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Abstract 

Cyclic adenosine monophosphate (cAMP) is a second messenger signalling 

molecule that has been reported to exert beneficial effects within the vasculature 

and other physiological systems. cAMP produces its effects within the cell through 

two key downstream effector molecules: exchange protein activated by cAMP 

(EPAC) and protein kinase A (PKA). Many of the effects of cAMP have been 

attributed to PKA, however there is a growing appreciation of the potential of 

EPAC, particularly isoform 1 (EPAC1), based therapies for the regulation of 

inflammatory responses within the vasculature, thereby promoting cardiovascular 

health. Furthermore, side effects associated with global cAMP elevating agents 

may be avoided by isoform selective EPAC regulation. To date no small molecule 

agonists have been discovered to effectively or selectively promote EPAC1 

activity. In order to address this, we have developed a fluorescence based 

competition assay able to identify compounds which interact with the cyclic 

nucleotide binding domains (CNBs) of both EPAC1 and EPAC2. Rigorous testing of 

the assay has confirmed that it is able to reliably and reproducibly identify EPAC 

interacting compounds within high throughput screening (HTS) of small molecule 

libraries. Furthermore, dual screening of EPAC1 and EPAC2 has allowed isoform 

selective compounds to be identified from a small compound library, confirming 

the suitability of this assay for HTS. This HTS assay is likely to facilitate the 

discovery of EPAC1-selective interacting molecules with the potential to be 

effective, small molecule regulators of EPAC1.  

In order to classify small molecules isolated by HTS as either agonists or 

antagonists of EPAC1, we developed a secondary screen that is able to detect 

EPAC1 activation in vivo. This assay is based on the ability of EPAC1 to produce a 

rapid, cell spreading response in HEK293T cells stably transfected with EPAC1. 

However, the precise signalling pathways which produce these changes in cell 

shape are unknown. Therefore, we have attempted to identify pathways involved 

in EPAC1-mediated morphological change by assessing the effects of various 

inhibitors on cell spreading. Interestingly, we found that EPAC1 and PKA synergise 

to produce maximal cell spreading in HEK293T cells. Recent reports suggest that 

the cortical actin-membrane linker protein ezrin is required for the cell spreading 

effects of EPAC1. Here, we demonstrate that ezrin responds to elevations in 

intracellular cAMP in HEK293T cells in a PKA-dependent manner. Indeed, PKA 
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activation promotes the post translational modification of ezrin and alters the 

response of EPAC1-expressing cells to cAMP. These results suggests that the PKA 

pathway is able to regulate ezrin by post translational modification and that this 

is required for PKA and EPAC1 to synergise and produce maximal cell spreading. 

In addition to agents which directly activate the catalytic activity of EPAC1, there 

is a body of evidence that supports the idea that compartmentalisation of cAMP 

effectors is an important mechanism for the determination of downstream 

signalling events leading to cellular responses, such as cell spreading. As such, we 

have attempted to identify the regions within EPAC proteins that determine their 

subcellular distribution. This was done through a combination of subcellular 

fractionation and the immunofluorescent detection of the localisation of EPAC 

isoforms. In particular, mutational analysis of EPAC1 revealed a carboxy terminal 

(C-terminal) nuclear localisation domain that is required for the perinuclear 

distribution of EPAC1 alongside the nuclear pore protein, RANBP2. Structural 

analyses suggest that this domain appears to be conserved within EPAC2 despite 

EPAC2 adopting a distinct cytoplasmic distribution. One explanation for this 

observation is steric interference within EPAC2 which blocks access to the 

conserved nuclear localisation domain. We have observed that the additional 

amino-terminal (N-terminal) CNB of EPAC2 appears to disrupt nuclear localisation 

and promote a cytoplasmic distribution within the cell. Indeed, the absence of 

the CNB1 promotes nuclear accumulation of EPAC2, with a pattern similar to that 

of EPAC1. The presence of this domain within EPAC2, absent in EPAC1, may 

represent a mechanism which regulates the subcellular distribution, and therefore 

function, of EPACs within the cellular environment.  

In summary, we have developed a screening cascade to identify small molecules 

which may form the basis of therapeutic agents able to selectively target EPAC1 

to promote the beneficial effects of EPAC1. In addition, a secondary screen 

involving EPAC1 induced morphological change was developed and characterised 

as an effective assay in which to test the agonist properties of compounds 

identified by primary HTS screening. We have confirmed that HEK293T cell 

spreading in response to cAMP elevation requires the expression of EPAC1, but 

that a secondary pathway involving interactions between PKA and ezrin is able to 

supplement the primary cell spreading effects of EPAC1. Finally, we have 

identified a potential mechanism for the different subcellular localisation of 
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EPAC1 and EPAC2: EPAC1 is targeted to the perinuclear compartment via a 

previously undiscovered C-terminal nuclear localisation domain.  
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1.1 cAMP signalling 

Cyclic adenosine monophosphate (cAMP) has been the target of intensive study 

since its discovery in the 1950s. Its study was prompted by the observation that 

stimulation of liver homogenates with glucagon and epinephrine induced 

phosphorylation of glycogen phosphorylase (Sutherland and Wosilait 1956). By 

separating homogenates into membrane and cytosolic fractions, this effect was 

lost (Berthet et al. 1957), however, a heat stable molecule was produced which, 

when incubated with the cytosolic fraction, was able to induce enzyme 

phosphorylation independent of hormonal stimulation. This was the first 

observation of second messenger action; namely, a molecule which is produced in 

response to hormonal signalling at the membrane and is then able to activate 

intracellular signalling pathways. The structure of the heat stable molecule was 

identified as cAMP (Rall and Sutherland 1958; Sutherland and Rall 1958), and 

glycogen phosphorylase was shown to be regulated by a signalling cascade 

initiated by the cAMP dependent protein kinase (PKA) (Berg et al. 2002). This 

elegant model of extra- to intra- cellular signalling formed the basis of over 50 

years of subsequent scientific study that has been vital in the understanding of 

the molecular mechanisms of cell signalling within the body. 

The study of cAMP signalling has revealed that the action of hormones, such as 

incretins (Baggio and Drucker 2007), dopamine (Tamaki et al. 1989), 

prostaglandins (Kida et al. 2014) and adrenaline (Rall and Sutherland 1958; 

Sutherland and Rall 1958), is through the activation of transmembrane receptors 

called G-protein coupled receptors (GPCRs). GPCRs convert ligand binding into 

intracellular signals by virtue of conformational changes within the receptor that 

are able to span the membrane. These structural effects result in the release 

within the cell of the plasma membrane bound heterotrimeric G-protein subunits; 

alpha, beta and gamma (Levitzki 1987). The alpha subunit is specifically involved 

in the synthesis of cAMP, as it can either activate (Gs alpha subunit) or inhibit 

(Gi/o alpha subunit) adenylate cyclase (AC). AC activation catalyses the 

conversion of adenosine-5’-triphosphate (ATP) into cAMP and pyrophosphate. This 

process can be reversed by the cAMP phosphodiesterase (PDE) family, which 

hydrolyse cAMP to 5’-adenosine monophosphate (5’-AMP) (Maurice et al. 2014). 

This action ensures cAMP signalling is transient, allowing precise control over the 
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intensity and duration of the cAMP signal. Elevated cAMP levels are able to 

activate a select range of intracellular signalling pathways via proteins which 

contain cyclic nucleotide binding domains (CNB), including exchange proteins 

activated by cAMP (EPACs) (de Rooij et al. 1998; Kawasaki et al. 1998), protein 

kinase A (PKA) (Walsh et al. 1968) as well as Popeye domain containing proteins 

(e.g. Popdcs) (Schindler et al. 2012) and cAMP responsive ion channels (CIC) 

(Matulef and Zagotta 2003). cAMP second messenger signalling via these proteins 

controls many aspects of cell function, including cell differentiation (Gabrielli et 

al. 2014), secretion (Shibasaki et al. 2007), cell morphology (Ross et al. 2011), 

inflammatory pathways (Parnell et al. 2012), contractility (Pereira et al. 2013) 

and synapse formation (Penzes et al. 2011). As such, cAMP signalling has become 

an attractive target in drug development for the treatment of a variety of disease 

states. 

1.1.1 cAMP Responsive Proteins 

PKA was the first cAMP responsive protein to be identified and has subsequently 

been implicated in a huge range of cellular effects (Tasken and Aandahl 2004; 

Pidoux and Tasken 2010), such as insulin secretion (Seino and Shibasaki 2005), 

transcriptional control (Mayr and Montminy 2001), and cell growth (Stork and 

Schmitt 2002) and differentiation (Yamamizu et al. 2012). PKA is made up four 

individual subunits which form an inactive complex; two regulatory subunits, 

which each contain a CNB, that bind to and inactivate two catalytic subunits by 

masking their kinase domains (Taylor et al. 2005). cAMP binding to the regulatory 

subunits results in their dissociation from the catalytic elements facilitating the 

interaction and phosphorylation of a plethora of downstream signalling proteins 

(Krebs and Beavo 1979).  

Following the discovery of cAMP, cyclic nucleotide gated ion channels (CICs) were 

found to bind cyclic nucleotides in photoreceptor cells. Detection of light in these 

cells induces the activation of phosphodiesterases which degrade cAMP resulting 

in channel closure, the inhibition of charged ion influx/efflux and photoreceptor 

depolarisation (Kaupp and Seifert 2002). In addition to photoreceptor cells, CICs 

are also found within olfactory sensory neurons, brain, kidneys and the heart. 

Indeed, cAMP gated CICs within the heart play a vital role in maintaining cardiac 
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rhythm and are called hyperpolarization-activated cyclic nucleotide-gated 

channels (HCNs) due to their ability to respond to both hyperpolarisation and cAMP 

(Matulef and Zagotta 2003). Indeed, HCNs are responsible for inducing the 

diastolic phase of cardiac contraction as repolarisation takes place following 

systolic depolarisation of cardiomyocytes. cAMP plays a key role in regulating the 

membrane voltage at which HCN mediated depolarisation occurs. At high cAMP 

levels, HCN opening is promoted and, as a result, a lower voltage is required to 

induce depolarisation. High cAMP levels therefore promote tachycardia as 

diastolic cardiomyocyte contraction occurs closer to the systolic event. 

Although PKA was thought to be the dominant effector of the cAMP second 

messenger signal in the majority of cell types, the ability of cAMP to promote Rap1 

GTPase activation in the presence of PKA inhibitors prompted the search for other 

cAMP responsive proteins. As a result of this, EPAC was identified during an in 

silico search for genes exhibiting the characteristic CNB (de Rooij et al. 1998; 

Kawasaki et al. 1998). EPACs were the first class of PKA independent signalling 

proteins identified and activated by cAMP binding, though activation and catalytic 

mechanisms were found to be strikingly different. Indeed, as opposed to PKA, the 

regulatory and catalytic regions of EPACs are contained within a single gene 

product, and regulation is imparted by an interaction between the amino-terminus 

(N-terminus) regulatory domain and C-terminal catalytic domain. Furthermore, 

whereas as PKA is able to induce phosphorylation events upon a plethora of target 

proteins (Walsh et al. 1968), EPAC was observed to act as a guanine nucleotide 

exchange factor (GEF), stimulating the activity of Rap1 and Rap2 GTPases and, 

therefore, represented the cAMP responsive molecule responsible for the PKA 

independent activation of Rap (de Rooij et al. 2000). 

The most recently discovered cAMP signalling molecules are the Popdcs. Popdcs 

were identified by cDNA library screening for proteins specifically enriched within 

cardiomyocytes (Reese et al. 1999), although expression is also observed within 

skeletal muscle (Andree et al. 2000). Interestingly, the CNB of Popdcs display low 

sequence homology compared to those of other cAMP binding proteins, suggesting 

convergent evolution of the phosphate binding cassette (PBC) (Froese et al. 2012). 

Popdcs are membrane bound, where they have been reported to interact with the 

two-pore domain potassium channel (TREK-1) (Froese et al. 2012) and Caveolin-3 
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(Alcalay et al. 2013) to regulate cardiac pacemaker activity. Indeed, deletion of 

Popdcs produced pronounced cardiac arrhythmia, suggesting that they have a vital 

role in cardiac function, consistent with their targeted expression within 

cardiomyocytes (Schindler et al. 2012). 

1.1.2 Compartmentalisation of cAMP Signalling 

In addition to the production of cAMP, the distribution of AC, PDEs and effector 

molecules within the cell provides an additional layer of regulation. Indeed, by 

limiting cAMP elevation to distinct subcellular locales, cAMP is able to activate 

specific subsets of effector molecules (Zaccolo and Pozzan 2002). The archetypal 

example of compartmentalisation arose from the different effects of isoprenaline 

and prostaglandin-I1 (PGI1) in rat cardiomyocytes (Buxton and Brunton 1983). 

Although both isoprenaline and PGI2 were observed to act through membrane 

receptors to induce cAMP elevation, isoprenaline achieved cAMP increases in both 

the particulate and soluble cellular fractions, whereas cAMP was synthesised in 

the soluble fraction alone following PGI1 stimulation (Buxton and Brunton 1983). 

Indeed, isoprenaline treatment has been shown to produce cardiomyocyte 

contractility, whereas PGI1 is unable to induce this effect (Keely 1979) despite 

both compounds acting to increase cAMP levels. Thus, the subcellular 

compartment in which cAMP synthesis occurs is vitally important in determining 

the cellular response to elevation in intracellular cAMP. 

Compartmentalisation of cAMP signalling is underscored by the action of anchoring 

proteins which interact with PDEs and cAMP effector proteins to spatially control 

the response to the cAMP signal (Mongillo et al. 2004; Zaccolo 2006). Indeed, if a 

compartment is rich in PDEs, the cAMP signal will be limited within the local 

region, and conversely if PDEs are absent, the cAMP signal will be more intense 

and sustained (Zaccolo and Pozzan 2002). In addition, both PKA and EPAC are 

regulated by sequestration to distinct subcellular compartments. This is brought 

about by a range of anchoring proteins which regulate the distribution of EPAC 

and PKA, including PKA anchoring proteins (AKAPs) (Scott et al. 2013) and EPAC 

anchors (E.g. RANBP2) (Gloerich et al. 2011). Through this mechanism, elevation 

of cAMP may fail to activate one effector, whilst producing strong effects through 

another. Indeed, signalling through EPAC and PKA has been shown to be intricately 
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controlled by their subcellular distribution (Newhall et al. 2006; Niimura et al. 

2009) and manipulating distribution may provide a potential mechanism in 

regulating the signalling pathways activated by EPAC and PKA. 

 

  

Figure 1-1 : Schematic of cAMP signalling in response to G-protein coupled receptor 
(GPCR) activation at the membrane.  
cAMP signalling is induced when a hormone or drug binds to GPCRs. The activation of the GPCR 
results in the release of the G-protein αβγ subunits, which are able to regulate various intracellular 

signalling molecules. The  subunit of a Gs-coupled GPCR is able to stimulate adenylate cyclase 
and provoke the conversion of ATP into cAMP. Following elevations in intracellular cAMP levels, 
CIC, PKA and EPACs are activated to produce various cAMP-dependent effects. The intensity and 
duration of the cAMP signal is regulated by the action of cAMP phosphodiesterases which degrade 
cAMP into 5’-AMP. αβγ – G-protein subunits, AC – Adenylate cyclase, PKA – Protein kinase A, 
EPAC – exchange protein activated by cAMP, CIC –cyclic nucleotide gated Ion channel, PDEs – 
cAMP phosphodiesterases, AMP – 5’-adenosine monophosphate. 
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1.1.3 EPAC Structure 

Two main isoforms of EPAC exist within mammals; EPAC1 and EPAC2 (de Rooij et 

al. 1998; Kawasaki et al. 1998). Whereas EPAC1 is widely expressed in almost every 

mammalian tissue, EPAC2 exhibits far more restricted expression patterns, limited 

to the heart, brain, pancreas, testes and other secretory cells (Kawasaki et al. 

1998). The major difference between EPAC1 and EPAC2 is the presence of an 

additional CNB (CNB1) within the N-terminus of EPAC2  (de Rooij et al. 2000). The 

presence of this extra CNB underlies the difference in molecular weight observed 

between EPAC1 (100 kDa) and EPAC2 (110 kDa). Despite homology to CNB 

conserved in both isoforms, CNB1 exhibits a reduced affinity for cAMP and is 

unable to induce EPAC2 activation in response to cAMP binding. As a result, CNB1 

has been described as non-functional; however it has recently been implicated in 

controlling the subcellular localisation of EPAC2, thereby regulating insulin 

secretory effects in pancreatic beta cells (Niimura et al. 2009). Despite this 

difference, EPAC1 and EPAC2 share structural motifs throughout the regulatory 

and catalytic domains (Figure 1-2). Indeed, the dishevelled-EGL-pleckstrin 

homology domain (DEP), CNB, Ras exchange motif (REM), Ras association domain 

(RA) and CDC25 homology domain (CDC25-HD) are conserved between isoforms (Li 

et al. 2006; Borland et al. 2009; Liu et al. 2010). 

In the absence of cAMP, EPACs are held in an inactive conformation due to 

intermolecular interactions between the regulatory and catalytic domains. These 

interactions inhibit EPAC GEF activity by limiting substrate access to the catalytic 

CDC25-HD domain (Rehmann et al. 2006; Rehmann et al. 2008). The common CNB 

of EPAC1 and EPAC2 is vital in the activation of this auto-inhibited form. cAMP 

binding to the phosphate binding cassette results in a local tightening within the 

CNB and the closure of the “lid” region over the cAMP binding pocket (Rehmann 

et al. 2003). These changes are transmitted to several key sites within the 

molecule (Figure 1-2) altering the stability of the “hinge helix”, disrupting the 

beta sandwich “switchboard” and breaking the key linkage between the regulatory 

and catalytic domains, dubbed the “ionic latch” (Rehmann et al. 2006; Rehmann 

et al. 2008). Together these cAMP binding promoted structural changes promote 

the open form of EPAC, revealing the catalytic CDC25-HD for Rap1 binding and 

GEF activity (Figure 1-2). 
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Whereas the REM domain is involved in maintaining the overall structure and 

activity of the catalytic domain, the DEP domain and RA motifs provide more 

subtle regulation of EPAC activity within the cell. Indeed, these structural motifs 

have been implicated in regulating the subcellular distribution and protein-protein 

interactions outside of Rap binding (de Rooij et al. 2000). The DEP motif is involved 

in targeting proteins to the plasma membrane via an interaction with the 

membrane component phosphatidic acid (Consonni et al. 2012). The RA has also 

been linked to the subcellular localisation of EPAC2 through interactions with Ras 

(Li et al. 2006). Deletion of residues 650-689 within the RA inhibits the interaction 

with Ras at the plasma membrane, limiting the activation of a specific plasma 

membrane pool of Rap in response to EPAC2 activation (Li et al. 2006). Although 

unable to bind to Ras, the RA of EPAC1 was found to interact with Ran GTPase at 

the nuclear membrane (Liu et al. 2010). This forms part of a multi-protein complex 

with the nuclear pore protein, RANBP2, which is involved in tethering EPAC1 to 

Figure 1-2 : Structure and mode of activation of EPAC proteins. 
A - Schematic representation of the primary structure EPAC protein. B - The crystal structure of 
EPAC2 is shown in the closed conformation (left, 2BYV) (Rehmann et al. 2006) as cartoon, with 
the CNB displayed in spacefill. The open conformation (right, 3CF6) (Rehmann et al. 2008) is 
promoted as the lid region closes over the cAMP analogue Sp-cAMP within the cAMP binding 
pocket (pocket). As the IL, HH and SW become disrupted Rap1B is able to bind to the catalytic 
region of EPAC2. CDC25-HD - CDC25 homology domain, CNB - cyclic nucleotide binding domain; 
DEP - Dishevelled-Egl-10-Pleckstrin, EPAC - exchange protein activated by cAMP, HH - helix 
hairpin, IL - ionic latch, RA - Ras association domain, REM - Ras exchange motif, SW - 
Switchboard, Sp-CAMPs - Sp isomer of cAMP. Modified from  (Borland et al. 2009). 

A 

B
A 
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the nuclear membrane and limiting its catalytic activity (Gloerich et al. 2011). 

EPAC proteins are therefore under intricate control based on their distribution 

within the cell in conjunction with cAMP binding.  

1.1.4 EPAC Signalling through Rap GTPases  

The family of small GTPases consists of five related subgroups; Ras, Rho, Ran, Rab 

and Arf. Each is associated with specific aspects of cell function, for example 

vesicle trafficking (Rab) (Harris and Littleton 2011) and cytoskeletal dynamics 

(Rho) (Shi and Wei 2013). Rap is a member of the Ras family, but is largely involved 

in the control of cell morphology, adhesion and cohesion (Gloerich and Bos 2010), 

functions that underlie the ability of EPAC1 to regulate cell adhesion (Rangarajan 

et al. 2003), cell-cell contact stability within the vascular endothelium (Kooistra 

et al. 2005), as well as cell spreading (Ross et al. 2011). 

Rap cycles between an inactive, guanosine-5’-diphosphate- (GDP) bound form and 

the active guanosine-5’-triphosphate- (GTP) bound conformation. The cycling of 

activation status is regulated by the stimulatory effects of GEFs which induce GTP 

binding, or GTPase activating proteins (GAPs) which promote GTP hydrolysis and 

the GDP-bound state (Gloerich and Bos 2011). Two main isoforms of Rap exist 

which differ in their subcellular targeting, and their level of activity. Rap2 

maintains a low GTPase activity, is relatively insensitive to the action of regulatory 

GEFs/GAPs, compared to Rap1, and therefore has a higher basal activity (Ohba et 

al. 2000). Rap1 is responsive to a variety of signalling cues and GEF activities, and 

is rapidly turned over ensuring rapid responses (Gloerich and Bos 2011).  
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1.2 EPAC and Cell Spreading 

One of the most striking roles for cAMP in the control of cell morphology is the 

ability of EPAC1, through Rap1, to induce a distinct spread cell phenotype in a 

variety of cell types (Ross et al. 2011). This morphological change arises from 

uniform, isotropic membrane projection resulting in large increases in cell area. 

Interestingly, this response appears to be independent of classical cAMP mediated 

focal adhesion and integrin stabilisation (Enserink et al. 2004; Bernardi et al. 2006; 

Duchniewicz et al. 2006). Recently, the actin- cytoskeletal linker protein ezrin 

was found to be required for EPAC mediated cell spreading (Ross et al. 2011). 

However, the manner in which cAMP is able to regulate ezrin to produce cell 

spreading is currently unknown. 

1.2.1 Ezrin 

Ezrin was the first member of the highly homologous ERM (ezrin, radixin and 

moesin) family to be identified (Mangeat et al. 1999), all of which share a 

characteristic amino-terminal (N-terminal) 4.1, ezrin, radixin and moesin (FERM) 

membrane binding domain (Gould et al. 1989). Ezrin plays a key role in connecting 

the cortical actin cytoskeleton to the cell membrane through direct interaction 

with phosphatidylinositol 4,5-bisphosphate (PIP2) and actin (Bosk et al. 2011). 

These linkages allow ezrin to acts as a regulator of membrane dynamics, including 

the formation of cell protrusions (Mangeat et al. 1999). 

Ezrin is regulated by a complex interplay of post translational modifications, 

protein-protein interactions and lipid binding. The protein exists in an auto-

inhibited form in the cytosol and becomes active when it interacts with 

phosphotidylinositol 4,5-bisphosphate (PIP2) at the plasma membrane (Niggli et 

al. 1995; Bosk et al. 2011). Two sites were found to be required for ERM-lipid 

interaction, termed by Ben-Aissa as the lipid binding patch and pocket (Ben-Aissa 

et al. 2012). Indeed, crystal structure analysis of the related protein, radixin, 

revealed inositol triphoshate bound within the pocket (Hamada et al. 2000). 

However, mutational studies highlighted a central role for the patch, supported 

by the observation that the pocket is hidden by the carboxy terminus (C-terminus) 

in the auto-inhibited conformation. A two-step model was therefore hypothesised 

whereby lipid binding at the patch induces conformational changes, revealing the 
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pocket and allowing the lipid molecule to bind stably within this deeper cleft (Ben-

Aissa et al. 2012). Lipid binding disturbs the head to tail conformation of ezrin and 

the C-terminal actin-binding domain is released to interact with the cytoskeleton 

(Figure 1-3) (Gary and Bretscher 1995; Saleh et al. 2009). In addition to its 

importance in cAMP mediated cell spreading, a direct link between cAMP signalling 

and ezrin has been observed. Indeed, phosphorylation of a key activation phospho-

site (Thr567) within ezrin has been observed to involve PKA in response to cAMP 

elevation (Zhu et al. 2007). Importantly, Thr567 phosphorylation has been shown 

to increase the ability of ezrin to interact with actin and inhibits the return to the 

auto-inhibited state (Pearson et al. 2000; Bosk et al. 2011). Despite evidence 

strongly supporting PIP2 binding as the activation step (Bosk et al. 2011), reports 

of Thr567 phosphorylation as an activation signal (Simons et al. 1998) underlie its 

ability to induce considerable alterations to ezrin function. However, phospho-

mimetic Thr567Asp mutants can display aberrant results, suggesting that the 

continual action of kinases and phosphatases to regulate the protein appears to 

be required for normal ezrin function (Zhu et al. 2007; Liu et al. 2012). Despite 

this complexity, phosphorylation of Thr567 of ezrin has been observed to occur in 

conjunction with the activation of signalling proteins involved in cell 

Figure 1-3 : Mechanisms of Ezrin activation. 
Ezrin remains inactive within the cytosol. Interaction with the plasma membrane component PIP2 
activates Ezrin. Furthermore, once active phospho-regulation at Thr567 and Ser66 can promote 
stability and actin binding.  
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morphological change, such as the RhoA-activated kinase, ROCK (Matsui et al. 

1998; Haas et al. 2007), and cAMP elevation itself (Figure 1-4) (Zhu et al. 2007). 

Along with Thr567 phosphorylation, cAMP has been implicated in promoting the 

post translational modification of Ser66 by PKA (Zhou et al. 2003; Wang et al. 

2005). This residue has been shown to be a direct substrate of PKA using in vitro 

kinase assays, and furthermore, mutation of this serine into alanine is able to 

block PKA-mediated phosphorylation in vivo (Zhou et al. 2003). These phospho-

inhibitory and -mimetic mutants were shown to either block or promote, 

respectively, acid secretion provoked by ezrin in gastric parietal cells (Zhou et al. 

2003). This may be linked to the observation that PKA mediated phosphorylation 

prevented the proteolytic action of calpain-I on ezrin, suggesting that ezrin 

protein stability may be altered by cAMP mediated modification of Ser66 (Wang 

et al. 2005). The cellular effects of PKA mediated ezrin regulation have, as yet, 

to be shown outside of the gastric epithelium, though the widespread expression 

of both proteins suggests an important regulatory mechanism in a wide range of 

cell backgrounds (Fehon et al. 2010). In addition to Ser66 modification, ezrin has 

also been shown to linked to cAMP signalling by acting as a scaffold for PKA 

(Dransfield et al. 1997) and the regulation of the subcellular distribution of EPAC1 

Figure 1-4 : Ezrin is regulated by post-translational modification and protein-protein 
interaction. 
cAMP can regulate ezrin by phosphorylation of Ser66 and Thr567. ROCK can also phosphorylate 
Thr567. Activation is mediated by interaction with PIP2 through the FERM domain, which relieves an 
autoinhibitory interaction between the FERM and C-ERMAD domains, thereby revealing the actin 
binding domain. Furthermore,ezrin acts as an anchor for both EPAC1 and PKA through interactions 
with the FERM and alpha-helical domains respectively. 
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within cells (Figure 1-4) (Gloerich et al. 2010). Clearly cAMP signalling via PKA and 

EPAC1 are intimately linked to ezrin function and alterations in cellular 

morphology. However, it remains to be discovered how EPAC1 and Rap1 are able 

to regulate ezrin activity to produce cell spreading. 
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1.3 The Role of EPAC and Rap1 in Disease 

EPAC proteins have been shown to play both positive and negative roles in various 

disease states (Gloerich and Bos 2010). Indeed, the expansion of research into 

EPAC-targeted therapeutics in recent years (Chen et al. 2014) may provide tools 

to activate or inactivate EPAC specifically, allowing EPAC to be regulated 

independently of PKA within the body. As such, the role of EPAC isoforms in various 

disease states will be discussed, with emphasis on the benefits of targeted EPAC 

regulation. 

1.3.1 EPAC-Rap1 Signalling in Insulin Secretion 

Pancreatic β-cells are responsible for insulin secretion into the blood stream. The 

exocytosis of insulin from β-cells occurs as a result of elevated glucose levels 

within the blood and is termed glucose induced insulin release (GIR) (Baggio and 

Drucker 2007). As glucose enters the pancreatic β-cell, alterations in the ratio of 

cellular AMP to ATP promotes closure of the ATP-dependant potassium (KATP) 

channel and a build-up of charged ions which results in membrane depolarisation. 

Depolarisation induces voltage dependant calcium channel (VDCC) opening, which 

produces an influx of calcium into the cell. This increase in cellular calcium levels 

promotes insulin exocytosis. Indeed, as calcium levels rise, synaptotagmin/SNARE 

complexes are able to insert into the plasma membrane (Iezzi et al. 2005), 

allowing fusion of the insulin-containing vesicles and release of their contents 

outside of the cell. Calcium elevation can also produce calcium release from 

intracellular stores, an effect described as calcium induced calcium release 

(CICR). This process can further potentiate exocytotic processes and upregulate 

insulin secretion (Kang and Holz 2003; Kang et al. 2003).  

In addition to elevated blood glucose, feeding induces gut K and L cells to release 

the incretin hormones, glucagon-like peptide (GLP) and gastric inhibitory peptide 

(GIP) (Baggio and Drucker 2007). These hormones bind to and activate their 

respective Gs-coupled GPCRs present on the pancreatic β-cells and thereby 

provoke an increase in cAMP levels. cAMP elevation is a major factor in 

determining the intensity of the GIR response (Shibasaki et al. 2007). Both EPAC1 

and EPAC2 are found within in pancreatic β-cells, and cAMP has been shown to 

potentiate insulin secretion in a PKA dependent (Ding and Gromada 1997) and 
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independent manner (Seino and Shibasaki 2005). Interestingly, cAMP is able to 

upregulate GIR, CICR and exocytotic processes through EPAC2 (Figure 1-5), 

supporting EPAC2 as an important regulatory player in the control of insulin 

secretion and, potentially, as a drug target for the treatment of type 2 diabetes. 

Various mechanisms have been identified which underlie the ability of cAMP and 

EPAC2 to regulate insulin secretory pathways within pancreatic β-cells. The first 

reports of EPAC2 in β-cell function stemmed from the ability of EPAC2 to regulate 

the sensitivity of the KATP channel through direct interaction with the sulfonylurea 

receptor (SUR1) subunit of this complex (Kang et al. 2006). This effect is able to 

lower the cellular ATP content required to provoke potassium channel closure, 

resulting in membrane depolarisation in response to lower blood glucose and cell 

metabolism. 

EPAC2 has also been linked to the effects of incretins in pancreatic β-cells by 

upregulating basal and stimulated calcium levels, independently of a glucose 

stimulus (Seino et al. 2009). Indeed, EPAC2 is intimately involved in calcium flux 

via CICR. By regulating ryanodine receptors (Kang et al. 2003), activating 

phospholipase C-epsilon (Dzhura et al. 2010) and the inositol-3-phosphate (IP3) 

receptor (Kang et al. 2006), EPAC2 is able to regulate the release of calcium from 

intracellular stores. Thus, EPAC2 is involved in increasing the sensitivity of the β-

cell to glucose and thereby potentiates secretory responsiveness to elevated blood 

glucose (Seino et al. 2009). 

Finally, EPAC2 knockout mice have been shown to be deficient in vesicle-

membrane docking, a process which increases the pool of insulin-containing 

vesicles available for exocytosis (Shibasaki et al. 2007; Dzhura et al. 2010). 

Indeed, by directly regulating the vesicular population in contact with the 

membrane, EPAC2 can regulate vesicle fusion events and thus insulin release. 

These effects stem from the regulation of vesicular trafficking, as EPAC2 can 

directly interact and activate Rab interacting molecules, isoforms two and three 

(Rim2 and Rim3) (Ozaki et al. 2000; Yasuda et al. 2010; Park et al. 2012) and 

Piccolo (Fujimoto et al. 2002). Rim/Piccolo complexes are key regulators of insulin 

vesicle trafficking via Rab GTPases and their activation can promote vesicle fusion 
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to the cell membrane and insulin secretion from the pancreatic cell (Kasai et al. 

2005; Park et al. 2012). 

Although EPAC1 is present at low levels within pancreatic β-cells (Chepurny et al. 

2010), it has also been implicated in insulin secretion, β-cell function and 

metabolism (Yang et al. 2012; Kai et al. 2013). Indeed, EPAC1 null mice show 

blunted GIR when injected with glucose to circumvent incretin mediated cAMP 

elevation within β-cell (Kai et al. 2013), suggesting a specific role for EPAC1 in 

GIR at basal cAMP levels. However, when glucose was introduced by feeding no 

deficiencies in GIR were observed in EPAC1-/- mice, suggesting that EPAC2 may be 

dominant in incretin potentiated GIR (Yan et al. 2013). However, EPAC1-/- 

knockout mice displayed deregulated energy metabolism, altered islet of 

Langherhan development (Kai et al. 2013) and increased sensitivity to leptin (Yan 

et al. 2013). Indeed, EPAC1 appears to play a role in energy metabolism that may 

facilitate drug development for the treatment of diet-induced obesity, as well as 

insulin resistance. 

Given the importance of EPAC2 in insulin vesicle priming a small molecule EPAC2 

agonist may be an effective tool in promoting insulin secretion in type two diabetic 

patients. Furthermore, although the effects of EPAC1 may be limited, activation 

of this EPAC isoform may also upregulate insulin secretion, supporting either an 

EPAC1 or dual action small molecular activator as a viable option in drug 

development for insulin resistance. 
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Figure 1-5 : EPAC2 is involved in potentiating insulin release from the pancreatic β-cell 
through multiple mechanisms.  
This schematic of the pancreatic β-cell shows the manner in which EPAC2 can regulate the insulin 
secretory pathway. Two pathways are activated by feeding. First, secretion of GLP and GIP is 
stimulated within the gut, activating GPCRs on the pancreatic β-cell (Baggio and Drucker 2007). 
This in turn activates adenylate cyclase and cAMP production is stimulated, activating EPAC2. 
Simultaneously, elevation in blood glucose signals to glucose transporters on the β-cell, which 
import glucose. Metabolism of glucose within the mitochondria yields an increase in ATP within the 
cell, closing ATP sensitive potassium channels (KATP channel) and therefore promoting 
depolarisation. Depolarisation causes glucose stimulated calcium influx (GICR), which in turn 
stimulates calcium induced calcium release (CICR), and promotes vesicle fusion (Holz 2004). 
EPAC2 is able to regulate insulin secretion through three pathways, with proteins shown to be 
regulated by EPAC2 shown in yellow. Direct interaction with the SUR1 (sulfonylurea receptor) 
increases the sensitivity of the KATP channel to ATP and thus stimulates GICR (Holz et al. 2006). 
Sulfonylureas (SU) are able to produce similar effects by targeting SUR1, however, this effect has 
been attributed in part to EPAC2 as a secondary drug target within β-cells (Zhang et al. 2009). 
Additionally, EPAC1-Rap1 signalling can regulate endoplasmic reticulum (ER) calcium store 
release (CICR) through stimulation of phospholipase C epsilon (PLCε) (Oestreich et al. 2007; 
Dzhura et al. 2011), the ryanodine receptor (RyR) (Pereira et al. 2007) and the sarcoendoplasmic 
calcium transport ATPase (SERCA) (Lacabaratz-Porret et al. 1998). Furthermore, EPAC2 can 
interact directly with the docking proteins RIM2 (Rab interacting molecule-2) and piccolo and 
facilitate insulin vesicle docking to the plasma membrane (Kwan et al. 2007), increasing the pool of 
insulin available for release. ER – Endoplasmic reticulum, VDCC – Voltage dependent calcium 
channel, ATP – Adenosine triphosphate, GLP – Glucagon like peptide, GIP – Gastric inhibitory 
peptide. 
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1.3.2 EPAC-Rap1 Signalling in Brain and Neuronal Function 

Both EPAC1 and EPAC2 are expressed within the brain (Kawasaki et al. 1998). 

