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Abstract 

Maternal obesity has been at the forefront of pregnancy-related research in 

recent times. The impact of this chronic health condition has been highlighted in 

reports on maternal mortality (CEMACH, 2007, CEMACH, 2011), where 30% of 

mothers who died from pregnancy related causes were obese (CEMACH, 2011). 

The importance of maternal obesity and how it affects maternal adaptation to 

pregnancy is well documented with obese women exhibiting low grade 

inflammation, greater coagulability and poorer improvement in vascular function 

during pregnancy compared to lean women (Stewart et al., 2007a). These 

findings suggest that obese women display similar characteristics to the non-

pregnant adult metabolic syndrome and these attributes may be important in 

explaining why obese pregnancies have higher rates of obstetric complications 

including gestational diabetes (GDM) and pre-eclampsia (PET). In non-pregnant 

adult obesity it has been found that central or truncal adiposity is associated 

with increased NEFA (non-esterified fatty acids) turnover and ectopic fat 

(especially liver) deposition. It has been suggested that obese pregnant women 

may also preferentially gain fat in central depots and this may be the mechanism 

by which poor vascular improvement and inflammation are initiated. 

The aims of this thesis were to assess subcutaneous fat accumulation and 

distribution throughout pregnancy in both lean and OW/OB women. Furthermore 

this thesis aimed to acquire a better understanding of the impact of anatomical 

fat deposition on metabolic and vascular function during pregnancy. A final aim 

was to assess vascular function and evidence of lipotoxicity during pregnancy 

and test whether the site of fat accumulation and distribution was associated 

with gestational improvement of vascular function.  

 

A longitudinal study was performed and anthropometric data was collected from 

26 lean and 16 OW/OB women at three antenatal time points (15, 25 and 35 

weeks’ gestation) during pregnancy. Direct measurements of energy metabolism 

(basal metabolic rate, substrate utilisation, physical activity and diet) were also 

collected to assess the impact of energy metabolism on fat accumulation and 

distribution. A comprehensive panel of plasma markers of carbohydrate and lipid 

metabolism (fasting glucose, fasting insulin, total cholesterol [TC], total 

triglyceride [TG], high density lipoprotein [HDL] and NEFA) and inflammatory  
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(C-reactive protein [CRP], interleukin-6 [IL6] and tumour necrosis factor alpha 

[TNF]) were quantitated at each study appointment. Endothelial function was 

measured using laser Doppler imaging (LDI). Measurement of plasma and urinary 

biomarkers of endothelial function and lipotoxicity including soluble intracellular 

adhesion molecule 1 (sICAM-1), soluble vascular adhesion molecule-1 (sVCAM-1), 

oxidised low density lipoprotein (oxLDL), plasma superoxide and urinary 

isoprostanes were undertaken.  

 

Lean and OW/OB women gained similar amounts of total body weight and fat 

mass during pregnancy. Only in lean women was there an anatomical preference 

for site of fat storage and this was in the upper peripheral subcutaneous depots. 

In healthy OW/OB pregnancy no such anatomical preference of fat deposition 

was found. 

 

The study of energy metabolism found that OW/OB women had higher basal 

metabolic rate and higher fat oxidation than lean women, whilst lean women 

had higher rates of carbohydrate oxidation and physical activity than OW/OB 

women. In the lean and OW/OB groups dietary macronutrient intakes were 

similar. Overall the parameters of energy metabolism were not associated with 

overall fat mass accumulation or distribution.  

 

During pregnancy, OW/OB women were more insulin resistant and pro-

inflammatory (CRP and TNFα) than lean women and lean women had higher 

concentrations of plasma HDL. Interestingly the lean group had higher plasma 

concentrations of IL6 which may be a result of higher rates of vascular 

remodelling and may reflect a physiological rather than pathological process. In 

both lean and OW/OB pregnancies the gestational increase in subcutaneous 

adipose depots was not associated with the gestational changes in markers of 

carbohydrate, lipid or inflammatory profiles.  

 

Both lean and OW/OB women exhibited similar gestational improvement in 

endothelial microvascular function. During pregnancy both groups showed an 

increase in markers of lipotoxicity but levels were not associated with vascular 

function. Changes in anatomical subcutaneous fat distribution were also not 

associated with the changes in vascular function during pregnancy.  
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In conclusion, in pregnancy, only lean women exhibit an anatomical site-specific 

fat accumulation. Although the OW/OB group displayed some aspects of the 

metabolic syndrome in general the OW/OB women studied here adapted to 

pregnancy in a similar way to lean women in terms of vascular function and 

levels of lipotoxicity. However, visceral adiposity was not assessed and OW/OB 

women with larger visceral adipose stores may exhibit a more lipotoxic 

phenotype and more pathological adaptation to pregnancy that may make them 

susceptible to metabolic complications of pregnancy. This study highlights the 

heterogeneity of maternal obesity and suggests that further studies into 

‘metabolically healthy’ and ‘metabolically unhealthy’ lean and OW/OB women is 

warranted.  
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Chapter 1 - Introduction  

 The obesity problem 1.1

In 2008 the World Health Organisation estimated that over 200 million men and 

approximately 300 million women were obese, with the worldwide prevalence of 

obesity having doubled from 1980 to 2008 (WHO, 2013).  

In 2006 the Department of Health predicted that if the trend for the increase in 

obesity was to continue, there would be a further 1 230 573 women of 

reproductive age who were obese by 2010, estimating that in England alone 

there would be approximately six million obese women (Zaninotto et al., 2006). 

In 2009, 23% of all adults in England were obese, and although the trend 

appeared to have slowed, the obesity prevalence was higher than other 

developed counties (DOH, 2010). Recent epidemiological modelling has 

suggested that by 2030 approximately 45% of men and 40% of women may be 

obese (Wang et al., 2011). 

 Body composition in the general adult population and 1.2

metabolic risk 

Human body fat compartments can be pragmatically based on anatomical site 

and can be divided into subcutaneous and visceral compartments. These sites 

can be further demarcated as upper body subcutaneous fat, intra-abdominal and 

visceral fat and lower body subcutaneous fat (Jensen, 2008). Often the term 

‘central obesity’ does not differentiate between visceral and abdominal 

subcutaneous adipose tissue. However, whilst central obesity can be measured 

using waist circumference (Anuradha et al., 2012) visceral obesity relies on 

advanced visualisation techniques such as magnetic resonance imaging (Abate et 

al., 1997). In this thesis, central obesity will refer to both visceral and 

abdominal subcutaneous fat depots. 

In addition, adipose tissue can be classified based on its function. Importantly in 

the context of adult obesity, classification can be based on fat depot sensitivity 

to insulin-induced lipolysis. Central adiposity is recognised as a core feature of 

insulin resistance in obese men (Ross et al., 2002a) and premenopausal women 

(Ross et al., 2002b) and is a stronger predictor of coronary heart disease than 
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BMI (body mass index) alone (Canoy et al., 2007). In the general adult 

population, both central obesity, and more specifically visceral obesity, are 

documented risk factors for the development of both diabetes mellitus and 

coronary heart disease in both men and women (Sattar et al., 2008, Canoy, 

2008).   

Adult central obesity is associated with insulin resistance, high levels of plasma 

triglycerides, low HDL, increased small dense low density lipoprotein (LDL) 

concentration, low grade inflammation and development of a prothrombotic 

environment. This has been collectively termed the metabolic syndrome (Huang, 

2009). 

An excess of upper body subcutaneous (abdominal and truncal) fat is associated 

with an abnormal metabolic and adipokine profile but the relative contributions 

of subcutaneous and visceral fat are unclear. Numerous groups (Hutley and 

Prins, 2005, Despres et al., 2008, Despres and Lemieux, 2006) have discussed the 

role of visceral adipose tissue in the production of inflammatory cytokines such 

as tumour necrosis factor alpha (TNFα) and interleukin 6 (IL6). TNFα is known to 

further stimulate the production of leptin and IL6. In addition, TNFα stimulates 

atherosclerosis formation through the activation of soluble vascular cell adhesion 

molecule 1 (sVCAM-1) and soluble intercellular adhesion molecule 1 (sICAM-1), as 

well as reducing the bioavailability of nitric oxide (NO) for vasodilatation, thus 

further perpetuating endothelial dysfunction (Lau et al., 2005). TNFα is not only 

important in inflammatory and vascular pathways but interferes with insulin-

induced glucose uptake in adipocytes and appears to inhibit phosphorylation of 

the insulin receptor at least in vitro (Hotamisligil et al., 1994).  

IL6 has been proposed to play a role in stimulating the production of acute-

phase inflammatory proteins such as C-reactive protein (CRP) which are found at 

higher levels in obese patients (Fantuzzi, 2005). In vitro studies comparing the 

production of IL6 found that visceral fat produces higher levels of this 

inflammatory cytokine compared with subcutaneous abdominal adipocytes (Fain 

et al., 2004, Fried et al., 1998). However, abdominal subcutaneous adipose 

tissue, along with visceral fat, has been shown to be positively associated with 

biomarkers inflammation and oxidative stress such as CRP, IL6, sICAM-1, and 

TNFα (Pou et al., 2007). Subcutaneous adipose tissue has also been shown to be 
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strongly associated with insulin resistance, even when analysis adjusted for the 

impact of visceral adiposity (Goodpaster et al., 1997). Interestingly, recent data 

has found the positive association between abdominal subcutaneous fat 

thickness and insulin resistance and plasma triglycerides in much younger 

cohorts (ages 6-18 years) (Kelly et al., 2014), as well as abdominal subcutaneous 

fat depots being inversely correlated with HDL cholesterol (Kelly et al., 2014).  

In adult central obesity there are elevated levels of circulating NEFA which 

results in insulin resistance and dysfunction of adipocytes (Frayn, 2000). Both 

upper body subcutaneous and visceral fat is relatively resistant to insulin 

suppression of lipolysis and consequently is estimated to be the source of around 

60% of circulating NEFA (Jensen, 2008). Subcutaneous adipose tissue could be 

considered the main source of circulating NEFA because NEFA from visceral fat is 

transported directly to the liver via the portal circulation (Bevilacqua et al., 

1987). In animal studies, visceral fat adipose tissue is strongly correlated with 

the NEFA concentrations seen in hepatic vein samples (Jensen et al., 2003). 

Therefore, because NEFA from visceral fat drains into the portal circulation 

there is no uptake by peripheral tissues before they reach the liver unlike NEFA 

from subcutaneous fat sources (Jensen et al., 2003). In obese women with a 

propensity for upper body obesity it has been confirmed that in the postprandial 

state, elevated levels of plasma NEFA originated from upper body fat but not 

visceral fat (Guo et al., 1999). Therefore, both visceral and subcutaneous fat 

depots are involved in abnormal lipid, inflammatory profiles and the promotion 

of insulin resistance. 

 

Conversely lower body fat is considered more sensitive to insulin suppression of 

lipolysis, and contributes only 15-20% of circulating NEFA (Jensen, 2008). It has 

been proposed that lower body adipose tissue depots are associated with more 

efficient storage of dietary fat as a result of lower body subcutaneous fat being 

more sensitive to lipoprotein lipase activity in the post prandial state than either 

upper body subcutaneous or visceral adipocytes (McCarty, 2003, Votruba et al., 

2007). There are differences in the storage capacity of lower body fat based on 

gender and BMI. In published literature it has been shown that lean women can 

store fatty acids more efficiently in the lower body fat compartments in the post 

prandial state than either obese women or men of any level of obesity (Santosa 
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et al., 2008). In the general adult population, smaller lower body depots, mainly 

thigh fat, have been highlighted as a risk factor for increased levels of 

triglycerides, lower HDL and hyperglycaemia (Snijder et al., 2005). Further 

studies by the same group have confirmed a reduced risk of carbohydrate and 

lipid dysregulation with greater lower body fat adiposity (Bos et al., 2005, 

Snijder et al., 2004a, Snijder et al., 2004b). Published data has suggested that 

larger hip circumference measurements had an inverse association with 

cardiovascular disease and diabetes which was stronger than the positive 

correlations between these diseases and waist circumference (Lissner et al., 

2001). This proposed preference for lean women to store fat in lower body 

depots could be a reason for their relative protection against metabolic risk and 

endothelial dysfunction compared to men and obese women. 

 

 Metabolic syndrome and the development of 1.3

lipotoxicity  

Central obesity in adults is associated with hypertrophy of adipocytes. This 

hypertrophic obesity results in the reduced uptake and storage of fatty acids 

along with increased lipolysis, inflammatory cell infiltration and adipokine 

secretion (Jensen, 2008). In addition, in adult obesity, there is a reduced 

capacity of the pre-adipocytes population to undergo differentiation to mature 

adipocytes in abdominal subcutaneous adipose tissue (Gustafson et al., 2009). In 

insulin resistant obese adults, there are a disproportionately high number of 

both small preadipocytes and large hypertrophic adipocytes which have a 

reduced capacity to store fatty acids. These two populations of cells which are 

at the extremes of adipocyte size are found to positively correlate with whole 

body insulin resistance (McLaughlin et al., 2007). Thus obesity and insulin 

resistance are associated with defects of adipose tissue function where there is a 

failure to expand the capacity of the tissue to store additional triglyceride via 

developing more normal size adipocytes, in combination with a propensity to 

over fill the adipocytes which are available. 

In the metabolic syndrome, which arises secondary to central obesity, the 

abnormal insulin resistance leads to an increase in plasma NEFA concentrations. 

This excessively high level of NEFA has further detrimental effects on adipocyte 
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function. In the adipocyte, the storage capacity for fatty acids is limited by 

triglyceride synthesising capacity and the ability of the adipocyte to expand as 

discussed above. If excessive fatty acid levels are present this overwhelms the 

triglyceride biosynthesis ability and storage capacity, leading to fatty acid 

accumulation and a reduced cellular homeostatic capacity of both the 

endoplasmic reticulum and mitochondria which will lead to adipocyte 

dysfunction (Garbarino and Sturley, 2009).  

In addition to elevated NEFA having a detrimental effect of adipocyte function 

excessive circulating NEFA have been shown to effect end organ function. In the 

context of lipotoxicity, excessive NEFA accumulates at ectopic or non-adipose 

end organ sites such as skeletal muscle, liver and heart. When excess fatty acids 

from adipose tissue are transported to the liver, the storage and utilisation 

capacity of the hepatocytes is overwhelmed resulting in impaired signalling, 

cellular dysfunction and possible cell death (Trauner et al., 2010). In skeletal 

muscle the initial rise in fatty acid metabolites (palmitoyl carnitine, palmitoyl-

coenzyme (CoA) and oleoyl-CoA) stimulate adenosine triphosphate (ATP) 

synthesis within the mitochondria via fatty acid oxidation. However, eventually 

saturation of the electron transport chain leads to a dose-dependent inhibition 

of ATP synthesis (Abdul-Ghani et al., 2008). Within myocytes, this affects the 

mitochondrial production of ATP, leading to a rise in intramyocellular fatty acid 

CoA and subsequent abnormal glucose oxidation and insulin resistance.  

As is well documented in the literature, liver triglyceride content has been found 

to be elevated in people with type 2 diabetes (Ryysy et al., 2000). Clinical 

experiments have shown that reducing the hepatic triglyceride content in type 2 

diabetic patients using pioglitazone (a thiazolididinedione known to reduce 

hepatic triglyceride levels) for 16 weeks significantly improved fasting and 

postprandial glucose levels (Ravikumar et al., 2008). In addition it has been 

shown in type 2 diabetic patients, adherence to a very low energy dense diet 

(2.5MJ or 600 kcal/day) for eight weeks led to normalisation of pancreatic beta 

cell function, improved hepatic insulin sensitivity and reduced liver and 

pancreatic triacylglycerol stores (Lim et al., 2011, Taylor, 2013). Therefore, 

although the excessive deposition of NEFA in the liver leads to hepatocyte 

dysfunction and insulin resistance, correction of insulin resistance improves fatty 

liver lipid accumulation. This would suggest that both ectopic fat accumulation 
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at the liver as well as insulin resistance perpetuate each other and further 

promote further dysregulation in insulin and triglyceride metabolism (Taylor, 

2008). 

In adult type 2 diabetic populations, elevated gamma-glutamyl transferase 

(GGT) has been linked to ectopic deposition of fat in the liver. It is thought to 

contribute to the development of insulin resistance (Gohel and Chacko, 2013) 

and has been proposed to be a marker of oxidative stress (Lim et al., 2004) and 

atherosclerosis (Bradley et al., 2014). 

 

High plasma triglyceride concentration can lead to formation of small dense LDL, 

a highly atherogenic lipoprotein particle readily susceptible to oxidation forming 

oxidised LDL (oxLDL) because in atherosclerotic plaque formation these low 

density lipoproteins in the intimal layer of blood vessels are a focus for 

oxidation. This process leads to the formation of oxLDL which promotes sterol 

accumulation in macrophages and subsequent foam cell formation but also leads 

to increased expression of sVCAM-1 and macrophage proliferation both of which 

are important in the early inflammatory process seen in the vascular wall 

(Jessup et al., 2004). Pro-inflammatory lipoproteins such as oxLDL have been 

shown to promote endothelial damage through oxidative stress mediated DNA 

damage (Ding et al., 2013). In addition, oxLDL promotes the production of 

reactive oxidative and superoxide species which again are linked to endothelial 

dysfunction and damage. Other in vivo markers such as urinary isoprostanes have 

also been suggested to be markers of vascular damage and oxidative stress 

although there role in clinical disease is still being investigated (Minuz et al., 

2006).  

 

Oxidised metabolites of cholesterol, referred to as oxysterols have been shown 

to have beneficial effects but also to play a role in lipotoxicity (Bjorkhem and 

Diczfalusy, 2002). They can decrease cholesterol biosynthesis via interaction 

with sterol regulatory element binding protein 1c (SREBP-1c) and are also potent 

transactivators of the nuclear receptors liver X α and β (LXRα and β) (Peet et 

al., 1998). LXRα is involved in the regulation of steroid hormone biosynthesis, 

bile acid synthesis, conversion of lanosterol to cholesterol, cellular cholesterol 

efflux and lipid mobilising proteins such as cholesterylester transfer protein 
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(CETP) (Bjorkhem and Diczfalusy, 2002). However, oxysterols can be toxic to 

cells inducing inflammation, oxidative stress and apoptosis (Bjorkhem and 

Diczfalusy, 2002, Brown and Jessup, 2009, van Reyk et al., 2006). Whilst 

oxysterols pay a key role in steroid metabolism through the LXR receptor they 

will also induce expression of inflammatory markers in endothelial cells via LXR-

independent mechanisms (Morello et al., 2009). Therefore they can lead to 

damage of the vascular endothelium via both oxidative and inflammatory means 

(Vejux and Lizard, 2009, Zhou et al., 2000). 

The abnormal oxidation of fatty acids in the liver will also lead to the production 

of reactive oxygen species (ROS), disturbances in cellular membrane fatty acids 

and phospholipid composition, alterations in cholesterol content and ceramide 

signalling (Trauner et al., 2010). Elevated plasma NEFA levels can also induce 

nitroxide radical formation in smooth muscle and endothelial cells, induce 

respiratory burst in white cells and serve as substrates for oxidation themselves 

leading to propagation of lipid peroxides (Trauner et al., 2010). High levels of 

intracellular triglycerides can lead to mitochondrial accumulation of electrons 

within the electron transport chain which when it reacts with oxygen forms 

superoxide radicals. Interestingly, high levels of intracellular triglycerides will 

also directly stimulate the production of reactive oxygen species. Therefore, 

central obesity is linked to oxidative stress as a result of increased production of 

ROS (Pou et al., 2007, Vincent and Taylor, 2005).  

Therefore the excessive plasma levels of NEFA observed in central obesity and 

the subsequent spillover of NEFA into the circulation with the deposition of lipids 

in non-adipose tissue sites can be considered the starting point of lipotoxicity. 
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 Lipotoxicity and endothelial dysfunction 1.4

Sustained elevation of NEFA can lead to a reduction in insulin-mediated 

vasodilation (Jensen, 2008). Pathophysiological levels of fatty acids, such as 

those seen in central obesity, have been shown to directly affect vascular 

reactivity and through impaired activity of the endothelial isoform of nitric oxide 

synthase (eNOS)(Williams et al., 2002). In addition, vascular function can be 

blunted by the activation of nicotinamide adenine dinucleotide (NADPH) oxidase 

leading to the generation of superoxides in the vascular wall and the 

mitochondrial electron transport chain leading to endothelial oxidative stress 

(Williams et al., 2002). 

In human obesity, oxidative stress is thought to lead to endothelial dysfunction 

through mechanisms which promote inflammation and lipid accumulation in the 

vascular wall (Matsuura et al., 2006). Using non-invasive techniques it has been 

shown that endothelial dysfunction is associated with raised plasma triglycerides 

concentrations (Rasmussen et al., 2009a) probably due to the formation of 

oxLDL. OxLDL can induce activation of the pro-inflammatory pro-thrombotic 

plasminogen activator inhibitor 1 (PAI-1) in endothelial cells (Zhao et al., 2009). 

Elevated levels of oxLDL can also lead to endothelial cell dysfunction via NADPH 

oxidase ROS production (Zhao et al., 2009, Silver et al., 2007). Therefore, in the 

context of lipotoxicity, hyperlipidaemia can lead to vascular damage either 

directly or via ROS generation. 

The peroxidation of lipids is associated with oxidative stress and subsequent 

endothelial dysfunction. Lipid peroxidation occurs when free radicals come into 

contact with lipoproteins (Davies and Guo, 2014). These free radicals are 

produced as a results of normal respiration and the resulting effects of both the 

free radical and the lipid peroxides are normally counterbalanced by antioxidant 

defence systems (Little and Gladen, 1999). However when this system is out of 

equilibrium the toxic effect of these lipid peroxides cannot be blunted and 

oxidative stress results. 

It has been suggested that 7β-hydroxycholesterol may be a marker of oxLDL, 

lipid peroxidation and oxidative stress (Bjorkhem and Diczfalusy, 2002, Yoshida 

and Niki, 2006, Iuliano et al., 2003, Vejux and Lizard, 2009). Direct attack on 
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cholesterol by ROS can lead to formation of the relatively stable 7- and 7β -

hydroxyl cholesterol, 7-ketocholesterol and 5,6-epoxycholesterol. Both 7-

ketocholesterol and 7-hydroxycholesterol have been shown to have a toxic effect 

on porcine aortic smooth muscle cells which may contribute to atherosclerosis 

(Hughes et al., 1994). 

 

Plasma oxysterol concentrations have been shown to be raised in metabolic 

syndrome, diabetes and hypercholesterolaemia (Endo et al., 2008). In adolescent 

females plasma oxysterols correlate with BMI, waist circumference and fasting 

plasma insulin and are suggested to be early markers of oxidative stress-

mediated metabolic dysregulation (Alkazemi et al., 2008). High intracellular 

levels of cholesterol can also lead to tissue oxysterol production (e.g. 22(R)-

hydroxycholesterol, 24(S)-hydroxycholesterol, 25-epoxycholesterol) via specific 

enzymes in liver, brain and macrophages and these oxysterols are detectable in 

plasma. Within the diabetic population, 7-ketocholesterol levels were reported 

to be significantly higher, and subjects exhibited increased oxidation potential 

(Murakami et al., 2000). Oxysterols may also interfere with the production of 

long chain polyunsaturated fatty acids (LC-PUFA) which are protective for the 

circulation (Risé et al., 2004).Williams et al explored the impact of adipose 

tissue distribution on endothelial function and found an increased waist-hip ratio 

(as a marker of central obesity), was an independent positive predictor of 

endothelial dysfunction in healthy study participants (Williams et al., 2006). 

These findings together with others described above may suggest that lower 

body fat may be protective against vascular dysfunction (Lissner et al., 2001, Bos 

et al., 2005, Snijder et al., 2004b). 

Therefore, although oxysterols have important physiological roles in steroid 

metabolism, in the context of obesity, oxysterols along with oxLDL and the 

promotion of ROS or superoxides will lead to an increase oxidative stress and 

continued endothelial dysfunction. 
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 Weight gain and body composition in pregnancy 1.5

During pregnancy women will gain weight in response to the increased vascular 

and metabolic demands on the maternal system as well as supporting the 

development and growth of the fetus. The amount of weight a woman gains 

during pregnancy varies greatly. Gestational weight gain (GWG) is markedly 

increased in multiple pregnancies (15-22kg) and adolescents (14.0-18.0kg) 

compared to singleton adult pregnancy (range 10.0-16.7kg) and is inversely 

correlated to prepregnancy BMI (IOM, 2009).  

 

Recent guidelines produced by the Institute of Medicine (IOM) have 

recommended total gestational weight gain based on prepregnancy BMI (IOM, 

2009). The IOM guidelines on gestational weight gain (IOM, 2009) have prompted 

suggested lifestyle interventions to reduce the incidence of adverse pregnancy 

outcome in the obese pregnant population (Nelson et al., 2010). 

Table 1.1: Gestational weight gain recommendations. This table illustrates the published 
recommendations for gestational weight gain by the Institute of Medicine, 2009 

BMI group Total gestational weight gain 
recommendations (kg) 

<18.5kg/m2 12.5-18.0 

18.5-24.9kg/m2 11.5-16.0 

25.0-29.9kg/m2 7.0-11.5 

>30kg/m2 <5-9 

 

Current research suggest that the impact of excessive GWG is variable 

(Rasmussen et al., 2009b). Some authors suggests that the evidence linking 

excessive GWG (defined as being above the IOM GWG recommendations) to 

gestational diabetes and antenatal hypertensive disorders at best ‘weak’ due to 

methodological variations. However, women who gain excessive weight in 

pregnancy have an increased likelihood to retain this weight in the postpartum. 

For these women the retention of this weight is significant as they then enter 

their next pregnancy with a higher BMI leading to an increased  risk of 

hypertensive disorders, gestational diabetes, caesarean section, stillbirth and 
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macrosomia (Villamor and Cnattingius, 2006). Published data has suggested that 

in an obese obstetric population a gestational weight gain of less than 7kg 

reduced the risk of pre-eclampsia, caesarean section and large for gestational 

age birth weights but a higher risk of small for gestational age infants (Kiel et 

al., 2007). A more recent study also found the increased risk of small for 

gestational age birth weight in obese women who gained less than 5kg during 

pregnancy and urges caution in recommending very low gestational weight gains 

in the obese and overweight population (Catalano et al., 2014). 

 

Previous studies have shown that in healthy pregnancy there is a mean total 

gestational weight gain of 10.4+0.53kg, with 6.08kg gained between 12 to 26 

weeks (Pipe et al., 1979). Total maternal fat mass increased rapidly in the first 

trimester and peaked at 28 weeks before falling slightly towards the end of 

pregnancy (Pipe et al., 1979). Interestingly the increase seen in the visceral fat 

compartment was concentrated in the third trimester when assessed 

longitudinally during pregnancy using ultrasonography (Kinoshita and Itoh, 2006). 

Assessment of the subcutaneous fat compartment has suggested that, consistent 

with the increase in total body weight, the main increase in this fat depot was 

seen between 10-30 weeks’ gestation (Taggart et al., 1967). 

There is evidence that during pregnancy obese women have similar or smaller 

increases in total weight, fat mass, % fat and total body fat compared to lean 

women (Catalano et al., 1998, Catalano et al., 1999, Ehrenberg et al., 2003, 

Soltani and Fraser, 2000). Anthropometric studies of skinfold thickness have 

shown that obese women put on more fat in the upper body subcutaneous 

compartment (suprailiac and subscapular skinfold), and that lean women put on 

more fat in the lower body compartment (mid-thigh skinfold) (Taggart et al., 

1967, Soltani and Fraser, 2000). What is not known is the precise anatomical 

distribution of gestational fat accumulation and how this may be linked to 

metabolic risk.  

In late pregnancy and the postpartum period, peripheral fat stores in the thighs 

and triceps are utilized to a greater extent (Sidebottom et al., 2001). In women 

who chose to breastfeed there was greater mobilisation of fat from the thighs 

compared to those who did not (Kramer et al., 1993).  In addition, for the 

women who did breastfeed, there was a reduction in waist hip ratio (WHR). This 
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was not found in women who did not breastfeed suggesting that breastfeeding 

improves utilisation of peripheral adipose tissue in the postpartum period 

(Kramer et al., 1993).  

 The impact of energy metabolism during pregnancy 1.6

There are important confounding variables which may play a role in fat 

accumulation and distribution. Basal metabolic rate as well as diet and exercise 

are important factors in fat accumulation in the general population. It would be 

anticipated that these aspects of energy metabolism would be important in body 

fat accumulation and distribution during pregnancy.  

For a well-nourished woman the energy costs of pregnancy can be considered as 

comprising of three components. First there is the energy cost of accumulating 

new tissue in the conceptus (including the fetus, placenta, amniotic fluid and 

the expansion of blood volume) approximated at 20 megajoules (MJ). Secondly, 

the energy required to deposit fat in mother and fetus (150 MJ), and finally the 

energy spent on maintaining this new tissue (150 MJ) (Prentice and Goldberg, 

2000). In order to support the energy cost of these three components, the 

maternal basal metabolic rate (BMR) must increase during pregnancy (Forsum 

and Lof, 2007). The timing of the reported increase in BMR varies, some authors 

suggest that this is concentrated in the third trimester – presumably as an 

anticipation to labour and breastfeeding (Lof et al., 2005). Other authors have 

found that the BMR increases throughout gestation (Butte et al., 2004), and that 

women with higher BMI have higher BMR. Further published data supports the 

theory that during pregnancy obese women show a significantly greater rise in 

their basal metabolic rate than non-obese women (Bronstein et al., 1996). This 

would seem logical as in the general adult population an increased BMI is 

associated with a rise in BMR. 

Previous assessment of maternal diet in pregnancy in humans has concentrated 

on the general obstetric population (Rogers and Emmett, 1998), the effect of 

social deprivation (Mouratidou et al., 2006) and maternal diet in the developing 

world (Cheng et al., 2009). These data, which largely predate the obesity 

epidemic, have been extremely informative in the context of healthy eating, but 
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little comparison of patterns of dietary intake in lean and obese pregnant 

populations has been performed.  

In the context of obese pregnancy, certain aspects of maternal diet are 

problematic, such as folic acid intake, iron status and essential fatty acid 

profile. Obese women are more at risk of having a pregnancy affected by neural 

tube defects, and high dose folic acid (5mg daily) has been shown to significantly 

reduce this risk (Super et al., 1991) and is now recommended (Fitzsimons and 

Modder, 2010). In the non-pregnant, obese women are more folate-deficient 

than leaner women (Laraia et al., 2007). Antenatal anaemia has been shown to 

be extremely common in a British teenage obstetric population and 29.2% of 

these women were overweight or obese (Baker et al., 2009). Fatty acids, 

especially LC-PUFA, are essential for the cell membrane synthesis and play 

important key roles in neural development and maturation in the offspring (Uauy 

et al., 2000). The fetus is dependent on maternal circulatory delivery of LC-

PUFA and the placenta expresses a number of fatty acid specific binding proteins 

which facilitate transport into the fetal system (Haggarty, 2002). In non-obese 

pregnancies complicated by pre-eclampsia and intrauterine growth restriction, 

maternal erythrocyte measurements of LC-PUFA (specifically n-6 and n-3) were 

over 50% lower than compared to healthy controls (Mackay et al., 2012). 

