocytic P. yoelii by oxygen-dependent mechanisms when incubated 

with supernatants containing IFNy in vitro (Ockenhouse and Shear, 1984). 

Administration of recombinant IFNy (rIFNy) to mice infected with P. c. 

adami showed a more rapid degeneration of intra-erythrocytic parasites and 

a decline in the parasitaemia (Clark, 1987). These observations are 

consistent with the concept that T cell-dependent mediators are central to 

the immune responses in which parasites are killed inside circulating red 

blood cells. Stevenson and colleagues (1990) showed that neutralizing 

endogenous IFNy impairs resistance to P. chabaudi AS infection. However, 

this neutralization does not completely abrogate resistance to the infection. 

A protective role for IFNy has been demonstrated by infecting IFNy gene 

knockout (GKO) C57BL/6 mice with P. chabaudi AS. These mice had 

higher morbidity and mortality compared to controls (Su and Stevenson, 

2000; Yoneto et al., 2001). 
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Choudhury et al, (2000) suggested that the immune response in mice 

infected with non-lethal P. yoelii is probably driven by an early production 

of IFNy and TNFa depending on the presence of both NK and y8T cells and 

are essential for the control of acute phase of parasitaemia. Early IFNy 

production also contribute to the control of the primary parasitaemia in 

self-resolving infections of non-lethal P. yoelii and P. chabaudi in BALB/c 

mice (Clark et al., 1987; Hoffman, 1997; De Souza et al., 1997). Early NK 

cell-mediated IFNy production implicates in the control of asexual blood 

stages of P. chabaudi infection (Mohan, Moulin and Stevenson, 1997). 

The principal pleiotropic cytokine of a CD4+ Th2 response is IL-4, an 

approximately 20-kDa glycoprotein which acts on various components of 

the immune system such as T and B cells (Paul and Seder, 1994). The 

principal cellular source of IL-4 is the CD4+ Th2 subset (Taylor-Robinson, 

1995). IL-4 induces B cell differentiation and IgGl production (Snapper 

and Paul, 1987). Stimulation of B cells with IL-4 results in an increase in 

expression of MHC class II (Noelle et al., 1984) and IL-4 receptor 

molecules (Ohara and Paul, 1988). IL-4 enhances antigen presentation by 

macrophages (Stuart, Zlotnik and Woodward, 1988; Zlotnik et al., 1987), 

promotes proliferation of precursors of cytotoxic T cells, and thier 

differentiation into CTL (Trenn et al., 1988; Widmer and Grabstein, 1987). 

It is suggested that susceptibility may direct to induce different Th type 

response in resistant and susceptible mice during acute phase of infection 

(Jacobs, Radzioch and Stevenson, 1995). During the acute phase, the spleen 

cells from susceptible mice produce high levels of IL-4 and IL-1 0, and low 

levels of IFNy in P. chabaudi infection (Jacobs, Radzioch and Stevenson, 

1995; Langhorne, 1989). It has been shown that early IL-4 production in 

susceptible A/J mice (Jacobs, Radzioch and Stevenson, 1995) was 

coincident with severe and fatal acute primary parasitaemia (Stevenson and 

Tam, 1993). Jacobs and colleagues (1995) also reported that addition of 

recombinant murine IL-4 or IL-1 0 diminished the ability of splenic 

macrophages recovered from mice infected with P. chabaudi AS to produce 

NO in response to lipopolysaccaride (LPS), showing that a Th2 response 

early in infection may suppress NO production by splenic macrophages and 

leave mice more susceptible to the infection. In contrast, it seems that there 

is a correlation between resistance and early IL-12 production through 
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direct activation of DC by the parasite, P. chabaudiAS (Seixas et al., 2001) 

which colud be followed by an early Th 1 response development. 

Inducing both Th 1 and Th2 responses through immunization is an 

important aim for malaria control (Le. vaccination against the parasite) 

because both humoral and cellular responses are required for resolution of 

infection with p, chabaudi (Langhorne, Quin and Sanni, 2002; Weidanz et 

al., 1999). Moreover, Rainczuk et ai, (2003) showed that an expression 

library immunization (ELI) of BALB/c mice resulted in both IFNy and IL-4 

production when mice challenged with lethal P. c. adami DS as a stringent 

test for evaluation of vaccine efficacy (Anders et ai" 1998; Crewther et ai" 

1996; Smooker et al., 2000), 

The experiments presented in this chapter were carried out to determine 

and compare the immune response induced in NIH mice against the 

avirulent DK and the virulent DS strains of P. c. adami which are 

genetically close, but differ in virulence in rodent malaria infections. 

The influence of virulence on the course of single-infections of lethal or 

non-lethal malaria parasites was also studied. The effect of a low infective 

dose on the course of infection in the virulent P. c. adami DS infection was 

also examined. 

3.2. Results 

3.2.1. Parasitaemia 

3.2.1.1. P. c. adami DK 

The parasitaemia was monitored daily. The blood smears were usually 

collected between 9:30 to 11 :30 am from the tail. In all experiments, 

parasitaemia is expressed both as mean percentage and the log geometric 

mean parasitaemia (Log iO pRBCs for 105 RBCs) which better indicated 

presence of the parasites at very low density. 

Figure 3.1. shows the course of infection in NIH mice infected with 1 x 1 0 5 

pRBCs of P. c. adami DK Lv. The infection was followed for 64 days. The 

peak parasitaemia, with a maximum of 23.85%, which represents the acute 

phase of the infection, was on day 1 O-post infection (p.i.). The 
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parasitaemia then quickly decreased to sub-patent levels on day 15 p,i, A 

recrudescent parasitaemia was seen between days 38 and 43 p.i. No 

parasites were observed after this time up to the last day of the experiment. 

3.2.1.2. P. c. adami DS (in sub-curative treated mice) 

Figure 3.2 shows the parasitaemia in mice were infected i. v. with 1 x 1 04 

pRBCs of P. c. adami DS. Mice were treated with a sub-curative dose of 

chloroquine at 24 mg/Kg on day 8 p.i. The infection was followed until the 

day 50 p.i. The peak parasitaemia was observed on day 8 p.i., the day in 

which mice were treated, with a maximum of 46.08%. Parasitaemia 

declined to sub-patent levels on day 15 p.i. A recrudescence was detected 

between days 18 and 24 p.i (Figure 3.2a and 3.3 a). 

3.2.1.3. P. c. adami DS (in untreated mice) 

To compare the course of infection and immune responses between treated 

and untreated mice with the virulent infection, mice were infected with 

1 x 1 04 pRBCs of P. c. adami DS and were not treated with chloroquine. The 

parasitaemia peaked to 68.73 % on day 10 p.i. and a recrudescent 

parasitaemia was observed between days 21 and 25 p.i. There was a 

significantly higher peak parasitaemia (t-test P < 0.005) in mice left 

untreated compared to the treated group (Figure 3.2b and 3.3b). 

To determine the effect of a low infective dose on the course of the 

virulent infection, six NIH mice were infected i. v. with 2x 1 03 pRBCs of P. 

c. adami DS (Figure 3.4). The peak parasitaemia was 54.45% on day 10 p.i. 

The first day in which parasite was seen was day 5 p.i. This shows that 

there was a one day delay compared to mice infected with the higher 

infective dose (Figures 3.2.3.3 and 3.4). The pre-patent period was 

extended in mice infected with a reduced infective dose. The number of 

mice died will be discussed below (see % Survival rate). 
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3.2.1.4. % Survival rate 

Survival curves are used as a measure of the outcome of infection. For 

example, the effect of virulence on the outcome of infection can be 

evaluated when similar hosts are infected with two parasites which differ in 

virulence. In this regard, survival curves show delay in death and host's 

survival versus death. Survival curves may also be used as a relative 

measure in evaluation of efficacy of a vaccine candidate (J acobs, Radzioch 

and Stevenson, 1996; Orner and Riley, 1998; Rainzuk et at., 2003). 

Survival curves are usually expressed as the percentage of survivors (% 

survival). Here, the % survivals were calculated to present the outcome of 

virulent P. c. adami DS infections when the mice were either treated, left 

untreated or infected with a low infective dose. 
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Figure 3.1. The course of infection in NIH mice infected with 1 x 1 05 pRBCs 

of P. c. adami DK. Sample size was 21 mice. 

Each data point is a mean % of parasitaemia. For each time point ± SEM 

has been calculated (For details see 2.21). However, SEM is not shown 

when it is too small. 

a) Mean percentage of parasitaemia. The peak parasitaemia was 23.85 % on 

day10p.i. 

b) The mean IOglO of parasitaemia per 1 x 10 5 pRBCs. 
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Figure 3.2. The course of infection in NIH mice infected with p, c. adami 

DS. 

Each data point is a mean % of parasitaemia. For each time point ± SEM 

has been calculated (For details see 2,21). However, SEM is not shown 

when it is too small. 

a) Mice infected with 1 xl 04 pRBCs and treated with a sub-curative dose of 

chloroquine at 24mg/Kg on day 8 p,i as the arrow shows, The sample size 

was 21 mice. The peak parasitaemia was 46,08 % on day 8 p.i. A 

recrudescent parasitaemia was seen between day 18 and 24 p.i, 

b) Mice infected with 1 xI 04 pRBCs of p, c, adami DS and left without 

treatment. The sample size was 21 mice, Six mice were killed before the 

peak parasitaemia and nine mice died thereafter. The peak parasitaemia was 

68.73 % on day lOp. i. A recrudescent parasitaemia was seen between days 

21 and 25 p.i. 
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Figure 3,3. The course of infection in NIH mice infected with p, c, adami 

DS. 

The mean loglo of parasitaemia per 1 x 1 0 5 pRBCs is shown, 

a) Mice infected with 1 xI 04 pRBCs and treated with sub-curative dose of 

chloroquine at 24mg/Kg on day 8 p.i. as the arrow shows. 

b) Mice infected with 1 xI 0 4 pRBCs of p, c, adami DS and left without 

treatment. 
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Figure 3,4, The course of infection in NIH llllce infected with a low 

infective dose, 2 xl 03 pRBCs p, c, adami DS, The sample size was 6 mice, 

Each data point is shown as the mean % of parasitaemia, For each time 

point ± SEM has been calculated (For details see 2,21), However, SEM is 

not shown when it is too small. 

a) Mean % of parasitaemia, The peak parasitaemia was 54.45 % on day 10 

p,i, Two mice of six died, 

b) Mean 10glO pRBCs per 1 x 10 5 RBCs, 
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Fig. 3.5. Percentage survival in mice infected with P. c. adami DS. 

a) Mice infected with 1 x 104 pRBCs. The course of infection was monitored 

for 50 days. Twenty one mice were infected initially, of which six mice 

were killed for spleen cell culture and were withdrawn from the calculation 

for % survival. From the 15 remaining mice nine died. The % survival was 

40 %. 

b) Six mice were infected with 2 xl 03 pRBCs. The course of infection was 

monitored for 58 days p.i. Two mice died and % survival was 66%. 
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There were no deaths in the avirulent P. c. adami DK infections. In the 

virulent infections no death was seen in the treated group. In the untreated 

group 21 mice were infected with P. c. adami DS. Six mice were killed 

before the peak parasitaemia for cytokine analysis using spleen cultures. 

Therefore, they were withdrawn from the calculation for % survival. From 

the 15 remaining 9 mice died and 40% of mice survived (Figure 3.5, a). 

However, in another control group in which 6 mice infected with the same 

pRBCs only one mouse survived (16.5% survival rate, data not shown). 

In the low-infective dose infection two mice died on day 13 p.i. which 

shows a three-day delay in death compared to the untreated mice which 

were infected with a higher infective dose. The % survival for six mice 

infected with a low infective dose was 66. % (two of six mice, Figure 3.5, 

b). 

3.2.2. Splenocyte proliferation 

The proliferative response of the splenocytes was evaluated for 

splenocytes cultured from infected and nai've mice as previously described 

in Chapter Two. Splenocytes from both infected and naIve mice were 

cultured at different time points as indicated in Figures 3.6 to 3.8. The 

suspensions of spleen cells at 5x10s cells/well (100).!) from each mouse 

were incubated in vitro with pRBCs, naIve RBCs, Con A, or medium only. 

They were pulsed with 0.5 ).!Ci (37 KBq) of tritiated [3 H] methyl thymidine 

and the proliferative response of the splenocytes in all groups was 

determined as described in Chapter Two. 

3.2.2.1. Splenocyte proliferation in P. c. adami DK infection 

The proliferative responses were evaluated after 72 hours of culturing 

splenocytes. This experiment was carried out at each time point at which 

splenocytes were cultured for cytokine analysis. The experiment showed 

that (Figure 3.6.) the spleen cells from naIve mice which were exposed to 

ConA had the highest (Tukey's test, P < 0.0001) proliferative response 

compared to all other groups for all time points during the experiment. The 
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second highest responses were observed in splenocytes from infected mice 

exposed to ConA and the third highest levels of responses were seen for 

splenocytes from infected mice which were restimulated with pRBCs. The 

control groups, except splenocytes exposed to ConA, included splenocytes 

from infected mice exposed to medium only, splenocytes from infected 

mice exposed to naIve RBCs, splenocytes from naIve mice exposed to 

either pRBCs or RBCs. 

3.2.2.2. Splenocyte proliferation in P.e. adami DS infections 

The proliferative responses in mice infected with P. c. adami DS and 

treated or left untreated were examined (Figures 3.7 and 3.8). The highest 

(Tukey's test, P < 0.0002) levels of proliferation compared to other groups 

were seen in splenocytes from naive mice exposed to ConA, the second 

highest responses were observed in splenocytes from infected mice exposed 

to ConA, and the third highest levels were also seen in splenocytes from 

infected mice restimulated with pRBCs as described above (3.2.2.1). 

However, the results showed that in untreated mice, the proliferative 

responses were lower (Tukey's test P, < 0.001) than that in mice were 

treated at the peak parasitaemia. 

3.2.2.3. Stimulation index (SI) 

The stimulation index is the ratio of the p.r. between the test and control 

groups as described in Chapter Two. Generally, the results showed that 

lower responses were observed after resolution of the peak parasitaemia 

and they rose again after the recrudescent parasitaemia (Figures 3.9 and 

3.10). However, as shown above at the peak parasitaemia, the proliferative 

responses were low compared to other time points. In the virulent 

infections the stimulation indices in the treated and untreated mice were 

significantly different (Two-way ANOV A, P < 0.005). Splenocytes from 

mice infected with the virulent DS and treated showed the lowest levels 

compared to the other groups in these experiments (Figures 3.9 and 3.10). 
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Figure 3.6. (a to d). The proliferation responses of splenocytes from mice 

infected with 1 xl 0 5 pRBCs of P. c. adami DK and naIve control mice. 

Three mice were sacrificed at each time point and splenocytes of each 

mouse (5 x 1 0 6 cells/ml) were separately cultured and stimulated with 5 x 1 05 

of pRBCs/well , 5 x 10 5 of RBC/well , ConA at 0.5 )lg/ml, or medium only. 

Before harvesting all suspensions were pulsed wi th tritiated thymidine for 

12-18 hours. Each data point is the mean ± SEM for an experiment 

performed in triplicate. However , SEM is not shown when it is too small. 

o p+f: Splenocytes from infected mice exposed to pRBCs. 

o m+f: Splenocytes from infected mice cultured in medium only. 

• r+f: Splenocytes from infected mice exposed to RBCs. 

• p+c: Splenocytes from naive mice exposed to pRBCs. 

• r+c: Splenocytes from naIve mice exposed to naive RBCs. 

[] ConA+f: Splenocytes from infected mice stimulated with ConAl 

• ConA +c: Splenocytes from naIve mice stimulated to ConAl 
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Figure 3.6. (e to g). The proliferation responses of splenocytes from mIce 

infected with 1 x l 05 pRBCs of p, c. adami DK and naIve control mice. 

Three mice were sacrificed at each time point and splenocytes of each 

mouse (S x 1 06 cells/ml) were separately cultured and stimulated with S x l 05 

of pRBCs/well, Sx10 5 of RBC/well , ConA at O.S Ilg/ml, or medium only. 

Before harvesting all suspensions were pulsed with tritiated thymidine for 

12-18 hours. Each data point is the mean ± SEM for an experiment 

performed in triplicate. However, SEM is not shown when it is too small. 

o p+f : Splenocytes from infected mice exposed to pRBCs. 

o m+f: Splenocytes from infected mice cultured in medium only. 

• r+f: Splenocytes from infected mice exposed to RBCs. 

• p+c: Splenocytes from naive mice exposed to pRBCs. 

• r+c: Splenocytes from naIve mice exposed to naive RBCs. 

rAI ConA +f: Splenocytes from infected mice stimulated with ConAl 

• ConA+c: Splenocytes from naIve mice stimulated to ConAl 
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Figure 3 .7. (a to d). The proliferative responses of splenocytes from mIce 

infected with 1 x 104 pRBCs of P. c. adami DS or naIve mice. 

Mice were treated with sub-curative dose of chloroquine. Three mice were 

sacrificed at each time point and splenocytes of each mouse 

(5 x 105cells / well) were separately cultured and stimulated with 5 x l 05 

pRBCs/well, 5 x l0 5 RBC/well, ConA at 0.5 I-lg/ml , or medium only. Before 

harvesting all suspensions were pulsed with tritiated thymidine for 12- 18 

hours. Each data point is the mean ± SEM for an experiment performed in 

triplicate. However , SEM is not shown when it is too small. 

D p+f: Splenocytes from infected mice exposed to pRBCs of the parasite. 

D m+f: Splenocytes from infected mice in medium only. 

• r+f: Splenocyte s from infected mice exposed to RBCs. 

• p+c: Splenocytes from naIve control mice exposed to pRBCs . 

• r+c: Splenocytes from naIve mice exposed to RBCs. 

ConA +f: Splenocytes from infected mice exposed to ConA. 

ConA+c : Splenocytes from naIve mice stimulated with ConA . 
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Figure 3.7. (e to g). The proliferative responses of splenocytes from mIce 

infected with 1 x 104 pRBCs of P. c. adami DS and naIve mice. 

Mice were treated with sub-curative dose of chloroquine. Three mice were 

sacrificed at each time point and splenocytes of each mouse 

(5 x 106cells/ml) were separately cultured and stimulated with 5 x 1 05 

pRBCs/well, 5 x 1 05 RBC/well, ConA at 0.5 flg/ml, or medium only. Before 

harvesting all suspensions were pulsed with tritiated thymidine for 12-18 

hours. Each data point is the mean ± SEM for an experiment performed in 

triplicate. However, SEM is not shown when it is too small. 

D p+f: Splenocytes from infected mice exposed to pRBCs of the parasite. 

D m+f: Splenocytes from infected mice in medium only. 

• r+f: Splenocytes from infected mice exposed to RBCs. 

• p+c: Splenocytes from naIve control mice exposed to pRBCs. 

• r+c: Splenocytes from naIve mice exposed to RBCs. 

ConA +f: Splenocytes from infected mice exposed to ConA, 

• ConA +c: Splenocytes from naIve mice stimulated with ConA, 



Chapter 3, immune response in NIH mice 

a 

Q) a 
I:::: 

'"0 
0-
u a I:::: 

;>-. 0 
...I:::: .-...... ...... 
'"0 

ro 
I-< 

Q) 0 ...... 0-ro I-< .- 0 ...... .- U 
I-< I:::: t-< 

a 
200000 -,--------

150000 -1-------

100000 -1------ -

50000 -1-........ - - - - -

Day 4 post infection 

c 
200000 -,-------------, 

150000 -1----------1 

100000 -1--------

50000 -j--------

a _L-,L.;:,...I---====_ 

Day 10 post infection 
e 

200000 -,----------, 

150000 -1-- - - - - --

100000 -1-------

50000 

a -L-.L-...... -=::::::::::Io. __ 

Day 58 post infection 

93 

b 

Day 7 post infection 

d 

Day 25 post infection 

Figure 3.8. (a to e). The proliferation responses of splenocytes from 

untreated mice infected with 1 xl 04 pRBCs of p, c, adami DS and naIve 

mIce. Three mice were sacrificed at each time point and splenocytes of 

each mouse were separately cultured and stimulated with 5 x 1 0 5 of 

pRBCs/well, 5 x 10 5 of RBC/well, ConA at 0.5 Jlg/ml, or medium only. 

Before harvesting all suspensions were pulsed with tritiated thymidine for 

12-18 hours. Each data point is the mean ± SEM for an experiment 

performed in triplicate. However, SEM is not shown when it is too small. 

D p+f: Splenocytes from infected mice exposed to pRBCs. 

D m+f: Splenocytes from infected mice in medium only. 

• r+f: Splenocytes from infected mice exposed to RBCs. 

• p+c: Splenocytes from naIve control mice exposed to pRBCs. 

• r+c: Splenocytes from naIve mice exposed to RBCs. 

ConA +f: Splenocytes from infected mice stimulated to ConA. 

• ConA+c: Splenocytes from naIve mice stimulated to ConA. 
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Figure 3.9. Stimulation index (SI) for proliferative responses. 

a 

b 

Three mice were sacrificed at each time point and their splenocytes were 

cultured and pulsed with tritiated thymidine for 12-18 hours before 

harvesting. 

[] p+f/m+f: The proliferative response of the spleen cells from infected 

mice exposed to pRBCs divided by the proliferative response of spleen 

cells from infected mice cultured in medium only . 

94 

• ConA +f/m+f: The proliferative response of the spleen cells from infected 

mice exposed to ConA divided by the proliferative response of the spleen 

cells from infected mice cultured in medium only. 

a) SI for mice infected with 1 xl 05 pRBCs of P. c. adami DK 

b) SI for mice infected with 1 x 1 04 pRBCs of P. c. adami DS. Mice treated 

with a sub-curative dose of chloroquine on day 8 p.i. 
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Figure 3,10, Stimulation index for mice infected with 1 xl 04 pRBCs of p, c, 

adami DS, 

Mice were not treated. Three mice were sacrificed at each time point and 

their splenocytes were cultured and pulsed with tritiated thymidine for 12-

18 hours before harvesting. 

[] p+f/m+f: The proliferative response of spleen cells from infected mice 

exposed to pRBCs divided by the proliferative response of spleen cells 

from infected mice cultured in medium only . 

• ConA+f/m+f: The proliferative response of spleen cells from the infected 

mice exposed to ConA divided by the proliferative response of spleen cells 

from infected mice cultured in medium only. 
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3.2.3. Cytokine analysis 

The IFNy and IL-4 concentrations were measured in supernatants from in 

vitro cultures of splenocytes derived from mice during the course of 

infections of the virulent and the avirulent P. c. adami parasites. Three 

mice from each group were sacrificed and splenectomized at each time 

point. NaIve mice were also killed and splenectomized at the same time. 

Spleen cells were separately cultured as previously described in Chapter 

Two and supernatants of each culture were obtained after three days (72 

hours) and examined for the cytokines as described in Chapter Two. 

3.2.3.1. IFNy in P. c. adami DK and P. c. adami DS infections 

The present results showed that in mice infected with the avirulent DK 

strain there was an early production of IFNy with the highest level on the 

first sampling day, day 4 p.i, and it remained at high levels until the peak 

parasitaemia (Figure 3.11). On day 11 p.i., a day after the peak 

parasitaemia, IFNy sharply declined (Figure 3.11). IFNy levels gradually 

increased thereafter, particularly after the recrudescence (Figure 3.11). The 

results showed that the levels of IFNy significantly were different (Two­

way ANOVA, P < 0.0001) between all tested groups. The levels of IFNy in 

infected mice were significantly higher (Tukey's test, P < 0.0001) 

compared to its levels in naIve control mice on the first sampling day 

(Figure 3.11). In mice infected with P. c. adami DS, and treated with 

chloroquine, the highest level of IFNy was seen in the cultures of spleen 

cells recovered on the first sampling day, day 3 p.i. The lowest level was 

measured on day 10 p.i. which was coincident with the peak parasitaemia. 

Increases in IFNy levels were observed after the recrudescent parasitaemia 

(Figure 3.12). The production of IFNy in the untreated mice infected with 

the DS strain was also examined. In this group, the highest level of IFNy 

was recorded on the first sampling day, on day 4 p.i. The level of IFNy was 

at the lowest level at peak parasitaemia. It increased later after the 

recrudescence (Figure.3 .13). 



Chapter 3. Immune response in NIH mice 

,-.., 2000 ...... 
S 1800 

---~ 1600 
"-' 

I=: 1400 
0 1200 ...... ...... 
u 1000 ::;j 

"'0 800 
0 
I-< 600 0.. 
?- 400 
Z 200 r,I.; 
>-< 0 

4 9 11 15 27 

Day post infection 

40 64 

~p+f 

...•.. p+c 

- -r+f 

• r+c 

•• {J •• conA+f 

...... conA+con 
t 

97 

Figure 3.11. IFNy production in NIH mice infected with 1 xI 05 P. c. adami 

DK. 

The course of infection was monitored for 64 days. At each time point 

three mice were sacrificed and their spleens were individually cultured. 

Supernatants from splenocytes cultures for each mouse were assayed 

separately by ELISA. Each data point is the mean ± SEM for an experiment 

performed in triplicate. However, SEM is not shown when it is too small. 

p+f: Supernatant from infected mouse splenocytes culture exposed to 

pRBCs. 

p+c: Supernatant from nai've mouse splenocytes culture exposed to pRBCs. 

r+f: Supernatant from infected mouse splenocytes culture exposed to nai've 

RBCs. 

r+c: Supernatant from nai've mouse splenocytes culture exposed to naIve 

RBCs. 

ConA +f: Supernatant from infected mouse splenocytes culture exposed to 

ConA, 

ConA+c: Supernatant from naIve mouse splenocytes culture exposed to 

ConA, 
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Figure 3,12. IFNy production in NIH mice infected with 1 xl 04 pRBCs P. c. 

adami DS. 

Mice were treated with a sub-curative dose of chloroquine (24mg/Kg). The 

course of infection was monitored for 50 days. At each time point three 

mice were sacrificed and their spleens were individually cultured. 

Supernatant of splenocytes cultures for each mouse was separately assayed 

by ELISA. 

Each data point is the mean ± SEM for an experiment performed in 

triplicate. However, SEM is not shown when it is too small. 

p+f: Supernatant from infected mouse splenocytes culture exposed to 

pRBCs. 

p+c: Supernatant from na'ive mouse splenocytes culture exposed to pRBCs. 

r+f: Supernatant from infected mouse splenocytes culture exposed to RBCs. 

r+c: Supernatant from na'ive mouse splenocytes culture exposed to RBCs. 

ConA +f: Supernatant from infected mouse splenocytes culture exposed to 

ConA. 

ConA +c: Supernatant from na'ive mouse splenocytes culture exposed to 

ConA. 
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Figure 3.13. IFNy production in NIH mice infected with 1 xI 04 pRBCs. P. 

c. adami DS. 

Mice left untreated. The course of infection was monitored for 58 days. At 

each time point three mice were sacrificed and their spleens were 

individually cultured. Supernatant of splenocytes cultures for each mouse 

was assayed separately by ELISA. Each data point is the mean ± SEM for 

an experiment performed in triplicate. However, SEM is not shown when it 

is too small. 

p+f: Supernatant from infected mouse splenocytes culture exposed to 

pRBCs. 

p+c: Supernatant from naIve mouse splenocytes culture exposed to pRBCs. 

r+f: Supernatant from infected mouse splenocytes culture exposed to naIve 

RBCs. 

r+c: Supernatant from naIve mouse splenocytes culture exposed to na'ive 

RBCs. 

ConA +f: Supernatant from infected mouse splenocytes culture exposed to 

ConA. 

ConA +c: Supernatant from naIve mouse splenocytes culture exposed to 

ConA. 



Chapter 3, Immune response in NIH mice 100 

3.2.3.2 IL-4 production in P. c. adami DK and P. c. adami DS infections 

The present results demonstrated that in both avirulent and virulent 

malaria infections, IL-4 levels increased later during the observation 

period, In the early period of observation, in both virulent and avirulent 

infections, IL-4 did not increase above background control levels (Figures 

3,14,3,15 and 3,16), 

The present data showed that in the DK-infected mice, there was initially 

a gradual increase in IL-4 production and then a sharp increase when the 

infection became chronic, The highest level was detected on day 64 p.i 

which was significantly higher (Tukey's test, P < 0,001) compared to the 

IL-4 levels for all time points except day 40 p,i. (Figure 3,14), 

In mice infected with p, c, adami DS, and treated with chloroquine, IL-4 

production gradually increased and the highest level was measured on the 

last sampling day, day 50 p.i, Increases were detected after day 32 p,i. 

which were after the recrudescent parasitaemia and when the infection had 

become sub-patent. There was significantly higher IL-4 production 

(Tukey's test, P < 0,0001) for splenocytes from infected mice restimulated 

with pRBCs for days 42 and 50 p.i. compared to IL-4 level from 

splenocytes derived from naIve mice and exposed to pRBCs at the same 

time (Figure 3.15). 

In the untreated mice surviving from infection with P. c. adami DS, IL-4 

production had the same profile as shown above. However, in comparison 

with the treated group, the IL-4 production had higher levels in the first 

sampling days and it was significantly lower (Tukey's test, P < 0.0001) 

than that in the last two sampling days (Fig 3.15 and 3.16). 
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Figure 3.14. IL-4 production in NIH mice infected with 1 x 1 05 pRBCs P. c, 

adami DK. 

The course of infection was monitored for 64 days. At each time point 

three mice were sacrificed and their spleens were individually cultured. 

Supernatant of splenocytes cultures for each mouse was assayed separately 

by ELISA. Each data point is the mean ± SEM for an experiment performed 

in triplicate. However, SEM is not shown when it is too small. 

p+f: Supernatant from infected mouse splenocytes culture exposed to 

pRBCs. 

p+c: Supernatant from naIve mouse splenocytes culture exposed to pRBCs. 

r+f: Supernatant from infected mouse splenocytes culture exposed to naIve 

RBCs, 

r+c: Supernatant from naIve mouse splenocytes culture exposed to naIve 

RBCs, 

ConA +f: Supernatant from infected mouse splenocytes culture exposed to 

ConA. 

ConA+c: Supernatant from naIve mouse splenocytes culture exposed to 

ConA. 
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Figure 3.15. IL-4 production in NIH mice infected with 1 xl 04 pRBCs of P. 

c. adami DS. 

Mice treated with a sub-curative dose of chloroquine. The course of 

infection was monitored for 58 days. At each time point three mice were 

sacrificed and their spleens were individually cultured. Supernatant of 

splenocytes cultures for each mouse was assayed separately. Each data 

point is the mean ± SEM for an experiment performed in triplicate by 

ELISA. However, SEM is not shown when it is too small. 

p+f: Supernatant from infected mouse splenocytes culture exposed to 

pRBCs. 

p+c: Supernatant from naIve mouse splenocytes culture exposed to pRBCs. 

r+f: Supernatant from infected mouse splenocytes culture exposed to naIve 

RBCs. 

r+c: Supernatant from naIve mouse splenocytes culture exposed to naIve 

RBCs. 

ConA +f: Supernatant from infected mouse splenocytes culture exposed to 

ConA. 

ConA +c: Supernatant from naIve mouse splenocytes culture exposed to 

ConA. 
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Figure 3.16. IL-4 production in NIH mice infected with 1 xl 04 pRBCs of P. 

c. adami DS. 

Mice left untreated. The course of infection was monitored for 58 days. At 

each time point three mice were sacrificed and their spleens were 

individually cultured. Supernatant of splenocytes cultures for each mouse 

was assayed separately. Each data point is the mean ± SEM for an 

experiment performed in triplicate by ELISA. However, SEM is not shown 

when it is too small. 

p+f: Supernatant from infected mouse splenocytes culture exposed to 

pRBCs. 

p+c: Supernatant from nai.'ve mouse splenocytes culture exposed to pRBCs. 

r+f: Supernatant from infected mouse splenocytes culture exposed to nai.'ve 

RBCs. 

r+c: Supernatant from nai.'ve mouse splenocytes culture exposed to nai.'ve 

RBCs. 