Knockout of either EPAC1 or EPAC2 from the mouse forebrain has no effect on 

phenotype, however double knockout results in impaired social interaction and 

memory, suggesting functional redundancy between neuronal EPACs (Yang et al. 

2012). Indeed, an important role for EPACs within the prefrontal cortex has been 

confirmed, as knockout mice display altered learning and social capacity (Yang et 

al. 2012). However, recent studies have also reported phenotypic alterations in 

response to isoform specific knockout, suggesting that EPACs may have 

independent functions in specific neuronal cell types, such as in the cortex 

(Srivastava et al. 2012) and hypothalamus (Yang et al. 2012). 

A major feature of EPAC dual knockout mouse models is the down-regulation of 

EPAC mediated transcription linked to neuronal function (Suzuki et al. 2010; Yang 

et al. 2012). Indeed, EPAC1/2 knockout blocks the expression of the neuro-

regulatory miRNA-124 which inhibits its downregulation of Zif-268 protein 

translation, which has been implicated in neural plasticity and memory formation 

(Hall et al. 2001). Although EPACs provide cAMP responsive control over gene 

expression, the precise molecular mechanisms are unknown.  

One potential mechanism for EPAC2 in regulating brain function is linked to the 

observation that EPAC2 has been implicated in regulating dendritic size and 

stability. These effects have been correlated to the formation of EPAC2 complexes 

with key dendritic regulatory proteins, PSD-95 and NR-1, within the post-synaptic 

density (Woolfrey et al. 2009). In particular, EPAC2 activation has been linked to 

smaller, more motile dendrites, which correlate with synaptic plasticity in social 

behaviour and memory (Gelinas et al. 2008). Indeed, EPAC1/2 knockout mice 

display impaired social behaviour linked to impaired dendritic development 

(Srivastava et al. 2012). These data suggest a functional role for EPACs in the 

regulation of synaptic function. 

cAMP elevation has been proposed as an effective avenue in regulating neuronal 

function (Kanes et al. 2007). For example, D2 dopamine receptor antagonists have 

previously be employed to treat brain disorders via inhibition of postsynaptic 
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receptors and increases in cAMP levels (Kapur and Mamo 2003). In addition, the 

PDE-inhibitor, rolipram, has also been proposed to be a potential regulator of 

depression and psychosis by producing similar increases in postsynaptic cAMP 

levels (Kanes et al. 2007). cAMP has been shown to activate both PKA and EPAC to 

alter brain function (Otmakhov and Lisman 2002), however recent studies have 

shown EPACs plays a vital role in promoting long term potentiation (LTP) and 

memory formation in the prefrontal cortex (Yang et al. 2012). Furthermore, 

hypothalamic sensitivity to leptin is regulated by EPAC1 (Yan et al. 2013), perhaps 

linked to EPAC1-mediated long term depression (LTD) within this tissue (Ster et 

al. 2009). 

Interestingly, EPAC1 becomes upregulated in neurodegenerative disease (Suzuki 

et al. 2010) and the expression of an inactive EPAC2 mutant is observed in patients 

suffering from autism spectrum disease (Woolfrey et al. 2009; Srivastava et al. 

2012). Thus, a specific role for cAMP signalling in neuronal function has been 

proposed where EPACs may regulate learning and memory. Furthermore, cAMP 

elevating agents have proven to be effective in the treatment of various 

neurological defects, such as PDE inhibition in Parkinsons (Laddha and Bhatnagar 

2009), schizophrenia (Siuciak 2008) and depression (Scott et al. 1991) and 

resveratrol in Alzheimers (Park et al. 2012). As EPAC1 and EPAC2 appear to display 

some redundancy and beneficial effects have been attributed to both EPAC1 and 

EPAC2, non-selective small molecule agonists of EPAC may be an effective 

therapeutic avenue in the treatment of neurological disorders. Indeed, promoting 

cAMP production within the brain forms the biochemical basis of many anti-

psychotic drugs, and targeting EPACs may achieve similar benefit with fewer off 

target effects.  

 

1.3.3 EPAC-Rap1 Signalling within the Heart 

cAMP elevation occurs within the heart in response to β-adrenergic receptor 

activation within cardiac tissue and has been linked to cardio-myopathy (Sears 

2001). Furthermore, the application of an EPAC-specific activator to langendorff 

perfused hearts revealed a central role for EPAC proteins in the development of 

ventricular arrhythmia (Hothi et al. 2008). The role for EPAC1 in cardiac 

hypertrophy was hypothesised as EPAC1 expression is up regulated in response to 
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thoracic aortic constriction in rats (Metrich et al. 2008). Furthermore, 

characteristic hypertrophic markers such as increased cell size and hypertrophy-

associated gene expression (e.g. atrial naturetic factor) were limited by 

knockdown of EPAC1 (Metrich et al. 2008). These factors supported a role for 

EPAC1 within the heart; however recent data suggests that these factors may be 

a response to, rather than causative of cardiomyopathy (Pereira et al. 2013).  

Despite the evidence supporting a role for EPAC1 in the development of 

hypertrophic cardiac cells, recent work suggests that EPAC2 is directly responsible 

for many of the deleterious cardiac effects associated with non-selective EPAC 

activation (Pereira et al. 2013). Generation of EPAC1 and EPAC2 knockout mice 

has allowed the isoform-specific roles of EPACs within the heart to be directly 

assessed for the first time (Pereira et al. 2013). Importantly, EPAC1-/- ventricular 

myocytes responded to EPAC activation with Ca2+ release from the sarcoplasmic 

reticulum in a similar manner to wild type cells. However, this response was 

completely ablated in EPAC2-/- cells, supporting the idea that EPAC2 is the isoform 

involved in cardiacmyocyte calcium release and the subsequent cardio-myopathy 

observed (Pereira et al. 2013). Similarly to calcium flux within the pancreatic β-

cell, cAMP signalling through EPAC2 and Rap1 is a major of regulator of calcium 

signalling leading to cardiomyocyte contractility (Pereira et al. 2012; Pereira et 

al. 2013). Indeed, EPAC activation in cardiomyocytes has been linked to the 

activation of key calcium signalling proteins calcinuerin and CaMKII (Metrich et al. 

2008) which are able to promote calcium release from cardiomyocyte intracellular 

stores by inducing phosphorylation and activation of the ryanodine receptor 

(Pereira et al. 2013). It is this deregulated stimulus that is involved in the pro-

hypertrophic and arrhythmic signalling that contributes to cardio-myopathy. Thus, 

EPAC2 and dysregulation of calcium signalling play a major role in cardiac 

remodelling (Metrich et al. 2008) and ventricular arrhythmia (Pereira et al. 2013). 

As EPAC2 is responsible for cardiac arrhythmia (Pereira et al. 2013), acute 

application of an EPAC2-selective agonist may allow precise control over 

contractility. Indeed, such an approach may be of use in the treatment of diseases 

associated with deregulated contractility. Conversely, EPAC2 antagonism within 

cardiomyocytes may provide an excellent mechanism to limit cardiac hypertrophy 

and arrhythmia in chronic heart disease.  
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1.3.4 EPAC-Rap1 Signalling and Vascular Function 

One particular action of cAMP is to alter endothelial barrier function (EBF); the 

ability of the vascular endothelium to act as a semi-permeable barrier to 

inflammatory agents within the circulatory system (Parnell et al. 2012). Under 

normal conditions, the vascular endothelium limits the passage of liquid, 

chemokines, cytokines and leukocytes into the underlying tissue, preventing 

oedema and inflammation. However, in response to physical damage or the 

accumulation of lipid, endothelial barrier function can become deregulated 

(Figure 1-6-A), leading to the accumulation of inflammatory agents within blood 

vessels (Calabro et al. 2008). De-regulated inflammatory signalling has been shown 

to play a major role in the progression of CVD. Indeed, blood vessel thickening can 

be largely attributed to chronic inflammatory stimuli, which can progress into 

hypertension, stroke and cardiac arrest (Calabro et al. 2008). The maintenance of 

vascular endothelial permeability by cAMP is a tightly regulated process, 

incorporating cell-cell interactions and cytoskeletal rearrangement (Figure 1-6-

A). In addition, the vascular endothelium and EPAC1 signalling can limit 

proliferative and migratory effects of vascular smooth muscle cells (VSMCs) in 

response to inflammatory cues (Figure 1-6-C). However, EPAC1 may play a role in 

promoting VSMC migration (Yokoyama et al. 2008), a causative factor in thickening 

of the vascular tunica intima following stent insertion, suggesting that EPAC1 

function within the vasculature is complex and varies according to the cellular 

environment and the intensity of the cAMP signal. 

Various mechanisms converge to regulate barrier function in vascular endothelial 

cells (VECs). Key regulators of barrier function are adherens junctions (AJ) and 

tight junction (TJ), which have been shown to be vital in forming linkages between 

VECs and limiting trans-endothelial permeability (Gulino et al. 1998; Zhadanov et 

al. 1999; Kooistra et al. 2005). One vital function ascribed to EPAC1-Rap1 

signalling is the stabilisation of vascular endothelial cadherin (VE-Cadherin) 

complexes between VECs (Kooistra et al. 2005). Indeed, EPAC1-Rap1 signalling to 

VE-Cadherin is able to enhance barrier function in a PKA independent manner 

(Cullere et al. 2005). 
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Increased cytoskeletal contractility also plays a large part in the deregulation of 

cell-cell junctions by producing tension laterally across VECs that can disrupt 

interactions between adjacent cells, thereby increasing trans-endothelial 

permeability (Wojciak-Stothard and Ridley 2002). EPAC-Rap1 barrier protective 

effects have been shown to involve two Rho GTPase family members; RAC and 

RhoA. These key regulators of the cytoskeleton are able to induce opposing effects 

on endothelial barrier function. RAC activation induces the formation of cortical 

actin bundles, which through promote junction stability (Beckers et al. 2010). 

Conversely, RhoA activation in response to inflammatory agents such as thrombin 

promote the formation of actin stress fibres, myosin contraction and the 

disruption of endothelial cell shape (Bogatcheva et al. 2002). EPAC1 contributes 

to the regulation of these macromolecular structures through the activation of   
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Figure 1-6 : Protective effects of EPAC1 signalling within the vasculature. 
A – Inflammatory signalling promotes endothelial permeability to liquid, cytokines, chemokines and 
leukocytes into the underlying tissue, exacerbating vascular inflammation. This occurs due to the 
interrelated effects on cell-cell contact produced by impaired adherens junction stability (AJ) and 
increased cell contractility produced by myosin light chain (MLC) (Bogatcheva et al. 2002). B – The 
effects of cAMP signalling on vascular endothelial permeability. cAMP activation can promote, 
cortical actin bundling and adherens junction stability (Cullere et al. 2005; Fukuhara et al. 2005; 
Kooistra et al. 2005), tightening cell-cell contacts and limiting paracellular permeation. In addition, 
EPAC1 can induce anti-inflammatory gene expression (Sands et al. 2006). C – In response to 
inflammatory stimuli, vascular smooth muscle cells undergo proliferation and migration which can 
promote neo-intima hyperplasia, effects which can be countered by upregulated EPAC1 activity 
(Hewer et al. 2011). 
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RAC (Birukova et al. 2007; Birukova et al. 2008; Baumer et al. 2009; Birukova et 

al. 2010) and, additionally, through inhibition of RhoA (Stockton et al. 2010; Post 

et al. 2013). Thus, EPAC1-Rap1 signalling maintains the balance of activation 

between Rho GTPase family members by promoting the beneficial effects of RAC 

and suppressing the negative effects of RhoA on barrier integrity (Figure 1-7-A).  

1.3.4.1 Rho GTPases 

The molecular mechanisms underlying the regulation of Rho-family GTPases by 

EPAC1-Rap1 are now beginning to be understood. Birukova et al identified a 

correlation between elevations in cAMP, increased levels of active, GTP-bound 

RAC, improved barrier function (Birukova et al. 2007) and cell spreading (Arthur 

et al. 2004). Additionally, upon cAMP elevation with prostaglandin E2, the RAC-

specific GEFS, VAV and TIAM, were observed to become phosphorylated and 

translocate to the membrane, coincident with their activation (Birukova et al. 

2007). Inhibition of PKA, as well as knockdown of EPAC1, inhibited  activation of 

RAC and co-activation of PKA and EPAC1 failed to produce an enhanced response 

(Birukova et al. 2010), suggesting that RAC is downstream of both cAMP inducible 

pathways.  

RhoA inhibition is vital for Rap1 mediated barrier protective effects and various 

mechanisms have been proposed for this. The ability of Rap1 to relocalise the 

Rap1-binding protein, Krit1, to cell-cell junctions in the vascular endothelium has 

been observed, where it inhibits both the formation of stress fibres and the 

associated disruption of barrier function (Glading et al. 2007). Furthermore, 

down-regulation of Krit1 inhibits Rap1-dependent responses effects in VECs 

(Glading et al. 2007). The role of RhoA in Krit1 signalling was established after 

loss of Krit1 led to increased permeability of VECs, an effect reversed by 

treatment with a RhoA inhibitor (Stockton et al. 2010). In addition, Post et al 

identified a role for the Ras interacting proteins, Rasip1 and Radil, in regulating 

the activity of ArhGAP29, a Rho-GAP, and subsequently inhibition of RhoA (Post et 

al. 2013). Accordingly, siRNA mediated depletion of ArhGAP29, or Rasip1 and Radil 

in combination, was able to inhibit the beneficial barrier effects of Rap1 in VECs.  
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Figure 1-7 : EPAC1-Rap1 signalling within the vasculature has various protective effects.  
A – EPAC1 activation within vascular endothelial cells is responsible for the induction of 
suppressor of cytokine 3 (SOCS-3) expression by C/EBP and c-Jun transcription factors (Yarwood 
et al. 2008; Wiejak et al. 2014). Furthermore, regulation of microtubule assembly is able to stabilise 
integrin binding at cell-cell contacts, to promote barrier function (Sehrawat et al. 2011). The 
regulation of Rho-GTPases RAC and RhoA are central to EPAC1s effects on the cytoskeleton and 
adherens junction stability. EPAC1 has been shown to downregulate RhoA activity through both 
KRIT (Glading et al. 2007; Stockton et al. 2010) and RASIP (Ras interacting protein)(Post et al. 
2013), which decrease cell contractility and inhibit the disruption of VE-cadherins by microtubules. 
Conversely, RAC has been shown to be activated in response to EPAC1-Rap1 signalling by the 
RAC-GEFs VAV and TIAM (Birukova et al. 2010). RAC is able to promote cortical actin structures 
which stabilise VE-cadherin at cell-cell contacts (Kooistra et al. 2005). B – Vascular smooth muscle 
cell proliferation can be inhibited by cAMP signalling through EPAC1 and PKA synergy (Hewer et 
al. 2011). In contrast to the vascular endothelium, PKA/EPAC1 signalling inhibits RAC activity and 
actin polymerisation. However, this in turn results in an up-regulation of the ubiquitin ligase 
components, Skp2, which inhibits cell growth and proliferation through degradation of p27kip1 (Bond 
et al. 2008). Additionally, cAMP signalling is able to inhibit cell growth markers, such as c-myc and 
cyclin D, and inhibit the nuclear export and activation of ERK1/2 (Kimura et al. 2014). 

 

 

A 
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Indeed, Rasip1 was observed by fluorescence resonance energy transfer (FRET) 

analysis to interact directly with Rap1, suggesting a direct link between EPAC1-

Rap1 signalling, regulation of a RhoA GAP and the control of vascular endothelial 

barrier function (Post et al. 2013). 

Clearly EPAC1-Rap1 signalling has a profound effect on the cell cytoskeletal and 

cohesive pathways of VECs. In addition, EPAC1 is vitally important in the 

regulation of VSMC migration and proliferation in response to inflammatory 

stimuli. Intriguingly, alterations in cytoskeletal stability are also thought to 

underlie the effects of EPAC1 in VSMCs, where EPAC1 has been shown to synergise 

with PKA to suppress VSMC proliferation, which is normally associated with neo-

intima formation (Hewer et al. 2011). As opposed to the action of EPAC1 in VECs, 

EPAC1 is thought to suppress RAC activity within VSMCs (Figure 1-7-B), leading to 

cytoskeletal remodelling, nuclear export of ERK1/2 and inhibition of the 

transcription factor, Egr1 (Kimura et al. 2014). RAC activation normally promotes 

VSMC proliferation and neo-intima formation, whereas inhibition of RAC by PKA 

and EPAC1 leads to up-regulation of the cell-cycle inhibitor, p27kip1 through 

suppression of Skp2, an F-box protein component of the Skp-Cullin-F-box 

ubiquitin-ligase, which normally targets p27kip1 for proteolytic degradation during 

S-phase (Bond et al. 2008). 

As such, an EPAC activator may exert positive effects on both barrier function and 

smooth muscle integrity, thereby limiting the damaging effects of inflammatory 

stimuli and the progression of CVD. Furthermore, EPAC1 selective activation may 

allow these positive effects within the vasculature endothelium whilst avoiding 

off-target activation of EPAC2 in other cell types. As such an EPAC1 agonist may 

be an effective tool in regulating the inflammatory response of VECs and VSMCs, 

thereby promoting cardiovascular health.  
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1.4 cAMP Signalling as a Therapeutic Target 

The cAMP signalling pathway is a key target in drug development. However, 

various pitfalls have been identified relating to effects produced as a result of 

global cAMP elevation throughout the body. Here I will discuss new efforts to 

target the cAMP system therapeutically to produce beneficial effects whilst 

avoiding the common side effects associated with global cAMP elevation. 

The first cAMP elevating agents available were β-adrenergic receptor agonists, 

which form the basis of bronchodilators for the treatment of asthma such as 

isoproterenol and salbutamol (Sears 2001; Sears and Lotvall 2005). Additionally, 

cAMP elevating agents, such as chlorpromazine and haloperidol, have been used 

in the treatment of psychosis and schizophrenia through Gi-coupled D2 Dopamine 

receptor antagonism within the post-synaptic neuron (Kapur and Mamo 2003). 

These applications show the value of membrane protein stimulation in producing 

cAMP elevation intracellularly. Finally, cAMP signalling can be stimulated by 

intervention with cAMP-PDE inhibitors (Beavo 1995). In particular, isoform specific 

PDE4-inhibitors, such as rolipram and rofumilast, have shown promise in the 

treatment of inflammatory disease due to the localised expression of PDE4 

isoforms within smooth muscle and immune cells (Burnouf and Pruniaux 2002).  

cAMP signalling has a wide range of protective effects, however, pharmaceutical 

agents that globally elevate cAMP levels have been associated with severe side 

effects. As such, much research has focussed on developing greater tissue 

specificity by targeted application. For example, salbutamol inhalation avoids 

activation of cardiac beta receptors (Sears and Lotvall 2005), and the PDE isoform 

specificity of rofumilast results in fewer off target effects (Rabe 2011). However, 

EPACs are responsible for many of the protective effects of cAMP observed in 

various disease states and as such recent research has attempted to produce 

beneficial effects through direct regulation of EPAC (Chen et al. 2014). Indeed, 

by bypassing the effects of PKA, many benefits may be observed independently of 

the side effects associated with global cAMP elevation and dual PKA/EPAC 

activation. Furthermore, tissue specific expression of EPAC isoforms may allow a 

targeted approach to therapeutic intervention in disease states. This will no doubt 
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be facilitated by new high throughput screening methods for identifying small 

molecule regulators of EPACs (Chen et al. 2014).  

 

 

 

 

Figure 1-8 : Targets of cAMP regulatory drugs. 
Membrane G-protein coupled receptor activation by isoprenaline and salbutamol, AC activation by 
forskolin and cAMP-phosphodiesterase inhibition by rofumilast and rolipram are all able to 
stimulate cAMP elevation within the cell to activate PKA and EPAC. Novel EPAC targeted small 
molecules, such as sulfonylureas and EPAC specific inhibitors (ESIs) have been proposed to 
activate and inhibit EPAC respectively. 
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1.5 EPAC as a Drug Target 

EPAC has been implicated in the control of a number of disease states as detailed 

earlier. In order to effectively target EPAC medicinally it will be necessary to 

develop small molecule regulators that selectively activate EPAC over PKA, avoid 

inhibition of PDEs and are able to enter target tissues effectively. The following 

sections describe some of the recent work that has attempted to address these 

issues. 

1.5.1 Development of EPAC Specific Cyclic Nucleotide 
Analogues. 

The first attempt to selectively regulate EPAC centred on the development of a 

cAMP analogue that was able to activate EPACs independently of PKA (Enserink et 

al. 2002). This work was aided by the determination of the three dimensional 

structure of EPAC2 (Rehmann et al. 2006; Rehmann et al. 2008) and the 

development of a range of cAMP analogues with varying kinetic properties 

(Kraemer et al. 2001). In particular, the addition of a methyl group to the oxygen 

of the second carbon (2’) of the ribose moiety of cAMP was observed to promote 

EPAC activation whilst greatly reducing the affinity of cAMP for PKA (Figure 1-9-

B) (Enserink et al. 2002). This specificity is due to a single amino acid deviation 

between PKA and EPACs within the cAMP binding pocket of the otherwise highly 

conserved CNB. The substitution of a glutamic acid residue within PKA for 

glutamine or lysine (Figure 1-9-E), in EPAC1 and EPAC2 respectively, was found to 

be the key structural difference which allows EPACs, but not PKA, to accept the 

2’O-methylated cAMP analogue (Enserink et al. 2002). This modification to the 

ribose moiety of EPAC1 decreased the affinity of cAMP for EPAC. However, 

coupling a parachlorophenylthio group (pCPT) to the eigth position of the 

adenosine ring (N8) stabilised a favourable trans base conformation, which is 

efficient in binding and activating EPACs and PKA (Kraemer et al. 2001). The 

combination of these cAMP modifications produced 8-pCPT-2’-O-Me-cAMP (007) 

which displays the dual properties of enhanced selectivity towards EPAC coupled 

to high affinity binding (Figure 1-9-C).  
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Figure 1-9 : Development of EPAC specific cAMP analogues. 
The structure of cyclic adenosine monophosphate (cAMP) is shown (A). Methylation of cAMP at 
the ribose 2’ oxygen (2’-O-Me-cAMP) results in greatly improved EPAC specificity, but affinity is 
lowered (Enserink et al. 2002) (B). The subsequent modification of the 8th carbon of adenosine with 
parachlorophenylthio (pCPT) produces 8-pCPT-2’-O-Me-cAMP (007) and greatly increases the 
affinity for EPACS, whilst maintaining selectivity over PKA (Enserink et al. 2002) (C). Finally, the 
addition of an acetoxymethyl ester (8-pCPT-2’-O-Me-cAMP-AM / 007-AM) masks the phosphate 
group, facilitating prodrug membrane permeability (Vliem et al. 2008) (D). Subsequent intracellular 
esterase activity removes this group allowing interaction with EPAC. E – The cAMP binding site of 
EPAC2 (pink, crystal structure 3CF6) (Rehmann et al. 2008) is shown. The highly conserved CNB 
of the PKA regulatory subunit (1RGS) (Su et al. 1995) has been aligned to the EPAC2 CNB. The 
position of glutamic acid 238 (E238, red) of the PKA regulatory subunit is shown with a red dashed 
line indicating hydrogen bonding between PKA E238 and cAMP (yellow) at the ribose 2’ oxygen 
moiety. Substitution of this conserved glutamic acid within EPAC1 and EPAC2, to glutamine and 
lysine respectively, is the key structural difference within the CNB which accommodates the 2’ 
oxygen-methylated cAMP analogue and imparts EPAC specificity to 007. Position 8 of the base 
(N8) is shown, which can be modified (e.g. with pCPT in 007) to increase the affinity of cAMP for 
CNBs. 
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007, along with its improved, cell permeable analogue (007-AM,  Figure 1-9-D) 

(Vliem et al. 2008) have greatly facilitated the study of the cellular actions of 

EPAC by allowing the PKA independent effects of cAMP signalling to be observed 

directly (Enserink et al. 2002; Fukuhara et al. 2005; Kooistra et al. 2005). 

However, in vivo use has been limited by its high effective dose, low cell 

permeability and the induction of cardiac arrhythmia, fibrosis and hypertrophy 

(Metrich et al. 2009). Furthermore, various off-target effects limit its specificity, 

such as its inhibitory effect over PDEs (Poppe et al. 2008) and off-target activation 

of P2Y12 platelet receptors (Herfindal et al. 2013). In order to effectively regulate 

disease through the EPAC family, small molecule regulators of EPACs are required. 

As a results of these caveats, a number of groups have adopted novel high-

throughput screening approaches to identify small molecule regulators of EPAC 

activity (Chen et al. 2014).  

1.5.2 High Throughput Screening For EPAC Inhibitors 

In order to identify chemically distinct, small molecule regulators of EPAC activity, 

a number of groups have adapted existing assays of EPAC function for high 

throughput screening (HTS) and some progress has been made, particularly in the 

development of EPAC inhibitors. Moreover, in addition to selectivity over PKA, a 

number of compounds have been developed with the ability to selectively interact 

with EPAC1 or EPAC2 (Chen et al. 2013). These compounds show promise in 

forming the basis of future therapeutic agents designed to combat disease states 

where specific EPAC isoforms play an important regulatory role. 

1.5.3 Discovery of Inhibitors of EPAC Activity 

Recently, an isoform-specific EPAC1 inhibitor has been identified through HTS 

approaches. The assay was based on the priming of recombinant Rap1 with a 

fluorescent GDP analogue. This allowed the GEF activity of EPAC1 to be monitored 

as Rap-bound fluorescent GDP is exchanged for unlabelled GTP, producing a 

measurable decrease in fluorescence (de Rooij et al. 1998; Kraemer et al. 2001). 

By developing this assay for 384-well format it was possible to screen for small 

molecules capable of preventing this drop in fluorescence associated with Rap1 

activation, and thus the GEF activity of EPAC1. The tetrahydroquinoline, 3ECF4, 
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was the first EPAC1 small molecule regulator to be isolated and is able to produce 

significant decreases in EPAC1 activity (Courilleau et al. 2012). Importantly, 3ECF4 

was shown to act without directly disrupting EPAC1-Rap interaction or cAMP 

binding. Although the mode of action was not disclosed, 3ECF4 was observed to 

preferentially bind to the cAMP-bound, open conformation of EPAC1, supporting 

an inhibitory allosteric mechanism (Courilleau et al. 2012).  

In addition to high throughput GEF assays, a bioluminescence assay has recently 

been developed to identify EPAC1 antagonists that are able to bind and stabilise 

the hinge region found within the CNB (Brown et al. 2014). EPAC1 protein was 

fused to citrine and Renilla luciferase, allowing conformational change to be 

visualised by a change in the emission wavelength as bioluminescent resonance 

energy transfer (BRET) occurs between the citrine and Renilla tags. Thus, EPAC 

activity can be assayed in response to compound binding. Indeed, an allosteric 

inhibitor was identified that was able to induce BRET, block EPAC1 activity in vitro 

and in cells by interacting with the key hinge region within the CNB that is involved 

in regulating enzyme activation (Brown et al. 2014). 

The fluorescent properties of 8-[2-[(7-nitro-4-Benzofurazanyl)aminoethyl]thio]-

cAMP (8-NBD-cAMP) have also been harnessed for the identification of compounds 

able to compete for binding to the CNB of EPACs. 8-NBD-cAMP has been modified 

at the eighth carbon of the adenosine ring to include the fluorescent 

benzofurazanyl moiety which is excited at 471 nm and exhibits a Stokes shift of 

70 nm, producing emission wavelengths at 540 nm (Kraemer et al. 2001). 

Interestingly, binding to the hydrophobic environment of the CNB promotes a 

highly fluorescent conformation. Tsalkova et al, 2012, tested the ability of cAMP 

analogues and other small molecules to compete with 8-NBD-cAMP for binding to 

EPAC2 (Tsalkova et al. 2012). The appropriateness of this competition assay for 

HTS was demonstrated through extensive screening  which has yielded various 

compounds with the ability to specifically inhibit EPAC2 activity in vitro and in 

vivo (Tsalkova et al. 2012; Almahariq et al. 2013; Chen et al. 2013). Importantly, 

these compounds did not alter PKA activity during in vitro counter screening, 

leading to their designation as EPAC specific inhibitors (ESIs). 
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1.5.3.1 Non-Selective ESIs 

ESI-08 was the first EPAC inhibitor to be characterised using an 8-NBD-cAMP 

competition assay and was observed to inhibit both EPAC1 and EPAC2 to similar 

degrees (Chen et al. 2013). In order to define structure-affinity relationship (SAR) 

and to maximise affinity for the EPAC CNB, chemical modification of the R2 

cyclohexyl group to cyclopropyl and cyclopentyl yielded the analogues HJC0198 

and HJC0197 respectively. Each displayed improved IC50 values in 8-NBD-cAMP 

competition assays compared to the unmodified ESI-08 (Chen et al. 2013). 

Furthermore, both analogues were able to inhibit 007 induced protein kinase B 

(PKB/AKT) phosphorylation in HEK293T cells expressing EPAC1 or EPAC2, 

indicating non-selective EPAC inhibition (Chen et al. 2013). Confusingly, despite 

the ability of HJC0198 to block EPAC2 mediated PKB/AKT phosphorylation in vivo 

it was unable to affect GEF activity in vitro suggesting potential off-target effects 

(Rehmann 2013). 

ESI-09 was also identified as a compound capable of down-regulating both EPAC1 

and EPAC2 GEF activity (Almahariq et al. 2013). Lorenz et al. 2008, observed that 

EPAC1 expression levels were higher in cancerous pancreatic cells (Lorenz et al. 

2008). Consistent with this, targeted knockdown of EPAC1 within these cells 

inhibited both their transwell migration and their ability to adhere in response to 

007-AM stimulation, suggesting that EPAC1 may play an important role in the 

invasive character of pancreatic cancer (Lorenz et al. 2008). Interestingly, pre-

incubation of cells with ESI-09 was able to mimic the effects of targeted 

knockdown of EPAC1 on cell migration, wound healing and adhesion, supporting a 

bona fide effect of ESI-09 on EPAC function and a potential avenue for the future 

treatment of pancreatic cancer (Almahariq et al. 2013). However, care must be 

taken, as HTS assays can be liable to detect denaturing agents, and indeed, ESI-

09 has been suggested to act through denaturation of EPAC in vitro (Rehmann 

2013). 
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1.5.3.2 Isoform Selective ESIs 

Due to the limited tissue distribution of EPAC2 and its association with various 

disease states, including type two diabetes, inhibition of EPAC2 may be an 

effective mechanism for the treatment of disease. Indeed, a range of small 

molecules have been identified that display selectivity towards EPAC2 (Chen et 

al. 2014). Of these, ESI-05 and ESI-07 were identified as compounds that 

specifically antagonise EPAC2 (Tsalkova et al. 2012). Both compounds were found 

to be effective in reducing EPAC2 GEF activity towards Rap1 both in vitro, and in 

HEK293T cell lines. The mechanisms of antagonist selectivity has been ascribed to 

the presence of the second inactive CNB of EPAC2, CNB1. Deuterium exchange 

mass spectrometry revealed a decrease in solvent exposure upon ESI-07 binding 

at two sites within EPAC2 (Tsalkova et al. 2012). The regions identified encompass 

a potential binding site found at the interface between the first and second CNBs 

of EPAC2. Tsalkova et al, hypothesised that ESI-07 binding may therefore lock 

EPAC2 in the closed, inactive form by inhibiting cAMP binding and GEF activity 

(Tsalkova et al. 2012). The requirement for the CNB1 of EPAC2 may explain the 

selectivity of ESI-07 for EPAC2, since EPAC1 lacks this additional domain (de Rooij 

et al. 2000). Consequently, both ESI-07 and ESI-05 are unable to inhibit EPAC1 

activation in response to 007. Moreover, EPAC2 lacking the CNB1 is insensitive to 

ESI-05 inhibition, further supporting the idea that the CNB1 of EPAC2 is important 

for inhibitor binding (Rehmann 2013). 

1.5.3.3 Caveats in the use of HTS for the Identification of Small Molecule 
Regulators of EPAC Isoforms 

Despite the successful identification of ESIs as EPAC antagonists, doubts 

concerning the modes of action of these compounds have been raised due to the 

denaturing properties of HJC0197 observed in vitro experiments (Rehmann 2013). 

The increased exposure of hydrophobic residues is indicative of a reduction in 

protein stability and a thermal shift assay has been employed to detect the effects 

of the ESI compounds on EPAC and reference protein stability. Indeed, Sypro 

orange fluorescence was observed to increase dramatically as EPAC and other 

reference proteins became denatured in the presence of 50-100 µM ESI-09 and the 

ESI-08 analogue, HJC0197 (Rehmann 2013). Furthermore, the temperature at 

which these proteins become denatured drops in the presence of both ESIs. These 
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observations suggest that the inhibitory effects of ESI-09, ESI-08 and its derivatives 

are potentially nonspecific and may be linked to protein denaturation. However, 

docking experiments and in vivo data support a specific interaction between ESI-

09 and ESI-08 with EPACs (Tsalkova et al. 2012; Almahariq et al. 2013; Chen et al. 

2013). The denaturing properties of these compounds may therefore be 

exacerbated by in vitro analysis, or may be concentration dependent. These 

observations highlight an inherent danger when using HTS to detect ligand-protein 

interactions; namely, the detection of non-specific denaturing agents. As such it 

is important, wherever possible, to reduce the hit rate associated with non-

specific denaturing agents and to confirm in vivo activity of isolated hits. Despite 

the concerns raised over the mechanism of action of ESI-08 and ESI-09, ESI-05 was 

confirmed to inhibit EPAC2 activity specifically without altering protein stability 

(Rehmann 2013). 

1.5.4 EPAC2 Agonist Discovery 

Few studies have led to the development of EPAC selective agonists. The most 

studied and controversial group of small molecule EPAC agonists are the 

sulfonylurea family. Sulfonylureas (SU) were originally characterised as anti-

diabetic drugs capable of regulating SUR1 – a regulatory component of the kATP 

channel (Babenko et al. 1998). Activation of SUR1 is able to potentiate the opening 

of the kATP channel, causing potassium regulated calcium release and increased 

insulin exocytosis. The majority of SUs effects within the pancreatic β-cell are 

attributed to regulation of this pathway, however, various low affinity SU 

receptors have also been postulated (Nelson et al. 1992).  