Recent guidance on the management of obese pregnancies (Fitzsimons and 

Modder, 2010), highlighted the need for advising women about the importance 

of a healthy diet during pregnancy. The only specific nutritional guidance for 

obese woman regarded increased supplementation of folic acid and vitamin D 

(5mg and 10ug daily respectively), and did not discuss other aspects including fat 

and complex carbohydrate consumption. 

British nutritional guidance (Vulliemoz et al., 2010) discusses dietary reference 

values (DRV) for energy intake and some micronutrients for pregnant women. 

Interestingly, the recommended increase in energy intake is only required in the 

third trimester 8117kilojoules [kJ] (1940 kilocalories [kcal]) to 8954kJ (2140 

kcal, which translates to an increase of 837kJ (200kcal) (DOH, 1991). There is no 

distinction for maternal age in the UK recommendations. Recommendations from 

Australian sources (nhmrc.gov.au, 2006) suggest that although there is no 

additional energy intake requirement in the first trimester, energy intake should 
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increase by 1400kJ (335 kcal) in the second trimester, and 1900kJ (454kcal) in 

the third trimester. Australian recommendations for energy requirements are 

calculated on predicted basal metabolic rate (BMR) multiplied by physical 

activity level (PAL) and are also related to body mass index (BMI) of the 

individual. Thus energy requirement in pregnancy would be 8100kJ, 9500kJ and 

10000kJ, and 7900kJ, 9300kJ and 9800kJ respectively for a 19-30 year old and a 

31-50 year old expectant mother across gestation.  

UK recommendations for daily protein intake suggest an increase from 45g/day 

to 51g/day. There are no specific values for the daily intake of carbohydrate and 

total fat and it is recommended that the proportion of energy derived from 

carbohydrate sources remains at 50% and from fat at 35%.  

The Food and Nutritional Board of the Institute of Medicine, published a series of 

guidance reports on DRV for nutrients in North America and Canada across all 

ages including pregnancy and lactation (IOM, 2002). During pregnancy, there 

should be an increase in daily protein (46g to 71g) and carbohydrate (130g to 

175g). Fat intake was not determined, on the basis that all individuals should try 

to keep their dietary intake of cholesterol, trans fatty acids and saturated fats 

to a minimum.  

Another aspect of energy metabolism which can have an impact on gestational 

weight gain and adipose tissue accumulation is physical activity during 

pregnancy. Guidance on physical activity during pregnancy encourages exercise 

on most days but not at maximum aerobic capacity (RCOG, 2006). Currently 

there is substantial interest in the benefits of exercise maintenance and 

commencement in pregnancy. Not only is aerobic exercise recommended but 

resistance training has been found to be safe and beneficial for pregnant women 

(White et al., 2013). Maintaining exercise programmes and even starting a new 

regimen during pregnancy has been suggested to decrease depression, anxiety 

and fatigue (Gaston and Prapavessis, 2013). In terms of physical health, authors 

have suggested that regular exercise in the second trimester of pregnancy may 

attenuate GDM-related complications such as fetal macrosomia and the need for 

caesarean section (Barakat et al., 2013). Investigation in mouse models has also 

suggested that exercise prevents placental vascular endothelial growth factor 

(VEGF) gene expression which may have an impact on angiogenesis and pre-



Chapter 1  37 

eclampsia risk (Joles and Poston, 2010). The available data which focus on the 

impact of exercise and diet in obese pregnancy are limited (Gardner et al., 

2011). Interventional studies are ongoing (Poston et al., 2013) suggesting a 

change in dietary (lower glycaemic index and dietary saturated fat), rather than 

exercise alone may have beneficial effects. For obese women it has been 

suggested that there are many barriers (available time, concerns regarding fetal 

health) to taking part in an exercise programme. Obese women who were more 

likely to partake in exercise were psychologically more positive about the impact 

of exercise on their health and had better family and health professional support 

(Sui and Dodd, 2013). Novel factors which appear to improve involvement in 

exercise in maternal obesity such as dog walking activities have been suggested 

(Westgarth et al., 2012). 

As highlighted above, obese women have similar or smaller increases in 

percentage fat and total body fat mass than lean women (Kinoshita and Itoh, 

2006, Ehrenberg et al., 2003, Catalano et al., 1999, Soltani and Fraser, 2000, 

Okereke et al., 2004). It is not clear whether minimum gestational weight gain 

or perhaps loss of weight during pregnancy will necessarily improve metabolic 

profile and downstream consequences for obese women. In addition, healthy 

pregnant women store fat earlier in pregnancy despite little change in energy 

intake (O'Sullivan, 2009). Thus the location and timing of fat accumulation in 

pregnancy, its association with energy intake and expenditure and its impact of 

obesity and the subsequent metabolic syndrome of pregnancy has not been 

explored. 

Based on the above evidence diet, exercise and metabolic rate are significant 

confounding variables on total weight  and fat gain during pregnancy and may 

work with the above interventions or against them within the obese population. 
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 Changes in lipid and carbohydrate metabolism during 1.7

healthy pregnancy 

During pregnancy a multitude of complex alterations in lipid, carbohydrate and 

inflammatory metabolism take place in order to establish a healthy maternal 

adaptation to pregnancy. Early pregnancy is characterised by an anabolic state 

and late pregnancy by a more catabolic profile to optimise energy utilisation by 

the fetus for growth and development. As mentioned above, maternal fat mass 

increases significantly in the earlier stages of pregnancy when the fetal energy 

demands are less. This increase in maternal fat mass may be brought about 

partially by behavioural changes, including changes in activity and diet, but also 

as a result of a shift towards lipogenesis promoting the storage of adipose tissue. 

Plasma triglycerides increase gradually leading to a two- to three-fold increase 

in plasma concentration which peaks at term before falling to pre-pregnancy 

levels at six weeks post partum (Salameh and Mastrogiannis, 1994). Total 

cholesterol levels, including very low density lipoprotein (VLDL), LDL and HDL 

are increased by 50-60% by term and all lipoprotein particles have increased 

their cholesterol content by term (Salameh and Mastrogiannis, 1994).  In 

addition, in early pregnancy insulin sensitivity remains normal or slightly 

improved (Catalano et al., 1991). Together, along with the effects of oestrogen, 

progesterone and cortisol, adipose tissue accumulation is favoured (Huda et al., 

2009).  

 

Healthy pregnancy shows a progressive increase in insulin secretion with a 

decrease in insulin sensitivity which is approximately half of that of non-

pregnant women (Huda et al., 2009). A modest rise in fasting glucose levels is 

seen in line with the above adaptations but in healthy pregnancy this does not 

cross the threshold of GDM. Interestingly central obesity in early pregnancy has 

been shown to be linked to glucose intolerance in late gestation (Martin et al., 

2009). 

 

In late pregnancy, when fetal growth demands are at their maximum, the 

metabolic environment favours lipolysis and an insulin resistant profile that 

allows the mother to utilise fat as an energy source for labour and lactation and 

so the fetus can preferentially utilise circulating glucose for growth. In rat 
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models, there is an increase in mRNA expression hormone-sensitive lipase and a 

reduction in expression of lipoprotein lipase which promotes the rise in free 

fatty acids and glycerol seen in pregnancy (Martin-Hidalgo et al., 1994).  

 

 Vascular adaptation in healthy pregnancy 1.8

The maternal cardiovascular system undergoes many changes from early in 

pregnancy in order to meet to oxygen demands of both fetus and mother.  

By eight weeks’ gestation, cardiac output has increased by 20% and will increase 

by a further twenty percent by the third trimester. The change in cardiac output 

is facilitated by an increase in stroke volume but also by an increase in basal 

heart rate (Nelson-Piercy, 2006). However the primary vascular adaptation seen 

in pregnancy is peripheral vasodilatation. 

 

Longitudinal assessment of healthy pregnancies have shown a fall in blood 

pressure during the second trimester before a rise in the third trimester to pre-

pregnancy levels (Grindheim et al., 2012). The peripheral vasodilation which 

leads to the fall in blood pressure is mediated predominantly by endothelium- 

dependent factors which are upregulated by oestradiol and prostaglandins 

(Nelson-Piercy, 2006).  

 

Because endothelial dysfunction in the context of cardiovascular disease is 

systemic, assessing the peripheral circulation can be used as a surrogate marker 

for cardiovascular disease (Anderson et al., 1995). Peripheral microvascular 

function can be assessed by non-invasive or invasive techniques (Kasprzak et al., 

2006). Flow mediated dilation (FMD) by brachial artery ultrasonography and 

peripheral arterial tonometry (PAT) have been used to assess peripheral macro- 

and microvascular function respectively. Although these techniques have been 

found to correlate significantly with each other, FMD was found to be more 

reproducible (Onkelinx et al., 2012). Within pregnancy however, FMD did not 

reflect the vasodilatation seen as gestation progressed (Miyague et al., 2013). 

Peripheral arterial tonometry has also been shown to be less reliable in 

pregnancy as women were more vasodilated and therefore the change in the 

diameter of peripheral vessels during reactive hyperaemia was not observed 

(Carty et al., 2012). Other groups have focused on the use of laser doppler 

imaging (LDI) for microvascular assessment function in pregnancy. This 
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technique has been shown to be reproducible and reliable (Jadhav et al., 2007, 

Ramsay et al., 2002b, Ramsay et al., 2002a) This approach uses a vasodilator 

agent which is delivered transdermally by iontophoresis and the hyperaemia is 

then captured as an image by the laser. Published data have shown that in the 

third trimester obese women have a poorer response to acetylcholine (ACH) 

iontophoresis than lean women, indicating poorer endothelial dependent 

vasodilatation (Ramsay et al., 2002a). Further studies by the same group 

assessed microvascular function throughout gestation and found that although 

both lean and obese women exhibited improvement in endothelial microvascular 

function, obese women started pregnancy with pre-existing endothelial 

dysfunction and did not show as much improvement across gestation as lean 

women (Stewart et al., 2007a).  

 

It is well documented that during pregnancy there is a significant improvement 

in endothelium dependent vascular function (Ramsay et al., 2002a, Stewart et 

al., 2007a, Dørup et al., 1999). In healthy pregnancy, the improvement in 

endothelial function is thought to be related in part to increased nitric oxide 

activity which contributes to the fall in peripheral resistance in the systemic 

vascular system (Anumba et al., 1999). In healthy premenopausal women 

oestrogen has a protective role on vascular health (Barrett-Connor, 2013). It has 

been reported that in human endothelial cells the G protein-coupled estrogen 

receptor (GPER) is found in intact intracellular membranes and enhances eNOS 

activation and NO formation which may provide a pathway for oestrogen 

mediated vascular protection (Meyer et al., 2014). In addition, oestrogen has 

been shown to attenuate the effects of vascular injury by inhibiting the 

expression of TNFα and the cascade of inflammation via the  NFκB signalling 

pathway (Xing et al., 2009). In pregnancy plasma oestrogen concentration rises 

(Branch, 1992) and therefore the above mechanism may also promote an 

improvement in vascular function.  

 

In adult populations vascular remodelling and improvement has been stimulated 

by shear stress at the level of the blood vessel (Rodríguez and González, 2014), 

and it has been suggested that this pathway can be promoted through regular 

exercise (Kim et al., 2014). In vitro studies have compared subcutaneous 

arteries from pregnant and non-pregnant women subjected to shear stress 
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indicated that in pregnancy there is greater relaxation of these vessels (Cockell 

and Poston, 1997), which is suggested as an important mechanism for the fall in 

peripheral resistance during pregnancy.   

 

Valdes et al comprehensively described the additional factors which are thought 

to play a part in the improvement in pregnancy related endothelial function, 

such as prostacyclin, kallikren, angiotensin and VEGF which appear to inhibit 

vasoconstriction pathways (Valdes et al., 2009).  

 

 Clinical impact of maternal obesity 1.9

The increase in maternal obesity is now well established in the pregnant 

population and obstetric practice, with an estimated one in five pregnant 

women being obese in the UK (Heslehurst et al., 2010). Epidemiological data 

from Scotland has indicated that the incidence of maternal obesity in the 

obstetric population has doubled, rising from 10% to 19% over a ten year period 

(Kanagalingam et al., 2005).  Similar trends have been seen in American 

populations with a rise of almost 70% in the rate of maternal obesity from 1993 

to 2003 (Kim et al., 2007). The impact of maternal obesity on maternal mortality 

rates was highlighted in 2007, when it was estimated that 15% of women who 

died from causes directly related to pregnancy were obese (CEMACH, 2007). 

More recent reports indicate that 30% of mothers who died from pregnancy 

related causes were obese (CEMACH, 2011). Despite the fact that maternal 

mortality remains very low in the UK, this is a startling figure to see in black and 

white. 

The increased rate of maternal obesity has had ramifications for all aspects of 

female reproduction, with maternal adiposity being strongly associated with an 

increase of essentially all maternal and fetal complications (table 1.2). 

Observational studies have demonstrated that obesity in pregnancy increases the 

risk of antenatal complications such as GDM, pregnancy induced hypertension 

and PET (Gate and Ramsay, 2007). Furthermore, data examining the impact of 

obesity in women under the age of 19 showed a stepwise increase in the risk of 

pre-eclampsia and gestational diabetes (Sukalich et al., 2006) with increasing 

BMI. It is a concern that such a young population, with a long reproductive 
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potential, are exhibiting such serious obstetric complications at this age. In 

addition, an increase in BMI between pregnancies has been highlighted as a risk 

factor for PET, gestational hypertension, GDM, caesarean section and large for 

gestational age birth weight in a subsequent pregnancy (Villamor and 

Cnattingius, 2006).  

The risk of other pregnancy-related complications such as venous 

thromboembolism, caesarean section, postpartum haemorrhage, surgical wound 

infection, post-operative endometritis and prolonger hospital stay are all 

increased in maternal obesity (Jarvie and Ramsay, 2010).  For the fetus, there 

are increased risks of fetal anomalies, birth trauma, neonatal tachypnoea and 

admission to the neonatal high dependency units (Gate and Ramsay, 2007, Jarvie 

and Ramsay, 2010).  

Consequently the increased risk of maternal and neonatal complications 

secondary to maternal obesity results in a significant rise in socioeconomic costs 

(Chu et al., 2008).  

Table 1.2 - Potential effects of maternal obesity. The table below is adapted from Jarvie E & 
Ramsay J, Obstetric management of obesity on pregnancy Semin Fetal Neonatal Med.(2010) and 
illustrates the impact of maternal obesity at all stages of a woman’s reproductive life. 

  Medical Complications  Technical 
Complications 

Pre-pregnancy   Menstrual disorders   

 Infertility   

Early-pregnancy   Miscarriage  Difficult Ultrasound 
Examination 

 Fetal Anomalies   

Antenatal  Pregnancy induced 
Hypertension 

 Auscultation of the 
fetal heart 

 PET   

 GDM   

 Venous Thromboembolic 
Disease 

  

Intrapartum  Increased induction of 
labour 

 Operative issues 
surgical access 
restrictions, increased 
time of surgery and 
increased blood loss 

http://www.ncbi.nlm.nih.gov/pubmed/?term=jarvie+ramsay
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 Caesarean Section 
(elective & emergency) 

 Anaesthetic issues – 
difficulties siting 
regional anaesthesia, 
increased failed 
intubation risk 
Intrapartum fetal 
monitoring  

Postpartum  Haemorrhage   

 Infection   

 Venous Thromboembolic 
Disease 

  

Fetal  Macrosomia  Birth injury 

 Fetal Distress   

 Perinatal 
Morbidity/Mortality 
Reduced breast feeding 
rate 
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 Obesity and the metabolic syndrome of 1.10

pregnancy 

Maternal obesity is linked to increased perinatal complications and there is a 

body of literature as mentioned which suggests that obese women gain weight in 

central body compartments. This suggests that obese women are at risk of 

developing the metabolic syndrome as pregnancy progresses. As metabolic 

syndrome increases the risk of cardiovascular disease and diabetes in the general 

adult population due to dysregulated fatty acid metabolism and lipotoxicity, 

then in pregnancy, lipotoxicity potentially may be a factor in the development 

of hypertensive disorders and GDM. 

Cross sectional studies have indicated that in the third trimester of obese 

pregnancies there is exaggerated hypertriglyceridaemia associated with an 

abnormal lipid profile (high VLDL, low HDL concentration), hyperinsulinaemia 

and increased inflammation (Ramsay et al., 2002a). From early pregnancy, it has 

been observed that obese mothers are less insulin sensitive than overweight and 

normal weight mothers (Catalano et al., 1999, Catalano and Ehrenberg, 2006). 

Further studies have confirmed that, in early pregnancy, obese women had 

higher triglycerides, increased insulin resistance and higher markers of 

inflammation compared to lean women (Stewart et al., 2007a). In addition 

gestational CRP levels in pregnancy were significantly correlated to pre-

pregnancy BMI (Retnakaran et al., 2003). High levels of inflammatory markers, 

such as CRP, correlate with impaired endothelial function which may partly 

explain the altered vascular function seen in obese pregnancy (Retnakaran et 

al., 2003). It is unclear whether this is established before pregnancy, with obese 

women entering pregnancy with a more pro-inflammatory and insulin resistance 

profile or if there is an exaggerated adaptive response early in gestation. 

The abnormal lipid profile in obese pregnancy also includes higher plasma levels 

of LDL (Ramsay et al., 2002a) particularly of smaller size (Meyer et al., 2013). In 

addition, the ease at which LDL is oxidised has been shown to directly correlate 

with maternal BMI (Sánchez-Vera et al., 2007) this  may be related to an 

increased proportional of readily oxidisable small, dense LDL. Interestingly in 

obese women with GDM the relationship between LDL oxidisability and BMI was 

strengthened indicating the high risk nature of GDM and also suggesting that 
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obesity lowers the threshold of the lipotoxic effect of LDL (Sánchez-Vera et al., 

2007). When metabolic risk factors (such as insulin resistance, low HDL and 

raised triglycerides) were measured in early pregnancy, they were found to 

correlate more strongly with visceral fat thickness than BMI (Bartha et al., 2007) 

suggesting that body fat distribution in pregnancy plays a key role in the 

production of lipotoxic biomarkers. 

 

Figure 1.1 Maternal metabolic syndrome. Schematic representation of the effect that maternal 
obesity has on metabolic and inflammatory pathways which may explain the increased risk of 
hypertensive disorders observed in obese pregnancies 
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 Oxidative stress in pregnancy 1.11

Oxidative stress has been linked to microvascular damage. A number of 

molecules have been suggested as markers of oxidative stress (Matsuura et al., 

2006) such as ROS and lipid peroxides. It has been proposed that in maternal 

obesity the poorer endothelial improvement is related to a pathway of increased 

plasma lipids with the promotion of oxidative stress (Vincent and Taylor, 2005). 

Endothelial dysfunction can be measured by the physiological and ex vivo 

methods suggested above but also by looking at in vivo biomarkers of endothelial 

activation such as sVCAM-1 and sICAM-1 which have been found to be elevated in 

pre-eclamptic pregnancies (Farzadnia et al., 2013), where endothelial damage is 

a hallmark of the disease. 

 

The impact of pregnancy on the levels of lipid peroxides has been reviewed 

previously (Little and Gladen, 1999) and the data are rather equivocal. When 

compared to non-pregnant controls, lipid peroxides in the first trimester were 

sometimes higher and sometimes lower in the pregnant group. By the second 

trimester there was an observed increase of 10-50%, and in the third trimester 

these levels sometimes fell. When compared with healthy pregnancies, all 

diabetic women (including type 1, type 2 and GDM) had higher levels of lipid 

peroxides, which may be related to the increased risk of vascular complications 

in pregnancy associated with diabetes (Toescu et al., 2004). Lipid peroxidation 

products have been noted to be markers of oxidative stress (Niki, 2008). In 

circumstances where there are elevated fatty acids and triglyceride 

concentrations – as in obese pregnancy – lipid peroxidation may be enhanced 

leading to increased oxidative stress and subsequent endothelial damage. High 

lipid peroxide levels were particularly apparent in pregnant women with type 2 

diabetes– a population characterised by a predisposition to central obesity 

(Toescu et al., 2004).  

The LDL-III subfraction of cholesterol is a readily oxidised form (Griffin, 1999), 

which can be a potential source of lipotoxic oxysterols for both the fetus and the 

mother although data is limited. In maternal obesity, approximately a third of 

women had at least 50% of LDL in the smallest fraction LDL-III, indicative of an 

atherogenic phenotype, compared to lean women who had no LDL in the LDL-III 

fraction (Meyer et al., 2013). It is possible that in the context of maternal 
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obesity, this lipoprotein is an important factor in the development of 

lipotoxicity. 

The literature on oxysterols during pregnancy is limited. Gestational increases in 

(7-ketocholesterol, 7 alpha and 7 alpha-hydroxycholesterol and the total sum of 

5 alpha, 6 alpha and 5 beta, 6 beta-epoxycholesterols) have been reported in 

healthy pregnancy, most notably in the second and third trimester, and 

oxysterol levels are higher in pregnancies in women with type 1 diabetes 

(Bodzek et al., 2002). In non-pregnant type 2 diabetics, high plasma oxysterol 

levels are particularly observed when plasma LDL levels are above 3.62mmol/L 

(Endo et al., 2008), and LDL concentrations frequently exceed this level in 

overweight and obese women in late gestation (Stewart et al., 2007a, Ramsay et 

al., 2002a).  

Oxysterols can bind and activate both the LXRα and LXRβ receptors which are 

important regulators of lipid and cholesterol metabolism (Jakobsson et al., 

2012). Furthermore (Peet et al., 1998) oxLDL can inhibit trophoblastic invasion 

via interaction with LXRβ receptors expressed by human placenta. Oxysterol 

activation of the LXRβ receptor could contribute to the observed increase in 

placental complications such as intrauterine growth restriction (IUGR) and PET in 

obese pregnancy (Pavan et al., 2004).  

 

In summary, there are significant data which suggest that the biomarkers of 

lipotoxicity may be linked to endothelial dysfunction in the mother and 

placenta. Interestingly, little research has looked at the gestational changes in 

these markers of lipotoxicity and their impact on microvascular function in 

pregnancy. In addition, what is not explored in the current literature is whether 

differences between lean and obese women can be explained by either the 

presence of central adiposity at the beginning of pregnancy or the accretion of 

adipose tissue in the central distribution during gestation.  
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 Consequences of lipotoxicity in pregnancy 1.12

Obese women enter pregnancy with poorer overall vascular function compared 

to lean women (Stewart et al., 2007a). In addition, during pregnancy although 

both lean and obese women showed an improvement in vascular function, the 

endothelium- dependent microvasculature improvement was blunted in obese 

pregnancies (Stewart et al., 2007a). A high risk group for early onset coronary 

artery disease is women with familial hypercholesterolaemia, an autosomal 

dominant condition characterised by elevated LDL, tendon xanthomas and 

premature death (Austin et al., 2004). Women with familial 

hypercholesterolaemia exhibit increased lipid levels, pro-coagulant activity and 

enhanced endothelial activation during pregnancy (Amundsen et al., 2007). This 

high-risk group also exhibits a reduction in uterine blood flow during pregnancy 

which indicates increased uteroplacental vascular resistance with subsequent 

risk of PET and IUGR (Khoury et al., 2009). As well as an intrinsic elevated 

cholesterol concentration, in a mouse model of PET it has been shown that a 

high fat diet can lead to higher levels of fat infiltration in the maternal liver 

(Sun et al., 2012). However, early onset pre-eclampsia tends to have a more 

severe clinical impact and thus these findings may not be applicable to other 

gestational hypertensive disorders. However, these findings do support 

dysfunctional lipid metabolism consistent with the development of lipotoxicity in 

early onset PET.  

In pregnancies which are complicated by GDM, women are insulin resistant and 

hyperlipidaemic (Catalano et al., 1999). This group show evidence of increased 

oxidative stress where the degree of hyperglycaemia correlates with lipid 

peroxide concentrations (Chen and Scholl, 2005). Pregnancies affected by GDM 

are also found to have poorer endothelial function than control women (Paradisi 

et al., 2002).  

 

Although these are two examples of extreme metabolic conditions (GDM and 

familial hypercholesterolaemia), in conjunction with the data in the non-

pregnant population relating high lipid levels to oxidative stress and endothelial 

dysfunction, the evidence suggests that lipid abnormalities arising from NEFA 

excess could contribute to the observed endothelial dysfunction of obese 

pregnancy.  
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 The potential impact of lipotoxicity on offspring 1.13

health 

Babies born to overweight and obese mothers have been noted to have 

significantly more total fat mass than babies born to mothers of normal weight 

(Hull et al., 2008). In addition to having more body fat, babies of obese mothers 

have been shown to have significantly higher levels of insulin resistance 

(expressed as HOMA) and inflammation (IL6 levels) in umbilical cord blood 

samples obtained at delivery compared to the offspring of lean women (Catalano 

et al., 2009). If these babies are already born with a degree of insulin resistance 

and chronic inflammation there may to a propensity to childhood obesity and the 

development of vascular dysfunction in later life (Freeman, 2010). In terms of 

fetal complications, excessive GWG was strongly correlated with the incidence 

of babies born small or large for gestational age and the risk of an unplanned 

caesarean section. Interestingly, excessive GWG-associated risk of excessive 

fetal growth and large for gestational age babies was linear even within cohorts 

of women who were of a normal weight (Dietz et al., 2009).  

 

It is now recognised that the intrauterine environment has the potential to 

impact on early fetal growth and development and subsequent adult ill-health, 

including potential programming of future obesity (Freeman, 2010, Catalano, 

2003). Placentae from obese pregnancies have shown accumulation of 

macrophages and increased expression of the inflammatory cytokines IL6, TNF-α, 

IL1 and increased infiltration of CD14+ cells (Challier et al., 2008). In addition, 

maternal plasma levels of CRP have been shown to be positively associated with 

the presence of atherosclerosis in childhood aortic samples (Liguori et al., 2008).  

It is not only within the maternal and fetal circulation that lipotoxicity may 

exert an effect. The LXR receptors have been proposed to be important in 

placental cholesterol transport from the mother to the fetus (Plosch et al., 

2007). The LXRα and LXRβ receptors have been detected in early gestation 

placental tissue (Marceau et al., 2005) and could act as a binding site for 

oxysterols within the placenta. Oxysterols have shown a high affinity to the LXRα 

receptor and through this mechanism may prevent the esterification of 

cholesterol, leading to a further build up of oxysterols (Bjorkhem and Diczfalusy, 

2002). Oxidised LDL contains a high proportion of oxysterols, and these have an 



Chapter 1  50 

affinity to the LXRβ receptors. Through activation of these receptors, oxysterols 

and this oxidised LDL have been shown to inhibit trophoblastic cell invasion in 

human in vitro models (Pavan et al., 2004). Inhibition of trophoblast cell 

invasion would have serious consequences not only for successful early 

embryonic development but for maintenance of a healthy pregnancy across 

gestation. However, oxysterols are involved in important pathways such as sonic 

hedgehog signalling proteins, and deficiencies with in these pathways can lead 

to fetal structural anomalies such as Smith–Lemli–Opitz syndrome (Javitt, 2007).  

In women with type 1 diabetes, a hyperlipidaemic group with a significant 

increased risk for fetal anomalies, there were 49 alterations in gene expression 

at important stages of placental energy metabolism. (Radaelli et al., 2009). Two 

thirds of these alterations took place within lipid pathways and 9% in regulatory 

glucose pathways. In addition, this data also studied placentae from women with 

GDM which suggested that the genes responsible for fetoplacental lipid 

metabolism were also unregulated when compared to non-diabetic pregnancies. 

In term primary trophoblast cells, raised insulin and NEFA levels enhance the 

formation of fatty acid droplets within the placentae (Elchalal et al., 2005). In 

the fetuses of non-diabetic women with established hypercholesterolemia there 

were significantly more aortic atherosclerotic plaques associated with oxidised 

LDL in monocytes (Napoli et al., 1997). The presence of LDL in the intima of 

these aortic samples suggests that risk of cardiovascular disease is established in 

utero.  

In both human and animal models, the placentae could be a site of fatty acid 

accumulation. In an early onset pre-eclamptic mice models, placental histology 

has shown an increased in lipid deposition when the dams were exposed to a 

high fat diet (Sun et al., 2012). In human studies, placentae from obese women 

have shown a greater accumulation of lipid in placental macrophages in an 

analogous way to adipose tissue (Challier et al., 2008). Thus the placenta may 

act as a site for ectopic fat accumulation in obese pregnancy similar to skeletal 

muscle, liver and brain seen in adult obesity.  In non-human animal models a 

diet which is high in cholesterol can lead to lipotoxicity of the fetal liver 

(McCurdy et al., 2009). Interestingly, changing the maternal diet to a low fat 

version improved fetal triglyceride levels, indicating how vulnerable fetal end 

organs are to lipotoxicity.  



Chapter 1  51 

 The utility of maternal BMI as an indicator of 1.14

high risk pregnancy 

One in five women of reproductive age is obese, and obstetric clinics often have 

an antenatal obstetric population where over 20% of patients are obese 

(Heslehurst et al., 2010) with significant socioeconomic costs directly 

attributable to the increased risk of maternal and neonatal complications. The 

current lack of understanding as to how, where and when mothers put fat on 

during pregnancy makes it difficult to advise obese mothers how to manage their 

weight during pregnancy. However, not all obese women are at risk of 

developing antenatal and fetal complications linked to their obesity (Jarvie and 

Ramsay, 2010) (table 1.2), and in addition, a smaller but still significant number 

of lean women may develop metabolic complications of pregnancy. Direct 

evidence for lipotoxicity, which may only occur in a proportion of obese 

pregnancies, which may link maternal obesity and placentally-related adverse 

pregnancy outcome, is lacking. The placenta may transmit metabolic 

abnormalities resulting from lipotoxicity to the offspring via in utero 

programming and hence there could be far-reaching consequences for offspring 

health. 
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Figure 1.2 Summary of the potential obstetric complications associated with maternal 
obesity. The diagram illustrates the increased incidence of metabolic obstetric complications which 
are more common in obese pregnancy, but still occur in a lean obstetric population. These 
complications include both maternal and fetal conditions which are explained in the figure key for 
reference. 

 

Identification of women who are at risk of lipotoxicity-mediated pregnancy 

complications is required in order to ensure that additional antenatal 

surveillance is focused on the group of women who are at increased risk of these 

obstetric complications. Research in the field of cardiovascular and diabetic 

medicine suggests ways of manipulating lipid metabolism using both lifestyle and 

pharmacological interventions that may have potential utility in obese 

pregnancy. Because of the potential for harm to both mother and baby, a study 

of the degree, causes and impact of lipotoxicity in obese pregnancy is warranted  
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 Hypothesis 1.15

The 70-100% increase in maternal obesity over the last decade has had 

ramifications for all aspects of female reproduction, with maternal adiposity 

strongly associated with an increased risk of maternal and fetal complications. 