ConA +f: Supernatant from infected mouse splenocytes culture exposed to 

ConA. 

ConA +c: Supernatant from nai.'ve mouse splenocytes culture exposed to 

ConA. 
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3.2.3.4. Specific antimalarial IgG (whole molecule) production in P. c. 

adami DK and DS infections 

Parasite-specific IgG (whole molecule) production in mice infected with 

the parasites and control naIve mice was determined by the ELISA test. 

Sera were collected from at least 3 mice at each time point, usually every 

three days, Sera from the test or control groups were assayed for parasite 

specific IgG (whole molecule), and parasite-specific IgGl and IgG2a 

subclasses. The control groups were as follows: the level of IgG in sera 

from infected mice reacted to lysate of naIve RBCs, and sera from naIve 

mice reacted to lysate of pRBCs, or naIve RBCs. Lysates of pRBCs, for 

both the DK and the Ds strains, and naIve RBCs were prepared. 

In the avirulent infection, parasite-specific IgG (whole molecule) 

increased immediately after the peak parasitaemia, declining thereafter and 

increasing after the recrudescence (Figure 3.17, a). Parasite-specific total 

IgG (whole molecule) levels in the infected mice were significantly higher 

(Tukey's test, P < 0.001) compared to all control groups on the last 

sampling days (days 54, 59 and 64 p.i.). 

In mice infected with the virulent DS strain, and treated with chloroquine, 

parasite-specific IgG (whole molecule) increased with the highest levels at 

the peak parasitaemia and it levels remained high for the rest of 

observation period (Figure 3.17, b). 

The same profile of total IgG production was seen in mice infected with the 

DS strain and left untreated (Figure 3.18, a). However, the levels of IgG 

were lower compared to treated mice except for the last sampling day 

which was comparable to the treated mice. 

In general, the total parasite-specific IgG (whole molecule) levels in sera 

taken from the treated DS-infected mice were higher from day 10 p.i. 

onwards compared to IgG levels in the DK-infected mice (Figure 3.17). 
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Figure 3.17. Specific total IgG (whole molecule) antibody production III 

NIH mice infected with P. c. adami DK or P. c. adami DS. 

a) IgG (whole molecule) production in non-lethal P. c. adami DK infection. 

b) IgG (whole molecule) production in lethal P. c. adami DS where mice 

treated with sub-curative dose of chloroquine. Each data point is the mean 

± SEM for an experiment performed in triplicate by ELISA. However, SEM 

is not shown when it is too small. 

f+ldk: Sera from infected mice with the DK strain and reacted with the 

lysate obtained from pRBCs of P. c. adami DK. 

f+lds: Sera from infected mice with the DS strain and reacted with the 

lysate obtained from pRBCs of P. c. adami DS. 

f+lc: Sera from DK-infected mice or from DS-infected mice reacted with 

the lysate obtained from naIve control mice as separately shown above. 

c+ldk or c+lds: Sera from naIve control mice reacted with the lysate 

obtained from pRBCs of the DK or the DS strains. 

c+lc: Sera from naIve control mice reacted to the lysate obtained from 

naIve control mice. 
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Figure 3.18. Specific total IgG (whole molecule) antibody production in 

NIH mice infected with P. c. adami DS. 

Each data point is the mean ± SEM for an experiment performed in 

triplicate by ELISA. However, SEM is not shown when it is too small. 

a) IgG (whole molecule) production in mice infected with 1 x 104 P. c. 

adami DS and left untreated. 

b) Specific IgG (whole molecule) antibody production in NIH mice infected 

with a low infective dose of 2 xl 03 pRBCs of P. c. adami DS. 

f+lds: Sera from infected mice with the DS strain and reacted with the 

lysate obtained from pRBCs of P. c. adami DS. 

f+lc: Sera from DS-infected mice either with 1 xl 04 or 2x 1 03 pRBCs reacted 

with the lysate obtained from naIve control mice as separately shown 

above. 

c+lds: Sera from naIve control mice reacted with the lysate obtained from 

pRBCs of the DS strain. 

c+lc: Sera from naIve control mice reacted to the lysate obtained from 

naIve control mice. 
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3.2.3.5. Specific antimalarial IgGl production in P. c. adami DK and DS 

infections 

In mice infected with avirulent P. c. adami DK, although the levels of 

IgGl increased, particularly after the peak parasitaemia, antibody 

production only increased sharply on the last sampling days when usually 

infection became chronic (Figure 3.19.). The increase of specific IgGl later 

in the course of infection (chronic phase) indicates activation of a Th2 

response. There were significantly different (Two-way ANOV A, P < 0.001) 

levels of IgG 1 between the groups. The IgG 1 levels were significantly 

higher (Tukey's test, P < 0.01) in serum from mice infected with the 

parasite when reacted with pRBCs lysate compared to the serum from naIve 

mice reacted with pRBCs for all time points except for the first three 

sampling days. 

In the chloroquine-treated mice infected with the DS strain, specific IgG 1 

did not increase significantly during the acute phase, but increased after 

the recrudescence and subsequently remained at high levels during the 

observation period. A significant difference (Tukey's test, P < 0.005) was 

seen for specific-IgG 1 in serum from infected mice reacted with pRBCs 

lysate compared to the control group in which serum from infected mice 

reacted with naIve RBCs except for the first three sampling days (Figure 

3.20, a). The difference was also significant (Tukey's test, P < 0.002) 

between IgG 1 in serum from infected mice reacted to pRBCs compared to 

IgGl in serum from naIve mice reacted to pRBCs. 

In surviving mice infected with the DS strain and left untreated increases 

in parasite-specific IgG 1 were detected on the last sampling days (days 38 

and 45 p.i., Figure 20, b). There were significantly different (Two-way 

ANOVA, P < 0.05) levels of specific IgGl between all tested groups. In 

general, the same profile was seen for specific IgG 1 production in mice 

infected with either non-lethal or lethal strains (Fig.3 .19 and 3.20). 

The results showed that in mice infected with a low infective dose the 

production of IgG 1 was not as high as seen in other experimental groups of 

DS-infected mice (Figure 3.21). However, the profile of IgG 1 production 

was the same, as higher levels of the parasite-specific IgGl were observed 

on the last sampling days. 
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Figure 3,19. Specific anti-parasite IgG 1 production. Mice infected with 

1 x 1 0 5 pRBCs of P. c. adami DK. 

Each data point is the mean ± SEM for an experiment performed in 

triplicate by ELISA. However, SEM is not shown when it is too small. 

f+ldk: Sera from infected mice reacted with the lysate obtained from 

pRBCs of p, c, adami DK. 

f+lc: Sera from infected mice reacted with the lysate obtained from naIve 

control mice. 

c+ldk: Sera from naIve control mice reacted with the lysate obtained from 

pRBCs of the p, c. adami DK, 

c+lc: Sera from naIve control mice reacted with the lysate obtained from 

naIve control mice. 
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Figure 3.20. Specific anti-parasite IgG 1 production in mice infected with 

1 x 1 04 pRBCs of P. c. adami DS. 

Each data point is the mean ± SEM for an experiment performed in 

triplicate by ELISA. However, SEM is not shown when it is too small. 

a) Specific IgGI production when mice treated with sub-curative dose of 

chloroquine. 

b) Specific IgG 1 when mice left untreated. 

f+lds: Sera from DS-infected mice either treated or untreated reacted with 

the lysate obtained from pRBCs of P. c. adami DS as separately shown 

above. 

f+lc: Sera from DS-infected mice either treated or untreated reacted with 

the lysate obtained from naIve control mice as separately shown above. 

c+lds: Sera from naIve control mice reacted with the lysate obtained from 

pRBCs of the DS strain. 

c+ lc: Sera from naIve control mice reacted with the lysate obtained from 

naIve control mice. 
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Figure. 3.21. Specific anti-parasite IgG 1 production in mice infected with a 

low infective dose of 2x 1 03 pRBCs of P. c. adami DS. 

Each data point is the mean ± SEM for an experiment performed in 

triplicate by ELISA. However, SEM is not shown when it is too small. 

f+lds: Sera from infected mice reacted with the lysate obtained from 

pRBCs of P. c. adami DS. 

f+lc: Sera from infected mice reacted with the lysate obtained from naive 

control mice. 

c+lds: Sera from naive control mice reacted with the lysate obtained from 

pRBCs of the DS strain. 

c+lc: Sera from naive control mice reacted with the lysate obtained from 

naive control mice. 
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3.2.3.6. Specific antimalarial IgG2a production in P. c. adami DK and 

P. c. adami DS infections 

111 

Sera of infected and control mice were also assayed for specific IgG2a 

production. In P. c. adami DK infection, specific-IgG2a sharply increased 

at or immediately after the peak parasitaemia, declining thereafter and rose 

again during the later stages of the observation period. The results showed 

that the increase of parasite-specific IgG2a, an indicator of Th1 response, 

was almost coincident with the peak parasitaemia. There were significantly 

different (Two-way ANOVA, P < 0.001) levels of IgG2a between all 

groups. When IgG2a was examined in serum from infected mice reacted 

with pRBCs and RBCS, the levels of parasite-specific IgG2a in the infected 

group were significantly higher (Tukey's test, P < 0.01) than that in the 

control group for two time points, daya 10 and 11 p.i (Fig. 3.22). 

In P. c. adami DS infection, when mice were treated, the anti-malarial 

specific IgG2a increased during the acute phase, slightly decreased 

thereafter and rose again particularly on days 42 and 50 p.i, the last two 

sampling days. 

In the virulent DS infection, when mice were left untreated, the levels of 

specific IgG2a were significantly different compared to the treated mice 

(Two-way ANOVA, P < 0.05). But the profile of IgG2a production did not 

differ. There were higher levels of IgG2a production in mice surviving in 

the untreated group compared to treated mice for all time points from day 

7p.i onward. The results show that the induction of IgG2a production in the 

untreated group was significantly (Two-way ANOV A, P < 0.01 for all time 

points after day 10 p.i) greater than that in the treated group from day 10 

p.i. onward (Figure 3.23). 

The production of parasite-specific IgG2a in mice infected with a low 

infective dose of the DS strain was detected at a relatively high level after 

the peak parasitaemia and showed the same profile as seen in mice infected 

with a higher dose (Figure 3.24). There were significantly higher (Tukey's 

test, P < 0.01 for all time points except the first sampling day, day 7 p.i.) 

levels of IgG2a in serum from mice infected with a low infective dose 

compared to other control groups. The results indicated that there is a 
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similar profile for the specific IgG2a production in both non-lethal and 

lethal infections (Figure, 3,22 and 3,23), 

112 
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Figure 3.22. Specific anti-parasite IgG2a production in mice infected with 

1 x 1 05 pRBCs of P. c. adami DK. 

Each data point is the mean ± SEM for an experiment performed in 

triplicate by ELISA. However, SEM is not shown when it is too small. 

f+ldk: Sera from infected mice reacted with the lysate obtained from 

pRBCs of P. c. adami DK. 

f+lc: Sera from infected mice reacted with the lysate obtained from naIve 

control mice. 

c+ldk: Sera from naIve control mice reacted with the lysate obtained from 

pRBCs of the DK strain. 

c+lc: Sera from naIve control mice reacted with the lysate obtained from 

naIve control mice. 
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Figure 3,23, Specific anti-parasite IgG2a production in mice infected with 

1 x 1 04 pRBCs of p, c, adami DS, 

Each data point is the mean ± SEM for an experiment performed in 

triplicate by ELISA, However, SEM is not shown when it is too small. 

a): Mice treated with a subcurative dose of chloroquine, 

b): Mice were left untreated, 

f+lds: Sera from infected mice reacted with the lysate obtained from 

pRBCs of p, c, adami DS, 

f+lc: Sera from infected mice either treated or untreated reacted with the 

lysate obtained from naIve control mice as separately shown above, 

c+lds: Sera from naIve control mice reacted with the lysate obtained from 

pRBCs of the DS strain, 

c+lc: Sera from naIve control mice reacted with the lysate obtained from 

naIve control mice, 
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Figure 3.24. Specific anti-parasite IgG2a production in mice infected with 

a low infective dose at 2x 103 pRBCs of P. c. adami DS. 

Each data point is the mean ± SEM for an experiment performed in 

triplicate by ELISA. However, SEM is not shown when it is too small. 

f+lds: Sera from infected mice reacted with the lysate obtained from 

pRBCs of P. c. adami DS. 

f+lc: Sera from infected mice reacted with the lysate obtained from naIve 

control mice. 

c+lds: Sera from naIve control mice reacted with the lysate obtained from 

pRBCs of the DS strain. 

c+lc: Sera from naIve control mice reacted with the lysate obtained from 

na'ive control mice. 
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3.3. Discussion 

This study examined the profile of the immune response in NIH mice 

infected with avirulent P. c. adami DK or virulent P. c. adami DS. To 

approach these aims, the course of infection, production and kinetics of 

selected cytokines, and parasite-specific antibodies were examined. 
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Monitoring the course of infections showed that in the non-lethal DK 

infection the peak parasitaemia was on day 10 p.i. In the treated mice 

infected with the DS strain, the peak parasitaemia was observed on day 8 

p.i., the day on which mice were treated with chloroquine. In the lethal DS 

infection, when the mice were left untreated, the peak parasitaemias was 

also on day 10 p.i despite the fact that in the virulent DS-infected mice, the 

infective dose was 10-fold lower than that in the avirulent DK-infected 

mice. This suggests that in the virulent DS infection the parasite density 

increases more rapidly due to the higher replication rate compared to the 

DK avirulent infection. In mice infected with a low infective dose (2x 1 03 

pRBCs) peak parasitaemia was as the same time as seen in untreated mice 

infected with a higher infective dose. 

The effect of infective dose on the developing parasitaemia, the course of 

infection and its outcome has been investigated. In humans, the influence 

of inoculum size on disease severity has not been fully understood (Glynn 

and Bradley, 1995). In rodents, Timms and colleagues (2001) suggested 

that the inoculating dose affects malaria parasite dynamics, as larger 

infective doses induced earlier and higher mortality than did lower 

infective doses. They reported that C57Bl6J mice infected with the virulent 

P. c. chabaudi BC died about a day earlier for every 1 O-fold increase in the 

infective dose. The present results showed that in the virulent DS infection 

when mice infected with 1 x 1 04 pRBCs and left untreated the % survival 

was only 40 % (Fig3.2). In contrast, 100 % survival rate has been reported 

in NIH mice infected with 102-10 6 pRBCs of P. c. chabaudi AS (Taylor­

Robinson and Phillips, 1998). Timms and collegues (2001) also reported 

that a proportion of mice that died from 1 xl 04 pRBCs of P. c. chabaudi BC 

infection was > 0.4. In the present study (see Chapter Six) mice infected 

with P. chabaudi AS survived when infective dose was 1 xl 04 pRBCs 

despite the presence of a high peak parasitaemia. These observations and 
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differences in surviving mice show that strain-specific host-parasite 

interactions impact on the outcome of infection. For example, in the 

present study this difference shows that P. chabaudi AS infection is a non­

lethal infection in NIH mice. Large infective dose results in earlier 

symptoms in mice (Cox, 1966) and in humans (Glynn, 1994). On the other 

hand, the results presented here showed that a low infective dose, 2x 1 03 

pRBCs, resulted in one-day delay in the appearance of the parasitaemia and 

a three-day delay in the time taken to death were seen compared to that in 

mice infected with the higher dose (Figures 3.2 and 3.4, and 3.5). However, 

this delay did not prevent mice from the fatal outcome of the infection as 

two mice out of six died. In an immunization study in which BALB/c mice 

challenged with 1 x 1 05 pRBCs of lethal P. c. adami DS over the three trials, 

only 2 of 63 control animals have survived infection (3.2%) which show a 

very high mortality of the DS strain (Smooker et al., 2000). In the present 

study, the mortality was not as high as seen in BALB/c mice in Smooker 

and collegues' study (2000). One reason probably is a lower infective dose, 

104 pRBCs, compared to the infective dose used in the Smooker's study. 

It is also thought that infective dose affects Th 1 and Th2 sequential 

activation. Taylor-Robinson and Phillips (1998) showed that increasing the 

infective dose of P. c. chabaudi AS in susceptible A/J mice results in 

elevated Th2 responses that lead to a fulminant parasitaemia whereas 

increasing the infective dose in resistant NIH mice enhances IFNy, and 

reduces IL-4 production, promoting a Th 1 response. Although in the 

present study neither avirulent nor virulent infection was examined in any 

susceptible mice, the profile of the immune response, a sequential Th 1/Th2 

response, in resistant NIH mice was not altered even in the low-infective 

dose infection. Taken together, these observations support the idea that 

dose affects disease severity by altering the time that host needs to control 

parasite density before the threshold for clinical disease is reached (Timms 

et al., 2001; Marsh, 1992). This indicates that any intervention that reduces 

infective dose will have an effect on the severity of the disease. 

The present results showed that recovery from the primary peak 

parasitaemia during P. c. adami DK and DS infections in NIH mice is 

associated with a Th 1 response, with early high levels of IFNy and high 

levels of IgG2a at or immediately after the peak parasitaemia. The 
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predominant Th 1 cell-mediated response was followed by a Th2 response 

with high levels of IL-4 and IgG 1, particularly in the last sampling days 

which is usually coincident with the chronic phase of the disease. In 

general, the present findings are in agreement with previous studies in 

which both Th1 and Th2 subsets of the CD4+ T cells (Podoba and 

Stevenson, 1991; Taylor-Robinson et al., 1993; De Souza et al., 1997) have 

been shown to be crucial for the resolution of the acute primary 

parasitaemia in the P. c. adami model (Kima et al., 1992) and for 

elimination of self-resolving infection of P. chabaudi AS (Langhorne, 

1989; Stevenson & Tam, 1993). Early production of IFNy is also proposed 

to be a characteristic feature in non-lethal P. yoelii infection (de Souza et 

al., 1997) and for the resolution of the primary parasitaemia in P. yoelii 

infection (Choudhury et al., 2000). Moreover, in P. c. chabaudi AS 

infection, splenocytes produced high levels of IF Ny in vitro during 

ascending parasitaemia and low levels during descending primary 

parasitaemia (reviewed by Taylor-Robinson, 1995). No early increase in 

production of IL-4 was seen in either lethal infection of P. yoelii YM or in 

non-lethal infection of P. chabaudi AS (de Souza et al., 1997). The 

observation of increased IL-4 and IgGl later in the course of the infection, 

in the present study, was also in agreement with the suggestion that 

switching from a Th 1 to a Th2 response may be due to activation of a 

feedback mechanism by which immune response quickly returns to a 

homeostatic situation in which anti-IFNy inflammatory cytokines such as 

IL-4 are important (Saul, 1998). 

The present results did not show any di fference in the profile and timing 

of IFNy and IL-4 productions in non-lethal and lethal infections in NIH 

mice (Figures. 3.11 to 3.16). 

Susceptibility of the host is proposed to be an important factor in the 

induction of Th 1 or Th2 after the first exposure to the patho gen. High 

levels of expression of mRNA of IFNy and low levels of mRNA of IL-4 

were also seen in resistant C57BL/6 mice infected with P. chabaudi AS in 

the early phase of infection which was correlated with the protection 

against asexual blood stages (J acobs, Radzioch & Stevenson, 1996). 

Indeed, Jacobs and colleagues (1996) found significantly higher levels of 
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mRNA of IFNy in the splenocytes of resistant B6 mice compared to 

susceptible A/J mice, In contrast, they showed that in susceptible A/J mice 

infected with the same parasites, there was an increase of TNFa mRNA 

levels in the liver and excessive levels of TNFa in serum later during 

infection, with a higher level of IL-4 mRNA which showed a correlation 

between the presence of these cytokines and susceptibility to parasite 

infection. 

The results presented here showed the levels of IFNy on the first sampling 

days were higher in the avirulent infection compared to the virulent 

infection. This shows that, in the same host, the avirulent infection may 

induce stronger Th 1 response compared to the virulent infection. This also 

indicates that the virulent DS strain in the NIH mouse model could modify 

IFNy production to a lower level. In respect of IL-4 production, in the 

avirulent DK infection the IL-4 levels were significantly lower than in the 

virulent DS infections, probably due to the induction of stronger Th2 

response in DS-infected mice compared to DK-infected mice. Further 

investigations are required to identify the features and factors involved in 

virulence and resulted deaths in the DS strain infections such as weight 

loss, irregulation in host's temperature, and rapid multiplication of the 

parasite. 

The present study showed that, regarding to the time of sampling, early 

high levels of IFNy declined to the low levels during the time of peak 

parasitaemia in both non-lethal DK and lethal DS infections. Previous 

studies also showed that sharplty rising of IFNy in plasma (Slade and 

Langhorne, 1989) or in stimulated splenocytes with the parasite or ConA 1 

or 2 days beforet the peak parasitaemia follwed with a very decline and not 

to rise again (stevenson et ai, 1990, Taylor-Rabinson and Phillips, 1994). 

However, the present results shows a biphasic production of IFNy as 

sharply decline of IFNy at the pak parasitaemia increased again later during 

the course of infection. Based on the present results the second wave of 

IFNy increase particularly after recrudescence could be as a result of 

boosting of the immune response by a new variant of the parasite. Related 

studies about the kinetics of the immune response which are briefly 
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discussed below may explain biphasic production of IFNy, In the case of 

malaria, splenic macrophages following stimulation by malaria parasite 

release IL-12 (Sam and Stevenson, 1999) which trigers IFNy production 

from NK cells (Gazzinelli, 1996), So, the innate immune response as the 

first line of defence induces IFNy production leading to protective 

consequences against the parasite through release of inflammatory 

cytokines and antibodies which promotes opsonization and phagocytosis 

(Seder and Paul, 1994; reviewed by Wipasa et aI" 2002; reviewed by 

Taylor-Robinson, 1995), In addition, direct activation of bone marrow­

derived DCs, which were co-incubated with purified schizont-stage of p, 

chabaudi AS, has been shown to produce cytokines such as TNFa within 30 

minutes, followed by IL-6, IL-12p40 and p70 which subsequently promote 

a Th 1 response, However, at a very early time, this direct activation of DCs 

was independent of the presence of T cells (Seixas et aI" 2001), Therefore, 

in the present study, non-specific immunity may be a source of the early 

high levels of IFNy measured on the first sampling days followed by 

activation of a Th 1 response later. But why IFNy levels decreased at the 

time of peak parasitaemia may be justified by different mechanisms, In this 

respect, an optimum antigen load in the initial days of infection leads to 

higher production of IFNy whereas increase of antigen load over the 

optimum reduces IFNy production indicating an effect of a negative 

feedback mechanism, The present study showed this event, over-loading of 

antigens, might be coincident with the time of peak parasitaemia at which 

IFNy was sampled (Figures 3,11, 3,12, and 3,13), 

Another possible explanation could be referred to the situation in which 

the present microenvironment provides switching from Th 1 to Th2 by 

production of Th2 cytokines such as IL-4 and IL-1 0 which downregulate 

Th 1 cytokines such as IFNy in not very later stages of infection (reviewed 

by Sher et aI" 1992; Swain et aI" 1990; Le Gros et aI" 1990), So, 

activation of Th2 subset in a cross-regulation activity could be coincident 

with the time of peak parasitaemia at which IFNy was sampled and showed 

the lowest level. 

The importance of presence of spleen in cell-mediated immunity against 

crisi forms of p, chabaudi AS in C57BL/6 mice was demonstrated by 
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Stevenson, Tam, and Rae (1990) using splenectomized mice prior to 

infection. In this regard, Leisewitz et al. (2004) showed that DCs, with 

CD11c marker, in C57BL/6 mice infected with P. chabaudi AS, are 

invloved in in the T cell activation by upregulation of required co­

stimulatory molecules such as CD40, CD54, and CD86. These DCs 

migrated from the marginal zone of the spleen into the CD4+ T cell area 

within 5 days after the parasites entered the bloodstream. These DCs 
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expressed intracellular IFNy with a peak on day 5 p.i., 2 days earlier than 

the peak expression in other cells such as macrophages as shown by F ACS 

technique. It seems, therefore, that DCs not only actively engaged in the 

earliest phases of malarial infection in vivo but also produce a Th 1 

cytokine, IFNy. Yadava et al. (1996) previously showed that in P. c. adami 

infection, pRBCs were trapped in red pulp in which macrophages and T 

cells have anti-parasitic function. 

The present results showed that high levels of IFNy and IgG2a did not 

occur simultaneously, as very high levels of IgG2a coincided with a low 

level of IFNy at the peak parasitaemia. This indicates that IFNy previously 

activated IgG2a production process and declined itself as a result of a self­

limiting property. Previous studies also reported high levels of IgG2a, 

induced by Th 1 and IFNy, are associated with the immune response with a 

peak on day 12 p.i. in NIH mice infected with P. c. chabaudi (Taylor­

Robinson and Philips, 1994) and in immunized mice challenged with P. 

yoelii (Matsumoto et al., 2000). Regarding the present results about timing 

and kinetics of production of IFNy and IgG2a as Th 1 markers, it may be 

assumed that the immune response in P. c. adami DS and DK starts to 

balance inflammatory and anti-inflammatory responses around the time of 

peak parasitaemia. This could be as a result of producing Th2 cytokines 

such as IL-4, which began to increase after the peak parasitaemia. Thus, 

Th2 cytokines also promote their inhibitory effects on Th 1 response. 

Nevertheless, according to the present results, understanding which 

mechanisms and effector cells are involved in the decrease of IFNy in 

splenocytes taken at the time of the peak parasitaemia merits more 

investigation. For example, measuring other cytokines involved in the early 

events of the immune response before, at and after peak parasitaemia may 
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help to give more realistic interpretations about kinetics of IFNy 

production at these times, This measurement may include levels of 

cytokines which are produced in spleen cell cultures and/or measuring 

levels of expression of mRNA of such cytokines in relevant tissues such as 

the spleen, 

The regulation of IgG2a and IgG 1 isotypes is influenced by the prevailing 

Th 1-Th2 cytokine balance (Abbas, Murphy and Sher, 1996), In agreement 

with this idea the present results showed that parasite-specific IgG2a 

sharply increased at or immediately after the peak parasitaemia, declined 

thereafter, and then rose thereafter (Figure 3,22 and 3,23), Previous studies 

also confirmed that when parasitaemia peaks specific IgM and IgG2a can 

be detected and rise to the highest levels 1 or 2 days after the peak 

parasitaemia (Taylor-Robinson and Phillips, 1994), The same profile for 

parasite specific IgG2a was shown in the self-resolving infections of p, 

chabaudi AS and p, yoelii (Smith and Taylor-Robinson, 2003), Su and 

Stevenson (2000) also showed that more IgM and IgG2a, and less IgG 1, 

were produced in wild type of C57BL/6 mice compared to IFNy GKO mice, 

However, in the present study IgM was not measured, In contrast, Smith 

and Taylor-Robinson (2003) showed that in lethal infections there is a 

correlation between fatal outcome and slower, reduced IgG2a, However, in 

the present results the levels of IgG2a increased again later during the 

course of infection in surviving mice in the lethal DS strain infection, 

The present study indicated that elevated levels of IgG 1 and IL-4 in the 

chronic phase of the infection were also accompanied with high levels of 

IgG2a (Figure, 3,19 to 3,21), These results are in agreement with other 

studies in which IgG 1, as the effective specific IgG subclass in the 

secondary phase of infection, is present when high levels of expression of 

IgG2a and IgG2b are also observed (Akanmori, Kawai and Suzuki, 1996), 

As indicated earlier the present results showed that IL-4 increased in the 

later stage of the course of infection in all experiments in both avirulent 

and virulent infections as a marker for switching from Th 1 to Th2 response 

(Langhorne, 1989; Langhorne et aI" 1989; Stevenson and Tam, 1993), 

Taylor-Robinson and Phillips (1994) also suggested that there is a switch 

from Th1 to Th2 in NIH mice infected with p, c, chabaudi AS, typified by 

sustained production of IL-4 and IgG 1 in p, c, chabaudi infection 
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(McDonald and Phllips, 1978), In addition, the present results suggests that 

the presence of IL-4 is not essential for primary control of parasitaemia as 

von der Weid et ai. (1994) and van der Heyde et ai. (1997) also suggested. 

This was also noted by Balmer, Alexander and Phillips (2000) when they 

observed that lack of IL-4 does not significantly alter the outcome of 

infection, whereas presence of IFNy is a crucial requirement for 

development protective immunity to a primary P. chabaudi infection. 

Moreover, IL-4 deficient mice recovered from P. chabaudi and P. yoelii 

infections (Balmer, Alexander and Phillips, 2000). On the other hand, in 

IFNy receptor deficient mice, the primary parasitaemia to sub-patent levels 

failed and a high mortality rate was observed. In these mice, IgG2a levels 

decreased and the absence of IFNy receptor provides an appropriate 

microenvironment for elevation of Th2 responses (Balmer, Alexander, and 

Phillips, 2000). The present study supports this idea that sequentially 

raised IgG2a and IgG 1 is consistent with sequentially raised IFNy and IL-4 

against asexual blood stages in mice infected with either the DK the DS 

strains. So, the present data indicate that there is a sequential 

predominance of Th 1 and Th2 cytokines and production of associated 

IgG2a and IgG 1 isotypes in immunity against avirulent, DK, and virulent, 

DS of P. c, adami strains. This study also suggests that there is a normal 

functioning immune system in which both arms of Th I and Th2 provide 

flexibility and balance to control the parasites during the course of 

infection. However, in the virulent infection the predominant Th 1 response 

is not adequate to prevent all mice from death. This study shows much 

more rapid growth of the DS strain and greater virulence despite the same 

profile of the immune response compared with the avirulent DK strain 

infection. This encourages for further investigation to determine what are 

the virulence factors in the DS strain which differ from the DK strain. 

Further investigations are also required to identify susceptible stage of DK 

or DS parasites to specific antibodies or other effector mechanism 

following infection. 

These investigation also help to determine which stage of the parasite are 

the main targets for the stage-specific antibodies and also provide evidence 

that how and when these specific antibodies are produced and circulated, 

This can be achieved by using molecular approaches such as FACS 
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technique to determine how stage-specific epitopes of antigens are 

presented to the immune system components for inducing Ab-dependent or 

cellular immunity, 



Chapter Four 

Determination of the immune response in NIH 

mice with mixed infections of avirulent, 

Plasmodium chabaudi adami DK, and virulent P. c. 

adami DS. 
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4.1. Introduction 

Mixed malaria infection studies in both humans and rodents provide 

information towards a better understanding of the kinetics of the course of 

infection, its impact on clinical outcome (Black et al., 1994), and the 

immune response induced compared with that in single-species infections. 

Mixed infection is common under natural conditions of malaria 

transmission and it has been reported in all vertebrate hosts of Plasmodium 

(reviewed by Richie, 1988). In humans, harbouring mixtures of different 

species and different genotypes of the same species of malaria parasites 

(Babiker et al., 1991) is common in malaria-endemic regions. Despite a 

lack of direct evidence for cross-species immunity in humans, it has been 

thought that there is an interplay between density-dependent regulation and 

clearance rates of individual parasite populations in the species 

interactions (Bruce et al., 2000). Epidemiological studies in Vanuatu, a 

South Pacific Melanesian island, where the four human malaria species are 

endemic, showed that there is a biological interaction between the 

dominant species, P. falciparum and P. vivax (reviewed by Maitland, 

Williams and Newbold, 1997). They suggested that a P. vivax infection 

may modulate i.e, ameliorate subsequent infection with P. falciparum. In 

mixed infections it is proposed that when the maj ority population is cleared 

by species or genotype-specific response (Brown, 1990), the minority 

populations could expand and the sequential episodes of infection can be 

generated (Bruce et al., 2000). In a study in the Ivory Coast, it was shown 

that there is a relationship between mixed infections and malaria fever in 

the children of a village where P. falciparum and P. malariae are endemic 

(Black et al., 1994). The study showed that symptomatic children presented 

with fewer mixed infections and had also less past exposure to P. malariae 

than symptom-free children. Children, who were symptom-free, had more 

mixed infections of P. falciparum and P. malariae. 