In order to confirm that EPAC2 is a bone fide SU receptor, a range of SUs were 

screened for their ability to produce changes in the conformation of EPAC2 protein 

associated with the “open”, active form of the enzyme. The screening strategy 

was based on the dramatic structural changes undergone by EPAC proteins 

following cAMP binding (Rehmann et al. 2008). By fusing CFP and YFP to the N and 

C-termini respectively, fluorescence resonance energy transfer (FRET) is produced 

in the inactive form of the enzyme. Following cAMP binding and subsequent 

enzyme activation, the open conformation separates the two fluorescent proteins, 

resulting in a detectable decrease in FRET activity (Ponsioen et al. 2004). Using 
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this protocol, Zhang et al discovered that various sulfonylureas decreased the 

FRET signal detected in MIN6 β-cells expressing the EPAC2 sensor. Furthermore, 

EPAC2-/- mice display impaired insulin release response to SU treatment (Zhang et 

al. 2009). The ability of SUs to promote the active conformation of EPAC2 

combined with the decreased responsiveness of EPAC2-/- cells to SUs supports the 

hypothesis that EPAC2 is a low affinity SU receptor. However, Tsalkova et al. 2012, 

observes that SUs are able to induce elevations in intracellular cAMP, which may 

explain the positive effects of SUs on the activation EPAC2-FRET sensors and why 

insulin secretion is impaired in EPAC2 knockout mice (Tsalkova et al. 2011). This 

particular possibility remains to be assessed. 

Herbst et al (2011) confirmed the ability of SUs to induce FRET changes in EPAC 

sensors in cellular systems and, importantly, reproduced these effects in vitro, 

after immuno-purification of these EPAC sensors from transfected cells (Herbst et 

al. 2011). Interestingly, although the full length EPAC2-FRET sensor responded to 

sulfonylureas with a decrease in FRET, neither EPAC1-FRET (which lacks CNB-1), 

nor the isolated EPAC2-CNB2-FRET sensor were able to reproduce this. It was 

therefore postulated that SUs are isoform selective, and able to bind to EPAC2 via 

an allosteric mechanism involving the low affinity CNB1 of EPAC2 (Herbst et al. 

2011). Despite this evidence, the role of SUs as isoform specific EPAC2 agonists 

remains controversial. Indeed, the widely used SU, glibenclamide, was unable to 

induce GEF activity during in vitro EPAC2 activation assays (Tsalkova et al. 2011). 

In agreement with Herbst et al, SUs were also unable to displace 8-NBD-cAMP from 

the CNB of EPAC2, which points towards the existence of an allosteric interaction 

site (Tsalkova et al. 2011). However, isothermal titration calorimetry failed to 

detect any heat changes following incubation with GLB, strong evidence against 

direct interaction between SUs and EPAC2. These issues may be explained by the 

required synergy between cAMP and SUs in the activation EPAC2 (Takahashi et al. 

2013). It was observed that neither 100 nM GLB nor 1 µM 007 were able to produce 

a decrease in FRET alone. However, when applied in combination, a robust 

decrease in FRET of the EPAC2-FRET sensor was observed. Furthermore, residues 

vital to SU binding are masked in the closed conformation suggesting that SU 

binding may not occur in the closed state and, indeed, the proposed SU binding 

site is only exposed after cAMP binding (Takahashi et al. 2013). Although this may 

explain the inability to detect EPAC/SU binding via ITC, it fails to explain the 
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inability of GLB to upregulate EPAC2 GEF activity when applied alongside cAMP in 

vitro (Tsalkova et al. 2011). It appears, therefore, that although SUs can bind to 

the EPAC2-CNB1 when cAMP is present to produce a decrease in FRET, this binding 

does not directly relate to EPAC2 GEF activity. One explanation may relate to 

limitations of a FRET based activation assay. A drop in FRET is correlated to 

conformational change only and may not represent an increase in GEF activity. It 

is therefore possible that SUs bind to cAMP-bound EPAC2 to produce FRET without 

appreciable increases in GEF activity. Indeed, 3ECF4 has been shown to also target 

the cAMP bound form of EPAC1, stabilising the open form whilst inhibiting GEF 

activity (Courilleau et al. 2012). It would therefore be interesting to assess the 

effects of this compound on an EPAC1-FRET sensor. However, it is clear that a 

proportion of SU activity can be attributed to EPAC2 in vivo (Herbst et al. 2011), 

suggesting SUs may act through a distinct mechanism, perhaps altering EPAC2 

subcellular distribution within the pancreatic β-cell. Despite the considerable 

body of work regarding SUs, definitive evidence for EPAC2 agonism is yet to be 

shown.  

1.5.5 EPAC1 Agonism has Therapeutic Potential in a Range of 

Disease States 

Experiments using EPAC1 and EPAC2 knockout models have demonstrated the 

importance of EPACs in maintaining health, suggesting that EPAC agonism, rather 

than antagonism, is likely to produce the greatest therapeutic benefit. Greater 

selectivity of compounds for EPAC would likely reduce off target effects produced 

by activation of PKA, resulting in fewer side effects and drugs better suited to the 

treatment of chronic disease. Moreover, cardio-myopathy associated with EPAC2 

activation (Pereira et al. 2013) and global cAMP elevation (Sears 2001) has limited 

the use of non-selective EPAC activators (Hothi et al. 2008). Despite this, no small 

molecule agonists for EPAC1 have been developed to date. 
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1.6 Aims 

As no isoform-selective EPAC1 agonists exist, my objectives are to; 

1. Develop a HTS platform that is able to identify isoform-selective EPAC1-

interacting small molecules.  

2. Develop a secondary, cell spreading screen that will allow classification of 

hits as either EPAC1 agonists or antagonists. 

3. Elucidate the molecular mechanisms by which of EPAC1 promotes cell 

spreading in the secondary screen. 

4. Identify the structural differences that underlie the differential 

intracellular targeting of EPAC1 and EPAC2 isoforms. 
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2.1 Suppliers 

Abcam, Cambridge, UK 

American Type Culture Collection (ATCC), Teddington, Middlesex, UK 

Agilent, Stockport, Cheshire, UK 

BD-Transduction laboratories, Oxford, UK 

Bibby Scientific Ltd, Stone, Staffordshire, UK 

Biolog Life Sciences, Bremen, Germany 

Cambridge Bioscience, Cambridge, UK 

Dundee Cell Products, Dundee, UK 

Dundee Sequencing and Services, Dundee, UK 

Evotech (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, UK 

Formedium, Hunstanton, Norfolk, UK 

GE-Healthcare, Chalfont, St Giles, Buckinghamshire, UK 

Greiner Bio-One, Stonehouse, UK 

Invitrogen Ltd, Paisley, UK 

Labcyte, Sunnyvale, California, USA  

Life Technologies Ltd, Paisley, UK 

Li-Cor Biosciences, Lincoln, Nebraska, USA 

Melford Laboratories Ltd, Ipswich, Suffolk, U.K. 
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Millipore (UK) Ltd, Watford, Hertfordshire, UK 

New England Biolabs Ltd (NEB), Hitchin, Hertfordshire, UK 

Premier International Foods Ltd, Lincs, UK 

Promocell, Heidlberg, Germany 

Qiagen, Manchester, UK 

Roche, Burgess Hill, UK 

Santa-Cruz Technologies, Wembley, Middlesex, UK 

Selleckchem, Newmarket, Suffolk, UK 

Sigma-Aldrich Ltd, Gillingham, Dorset, UK 

Thermo Fisher Scientific (UK) Ltd, Loughborough, Leicestershire, UK 

Thistle Scientific Ltd, Glasgow, UK 

VWR International, Lutterworth, Leicestershire, UK 

Yorkshire Biosciences Ltd, York, UK 

Zeiss, Cambridge, UK  
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2.2 Materials  

Table 2-1 : Reagents. 

Compound 
Order 

number 

Diluent/Stock 

Concentration 
Supplier 

3xFLAG-myc-CMV-26 vector #E6401 Solid Sigma-Aldrich 

96 well plate, black #655079 N/A Greiner 

384 well plate, black, low 

volume 
#784076 N/A Greiner 

5-Bromo-4-chloro-3-indolyl- -

D-galactopyranoside (X-Gal) 
#B4252 

20 mg/ml 

DMF 
Sigma-Aldrich 

8- (4- Chlorophenylthio) 

adenosine- 3', 5'- cyclic 

monophosphate 

(8-CPT-cAMP) 

#C-010 
10 mM 

DMSO 

Biolog Life 

Sciences 

8- (4- Chlorophenylthio)- 2'- O- 

methyladenosine- 3', 5'- cyclic 

monophosphate 

(8-pCPT-2’-O-Me-cAMP/007) 

#C-041 

10 mM 

DMSO 

 

Biolog Life 

Sciences 

8-(2-[7-Nitro-4-

benzofurazanyl] 

aminoethylthio)adenosine-

3',5'- cyclic monophosphate 

(8-NBD-cAMP) 

#N-002 
6 mM 

dH2O 

Biolog Life 

Sciences 

15N enriched ammonium 

sulfate 
#299286 solid Sigma-Aldrich 

α-FLAG M2 Sepharose Beads #A2220 

Stored as 20% 

(w/v) ethanol 

slurry 

Sigma-Aldrich 

Adenosine-3',5'- cyclic 

monophosphate 
#A9501 

50 mM 

DMSO 
Sigma-Aldrich 

Acetic Acid Glacial #0714 100% (w/v) VWR 

30% Acrylamide, 1% Bis-

Acrylamide 
#20-2100-10 As supplied 

Thistle 

Scientific 

Agar #AGA02 Solid FormediumTm 
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Ammonium Persulfate #7727-54-0 Solid Thermo Fisher 

AZD6244 #S1008 
1 mM 

DMSO 
Selleckchem 

Bisindolemaleide #203290 
10 mM 

DMSO 
Millipore 

BL-21 cells #C2527I As supplied 
New England 

Biolabs 

Brilliant blue #B7920 Solid Sigma-Aldrich 

Bromophenol blue #130126 Solid Sigma-Aldrich 

Bugbuster protein extraction 

reagent 
#70584-4 10x Millipore 

Calcium chloride #223506 1 M Sigma-Aldrich 

Deuterium oxide #151882 Solid Sigma-Aldrich 

Dimethylformamide (DMF) #D8654 0.944 g/ml Sigma-Aldrich 

Dimethylsulphoxide (DMSO), #472301 1.1 g/ml Sigma-Aldrich 

Dithiothreitol #M1505 Solid 
Melford 

Laboratories 

Echo 384 well plate #LP-0200 N/A Labcyte 

EcoR1 Restriction 

Endonuclease 
#15202-013 

10x to be 

diluted in the 

supplied 

buffer 

reagents 

Invitrogen 

Ethylenediaminetetraacetic 

acid (EDTA) 
#E9984 Solid Sigma-Aldrich 

FDA-approved Drug Library #L1300 
10 mM 

DMSO 
Selleckchem 

Fish Skin Gelatin #G7765 
40-50% (w/v) 

dH2O 
Sigma-Aldrich 

Forskolin #344270 
10 mM 

DMSO 
Millipore 

Gö6983 #365251 
1 mM 

DMSO 
Millipore 

Goat Serum #G9023 As supplied Sigma Aldrich 
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Glucose #G0350500 

20% (w/v) 

stock solution 

dH2O 

Sigma-Aldrich 

Glutathione sepharose 4B 
#GE1707560

1 

Stored as 20% 

(w/v) ethanol 

slurry 

Sigma Aldrich 

Glycerol #G5516 100% (w/v) Sigma-Aldrich 

Glycine #BP381-1 Solid Thermo Fisher 

H-89 dihydrochloride #371963 
10 mM 

DMSO 
Millipore 

HEPEs #4414855H Solid Sigma-Aldrich 

Insulin from porcine pancreas #I5523 
1 mM 

dH2O 
Sigma-Aldrich 

Isopropyl-ß-D-thio-

galactopyranoside (IPTG) 
#MB1008 

1 M 

dH2O 

Melford 

Laboratories 

L-Glutathione (Reduced) #G6013 Solid Sigma Aldrich 

LY294002 #1130 
10 mM 

DMSO 

Tocris 

Biosciences 

“Marvel” milk powder 198 g tin Solid 

Premier 

International 

Foods 

Magnesium sulfate #M7506 Solid Sigma-Aldrich 

NIH clinical collection (NCC) #NCC1 
10 mM 

DMSO 
Evotech 

Not1 restriction endonuclease 
#15202-013 

10x to be 

diluted in 

supplied 

buffer 

reagents 

Invitrogen 

One shot® TOP10 chemically 

competent Escherichia Coli 
#C4040-10 As supplied Invitrogen 

PD184352 #S1020 
1 mM 

DMSO 
Selleckchem 

pGEX-6P-1 #28-9546-48 Solid GE-Healthcare 
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Prestained protein marker, 

broad range (7-175 kDa) 
#P7708 0.1 mg/ml 

New England 

Biolabs 

Prestained protein marker, 

broad range (2-212 kDa) 
#P7702 0.1 mg/ml 

New England 

Biolabs 

Phorbol 12-myristate 13-

acetate 
#524400 

1 mM 

DMSO 
Millipore 

Prostoglandin E2 #P5640 
10 mM 

DMSO 
Sigma-Aldrich 

Protease inhibitor cocktail 
#116974980

01 
Solid Roche 

Protein A Sepharose Beads #17-5280-01 

Stored as 20% 

(w/v)  ethanol 

slurry 

Thermo Fisher 

Protein G Sepharose Beads #17-0618-01 

Stored as 20% 

(w/v)  ethanol 

slurry 

Thermo Fisher 

Ponceau S dye #P3504 Solid Sigma-Aldrich 

Prescission protease #27-0843-01 

2000 units/ml 

(where one 

unit cleaves 

100 µg gst-

protein) 

GE Healthcare 

REDDOT nuclear stain #40061 
200x solution, 

dH2O 

Cambridge 

Bioscience 

Rhodamine Phalloidin #R415 
6.6 µM 

Methanol 
Invitrogen 

Rolipram #557330 
10 mM 

DMSO 
Millipore 

Shandon Immu-mount #9990402 Ready to use Thermo Fisher 

Sodium phosphate dibasic 

(Na2HPO4) 
# 255793 Solid Sigma-Aldrich 

Sodium chloride #7647-14-5 Solid Thermo Fisher 

Sodium deoxycholate #D6750 Solid Sigma-Aldrich 

Sodium dodecyl sulfate #442444 Solid VWR 
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Sodium fluoride #S1504 Solid Sigma-Aldrich 

Sodium phosphate #102-494 Solid VWR 

Sodium azide #S2002 Solid Sigma-Aldrich 

T4 DNA Ligase #D2886 

10x solution to 

be prepared in 

the supplied 

10x buffer 

Sigma-Aldrich 

Triton X-100 #T9284 1.7 M Sigma-Aldrich 

Tris-Hcl #RES3098T Solid Sigma-Aldrich 

Tryptone #TRP02 Solid FormediumTm 

Tween-20 #P1379 100% (w/v) Sigma-Aldrich 

Y27632 #L5288 
10 mM 

dH2O 
Sigma-Aldrich 

Yeast Extract #YEA02 Solid FormediumTm 

Unstained protein marker, 

broad range (2-212 kDa) 
#P7702 As supplied 

New England 

Biolabs 
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2.3 Kits 

Table 2-2 : Kits. 

Kit Order number Supplier 

BCA kit #23227 Thermo Fisher 

Miniprep kit #12163 Qiagen 

Nuclear fractionation kit #40010 Active Motif 

Quikchange mutagenesis kit #210518 Agilent 

 

2.4 Cell Culture Reagents 

Table 2-3 : Table of reagents and equipment used in cell culture applications. 

Reagent Order number Supplier 

0.2 m Nalgene vacuum filter #Z358207 Sigma-Aldrich 

Corning® 100 mm x 20 mm dish #CLS430591 Sigma-Aldrich 

Corning® 12 well cell culture 

cluster 

#CLS3512 Sigma-Aldrich 

Corning® 75 cm2 flasks, canted 

neck, vented 

#CLS430641 Sigma-Aldrich 

Opti-MEM #31985070 Life Technologies Ltd 

DMEM #41965-039 Life Technologies Ltd 

HEK293T cell line #CRL-3216 ATCC 

COS1 cell line #CRL-1650 ATCC 

Penicillin/Streptomycin (10,000 

µg/ml) 

#15140-122 Life Technologies Ltd 

G418 (powder) #A1720 Sigma-Aldrich 

Glutamine (200 mM) #25030-081 Life Technologies Ltd 

Trypsin-EDTA #25200-056 Life Technologies Ltd 

Foetal bovine serum #16000-044 Life Technologies Ltd 

Endothelial Cell Growth Medium 

MV2 
#C-22022 Promocell 

HUVEC (pooled) #C-12203 Promocell 
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2.5 Equipment 

Table 2-4 : Experimental equipment. 

Equipment Supplier 

Axiovert 135 + Axiocam MRm Zeiss 

AVANCE 600 MHz spectrometer 

equipped with cryoprobe 

Bruker 

Biomek Fx Laboratory automation 

workstation with 96 multichannel 

pippeting head 

Beckman Coulter 

Echo® Liquid Handler Labcyte 

Envision Plate Reader Perkin-Elmer 

Jenway 6300 Visible 

Spectrophotometer  
Bibby Scientific Ltd 

J810 Spectropolarimeter  Jasco 

LSM5 Pascal Axiovert 200M laser 

scanning confocal microscope LSM5 

pascal instrument and AOTF Laser 

module 

Zeiss 

Mini-protean gel electrophoresis and 

Mini Trans-Blot® electrophoretic 

transfer cell 

Biorad 

Odyssey Sa Infrared Imaging System Li-Cor 

Optima Fluostar Plate reader BMG Labtech 

Wellmate Automated Pipette Matrix 
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2.6 Antibodies 

2.6.1 Primary antibodies 

Table 2-5 : Primary antibodies. 
WB – antibody/concentration used for Western blotting. IF – antibody/concentration used for 
Immunofluorescence.  

Name 
Order 

number 
Epitope Species 

Working 

Dilution 
Supplier 

α-AKT #9272 Polyclonal Rabbit WB-1:1000 
New England 

Biolabs 

α-beta-Tubulin 

(9F3) 
#2128 Monoclonal Rabbit WB-1:1000 

New England 

Biolabs 

α-EPAC1 (5D3) #4155 Monoclonal Mouse 
WB-1:1000 

IF-1:500 

New England 

Biolabs 

α-EPAC2 (5B1) #4156 Monoclonal Mouse WB-1:1000 
New England 

Biolabs 

α-ERK #9102 Polyclonal Rabbit WB-1:2000 
New England 

Biolabs 

α-ERM (41A3) #3142 Polyclonal Rabbit IF-1:500 
New England 

Biolabs 

α-ezrin (H276) 
#SC-

20773 
Polyclonal Rabbit 

WB-1:1000 

IF -1:500 
Santa Cruz  

α-FLAG (M2) #F3165 Monoclonal Mouse 
WB-1:1000 

IF-1:200 

Sigma-

Aldrich 

α-HA #H9658 Monoclonal Mouse 
WB-1:1000 

IF-1:200 

Sigma-

Aldrich 

α-Moesin #3146 Polyclonal Rabbit IF-1:100 
New England 

Biolabs 

α-Myc #C3956 Polyclonal Rabbit WB-1:1000 
Sigma-

Aldrich 

α-phospho AKT 

(Ser473) 
#4051 Monoclonal Mouse WB-1:1000 

New England 

Biolabs 

α-phospho CREB 

(Ser133) 
#9196 Monoclonal Mouse WB-1:500 

New England 

Biolabs 
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α-phospho ERK 

(Thr202/Tyr204) 
#9106 Monoclonal Mouse WB-1:1000 

New England 

Biolabs 

α-Radixin #2636 Polyclonal Rabbit IF-1:100 
New England 

Biolabs 

α-RAN #610341 Monoclonal Mouse WB-1:2000 
BD 

Transduction  

α-RANBP (IF) #64276 Polyclonal rabbit WB-1:200 Abcam 

α-RANBP2 (WB) #2938 Polyclonal Rabbit WB-1:500 Abcam 

Normal Rabbit 

IgG  
#2729 Polyclonal Rabbit 1:100 

New England 

Biolabs 

Normal Mouse 

IgG 
#37355 Polyclonal Mouse 1:100 Abcam 
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2.6.2 Secondary antibodies 

Table 2-6 : Western blotting secondary antibodies. 

 

Table 2-7 : Immunofluoresence secondary antibodies. 

 

  

Western Blotting 

Antibodies 
Order number Species 

Working 

Dilution 
Supplier 

IRDye® anti-Rabbit 

680nm 
#926-32223 Donkey 1:10,000 

Li-Cor 

Biosciences 

IRDye® anti-Rabbit 

700nm 
#926-32213 Donkey 1:10,000 

Li-Cor 

Biosciences 

IRDye® anti-mouse 

680nm 
#926-32222 Donkey 1:10,000 

Li-Cor 

Biosciences 

IRDye® anti-mouse 

700nm 
#926-32212 Donkey 1:10,000 

Li-Cor 

Biosciences 

Immunofluorescence 

Antibodies 
Order number Species 

Working 

Dilution 
Supplier 

Alexafluor anti-rabbit 

488nm 
#A-11008 Goat 1:400 Invitrogen 

Alexafluor anti-mouse 

488nm 
#A-11001 Goat 1:400 Invitrogen 

Alexafluor anti-rabbit 

568nm 
#A-11036 Goat 1:400 Invitrogen 

Alexafluor anti-mouse 

568nm 
#A-11004 Goat 1:400 Invitrogen 
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2.7 Constructs  

Table 2-8 : Constructs. 
N/A – not available 

Construct Name Source Institution Reference 

3xFLAG-myc-

CMV-26-EPAC1 

Insert-PCR 

amplified from 

human EPAC1 gene 

Backbone, Sigma-

Aldrich 

Ligation performed 

by Dundee Cell 

Products,UK 

(Gupta and 

Yarwood 2005) 

3xFLAG-myc-

CMV-26-Vector 
Backbone, Sigma-

Aldrich 

Ligation performed 

by Dundee Cell 

Products, UK 

(Gupta and 

Yarwood 2005) 

GST-EPAC1-CNB 
In House 

University of 

Glasgow, UK 

(Magiera et al. 

2004) 

GST-EPAC2-CNB2 
In House 

University of 

Glasgow, UK 
N/A 

pFLAG-CMV2-

EPAC2A 

Professor Susumu 

Seino 

Kobe University, 

Japan 

(Niimura et al. 

2009) 

pFLAG-CMV2-

EPAC2B 

Professor Susumu 

Seino 

Kobe University, 

Japan 

(Niimura et al. 

2009) 

pCAsalFLAG-GFP Professor Gwyn 

Gould,  

University of 

Glasgow, UK 
N/A 

pLV-CMV-ezrin-

GFP 

Professor Johannes 

Bos 

University of 

Utrecht, Netherlands 

(Ross et al. 

2011) 

pLV-CMV-

ezrinThr567Asp-

GFP 

Professor Johannes 

Bos 

University of 

Utrecht, Netherlands 

(Ross et al. 

2011) 

pMT2-HA-EPAC1 Professor Johannes 

Bos 

University of 

Utrecht, Netherlands 

(de Rooij et 

al. 1998) 

pMT2-HA-EPAC2 Professor Johannes 

Bos 

University of 

Utrecht, Netherlands 

(de Rooij et 

al. 1998) 

p-eGFP-ezrin 

Thr567Ala 

Professor Sabrina 

Marion,  

Institut Cochin, 

Paris, France 

(Marion et al. 

2011) 
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p-eGFP-ezrin 

Arg579Ala 
Professor Helen 

Morrison,  

Fritz Lipmann 

Institute, Leibniz, 

Germany 

(Saleh et al. 

2009) 

pFLAG-CMV2-

EPAC1 
In House 

University of 

Glasgow, UK 

(Borland et al. 

2006) 

pFLAG-CMV2-

EPAC1-620-881 
In House 

University of 

Glasgow, UK 

(Borland et al. 

2006) 

pFLAG-CMV2-

EPAC1-691-881 
In House 

University of 

Glasgow, UK 

(Borland et al. 

2006) 

pFLAG-CMV2-

EPAC1-764-881 
In House 

University of 

Glasgow, UK 

(Borland et al. 

2006) 

pFLAG-CMV2-

EPAC1-838-881 
In House 

University of 

Glasgow, UK 

(Borland et al. 

2006) 

pFLAG-CMV2-

EPAC1-Arg279Glu 
Professor George G. 

Holz 

New York University 

School of Medicine, 

US 

(Kang et al. 

2006) 
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2.8 Methods 

2.8.1 Transformation 

Plasmid DNA (1 µg) was incubated on ice with 30 µl One Shot® TOP10 Chemically 

Competent Escherichia Coli (E. Coli) for 30 minutes. E. Coli were heat shocked at 

42 °C for 30 seconds and immediately cooled on ice. 250 µl SOCS medium 

(component of One Shot® TOP10 pack) was added to E. Coli and incubated shaking 

at 37 °C for 60 minutes. Bacteria were then plated onto L-Agar plates (0.5% (w/v) 

NaCl, 1% (w/v) tryptone, 0.5% (w/v) yeast extract powder, 1% (w/v) agar) 

supplemented with the appropriate antibiotic. E. Coli were then grown overnight 

(37 °C) and plates were subsequently stored at 4 °C for up to two weeks. Single 

colonies were then picked and grown overnight in Luria-Bertani (LB) broth (0.5% 

(w/v) NaCl, 1% (w/v) tryptone, 0.5% (w/v) yeast extract powder, pH7.4) 

supplemented with appropriate antibiotic selection. These overnights were then 

used to isolate plasmid DNA, inoculate large scale protein cultures or long term 

storage at -80 °C. 

 

2.8.2 DNA Quantification 

DNA was quantification was performed by spectrophotometry in a Jenway 6300 

Visible Spectrophotometer (Bibby Scientific Ltd), by measuring the absorbance at 

260 nm (A260). Where A260 is equal to one, the double stranded DNA concentration 

is equal to 50 µg/ml. 

 

2.8.3 DNA sequencing 

All mutants produced in house were sequenced to ensure successful mutagenesis. 

For mutagenesis of N-terminal amino acids, plasmid or tag primers were used (e.g. 

GFP forward primer for S66D mutagenesis). Otherwise sequencing primers were 

designed based on proximity (e.g. 50 base pairs before the mutated base pair). 

All sequencing and primers were provided and performed by Dundee Sequencing 

and Services. 
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2.8.4 Glycerol stock storage 

E. Coli were prepared for long term storage by adding 680 µl of transformed One 

Shot® TOP10 Chemically Competent E. Coli overnight cultures to 320 µl glycerol 

(4.4 M) and frozen at -80 °C. 

 

2.8.5 Plasmid DNA Preparation 

Plasmids were isolated from overnight cultures (see transformation) using 

provided maxiprep kit reagents. 100 mls of overnight culture was used for DNA 

preparation. Cells were pelleted at 3000 x g for 30 minutes at 4 °C. The 

supernatant was removed and the pellet resuspended in P1 (10 mls). 

Subsequently, resuspended bacterial cells were lysed by the addition of detergent 

P2 (10 mls) and gently mixed by inverting the tube six to eight times with 

subsequent incubation for five minutes at 15-25 °C. Precipitation of DNA using 10 

mls buffer P3, followed by incubation on ice for 20 minutes allows centrifugation 

to pellet chromosomal DNA (20,000 x g, 30 minutes, 4 °C). The supernatant was 

then centrifuged again (20,000 x g, 30 minutes, 4 °C) with the supernatant applied 

to a Qiagen-tip gravity flow column. Following washing with 2x30 ml buffer QC, 

plasmid DNA was eluted with 15 ml Buffer QF, followed by precipitation with 10.5 

ml isopropanol and centrifugation at 15,000 x g (30 minutes, 4 °C). The 

supernatant is then removed and washed with 5 mls 70% ethanol to facilitate 

resusupension, followed by further centrifugation (15,000 x g, 10 minutes, 4 °C). 

After removing alcohol, the pellet was air-dryed (10 minutes) and resuspended in 

the desired volume of distilled water (dH2O). DNA concentration was calculated 

by measuring absorbance at 260 nm as described above. 

 

2.8.6 Mutagenesis 

Constructs were mutated using the QuikChange Lightning Site-Directed 

Mutagenesis Kit according to manufacturer’s instructions. Template plasmid was 

mutated using mutagenesis primers (purchased from Yorkshire Biosciences) 

containing a codon mismatch, introducing single or multiple amino acid changes, 

or for deletions, mutagenesis primers were designed to anneal to the regions 

flanking the deletion. PCR amplification incorporates either a specific mismatch, 
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or fails to amplify the deleted region. PCR amplification with a high fidelity 

polymerase (Pfu Fusion-based DNA polymerase, included in kit) allows 

amplification of the insert-plasmid DNA, replicating the plasmid alongside the 

insert and introducing a single mutated site. Incubation of DNA with Dpn-1 results 

in the breakdown of the original, unaltered plasmid DNA only. This occurs as the 

source DNA, subcloned within Escherichia Coli contains methylated DNA. Dpn-1 

restriction endonuclease targets only the methylated/hemimethylated source 

plasmid DNA at the target sequence: 5’Gm6ATC-3’. 

Source plasmid DNA was obtained by maxiprep and PCR with mutageneisis primers 

yielded mutagenized plasmid DNA. Mutagenesis primers were designed based on 

provided guidelines (QuickChange Lightning Site-Directed Mutagenesis Kit manual) 

In brief, 25 ng plasmid DNA was incubated with 125 ng of both forward and reverse 

mutagenesis primers alongside the provided buffer components, dNTPs and 

QuickChange Lightning polymerase. PCR was carried out using the following 

thermal cycling protocol; 

Table 2-9 : Thermal cycling employed for mutagenesis. 

Stage Number of cycles Temperature Time 

1 1 95 °C 30 seconds 

2 18 95 °C 

55 °C 

68 °C 

30 seconds 

1 minute 

1 minute/kilobasepair 

(kbp) 

3 hold 4 °C Forever 

  

Original methylated DNA was digested by incubation of PCR product with Lightning 

Dpn1 (37 °C, 15 minutes). TOP10 chemically competent cells were subsequently 

transformed with the mutagenized plasmid DNA (see transformation). 37 µl of X-

Gal (20 mg/ml) and 100 µl isopropyl-ß-D-thio-galactopyranoside (IPTG, 10 mM) 

was added to L-Agar plates (supplemented with appropriate antibiotic) prior to 

bacterial plating. E.Coli were allowed to grow overnight. Five to ten colonies were 

picked and plasmid DNA isolated (see plasmid DNA preparation) for sequencing to 

confirm mutagenesis. 
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Table 2-10 : Mutagenesis primers.  
Emboldened codon indicates mismatched base pairs within mutated codon (separated). Square 
brackets indicate position of deletions. 

Mutant construct pLV-CMV-ezrinS66D-GFP 

Source pLV-CMV-ezrin-GFP 

Forward primer 5’- GCTGGATAAGAAGGTG GAT GCCCAGGAGCTCAGG –3’ 

Reverse Primer 5’- CCTGACCTCCTGGGC ATC CACCTTCTTCTTATCCAGC –3’ 

 Codon AGT (Ser66) – GAT (Asp66). 

 

Mutant construct pFLAG-CMV2-EPAC1-R806N-A807T-M810T (Area1) 

Source pFLAG-CMV2-EPAC1 

Forward primer 5’- GATGAGAATGATGGCC AAC ACC GCGCGG ACC CTGCAC 

CACTGCCG –3’ 

Reverse Primer 5’- CGGCAGTGGTGCAG GGT CCGCGC GGT GTT GGCC 

ATCATTCTCATC –3’ 

 Codon AGA (Arg806) to AAC (Asn806), GCC (Ala807) – ACC 

(Thr807), ATG (Met810) – ACC (Thr810). 

 

Mutant construct pFLAG-CMV2-EPAC1-Δ824-844 (Area2) 

Source pFLAG-CMV2-EPAC1 

Forward primer 5’- CGAGTTTCCCACCTC][CCAGCCAGCACCTGGGC –3’ 

Reverse Primer 5’- GCCCAGGTGCTGGCTGG][GAGGTGGGAAACTCG –3’ 

 Region “CGAGTTTCCCACCTC” binds to flanking region 5’ of 

H825 codon. 

Region “CCAGCCAGCACCTGGGC” binds to flanking region 3’ 

of S844 codon. 

Plasmid amplification results in deletion of amino acids 825-

844. 

 

Mutant construct pFLAG-CMV2-EPAC1-P819A-P821A-P824A (3P-A) 

Source pFLAG-CMV2-EPAC1 

Forward primer 5’- GCCGAAGCCACAAC GCG GTG GCG CTCTCA GCG CTCA 

GAAGCCGAGTTTCC –3’ 

Reverse Primer 5’- GGAAACTCGGCTTCTGAG CGC TGAGAG CGC CA 
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C CGC GTT 

GTGGCTTCGGC –3’ 

 Codon CCT (Pro819) – GCG (Ala819), CCT (Pro821) – CCG 

(Ala821), CCA (Pro824)- CGC (Ala824). 

 

Mutant construct pFLAG-CMV2-EPAC1Δ764-838 

Source pFLAG-CMV2-EPAC1 

Forward primer 5’- CGACTGGCCAGG][ATTTCCACATGC –3’ 

Reverse Primer 5’- GCATGTGGAAAT][CCTGGCGAGGGCCAGTCG –3’ 

 Region “CGACTGGCCAGG” binds to flanking region 5’ of 

K764 codon. 

Region “ATTTCCACATGC” binds to flanking region 3’ of R838 

codon. 

Plasmid amplification results in deletion of amino acids 764-

838. 

 

Mutant construct pFLAG-CMV2-EPAC1 Δ1-50 

Source pFLAG-CMV2-EPAC1 

Forward primer 5’- GCTTGCGGCCGCGATG][GCCTCCACAGAGC –3’ 

Reverse Primer 5’- GCTCTGTGGAGGC][CATCGCGGCCGCAAGC –3’ 

 Region “GCTTGCGGCCGCG” binds to flanking region 5’ of M2 

codon  

Region “ATGGCCTCCACAGAGC” binds to flanking region 3’ 

of A50 codon  

Plasmid amplification results in deletion of amino acids 1-

50. 

 

2.8.7 Cell Culture 

Human Embryonic Kidney HEK293T (ATCC), HUVEC (Promocell) and COS1 (ATCC) 

cells were cultured aseptically and stored long term in liquid nitrogen. Cells 

pelleted at 500 x g (relative centrifugal force (RCF)) for five minutes  at room 

temperature (RT) and were then resuspended in freezing medium (3 mls, foetal 
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bovine serum (FBS) supplemented with 1.28 M DMSO as cryopreservant) per 

confluent 10 cm2 flask (approx. 3x106 cells) and frozen overnight by incubation at 

-80 °C followed by storage in liquid nitrogen.  

To revive, COS1, HEK293T and HUVEC cells were pelleted in a 15 ml centrifugation 

tube (500 x g, five minutes, room temperature (RT)) and freezing medium was 

removed. COS1 and HEK293T cell pellets were resuspended in 10 ml growth 

medium (DMEM supplemented with, FBS 10% (v/v), Glutamine 2 mM, 

Penicillin/Streptomycin 100 µg/ml) and incubated at 37 °C, 5% CO2 in 25 cm2 

flasks. Human umbilical cord endothelial cells (HUVEC) were resuspended in 

endothelial growth medium MV2 with penicillin/streptomycin (100 µg/ml). MV2 

supplement contains epidermal growth factor, 5 ng/ml; basic fibroblast growth 

factor, 10 ng/ml; insulin-like growth factor (long R3 IGF), 20 ng/ml; vascular 

endothelial growth factor 165, 0.5 ng/ml; ascorbic acid, 1 µg/ml and 

hydrocortisone, 0.2 µg/ml which promote cell growth whilst inhibiting 

differentiation into fibroblast. Experiments on HUVEC were performed between 

passages three and six. 