Our hypothesis is that in lean pregnant women, fatty acids required for fetal 

growth are efficiently stored and mobilised from lower body fat depots. In obese 

pregnant women, lower body fat depots are replete and/or there is a preference 

to store fat centrally with the potential of fatty acid spillover and lipotoxicity. 

Lipotoxicity can be defined as the vascular, metabolic and ultimately clinical 

manifestation of excessive plasma fatty acids and ectopic fat deposition. In this 

thesis we suggest that it is lipotoxicity which leads to maternal endothelial 

dysfunction, decreases trophoblast invasion and influences placental metabolism 

and function (figure 1.3) 
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This is the pathological link between maternal obesity and adverse “metabolic” 

pregnancy outcomes such as pregnancy-induced hypertension and PET and may 

have consequences for the programming of obesity in the offspring. 

 

 

Figure 1.3 Fatty acid metabolism in pregnancy. The figure above is adapted from Jarvie E et al 
‘Lipotoxicity in obese pregnancy and its potential role in adverse pregnancy outcome and obesity in 
the offspring’, Clin Sci (Lond). 2010. Central fat accumulation during pregnancy leads to fatty acid 
overspill from adipose depots and lipotoxicity. Lipotoxic effects include maternal endothelial 
dysfunction, decreased trophoblast invasion and altered placental metabolism. These may result in 
adverse pregnancy outcome (such as pre-eclampsia or miscarriage) and programming of obesity in 
the offspring. A lower-body fat accumulation allows ‘safe’ storage of fatty acids and a normal 
metabolic and physiological adaptation to pregnancy with appropriate nutrient transfer to the 
offspring. 

  

http://www.ncbi.nlm.nih.gov/pubmed/?term=jarvie+lipotoxicity
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 Study aims and objectives 1.16

The aim of the study reported in this thesis was to assess the impact of 

anatomical fat distribution and accumulation throughout pregnancy in both lean 

and obese women and examine its importance on metabolic and vascular 

function. Biomarkers of lipotoxicity and vascular function will be considered the 

consequence of this process. 

 

Objective 1 (Chapter 3) 

To carry out detailed anthropometric assessment of lean and obese women 

during pregnancy in order to test the hypothesis that the anatomical variation in 

accumulation of subcutaneous adipose tissue in lean and obese women is 

different and that this has an impact on the metabolic response seen in 

pregnancy.  

 

Objective 2 (Chapter 4) 

To assess different aspects of energy metabolism in lean and obese women 

throughout pregnancy to assess whether differences exist between lean and 

obese pregnancies and if this relates to adipose tissue accretion and distribution 

during gestation. To record measurements of BMR, substrate utilisation, physical 

activity and diet throughout pregnancy.  

 

Objective 3 (Chapter 5) 

To assess whether gestational changes in markers of lipid and carbohydrate 

metabolism and inflammatory status are related to site of body fat accumulation 

in pregnancy. Plasma concentrations of biomarkers of carbohydrate (fasting 

glucose, fasting insulin), lipid (total cholesterol, total triglyceride, HDL and 

NEFA) metabolism and inflammatory profiles (CRP, IL6, TNF) will be 

quantitated. 

 

Objective 4 (Chapter 6) 

To examine the impact of anatomical fat accumulation during pregnancy on the 

gestational improvement of vascular function and markers of lipotoxicity. To 

explore whether a difference in body fat distribution between lean and obese 

women in combination with lipotoxicity may be a mechanism for any differences 

in vascular function between these groups.  
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Chapter 2 - General Methods 

2.1 Introduction 

This chapter discusses the inclusion and exclusion criteria, the formulation of 

the patient information leaflets and the recruitment process itself. The next 

section in this chapter describes each of the investigation techniques employed 

and the protocols which were used in the study. This study was reviewed and 

approved by the West of Scotland Research Ethics Committee 3 (REC reference 

09/S0701/105), and Greater Glasgow & Clyde NHS Research and Development 

(R&D reference GN09KH553).There were no competing interests. 

 

2.1.1 Inclusion & exclusion criteria 

Healthy Caucasian women between the ages of 16-40 years with no significant 

past medical history were invited to participate in this study. The cohort 

recruited was further selected based on BMI – either less than 25kg/m2 or greater 

or equal to 27kg/m2. The BMI groups were widened (initially <25kg/m2 and > 30 

kg/m2) after the rate of recruitment to the obese group remained poor despite 

adequate study publicity and additional assistance with recruitment. 

 

Parous women with previous healthy pregnancies with no obstetric or fetal 

complications were not excluded from participation. This was decided after 

discussion with senior Obstetricians, as it was felt that a previous healthy 

pregnancy would not have an impact on the index pregnancy. However, any 

women was excluded if they had suffered a previous fetal loss beyond 12 weeks’ 

gestation or a miscarriage of any gestation secondary to fetal anomaly (e.g. 

Edward’s syndrome) or complex maternal condition (e.g. confirmed 

thrombophilia).  

 

Women with known metabolic disease such as diabetes mellitus, thyroid disease 

or polycystic ovarian syndrome (PCOS) and cardiovascular disease were excluded 

from recruitment as these women are known to have higher risks of metabolic 

disease in pregnancy.  

Pregnancies achieved through assisted conception, including ovulation induction 

were excluded because of the potential link with anovulatory infertility and 
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PCOS. Women with multiple pregnancies were also excluded from the study as 

these pregnancies are generally more high risk for PET (Duckitt and Harrington, 

2005) and gestational diabetes (Santolaya and Faro, 2012).  

 

Any women who developed an obstetric antenatal complication in the current 

study were excluded from analysis retrospectively.   

Table 2.1 study inclusion criteria and rationale  

Criteria Rationale 

 
Parous or primigravid women 
 
 
 
maternal age 
 
 
Two groups BMI<25 and BMI>27 
 
 
 
 
 
Caucasian 
 

 
uncomplicated previous obstetric 
history or primiparity will have no 
effect on index pregnancy 
 
poorer outcomes out with 16-40 years 
of age 
 
Established poorer outcome and 
greater obstetric risk in overweight 
obese pregnant population  
(CEMACH, 2007)  
WHO criteria for obesity(WHO, 2004) 
 
Predominant ethnic group in Glasgow 
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2.1.2 Recruitment 

Women who booked their pregnancies at either the Princess Royal Infirmary or 

the Southern General Hospital in Glasgow were recruited at their first antenatal 

appointments (12-14 weeks’ gestation).  

 

Suitable women were identified at the initial antenatal appointment by either 

the midwifery team or the researcher (Eleanor Jarvie). Following the 

confirmation of a continuing intrauterine pregnancy and gestational age by 

ultrasound the potential participants had their BMI calculated (routine clinical 

practice). If this was within the criteria for the study, the participants had a 

short consultation with the researcher regarding the study and were issued with 

an information sheet (Appendix I). A contact number was taken for the potential 

subject to allow them time to read the sheet and decide whether they wished to 

participate. Each potential study participant was contacted by the researcher 

and a date for the first study visit was arranged. This was followed up with a 

letter and a phone call prior to the visit 1 date to confirm the appointment. 

Figure 2.1 illustrates the recruitment and retention of participants to the study. 
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Figure 2.1 Flow diagram of recruitment to study. Figure illustrates the number of participants 
recruited to the study and the number of participants who attended each of the gestational and 
postnatal appointments. For each gestational time point the participants excluded or those lost to 
follow up are included. The abbreviation,.’DNA’ refers to ‘did not attend’.  These women arranged a 
first visit but did not take part in the study. Indicated in the diagram is also the delivery data and 
delivery specimens which were obtained. 
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2.1.3 Study Design 

All women underwent the same study appointment protocol throughout the 

study (figure 2.2, appendix II). Each study participant attended the Metabolic 

Suite (West Medical Building, University of Glasgow) at 0800 after an overnight 

fast (participants were advised not to eat after 22:30 the previous night and to 

only drink water) to undergo assessment. Each participant was asked to attend 

three antenatal appointments at approximately 15, 25 and 35 weeks’ gestation 

and one postnatal visit at approximately 12 weeks postpartum.  

 

At the initial appointment a consent form (appendix II) was completed, the 

participant retained a copy and one was kept by the researcher separately from 

all other visit documentation. At the start of each study appointment the 

participants’ general medical, obstetric, family, social and medication histories 

were taken (See appendix II for visit documentation). At visits 2, 3 and 4 

documentation was updated on any medical or pregnancy-related health 

problems which had occurred since the last appointment to ensure that the 

subject was still suitable to be in the study 

.  
Figure 2.2 Study appointment protocol. Detailed above is the protocol time line for study 
participants, including assessments performed at each visit and tissue samples to be obtained 
at delivery 
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2.2 Anthropometric Measurements 

2.2.1 Maternal height 

Maternal height was measured by the research nurse or the researcher using a 

stadiometer (Invicta Plastics Ltd, Leicester, UK). The same stadiometer was used 

for each study participant. The participant was measured without shoes standing 

with their back and head touching the vertical board and ensuring that the legs, 

back and head were straight and the feet were flat. The measurements were 

recorded with participant positioned and relaxed and a moveable horizontal 

headboard was lowered onto the head with light pressure maintaining the head 

in the neutral position. The measurements were recorded to the nearest 0.01 

metre. 

 

2.2.2 Maternal body mass 

Maternal body mass was measured using a calibrated integral system which was 

part of the BODPOD chamber (COSMED USA Inc, Concord, USA) (see 2.2.5 for 

details). The same scale was used for each study visit and was periodically 

calibrated using a 20kg weight as per the manufacturer’s guidelines. Study 

participants were asked to change into shorts and a vest top or similar minimal 

clothing and were supplied with a swimming cap. Additional clothing and 

jewellery was removed prior to measurement recording. Their weight was then 

measured with them standing on the scales for 20 seconds prior to entering the 

BODPOD chamber. Measurements were recorded to the 0.01kg. 

 

2.2.3 Maternal circumference measurements 

All maternal circumference measurements were performed by the researcher in 

a private setting with the research nurse present documenting the 

measurements. Measurements were recorded to the nearest 0.1cm using a 

plastic tape measure. Circumference measurements were taken with the stub of 

the tape controlled in the left hand using the cross-hand technique and with the 

right hand stabilising the tape at the correct anatomical point for measurement. 

All circumference measurements were performed with the subject standing. The 

two waist measurements were taken at the end of expiration with the abdominal 
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muscles relaxed. Waist and hip circumferences were measured with the 

participant’s feet together and gluteal and midthigh circumference 

measurements were measured with the study participant’s feet shoulder width 

apart and weight evenly distributed across both feet. 

 

Minimum waist circumference was measured at the narrowest point of the 

abdomen between the lower costal edge and the anterior superior iliac spine. 

Umbilical waist circumference was measured the level of the umbilicus. Hip 

circumference was measured as the circumference of the buttocks at the level 

of their greatest protuberance. Two thigh measurements were performed; 

gluteal thigh circumference was measured 1cm inferior to the gluteal fold and 

midthigh circumference was measured at the midpoint between the inguinal 

crease and the proximal edge of the patella (the same point as the midthigh 

skinfold). 

 

Each circumference was recorded twice and the mean was calculated to be used 

for analysis. If a difference of >0.5cm was found a third measurement was 

performed and the mean of the two closest measurements was used for analysis.  

 

The researcher underwent anthropometric training with a Level 3 ISAK 

(International Society for the Advancement of Kinanthropometry 

www.isakonline.com) Instructor. Prior to commencement of the study the 

researcher performed a validation series on healthy volunteers to assess 

technique. To achieve basic competency (ISAK level 1) required a technical error 

of the mean (TEM) of circumference measurements to be less than 1.5%. TEM 

variations for each circumference were waist umbilicus 0.7%, hips 0.5%, gluteal 

thigh 0.3% and midthigh 0.4%. 

 

2.2.4 Maternal skinfold thickness measurements 

All measurements of skinfold thickness were performed by the researcher in a 

private setting with the research nurse present documenting the measurements.  

Measurements were recorded to the 0.2mm using Holtain skinfold callipers 

(Holtain Ltd, Crymych UK) or Harpenden skinfold callipers (Cranlea & Company, 

Birmingham, UK) when the skinfold was greater than 40mm.  
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Seven skinfold thickness sites were measured during this study. These sites were 

based on published work validating the use of skinfold measurement in 

calculating subcutaneous adipose tissue and total fat in pregnancy (Presley et 

al., 2000). The skinfold was held between the thumb and the index finger of the 

left hand and the callipers applied with the right hand. The callipers were held 

in place for 20 seconds at every measurement throughout the study. The 

rationale for this technique was to minimise the impact of interstitial oedema 

observed in late gestation. This phenomenon occurs to a different extent in most 

women so for consistency this technique was applied to all measurements 

performed.  

 

All skinfolds were measured on the left hand side of the body. The study 

participant was standing for the assessment of triceps, biceps, subscapular, 

costal and suprailiac skinfolds and was sitting with the left leg horizontal and 

supported at the knee and ankle for midthigh and suprapatellar recordings. The 

triceps skinfold was measured at the midpoint between the acromion process of 

the shoulder and the olecranon of the elbow in the longitudinal plane. The 

biceps skinfold was measured at the midpoint between the acromion process and 

the antecubital fossa in the longitudinal plane. The subscapular skinfold was 

measured medial to distal border of the scapular at 45° to the vertical plane. 

The costal skinfold was measured at the inferior border of the costal margin in 

the midaxillary line in the horizontal plane. The suprailiac skinfold was 

measured at the midpoint between the anterior superior iliac spine and the 

lower edge of the costal margin in the vertical plane. The midthigh skinfold was 

measured on the front of the thigh at the midpoint between the inguinal crease 

and the proximal edge of the patella in the vertical plane. The suprapatellar 

skinfold was measured at the proximal border of the patella in the vertical 

plane. The researcher stood behind the participant for the triceps and 

subscapular measurements, on the left hand side of the study participant for the 

costal, midthigh and suprapatellar measurements and in front of the study 

participant for the biceps and suprailiac measurements. 

 

Each skinfold measurement was recorded twice and the mean measurement used 

for analysis. If a difference of 0.8mm or above existed between the recordings 
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then a third measurement was performed and the mean of the two closest 

measurements recorded used for analysis.  

 

A similar validation set based on ISAK level 1 competencies was performed for 

skinfold measurements and the TEM was required to be <7.5% for each skinfold. 

TEM variations for each of the skinfolds were triceps 1.8%, biceps 3.8% 

subscapular 2.4%, costal 3.5%, suprailiac 4.8%, midthigh 2.2% and suprapatellar 

2.5%. 

 

2.2.5 Air Displacement Plethysmography 

Each subject underwent ADP, using the commercially available BODPOD system 

(COSMED USA Inc, Concord, USA), which calculates fat mass, fat free-mass and 

percentage body fat. The detailed principles of ADP have been reported by 

Dempster and Aitkens (Dempster and Aitkens, 1995). ADP works on the principle 

of Boyle’s law, stating that within a fixed volume a change of mass will cause a 

change of pressure within that fixed volume. This allows for measurement of 

body volume which is corrected for predicted lung volume based on age and 

height. From this measurement body density (DB) is calculated and fat mass and 

fat-free mass (two compartment model) can be derived using Siri’s equation: 

 

  

 WFM (kg) = WB/100 x (495/DB – 450)   (equation 2.1)  

 

Where WFM is fat mass in kilograms, WB is body weight in kilograms and DB is body 

density in kg/m3. 

 

Subjects were measured in the fasting state wearing either a bathing suit or 

tight fitting shorts and vest top and an acrylic bathing cap. The subjects’ body 

mass was measured first using the integrated scales to the nearest 0.01kg for 20 

seconds. The BODPOD is calibrated with the chamber empty (baseline) and then 

with a 50 litre aluminium calibration cylinder present in the chamber. Each 

subject then sat in the chamber with the door closed for two measurements 

each lasting 45 seconds. These volume measurements were averaged, but if they 

were not within the reproducibility criteria (150ml or 0.2%), a third 
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measurement was taken and the three measurements were averaged. If the 

variation persisted then the system was recalibrated and the measurements 

repeated. The corrected body volume was calculated using an assumed 

predicted lung volume and surface area artefact. 

 

The principle of ADP works on the basis that the body can be split into two 

compartments: fat-free (muscle, bone and water) and fat mass and that the 

density of these two compartments remain constant. In pregnancy however, the 

density of each of these compartments changes over the course of gestation as a 

result of accumulation of interstitial fluid and oedema. Raaij et al (van Raaij et 

al., 1988) formulated a series of equations to account for this change in body 

density and therefore data from this cohort was first corrected using these 

equations prior to analysis. 

 

10 week gestation equation 

 WFM (kg) = WB/100 x (496.4/DB – 451.6)   (equation 2.2) 

20 week gestation equation 

 WFM (kg) = WB/100 x (502.2/DB – 458.0)   (equation 2.3) 

30 week gestation equation 

 WFM (kg) = WB/100 x (510.8/DB – 467.5)   (equation 2.4) 

 

The above equations were applied to the raw data which was collected from the 

BODPOD at each antenatal appointment. During the postnatal appointment (visit 

4) uncorrected data was used as participants were no longer pregnant and had 

no observed oedema. Reproducibility of the ADP data has previously show that 

the typical error is 0.48kg, 0.43kg and 0.56% for fat free mass, fat mass and 

percentage body fat respectively. 
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2.3 Energy balance and substrate metabolism in 

pregnancy 

2.3.1 Indirect Calorimetry 

Study participants had their BMR and substrate utilisation measured at each 

study appointment (4 visits). All measurements were performed in the morning 

following a 10 hour fast using the Oxycon ventilated hood system (Jaegar Oxycon 

Pro, Hoechberg, Germany). The Oxycon ventilated hood system required to be 

switched on and calibrated 45 minutes prior to measurement. The equipment 

was calibrated for ambient atmospheric pressure using a traditional barometer. 

To ensure that the fraction of expired O2 (FEO2) and CO2 (FECO2) was accurate 

the gas analyser of the Oxycon was calibrated against a standard gas, and the 

turbine was manually calibrated for volume. The examination room was kept at 

a temperature of 23.9+/- 0.8 C with the researcher and the research nurse 

present. 

 

Study participants lay in a semi-supine position on an examination couch with 

adequate support of the lower back. The ventilation hood was placed over their 

head and shoulders with the plastic skirt covering upper torso and tucked under 

the pillows (see figure 2.3). The participants in this study did not lie in a supine 

position due to the potential of the gravid uterus to cause inferior vena cava 

compression and hypotension. The ventilation hood has two apertures; a cranial 

aperture which draws air into the hood and a caudal aperture which is attached 

to the Oxycon ventilated hood system via plastic tubing.  
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Figure 2.3 Oxycon ventilated hood system. Resting metabolic rate and substrate utilisation 
being recorded by indirect calorimetry with a volunteer subject. 

 

At each study visit the participants were under the hood for 25 minutes. During 

the first ten minutes no readings were recorded to allow the participant time to 

acclimatise to the hood and the environment.  

 

The indirect calorimetry system draws air through the hood and then measures 

FEO2 and FECO2. Using these parameters the rate of consumption of oxygen (VO2, 

ml/min) and the rate of carbon dioxide production (VCO2, ml/min) can then be 

calculated. These parameters were recorded every sixty seconds. Using these 

values respiratory exchange ratio (RER), substrate utilisation and basal 

metabolic rate (BMR) are derived from Frayn’s (Frayn, 1983) equations for 

indirect calorimetry.  

 

In order to extrapolate substrate utilisation and basal metabolic rate one must 

first account for protein metabolism. One method of calculating this is to 

measure urinary nitrogen, but this was not measured in this study as 24 hour 

urine collection was impractical. For healthy adults a constant rate of nitrogen 

excretion may be assumed. Investigation of protein balance and nitrogen 

metabolism in pregnancy shows that nitrogen excretion changes with gestation 

and thus a constant cannot be applied to this cohort. Gestational age-specific 

nitrogen excretion has been described (Mojtahedi et al., 2002). Using these 

calculated values nitrogen excretion is 0.00014g/kg/min at 12 weeks’ gestation, 

0.00012g/kg/min at 23 weeks’ and 0.00011g/kg/min at 34 weeks’. When 
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nitrogen excretion (N) is considered a constant at each gestation, then it can be 

subtracted from Frayn’s equations in order to calculate non-protein oxygen 

consumption (NPVO2) and non-protein carbon dioxide production (NPVCO2), and 

non-protein respiratory exchange ratio (NPRER), as shown in the following 

equations: 

 

 NPVO2 (ml/min) = VO2 – 6.04N    (equation 2.5) 

 

 NPVCO2 (ml/min) = VCO2 – 4.89N    (equation 2.6) 

 

 NPRER = NPVO2/NPVCO2    (equation 2.7) 

 

 

Using the corrected values for NPVO2 and NPVCO2, the individual’s substrate 

utilisation and subsequently basal metabolic rate (expressed as energy 

expenditure (EE, kilojoules kJ) can be obtained: 

  

Fat oxidation (fat ox) (g/min) = (NVO2 – NPVCO2)/0.6 (equation 2.8) 

 

Carbohydrate oxidation (CHO ox) (g/min) = (NPVO2 – 2.03 x fat ox)/0.746  

        (equation 2.9) 

 

Estimated protein oxidation (prot ox) (g/min) = N x 6.25   

(equation 2.10) 

 

EE (kJ) = (fat x 39.0) + (carbohydrate x 15.5) + (protein x 17.0) 

        (equation 2.11) 

 

Validation assessment of the Oxycon Pro ventilated hood system was performed 

by comparing values for VO2 and VCO2 obtained using the Oxycon Pro ventilated 

hood system against values obtained using Douglas bag expired air collections in 

11 volunteers in the fasted state (unpublished data).  The Pearson correlation 

coefficients between measurement techniques were 0.964 (p < 0.0005) for VO2 

and 0.972 (p < 0.0005) for VCO2. 
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The reliability of the Oxycon Pro ventilation hood system was determined by 

comparing resting VO2 and VCO2 measurements made in the fasted state in 10 

volunteers made on two occasions with an interval of 1-2 weeks (these were 

different volunteers from those used to determine the system’s validity).  The 

Pearson correlation coefficients between measurements were 0.913 (p < 0.0005) 

for VO2 and 0.943 (p < 0.0005) for VCO2. 

 

2.3.2 Physical Activity 

To objectively access physical activity the participants were asked to wear a 

physical activity monitor during waking hours for seven days following each visit. 

The monitors used were the Actigraph GT3X or the Actitrainer accelerometer 

(ActiGraph Pensacola, FL, USA) which were worn on a waist belt or clipped to 

the waistband. The participants were given a simple diary sheet to indicate 

when the monitor was worn, and advised to remove it when sleeping, showering 

or swimming. Once the week of data had been collected the device was sent 

back in a stamped addressed envelope. 

 

The accelerometer is a small device which detects vertical accelerations at 

specified time points (referred to as epochs). For this study each ‘epoch’ is 

defined as sixty seconds. Each device was initiated using Actilife software 

Version 5.3.0 (ActiGraph Pensacola, FL, USA) prior to the study visit to record 

activity every sixty seconds over the course of the seven days. When the data 

from each device was downloaded this created a CVS Microsoft file which 

displays a number (displayed in counts/min) for each epoch. Each count/min 

refers to an intensity level which is defined by the Freedson cut points (Freedson 

et al., 1998). Therefore sedentary activity <100 counts/min, light activity is 100-

1951 counts/min, moderate activity 1952-5724 counts/min and vigorous activity 

is >5724 counts/min. For the purposes of the current analysis three activity 

intensities were used; sedentary, light and moderate & vigorous physical activity 

(MVPA), because as a pregnancy progressed the amount of time spent in vigorous 

activity alone was expected to be very small and therefore not useful for 

comparison. Each CVS file was then saved as an excel spreadsheet file.  
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In order to analyse the data, the seven days of information was first split into 

each calendar day. Sleep time was removed, guided by the diaries. In addition, 

if more than one hour of ‘0’ counts (i.e. more that sixty consecutive ‘0’ 

counts/min) were recorded this was considered non-wear time and was removed 

from the excel spreadsheet. The Freedson cut points were then applied to the 

remaining data and the time spent in each of the intensity levels was calculated 

in minutes as well as an average wear time in minutes for the day. Using each 

calendar day data an average was calculated for each visit. Previous studies in 

adults have determined what is considered to be a valid wear time and have 

suggested that three to five days (Trost et al., 2005) of accelerometer data will 

provide a valid estimation of physical activity. Other published data on activity 

levels in pregnancy using accelerometers have suggested using four days for valid 

activity assessment (Kinnunen et al., 2011).  A valid calendar day was considered 

for the purposes of this study to have 9 hours of wear time data and it was 

required that at least four days of data were collected. Across gestation and 

between the two groups there was no difference in valid wear time (appendix 

III) 

 

2.3.3 Dietary Assessment 

At each study visit, participants completed a multiple pass 24 hour dietary recall 

questionnaire (Conway et al., 2004). The questionnaire (appendix II) recorded 

everything that the participant had had to eat and drink in the twenty four hours 

preceding the study visit. The questionnaire was filled out by either the 

researcher or the research nurse and was administered according to protocols 

used for the Food Standard Authority’s Low Income Diet and Nutrition Survey 

(Bush, 2008). The multiple pass method is not time consuming (approximately 

15-20 minutes to complete) and has been widely implemented in different 

demographic study groups. 

 

Participants also completed a food frequency intake questionnaire, which has 

been validated in a Scottish population (Lean et al., 2003). The analysis of the 

food patterns estimates food intake in relation to national dietary targets of 

fish, fruit and vegetables, breakfast cereals and intake of fat and sugary foods 

(appendix II). 
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Data from the questionnaires was then entered into the Dietplan 6 analysis 

package (Forestfield Software Ltd, West Sussex, UK). Total energy, 

macronutrient and micronutrient intake were then exported from this database 

into Microsoft excel spreadsheets for analysis. 

2.4 Peripheral vascular function assessment 

Laser Doppler Imaging (LDI) is a non-invasive method for assessing peripheral 

vascular function.  This technique has been used in pregnancy to highlight the 

differences in vascular function between obese and lean women (Ramsay et al., 

2002a, Stewart et al., 2007a).  

 

Before the examination all women were acclimatised in a temperature- 

controlled room (23.9+/- 0.8 C) for a ten minute period. Women were asked to 

recline in a semi-recumbent position with the volar aspect of the forearm 

exposed resting on an armrest.  All participants were fasted. 

 

 

Figure 2.4 Laser Doppler imaging assessment. Volunteer positioned for LDI assessment. 

 

 

 

  

Laser unit 

Computer with scans 
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Chapter 2  73 

In order to assess peripheral vascular reactivity, iontophoresis of vasoactive 

solutions was used. Vasodilatation is considered the expression of vascular 

reactivity, and this response can be considered either endothelium-dependent 

(mediated through direct stimulation of the endothelial cells) or endothelium-

independent (mediated through the effect of NO on vascular smooth muscle 

cells). Iontophoresis is based on the principle that a charged molecule migrates 

across the skin under the influence of an applied electrical field. In order to 

measure endothelium-dependent vasodilatation, acetylcholine (ACH) was used to 

stimulate the endothelial cells through its binding to muscarinic receptors and 

the subsequent generation of NO. To assess endothelium-independent 

vasodilatation, Sodium Nitroprusside (SNP) which acts as a NO donor to vascular 

smooth muscle cell was used.  

 

Drug delivery was achieved using a battery-powered constant current 

iontophoresis MIC-1e controller (Moors Instruments Ltd, Axminster, UK). The 

chambers used for iontophoresis were ION-6 Perspex chambers (Moor 

Instruments Ltd, Axminster, UK) which had an internal diameter of 22mm and 

area of 3.8cm2 and an internal platinum wire electrode. These chambers were 

attached using double-sided adhesive disks to the volar aspect of the forearm 

avoiding any broken skin, hair and superficial veins. These chambers were 

connected to the iontophoresis controller. In addition, a digital multimeter was 

connected in parallel to record the voltage across the chambers. This is 

important as skin resistance has an effect on the delivery of the iontophoresis 

drugs. As the constant current source is being used, skin resistance can be 

calculated using Ohm’s law where resistance is equal to voltage divided by 

current. A 2.5ml dose of 1% ACH which is a positively charged ion (Sigma, Poole, 

UK) was introduced into the anode chamber while a 2.5ml 1% dose of SNP 

(Sigma, Poole, UK) which is a negatively charged ion was introduced into the 

cathode chamber. Drug delivery was delivered simultaneously during 

administration of the current. The vehicle for these drugs was 0.5% sodium 

chloride (NaCl) in deionised water. Cover slips were placed over each chamber 

to minimise loss of fluids during the procedure (figure 2.5). 
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Figure 2.5 LDI laser scanning over the area of interest. The two chambers are attached to the 
volar aspect of the arm. Each chamber is attached to the iontophoresis unit. The chamber with the 
white dot indicates the chamber with the SNP solution in it and the other chamber contains the 
ACH solution. A temperature probe is taped adjacent to the chambers to record skin temperature 
throughout the experiment. 
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Measurement of the perfusion of the skin and thus the vasodilatation of the 

peripheral vascular bed was performed using a laser Doppler imager (Moor 

Instruments Ltd, Axminster, UK) equipped with a red laser (wavelength, 633 nm; 

power, 1mW; beam diameter, 1 mm) which was scanned over both chambers 

through the coverslips. The technique is based on the Doppler shift effect 

imparted by the moving blood cells in the underlying skin to the backscattered 

light collected by the photodetectors on the laser unit. The backscattered light 

is converted into an arbitrary perfusion (or flux) unit (PU) that is displayed as a 

colour coded image on the computer monitor (figure 2.6). Twenty scans are 

performed with an incremental iontophoresis current protocol with the first scan 

indicating baseline perfusion (pre-current administration) followed by an 

incremental current protocol; four scans at 5 microamps (5 A), four at 10A, 

four at 15A, two at 20A and four recovery scans. The total current delivered 

was 8 milliCoulombs (8 mC).  

  

 

Figure 2.6 LDI scans indicating both endothelium-dependent (ACH left chamber) and -
independent (SNP right chamber) vasodilatation. The laser beam and subsequent back 
scattered light is distorted by the increase in movement of red blood cells through the peripheral 
circulation, this is then interpreted by the computer software and produces a series of scan images.  
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perfusion 
unit 

Perfusion measurements were performed using the image manufacturer’s image 

analysis software of outlining the region of interest (ROI) around the internal 

circumference of the chamber. A median value for each scan flux value was 

calculated across approximately 700 measurement points. The median value was 

first corrected for skin resistance as described above. The sum of the corrected 

median values from each scan is referred to as the total perfusion.time area 

under the curve (AUC). The incremental perfusion.time area under the curve is 

considered the total perfusion.time curve minus the baseline scan (pre-current 

administration), illustrated in Figure 2.7. 