Cross-species immunity has been shown in murine malaria parasites. For 

example, there is a cross-species immunity in two pairs of; (1) P. berghei 

and P. yoelii; and (2) P. vinckei and P. chabaudi (Cox and Voller, 1966; 

McColm and Dalton, 1983). In murine infections the course and 

pathological effect of a single infection may be altered by the presence of 

another species of murine malaria parasite (reviewed by Taylor, Walliker 
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and Read, 1997a; Snounou et al., 1992). The specificity of clearance 

mechanisms was examined by reinfection of P. c. chabaudi AS-and P. y. 

yoelii A-infected CBA/Ca mice with clones of P. c. chabaudi (CB and IP­

PCI strains), P. c. adami DS, P. vinckei lentum DS, and P. berghei ANKA 

(Jarra and Brown, 1989). The study showed that mice pre-immunized with 

P. c. chabaudi AS or P. y. yoelii A resolved re-infection with the 

homologous parasites. However, P. c. chabaudi AS pre-immune mice 

showed higher parasitaemia when reinfected with heterologous CB and IP­

PCI strains. The former mice showed 100% mortality when re-infected with 

virulent P. y. yoelii YM (J arra and Brown, 1989). Similarly an enhanced, 

uncontrolled parasitaemia with several deaths was evident in mice pre­

immune to P. y. yoelii A or P. c. chabaudi AS when reinfected with P. 

berghei ANKA (Jarra and Brown, 1989). However, they showed that the 

mortality in mice pre-immunized with P. y. yoelii A, after challenge with 

P. y. yoelii YM, was less than that in control mice infected with the lethal 

P. y. yoelii YM infection. Parasite clearance was also delayed in mice pre­

immune with P. y. yoelii A or P. c. chabaudi AS when reinfected with P. c. 

adami DS, or P. c. chabaudi CB or IP-PCI compared with mice challenged 

with homologous parasites. These results demonstrated that clearance 

mechanisms, the sudden fall in parasitaemia after peak parasitaemia, of the 

acute parasitaemia are predominantly mediated by species-and strain­

specific responses (Jarra and Brown, 1985,1989). However, there is also 

much evidence for cross-immunity between different rodent malaria 

parasite species. It has been demonstrated that mice that had recovered 

from P. chabaudi infection not only were resistant to challenge with the 

homologous parasite but also they showed resistance to a fatal P. vinckei 

infection (Cox and Voller, 1966; Yoeli et al., 1966). Cox and Voller 

(1966) also observed that mice recovered from P. vinckei infection were 

immune to challenge with P. chabaudi in addition to the homologous 

strain. 

The infection dynamics of each of two parasite lines in a mixed infection 

has been determined throughout the parasitaemia, using a DNA 

hybridization assay, in mice infected with cloned lines from two different 

parasite species or strains (Snounou et al., 1989 and 1992). This technique 

involves preparing Southern blotted DNA, isolated from daily blood smears 

and probing it with a DNA probe, PCsv4.1, a probe derived from P. c. 
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chabaudi genomic library. This can detect a restriction fragment length 

polymorphism (RFLP) specific for each of the parasite lines from two 

different parasites. They studied cloned lines of the following parasites: P. 

c. chabaudi AS and CB, P. c. adami DS, P. berghei ANKA, P. vinckei 

lentum DS, and P. y. yoelii A strains. When CBA/Ca mice were 

simultaneously inoculated with a mixture of cloned lines of P. c. chabaudi 

and P. yoelii no deaths were observed compared to the control groups 

infected with a single line of each parasite in which low but consistent 

mortality figures were observed (Snounou et al., 1992). There were slight 

differences in the parasitaemias and mortality when mice were infected 

with mixed infections of four combinations of two strains from P. c. 

chabaudi (AS and CB) and one strain of P. c. adami DS compared with 

single infections of these malaria parasites. For example, in the presence of 

P. c. chabaudi CB strain, the parasitaemias of P. c. chabaudi AS and P. c. 

adami DS were reduced. Mixed infection did not alter the course of P. 

yoelii infection, whereas P. chabaudi parasitaemia was depressed when 

inoculated with another species. However, in the presence of either P. 

chabaudi or P. berghei the parasitaemia of P. vinckei was higher than as a 

single infection. In P. chabaudi recrudescences were depressed when P. 

yoelii was present. These results show that the outcome of mixed infections 

is influenced by the composition of the infecting parasite populations. 

It may be proposed that interactions between clones within mixed 

infections are complex and have a significant effect on both infectiousness 

and the transmission success of individual clones (Taylor and Read, 1998). 

It was shown that mixed-clone infections of P. chabaudi are more 

infectious to mosquitoes than single-clone infections. They show a rise in 

oocysts greater than the sum of the single-clone infections in mosquitoes 

and subsequently higher chance of transmission (Taylor, Walliker, and 

Read, 1997a and 1997b). 

Relative frequency of the clones of P. chabaudi ER and P. chabaudi CR, 

changed dramatically during the course of a mixed infection in mice, 

depending on their ratio in the initial infective dose (Taylor and Read, 

1998). Taylor and colleagues (1998) reported that mixed-clone infections 

caused greater virulence than single-clone infections as assessed by weight 

loss and parasite replication. They have suggested that the immune 

responses to mixed infections are more costly compared with a single 
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infection. This immune response is consistent with higher virulence by 

destroying more erythrocytes and more production of TNFa which are 

associated with severity of the disease (Wattavidanage et a/., 1999). 

However, more investigations are required to understand the mechanisms 

involved in host/parasite and parasite/parasite interaction and acquisition 

of immunity (Snounou et at., 1992). 

In this part of the present study investigation of the course of infection 

and the immune response in a mixed infection of avirulent and virulent 

strains of P. c. adami were the main aims. The parasitaemia, the cytokine 

production, and the production of parasite-specific antibodies were 

examined. Mice were simultaneously infected with a mixed infective dose 

of one virulent and one avirulent malaria parasite strains at a fixed ratio. 

The results show the kinetics of the immune response, cross-immunity and 

reaction between two strains in a resistant rodent host. As the immune 

responses are compared between single and mixed infections so any altered 

immune response and effects of inter-host reaction of avirulent and virulent 

strains of P. c. adami may be determined. 
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4.2. Results 

4.2.1. Parasitaemia 

The parasitaemia was monitored daily as previously described (Chapters 

Two and Three). The blood samples were usually collected between 9:30 

and 11 :30 am from the tail. In all experiments parasitaemia is expressed as 

both arithmetic and the geometric (LOglO pRBCs for 10 5 RBCs) means. At 

each time point percentage of parasi taemia is presented for at least 12-15 

mice except for those occasions in which there were fewer mice surviving 

in each experiment. 

NIH mice were infected with a mixed infective dose of 1 xl 04 pRBCs of P. 

c. adami DK and P. c. adami DS at ratio of 5: 1. The infective dose, 

therefore, consisted of 8x 1 03 pRBCs of P. c. adami DK and 2x 1 03 of P. c. 

adami DS. Inoculation was i.v. in 0.25ml of PBS. The course of infection 

was monitored for 58 days. The survival rate was 100%. The parasitaemia 

in mixed infection peaked at 40.28% on day 10 p.i. (Figure 4.1.). A 

recrudescence in the mixed infection was observed between days 20 and 

day 26 p.i. There was also a significantly lower (t-test P < 0.0001) 

parasitaemia in the mixed infection compared to the single-infection of P. 

c. adami DS when mice were left untreated. Despite a relatively small 

infective dose (i. e. 2xl03 pRBCs) of the virulent strain the parasitaemia 

peaked significantly higher than that in the single-infection with avirulent 

P. c. adami DK in which the peak was 23.85% (t-test P < 0.0001). The peak 

parasitaemia was not significantly different between mice infected with the 

mixed infection and mice infected with the single-infection of P. c. adami 

DS when the latter mice were treated with sub-curative dose of chloroquine 

(Figure 3.1 to 3.3 and 4.1). Although the number of pRBCs of P. c. adami 

DS inoculated in the mixed infection and in the single-infection with a low 

infective dose was the same (2x 1 03
), the peak parasitaemia in mice infected 

with a single low infective dose was significantly (t-test P < 0.0045) higher 

than that in the mixed infection (Figure 3.4 and 4.1). 
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Figure 4.1. The course of infection in NIH mice infected with a mixed 

infective dose of 1 x 1 04 pRBCs of P. c. adami DK and DS (Ratio 5: 1). The 

sample size was 18 mice. 

Each data pont is shown as mean % of parasitaemia for all mice. Howevr, 

at each time points three mice were killed and exluded from the mean 

calculation. For each data point ± SEM has been calculated. However, SEM 

is not shown when it is too small. 

a) Mean percentage of parasitaemia. 

b) The mean loglo of pRBCs for 1 x 105 RBCs. 
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4.2.2. Splenocyte proliferative responses 

The proliferative responses of the splenocytes in mice infected with a 

mixed infection of virulent and avirulent parasites were evaluated as 

previously described in Chapter Two. The levels of proliferative responses 

are separately presented for each time point at which mice were killed and 

their spleens collected for spleen cells cultures (Figures 4.2 and 4.3). 

Splenocytes from infected mice were restimulated with pRBCs. The control 

groups included splenocytes from infected or naIve mice which were 

exposed to naIve RBCs, ConA, or medium only. 

The highest level of proliferation response was observed for splenocytes 

from the naive mice exposed to ConA, This result was similar to those 

observed in the single infections as previously described (see Chapter 

Three, Figures 3.6, 3.7 and 3.8). The proliferative responses of splenocytes 

from infected mice that were re-stimulated with pRBCs were also 

significantly higher (Tukey's test, P < 0001) compared to all controls 

except for splenocytes from naIve and infected mice exposed to ConA, 

Stimulation index (SI) 

Stimulation index presents the ratio of the p.r. between the test sample, 

restimulated with the mixed pRBCs, and control groups as previously 

described in Chapter Two. The highest indices were seen on day 4 p.i. in 

which restimulated splenocytes from infected mice proliferated >20 times 

more than the same splenocytes exposed only to the medium. The lowest of 

the proliferative responses were observed on days 7 and 10 p.i. at and after 

the peak parasitaemia. Levels of proliferative responses rose thereafter and 

higher proliferative responses were observed after recrudescent 

parasitaemias on day 25 p.i. (Figure 4.4). 



C ha pt e I' 4, imm un e res p onse in mix ed in (eet ion 

200000 -,--------------

~ S 
~ ~ 150000 -1----------------

S I=i 
:>-'0 
'5'':: 100000 - 1-------------

"0 C':J 
Q) l-< 
..... 0 
C':J 0-:-e 0 50000 
l-< (,) 

t-< I=i o _L-~_~ __________ ===_ __ __ 

Day 4 post infection 

200000 ,--------------------. 

150000 -1--------------------1 

100000 -1--------------

50000 -1----=---------

Day 7 post infection 

133 

a 

b 

Figure 4 .2 . (a and b). The proliferative response of splenocytes from mice 

infected with a mixed infection of 1 x l 04 pRBCs of P. c. adami DS and DK 

(ratio: 1/5). 

Three mice were sacrificed at each time point and splenocytes of each 

mouse (5 x 1 0 6 cells/ml) were separately cultured and stimulated with 5 x l 0 5 

pRBCs/well , 5 x 1 0 5 naive RBCs/well, ConA at 0.5 Ilg/ml , or medium only. 

Before harvesting all suspensions were pulsed with tritiated thymidine for 

12-18 hours. 

Each data point is the mean ± SEM for an experiment performed in 

triplicate. However , SEM is not shown when it is too small. 

D p+f: Splenocytes from infected mice exposed to pRBCs. 

D m+f: Splenocytes from infected mice cultured in medium only. 

• r+f: Splenocytes from infected mice exposed to naIve RBCs. 

• p+c: Splenocytes from naIve mice exposed to pRBCs. 

• r+c: Splenocytes from naIve mice exposed to naive RBCs. 

ConA+f: Splenocytes from infected mice stimulated with ConA. 

• ConA +c : Splenocytes from naIve mice stimulated with naIve RBCs. 
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Figure 4.3. (c to e). The proliferative response of splenocytes from mice 

infected a mixed infection of 1 x 1 04 pRBCs of P. c. adami DS and DK 

(ratio: 1/5). 

Three mice were sacrificed at different time points and splenocytes of each 

mouse (5 x 1 06 cells/ml) were separately cultured and stimulated with 5 x 1 05 

of pRBCs/well , 5 x l 0 5 of RBCs/well , ConA at 0.5 Jlg/ml, or medium only . 

Before harvesting all suspensions were pulsed with tritiated thymidine for 

12- 18 hours. 

Each data point is the mean ± SEM for an experiment performed in 

triplicate. However , SEM is not shown when it is too small. 

o p+f: Splenocytes from infected mice exposed to pRBCs. 

o m+f: Splenocytes from infected mice cultured in medium only. 

• r+f: Splenocytes from infected mice exposed to naIve RBCs. 

• p+c: Splenocytes from naIve mice expose to pRBCs. 

• r+c: Splenocytes from naIve mice exposed to naive RBCs. 

ConA+f: Splenocytes from infected mice stimulated with ConA. 

• ConA+c: Splenocytes from naIve mice stimulated with naIve RBCs. 
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Figure 4.4. Stimulation index for mIce infected with a mixed infection of 

2x103 pRBCs of P. c. adami DS and 8x10 3 pRBCs of P. c. adami DK (ratio: 

115) . 

Three mice were sacrificed at different time point and their splenocytes 

were cultures and pulsed with tritiated thymidine for 12-18 hours before 

harvesting. 

D p+f/m+f: The proliferative response of spleen cells from infected mice 

exposed to pRBCs divided by the proliferative response of spleen cells 

from infected mice exposed to medium only . 

• ConA+f/m+f: The proliferative response of spleen cells from the infected 

mice exposed to ConA divided by the proliferative response of spleen cells 

from infected mice exposed to medium only. 
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4.2.4. Cytokine analysis 

The IFNy and IL-4 concentrations were measured in the supernatants of 

cultures of splenocytes in vitro from mice infected with a mixed infective 

dose of virulent and avirulent strains, Spleens of infected and naIve mice 

groups were removed at each time point, Each spleen was separately 

cultured as previously described in Chapters Two and Three, Supernatants 

of the cultures were collected after three days (72 hours) for test for the 

cytokines, using an ELISA test and the results presented as VlmI. 

4.2.4.1. IFNy in mixed infection of P. c. adami DK and P. c. adami DS 

The early production of IFNy as indicator of a Th I response has been 

previously observed in rodent malaria (see Chapters One and Three), 

Cytokine production was investigated in NIH mice infected with the mixed 

infection as described above, The course of infection was monitored for 58 

days. 

There were significant differences (Two way ANOVA, P < 0,0001) in 

IFNy production for splenocytes between all tested groups, The early 

production of IFNy in splenocytes from mice restimulated with pRBCs, 

collected on day 4 p,i, was significantly (Tukey's test. P < 0,0001) higher 

compared to all control groups (Figure 4,5), The Level of IFNy declined to 

the lowest level at the peak parasitaemia (Figure 4,5) which was similar to 

its level in the single-infections (Chapter Three), The production of IFNy 

rose after the recrudescent parasitaemia and remained at high levels up to 

the last sampling day, 

There were significant differences (Two-way ANOV A, P < 0,0001) in 

IFNy levels between the the mixed infection and single-infections of both 

avirulent and virulent strains when IFNy was analysed among all the 

groups, The IFNy level was significantly higher (Tukey's test, P < 0,001) 

in mice infected with non-lethal infection of p, c, adami DK compared with 

the IFNy level in the mixed infection on the first sampling day (Figure 3,11 

and 4.5), 
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The levels of IFNy production in the mixed infection was also 

significantly (Tukey's test, P < 0.0001) lower compared to IFNy levels in 

the lethal infection of P. c, adami DS in which mice were treated. The 

levels of IFNy between the mixed infection and the single-infection of 

lethal p, c. adami DS when mice left untreated did not show a significant 

difference (Figure 4.5 and 3.13). However, the present results showed that 

the profile of IFNy production in the mixed infection compared to the 

single-infections of both avirulent and virulent strains is the same. 

4.2.4.2. IL-4 production in mixed infection of P. c. adami DK and P. c. 

adami DS 

The kinetcs of the IL-4 production in the mixed infection was similar to 

that seen in the single-infections (see Chapter Three). In the mixed 

infection the levels of IL-4 were significantly higher (Tukey's test, P< 

0.0001) than that in controls in the last sampling days compared to early 

stages in the course of infection. The present data showed that the IL-4 

production in the mixed infection was initiated earlier compared to the 

single infections as higher levels of IL-4 were seen in the earlier times p. i. 

compared to the single infection. This was approximately coincident with 

the peak parasitaemia (Figure 4.6). Statistical tests showed that IL-4 level 

in the mixed infection was significantly lower than that in the single 

infections of p, c. adami DS, either in mice left untreated (Tukey's test, P 

< 0.001) or mice which were sub-curatively treated, (Tukey's test, P < 

0.001) at all time points. However, IL-4 production in the mixed infection 

was not significantly (Two-way AN OVA, P < 0.001) different to that in the 

non-lethal infection of P. c. adami DK. 
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Figure 4,5. IF Ny production in NIH mice infected with a mixed infection of 

2x 1 03 pRBCs of P. c. adami DS and 8x 10 3 pRBCs of P. c. adami DK (ratio: 

1/5). 

At each time point three mice were sacrificed and their spleens were 

individually cultured. Supernatant of splenocytes cultures for each mouse 

was assayed separately. 

Each data point is the mean ± SEM for an experiment performed in 

triplicate by ELISA. However, SEM is not shown when it is too small. 

p+f: Supernatant from infected mice splenocytes culture exposed to pRBCs. 

p+c: Supernatant from na'ive mice splenocytes culture exposed to pRBCs. 

r+f: Supernatant from infected mice splenocytes culture exposed to naIve 

RBCS. 

r+c: Supernatant from na'ive mice splenocytes culture exposed to na'ive 

RBCS. 

ConA+f: Supernatant from infected mice splenocytes culture exposed to 

ConA, 

ConA+c: Supernatant from na'ive mice splenocytes culture exposed to 

ConA, 
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Figure 4.6. IL-4 production in NIH mice infected with a mixed infection of 

2x 1 03 pRBCs of P. c. adami DS and 8 xl 03 pRBCs of P. c. adami DK (ratio: 

1/5). 

At each time point three mice were sacrificed and their spleens were 

individually cultured. Supernatant of splenocytes culture for each mouse 

was assayed separately. Each data point is the mean ± SEM for an 

experiment performed in triplicate in ELISA test. However, SEM is not 

shown when it is too small. 

p+f: Supernatant from infected mice splenocytes culture exposed to pRBCs. 

p+c: Supernatant from naIve mouse splenocytes culture exposed to pRBCs. 

r+f: Supernatant from infected mouse splenocytes culture exposed to naIve 

RBCS. 

r+c: Supernatant form naIve mouse splenocytes culture exposed to naIve 

RBCS. 

ConA +f: Supernatant from infected mouse splenocytes culture exposed to 

ConA. 

ConA +c: Supernatant from naIve mouse splenocytes culture exposed to 

ConA. 
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4.2.5. Specific antimalarial IgG antibody production during mixed 

infection 
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The parasite-specific production of IgG antibodies in the sera of infected 

mice and control naIve mice was determined by ELISA test as described in 

Chapters Two and Three. Sera were assayed for IgG whole molecule, and 

IgGl and IgG2a subclasses. Lysates of pRBCs were prepared from mice 

infected with the same ratio of infective dose as in the mixed infections 

and from naIve RBCs. 

4.2.5.1. Parasite-specific IgG whole molecule in the mixed infection 

An increase in the production of parasite-specific IgG (whole molecule) 

was observed before peak parasitaemia and remained at high levels 

thereafter during the observation period. The levels of total IgG were 

significantly higher (Tukey's test, P < 0.0001) than that in control groups. 

The highest level of IgG (whole molecule) was seen on the last sampling 

day, on day 45 p.i (Figure 4.7) compared to all other time points. 

4.2.5.2. Parasite-specific IgGl in the mixed infection 

IgGl production begins to rise after the peak parasitaemia (Figure 4.8). 

However, its production showed a sharp increase on day 18 p.i. and then 

gradually increased from day 25 p.i until the end of the experimental 

peroid. (Figure 4.8). 

IgG 1 production in infected mice was significantly different (Two way 

ANOVA, P < 0.0089) between all groups (Figure 4.7). On the last sampling 

day, day 45 p.i., the levels of IgGl was assessed between different groups. 

There was significant (Tukey's test P < 0.0001) difference between mice 

infected with the mixed infection and the avirulent DK strain for IgG 1. 

However, the IgGl level was significantly higher (Tukey's test, P < 0.001) 

in mice infected with the mixed infection compared to that levels in mice 

infected with the virulent DS strain when mice treated. The IgG 1 levels in 

the mixed infection were also significantly higher (Tukey's test, P < 0.001) 
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compared to IgG 1 levels in mice infected with a low infective dose of the 

DS strain. 

4.2.5.3 Parasite-specific IgG2a in the mixed infection 

Sera of mice infected with a mixed infection and control naIve mice were 

also assayed for IgG2a production. In the mixed infection the specific­

IgG2a began to increase after day 7 p.i. and sharply increased immediately 

after the peak parasitaemia, and remained at high levels thereafter through 

the observation period (Figure 4.9). There were significant differences 

(Two way ANOV A, P < 0.0001) in serum IgG2a levels between all tested 

groups (Figure4.9). Comparison of IgG2a levels showed that there were 

signi ficantly higher levels (Tukey's test, P < 0.0001) of IgG2a in the mixed 

infection compared to the avirulent P. c. adami DK infection (Figures 4.9 

and 3.22). 

The IgG2a levels were also significantly higher (Tukey's test, P < 0.0004) 

in the mixed infection than that in the virulent P. c. adami DS infection 

when mice treated or when mice infected with a low infective dose 

(Tukey's test, P < 0.0003) (Figures 4.8, 3.23, and 3.24). There was no 

significant difference for IgG2a in the mixed infection and mice infected 

with the DS strain and left untreated (Figures 4.8 and 3.23). 
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Figure 4.7. Parasite-specific total IgG (whole molecule) production. 

Mice infected with a mixed infection of 2 xl 03 pRBCs of P. c. adami DS 

and 8 x 1 03 pRBCs of P. c. adami DK (ratio: 1/5). 

Sera from both the infected mice and naIve mice were assayed by ELISA 

test. Each data point is the mean ± SEM for an experiment performed in 

triplicate. However, SEM is not shown when it is too small. 

f+lds+ldk: Sera from infected mice reacted with the lysate from mixed 

pRBCs of P. c. adami DK and P. c. adami DS. 

c+lds+ldk: Sera from naIve control mice reacted with the lysate from the 

mixed pRBCs. 

f+lc: Sera from infected mice reacted with lysate from naIve mice. 

c+lc: Sera from naIve control mice reacted with the lysate from naive 

control mice. 
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Figure 4.8. Parasite-specific IgGl production in the mixed infection. 

Mice infected with a mixed infection of 2 xI 0 3 pRBCs of P. c. adami DS 

and 8 xI 0 3 pRBCs of P. c. adami DK (ratio: 1/5). 

Sera from both the infected mice and naIve mice were assayed by ELISA 

test. 

Each data point is the mean ± SEM for an experiment performed in 

triplicate. However, SEM is not shown when it is too small. 

f+lds+ldk: Sera from infected mice reacted with the lysate from mixed 

pRBCs of P. c. adami DK and P. c. adami DS. 

c+lds+ldk: Sera from naIve control mice reacted with the lysate from the 

mixed pRBCs. 

f+lc: Sera from infected mice reacted with lysate from naIve mice. 

c+lc: Sera from naIve control mice reacted with the lysate from naIve 

control mice. 
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Figure 4.9. Parasite-specific IgG2a production in the mixed infection. 

Mice infected a mixed infection of 2 xl 03 pRBCs of P. c. adami DS and 

8 xl 03 pRBCs of P. c. adami DK (ratio: 1/5). Sera from both the infected 

mice and naIve mice were assayed by ELISA test. 

Each data point is the mean ± SEM for an experiment performed in 

triplicate. However, SEM is not shown when it is too small. 
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f+lds+ldk: Sera from infected mice reacted with the lysate from the mixed 

pRBCs of P. c. adami DK and P. c. adami DS. 

c+lds+ldk: Sera from naIve control mice reacted with the lysate from the 

mixed pRBCs. 

f+lc: Sera from infected mice reacted with lysate from naIve mice. c+lc: 

Sera from naIve control mice reacted with the lysate from naIve control 

mIce. 
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4.3. Discussion 

Evaluation of the immune responses in the mixed infection of avirulent p, 

c, adami DK and virulent p, c, adami DS was the main aim of this part of 

the study, Comparison between the immune responses in mixed infection 

and their related single-infections of each strain was also included, 

As previously indicated there was no mortality as a result of P. c. adami 

DK single-infection. On the other hand, the outcome of infection with the 

virulent, P. c. adami DS was fatal. Studies showed a range of mortality 

between 3.2% (Smooker et al., 2000) and 20% to 50% (Jarra and Brown, 

1985) in infections with the virulent P. c. adami DS strain. These results 

also shows that mortality is influenced by the infective dose. For example, 

smooker et al. (2000) inoculated 1 x 1 05 pRBCs whereas J arra and Brown 

(1985) used between 1 xl 03 and 1 x 1 05 pRBCs. Most deaths in the virulent 

infection occurred during or immediately after the initial peak 

parasitaemia. The results presented here (Chapter Three) also showed that 

infective dose influences outcome of infection as there was between 60% to 

34% mortality in mice infected with 1 x 1 04 or 2x 1 03 pRBCs of the virulent 

DS strain respectively. However, it should be bearing in mind that the 

group size in the low-infective dose infection was only six mice. 

Nevertheless, in the present study the outcome of the mixed infection was 

not fatal despite the presence of a high parasitaemia. This peak 

parasitaemia was significantly higher compared to the peak parasitaemia in 

the avirulent DK strain infection. On the other hand, in the mixed infection 

the parasitaemia peaked at 40 % that was significantly lower than that in 

the virulent DS strain single-infections either in untreated mice infected 

with 1 x 1 04 or in mice infected with 2 xl 03 pRBC of the parasite. However, 

peak parasitaemia in the mixed infection was not significantly different to 

peak parasitaemia in mice infected with 1 xl 04 pRBCs of P. c. adami DS 

and treated with chloroquine. According to the present results, in the mixed 

infection it may be proposed that the presence of the avirulent DK strain 

may partially contribute in control of the virulent DS strain. It should be 

particularly considred when a low-infective dose of the virulent DS strain, 

2 xl 03 pRBC, causes a higher parasitaemia comapred to that in the mixed 

infection. This control is reflected by the reduced peak parasitaemia and no 



Chapter 4. Immune response in mixed infection 

death in the mixed infection comapred to the outcome of the single-DS 

infections. 
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Cross-immunity has been also suggested to contribute in control of mixed 

infections (Cox and Voller, 1966; Jara and Brown, 1989). Although 

extrapolation from their results to the present results should be done with 

caution, the cross-immunity between the avirulent DK and the virulent DS 

strains may partially contribute to the survival of the mice in the mixed 

infection. Regarding to the cross-immunity, it has been reported that in the 

presence of P. c. chabuadi CB the parasitaemia of P. c. chabuadi AS and P. 

c. adami DS was reduced and a lower parasitaemia was observed with P. c. 

adami DS when it was present with P. c. chabuadi AS (Snounou et al., 

1992). Taken together, the present results suggest that the presence of the 

avirulent DK parasite may alter the virulence of the DS strain resulting to a 

non-fatal mixed infection with a lower peak parasitaemia and no mortality 

(Figures 3.13.4 and 4.1). However, it also appeared that the virulent DS 

strain had probably a higher rate of proliferation, as a virulence factor, 

compared to the avirulent DK strain because the peak parasitaemia in the 

avirulent single-infection reached only to 24% even when the inoculum was 

1 x 1 05 pRBCs whereas in the mixed infection parasitaemia peaked up to 

40.28% when the number of pRBCs of the DS was only 2x 103 in the mixed 

infective dose. In the present study the actual proportion of each strain 

during asexual blood stage was not examined and needs to be investigated. 

A higher replication rate and increase in virulence in mixed infection of 

two cloned lines of P. c. chabaudi, ER and CR, compared to their single­

infections was shown by Taylor, MacKinnon and Read (1999). They 

suggested that a higher replication rate in more virulent parasite shows that 

in mixed-genotype infections natural selection should favour higher levels 

of virulence than that in single-infections. It has been also proposed that in 

P. chabaudi virulence is positively and genetically related to replication 

rate (Mackinnon and Read, 1999). So, in the present results although 

increase in virulence was observed due to higher peak parasitaemia 

compared to the non-lethal infection, no death shows that this increase did 

not result in a lethal outcome. Nevertheless, the present results show that 

even if the proportion of the virulent DS strain in the infective dose is low, 

four folds less than the avirulent DK strain, the peak parasitaemia as a 

virulence factor may increase. 
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In agreement with previous studies (reviewed by Wipasa et aI" 2002; 

Langhorne et aI" 1989; Taylor-Robinson et aI, 1995) the present results 

showed that there were consistent early increases of parasite-specific 
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IgG2a with IFNy and later increases of IgGl with IL-4 in the mixed 

infection which reflects a sequential Th lITh2 response, The results 

presented here showed that the IFNy production was at the highest levels 

early during the course of infection compared to its levels therafter p,i. 

However, the IFNy production in the mixed infection was lower than that in 

all other sinle-infections either in non-lethal or lethal ones, This profile of 

IFNy production was followed by increase of IL-4 levels later particularly 

in the last sampling days, However, there were significantly higher levels 

of IL-4 in the first sampling days compared to the IL-4 levels in both 

single infections of the DK strain and DS strains at the same time points 

when mice were left untreated, This shows that in the mixed infection IL-4 

initated to rise earlier than that in the single-infections, Taken together, a 

sequential Th I/Th2 responses in the mixd infection shows slightly 

differences compared to the DK and the DS single-infections, In this 

respect, a stronger induction of a Th 1 in the single-infections comapred to 

Th 1 response in the mixed infection was seen, However, a Th2 response 

was seen stronger in the mixed infection comapred to that in the single­

infectios, The lower production of IFNy compared to the single-infections 

on the first sampling day (Figures 3,11, 3,12, 3,13, and 4,5) may be 

justified because of the presence of higher level of IL-4 (Figures 3,14, 

3,15, 3,16, and 4.4,6), as an inhibitor for release of IFNy (reviewed by 

Saul, 1998), 

As the ratio of infective dose was not varied during the study, further 

studies in which different ratios are used may provide to understand better 

role of interactions between two strain in terms of the immune response, 

infection dynamics, and virulence alterations in mixed infections, For 

example, using different ratios of avirulent and virulent strains in the same 

host may show the effect of each strain upon the other. Molecular biology 

techniques i.e. peR may help to distinguish the proportion of each strain in 

a mixed infection during monitoring of the course of mixed infection. In 

addition, using different susceptible or resistant host models may lead to 

more clarification of mechanisms which are involved in mixed infections. 
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Chapter Five 

The effect of passive transfer of purified IgG 

subclasses on avirulent Plasmodium chabaudi 

adami DK and virulent P. c. adami DS infections in 

NIH mice and their cross reactivity 
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5.1. Introduction 

Passive immunization studies play an important role in understanding the 

immune response and also provide useful source of information for all 

vaccine development studies (Gysin et aI" 1996, Garraud, Mahanty, and 

Perraut, 2003), In a passive immunization encountering the host with a 

parasite induces antibody which can be collected and transfer to another 

susceptible host. The roles of these antibodies i,e, in a malaria parasite 

infection are to help the clearance of parasites, to limit disease, or prevent 

parasite invasion into the host cells (Garraud et aI" 2003), Some studies in 

humans have shown that treatment of non-immune infected patients with 

antibodies from protected individuals is effective (Cohen, McGregor, and 

Carrington, 1961; Sabchareon et aI" 1991; Cavinato et aI" 2001). 