EPAC1, PCR amplified from the human EPAC1 gene, or a vector construct were 

ligated into the 3xFLAG-myc-CMV-26 vector yielding 3xFLAG-myc-CMV-26-vector 

and 3xFLAG-myc-CMV-26-EPAC1. Stable transfection of HEK293T cells was 

performed by Dundee Cell Products, involving transfection, selection of 25-50 

clones and gene stability testing. Final clone selected was shown to express fusion 

tagged EPAC1 by both western blot analyses (Figure 3-12) and 

immunofluorescence (Figure 5-1). For stably transfected HEK293T cells, selection 

was maintained by the addition of 400 µg/ml G418. 

COS1, HEK293T and HUVE cells were grown to 80% confluence and then passaged 

to maintain growth. Cell lines were passaged by removing growth medium and 

washing 2x with 10 mls (per 25 cm2 flask) filter sterilised PBS (37 mM NaCl, 2.7 

mM KCl, 8 mM Na2HPO4, 1.46 mM KH2PO4, pH 7.4) in order to remove residual FBS 

and calcium. Incubation with 2.5 mls Trypsin/EDTA per 25 cm2 flask (five minutes, 

37 °C, 5% CO2) induces the dissociation of HEK293T and COS1 adherent cells from 

the flask base. Trypsination was then blocked by the addition of 2.5 mls growth 

medium followed by collection of cells and centrifugation at 500 x g (RCF). 
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Trypsin/medium was removed and cell pellets were then resuspended in growth 

medium and diluted to 1/5 concentration and plated for experiments, maintained 

in 25 cm2 flasks or discarded. 

2.8.8 Cell Transfection 

Cells were seeded and allowed to grow to 50% confluency on ethanol sterilised 13 

mm glass coverslips. DNA constructs were then transfected into cells using 

Lipfectamine 2000 according to the manufacturer’s instructions. Briefly, 40 l 

Optimem medium, containing 2.5 l Lipofectamine 2000 reagent, was combined 

with 40 l Optimem containing 2.4 g DNA constructs for each well of a 12 well 

culture plate and allowed to form DNA-Liposomal complexes for 20 minutes (RT). 

Cells were then washed twice with PBS at 37 °C and incubated in 0.5 ml Optimem 

Medium. Following this DNA/Lipofectamine 2000 complexes were added to wells 

and incubated for a further two hours at 37 °C, whereupon medium was replaced 

with complete medium and cells were grown overnight. Cells were treated as 

described in figure legend and fixed for western blotting, confocal microscopy, 

acquisition and analysis. Successful transfection of GFP constructs was assessed 

using a Zeiss Axiovert 135 immunofluorescent microscope using a 20x objective 

lens (excitation and emission at 488 nm and 535 nm respectively). 

 

2.8.9 Immunoprecipitation 

Cells were grown to 90% confluency and treated as described in figure legend. 

Cells were lysed in 10 µl per cm2 well/plate area (~1 x 106 cells) with 

immunoprecipitation (IP) buffer (Hepes pH 7.4, 150 mM NaCl, 5 mM EDTA, 1 mM 

NaF, 10 mM NaPO4, 1% (v/v) Triton X-100 and one tablet protease inhibitor cocktail 

(Roche) per 50 mls lysis buffer). Following lysis, the cell debris was removed by 

centrifugation (8000 x g, 10 minutes). Lysates were then pre-cleared with non-

specific antibodies (2 µg/ml) from the species matching the final precipitating 

antibody (e.g. normal mouse IgG for subsequent anti-EPAC1 (5D3) IP) and the 

relevant protein A/G sepharose beads (protein G beads for mouse, protein A for 

rabbit antibodies) at 20 µl of beads/ml for 60 minutes (4 °C, rotating). Lysate was 

then centrifuged to remove beads and lysates were incubated (60 minutes, 4 °C, 

rotating) with relevant antibody or nonspecific control antibodies (2 µg/ml). The 
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relevant FLAG or protein A/G conjugated beads were added and complexes 

allowed to form overnight (4 °C, rotating). Beads were pelleted at 100 x g (one 

minute) and lysate removed followed by washing with IP buffer. Beads were 

pelleted and washed three times before removing the supernatant and boiling 

bead/antibody complexes in electrophoresis sample loading buffer (63 mM Tris-

HCl, 1 M Glycerol, 104 µM SDS, 37 µM Bromophenol Blue) at 95 °C for five minutes. 

Cell lysate and IP samples were analysed by western blotting.  

2.8.10 Immunofluorescent Confocal Microscopy 

Cells were seeded at a density of 0.25x105 cells/cm2 on ethanol sterilised 13 mm 

glass coverslips and allowed to adhere overnight in growth medium (37°C, 5% CO2). 

Cells were then stimulated with indicated treatments prior to fixation with fixing 

buffer (3% (w/v) paraformaldehyde, 1% (w/v) sucrose, 1 mM CaCl2, 1 mM MgCl2 in 

PBS). Coverslips were then quenched for 10 minutes in 50 mM NH4Cl, in PBS, 

permeabilised for four minutes with 0.1% (v/v) Triton X-100 in PBS. Cells were 

then blocked with 0.02% (v/v) goat serum and 0.02% (w/v) fish skin gelatine in 

PBS, filtered (0.2 m Nalgene vacuum filter). Primary and secondary antibodies 

(anti-mouse/anti-rabbit FITC/rhodamine conjugates or rhodamine-phalloidin (33 

nM) in actin stained cells) were incubated for one hour (RT) sequentially before 

incubation with 4',6-diamidino-2-phenylindole (DAPI, 10 g/ml) for 20 minutes at 

RT or REDDOT (1 in 200, five minutes). Coverslips were then washed 3x in block 

buffer between incubations. Coverslips were mounted onto glass slides using 

Shandon Immu-Mount and analysed using a 63x Zeiss oil immersion objective, on 

a Zeiss LSM5 Pascal Axiovert 200M laser scanning confocal microscope (Carl Zeiss, 

Germany) equipped with a Zeiss LSM5 Pascal instrument and AOTF Laser module. 

Alexa Fluor® Dyes (488nm) and GFP fusion proteins were excited with an argon 

laser whereas 568 nm Alexa Fluor® Dyes and rhodamine phalloidin were excited 

with a helium neon laser. Zeiss Pascal software was used to collect images, which 

were saved in the LSM file format and analysed using ImageJ software 

(http://rsbweb.nih.gov/ij/). For morphology assessments ImageJ wand tool was 

used to select cells from thresholded images. For comparisons of HEK293T-Vector 

and –EPAC1 cells, EPAC1 protein was immunostained with anti-EPAC1 (5D3) to 

ensure the cells observed maintained EPAC1 expression. Threshold was set to 

encompass greyscale data above background signal and cell perimeters were 
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verified against transmission images. These were then measured for various 

variables, including area and perimeter which were collected and processed using 

Excel (Microsoft).  

2.8.11 Statistical Analyses 

For data sets with two or more sets of means, with a minimum of three biological 

repeats, analysis of variance (ANOVA) was employed. This retains the strength of 

a Students T-Test, but limits the widening confidence intervals associated with 

multiple data set comparisons. Where two or more factors were assessed (for 

example cell type and treatment) two way ANOVA was employed. P values were 

obtained from ANOVAs using the Dunnets Post-test, which was used to compare 

each data set to a known control, where a known control was available (for 

example mock stimulated vs stimulated). For comparisons of variable responses 

without a defined control (for example between different, non-basal 

stimulations), Tukeys post-test was employed. All statistical tests were carried 

out using Graphpad Prism version 6.00 for Windows (GraphPad Software). Where 

statistical tests comprised part of assay development process, more in depth 

information is given within the text (see Equation 3-1 – Signal to background, 

Equation 3-2 – Z’Factor, Equation 3-3 – Coefficient of variance and Equation 3-4 - 

Scaled mean absolute deviation). 

2.8.12 Western Blotting  

Cells were washed twice with ice cold PBS (0.5 ml/cm2 culture dish area), lysed 

in 10 µl per cm2 well/plate area (~1 x 106 cells) ice cold lysis buffer (50 mM HEPEs 

pH 7.5, 150 mM NaCl, 1% (v/v) Triton x-100, 12 mM sodium deoxycholate, 3.5 mM 

SDS, 10 mM NaF, 5mM EDTA, 10 mM Sodium Phosphate with protease inhibitor 

cocktail (Roche) and then cell debris was removed by centrifugation 13,000 x g 

for 20 minutes. The bicinchoninic acid assay (BCA) (Smith et al. 1985) was then 

used to assess protein concentration of cleared lysates using prepared BCA kit 

reagents.  

Equal amounts of lysate protein were separated on made in house Tris/Glycine 

SDS PA gels (with polyacrylamide concentration varied 5-15% depending on protein 

size). Electrophoresis was carried out using the Biorad Mini-Protean 
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electrophoresis kits with running buffer (25 mM tris, 192 mM glycine, 0.35 mM 

SDS). 

Protein was wet transferred from gel to nitrocellulose membrane using the Mini 

Trans-Blot® electrophoretic transfer cell and transfer buffer (25 mM tris, 192 mM 

glycine, 10% (v/v) Methanol). Equal protein loading was verified by Ponceau 

Staining (2.6 mM Ponceau S, 3% (v/v) Acetic acid in dH2O) for one minute, followed 

by two washes in TBST (50 mM Tris, 150 mM NaCl, 0.05% (v/v) Tween 20). 

Prestained molecular weight marker (p7708) was used for all blots unless 

otherwise indicated. Membranes were then incubated shaking for 60 minutes in 

block buffer (TBST with 5% (w/v) Marvel skimmed milk powder). Primary 

antibodies were incubated at 4 °C overnight at given concentrations (Table 2-5 : 

Primary antibodies) followed by incubation with IRDye® secondary conjugated 

antibodies at given concentrations (Table 2-6 : Western blotting secondary 

antibodies), one hour at RT. Secondary antibodies were visualised using the 

ODYSSEY® Sa Infrared Imaging System. 

2.8.13 Fractionation  

Cells were fractionated using nuclear fractionation kit proprietary reagents 

(Active Motif) as per manufacturer’s instructions into cytoplasmic and nuclear 

components. Briefly, cells were grown on 10 cm2 cell culture dishes to 90% 

confluency (~8 x 106 cells), followed by washing in ice cold PBS (5 ml) + 

phosphatase inhibitors (supplied as kit reagent). PBS + phosphatase inhibitors were 

removed and replaced with a further 3ml PBS + phosphatase inhibitors. Cells were 

scraped down with a cell lifter and transferred to a 15ml centrifugation tube. Cells 

were pelleted (500 x g, five minutes), buffer was then removed and cell 

membranes were incubated in 500 µl hypotonic buffer (kit reagent) at 4 °C to swell 

the cells, and promote membrane fragility. Detergent (kit reagent) was added and 

samples were vortexed to allow leakage of cytoplasmic proteins into the buffer. 

The nuclear fraction was pelleted at 12,000 x G and the supernatant containing 

the cytoplasmic component was removed and retained. The nuclear component 

was obtained by disruption of the pellet in 25 µl detergent free complete lysis 

buffer (kit reagent) with protease inhibitor (shaking, 4 °C, 30 minutes). Samples 

were vortexed 30 seconds before removing the pellet. Protein concentration was 
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calculated by BCA assay and samples were run on SDS-PA gels. For ezrin molecular 

weight increase analysis (band shift), the nuclear fraction (retaining the 

particulate fraction) was probed by western blotting for total-ezrin.  

2.8.14 Recombinant Protein Purification 

EPAC1-CNB (amino acids 169-318 of EPAC1), and EPAC2-CNB (amino acids 304-453 

of EPAC2) were PCR amplified from human sources. Adenine overhangs were 

added to facilitate insertion into TOPO vectors and transformation using taq 

polymerase and subcloned into One Shot® TOP10 Chemically Competent E. coli 

cells (Invitrogen). Both plasmid and insert were prepared by cleavage using EcoR1 

and BamH1 restriction endonucleases. The insert was ligated into the multiple 

cloning site of the pGEX-6P-1 (GE-Healthcare) expression vector using T4 DNA 

Ligase (Sigma).  

E.Coli BL-21 (Invitrogen) cells were transformed (see Transformation) with pGEX-

6P-1-GST-EPAC1-CNB/ pGEX-6P-1-GST-EPAC2-CNB/ pGEX-6P-1-GST and cultured 

shaking overnight in LB (with 100 µg/ml ampicillin selection) at 37 °C. This culture 

was used to inoculate a large culture of one litre in a 2 litre conical flask (1:50 

dilution, 20 mls into one litre) which was grown 60 minutes (shaking, 37 °C) or 

until optical density readings at 600 nm (OD600) reached 0.7. At this point 

EPAC1/EPAC2-CNB GST-fusion protein or GST expression was induced by the 

addition of Isopropyl-ß-D-thio-galactopyranoside (ITPG, final concentration 1 mM 

achieved by a 1:1000 dilution from 1 M stock solution). Bacteria were allowed to 

grow four hours (or until OD600 reached 1.4-1.6) when cells were collected by 

centrifugation 2250 x g, 20 minutes at 4 °C. Broth was removed, and cells were 

frozen overnight at -80 °C. Pellets were thawed and resuspended in 10 mls 1x 

Bugbuster Lysis Reagent (Invitrogen) per litre of E.Coli broth. Incubation on ice 

for 20 minutes preceeded centrifugation at 8500 x g, 10 minutes, 4 °C in a 

centrifugation tube. supernatant (S/N) was decanted into fresh centrifuge tube 

and centrifuged again at 8500 x g, 10 minutes, 4 °C. S/N was to transferred to 50 

mls centrifugation tube(s) containing 0.1 ml glutathione sepharose per ml of S/N 

(5 mls beads), pre-equilibrated in wash buffer (50 mM Tris-HCl, 50 mM NaCl, 1 mM 

EDTA, 1 mM DTT pH 7.8). S/N was incubated with glutathione beads with gentle 

rocking (4 °C, 60 minutes). Beads were pelleted at 500 x g (4 °C, five minutes) 
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followed by removal of buffer and washing in 25 mls wash buffer. Pelleting and 

washing was repeated 5x, at which point the buffer was removed and pellets were 

incubated with two mls elution buffer (150 mM Glutathione, 50 mM Tris-HCl, 50 

mM NaCl, 1 mM EDTA, 1 mM DTT pH 7.8.) per one ml of beads for 30 minutes at 4 

°C. Beads were pelleted at 500 x g (4 °C, five minutes) and eluate was gently 

removed and retained. Elution with two mls elution buffer, incubation and 

centrifugation was removed and eluate sample two was retained. Protein samples 

were dialysed against three changes of wash buffer (one litre, 60 minutes, 4 °C). 

Protein concentration was assessed by BCA and eluates were pooled where 

appropriate. All protein was assessed to be 80% minimum pure, judged by SDS-

PAGE analysis. Protein was stored in aliquots as required and stored at -80 °C. 

2.8.15 Circular Dichroism 

The Jasco J810 spectropolarimeter was used to record the spectra in both the 

near and far UV, giving spectral data for submission to the online database 

Dichroweb for analysis and comparison to known secondary structure elements. 

For far UV samples, a 0.02 cm cell cuvette was used and for near UV, a 0.5 cm 

cell cuvette (Greenfield 2006). 

2.8.16 NMR 

EPAC1-CNB-GST was recombinantly expressed and purified as described above. 

However, E.Coli were grown in M9 minimal medium (97 mM Na2PO4, 44 mM KH2PO4, 

17 mM NaCl with 2 mM MgSO4, 0.1 mM CaCl, 16.6 mM glucose and 100 µg/ml 

ampicillin added on day of use, pH 7.2) supplemented with 7 mM 15N enriched 

(15NH4)2SO4 (ammonium sulphate) on day of use, as a sole nitrogen source. The 

GST tag present upon EPAC1-CNB-GST was removed using Prescission protease (GE 

Healthcare) for 30 minutes. Protein was dialysed into NMR buffer (20 mM Na2PO4, 

0.01% (w/v) NaN3, pH 7.2) and diluted to 107 nmoles in 600 µl , with a 5% final 

concentration (v/v) of D2O (deuterium oxide) to lock. Nuclear magnetic resonance 

[1H,15N] heteronuclear single quantum coherence (HSQC) spectra were recorded 

using a Bruker AVANCE 600MHz spectrometer with cryoprobe (Harper et al. 2007). 
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2.8.17 Competition assay validation 

Optimisation of 8- (2- [7-nitro- 4- benzofurazanyl] aminoethylthio) adenosine- 3', 

5'- cyclic monophosphate (8-NBD-cAMP) competition assay was performed using 

purified EPAC1 and EPAC2 CNBs plus GST (see recombinant protein purification) 

using modified assay conditions previously described (Tsalkova et al. 2012). 

Briefly, EPAC1-CNB-GST/EPAC2-CNB-GST protein sample was incubated in a 96 

well black assay plate (Greiner) in order to reduce autofluorescence associated 

with white or clear plates. These protein samples each were made up to a 3x stock 

solution (2.4 µM) of which 33 µl was added to a 96 well assay plate (Greiner). To 

this, 33 µl of the fluorescent cAMP analogue 8-NBD-cAMP 3x stock solution (300 

nM) was added. In order to ascertain the maximum and minimum signals in the 

assay, DMSO and cAMP was incubated with the protein/8-NBD-cAMP sample. cAMP 

dissolved in DMSO (10 mM stock) was made up as a 3x stock solution (150 µM) in 

assay buffer and 33 µl added to the relevant wells in the 96 well plate (final DMSO 

concentration – 0.5 % / 64 mM). For every other well, DMSO was added to match 

the concentration present in the cAMP negative control. Protein (0.8 µM) / probe 

(100 nM) / controls (cAMP at 50 µM) at 99 µl per well were spun at 800 x g in a 

plate centrifuge. The fluorescence intensity was measured after four hours using 

the Optima Fluostar plate reader (BMG Labtech), (excitation wavelength 480 nm 

and detection wavelength 535 nm). 

2.8.18 8-NBD-cAMP competition assay development 

In order to optimise the assay for high throughput screening, various variables 

were varied. The assay was first scaled down into black, low volume (to maximise 

the signal produced by low volume assays) 384 assay plates (Greiner) with a 

maximum volume of 30 µl. In order to maximise plate reproducibility, EPAC1-CNB 

/EPAC2-CNB protein, 8-NBD-cAMP, DMSO and cAMP analogue titrations were 

performed using the Biomek Fx laboratory automation workstation with 96-

multichannel pipetting head (Beckman Coulter). Briefly, a 2x stock solution of the 

given probe, protein or control/compound concentrations in assay buffer was 

incubated in a black, 96 well assay plate (Greiner). A 384 well assay plate was 

prepared with the required wells filled with assay buffer to 10 µl. 10 µl of the 

protein/probe was then added and mixed to the first row/column. 10 µl of this 

diluted stock was then added to the subsequent row/column and mixed. This 
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process was repeated as required to give a dilution curve. The final row/column 

was prefilled with assay buffer to the required volume to give the final 0% 

concentration. To this plate, the remaining required assay components were 

added to give a final 30 µl working volume (e.g. if protein concentration was being 

varied, 10 µl 8-NBD-cAMP and 10 µl DSMO/cAMP controls would subsequently be 

added), span at 800 x g (10 seconds) and incubated for four hours (or as indicated 

in figure legend) before 8-NBD-cAMP fluorescence intensity was measured using 

the Envision plate reader (Perkin-Elmer, excitation wavelength 480 nm, detection 

wavelength 535 nm). 

2.8.19 Pilot Screening 

Compounds from the National Institute of Health (NIH) Clinical Collection (NCC) 

Library and the Selleckchem Food and Drug Administration (FDA) approved drug 

library (L1300) were incubated with EPAC1-CNB and EPAC2-CNB to test their 

ability to compete with 8-NBD-cAMP for the cyclic nucleotide binding domain. This 

was performed using the optimised assay conditions ascertained, with EPAC1-CNB 

and EPAC2-CNB probed simultaneously. Briefly, DMSO (12.8 mM final assay 

concentration) and cAMP (50 µM) controls and library compounds (10 µM final 

concentration, in DMSO) were seeded in black, low volume 384 assay plates 

(Greiner) at 25 nl volumes from preprepared Echo source plates (Labcyte, 

compounds and controls stored within plates at 1000x stock concentration, 100 

µl) using the Echo® Liquid Handler (Labcyte). Control concentrations were 

ascertained by performing a dose curve to ensure the concentration of cAMP was 

at sufficient conditions to ensure maximal fluorescence signal inhibition. Library 

compound concentrations were high enough to ensure even low affinity 

compounds were isolated, though concentration was limited by supply and cost. 

12 µl of EPAC1-CNB/EPAC2-CNB (of 2x (1.6 µM) stock concentration giving a 0.8 

µM final concentration) was immediately added to each well using the Wellmate 

automated dispenser (Matrix) before 30 minutes pre-incubation to promote 

compound-protein complex formation. 12 µl of 8-NBD-cAMP (of 2x (125 nM) stock 

concentration to give a 62.5 nM final concentration) was added to every well using 

the Wellmate dispenser and plates were briefly centrifuged (800 x g, 10 seconds) 

to mix reagents. The assay was incubated (RT) until fluorescence intensity was 

measured at 4 hours and 15 hours (within demonstrated window of stability and 
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consistent with times associated with high and ultra high throughput assays) using 

the Envision plate reader (Perkin-Elmer) with excitation at 480 nm and detection 

at 535 nm. 15 hours measurements were compared to 4 hours results to ensure 

sample stability. For all experiments no significant deviation was observed 

between 4 and 15 hours, and as such all results given are 4 hour time point values. 

For follow up hit confirmation, a serial dilution of each compound was performed 

from a starting concentration of 30 µM under assay conditions as described above 

with the exception of DMSO concentration which was maintained at 36.8 mM (0.3% 

(v/v)) throughout due to the initial seeding of 75 µl for 30 µM compound 

concentrations. 

2.8.20 Computational analysis 

Sequence analysis of EPAC1 and EPAC2A and EPAC2B (UniProt accession numbers, 

095398, Q8WZA2 and A2ASW8, respectively) was carried out using Jalview 

(Waterhouse et al. 2009). Additionally, the fast and reliable online alignment 

server “Muscle” (Edgar 2004) was employed in order to compare sequence 

homology between isoforms. Structural alignment and analysis of protein physical 

features, such as solvent exposure and secondary structure, was carried out using 

PyMol (Schrödinger) and PDB files 3CF6 (EPAC2 open form) (Rehmann et al. 2008) 

1RGS (PKA CNB) (Su et al. 1995) and 2byv (EPAC2 closed form) (Rehmann et al. 

2006). NMR spectral analysis was carried out using CCPN analysis software, to 

assign peaks and compare spectra (Vranken et al. 2005). Many thanks to Hans 

Wienk for his generous gift of spectral data and amino acid peak positions, which 

together with in house data provided greater than~70% amino acid coverage. 

In order to assess the structure of EPAC1, for which no crystal structure is 

available, a homology model was made using the program “Modeller” (Sali and 

Blundell 1993) to model the EPAC1 or EPAC2B primary sequence (UniProt accession 

number, 095398 and A2ASW8 respectively) on the closed form of EPAC2 (2BYV). 

This program uses spatial constraints to construct the models and regions of known 

structure and homology are combined with energetically favourable 

conformations of regions with low or no sequence homology. Specifically, the 

“align2D” command was used to produce a sequence alignment based on both 

primary and structural features, followed by the “model-single” command. Up to 
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20 models were exported and the most energetically favourable models (as 

determined by the output discrete optimised protein energy score (DOPE) score) 

were selected for imaging and analysis. For flexible loops the “loop-model” 

command was employed to identify the most favourable and likely conformation 

adopted. Linear regression and line plotting was performed using XLfit (XLfit 

Software) using a model assuming single site binding. Chemical structures of cAMP 

and analogues were drawn using ChemSketch (ACD Labs).
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3.1 Introduction 

cAMP signalling exerts beneficial effects in a range of disease states, including 

cardiovascular disease (CVD) (Parnell et al. 2012). Indeed, elevated cAMP levels 

are able to counter vascular endothelial hyper-permeability by limiting the 

secretion of chemokines and the recruitment of inflammatory leukocytes 

(Fukuhara et al. 2005). Unresolved, chronic inflammation in the vascular 

endothelium is a common feature in the progression of CVD, and is linked to 

atherosclerosis, hypertension, congestive heart failure, primary pulmonary 

hypertension, and other inflammatory syndromes (Bruunsgaard et al. 2001; 

Calabro et al. 2008). 

Due to the ability of cAMP to suppress inflammatory signalling, various drugs 

targeting cAMP signalling pathways have been tested for their ability to treat CVD. 

These drugs act to either promote cAMP production through activation of AC 

(Ammon and Muller 1985), or inhibit its breakdown by phosphodiesterases 

(Maurice et al. 2014). However, both classes of drugs suffer from serious 

limitations. For example, cAMP phosphodiesterase inhibitors, such as 

pentoxifylline, ibudilast, drotaverine and rofumilast produce nausea, emesis, 

diarrhoea and cardiac arrhythmia which limits their usefulness. The use of 

forskolin, to activate adenylate cyclase, has also been linked to various side 

effects, including flush syndrome and hypotension (Schlepper et al. 1989). These 

caveats demonstrate that the strategy of promoting elevation in intracellular 

cAMP may be unsuitable for the treatment of chronic inflammatory disease. It is 

therefore important to develop novel drugs that are able to combat CVD with 

reduced side effects. Although many of the cellular effects of cAMP have been 

attributed to PKA, EPAC is increasingly understood to be an important mediator 

of cAMP signalling. Indeed, synergy between EPACs and PKA, or EPAC activity alone 

have been shown to produce a range of beneficial effects originally attributed to 

PKA alone (Cheng et al. 2008). Therefore, it may be possible to exert protective 

effects against disease by selectively activating EPACs, while avoiding many of the 

side effects associated with global cAMP elevation and activation of PKA.  

To date, only one EPAC specific agonist has been identified; the cAMP analogue, 

8-pCPT-2’-O-Me-cAMP (007), which is able to selectively activate both EPAC1 and 
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EPAC2 isoforms independently of PKA (Enserink et al. 2002). Indeed, 007, along 

with its improved, cell permeable orthologue 8-pCPT-2’-O-Me-cAMP-acetomethyl 

ester (007-AM) (Vliem et al. 2008) have greatly facilitated the study of EPAC 

function by allowing the PKA-independent effects of cAMP signalling to be directly 

observed (Enserink et al. 2002; Enserink et al. 2004; Fukuhara et al. 2005; Kooistra 

et al. 2005). However, in vivo use of 007 has been limited by low cell permeability 

and, importantly, the induction of cardiac arrhythmia, fibrosis and cardiac 

hypertrophy (Hothi et al. 2008; Metrich et al. 2010). Furthermore, various off-

target effects limit its specificity, such as its inhibitory effect towards cAMP 

phosphodiesterases (Poppe et al. 2008). However, recent studies have revealed 

that the EPAC2 isoform is solely responsible for disturbed cardiac calcium 

signalling and cardiomyopathy in response to 007 stimulation (Pereira et al. 2013). 

Therefore, the development of EPAC1-selective agonists may facilitate the 

treatment of vascular inflammation and CVD, without the side effects associated 

with global cAMP elevation (nausea, vomiting) and EPAC2 activation (cardiac 

arrhythmia).  

3.1.1 HTS for Isoform Specific Agonists 

Various assays have been developed to identify compounds capable of binding to 

EPAC and regulating its activity (McPhee et al. 2005; Courilleau et al. 2012; 

Tsalkova et al. 2012). Of these high throughput screening assays (HTS) assays, only 

one has successfully identified molecules with the potential to activate EPAC1 

(McPhee et al. 2005). In this case, the screening platform was based on the ability 

of compounds to displace tritiated cAMP (3H-cAMP) from the CNB of EPAC1 and 

EPAC2. Displacement of 3H-cAMP resulted in a demonstrable drop in radioactivity, 

allowing the characterisation of interacting molecules. This HTS assay allowed 

screening of 10,000 compounds from the Scottish Biomedical Lead Generation 

Library, with multiple competitors identified (McPhee et al. 2005). Of these, 15 

small molecules demonstrated selectivity for EPAC over PKA, and several 

displayed isoform selectivity for EPAC1 or EPAC2. However, further research on 

these compounds has not been forthcoming. 

Recently a fluorescence-based competition assay has been employed to identify 

EPAC inhibitors (Tsalkova et al. 2011; Chen et al. 2012; Tsalkova et al. 2012; 
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Tsalkova et al. 2012; Almahariq et al. 2013). This assay utilises the properties of 

the cAMP analogue 8-[2-[(7-nitro-4-benzofurazanyl) aminoethyl]thio]-cAMP  (8-

NBD-cAMP), which fluoresces strongly within the hydrophobic environment of the 

cAMP binding pocket (Kraemer et al. 2001). Displacement of 8-NBD-cAMP by 

competitor compounds leads to a reduction in fluorescence, allowing the 

identification of interacting molecules. The 8-NBD-cAMP competition is equally 

sensitive to EPAC agonists as antagonists and represents a powerful, high 

throughput mechanism for the identification of EPAC interacting molecules. 

Despite the considerable therapeutic potential of isoform specific agonists, this 

HTS method has not yet been harnessed to discover EPAC activators. Indeed, 8-

NBD-cAMP competition is equally sensitive to EPAC agonists as antagonists and 

represents a powerful, high throughput mechanism for the identification of EPAC 

interacting molecules. To date, isoform specific screening has been limited due 

to the inability to probe isoform specificity within the primary screen. Indeed 

many identified hits to bind both EPAC1 and EPAC2, or required further analysis 

to confirm specificity (Tsalkova et al. 2012). Here, we aim to develop a 

competition assay able to confirm isoform selectivity during primary screening. 

Indeed, a robust primary screen would allow the identification of isoform specific 

binding molecules, facilitating follow up analysis and drug development.  

To date, the 8-NBD-cAMP competition assay has only been used to identify EPAC2 

interacting molecules. This is likely due to the stability of recombinant EPAC2 in 

the screening assay and the reported therapeutic benefits of EPAC2 regulation, 

including potentiation of insulin secretion (Holz et al. 2006). Indeed, the low 

stability of full length recombinant EPAC1 in vitro has limited its study in HTS and 

structural assays (Kraemer et al. 2001). Although full-length EPAC1 is unstable in 

vitro, the isolated EPAC1-CNB displays superior stability. Furthermore, initial 

characterisation of 8-NBD-cAMP revealed its ability to bind and fluoresce within 

the isolated CNB of EPAC1 (Kraemer et al. 2001). As 8-NBD-cAMP forms molecular 

interactions within the cAMP binding pocket it may be possible to perform a HTS 

utilising the isolated CNB of EPACs. Indeed, the only confirmed EPAC agonist, 007, 

acts competitively with cAMP to target the CNB of EPACs, highlighting the 

importance of this region for EPAC activation and the suitability of this region for 

agonist screening (Christensen et al. 2003). The CNB of cAMP binding proteins are 

not only vital for activation, but display considerable structural differences which 
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have facilitated the development of isoform selective regulators (Rehmann 2005; 

Dao et al. 2006; Rehmann et al. 2007). By screening both EPAC1 and EPAC2 

simultaneously it will be possible to disregard compounds that bind non-

selectively, greatly facilitating isoform specific compound discovery. As full length 

EPAC1 is unstable, screening will be facilitated through the use of the isolated 

CNBs of EPAC1 and EPAC2. However, the suitability of EPAC-CNBs for HTS within 

an 8-NBD-cAMP HTS assay has not been previously demonstrated.  

We aim to: 

 Develop a primary HTS assay with the ability to identify EPAC isoform 

selective small molecules 

 Confirm the suitability of a primary HTS through a small pilot screen 

 Develop a secondary, in vivo screen for the follow up characterisation of 

hit compounds, in terms of agonist or antagonist mode of action. 
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3.2 Results 

3.2.1 Expression and Purification of EPAC1-CNB and EPAC2-CNB 

Previous studies have shown that the interaction with the CNB of EPAC1 is 

sufficient to increase the fluorescence intensity of 8-NBD-cAMP. However, 

interaction of 8-NBD-cAMP with EPAC1 produced significantly lower levels of 

fluorescence intensity compared to than those brought about through interaction 

with EPAC2 (Tsalkova et al. 2012). Low fluorescence levels produced by 

interaction of 8-NBD-cAMP with the EPAC1-CNB may reduce the ability to detect 

competitor compounds in HTS. Furthermore, the ability of 8-NBD-cAMP to 

fluoresce when bound to the isolated CNB of EPAC2 has not been previously shown. 

In order to test this and develop an EPAC1-CNB and EPAC2-CNB-based competition 

assay it was first necessary to carry out large scale recombinant protein 

purification of the two CNBs.  

 

 

Figure 3-1 : Purification of GST-EPAC1-CNB and GST-EPAC2-CNB. 
Protein samples were taken during the purification of GST-EPAC1-CNB (A) and GST-EPAC2-
CNB (B) and loaded onto 12% (w/v) SDS polyacrylamide gels and separated by 
electrophoresis. Separated protein was visualised on each gel using coomassie blue dye 
solution, followed by washing with de-stain solution. The molecular weights (kDa) of protein 
standards are shown (M, unstained protein marker, broad range, 2-212 kDa). Protein 
expression was induced by incubation of bacterial cultures with 1 mM IPTG. This induced 
expression of a distinct ~40 kDa protein product after four hours. This is consistent with the 
production of GST-EPAC1-CNB and GST-EPAC2-CNB. Most of the induce protein was present 
in the soluble fraction of bacterial extract. Elution with glutathione and subsequent dialysis 
produced a single, 40 kDa protein product (Final). Arrows indicate induced GST-fusion proteins. 
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Tagging of EPAC isoforms with glutathione-S-transferase (GST), by subcloning into 

the pGEX-6p-1 plasmid, has been used extensively to assist the purification of 

recombinant EPAC proteins (Yarwood 2005; Harper et al. 2007). EPAC1-CNB 

(amino acids 169-318) and EPAC2-CNB (amino acids 304-453) DNA was amplified 

from cDNAs encoding full-length EPAC1 and EPAC2, and then ligated into the 

multiple cloning site of the pGEX-6p-1 plasmid (Yarwood 2005). After 

transformation of BL-21 Escherichia Coli (E.Coli), expression of GST-EPAC-CNB 

protein was induced by the addition of isopropyl β-D-1-thiogalactopyranoside 

(IPTG, 1 mM). This non-hydrolysable lactose analogue stably relieves repression of 

the lac operon, inducing protein expression from the pGEX-6P-1 vector. Indeed, 

IPTG treatment was found to induce expression of a strong 40 kDa protein product 

consistent with GST-EPAC1-CNB or GST-EPAC2-CNB (Figure 3-1). The GST-fusion 

proteins were found to be stable as the protein was observed within the soluble 

fraction following lysis and fractionation into soluble and insoluble components. 

The recombinant proteins were also present after column washing, elution and 

subsequent dialysis of the final protein sample. The final protein yield was 

calculated at 0.5 mg (GST-EPAC1-CNB) and 0.8 mg (GST-EPAC2-CNB) per litre of 

starting culture grown. All protein was subsequently analysed by circular 

dichroism (CD) to confirm that the ratio of helical and sheet secondary structure 

matched expected values (data not shown). 

3.2.2 Protein Analysis of GST-EPAC1-CNB 

EPAC2-CNB has been shown to be amenable to HTS (Tsalkova et al. 2012; Tsalkova 

et al. 2012). However, the EPAC1-CNB has not yet been employed within HTS. In 

order to confirm that the GST-EPAC1-CNB is able to bind to cAMP, and other small 

molecules, recombinant GST-EPAC1-CNB protein was expressed in minimal 

medium where ammonium sulfate enriched in the heavy nitrogen isotope (15N), 

was the sole source of nitrogen. As a result, the heavy isotope was incorporated 

into recombinant GST-EPAC1-CNB, thereby facilitating structural analyses using 

nuclear magnetic resonance (NMR). Incorporation of 15N with atomic spin into each 

backbone amide facilitates heteronuclear quantum coherence (HSQC) analyses. 