 

 

 

Figure 2.7 Illustration of perfusion.time curve. The above figure relates to the scan displayed in 
figure 2.6. Total perfusion.time curve is area under the blue line. The incremental perfusion.time 
curve is the perfusion observed above the baseline only.  
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In order to calculate the value for the total perfusion.time curves, the sum of 

these values is multiplied by 5/6 as current delivery for each scan was 50 

seconds which can be expressed as 50/60 or 5/6: 

 

Total perfusion.time curve = sum of median values x 5/6 (equation 2.12) 

 

In order to calculate the value of the incremental perfusion.time curve, first the 

baseline median value is subtracted from each of the twenty scans and then 

multiplied by 5/6: 

 

Incremental perfusion.time curve  

    = median scan1 – baseline etc for scans 1-20 

    = sum incremental scan values x5/6    (equation 2.13) 

  

Responses were observed with the vehicle alone as a control experiment. The 

within-day, between site coefficient of variation (CV), measured on the same 

morning in four subjects, was 2.6 ± 1.3% for ACH and 1.3 + 1.1% for SNP. 

Previous studies have shown that the mean (± SD) between-day CV for the ACH 

response, measured in four subjects on 2 separate days, was 6.4 ± 3.3%. The 

within-day, between-site CV, measured in both forearms on the same morning in 

four subjects, was 8.9 ± 5.3% (Ramsay et al., 2002a).  
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2.5 Biological sample analysis 

At each study visit blood samples were collected for glucose, insulin, lipid (total 

cholesterol, total triglycerides, NEFA and HDL cholesterol, oxLDL), CRP, IL6 and 

TNF, GGT, sICAM-1, and sVCAM-1 assays. Urine samples were obtained for 

isoprostanes assessment. Superoxide levels were detected in whole blood 

samples.  

 

2.5.1 Plasma preparation and storage 

Fasting venous blood was collected from each study participant at each visit as 

follows; 1 x 9 millilitre (ml) lithium heparin tubes, 1 X 5ml serum tubes, 2x9ml 

EDTA tubes and 1 x 4ml EDTA tube. The lithium heparin and EDTA samples were 

separated into plasma by centrifugation (1800g) and divided into aliquots. A 

950ul lithium heparin sample was removed and transported on ice to complete 

the superoxide assessment.  A proportion of the aliquots were stored under 

antioxidant conditions (0.01% BHT and the tube filled with nitrogen gas).  

Buffy coat samples were collected from a proportion of the standard EDTA 

aliquots. Serum samples were left to stand for 30 minutes before centrifugation 

and then dispensed into aliquots. All of the above samples were stored in a -80C 

freezer within the department until analysis. 

 

2.5.2 Urine sample collection & storage 

At each study visit, the participant was requested to provide a sample of urine. 

Urine aliquots were stored under standard and antioxidant conditions at -80C. 

2.5.3 Routine biochemical assays 

Routine assays were carried out on an autoanalyser (ILAB 600 Chemistry 

Analyser). Total cholesterol, HDL cholesterol, and triglycerides were measured 

by enzymatic colorimetric methods using commercially available kits (Roche 

Diagnostics GmbH, Mannheim, Germany). Non-esterified fatty acids (NEFA) 

concentrations were analysed by enzymatic colorimetric methods using a 

commercially available kit (Wako Chemicals GmbH, Neuss, Germany). Fasting 

glucose was measured with the hexokinase/glucose-6-phosphate dehydrogenase 
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enzymatic method using a commercially available kit (Randox Laboratories Ltd, 

Co Antrium, UK). Gamma glutamyl transferase (GGT) was assayed by rate 

reaction absorptive techniques using a commercially available kit 

(Instrumentation Laboratory, USA). Highly sensitive CRP was analysed by an 

immunoturbidimetric technique using a commercially available kit (Randox 

Laboratories, Laboratories Ltd, Co Antrium, UK). 

 

Accuracy and precision of the assays were monitored by internal quality control 

(Roche Diagnostics GmbH, Mannheim, Germany. Wako Chemicals GmbH, Neuss, 

Germany. Randox Laboratories Ltd, Co Antrium, UK. Instrumentation Laboratory, 

USA). Coefficients of the variation were 2.9% for cholesterol, 2.8% for HDL, 3.8% 

for triglycerides, 5.2% for NEFA, 2.0% for glucose and 2.7% for CRP. 

 

2.5.4 Enzyme linked immunoassays 

All kits employed the quantitative sandwich enzyme immunoassay technique.  

Assays were performed using commercially available kits: insulin by 

ultrasensitive kit (Mercodia, Uppsala, Sweden), haemoglobin (Universal 

Biologicals, UK), oxidised LDL (OxLDL), urinary isoprostanes (Oxford Biomedical 

Research, Oxford, UK) and sICAM-1, sVCAM-1, IL6 and TNF (R&D Systems, 

Oxford, UK). With regards to data on urinary isoprostanes, due to the change in 

glomerular filtration rate during pregnancy these data were corrected for 

creatinine concentration prior to analysis. 

 

The precision of the kits were monitored by internal quality control (Mercodia, 

Uppsala, Sweden and R&D Systems, Oxford, UK). Coefficients of the variation for 

intra-assay were 4.9% for insulin, 4.6% for sICAM-1, 3.1% for sVCAM-1, 7.4% for 

IL6 and 5.3% for TNF. Coefficients of the variation for inter-assay were 2.8% for 

insulin, OxLDL 8%, 5.5% for sICAM, 7.0% for sVCAM, 7.6% for IL6 and 8.4% for 

TNF. No coefficients of the variation were quoted in the manufacturer’s 

guidance for haemoglobin or urinary isoprostanes. 
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2.5.5  Superoxide analysis 

Electron paramagnetic resonance (EPR) is a spectroscopic technique which 

detects species of unpaired electrons, such as those produced by reactive 

oxygen species (ROS). The method detects the transition of unpaired electrons in 

an applied magnetic field. Unpaired electrons have a spin which gives them a 

magnetic property known as a magnetic moment, making the electron behave 

like a small magnet. When an external magnetic field is applied, the 

paramagnetic electrons will orientate in either direction parallel or antiparallel 

to the direction of the magnetic field. This creates two distinct unpaired 

electron energy levels and the unpaired electrons in the superoxides can then be 

measured as they are driven between these two levels by the magnetic field. 

Superoxide levels were detected in whole blood samples using an electron 

paramagnetic resonance e-scan R Biospin analyser (Bruker GmBH, Osterreich, 

Austria) with a CPH (1-hyroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine) 500 µM 

spin probe (Noxygen, Elzach, Germany). Superoxides are measured in whole 

blood. Throughout pregnancy total blood volume changes. Before analysis was 

performed on this data, a haematocrit and haemoglobin (Quantichrom, BioAssay 

Systems, Universal Biologicals Ltd Cambridge, UK) were measured for each 

sample and the blood volume was corrected as per the method used by Dill and 

Costill (Dill and Costill, 1974). 

 

2.5.6 Homeostatic Model Assessment 

Homeostatic model assessment was performed as a measure of insulin resistance 

on all plasma samples. The method employed in this thesis was HOMA-1 which 

has been shown to correlate with the euglycaemic clamp data. Methodology 

employed in this data analysis was as per Matthew et al (Matthews et al., 1985) 

 

 

 

 
  



Chapter 2  81 

2.6 Statistical Analysis 

The numbers recruited were based on power calculations for differences in the 

anthropometric measures ((Soltani and Fraser, 2000), energy expenditure 

(Catalano et al., 1998)), endothelial function (Stewart et al., 2007a) and 

lipotoxic measures (Stewart, 2007)) but not for biological assays. 

 

The number of participants required was worked out was based on the mean 

obese measurement of the descried parameter minus the mean lean 

measurement divided by the mean lean. This is described at the standardised 

delta. The second calculation required for the power was the sigma of the lean 

group divided by the mean lean. These results were then exported to Minitab 

vs16 where numbers needed to recruit were based on a 2 sample t power 

calculation, described in table 2.2. As the largest number needed to recruit was 

based on endothelial function (n=24), it was decided to aim to recruit 30 women 

to each BMI group in order to detect a difference and cover any study drop outs. 
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Table 2.2 Power Calulations 

Parameter Delta (obese 
minus lean)/ 
mean lean 
[standardise
d] 

Sigma of 
lean group/ 
mean lean 
[standardise
d] 

Power 
80% 
(n) 

Power 
90% 
(n) 

Source 

Fat distribution 
Ratio change in 
central  vs lower 
body skinfold 
 

 
+2.31 /2.16 
[1.07] 

 
18.61/30.26 
[0.62] 
Used total 
skinfold SD 

 
7 

 
9 

Soltani 
2000 

Lower body fat  
Skinfold change 
(mm) 
 

 
-4/6 
[0.67] 

 
2/6 
[0.33] 

 
5 

 
7 

Soltani 
2000 

Energy 
expenditure 
Total (kcal/day) 
CHO 
(mg/min) 
Fat 
(mg/min) 

 
76/373  
[0.20] 
43.7/56.4 
[0.77] 
12.8/6.3 
[2.03] 

 
372/7886 
[0.20] 
59.4/164.1 
[0.36] 
29.2/49.6 
[0.59] 

 
17 
 
5 
 
3 

 
23 
 
6 
 
4 

Catalano 
1998, 
Okereke 
2004 
 

Endothelial 
Function 
Microvascular 
function – LDI 
[PUMΏmin] 

 
 
Trimester 1 
5930/15112 
[0.39] 

 
 
Trimester 1 
5982/15112 
[0.40] 

 
 
 
18 

 
 
 
24 

Stewart 
2007 

Lipotoxic 
mediators 
LDLIII mass (mg/dL) 

 
Trimester 3 
25.7/37.7 
[0.68] 

 
Trimester 3 
18.32/37.73 
[0.49] 

 
 
10 

 
 
12 

Frances 
Stewart 
MD Thesis 
2007 

 

In order to normalise data for analysis, raw values were log or square root 

transformed when necessary. Statistical analysis was performed using a linear 

mixed model in IBM SPSS Statistics version 19. The statistical model assessed the 

effect of gestation (quoted as ‘p time’), the effect of the group (quoted as ‘p 

type’) and their interaction (pattern of change; quoted as ‘p time x type’) of 

each variable. For the mixed model effect of time and type were considered 

significant with a p<0.01, and the interaction model was considered significant 

with a p<0.05.  

 

Post hoc analysis was performed if a statistically significant difference was found 

for the interaction. Post hoc analysis assessed the change in each variable in 

early (V1-V2), late (V2-V3) and total (V1-V3) gestation using 2 sample t-tests 
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(Minitab vs16). This analysis was performed in Minitab vs16 and p<0.05 was 

considered significant.  

 

Univariate analysis was performed to assess the impact of anatomical fat depots 

on the total fat mass gained during pregnancy. If significant relationships were 

found using Pearson’s correlations then general linear modelling was performed 

to assess each sites contribution to the fat mass gained. This analysis was 

performed in Minitab vs16 and p<0.01 was considered significant.  

Any statistical analysis which was specific to a subset of data has been described 

in the relevant methods section in each results chapter. 
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Chapter 3 - Relationship between mass and pattern 
of subcutaneous adipose tissue accumulation in 

healthy lean and OW/OB pregnancies 

3.1 Introduction 

The amount of gestational weight which women gain during pregnancy varies 

greatly. Guidance from the IOM in 2009, recommends that underweight 

(BMI<18.5kg/m2) women aim for a total GWG of 12.5-18.0kg, normal weight 

(BMI18.5-24.9kg/m2), aim for 11.5-16.0kg, overweight (BMI 25.0-29.9kg/m2) to 

aim for 7.0-11.5kg and obese (BMI>30.0 kg/m2) women aim to gain no more than 

5-9kg. Excessive gestational weight gain has been extensively researched and 

the impact of GWG on maternal obstetric complications is variable. What is 

known conclusively is that pre-pregnancy obesity is a recognised risk factor for a 

range of congenital, antenatal, intrapartum and postnatal complications (Jarvie 

and Ramsay, 2010).  

 

It has been observed that subcutaneous fat stores in the mother increase 

markedly from 10-30 weeks’ gestation and thereafter remain fairly constant 

until parturition (Taggart et al., 1967). Further examination of the anatomical 

variation in subcutaneous adiposity has suggested that obese women 

preferentially store fat in the subcutaneous central compartments when 

compared to their lean counterparts (Soltani and Fraser, 2000). As highlighted, 

upper body centrally located fat is associated with an abnormal metabolic 

profile; although the contribution of the subcutaneous and visceral compartment 

is unclear. If obese women do store fat preferentially in central compartments 

then this may be a contributory factor to any abnormal inflammatory and 

vascular response exhibited (Ramsay et al., 2002a). It has been suggested that, 

in the non-pregnant population increased thigh circumference may provide 

protection against cardiovascular disease independent of abdominal and general 

obesity (Heitmann and Frederiksen, 2009). Furthermore, it has been noted that 

lower body fat is more sensitive to insulin suppression of lipolysis thus inhibiting 

the release of NEFA and consequent production of lipotoxic products such as ROS 

and oxysterols as well as ectopic fat deposition. 
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There are now established data on the differences seen in gestational weight 

and fat gain in lean and obese pregnancies. A detailed observation of the impact 

of maternal booking obesity on the distribution of this gestationally-accumulated 

fat is now required. Centrally accumulated fat could potentially explain the link 

between maternal obesity, lipotoxicity and adverse pregnancy outcome. 

 

Within the context of this longitudinal study detailed anthropometric assessment 

of lean and OW/OB women during pregnancy was performed in order to test the 

hypothesis that the anatomical variation in accumulation of subcutaneous 

adipose tissue in lean and OW/OB women was different and that this had an 

impact on the metabolic response seen in pregnancy. The visceral fat 

compartment was not measured in this study. Ultrasound assessment was not 

available and there were ethical consideration in using other imaging modalities 

in pregnancy – such as the theoretical risk of deafness in the fetus if using 

magnetic resonance imaging.  

 

3.2 Research Questions 

1. Do lean and OW/OB women gain weight and fat mass during 

pregnancy, and is there a difference in the amount they gain? 

2. Does this gain in weight and fat mass happen throughout pregnancy or 

is it concentrated at a particular gestational time period and is there 

any difference in pattern between the BMI groups? 

3. What is the anatomical pattern of subcutaneous fat accumulation 

during pregnancy and is it different between lean and OW/OB 

pregnancies? 

4. What contribution does each of the subcutaneous fat depots (upper 

body peripheral, abdominal and lower body) have to the total 

gestational fat mass?  

 

3.3 Methods 

Anthropometric methodology has been detailed in section 2.2 of the General 

Methods Chapter. All measurements were performed by the researcher. 
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3.4 Baseline Demographics 

Study participants were recruited as described in section 2.1.2. As described in 

Chapter 2, recruitment to the obese group was more challenging than 

anticipated, and the BMI group was extended to include recruitment of 

primigravid and parous women with a BMI of greater than 27 kg/m2. The mean 

BMI of the obese group was 31.5kg/m2, and the range was 27.1-37.4kg/m2. For 

the purposes of this thesis the BMI groups have been referred to as ‘lean’ and 

‘overweight/obese’ (OW/OB). 

For analysis of data, the total number of lean participants was 26 and the 

OW/OB cohort was 16 unless otherwise stated.  

 

There were no smokers in either of the groups. The baseline demographics of 

the groups are illustrated in table 3.1. The OW/OB group had a higher baseline 

systolic and diastolic blood pressure than the lean women. In addition, the 

OW/OB group had a greater baseline weight, umbilical waist circumference, hip 

circumference, WHR, fat and fat free mass compared to the lean group. 

  



Chapter 3  87 

Table 3.1 Baseline anthropometric characteristics for the lean and OW/OB groups. Statistical 
analysis was performed for each demographic variable listed below. Analysis was performed using 
the 2 sample t-test, for parity the assessment used *fishers exact test. 

Variable lean n=26 
mean(SD) 
[range] 
 

OW/OB n=16 
mean(SD) 
[range] 

p value 

 
age (years) 

 
30.1 (2.9) 
[22.0-36.0] 

 
30.8 (4.7) 
[21.0-37.0] 

 
0.61 

parity n prim(%) 26 (100) 14 (88) 0.17* 
gestation at  
visit 1 (weeks) 

15.7 (1.1) 
[14.0-19.0] 

16.0 (1.4) 
[14.0-19.0] 

0.42 

booking BMI 
(kg/m2) 

22.0 (1.7) 
[18.0-24.9] 

31.5 (2.7) 
[27.1-37.4] 

<0.0001 

booking systolic 
BP (mmHg) 

110 (10) 
[90-125] 

119 (10) 
[103. -140] 

0.011 

booking diastolic 
BP (mmHg) 

68 (6) 
[60-78] 

74 (8) 
[64-89] 

0.008 

height (m) 1.66 (0.07) 
[1.56-1.81] 

1.67 (0.06) 
[1.58-1.78] 

0.56 

weight (kg) 60.7 (7.2) 
[48.5-75.7] 

87.0 (10.2) 
[72.0-103.3] 

<0.0001 

umbilical waist 
circumference 
(cm) 

83.3 (5.6) 
[75.4-96.0] 

103.5 (6.6) 
[91.7-115.1] 

<0.0001 

hip circumference 
(cm) 

98.2 (5.3) 
[89.7-111.6] 

113.8 (5.4) 
[107.0—122.0] 

<0.0001 

WHR 0.85 (0.04) 
[0.77-0.91] 

0.91 (0.05) 
[0.83-1.03] 

<0.0001 

fat mass (kg) 16.4 (4.4) 
[11.1-26.3] 

35.9 (7.3) 
[25.3-49.1] 

<0.0001 

% fat mass of total 
weight (%) 
 

26.9 (5.4) 
[17.9-37.4] 

41.0 (5.0) 
[34.5-50.5] 

<0.0001 
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3.5 Gestational changes in lean and OW/OB 

anthropometry 

3.5.1 Longitudinal changes in total body weight 

In lean and OW/OB pregnancy there was a linear relationship between 

gestational age and total body weight. Both groups showed a significant increase 

in total body weight during pregnancy; average visit 1 total body weight 70.7kg 

(standard deviation [SD] 15.4) versus average visit 3 total weight 80.8kg 

(SD15.5), p time<0.0001. The OW/OB group was significantly heavier throughout 

gestation; lean average total body weight 65.8kg (SD8.2) versus OW/OB average 

total body weight 91.7kg (SD10.9), p type<0.0001. Total gestational weight gain 

was 10.4kg (SD 2.4) in lean pregnancy and 9.4kg in OW/OB pregnancy; this was 

not significantly different.  

 

The pattern of increase in total body weight between the two groups was similar 

(p time x type=0.26).  
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Figure 3.1 Total body weight at each gestational time point in lean and OW/OB pregnancy. 
Illustrated is the mean total body weight (raw data) and standard deviations at each gestational 
time point in lean and OW/OB pregnancy. Differences across gestation were expressed as ‘p time’, 
between the lean and OW/OB groups as ‘p type’ and pattern of change in the variable between the 
groups as ‘p time x type’.  
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3.5.2 Longitudinal changes in total fat mass  

Both groups showed a significant increase in fat mass during pregnancy; average 

visit 1 fat mass 23.9kg (SD 11.0) versus average visit 3 27.9kg (SD 11.3), p 

time<0.0001. The OW/OB group had significantly more body fat throughout 

gestation; lean average total fat mass 18.8kg (SD 5.2) versus OW/OB average 

total fat mass 37.9kg (SD 7.4) p type<0.0001. Total gestational fat mass gain was 

4.3kg (SD 3.6) in lean pregnancy and 4.0kg (SD 4.0) in OW/OB pregnancy and this 

was not significantly different between the groups.  

 

As with total body mass, there was a linear relationship between both lean and 

OW/OB fat mass and gestational age, and the pattern of change was similar        

(p time x type=0.80).  
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Figure 3.2 Fat mass at each gestational time point in lean and OW/OB pregnancy. Illustrated 
is the mean fat mass (raw data) and standard deviations at each gestational time point in lean and 
OW/OB pregnancy. Differences across gestation were expressed as ‘p time’, between the lean and 
OW/OB groups as ‘p type’ and pattern of change in the variable between the groups as ‘p time x 
type’.  
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3.5.3 Longitudinal changes in circumference measurements 

Circumference measurements were taken for minimum waist, umbilical waist, 

hip, upper thigh and midthigh. Methodology of the circumference measurements 

are detailed in section 2.2.3. During pregnancy lean and OW/OB women had a 

significant increase in all circumference measurements (data not shown). On 

reflection, the increases in circumference would not only have represented an 

increase in the subcutaneous adipose tissue component but also the increase in 

muscle mass, which has been demonstrated by other authors (Butte et al., 

2003). The abdominal measurements would have represented not only maternal 

circumference increase but growth of the uterus and fetus. For this reason it 

was decided not to use the circumference measurements in the comparison of 

the lean and OW/OB cohort. 

 

3.5.4 Longitudinal changes in individual skinfold measurements 

Measurements were taken for biceps, triceps, subscapular, costal, suprailiac, 

midthigh and suprapatella skinfolds. All seven skinfolds measurements were 

taken at each study appointment. The methodology of the skinfolds assessment 

is detailed in section 2.2.4. Each individual skinfold measurement increased 

across pregnancy but there was no difference in the pattern of change observed 

between the groups (data not shown). The OW/OB groups had significantly larger 

individual skinfold measurements than lean women.  

 

To assess changes in anatomical distribution of subcutaneous fat during 

pregnancy, skinfolds were assessed in anatomical groups. The skinfold 

measurements were assessed in three different ways: total skinfold represented 

the sum of all skinfolds (biceps, triceps, subscapular, costal, suprailiac, midthigh 

and suprapatella); upper body peripheral skinfold was the sum of biceps and 

triceps; upper body truncal skinfold comprised subscapular, costal and suprailiac 

skinfolds, abdominal skinfold included costal and suprailiac skinfolds; and lower 

body skinfold comprised midthigh and suprapatella skinfolds.  
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3.5.5 Longitudinal changes in total skinfold measurements 

When total skinfold measurements were assessed there was a significant 

increase across gestation; mean visit 1 total skinfold measurement 137.6mm (SD 

45.3), versus visit 3 mean value 163.3mm (SD 51.2), p time<0.0001. The OW/OB 

group had thicker total skinfolds than the lean group; total body skinfold 

119.3mm (SD 22.8) versus OW/OB 202.9mm (SD 33.5), p type<0.0001.  

 

The interaction model indicated that there was a difference in the pattern of 

increase in total skinfold measurements between the two groups (p time x 

type=0.013). In lean pregnancy total skinfold thickness was 107.7mm (SD 21.1), 

121.0mm (SD 19.6) and 129.0mm (SD 23.0) at visit 1, 2 and 3 respectively. In 

OW/OB pregnancy total skinfolds were 186.1mm (SD 28.7), 203.6mm (SD 34.0) 

and 218.9mm (SD 31.0) at each gestational time point. 
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Figure 3.3 Total skinfold measurements at each gestational time point in lean and OW/OB 
pregnancy. Illustrated are the mean total skinfold measurements (raw data) and standard 
deviations at each gestational time point in lean and OW/OB pregnancy. Differences across 
gestation were expressed as ‘p time’, between the lean and OW/OB groups as ‘p type’ and pattern 
of change in the variable between the groups as ‘p time x type’.  
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3.5.6 Longitudinal changes in grouped skinfold measurements 

3.5.6.1 Upper body peripheral skinfold measurements 

In both groups there was a significant increase in the upper body peripheral 

skinfold measurements across gestation; average visit 1 upper body peripheral 

skinfold 37.4mm (SD11.1) versus visit 3 41.0mm (SD 13.2) p time<0.0001. The 

OW/OB group had significantly thicker upper body peripheral skinfolds 

throughout pregnancy; lean average 32.1mm (SD 6.4) versus OW/OB 50.9mm (SD 

9.1), p type<0.0001.  

The interaction model suggested that there was a difference in the pattern of 

the increase upper body peripheral skinfold thickness (p time x type=0.047). In 

lean pregnancy, upper body peripheral skinfolds were 30.6mm (SD 6.3), 32.8mm 

(SD 6.1) and 33.0mm (SD 6.8) at each gestational time point. In OW/OB 

pregnancy the upper body peripheral skinfolds were 48.4mm (SD 7.8), 50.5mm 

(SD 8.6) and 54.0mm (SD 10.3) respectively.  
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Figure 3.4 Upper body peripheral skinfold measurements at each gestational time point in 
lean and OW/OB pregnancy. Illustrated are the mean upper body peripheral skinfold 
measurements (raw data) and standard deviations at each gestational time point in lean and 
OW/OB pregnancy. Differences across gestation were expressed as ‘p time’, between the lean and 
OW/OB groups as ‘p type’ and pattern of change in the variable between the groups as ‘p time x 
type’.  
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3.5.6.2 Upper body truncal skinfold measurements 

Both groups showed a significant increase in the thickness of upper body truncal 

skinfold during pregnancy; average visit 1 upper body skinfold 54.9mm (SD 20.5) 

versus average visit 3 upper body skinfold thickness 66.2mm (SD 22.3), p 

time<0.0001. The OW/OB group had significantly thicker upper body truncal 

skinfolds throughout gestation; lean average upper body truncal skinfolds 

47.5mm (SD 11.8) versus OW/OB average upper body truncal skinfold 83.0mm 

(SD 15.2), p type<0.0001.  

The pattern of the increase in these skinfolds were similar in both groups, p time 

x type=0.27.  
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Figure 3.5 Upper body truncal skinfold measurements at each gestational time point in lean 
and OW/OB pregnancy. Illustrated are the mean upper body truncal skinfold measurements (raw 
data) and standard deviations at each gestational time point in lean and OW/OB pregnancy. 
Differences across gestation were expressed as ‘p time’, between the lean and OW/OB groups as 
‘p type’ and pattern of change in the variable between the groups as ‘p time x type’.  
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3.5.6.3 Abdominal skinfold measurements 

Both groups showed a significant increase in the thickness of abdominal skinfold 

fat during pregnancy; average visit 1 abdominal skinfold 37.5mm (SD 14.1) 

versus average visit 3 abdominal skinfold thickness 43.6mm (SD 14.5),                    

p time<0.0001. The OW/OB group had significantly thicker abdominal skinfolds 

throughout gestation; lean average abdominal skinfolds 31.5mm (SD 7.6) versus 

OW/OB average abdominal skinfold 54.0 (SD 9.6), p type<0.0001.  

The pattern of increase in abdominal skinfolds were similar in both groups, p 

time x type=0.62. 
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Figure 3.6 Abdominal skinfold measurements at each gestational time point in lean and 
OW/OB pregnancy. Illustrated are the mean abdominal skinfold measurements (raw data) and 
standard deviations at each gestational time point in lean and OW/OB pregnancy. Differences 
across gestation were expressed as ‘p time’, between the lean and OW/OB groups as ‘p type’ and 
pattern of change in the variable between the groups as ‘p time x type’.  
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3.5.6.4 Lower body skinfold measurements 

In both groups there was a significant increase in the lower body skinfold 

measurements across gestation; mean visit 1 lower body skinfold 45.3mm (SD 

16.3) versus visit 3 mean value 56.1mm (SD 18.7), p<0.0001. OW/OB women had 

significantly thicker lower body skinfold than lean women; lean average lower 

skinfold measurement 36.9mm (SD 8.5) versus OW/OB 69.0mm (SD 14.4), p 

type<0.0001.  

The pattern of increase in lower body skinfolds was different between the two 

groups (p time x type=0.005). At each gestational time point, in lean pregnancy 

lower body skinfolds were 35.3mm (SD 7.4), 39.7mm (SD 6.8) and 43.9mm (SD 

9.2). In OW/OB pregnancy this was 61.5mm (SD 13.4), 69.6mm (SD 13.9) and 

75.8mm (SD 12.8) respectively.    
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Figure 3.7 Lower body skinfold measurements at each gestational time point in lean and 
OW/OB pregnancy. Illustrated are the mean lower body skinfold measurements (raw data) and 
standard deviations at each gestational time point in lean and OW/OB pregnancy. Differences 
across gestation were expressed as ‘p time’, between the lean and OW/OB groups as ‘p type’ and 
pattern of change in the variable between the groups as ‘p time x type’.  
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3.5.7 Summary of gestational anthropometry in lean and OW/OB 

pregnancy 

 

Figure 3.8 Summary of gestational anthropometry in lean and OW/OB pregnancy. This figure 
summarises the gestational differences (previously expressed as ‘p time’), the differences between 
the groups (‘p type’) and the differences in the pattern of change (‘p time x type’) seen in lean and 
OW/OB pregnancy. 

 

During pregnancy total body weight and fat mass increased. Each of the 

measured subcutaneous fat depots increases during pregnancy. OW/OB and lean 

women gain similar amounts of total body weight and fat mass during pregnancy. 

OW/OB women have thicker subcutaneous fat depots compared to lean women. 

From the above analysis there appears to be a difference in the pattern of fat 

accumulation in the total skinfolds, upper body peripheral and lower body 

skinfolds in lean and OW/OB women. 
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3.6 Gestational pattern of change in subcutaneous fat 

accumulation in lean and OW/OB pregnancies 

From the above analysis, it would appear that there are difference in the 

pattern of change seen in total body skinfolds, upper body peripheral skinfolds 

and lower body skinfolds between the lean and OW/OB groups. Further analysis 

was performed to assess the pattern of change in early (V1-V2), late (V2-V3) and 

total gestation (V1-V3) for these grouped skinfolds between lean and OW/OB 

women. 

 

3.6.1 Total body skinfolds 

When total body skinfolds were assessed, as Figure 3.3 suggested, it was the 

OW/OB women gain more fat in total body skinfolds during pregnancy than lean 

women (p=0.046).OW/OB. 

Table 3.2 Changes in total body skinfold measurements in lean and OW/OB pregnancy 
during different gestational time periods. Illustrated are the mean measurements (raw data) and 
standard deviations for the changes seen in total skinfolds during each gestational period. 
Statistical analysis performed using 2 sample t-test assessing each gestational time period: early 
(V1-V2), late (V2-V3) and total gestation (V1-V3), where V1=visit 1, V2=visit 2 and V3=visit 3. 

anthropometric 
parameter 
 

visit  
(gestation 
wk) 

lean  
mean (SD)  
(n=26) 

OW/OB  
mean (SD) 
(n=16) 

lean versus 
OW/OB 
2 sample t-
test p value 

 
change in total 
body skinfold 
(millimetres)  

 
V1-V2 
 
V2-V3 
 
V1-V3 

 
13.2 (12.5) 
 
8.1 (12.0) 
 
21.3 (15.2) 

 
17.5 (17.8) 
 
15.3 (11.8) 
 
32.8 (18.5) 

 
0.41 
 
0.065 
 
0.046 

 

  



Chapter 3  98 

3.6.2 Upper body peripheral skinfolds 

When upper body peripheral skinfolds were assessed, results indicated that 

OW/OB women gained more fat in upper body peripheral skinfolds in late 

pregnancy compared to the lean group but this was of borderline significance 

(p=0.053). 