Antibodies could be also involved in ADCC or antibody-mediated 

phagocytosis. In P. Jalciparum infection immunity to the blood stage of 

malaria is associated with protective-type antibodies of certain classes and 

subclasses. So, sera of donors that are previously exposed to the parasite 

contain antibodies which are not only markers of infections but also are 

effectors in protection (Garraud, Mahanty, and Perraut, 2003). 

In animals serum of the squirrel monkey Saimiri sciureus after a drug­

controlled infection of P. Jalciparum contains antibodies specific to the 

parasite. Passively transfer of this immune serum has been shown to 

substantially mediates in protection of Saimiri sciureus against asexual 

erythrocytic stages of P. Jalciparum (Groux et al., 1990). 

In rodent models it has been demonstrated that antibodies taken from mice 

recovered from P. yoelii, P. berghei, or P. chabaudi infections can transfer 

protection to naIve recipient mice against homologous or heterologous 

challenges of parasites (Freeman and Parish, 1981; Jarra et al., 1986). In a 

preliminary passive transfer experiment it was demonstrated that sera from 

immunized and untreated C57BL/6J mice infected with P. chabaudi were 

more protective for naIve mice than serum from non-immune mice 

(McDonald and Sherman, 1980). 

As a result of passive immunization experiments it is known that among 

antibody classes IgG antibodies have a major role in the control of asexual 

blood stage of malaria parasites in humans (Cohen, McGregor and 

Carrington, 1961; Sabchareon et al., 1991; Bouharoun-Tay-oun et al., 
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1990), in primate (Gysin, Fandeur and Pereira da Silva, 1982), and in 

rodent models (Majarian et al., 1984; Jarra et al., 1986; Jarra and Brown, 

1989). Druihle et al. (1997) showed that passive transfer of IgG from 

immune adults contributes to control of patent parasitaemia of P. 

Jalciparum. It was evident that the IgG 1 and IgG3 antibody-mediated 

responses protect humans against the asexual blood stages of P. Jalciparum 

(Druihle et al., 1997; Aucan et al., 2001). In mouse model IgG2a and IgG 1 

subclasses have been shown to have a similar role against Plasmodium spp 

(Smith et al., 1997; Rotman et al., 1998; Matsumoto et al., 2000; Cavinato 

et al., 2001). Bouharoun-Tayou et al. (1990) showed the capability of pool 

African IgG to confer protection in Thai patients. Gysin et al. (1996) also 

showed that the same pool IgG obtained from African donors were able to 

inhibit parasitaemia in Saimiri monkeys acutely infected with two different 

strains of P. Jalciparum. They showed that the inhibition of development of 

the parasite was a dose-dependent. When squirrel monkeys received 60 

mg/Kg of IgG every day for 5 days the parasitaemia was dropped at 1000 

folds compared to the control. Whereas with the same regiment of the 

treatment, the drop in parasitaemia was moderiate in monkeys received 30 

mg/Kg, and in monkeys received only 15 mg/Kg the drop was weak. 

Evaluation of the efficacy of MAbs against specific antigen targets has 

been examined in passive immunization studies. For example, the ability of 

MAbs produced against MSP-l to suppress blood-stage parasitaemia of a 

lethal P. yoelii YM challenge was assessed. Of the three MAbs that were 

most effective for suppressing parasitaemia after passive immunization, 

two were IgG3 and the other one was IG2a (Spencer Valero et al., 1998). 

One of the principal molecules of the erythrocytic stages of malarial 

parasites (PMMSA), a 230-kDa of PMMSA of P. yoelii, can be recognized 

by a MAb designated MAb 302 (Burns et al., 1989). Passive transfer of 

MAb 302 provided protection against P. yoelii challenge in mice. The 

variant specific protective capacity of MAb 302 has been also shown as the 

MAb recognizes PMMSA of three of five P. yoelii lines. There is also some 

similarities between this rodent PMMSA and the PMMSA of human P. 

Jalciparum. So, this similarity could be important in the construction of 

malaria vaccines because it shows that using similar antigens may induce 

response to other species of parasite (Burns et al., 1989). A dramatic delay, 

six to eight days, in onset of parasitaemia, the most defining feature of the 
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efficacy of passively transferred specific antibodies, was shown in BALB/c 

mice administered with anti-MSP-119 MAb (Vukovik et al., 2000). MAb 

302, which was produced from hybrid cells of spleen cells immune to 17X 

strain of P. yoelii and fused with P3X63Ag8 myeloma cells reacted with the 

merozoites of nonlethal P. yoelii 17X and lethal 17XL strains and passively 

protected mice against challenge with the lethal variant 17XL. While, all 

control mice were not passively given the antibody died (Majarian et al., 

1984). 

Identification of the asexual erythrocytic stages susceptible to parasite­

specific IgG is an important contribution in vaccine development studies. 

This could clarify mechanism by which antibodies interfere with 

Plasmodium growth and propabably control the parasitaemia. Cavinato et 

al, (2001) showed that in a passive transfer study using antibodies that 

were purified from hyperimmune serum taken from mice infected with 

virulent and synchronous P. c. chabaudi AJ, the effector mechanisms 

including specific IgG2a and IgG 1, operated immediately prior to 

reinvasion of red blood cells. This observation was confirmed because 

treatment of infected mice with the hyperimmune serum inhibited the 

generation of new ring forms but did not alter the number of schizont­

infected erythrocytes (Cavinato et al., 2001). 

Passive immunization studies also provide evidence for presence of 

immune cross-reactivity between species or within strains of a species. 

Sharing the same antigens is an important reason for the occurrence of 

cross-reactivity and immunity between species as Bray and EI-N ahal (1966) 

found shared antigens for P. berghei and P. yoelii. Cross-immunity was 

also examined by Cox and Voller (1966) between P. berghei, P. yoelii, P. 

chabaudi, and P. vinckei. They demonstrated that there is a cross­

protection between the rodent malaria parasite species as P. berghei 

infection induces protection against P. yoelii but not vice versa. This may 

be due to the greater virulence of P. berghei. The study showed that pre­

immune mice recovered from P. chabaudi infection resisted challenge with 

P. vinckei and mice recovered from infection with P. vinckei were immune 

to challenge with P. chabaudi. It was also demonstrated that passive 

transfer of pooled human IgG obtained from immune donors resulted in 

vivo anti-parasite activity in Saimri monkeys infected with isolates of P. 

Jalciparum (Gysin et al., 1996). 
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In a passive immunization experiment sera from CBA/Ca mice infected 

and then reinfected with P. c. chabaudi AS or CB or superinfected with P. 

berghei KSP-11, were injected into naIve syngenic recipients and 

subsequently challenged with homologous or heterologous parasites. 

Transfer of these sera mediated some or all of the following changes in the 

course of infection in the recipient mice: (a) an extension of the pre-patent 

period (b) more delay in the time taken for parasitaemia to reach 2% 

compared with the controls (c) a reduced peak parasitaemia (d) and a 

protraction of the initial peak parasitaemia. The study showed that although 

sera taken from superinfected mice and to a lesser extent from mice 

reinfected once after recovery from a primary infection had species­

specificity feature, a degree of cross-reactivity was also observed (Jarra et 

al., 1986). 

Although infection with P. c. adami DS is normally lethal between 7 to 10 

days p.i., mice immune to P. c. chabaudi AS after challenge with P. c. 

adami DS showed clearance between days 12 and 25 p.i. However, this 

clearance was slower than that in the same immune mice challenged with P. 

c. chabaudi AS. Mota and colleagues (2001) showed above evidence for 

cross-reactivity. They showed species specificity by demonstrating that 

serum from P. c. chabaudi AS hyperimmune CBA/Ca mice reacted with 

antigens released from disrupted pRBCs from the homologous parasite. 

They prepared then hyperimmune serum of P. chabudi CB or P. berghei 

(KSP-11) by repeated infection with homologous parasites in CBA/Ca mice 

and observed that P. c. chabaudi CB and P. berghei KSP-11 hyperimmune 

serum contained cross-reactive antibodies to antigens of P. c. chabaudi AS. 

The present study aimed to monitor the course of infection, determie the 

kinetics of antibody production, and examine the presence of cross­

reactivity in NIH mice challenged with eithr avirulent P. c. adami DK or 

virulent P. c. adami DS in passive immunization experiments. In the 

present study both serum or IgG subclasses, IgG 1 and IghG2a, obtanined 

from the DK-infected mice. The present study focused to determine and 

compare the consequences of passive tansferr of serum or IgG subclasses in 

avirluent or virulent infections. The profile of antibody production after 

reinfection of immune mice was also examined. 

It is also not investigated if there are any differences in the effect of IgG 

subclasses that are collected at different time points during the course of 
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infection, Therefore, the present study investigated differences in the 

efficacy of purified IgG subclasses from sera which were collected at two 

different time points in mice challenged with either the avirulent DK or the 

virulent DS strains of p, c, adami strains, IgG2a and IgGl were obtained 

on day 15 p, i which was coincident with the resolution of the primary-acute 

parasitaemia or on day 55 p,i after recrudescent parasitaemia and when the 

infections usually became chronic, The study also evaluated possible cross­

reactivity of these purified antibodies, As IgG2a and IgGlproduction are 

consistent with Th 1 or Th2 immune responses respectively so, the profile 

of these IgG subclasses production with consideration of Th type response 

was also examined, 

5.2. Results 

In order to determine the efficacy of passively transferred whole sera for 

protection against either avirulent p, c, adami DK or virulent p, c, adami 

DS immune sera were taken from mice infected with 1 x 1 0 5 pRBCs of p, c, 

adami DK, These immune sera were collected at two time points, day 15 

and day 55 p,i, so that to investigate if there are any differences in the 

effect of whole sera taken from two different time points which were 

coincident with the time of declining of the primary peak parasitaemia and 

the chronic phase of the infection respectively, Mice whose sera collected 

on day 55 were reinfected on day 40 p,i to boost antibody level. NIH mice 

were infected with 1 xI 04 pRBCs of DK or DS strains and inj ected with 

immune serum thereafter. The infected mice in each test were divided into 

two groups, Group one received 500/-Ll serum from day 15 p,i, and the 

second group received serum from day 55 p,i. The control groups were 

infected with the same dose of either avirulent or virulent parasite, 

In the present study the efficacy of purified specific IgG 1 and IgG2a were 

also examined, So, the course of infection in mice infected with 1 x 1 04 

pRBCs of either avirulent p, c, adami DK or virulent p, c, adami DS and 

passively immunized with purified IgG 1 or IgG2a was determined, The 

antibody subclasses were obtained from pooled sera collected from mice 

infected with the avirulent DK strain as described in Chapter Two, Immune 

sera were collected on days 15 and 55 p.i, and IgGl and IgG2a were 
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fractionated and purified using chromatography as described in Chapter 

Two. 

5.2.1. The course of infection in mice infected with P. c. adami DK and passively 

immunized with whole serum 

The effect of passively transferred immune serum on the course of 

infection in mice infected with p, c. adami DK was examined. Different 

groups were used in the experiment as follows. 

In group 1 mice were infected with 1 x 1 04 pRBCs of P. c, adami DK and 

immediately inj ected with 0.5 ml serum collected on day 15 p, i. 

In group 2 mice were infected with 1 x 1 04 pRBCs of p, c. adami DK and 

immediately injected with serum collected on day 55 p.i. 

In the control groups mice were infected with 1 x 1 04 pRBCs of the DK 

strain and were immediately injected with 0.5 ml PBS or left witout any 

treatment. 

154 

Figure 5.1. shows that in the control group parasitaemia peaked at 21.83% 

on day 10 p.i. and resolved to subpatency by day 15 p.i. In mice given 

pooled sera collected on day 15 p.i" the parasitaemia peaked at 13.13% 

which was significantly lower (Tukey's test, P< 0.007) than that in the 

control group, In this treated group parasitaemia sharply decreased after 

the peak but increased again two days later and thereafter from day 15 and 

resolved by day 18 p.i. In mice immunized with pooled sera collected on 

day 55 p.i. the peak parasitaemia was 6.23 % which was also significantly 

lower (Tukey's test, P< 0.0006) than that in the control group, In this 

group peak parasitaemia was seen on day 13 p.i. which was three-days later 

than the control group. In mice passively immunized with sera from day 55 

p.i., the primary parasitaemia was resolved by day17 p.i. The results, 

therefore, showed that sera from day 55 p,i. had more protectivity 

compared to sera from day 15 p.i. because there was a significant lower 

(Tukey's test P < 0.011) peak parasitaemia in mice given sera from day 55 

p.i. compared to peak parasitaemia in mice given sera from day 15 p,i. The 

recrudescent parasitaemia was first seen in mice immunized with sera from 

day 55, secondly in mice immunized with sera from day 15 p.i and finally 

in the control group. 
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Figure 5.1. The course of infection in NIH mice infected with P. c. adami 

DK. 

Mice infected with 1 xI 04 pRBCs of P. c. adami DK and immediately 

injected with 0.5 ml of serum. Control group was given only PBS. 

Each group included six mice. Serum collected from mice infected with P. 

c. adami DK. 

Data points are shown as the mean % ± SEM. However, SEM is not shown 

when it is too small. 

a) Mean % of parasitaemia. 

b) Mean lOglO pRBCs per 105 RBCs. 

DK: Mice infected with P.c. adami DK and injected 0.5 ml PBS as control 

group. 

DK+serum 15p.i: Mice infected with P.c. adami DK and injected with 0.5 

ml serum collected on day 15 p.i. 

DK+serum 55p.i: Mice infected with P.c. adami DK and injected with 0.5 

ml serum collected on day 55 p.i. 
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5.2.2. The course of infection in mice infected with P. c. adami DS and 

passively immunized with whole serum 

The presence of cross-reactivity in sera collected from mice infected with 

avirulent strain DK and passively transferred to mice infected with the DS 

strain was examined. The experiment was performed as described above 

(5.2.l.). 

Figure 5.2. shows that in the control group which were infected with the 

DS strain the parasitaemia peaked at 54.5%. In mice passively immunized 

with pooled sera collected on day 15 p.i. and infected with the DS strain 

the parasitaemia peaked to 39.1 %, which was significantly lower (Tukey's 

test P< 0.007) than that in the control group. The peak parasitaemia was 

3l.12% in mice inj ected with sera from day 55. This peak was also 

significantly lower (Tukey's test P < 0.006) compared to the control group. 

Although the peak parasitaemia in mice given sera collected on day 55 p.i. 

was lower compared to the peak in mice given sera from day 15 p.i., this 

difference was not significant. No death was seen in mice passively 

immunized either with immune serum from day 15 or day 55 p.i. and 

challenged with the virulent DS strain. So, the results indicated the 

presence of an effective cross-reactivity in serum from the DK strain in 

control of primary peak parasitaemia in mice infected with the DS strain. 

Although in the control group in which mice given PBS no death was seen, 

in the untreated group four of six mice died (33.3% survival rate). 



Chapter 5, Passive immunization 157 

a 
60 

'8 50 ---DS 
§ 
ro 40 ...... 

'.-< 
-0- DS+sennn 15p.i. rZJ ro 

30 ~ 
0.. 

d'2- 20 --tr- DS+sennn 55p.i. 
fa 10 II) 

~ 
0 

1 4 7 10 13 16 

I-< 
5 b 

II) 

0.. 4 rZJ 

U 

~ rZJ 3 u 
0.. 

~ 0 2 - .,., 
Ol) 0 0 ,....... 

1 ....:l 

fa 0 II) 

~ 
1 4 7 10 13 16 

Day post infection 

Figure 5.2. The course of infection in NIH mice infected with P. c. adami 

DS. 

Mice infected with 1 xl 04 pRBCs of P. c. adami DS and immediately 

injected with 0.5 ml serum. Control group given only PBS. Each group 

included six mice. Serum collected from mice infected with P. c. adami DK 

for immunization. 

Data points are shown as the mean % ±SEM. However, ±SEM is not shown 

when it is too small. 

a) Mean % of parasitaemia. 

b) Mean loglO pRBCs per 105 RBCs. 

DS: Mice infected with P.c. adami DS and injected with 0.5 ml PBS. 

DS+serum 15p.i: Mice infected with P. c. adami DS and injected with 0.5 

ml serum collected on day 15 p.i. 

DS+serum 55p.i: Mice infected with P.c. adami DS and injected with 0.5 

ml serum collected on day 55 p.i. 
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5.2.3. The effects of passive transfer of purified parasite-specific IgGl and IgG2a on 

the course of infection in avirulent and virulent infections 

The efficacy of passive transfers of purified IgGl and IgG2a on the 

course of infection in mice infected with either avirulent or virulent strains 

was examined. The presence of IgG 1 and IgG2a in pooled sera was 

determined before the purification using ELISA. The purification process 

has been detailed in Chapter Two. The presence, specificity and 

concentration of purified parasite-specific IgGl and IgG2a were examined 

using standards of IgGl and IgG2a by ELISA, SDS-PAGE, and Western­

blotting (Chapter Two, Figure 5.3.). 

The protocol for passive immunization was as follows: 

Different groups of NIH mice were infected with 1 xl 04 pRBCs and each 

mouse was immediately injected with either purified IgGl or IgG2 at 50~g 

per mouse with PBS in 200~1 volume per injection. The injection was 

repeated for the next day with the same concentration. However, a group of 

mice infected with the DS strain were given passive immunization three 

times. The third time injection of IgG for this group was on day 9 p.i. In 

each group the course of infection and antibody levels before immunization 

and after challenge were examined. 

5.2.3.1. The course of infection in mice infected with P. c. adami DK 

and passively immunized with purified IgGl 

Figure 5.4. shows that peak parasitaemia in the control group injected 

only with PBS peaked at 28.25% whereas in mice immunized with IgGl 

from day 15 or 55 p.i the peak was 16.18% and 17.34% respectively. Peak 

parasitaemias were significantly lower (Tukey's test P < 0.001) between 

the immunized and control mice. Despite the lower peak parasitaemia in 

mice given IgGl from day 55 p.i, there was no significant difference for 

peak parasitaemia so the effects of IgG 1 collected on two different time 

points did not show different effect. In the immunized groups two days 

delay in time taken to reach to the peak parasitaemia was seen. 
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5.2.3.2. The course of infection in mice infected with P. c. adami DK 

and passively immunized with purified IgG2a 

159 

The peak parasitaemias in mice immunized with IgG2a from day 15 or day 

55 p.i. were 16.4% and 16.89% respectively. The peak parasitaemia was 

28.25% in the control group. There were significant differences (Tukey's 

test, P < 0.001) for the peak parasitaemia between mice immunized with 

parasite-specific IgG2a from either day 15 or 55 p.i. and the control group. 

No significant difference was seen in respect of the effect of IgG2a from 

day 15 or 55 p.i. (Figure 5.5.). 
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Figure 5.3. Determination and confirmation of the presence of purified 

IgG 1 and IgG2a from serum of mice infected with P. c. adami DK. 

IgGI and IgG2a were isolated and purified using protein A 

chromatography. Purified IgGI and IgG2a were resolved on SDS-PAGE and 

specificity of each subclass was determined using Western blotting. The 

detection system was Enhanced chemiluminescence (EeL). The rows which 

are in the left of the figure show the molecular weight of proteins of the 

Rainbow ™ marker. 

a): IgG 1 S: Th purified standard IgG 1 transferred on to the membrane and 

detected using EeL in Western blotting. 

IgG 1 P: The purified IgG 1 from mice infected with P. c. adami DK 

transferred on to the membrane and detected using EeL in Western 

blotting. 

IgG2aS: The reaction between standard IgG2a and non-specific secondary 

anti-IgGI. 

b): IgG2aS: The purified standard IgG2a transferred on to the membrane 

and detected using EeL in Western blotting. 

IgG2aP: The purified IgGI from mice infected with P.c. adami DK 

transferred on to the membrane and detected using EeL in Western 

blotting. 



Chapter 5. Passive immunization 161 

IgG 1 S: The reaction between standard IgG 1 and non-specific secondary 

anti-IgG2a. 
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Figure 5,4. The course of infection in NIH mice infected with P. c. adami 

DK and immunized with purified IgGI. 

Mice infected with 1 x 1 04 pRBCs of P. c. adami DK and passively 

immunized with IgG 1. Each group included six mice. 

IgG 1 was inj ected two times, immediately after the infection and 24 hours 

later in 0.2ml PBS. Data points are shown as the mean % ± SEM. However, 

±SEM is not shown when it is too small. 

a) Mean % of parasitaemia. 

b) Mean 10giO pRBCs for 105 RBCs. 

DK control: Mice infected with P. c. adami DK and injected with 0.2 ml 

PBS as control group. 

IgGl, 15 p.i: Mice infected with P. c. adami DK and injected with IgGI 

collected on day 15 p.i. 

IgGl, 55p.i: Mice infected with P. c. adami DK and injected with 

IgG 1 collected on day 55 p.i. 
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Figure 5.5. The course of infection in NIH mice infected with P. c. adami 

DK and immunized with purified IgG2a. 

Mice infected with 1 x 104 pRBCs of P. c. adami DK and passively 

immunized with IgG2a. Each group included six mice. 

IgG2a was inj ected two times, immediately after infection and 24 hours 

later in 0.2ml PBS. Data points are shown as the mean % ± SEM. However, 

±SEM is not shown when it is too small. 

a) Mean % of parasitaemia. 

b) Mean loglo pRBCs for 105 RBCs. 

DK control: Mice infected with P. c. adami DK and injected with 0.2 ml 

PBS as control group. 

IgG2a, 15p.i: Mice infected with P. c. adami DK and injected with IgG2a 

collected on day 15 p.i. 

IgG2a, 55p.i: Mice infected with P. c. adami DK and injected with IgG2a 

collected on day 55 p.i. 
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5.2.3.3. Cross-reactivity of IgG subclasses in virulent infection of P. c. 

adami DS 

Cross-reactivity of specific IgG subclasses purified from mice infected 

with avirulent p, c, adami DK was evaluated in a virulent infection, 

Therefore, mice were infected with p, c, adami DS and immunized with 

IgG1 or IgG2a to determine the presence of cross-reactivity by the purified 

IgGs, 

5.2.3.4. The course of infection in mice infected with P. c. adami DS 

and passively immunized with purified IgGl 

Figure 5,6, shows that there were significant differences (One way 

ANOVA, P < 0,0001) for the peak parasitaemia between all tested groups, 

The peak parasitaemia in the control group was 56,93 % and it was 47 % in 

mice immunized with parasite-specific IgG1 from day 15 p.i, The peak was 

46,9 % in mice given IgG1 from day 55 p,i. In the both immunized mice the 

peak parasitaemias were significantly lower (Tukey's test, P < 0,001) than 

that in the control group, This result confirmed the presence of cross­

reactivity of these antibodies against the DS strain, Despite a lower peak 

parasitaemia in mice immunized with IgG1 from day 55 p,i, no significant 

difference was seen for the effect of IgG 1 from day 15 or 55 p.i on the 

peak parasitaemia, 

5.2.3.5. The course of infection in mice infected with P. c. adami DS and 

passively immunized with purified IgG2a 

Cross-reactivity of IgG2a was also examined in mice immunized with 

IgG2a from day 15 or 55 p.i (Figure 5,7,), The peak parasitaemia in control 

group was 56,93 %, Parasitaemia in mice immunized with IgG2a from day 

55 p.i and in mice immunized with IgG2a from day 15 p,i. peaked to 47,95 

% and 48,32 % respectively, The peak parasitaemias were significantly 

lower (Tukey's test, P < 0,0001) in the immunizecd mice compared to the 

control group, There was no significant difference between IgG2a from 

either day 15 or day 55 p.i, 
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Figure 5.6. The course of infection in NIH mice infected with P. c. adami 

DS and passively immunized with purified IgG1 from the DK strain. 

Mice infected with 1 xl 04 pRBCs of P. c. adami DS and passively 

immunized with IgG1. Each group included six mice. 

IgG 1 was inj ected two times, immediately after infection and 24 hours later 

in 0.2 ml PBS. Data points are shown as the mean % ±SEM. However, 

±SEM is not shown when it is too small. 

a) Mean % of parasitaemia. 

b) Mean IOglO pRBCs for 105 RBCs. 

DK control: Mice infected with P.c. adami DS and injected with 0.2 ml 

PBS as control group. 

IgG1, 15p.i: Mice infected with P.c. adami DS and injected with IgG1 

collected on day 15 p. i. 

IgG 1, 55p.i: Mice infected with P. c. adami DS and inj ected with IgG 1 

collected on day 55 p.i. 
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Figure 5.7. The course of infection in NIH mice infected with P. c. adami 

DS and passively immunized with purified IgG2a from the DK strain. 

Mice infected with 1 xI 04 pRBCs of P. c. adami DS and passively 

immunized with IgG2a. IgG2a was inj ected two times, immediately after 

infection and 24 hours later, 0.2 ml on each occasion. Data points are 

shown as the mean % ± SEM. However, ±SEM is not shown when it is too 

small. Each group included six mice. 

a) Mean % of parasitaemia. 

b) Mean 10giO pRBCs for 10 5 RBCs. 

DS control: Mice infected with P.e. adami DS and injected with 0.2 ml PBS 

as control group. 

IgG2a, 15 p.i: Mice infected with P.c. adami DS and injected with IgG2a 

collected on day 15 p.i. 

IgG2a, 55 p.i: Mice infected with P.c. adami DS and injected with IgG2a 

collected on day 55 p.i. 
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5.2.3.6. Comparison of peak parasitaemia and death in different groups 

of mice infected with P. c. adami DS or DK and passively immunized 

with purified IgGl or IgG2a. 

Figure 5.8. and 5.9. have summarized comparison between peak 

parasitaemias in different groups of mice immunized with sera, IgG 1, or 

IgG2a in both avirulent and virulent infections. 

No death was seen in immunized mice with serum challenged with the DK 

strain. In mice immunized with sera from DK-infected mice cross 

reactivivity protected mice from death. 

Immunization with parasite-specific IgG 1 or IgG2a reduced parasitaemia 

and provided protection against the challenge with the parasite in both 

avirulent or partially in virulent challenges. However, this protection was 

not as high as seen for the transfer of whole serum. However, in the 

virulent challeneg despite significantly reducing parasitaemia, cross­

reactivity did not show noteworthy protective effect on the outcome of the 

infection and the survival rate as some immunized mice died. Figure 5.9. 

also shows that three times passively immunization results in more 

reduction in peak parasitaemai compared to two-time transfer. However, 

third time immunization does not prevent mice from death (Table 1 and 2). 
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Figure 5.8. Comparison of the peaks of parasitaemias in passively 

immunized mice with IgG subclasses. 

a) Different groups of mice infected with P. c. adami DK and passively 

immunized with whole serum (W.S.) and purified IgGs as described in 

figures 5.3 and 5.4. The parasitaemia is represented as the mean ± SEM. 

b) Different groups of mice infected with P. c. adami DS and passively 

immunized with whole serum and purified IgGs as described in figures 5.5 

and 5.6 . 

• Control group: mice infected with the parasite and injected with PBS. 

o Immunized groups are as described in previous figures. 
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Figure 5,9, Comparison of the parasitaemias in mice infected with p,c, 

adami DS and passively immunized with IgG 1 and IgG2a, two or three 

times, 

One group of mice was inj ected three times, The inj ection immediately was 

administered on day 9 p.i . after taking blood for determination of 

parasitaemia. 

The figure compares the mean parasitaemias for two respective days, day 9, 

and day 10 p.i . between two groups. 

o Immunized mice with IgG 1 from day 15 p.i. 

o Immunized mice with IgGl from day 55 p.i. 

• Immunized mice with IgG2a from day 15 p.i. 

• Immunized mice with IgG2a from day 55 p.i. 

• Control mice infected with the parasite and injected only PBS. 

I ' 
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Table 1. shows the deaths and surviving rates of mice after passively 

transfer of either IgG2a or IgG 1 in the virulent DS strain challenge for all 

groups of mice on day 9 and 10 p.i. For all mice given antibodies three 

times, the peak parasitaemia significantly (t-test, P < 0.0001) was lower 

compared to the groups given IgG injections two times (Figure 5.9.). 

However, for mice given IgG2a from day 55 p.i the peak parasitaemia was 

not significantly different compared to mice immunized twice. Although 

mice immunized three times showed reduced parasitaemia compared to 

mice immunized twice, this reduction did not affect survival rates. Table 2 

shows that mice immunized twice with IgG2a from day 55 p.i. had the best 

survival rate because only two mice of six died. The results did not suggest 

that transfer of additional antibodies around the peak parasitaemia reduces 

death after challenge with the virulent DS strain. 

Dayp.i. IgG Peak Peak Significant 

subclass Difference 

Immunization x 2 x3 

Day 9 IgGl,15 50.41 44.63% P < 0.0028 

p.l. % 

IgGl,55 54.86 38.36% P < 0.0001 

p.l. % 

Day 10 IgGl, 15 42.91 31.1% P < 0.0012 

p.l. % 

IgGl, 55 46.96 29.3% P < 0.0001 

p.l. % 

Day 9 IgG2a, 58.16 39.46% P < 0.0001 

15 p.i. % 

IgG2a, 33.38 29.28% P < 0.0012 

55 p.i. % 

Day 10 IgG2a, 47.95 32.7% P < 0.0001 

15 p.i. % 

IgG2a, 28.5% 27.27% P < 0.07 

55 p.i. 

Table.l. Comparison of peak parasitaemias in mice passively immunized 

with IgG 1 or IgG2a and challenged with the virulent P. c. adami DS 

strainfrom either day 15 or 55 p.i. 
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Death in mice given Death in 

IgG subclasses IgG two times mIce gIven 

IgG three 

times 

IgGl, day 15 p.i. 3 2 

IgGl, day 55 p.i. All dead 4 

IgG2a, day 15 p.i. 3 3 

IgG2a, day 55 p.i. 2 3 

Control group 1 1 

Table 2. Deaths in mice immunized with purified IgG 1 or IgG2a compared 

to the control group. Each group had six mice which were challenged with 

P. c. adami DS. Mice passively were given antibodies for two or three 

times when the third time inj ection was coincident with the peak 

parasitaemia. 

-------

j 
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5.2.4. Parasite-specific antibody production post-immunization with 

IgG 1 and IgG2a in avirulent infection. 

171 

Production of specific IgG subclasses in mice passively immunized with 

IgG 1 or IgG2a was examined. Blood samples were collected from tail at 

different time points, usually every three days, and levels of IgGs were 

measured by ELISA, The control groups included mice infected with the 

same pRBCs and left untreated and also naIve mice given only PBS. 

5.2.4.1. Parasite-specific IgG 1 production in mice infected with P. c. 

adam; DK and passively immunized with IgG1. 

The IgG 1 production in mice infected with the DK strain and passively 

immunized with IgG 1 from either day 15 or 55 p.i, increased as the course 

of infection proceeds (Figure 5.10.), The overoall pattern of the IgG 1 

production was the same as seen in non-immunized mice (Chapter Three) in 

which IgG 1 increased later in the course of infection, The levels of IgG 1 

were not significantly different compared to IgG 1 in the control group in 

which infected mice were not treated with IgG 1, However, the levels of 

IgG1 in immunized mice were significantly (Tukey's test, P < 0.0004) 

higher compared to PBS-treated mice, 

5.2.4.2. Parasite-specific IgG 1 production in mice infected with P. c. 

adam; DK and passively immunized with IgG2a 

Figure 5.11, shows that, in general, the levels of IgG 1 in mice immunized 

with IgG2a were very low. However, its level was significantly higher 

(Tukey's test, P < 0,0005) than that in the PBS-treated control mice, 
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Figure 5.10. Parasite-specific IgG 1 production in NIH mIce infected with 

1 x 1 04 pRBCs of P. c. adami DK and passively immunized with IgG 1. 