This method of NMR analyses yields a single spectral peak for each amino acid in 

the peptide backbone (barring glutamine and asparagine with side chain amides, 

which produce doublets, and proline which lacks a backbone amide) the frequency 



Chapter 3 Development of High Throughput EPAC1 Agonist Screening Methods 79 

 
 

of which relates to the surrounding chemical environment. The manner in which 

the amino acid spectral peak position changes due to its environment is referred 

to as chemical shift, and this can be influenced by local shielding or deshielding 

events produced by secondary structure, nearby residues, or, pertinent for this 

study, drug/ligand binding.  

For HSQC, 15N-labelled GST-EPAC1-CNB was purified as described above, however, 

prior to dialysis, the GST tag was cleaved using precision protease to remove the 

GST-tag. This reduces the number of backbone peaks produced, thereby 

simplifying spectral analyses. In order to test whether cAMP was able to bind to 

recombinant EPAC1-CNB, saturating concentrations of cAMP (1 mM) were 

incubated with 15N-labelled protein. Spectra were then recorded in the presence, 

or absence, of cAMP. Comparison of apo and cAMP bound NMR spectra indicated 

that the presence of cAMP induces large chemical shift changes, as observed by 

the positional changes of key CNB residue spectral peaks (Figure 3-2-A). This 

indicates that cAMP either binds to, or produces conformational changes in the 

EPAC1-CNB. Previous triple labelling NMR analyses both in house, and data 

provided as a gift from Hans Wienk (Harper et al. 2007), allowed each spectral 

peak to be correlated to its corresponding amino acid, allowing over 70% coverage 

of the CNB. Interestingly, many of the residues identified as undergoing chemical 

shift (Figure 3-2-B) have previously been identified as important in cAMP binding 

and the structural changes which promote the active form of EPAC1 (Harper et al. 

2007). This provides strong evidence that cAMP is able to bind to purified, 

recombinant EPAC1-CNB. In addition, the well dispersed peaks observed within 

the spectra indicate a well folded protein.  

In addition to testing the binding potential of cAMP, it was also possible to 

ascertain whether the recently identified EPAC2 agonist, tolbutamide (Zhang et 

al. 2009), was able to interact with and produce chemical shift changes within the 

EPAC1-CNB. Despite being described as an EPAC2 selective agonist (Herbst et al. 

2011), tolbutamide was found to produce large changes in the structure of the 

EPAC1-CNB (Figure 3-2-A). Indeed, many of the residues undergoing chemical shift 

changes were shared between tolbutamide and cAMP bound protein, suggesting 

that tolbutamide may also bind and produce structural changes within the CNB of 

EPAC1. This provides evidence that the CNB of EPAC1 is able to bind to compounds 
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with structures varying from that of cAMP, and that the EPAC1-CNB is appropriate 

for identifying CNB-interacting molecules during HTS. 

3.2.3 HTS 

The availability of compound libraries combined with the need for targeted 

therapeutics has necessitated the development of HTS technologies. HTS involves 

probing a library of chemical compounds within an industrial scale biochemical 

assay. As most lab-based assays are unsuitable for HTS, novel assay development 

is required for appropriate screening methods. Importantly, the costs associated 

with HTS screening necessitates low reagent consumption and high throughput, 

plate-based screening that is suitable for industrial scale compound library 

screening (Table 3-1) (Iversen et al. 2004). In addition to the scale required for 

screening methods, the assay itself must be robust enough to identify active 

compounds (hits) reliably and reproducibly. This is particularly important 

considering that most screening platforms assess each compound singly in libraries 

of up to a hundred thousand compounds (Mayr and Bojanic 2009). As such, prior 

to HTS, each assay must be characterised in terms of the quality of the assay and 

its appropriateness for HTS. Furthermore, each descriptor is calculated for every 

experiment to ensure no sources of error are introduced throughout the screening 

process. 

3.2.3.1 Signal to Background Ratio 

The first assay measure that is widely used to assess an HTS assay is the signal to 

background ratio (S/B, Equation 3-1) (Sittampalam et al. 1997).  This parameter 

describes the assay response in terms of the fold change upon 

activation/inhibition. In terms of screening, mean signal describes a condition in 

which the output of the assay is altered maximally (i.e. by a known regulator of 

the assay system). Mean background describes the signal produced in the absence 

of stimulation (i.e. the basal, minimal output). Although this measurement is 

useful in describing the magnitude of the assay response, it does not take into 

account assay variability, and, as such, cannot reflect assay quality alone.  
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Figure 3-2 : Tolbutamide interacts with EPAC1 and appears to bind to, or produce 
conformational changes in, several residues important for cyclic AMP binding. 
(A) A region of the heteronuclear single quantum coherence spectra of EPAC1 cyclic nucleotide 
binding (CNB) domain (residues 169–318) alone (green), in the presence of 1 mM cyclic AMP 
(blue) or 2 mM tolbutamide (red). Labelled amino acids undergo a change in chemical shift as a 
result of cAMP and tolbutamide binding, indicative of direct interaction with the ligand or induced 
conformational change. (B) Homology model of EPAC1 in its open, cAMP bound state (based on 
PBD file 3CF6). The residues that undergo a significant chemical shift change upon cAMP binding 
are coloured orange. The locations of valine 230 is indicated, along with cAMP bound in the 
phosphate binding cassette (C) Homology model of EPAC1 in its autoinhibited state (based on 
PBD file 2BYV). The residues that undergo a significant chemical shift upon tolbutamide binding 
are coloured magenta. Unassigned residues are coloured grey. The locations of Valine 230 and 
Glutamine 234 are indicated. 
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3.2.3.2 Z’ Factor 

In order to fully characterise the suitability of an assay for HTS, the intrinsic assay 

variability must be included. Indeed, an assay with large S/B may exhibit large 

standard deviation not represented by the mean max/min values. In order to 

accurately identify hits, the variability at both basal and stimulated levels must 

be incorporated. If the signal and background values overlap due to assay 

variability it would be difficult to accurately identify hit molecules within a 

screening program. Thus, the Z factor incorporates the variability associated with 

the maximum and minimum mean values. For assessing the suitability of an assay 

for HTS the Z’ factor (Equation 3-2) is used (Zhang et al. 1999), which incorporates 

only the control data, disregarding the values associated with experimental 

responses. Therefore, only the mean of maximal stimulation (positive control) and 

basal output (negative control) along with their standard deviations are used to 

calculate the Z’ of an assay, giving a value between negative one and one. A value 

approaching one describes an assay with large dynamic range coupled with small 

variability which would facilitate hit identification and a value exceeding 0.6 

indicates an assay appropriate for HTS. 

 

 

 
 
 

𝑺/𝑩 =  
𝝁 𝒔𝒊𝒈𝒏𝒂𝒍

𝝁 𝑩𝒂𝒄𝒌𝒈𝒓𝒐𝒖𝒏𝒅
 

Equation 3-1 : Signal to background ratio (S/B). 
The signal to background ration is a useful tool with which to gauge the amplitude of signal change. 
By dividing the maximum signal (e.g. DMSO diluent control) by the minimum signal (e.g. saturating 
cAMP concentrations) the magnitude of the fluorescence change can be identified. This is 
particularly important for assays utilising enzymatic reactions, where signal measurement may be 
limited to very large changes in substrate concentration. Although changes in fluorescence are very 
readily measured using plate readers, it is a useful descriptive tool to indicate the dynamic nature of 
an assay. 𝝁 - mean value, S – signal, B – background. 
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3.2.3.3 Plate variability 

In addition to the strength of the assay in reliably identifying hits, it is also 

necessary to assess signal reproducibility. HTS screening involves plate format 

biochemical analysis and as such variations across a single plate, or across multiple 

plates within a single screen are likley to greatly limit the ability to detect hit 

compounds. It is therefore necessary to test assay reproducability prior to 

screening. Indeed, a major factor in succesful hit identification is identifying and 

removing systematic error. As random error affects single wells it has little effect 

on the assay parameters or hit identification. However, systematic error is often 

associated with row/column effects, edge effects or reader errors which can 

result in large variability across large regions of a plate and losses in hit 

identification. Systematic error can be correlated to time and heat effects, such 

as evaporation, which is often associated with large variations at the plate 

periphery. Automation error can result in rows or columns exhibiting variability 

which produce spikes in data, particularly evident in dose response curves. Finally, 

reader error is often associated with a gradient effect across the plate as reader 

positioning errors accumulate laterally. By identifying and reducing the sources 

systematic error prior to screening, variability can be kept at an acceptable level 

and hits effectively identified. 

 

𝒁′ =  𝟏 −
(𝟑𝝈𝒑 + 𝟑𝝈𝒏)

(𝝁𝒑 − 𝝁𝒏)
 

Equation 3-2 : Z’ factor (Z’). 
The Z’ factor of an assay makes use of both the sample standard deviation, which indicates the 
variability, and the signal change fold change, which indicates the magnitude of the response. By 
combining these two factors a dimensionless value which represents the ability of the assay to be 
used in high throughput screening is returned, i.e. the ability of a hit compound to produce a 
large, reproducible change in signal intensity. The Z’ factor utilises the control values from 
minimum (𝒏, cAMP) and maximum (𝒑, DMSO) control values of an assay. 𝝈 – Standard 
deviation, 𝝁 - mean value. 
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CRITERIA THRESHOLD DESCRIPTION 

%CV <10% intra/interplate 
Avoids false or missed hits 
associated with high plate 
variability 

S/B ≥3 
Demonstrates a reasonable 
change in signal to allow hit 
identification 

Z’ ≥0.6 
Inherent assay variability is low 
compared to the change in signal  

FORMAT 
384 well, homogenous,  

mix and measure 
Must be amenable to high 
throughput machine analysis 

DMSO 
TOLERANCE 

≥1% 
Assay must be stable in the 
presence of compound diluent  

ASSAY/REAGENT 
STABILITY 

≥4 hours 
Reagents must be stable within 
time frames associated with HTS 

Table 3-1 : Summary of assay criteria for high throughput screening. 
HTS requires the ability to accurately and reproducibility detect hit compounds. The thresholds 
which describe a suitable assay are shown below with a description of why the threshold has 
been set at the given level. %CV – Coefficient of variance, S/B – Signal to background ratio, Z’ 
– Z prime factor. 

%𝑪𝑽 =
𝝈

𝝁
 𝒙 𝟏𝟎𝟎 

Equation 3-3 : Coefficient of variance (%CV). 
The coefficient of variance is the standard deviation of a given response, normalised to the mean 
signal intensity. %CV is able to give the variability of the signal in relation to the signal strength. 
For example, a standard deviation of one may be low if the average signal intensity is 100, 
however it is very high if the average signal intensity is 0.5. These two values would give a %CV of 
one and 50 respectively, and may indicate that the latter has an unacceptable source of error. 𝝈 – 
Standard deviation, 𝝁 - mean value. 
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In order to confirm reproducibility, the coefficient of variance (%CV) is employed 

as a statistical measure of the signal deviation as a product of the average signal 

intensity (Equation 3-3). In order to demonstrate that identical assay conditions 

produce similar outputs, the %CV of matching wells within a plate are calculated. 

A low %CV indicates that each matching condition produces the same signal within 

the assay, regardless of well position, sample preparation or measurement 

limitations. As screening occurs over multiple plates, the %CV of matching wells 

between plates will also be assessed.  

3.2.4 Validation of an 8-NBD-cAMP Competition Assay 

Of the assays developed for HTS of EPAC modulators, the fluorescence assay based 

on 8-NBD-cAMP provides a robust high throughput assay for screening full length 

EPAC2 (Tsalkova et al. 2012). However, the ability of 8-NBD-cAMP to bind and 

undergo fluorescence change within the isolated EPAC2-CNB has not been 

assessed. Furthermore, the suitability of EPAC1 and EPAC2 CNBs for 8-NBD-cAMP 

competition HTS has not been demonstrated. In order to isolate EPAC specific 

agonists during primary screening, both EPAC1-CNB and EPAC2-CNB must be 

suitable for HTS. 

In order to validate EPAC-CNBs within a competition assay, it was necessary to 

test the ability of each CNB to bind 8-NBD-cAMP and promote fluorescence. 

Therefore, to provide proof of principle and to begin validation of an EPAC1-

CNB/EPAC2-CNB competition assay, GST, GST-EPAC1-CNB, GST-EPAC2-CNB (0.8 

µM) and a “no protein” control were incubated with 8-NBD-cAMP (0.1 µM, Figure 

3-3). In agreement with published results, 8-NBD-cAMP fluorescence was 

significantly greater in the presence of GST-EPAC1-CNB than in the absence of 

protein (Kraemer et al. 2001). The EPAC2-CNB-GST, similarly to full length protein 

(Tsalkova et al. 2012), displayed a greater increase in fluorescence compared to 

EPAC1-CNB (Figure 3-3). Incubation of the fluorescent probe with recombinant 

GST produced fluorescence values comparable to the no protein control. 

Therefore, 8-NBD-cAMP fluorescence change occurs as a direct result of 

interaction with each EPAC-CNB, independently of the GST-tag (Figure 3-3). As 

such, removal of the GST tag is not required and CNB-GSTs will henceforth be 

referred to as EPAC1-CNB and EPAC2-CNB only.  
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Figure 3-3 : 8-NBD-cAMP fluorescence increases following binding to EPAC-CNBs. 
The 8-NBD-cAMP fluorescence assay was carried out in quadruplicate, in black 96 well plates 
(final volume - 100 µl). Stock solutions for each reagent were prepared as follows; protein stock 
was prepared as a 3x solution (2.4 µM) in assay buffer. cAMP was prepared as a 150 µM solution 
(50 mM stock solution in DMSO and was diluted in assay buffer to 150 µM). 8-NBD-cAMP was 
prepared as a 0.3 µM solution. 33 µl purified protein (GST, EPAC2-CNB or EPAC1-CNB, final 
concentration - 0.8 µM) or assay buffer (no protein) was incubated with 33 µl cAMP (final 
concentration - 50 µM) or vehicle control (DMSO, final concentration - 12.8 mM). 8-NBD-cAMP 
(final concentration - 0.1 µM) was subsequently added to every well (33 µl). Fluorescence intensity 
was measured after four hours using the Optima Fluostar plate reader (BMG Labtech). # - 
P<0.0001, two way ANOVA using Tukeys post test, n-3. 
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Next, fluorescence intensity was assessed in the presence and absence of 

saturating concentrations of cAMP in order to confirm competitive binding. 

Incubation with cAMP (50 µM) reduced 8-NBD-cAMP fluorescence to levels similar 

to the no protein control, suggesting maximal inhibition. EPAC2 provoked a 6.94 

fold change in 8-NBD-cAMP fluorescence over maximal inhibition; however, EPAC1 

provoked only a 2.62 fold increase. Despite the low signal to background ratio of 

EPAC1-CNB, both EPAC1 and EPAC2 produced robust Z’ values of 0.64 and 0.77 

respectively. The statistical parameters for each protein are given (Table 3-2). Z’ 

values exceeding the minimum threshold outlined indicate that the isolated CNBs 

are viable for an 8-NBD-cAMP competition assay. However, optimisation is 

required to meet the stringent signal to background criterion required for HTS 

(Table 3-1). 

 

 

 

 

Table 3-2 : Summary of assay statistical parameters. 
Parameters obtained from data in Figure 3-3 using the averages and stadard deviations acquired 
from the minimum and maximum control wells for each protein assayed. GST – Glutathione-S-
transferase tag alone, EPAC1-CNB – GST tagged, purified EPAC1 cyclic nucleotide binding 
domain, EPAC2-CNB - GST tagged, purified EPAC2 cyclic nucleotide binding domain. Min signal – 
the florescence intensity of 8-NBD-cAMP in the presence of saturating cAMP. Max signal – 
fluorescence intensity in the absence of competing cAMP. S/B – ratio of maximum signal (DMSO) 
to signal in the presence of cAMP (50 µM), Z’ score as previously described.  

PROTEIN MIN SIGNAL MAX SIGNAL S/B Z’ 

GST 9134 8136 0.89 - 

EPAC1-CNB 7245 18987 2.62 0.63 

EPAC2-CNB 8109 56262 6.94 0.77 
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3.2.5 Assay Development 

3.2.5.1 Buffer Optimisation 

In order to effectively screen small molecule libraries, a HTS requires the 

sensitivity to detect sub-maximal fluorescence inhibition associated with low 

affinity partners. EPAC1-CNB displayed a sub-optimal S/B which in turn resulted 

in a reduced Z’ value. Improving the S/B is likely to improve the assay accuracy 

and reliability in the detection of hit compounds. In order to produce the maximal 

signal possible, the buffer components were varied to assess their impact on 8-

NBD-cAMP fluorescence in the presence of EPAC1.  

In order to achieve optimal S/B, buffer pH and ionic strength were varied within 

the assay. Indeed both pH and ionic strength are known to affect protein-ligand 

interactions (Hulme and Trevethick 2010) and optimal conditions may improve 

sensitivity. Varying sodium chloride concentrations from 10 mM to 150 mM (x-axis) 

whilst simultaneously altering buffer pH (z-axis) allowed the ideal conditions to 

be ascertained (Figure 3-4). The highest signal to background ratio was observed 

at 50 mM sodium chloride, pH 7.8 with a 50% increase in the fluorescence intensity 

over starting conditions (150 mM, pH 7.5). 

3.2.5.2 Probe-Protein Titration 

The concentration of both 8-NBD-cAMP (probe) and EPAC1-CNB (protein) within 

the assay is likely to affect the fluorescence intensities obtained. In order to 

calculate the optimal concentrations of both protein and probe, the concentration 

of each were varied simultaneously (Figure 3-5) using optimised buffer conditions 

of sodium chloride, 50 mM, pH 7.8 (see section 3.2.5.1). The fluorescence signal 

produced in the presence of protein was normalised to the background intensity 

to calculate the S/B at each probe/protein concentration. Although S/B values 

greater than three were observed for many of the conditions, large adjustments 

in either probe or protein concentration are likely to negatively affect the 

sensitivity of the assay. Indeed, high protein concentrations combined with limited 

ligand concentrations can lead to ligand depletion which will limit the 

identification of low affinity competitors (Hulme and Trevethick 2010). Similarly 

to protein concentration, an excess of probe increases the concentration of 
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competitor required to effectively compete within the CNB and may mask low 

affinity hits within HTS. Accordingly, the minimal protein concentration of EPAC1-

CNB (0.08 µM) was selected which meets the required three fold signal to 

background criterion (Figure 3-5). In addition, a concentration range of 8-NBD-

cAMP (0.5 - 0.0625 µM) was identified as suitable for producing signal change. 

However, further characterisation is required to select the optimal concentration 

of 8-NBD-cAMP for assay quality and hit detection. 

 
  

Figure 3-4 : Increase in 8-NBD-cAMP fluorescence under varying salt and pH conditions. 
The optimal conditions for 8-NBD-cAMP fluorescence was calculated by incubating the 
fluorescent 8-NBD-cAMP probe (0.1 µM) with EPAC1-CNB (0.8 µM) and altering the salt and 
pH of the assay buffer to each of the conditions shown. The assay was prepared in black 96 
well plates. 2x stock solutions of EPAC1-CNB (1.6 µM) protein and 8-NBD-cAMP (0.2 µM) were 
prepared in assay buffer of the given salt concentration and pH, and then equal volumes were 
combined and incubated for four hours (100 µl volume). The fluorescence intensity was 
recorded and normalised to fluorescence in the absence of protein. Fluorescent intensity is 
expressed as the percentage increase in signal strength compared to fluorescence intensity 
under initial buffer conditions (150 mM NaCl, pH 7.5). Shading scale proceeds green to yellow 
to blue with percentage increase in fluorescence intensity. Conditions given represent 
quadruplicate wells, n-2. 
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3.2.5.3 Optimal Probe concentration 

In order to determine the 8-NBD-cAMP concentration with maximal sensitivity for 

low affinity compounds, two concentrations of probe were assessed for their 

ability to respond to competition with reference compounds. Both 8- 

(4- Chlorophenylthio)-cAMP (8-CPT) and 8-pCPT-2’-0-Me-cAMP (007) bind to EPAC1 

within the CNB with known affinities relatable to the IC50 values obtained within 

the competition assay (Table 3-3). Indeed, titration of these reference molecules 

Figure 3-5 : The effect of varying probe/protein concentration on the S/B ratio. 
The S/B ratio was calculated using optimised buffer conditions (50 mM Tris, pH 7.8, 10 mM 
NaCl, 1 mM EDTA, 1 mM DTT,) under the varying concentrations of EPAC1-CNB and 8-NBD-
cAMP given. EPAC1-CNB-GST was prepared as a 12.8 µM stock solution and 200 µl was 
seeded into the top row of a black 96 well plate. 100 µl assay buffer was seeded into all wells of 
a plate and the Biomek automated pipetting station was used to transfer 100 µl from the first row 
into the second. This was mixed and then 100 µl was transferred from row two into row three, 
producing a serial dilution. This was repeated until a final concentration of 0.01 µM was 
achieved. In a separate 96 well plate an 8-NBD-cAMP stock solution (8 µM) was added to the 
first column (100 µl), and 100 µl buffer was added to all wells. Again a serial dilution was 
performed by transferring 100 µl of buffer from column to column sequentially. For both protein 
and probe the final row/column was not altered in order to give a background reading. These 
two stock plates were used to seed a final, black, 384 well, low volume assay plate with equal 
volumes (15 µl) of protein and probe, in quadruplicate. Fluorescence intensity was recorded 
after four hours, and the S/B ratio was calculated by normalising the signal at each 
concentration to the background signal (no probe/protein). The dotted line indicates the desired 
three fold S/B threshold. Shading scale proceeds dark blue to light blue as S/B ratio increases. 
The three fold signal to background ratio required is shown by a solid red line. The minimal 
protein concentration (0.8 µM) and probe concentration (0.6 µM – 0.25 µM) at which the three 
fold signal to background ratio is indicated by a dashed red line. S/B – Signal to background, 
probe – 8-NBD-cAMP, protein – GST-EPAC1-CNB. 
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with EPAC1-CNB displayed competition with the fluorescent probe for the cAMP 

binding site (Figure 3-6). Furthermore, the degree of fluorescence inhibition was 

consistent with their affinities for EPAC. As expected, the high affinity cAMP 

analogue, 8-CPT, is able to inhibit fluorescence at lower concentrations than 007. 

Although 8-CPT binding at both concentrations of 8-NBD-cAMP produces a linear 

decrease in IC50, the ability to accurately describe 007 competition is limited at 

high probe concentrations. This suggests that although the S/B intensity is greater 

at higher probe concentrations, the ability to detect low affinity binding partners 

is greatly reduced. This effect would likely lead to numerous compounds being 

overlooked during HTS despite an improvement in signal to background. The probe 

concentration of 0.0625 µM was identified as the lowest value able to produce 

above-threshold S/B whilst maintaining sensitivity to low affinity compounds.  

The inhibitory profiles of cAMP, 007 and 8-CPT reveal that the conditions 

identified allow the identification of competitor compounds with a range of 

affinities (Figure 3-7). The resulting IC50 of cAMP and 007 are linear, in terms of 

their published dissociation constants (Dao et al. 2006). However, although it is 

possible to produce inhibition in the presence of 8-CPT-cAMP, the IC50 produced 

does not correlate to the hundred fold greater affinity over cAMP reported (Dao 

et al. 2006). This suggests that the inhibitory effect of high affinity compounds 

and further structure activity relationship (SAR) characterisation may be limited 

within this assay. However despite these limitations, this assay displays excellent 

detection of competitive compounds. 

 

Table 3-3 : IC50 values of reference compounds under varying probe concentrations. 
The IC50 values of 8-CPT-O’-2-Me-cAMP (007) and 8-CPT-cAMP (8-CPT) obtained from Figure 3-6 
are shown alongside published affinities (Dao et al. 2006).  

 

  

COMPOUND 
0.5 µM PROBE 

IC50 (µM) 
0.0625 µM PROBE 

IC50 (µM) 
PUBLISHED KD 

(µM) 

007 5.88 1.68 0.63  

8-CPT 3.563 0.5335  0.04  
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Figure 3-6 : The effects of varied probe concentration on reference molecule inhibition. 
Titrations of two reference molecules known to interact with the CNB of EPAC1 with different 
affinities were performed using the Biomek automated laboratory. The titration was carried out 
in the presence of the probe concentrations found to produce maximal signal to noise ratio, 
namely 0.0625 µM (dashed line with data points shown as circles) or 0.5 µM 8-NBD-cAMP 
(solid line with data points shown as triangles) at 0.8 µM EPAC1-CNB. Reagents were 
prepared as three fold stock solutions in 96 well plates which were then combined in a black, 
384 well, low volume assay plate (final volume 30 µl) alongside wells containing only 8-NBD-
cAMP and reference compounds as a background control (no EPAC1-CNB). EPAC1-CNB (0.8 
µM), reference compounds and probe were incubated for four hours before fluorescence 
intensity was measured. Data are displayed as percentage inhibition calculated from max signal 
(DMSO vehicle control, 70 mM) and min signal (no protein). A - The ability of 8-CPT-cAMP (8-
CPT) to compete with 8-NBD-cAMP for EPAC1-CNB binding and inhibit fluorescence is shown. 
B – The ability of 8-CPT-O’-2-Me-cAMP (007) to compete with 8-NBD-cAMP for EPAC1-CNB 
binding and inhibit fluorescence is shown. Curve fits and graphs plotted using XLFit (XLfit 
Software). Samples were recorded in quadruplicate, n-1. 
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Figure 3-7 : The inhibitory profiles of reference competitor compounds. 
Titration of three reference compounds were prepared. EPAC1-CNB (0.8 µM) was incubated with 
cAMP (solid line, points marked by squares), 007 (dotted line, points marked by circles) or 8-CPT 
(dashed line, points marked by triangles) in the presence of 0.0625 µM 8-NBD-cAMP. 3x stock 
solutions were prepared for reagents, which were then combined and incubated four hours in a 
black, low volume, 384 well assay plate before recording fluorescence intensity. Percentage 
inhibition was calculated as the drop in 8-NBD-cAMP fluorescence produced by incubation with 
each concentration of reference compounds compared to a DMSO (12.8 mM) vehicle control. IC50 
values of each compound are given (µM). Curve fits and graphs plotted using XLFit (XLfit 
Software). Samples recorded in quadruplicate, n-1. 

 

 

3.2.5.4 Optimal Incubation Time 

HTS is typically performed in large batches and, as such, significant turnover times 

occur during the screening process. In order to confirm that both protein and 

probe are stable within the time frames associated with HTS, fluorescence 

intensity was measured over time. Under these conditions the assay was found to 

display excellent stability, with no significant decrease in fluorescence up to 72 

hours after initialising the reaction (Figure 3-8). Although initial fluorescence was 

variable, the assay signal was observed to stabilise after 60 minutes and remain 

constant and reproducible up to four hours (Figure 3-8). Therefore a minimum 

incubation period of four hours was utilised to ensure maximal reproducibility 

between wells. However, the assay displayed excellent stability up to 72 hours 

and turnover times are likely to be well tolerated during the screening process. 
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Figure 3-8 : Assessing optimal assay incubation time. 
8-NBD-cAMP (0.0625 µM) and EPAC1-CNB (0.8 µM) were prepared as 2x stock concentrations 
and equal volumes were combined in black, low volume, 384 well assay plates in quadruplicate 
(final volume 30 µl). Fluorescent intensity was recorded hourly over a 72 hour period and is 
presented at the various time points here (Mean +/- SEM of four wells, n-1). 

 

 

3.2.6 EPAC1-CNB Competition Assay Evaluation 

3.2.6.1 DMSO Tolerance 

Compounds in large chemical libraries are often dissolved in the diluent 

dimethylsulfoxide (DMSO). As such, any assay developed for HTS requires a DMSO 

tolerance of up to one per cent final DMSO concentration. In order to ensure the 

presence of DMSO does not affect 8-NBD-cAMP fluorescence intensity, the 

competition assay was carried out in the presence of increasing concentrations of 

DMSO and fluorescence was measured at each DMSO concentration (Figure 3-9). 

8-NBD-cAMP displayed a trend of signal loss with increasing DMSO concentration. 

However, the signal was well tolerated at concentrations under one percent in 

line with the required parameters (Table 3-1). Furthermore, novel compound 

seeding technologies, such as acoustic liquid handling (Ellson et al. 2003), allow 

very low final DMSO concentrations. Indeed, the use of nanolitre dispensing 

techniques (Echo® Liquid Handler) ensures the final concentration of DMSO is well 

below one per cent. 
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Figure 3-9 : Effect of DMSO on 8-NBD-cAMP flourescence. 
8-NBD-cAMP (0.0625 µM) and EPAC1-CNB (0.8 µM) were prepared as 3x stock solutions and 
combined in the presence of increasing concentrations of DMSO, in black, low volume, 384 well 
assay plates. DMSO was prepared as a 3x stock solution of the final percentage (v/v) 
concentration and incubated for four hours. The effect of DMSO on fluorescence intensity was 
observed. Data are presented as the average of quadruplicate values (+/- SEM, n-1). 

 
 
 

3.2.6.2 Intraplate Variability 

In order to accurately identify hit compounds, it is necessary for there to be a high 

level of reproducibility within a single assay plate. Indeed, significant intra-plate 

variability can result from measurement error, inaccurate well seeding or 

differential temperature effects across a plate all of which can seriously limit the 

success of HTS (Iversen et al. 2004). The signal reproducibility within each 384 

well assay plate was tested by two means. The first was calculated from the the 

maximum (DMSO vector control) and minimum (cAMP, 50 µM) signals obtained 

from distinct quadrants within the same plate (Table 3-4). In addition, cAMP 

titrations within the top left and bottom right quadrants of a 384 well plate were 

used to ensure that intermediate values within an inhibitory curve were not 

affected by their position within an individual plate. The results obtained 

demonstrated that there was no large difference in fluorescence intensity 

observed at different locations within a single plate (Figure 3-10). 
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Table 3-4: Intraplate variability across quadrants. 
8-NBD-cAMP (0.0625 µM) and EPAC1-CNB (0.8 µM) were prepared as 3x stock solutions and 
combined in black, low volume, 384 well assay plates. Wells A1-H12 (Max 1) and I13-P24 (Max 2) 
were seeded with DMSO (vehicle control, 12.8 mM) to produce the maximal assay signal. Wells 
A13-H24 (Min 1) and I1-P12 (Min 2) were seeded with cAMP (50 µM) to compete with 8-NBD-
cAMP binding to EPAC1-CNB and produce the minimal fluorescence signal. Plates were incubated 
four hours before measuring fluorescent intensities. The mean and standard deviation (StDev) of 
fluorescence intensity was calculated for each quadrant (Quadrant) and for all matching conditions 
within the plate (intraplate). From these parameters the coefficient of variance (%CV) was 
calculated. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-10 : Intraplate variability of intermediate fluorescence values. 
3x stock solutions of each cAMP concentration were obtained by serial dilution of a 150 µM stock 
(in assay buffer), with DMSO concentration maintained throughout (12.8 mM). EPAC1-CNB (0.8 
µM), 8-NBD-cAMP (0.0625 µM) and cAMP (at given concentrations) in quadruplicate (final volume 
30 µl) were incubated in black, low volume, 384 well assay plates. Varying cAMP concentrations 
were seeded into wells A4/D4-A14/D14 (Quadrant 1) and wells M14/P14-M24/P24 (Quadrant 4) in 
order to compare the fluorescent intensity at various positions within the plate at varying levels of 8-
NBD-cAMP fluorescence. Quadruplicate fluorescence intensity values were measured after a four 
hour incubation and plotted against cAMP concentration (mean +/-StDev, n-1). 

 

QUADRANT MEAN STDEV %CV INTRAPLATE MEAN STDEV %CV 

MAX 1 203940 12608 6.2 Max 1 vs 
Max 2 

206804 4051 1.9 
MAX 2 209669 16884 8.1 

MIN 1 43206 4345 10.1 Min 1 vs  
Min 2 

42949 363 0.9 
MIN 2 42693 2918 6.8 
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3.2.6.3 Plate to Plate Variability 

In addition to intraplate homogeneity, the signal variation between plates must 

be low as hit identification will be based on data obtained from multiple plates. 

In order to ensure that the fluorescent signal is accurate between plates, 

reproducibility was assessed in a manner similar to that for intraplate variability. 

The variability between each quadrant of two separate plates (Table 3-5), 

alongside the intermediate values within a dose response curve (Figure 3-11) were 

assessed. The variability between plates was shown to be remarkably low for both 

the maximum, minimum and intermediate values tested. 

 
 
 

INTRAPLATE MEAN STDEV %CV INTERPLATE MEAN STDEV %CV 

MAX 
(PLATE 1) 

199791 5866 2.9 
Plate 1 vs 

Plate 2 
199492 424 0.2 

MAX 
(PLATE 2) 

199192 14817 7.4 

MIN 
(PLATE 1) 

43704 703 1.6 
Plate 2 vs 

Plate 2 
43200 713 1.7 

MIN 
(PLATE 2) 

42696 4 0.1 

Table 3-5 : Interplate variability across quadrants. 
8-NBD-cAMP (0.0625 µM) and EPAC1-CNB (0.8 µM) were prepared as 3x stock solutions and 
combined in black, low volume, 384 well assay plate wells. Wells A1-H12 (Max 1) and I13-P24 
(Max 2) were seeded with DMSO (vehicle control, 12.8 mM) to produce the maximal assay signal. 
Wells A13-H24 (Min 1) and I1-P12 (Min 2) were seeded with cAMP (50 µM) to compete with 8-
NBD-cAMP binding to EPAC1-CNB and produce the minimal fluorescence signal. Plates were 
incubated four hours before measuring fluorescent intensities. The mean and standard deviation 
(StDev) were calculated and the intraplate variation between quadrants within each plate is shown 
(Intraplate). The variation between maximum and minimum signals between plates is shown 
(Interplate). From these parameters the Coefficient of Variance (%CV) was calculated. 
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Figure 3-11 : Interplate variability of intermediate fluorescence values. 
3x stock solutions of each cAMP concentration were obtained by serial dilution of a 150 µM stock 
(in assay buffer), with DMSO concentration maintained throughout (12.8 mM). Black, low volume, 
384 well assay plates were seeded with EPAC1-CNB (0.8 µM), 8-NBD-cAMP (0.0625 µM) and 
cAMP (at given concentrations) in quadruplicate (final volume 30 µl). Varying concentrations of 
cAMP were seeded into wells A4/D4-A14/D14 (Quadrant 1) and wells M14/P14-M24/P24 
(Quadrant 4) of two different plates in order to compare the fluorescent intensity at various 
positions within multiple plates at varying levels of 8-NBD-cAMP fluorescence. Quadruplicate 
fluorescence intensity values were measured after a four hour incubation and plotted against cAMP 
concentration (mean +/-StDev, n-1).  

 

 

 

CRITERIA THRESHOLD EPAC1-CNB PARAMETERS 

%CV <20% intra/interplate Max 1.9% / 1.8% 

S/B ≥3 4.8 

Z’ ≥0.6 0.66 

FORMAT 
384 well, homogenous,  

mix and measure 
Performed in 384 plate, no wash 

steps, single assay step 

DMSO 
TOLERANCE 

 
≥1% 1% tolerated 

ASSAY/REAGENT 
STABILITY 

≥4 hours Up to 72 hours 

Table 3-6 : Summary of EPAC1-CNB competition assay statistical parameters.  
The parameters recorded for the EPAC1-CNB competition assay after optimisation are summarised 
alongside the required thresholds for efficient high throughput screening. %CV – coefficient of 
variance, S/B – signal to background ratio, Z’ – Z primer factor. 
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3.2.7 EPAC1-CNB Competition Assay Validation 

In order to validate the EPAC1-CNB based competition assay for HTS, a pilot screen 

was performed using the final conditions characterised (assay buffer – 50 mM Tris-

HCl, pH 7.8, 10 mM NaCl, 1 mM EDTA, 1 mM DTT; minimum incubation time – four 

hours; 8-NBD-cAMP concentration – 0.0625 µM; protein concentration – 0.8 µM). 