Table 3.3 Changes in upper body peripheral skinfold measurements in lean and OW/OB 
pregnancy during different gestational time periods. Illustrated are the mean measurements 
(raw data) and standard deviations for the changes seen in upper body peripheral skinfolds during 
each gestational period. Statistical analysis performed using 2 sample t-test assessing each 
gestational time period: early (V1-V2), late (V2-V3) and total gestation (V1-V3), where V1=visit 1, 
V2=visit 2 and V3=visit 3. 

anthropometric 
parameter 
 

visit  
(gestation 
wk) 

lean  
mean (SD)  
(n=26) 

OW/OB  
mean (SD) 
(n=16) 

lean versus 
OW/OB 
2 sample t-
test p value 

 
change in upper 
body peripheral 
skinfold 
(millimetres)  

 
V1-V2 
 
V2-V3 
 
V1-V3 

 
2.2 (4.3) 
 
0.1 (4.9) 
 
2.4 (5.2) 

 
2.2 (4.6) 
 
3.5 (5.4) 
 
5.6 (6.9) 

 
0.96 
 
0.053 
 
0.12 
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3.6.3 Lower body skinfolds 

When lower body skinfolds were assessed as suggested in Figure 3.5, the OW/OB 

women gain more fat in the lower body compartments during pregnancy than 

lean women but this is not specific to any gestational time period, (p=0.034).  

Table 3.4 Changes in lower body skinfold measurements in lean and OW/OB pregnancy 
during different gestational time periods. Illustrated are the mean measurements (raw data) and 
standard deviations for the changes seen in lower body skinfolds during each gestational period. 
Statistical analysis performed using 2 sample t-test assessing each gestational time period: early 
(V1-V2), late (V2-V3) and total gestation (V1-V3), where V1=visit 1, V2=visit 2 and V3=visit 3. 

anthropometric 
parameter 
 

visit  
(gestation 
wk) 

lean  
mean (SD)  
(n=26) 

OW/OB  
mean (SD) 
(n=16) 

lean versus 
OW/OB 
2 sample t-
test p value 

 
change in lower 
body skinfold 
(millimetres)  

 
V1-V2 
 
V2-V3 
 
V1-V3 

 
4.4 ((4.4) 
 
4.3 (4.9) 
 
8.6 (5.2) 

 
8.1 (8.1) 
 
6.2 (7.1) 
 
14.3 (9.2) 

 
0.10 
 
0.36 
 
0.034 
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3.7 Gestational pattern of subcutaneous adipose tissue 

accumulation in lean and OW/OB women  

From the previous analysis, there was some evidence that lean and OW/OB 

women gained subcutaneous fat in different patterns during pregnancy. We 

wanted to further explore this further and assess the gestational timing of 

subcutaneous fat accumulation separately within the groups. In order to achieve 

this we performed repeated measures ANOVA with Tukey post hoc analysis.  

3.7.1 Lean pregnancy  

3.7.1.1 Total skinfolds 

In lean pregnancy, repeated measures ANOVA and post hoc analysis indicated 

that there was a significant increase in total body skinfolds in early and late 

pregnancy and across total gestation (p<0.0001). This would suggest that lean 

women gain fat in the measured subcutaneous fat depots across gestation, but 

that there is no specific gestational time period when this gain is concentrated. 

This suggests that the trend observed in section 3.6.1 is not a true trend. 
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Figure 3.9 Temporal accumulation of adipose tissue in the total skinfolds in lean pregnancy. 
Gestational time points are illustrated on the x axis and logged values are quotes on the y axis. 
Analysis performed on logged values following Ryan-Joiner normality testing. Analysis performed 
using repeated measures ANOVA, significant result if p<0.01. Data with different superscript levels 
a,b,c

 are significantly different from each other. There was a significant increase in total skinfolds 
measurements between 15 weeks and 25 weeks, and between 25 weeks and 35 weeks, and 
between 15 weeks and 35 weeks gestation in lean pregnancy.   

 

  a              b              c            p<0.0001 
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3.7.1.2 Upper body peripheral skinfolds 

In lean pregnancy, repeated measures ANOVA and post hoc analysis showed that 

lean women do gain fat in the upper body peripheral skinfolds during pregnancy. 

Post hoc analysis indicated that this increase was significant in early pregnancy 

but not late pregnancy. This suggests that lean women gain fat in this depot in 

early pregnancy but not late pregnancy, confirming the trend seen in section 

3.6.2.  
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Figure 3.10 Temporal accumulation of adipose tissue in the upper body peripheral skinfolds 
in lean pregnancy. Gestational time points are illustrated on the x axis and logged values are 
quotes on the y axis. Analysis performed on logged values following Ryan-Joiner normality testing. 
Analysis performed using repeated measures ANOVA, significant result if p<0.01. Data with 
different superscript levels 

a,b
 are significantly different from each other. There was a significant 

increase in upper body peripheral skinfolds measurements between 15 weeks and 25 weeks and 
between 15 weeks and 35 weeks gestation, but not between 25 weeks and 35 weeks in lean 
pregnancy. 

 

 

 

  

  a              b             b            p=0.002 
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3.7.1.3 Lower body skinfolds 

In lean pregnancy, repeated measured ANOVA and post hoc analysis indicated 

that there was a significant increase in lower body skinfolds in early and late 

pregnancy and across total gestation (p<0.0001). This would indicate that lean 

women accumulate a significant amount of adipose tissue in the lower body 

compartment across gestation rather than at a specific gestational time point, 

confirming findings in section 3.6.3. 
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Figure 3.11 Temporal accumulation of adipose tissue in the lower body skinfolds in lean 
pregnancy. Gestational time points are illustrated on the x axis and logged values are quotes on 
the y axis. Analysis performed on logged values following Ryan-Joiner normality testing. Analysis 
performed using repeated measures ANOVA, significant result if p<0.01. Data with different 
superscript levels 

a,b,c
 are significantly different from each other. There was a significant increase in 

lower body skinfolds measurements between 15 weeks and 25 weeks, and between 25 weeks and 
35 weeks, and between 15 weeks and 35 weeks gestation in lean pregnancy.   

. 

 

 

 

 

 

  

  a              b              c            p<0.0001 
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3.7.2 OW/OB pregnancy 

3.7.2.1 Total skinfolds 

In OW/OB pregnancy, repeated measures ANOVA and post hoc analysis indicated 

that there was a significant increase in total body skinfolds in early and late 

pregnancy and across total gestation (p<0.0001). This would suggest that OW/OB 

women gain fat in the measured subcutaneous fat depots across gestation, but 

that there is no specific gestational time period when this gain is concentrated, 

confirming findings in section 3.6.1. 
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Figure 3.12 Temporal accumulation of adipose tissue in the total skinfolds in OW/OB 
pregnancy. Gestational time points are illustrated on the x axis and logged values are quotes on 
the y axis. Analysis performed on logged values following Ryan-Joiner normality testing. Analysis 
performed using repeated measures ANOVA, significant result if p<0.01. Data with different 
superscript levels 

a,b,c
 are significantly different from each other. There was a significant increase in 

total skinfolds measurements between 15 weeks and 25 weeks, and between 25 weeks and 35 
weeks, and between 15 weeks and 35 weeks gestation in OW/OB pregnancy.   

 

 

 

 

  

  a              b              c            p<0.0001 
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3.7.2.2 Upper body peripheral skinfolds 

In OW/OB pregnancy, repeated measures ANOVA and post hoc analysis indicated 

that there was no significant increase in upper body peripheral skinfold thickness 

during early or late gestation but that the total gestational increase in this fat 

depot was significant (p=0.002). Therefore, OW/OB women do gain fat in the 

depot but it is continuous across pregnancy not concentrated in early or late 

pregnancy, which confirms findings in section 3.6.2. 
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Figure 3.13 Temporal accumulation of adipose tissue in the upper body peripheral skinfolds 
in OW/OB pregnancy. Gestational time points are illustrated on the x axis and logged values are 
quotes on the y axis. Analysis performed on logged values following Ryan-Joiner normality testing. 
Analysis performed using repeated measures ANOVA, significant result if p<0.01. Data with 
different superscript levels 

a,b,
 are significantly different from each other. There was a significant 

increase in upper body peripheral skinfolds measurements between 15 weeks and 35 weeks, but 
not between 15 weeks and 25 weeks, and between 25 weeks and 35 weeks gestation in OW/OB 
pregnancy.   

 

 

 

 

 

  

    a             ab             b            p=0.002 
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3.7.2.3 Lower body skinfolds 

In OW/OB pregnancy, repeated measures ANOVA and post hoc analysis indicated 

that there was a significant increase in lower body skinfolds in early and late 

pregnancy and across total gestation (p<0.0001). This would indicate that 

OW/OB women accumulate a significant amount of adipose tissue in the lower 

body compartment across gestation rather than at a specific gestational time 

point, which confirms findings in section 3.6.3. 
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Figure 3.14 Temporal accumulation of adipose tissue in the lower body skinfolds in OW/OB 
pregnancy. Gestational time points are illustrated on the x axis and logged values are quotes on 
the y axis. Analysis performed on logged values following Ryan-Joiner normality testing. Analysis 
performed using repeated measures ANOVA, significant result if p<0.01. Data with different 
superscript levels 

a,b,c
 are significantly different from each other. There was a significant increase in 

lower body skinfolds measurements between 15 weeks and 25 weeks, and between 25 weeks and 
35 weeks, and between 15 weeks and 35 weeks gestation in OW/OB pregnancy.   

 

 

 

 

 

 

  

  a              b              c            p<0.0001 
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3.8 The contribution of subcutaneous fat depots to fat 

mass in pregnancy in lean and OW/OB women  

Having assessed the different patterns of fat accumulation between groups, 

further analysis was performed to assess what contribution all anatomical sites 

subcutaneous adipose tissue (upper body peripheral, abdominal and lower body) 

had on the total gestational fat mass gain. This was performed using the 

Pearson’s correlation for univariate associations and General Linear Model for 

multivariate analysis. 

 

3.8.1 Lean pregnancy  

Univariate analysis was performed using Pearson correlation to assess the 

relationship between the absolute change in grouped skinfolds, total skinfolds 

and fat mass. The change in upper body peripheral and abdominal but not lower 

body skinfold thickness significantly correlated with the change seen in fat mass 

(table 3.5).  

Table 3.5 Univariate analysis of the association between gestational change in 
anthropometric fat depots and the gestational change seen in fat mass in lean pregnancy. 
Analysis was performed using Pearson’s correlation, significant result if p<0.01. Total body 
skinfolds shown as TBS, upper body peripheral skinfolds as UPBS and lower body skinfolds as 
LBS.  

 TBS 
(mm) 

UPBS 
(mm) 

ABS 
(mm) 

LBS 
(mm) 

V1-V3 fat mass (kg) 
Pearson correlation 
P value 

 
0.725 
<0.0001 

 
0.508 
0.009 

 
0.581 
0.002 

 
0.437 
0.029 

 

 

 

 

 

 

 

 

  



Chapter 3  107 

Multivariate analysis using the General Linear Model is illustrated in Table 3.6. 

This indicated that there was no anatomical fat depot which was independently 

associated with the gain seen in fat mass during gestation in lean pregnancy.  

Table 3.6 Multivariate analysis of the contribution of gestational change in anthropometric 
fat depots to the gestational change seen in fat mass in lean pregnancy. Assessment 
performed using the General Linear Model, significant result if p<0.01. Upper body peripheral 
skinfolds as UPBS, abdominal skinfolds as ABS and lower body skinfolds as LBS. The contribution 
of each component expressed as a percentage (%).  

 anthropometric 
parameter 
 

p value % contribution 

 
V1-V3 fat mass  

 
UBPS 
 
 
ABS 
 
LBS 

 
0.45 
 
 
0.11 
 
0.13 

 
0.02% 
 
 
7.6% 
 
6.6% 

 

 

 

 

 

 

 

 

 

 

  



Chapter 3  108 

3.8.2 OW/OB pregnancy 

Univariate analysis was performed using Pearson correlation to assess the 

relationship between the absolute change in grouped skinfolds, total skinfolds 

and fat mass (table 3.7). The changes in the grouped anatomical skinfolds did 

not correlate with the changes seen in fat mass in OW/OB pregnancy. The 

change in total skinfolds and the change seen in fat mass were of borderline 

significance.  

Table 3.7 Univariate analysis of the association between gestational change in 
anthropometric fat depots and the gestational change seen in fat mass in OW/OB 
pregnancy. Analysis was performed using Pearson’s correlation, significant result if p<0.01. Total 
body skinfolds shown as TBS, upper body peripheral skinfolds as UPBS and lower body skinfolds 
as LBS. 

 TBS 
(mm) 

UPBS 
(mm) 

ABS 
(mm) 

LBS 
(mm) 

V1-V3 fat mass (kg) 
Pearson correlation 
P value 

 
0.585 
0.017 

 
0.444 
0.085 

 
0.310 
0.24 

 
0.441 
0.088 

 

 

Multivariate analysis using the General Linear Model is illustrated in Table 3.8. 

This indicated that in OW/OB pregnancy the changes in grouped subcutaneous 

fat depots contributed little to the overall change seen in fat mass. This may 

indicate that subcutaneous fat is not the main site of fat accumulation during 

OW/OB pregnancy.  

Table 3.8 Multivariate analysis of the contribution of gestational change in anthropometric 
fat depots to the gestational change seen in fat mass in OW/OB pregnancy. Assessment 
performed using the General Linear Model, significant result if p<0.01 Upper body peripheral 
skinfolds as UPBS, abdominal skinfolds as ABS and lower body skinfolds as LBS. The contribution 
of each component expressed as a percentage (%).  

 anthropometric 
parameter 
 

p value % contribution 

 
V1-V3 fat mass  

 
UBPS 
 
 
ABS 
 
LBS 

 
0.17 
 
 
0.55 
 
0.47 

 
12.2% 
 
 
2.1% 
 
3.2% 
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3.9 Discussion 

Gestation is associated with a significant increase in total body weight and fat 

mass in both lean and OW/OB pregnancies. Our results (average increase in total 

body weight 10.1kg (SD 3.5) and fat mass 4.2kg (3.7) for entire cohort) were 

consistent with published data. Soltani (Soltani and Fraser, 2000) demonstrated 

significant increases in total body weight and fat mass accumulation from 13-36 

weeks gestation of 10.9kg [SD 4.7]kg (p<0.001) and 4.6 [SD 3.3]kg (p<0.001) 

respectively. The OW/OB group remained significantly heavier in terms of both 

total body weight and fat mass throughout pregnancy. Ehrenberg et al 

(Ehrenberg et al., 2003) showed that lean and OW/OB women gained similar 

amounts in total body weight (lean 12.3kg versus OW/OB 13kg, p=0.61) and fat 

mass (lean 4.7kg versus 4.2kg (p=0.58) respectively. When compared, our 

findings showed that lean and OW/OB women also gained similar amounts of 

total body weight (lean gain 9.5 [4.8]kg versus OW/OB gain 10.4 SD [2.4]kg 

p=0.48) and fat mass during pregnancy (lean gain 4.3 [3.6]kg versus OW/OB gain 

4.0 [4.0]kg, p=0.80). Thus the data shown here are consistent with the 

literature.    

 

Compared to the IOM guidelines for GWG, on average the lean group gained less 

(10.4kg [SD 2.4]) than the minimum recommended GWG of 11.5kg (BMI 18.5-

24.9kg/m2 total recommended GWG 11.5-16kg). When examined further, 19 lean 

women gained less than the minimum recommended 11.5kg and only 7 lean 

women gained between the recommended GWG (11.5-16kg). No lean woman 

gained more than the maximum recommended 16kg. On average the OW/OB 

group gained more (9.5kg [4.8]) than the maximum of 9kg (BMI>30kg/m2 total 

recommended GWG 5-9kg). Further analysis indicated that 50% of the OW/OB 

group (n=8) gained more than the maximum 9kg recommended (this included 

three women with overweight booking BMI of less than 30kg/m2), 6 women 

gained between the recommended 5-9kg and 2 women (both booking 

BMI>35kg/m2) gained less than the minimum recommended GWG of 5kg. This 

may illustrate that in a healthy lean Scottish cohort the IOM GWG 

recommendations are too high and not reflective of this population’s behaviour 

and lifestyle. In the OW/OB population this finding may reflect that the public 
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health message regarding excessive gestational weight gain is not being 

acknowledged or in fact being disseminated to this pregnant population. 

All measured skinfolds increased significantly during gestation indicating that 

both lean and OW/OB women gain subcutaneous fat in the measured depots 

during pregnancy. OW/OB women had significantly larger subcutaneous fat 

depots at all measured gestational time points. Therefore it is likely OW/OB 

women enter pregnancy with larger subcutaneous fat depots than lean women.  

The increase in all depots during pregnancy suggests that the measured 

subcutaneous fat depots were important sites of fat accumulation during 

pregnancy for both lean and OW/OB women.  In lean women, a smaller increase 

in subcutaneous fat skinfold reflects a larger proportional increase in fat mass 

compared to the OW/OB counterparts. Taggart found that obese women had 

smaller relative gains in total skinfolds than lean women during pregnancy 

(Taggart et al., 1967). Our data does not suggest that OW/OB women gain less in 

the subcutaneous depot, and post hoc analysis of the grouped skinfolds suggests 

they gain more subcutaneous fat in the lower depots compared to the lean 

women (14.3 [SD 9.2]mm versus 8.6 [SD5.2]mm respectively (p=0.034). 

 

The contribution of the subcutaneous fat depots to gestational fat mass gained 

was assessed. In univariate analysis, lean pregnancy fat mass was significantly 

associated with upper body peripheral skinfolds, abdominal skinfolds and total 

body skinfolds. However, in multivariate analysis, each anatomical fat depot 

group did not explain the variation seen in the change in gestational fat seen in 

lean pregnancy. This may reflect that in lean women subcutaneous fat in general 

is an important site of fat storage in pregnancy. In OW/OB pregnancy, no 

specific subcutaneous skinfolds depots or the total skinfolds contributed 

significantly to gestational fat mass.  This finding may suggest that OW/OB 

women are gaining fat preferentially in other depots such as visceral 

compartments during pregnancy. 

 

However, as the measured skinfolds are increasing during pregnancy then they 

must contribute to the increase seen in gestational fat mass to a greater or 

lesser extent. Therefore this raised the question as it how accurately the 

methods employed were in measuring fat mass in this study. In terms of skinfold 

thickness, this seven point method was validated against underwater weighing 
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by Presley et al (Presley et al., 2000). Total body weight and fat mass was 

measured by air displacement plethysmography which, because it is a two 

compartment method, cannot account for the changes in either visceral and 

subcutaneous depot sites nor the changes which are occurring in the fetal 

compartment. In addition, assessing the changes in fat accumulation at three 

gestational points may not be adequate enough, for instance measurements 

prepregnancy and before 12 weeks of pregnancy may be valuable. This may be a 

reason why not significant associations were reported in this analysis.  

 

The current analysis, indicated that although the timing of the accumulation of 

total fat was similar there was a difference between lean and OW/OB women in 

the anatomical location of fat at different gestations indicated by significant 

interaction terms in the mixed model.  

 

The pattern of change in the accumulation of fat in the upper body peripheral 

depots was different between lean and OW/OB women (p=0.047). Post hoc 

analysis suggested that OW/OB women continued to gain fat in this depot in late 

pregnancy but the lean did not. This finding was supported by the repeated 

measures ANOVA analysis which indicated that lean women gained adipose tissue 

in this depot in early pregnancy but not in late pregnancy. Interestingly, the 

finding in the lean group of no increase in the upper body peripheral skinfold 

thickness during late pregnancy, is supportive of one of the outcomes of 

Taggart’s early work which showed no increase in the triceps skinfold in late 

pregnancy.  

 

For the lower body depots the pattern of accumulation of adipose tissue was the 

same in the lean and OW/OB groups as both groups continued to accumulate fat 

in this depot throughout gestation. Therefore, this finding does not support our 

hypothesis that lean women gain fat preferentially in lower body fat stores. 

 

The lack of correlations between accumulated fat mass and the change in total 

skinfold in OW/OB women suggests that OW/OB women may accumulate fat in 

other anatomical sites. In lean women, although there was a correlation 

between abdominal depots, upper body peripheral depots and fat mass, neither 

variable explained the increase in gestational fat mass in multivariate analysis. 
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Therefore the significant correlation could be the result of colinearity between 

the depots.  One subcutaneous fat depot which was not measured directly was 

the buttock. An indirect assessment of this depot, the hip and upper thigh 

circumference, was performed. This indicated that there were gestational 

increases in these depots, but that these were not significantly different from 

lean women.  

 

Another variable which has not been accounted for in this cohort is the impact 

of visceral fat accumulation on total body weight and fat mass during pregnancy. 

Visceral fat is comprised of a variety of potentially functional different depots 

including omental fat, prepertitoneal fat and adipose tissue attached directly to 

the organs. Kinoshita (Kinoshita and Itoh, 2006) performed ultrasonographic 

assessment of preperitoneal fat and showed that there was an increase in this 

fat depot during pregnancy suggesting that a proportion of the gestational fat 

mass is gained in the intra-abdominal compartment. Sohlstrom and Forsum 

(Sohlstrom and Forsum, 1995) used MRI to assess fat accumulation and 

distribution in a non-obese cohort (prepregnancy BMI 23.3 (SD 3.2) range 17.3-

29.1, n=25). They showed that the majority of adipose tissue was accrued in the 

subcutaneous compartment, and that 68% of this was in the trunk. We did not 

directly measure lower back adipose tissue skinfolds and thus our assessment of 

truncal adiposity may be incomplete. Our lack of ultrasound or MRI assessment 

of visceral fat highlights the difficulty in performing a full anthropometric 

assessment and suggests that further investigation needs to involve assessment 

of the visceral fat compartment in a manner which is acceptable to participants 

and researchers alike. 

 

Another explanation for the lack of association between fat mass and 

subcutaneous fat depots in the OW/OB group is that during pregnancy although 

OW/OB women may gain fat in both subcutaneous and visceral sites they store 

proportionately more fat in the visceral depots as their subcutaneous sites are 

already replete. If we assume no colinearity then in lean pregnancy, women are 

able to keep accumulating fat in the subcutaneous depots throughout pregnancy 

therefore less accretion is seen in the visceral compartment.  
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The differences in the pattern of subcutaneous fat accumulation seen in the 

groups may reflect the higher rates of insulin resistance seen in OW/OB 

pregnancy compared to lean pregnancy in the later stages of pregnancy.  

 

The observation that lean women stop accumulating fat in the upper body 

peripheral skinfolds between 25 and 35 weeks, whereas OW/OB women do not 

may suggest that lean women are able to switch easily from a lipogenic to a 

lipolytic profile in later gestation whereas the OW/OB women remain lipogenic 

as well as lipolytic i.e. have higher NEFA turnover. If this is the case then this 

may indicate a lack of metabolic flexibility within the adipose tissue in OW/OB 

pregnancy, increased NEFA flux and consequently an increase in metabolic risk 

factors such as hyperinsulinaemia, hypertriglyerideamia and diastolic blood 

pressure (Bartha et al., 2007).  

 

The strength of the present study was the systematic methodology of the 

anthropometric measurements. All were performed by the same researcher who 

was trained in ISAK anthropometric techniques and recorded by the assisting 

research nurse in order to reduce bias. All study appointments were performed 

at the same time of day and all study participants attended following an 

overnight fast. The limitations of this analysis is that we did not measure the 

visceral compartment and therefore cannot confirm our above discussion points 

regarding the ratio of visceral to subcutaneous storage of adipose tissue in lean 

and OW/OB pregnancies. As discussed above, three anatomical groups were used 

for subcutaneous fat accumulation (upper body peripheral, abdominal and lower 

body). These groups did not include direct buttock measurements and therefore 

we may not have collected a data set which is truly representative of the 

changes in subcutaneous fat accumulation during pregnancy. In addition, due to 

difficulties recruiting women with very high BMI’s our OW/OB group included 

overweight women as well which will not represent the fat accumulation and 

distribution of very obese women. Such results may differ from our observations. 

 

In conclusion, as illustrated in figure 3.15, there are certain similarities in 

anthropometric gestational changes seen in lean and OW/OB pregnancies. Both 

gain total body weight and fat mass during pregnancy. Lean and OW/OB women 

gain similar amounts of both total body weight and fat mass during pregnancy. 
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However, lean women appear to accumulate fat in upper body peripheral 

storage sites in early pregnancy whereas OW/OB women gain fat globally 

throughout gestation. Therefore there is a difference in the lipolytic activity of 

this depot which may relate to metabolic flexibility in pregnancy. There was no 

significant contribution of the increase in the measured subcutaneous depots to 

the variation seen in gestational increase in fat mass in either lean or OW/OB 

pregnancies. This suggests that in both lean and OW/OB pregnancy other sites of 

fat storage which were not measured were important. Further analysis involving 

measurement of the visceral compartment would be helpful to explore the 

importance of this depot in gestational changes in body fat in lean and OW/OB 

pregnancies. 

 

Figure 3.15 Summary of anthropometric changes seen in healthy lean and OW/OB 
pregnancy. Summary of the similarities and differences seen in the anthropometric variables 
measured in healthy lean and OW/OB pregnancies and the impact of these findings on fat mass. 
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Chapter 4 - Energy metabolism during pregnancy 
and its relationship with mass and distribution of 
subcutaneous adipose tissue in lean and OW/OB 

pregnancy    

4.1 Introduction  

The energy demands on the mother during pregnancy can be categorised into 

three components. These are the conceptus (including the fetus, placenta, 

amniotic fluid and the expansion of blood volume) fat deposition in the mother 

and finally the energy spent on maintaining this new tissue (Prentice and 

Goldberg, 2000). It has been recognised that during pregnancy the basal 

metabolic rate increases and it has been observed to be higher in obese women 

compared to non-obese controls (Bronstein et al., 1996).  

In the past, nutrition and diet in pregnancy were often overlooked as it was 

assumed that the expectant mother would optimise her health and wellbeing for 

the good of her unborn child. In the context of the increasing rates of maternal 

obesity, women are entering pregnancy less healthy and more at risk from a 

range of serious maternal and fetal complications. Dietary intake during 

pregnancy should aim to provide enough energy, macro and micronutrients for 

both the metabolic needs of the mother and fetus without excessive maternal 

weight gain or fetal growth.  

General dietary advice, in the “ready steady baby!” publication (NHS, 2012b), is 

provided during the course of antenatal care but this does not specifically 

address the obese population. Recent guidance on the management of obese 

pregnancies (RCOG, 2010) highlighted the need for advising women about the 

importance of a healthy diet and exercise during pregnancy in order to avoid 

excessive weight gain and gestational diabetes. However, this recommendation 

was within the context of general dietary advice. The only specific nutritional 

guidance for obese woman was increased supplementation of folic acid and 

vitamin D (5mg and 10ug daily respectively), and the guidance did not discuss 

other aspects including fat and complex carbohydrate consumption. 

General levels of physical activity among adults have declined dramatically as a 

result of changes in work practices and technological advances. Previous 
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recommendations for physical activity during pregnancy were not based on 

scientific evidence but more on cultural and traditional norms. Current 

recommendations from the Royal College of Obstetricians & Gynaecologists 

suggest that exercise activities must balance the benefits and risks to both the 

mother and fetus (RCOG, 2006). Guidance for exercise intensity suggests a 

maximum heart rate of 60-70% for women who were sedentary prior to 

pregnancy. Recommendations from the American College of Obstetricians & 

Gynecologists suggests that pregnant women may safely engage in > 30 minutes 

of moderate physical activity on most, if not all days of the week (Artal and 

O'Toole, 2003). 

 

In the current literature, little is known about the impact of diet and exercise on 

gestational weight gain and their relationship with fat mass and distribution of 

adipose tissue during pregnancy. Given the current obesity epidemic seen in the 

obstetric population it is now even more important that these relationships are 

explored in order to optimise the management of obese pregnancies.  

 

This chapter examines the relationships between energy metabolism 

components, adiposity and fat distribution during pregnancy. 
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4.2 Research Questions  

1. Do measures of energy metabolism (basal metabolic rate, substrate 

utilisation and non-protein respiratory exchange ratio) change during 

pregnancy and do they differ between lean and OW/OB pregnancy?   

2. Do physical activity levels change during pregnancy and do they differ 

between lean and OW/OB women? 

3. Does dietary intake change during pregnancy and do they differ between 

lean and OW/OB pregnancy? 

4. If there are significant differences in the above aspects of energy 

metabolism between lean and OW/OB pregnancy, are these factors 

related to gestational fat mass accumulation and/or anatomical fat 

deposition during pregnancy? 

 

4.3 Methods 

Basal metabolic rate and substrate utilisation, physical activity and dietary 

intake assessment methodologies have been detailed in section 2.3 of the 

General Methods Chapter. All measurements were recorded by the researcher. 

Data for macronutrient intake is quoted in kilojoules per day, which is the same 

unit used for basal metabolic rate and substrate utilisation. The conversion 

factor for kilojoules to kilocalories is 1kilojoule=0.24 kilocalories. (www.unit-

conversion.info). 
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4.4 Gestational changes in basal metabolic rate and 

substrate utilisation  

4.4.1 Basal metabolic rate 

Basal metabolic rate (BMR) was assessed across time and between groups (figure 

4.1). Both groups show a significant increase in BMR during pregnancy (p 

time<0.0001); V1 average 5530 kJ/day (standard error of the mean [SEM] 142) 

versus V3 average 6080 (SEM 154) kJ/day.  The OW/OB group had a significantly 

higher BMR at all gestational time points (p type<0.0001); the mean lean BMR 

was 5341 kJ/day (SEM 85) versus OW/OB 6492kJ/day (SEM 127) across gestation.   

 

The pattern of increase in BMR between the two groups was similar (p time x 

type=0.15).  
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Figure 4.1 Basal metabolic rate at each gestational time point in lean and OW/OB 
pregnancy. Illustrated is the mean basal metabolic rate (BMR) (raw data) and the standard error of 
the mean at each gestational time point in lean and OW/OB pregnancy. Differences across 
gestation were expressed as ‘p time’, between the lean and OW/OB groups as ‘p type’ and pattern 
of change in the variable between the groups as ‘p time x type’.  
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4.4.2 Basal metabolic rate per kilogram body weight (BMR/kg) 

In order to ascertain whether the higher BMR observed in the OW/OB group was 

reflective of a true difference between the groups or whether this was simply a 

result of differences in maternal body mass, the BMR/kg body weight was 

compared between the groups using the linear mixed model. 

Across gestation there was no significant change in BMR/kg, p time=0.12. Lean 

women had a significantly higher BMR per kilogram of weight than OW/OB 

women; average lean 81.7kJ/Day/kg (SEM 1.3) versus OW/OB 70.9kJ/day/kg 

(SEM 0.8). 

The pattern of change in the BMR per kilogram was not significantly different 

between the lean and OW/OB pregnancies. 
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Figure 4.2 Basal metabolic per kilogram at each gestational time point in lean and OW/OB 
pregnancy. Illustrated is the mean basal metabolic rate per kilogram (BMR/kg)) (raw data) and the 
standard error of the mean at each gestational time point in lean and OW/OB pregnancy. 
Differences across gestation were expressed as ‘p time’, between the lean and OW/OB groups as 
‘p type’ and pattern of change in the variable between the groups as ‘p time x type’. 