IgG 1 was injected two times at 50 j.!g, immediately after infection and 24 

hours later, in 0.2 ml on each occasion. The levels of IgGl are shown as 

the mean ± SEM. However, ±SEM is not shown when it is too small. 

a) IgG 1 production in mice passively immunized with IgG 1 from day 15 

p.l. 

b) IgGl production in mice passively immunized with IgGl from day 55 

p.l. 

dk+IgGl: Infected mice passively immunized with IgGl. 

dk+PBS: Infected mice left without passive immunization and were 

injected with PBS 

c+PBS: NaIve mice were injected with PBS only. 
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Figure 5.11. Parasite-specific IgG 1 production in NIH mIce infected with 

1 xl 04 pRBCs of P. c. adami DK and passively immunized with IgG2a. 

IgG2a was injected two times at 50 ).!g, immediately after infection and 24 

hours later, in 0.2 ml PBS on each occasion. 

The levels of IgGl are shown as the mean ± SEM. However, ±SEM is not 

shown when it is too small. 

a) IgG 1 production in mice immunized with IgG2a from day 15 p.i. 

b) IgG 1 production in mice immunized with IgG2a from day 55 p.i. 

dk+ IgG2a: Infected mice immunized with IgG2a. 

dk+PBS: Infected mice left without immunization and were inj ected with 

PBS 

c+PBS: NaIve mice were injected with PBS. 
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5.2.4.3. Parasite-specific IgG2a production in mice infected with P. c. 

adam; DK and passively immunized with IgG 1. 
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Figure 5.12. shows that IgG2a particularly increased after the peak 

parasitaemia. The levels of IgG2a was significantly different between the 

tested groups (Two-way ANOV A, P < 0.0007 and P < 0.0009 for days 15 

and 55 p.i. respectively). However, statistically there were no significant 

differences for IgG2a levels between mice immunized with IgG2a and 

infected mice left without immunization. Whereas, the levels of IgG2a in 

mice passively immunized with IgG 1 (Figure 5.12 a) from days 15 or 55 p.i 

were significantly higher (Bonferroni, P < 0.0036 for IgG 1 from day 15 p.i. 

and P < 0.00019 for IgG1 from day 55 p.i.) compared to IgG2a in naIve 

mice given only PBS. 

5.2.4.4. Parasite-specific IgG2a production in mice infected with P. c. 

adam; DK and passively immunized with IgG2a. 

The same observations for IgG2a productions were seen in mice 

immunized with IgG2a with mice infected with theDK strain (Chapter 

three), as its level increased after the peak parasitaemia (Figure 5.13 .). 

There was no significant difference for IgG2a between mice immunized 

with IgG2a from day 15 p.i and mice infected with the DK strain and given 

PBS (Figure 5.13 b). However, this IgG2a level was significantly lower 

(Bonferroni, P < 0.016) in mice given IgG2a from day 55p.i compared to 

mice infected with DK and given PBS (Figures 5.13 a and b). The levels of 

IgG2a in mice given IgG2a from either day 15 or 55 p.i. were significantly 

higher (Bonferroni P < 0.0001) than that in naIve mice given only PBS. 

5.2.5. Parasite-specific IgGl and IgG2a production post-immunization 

with IgGl and IgG2a in the DS virulent infection 

For determination of any cross-reactivity of purified IgG subclasses 

(obtained from mice were infected with the avirulent DK strain) in the 
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virulent DS infection the same experiments were performed as described 

previously (3.2.4.). 

175 
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Figure 5.12. Parasite-specific IgG2a production in NIH mice infected with 

1 xl 04 pRBCs of P. c. adami DK and passively immunized with IgG 1. 

IgG 1 was inj ected two times at 50 /-Lg , immediately after infection and 24 

hours later in 0.2 ml PBS at each occasion. 

The levels of IgG2a are shown as the mean ± SEM. However, ±SEM is not 

shown when it is too small. 

a) IgG2a production in mice passively immunized with IgG 1 from day 15. 

b) IgG2a production in mice passively immunized with IgG2a from day 55 

p.i. and challenged with the parasite. 

dk+IgG1: Mice were challenged with the parasite and passively immunized 

with IgG 1 from days 15 or 55 pi. 

dk+PBS: Infected mice left without passive immunization and were 

injected with PBS. 

c+PBS: Naive mice were injected with PBS. 
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Figure 5.13. Parasite-specific IgG2a production in NIH mice infected with 

1 x 1 04 pRBCs of P. c. adami DK and passively immunized with IgG2a. 

IgG2a was injected two times at 50 Ilg, immediately after infection and 24 

hours later in 0.2 ml PBS at each occasion. 

The levels of IgG2a are shown as the mean ± SEM. However, ±SEM is not 

shown when it is too small. 

a) IgG2a production in mice passively immunized with IgG2a from day 15 

and challenged with the parasite. 

b) IgG2a production in mice passively immunized with IgG2a from day 55 

p.i. and challenged with the parasite. 

IgG2a: Mice were challenged with the parasite and passively immunized 

with IgG2a from days 15 or 55 pi. 

dk+PBS: Infected mice left without passive immunization and were 

injected with PBS. 

c+PBS: NaIve mice were injected with PBS. 
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5.2.5.1. Parasite-specific IgG 1 production in mice infected with P. c. 

adami DS and passively immunized with IgG 1. 
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The production of IgG1 in mice immunized with IgG1 from day 15 or 55 

p.i. showed the same pattern of increase during the course of infection. 

There were significant differences (Two-way ANOVA, P < 0.01) for IgG1 

production between all tested groups (Figure 5.14). Significantly higher 

IgG1 (Bonferroni test, P < 0.032) was observed in mice immunized with 

IgG 1 from day 15 p.i compared to mice infected with the DS strain and 

given only PBS. There was also a significant difference (Bonferroni test, 

P< 0.0016) for the specific IgG 1 between immunized mice and PBS-treated 

mice. The level of IgG 1 in mice immunized with IgG 1 from day 55 p.i were 

significantly higher (Bonferroni test, P < 0.0038) than that in mice infected 

with the DS strain and given PBS. Due to death of four mice in immunized 

group the production of IgG 1 could not be measured after 12 days. 

5.2.5.2. Parasite-specific IgG 1 production in mice infected with P. c. 

adami DS and passively immunized with IgG2a. 

Mice immunized with IgG2a from either day 15 or 55 p.i. did not show 

significant (Boferroni test, P >0.05) difference in IgG 1 levels compared to 

control groups (Figure 5.15.). 

5.2.5.3. Parasite-specific IgG2a production in mice infected with P. c. 

adami DS and passively immunized with IgG 1. 

Significantly lower (Bonferroni test, P < 0.014) levels of IgG2a were seen 

in mice immunized with IgG 1 from day 15 p.i compared to infected mice 

given only PBS over time except on day 4, 7, and 36 p.i. This result shows 

that (Figure 5.16. a) mice immunized with IgG 1 did not produce more 

specific IgG2a production compared with non-immunzed mice. Figure 

5.16. b shows that there was a lower level of IgG2a in mice immunized with 

IgG 1 from day 55 p.i compared to non-immunized mice infected with the 

parasite. In this latter group no mice survived after day 12 p.i. so, 

following the IgG2a production was not possible (Figure 5.16 b). 
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5.2.5.4. Parasite-specific IgG2a production in mice infected with P. c. 

adami DS and passively immunized with IgG2a. 

179 

Figure 5.17. shows that there were significant differences for IgG2a 

production between all tested groups either in mice that were passively 

given IgG2a from day 15 p.i.(Two-way ANOV A, P < 0.0087) or from day 

55 p.i (Two-way ANOVA, P < 0.0024). However, there was no significant 

difference for IgG2a between immunized mice and control mice which were 

infected with the DS strain and left without immunization. For both groups 

of mice immunized with either IgG2a from day 15 or 55 p.i. there were 

significantly higher (Bonferroni P < 0.015 for day 15 and P < 0.013 for day 

55 p.i.) levels of IgG2a compared to IgG2a in mice injected with PBS only. 



Chapter 5. Passive immunization 

a 

50 

40 -C-ds+IgGl 
f') , 

30 c 
---+-- ds+PBS 

x 20 
0 
C 10 - ----.- c+PBS 

0 

4 7 14 17 23 30 36 
b 

50 .-------------------------------~ 

40 - --- ---- ---- ----
f') 

C 30-- ---

X I 20 - ----- --­
C 
C 10 

0 

0== ... 
4 

(r-

.L 

7 
Day post infection 

- --

~ 

12 

180 

Figure 5.14. Parasite-specific IgG 1 production in NIH mIce infected with 

1 x 1 04 pRBCs of P. c. adami DS and passively immunized with IgG 1. IgG 1 

was inj ected two times at 50 Ilg, immediately after infection and 24 hours 

later in 0.2 ml PBS on each occasion. 

The levels of IgG 1 are shown as the mean ± SEM. However, ±SEM is not 

shown when it is too small. 

a) IgG 1 production in mice infected with the parasite and passively 

immunized with IgGI from day 15 p.i. 

b) IgGI production in mice infected with the parasite and passively 

immunized with IgG2a from day 55 p.i. 

ds+ IgG 1: Mice were infected with the DS strain and passively immunized 

with IgG 1 from days 15 or 55 p.i. 

ds+PBS: Infected mice left without passive immunization and were 

injected with PBS. 

c+PBS: NaIve mice were injected with PBS. 
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Figure 5,15, Parasite-specific IgG 1 production in NIH mice infected with 

1 xI 04 pRBCs of P. c. adami DS and passively immunized with IgG2a. 

IgG2a was inj ected two times at 50 flg, immediately after infection and 24 

hours later in 0.2 ml PBS on each occasion, 

The levels of IgGl are shown as the mean ± SEM. However, ±SEM is not 

shown when it is too small. 

a) IgGl production in mice infected with the parasite and passively 

immunized with IgG2a from day 15 p.i. 

b) IgGl production in mice infected with the parasite and passively 

immunized with IgG2a from day 55 p,i. 

ds+ IgG2a: Mice were infected with the DS strain and passively immunized 

with IgG2a from day 15 or 55 p.i. 

ds+PBS: Infected mice left without passive immunization and were injected 

with PBS. 

c+PBS: Naive mice were injected with PBS. 
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Figure 5,16. Parasite-specific IgG2a production in NIH mice infected with 

1 x 1 04 pRBCs of p, c. adami DS and passively immunized with IgG 1. IgG 1 

was inj ected two times at 50 Ilg, immediately after infection and 24 hours 

later in 0.2ml PBS on each occasion. 

The levels of IgG2a are shown as the mean ± SEM. However, ±SEM is not 

shown when it is too small. 

a) IgG2a production in mice infected with the parasite and passively 

immunized with IgG 1 from day 15 p.i. 

b) IgG2a production in mice infected with the parasite and passively 

immunized with IgGl from day 55 p.i. 

ds+IgGl: Infected mice with the DS strain and were passively immunized 

with IgGl. 

ds: Infected mice left without passive immunization and were injected with 

PBS. 

c+PBS: NaIve mice were injected with PBS. 
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Figure 5,17, Parasite-specific IgG2a production in NIH mice infected with 

1 x 1 04 pRBCs of P. c. adami DS and passively immunized with IgG2a. 

IgG2a was inj ected two times at 50 Ilg, immediately after infection and 24 

hours later in 0.2 ml PBS. 

The levels of IgG2a are shown as the mean ± SEM. However, ±SEM is not 

shown when it is too small. 

a) IgG2a production in mice infected with the parasite and passively 

immunized with IG2a from day 15 p.i. 

b) IgG2a production in mice infected with the parasite and passively 

immunized with IgG2a from day 55 p.i .. 

ds+IgG2a: Infected mice with the DS strain passively immunized with 

IgG2a from day 15 or 55 p.i. 

ds: Infected mice left without passive immunization and were injected with 

PBS. 

c+PBS: NaIve mice were injected with PBS, 



Chapter 5, Passive immunization 

5.2.6. Parasite-specific antibody production after the re-challenge in 

infected mice passively immunized with IgG subclasses. 

184 

All mice challenged with either avirulent P. c. adami DK or virulent DS 

strains and immunized with IgG subclasses as described above were 

rechallenged with a high dose of 1 xI 0 8 pRBCs of either P. c. adami DK or 

P. c. adami DS i. v. These rechallenges were performed on day 42 p.i. The 

course of infections and parasite-specific antibody were examined, as 

described above for 25 days p.i. 

5.2.6.1. The course of infection in immunized mice rechallenged with P. 

c. adami DK. 

Mice immunized with either IgG 1 or IgG2a in the above experimental 

groups were rechallenged with 1 x 1 08 pRBCs of P. c. adami DK on day 42 

p.i. No parasitaemia was observed except in mice immunized with IgG2a 

from day 15 p.i. This parasitaemia was 3.16 % on day 3 p.i and it was 

0.125 % on day 4 p.i. No parasites were detected thereafter in all groups. 

No pasrasitaemia was seen in the non-immunized control group and 

rechallenged with the parasite. 

5.2.6.2. The course of infection in immunized mice rechallenged with P. 

c. adami DS 

The same procedure was performed for virulent P. c. adami DS strain. 

All immunized mice surviving from challenge with the DS strain were 

rechallenged with 1 x 1 08 pRBCs of P. c. adami DS. No parasitaemia was 

observed except in the control group that was infected with DS and injected 

only with PBS. Mice in this group (five mice survived) showed 

parasitaemia in the days immediately after the challenge. It was 0.015% on 

dayl p.i., 1.026% on day 2 p.i., and 0.55% on day 3 p.i and no parasites 

observed therafter. 
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5.2.6.3. Parasite-specific IgGl and IgG2a production after the re 

challenge in mice infected with avirulent P. c. adami DK. 

Parasite-specific IgG 1 and IgG2a production were examined after 

rechallenge in all groups of mice. 
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5.2.6.3.1. Parasite-specific IgGl production in mice rechallenged with a high infective 

dose of lxl08 pRBCs of avirulent P. c. adami DK. 

Figure 5 .18a shows that there were no significant differences for IgG 1 

levels in mice immunized with IgG 1 from day 15 or day 55 p.i. which were 

rechallenged with a high infective dose compared to non-immunized 

control mice rechallenged with the same number of pRBCs. However, there 

were significantly higher levels of IgGI (Bonferroni test, P < 0.0087) in 

the immunized group compared to naIve PBS-treated mice. 

Figure 5.18. b shows that mice immunized with IgG2a from day 15 did not 

show significantly higher production of IgG 1 compared to mice immunized 

with IgG2a from day 55. Mice immunized with either IgG2a from day 15 or 

55 p.i. showed significantly higher (Bonferroni test, P < 0.01 and P < 

0.0051 for day 15 and 55 p.i. respectively) levels of IgGI compared to 

naIve PBS-treated mice. 

5.2.6.3.2. Parasite-specific IgG2a production in mice rechallenged with a high 

infective dose of lxl08 pRBCs of avirulent P. c. adami DK. 

The overall production of IgG2a after rechallenge was significantly 

(Tukey's test, P < 0.0001) higher than that when immunized mice infected 

for the first time. No significant differences were seen for IgG2a between 

rechallenged mice immunized with IgGI from day 15 and 55 p.i. However, 

in those mentioned groups the IgG2a levels were significantly higher 

compared to PBS-treated mice (Bonferroni tst, P < 0.004 and P < 0.0001 

for days 15 and 55 p.i respectively) (Figure 5.19a). 
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Figure 5.18. Parasite-specific IgG 1 production after the rechallenge with 

1 xl 08 pRBCs of P. c. adami DK. 

The levels of IgGs are shown as the mean ± SEM. However, ±SEM is not 

shown when it is too small. 

a) IgGl production in mice immunized with IgGl from day 15 or 55 p.i. 

and rechallenged with the parasite. 

dk+IgG1, 15 and dk+IgGl, 55: Mice passively immunized with IgGI from 

days 15 or 55 p.i. and rechallenged with the parasite. 

b) IgG 1 production in mice passively immunized with IgG2a from day 15 

or 55 p.i. and rechallenged with the parasite. 

dk+ IgG2a, 15 and dk+ IgG2a, 55: Mice passively immunized with IgG2a 

from days 15 or 55 p.i. and rechallenged with the parasite. 

dk+PBS: Mice infected and left without passive immunization and were 

injected with PBS. 

c+PBS: NaIve mice were injected with PBS. 
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Figure 5.19. Parasite-specific IgG2a production after rechallenge with 

1 x 1 08 pRBCs of P. c. adami DK. The levels of IgGs are shown as the mean 

± SEM. However, ±SEM is not shown when it is too small. 

a) IgG2a production in passively immunized mice with IgG1 from day 15 or 

55 p.i. and rechallenged with the parasite. 

dk+IgG1, 15 and dk+IgG1, 55: Mice passively immunized with IgG1 from 

days 15 or 55 p.i. and rechallenged with the parasite. 

b) IgG2a production in passively immunized mice with IgG2a from day 15 

or 55 p.i. and rechallenged with the parasite. 

dk+ IgG2a, 15 and dk+ IgG2a, 55: Mice passively immunized with IgG2a 

from days 15 or 55 pi. and rechallenged with the parasite. 

dk+PBS: Mice infected and left without passive immunization and were 

injected with PBS. 

c+PBS: NaIve mice were injected with PBS. 
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5.2.6.4. Parasite-specific IgG1 and IgG2a production in mice 

rechallenged with a high infective dose of 1x108 pRBCs of virulent P. c. 

adami DS. 

Cross-reactivity of IgG subclasses and IgG2a and IgG 1 production were 

examined in all surviving mice which were rechallenged with a high 

infective dose of 1 x 1 08 pRBCs of P. c. adami DS. The experiments were 

performed as described earlier (above) for the avirulent DK strain. 

5.2.6.4.1 Parasite-specific IgG 1 production in mice rechallenged with a high infective 

dose of 1x108 pRBCs of virulent P. c. adami DS 

Figure 5.20.a shows that the levels of IgGl in mice immunized with either 

IgG 1 or IgG2a from either day 15 or day 55 p.i were not significantly 

different after the rechallenge. 

5.2.6.4.2. Parasite-specific IgG2a production in mice rechallenged with a high 

infective dose of 1x108 pRBCs of avirulent P. c. adami DS. 

Figure 5.21 a. shows that there were no significant differences in IgG2a 

levels between mice immunized with IgG 1 from either day 15 or day 55 p.i 

after rechallenge. The difference between all these sample groups and non­

infected group was significant (Two-way ANOV A, P < 0.0001). But, there 

were significantly higher (Bonferroni test, P < 0.016 and P < 0.014 for 

days 15 and 55 p.i. respectively) levels of IgG2a in these two immunized 

groups compared to the control group that was only rechallenged with a 

high infective dose of the parasite. 

Figure 5.21. b also shows that when mice immunized with IgG2a there 

were no significant differences between the sample groups and the control 

group after rechallenge. 
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Figure 5.20. IgG 1 production after the rechallenge with 1 x 1 08 pRBCs of 

virulent P. c. adami DS. 

The levels of IgGs are shown as the mean ± SEM. However, ±SEM is not 

shown when it is too small. 

a) IgGI production in mice passively immunized with IgGI from day 15 or 

55 p.i. and rechallenged with the parasite. 

ds+IgGl, 15 and ds+IgGl, 55: Mice passively immunized with IgGI from 

days 15 or 55 p.i. and rechallenged with the parasite. 

b) IgG 1 production in mice passively immunized with IgG2a from day 15 

or 55 p.i. and rechallenged with the parasite. 

ds+ IgG2a, 15 and ds+ IgG2a, 55: Mice passively immunized with IgG2a 

from days 15 or 55 pi. and rechallenged with the parasite 

ds+PBS: Mice infected and left without passive immunization and were 

injected with PBS. 

c+PBS: NaIve mice were injected with PBS. 
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Figure 5,21. IgG2a production after the rechallenge with 1 xl 08 pRBCs of 

virulent P. c. adami DS. The levels of IgGs are shown as the mean ± SEM. 

However, ±SEM is not shown when it is too small. 

a) IgG2a production in mice passively immunized with IgG 1 from day 15 or 

55 p.i. and rechallenged with the parasite. 

ds+IgG1, 15 and ds+IgG1, 55: Mice passively immunized with IgG1 from 

days 15 and 55 p.i. and rechallenged with the parasite. 

b) IgG2a production in mice passively immunized with IgG2a from day 15 

or 55 p.i. and rechallenged with the parasite. 

ds+ IgG2a, 15 and ds+ IgG2a, 55: Mice passively immunized with IgG2a 

from days 15 and 55 pi. and rechallenged with the parasite. 

ds+PBS: Mice infected and left without passive immunization and were 

injected with PBS. 

c+PBS: NaIve mice were injected with PBS. 
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5.3. Discussion 

The present study examined the effect of passive immunization by 

transferring whole serum or purified parasite-specific IgG 1 and IgG2a 

subclasses on the course of infection and the kinetics of antibody 

production in avirulent and virulent infections in NIH mice before and after 

immunization. The examination of the cross-reactivity of IgG subclasses, 

IgG 1 and IgG2a, obtained from mice infected with the avirulent DK strain 

in the virulent DS infection was also carried out. Possible differences in 

effectiveness of IgG subclasses which were purified from sera collected at 

two different time points, day 15 or 55 p.i., were also evaluated. 

The results demonstrated that passive transfer of whole serum from DK­

infected mice not only contributed in protection against homologous 

infection but also has cross-reactivity against the virulent P. c. adami DS 

infection. Although within malaria species protective immune responses 

have elements which are specific for the cloned line of parasites, cross­

immunity between cloned lines of parasites derived from different isolates 

of the same species has been shown (Jarra and Brown 1985). Moreover, 

Mota et al, (2001) showed that hyperimmune sera from P. c. chabudi CB 

and P. berghei KSP-ll infected mice contained cross-reactive antibodies to 

the antigens of P. chabaudi AS strain. Cross-reactivity was also evident in 

mice challenged with P. c. chabudi AS which received immune sera from 

mice infected or reinfected with P. c. chabudi CB (Jarra et al., 1986). In 

agreement with above results the present study also provided evidence of 

cross-reactive antibodies in serum from mice infected with the DK strain 

against the DS strain which indicated the presence of similar antigens or 

epitopes between the two strains. 

In the present study passive transfer of sera taken on day 55 p.i showed 

significantly more effectiveness than serum taken on day 15 p.i probably 

due to the stronger secondary response compared to the primary antibody 

response following recrudescent parasitaemia and reinfection. Moreover, 

the cross-reactivity of these sera, from DK-infected mice, effectively 

prevented mice from death in the virulent DS infection. This is in 

agreement with the observation by J arra and Brown (1989) in which they 

showed that in P. c. chabaudi AS pre-immune mice the initial growth of 

heterologous P. c. chabaudi CB, IP-PCI, or P. c. adami DS parasites 
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reduced when mice reinfected with those parasites. However, they showed 

that reinfection of AS pre-immune mice with the homologous parasite did 

not change the kinetics of the infection compared to control mice infected 

with P. chabaudi AS only. The present study showed that mice passively 

immunized with sera obtained from the DK-infected mice, survived from 

challenge with 1 xI 04 pRBCs of the heterologous virulent DS strain. The 

present study showed that immunized mice surviving from a rechallenge 

with a higher dose, 1 x 1 0 8 pRBCs of either the DK or the DS strains, had 

developed significant immunity during their initial controlled challenges. 

In this regard, in mice rechallenegd with the DK-strain only one group 

showed parasitaemia up to 0.125 % on day 4 p.i. In mice rechallenged with 

the DS strain surviving mice in control group showed a parasitaemia which 

only peaked to 0.55% until day 3 p.i. In both rechallenged groups no 

parasites were seen thereafter. This substantial reduction in the peak 

parasitaemia in immunized mice rechallenged with the DS strain could be 

due to a strong and effective secondary response (Figure 5.17,18, and 20). 

The observation which supports a stronger secondary response is that 

passively immunized mice with either IgG 1 or IgG2a produced 

significantly higher levels of IgG2a and IgG 1 after rechallenge with 1 x 1 08 

pRBCs particularly on the first two sampling days, day 4 and 7 p.i (Figure 

5.18 and 5.19) compared with IgG levels after the first challenge 

with lower infective dose, 1 x 1 04 pRBCs. 

McLean, Pearson and Phillips (1982) suggested that only immune sera 

taken just after resolution of the primary and recrudescent peak 

parasitaemia of a P. c. chabaudi infection were protective. In agreement 

with their study the present result confirmed that sera taken after resolution 

of the primary peak parasitaemia, on day 15, and sera taken after 

recrudescent parasitaemia, on day 55 p.i., showed protectivivty. 

The results presented here showed that there was a delay to reach to 2% 

parasitaemia and a prolongation of parasitaemia in passively immunized 

mice challenged with the avirulent DK strain. The same effect was reported 

by lana and colleagues (1986) as they showed that mice challenged with P. 

chabaudi CB and given serum from mice reinfected or superinfected with 

P. chabaudi AS showed an extension to reach to 2% parasitaemia and a 

significant reduction in parasitaemia between day 3 and 9 p.i. and lower 



Chapter 5, Passive immunization 

virulence compared to the controls. However, this delay or prolongation 

was not seen in the present study in mice passively immunized with sera 

from the DK-immune mice and challenged with the virulent-DS strain. 
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The present study showed that peak parasitaemias were significantly 

reduced in mice passively immunized with IgG 1 from days 15 or 55 p.i. 

post challenge with the DK strain. An extension of the time taken to reach 

to 2 % parasitaemia, protraction of the primary parasitaemia, and a delay in 

resolution were also observed. The present results also showed that peak of 

parasitaemias in mice immunized with IgG 1 or IgG2a obtained from DK­

immune mice were significantly lower than that in control mice after 

challenge with the virulent DS strain indicating cross-reactivity of those 

transferred IgGs. However, the efficacy between IgGs collected either on 

day 15 or on day 55p.i was not significantly different (Figures5.6 and 5.7). 

Although this study confirmed that the presence of specific IgG 

antibodies in sera playa role in control of infection in passively 

immunized mice, identifying the role of other antibody isotypes such as 

IgM needs more investigation. 

It was also observed that in the virulent DS-challenged mice three times 

passively immunization significantly lowered peak parasitaemias compared 

to mice passively immunized two times (see Table 2, Figure5. 7 and 5.8). 

However, degree of mortality was not affected by more passive 

immunization around the time of peak parasitaemia. This could be as a 

result of other factors involved in death such as a rapid replication rate of 

the DS strain, massive distruction of RBCs, irregulation in temperature, 

and loss weight. So, the presence of more IgG could not compensated the 

effect of such factors to save the host. 

In the present results the kinetics of parasite-specific IgG2a and IgG 1 

production indicates a sequential Th lITh2 immune response in passively 

immunized mice in both avirulent and virulent challenge as previous 

studies suggested (Smith and Taylor-Robinson, 2003; Snapper and Paul, 

1987). These results are not altered due to passive immunization as they 

are similar to the immune reponse in single-infections of the DK and DS 

strains when mice were not immunized (Chapter Three) in which the 

immune response is characterized by early and later significant up­

regulation of cytophilic IgG2a and non-cytophilic IgG 1, respectively. 

White et at. (1991) suggested that IgG2a is responsible for modulating 
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parasitaemia as mice passively received IgG2a did not develop patent 

infection until day 10 to 12 and parasitaemia peaked the rafter. In the 

present study, this suggested modulation of peak parasitaemia was not 

observed in passively immuniozed mice challenged with the virulent DS 

strain. However, passively immunized mice challenged with the avirulent 

DK strain showed modulation in parasitaemia by showing a delay in time 

taken to reach to the peak parasditaemia compared to the controls 

(Figure5.4 to 5.7). 

Identification of the asexual blood stages susceptibile to induced 

antibodies also is another important issue in passive immunization studies. 

Cavinato et al. (2001) suggested that merozoites are the main targets for 

specific antibodies. These antibodies may control reinvasion of new 

merozoites. It is proposed that a substantial proportion of antibodies in 

human serum from immune individuals inhibit merozoite invasion 

(O'Donnell et al., 2001). It is suggested that protection through inhibiting 

invasion should be associated with the presence of specific antibodies to 

particular epitopes (Okech et al., 2004). So, investigating the role of fine 

specificity of antibodies seems to be more important than their simple 

prevalence or titre to determine their protective efficacy. For example, 

Okech and colleagues (2004) demonstrated that there is a significant 

correlation between antibody specificity and protection against malaria 

infection and high-density parasitaemia in human P. Jalciparum infection. 

Regarding asexual blood stages of malaria parasite, it is therefore, possible 

to design some passive immunization studies in which targets of transferred 

specific antibodies can be determined. Findings of such epitopes and 

targets can help to identify functional mechanisms by which antibodies 

implicate in immunity such as opsonization of infected red blood cells by 

macrophages. In addition, those investigations may determine how 

transferred antibodies such as IgG subclasses affect the immune response 

against specific antigen(s). Based on the present results it cannot be stated 

that what are the mechanisms of clearance of the DK strain parasites 

following passive immunization with IgGs and or which cross-epitopes may 

be recognized by transferred IgGs in the DS-challenged mice following 

passive immunization. However, reduced peak parasitaemia and no 

detectable parasites post-challenge could suggest that replication rate of 

the parasites, even the DS strain was affected by the transferred antibodies. 
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This also could be a sign of effective control of reinvasion by neutralizing 

new merozoite. Nevertheless, more studies are required to determine what 

are the susceptible stages of the DK or DS strains, as relevant targets for 

the these IgGs. For identifying and distinguishing which antigens are 

actually recognized by the purified transferred antibodies techniques such 

as F ACS may be used. The protective effects of passive immunization have 

been investigated with purified MAbs against specific antigens of rodent 

malaria parasites such as MSP-1 or stage-specific merozoite antigens 

(Majarian et at., 1984; Spencer Valero et al., 1998; Freeman, 

Trejdosiewicz, and Cross, 1980). In the present study, although, the effect 

of MAbs was not examined, purified parasite-specific IgG 1 or IgG2a 

showed degree of protection against avirulent and virulent challenges. So, 

further investigations may determine any protection role for passively 

transfer of MAb prepared from these subclasses against the DK and DS 

strains of P. c. adami as a suitable model of rodent malaria parasite. These 

investigations also help how to determine specific targets of those MAbs 

among asexual blood stages. This could also include identifying more 

effective MAb which has cross-reactivity and variant-specificity in diffent 

species. Identifying of target antigens or epitopes for these cross-reactive 

MAbs is also important in vaccine design studies. 

The present study provided useful information to understand better the 

kinetics of specific antibody production after immunization and 

rechalleneg. It also provide some information regarding determination of 

possible cross-reactivity of antibodies between avirulent and virulent 

infections which are basically important in vaccine development studies. 
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Chapter 6. Synthetic peptide immunization 

6.1. Introduction 

Synthetic peptide immunization seem to be an attractive strategy for 

antigen delivery. Synthetic peptides are relatively easy to obtain in large 

quantities, with high purity, and can be made immunogenic by coupling 

with suitable carrier proteins and/or adjuvants (Tsuji and Zavala, 2001). 

U sing these vaccines is safe because they are not infectious. Synthetic 

peptides also do not integrate into the chromosomes of immunized host 

preventing possible undesirable mutations that could result from using 

DNA-based vaccines (Tsuji and Zaval, 2001). 
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In rodent malaria, the efficacy of T cells elicited by peptide immunization 

showed that peptide immunization may lead to the preferential activation of 

CD4+ and CD8+ T cells in C57BL/6 mice and CD8+ T cells in BALB/c mice 

(Renia et ai., 1991). They demonstrated that parasite elimination was 

directly mediated by these cells when in vitro T-cell activity was evaluated 

on cultured hepatic stages of P. yoelii. So, they suggested that CD4+ and 

CD8+ T cells primed with the peptides could be cytolytic for the hepatic 

stage of malaria parasites. Moreover, it is possible to induce protective 

CD4 + T cell responses in mice immunized with P. c. adami proteins with 

molecular mass of 25 to 40 kDa and challenged with the parasite (Kima, 

Srivastava and Long, 1992). A single subcutaneous injection of 50 /-lg of a 

large soluble synthetic peptid which corresponds to the N - and the C­

terminal domains 22-125 and 289-390 of P. Jalciparum 7G8 isolate can 

elicit CS-specific CTL in vivo with one boosting injection in BALB/C mice 

(Blum-Tirouvanziam et al., 1994). So, attempting to identify peptides with 

high immunogenicity and smaller molecular weight is thought to be a 

desired aim for further vaccine researches. 