Two commercially available compound libraries of bioactive molecules were 

screened; the National Institute of Health (NIH) Clinical Collection Library (NCC) 

and the Selleckchem FDA approved drug library (L1300). Each library contains US 

FDA approved bioactive molecules with drug-like structures and known safety 

profiles. 

Both EPAC1-CNB and EPAC2-CNB were used to screen the NCC and L1300 

compound libraries. The statistical parameters from these screens are given and 

suggest assay optimisation dramatically improved the power of the assay (Table 

3-7). For example, the revised signal to background value for EPAC1-CNB was 

almost double the pre-optimised value (Table 3-2, 1.83 fold increase). Both 

EPAC1-CNB and EPAC2-CNB based HTS assays identified numerous hits able to 

inhibit 8-NBD-cAMP fluorescence below the significance threshold. The inhibitory 

cut-off for each protein was calculated using robust statistics (three scaled median 

absolute deviations (sMAD) from the median inhibitory effect) (Asli 2013). As a 

result of screening, 11 hit compounds were identified for both EPAC1-CNB and 

EPAC2-CNB. 

𝒔𝑴𝑨𝑫 = 𝑲 𝒙 (𝒎𝒆𝒅𝒊𝒂𝒏 √(𝑿𝒊 −  𝒎𝒆𝒅𝒊𝒂𝒏(𝑿𝒋)𝟐) 

Equation 3-4 : Scaled median absolute deviation. 
The scaled median absolute deviation (sMAD) is a useful method to reduce the effects of outliers in 
large data sets. The median absolute deviation calculates the median value of the absolute 

deviations (√𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑚𝑒𝑑𝑖𝑎𝑛2) of each value within the data set (𝑋𝑖) from the data set 

median (𝑋𝑗). The absolute value of the deviations simply negates negative values and returns the 

difference from the median value (deviation) as a positive integer (for example the absolute of -4 is 
4). The MAD is preferred for large data sets as the standard deviation weights large outliers very 
strongly by squaring the deviation from the mean. Robust statistics using the median value reduces 
these effects. However, a data set with a normal distribution (lacking large outliers) produces a 

median absolute deviation smaller than the standard deviation, producing bias. The constant (𝑲), 

representing the relationship between the MAD and standard deviation within a normal distribution, 

is employed to remove this bias. 𝑲 – 1.4826  
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Table 3-7 : Statistical parameters of pilot screen. 
The signal to background ration (S/B) and Z’ values were calculated from the maximum and 
minimum signal controls from the EPAC1-CNB and EPAC2-CNB pilot screen data. The hit rate is 
calculated as the percentage of compounds above the cut-off threshold (median inhibitory effect + 
3* scaled median average deviation) from the entire screen.  

 

 

 

 

 

 

 

3.2.8 Hit Confirmation 

Of the 22 hits returned, a total of 15 isoform selective compounds were identified. 

Indeed, seven compounds competed with 8-NBD-cAMP for binding to both EPAC1-

CNB and EPAC2-CNB. Hits were further validated by identifying the IC50 values and 

the specificity of each compound for EPAC1-CNB or EPAC2-CNB (Table 3-8). This 

was achieved by serial dilution of each hit compound from a maximum 

concentration of 30 µM. In addition to isolating several compounds able to 

compete within the CNB of EPAC1 and EPAC2, compounds exhibiting specificity 

for either EPAC1 or EPAC2 were observed (Table 3-8). Indeed, one compound was 

observed to specifically target EPAC1-CNB; conjugated oestrogen. Although the 

observed IC50 for this compound was low (16 µM) the specificity over EPAC2-CNB 

suggests it may be suitable for development as an EPAC1 selective agonist. 

Conversely, multiple compounds were observed to compete for EPAC2-CNB 

binding specifically; e.g. tamoxifen and dronedarone. As such, the benefits of 

screening both EPAC1-CNB and EPAC2-CNB simultaneously have been 

demonstrated.  

 EPAC1-CNB EPAC2-CNB 

S/B 4.82 9.85 

Z' 0.79 0.75 

HIT RATE 0.69% 0.69% 
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3.2.9 Characterisation of a Cell Based Screen for EPAC1 Agonists 

The EPAC1-CNB competition assay, although effective at identifying compounds 

that interact with the cAMP-binding pocket, is unable to discriminate between 

potential agonist or antagonist properties of the isolated compounds. Give that 

EPAC1 agonists have the potential as novel therapeutics for the treatment of a 

range of disorders, as described above, it is therefore necessary to confirm that 

hits identified via HTS are able to effectively activate EPAC1. Indeed, many cAMP 

analogues have been observed to bind EPAC but not induce GEF activity (Kraemer 

et al. 2001). In order to confirm EPAC1 agonism, a secondary screen is required to 

confirm binding and activation of full length EPAC. Recently, EPAC1 activation has 

been linked to rapid changes in cell morphology (Ross et al. 2011). In particular 

cells were observed to undergo cell spreading; a uniform extension of the cell 

periphery. These effects were directly attributed to EPAC1, independently of 

conventional cell adhesion pathways (Ross et al. 2012). Therefore cell spreading 

may represent a cell based assay to report EPAC1 activation in vivo. 

3.2.9.1 EPAC1 is required for cAMP induced morphological change 

To test whether EPAC1 activation is sufficient to promote cell spreading in 

response to elevations in intracellular cAMP, the EPAC-null human embryonic 

kidney (HEK293T) cell line was stably transfected to express FLAG-tagged EPAC1 

or an empty vector construct (Figure 3-12-A). To assess the ability of transfected 

EPAC1 to control cell spreading, EPAC1 signalling was activated by the addition of 

a combination of forskolin and rolipram (F/R, 10 µM) to elevate cAMP levels by 

simultaneously activating AC and inhibiting PDEs. In addition, the EPAC-selective 

agonist, 007 (10 µM), was used to directly activate transfected EPAC1. After 60 

minute treatment cells were fixed and cell area determined (Figure 3-12). The 

results obtained established that cells transfected with an empty vector were 

completely non-responsive to the applied treatments in terms of cell spreading 

(Figure 3-12). In contrast, cells transfected with EPAC1 demonstrated a marked 

increase in cell area following treatment with either F/R or 007 (Figure 3-12). This 

confirms that cell spreading in response to increases in intracellular cAMP is 

dependent on EPAC1 expression in this cell line.  
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A 

B 

C 

Figure 3-12 : Cell spreading is dependent on EPAC1 expression in HEK293T. 
A; HEK293T cells were stably transfected with vector or Myc-EPAC1-FLAG construct. Cell 
extracts were western blotted with anti-EPAC1, anti-Myc or anti-β-Tubulin antibodies as indicated. 
B; Vector- and EPAC1-expressing HEK293T cells were incubated for 60 minutes with a DMSO 

vehicle control (final concentration 12.8 mM), 10 M 007 or 10 M forskolin and 10 M rolipram 
(F/R). Cells were fixed and immunostained with anti-EPAC1 antibodies to confirm EPAC1 
expression (not shown). Representative transmission images with DAPI stained nuclei (blue) are 
shown. C; HEK293T-vector and HEK293T-EPAC1 cell spreading was assessed using ImageJ 
analysis software to measure cell area (mean +/- s.e.m.). Data were collected from 10 randomly 
acquired images per experiment. Significant difference of 007 and F/R stimulated HEK293T-
EPAC1 to DMSO stimulated HEK293T-EPAC1 is indicated; ** - p <0.01 and *** - P<0.001, two 
way ANOVA using Dunnets post test, n-3. 
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3.2.10 Cell Spreading is a Specific Response to EPAC1 
activation in HEK293T cells 

Cell morphological change can be induced through a range of signalling pathways. 

In order to ensure that HEK293T-EPAC1 cell spreading is a feature of EPAC1 

signalling, a range of related signalling pathways were tested for their ability to 

induce cell spreading independently of EPAC1 activation. Indeed, a number of 

signalling pathways are known to regulate cell morphology and may produce a 

spread phenotype independent of EPAC1 activation, and as such, may produce 

false positives in a cell based EPAC1 activation assay. 

3.2.10.1 Phosphatidyl-Inositol-3 Kinase 

EPAC1 has been shown to activate phosphatidyl-inositol-3 kinase (PI3K) and 

regulate proteins directly implicated in cytoskeletal reorganisation and cell 

adhesion (Cass et al. 1999; Tang et al. 2012). Regulation of the cell cytoskeleton 

suggests a possible mechanism for EPAC1 mediated cell spreading, through PI3K 

in HEK293T cells. To test the role of PI3K signalling in the control of HEK293T-

EPAC1 cell spreading, cells were incubated with the selective PI3K inhibitor, 

LY294002 (LY29) and the known PI3K activator, insulin. Insulin was found to 

activate PI3K, indicated by phosphorylation of the downstream PI3K target, AKT 

(Serine 473, Figure 3-13-B), and yet was unable to promote cell spreading (Figure 

3-13-C). Furthermore, LY29 was found to be effective at inhibiting Ser472 

phosphorylation of AKT in response to insulin, however it was unable to reduce 

cell spreading in response to F/R (Figure 3-13). Therefore regulation of PI3K 

activity is unable to affect the response of HEK293T-EPAC1 cells to elevated cAMP 

levels, suggesting that the PI3K signalling cascade is not involved in EPAC1 

mediated changes in cell morphology.  

3.2.10.2 Protein Kinase C 

It has recently been reported that protein kinase C (PKC) isoforms can be activated 

in response to EPAC activation in COS1 cells and HUVEC (Borland et al. 2009; 

Wiejak et al. 2012). Furthermore, PKC has been shown to regulate Rho family 

GTPases, actin structure and cell morphology (Downey et al. 1992; Slater et al. 

2001; Estevez et al. 2014). In order to test the involvement of PKC signalling in 

the  
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Figure 3-13 : PI3K inhibition is unable to affect EPAC1 mediated cell spreading. 
A – Representative images of HEK293T-EPAC1 cells were stimulated for one hour with the indicated 
treatments, DMSO vehicle control (12.8 mM) F/R (10 µM), insulin (1 µM) and ly294002 (LY29, 10 
µM). Cells were then fixed and immunostained with antibodies to detect T-ezrin to stain the cell 
periphery and allow visualisation of the cell periphery (white). B – Western blot of AKT Ser473 
phosphorylation (P-AKT) in response to stimulation with insulin (1 µM) and Ly29 (10 µM) for 60 
minutes. Positions of molecular weight markers is shown (kDa).  C –. Cell area was determined from 
five randomly acquired images (minimum 30 cells) per experiment using the ImageJ wand tool on 
cells from thresholded images. Data are presented as a histogram (mean +/- s.e.m). *** - p<0.001, 
two way ANOVA using Dunnets post test, n-3. 
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control of cell morphology, the phorbol ester phorbol 12-myristate 13-acetate 

(PMA), was incubated with cells to activate PKC. 

Interestingly, stimulation of cells with PMA resulted in a significantly reduced 

basal cell area, which correlated with an increase in cell rounding. Thus, PKC 

activity is observed to oppose the effects of EPAC1 signalling on cell morphology 

(Figure 3-14). In order to assess whether EPAC1 may induce cell spreading by 

negatively regulating the effects of PKC, the small molecule inhibitors Gö-6983 

(Go) and Bisindolymaleimide (Bis) were employed to directly inhibit PKC isoform 

activity. Both inhibitors were observed to reverse the cell rounding associated 

with PMA stimulation. However, PKC inhibition failed to affect basal cell spreading 

or modify the effects of cAMP elevation (Figure 3-14). Although PKC is able to 

produce contrasting effects in HEK293T-EPAC1 cells, this does not appear to be 

linked to the cAMP spreading response per se. PKC does therefore not appear to 

be involved in the morphological response to cAMP elevation in these cells. 

3.2.10.3 ERK 

Elevations in intracellular cAMP have been linked to the regulation of the mitogen 

activated protein kinase/extracellular regulated protein kinase (MAPK/ERK) 

family (Gerits et al. 2008). In particular, EPAC1 activation has been reported to 

directly activate ERK (Keiper et al. 2004; Borland et al. 2009; Woolson et al. 2009). 

The ability of EPAC1 to activate ERK therefore presents itself as a mechanism for 

the regulation of cell morphology. We found that stimulation of HEK293T-EPAC1 

cells with F/R led to a robust activation of ERK, as detected by ERK 

phosphorylation on Thr202/Tyr204, using phospho-specific antibodies, which was 

coincident with an induction of cell spreading (Figure 3-15-B), suggesting that cell 

spreading may be linked to ERK activity. The role of ERK activity in cell spreading 

was assessed by inhibition of ERK activity with the MEK1/2 inhibitors, AZD6244 

(AZD) and PD184352 (PD1). Each inhibitor effectively inhibited both basal and F/R-

induced phospho-ERK levels (Thr202/Tyr204) (Figure 3-15-B). However, neither 

AZD nor PD1 were able to reverse EPAC1 mediated cell spreading (Figure 3-15), 

suggesting that ERK phosphorylation in response to cAMP elevation is not directly 

involved in EPAC1-mediated changes in cell morphology. 

 



Chapter 3 Development of High Throughput EPAC1 Agonist Screening Methods 107 

 
 

  

Figure 3-14 : EPAC1 induced cell spreading is insensitive to PKC activation. 
A – Representative images of HEK293T-EPAC1 cells stimulated for 60 minutes with a DMSO 
vehicle control (12.8 mM), forskolin (10 µM) and rolipram (10 µM) in combination (F/R), the PKC 
agonist phorbol 12-myristate 13-acetate (PMA, 10 nM) and the PKC inhibitors Go6983 (GO; 10 
µM) or Bisindolymaleimide (Bis, 10 µM) as indicated. B - Changes in cell area from five randomly 
acquired images (minimum 30 cells) were determined and presented as a histogram (mean +/- 
s.e.m). ** - P<0.001, *** - P<0.01, two way ANOVA using Tukeys post test, n-3. 
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Figure 3-15 : EPAC1 Induced Cell Spreading is Insensitive to ERK Inhibition. 
A – Representative images of HEK293T-EPAC cells stimulated for 60 minutes with a DMSO 
vehicle control (12.8 mM) or F/R (10 µM) in the presence or absence of the MEK1/2 inhibitors 
AZD6244 (AZD, 1 µM) and PD184352 (PD1, 1 µM) for 60 minutes and imaged by 
immunofluorescent confocal microscopy. B - Western blot analysis of ERK phosphorylation 
(Thr202/Tyr204) in the absence or presence of the ERK inhibitors AZD and PD1. T-ezrin 
indicates equal loading and P-Creb (Ser133) indicates PKA activation and phosphorylation of 
Creb. Positions of molecular weight markers is shown (kDa). C – Changes in cell area from five 
randomly acquired images (minimum 30 cells) were determined and presented as a histogram 
(mean +/- s.e.m.; n=3). 
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3.3 Discussion 

3.3.1 Assay Development 

We have demonstrated that an 8-NBD-cAMP competition assay can be performed 

using the isolated, recombinant CNBs of EPAC1 and EPAC2. Both EPAC1-CNB and 

EPAC2-CNB were observed to bind to 8-NBD-cAMP to promote its fluorescence 

(Figure 3-3). Furthermore, NMR analysis revealed that EPAC1-CNB retained its 

ability to bind to cAMP following removal of the GST fusion (Figure 3-2), ruling out 

any possible interference from the GST-tag. EPAC1-CNB used in the 8-NBD-cAMP 

fluorescence assay produced sub-optimal signal strength, limiting its usefulness in 

HTS. However, the optimisation of buffer conditions (Figure 3-4), effective 

concentrations of EPAC1-CNB (Figure 3-5), 8-NBD-cAMP (Figure 3-6) and incubation 

times (Figure 3-8) dramatically improved the sensitivity and power of the EPAC1-

CNB based competition assay. Indeed, all statistical parameters required for 

efficient HTS were met for both EPAC1-CNB and EPAC2-CNB, allowing dual HTS of 

a small compound library within a pilot screen.  

By adapting existing protocols to simultaneously screen EPAC1-CNB and EPAC2-

CNB, it was possible to identify 8-NBD-cAMP competing compounds within pilot 

screens of two compound libraries with known drug-like qualities (Table 3-8). 

Indeed, the ability of this assay to identify compounds that are able to 

discriminate between EPAC1-CNB and EPAC2-CNB has been shown. Such a 

screening platform, greatly reduces the number of nonspecific hits requiring 

further characterisation. Furthermore, as well as identifying isoform selective 

hits, denaturing agents can also be identified. For example, hexachlorophine was 

found to inhibit 8-NBD-cAMP fluorescence in the presence of EPAC1-CNB and 

EPAC2-CNB to similar degrees and the steep Hill slope and strong inhibitory effect 

suggested denaturation, rather than non-selective 8-NBD-cAMP competition. A 

steep Hill slope suggests that the rate of fluorescence inhibition increases at a 

rate greater than competitive inhibition and that the pool of protein was reduced 

as compound concentration increased. Indeed, as the concentration of a 

denaturing agent increases, the rate of denaturation, and therefore fluorescence 

inhibition, can increase as protein aggregates form. Care must also be taken 

during follow up analysis of hit compounds, with regards to the use of GST tagged 
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CNBs. Although 8-NBD-cAMP failed to show any change in flouresence in the 

presence of GST alone, it is possible that hits identified may denature the EPAC-

CNBs by interaction with the GST-tag. It would therefore be wise to carry out 

subsequent SAR analyses on protein lacking the GST tag. 

3.3.2 Analysis of Isolated Hits 

3.3.2.1 Common Features of Hit Compounds 

Analysis of each of the compounds isolated from the pilot screen revealed a 

number of common features. For example, many of the hit molecules contained 

an acidic phenol group flanked by halogens and a diaryl motif separated by a 

spacer unit (e.g. hexachlorophene, thyroxine, raloxifene and HMS3259A19). 

Interestingly, many of the structures identified are reminiscent of previously 

characterised EPAC inhibitors (Chen et al. 2013). For example hexachlorophene 

and ESI-05 show similar structure and chemistry (Figure 3-16). These may 

represent previously uncharacterised motifs shared by compounds that are able 

to interact with the EPAC CNB. Whether these represent bona fide competitor 

compounds or mimic the denaturing properties identified for similar compounds 

(Rehmann 2013) is yet to be seen. Interestingly, although hexachlorophene 

displays a steep Hill slope, its structure is similar to the confirmed EPAC inhibitor 

ESI-05 (Chen et al. 2013; Rehmann 2013), suggesting that diaryl motifs may be 

involved in interaction with the CNB. In addition three oestrogen receptor 

modulators were identified (tamoxifen citrate, raloxifene and conjugated 

oestrogen), suggesting potential similarity between the cAMP and oestrogen 

receptor ligand binding sites. 

3.3.2.2 EPAC1-Specific Competitor Compounds 

Of the 15 hit compounds identified, only one displayed a higher IC50 value for 

EPAC1 over EPAC2 in follow up hit confirmation; conjugated oestrogen (Table 3-8). 

Despite the potential for agonism, steroids, such as conjugated oestrogen, display 

low flexibility in terms of the development of structural analogues. Furthermore, 

pharmacological intervention with hormone based drugs can produce significant 

off-target effects, due to interaction with the endogenous hormone system. As 

such, conjugated oestrogen is unlikely to be amenable to modification and further 
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development. However, recurring structures, such as acidic phenol groups, 

exposed halogens and diaryl motifs of the compounds identified (Figure 3-16) may 

elucidate features that convey EPAC or isoform specificity. Subsequently, the 

structure of conjugated oestrogen may inform on modifications accepted within 

the CNB of EPAC1 facilitating modification of hit compounds identified in further 

large scale HTS. It would therefore be of interest to ascertain the ability of this 

compound to activate EPAC1 within cell based agonist screening. 

3.3.2.3 EPAC2-Specific Competitor Compounds 

Interestingly, many compounds were observed to compete with high affinity for 

binding to the EPAC2-CNB (Table 3-8). This may indicate the existence of 

structural features that favour molecular interaction with the CNB of EPAC2 over 

EPAC1-CNB. Indeed, despite the outlined value of novel EPAC1 agonists, EPAC2 

agonists may also be of therapeutic interest for the treatment of type two 

diabetes (Kang et al. 2003; Shibasaki et al. 2007; Kelley et al. 2009) and cardiac 

function (Pereira et al. 2013). One of the isolated hits, SGI-1776, displayed 

excellent potential for development into an EPAC2 selective competitor 

compound (Figure 3-16-B). Indeed, SGI1776 has few reported targets from 

previous studies and the molecule is suitable for chemical modification in order 

to achieve high affinity binding.  
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Figure 3-16 : Structures of hit compounds displaying recurring features. 
Recurring features (dashed red lines) in the above compounds were found in multiple hits and may 
represent motifs involved in EPAC1-CNB or EPAC2-CNB binding. A - Conjugated oestrogen is 
shown with an acidic phenol group highlighted (red dotted line). B – The exposed halogens (dotted 
red line) of SGI-1776 are indicated. C – Hexachlorophene highlights the diaryl motif (dotted red 
line) identified in various structures, including (D) ESI-05 with red dotted line showing diaryl motif 
(Chen et al. 2013). 
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3.3.3 Cell Based Screening 

In addition to the novel primary HTS screen described, a secondary screen was 

developed based on the cell spreading response of HEK293T cells stably 

transfected with EPAC1. The secondary screen can be used to classify hits from 

the primary screen as being agonists or antagonists of EPAC1 activity in cells and 

also for follow up structure activity relationship (SAR) analysis. EPAC1 activation 

was shown to be required for cell spreading in this system, producing a rapid 

reorganisation of the actin cytoskeleton and flattened, extended cells (Figure 

3-12). The cell spreading response appears to rely on EPAC1 activation in isolation, 

as cell spreading appeared to occur independently of PKC (Figure 3-14), PI3K 

(Figure 3-13) and ERK (Figure 3-15) signalling pathways. Therefore, it is likely that 

hits that exert a positive spreading response will likely be acting through EPAC1 

specifically, and not associated down-stream signalling. To make the cell 

spreading assay truly useful for screening for EPAC1 agonists it will be necessary 

to adapt it for rapid, single step analysis that is amenable to HTS. One possible 

approach to scaling up the assay is to measure cellular mass redistribution with 

resonant waveguide grating (RWG), used by corning EPIC technologies. By 

correlating the effects of cell shape to the refractive index of light across a RWG, 

dynamic mass redistribution (DMR), indicating morphological change, can be 

measured (Gitschier et al. 2014). This method would allow a label free, real-time, 

live cell measurement of EPAC1 activity in 384 well format. 

In conclusion, we have developed a HTS assay for isoform selective EPAC 

competitor compounds. Additionally, a potential secondary agonist screen has 

been characterised, allowing a preliminary screening cascade to be developed 

(Figure 3-17). Use of this screening cascade is likely to facilitate the discovery of 

EPAC1 selective agonists and contribute to the development of EPAC1 targeted 

therapeutics.  
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Figure 3-17 : EPAC1 Lead Identification Screening Cascade. 
The screening cascade highlighted above shows the steps that could be carried out in order to 
identify EPAC1 selective agonists through HTS. Both primary screening and hit validation have 
been shown to be valuable approaches for hit identification as outlined within this chapter. Further 
work is required to confirm that a cell spreading assay is appropriate for follow up agonist 
screening. 
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4.1 Introduction 

A large body of evidence points toward a role for EPAC1-Rap1 signalling in 

governing cAMP-regulated cell shape, spreading and morphology (Borland et al. 

2009; Parnell et al. 2012). Furthermore, EPAC1/Rap1 signalling has been linked to 

the promotion of barrier protective functions in the vascular endothelium through 

the regulation of adhesive and cohesive pathways connected by the dynamic 

cytoskeleton (Bos 2005; Boettner and Van Aelst 2009). These effects are largely 

attributed to the relocalisation of vascular endothelial-specific VE-cadherin 

(Arthur et al. 2004) and the regulation of cytoskeletal elements (Moy et al. 1996; 

Bogatcheva et al. 2002). In particular, cytoskeletal reorganisation occurs through 

Rap1-mediated regulation of the Rho GTPase family of cytoskeletal regulators 

(Bogacheva et al. 2001; Arthur et al. 2004; Post et al. 2013). However, many of 

the protective pathways of EPAC1 synergise with PKA for maximal effect 

(Hochbaum et al. 2007; Lorenowicz et al. 2008; Aslam et al. 2010; Birukova et al. 

2010; Hewer et al. 2011). We have found that cell spreading is promoted by EPAC1 

activation in stably transfected HEK293T cells (Figure 3-12). Such a platform may 

therefore allow the characterisation of the cAMP signalling pathways involved in 

morphological changes in response to activation of both PKA and EPAC1. 

A novel mediator of EPAC1-dependent morphological changes is the ezrin-radixin-

moesin (ERM) protein family member, ezrin (Ross et al. 2011). ERM proteins are a 

homologous group of actin binding proteins, with a characteristic N-terminal 4.1-

ezrin-radixin-moesin (FERM) domain (Gould et al. 1989), that control of a wide 

range of cellular processes through their role as scaffold proteins linking the actin 

cytoskeleton and the plasma membrane component phosphoinositol-4,5-

bisphosphate (PIP2) (Bosk et al. 2011). Recent studies have identified cooperation 

between EPAC1 and ezrin in cAMP-mediated cell spreading. Indeed, siRNA-

mediated knockdown of ezrin was able to produce a significant reduction in cell 

spreading (Ross et al. 2011). Multiple kinases have been reported to regulate ezrin 

function, notably through phosphorylation of Ser66 (Zhou et al. 2003), Tyr81 

(Bretscher 1989), Tyr145, Tyr353 (Krieg and Hunter 1992) and Tyr477 (Heiska and 

Carpen 2005). However, it is Thr567 phosphorylation that has been identified as 

being key in relieving an auto-inhibitory head to tail conformation within ERM 

proteins, thereby facilitating activation (Pearson et al. 2000; Bosk et al. 2011). 
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Interestingly, phosphorylation of ezrin (Thr567) has been observed to occur in 

response to cAMP elevation, through PKA (Zhu et al. 2007). In addition to Thr567, 

phosphorylation of ezrin Ser66 in response to cAMP elevation has also been 

reported (Zhou et al. 2003). We therefore intend to identify whether either of 

these sites are involved in the control of cell spreading and the manner by which 

this is linked to ezrin activity.  

 

In the present study we investigate the roles of PKA, EPAC1 and ezrin in controlling 

the morphological response to cAMP elevation in a cell model of EPAC1-dependent 

cell spreading. In addition, the signalling pathways involved will be assessed, with 

particular emphasis on ezrin, the Rho GTPase family and the actin cytoskeleton. 

This will provide a greater understanding of the role of cAMP in the control of cell 

morphology. 

 

In this chapter I aim to; 

 Determine whether synergy between EPAC1 and PKA signalling pathways 

can produce alterations in cell morphology. 

 Determine whether phosphorylation of ezrin and interactions with the actin 

cytoskeleton are required for cAMP mediated spreading.  
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4.2 Results 

4.2.1 EPAC Activation Promotes Cell Spreading in Different Cell 
Types 

Activation of endogenous EPAC is able to induce cell spreading in A549 lung cancer 

cells and HUVEC (Arthur et al. 2004; Enserink et al. 2004; Ross et al. 2011; Ross 

et al. 2012). In order to confirm this effect in our hands, the EPAC1-expressing 

COS1 and human umbilical vein endothelial cell (HUVEC) lines were stimulated 

with a combination of the adenylate cyclase (AC) activator, forskolin, and the type 

four PDE inhibitor, rolipram (F/R), to elevate intracellular levels of cAMP. As both 

cell lines express both EPAC and PKA, the EPAC specific cAMP analogue 007 (8-

pCPT-2’-O-Me-cAMP) (Enserink et al. 2002) was also used in order to assess the 

relative roles of EPACs and PKA. 

Treatment of COS1 (one hour) and HUVEC (two hours) with either F/R or 007 led 

to a significant increase in cell size (Figure 4-1, Figure 4-2). The ability of 007 to 

induce spreading indicates that endogenous EPAC activation is sufficient to 

promote cell spreading in both cell lines. However, in contrast with COS1 cells, 

there was a significant difference in HUVEC spreading observed between targeted 

EPAC1 activation with 007 and global cAMP elevation with F/R (Figure 4-2-B). 

Furthermore, there was a redistribution of actin into cortical actin bundles in 

response to cAMP elevation with F/R, an effect absent when EPAC was activated 

alone with 007 (Figure 4-2-C). This suggests that EPAC1 activation is not sufficient 

to promote maximal levels of cell spreading or cortical actin bundling in HUVEC. 

Therefore, synergy between cAMP responsive pathways may occur within HUVEC 

to produce the cytoskeletal reorganisations that are linked to maximal cell 

spreading. 

 



Chapter 4 The Role of EPAC1 in cAMP Mediated Morphological Change 119 

 
 

  

Figure 4-1 : EPAC activation produces cell spreading in COS1 cells. 
A -COS1 cells were treated with either a DMSO vehicle control (12.8 mM, 60 minutes), 007 (8-

pCPT-2’-O-Me-cAMP , 10 M, 60 minutes) or F/R (10 M forskolin plus 10 M rolipram, 60 
minutes) and then stained with rhodamine phalloidin in order to visualise F-actin. B - Mean cell 
areas were measured from ten randomly acquired images (minimum 50 cells). Cell areas from 
three separate experiments are shown (mean +/- s.e.m.). Statistical significance is indicated; *** 
P<0.001 ANOVA using Dunnets post test, n-3. 

 

B 

A 
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Figure 4-2 : EPAC activation is sufficient to induce HUVEC spreading, however cAMP 
elevation is required for maximal spreading and cortical actin bundling. 
A - HUVEC were treated with a DMSO vehicle control (12.8 mM), 007 (10 µM) or F/R (10 µM) for 
120 minutes, fixed and then stained with rhodamine phalloidin to visualise F-actin. B - Cell areas 
were calculated from ten randomly acquired images (minimum 50 cells) from three separate 
experiments (mean +/- s.e.m.). C - Cortical actin bundling was calculated from line scans taken 
across the longest cell axis. The percentage of actin found in the outermost 10% at both sides of 
10 cells were normalised to total cell fluorescence to give the percentage of cortical actin (mean +/- 
s.e.m.). Statistical significance is indicated; * - p<0.05, # - p<0.01, *** - P<0.001, ANOVA using 
Tukeys post test, n-3. 

A 

B C 
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4.2.2 cAMP Induced Cell Spreading Coincides with Cytoskeletal 
Reorganisation 

In order to test whether cooperativity between the cAMP effectors EPAC1 and PKA 

contributes to cell spreading, HEK293T cells were stably transfected with either 

FLAG- and myc-tagged EPAC1 or a vector construct (Figure 3-12). This allowed us 

to assess whether changes in cell shape in response to EPAC1-activation are linked 

to reorganisation of the actin cytoskeleton (Gerasimenko et al. 2001; Bogatcheva 

et al. 2002). 

We found that increases in cell area coincided with rearrangements of the actin 

cytoskeleton following cAMP stimulation of EPAC1-transfected cells, but not 

vector-transfected cells (Figure 4-3). In unstimulated cells, both cell lines 

demonstrated low levels of F-actin, largely localised to the cell periphery (Figure 

4-3). However, F/R stimulation induced the formation of cortical actin bundles in 

EPAC1-expressing cells only. Although, cAMP elevation induced the formation of a 

strong cortical actin network at the cell periphery in EPAC1-expressing cells, 

direct activation of EPAC1 with 007 failed to reproduce this effect and F-actin was 

observed throughout the cell body (Figure 4-3).  

In order to test the cell spreading response at more physiological levels of cAMP, 

prostaglandin E2 (PGE2) was used to activate endogenous PGE2 receptors and 

promote cAMP elevation. Indeed, HEK293T-EPAC1 cells responded to PGE2 and 

exhibited increased cell spreading, demonstrating that cAMP elevation in response 

to Gs-protein coupled receptor (GsPCR) activation is sufficient for cell spreading. 

Interestingly, cortical actin bundling occurred in response to PGE2 but not 007, 

despite the observation of similar spread areas, suggesting that EPAC1 activation 

alone is insufficient to promote cortical actin bundling. Thus, it may be concluded 

that PKA may promote supplemental cell spreading effects that are dependent on 

EPAC1 activation, and that PKA facilitates further cell spreading and cortical actin 

bundling than that achieved through EPAC1 activation alone. 
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4.2.3 Activation of PKA is required for Maximal Cell Spreading 

EPAC1 and PKA have been observed to act synergistically to control a range of 

cellular processes (Hochbaum et al. 2007; Lorenowicz et al. 2008; Aslam et al. 

2010; Birukova et al. 2010; Hewer et al. 2011). Indeed, direct EPAC1 activation is 

insufficient to produce maximal cell spreading and cortical actin bundling in 

HEK293T-EPAC1 cells (Figure 4-3-A). However, global cAMP elevation is able to 

produce these effects suggesting a supplementary role for PKA beyond those of 

EPAC1 (Figure 4-3). In order to test the involvement of PKA in EPAC1 mediated 

cell spreading, HEK293T-EPAC1 cells were treated with the PKA inhibitor, H-89. 

As observed previously, F/R was able to produce maximal spreading above levels 

obtained by EPAC1 activation alone. H-89 treatment had no effect on basal cell 

areas, or on cell spreading induced by 007. However, cell spreading in response 

to F/R was significantly reduced as a result of PKA inhibition with H-89 (Figure 

4-4). Interestingly, F/R-induced spreading was reduced by H-89 to levels 

comparable with 007 stimulation, indicating that PKA is responsible for secondary 

cell spreading effects that complement EPAC1-mediated cell spreading. 
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Figure 4-4 : PKA inhibition limits cAMP but not EPAC1-mediated cell spreading. 
A -HEK293T cells were preincubated with the PKA inhibitor H-89 (10 µM, 30 minutes) or DMSO 
vector (12.8 mM, 30 minutes) before stimulation of cAMP pathways with F/R or 007 (10 µM, 60 
minutes) or incubation with a DMSO vehicle control (12.8 mM, 60 minutes). Cells were fixed and 
confocal immunofluorescent microscopy using α-ezrin antibody (white) was employed to detect 
the cell body. B - Cell areas were calculated from 10 randomly acquired images and the mean cell 
area from three independent experiments are shown (+/-s.e.m.).comparison of F/R treated cell 
areas to basal cell areas - *** - p<0.001. # - p<0.05, two way ANOVA with Tukeys post test, n-3. 

A 

B 
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4.2.4 cAMP Elevation is Coupled to an EPAC1-dependent 
Redistribution of an ERM protein in HEK293T Cells 

Expression of the actin cytoskeletal linker, ezrin, has been observed to be 

essential for EPAC1-mediated  cell spreading (Ross et al. 2011) and also acts as a 

PKA anchoring protein (AKAP) (Dransfield et al. 1997). As such, ezrin represents a 

candidate for the coordination of EPAC1 and PKA synergistic effects on cell 

spreading. Furthermore, the role of ezrin in linking F-actin to the plasma 

membrane is crucial in regulating the cell cortex and membrane protrusions, 

processes that contribute to cell morphology (Zhu et al. 2010). We therefore 

aimed to determine the role of ezrin in cAMP-mediated cell spreading and 

cytoskeletal reorganisation in HEK293T-EPAC1 cells.  