  

p time 0.12 
p type <0.0001 

p time x type =0.065  

OW/OB 

lean 



Chapter 4  121 

4.4.3  Non-protein respiratory exchange ratio  

Non-protein respiratory energy ratio (NPRER) expresses the ratio of carbohydrate 

oxidation to fat oxidation by calculating the rate of VO2 consumption to CO2 

production (see Chapter 2, section 2.3.1). The greater the ratio (i.e. the closer 

to 1.00 the value is), the higher the proportion of carbohydrates as opposed to 

fats being utilised as any energy source. 

 

NPRER was assessed across time and between groups (figure 4.3). There was no 

effect of gestation on NPRER (p time=0.72), There was a significant difference 

between the two groups (p type<0.0001); average lean NPRER 0.87 (SEM 0.02) 

versus OW/OB average NPRER 0.81 (SEM 0.08). The pattern of change in NPRER 

was not significantly different between the groups (p time x type=0.36). 
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Figure 4.3 NPRER at each gestational time point in lean and OW/OB pregnancy. Illustrated is 
the mean NPRER (raw data) and the standard error of the mean at each gestational time point in 
lean and OW/OB pregnancy. Differences across gestation were expressed as ‘p time’, between the 
lean and OW/OB groups as ‘p type’ and pattern of change in the variable between the groups as ‘p 
time x type’. 
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4.4.4 Fat oxidation 

Using the linear mixed model, fat oxidation was assessed across time and 

between groups (figure 4.4). There was no effect of gestation on fat oxidation (p 

time=0.59). Fat oxidation was different between the groups (‘p type’). OW/OB 

women utilised fat as an energy source to a greater extent than lean women; 

average lean fat oxidation 1947kJ/day (SEM 199) versus OW/OB average fat 

oxidation 2997 kJ/day (SEM 200).   

 

There was no difference in the fat oxidation across gestation (‘p time’) or 

pattern of change (‘p time x group’).  
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Figure 4.4 Rate of fat oxidation at each gestational time point in lean and OW/OB pregnancy. 
Illustrated is the mean rate of fat oxidation (raw data) and the standard error of the mean at each 
gestational time point in lean and OW/OB pregnancy. Differences across gestation were expressed 
as ‘p time’, between the lean and OW/OB groups as ‘p type’ and pattern of change in the variable 
between the groups as ‘p time x type’. 

 

 

 

  

p time =0.59 
p type <0.0001 

p time x type =0.12 

OW/OB 

lean 



Chapter 4  123 

4.4.5 Carbohydrate oxidation 

The change in carbohydrate (CHO) oxidation was assessed across time and 

between the groups (figure 4.5). There was a trend for an increase in CHO 

utilisation during pregnancy (p time=0.039). There was a significant difference 

between the groups (‘p type’ <0.0001); average lean CHO oxidation 2319 kJ/day 

(SEM 192) versus OW/OB 1864 kJ/day (SEM 211).   

 

The interaction term (‘p time x group’) was not significant indicating that the 

lean and OW/OB have similar changes in CHO oxidation during pregnancy.  
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Figure 4.5 Rate of CHO oxidation at each gestational time point in lean and OW/OB 
pregnancy. Illustrated is the mean rate of CHO oxidation (raw data) and the standard error of the 
mean at each gestational time point in lean and OW/OB pregnancy. Differences across gestation 
were expressed as ‘p time’, between the lean and OW/OB groups as ‘p type’ and pattern of change 
in the variable between the groups as ‘p time x type’. 
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4.5 Longitudinal changes in physical activity  

4.5.1 Sedentary activity time 

Sedentary activity time was assessed across time and between groups (figure 

4.6). There was no effect of gestation on sedentary activity time (p time=0.23).  

There was no difference in sedentary activity between the groups  

(p type=0.068).  

 

There was no difference in the pattern of change in sedentary activity time 

between the two groups, shown as the interaction term (‘p time x group’).  
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Figure 4.6 Daily sedentary activity time at each gestational time point in lean and OW/OB 
pregnancy. Illustrated is the mean daily sedentary activity time (raw data) and the standard error 
of the mean at each gestational time point in lean and OW/OB pregnancy. Differences across 
gestation were expressed as ‘p time’, between the lean and OW/OB groups as ‘p type’ and pattern 
of change in the variable between the groups as ‘p time x type’. 
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4.5.2 Light activity time 

There was no difference in daily light activity time across gestation and between 

the groups as shown in figure 4.7. There was no difference in the pattern of 

change in sedentary activity time between the two groups, show as the 

interaction term (‘p time x group’).  
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Figure 4.7 Daily light activity time at each gestational time point in lean and OW/OB 
pregnancy. Illustrated is the mean daily light activity time (raw data) and the standard error of the 
mean at each gestational time point in lean and OW/OB pregnancy. Differences across gestation 
were expressed as ‘p time’, between the lean and OW/OB groups as ‘p type’ and pattern of change 
in the variable between the groups as ‘p time x type’. 
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4.5.3 Moderate & vigorous activity time 

Moderate and vigorous physical activity (MVPA) time was assessed across time 

and between the groups (figure 4.8). Across gestation, there was a significant 

fall in MVPA, p time=0.008; average visit 1 MVPA 29.4mins/day (SEM 3.0) versus 

visit 3 average MVPA 18.2mins/day (SEM 2.7). During pregnancy, lean women 

spent significantly more time in MVPA than OW/OB women; average lean 28.3 

mins/day (SEM 2.6) versus 18.6mins/day (SEM 1.8) respectively.  

 

There was no difference in the pattern of change in MVPA between the two 

groups, show as the interaction term (‘p time x group’).  
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Figure 4.8 Daily MVPA time at each gestational time point in lean and OW/OB pregnancy. 
Illustrated is the mean daily MVPA time (raw data) and the standard error of the mean at each 
gestational time point in lean and OW/OB pregnancy. Differences across gestation were expressed 
as ‘p time’, between the lean and OW/OB groups as ‘p type’ and pattern of change in the variable 
between the groups as ‘p time x type’. 
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4.6 Gestational changes in macronutrient dietary intake  

4.6.1 Daily energy intake 

Daily energy intake was assessed across time and between groups (figure 4.9). 

There was no impact of gestation or group on daily energy intake as shown in the 

figure below.  

 

The pattern of change in daily energy intake seen between the groups was also 

not significantly different. 
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Figure 4.9 Daily energy intake at each gestational time point in lean and OW/OB pregnancy. 
Illustrated is the mean daily energy intake (raw data) and the standard error of the mean at each 
gestational time point in lean and OW/OB pregnancy. Differences across gestation were expressed 
as ‘p time’, between the lean and OW/OB groups as ‘p type’ and pattern of change in the variable 
between the groups as ‘p time x type’. 
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4.6.2 Daily total fat intake 

The change in daily fat intake was assessed across gestation and between the 

groups (figure 4.10). There was no difference across gestation or between the 

groups in terms of daily fat intake.  

 

The pattern of change in daily fat intake between the two groups, (‘p time x 

group’) was similar.  
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Figure 4.10 Daily fat intake at each gestational time point in lean and OW/OB pregnancy. 
Illustrated is the mean daily fat intake (raw data) and the standard error of the mean at each 
gestational time point in lean and OW/OB pregnancy. Differences across gestation were expressed 
as ‘p time’, between the lean and OW/OB groups as ‘p type’ and pattern of change in the variable 
between the groups as ‘p time x type’. 
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4.6.3 Total carbohydrate intake 

The change in daily carbohydrate intake was assessed across gestation and 

between the groups (figure 4.11). There was no impact of gestation or group on 

daily carbohydrate intake.  

 

There was no difference across gestation in the pattern of change in daily 

carbohydrate intake seen between the groups. 
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Figure 4.11 Daily carbohydrate intake at each gestational time point in lean and OW/OB 
pregnancy. Illustrated is the mean daily carbohydrate intake (raw data) and the standard error of 
the mean at each gestational time point in lean and OW/OB pregnancy. Differences across 
gestation were expressed as ‘p time’, between the lean and OW/OB groups as ‘p type’ and pattern 
of change in the variable between the groups as ‘p time x type’. 
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4.6.4 Total protein intake 

The change in daily protein intake was assessed across gestation and between 

the groups (figure 4.12). There was no impact of gestation or group on daily 

protein intake.  

 

When the statistical model was applied to the data there was no difference in 

the pattern of change in daily protein intake seen between the groups as shown 

in figure 4.11.  

 

gestational age (weeks)

k
il
o

jo
u

le
s
/d

a
y

10 20 30 40

1000

1200

1400

1600

1800

lean

obese

 

Figure 4.12 Daily protein intake at each gestational time point in lean and OW/OB 
pregnancy. Illustrated is the mean daily protein intake (raw data) and the standard error of the 
mean at each gestational time point in lean and OW/OB pregnancy. Differences across gestation 
were expressed as ‘p time’, between the lean and OW/OB groups as ‘p type’ and pattern of change 
in the variable between the groups as ‘p time x type’. 
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4.7 Summary of gestational changes seen in energy 

metabolism 

 

Figure 4.13 Summary of energy metabolism changes seen in healthy lean and OW/OB 
pregnancy. This figure summarises the gestational differences (previously expressed as ‘p time’), 
the differences between the groups (‘p type’) and the differences in the pattern of change (‘p time x 
type’) seen in lean and OW/OB pregnancy. 

 

Figure 4.13 summarises the analysis of the components of energy metabolism 

assessed in lean and OW/OB pregnancy. Across gestation BMR rose and MVPA 

time fell. Lean women had higher BMR/kg, NPRER, and carbohydrate oxidation 

and lower BMR and fat oxidation compared to OW/OB women. The higher BMR in 

OW/OB women is due to their greater body mass. After correction for body 

mass, it was seen that BMR/kg was in fact significantly higher in lean women. In 

addition lean women were more active than OW/OB women during pregnancy. 

There were no differences in the pattern of change in the above components of 

energy metabolism between lean and OW/OB women.  
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4.8 The contribution of energy metabolism to gestational 

fat mass and anatomical fat distribution  

Further analysis was performed on the components of energy metabolism which 

changed over gestation or differed between lean and OW/OB mothers and their 

relationship with observed changes in fat mass and specific subcutaneous fat 

depots. This analysis was performed using the entire cohort as the lack of 

interactions for any of the measurements of energy metabolism indicated that 

lean and OW/OB women responded to pregnancy in the same way. Using the 

entire cohort increased the sample size and added more power to the analysis. 

BMI was included in the analysis where appropriate as a covariate.   

 

Univariate analysis was performed using Pearson’s correlation to assess the 

relationships between absolute change in the anthropometric variables and 

BMR/kg, NPRER, and MVPA. A significant result was taken as p<0.01, but trends 

(p<0.05) were also explored further in multivariate analysis. These variables 

were chosen as NPRER incorporates both carbohydrate and fat oxidation. BMR/kg 

was included as this corrected for the increase in BMR associated with increased 

body mass in the OW/OB group.  

 

If a significant univariate correlation was found, multivariate analysis was 

performed. This was performed using the General Linear Model (significance 

level p<0.05) including the above variables and covariates. BMR and BMR/kg are 

related to therefore they were not analysed in the same model. BMI as a 

confounding variable was added to a further multivariate analysis when 

appropriate (i.e. when it was not represented elsewhere in the model).  
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4.8.1 Gestational changes in energy metabolism and total fat 

mass 

Univariate correlation analysis (table 4.1) was performed to assess the 

relationship between the absolute change in fat mass and absolute change in 

components of energy metabolism. 

Table 4.1 Univariate analysis of the association between gestational change in fat mass and 
the gestational change in energy metabolism in the entire cohort. Analysis performed using 
Pearson’s correlation, significant result if p<0.01. The basal metabolic rate/kilogram is shown as 
BMR/kg, non-protein respiratory exchange ratio as NPRER and moderate & vigorous activity as 
MVPA.  

 BMR/kg 
V1-V3 

NPRER 
V1-V3 

MVPA 
V1-V3 

V1-V3 fat mass  
Pearson correlation 
P value 

 
0.111 
0.50 

 
-0.023 
0.89 

 
0.186 
0.33 

 

There were no significant associations between the increase in fat mass during 

pregnancy and the change in BMR/kg, NPRER or MVPA.  
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The relationship between BMR/kg and MVPA was explored. The absolute values 

for BMR/kg and MVPA at each time point during gestation were plotted (figure 

4.14). Analysis of the data for all time points showed that BMR/kg was 

significantly correlated to MVPA. Thus women with a higher BMR/kg are more 

active. This may explain why the BMR/kg is higher in lean women. 
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Figure 4.14 Relationship between basal metabolic rate per kilogram versus moderate and 
vigorous activity for the entire cohort. Assessment performed using Pearson’s correlation, 
significant result if p<0.01. The time spent in MVPA in minutes is plotted against the BMR/kg in 
kilojoule per kilogram per day.. Basal metabolic rate/kilogram is shown as BMR/kg and moderate & 
vigorous activity is shown as MVPA. 
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4.8.2 Gestational change in energy metabolism and total body 

skinfolds 

Univariate analysis was performed to assess the relationship between the 

absolute change in total body skinfolds and gestational changes in energy 

metabolism (table 4.2). There were no significant association with the increase 

in total body skinfolds seen during pregnancy and BMR/kg, NPRER or MVPA. 

Table 4.2 Univariate analysis of the association between gestational change in total body 
skinfolds to the gestational change in energy metabolism in entire cohort. Assessment 
performed using Pearson’s correlation, significant result if p<0.01. The basal metabolic 
rate/kilogram is shown as BMR/kg, non-protein respiratory exchange ratio shown as NPRER and 
moderate & vigorous activity shown as MVPA.  

 BMR/kg 
V1-V3 

NPRER 
V1-V3 

MVPA 
V1-V3 

V1-V3 total body skinfolds  
 
Pearson correlation 
P value 

 
 
0.195 
0.22 

 
 
-0.143 
0.37 

 
 
-0.113 
0.55 
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4.8.3 Gestational change in energy metabolism and upper body 

peripheral skinfolds 

Univariate analysis was performed using Pearson correlation to assess the 

relationship between the absolute change in upper body peripheral skinfolds and 

components of energy metabolism (table 4.3). There was a trend for the 

increase in upper body peripheral skinfolds change to be associated with the 

change in NPRER during pregnancy. 

Table 4.3 Univariate analysis of the association between gestational change in upper body 
peripheral skinfolds and the gestational change in energy metabolism in the entire cohort. 
Analysis performed using Pearson’s correlation, significant result if p<0.01. The basal metabolic 
rate/kilogram is shown as BMR/kg, non-protein respiratory exchange ratio as NPRER and 
moderate & vigorous activity as MVPA.  

 BMR/kg 
V1-V3 

NPRER 
V1-V3 

MVPA 
V1-V3 
 

V1-V3 upper body peripheral 
skinfolds 
Pearson correlation 
P value 

 
 
0.228 
0.15 

 
 
-0.314 
0.046 

 
 
-0.004 
0.98 
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The relationship between upper body peripheral skinfolds and NPRER was 

explored. The change in UBPS and the change in NPRER were plotted (figure 

4.15). If there is an increase in NPRER across gestation this indicates a move to 

more carbohydrate oxidation, a decrease in the NPRER suggests more fat 

oxidation. Therefore, a large increase in UBPS is related to a higher proportion 

of fat metabolism, whereas a small increase in UBPS is related to a higher 

degree of carbohydrate metabolism. 
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Figure 4.15 Relationship between the change in upper body peripheral skinfolds and the 
change in NPRER for the entire cohort. Assessment performed using Pearson’s correlation, 
significant result if p<0.01. The change in UBPS is plotted against the change observed in NPRER 
during pregnancy for the entire cohort. Upper body peripheral skinfolds is shown as UBPS. 

 

 

 

 

 

 

  

r=-0.314 
p=0.046 

 



Chapter 4  138 

4.8.4 Gestational change in energy metabolism and abdominal 

skinfolds 

Univariate analysis was performed using Pearson correlation to assess the 

relationship between the absolute change in abdominal skinfolds and 

components of energy metabolism. No significant associations were found. 

Table 4.4 Univariate analysis of the association between gestational change in abdominal 
skinfolds and the gestational change in energy metabolism in the entire cohort. Analysis 
performed using Pearson’s correlation, significant result if p<0.01. The basal metabolic 
rate/kilogram is shown as BMR/kg, non-protein respiratory exchange ratio as NPRER and 
moderate & vigorous activity as MVPA. 

 BMR/kg 
V1-V3 

NPRER 
V1-V3 

MVPA 
V1-V3 
 

V1-V3 abdominal skinfolds  
Pearson correlation 
P value 

 
0.038 
0.81 

 
0.190 
0.24 

 
-0.127 
0.50 

 

4.8.5 Gestational change in energy metabolism and lower body 

skinfolds 

Univariate analysis was performed using Pearson correlation to assess the 

relationship between the absolute change in lower body skinfolds and 

components of energy metabolism. No significant associations were found. 

Table 4.5 Univariate analysis of the association between gestational change in lower 
skinfolds and the gestational change in energy metabolism in the entire cohort. Analysis 
performed using Pearson’s correlation, significant result if p<0.01. The basal metabolic 
rate/kilogram is shown as BMR/kg, non-protein respiratory exchange ratio as NPRER and 
moderate & vigorous activity as MVPA. 

 BMR/kg 
V1-V3 

NPRER 
V1-V3 

MVPA 
V1-V3 
 

V1-V3 lower body skinfolds 
Pearson correlation 
P value 

 
0.165 
0.30 

 
-0.161 
0.31 

 
-0.217 
0.25 
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4.9 Discussion 

In our study, there was a significant rise in basal metabolic rate during 

pregnancy and OW/OB women had higher rates of BMR than lean women. This is 

consistent with the current literature (Forsum and Lof, 2007, Lof et al., 2005).  

Although we found the increase in BMR continuous from 15 weeks’ gestation, 

other reports regarding the timing of increases in BMR differ. Some authors have 

reported that BMR only rises significantly after 32 weeks’ gestation (Forsum and 

Lof, 2007, Lof et al., 2005). Others have detected a rise in BMR from conception 

and a further increase in the third trimester (Chihara et al., 2002). Our study 

cannot comment on pre-conceptual or early pregnancy changes, and our results 

suggest that BMR increases throughout pregnancy rather than just in the third 

trimester.  

 

In this study, the higher rates of BMR in the OW/OB group simply reflect the fact 

that these women are significantly heavier throughout pregnancy than the lean 

women. In order to correct for the impact of higher body mass, basal metabolic 

rate per kilogram (BMR/kg) was calculated.  Lean women had significantly higher 

BMR/kg throughout pregnancy compared to OW/OB women (p type<0.0001). 

There was also a trend towards a different pattern of change in BMR/kg between 

the groups (p=0.065). Across gestation, BMR/kg fell continuously in the lean 

group but stayed relatively stable in the OW/OB group. Other authors have not 

discussed BMR/kg (Forsum and Lof, 2007, Chihara et al., 2002) and differences in 

maternal body mass between different studies may underlie the disparity in 

reported changes of BMR during pregnancy. As lean and OW/OB women gained 

the same fat mass and total body weight during pregnancy the observed 

gestational decline in BMR/kg observed must be explained by another 

component of energy metabolism.  

 

During pregnancy, both groups show a significant fall in MVPA levels and by the 

third trimester lean women have similarly low MVPA levels to that observed in 

OW/OB women. Throughout pregnancy, lean women are on average 37.4% more 

active during pregnancy than OW/OB women, based on time spent in MVPA. 

Conversely there was a trend for OW/OB women to be more sedentary than lean 

women throughout pregnancy but this did not reach significance. In under-



Chapter 4  140 

nourished maternal populations, a fall in activity as pregnancy progresses has 

been thought to relate to conservation of energy in the face of an increasing 

basal metabolic rate (Lawrence et al., 1987). In affluent mothers, the fall in 

MVPA has also been suggested to be as a result of physical restrictions in moving 

because of maternal habitus and avoidance of activity which is considered a risk 

to fetus (Melzer et al., 2009).  

 

Interestingly in the univariate analysis there were no strong associations 

between the change in fat mass or total body skinfolds and BMR/kg, NPRER and 

MVPA. However, because BMR/kg and MVPA were different between the groups 

it was tested whether higher rates of physical activity accounted for the higher 

BMR per kilogram in the lean group. Plotting all time points we found that there 

was a significant association between BMR/kg and MVPA (p=0.001), suggesting 

that more active women have a higher BMR/kg. In our cohort physical activity 

appears to be a major determinant of BMR in pregnancy (r=0.325).  

 

In this cohort, we found that there was no difference across gestation or 

between the groups in terms of total energy and macronutrient intake. Our data 

suggested that our participants had similarly diets. Previous studies on diets 

during pregnancy have found very little change in terms of the increase in high 

energy (cakes, biscuits, processed meats, white bread) diet components (Crozier 

et al., 2009). Other authors however, have found significant increases in the 

dietary energy density during pregnancy and that high energy diets were 

significantly associated with total gestational weight gain (Deierlein et al., 

2008). Published data also show that those with a high pre-pregnancy BMI tended 

to consume a diet with high glycaemic loads (Deierlein et al., 2008). These 

contradictory findings highlight the difficulties in collecting dietary information. 

In our study, both groups gain a similar amount of GWG and fat mass during 

pregnancy which suggests a lack of difference in dietary energy intake. This 

suggests that managing gestational weight gain in a Scottish population by diet 

alone may not be successful and guidance should include encouraging OW/OB 

women to increase their physical activity prior and during pregnancy. It would 

be interesting to explore associations between insulin resistance and visceral fat 

accretion and gestational changes in BMR/kg and MVPA to see if this advice 

would lead to an improved metabolic profile. 
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As discussed above, there were no associations between the change in fat mass 

or total body skinfolds and measurements of energy metabolism. It cannot be 

ruled out that there is an element of fat mass not being assessed which is 

affected by MVPA; this may be the visceral compartment. Unfortunately the 

visceral compartment was not measured thus there is no information on this 

association in the current study. There is an abundance of data which indicates 

the association between physical activity and visceral fat in the adult non-

pregnant population. In inactive adults, prolonged bed rest is associated with an 

increase in visceral fat depots (Belavy et al., 2014). The converse of this is also 

true, a recent a meta-analysis showed that moderate and vigorous exercise 

programmes reduce visceral adiposity more than low-impact aerobic regimens in 

obese men and women (Vissers et al., 2013). Published data in an overweight 

and obese pregnant population found that women with the largest fall in MVPA 

across gestation had higher levels of plasma insulin and triglycerides and worse 

insulin sensitivity in late pregnancy (van Poppel et al., 2013). Although not 

examined in this cohort further analysis of this data could assess whether this 

association exists and if there are differences in any associations in lean 

pregnancies. Therefore, in an obstetric population whether lean or OW/OB, 

sedentary lifestyle may be a risk factor for increased deposition of visceral fat.  

 

Carbohydrate oxidation was on average 20% higher in lean women when 

compared to OW/OB group. The rate of fat oxidation was on average 36% higher 

in OW/OB pregnancies. These differences in substrate utilisation are reflected in 

the OW/OB women having lower NPRER. An increased fat oxidation may lead to 

a ‘switching off’ of glucose oxidation (Randle et al., 1963). However, in obesity 

the capacity of tissue, primarily muscle, to utilise fat is also diminished and this 

further enhances the development of insulin resistance (McGarry, 2002). OW/OB 

women have been found to be more insulin resistant during pregnancy and their 

increase in fat oxidation may represent an imbalance in fat and glucose 

utilisation resulting in increasing insulin resistance. Our results would also 

suggest that lean women continue to utilise glucose as an energy source even in 

the third trimester. This may represent a more flexible metabolic response in 

which they can utilise both fat and carbohydrate utilisation because of relative 

insulin sensitivity compared to the OW/OB group. 
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In terms of fat distribution however there was a trend for the change in upper 

body peripheral skinfolds to be negatively associated with the change in NPRER. 

Therefore, an increase in UBPS was related to a larger contribution from fat 

metabolism as pregnancy progresses, whereas a decrease in UBPS was related to 

a larger contribution from carbohydrate oxidation. These results suggest that 

there may be a mechanism by which decreases carbohydrate metabolism is 

associated with a preferential storage in fat in the upper body peripheral 

depots. OW/OB women had lower contribution from carbohydrate metabolism 

and lower NPRER during pregnancy and accumulated more fat in this depot that 

lean women, especially in the latter part of pregnancy. This may be because of 

other depots such as lower body, truncal and visceral compartments being more 

replete or that this is the only remaining compartment which can undergo 

healthy expansion during pregnancy. In non-pregnant OW/OB adults, reduced 

capacity of a subcutaneous fat depot to expand (using capillary density and 

quantified capillary branch formation to represent a depots expansion 

potential), was associated with increased insulin resistance (Gealekman et al., 

2011). Therefore, this finding may also reflect changes in insulin sensitivity in 

different fat depots depending on their expansion during pregnancy. In general 

adult populations it is recognised that abdominal subcutaneous adipocytes 

behave differently than visceral adipocytes (Pou et al., 2007, Fried et al., 1998), 

and that lower body adipose tissue function is different yet again (Jensen, 2008) 

with gynoid adiposity may be protective to health (McCarty, 2003). In healthy 

pregnancy, visceral adipocytes are smaller, less lipolytic and more insulin 

resistant than abdominal subcutaneous fat in the third trimester (Huda et al., 

2014). Once again this suggests that any differences in fat distribution seen 

between the groups could have an impact on metabolic adaptation to 

pregnancy.  

 

The strength of this study is the comprehensive methodology. The indirect 

calorimetry measurement technique (Oxycon) employed for basal metabolic rate 

and substrate utilisation has been compared to the gold standard technique of 

the Douglas bag (Rosdahl et al., 2010), and is technically reliable and 

reproducible. Air displacement plethysmography was employed to assess total 

fat mass, this gives a more objective measurement of fat mass and which was 

also corrected for gestational changes seen in interstitial fluid and oedema 
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accumulation. The measurement of physical activity was objective and there 

were no differences found in the time each accelerometer was worn across 

gestation or between the groups. Accelerometry has been used by other authors 

during pregnancy (van Poppel et al., 2013), and our methodology was based on 

pregnancy-related validation studies for wear time and number of valid wear 

days (Kinnunen et al., 2011). Dietary analysis is notoriously difficult to optimise 

due to the potential of recall bias. However, our 24 hour recall dietary 

questionnaire method has been validated in British populations (Holmes et al., 

2008). In order to reduce bias in the recall data protocols from the Food 

Standard Authority’s Low Income Diet and Nutrition Survey were used and the 

questionnaire conveniently took only 15-20 minutes to complete.  

 

There were limitations to the study. Although a rigorously tested method, air 

displacement plethysmography is a two compartment model measuring only fat 

mass and fat free mass. It did not distinguish the fetal and placental 

compartment from the maternal compartment nor was it able to differentiate 

between visceral and subcutaneous fat or fat distribution. Skinfold thickness 

measurements also only assessed selected subcutaneous fat depots and not 

visceral depots. One element which was included but not quantified is the fetal 

contribution to metabolism and energy requirements which may, especially in 

late gestation, impact on both maternal energy metabolism and fat accretion. In 

addition, power calculations did not include the number needed to recruit in 

order to find a difference in physical activity. Therefore although a difference 

was found in MVPA, the lack of differences found in sedentary and light activity 

may be a result of this data being underpowered. 

 

In conclusion, during pregnancy both lean and OW/OB women exhibited a rise in 

BMR and a reduction in MVPA. There were no differences in dietary intake either 

during pregnancy or observed between the lean and OW/OB group. Therefore, 

both lean and OW/OB women have a similar response in their energy metabolism 

to pregnancy. During pregnancy, OW/OB women had higher BMR which is due to 

their heavier total body weight. Lean women have a decline in BMR/kg over 

gestation that can be explained at least in part by their reduced physical 

activity. Their higher MVPA and BMR/kg could potentially mean a lesser degree 

of visceral fat accumulation but we cannot conclude this from our data. Lean 
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women also start pregnancy with relatively high carbohydrate oxidation (possibly 

due to greater insulin sensitivity) and are more active than OW/OB women. 

OW/OB women gain fat in the upper body peripheral fat depots throughout 

pregnancy. The association between NPRER and upper body peripheral skinfolds 

may reflect preferential fatty acid storage at this site and a switch to increased 

fat metabolism associated which may be associated with insulin resistance in 

OW/OB women. Therefore in healthy pregnancy, despite differences in substrate 

utilisation, the impact of energy metabolism is similar between lean and OW/OB 

women and appears to have no impact on overall fat mass accumulation.  
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Chapter 5 - Gestational carbohydrate, lipid and 
inflammatory profiles in lean and OW/OB 

pregnancies 

5.1 Introduction  

During healthy pregnancy, there are dramatic changes in lipid and carbohydrate 

metabolism in order to meet the changing metabolic demands for both the 

mother and fetus. These changes have been well documented in the current 

literature. 

 

There is a gradual increase in total triglycerides (estimated 2-3 fold increase) 

which peaks at term and falls to pre-pregnancy levels by about 6 weeks 

postpartum. Total cholesterol concentrations increase more modestly reaching 

approximately 50-60% above pre-pregnancy levels. The rise in LDL levels is 

proportional to the increase in cholesterol and remains elevated until 8 weeks 

postpartum. HDL exhibits a unique pattern of fluctuation during pregnancy 

which show a peak concentration at around 20 weeks’ gestation before a fall in 

levels in the third trimester (Sattar et al., 1997). These changes in lipid profiles 

are thought to be, in part, an oestrogenic response (Salameh and Mastrogiannis, 

1994). Gestational changes in lipid metabolism initially allow the accumulation 

of maternal fat stores before a more lipolytic phase in which there is an 

increased utilisation of maternal NEFA during late pregnancy in order that the 

fetus can preferentially use amino acids and glucose as energy sources. Studies 

have suggested that fatty acids may be important in the endothelial dysfunction 

seen in pregnancies affected by pre-eclampsia (Robinson, 2009). 

 

Cross-sectional assessment in the third trimester showed that in maternal 

obesity there is an exaggerated dyslipidaemia (raised TG and lower HDL), 

hyperinsulinaemia and a low grade inflammatory response (CRP and IL6) 

compared to lean pregnant women. (Ramsay et al., 2002a). Further longitudinal 

assessment of lean and OW/OB pregnancies indicated that this pro-inflammatory 

response exists from the first trimester onwards (Stewart et al., 2007a). 
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The concept of adipose tissue as an endocrine organ is now firmly established 

and the dysregulation of adipokine production from fat can lead to the 

pathogenesis of the metabolic syndrome in the non-pregnant population (Hutley 

and Prins, 2005). Both visceral and subcutaneous fat have been independently 

associated with markers of inflammation including CRP and IL6 (Pou et al., 

2007).  