One important aim in immunization against malaria parasites is that 

what type of immune response should be generated which elicits both B­

and T-cell responses as necessities in protection at different stages. The 

effectiveness of malaria synthetic peptide vaccines against antigens 

expressed in sporozoites and/or liver stages is correlated with the presence 

of parasite-derived epitopes that elicit CD4+ T cells (Tsuji and Zavala, 

2001). These highly immuno genic vaccines could function both as a source 

of cytokines to induce both antibody-dependent and cell-mediated immune 

response to control infections (Tsuji and Zavala, 2001). It has been shown 
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that synthetic peptide vaccines in mice are capable of inducing high titres 

of anti-repeat of CSP antibodies protective against sporozoite challenge of 

P. berghei (Zavala et aI., 1987). 

Immunization with a single synthetic peptide-vaccine, the tetramer repeat 

region of the P. Jaiciparum CSP (NANPh, elicited relatively low titres of 

anti-repeat antibodies in volunteers (Herrington et ai., 1987). So, it seems 

that a multi-stage vaccine may be more effective if liver-stage and blood­

stage antigens were combined into a single formulation, because if 

parasites escape control at the liver stage they could be eliminated by 

immunity targeted against blood-stages. Mice immunized with the repeat 

region of P. berghei CSP conjugated to tetanus toxoid developed high titres 

of antibodies to native CSP on the P. berghei sporozoite and the magnitude 

of the antibody response was correlated with level of protection (Zavala et 

ai., 1987). To avoid risk of carrier toxicity in such vaccines multiple 

antigen peptides (MAPs) were developed (Tarn et ai., 1990). An example of 

these vaccines contains repeated B cell epitopes from PyCSP and two T 

helper epitopes that induce high levels of anti-PyCSP antibodies and 

protects inbred or outbred mice challenged with sporozoites of P. yoelii 

(Wang et ai., 1995). Chai et al. (1992) showed that immunization with 

MAP containing a P. berghei CSP repeat synthesized in tandem with a T 

helper epitope, induces a long-lasting immune response, and elicits 

secondary antibody and T cell responses in pre-infected mice. 

In humans, it has been demonstrated that following immunization with a 

MAP possessing minimal T and B cell epitopes, high levels of parasite­

specific antibodies were elicited in 10 out of 12 volunteers with known 

class II genotypes (Nardin et ai., 2000). The synthetic peptide was 

composed of only five amino acids (N A VDP) and was able to elicit 

parasite-specific antibody titres comparable to multiple exposures to 

irradiated P. Jaiciparum-infected mosquitoes (Nardin et ai., 2000). 

Immunization of BALB/c mice with three doses of another MAP vaccine 

which was constructed as a combination of four branches of amino acids 57 

to 70 of CSP linked to a lysine-glycine core and lipofectin as an adjuvant, 

induced T cell proliferation and a peptide-specific CTL response (Franke et 

ai., 2000). Ak et ai. (1993) showed that a synthetic peptide based on the P. 

yoelii CSP major repeat and conjugated to KLH induced protective 

antibodies against P. yoelii challenge. Howeve, they showed that a specific 
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antibody subclass is not required for protection. Bharadwaj et al. (1998) 

designed a synthetic peptide vaccine containing a motif which is highly 

conserved in the CSP and the thrombospondin-related anonymous protein 

(TRAP) of different Plasmodium species. This motif is shown to be 

crucially involved in the sporozoite invasion of hepatocytes. It has been 

also shown that antibodies raised against this motif which was originally 

from CSP of the 7G8 clone of P. Jalciparum inhibit merozoite invasion of 

erythrocytes. They showed that immunization with a linear multi-epitopic 

construct, a 60-residue (P60) peptide, containing the conserved motif 

sequence, elicited anti-P60 antibodies that can block P. Jaiciparum 

merozoite invasion in a dose-dependent manner. They also showed that 

more than 60% of immunized mice survived a heterologous challenge with 

a lethal strain of P. yoelii. It also induced significant levels of cytokines 

such as IL-2, IFNy, and IL-4 in BALB/c mice. So, their study suggested 

that an appropriate medium-sized synthetic peptide can generate a specific 

immune response to critical epitopes in an antigen and could be part of a 

multicomponent malaria vaccine. 

Cryptic epitopes are defined as epitopes that induce T cells which 

recognize the immunizing peptides only and not antigens naturally 

processed by APC or infected cells (Franke et al., 2000). These epitopes 

can be used as peptide-based vaccines which elicit protein-specific helper 

T cells in in vivo assays (Good et al., 1990). However, a cysteine­

containing peptide motif designed by Bharadwaj et al. (1998) also 

represented a cryptic epitope during natural infection. It has been shown 

that antibodies against this motif were capable of inhibiting merozoite 

invasion of erythrocytes (Bharadwaj et aI., 1998). 

Long polypeptides such as the N -terminal amino acids 22-125 and the C­

terminal 289-390 regions of the CSP of P. Jaiciparum can induce 

neutralizing antibody responses in two population in South America and 

Africa. These antibodies can prevent P. jalciparum sporozoite penetration 

in vitro (Roggero et al., 1995). In rodents, immunization of BALB/c mice 

with a long synthetic polypeptide of 69 amino acids, encompassing the C­

terminal region of CSP, induced immune responses including high titres of 

anti-peptide antibodies which recognized the native P. berghei CSP, 

specific-CTL response for this polypeptide, and partial CD8+ T cell 

protection against sporozoite challenge (Roggero et al., 2000). 
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With regard to immunization against blood-stage, Spf66, a synthetic 

multi-component asexual blood stage peptide vaccine containing three 

synthetic peptides corresponding to fragments of the PfMSP 1 and the 

repeat region of CSP (Patarroyo et al., 1988), is the only vaccine to reach 

phase III clinical trials (Kaur et al., 2002). This vaccine induced protection 

against P. Jalciparum challenge in Aotus monkey (Patarroyo et al., 1987). 

However, in human clinical trials, its efficacy was between 35% in South 

America (Valero et al., 1996), 31 % in children aged between 1-5 years in 

Tanzania (Alonso et al., 1994). In Gambian trials it was shown that anti­

SPf66 antibodies decayed and fell to 5-10% of maximum levels within four 

months (D' Alessandro et aI., 1996). In other clinical trials of Spf66 and 

their following up no more than 8% efficacy was observed in Gambian 

infants (D' Alessandro, 1996; Bojang et al., 1997 and 1998). 

In rodent malaria, Holder and Freeman (1981) first showed that 

immunization with an affinity-purified protein, MSP-1, induced a high 

level of protection against P. yoelii infection in mice. It has been 

demonstrated that immunization with recombinant polypeptides containing 

the 19-kDa region from P. yoelii MSP-1 primarily induced antibody­

dependent responses that protect mice against asexual parasite challenge 

(Calvo, Daly, and Long, 1996; Daly and Long, 1995). Burns and colleagues 

(2003) demonstrated that immunization of C57BL/6 mice with recombinant 

antigens, including the 54-kDa ectodomain of AMA-1 and the 42-kDA C­

terminal of MSP-1, both from P. c. adami 556KA, induced a high level of 

protection against P. c. adami infection. They showed that immunization 

with each antigen alone elicited the same level of IgG. They did not find 

more efficacy compared to each antigen alone when both peptides were 

used in a formulated combination. Moreover, immunization of rabbits with 

peptides derived from AMA-1, designated J1 to J7, induced high titres of 

anti-peptide antibodies which were reactive with native AMA-l. The 

peptides J1, J3, and J7 were the most reactive ones. Anti-peptide antibodies 

in human were isolated from plasma samples of people who exposed to 

chronic malaria reacted with J1 and J7 peptides using immobilized peptide 

immunoadsorbents. Anti-peptide antibodies were also obtained from white 

rabbits which were immunized with peptide-KLH conjugates emulsified in 

0.5 ml of Freund's complete adjuvant. The study also showed that both 

humans and rabbit specific-antibodies against J1 and J7 peptides are 
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capable of inhibiting the invasion of erythrocytes by P. faiciparum 

merozoites (Casey et ai., 2004). 
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Moreover, it is known that different fragments of known antigens, such as 

MSP-1, induce different levels of protection. Tian et ai. (1997) examined 

efficacy of different fragments of MSP-1 in immunization of mice against 

P. yoelii and in Aotus monkeys against P. faiciparum. They found that 

recombinant 19-kDa C termini from both P. jaiciparum in Aotus, and P. 

yoelii in mice, induced protective responses after immunization with 

Freund's adjuvant. However, other fragments, such as a 42-kDa C-terminal 

region, induced partial protection (Tian et ai., 1997; Chang et ai., 1996). 

Other parts of MSP-1 did not have efficacy as good as those previously 

described. Mice immunized with a recombinant protein containing two 

EGF -like molecules of MSP-1 of P. yoelii may be protected by a MSP-1-

restricted T cell response, and to a lesser extent, IgG2a antibodies (Ling et 

ai., 1997). 

In some other vaccine studies single antigen immunization with purified 

native or recombinant antigens have been the main aim. Immunization with 

AMA-1 or MSP-1 in rodent and monkey malaria models was investigated 

(Anders et ai., 1998; Crewther et ai., 1996; Daly and Long, 1995; Hodder, 

Crewther, and Anders, 2001). Burns et al. (2003) showed that in a single 

antigen immunization experiment with recombinant PcAMA-1 or PcMSP-1, 

specific IgG 1 was predominant and showed significant protection against 

P. c. adami 556KA challenge by significant reductions in peak parasitaemia 

in immunized C57BL/6 mice compared to controls. The profile of the 

results was the same when mice immunized with three different adjuvants. 

However, immunization with combined formulations of recombinant 

PcAMA-1 and PcMSP-142 induced protection against P. c. adami infection 

at a high level (Burns et ai., 2003) which was comparable to single antigen 

immunizations. Immunization with bacterial plasmids (Ling, Ogun, and 

Holder, 1995) used to express a recombinant protein containing two EGF­

like modules domains, individually and in combination, induced protective 

and specific antibody responses to the targeted proteins of P. yoelii MSP-1. 

The mechanisms required for sterile immunity in malaria infection are not 

completely known. A role for antibody is shown by the passive transfer of 

polyclonal anti-repeat CSP antibodies derived from MAP immunized 

rodents which can protect naIve recipients against sporozoite challenge of 
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P. yoelii and P. berghei (Wang et ai" 1995; Reed et al., 1997; Nardin et 

ai" 2000). On the other hand, CD4+ T cell responses mediate protection 

through release of IFNy which inhibit intracellular liver stages of the 

parasite (Ferreira et al., 1986). This response can be induced in murine P. 

yoelii malaria by MAP immunization (Migliorini, Betschart, and Corradin, 

1993; Wang et al., 1996). 

Many new potential vaccine candidates such as products of the rijin, 

stevor, and clag genes have been identified (Hoffman et ai, 2002). 

Regarding to clag gene family in P. jaciparum (see Chapter One), some 

clag-like genes are also identified in rodent malaria parasites such as P. 

chabaudi, P. yoelii and P. berghei (Holt et at., 2001). Three synthetic 

peptides designated PI, P2, and P3 are used in the present study. The 

amino acid sequences of these peptides are chosen based on genes clag 7 

and 3 of P. chabaudi AS. The amino acid sequences of PI is conserved 

between clag 7 and 3 and are absed on postions 121-134 and 128-141 

respectively. The P2 and P3 are specific for clag 7 and 3 respectively. The 

amino acid sequences of P2 and P3 are based on postions 244-257 and 246-

259 respectively (Personal communication and NCB I web site). Janssen and 

colleagues (2002) identified a highly conserved multi gene family in three 

different rodent malaria parasites, P. yoelii, P. berghei, and P. chabaudi 

which has homologues in the human malaria P. vivax (Janssen et al., 2002). 

This gene family has been named cir as it was discovered in P. chabaudi. 

The homology of cir with P. vivax (vir gene family) shows the importance 

of P. chabaudi as a model for the human malaria infections. Two cir­

related synthtetic peptides used in the present study are designated P4 and 

P5. The location of amino acid sequences are between positions 102-115 

for P4, and between 174-187 for P5 based on sequenced mRNA of cir gene 

in P. chabaudi AS. 

A strategy for blood-stage malaria vaccines is focused on disrupting or 

preventing cytoadherence (reviewed by Brown, 1999). As P. chabaudi 

shows antigenic variation (McLean, Pearson and Philips, 1982) which 

involves in cytoadherence and pathology of malaria (Smith et al., 1995), 

the synthetic peptides as the products of clag and cir genes were included 

in the interests of the present study. Of clag genes the clag gene 9 of P. 

jalciparum has been cloned in yeast artificial chromosomes and mapped 

with sequence tagged sites (Holt et al., 1999) and its protein product is 
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identified as having a role in cytoadherence and designated CLAG9. 

However, Ling et al. (2004) showed that CLAG9 is a part of RhopH 

complex casting doubts on direct role for CLAG9 in cytoadherence. Thus 

they suggested that RhopH may have multiple functions including, with 

respect to CLAG9, a contribution to the mechanism of cytoadhesion such as 

invasion of sporozoite and merozoite into hepatocytes or erythrocytes 

resectively. 

In the present study five small synthetic peptides, each has 15 amino 

acids, were used in conjugation with KLH as carrier protein for 

immunization against the rodent malaria parasite P. c. chabaudi AS. These 

peptides are based on clag and cir gene families and were synthesized 

based on P. c. chabaudi AS genome sequencing. Figure 6.1 a and b shows 

the amino acid sequences of these synthetic peptides based genomic data of 

P. chabaudi AS from NIBC in which positions of each peptide can be seen. 

In the present study comparison of the effects of immunization with the 

above synthetic peptides in protection against P. chabaudi AS challenge 

was examined. This aim helps to determine the most immunogenic peptide 

which may be involved for future designing a putative single or multiple 

immunogenic peptides for inducing more protective immune response. 

The present study, therefore, was designed to develop knowledge about 

some of the functional properties of the synthetic peptides based on above 

genes. The course of infection, the profile of the antibody response were 

examined in NIH mice immunized with the indicated synthetic peptides and 

challenged with P. chabaui AS. 
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6.2. Results 

Different groups of NIH mice, as described below, were used in this set of 

the experiments. The size of each group was six NIH mice. The inoculum 

was equal proportion (50/50 %) of each synthetic peptide conjugated with 

KLH, and adjuvant, Titermax (150j.l1 of the emulsion containing 75j.lg of 

the conjugated peptide per mouse). In the control group mice were injected 

with 150j.l1 adjuvant and PBS (50/50 %). Inocula were injected i.p. 

according to the manufacturer's instruction (Pierce, USA). 

There were two test groups for immunization: 

a) Mice immunized with each synthetic peptide conjugated to KLH plus the 

adjuvant. 

b) Mice immunized with each peptide conjugated to KLH only. 

In the control group mice were infected with the parasites and inj ected 

adjuvant plus PBS. The immunization protocol is detailed in Chapter Two. 

For PI, P2, and P3 an initial inj ection and two boosting inj ections were 

performed with the same amount of peptide at one-week intervals. Three 

boosting inj ections for P4 and P5 were given. Mice were challenged with 

1 x 1 0 5 pRBCs of P. chabaudi AS, two weeks after the last boosting 

injection. The courses of infection were monitored in each group as well as 

in the control group. Specific anti-peptide and anti-parasite anibodies 

(reaction between immunized and control group to lysate of pRBCs of the 

parasite) were evaluated with ELISA after each boosting injections, and 

also after the parasite challenge. As control, reactions of serum from naIve 

mice to each peptide coated in ELISA plate or the lysate of P. chabaudi AS 

were also measured. Reactions between sera from immunized and control 

mice to lysate of naIve mice for detection of specific antibodies were 

examined. However, due to very low levels their related results have not 

shown. 

6.2.1. Immunization of NIH mice with PI, P2, or P3. 

The courses of infection, anti-parasite, and anti-peptide IgG (whole 

molecule), IgG 1, and IgG2a in mice immunized with PI, P2, or P3 were 

examined as described above. 
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6.2.1.1. The course of infection in mice immunized with Pl, P2, or P3 

Figures 6.2 and 6.3 show the course of infection in NIH mice immunized 

with three different peptides based on clag genes products. In all 

immunized mice, statistically significant lower (Tukey's test, P< 0.001 for 

all groups) peak parasitaemias were observed compared to controls. In mice 

immunized with conjugated peptides without adjuvant peak parasitaemia 

was significantly lower (Tukeys's test, P < 0.001) compared to mice 

immunized with the conjugated peptide plus adjuvant (analysis was 

performed for peak parasitaemias between different groups of immunized 

mice). So, the results showed that using adjuvant had no significant effect 

on reduction of peak parasitaemia. The peak parasitaemia in non­

immunized control mice was 56.4% while mice immunized with PI showed 

the lowest peak parasitaemia with 41.99% between the immunized mice. 

This latter peak was significantly lower (Tukey's test, P < 0.01 for PI vs 

P2, and P < 0.001 for PI vs P2+adj) than that in mice immunized with P2, 

P2 plus adjuvant, and P3 plus adjuvant. No significant difference was seen 

for peak parasitaemia in mice immunized with PI or P3 without adjuvant. 
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Figure 6.1 a : An alignment of clag clones with the peptides sequenced 

highlighted. 

The amino acid sequences of clag clones are derived from genomic 

sequences. The amino acid sequences of PI which are conserved between 

clag 7 and 3 and are based on positions 121-134 and 128-141 respectively. 

The P2 and P3 are specific for clag 7 and 3 respectively. The amino acid 

sequences of P2 and P3 are based on positions 244-257 and 246-259 

respectively (Personal communication and NCBI web site). 
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Figure 6,1 b: An alignment of Gir clones with the peptides sequenced 

highlighted, 

The amino acid sequences of cir derived from sequenced mRNA, The ammo 

acid sequences ofP4 and P5 are based on positions 102-115 and 174-187 

respectively (Personal communication and NCBI web site), 
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Figure 6.2. The course of infections in mice immunized with three different 

synthetic peptides based on clag gene family. Each group included six 

mIce. 

The levels of parasitaemia are shown as the mean % ± SEM for each time 

point. However, ±SEM is not shown when it is too small. 

Immunization included initial injection followed by two boosting injections 

of the same size at 14 day intervals. 

Mice were challenged with 1 x 10 5 pRBCs of P. c. chabaudi AS i.p. and 

parasitaemia was monitored for 30 days p.i. 

PI +adj, P2+adj, and P3+adj: Mice were immunized with the conjugated 

peptides 1, 2, or 3 to KLH and the adjuvant respectively. 

PI, P2, and P3: Mice were immunized with conjugated peptides 1, 2, or P3 

to KLH. 

Control: mice were injected with adjuvant and PBS. 
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Figure 6.3.The course of infections in mice immunized with three different 

synthetic peptides based on clag gene family. Each group included six 

mIce. 

The levels of parasitaemia are shown as mean 10giO pRBCs per 10 5 RBCs. 

Immunization included initial inj ection followed by two boostings of the 

same size at 14 day intervals. 

Mice were challenged with 1 x 10 5 pRBCs of P. c. chabaudi AS i.p. and 

parasitaemia was monitored for 30 days p.i. 

PI +adj, P2+adj, and P3+adj: Mice were immunized with the conjugated 

peptides to KLH and the adjuvant separately. 

PI, P2, and P3: Mice were immunized with conjugated peptides to KLH. 

Control: Mice were injected with adjuvant only. 
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6.2.1.2. Anti-peptide IgG (whole molecule) post-immunization and post­

challenge in mice immunized with PI, P2, or P3 

Anti-peptide IgG (whole molecule) levels were examined as described in 

Chapter Two. To determine specific anti-peptide antibody, each peptide 

was conjugated with BSA and coated on ELISA plates. The IgG levels were 

significantly higher (Bonferroni test, P < 0.0001) in immunized mice 

compared with that in control mice inj ected with adjuvant only (Figure 

6.4). Mice immunized with PI and P2 produced higher levels of IgG 

compared to mice immunized with P3. For example, in mice immunized 

with PI or P2 anti-peptide IgG (whole molecule) was significantly higher 

(Bonferroni test, P < 0.01, and P< 0.05 respectively) than that in mice 

immunized with P3. When the results analysed for each time point, it is 

shown that mice immunized with PI induced significantly higher levels 

(Tukey's test, P < 0.00 1 for both day 19 and 21 post-immunization) of anti­

peptide IgG (whole molecule) than mice immunized with P2 or P3. 

Figure 6.5 shows that anti-peptide IgG (whole molecule) post-challenge 

increased over the time and it was differed significantly between all tested 

groups (Two way ANOV A, P < 0.000 1). In mice immunized with PI post­

challeneg specific anti-peptide IgG (whole molecule) levels were 

significantly higher (Tukey's test, P < O. 00 1 for all days post-challenge) 

than that in mice immunized with P2 or P3. 

6.2.1.3. Anti-parasite IgG antibody (whole molecule) post-immunization 

and post-challenge in mice immunized with PI, P2, or P3 

To determine that whether anti-peptide antibodies present in sera of 

immunized mice can react with natural crude parasite antigens, soluble 

lysate of p, chabaudi AS was coated on ELISA plates and reactions 

between serum from immunized mice and the lysate were examined. This 

test shows that anti-peptide antibodies, which have been induced following 

immunization, may recognize similar antigens or epitopes to the synthetic 

peptide present in the lysate of the parasite. This indicates the presence of 

cross-reacting epitope reactions. This test was performed for both post­

immunization and post-challenge time points. 
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Figure 6.6 shows that anti-parasite IgG were significantly different (Two 

way ANOVA, P < 0.0001) between all tested groups post-immunization. 

Anti-parasite IgG in mice immunized with PI was significantly higher 

(Tukey's test, P < 0.001) compared to anti-parasite IgG levels in mice 

immunized with P2 or P3. Figure 6.6 shows that after the second boosting 

no increase was seen in levels of IgG in immunized mice. 

Regarding post-challenge, anti-parasite IgG level in mice immunized 

with PI was significantly higher (Tukey's test, P < 0.05 for days, 7, 14 and 

21 in both samples) than that in mice immunized with P2 or P3. However, 

there were no significant differences for IgG levels between mice 

immunized with P2 or P3 (Figue 6.7.) 
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Figure 6.4. Anti-peptide IgG (whole molecule) production post­

immunization in mice immunized with synthetic peptides 1, 2, or 3. 
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An initial injection of emulsion was followed with two boosting injections 

and anti-peptide IgG was examined. Each peptide was conjugated to BSA 

for coating on ELISA plate. Sample sera and control serum were reacted to 

each conjugated peptide coated on ELISA plates. Levels of specific IgG are 

shown as mean ± SEM. However, ±SEM is not shown when it is too small. 

a) Anti-peptide IgG level post-immunization for PI 

b) Anti-peptide IgG level post-immunization for P2 

c) Anti-peptide IgG level post-immunization for P3 

o Sera of mice immunized with peptide conjugated to KLH. 

D Sera of mice immunized with peptide conjugated to KLH and adjuvant. 

• Sera of mice injected with adjuvant only. 

II Sera of naIve mice reacted with the coated peptides. 
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Figure 6.5. Anti-peptide IgG (whole molecule) production post-challenge in 

mice immunized with synthetic peptides 1, 2, or 3. 

An initial injection of emulsion was followed with two boosting injections 

and anti-peptide IgG was examined. Each peptide was conjugated to BSA 

for coating on ELISA plate. 

Sample sera and control serum were reacted to each conjugated peptide 

coated in ELISA plate. Levels of specific IgG are shown as mean ± SEM. 

However, ±SEM is not shown when it is too small. 

a) Anti-peptide IgG level post-challenge for PI 

b) Anti-peptide IgG level post- challenge for P2 

c) Anti-peptide IgG level post- challenge for P3 

o Sera of mice immunized with peptide conjugated to KLH. 

D Sera of mice immunized with peptide conjugated to KLH and adjuvant . 

• II 
Sera of mice inj ected with adjuvant only. 

Sera of naIve mice reacted with the coated peptide. 
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Figure 6.6. Anti-parasite IgG (whole molecule) production post­

immunization in mice immunized with the synthetic peptides 1, 2, or 3. 

An initial injection of emulsion was followed with two boosting injections 

and anti-parasite IgG was examined. Levels of specific IgG are shown as 

mean ± SEM. However, ±SEM is not shown when it is too small. 

Lysate of pRBCs (obtained from mice infected with P. c. chabaudi AS) was 

coated on the ELISA plates. 

a) Anti-parasite IgG level post-immunization for PI 

b) Anti-parasite IgG level post-immunization for P2 

c) Anti-parasite IgG level post-immunization for P3 

D Sera of mice immunized with peptide conjugated to KLH. 

D Sera of mice immunized with peptide conjugated to KLH and adjuvant. 

• Sera of mice inj ected with adjuvant only. 

II Serum of naive mice reacted to lysate of infected mice. 
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Figure 6.7. Anti-parasite IgG (whole molecule) production post-challenge 

in mice immunized with the synthetic peptides 1,2,or 3. 

An initial injection of emulsion was followed with two boosting injections 

and anti-parasite IgG was examined. Levels of specific IgG are shown as 

mean ± SEM. However, ±SEM is not shown when it is too small. 

Sample sera and control serum reacted to Lysate of pRBCs which was 

coated on ELISA plate. 

a) Anti-parasite IgG level post-challenge for PI 

b) Anti-parasite IgG level challenge for P2 

c) Anti-parasite IgG level challenge for P3 

o Sera of mice immunized with peptide conjugated to KLH. 

D Sera of mice immunized with peptide conjugated to KLH and adjuvant. 

• Sera of mice injected with adjuvant only. 

III Serum of naive mice reacted to lysate of infected mice. 
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6.2.1.4. Anti-parasite IgGI production post-immunization and post­

challenge with PI, P2, or P3 
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Anti-parasite IgG 1 was examined in all immunized mice as described 

earlier to determine the presence of any cross-epitope reactions. These 

reactions show that sera from immunized mice contain anti-peptide IgG 1 

which can recognized epitope(s) which are similar to the synthetic peptide 

in the soluble lysate of the parasite. Due to limited amounts of the 

synthetic peptide anti-peptide IgG 1 was not examined. 

Figure 6.8 shows that there were significant (One-way ANOVA, P < 

0.0001) differences in anti-parasite IgG1 levels between all groups. Mice 

immunized with the peptides showed significantly higher (Tukey's test, P < 

0.001) level of IgG1 than that in control groups including mice given only 

adjuvant. Mice immunized with PI induced significantly higher (Tukey's 

test, P < 0.001 for PI v P2, PI v P1+adj, PI v P3+adj and P < 0.01 for PI v 

P3) levels of IgG 1 than mice immunized with P2 or P3. Immunization with 

P3 or P3+adj induced significantly higher (Tukey's test, P < 0.001) level of 

IgG1 compared to IgG1 levels in mice immunized with P2. However, no 

increase was observed after the second boost. 

Figure 6.9 shows that post-challenge anti-parasite IgG 1 increased over 

time in mice immunized with PI, P2, and P3. However, mice immunized 

with PI showed a significantly (Tukey's test, P < 0.001) higher level of 

IgG 1 compared to mice immunized with P2 and P3. The increases of IgG 1 

in mice immunized with P2 or P3 did not significantly differ over time 

post-challenge. 

6.2.1.5. Anti-peptide IgG2a production post-immunization and post­

challenge in mice immunized with PI, P2 or P3 

Anti-peptide IgG2a antibodies were examined in all immunized mice post­

immunization and post-challenge as described in Chapter Two and above. 

Figure 6.10 shows that the IgG2a level were significantly different (Two­

way ANOVA, P < 0.0001) between all tested groups. The highest level of 

IgG2a was detected for mice immunized with PI and the lowest level was 

for mice immunized with P2. The P2 immunization also induced lower 



Chapter 6, Synthetic peptide immunization 

IgG2a levels compared to P3, In other words the levels of IgG2a in mice 

immunized with P 1 or P3 were significantly higher (Tukey's test, P < 

0.001) than those in mice immunized with P2. 
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The anti-peptide IgG2a post-challenge also significantly differed (Two­

way ANOVA, P < 0.0014 for OD and P < 0.0038 for time) between all the 

tested groups (Figure 6.11). Figure 6.11 also shows that immunized mice 

with the peptides produced significantly higher (Bonferroni test, P < 

0.0001) levels of IgG2a post-challenge compared to its levels post­

immunization. Mice immunized with P 1 showed the highest level of IgG2a, 

particularly on the last sampling day, day 19 post-challenge, which was 

significantly higher (Tukey's test, P < 0.001 and P, < 0.01 for P2 and P3 

respectively) compared to IgG2a in mice immunized with P2 or P3. No 

significant differences were observed between mice immunized with P2 and 

P3. 

The profile of anti-peptide IgG2a production showed that IgG2a rose after 

the peak parasitaemia with the highest level of antibody being detected on 

day 19 post-challenge. The presence of high levels of IgG2a on day 4 and 7 

post-challenge indicates presence of a secondary immune response. 

6.2.1.6 Anti-parasite IgG2a production post-immunization and post­

challenge in mice immunized with PI, P2 or P3 

Figures 6.12 shows that sera from mice immunized with PI, P2, or P3 

induced anti-parasite IgG2a that indicated these sera recognized cross­

epitopes present in the soluble crude antigen of the parasite. The levels of 

anti-parasite IgG2a post-immunization were significantly (One-way 

ANOVA P < 0.0001) different between all tested groups. These levels of 

IgG2a in mice immunized with the peptides were significantly higher 

(Bonferroni test, P < 0.0001) than that in the control groups. Anti-parasite 

IgG2a levels increased over time post-immunization in all the groups. 

However, the increase in mice immunized with PI was significantly higher 

(Tukey's test P, < 0.00) compared to mice immunized with P2 or P3. 

In respect of post-challenge IgG2a production, figure 6.13 shows that 

mice immunized with PI, P2, or P3 induced significantly higher (Tukey's 

test, P < 0.002) levels anti-parasite IgG2a compared to IgG2a in controls. 
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Comparison of IgG2a levels between mice immunized with PI, P2, or P3 

showed that there were significantly higher (Tukey's test P < 0.002) levels 

of IgG2a on day 7 post-challenge in mice immunized with P3. These levels 

of IgG2a in mice immunized with PI was higher than that in mice 

immunized with P2, but this was not significantly different. The results 

also showed that the levels of IgG2a post-challenge were significantly 

higher (Tukey's test P < 0.002) than that in post-immunization particularly 

on the last sampling day. 
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a 

b 

c 

II in mice 

An initial injection of emulsion was followed with boosting injections and 

anti-parasite IgG 1 was examined. Levels of specific IgG 1 are shown as 

mean ± SEM. However, ±SEM is not shown when it is too small. 

Lysate of pRBCs (obtained from mice infected with P. c. chabaudi AS) was 

coated on the ELISA plates. 

a) Anti-parasite IgG 1 level post-immunization for PI 

b) Anti-parasite IgG 1 level post-immunization for P2 

c) Anti-parasite IgG 1 level post-immunization for P3 

o Sera of mice immunized with peptide conjugated to KLH. 

D Sera of mice immunized with peptide conjugated to KLH and adjuvant. 

• Sera of mice injected with adjuvant oly. 

II Serum of naIve mice reacted to lysate of infected mice. 
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Figure 6.9. Anti-parasite IgG 1 production post-challenge in mice 

immunized with the synthetic peptides 1,2, or 3. 
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An initial injection of emulsion was followed with boosting injections and 

anti-parasite IgG 1 was examined. Levels of specific IgG 1 are shown as 

mean ± SEM. However, ±SEM is not shown when it is too small. 