The intracellular distribution of endogenous ERM proteins in stably transfected 

HEK293T cells was assessed by immunofluorescent staining with an antibody that 

detects the ERM family members ezrin, radixin and moesin. Immunofluorescent 

detection demonstrated a stable cytosolic distribution of ERM proteins following 

cAMP stimulation in vector-transfected cells (Figure 4-5). However, in EPAC1-

expressing cells, anti-ERM immunofluorescent detection revealed protein 

accumulation at the plasma membrane in response to F/R stimulation. Therefore, 

at least one ERM family member is cAMP responsive and its intracellular 

localisation is dependent on the presence of EPAC1 within HEK293T cells.  

In order to determine which ERM family members respond to cAMP elevation in 

transfected HEK293T-EPAC1 cells, isoform-specific antibodies were employed to 

visualise the individual subcellular distributions of ezrin (Figure 4-6), radixin and 

moesin (Figure 4-5). Radixin and moesin maintained largely diffuse and nuclear 

distributions respectively, regardless of the cell line or treatment applied (Figure 

4-5). Neither protein adopted a membrane distribution consistent with that 

observed by detection of total ERM protein, suggesting that neither radixin, nor 

moesin are responsive to cAMP in HEK293T cells.  
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In contrast ezrin was observed to localise to membrane projections in HEK293T-

vector cells and EPAC1 expressing cells (Figure 4-6). Following cAMP stimulation 

and cell spreading, ezrin appeared to become more diffuse within the cytosol, 

which is probably due to increased cell area and perimeter associated with 

isotropic cell spreading. However, within EPAC1-expressing cells, the 

accumulation of ezrin at sites of membrane ruffling and projection (Figure 4-6-

Arrows) suggests that ezrin may be involved in, or respond to, cortical actin 

reorganisation. Furthermore, the distribution of total ERM and ezrin at the plasma 

membrane suggests that ezrin may represent the cAMP-responsive ERM protein 

observed in HEK293T-EPAC1 cells (Figure 4-5).  

 

 

 

Figure 4-6 : Ezrin is found at the plasma membrane.  
Cells were fixed with paraformaldehyde and ezrin was detected by immunofluorescence confocal 
microscopy (white) using ezrin-specific antibodies. Red arrow indicates ezrin at a point of plasma 
membrane ruffling.  
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4.2.5 Ezrin Undergoes Post Translational Modification in 
Response to PKA activation 

Given the role of ezrin in the control of membrane dynamics and cytoskeletal 

organisation, we decided to test its ability to respond to elevations in intracellular 

cAMP. HEK293T-vector and HEK293T-EPAC1 cells were treated with F/R (60 

minutes), particulate fractions were prepared from cells and then western blotted 

using anti-ezrin antibodies. Western blot analyses revealed that ezrin exists as 

two distinct molecular weight isoforms, a low molecular weight form representing 

around 80% of cellular ezrin and a high molecular weight form representing the 

remaining ezrin. Interestingly, following cAMP elevation, the heavy molecular 

weight isoform of ezrin underwent a band-shift, suggesting post-translational 

modification, yielding a third, high molecular weight form of ezrin (Figure 4-7). In 

addition to the formation of a third ezrin immunoreactive band, the intermediate 

molecular weight form of ezrin became weaker, suggesting that only the heavy 

form of ezrin is subject to post translational modification in response to cAMP. 

Although ezrin has been linked to EPAC1 cell spreading (Ross et al. 2011), the 

cAMP induced increase in molecular weight was observed in both EPAC- and 

vector-expressing cells suggesting that ezrin post translational modification is not 

specifically linked to EPAC1 activity (Figure 4-7). 

PKA has been observed to regulate ezrin, directing its activity and cellular function 

by phosphorylation of Ser66 (Zhou et al. 2003) and Thr567 (Zhu et al. 2007). We 

have found that PKA is able to synergise with EPAC1 to produce secondary 

spreading effects. Therefore, in order to check that PKA is responsible for post 

translational modification of ezrin, cells were stimulated with 007 or F/R. In 

agreement with the results shown in Figure 4-7, EPAC1 activation alone was unable 

to induce post translational modification of ezrin, whereas a high molecular 

weight form of ezrin was produced in response to F/R stimulation (Figure 4-7). 

This provides further evidence that EPAC1 is not involved in the post translational 

modification of ezrin. Importantly, PKA inhibition by H-89 ablated the increase in 

the molecular weight of ezrin observed, implicating PKA signalling in the post 

translational modification of ezrin.  
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Figure 4-7 : PKA induces post translational modification of ezrin independently of EPAC1. 
A - Cells from -EPAC1 and -vector expressing HEK293T cells were stimulated with a DMSO 
vehicle control (12.8 mM, 60 minutes), 007 (10 µM, 60 minutes) or F/R (10 µM, 60 minutes). 
Following fractionation, the particulate fraction was prepared for western blotting of ezrin. B – 
HEK293T-EPAC1 cells were pre-treated with DMSO or H-89 (10 µM, 30 minutes) and stimulated 
as indicated (10 µM, 60 minutes). Particulate fractions were probed with the indicated antibodies in 
order to assess EPAC1 expression (α - EPAC1) and equal loading (α - Ran). Arrows indicate the 
position of each ezrin isoform, and the positions of molecular weight markers are shown (kDa). 
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4.2.6 Ezrin is not Directly Involved in Cell Spreading 

Ezrin is controlled by a wide range of phosphorylation events that regulate its 

activity and interaction with various binding partners, including actin (Fehon et 

al. 2010). In order to assess the role of ezrin phosphorylation in EPAC1-mediated 

cell spreading, HEK293T-EPAC1 cells were transfected with GFP, a WT ezrin-GFP 

construct and two inactive ezrin mutants. Ezrin activation is promoted by 

phosphorylation at Thr567 which disrupts the closed, auto-inhibited form of the 

protein (Matsui et al. 1998; Bosk et al. 2011). A phospho-null T567A mutant is 

unable to become phosphorylated and the function of this ezrin mutant is 

attenuated (Ross et al. 2011). In order to correlate the effects of each phospho-

mutant to the actin binding properties of ezrin, a mutant deficient in actin binding 

was introduced into HEK293T-EPAC1 cells. Indeed, ezrin-R579A has been reported 

to inhibit the interaction of ezrin with actin and limit the functional effects of 

ezrin within the cell (Saleh et al. 2009). The effects of these mutant forms of ezrin 

may reveal the importance of ezrin in the control of HEK293T morphology, and in 

addition may suggest a potential regulatory site, through which cAMP signalling 

may regulate Ezrin activity. 

Transfection of HEK293T-EPAC1 cells with either GFP or WT-ezrin had no effect 

on cell morphology or the response of HEK293T-EPAC1 cells to 007 or F/R (Figure 

4-8). Furthermore, GFP and WT-ezrin transfected cells exhibited cell spreading in 

response to 007 (Figure 4-8), similar to its effects in untransfected cells (Figure 

4-3). Furthermore, the cell perimeter increased linearly with cell area as the 

borders of the cell extended in a uniform manner with stimulation. However, the 

introduction of T567A- and R579A-ezrin-GFP constructs produced dramatic 

changes in cell morphology. Indeed, unstimulated cells displayed significantly 

higher cell perimeters consistent with the formation of membrane projections 

(Figure 4-8). Furthermore, basal cell areas were observed to increase in the 

presence of phospho-null mutants, though this effect was not significant (Figure 

4-8-A). Although ezrin-T567A and -R579A altered basal cell morphology, the 

spreading response to 007 and F/R was unchanged. We have observed ezrin post 

translational modification in response to PKA (Figure 4-7), however, ezrin-T567A 

displays no alteration in the cAMP-mediated spreading response despite the loss 

of this key phosphorylation site (Figure 4-8). Indeed, F/R mediated cell spreading 
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is unaffected, suggesting that PKA mediated post translational modification occurs 

at a distinct site within ezrin, or that ezrin post translational modification is not 

required for cAMP-mediated cell spreading.  

A phosphomimetic ezrin mutant (T567D) has been shown to promote ezrin activity 

(Bosk et al. 2011). In addition to Thr567, Ser66 has been implicated in ezrin 

activation in response to direct phosphorylation by PKA (Zhou et al. 2003). We 

therefore transfected HEK293T-EPAC1 cells with GFP-tagged ezrin-T567D and 

ezrin-S66D in order to assess whether the introduction of phosphomimetic ezrin 

mutants is able to provoke cell spreading or PKA-mediated supplemental 

spreading. As previously shown, transfection of either GFP or WT-ezrin had no 

effect on F/R mediated spreading (Figure 4-8).  

Interestingly, the ability of cells to undergo cell spreading was unaffected by the 

expression of a T567D-phosphomimetic mutant (Figure 4-8-C). These results 

suggest that either ezrin post translational modification in response to cAMP is not 

involved in Thr567 phosphorylation, or that ezrin does not contribute to the cell 

spreading response. Interestingly, cells expressing ezrin-S66D exhibited a trend of 

reduced spreading potential. This suggests that Ser66 phosphorylation may oppose 

the effects of PKA-mediated post translational modification. As such, neither 

Ser66 nor Thr567 phospho-mimetic mutants are able to link the PKA-mediated post 

translational modification of ezrin to cell spreading.  
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Figure 4-8 : Ezrin is not involved in cAMP-mediated spreading, but is involved in basal cell 
morphology. 
HEK293T were transfected with the GFP-Ezrin constructs indicated, followed by stimulation with a 
DMSO vector control (12.8 mM, 60 minutes), 007 (10 µM, 60 minutes) or F/R (10 µM, 60 minutes). 
Ezrin-GFP expressing cells were imaged and cell areas (A + C) and perimeters (B + D) were 
calculated (5 images per experiment, N=3, +/-s.e.m.). Graphs A+B represent inhibitory mutants 
and graphs C+D represent active mutants, grouped and separated for ease of analysis (GFP and 
WT represent the same data sets in both graphs. **-p<0.01, two-way ANOVA using Tukeys post 
test. E - Representative images stained for F-actin with rhodamine phalloidin shown on following 
page. Red arrows indicate extended protrusions. 

A B 

C D 
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4.2.7 ROCK Activation is required for Maximal Cell Spreading 

RhoA is a Rho family GTPase that regulates cytoskeletal elements through the 

activation of RhoA activated protein kinase (ROCK) (Budzyn et al. 2006). PKA has 

been reported to alter the activity of the RhoA family of cytoskeletal regulators 

suggesting a potential mechanism through which PKA may promote cell spreading 

(Cardone et al. 2005). In order to assess whether cell spreading involves ROCK 

activity, vector- and EPAC1-transfected HEK293T cells were treated with the 

ROCK inhibitor, Y27632 alongside cAMP elevating agents. Cells were stained with 

rhodamine phalloidin in order to detect alterations in actin polymerisation and 

F/R-mediated spreading (Figure 4-9-A). Treatment of both vector- and EPAC1-

expressing HEK293T with Y27632 had no effect on cell area (Figure 4-9). 

Interestingly, cell spreading in response to F/R activation was attenuated by 20% 

(+-9%) following ROCK inhibition, supporting a role for ROCK in cell spreading 

(Figure 4-9-B). Interestingly, ROCK inhibition promoted the formation of 

membrane protrusions similarly to cells transfected with T567A and R579A 

mutants, suggesting a possible link between ezrin Thr567 phosphorylation/actin 

binding and ROCK activity. 

We propose that ezrin is not directly involved in HEK293T-EPAC1 spreading. 

Rather, ezrin is able to promote isotropic growth by stabilising the membrane and 

limiting actin rich projections. However, PKA appears to regulate this function by 

promoting Thr567 phosphorylation and the accumulation of ezrin at actin rich 

membrane ruffles subsequent to EPAC1 activation (Figure 4-6, Figure 4-7). Ezrin 

has been shown to affect Rho GTPase signalling by anchoring it to cell projections, 

suggesting a possible link between PKA, ezrin distribution, ezrin post translational 

modification and ROCK. However, ezrin does not appear to affect cell spreading 

and thus PKA may produce supplemental cell spreading through a distinct 

mechanism involving ROCK.  
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Figure 4-9 : The ROCK inhibitor Y27632 attenuates cell spreading in HEK293T cells. 
A - HEK293T-vector and or EPAC1 cells were stimulated for 60 minutes with forskolin plus 
rolipram (F/R, 10 µM) in the presence or absence of the ROCK inhibitor, Y27632 (Y27, 10µM), and 
then actin was visualised by microscopic detection of rhodamine phalloidin. Red arrows indicate 
the formation of elongated protrusions. B - Cell areas were calculated and presented as 
histograms (mean +/- s.e.m.). Significant differences are indicated; # - p<0.05 and *** - p<0.001, 
two way ANOVA using Tukeys post test, n-3. 

A 

B 
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4.3 DISCUSSION 

In this chapter, the role for cAMP in the regulation of cell morphology has been 

observed to involve both EPAC1 and PKA in HEK293T cells. Importantly, in all cell 

lines tested, direct activation of EPAC1 is sufficient to induce cell spreading and 

in cells which do not express EPAC1, cAMP is unable to provoke cell spreading. 

Thus, EPAC1 appears to play a central role in the cell spreading response and 

contributes to a growing appreciation of the importance of EPAC1 in the control 

of cell morphology (Gupta and Yarwood 2005; Sehrawat et al. 2008). 

Although EPAC1 is important for cell spreading in HEK293T cells, cAMP elevation 

consistently produced cell areas greater than EPAC1 activation alone in both 

HUVEC and HEK293T-EPAC1 cells. One explanation is that higher levels of EPAC 

activation were produced following F/R stimulation than by 007 stimulation, an 

effect that may produce distinct cellular signalling, as has been previously 

reported (Yokoyama et al. 2008). However, in order to confirm the role of PKA in 

the regulation of these processes the PKA inhibitor H-89 was used to regulate the 

PKA component of the cAMP signal. Indeed, inhibition of PKA was able to attenuate 

F/R induced spreading but had no effect on cell spreading induced by 007 

stimulation. This suggests a secondary, synergistic effect of PKA on cell spreading. 

This secondary effect was dubbed supplemental cell spreading, due to the intrinsic 

requirement of a primary EPAC1 activation event (Figure 4-10). The requirement 

of EPAC1 for the synergistic effects of PKA on cell spreading may be particularly 

important in light of novel EPAC1 specific inhibitors recently developed 

(Courilleau et al. 2012). However, care must be taken when assessing the effects 

of H-89, as it is a potent inhibitor of a range of kinases in addition to PKA (Lochner 

and Moolman, 2006). However, the ability of H-89 to reverse the effects of cAMP 

elevation on the post translational modification of ezrin suggests a specific PKA 

effect. Future work may require the effects of PKA to be assessed through use of 

a less promiscuous inhibitor, such as the peptide inhibitor PKI.  
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Much work has centred on EPAC1-mediated regulation of the Rho family of 

GTPases. Indeed, EPAC1-Rap1 signalling through VAV/TIAM has been shown to 

provoke morphological change primarily through RAC (Arthur et al. 2004; Birukova 

et al. 2007; Birukova et al. 2010). However, PKA has been shown to produce 

morphological change by down-regulation of RhoA activity through 

phosphorylation of RhoGDP dissociation inhibitor, which forms an inactive complex 

with RhoA when activated (Oishi et al. 2012). As such, the putative role of the 

RhoA effector, ROCK, in PKA mediated supplemental spreading was tested. 

The ROCK inhibitor, Y27632, reduced cell spreading in response to F/R. However, 

neither PKA inhibition nor ROCK inhibition reduced cell spreading below that of 

EPAC1-mediated spreading produced by 007. We therefore propose that PKA and 

ROCK act through a shared mechanism completely independent of EPAC1-

mediated spreading. Interestingly, PKA appears to activate the RhoA pathway, 

rather than inhibiting the effects of RhoA, as has been previously observed (Oishi 

et al. 2012). However, despite confirming that ROCK inhibition can limit cell 

spreading, it is important to indicate a direct link between PKA and RhoA/ROCK 

activation. This could be achieved by RhoA pulldown with either the RhoA-GTP 

binding protein Rhotekin, or immunoprecipitation with antibodies specific for the 

active form of RhoA (Birukova et al. 2010; Gozo et al. 2013). Furthermore, the 

Figure 4-10 : Schematic of EPAC1 spreading 
The two stages of cell spreading are outlined. EPAC1 is required for the initial spreading effect, 
however maximal cell spreading is only observed when both EPAC1 and PKA pathways are 
activated in concert. This correlates with an increase in cortical actin bundling. 
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same protocol is available to measure RAC activity in response to EPAC1 

activation, which may confirm the reported activation of RAC in response to EPAC1 

(Birukova et al. 2007; Birukova et al. 2010). Further work is required to determine 

the roles of the RhoA and RAC pathways in cAMP-mediated cell spreading, though 

the involvement of cAMP in regulating Rho GTPases, cell spreading and vascular 

endothelial barrier function is particularly compelling considering the emergence 

of novel regulators of the EPAC pathway. 

In addition to cell spreading, the supplementary effects of PKA appear to be 

responsible for the reorganisation of the actin cytoskeleton. Cortical actin 

bundling is observed only when both EPAC and PKA pathways are activated in 

concert, suggesting synergy between cAMP pathways (Figure 4-3). Recently, the 

ERM protein ezrin has been implicated in EPAC1-mediated cell spreading (Ross et 

al. 2011). Ezrin is able to regulate cortical actin structures and membrane 

dynamics (Liu et al. 2012) and, furthermore, both PKA and ROCK are involved in 

regulating ezrin by direct phosphorylation of key activation sites (Matsui et al. 

1998; Zhou et al. 2003; Zhu et al. 2007). We therefore attempted to characterise 

the role of ezrin in cytoskeletal organisation and morphology. 

Interestingly, a direct link between PKA activity and the post translational 

modification of ezrin supported a potential mechanism underlying supplemental 

spreading and cortical actin bundling. The F/R stimulated increase in molecular 

weight is consistent with a phosphorylation event, suggesting that PKA may induce 

ezrin phosphorylation. Although only a small component of total cellular ezrin is 

observed to become modified, this is in agreement with previous reports 

suggesting that rapid turnover prevents the accumulation of phospho-forms (Zhu 

et al. 2007). It would be useful in future experiments to employ phosphatase 

inhibitors to limit the turnover of ezrin phosphorylation, facilitating the study of 

ezrin and its cellular effects.  

In order to test the relationship between ezrin and cell morphology, a range of 

ezrin mutants were introduced into HEK293T cells (Figure 4-8). Notably, inhibiting 

Thr567 phosphorylation (with mutant T568A), or the interaction between ezrin 

and actin (with mutant R579A) had a striking effect on cell morphology. However, 

the effect of these mutants was in sharp contrast to the response to EPAC1 
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activation (Figure 4-8). Whereas EPAC1 activation produced uniform isotropic 

growth (Figure 4-3), changes in cell area in ezrin transfected cells was associated 

with the formation of multiple projections from the cell and a large increase in 

the basal perimeter. These results suggest that ezrin is involved in maintaining 

basal cell shape, but is uninvolved in EPAC1-mediated cell spreading. 

Despite not being involved in the process of EPAC1-mediated cell spreading, we 

endeavoured to assess the effects of PKA-mediated post translational modification 

on ezrin distribution and cytoskeletal regulation. Indeed, the introduction of 

inactive mutants affected the morphology of transfected cells. The similarity 

between ezrin-T567A and the actin binding mutant R579A in cell morphology 

(Figure 4-8) suggests that ezrin-T567A may no longer be able to form stable 

membrane-actin linkages. Indeed earlier reports have suggested that active ezrin 

plays a role in stabilising the plasma membrane and regulating the formation of 

cell projections (Saleh et al. 2009). These results suggest a potential mechanism 

by which ezrin can regulate cell shape, and a mechanism by which PKA may 

potentiate the EPAC1-mediated cell spreading effect. 

Although we have been unable to identify the site of ezrin post translational 

modification that is responsive to PKA activation, altering ezrins actin binding 

activity and limiting Thr567 phosphorylation are able to affect basal cell shape 

and modelling of the actin cytoskeleton. The ability of PKA to regulate ezrin 

through post translational modification suggests a pathway involving PKA, ezrin 

and regulation of the actin cytoskeleton. We conclude that ezrin may therefore 

play a key role in regulating cell shape, but is not involved in EPAC1- or PKA-

mediated cell spreading. Indeed, ezrin may act as a scaffold, maintaining 

membrane stability, rather than promoting cell spreading. This hypothesis is not 

incompatible with earlier reports of a requirement for ezrin in cell spreading (Ross 

et al. 2011), as ezrin knockout may have strikingly different effects compared to 

the overexpression of phospho-null/mimetic mutant forms performed here. It 

would therefore be interesting to confirm the reported effects of siRNA mediated 

knockdown of ezrin and to couple this with reintroduction of the ezrin mutants 

discussed here. Such an approach may confirm a basic requirement of ezrin in the 

control of cell morphology and determine the effects of mutant ezrin activity on 

cell morphology. 
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In conclusion, we propose that ezrin is involved in the cell spreading response of 

HEK293T-EPAC1 cells following cAMP stimulation by promoting isotropic growth by 

stabilising the cell membrane and limiting actin rich projections. We also propose 

that PKA regulates these functions by promoting Thr567 phosphorylation and the 

accumulation of ezrin at actin rich membrane ruffles subsequent to EPAC1 

activation. In this regard ezrin has been shown to affect Rho GTPase signalling by 

anchoring it to cell projections (Saleh et al. 2009). In agreement with this we have 

found that inhibition of ROCK, inhibits cell spreading in response to F/R treatment 

of HEK293T-EPAC1 cells, suggesting a possible link between EPAC1, PKA-promoted 

ezrin redistribution and ROCK activity in the promotion of maximal cell spreading 

by cAMP. 
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Targeting of EPACs 
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5.1 Introduction 

cAMP signalling is subject to compartmentalisation within the cell (Stangherlin 

and Zaccolo 2012). Control over the cAMP signal is mediated by the cAMP-specific 

phosphodiesterase (PDE) families which are able degrade cAMP into 5’-AMP, 

allowing precise control over signal duration and intensity (Stangherlin and 

Zaccolo 2012). In addition, the localisation of cAMP-PDEs allows the formation of 

distinct subcellular compartments rich in cAMP, leading to selective activation of 

co-distributed EPAC or PKA molecules. Therefore, cAMP signalling is regulated not 

only by the induction and depletion of the cAMP signal, but also by the localisation 

of effector molecules to cAMP rich compartments. Indeed, it has been shown that 

cAMP signalling molecules can produce strikingly different cellular effects as a 

result of intracellular targeting (Buxton and Brunton 1983).  

A growing body of evidence suggests that the subcellular distribution of EPACs has 

a strong effect on the signalling pathways it activates. The first clues that 

indicated a role for compartmentalisation in the regulation of EPAC arose during 

the study of its redistribution during the cell cycle. During interphase EPAC1 was 

observed to adopt a perinuclear distribution (Qiao et al. 2002). However, as the 

cell cycle progressed, EPAC underwent redistribution, resulting in colocalisation 

alongside microtubules, the mitotic spindle and the contractile ring (Qiao et al. 

2002). Subsequently, it was shown that interaction of EPAC1 with microtubules 

(Mei and Cheng 2005) and microtubule accessory proteins (Magiera et al. 2004; 

Gupta and Yarwood 2005; Yarwood 2005; Borland et al. 2006) is particularly 

important. In particular, EPAC1 was observed to stabilise microtubule 

polymerisation (Mei and Cheng 2005) and promote actin stability within 

vasculature endothelial cells (Gupta and Yarwood 2005; Sehrawat et al. 2008). 

Thus, the distribution of EPAC within the cell appears to determine the nature of 

the response to elevations in intracellular cAMP. 

Recent studies have focused on the importance of the perinuclear distribution of 

EPAC1, which is dominant during interphase (Mei et al. 2002; Qiao et al. 2002; 

Wang et al. 2006; Liu et al. 2010; Gloerich et al. 2011). Nuclear localisation of 

EPAC1 appears to be mediated through interaction between the zinc finger domain 

of the nuclear pore component Ran binding protein 2 (RANBP2) and the catalytic 
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domain of EPAC1 (Gloerich et al. 2011). Interestingly, this interaction appears to 

limit the GEF activity of EPAC1, suggesting that complex formation may act to 

negatively regulate EPAC1 activity within the cell (Gloerich et al. 2011). Moreover, 

the intracellular distribution of EPAC1 has been shown to determine which pool of 

Rap GTPase is activated. For example, whereas Rap1 has been observed to localise 

at cell-cell junctions within vascular endothelial cells (Wittchen et al. 2005), Rap2 

is located within a perinuclear compartment (Pannekoek et al. 2013). Therefore, 

the relocalisation of EPAC1 from a perinuclear locale to cell junctions may be 

required for EPAC1 to activate Rap1, rather than Rap2 activation. Interestingly, 

Rap1 is linked to beneficial barrier protective effects in vascular endothelial cells, 

whereas Rap2 appears to opposes these beneficial effects (Pannekoek et al. 2013), 

which further supports the idea that subcellular targeting of EPAC is vital to its 

function (Wittchen et al. 2005). 

As a result of the growing appreciation of the importance of compartmentalisation 

for EPAC1 function, it is now important to dissect the mechanisms underlying EPAC 

targeting. EPAC1 has been shown to play an important role in vascular endothelial 

barrier function, although no effective therapeutics have yet been developed to 

regulate EPAC1 activity in this context. It may therefore be possible to regulate 

EPAC1 activity by altering its subcellular distribution. Determining the 

mechanisms controlling the intracellular distribution of EPAC1 may therefore yield 

both insighs into the role of compartmentalisation on cAMP signalling, as well as 

novel therapeutic approaches to regulate EPAC1 activity within disease states. 

Given the growing appreciation that compartmentalisation of EPAC proteins 

controls their function and activity, the aim here is to investigate the structural 

elements in EPAC isoforms that assist their recruitment to the nuclear membrane. 

An in depth understanding of EPAC targeting may allow the disruption of protein-

protein interactions with disruptor peptides or small molecules, resulting in the 

redistribution of EPACs within the cell. Since targeting and function of EPAC1 

appear to be intricately linked, disrupting the normal distribution of EPAC proteins 

may alter the effects of EPACs within disease. 
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In this chapter I aim to; 

 Confirm nuclear localisation of EPAC1 within HEK293T cells. 

 Identify the structural requirements for EPAC1 localisation. 

 Use targeted mutagenesis to disrupt EPAC1 nuclear localisation. 
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5.2 Results 

5.2.1 The Anti-EPAC1 (5D3) Antibody Preferentially Detects Active 
EPAC1 

The subcellular distribution of FLAG-tagged EPAC1 was assessed in transfected 

HEK293T cells by immunofluorescence staining using the anti-EPAC1 (5D3) 

antibody purchased from New England Biolabs. Anti-EPAC1 (5D3) has been 

reported to preferentially interact with EPAC1 in the active, cAMP-bound state as 

the antibody epitope lies within the CNB of EPAC1 (Zhao 2006). Anti-EPAC1 (5D3) 

was able to detect EPAC1 protein in cells expressing EPAC1, but not in cells 

expressing vector alone (Figure 5-1-A). However, elevation of intracellular cAMP 

following treatment with forskolin and rolipram (F/R), led to increased EPAC1 

immunofluorescence within the nuclei of transfected cells. In order to assess the 

importance of cAMP binding and activation on the nuclear enrichment of EPAC1, 

cells were transiently transfected with wild type EPAC1 (WT) or an EPAC1 mutant 

deficient in cAMP-binding (R279E; Figure 5-1-B). Whereas anti-EPAC1 (5D3) 

immunofluorescence increased within the nuclei of WT transfected cells following 

F/R treatment, cells expressing EPAC1 R279E were unaffected by elevated cAMP 

levels. Therefore, it appears that cAMP binding to EPAC1 is crucial to the increase 

in EPAC1 nuclear staining observed following F/R stimulation. 

In order to assess whether EPAC1 accumulates in the nucleus following 

stimulation, we next compared the subcellular distribution of EPAC1 protein in 

HEK293T cells using antibodies that detect WT EPAC1 or the epitope tag fused to 

EPAC1 (Figure 5-2). This was achieved by transfecting HEK293T cells with HA-

tagged EPAC1 (EPAC1-HA) and probing the intracellular distribution of EPAC1 with 

anti-EPAC1 (5D3) and anti-HA antibodies. Detection of intracellular EPAC1 with 

anti-HA antibodies revealed a distinct perinuclear distribution of EPAC1 (Figure 

5-2-A), which is in agreement with published results (Gloerich et al. 2011). 

Furthermore, there was no more increase in EPAC1 nuclear staining following F/R 

stimulation in cells probed with an anti-HA antibody. Interestingly, 

immunoprecipitation (IP) of FLAG-tagged EPAC1 from transfected cells using the 

anti-EPAC1 (5D3) antibody resulted in greater levels of EPAC1-FLAG protein being 

precipitated following F/R stimulation (Figure 5-2-B). Given that the anti-EPAC1 

(5D3) antibody preferentially detects EPAC1 in F/R-treated cells, these data 
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suggest that the subcellular distribution of EPAC1 is constant following F/R 

stimulation, and that differences in EPAC1 detection result from changes in anti-

EPAC1 (5D3) antibody selectivity. Together these results demonstrate that EPAC1 

is localised to the nucleus in HEK293T cells, where it becomes activated following 

elevations in intracellular cAMP. 

5.2.2 EPAC1 and EPAC2 are localised to Distinct Subcellular 
Compartments in HEK293T Cells 

EPAC1 and EPAC2 have been observed to exist within distinct subcellular 

compartments; hence whereas EPAC1 maintains a perinuclear distribution during 

interphase (Mei et al. 2002; Qiao et al. 2002; Wang et al. 2006; Liu et al. 2010; 

Gloerich et al. 2011), EPAC2 is largely cytoplasmic (Li et al. 2006; Niimura et al. 

2009). In order to compare and contrast the subcellular distributions of each EPAC 

isoform, HEK293T cells were transfected, EPAC1-HA or EPAC2-HA constructs. EPAC 

protein distribution was then assessed using immunofluorescent confocal 

microscopy using an anti-HA antibody. In agreement with previous studies, EPAC1 

was observed to accumulate at the nuclear membrane, whereas EPAC2 was 

distributed throughout the cell (Figure 5-3) (Li et al. 2006; Gloerich et al. 2011). 

Furthermore, co-staining of EPAC1 with the nuclear pore protein, RANBP2, 

revealed a strong level of colocalisation between EPAC1 and the nuclear pore 

complex (Figure 5-3-Inset). This colocalisation was not observed in EPAC2-HA 

transfected cells. It is interesting to note that the distribution of both EPAC1 and 

EPAC2 remained constant following F/R stimulation, despite previous reports that 

EPAC1 (Gloerich et al. 2011) and EPAC2 (Li et al. 2006) undergo translocation in 

following activation.  
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Figure 5-1 : Anti-EPAC1 (5D3) nuclear staining requires EPAC1 activation.  
A – Stably transfected HEK293T cells, expressing either a vector or an EPAC1-FLAG construct 
were treated with a DMSO vehicle control (12.8 mM, 60 minutes) or a combination of forskolin 
and rolipram (F/R, 10 µM, 60 minutes). Cells were then fixed for immunofluorescent staining 
using anti-EPAC1 (5D3) antibody. B - HEK293T cells were transiently transfected with either wild 
type EPAC1 or EPAC1-R279E constructs and then incubated with DMSO vehicle control (12.8 
mM, 60 minutes) or F/R (10 µM, 60 minutes), followed by immunostaining with an anti-EPAC1 
(5D3) antibody. 

B 

A 



Chapter 5  Subcellular Distribution and Targeting of EPACs 148 

 
 

 

 

 

 

  

Figure 5-2 : Anti-EPAC1 (5D3) antibody binding is cAMP sensitive. 
A - HEK293T cells were transiently transfected with either vector or EPAC1-HA construct. Cells 
were then treated with DMSO vehicle control (12.8 mM, 60 minutes) or F/R (10 µM, 60 minutes), 
fixed and then probed using anti-EPAC1 (5D3) or anti-HA antibodies as indicated. B - 
Immunoprecipitation of EPAC1 from stably transfected HEK293T cells. Cell lysates (input) were 
immunoprecipitated with anti-IgG (mouse), anti-EPAC1 (5D3) or anti-FLAG antibodies (square 
indicates lane moved for ease of presentation) and immunoprecipitates were then probed by 
western blotting for anti-EPAC1 and anti-FLAG as indicated. Positions of molecular weight markers 
are shown (kDa) 

A 

B 

80 

80 
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In order to confirm the nuclear localisation of EPAC1 (Figure 5-3), transfected cells 

were fractionated into nuclear and cytoplasmic components. Efficient separation 

of nuclear and cytosolic fractions was confirmed by the presence of the nuclear 

pore protein RANBP2 within the nuclear fraction only (Figure 5-4-A). Detection of 

EPAC1 and EPAC2 within each fraction by western blotting confirmed the 

distributions revealed by immunofluorescent techniques. Specifically, EPAC1 was 

enriched within the nuclear fraction alongside the nuclear pore protein RANBP2, 

whereas EPAC2 was enriched in the cytoplasmic fraction (Figure 5-4-A). 

Furthermore, densitrometric analysis of the cellular distribution of each isoform 

demonstrated that 68% (+/-8%) of total cellular EPAC1 but only 40% (+/-8%) of 

EPAC2 was found within the nuclear fraction (Figure 5-4-B). Indeed, EPAC1 was 

significantly more abundant within the nuclear fraction compared to EPAC2. 

Similar to the microscopic distribution observed (Figure 5-3), F/R stimulation had 

no effect on the distribution of either isoform between fractions. Although F/R 

stimulation was able to induce CREB phosphorylation, consistent with upregulated 

PKA activity (Delghandi et al. 2005), it was unable to induce EPAC translocation. 

This suggests that intracellular translocation of EPAC proteins, as previously 

reported (Li et al. 2006; Gloerich et al. 2011), may be cell type or condition 

dependent. 
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Figure 5-4 : EPAC isoforms fractionate to distinct pools. 
HEK293T cells were fractionated following stimulation with DMSO (12.8 mM, 60 minutes) or F/R 
(10 µM, 60 minutes) into nuclear and cytoplasmic distributions. A - Fractions were western with the 
indicated antibodies. Position of molecular weight markers are shown (kDa). B - Accumulation of 
transfected protein into the nuclear fraction was assessed by densitrometric analysis of low 
intensity blots (n-3, +/-s.e.m.). ** - P<0.01 two way ANOVA using Dunnets post test.   
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5.2.3 The C-terminus of EPAC1 is involved in the Localisation of 
EPAC1 to the Nucleus 

EPAC1 is localised to the perinuclear region with RANBP2 in transfected HEK293T 

cells (Figure 5-3). Indeed, a direct interaction between EPAC1 and RANBP2 has 

been proposed to control EPAC1 localisation (Gloerich et al. 2011). Both nuclear 

accumulation (Borland et al. 2006) and RANBP2 interaction (Gloerich et al. 2011) 

have been attributed to the CDC25 Homology Domain (CDC25-HD) of EPAC1, 

however the precise region of interaction has not yet been determined. In order 

to define the region of EPAC1 involved in its nuclear localisation, a range of 

truncated EPAC1 mutants were introduced into HEK293T cells. As previously 

reported (Borland et al. 2006; Gloerich et al. 2011) deletion of the N-terminal 

regulatory domain of EPAC1 up to the CDC25-HD (EPAC1 620-881) had no effect 

on nuclear accumulation, indicating that the N-terminus of EPAC1 is dispensable 

for nuclear targeting (Figure 5-5). In order to ascertain the region required for 

nuclear targeting, the CDC25-HD domain was truncated by 70 amino acid 

increments yielding EPAC1 691-881, 764-881 and 838-881. When transfected into 

HEK293T cells, both EPAC1 691-881 and EPAC1 764-881 were observed to show a 

similar distribution to wild type EPAC1 within the nuclear fraction (Figure 5-5). 