 

In current published literature, little has been reported on differences in the 

pattern of change of markers of lipid, carbohydrate and inflammatory pathways 

specifically with reference to changes in body fat distribution associated with 

pregnancy. This chapter assesses these profiles longitudinally and relates them 

to the anatomical changes seen in fat accumulation during pregnancy. 

 

5.2 Research Questions  

1. What are the gestational changes in plasma markers of carbohydrate, lipid 

and inflammatory profiles in lean and OW/OB pregnancies? 

2. What are the differences between lean women and OW/OB women in 

terms of gestational change in plasma markers of carbohydrate, lipid and 

inflammation? 

3. Does anatomical distribution of subcutaneous fat during pregnancy have 

an impact on any changes in these plasma markers in lean and OW/OB 

pregnancies? 

 

5.3 Methods 

Plasma collection and methodology have been detailed in section 2.5 of the 

General Methods Chapter 2. Further information regarding specific analytic 

techniques has been detailed in each section of this results chapter.  
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5.4 Gestational changes in plasma markers of 

carbohydrate metabolism 

5.4.1 Fasting glucose 

Fasting glucose was assessed across time and between groups (figure 5.1). There 

was a borderline increase in fasting glucose during pregnancy; mean visit 1 

4.6mmol/L (SEM 0.05) versus mean visit 3 4.7mmol/L ( SEM 0.07), p time=0.019.  

 

There was no difference between the groups (p type=0.25) and in the pattern of 

change in fasting glucose between the two groups, shown as the interaction 

term (p time x group=0.24). 
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Figure 5.1 Fasting glucose at each gestational time point in lean and OW/OB pregnancy. 
Illustrated is the mean fasting glucose (raw data) and standard error of the mean at each 
gestational time point in lean and OW/OB pregnancy. Differences across gestation were expressed 
as ‘p time’, between the lean and OW/OB groups as ‘p type’ and pattern of change in the variable 
between the groups as ‘p time x type’. 
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5.4.2  Fasting insulin 

Fasting insulin was assessed across time and between groups (figure 5.2). There 

was a significant rise in fasting insulin during pregnancy in both groups; mean 

visit 1 5.0mU/L (SEM 0.5) versus mean visit 3 11.2mU/L (SEM 1.6), p 

time<0.0001. OW/OB women had significantly higher levels of fasting insulin 

during pregnancy compared  to lean women; mean OW/OB 11.3mU/L (SEM 0.9) 

versus mean lean 5.7mU/L (SEM 0.9), p type<0.0001.  The pattern of change in 

this plasma marker was not different between the groups (p time x type=0.76).   
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Figure 5.2 Fasting insulin at each gestational time point in lean and OW/OB pregnancy.  
Illustrated is the mean fasting insulin (raw data) and standard error of the mean at each gestational 
time point in lean and OW/OB pregnancy. Differences across gestation were expressed as ‘p time’, 
between the lean and OW/OB groups as ‘p type’ and pattern of change in the variable between the 
groups as ‘p time x type’. 
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5.4.3 Insulin resistance 

Insulin resistance was assessed using the Homeostasis Model Assessment (HOMA).   

Using the linear mixed model HOMA was assessed across time and between 

groups (figure 5.3). There was a significant rise in insulin resistance during 

pregnancy in both groups; mean visit 1 HOMA 1.0 (SEM 0.1) versus mean visit 3 

HOMA 2.5 (SEM 0.4), p time<0.0001. OW/OB women were significantly more 

insulin resistant than lean women during pregnancy; mean OW/OB HOMA 2.4 

(SEM 0.2) versus mean lean 1.2 (SEM 0.2), p type<0.0001.  

 

Both groups showed a linear relationship between gestation and HOMA thus 

there was no difference pattern of change (p time x type=0.77) in insulin 

resistance.  
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Figure 5.3 Insulin resistance (HOMA) at each gestational time point in lean and OW/OB 
pregnancy. Illustrated is the mean HOMA and standard error of the mean at each gestational time 
point in lean and OW/OB pregnancy. Differences across gestation were expressed as ‘p time’, 
between the lean and OW/OB groups as ‘p type’ and pattern of change in the variable between the 
groups as ‘p time x type’. 
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5.5 Gestational changes in plasma markers of lipid 

metabolism 

5.5.1 Total cholesterol 

The concentration of cholesterol was assessed across time and between the 

groups (figure 5.4). This indicated that there was a significant increase in total 

cholesterol during pregnancy; mean visit 1 cholesterol 5.4mmol/L (SEM 0.1) 

versus visit 3 total cholesterol 6.8mmol/L (SEM 0.2), p time<0.0001. There was 

no difference observed between the groups (p type=0.46) or in the pattern of 

change in total cholesterol (p time x type=0.37).  
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Figure 5.4 Total cholesterol at each gestational time point in lean and OW/OB pregnancy. 
Illustrated is the mean total cholesterol concentration (raw data) and standard error of the mean at 
each gestational time point in lean and OW/OB pregnancy. Differences across gestation were 
expressed as ‘p time’, between the lean and OW/OB groups as ‘p type’ and pattern of change in 
the variable between the groups as ‘p time x type’. 
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5.5.2 High density lipoprotein 

The plasma concentration of HDL was assessed across time and between the 

groups (figure 5.5). Gestation did not have an impact on HDL concentration (p 

time=0.57). Lean women had significantly higher levels of HDL than OW/OB 

women during pregnancy; mean lean HDL 2.0mmol/L (SEM 0.04) versus mean 

OW/OB HDL 1.7mmol/L (SEM 0.04), p type=0.007.  There was no difference in 

the pattern of change seen between the groups (p time x type=0.40).  
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Figure 5.5 HDL at each gestational time point in lean and OW/OB pregnancy. Illustrated is the 
mean HDL concentration (raw data) and standard error of the mean at each gestational time point 
in lean and OW/OB pregnancy. Differences across gestation were expressed as ‘p time’, between 
the lean and OW/OB groups as ‘p type’ and pattern of change in the variable between the groups 
as ‘p time x type’. 
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5.5.3 Total triglycerides 

The total triglyceride concentration was assessed across time and between the 

groups (figure 5.6). There was a significant increase in total triglycerides during 

pregnancy; mean visit 1 1.4mmol/L (SEM 0.1) versus mean visit 3 2.6mmol/L 

(SEM 0.1), p time<0.0001. OW/OB women had borderline higher levels of total 

triglycerides compared to lean women; mean OW/OB 2.2mmol/L (SEM 0.1) 

versus lean 1.8mmol/L (SEM 0.1), p type=0.017. There was no difference 

between the groups in pattern of change (p time x type=0.12). 
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Figure 5.6 Total triglycerides at each gestational time point in lean and OW/OB pregnancy. 
Illustrated is the mean total triglyceride concentration (raw data) and standard error of the mean at 
each gestational time point in lean and OW/OB pregnancy. Differences across gestation were 
expressed as ‘p time’, between the lean and OW/OB groups as ‘p type’ and pattern of change in 
the variable between the groups as ‘p time x type’. 

 

 

 

 

 

 

 

 

 

 

  

p time <0.0001 
p type =0.017 

p time x type = 0.12 

OW/OB 

lean 



Chapter 5  154 

5.5.4 Non-esterified fatty acids 

NEFA concentration was assessed across time and between groups (figure 5.7). 

The levels of NEFA did not change significantly over the course of pregnancy (p 

time=0.75). Lean women had borderline higher levels of NEFA than OW/OB 

women during pregnancy; mean lean NEFA 1.4mmol/L (SEM 0.06) versus OW/OB 

1.1 (SEM 0.07), p type=0.012.  

 

The pattern of change seen in OW/OB pregnancy was significantly different 

between the groups (‘p time x type’=0.008).  In lean pregnancy the mean NEFA 

level remained essentially static (1.3mmol/L [SEM 0.1], 1.4mmol/L [SEM 0.1], 

1.4mmol/L [SEM 0.1] at visit 1, 2 and 3 respectively). In OW/OB women there 

was a fall in NEFA levels (1.3mmol/L [SEM 0.1], 1.1mmol/L [SEM 0.1] and 

0.9mmol/L [SEM 0.1] at visit 1, 2 and 3 respectively).  
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Figure 5.7 NEFA at each gestational time point in lean and OW/OB pregnancy. Illustrated is 
the mean NEFA concentration (raw data) and standard error of the mean at each gestational time 
point in lean and OW/OB pregnancy. Differences across gestation were expressed as ‘p time’, 
between the lean and OW/OB groups as ‘p type’ and pattern of change in the variable between the 
groups as ‘p time x type’. 
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5.6 Gestational changes in plasma markers of 

inflammation 

5.6.1 C-reactive protein  

CRP concentration was assessed across time and between the groups (figure 

5.9). Over the course of pregnancy CRP levels fell significantly; mean visit 1 CRP 

5.5mg/L (SEM 0.8) versus mean visit 3 CRP 4.2mg/L (SEM 0.5), p time=0.004. 

During pregnancy CRP was significantly higher in OW/OB women compared to 

lean women; mean OW/OB CRP 7.7mg/l (SEM 0.7) versus lean 3.5mg/L (SEM 0.4) 

p type<0.0001.  

 

In both groups although the levels of CRP fell during pregnancy, the pattern of 

change was significantly different (p time x type=0.003). In lean pregnancy CRP 

measurements were 3.5mg/L (SEM 0.7), 3.8mg/L (SEM 0.7) and 3.1mg/L (SEM 

0.5) at visit 1, 2 and 3 respectively. In OW/OB pregnancy CRP levels were 

8.9mg/L (SEM 1.4), 8.5mg/L (SEM 1.2) and 5.7mg/L (SEM 0.8) at each gestational 

time point. 
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Figure 5.8 CRP at each gestational time point in lean and OW/OB pregnancy. Illustrated is the 
mean CRP concentration (raw data) and standard error of the mean at each gestational time point 
in lean and OW/OB pregnancy. Differences across gestation were expressed as ‘p time’, between 
the lean and OW/OB groups as ‘p type’ and pattern of change in the variable between the groups 
as ‘p time x type’. 

  

p time =0.004 
p type <0.0001 

p time x type = 0.003 

OW/OB 

lean 



Chapter 5  156 

5.6.2 Interleukin 6  

The change in IL6 concentration was assessed across time and between the 

groups (figure 5.10). Over the course of pregnancy IL6 levels rose significantly; 

mean visit 1 IL6 0.8pg/mL (SEM 0.05) versus visit 3 IL6 1.5pg/mL (SEM 0.08), p 

time<0.0001.  

 

During pregnancy IL6 concentration was different between OW/OB women and 

lean women, although the overall mean for lean and OW/OB women was similar; 

lean 1.1pg/mL (SEM 0.06) versus OW/OB 1.1pg/mL (SEM 0.07), p type<0.0001.  

 

In both groups although the levels of IL6 rose during pregnancy, the pattern of 

change was significantly different (p time x type<0.0001). In lean pregnancy IL6 

measurements were 0.8pg/mL (SEM 0.06), 1.0pg/mL (SEM 0.08) and 1.6pg/mL 

(SEM 0.1) at visit 1, 2 and 3 respectively. In OW/OB pregnancy IL6 levels were 

1.0pg/mL (SEM 0.1), 1.1pg/mL (SEM 0.1) and 1.3pg/mL (SEM 0.1) at each 

gestational time point.  
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Figure 5.9 IL6 at each gestational time point in lean and OW/OB pregnancy. Illustrated is the 
mean IL6 concentration (raw data) and standard error of the mean at each gestational time point in 
lean and OW/OB pregnancy. Differences across gestation were expressed as ‘p time’, between the 
lean and OW/OB groups as ‘p type’ and pattern of change in the variable between the groups as ‘p 
time x type’. 
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5.6.3 Tumour necrosis factor alpha  

TNFα concentration was assessed across time and between the groups (figure 

5.11). Over the course of pregnancy TNFα levels did not change significantly (p 

time=0.044).  

 

During pregnancy TNFα was significantly higher in OW/OB women compared to 

lean women; mean OW/OB 1.6pg/mL (SEM 0.1) versus lean 0.8pg/mL (SEM 0.1), 

p type<0.0001.  

 

The pattern of change in TNFα levels was not different between the groups (p 

time x type=0.24).   
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Figure 5.10 TNFα at each gestational time point in lean and OW/OB pregnancy. Illustrated is 
the mean TNFα concentration (raw data) and standard error of the mean at each gestational time 
point in lean and OW/OB pregnancy. Differences across gestation were expressed as ‘p time’, 
between the lean and OW/OB groups as ‘p type’ and pattern of change in the variable between the 
groups as ‘p time x type’. 
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5.7 Summary of gestational changes seen in 

carbohydrate & lipid metabolism and inflammatory 

markers 

 

Figure 5.11 Summary of the gestational changes in carbohydrate, lipid and inflammation 
profiles observed in lean and OW/OB pregnancy. This figure summarises the gestational 
differences (previously expressed as ‘p time’), the differences between the groups (‘p type’) and the 
differences in the pattern of change (‘p time x type’) seen in lean and OW/OB pregnancy. 

 

During pregnancy there are gestational changes which are the same for both 

lean and OW/OB pregnancy: an increase in insulin, HOMA, total cholesterol, 

total triglycerides and IL6. Interestingly, CRP falls during pregnancy in both 

groups. OW/OB women have higher levels of insulin, HOMA, CRP and TNFα and 

lean women have higher levels of HDL and IL6. From the above analysis the 

gestational pattern of NEFA, CRP and IL6 change in pregnancy is different 

between lean and OW/OB pregnancy. 
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5.8 Gestational pattern of change in plasma markers 

From the above analysis, it would appear that there are differences in the 

pattern of change seen in NEFA, CRP and IL6 in the lean and OW/OB groups.  

Post hoc analysis was carried out to assess the change in each variable across 

gestation using repeated measures ANOVA and post hoc Tukey test. This analysis 

was performed separately in the lean and OW/OB groups. All analysis was 

performed in Minitab vs16 and significance was considered as p<0.01.  
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5.8.1 Non-esterified fatty acids 

There was no significant change in NEFA concentration across gestation in lean 

pregnancy (figure 5.11).  
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Figure 5.12 Temporal changes in NEFA levels in lean pregnancy. Gestational time points are 
illustrated on the x axis and raw values are quotes on the y axis. Analysis performed on raw values 
following Ryan-Joiner normality testing. Analysis performed using repeated measures ANOVA, 
significant result if p<0.01. Data with different superscript levels are significantly different from each 
other. As each of the means is denoted by  

a 
 this indicates there is no difference between the 

mean values at each gestational time point.  
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OW/OB women showed a significant fall in NEFA levels, (p=0.006), although 

there was wider variation in the concentration of NEFA in this group as 

pregnancy progressed Figure 5.12. Post hoc analysis suggested that there was a 

fall across the entire gestational period rather than at a specific time during 

pregnancy in OW/OB women.   
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Figure 5.13 Temporal changes in NEFA levels in OW/OB pregnancy. Gestational time points 
are illustrated on the x axis and raw values are quotes on the y axis. Analysis performed on raw 
values following Ryan-Joiner normality testing. Analysis performed using repeated measures 
ANOVA, significant result if p<0.01. Data with different superscript levels are significantly different 
from each other. As each of the means is denoted by  

a, ab, b 
 this indicates there is no difference 

between the mean values at 15 weeks and 25 weeks and between 25 weeks and 35 weeks. 
However there was a significant difference between 15 weeks and 35 weeks.   

 

Therefore the interaction between the group and time observed (‘p time x 

type’) in Figure 5.7 is explained by the fact that NEFA concentration remains 

stable in lean women but fall in OW/OB women during pregnancy.  
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5.8.2 C-reactive protein 

Lean women did not show a significant change in CRP levels during pregnancy 

(p=0.31), Figure 5.13.  
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Figure 5.14 Temporal changes in CRP levels in lean pregnancy. Gestational time points are 
illustrated on the x axis and logged values are quotes on the y axis. Analysis performed on logged 
values following Ryan-Joiner normality testing. Analysis performed using repeated measures 
ANOVA, significant result if p<0.01. Data with different superscript levels are significantly different 
from each other. As each of the means is denoted by  

a 
 this indicates there is no  difference 

between the mean values at each gestational time point. 
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OW/OB women had a significant fall in CRP levels as pregnancy progressed 

(p<0.0001), Figure 5.14, and post hoc analysis indicated that the fall in CRP was 

significant between 25 weeks and 35 weeks.  
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Figure 5.15 Temporal changes in CRP levels in OW/OB pregnancy. Gestational time points are 
illustrated on the x axis and logged values are quoted on the y axis. Analysis was performed on 
logged data after a Ryan-Joiner test showed a non-normal distribution. Analysis was performed 
using repeated measures ANOVA, significance level was p<0.01. Data with different superscript 
levels 

a,b
 are significantly different from each other. There was no difference between the mean 

CRP at 15 weeks and 25 weeks. Between 15 weeks and 35 weeks and between 25 weeks and 35 
weeks there was a significant fall in CRP level.   

 

 

Therefore the interaction between the group and time observed (‘p time x 

type’) in Figure 5.8 is explained by the fact that CRP levels remains stable in 

lean women but fall in OW/OB women during late pregnancy.  
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5.8.3 Interleukin-6 

Lean women showed a continual significant rise in IL6 levels during pregnancy 

(p<0.0001), Figure 5.15 which was not specific to either early or late pregnancy.  
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Figure 5.16 Temporal changes in IL6 levels in lean pregnancy. Gestational time points are 
illustrated on the x axis and logged values are quoted on the y axis. Analysis was performed on 
logged data after a Ryan-Joiner test showed a non-normal distribution. Analysis was performed 
using repeated measures ANOVA, significance level was p<0.01. Data with different superscript 
levels 

a,b,c
 are significantly different from each other. There was a significant increase in IL6 

between 15 weeks and 25 weeks, and between 25 weeks and 35 weeks, and between 15 weeks 
and 35 weeks.   
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OW/OB women also showed a significant rise in IL6 levels as pregnancy 

progressed (p=0.005), Figure 5.16. Post hoc analysis indicates that this rise in IL6 

occurs throughout pregnancy rather than a specific gestational time period.   
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Figure 5.17 Temporal changes in IL6 levels in OW/OB pregnancy. Gestational time points are 
illustrated on the x axis and logged values are quoted on the y axis. Analysis was performed on 
logged data after a Ryan-Joiner test showed a non-normal distribution. Analysis was performed 
using repeated measures ANOVA, significance level was p<0.01. Data with different superscript 
levels 

a,b
 are significantly different from each other. There was no difference in IL6 concentration 

between 15 weeks and 25 weeks or between 25 weeks and 35 weeks. However, between 15 
weeks and 35 weeks IL6 did increase significantly.  

 

 

Therefore, both lean and OW/OB women show a rise in IL6 during pregnancy. 

The significant interaction term in the linear mixed model analysis is explained 

by there being a greater increase in IL6 in the lean group compared to the 

OW/OB group. 
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5.9 Associations between the increase in total fat mass, 

anatomical fat distribution and plasma markers of 

carbohydrate & lipid metabolism and inflammatory 

profiles  

Having assessed how plasma markers change in lean and OW/OB pregnancy, 

further analysis was performed to look for associations between changes in total 

fat mass and changes in anatomical location of subcutaneous adipose tissue 

(total body, upper body peripheral and lower body skinfolds) and changes in 

carbohydrate, lipid or inflammatory plasma markers. Where there were no 

interactions between group and gestation in the initial analysis described above 

(fasting glucose, total cholesterol, total triglycerides, fasting insulin, TNFα, and 

HDL), the lean and OW/OB groups were combined as a single cohort to analyse 

relationships between changes in body fat distribution and changes in plasma 

biomarkers. Where an interaction between lean and OW/OB group and gestation 

existed i.e. for NEFA, CRP and IL6, associations between changes in total fat 

mass and grouped skinfolds with changes in plasma biomarkers was assessed 

separately for each group.  

 

Univariate analysis was performed using Pearson’s correlations, and significance 

level was set at p<0.01 to mitigate for multiple testing. If a significant univariate 

association was found, multivariate analysis was performed using the General 

Linear Model (significance p<0.05). The anthropometric measures included in 

this analysis were fat mass, total body skinfolds, upper body peripheral skinfolds 

and lower body peripheral skinfolds.  
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As shown in Table 5.1, there were no significant correlations between the 

absolute change in plasma markers and absolute change in fat mass and 

anatomical skinfold groups using the whole cohort. There were trends for 

negative associations between change in LBS and change in total cholesterol, 

total triglyceride and a positive association with plasma glucose but these did 

not reach significance. As there were no significant univariate associations, no 

further analysis was performed. 

Table 5.1 Univariate analysis of the association between the gestational change in fat mass 
and skinfolds and the change in carbohydrate, lipid and inflammatory profiles. The table 
shows Pearson correlation and p values for plasma markers which changed significantly across 
gestation or between the groups. Significant result if p<0.01. Total body skinfolds shown as TBS, 
upper body peripheral skinfolds as UPBS and lower body skinfolds as LBS. 

Plasma marker 
V1-V3 

Fat mass  
V1-V3  

TBS V1-V3 
 

UPBS V1-V3  LBS V1- V3 
 

     
Total 
cholesterol  
Pearson’s 
correlation 
p value 

 
 
 
0.082 
0.62 

 
 
 
-0.027 
0.87 

 
 
 
0.254 
0.11 

 
 
 
-0.322 
0.043 

 
Total 
triglycerides  
Pearson’s 
correlation 
p value 

 
 
 
 
0.167 
0.31 

 
 
 
 
-0.125 
0.44 

 
 
 
 
0.032 
0.84 

 
 
 
 
-0.297 
0.063 

 
HDL 
Pearson’s 
correlation 
p value 
 

 
 
 
-0.044 
0.79 

 
 
 
0.046 
0.78 

 
 
 
0.074 
0.65 

 
 
 
0.076 
0.64 

Fasting glucose 
Pearson’s 
correlation 
p value 

 
 
0.133 
0.42 

 
 
0.269 
0.093 

 
 
0.029 
0.86 

 
 
0.297 
0.062 

 
Fasting insulin 
Pearson’s 
correlation 
p value 

 
 
 
0.143 
0.39 

 
 
 
0.013 
0.94 

 
 
 
-0.150 
0.36 

 
 
 
0.061 
0.71 

 
TNFα 
Pearson’s 
correlation 
p value 

 
 
 
-0.078 
0.65 

 
 
 
0.158 
0.34 

 
 
 
0.234 
0.16 

 
 
 
-0.010 
0.95 
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5.9.1 Association between gestational change in obesity 

measures and gestational change in NEFA 

5.9.1.1 Lean pregnancy 

Univariate analysis was performed using Pearson correlation to assess the 

relationship between the change in NEFA and change in fat mass, total body, 

upper body peripheral and lower body skinfolds (Table 5.2). There were no 

significant correlations found in this analysis. 

Table 5.2 Univariate analysis of the association between the gestational change in NEFA 
and the gestational change in anatomical and total fat in lean pregnancy. Analysis was 
performed using Pearson’s correlation, significant result if p<0.01. Total body skinfolds shown as 
TBS, upper body peripheral skinfolds as UPBS and lower body skinfolds as LBS. 

 Fat mass 
V1-V3 
 

TBS 
V1-V3 
 

UPBS 
V1-V3  
 

LBS 
V1-V3 
 

V1-V3 NEFA 
Pearson correlation 
P value 

 
-0.103 
0.63 

 
-0.277 
0.18 

 
-0.050 
0.81 

 
-0.187 
0.14 

 

5.9.1.2 OW/OB pregnancy 

Univariate analysis was performed using Pearson correlation to assess the 

relationship between the absolute change in NEFA and change in fat mass, total 

body, upper body peripheral and lower body skinfolds (Table 5.3). There were 

no significant relationships between the change in NEFA and the change in fat 

mass total or grouped skinfolds. 

Table 5.3 Univariate analysis of the association between the gestational change in NEFA 
and the gestational change in anatomical and total fat in OW/OB pregnancy. Analysis was 
performed using Pearson’s correlation, significant result if p<0.01. Total body skinfolds shown as 
TBS, upper body peripheral skinfolds as UPBS and lower body skinfolds as LBS. 

 Fat mass 
V1-V3 
 

TBS 
V1-V3 
 

UPBS 
V1-V3  
 

LBS 
V1-V3 
 

V1-V3 NEFA 
Pearson correlation 
P value 

 
-0.084 
0.77 

 
-0.069 
0.81 

 
0.290 
0.30 

 
-0.330 
0.23 
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5.9.2 Association between gestational change in obesity 

measures and gestational change in CRP 

5.9.2.1 Lean pregnancy 

Univariate analysis was performed using Pearson correlation to assess the 

relationship between the absolute change in CRP and fat mass, total body, upper 

body peripheral, abdominal and lower body skinfolds (Table 5.4). There were no 

significant associations between the grouped skinfolds and the change seen in 

CRP. 

Table 5.4 Univariate analysis of the association between the gestational change in CRP and 
the gestational change in anatomical and total fat in lean pregnancy. Analysis was performed 
using Pearson’s correlation, significant result if p<0.01. Total body skinfolds shown as TBS, upper 
body peripheral skinfolds as UPBS and lower body skinfolds as LBS. 

 Fat mass 
V1-V3 
 

TBS 
V1-V3 

UPBS 
V1-V3  

LBS 
V1-V3 

V1-V3 CRP 
Pearson correlation 
P value 

 
0.145 
0.50 

 
0.303 
0.14 

 
0.345 
0.091 

 
0.229 
0.27 

 

5.9.2.2 OW/OB pregnancy 

Univariate analysis was performed using Pearson correlation to assess the 

relationship between the absolute change in CRP and the change in fat mass, 

total body, upper body peripheral and lower body skinfolds (Table 5.5). There 

were no significant relationships between the change in CRP and the change in 

fat mass total or grouped skinfolds. 

Table 5.5 Univariate analysis of the association between the gestational change in CRP and 
the gestational change in anatomical and total fat in OW/OB pregnancy. Analysis was 
performed using Pearson’s correlation, significant result if p<0.01. Total body skinfolds shown as 
TBS, upper body peripheral skinfolds as UPBS and lower body skinfolds as LBS. 

 Fat mass 
V1-V3 
 

TBS 
V1-V3 

UPBS 
V1-V3  
 

LBS 
V1-V3 
 

V1-V3 CRP 
Pearson correlation 
P value 

 
0.359 
0.19 

 
0.021 
0.94 

 
-0.148 
0.60 

 
0.045 
0.88 
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5.9.3 Association between gestational  change in obesity 

measures and gestational change in IL6 

5.9.3.1 Lean pregnancy 

Univariate analysis was performed using Pearson correlation to assess the 

relationship between the absolute change in IL6 and fat mass, total body, upper 

body peripheral and lower body skinfolds (Table 5.6). There were no significant 

associations between gestational change in IL6 and grouped skinfolds in lean 

pregnancy. 

Table 5.6 Univariate analysis of the association between the gestational change in IL6 and 
the gestational change in anatomical and total fat in lean pregnancy. Analysis was performed 
using Pearson’s correlation, significant result if p<0.01. Total body skinfolds shown as TBS, upper 
body peripheral skinfolds as UPBS and lower body skinfolds as LBS. 

 Fat mass 
V1-V3 
 

TBS 
V1-V3 

UPBS 
V1-V3  
 

LBS 
V1-V3 
 

V1-V3 IL6 
Pearson correlation 
P value 

 
0.356 
0.088 

 
0.289 
0.16 

 
0.087 
0.68 

 
0.113 
0.59 

 

5.9.3.2 OW/OB pregnancy 

Univariate analysis was performed using Pearson correlation to assess the 

relationship between the absolute change in IL6 and change in fat mass, total 

body, upper body peripheral and lower body skinfolds (Table 5.7). There were 

no significant relationships between the change in IL6 and the change in fat mass 

total or grouped skinfolds in OW/OB pregnancy. 

Table 5.7 Univariate analysis of the association between the gestational change in IL6 and 
the gestational change in anatomical and total fat in OW/OB pregnancy. Analysis was 
performed using Pearson’s correlation, significant result if p<0.01. Total body skinfolds shown as 
TBS, upper body peripheral skinfolds as UPBS and lower body skinfolds as LBS. 

 Fat mass 
V1-V3 
 

TBS 
V1-V3 

UPBS 
V1-V3  
 

LBS 
V1-V3 

V1-V3 IL6 
Pearson correlation 
P value 

 
-0.068 
0.81 

 
0.133 
0.64 

 
0.040 
0.89 

 
0.011 
0.97 
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5.10 Discussion 

There were no associations between the increase in total fat mass, total 

skinfolds and upper body peripheral skinfolds and changes in plasma biomarkers. 

There was a trend for the increase in lower body subcutaneous adipose depots to 

be inversely associated with the change in total cholesterol and total 

triglycerides, although this did not reach significance. These results may suggest 

that those women who gain more fat in lower body depots during pregnancy 

have an adverse lipid response to pregnancy, but this would require to be 

verified in a larger sample size study. Published data from the general adult 

population show that lower body fat is more insulin sensitive (Jensen, 2008) and 

smaller thigh fat depots are considered a risk factor for high levels of plasma 

triglyceride, low plasma HDL concentration and hyperglycaemia (Snijder et al., 

2005).  

 

The gestational increases in both total cholesterol and total triglycerides were as 

expected and have been observed before (Salameh and Mastrogiannis, 1994). 

The rise in total triglycerides and fall in plasma HDL is a likely response to the 

developing gestational insulin resistance secondary to rising levels of pregnancy 

related hormones (Emet et al., 2013, Salameh and Mastrogiannis, 1994) and 

patterns of change in HOMA, TG and HDL suggest that obese women have a shift 

towards a metabolic syndrome profile at all gestational time points. There was a 

significant rise in total triglycerides across gestation with a trend for the OW/OB 

group to have higher levels (p=0.017). However, the maximum concentrations 

reached by 35 weeks were very similar (lean 2.5mmol/L versus OW/OB 

2.68mmol/L) in the groups confirming previous observations (Meyer et al., 

2013). This suggests that a similar limiting factor, possibly lipoprotein lipase 

concentration or VLDL secretion rate, in the third trimester limits the maximum 

plasma triglyceride concentration reached. High plasma triglycerides 

concentrations are linked with greater oxidative stress and the production of 

small, dense LDL which are easily oxidised. High concentrations of oxidised lipids 

are associated with vascular damage (Norata et al., 2003). Current literature has 

found that in approximately a third of obese mothers there are increased levels 

of LDL-III in the third trimester (Meyer et al., 2013). It will be interesting to 

assess small, dense LDL-III levels in the present study and aliquots of plasma 
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have been retained for future ascertainment.  The low HDL and high 

triglycerides exhibited by the OW/OB women in the current study suggest they 

have metabolic syndrome but  that they are not in the subset of women most at 

risk of vascular damage through higher levels of LDL-III.  