Lysate of pRBCs (obtained from mice infected with P. c. chabaudi AS) was 

coated on the ELISA plates. 

a) Anti-parasite IgG 1 level post-immunization for PI 

b) Anti-parasite IgG 1 level post-immunization for P2 

c) Anti-parasite IgGl level post-immunization for P3 

D Sera of mice immunized with peptide conjugated to KLH. 

D Sera of mice immunized with peptide conjugated to KLH and adjuvant. 

• Sera of mice inj ected with adjuvant only. 

II Serum of naIve mice reacted to lysate of infected mice. 
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Figure 6.10. Anti-peptide IgG2a production post-immunization in mice 

immunized with synthetic peptides 1, 2, or 3. 
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An initial inj ection of emulsion was followed with two boosting inj ections 

and anti-peptide IgG2a was examined. Levels of specific IgG2a are shown 

as mean ± SEM. However, ±SEM is not shown when it is too small. 

Each peptide was conjugated to BSA for coating on ELISA plate. Sample 

sera and control serum were reacted to each conjugated peptide coated on 

ELISA plate. 

a) Anti-peptide IgG2a level post-immunization for Pl. 

b) Anti-peptide IgG2a level post-immunization for P2. 

c) Anti-peptide IgG2a post-immunization for P3. 

D Sera of mice immunized with peptide conjugated to KLH. 

o Sera of mice immunized with peptide conjugated to KLH and adjuvant. 

• Sera of mice inj ected with adjuvant only. 

II Serum of naIve mice reacted to the coated peptides. 
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Figure 6.11. Anti-peptide IgG2a production post-challenge in mice 

immunized with synthetic peptides 1, 2, or 3. 
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An initial injection of emulsion was followed with two boosting injections 

and anti-peptide IgG2a was examined. Levels of specific IgG2a are shown 

as mean ± SEM. However, ±SEM is not shown when it is too small. 

Each peptide was conjugated to BSA for coating on ELISA plate. Sample 

sera and control serum were reacted to each conjugated peptide coated on 

ELISA plate. 

a) Anti-peptide IgG2a level post-challenge for PI 

b) Anti-peptide IgG2a level challenge for P2 

c) Anti-peptide IgG2a level challenge for P3 

D Sera of mice immunized with peptide conjugated to KLH. 

D Sera of mice immunized with peptide conjugated to KLH and adjuvant. 

• Sera of mice injected with adjuvant only. 

II Serum of naIve mice reacted to the coated peptides. 
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Figure 6.12. Anti-parasite IgG2a production post-immunization in mice 

immunized with synthetic peptides 1, 2, or 3. 
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An initial injection of emulsion was followed with boosting injections and 

anti-parasite IgG2a was examined. Lysate of P. chabaudi AS was coated on 

ELISA plate. Levels of specific IgG2a are shown as mean ± SEM. 

However, ±SEM is not shown when it is too small. 

a) Anti-parasite IgG2a level post-challenge for PI 

b) Anti-parasite IgG2a level challenge for P2 

c) Anti-parasite IgG2a level challenge for P3 

D Sera of mice immunized with peptide conjugated to KLH. 

o Sera of mice immunized with peptide conjugated to KLH and adjuvant. 

• Sera of mice inj ected with adjuvant only. 

II Serum of naIve mice reacted to lysate of infected mice. 
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Figure 6.13. Anti-parasite IgG2a production post-challenge in mice 

immunized with synthetic peptides 1, 2, or 3 related to the clag genes. 
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An initial injection of emulsion was followed with boosting injections and 

anti-parasite IgG2a was examined. Lysate of P. chabaudi AS was coated on 

ELISA plate. 

Levels of specific IgG2a are shown as mean ± SEM. However, ±SEM is not 

shown when it is too small. 

a) Anti-parasite IgG2a level post-challenge for PI 

b) Anti-parasite IgG2a level challenge for P2 

c) Anti-parasite IgG2a level challenge for P3 

o Sera of mice immunized with peptide conjugated to KLH. 

o Sera of mice immunized with peptide conjugated to KLH and adjuvant. 

• Sera of mice injected with adjuvant only. 

II Serum of naive mice reacted to lysate of infected mice. 
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6.2.2. Immunization of NIH mice with P4 or P5. 

As described above the same set of experiments were carried out to 

determine the course of infection and antibody production in mice 

immunized with P4 and PS which are synthesized basde on the cir gene 

family in P. chabaudi AS. 

6.2.2.1. The course of infection in mice immunized with P4 or P5 (cir 

gene products) 

Mice were separately immunized with two synthetic peptides, P4 or PS. 
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The peak parasitaemia in the control group was 68.36%. The peak 

parasitaemias were 6S.7% and S9.08% in mice immunized with P4 plus 

adjuvant and P4 without adjuvant respectively. For mice immunized with 

PS plus adjuvant the peak was S7.23% and for mice immunized with PS 

only it was 61. 8% (Figures 6.14 and 6.1S). Immunization of mice with the 

peptides resulted in statistically significant lower peak parasitaemias 

(Tukey's test, P < 0.001 for P4 vs control, PS and PS+ad vs control and P 

<O.OS for P4+adj vs control) compared to the control group. The results 

showed that mice immunized with PS plus adjuvant had a significantly 

lower (Tukey's test, P < 0.001 for all groups) peak parasitaemia compared 

to the other immunized groups. 
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Figure 6.14. The course of infections in mice immunized with two different 

synthetic peptides based on cir gene family. Each group included 6 mice. 

The levels of parasitaemia are shown as the mean % ± SEM for each time 

point. However, ±SEM is not shown when it is too small. 

Immunization included initial inj ection followed by three boosting 

inj ections of the same size at 14 day intervals. 

Mice were challenged with 1 x 10 5 pRBCs of P. c. chabaudi AS i.p. and 

parasitaemia was monitored for 32 days p.i. 

P4+adj, and P5+adj: Mice were immunized with conjugated peptides 4, or 5 

to KLH and the adjuvant respectively. 

P4, and P5: Mice were immunized with conjugated peptides 4, or 5 to KLH. 

Control: Mice were inj ected with adjuvant only. 
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Figure 6.15. The course of infections in mice immunized with two different 

synthetic peptides based on cir gene family. Each group includes 6 mice. 

The levels of parasitaemia are shown as mean log]o pRBCs per 10 5 RBCs. 

Immunization was included initial inj ection followed by three boosting 

inj ections at the same size by 14 days intervals. 

Mice were challenged with lxl0 5 pRBCs of P. c. chabaudi AS i.p. and 

parasitaemia was monitored for 32 days p.i. 

P4+adj, and P5+adj: Mice were immunized with conjugated peptides 4, or 5 

to KLH plus the adjuvant. 

P4, and P5: Mice were immunized with conjugated peptides 4, or 5 to KLH. 

Control: Mice were injected with adjuvant only. 
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6.2.2.2. Anti-peptide IgG (whole molecule) production post­

immunization and post-challenge in mice immunized with P4, or P5 

Specific anti-peptide IgG (whole molecule) was evaluated in mice 

immunized with P4 and P5 when conjugated peptides were coated on 

ELISA plates, 
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The results demonstrated (Figure 6.16) that in mice immunized with P4 or 

P5 the anti-peptide IgG (whole molecule) level post-immunization 

increased over time. Two-way ANOV A test showed that there were 

significant differences (P < 0.0001) for IgG (whole molecule) between all 

tested groups. The levels of anti-peptide IgG were not high at the first 

sampling days, day 14 and 21 post-immunization, but these levels increased 

later during the experimental period. Mice immunized with P5 showed 

significantly higher (Tukey's test, P < 0.05) levels of anti-peptide IgG 

(whole molecule) compared to mice immunized with P4 and the highest 

level was measured on the last sampling days, day 28 and 36 post­

immunization. The profile of total anti-peptide IgG production post­

immunization with P4 and P5 was in agreement with the profile of the total 

anti-peptide IgG production in mice immunized with PI, P2, or P3 which 

generally shows that the IgG 1 level rose later after immunization. 

Determination of the levels of anti-peptide IgG (whole molecule) post­

challenge showed (Figure 6.17) significantly higher (Tukey's test, P < 

0.01) levels of IgG in the first sampling day compared to its level at the 

same time point post-immunization. This indicates the presence of a 

stronger secondary antibody response compared to its level before the 

challenge. There were also significantly different (One-way ANOV A, P, 

0.005) levels of anti-peptide IgG between all groups post-challenge. 

Although these levels of IgG (whole molecule) did not increase enormously 

thereafter, there were significantly higher (Tukey's test, P < 0.005) levels 

of anti-peptide IgG in the last sampling day compared to the first sampling 

day. Mice immunized with P5 also showed significantly higher (Tukey's 

test, P < 0.001 for both time points) levels of anti-peptide IgG compared to 

anti-peptide IgG levels in mice immunized with P4 at the first and the last 

sampling days, day 4 and 19 post-challenge. 
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Figure 6.16. Anti-peptide IgG (whole molecule) production post­

immunization in mice immunized with synthetic peptides 4 or 5. 
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An initial injection of emulsion was followed with three boosting injections 

and specific anti-peptide IgG was examined. Levels of specific IgG are 

shown as mean ± SEM. However, ±SEM is not shown when it is too small. 

Each peptide was conjugated to BSA and coated on ELISA plate. 

a) Anti-peptide IgG level post-immunization for P4, 

b) Anti-peptide IgG level post-immunization for P5. 

o Sera of mice immunized with peptide conjugated to KLH. 

D Sera of mice immunized with peptide conjugated to KLH and adjuvant. 

• Sera of mice inj ected with adjuvant only. 

II Serum of naIve mice reacted to the coated peptides. 
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Figure 6.17. Anti-peptide IgG (whole molecule) production post-challenge 

in mice immunized with synthetic peptides 4 or 5. 

An initial injection of emulsion was followed with three boosting injections 

and specific anti-peptide IgG was examined. Levels of specific IgG are 

shown as mean ± SEM. Each peptide was conjugated to BSA and coated on 

ELISA plate. However, ±SEM is not shown when it is too small. 

a) Anti-peptide IgG level post-challenge for P4. 

b) Anti-peptide IgG level post-challenge for P5 

o Sera of mice immunized with peptide conjugated to KLH. 

o Sera of mice immunized with peptide conjugated with KLH and adjuvant. 

• Sera of mice inj ected with adjuvant only. 

II Serum of naIve mice reacted to the coated peptides. 
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6.2.2.3. Anti-parasite IgG antibody (whole molecule) post-immunization 

and post-challenge in mice immunized with P4 or P5 

To determine any reaction between sera from immunized mice and soluble 

lysate of the parasite total anti-parasite IgG levels were measured in mice 

immunized with P4 and P5 post-immunization and post-challenge. The 

results showed the similar profiles of increasing anti-parasite IgG levels 

over the time post-immunization as seen in mice immunized with PI, P2, or 

P3 (Figures 6.6 and 6.18), Figure 6.18 also shows that the levels of IgG 

were significantly different (Two-way ANOV A, P < 0.0001 for OD and P < 

0.002 for time) between all the groups, The level of anti-parasite IgG on 

the last sampling day, day 36, was significantly higher (Tukey's test, P < 

0.001) compared to its levels on the first two sampling days. In general, the 

results did not show significant differences on the last sampling day 

between mice immunized with P4 or P5. However, these results confirmed 

that the antibodies produced in immunized mice could recognize native 

antigens from lysate of the parasite. 

The levels of anti-parasite IgG (whole molecule) in mice immunized with 

P4 and P 5 were measured post-challenge when lysate of the P. chabaudi AS 

was coated on ELISA plates (Figure 6,19). The levels of anti-parasite IgG 

were significantly different (Two-way ANOVA, P < 0.0001 for OD and P < 

0.0058 for time) between all tested groups. The results showed that mice 

immunized with P4 produced significantly higher (Tukey's test, P < 0.001 

for days 4 and 7 and P < 0.01 for day 19 post-challenge) IgG (whole 

molecule) levels compared to mice immunized with P5 at all time points. 
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Figure 6.18. Anti-parasite IgG (whole molecule) production post­

immunization in mice immunized with the synthetic peptides 4 or 5. 
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An initial injection of emulsion was followed with three boosting injections 

and anti-peptide IgG was examined. Levels of specific IgG are shown as 

mean ± SEM. However, ±SEM is not shown when it is too small. 

Sample sera and control serum were reacted to Lysate of pRBCs which was 

coated on ELISA plate. 

a) Anti-parasite IgG level post-immunization for P4. 

b) Anti-parasite IgG level post-immunization for P5. 

o Sera of mice immunized with peptide conjugated to KLH. 

o Sera of mice immunized with peptide conjugated to KLH and adjuvant. 

• Sera of mice injected with adjuvant only. 

181 Serum of naIve mice reacted to lysate of infected mice. 
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Figure 6.19. Anti-parasite IgG (whole molecule) production post-challenge 

in mice immunized with the synthetic peptides 4 or 5. 

An initial injection of emulsion was followed with three boosting injections 

and anti-peptide IgG was examined. Levels of specific IgG are shown as 

mean ± SEM. However, ±SEM is not shown when it is too small. 

Sample sera and control serum were reacted to Lysate of pRBCs which was 

coated on ELISA plate. 

a) Anti-parasite IgG level post-challenge for P4. 

b) Anti-parasite IgG level post challenge for P5. 

D Sera of mice immunized with peptide conjugated to KLH. 

D Sera of mice immunized with peptide conjugated to KLH and adjuvant. 

• Sera of mice injected with adjuvant only. 

II Serum of naIve mice reacted to lysate of infected serum. 
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6.2.2.4. Anti-parasite IgGl production post-immunization and post­

challenge in mice immunized with P4 or P5 

234 

The levels of anti- parasite IgG 1 were significantly different (Two-way 

ANOV A, P < 0.0002) between all the groups and increased over time post­

immunization (Figure 6.20). Mice immunized with P4 or P5 produced 

significantly higher (Tukey's test, P < 0.005 for P4 v adj, P5 v adj, and P4 

and P5 v mice non-immunized) levels of IgG1 compared to the control 

group. 

Regarding to post-challenge figure 6.21 shows that there were significant 

(Two-way ANOVA P < 0.014 for OD and P < 0.0024 for time) differences 

for anti-parasite IgG 1 between all the groups. Mice immunized with either 

P4 or P5 induced significantly higher (Tukey's test, P < 0.001) levels of 

IgG1 than that in non-immunized mice or mice given only adjuvant. Figure 

6.22 also showed there were significantly higher (Tukey's test P < 0.01 for 

P4 v P5, P < 0.0.001 for P4 v P5+adj, and P4+adj v P5+adj) levels of IgG1 

in mice immunized with P 5 compared to mice immunized with P4 post­

challenge. 



Chapter 6. Synthetic peptide immunization 

M , 
C 

x 
o 
c 

M , 
c 

x 
o 
c 

100 ~--------------------------------------~ 

80 

60 . __ .. _-_ ... _ .. --- .. _--

40 

20 

o 
14 21 28 36 

100 ~------------------------------------~ 

80 

60 

40 

20 

o -t--'-----'-----

14 21 28 36 

Day post-innnunization 

a 

b 

Figure 6.20. Anti-parasite IgG1 production post-immunization in mice 

immunized with the synthetic peptides 4 or 5 related to the cir genes. 
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An initial injection of emulsion was followed with three boosting injections 

and anti-peptide IgG 1 was examined. 

Levels of specific IgG1 are shown as mean ± SEM. However, ±SEM is not 

shown when it is too small. 

Sample sera and control serum were reacted to Lysate of pRBCs which was 

coated on ELISA plate. 

a) Anti-parasite IgG1 level post-challenge for P4. 

b) Anti-parasite IgG1 level post challenge for P5. 

D Sera of mice immunized with peptide conjugated to KLH. 

D Sera of mice immunized with peptide conjugated to KLH and adjuvant. 

• Sera of mice injected adjuvant only. 

III Serum of naIve mice reacted to lysate of infected mice. 
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Figure 6.21. Anti-parasite IgG 1 production post-challenge in mice 

immunized with the synthetic peptides 4 or 5 related to the cir genes. 
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An initial injection of emulsion was followed with three boosting injections 

and anti-peptide IgG 1 was examined. Levels of specific IgG 1 are shown as 

mean ± SEM. However, ±SEM is not shown when it is too small. 

Sample sera and control serum were reacted to Lysate of pRBCs which was 

coated on ELISA plate. 

a) Anti-parasite IgG 1 level post-challenge for P4. 

b) Anti-parasite IgG1 level post challenge for P5. 

[l Sera of mice immunized with peptide conjugated to KLH. 

D Sera of mice immunized with peptide conjugated to KLH and adjuvant. 

• Sera of mice injected with adjuvant only. 

III Serum of naIve mice reacted to lysate of infected mice. 
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6.2.2.5. Anti-peptide IgG2a production post-immunization and post­

challenge in mice immunized with P4 or P5 

237 

The levels of anti-peptide IgG2a were determined in mice immunized with 

P4 or P5 as described above. Figure 6.22 shows that anti-peptide IgG2a 

increased over time during the observation period. The results showed that 

there is an enormous production of anti-peptide IgG2a in mice immunized 

with P4 or P5 over the observation period post-immunization. This shows 

that immunization with P4 or P5 induced higher production of anti-peptide 

IgG2a compared to all other immunized groups. The levels of IgG2a were 

significantly different (Two-way ANOV A, P < 0.0001 for OD and P < 

0.0368 for time) between all tested groups. The results also demonstrated 

that anti-peptide IgG2a levels in immunized mice were significantly higher 

(Tukey's test, P < 0.001 for all days post-immunization) than that in 

control groups at all time points. 

The Figure 6.23 shows the levels of anti-peptide IgG2a post-challenge in 

mice immunized with P4 or P5. The results indicated significantly different 

(Two-way ANOV A, P < 0.015 for OD only) levels of anti-peptide IgG2a 

between all tested groups. The anti-peptide IgG2a levels in immunized 

mice were significantly higher (Tukey's test, P < 0.0001 for all time 

points) than that in control groups. Mice immunized with P5 produced 

significantly higher (Tukey's test, P < 0.001 for all time points) levels of 

anti-peptide IgG2a levels compared to mice immunized with P4. 
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Figure 6.22. Anti-peptide IgG2a production post-immunization in mice 

immunized with synthetic peptides 4 or 5 related to the cir genes. 
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An initial injection of emulsion was followed with three boosting injections 

and specific anti-peptide IgG2a was examined. Levels of specific IgG2a are 

shown as mean ± SEM. However, ±SEM is not shown when it is too small. 

Each peptide was conjugated to BSA and coated on ELISA plate. 

a) Anti-peptide IgG2a level post-immunization for P4. 

b) Anti-peptide IgG2a level post-immunization for P5. 

[8 Sera of mice immunized with peptide conjugated to KLH. 

o Sera of mice immunized with peptide conjugated with KLH and adjuvant. 

• Sera of mice inj ected with adjuvant only. 

II Serum of naIve mice reacted to the coated peptides. 
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Figure 6.23. Anti-peptide IgG2a production post-challenge in mice 

immunized with synthetic peptides 4 and 5 related to the cir genes. 
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An initial injection of emulsion was followed with three boosting injections 

and specific anti-peptide IgG2a was examined. Levels of specific IgG2a are 

shown as mean ± SEM. However, ±SEM is not shown when it is too small. 

Each peptide was conjugated to BSA and coated on ELISA plate. 

a) Anti-peptide IgG2a level post-immunization for P4 

b) Anti-peptide IgG2a level post-immunization for P5. 

D Sera of mice immunized with peptide conjugated to KLH. 

D Sera of mice immunized with peptide conjugated with KLH and adjuvant . 

• Sera of mice injected with adjuvant only. 

II Serum of naIve mice reacted to the coated peptides 
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6.2.2.6. Anti-parasite IgG2a production post-immunization and post­

challenge in mice immunized with P4 or PS 

To determine if there are any cross-reacting epitope reactions in mice 

immunized with P4 or P5, the levels of parasite-specific IgG2a were 

determined post-immunization and post-challenge, Sera from immunized 

mice reacted to lysate of the parasite. 
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Figure 6.24 shows that the levels of anti-parasite IgG2a in immunized 

mice were significantly higher (Tukey's test, P < 0.001 for all time points) 

than that in control mice. 

Anti-parasite IgG2a in immunized mice were also determined post­

challenge (Figure 6.25). The same profile of the results as above was seen. 

Significantly different (Two-way ANOVA, P < 0.0091 for time only) levels 

of anti- parasite IgG2a were detected between all tested groups over the 

experimental period. Figure 6.25 also shows that anti- parasite IgG2a levels 

on the last sampling day were higher than that in two first sampling days. 

In general, the results confirmed that anti-peptide IgG2a antibodies in sera 

from immunized mice may recognize epitopes present in crude antigen of 

P. chabaudi AS. 
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Figure 6.24. Anti-parasite IgG2a production post-immunization in mice 

immunized with synthetic peptides 4 or 5 related to the cir genes. 
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An initial inj ection of emulsion was followed with three boosting inj ections 

and specific anti-peptise IgG2a was examined. 

Levels of specific IgG2a are shown as mean ± SEM. However, ±SEM is not 

shown when it is too small. 

Sample sera and control serum were reacted to Lysate of pRBCs which was 

coated on ELISA plate. 

a) Anti-parasite IgG2a level post-immunization for P4. 

b) Anti-parasite IgG2a level post-immunization for P5. 

o Sera of mice immunized with peptide conjugated to KLH. 

D Sera of mice immunized with peptide conjugated to KLH and adjuvant . 

• Sera of mice injected with adjuvant only. 

181 Serum of naIve mice reacted to lysate of infected mice. 
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Figure 6.25. Anti-parasite IgG2a production post-challenge in mice 

immunized with synthetic peptides 4 or 5 related to the cir genes. 

242 

An initial injection of emulsion was followed with three boosting injections 

and specific anti-peptise IgG2a was examined. Levels of specific IgG2a are 

shown as mean ± SEM. However, ±SEM is not shown when it is too small. 

Sample sera and control serum were reacted to Lysate of pRBCs which was 

coated on ELISA plate. 

a) Anti-parasite IgG2a level post-immunization for P4. 

b) Anti-parasite IgG2a level post-immunization for P5. 

D Sera of mice immunized with peptide conjugated to KLH. 

D Sera of mice immunized with peptide conjugated to KLH and adjuvant. 

• Sera of mice injected with adjuvant only. 

II Serum of naIve mice reacted to lysate of infected mice. 
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6.3. Discussion 

In the present study examination of the efficacy of immunization of NIH 

mice with different peptides which are synthesized based on clag-like or 

cir genes of P, chabaudi AS was the main aim. To approach to this aim 

monitoring of the course of infection in immunized mice after the challenge 

with P. chabaudi AS, detection and quantifying of anti-peptide antibody 

and reactivity of sera from immunized mice with the lysate of P. chabaudi 

AS were examined. The two gene families, clag and cir are thought to be 

involved in antigenic variation and cytoadherence of the parasite, P. 

chabaudi (reviewed by Kyes, Horrocks and Newbold, 2001; Janssen et ai., 

2001, and 2002). So, the products of these two gene families may be 

interested as potential vaccine candidates. Although relationship between 

cir gene and its homologous vir gene in P. vivax has been identified 

(Janssen et al., 2002), the functional properties of cir and its relationship 

with human P. falciparum rif and vir gene families in terms of immune 

response merits further studies. Determination of these properties would be 

invaluable tools which help to predict parasite/host interactions (Janssen et 

al., 2004). Regarding to the products of clag genes, multiple functions in 

terms of cell adhesion properties (Ling et ai., 2004) such as invasion of 

erythrocytes by merozoite have been proposed (Holt et al., 2001; Gardiner 

et ai., 2004). It has been also shown that clag gene products are involved in 

remodelling of red blood cells after invasion by merozoite as part of 

complex proteins in rhoptery (Ling et al., 2004). 

The present study showed that immunization of mice with the synthetic 

peptides resulted in statistically significant reductions in peak 

parasi taemias .. 

In general, the results showed a partial efficacy and a degree of protection 

induced by above synthetic peptides in the immunized NIH mice. The 

lowest peak parasitaemia was seen in mice immunized with PI. The peak 

parasitaemia in mice immunized with P2 was also significantly lower than 

that in mice immunized with P3. Comparison between P4 and P5 showed 

that in mice immunized with P5 peak parasitaemia was significantly lower 

compared to mice immunized with P4 (Figure 6.15 and 6.14). 

One important index of efficacy of vaccine candidates such as peptides is 

the delay in the onset of parasitaemia which may reduce of initial 
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parasitaemia. This could be a possi ble mechanism to ameliorate the 

severity of the disease in an endemic area (Ballou et aI., 2004). In human 

P. Jatciparum infection, it is proposed that a two-day delay in the time to 

patent parasitaemia would represent approximately an eight fold reduction 

in the number of sporozoites that develop through hepatic schizogony and 

subcequently reduction in the number of merozoites released from an 

infected hepatocytes (Ballou et at., 2004). In the present study, immunized 

mice were not challenged with sporozoites. So, reduction of the parasite in 

the liver was not examined. Nevertheless, reduced peak parasitaemias and 

kinetics of the antibody production in immunized mice indicate that the 

synthetic peptide immunization can partially control multiplication of the 

parasite during asexual blood stages following challenge with pRBCs of P. 

chabaudi AS. In the present study only mice immunized with PI plus 

adjuvant showed one-day delay in pre-patent period as pRBCs were 

observed from day 5 p.i. However, this delay did not result in the lowest 

peak parasitaemia among the immunized mice as the lowest peak 

parasitaemia was seen in the P I-immunized mice without adjuvant. 

In the present study, the effect of immunization with synthetic peptides 

with and without adjuvant was examined. Adjuvants are generally known as 

inducers for higher immune responses (Hioe et at., 1996). The adjuvant 

formulation (Playfair and Souza 1986) and route of immunization (Kenney 

et at., 1989) have profound effects on the stimulation of immune responses 

and efficacy of protection (Ling et at., 1997). However, overall according 

to the present results using Titermax adjuvant did not show more 

effectiveness in terms of inducing stronger immune response or 

significantly lowering parasitaemia compared to other groups which were 

not immunized with the adjuvant (Figures 6.15). Immunization without 

adjuvant may be advantageous because it can prevent the host from side 

effects caused by adj uvant. For example, due to undesirable side effects of 

complete Freund's adjuvant, it is not recommended for use in animals such 

as mice (http: // research.uiowa.edu/animall?get=adjuvant , 2005). 

Nevertheless, some studies have shown that using adjuvant in immunization 

process may elicit more effective immune responses. For example, using 

incomplete Freund's adjuvant in immunization of mice with synthetic 

peptides induced CTL responses (Aichele et at., 1990; Zhou et at., 1992). 

Attempts to develop new adjuvants have shown that using Montanide 

- I 
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ISA 720 (Scalzo et ai., 1995), QS-21 (Newman et al., 1992), and peptides 

admixed with lipid molecules (Borges et ai., 1994) induced CTL responses. 

Immunization with synthetic lipopeptides such as CS 252-260, a class I H-

2kd-restricted epitope from P. berghei CSP, admixed with ISA 720, or POE 

lipid molecules stimulated a strong CTL response in BALB/c mice (Hioe et 

ai., 1996). Immunization of BALB/c mice with the recombinant C-terminal 

fragment of P. yoelii MSP-1 mixed with three adjuvants being developed 

for human use (liposome, SBAS2.1, and SBA2) can protect against a lethal 

infection of P. yoelii (Ling et al., 1997). On the other hand, it has been 

shown that immunization with Lipopeptides without adjuvant induced 

strong systemic Band T cell and CTL responses in mice (BenMohammed et 

al., 1997 and 2002a). BenMohammed et al., (2002a), however, also 

reported that immunization with peptides in Montanide induced CD4+ T 

cell proliferative responses, IFNy, and antibody responses in chimpanzees. 

So, the controversial issue of using adjuvant still requires further 

investigation. Although the present study did not show any advantage for 

using Titermax as an adjuvant, using other adjuvants, or combination 

between different adjuvants needs further investigation. 

The effect of different routes of administration has also been widely 

examined. In BALB/c mice, immunized with CS peptide emulsified in 

Montanide ISA 720 CTL, responses were evident only when the immunogen 

was delivered subcutaneously (s.c.) and not i.p. (Hioe et al., 1996). Using 

parenteral inj ections, intranasal or sub-lingual delivery of lipopetides, can 

induce Band T cell and CTL immune responses significantly higher than 

that in parallel experiments in which the same antigens were inj ected s.c. 

(Ben Mohamed et al., 2002b). Ben Mohamed et al, (2002b) also showed 

that intranasal or sub-lingual delivery of synthetic lipopeptides without 

adjuvant induce strong systemic immune responses in mice including 

antibody and T cell responses, confirming successful efficient delivery to 

the central lymphoid system. This mode of antigen delivery also showed a 

preferential Th1 response. In the present study, the route of immunization 

was i.p. and this route was not compared to other possible routes. So, one 

further aspect for expansion of the present immunization study could be 

comparison of the effect of different administration routes. 

The present results showed that immunization of mice with the synthetic 

peptides resulted in significant higher anti-peptide antibodies production 
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compared to the controls after challenge with P. chabaudi AS. Positive 

reactions between sera obtained from immunized mice and natural soluble 

crude antigens, lysate of the parasite have shown that there are similar 

epitopes in the whole molecules of the soluble lysate of the parasite which 

can be recognized by serum anti-peptide antibodies. These antibodies 

including specific anti-parasite IgG2a and IgG 1 in immunized mice shows 

that peptide immunization may elicit specific antibodies which have 

reactivity with native whole antigens of the parasite. This could be an 

important aspect in immunization with synthetic peptides because these 

antibodies may be protective in heterologous challenges. In addition, the 

conserved regions of the appropriate formulation of such peptides may 

induce protective immune responses in heterologous species of malaria 

parasites. The presence of cross-reactive epitopes of malaria parasite was 

previously evident as sera of people living in endemic areas contained 

antibodies which can agglutinate pRBCs from various strains and isolates 

(Marsh and Howard, 1986; Bull et al., 1998; Giha et al., 1999 a and b). 

Giha et al. (1999b) showed high levels of broad-specificity antibodies and 

capacity of individuals to increase antibody responses to variant surface 

antigens such as PfEMP-1. Gamain et al. (2001) showed that two MAbs to 

the cysteine-rich interdomain region of PfEMP-1 can recognize 9 of 10 of 

multiple P Jalciparum strains expressing variant PfEMP-1. The present 

study suggests that anti-peptide antibodies, post-immunization, may 

recognize epitopes of products of clag or cir genes on the surface of 

merozoites or parasitized erythrocytes. So, finding peptides or combination 

of peptides which induce protective antibodies against variant antigens of 

malaria parasites such as those antigens involved in merozoite invasion 

merits more investigations. 

Previous studies showed that high titres of anti-repeat and anti-sporozoite 

antibodies can be produced along with inducing effector T cells in BALB/c 

mice immunized with two synthetic CS-peptides (residues 20-39 and 57-70) 

(Migliorini, Betschart and Corradin 1993). The present results also show 

that the kinetics of specific IgG2a and IgG 1 which are significantly higher 

than that in control mice indicates a sequential ThllTh2 activation. In 

general according to the present results a sequential Th1/Th2 response is 

supported by increases in IgG2a levels at or immediately after peak 
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parasitaemia and producing higher levels of IgG 1 later during the 

experimental period in immunzed mice compared to controls. 

In addition, this profile was seen post-immunization and post-challenge. 

However, significant higher levels of IgG2a and IgG 1 post-challenge 

compared to post-immunization indicated a stronger secondary response. 
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In general, it is known that the immune responses are remarkably 

restricted and focused on one or a few immuno-dominant epitopes (Franke 

et al., 2000). However, T cell responses can be induced by immunization 

with whole antigens in which dominant epitopes are recognized by T cells 

(Sercarz et aI., 1993). So, although challenge with the whole live parasite 

introduces many different antigens to the components of the immune 

response, anti-peptide antibodies present post-immunization in the present 

study may neutralize the known epitopes which were present in the whole 

antigens. 