However, EPAC1 838-881 was observed to accumulate within the cytoplasmic 

fraction (Figure 5-5), suggesting nuclear localisation of EPAC1 may require amino 

acids 764-838.  
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Figure 5-5 : EPAC1 nuclear localisation is reduced by deletion of amino acids 764-838. 
A – HEK293T cells were transiently transfected with truncated EPAC1 mutants, fractionated and 
cytoplasmic and nuclear fractions were western blotted with the indicated antibodies. B - 
Quantification of the relative distribution of EPAC1 transfected mutants into the nuclear fraction (+/- 
s.e.m.). ***- P<0.001, ANOVA using Dunnets post test, n-3. EPAC FL- full length EPAC1, 620-881 
is the full CDC25-HD and 691-881, 764-881 and 838-881 represent further truncation through the 
CDC25-HD. 
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5.2.4 Amino acids 764-838 are involved in Targeting EPAC1 to the 
Nucleus 

In order to confirm the importance of this region in nuclear targeting, amino acids 

764-838 were deleted from full-length EPAC1 (EPAC1 Δ764-838) and the resulting 

mutant was transfected into HEK293T cells. Immunoblots of cell fractions from 

EPAC1- and EPAC1 Δ764-838 -transfected cells revealed higher levels of cytosolic 

EPAC1 Δ764-838 compared to wild type protein (Figure 5-6-A). Quantification of 

the immunoblots revealed that EPAC1 Δ764-838 displayed significantly reduced 

levels within the nuclear fraction (Figure 5-6-B), suggesting that the deleted 

residues are involved in nuclear localisation of EPAC1. In order to confirm that a 

loss in nuclear accumulation of EPAC1 represents a bona fide disruption of EPAC1 

targeting, wild type and EPAC1 Δ764-838 were transfected into HEK293T cells and 

their intracellular distribution was analysed using immunofluorescent microscopy 

(Figure 5-6-C). In agreement with the fractionation data, deletion of amino acids 

764-838 resulted in a redistribution of EPAC1 within the cell. Immuno-detection 

of FLAG tagged wild type EPAC1 demonstrated colocalisation with RANBP2 at the 

nuclear membrane, whereas EPAC1 Δ764-838 failed to accumulate at the 

perinuclear domain (Figure 5-6-C). Indeed, EPAC1 Δ764-838 adopted a largely 

cytosolic distribution demonstrating its reduced association with the nuclear 

fraction. Together, cell fractionation and immunofluorescent experiments 

implicate amino acids 764-838 of EPAC1 as being important for the regulation of 

EPAC1 subcellular distribution and represent a novel nuclear localisation domain 

(NLD) within EPAC1. 
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EPAC1 WT EPAC1 Δ764-838 

Figure 5-6 : Deletion of amino acids 764-838 limits EPAC1 targeting. 
A - Western blot analysis of the cytoplasmic and nuclear components of HEK293T cells transfected 
with full length EPAC1 (WT) or a mutant lacking amino acids 764-838 (Δ764-838). Positions of 
molecular weight markers is shown (kDa). B – Densitometric intensity of bands from western blots 
were calculated and the percentage distribution of each mutant within the nuclear fraction is shown 
(+/-s.e.m.). ** - p<0.01, ANOVA using Dunnets post test, n-3. C - HEK293T cells transfected with 
EPAC1-WT (left) or EPAC1 Δ764-838 (right) were probed using anti-FLAG antibodies (green) to 
detect transfected EPAC mutants. The nuclear membrane is labelled using an anti-RANBP2 antibody 
(red) and Reddot nuclear stain is shown in white (nucleus). Overlapped images reveal co-localisation 
(merge). 
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5.2.5 Amino Acid Sequence Alignment of EPAC1 and EPAC2 
Reveals Two Potential Nuclear Localisation Domains. 

EPAC1 nuclear targeting has been linked to direct interactions between the EPAC1 

CDC25-HD and RANBP2 (Gloerich et al. 2011). It is possible, therefore, that the 

putative NLD identified here (Figure 5-6) is involved in nuclear targeting through 

interactions with RANBP2. In addition, whereas EPAC1 accumulates at the nuclear 

membrane, EPAC2 is mainly cytosolic, suggesting that the targeting mechanisms 

involved are not shared between the two EPAC isoforms. Indeed, since EPAC1 is 

targeted to the nucleus by the NLD whereas EPAC2 is not, regions of low homology 

within this region may reveal structural differences which underlie the distinct 

subcellular distributions of the two proteins observed here (Figure 5-3).  

In order to identify any sequence homology between the two isoforms, the primary 

sequence of EPAC1, amino acids 764-838, was aligned with the corresponding 

residues of EPAC2 (amino acids 915-979). Interestingly, the putative NLD overlaps 

with the EPAC1 CDC25-HD which is intimately involved in Rap-GTPase binding and 

GEF activity, as such, EPAC1 and EPAC2 share considerable homology within this 

region (Figure 5-7-A). However, two regions of low homology, dubbed Area1 and 

Area2, were identified that may underlie the differences in localisation observed 

between EPAC1 and EPAC2. In addition to low homology, both sites were 

determined to be available for protein-protein interaction by their solvent 

exposure (Figure 5-7-B). Area1 (composing residues R805, A806 and M809; EPAC1 

nomenclature) sits within a groove between two conserved alpha helices and may 

form a suitable site for protein interaction. Area2 is a region of 15 amino acids 

which forms an extended loop, absent in EPAC2, which may be sufficiently long to 

allow the formation of secondary structure involved in protein-protein 

interactions. As a result of their low homology and their surface exposure, Area1 

and Area2 represent putative regions involved in EPAC1 nuclear targeting. 
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Figure 5-7 : Identifying regions of low homology between EPAC isoforms within the NLD. 
A - Sequence alignment of EPAC1 (amino acids 764-851) against EPAC2 (amino acids 915-979), 
incorporating residues 764-838 (NLD) and amino acids 839-851, which are absent in EPAC2, but 
present in EPAC1. This region is highly conserved with the exception of two regions which are also 
predicted to be surface exposed when mapped onto EPAC2 (2byv). The positions of Area1 point 
mutations (R805N, A806T and M809T) are indicated by red arrowheads. The residues deleted by 
mutagenesis in Area2 (amino acids 832-851) are highlighted (red line). B - Homology modelling of 
EPAC1 based on EPAC2 crystal structure (2byv) (Rehmann et al. 2006) shows the CDC25-HD 
(green) and putative NLD (Blue). Insets identify the potential interaction sites in Area1 and Area2, 
with the specific exposed surface residues of EPAC1 shown (red). The effects of EPAC1 
mutagenesis to the corresponding EPAC2A sequences are shown by superimposing the structure 
of EPAC2A (purple, transparent). 
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5.2.6 Mutagenesis of either Area1 or Area2 does not affect the 
Subcellular Localisation of EPAC1 

Area1 and Area2 (Figure 5-7) represent regions in EPAC2 that are potentially 

involved in nuclear targeting. In order to test the roles of Area1 and Area2, specific 

amino acids were mutagenized to the homologous residues of EPAC2. Since EPAC2 

is not targeted to the nucleus and maintains catalytic activity, mimicking the 

sequence of EPAC2 in EPAC1, namely R806N, A807T and M810T, may disrupt 

nuclear localisation whilst maintaining catalytic activity. In addition, Area2 was 

mutated by removing amino acids 824-844 in EPAC1. In addition, a third EPAC1 

mutant was designed to alter the secondary structure of the putative NLD and 

inhibit protein-protein interactions within this region; accordingly P819A, P821A 

and P824A (3P-A) mutations were designed to release the strict rigidity imparted 

by proline residues within the region between Area1 and Area2. Transfection of 

HEK293T cells allowed the nuclear accumulation of each mutant to be analyses by 

western blotting (Figure 5-8). As shown previously, wild type EPAC1 was found to 

retain a largely nuclear distribution, whereas EPAC1 Δ764-838 was enriched within 

the cytoplasmic fraction (Figure 5-8-A). However, the subcellular location of the 

Area1, Area2 and 3P-A mutants was found to be similar to that of wild type EPAC1. 

Indeed, quantification of immunoblots demonstrated that there was no significant 

difference in distribution between wild type EPAC1 and the mutant proteins 

(Figure 5-8-B). These data suggest that the difference in localisation observed 

between EPAC1 and EPAC2 is not due protein-protein interactions involving Area1 

or Area2 of EPAC1. 
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Figure 5-8 : Mutations within the EPAC1 NLD have no effect on the subcellular distribution of 
EPAC1. 
HEK293T cells were transfected with wild type EPAC1 or NLD mutants. A – HEK293T cells were 
fractionated into nuclear and cytoplasmic compartments and transfected proteins were detected by 
immunoblotting with anti-EPAC1 (5D3) antibodies. The nuclear pore protein, RANBP2, was 
western blotted to demonstrate the fidelity of the fractionation process. Antibodies to Ran GTPase 
were used to demonstrate equal protein loading. B – Densitrometric analysis of band intensity was 
carried out and the amount of nuclear EPAC1 was calculated as a percentage of total protein 
observed (+/-s.e.m.). ** - p<0.01, ANOVA using Dunnets post test, n-3. 
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5.2.7 The CNB1 Domain of EPAC2 Interferes with Nuclear 
Localisation 

The high degree of homology within the putative NLD of EPAC1 and EPAC2, 

combined with the inability of NLD mutants to affect nuclear localisation of 

EPAC1, suggests that EPAC2 targeting may be mediated by regions outside of the 

NLD. If so other structural differences between EPAC1 and EPAC2 may underlie 

the differences in subcellular localisation observed between the two proteins. One 

major difference between EPAC isoforms is the presence of a second N-terminal 

CNB (CNB1) (de Rooij et al. 2000) in EPAC2. Indeed, analysis of the crystal 

structure of EPAC2 (2BYV) (Rehmann et al. 2006) reveals that the CNB1 comes into 

close proximity with the N-terminal section of the putative NLD (Figure 5-9-A). It 

is therefore possible that steric interference from the CNB1 of EPAC2 blocks access 

of the NLD to potential nuclear localisation partners, such as RANBP2. Indeed, 

CNB1 has previously been implicated in the subcellular targeting of EPAC2 

(Niimura et al. 2009). Interestingly, differential splicing of the EPAC2 gene in the 

adrenal glands results in the loss of the additional N-terminal CNB, CNB1, yielding 

a truncated form of EPAC2, namely EPAC2B (full length EPAC2 will henceforth be 

referred to as EPAC2A) (Niimura et al. 2009). In order to assess the importance of 

the CNB1 of EPAC2A in nuclear localisation, EPAC2A and EPAC2B were transfected 

into HEK293T cells and their subcellular distribution was compared with that of 

EPAC1. Whereas EPAC2B was observed to accumulate within the nuclear fraction, 

the full length EPAC2A construct was largely cytosolic (Figure 5-9-B). Interestingly, 

EPAC2B was observed to be present in the nuclear fraction at similar levels to 

EPAC1, achieving levels significantly higher than EPAC2A (Figure 5-9-C). These 

data support the CNB1 as an important factor in determining the subcellular 

distribution of EPAC2A.   
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Figure 5-9 : EPAC2B is enriched in the nuclear fraction compared to EPAC2A. 
A - A homology model of EPAC2B is shown (based on sequence alignment of EPAC2B with 
EPAC2A, crystal structure 2BYV, surface representation, green). The additional N-terminal CNB1 
of EPAC2A is superimposed (purple, transparent) to highlight its proximity to the NLD. B - 
HEK293T cells were transfected with full length EPAC1, EPAC2A or EPAC2B. Fractionation and 
western blotting was carried out to reveal the accumulation of each mutant to the cytoplasmic or 
nuclear fractions. C - Quantitative densitometry of low exposure western blots was carried out and 
the calculation of nuclear EPAC is shown as a percentage of total protein (+/-s.e.m.). * - p<0.05, 
ANOVA using Tukeys post test, n-3. 
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5.3 Discussion  

In order to study the effects of compartmentalisation of EPAC on cAMP signalling 

it was first necessary to accurately determine the localisation of EPAC within the 

cell. This was done initially by carrying out immunofluorescence of EPAC1-

transfected cells using different antisera. Although the anti-EPAC1 (5D3) antibody 

from New England Biolabs successfully detected over-expression of HA-tagged 

EPAC1 (Figure 5-1), the distribution within the cell was strikingly different to that 

detected using anti-HA antibodies (Figure 5-1). This was due to the fact that the 

anti-EPAC1 (5D3) displayed selectivity for the active conformation of EPAC1, 

which was demonstrated by enhanced immunoprecipitation of EPAC1 following 

cAMP elevation. As a result, anti-EPAC1 (5D3) allowed immunofluorescent 

detection of the active pool of EPAC1 within the cell. In unstimulated cells this 

was observed within the cytosol, suggesting EPAC1 activation within this 

compartment at basal cAMP levels. However, in response to F/R stimulation 

immunostaining with anti-EPAC1 (5D3) revealed a strong nuclear enrichment in 

immunoreactivity, suggesting that EPAC1 is either shuttled into or activated within 

this compartment. This indicates that there is basal EPAC1 activation within the 

cytosol and cAMP elevation promotes an active pool within the nucleus. The 

preferential detection of active EPAC1 with the anti-EPAC1 (5D3) antibody may 

therefore provide a useful tool to investigate the effects of EPAC1 activation and 

targeting within the cell. However, to our knowledge, the properties of anti-

EPAC1 (5D3) have not yet been taken advantage of to assess EPAC1 

compartmentalisation.  

A number of reports have reported the targeting of EPAC1 and EPAC2A to different 

subcellular locales (Li et al. 2006; Wang et al. 2006; Niimura et al. 2009; Gloerich 

et al. 2011). Indeed, we have confirmed here that the majority of cellular EPAC1 

adopts a perinuclear distribution within HEK293T cells, whereas EPAC2A is largely 

distributed throughout the cell (Figure 5-3). Furthermore, a putative NLD was 

identified by determining the distribution of EPAC1 mutants truncated from the 

N-terminus. Fractionation experiments revealed that the regulatory domain, and 

the majority of the catalytic CDC25-HD domain, are dispensable for the nuclear 

localisation of EPAC1 (Figure 5-5). However, deletion of residues 764-838 within 

the CDC25-HD was sufficient to significantly reduce the association of EPAC1 with 
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nuclear fractions, supporting the idea that this region of EPAC1 plays a role in 

nuclear targeting. Although the EPAC1 Δ764-838 mutant displayed altered 

subcellular distribution, the region involved in nuclear targeting overlapped with 

the central catalytic site of EPAC1. As such, any significant alterations in this 

region are likely to disrupt catalytic GEF activity, and it was therefore not possible 

to further test the effects of EPAC1 nuclear targeting on downstream signalling 

pathways.  

EPAC1 and EPAC2A display marked differences in their subcellular localisation and 

the targeting of EPAC1 appears to depend on residues 764-838. As such, areas of 

low homology between EPAC1 and EPAC2A, within the region spanning amino acids 

764-838, were identified that may facilitate nuclear targeting. Three potential 

sites were identified, Area1, Area2 and 3P-A, which, due to their relative positions 

on the surface of EPAC1, may be involved in protein-protein interactions and 

nuclear targeting. Although mutagenesis of these regions failed to affect the 

subcellular localisation of EPAC1, they were identified as the only sites of low 

homology available for protein-protein interaction within this region. Since there 

is a high degree of homology between EPAC1 and EPAC2A in the remainder of the 

region 764-838, it was concluded that the putative NLD may, in fact, be shared 

between EPAC1 and EPAC2A. However, the differential localisation of EPAC1 and 

EPAC2A suggests that structural differences outside of the NLD may be responsible 

for the reduced nuclear accumulation of EPAC2A. 

Recently, the extra, low affinity CNB1 of EPAC2A has been observed to be 

important in controlling its subcellular distribution (Niimura et al. 2009). Upon 

inspection of the crystal structure of EPAC2A (2BYV(Rehmann et al. 2006)) it can 

be seen that CNB1 lies in close proximity to the putative NLD identified within 

EPAC1. Although crystallisation of EPAC1 has not yet been achieved, homology 

modelling of EPAC1 suggested that amino acids 764-838 of EPAC1 are more 

exposed for protein-protein interaction than the homologous region of EPAC2A. In 

order to test whether the CNB1 of EPAC2A is involved in disrupting nuclear 

targeting, a novel, tissue-specific EPAC isoform, EPAC2B, was employed. EPAC2B 

is subject to alternate splicing, which results in the loss of CNB1, though the 

sequence is identical to EPAC2A outside of this region. Therefore EPAC2B 

represents an excellent tool in testing the importance of the CNB1 in nuclear 



Chapter 5  Subcellular Distribution and Targeting of EPACs 164 

 
 

targeting. Indeed, the CNB1 of EPAC2A was observed to be important in promoting 

accumulation to the cytoplasmic fraction as EPAC2B exhibited significant 

enrichment within the nuclear fraction, similarly to EPAC1. This effect proves the 

importance of the EPAC2A CNB1 in promoting a cytoplasmic localisation; however 

the mechanistic role remains unknown. We propose that the CNB1 of EPAC2A 

forms intra molecular bonds that are absent in EPAC1 and EPAC2B, which disrupt 

protein interactions with RANBP2 (Gloerich et al. 2011) and, therefore, nuclear 

localisation. It would be particularly interesting to mutate the EPAC2B NLD to 

assess whether this region is responsible for the distribution of EPAC2B to the 

nuclear fraction (Figure 5-9). This may suggest that the CNB1 of EPAC2A may have 

developed as a mechanism to sterically block access to the NLD, which is common 

to all EPAC isoforms. CNB1 has also been reported to act via protein-protein 

interactions which tether EPAC2A to the plasma membrane (Niimura et al. 2009). 

As such it is important to test the manner in which EPAC2A localisation is mediated 

by CNB1. 

Here we have further defined the regions involved in EPAC1 nuclear localisation. 

Nuclear localisation of EPAC1 has previously been attributed to interactions with 

the nuclear scaffold protein, RANBP2 (Gloerich et al. 2011). We have defined a 

NLD that exists within the CDC25-HD domain of EPAC1 and results in the co-

localisation of EPAC1 with RANBP2 in HEK293T cells. However, further work is 

required to prove that nuclear localisation of EPAC1 occurs via protein-protein 

interactions with the NLD. Analysis of the NLD reveals a high degree of homology 

between EPAC isoforms, which suggests that the factors which control nuclear 

localisation may be shared between EPAC1 and EPAC2A. However, we propose 

that the CNB1 of EPAC2A may have developed as a mechanism to block access to 

the NLD and alter the distribution of EPAC2A relative to EPAC1. Indeed, the 

distribution of EPAC2A to the cytosol relies on the expression of CNB1. Such a 

mechanism may inform the development of peptides able to block nuclear 

targeting and alter the signalling pathways activated by EPAC1 within different 

cellular systems.  

The localisation of EPAC1 is likely to affect its activation and the downstream 

signalling pathways activated as result of cAMP induction. As such, the study of 

the factors controlling its distribution may lead to therapeutics which influence 
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the localisation of EPAC, rather than its catalytic activity. Interestingly, EPAC1-/- 

mice have no reported abnormalities in vascular endothelial function, whereas 

EPAC1 activation is reported to produce protective effects in vascular endothelial 

cells (VECs) (Parnell et al. 2012). This apparent discrepancy may be explained by 

EPAC1 being under tight negative regulation within VECs. Indeed, nuclear 

tethering of EPAC1 is coupled to inhibition of its catalytic activity (Gloerich et al. 

2011), suggesting that EPAC1 activity may be inhibited by nuclear sequestration. 

As such, displacement of EPAC1 from the nucleus may have dramatic effects, 

relieving its inhibition and inducing protective that have been attributed to EPAC1 

activation within VECs (Parnell et al. 2012).  
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6.1 Discussion 

The potential for regulation of EPAC1 activity as a therapeutic avenue may be 

realised due to the recent discovery of a range of small molecule regulators of 

EPAC proteins (Table 1-1 and Table 1-2). However, despite the potential benefit 

of EPAC activation for the treatment of disease, particularly inflammatory 

diseases, there remains a lack of small molecule EPAC1-selective agonists. 

In order to identify novel small molecules that are able to bind to and activate 

EPAC1, we have devised a novel HTS assay based on an existing fluorescence based 

competition assay, using the fluorescent cAMP analogue 8-NBD-cAMP. This assay 

has been shown to be effective in HTS and has been used to identify a number of 

small molecules capable of interacting with EPAC 1 and 2 (Tsalkova et al. 2012). 

The basis of the assay relies on an increase in fluorescence intensity associated 

with the binding of 8-NBD-cAMP to the CNB of EPAC protein. Here we have shown 

that EPAC1- and EPAC2-CNBs can be purified (Figure 3-1) and are able to bind to 

cAMP, or 8-NBD-cAMP, facilitating their use in this competition assay (Figure 3-3). 

Furthermore, we have devised experimental conditions that provide robust and 

reproducible identification of compounds which are able to compete with 8-NBD-

cAMP for binding to the EPAC-CNBs (Figure 3-3 to 3-9). We have shown that 

screening EPAC1 and EPAC2 simultaneously in HTS allowed the identification of 

isoform selective small molecules within a pilot screen (Table 3-8). Previous 

attempts to perform dual EPAC1 and EPAC2 HTS may have been hindered by the 

requirement of existing assays for the catalytic activity of EPACs and the low 

solubility of full length recombinant EPAC1. However, the use of the isolated CNBs 

of EPAC1 and EPAC2 described here overcomes these difficulties. Simultaneous 

screening of both EPAC1- and EPAC2-CNBs not only increases the potential of 

discovering an EPAC1 selective compound, but allows greater stringency by 

allowing the elimination of non-specific agents at the primary screening stage. 

Indeed, we have described here the successful identification of an EPAC1-

selective compound and numerous EPAC2-selective compounds from a small pilot 

screen. One of these compounds, conjugated oestrogen, is unlikely to be suitable 

for drug development due to the difficulty in producing and modifying steroid 

analogues and the likely extensive off target effects associated with using a ligand 

to endogenous hormone receptors. However, this small pilot screen highlights the 
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ability of dual EPAC1/EPAC2 HTS to isolate EPAC isoform selective compounds. As 

such, extensive, large scale HTS can now be carried out to isolate further 

compounds suitable for the future development of isoform selective EPAC 

regulators.  

The 8-NBD-cAMP displacement assay identifies compounds that interact directly 

with the CNB of EPACs; however these interactions could either inhibit or promote 

EPAC activation. In order to discriminate between potential agonists and 

antagonists isolated in primary HTS, we devised a cell based screening assay which 

couples EPAC1 activation directly to HEK293T cell morphological change (Figure 

3-12). Importantly, these cell shape changes rely on the expression of stably 

transfected EPAC1 and, as such, facilitate the comparison of rapid, isotropic cell 

spreading between vector- and EPAC1-expressing HEK293T cells, allowing 

confirmation of EPAC1 activation by small molecules. Furthermore, activation and 

inhibition of a variety of cAMP responsive pathways were unable to reproduce the 

distinct morphological changes associated with EPAC1 activation (Figure 3-12 to 

3-15), demonstrating the specificity of this assay to EPAC1 activation. Thus, a cell 

spreading assay represents a powerful, stringent, in vivo mechanism to confirm 

the ability of small molecules to promote EPAC1 activation. Changes in cell shape 

and adherent properties can be measured in real time by measuring dynamic mass 

redistribution, namely the change in refractive index of a resonant waveguide 

grating (RWG) according to the mass of molecules, or in this case entire cells, 

attached to the surface. This approach is amenable to a high throughput plate 

format using Corning “EPIC” technology, where 96 well plates have incorporated 

RWG onto the adherent surface. This approach may allow a high number of 

potential agonists to be tested in a high throughput manner, and thereby facilitate 

the drug development process. The combination of an EPAC isoform-specific HTS 

approach and a secondary phenotypic assay, to discriminate between agonists and 

antagonists, represents a powerful approach to discover EPAC1 agonists (Figure 

3-17), although further techniques may be required to adequately define the 

structure-activity relationship of any hit compounds. However, this screening 

cascade will facilitate drug discovery by promoting isoform selectivity, reducing 

the presence of denaturing agents and allowing common features which promote 

isoform selectivity to be identified prior to compound chemical modification. 
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The use of HEK293T-EPAC1 cell spreading in a drug screening assay prompted us 

to assess the mechanisms underlying EPAC1-mediated morphological change. 

Various studies have linked EPAC1-Rap1 activation to RAC activity and cell 

spreading (Arthur et al. 2004; Ross et al. 2011; Ross et al. 2012; Post et al. 2013). 

This pathway has been shown to have beneficial effects for vascular endothelial 

barrier function through a reorganisation of the actin cytoskeleton (Birukova et 

al. 2007; Birukova et al. 2008; Birukova et al. 2010). Despite a central role for 

EPAC in the control of barrier function, PKA appears to synergise with EPAC for 

maximal barrier protection in response to cAMP (Birukova et al. 2010). We 

hypothesised that EPAC1 and PKA may also synergise to promote cell spreading 

effects in response to cAMP and, indeed, both HEK293T-EPAC1 cells (Figure 3-12) 

and HUVECs (Figure 4-2) exhibited greater cell spreading when global cAMP levels 

were elevated with F/R than observed when EPAC1 was activated directly with 

007. Interestingly, inhibiting PKA was able to reduce the spreading effects of 

global cAMP elevation, but not EPAC1 activation, supporting the idea that there is 

synergy between EPAC1 and PKA in cell spreading (Figure 4-4). However, PKA was 

unable to produce any alteration in cell area in the absence of EPAC1 expression, 

suggesting that PKA may play a supplementary role in cell spreading, but is unable 

to produce cell spreading alone. Despite the well characterised EPAC1-mediated 

activation of RAC (Post et al. 2013), PKA appeared to promote supplemental 

spreading through regulation of RhoA, as inhibition of the RhoA-activated kinase, 

ROCK, with Y27632 produced a similar, EPAC1 independent, attenuation of cell 

spreading (Figure 4-9). EPAC has previously been reported to act through RAC 

(Birukova et al. 2007); it is therefore possible that EPAC and PKA synergise through 

the classically antagonistic RAC and RhoA pathways (Ory et al. 2000). However, 

further work is required to characterise the role of the Rho GTPases in the cell 

spreading response. 

In attempting to identify the mechanisms underlying EPAC1-mediated cell 

spreading and supplemental spreading, ezrin presented itself as a potential 

candidate. Ezrin has been implicated in regulating membrane stability (Bretscher 

1999; Liu et al. 2012) and Rho GTPase activity (Takahashi et al. 1997) and, as 

such, may play a role in mediating cAMP-mediated cell spreading. Furthermore, 

ezrin has been reported to be involved in EPAC1-mediated cell spreading (Ross et 
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al. 2011). Moreover, both PKA and ROCK are able to directly phosphorylate ezrin 

and regulate its function (Matsui et al. 1998; Zhou et al. 2003; Haas et al. 2007). 

Upon examination, ezrin was found to display a plasma membrane distribution 

(Figure 4-6) and undergo post translational modification (Figure 4-7) in response 

to cAMP elevation, which suggests a functional response to cAMP elevation. 

Indeed, post translational modification of ezrin was reversed by treatment with 

the PKA inhibitor H-89 (Figure 4-7), suggesting that PKA may directly 

phosphorylate ezrin, as has been previously reported (Wang et al. 2005). Despite 

these observations, introducing inactive ezrin mutants, or constitutively active 

mutants failed to affect either EPAC1-mediated or supplementary cell spreading 

(Figure 4-8). However, the introduction of inactive mutants (T567A (Ross et al. 

2011) and R579A (Saleh et al. 2009)) drastically altered cell morphology promoting 

cell extensions, rather than the consistent cell spreading displayed in GFP or WT-

ezrin transfected cells. It would appear that PKA is able to regulate ezrin and cell 

shape, but is unable to promote spreading, suggesting that the role of EPAC1 may 

be to promote cell spreading in response to cAMP, and a PKA-ezrin pathway 

regulates that manner in which this occurs. It would therefore be interesting to 

assess the effects of EPAC1, PKA and ezrin on vascular endothelial cell function 

and whether cell spreading and regulation of cell shape may also contribute to 

vascular endothelial barrier function. This may be particularly important in light 

of the development of EPAC1 inhibitors which, in addition to EPAC1 inactivation, 

may limit the synergistic, isotropic cell growth associated with PKA and EPAC1 

activation. 

The function of EPAC proteins has been shown to be affected by altered 

subcellular distribution (Li et al. 2006; Niimura et al. 2009; Consonni et al. 2012). 

EPAC1 has recently been shown to produce distinct effects within the vascular 

endothelium depending on the pool of Rap GTPase activated; for example, nuclear 

Rap2 activation reduced endothelial barrier function, whereas activation of 

plasma membrane Rap1 promoted it (Pannekoek et al. 2013). In this manner, 

altering EPAC1 localisation within vascular endothelial cells may shift the balance 

of Rap1/2 activation, producing a shift from pro-inflammatory to anti-

inflammatory signalling. Furthermore, EPAC1 has been reported to be inactivated 

within a perinuclear complex with RANBP2 (Gloerich et al. 2011). As such, 
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disrupting this inhibitory complex may promote the anti-inflammatory effects of 

EPAC1 within vasculature endothelial cells. 

EPAC1 and EPAC2 have strikingly different sub-cellular distributions when 

transfected into HEK293T cells. EPAC1 forms a strong perinuclear ring within the 

cell, whereas EPAC2 is observed throughout the cell (Figure 5-3). Indeed, this 

differential targeting may rely on structural differences between EPAC1 and 

EPAC2 that target each isoform to their respective locale. The nuclear pore 

protein RANBP2 has been reported to promote a perinuclear distribution and bind 

to EPAC1 within the catalytic CDC25-HD domain (Gloerich et al. 2011). We have 

identified a region important in promoting a strong perinuclear localisation within 

HEK293T cells. Indeed, deletion of amino acids 764-838 limits the distribution of 

EPAC1 alongside the pore protein within the nuclear compartment (Figure 5-6). 

Therefore, residues 764-838 within the CDC25-HD represent a potential binding 

site for the RANBP2 zinc finger domain, which is able to sequester and inhibit 

EPAC1 (Gloerich et al. 2011). However, we were unable to define the importance 

of targeting in EPAC1 function as this deletion overlaps the catalytic site of EPAC1, 

likely ablating its catalytic activity.  

In addition to discovering a site important for the nuclear targeting of EPAC1, the 

role of the CNB1 of EPAC2 was investigated for its role in targeting of EPAC2 to 

the cytosolic fraction. As has been previously reported, a truncated form of 

EPAC2A, EPAC2B, which lacks CNB1 displays disrupted sub-cellular targeting 

(Niimura et al. 2009). In particular, EPAC2B was observed to be present within the 

nuclear fraction at significantly higher levels than EPAC2A (Figure 5-9). EPAC1 and 

EPAC2A show considerable homology within the nuclear localisation domain and 

mutagenesis of regions of low homology failed to disrupt EPAC1 targeting (Figure 

5-8). We therefore conclude that the nuclear localisation domain is conserved 

between isoforms, but that EPAC2 is targeted to the cytosol by the CNB1. Indeed, 

mimicking the disruptive qualities of the CNB1 through small molecule or peptide 

intervention may allow EPAC1 to be displaced from the nuclear membrane, 

prompting both its catalytic activity and activation of an anti-inflammatory pool 

of Rap1 at the plasma membrane of vascular endothelial cells (Pannekoek et al. 

2013). However, further work is required to confirm whether altered subcellular 

distribution is achieved by disrupting an interaction with RANBP2 or through 
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another mechanism. Indeed, it is possible that the CNB1 mediates an interaction 

with a hitherto unidentified cytosolic protein within HEK293T cells. In addition, it 

will be necessary to assess the functional significance of EPAC targeting within 

relevant physiologically systems, such as the vascular endothelium and pancreatic 

β-cells. Controlling compartmentalisation of cAMP effectors provides a potential 

mechanism for precise regulation of cAMP signalling within the cell with 

therapeutic benefit. 
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6.2 Future Directions 

We have shown that a dual EPAC1-CNB/EPAC2-CNB fluorescence based 

competition assay is effective in HTS for the identification of isoform selective 

EPAC interacting compounds. However, in order to identify potential small 

molecule regulators of EPAC1, large scale HTS is required. The joint European 

compound library provided by the European Lead Factory 

(www.europeanleadfactory.eu) contains a comprehensive range of over 300,000 

drug-like compounds. Screening such a large library is likely to yield many hit 

compounds, which can be taken forward in further screening and development. In 

addition to the primary screen outlined, the suitability of HEK293T cell spreading 

for secondary screening must be assessed. Indeed, a plate based, high throughput 

approach using dynamic mass redistribution measurement is a strong candidate 

for discriminating between EPAC1 agonists and antagonists. However, such an 

approach must be rigorously tested for accuracy and reproducibility, although the 

requirement for EPAC1 in cAMP mediated morphological change suggests that 

comparison of EPAC1 expressing cells to null HEK293T is likely to allow reliable 

assessment of EPAC1 activation. 

We have outlined a role for PKA in supplementing the effects of EPAC1 in cell 

spreading. However, the mechanisms which underlie EPAC1 and PKA-mediated 

cell spreading in HEK293T-EPAC1 remain unknown. Rho GTPases are strong 

candidates as downstream effectors of the cAMP signal and the ability of EPAC1 

and PKA to regulate Rho GTPases would confirm a potential signalling pathway 

from cAMP to cell morphological change. Indeed, it would be interesting to test 

constitutively active or dominant negative Rho GTPases for their ability to 

promote or block cAMP-mediated cell spreading. The ability of EPAC1 and PKA to 

regulate Rho GTPases, coupled with their requirement in cell spreading, would 

provide strong evidence for a novel interplay between RhoA and RAC signalling 

pathways in the control of cell spreading. As ezrin appears to respond to PKA 

activation, but not EPAC1 signalling in HEK293T cells, the potential role of ezrin 

in anchoring PKA to the cell periphery should be tested, as this may be the 

functional mechanism through which ezrin may act to regulate cell shape. Once 

the precise signalling pathways involved in cell morphology have been found, their 

role in regulating vascular endothelial barrier function should be assessed in order 
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to establish EPAC1-mediated cell spreading as an important regulator of vascular 

function. 

We have isolated a domain within EPACs that is involved in the nuclear localisation 

of EPAC1. In order to define the role of EPAC1 targeting in its signalling function, 

it will be necessary to disrupt EPAC1 from its normal distribution within the cell. 

One approach is to develop a disruptor peptide which may block accumulation of 

EPAC1 at the nuclear membrane. This would allow the precise role of EPAC1 

nuclear targeting to be assessed. Furthermore, if the CNB1 of EPAC2A is indeed 

involved in blocking nuclear accumulation by an intramolecular interaction with 

the nuclear localisation domain, then the regions involved may form the basis of 

a disruptor peptide. To achieve this, a peptide array may be used to confirm both 

the presence of intramolecular interactions between the CNB1 and the nuclear 

localisation domain of EPAC2 and identify the residues involved. Finally, it would 

be interesting to identify the partners involved in nuclear targeting. The RANBP2-

zinc finger has been proposed as an interacting partner with EPAC1 (Gloerich et 

al. 2011). Co-immunoprecipitation and pulldown experiments may provide one 

route to confirming the interaction between EPAC1 and the zinc finger domain of 

RANBP2.
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