The amino acid sequence of the synthetic peptide is also another 

important aspect for use in immunization. Sequence of amino acids of a 

synthetic peptide can mimic the immunological function of the native 

epitopes within native antigens. This encourages identifying appropriate 

amino acid sequences as inducers for protective immune responses. 

Recognition of epitopes of the processed products of MSP-1, such as MSP-

142 and MSP-1 19 , by antibodies has been identified and thought to be 

involved in the protective response against malaria (Blackman et al., 1990; 

Chappel and Holder 1993; Burns et aI., 1989). So, taken together, in the 

present study increases in antibody levels after the challenge could be as a 

result of inducing specific antibodies against epitopes including a few 

amino acids or whole peptide which were designed for immunization. 

Techniques such as F ACS may help to identify how DCs or other APCs 

present these epitopes to the immune system and which epitopes are 

presented. Synthetic peptides may be expressed and presented in DCs using 

plasmids which express interested peptides. Co-culturing of DCs with 

peptides can also provide peptide presentation to the immune system 

particularly to CD4+ T cells. When synthetic peptide(s) appear on the 

surface of the DCc then using anti-fluorescent-Iabelled anti-peptides 

antibodies can recognize and distinguish DCs bearing each peptide and then 

antigen-specific response of CD4 + T cells can be investigated to clarify 

ability of the induced immune response. In this regard, Casey et al. (2004) 
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also found some peptides that can mimic conformational B-cell epitopes on 

AMA-1, These peptides were used in immunization of mice and 

subsequently mice responded by producing anti-peptide antibodies which 

are involved in inhibiting merozoite invasion of erythrocytes, 

The ability of peptides to mimic some known parasite antigens has been 

recently shown (Casey et aI" 2004; Adda et aI., 1999; Demangel et aI" 

1998; Stoute et aI" 1995), This would be a good reason for using peptides 

in designated vaccines that stimulate immune responses in both cellular and 

antibody branches, On the other hand, the identified differences in the 

amino acid sequences of vaccine candidates may explain the lack of 

protection in heterologous challenge, as Renia et aI, (1997) reported that a 

recombinant C-terminal fragment of p, yoelii MSP-1 (strain YM) protects 

mice against homologous but not heterologous strain 265BY challenge, 

Timing between boosting inj ections has been thought to be another factor 

for achieving long lasting and complete protection, Bruna-Romero et aI, 

(2001) observed that when boosting was given to mice after 2 weeks the 

number of activated CD8+ and CD4 + T cells were considerably lower than 

that seen at 8 weeks suggesting either lower activation or higher apoptosis 

may be the reason, In the present study a standard protocol was followed in 

which each boosting injection was administered at one-week intervals. The 

Bruna-Romer (2001) observation encourages investigating different 

schedules in terms of the timing of boosting inj ections, 

The importance of the coupled peptides with carrier proteins and 

orientation of the peptide was evident when the magnitude of the anti­

sporozoite antibody response was directly correlated with protection 

(Zavala et aI., 1987). The peptide concentration contained in the conjugate 

vaccine is also critical for induction of protective immunity, Reed et aI, 

(1996) showed that immunization with p, berghei CS repeats coupled to 

BSA, at peptide to protein ratios of6:1, 55:1, or 170:1, protected 20,50, 

and 100% of the immunized mice, respectively. In the present study KLH 

was used as a carrier protein and another carrier proteins was not 

examined. For further investigation the route of inj ection, using different 

adjuvants, dose of immunogen and the number of boosting injections may 

be considered as Burns et aI, (2003) reported that only one dose of Pc 

AMA-1 and Pc MSP-l combination resulted in 40-fold reduction in 

parasitaemia in immunzed mice compared to controls, 
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Determination of which stage may be targeted by the immune response 

could be also another aim for further investigation, as Bharadwaj et al. 

(1996) proposed that linear multipeptides elicited immune responses which 

block merozoite invasion. 

The induction of protective CD8+ and CD4+ T cell responses by peptide 

immunization has always been an important aim in vaccine studies (Tsuji 

and Zavala, 2001). These studies provide critical information about the 

recognition and identification of the most immunogenic epitopes and 

subsequent generation of protective Th 1 and Th2 responses. The present 

results demonstrate that single peptide immunization can reduce the peak 

parasitaemia and induce anti-peptide and anti-parasite antibodies which 

might be consistent with a sequential activation of ThllTh2 response. The 

profile of IgG (whole molecule), IgG 1 and IgG2a production was in general 

similar to antibody response in mice infected with p, c. adami DK and DS 

strains. So, the present results provide further information on the 

effectiveness of synthetic peptide immunization to induce both antibody­

dependent and cell-mediated responses. Further studies can determine the 

mechanisms involved in control of the asexual blood stages of the parasites 

induced by peptide immunization. Theses mechanisms can be studied in 

rodent malaria models such as P. c. chabaudi AS which are close in some 

features to P. falciparum infection (Hoffman et al., 2002). 



------------------

Chapter Seven 

General Discussion 
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7.1. Introduction 

The present studies included the determination and comparison of the 

immune responses in NIH mice infected with avirulent P. c. adami DK and 

virulent P. c. adami DS and mixed infections of the two. Evaluation of the 

efficacy of passive immunization with purified IgG subclasses, IgG1 and 

IgG2a, in NIH mice challenged with the DS or DK strains, and the efficacy 

of immunization with synthetic peptides in NIH mice challenged with P. 

chabaudi AS were also investigated. 

7.2. The immune response in single-infections 

In the present study the profile of the immune responses in both virulent 

DS and avirulent DK infections of P. c. adami was shown to be a sequential 

Th1/Th2 CD4+ T cell response. This finding was supported by early 

production of IFNy and IgG2a and a later elevation of IL-4 and IgG1 during 

the course of infection. Some other studies have also proposed that there is 

a sequential Th1 and Th2 response against asexual blood stages of rodent 

malaria parasites such as P. chabaudi AS (Langhorne et a!., 1989 and 1998; 

Taylor-Robinson 1995), P. c. adami (Kima et al., 1992), and P. yoelii 

(Matsumoto et al., 2000). They showed that the profile of a sequential 

ThllTh2 response is indicated by the presence of a predominantly IgG2a 

response during the primary ascending parasitaemia followed by an 

increase of IgG 1 during the chronic phase of the infection. This could be as 

a result of switching from Th1 to Th2 when the primary parasitaemia enters 

resolution as Taylor-Robinson and Phillips (1994) observed in P. chabaudi 

AS infection. 

It is also proposed that a Th1 response may develops following activation 

of DCs stimulated with the malaria parasite to produce IL-12 which 

promotes IFNy production by NK cells and CD4+ T cells (Seixas et al., 

2001). A sharp rise in IFNy production was seen in spleen cells stimulated 

in vitro with pRBCs two or three days before peak primary parasitaemia 

(Stevenson et al., 1990; Taylor-Robinson and Phillips, 1994). The early 

burst of IFNy in the spleen is shown to be associated with response to 

lethal or non-lethal infections of P. yoelii in resistant CBAIJ mice (Shear et 
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al., 1989). However, they showed that in susceptible BALB/cBy mice only 

the non-lethal infection of P. yoelii showed an initial burst of IFNy. Early 

IFNy production contributes to protection through T cells and NK cells as 

nude and NK cell-depleted mice showed 50% reduction in IFNy levels 

compared to normal mice (de Souza et al., 1997). They also showed that in 

non-lethal P. chabaudi and lethal P. berghei and P. yoelii infections, IFNy 

amount increased from day 7 p.i. and day 5 p.i respectively. In this regard, 

Langhorne et al. (1989) and Stevenson and Tam (1993) showed that spleen 

cells of resistant B6 mice produce high level of IFNy within the first week 

followed by IL-4, IL-5, and IL-1 0 from 2 to 4 weeks p.i. in P. chabaudi AS 

infection. In the present study, a similar finding was observed. So, it may 

be concluded that resistance in NIH mice is mediated by an early IFNy­

dependent response followed by a Th2 response in avirulent DK or in 

virulent DS strains of P. c. adami infections. However, in untreated DS­

infected mice IFNy levels were significantly lower compared to avirulent 

DK strain. 

The role of IFNy-mediated IgG2a response is shown in the control of the 

primary acute phase of parasitaemia in P. chabaudi infection which 

indicates IgG2a as the main IgG subclass in protection (reviewed by 

Wipasa, 2002; Stevenson et al., 1990; Smith and Taylor-Robinson, 2003). 

A correlation between outcome of an infection in death and a slower 

developing and reduced IgG2a level is also suggested (Smith and Taylor­

Robinson, 2003). Although the present results confirmed the protective role 

of IgG2a in avirulent self-resolving DK strain infection, no reduced level 

of IgG2a in the virulent DS strain infection was seen which could be 

correlated to fatal outcome of the DS strain infection. Nevertheless, it is 

clear that in the virulent DS infection the presence of high levels of IFNy 

and IgG2 were not able to protect all mice from death. 

In the present study biphasic production of IFNy was seen. The maximum 

levels of IFNy were seen on the first sampling day, day 4 i.p., followed by 

a sharp decline during the peak parasitaemia and a gradual rise thereafter, 

particularly after the recrudescence. However, this second increase was not 

as high as the first elevation and it was significantly lower compared to the 

levels on the first sampling day. In agreement with the present observation 

biphasic production of IFNy has been found in resistant CBA/J mice in 
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non-lethal and lethal P. yoelii 17X infection (Shear et at., 1989). They 

showed that an early peak of IFNy was followed by a second peak which 

usually occurs after the primary resolution of the infection. However, the 

present results showed that the profile of cytokine production, as markers 

for Th1 (IFNy) or Th2 (IL-4), were not changed in resistant NIH mice 

infected with either avirulent DK or virulent DS strains. 

It is known that CD4 + Th2 cells specifically contribute to protection of 

mice infected with P. c. chabaudi through a strong IgG 1 response (Taylor­

Robinson et at., 1993). Although there is a need for further investigation to 

identify how and when switching from a Th1 to a Th2 dependent response 

occurs, it has been shown that there is a significant specific IgG 1 response 

to P. c. chabaudi around the time of recrudescence (reviewed by Taylor­

Robinson, 1995). In agreement with this observation, the present results 

showed that specific IgG 1 against both avirulent DK and virulent DS 

strains increased later during the course of infection particularly around the 

time of recrudescence (Figures 3.19-21) alongside the highest levels of IL-

4 (Figures 3.14-16). Although levels of IgG 1 and IL-4 were high on the last 

sampling days, the levels of IgG2a were also high at these time points, 

pro bably due to a parasite recrudescence and new variants of the parasite. 

So, it may be proposed that a recrudescent parasitaemia may playa role as 

a stimulator for inducing an appropriate secondary response in the presence 

of memory cells as a crucial factor for the host to clear the parasite 

(Garraud et at., 2003). 

The present study also showed that virulence of P. c. adami DS strain did 

not change the profile of the immune response when mice infected with 

either with 1 x 104 or a lower infective dose of 2x 103 pRBCs. However, 

mice infected with the lower infective dose showed one-day delay in 

appearance of the parasitaemia and three days in time taken to death. 

7.3. The immune response in the mixed infection 

This study also examined possible cross-reactivity and parasite/parasite 

interactions in mixed infections of two DK and DK strains of P. c. adami. 

Higher virulence was observed in mixed-clone infection compared to 

single-clone infection when weight loss and reduction in mean red blood 

cells count were measured (Taylor, Mackinnon, and Read, 1998). On the 
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other hand, the study of Taylor and collegues suggested that replication 

rate and parsite densities were not always higher in mixed infection. 

Regarding the results presented here mixed infection showed a higher 

virleunce compared to the DK single-infection when peak parasitaemias 

were considered. The present results indicated that a low proportion of the 

virulent DS strain in an infective inoculum caused a significantly higher 

peak parasitaemia compared to avirulent DK single-infection. However, in 

the mixed infection peak parasitaemia was significantly lower than that in 

the DS single-infection when mice were left untreated. A similar effect was 

suggested by Snounou et ai. (1992) as they showed that parasitaemia of a 

P. c. adami DS infection was reduced in the presence of P. c. chabaudai 

AS. So, from the present results, it may be concluded that replication rate 

of P. c. adami DS was higher than that of P. c. adami DK in the mixed 

infection. Moreover, as no death was seen in mice infected with the mixed 

inoculum, it may be, therefore, assumed that the presence of avirluent DK 

parasite may contribute to partial control of the virulent parasite in the 

mixed infection. 

In the present study the profile of sequential Th lITh2 was also 0 bserved 

in the mixed infection. The consistent production of IgG2a and IgG 1 with 

their associated signal cytokines supports this conclusion. However, in 

mixed infections the Th2 response seemed to be stronger as significantly 

higher production of IL-4 was observed compared to the DS single­

infections (Chapter Three). 

Studying host/parasite and parasite/parasite interactions and 

competitions in mixed infection comapred to single-infections may provide 

better understanding of importance of virulence and its alterations 

particualry when different ratios of parasites differed in virulence are 

examined. Molecular approaches may show the actual ratio of each virulent 

and avirulent parasites in the resulted parsitaemia during course of a mixed 

infection. This can show how virulent or avirulent strains interact or 

compete to each other in the same host and so, what would be the outcome 

of the mixed infection. For example, Soutern blotted DNA isolated from 

daily blood samples can be probed with a DNA probe which detects a 

restriction fragment length polymorphism for each parasite (Snounou et ai., 

1992). Nested PCR has been also used to detect malaria parasites 

particularly in the case of low parasitaemias and mixed infections, and has 



Chapter 7. General Discussion 255 

been shown to be more sensitive than microscopy (Snounou et al., 1993; 

Humar et a!., 1997, Zakeri et al., 2002). In addition, an evaluation of the 

first commercial available standardized real-time PCR in which DNA binds 

to a dye such as Sybre as molecular probe or hybrids labelled with 

fluorescent probes gave results which were more rapid, sensitive and 

specific compared to nested PCR (Farcas et al., 2004). Cheesman et al. 

(2003) demonstrated that real-time quantitative PCR can distinguish and 

quantify genetically different malaria parasite clones in a mixed infection. 

Real-time PCR can show that the amount of product generated is 

proportional to the amount of template in the original sample. So, in real­

time PCR all reactions can be caught at the time of their logarithmic phase 

(Roberts, Clark and Friedman, 2005). Such techniques may help to answer 

the question what is the actual replication rate of each parasite in the 

mixture. 

It is also possible to identify the influence of mixed infection on 

infectivity and transmission which are critical criteria in the control of 

malaria (Taylor, Walliker, and Read, 1997a). Referring to this important 

issue it was reported that mixed-genotype infections including two clones 

of P. chabaudi CR and ER were more infectious to mosquitoes than single­

infection (Taylor, Walliker, and Read, 1997a). Moreover, Taylor and Read 

(1998) showed that virulence was enhanced in the mixed infection of two 

clones of P. chabaudi as transmission stage densities were significantly 

higher than that in single-infections and mice infected with two clones had 

more weight loss and lowered blood cell count. On the other hand, de 

Roode et al. (2004) showed that in a mixed infection of P. chabaudi, when 

CBA/Ca mice were left untreated, the sensitive AS clone which is resistant 

to the antifolate drug pyrimethamine, competitively suppressed the 

resistant AJ clone. This suppression resulted in lower asexual blood stage 

parasite densities and also reduced transmission to the mosquito vector. In 

the present study, although the DS strain, sensitive to chloroquine, 

maintained its replication rate, the peak parasitaemia in the mixed 

infections of DS and DK strains was significantly lower than that in the DS 

strain single-infection possibly due to the presence of the avirulent DK 

strain. Further experiments may help to identify virulence determinants 

such as parasite replication rate, weight loss and blood count along with 

transmission rates in mixed infections. 
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7.4. The efficacy of passive immunization with sera and purified IgGl and IgG2a 

The present study also examined the efficacy of passive transfer of serum 

and purified IgG 1 and IgG2a in both virulent and avirulent infections. Sera 

and antibodies were obtained from DK-infected mice at two different time 

points, day 15 and day 55p.i. When these sera or IgG subclassess separately 

transferred to mice challenged with the avirulent DK strain, mice showed 

delay and significant reduction in the parasitaemia (Figures 15a and b) 

compared to the controls. These sera, IgG 1, and IgG2a also exhibited 

cross-reactivity in mice challenged with the virulent DS strain as 

significant reductions in peak parasitaemia in immunized mice compared to 

control non-immunized mice were seen. Serum collected on day 55 p.i. 

showed greater protective activity, indicating the presence of more 

effective specific antibodies at this time point. However, in mice 

immunized with IgGl or IgG2a collected on day 55 p.i. although peak 

parasitaemias were lower than that in mice passively immunized with 

antibodies from day 15 p.i., the differences were not significant in all 

groups. 

Although passive immunization with IgG 1 or IgG2a prevents a 

fulminating parasitaemia in the avirulent DK, and partially in the virulent 

DS challenges, this passive immunization cannot induce complete 

protection. Despite the observation of the effect of passive immunization, 

the lethal outcome of DS-infected mice did not alter in passively 

immunized mice (seeTable 2. Chapter Five). However, the present results 

show that mice rechallenged with a high dose, 1 x 1 08 pRBCs, of either the 

DK or the DS strains induced a significantly stronger secondary response 

compared to the primary response. In this regard, immunized mice 

previously challenged with the virulent DS strain also survived from 

rechallenge. 

In the present study, as reported in previous studies (Langhorne et al., 

1989; Taylor-Robinson, 1995), the same patterns for kinetics of production 

of IgGl and IgG2a were observed after passive immunization which 

reflects there is a sequential ThllTh2 response in paasively immunized 

mice challenged with the parasite. 
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7.5. The efficacy of synthetic peptide immunization in NIH mice challenged with P. 

cltabaudi AS 

Active immunization of mice with single synthetic peptides was the final 

part of this study. The five synthetic peptides used were synthesized based 

on P. chabaudi AS genome data. Three peptides were related to clag gene 

family which is present in P. Jalciparum and for which there is a 

homologous in P. chabaudi genome. The other two peptides were based on 

cir gene family which is now known in several Plasmodium species such as 

P. vivax and P. berghei (for more details see Chapter Six). The results 

presented here showed that synthetic peptide immunization resulted in 

statistically significant reduced peak parasitaemias in immunized mice 

challenged with P. chabaudi AS and they induced anti-peptide and anti­

parasite antibodies, which indicates the presence of cross-reactive epitopes 

in a whole soluble lysate of the parasite which can be recognized by anti­

peptide antibodies. 

Some studies, as discussed in Chapter Six, showed that synthetic peptides 

that were designed based on immunogenic molecules of asexual blood stage 

such as MSP-1 and AMA-1, can induce degrees of protection against rodent 

malaria parasites (Calvo, Daly and Long, 1996; Tian et al., 1997; Burns et 

al., 2003). In terms of sporozoite challenge, Ak et al. (1993) showed that 

passive immunization with three different IgG subclasses i.e, IgG 1 and 

IgG2b, which were induced by synthetic peptides based on the P. yoelii CS 

major repeat, (QGPGAP)4 conjugated with KLH as protein carrier in 

BALB/c mice, were protective. It was also observed that transfer of NYS 1 

(a MAb against the P. yoelii CSP) is completely protective against 

sporozoite challenge (Charoenvit et al., 1991). So, such results encourage 

expanded studies of synthetic peptide immunization in animal models 

particularly when peptides with a small sequence and good immunogenicity 

are used. 

Synthetic peptide immunization is known to induce good antibody 

responses and protection (AK et al., 1993; Nardin et al., 2000). However, 

their capacity to induce T-cell mediated responses, particularly CD8+ T 

cell, is limited. In agreement with those studies the present study also 

showed significantly higher levels of IgGs produced in peptide-immunized 

mice after the challenge. As IgG2a and IgG 1 subclasses are known as Th 1 
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and Th2 response markers respectively, the present results showed 

significantly higher production of both IgG2a and IgG 1 in immunized mice 

post-immunization and post-challenge compared to non-immunized mice 

with the same kinetics which indicates a sequential ThllTh2 response. 

However, the levels of antibodies, particularly IgG2a post-challenge, were 

higher than that in post-immunization indicating a stronger seconday 

response. For help to better understanding in terms of any changes in 

induction of Th 1 and Th2 response further studies using different peptides 

or combinations and hosts with different susceptibility should be examined. 

The present study mainly focused on determination of the course of 

infections and profile of antibody responses before and after peptide 

immunization. However, differences between the effects of each single­

synthetic peptide in immunized mice were examined to distinguish which 

peptide is more potent for inducing a stronger control of parasitaemia and 

anti-parasite antibody production. The present results showed that PI and 

P5 were more potent in reducing peak parasitaemia or inducing higher 

antibody production compared to other peptides in immunized mice. 

For improvement in immunization with synthetic peptides Jones et aI., 

(1999) suggested that using synthetic oligodeoxynucleotides containing 

CpG motifs enhanced the immune response in Aotus monkeys to the 

synthetic peptide PADRE 45, a synthetic peptide containing amino acid 

sequences derived from the CSP of P. Jalciparum. They showed that the 

immune responses, including antibodies against sporozoites, were 

significantly greater than those seen in animals receiving the 

oligodeoxynucleotide without CpG motifs. The CpG motifs are sequences 

based on immunostimulatory bacterial DNA sequences. The use of peptide 

mimitopes, peptides showing amino acids sequences which diverge from 

the native antigen but mimic their conformation in inducing antibodies 

against the native antigen (Stout et al., 1995) are also being studied. These 

mimitopes can be obtained by chemical synthesis (Lam et al., 1991; 

Houghten et aI., 1991). So, this is another possibility for designing peptide 

based vaccine or subunit vaccine through exploiting screens of mimitopes 

which induce immune response against sporozoite challenge. 

Taken together, the synthetic peptides were used in the present study 

because of their relevance to cytoadherence as one of the important aspects 

of malaria immunopathology. In this regard route of injection, adjuvant 
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formulation, number of boosting, choosing the best adjuvant, and carrier 

protein in different immunization protocols should be considered. 

In respect of using adjuvants it is thought that adjuvants may enhance 
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long lasting humoral and cellular immune responses. It was shown that 

adjuvants such as saponin and pertussis are able to induce protective IgG2a 

(ten Hagen et al., 1993; Daly and Long, 1996) against blood stage malaria. 

So, it seems that using different delivery system containing different 

antigen/adjuvant formulation is a crucial step in malaria vaccine design. On 

the other hand, some studies have shown that strong systemic Th1 response 

can be induced following immunization with a synthetic lipopeptide 

derived from P. Jalciparum LSA-1 or LSA-3 using mucosal route of 

injection such as intranasal or sub-lingual without adjuvant (Ben 

Mohammad et al., 2002b). Using adjuvant still remains a controversial 

issue. However, peptide immunization without adjuvant seems to be an 

approach which is safer, non-invasive, and free of side effect. In the 

present study, Titermax (Chapter Two and Six) was used as an adjuvant. 

The adjuvant was emulsified with synthetic peptide which was linked to 

KLH as a carrier protein. However, the present study did not show any 

significant advantage for using Titermax for inducing stronger immunity 

when peak parasitaemia and the course of infection were compared in mice 

immunized with or without adjuvant. Further investigation is required to 

identify if there is any antigen/Titermax formulation which could be more 

advantageous for these particular peptides. 

It is known that peptide-based vaccines are more efficient than naked 

DNA or recombinant vectors and would be safer because there is less risk 

of pathogenic effect or mutations and no need for a cold chain (Tsuj i and 

Zavala, 2001). So, more investigation for developing peptide-based 

vaccines for enhancement of their efficacy in animal models and 

subsequently facilitate improvement in human malaria control strategies 

are required. 

7.6. Comments 

The studies reported in this thesis provided information in four different 

areas in which further investigation could be planned. The first area was 

determination and comparison of the profile of the immune responses in 
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mice infected with avirulent and virulent rodent malaria parasites. 

Although a sequential ThllTh2 response was observed, further 

investigations, particularly molecular approaches, may help to identify 

which mechanisms regulate the immune response, what is the role of APCs 

and DCs in presenting antigens when difference between two strains in 

terms of virulence is considered. Measuring the other mediators such as IL-

12, IL-1 0, TNF, and NO would help to show a more accurate profile of the 

immune response in P. chabaudi as an appropriate model for human P. 

falciparum infection using new techniques such as cytokine flow 

cytometrey with FACS. 

In the second area, mixed infection study showed the same profile of 

immunity. Investigation to determine what is the nature of the interaction 

between virulent and avirulent parasite populations in the host and how 

these interactions, such as biological and ecological competitions, balance 

replication rates and affect induction of the immune response could be 

expanded. Investigating the effects of different ratios of each strain and 

determination of the proportion of each strain during the course of 

infection may lead to an understanding of the mechanisms by which the 

hosts respond to a mixture of parasites. 

The third area was the passive transfer of IgG 1 and IgG2a in mice 

challenged with both avirulent and virulent strains. This part of the study 

merits further investigation at the molecular level to identify the kinetics 

of cytokine and antibody response particularly in mice recovered from first 

infection and exposed to the rechallenge. 

In the fourth area of study peptide immunization showed some degree of 

protection and reduction in parasitaemia in immunized mice. However, in 

this field further investigation can develop the knowledge of possible 

effects of synthetic peptides in inducing more protective immunity. For 

example, molecular approaches may help to identify mechanisms of peptide 

presentation by DCs and where this presentation takes place. Different 

formulations or combination of these peptides using different adjuvant 

systems may also be considered. Using these peptides in other vaccine 

strategies, such as multivalent vaccines or MAP vaccines, could be 

investigated to reach to the best ones in terms of inducing the most 

protective immune response not only in P. chabaudi AS but also against 

other strains if these peptides potentially have had cross reactivity. 
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Appendix 

Recipe for separating gel (for 10ml) in SDS-PAGE 

Reagents Amount 

Bis / Acrylamide (30%) 2.7 ml 

Resolving buffer (see Table 2, Tris pH 8.8) 2.5 ml 

Sodium dodecyl sulphate (SDS) (8% w/v) 0.1 ml 

Double distilled water (dd Water) 4.6 ml 

Ammonium persulphate (APS) (10% w/v) 0.1 ml 

TEMED 0.006 ml 

Resolving buffer 

Reagent Final Concentration Amount 

Tris base 3M 36.3 g 

dd H2O 60 ml 

HCI (1 M) pH was adjusted to 

8.8 

dd H2O exactly to 100 ml 

final 

Store at 4°C 

Recipe for stacking gel (for 5ml) 

Reagents Amount 

Acrylamide mix(3 0%) 0.83 ml 

1.0M (Tris pH 6.8) 0.63 ml 

SDS (10% w/v) 0.05 ml 

dd Water 3.4 ml 

APS (10% w/v) 0.05 ml 

TEMED 0.005 ml 
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Electrophoresis buffer 

Reagent Final Concentration 

Tris base 0.5 M 

dd H2O 

HCI (1 M) 

dd H2O 

Store at 4°C 

Sample buffer 2X 

Reagents 

Stacking buffer (see Table 4) 

dd H2O 

Glycerol 

SDS (10%) 

Mercaptoethanol 

Bromophenol Blue 

Total volume 

Storage solution 

Amount 

6 g 

60 ml 

pH was adj usted to 

6.8 

exactly 100 ml 

Amount 

2.0 ml 

4.0 ml 

1.6 ml 

3.2 ml 

0.8 ml 

a few grains 

11.6 ml 

Reagent Final Concentration Amount 

4X Resolving 0.37 M 50 ml 

buffer* 

10% SDS 0.1 % (v/v) 2 ml 

dd H2O to 200 ml to 200 ml 

SDS electrophoresis buffer 

Reagent Final Concentration Amount 

Tris base 25 mM 60.5 g 

Glycine 192 mM 288.2 g 

SDS 0.1% 20 g 

dd H2O 20 liter 20 liter 

~~----~-~ 
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Buffers for purification of IgGl and IgG2a 

a: Binding Buffer (Sodium phosphate, 20mM) 

2.4g Na2HP04.12H20 (solution A) 

2.83g Na2HP04.2H20 (solution B) 

For 100ml (0.1 M) of both solution of A and B, 57. 7ml of solution A 

was mixed to 42.3ml of solution B. Distilled water was mixed to the 

above mixture up to 500ml for 20mM final concentration for pH 7. 

For pH 8 93.2ml of solution A was mixed to 6.8ml of solution Band 

water then added up to 500ml. 

For mouse IgG1 sodium chloride (AnalaR, BDH) up to 4 M was added 

to the binding buffer, 20 mM sodium phosphate. 

b: Elution Buffer (20mM tri-sodium citrate buffer) 

19.21g 

29.41g 

Citrate acid (O.lM) (solution A) 

Sodium citrate (O.lM) (solution B) 

For IgG2a, pH 4, and for IgG 1 pH 5.8 to 6 were used. 

For different pH (up to 500ml of the buffer) different volume of each 

solution was mixed to another one to reach desired pH. For example; 

330ml of solution A was mixed with 170ml of solution B for pH 4. 

124ml of solution A was mixed with 376ml of solution B for pH 5.8. 

c: Purification buffer salt 

49.9g NaCl (0.9M), pH 7.2 with proprietary stabilizer 0.083 M PBS 

were dissolved in 60ml degassed, deionised water. 

Any unused buffer can be stored at 4Co. 
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d: Transfer Buffer 

14.42 g 

3.03 g 

Glycine (192mM) 

Tris (25mM) 

1.0 g SDS 

200 ml Methanol (20% v/v methanol) 

Made up to 1 litre with deionised and distilled water. PH adjusted 

between pH 8.1-8.4 

Phosphate buffered saline (pH 7.2) 

60.0 g 

13.6 g 

8.5 g 

Na2HP04.12H20 

Na2HP04.2H20 

NaCI 

Made up to 1 litre with de-ionised and distilled water. 

Giemsa's Buffer 

3.0 g 

0.6 g 

264 

The pH was adjusted to pH 7.4 and made up to 1 litre with de-ionised 

distilled water. 

Giemsa' stain 

Giemsa' stain (Gun BDH Ltd) was diluted 1:5 in Giemsa's buffer. 

Coomassie Blue Stain 

250.0 ml 

100.0ml 

10.0 ml 

1.0 g 

Methanol 

Acetic acid 

Glycerol 

Coomasie Blue 

Made up to 1 litre with de-ionised and distilled water. 
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Coomassie Blue Destain 

250.0 ml 

100.0 ml 

10.0 ml 

Methanol 

Acetic acid 

Glycerol 

Made up to 1 litre with de-ionised and distilled water. 

Trypan Blue (for viability test) 

0.1 g Trypan Blue powder 

5 ml PBS 

Then filter. 

Coating Buffer (Bicarbonate and Carbonate Sodium) 

4.39 g 

5.3 g 

0.2 

NaHC0 3 

Na2C0 3 

NaN3 

The pH was adjusted to pH 9.4 with NaOH and made up to 1 litre with 

deionised distilled water. 

PBS/Tween 

0.5ml Tween 20 (polyoxyethylene sorbitan monolaurate) 

Made up to 1 liter with PBS> 

Tris Buffered Saline (TBS) 

9 g NaCI 

1.6 g Tris HCI 

The pH was adjusted to pH 7.6 with HCL and made up to 1 litre with 

de-ionised distilled water. 
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RPMI 1640 stock medium 

10.39g RPMI 1640 powdered medium (with L-glutamine) (Gibco) 

5.94g N2-hydroxyethylpiperazine-N -2 ethane sulphonic acid 

(HEPES) (25mM) 

Incomplete RPMI 1640 medium 

To up to 1 litre with deionized and distilled water, filter sterilized 

(Millipore/Gelman filter 0.221-Lm size) and pH adjusted to pH 7.2 
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