 

Total cholesterol increased by approximately 25% and interestingly there were 

no lean/OW/OB group differences as observed for triglycerides. This might 

suggest that gestational cholesterol mobilisation is not related to gestational 

insulin resistance. The magnitude of the increase in plasma cholesterol is smaller 

than that of plasma triglyceride, suggesting a lower extent of cholesterol 

mobilisation or greater cholesterol utilisation than that for triglycerides by the 

mother and/or fetus.  

 

Lean women in this study had higher levels of HDL than OW/OB women, which is 

consistent with the current literature (Scifres et al., 2014, Stewart et al., 2007a, 

Ramsay et al., 2002a). A large recent study (n=225) (Scifres et al., 2014), has 

shown, similarly to the current data, that there was a peak in HDL concentration 

at 25 weeks’ gestation and then a fall in the third trimester in all pregnancies. 

This adds significant support to this finding of a peak HDL concentration mid-

gestation. HDL has been shown to offer vascular protection via a number of 

mechanisms including increased  production of NO via upregulation of eNOS 

expression (Mineo et al., 2006, Besler et al., 2012), preventing the formation of 

toxic oxidised lipid species (Mackness et al., 1993) and acting as an antioxidant 

(Besler et al., 2011). These properties suggest that HDL might confer significant 

protection to the maternal vascular endothelium in the face of the developing 

gestational hyperlipidaemia. The synthesis of HDL is determined by the 

production and secretion of apolipoprotein-A1 (Apo-A1), the main protein in 

HDL. However, the alterations in HDL concentration and function in pregnancy 

have not been fully investigated (Besler et al., 2012). An impaired improvement 

in endothelial function is a feature of obese pregnant women (Stewart et al., 

2007a). In the current study, although HDL concentrations were significantly 

higher in lean women, the pattern of change across pregnancy was the same. 

This suggests that the signal that determines HDL production in pregnancy are 

the same in both groups, i.e. the biosynthesis of apo-A1 regulated by oestrogens 

rather than an obesity-driven effect such as the negative impact of 
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hypertriglyceridaemia on plasma HDL concentration. The higher levels of HDL 

found in the lean cohort may result in a more pronounced protective effect of 

HDL on vascular function than that in obesity where lower levels of HDL may 

lead to an increased susceptibility to vascular damage. This would be an 

interesting hypothesis to test in this data set at a later date. 

 

There was no significant association of plasma biomarkers with subcutaneous 

adipose depots. A possible explanation for the lack of association may be that 

there is an unmeasured fat depot unaccounted for in the present analysis having 

a confounding impact on these metabolic parameters. Changes in the visceral fat 

compartment or gluteal skinfolds were not assessed. Recent published data has 

suggested that gluteal but not abdominal subcutaneous adipose tissue have 

higher rates of gene expression involved in adipocyte differentiation (Divoux et 

al., 2014). Data presented in Chapter 3 suggest that there may be a contribution 

from the visceral compartment which cannot be measured using skinfold analysis 

or air displacement plethysmography. Alternatively the observed trends may not 

reach significance because of the small sample size.  

 

Where there was a significant interaction between the lean and OW/OB group 

then analysis was performed separately within each group, this was performed 

for CRP, IL6 and NEFA There were no significant associations between total fat 

mass, total skinfolds and fat distribution with the changes seen in these markers 

in either lean or OW/OB women suggesting that there is no innate differences in 

subcutaneous fat mass accumulation between lean and OW/OB women that 

account for the differences in these plasma markers. However, by separating the 

lean and OW/OB women for this analysis the sample size did become smaller and 

differences are more difficult to evaluate.  

  

The majority of the gestational changes (increases in total cholesterol, total 

triglycerides, fasting insulin, HOMA, and IL6 and fall in CRP) and group 

differences (higher HOMA, fasting insulin, CRP and TNFα, and lower HDL) in 

OW/OB pregnancies in plasma biomarkers observed in this study are similar to 

those previously observed by others (Catalano et al., 1991, Catalano et al., 

1999, Salameh and Mastrogiannis, 1994, Meyer et al., 2013, Ramsay et al., 
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2002a, Scifres et al., 2014, Stewart et al., 2007a).There are however some 

interesting findings worth exploring in more detail.  

 

Throughout pregnancy, TNFα remained significantly higher in the OW/OB group 

but its concentration did not change significantly across gestation. Current 

literature suggests that during gestation, TNFα rises and peaks in the second 

trimester (Beckmann et al., 1997) and that this plasma marker correlates 

significantly with insulin sensitivity in non-diabetic healthy pregnancies (Kirwan 

et al., 2002). In our study, we did not find a significant association between the 

change in TNFα and the change in insulin resistance (r=0.016, p=0.92), as TNFα 

remains stable during pregnancy whereas HOMA increases significantly. This 

could suggest that in the current study TNFα  may not be contributing as much 

to insulin resistance as in other cohorts (Hotamisligil et al., 1996).  

 

As expected CRP levels were significantly higher in the OW/OB group than the 

lean group throughout pregnancy (p<0.0001). However, the pattern of change in 

CRP concentration was different between the groups (p time x type=0.003). 

When the groups were assessed separately CRP fell significantly in the OW/OB 

group (p<0.0001) but not the lean group (p=0.57). Consistent with our findings, 

other authors have seen a fall in CRP during gestation, (Stewart et al., 2007a). It 

is possible that, in the relatively healthy OW/OB women studied here, in late 

pregnancy the increase in lipolysis from adipose tissue may relieve the 

inflammation at the fat depot, and potentially the liver, leading to a fall in 

plasma CRP. CRP is also known to be produced in the placenta (Malek et al., 

2006). The observed fall in plasma CRP in OW/OB women could alternatively 

represent a reduction in the placental production of CRP in healthy OW/OB 

pregnancies which may ameliorate any potential for placenta complications in 

this healthy OW/OB group.  

 

During pregnancy IL6 plasma levels rose significantly (p<0.0001), and were 

higher in lean women. Previous authors have found IL6 to be significantly higher 

in obese women throughout pregnancy and compared to published data our 

OW/OB women had relatively low levels of IL6 (Stewart et al., 2007a) again 

indicating they were healthy OW/OB individuals. Interestingly, in the linear 

mixed model analysis there was a significant difference in the pattern of change 
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in IL6 concentrations between the lean and OW/OB group. This was because the 

lean women have a significant rise in IL6 concentrations between all gestational 

time point (15, 25 and 35 weeks) but the OW/OB group the increase was more 

gradual and the significant increase was only seen between 15 weeks and 35 

weeks. On inspection of Figure 5.9, the actual concentrations of IL6 are very 

similar between the groups. In healthy pregnancies, there is significant 

remodelling of adipose tissue undergoing both hyperplasia, where pre-adipocytes 

are recruited to make new adipocytes, and a degree hypertrophy of existing 

adipocytes (McLaughlin et al., 2007) with a concurrent rise in serum 

inflammatory markers including IL6. The increase in adipokine secretion is 

considerably enhanced in obese individuals where excessive adipocyte 

hypertrophy takes place leading to hypoxic areas of adipose tissue, infiltration of 

macrophages and an inflammatory response.  IL6 is also thought to play a part in 

the development of gestational physiological insulin resistance through the 

inhibition of the action of insulin at muscle, liver and adipocyte (Hutley and 

Prins, 2005). The fact that lean healthy women show an increase in IL6 suggests 

that IL6 may play a role in healthy pregnancy perhaps to generate the 

gestational insulin resistance, although little published data exists to support 

this. 

 

The trend for lean women to have higher levels of NEFA and the decrease in 

concentration of NEFA in the OW/OB group was not expected. In the current 

lean cohort, measured NEFA levels were higher than in other studies (Meyer et 

al., 2013). Different methodologies were employed by different studies; the 

current analysis was performed by autoanalyser compared to the manual method 

employed by other authors (Meyer et al., 2013) which may account for the 

difference in concentrations.  

 

Our observations on NEFA concentration were a ‘snap shot’ at different time 

points. Figure 5.18 illustrates the various sources of NEFA as well as the various 

outputs which contribute to plasma NEFA concentrations. The data presented 

here suggest that OW/OB women have either decreased production (lipolysis), or 

increased utilisation (placental transport) or increased storage either in adipose 

tissue or ectopically in liver or placenta by the third trimester. Placentae from 

obese mothers at term have been found to have significantly more lipid content 
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than those from lean women (Saben et al., 2014). As well as placental storage, 

the fetus requires NEFA for many aspects of development. Longitudinal studies 

have found that the offspring of obese mothers have greater percentage body 

fat levels compared to babies of lean mothers (Catalano et al., 2009) often 

referred to as the “overnutrition hypothesis”. Increased deposition of fatty acids 

into each of these ‘depots’ may account for lower levels of plasma NEFA in 

OW/OB pregnancies.  

 

5.18 The inputs and outputs demand to the plasma NEFA compartment. The figure represents 
the various inputs and output pathways which can lead to a raised or decreased NEFA 
concentration in the maternal circulation, illustrating the difficulties in interpretation of steady state 
NEFA concentration during pregnancy. 

 

The timing of sample collection may also have had an impact on the NEFA 

concentrations. All samples were collected from study participants after an 

overnight fast. OW/OB individuals have greater basal metabolic demands purely 

based on increased weight as shown in Chapter 4. Fat oxidation was on average 

35.6% higher in OW/OB pregnancies (p type<0.0001, Chapter 4, section 4.4.4, 

Figure 4.4) and fat oxidation increased in OW/OB women as pregnancy 

progressed (Figure 4.4). These results may reflect the predominant utilisation of 

fat as an energy source by OW/OB women which would be more pronounced in 
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the fasting state leading to lower fasting NEFA levels than lean women which fall 

as pregnancy progresses.  

 

As highlighted above, the amount of total fat accretion and site of subcutaneous 

fat storage has little impact on the gestational response of plasma biomarkers. 

In fact, healthy lean and OW/OB pregnancies show many similarities in this 

response. Both lean and OW/OB women have similar concentrations of IL6, total 

triglyceride and total cholesterol at the end of pregnancy despite the OW/OB 

group exhibiting more insulin resistance and some aspects of inflammation (CRP 

and TNFα). Lean women have higher levels of HDL. It is likely that our OW/OB 

women were relatively healthy leaving the groups too similar to tease out all 

metabolic differences associated with maternal obesity or their association with 

fat distribution in pregnancy. This may indicate that our OW/OB group is 

different to those studied by other authors as they are non-smokers, have higher 

socioeconomic scores and include some overweight rather than obese 

individuals. This suggestion is supported by the demographic differences 

between our OW/OB cohort and other obese populations. In Stewart et al, 40% 

of the obese women were smokers, no women in either lean or OW/OB group 

smoked in the present study. The OW/OB group presented here was well 

educated (88% of lean women and 75% of OW/OB women attended university) 

and came from high socioeconomic classes (73% of lean women and 44% of 

OW/OB women were in upper half of 2009 SMID [Scottish multiple index of 

deprivation] decile for social deprivation). The demographics of the Stewart et 

al cohort indicated that only 43% of the non-obese group and 41% of the obese 

group were in either affluent or intermediate DEPCAT deprivation score 

categories. Methodology for assessing social deprivation has changed between 

these two studies therefore direct comparison is difficult, however this may be a 

factor explaining the metabolic differences with previous data in obese women 

published from this laboratory. Plasma markers of inflammation (IL6 and CRP) 

have been found to be associated with poorer socioeconomic backgrounds 

(Packard et al., 2011). In addition, in the study published by Stewart et al, the 

obese group was heavier than our group with a mean BMI of 34.2 kg/m2 (SD4.5) 

compared to a mean BMI of 31.5 kg/m2 (SD2.7) in the present study.  
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The strength of the current study is a consistency in methodology across all 

gestational time points. A breadth of markers for carbohydrate, lipid and 

inflammatory profiles were studied which gave a comprehensive analysis.  

There were limitations to the study. Assessment of adiposity by skinfold 

thickness does not assess functionality of adipose tissue which may be more 

important than the actual size of the depot. The more atherogenic LDL-III that 

has been used to identify an atherogenic lipoprotein phenotype was not 

measured, although samples are available for future analysis. In addition, the 

OW/OB group recruited includes women who are apparently healthy and this 

may account for some of the unexpected data. Finally gestational changes were 

assessed as the absolute concentration at 35 weeks minus the concentration at 

15 weeks. This may be too simple a measure of gestational adaptation and 

further analysis of the data could assess gestational changes using incremental 

area under curve to try and convey how these plasma markers change during 

pregnancy. 

 

In conclusion, the majority of gestational carbohydrate, lipid and inflammatory 

profiles observed in this study support current published data. Some of the 

differences been between the lean and OW/OB women were anticipated with 

the OW/OB group were more insulin resistant and pro-inflammatory (CRP and 

TNFα) than lean women and lean women having higher concentration of plasma 

HDL. This suggests that these OW/OB women exhibit a degree of metabolic 

syndrome. However, in the lean group the higher levels of inflammation (IL6) 

which may reflect a physiological rather than pathological process. The observed 

differences in lean and OW/OB women in plasma NEFA concentration was 

difficult to explain and may be multifactorial. The presented data showed that 

in both lean and OW/OB pregnancies the studied subcutaneous adipose depots 

did not contribute to the gestational changes in markers of carbohydrate, lipid 

and inflammatory profiles, but that there is accepted limitations to the above 

cohort which may be the reason for the lack of associations. Further exploration 

of the data and inclusion of other depots may yield different results. Therefore 

the results of this chapter suggest that central subcutaneous fat depots may not 

be important in the development of adverse metabolic profiles. These findings 

therefore do not support the hypothesis that OW/OB women gain subcutaneous 
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fat in the central compartments and that this leads to the carbohydrate, lipid 

and inflammatory profiles observed in the gestational metabolic syndrome. 
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Chapter 6 - Gestational measures of microvascular 
function, oxidative stress and lipotoxicity in lean 

and OW/OB pregnancies 

6.1 Introduction  

Pregnancy is a time of immense physiological stress and involves adaptation of 

the maternal cardiovascular system. The main adaptation seen is peripheral 

vasodilatation thought to be mediated through endothelium-dependent factors 

upregulated by oestradiol and prostaglandins.  

 

Published data have shown that, in the third trimester, obese women have a 

poorer microvascular response to ACH iontophoresis than lean women, indicating 

poorer endothelium-dependent vasodilatation (Ramsay et al., 2002a). It has 

been proposed that in maternal obesity the reduced improvement in endothelial 

function is related to a pathological pathway involving increased plasma lipids 

with the promotion of oxidative stress (Vincent and Taylor, 2005). There are a 

number of biomarkers which have been linked to endothelial dysfunction through 

the process of oxidative stress and these have been detailed in Chapter 1 

including GGT, pro-inflammatory lipoproteins such as oxLDL, superoxide species 

and more novel markers such as urinary isoprostanes. Endothelial dysfunction 

can also be assessed by measuring in vivo markers of endothelial activation such 

as sVCAM-1 and sICAM-1 which have been found to be elevated in pregnancies 

complicated by pre-eclampsia (Chaiworapongsa et al., 2002) where endothelial 

damage is a hallmark of the disease. Interestingly, little research has looked at 

the gestational changes in these markers of lipotoxicity and their impact on 

microvascular function in pregnancy. The following chapter assesses 

microvascular function and lipotoxicity markers during pregnancy in lean and 

OW/OB women. The relationships of microvascular function and lipotoxicity to 

anatomical fat distribution and accumulation was also studied.  
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6.2 Research Questions 

1. During pregnancy, are there changes in peripheral microvascular function and 

the concentration of plasma and urinary markers of lipotoxicity and oxidative 

stress? 

2. Are there differences between lean women and OW/OB women in terms of 

microvascular function and plasma and urinary markers of lipotoxicity and 

oxidative stress?  

3. Are there differences in the pattern of change in concentration in these 

markers during pregnancy between lean and OW/OB pregnancies? 

4. Does anatomical distribution of subcutaneous fat during pregnancy have an 

impact on the change in peripheral microvascular function and the change in 

concentrations of plasma and urinary markers of lipotoxicity and oxidative 

stress in lean and OW/OB pregnancies? 

 

6.3 Methods 

Peripheral vascular function assessment and plasma collection and methodology 

have been detailed in section 2.4 and 2.5 respectively of the General Methods 

Chapter 2. Further information regarding specific analytic techniques has been 

detailed in each section of this chapter. Throughout pregnancy blood volume 

changes. Before analysis was performed on this data, a haematocrit and 

haemoglobin (Quantichrom, BioAssay Systems, Universal Biologicals Ltd 

Cambridge, UK) were measured for each sample and the blood volume was 

corrected as per the method used by Dill and Costill (Dill and Costill, 1974). 
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6.4 Gestational changes in microvascular function 

6.4.1 Endothelium-dependent microvascular function 

The gestational response in endothelium-dependent microvascular function 

(EDMVF) was assessed across time and between groups (Figure 6.1). During 

pregnancy there was a significant improvement in EDMVF, ‘p time’=0.010; mean 

visit 1 log perfusion response was 2.78 PU MΩ/min (standard error of the mean 

0.46) and mean visit 3 log perfusion response was 4.61 PU MΩ/min (0.57). 

 

There was no difference between the groups (‘p type’) or in the pattern of 

change in EDMVF response between the two groups, shown as the interaction 

term (‘p time x group’).  
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Figure 6.1 EDMVF response at each gestational time point in lean and OW/OB pregnancy. 
Illustrated is the mean EDMVF response (logged data) and the standard error of the mean at each 
gestational time point in lean and OW/OB pregnancy. Differences across gestation were expressed 
as ‘p time’, between the lean and OW/OB groups as ‘p type’ and pattern of change in the variable 
between the groups as ‘p time x type’. 
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6.4.2  Endothelium independent microvascular function 

The gestational response seen in endothelium independent microvascular 

function (EIMVF) was assessed across time and between groups (Figure 6.2). 

There was no significant change in EIMVF response during pregnancy (‘p time’) 

and there was no difference observed between lean and OW/OB women (‘p 

type’). The pattern of change in EIMVF response was not different between the 

groups (‘p time x type’).   
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Figure 6.2 EIMVF response at each gestational time point in lean and OW/OB pregnancy. 
Illustrated is the mean EIMVF response (logged data) and the standard error of the mean at each 
gestational time point in lean and OW/OB pregnancy. Differences across gestation were expressed 
as ‘p time’, between the lean and OW/OB groups as ‘p type’ and pattern of change in the variable 
between the groups as ‘p time x type’. 
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6.5 Plasma markers of vascular function and lipotoxicity 

6.5.1 Soluble intercellular adhesion molecule-1 

The change in plasma sICAM-1 was assessed across time and between the groups 

(Figure 6.3). Over the course of pregnancy sICAM-1 levels did not change (‘p 

time’=0.57). There was a no difference between the two groups (‘p type’=0.94). 

The pattern of change was not different between the two groups (‘p time x 

type’=0.82).   

 

gestational age (weeks)

s
IC

A
M

-1
 (

n
g

/m
L

)

10 20 30 40

170

180

190

200

210

lean

obese

 

Figure 6.3 sICAM-1 at each gestational time point in lean and OW/OB pregnancy. Illustrated is 
the mean sICAM-1 concentration (raw data) and the standard error of the mean at each gestational 
time point in lean and OW/OB pregnancy. Differences across gestation were expressed as ‘p time’, 
between the lean and OW/OB groups as ‘p type’ and pattern of change in the variable between the 
groups as ‘p time x type’. 
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6.5.2 Soluble vascular cell adhesion molecule-1  

Using the linear mixed model plasma sVCAM-1 was assessed across time and 

between groups (Figure 6.4).  

 

The concentration of sVCAM-1 increased significantly across gestation (‘p 

time’<0.0001); mean visit 1 concentration was 641ng/mL (SEM 20) compared 

with mean visit 3 concentration 757ng/mL (29). 

  

There was a trend for lean women to have higher concentrations of sVCAM-1 

during pregnancy (‘p type’=0.028), mean lean concentration 694ng/mL versus 

OW/OB 629ng/mL. There was no difference pattern of change (‘p time x group’) 

in sVCAM-1 levels.  
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Figure 6.4 sVCAM-1 at each gestational time point in lean and OW/OB pregnancy. Illustrated 
is the mean sVCAM-1 concentration (raw data) and the standard error of the mean at each 
gestational time point in lean and OW/OB pregnancy. Differences across gestation were expressed 
as ‘p time’, between the lean and OW/OB groups as ‘p type’ and pattern of change in the variable 
between the groups as ‘p time x type’. 
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6.5.3 Oxidised low density lipoprotein 

The concentration of oxLDL was assessed across time and between the groups 

(Figure 6.5).  

 

There was a significant rise in oxLDL during pregnancy (‘p time’<0.0001); mean 

visit 1 concentration was 58.6U/L (SEM 2.6) and visit 3 concentration was 

82.7U/L (3.5). However there were no significant differences between groups or 

in the pattern of change.  

gestational age (weeks)

o
x
id

is
e
d

 L
D

L
 (

U
/L

)

10 20 30 40

40

50

60

70

80

90

100

lean

obese

 

 

Figure 6.5 oxLDL at each gestational time point in lean and OW/OB pregnancy. Illustrated is 
the mean oxLDL concentration (raw data) and the standard error of the mean at each gestational 
time point in lean and OW/OB pregnancy. Differences across gestation were expressed as ‘p time’, 
between the lean and OW/OB groups as ‘p type’ and pattern of change in the variable between the 
groups as ‘p time x type’. 
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6.5.4 Gamma-glutamyl transferase 

The change in GGT concentration was assessed across time and between the 

groups (figure 6.6). The levels of GGT did not change significantly over the 

course of pregnancy (p time=0.98). There was no differences between the 

groups (p time=0.37) or in the pattern of change in GGT (p time x type=0.093). 
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Figure 6.6 GGT at each gestational time point in lean and OW/OB pregnancy. Illustrated is the 
mean GGT concentration (raw data) and the standard error of the mean at each gestational time 
point in lean and OW/OB pregnancy. Differences across gestation were expressed as ‘p time’, 
between the lean and OW/OB groups as ‘p type’ and pattern of change in the variable between the 
groups as ‘p time x type’. 
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6.5.5 Urinary isoprostanes 

Concentration of urinary isoprostanes was assessed across time and between the 

groups (Figure 6.7).  

 

There was a trend for the concentration of urinary isoprostanes to rise during 

pregnancy; mean visit 1 concentration 8.2ug/mmol (SEM 0.9) versus mean visit 3 

concentration 9.5ug/mmol (0.7), but this did not reached significance 

(‘p time’=0.029).  

 

There was no significant difference between the lean and OW/OB women and 

the pattern of change in the level of this urinary metabolite, was similar (‘p 

time x type’=0.97). 
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Figure 6.7 Urinary isoprostanes at each gestational time point in lean and OW/OB 
pregnancy. Illustrated is the mean urinary isoprostanes concentration (raw data) and the standard 
error of the mean at each gestational time point in lean and OW/OB pregnancy. Differences across 
gestation were expressed as ‘p time’, between the lean and OW/OB groups as ‘p type’ and pattern 
of change in the variable between the groups as ‘p time x type’. 
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6.5.6 Plasma superoxide concentration 

Plasma superoxide concentrations were measured in whole blood. Data was 

corrected for changes in blood volume as per the method used by Dill and Costill 

(Dill and Costill, 1974). 

 

Plasma superoxide concentration was assessed across time and between the 

groups (figure 6.8). There was no significant change in superoxide levels during 

pregnancy (‘p time’=0.48).There was no significant difference between the lean 

and OW/OB women and the pattern of change in the level of this plasma 

metabolite was similar. 
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Figure 6.8 Plasma superoxide concentration at each gestational time point in lean and 
OW/OB pregnancy. Illustrated is the mean plasma superoxide concentration (raw data) and the 
standard error of the mean at each gestational time point in lean and OW/OB pregnancy. 
Differences across gestation were expressed as ‘p time’, between the lean and OW/OB groups as 
‘p type’ and pattern of change in the variable between the groups as ‘p time x type’. 
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6.6 Summary of gestational changes seen in 

microvascular function and markers of lipotoxicity 

 

Figure 6.9 Summary of evidence found for endothelial function, activation and lipotoxicity in 
lean and OW/OB pregnancy. The above figure indicates that there are only gestational changes 
in vascular function and lipotoxic markers during pregnancy but there are no differences observed 
between the groups or any differences in the pattern of changes between the groups (interaction 
differences) for these markers. 

 

During pregnancy there were gestational changes which were the same for both 

lean and OW/OB pregnancy: both show an improvement in EDMVF and an 

increase in sVCAM-1 and oxidised LDL concentrations. There were no significant 

differences between lean and OW/OB women in microvascular function (EDMVF 

or EIMVF) or any of the markers of lipotoxicity measured. From the above 

analysis there was no difference in the pattern of change seen in endothelial 

function and markers of lipotoxicity in the lean and OW/OB pregnancies studied. 
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6.7 The relationship between anatomical fat distribution, 

endothelial function and markers of lipotoxicity in 

healthy pregnancy 

From the above analysis, no differences were found between lean and OW/OB 

pregnancies in terms of endothelial function or markers of lipotoxicity.  

Therefore further analysis on the impact of anatomical fat distribution was 

performed on the entire cohort, with and without BMI as a covariate in the 

analysis.  

 

Further analysis looked at EDMVF response, but not EIMVF response as there was 

no change in this across pregnancy. Plasma oxLDL, sVCAM-1 increased during 

pregnancy and were assessed. There was a trend for urinary isoprostanes to 

increase during pregnancy and this was included in the analysis. 

 

Univariate analysis was performed using Pearson’s correlation, and significance 

was p<0.01. If significant results were found multivariate analysis was performed 

using the General Linear Model (significance p<0.05). The anthropometric 

measures included in this analysis were fat mass, total body skinfolds, upper 

body peripheral skinfolds and lower body peripheral skinfolds.  
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6.7.1 EDMVF response 

Univariate analysis was performed using Pearson correlation to assess the 

relationship between the change in EDMVF response and change in fat mass, 

total body, upper body peripheral and lower body skinfolds (Table 6.1). There 

were no significant correlations found in this analysis.  

Table 6.1 Univariate analysis of the associations between the gestational change in EDMVF 
response and the gestational change seen in anatomical and total fat mass in entire cohort. 
Analysis was performed using Pearson’s correlation, significant result if p<0.01. Total body 
skinfolds shown as TBS, upper body peripheral skinfolds as UPBS and lower body skinfolds as 
LBS. 

 fat mass 
V1-V3 

TBS 
V1-V3 

UBPS 
V1-V3 

LBS 
V1-V3 
 

V1-V3 EDMVF response 
Pearson correlation 
P value 

 
-0.233 
0.15 

 
-0.187 
0.25 

 
-0.161 
0.32 

 
-0.167 
0.30 

 

 

6.7.2 Oxidised LDL 

Univariate analysis was performed using Pearson correlation to assess the 

relationship between the change in oxLDL and change in fat mass, total body, 

upper body peripheral and lower body skinfolds (Table 6.2). There were no 

significant correlations found in this analysis.  

Table 6.2 Univariate analysis of the associations between the gestational change in oxLDL 
and the gestational change seen in anatomical and total fat mass in entire cohort. Analysis 
was performed using Pearson’s correlation, significant result if p<0.01. Total body skinfolds shown 
as TBS, upper body peripheral skinfolds as UPBS and lower body skinfolds as LBS. 

 fat mass 
V1-V3 
 

TBS 
V1-V3 
 

UBPS 
V1-V3 
 

LBS 
V1-V3 
 

V1-V3 oxLDL 
Pearson correlation 
P value 

 
0.003 
0.99 

 
-0.089 
0.59 

 
0.064 
0.70 

 
-0.252 
0.12 
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6.7.3 sVCAM-1 

Univariate analysis was performed using Pearson correlation to assess the 

relationship between the change in sVCAM-1 and change in fat mass, total body, 

upper body peripheral and lower body skinfolds (Table 6.3). There were no 

significant correlations found in this analysis.  

Table 6.3 Univariate analysis of the associations between the gestational change in    
sVCAM-1 and the gestational change seen in anatomical and total fat mass in entire cohort. 
Analysis was performed using Pearson’s correlation, significant result if p<0.01. Total body 
skinfolds shown as TBS, upper body peripheral skinfolds as UPBS and lower body skinfolds as 
LBS. 

 fat mass 
V1-V3 
 

TBS 
V1-V3 
 

UBPS 
V1-V3 
 

LBS 
V1-V3 
 

V1-V3 sVCAM-1 
Pearson correlation 
P value 

 
-0.111 
0.50 

 
-0.270 
0.092 

 
0.181 
0.27 

 
-0.281 
0.079 

 

 

6.7.4 Urinary Isoprostanes 

Univariate analysis was performed using Pearson correlation to assess the 

relationship between the change in urinary isoprostanes and change in fat mass, 

total body, upper body peripheral and lower body skinfolds (Table 6.4). There 

were no significant correlations found in this analysis.  

Table 6.4 Univariate analysis of the associations between the gestational change in urinary 
isoprostanes and the gestational change seen in anatomical and total fat mass in entire 
cohort. Analysis was performed using Pearson’s correlation, significant result if p<0.01. Total body 
skinfolds shown as TBS, upper body peripheral skinfolds as UPBS and lower body skinfolds as 
LBS. 

 fat mass 
V1-V3 
 

TBS 
(V1-V3) 

UBPS 
V1-V3 
 

LBS 
V1-V3 
 

V1-V3 urinary isoprostanes  
Pearson correlation 
P value 

 
0.106 
0.53 

 
0.168 
0.31 

 
0.204 
0.21 

 
0.139 
0.40 
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6.8 EDMVF and other biomarkers 

There was no significant impact of the change in fat mass or anatomical fat 

distribution on EDMVF or biomarkers of lipotoxicity. However, further analysis 

was performed to assess the impact of energy metabolism, carbohydrate, lipid 

and inflammatory profiles and markers of lipotoxicity on EDMVF response. This 

was performed using univariate analysis.  
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6.8.1 EDMVF response and parameters of energy metabolism 

Univariate analysis was performed using Pearson correlation to assess the 

relationship between the change in EDMVF response and change in energy 

metabolism parameters (Table 6.5). There were no significant correlations found 

in this analysis.  

 

Table 6.5 Univariate analysis of the change in EDMVF response and the changes in 
parameters of energy metabolism 

Energy parameter V1-V3 EDMVF response V1-V3 
 

BMR 
Pearson correlation 
P value 
BMR/kg 
Pearson correlation 
P value 
NPRER 
Pearson correlation 
P value 
Fat oxidation 
Pearson correlation 
P value 
Carbohydrate oxidation 
Pearson correlation 
P value 
Sedentary activity 
Pearson correlation 
P value 
Light activity 
Pearson correlation 
P value 
MVPA 
Pearson correlation 
P value 
Daily energy intake 
Pearson correlation 
P value 
Fat intake 
Pearson correlation 
P value 
Carbohydrate intake 
Pearson correlation 
P value 
Protein intake 
Pearson correlation 
P value 

 
-0.250 
0.12 
 
-0.249 
0.13 
 
0.055 
0.74 
 
-0.118 
0.48 
 
0.005 
0.98 
 
0.097 
0.62 
 
-0.041 
0.83 
 
-0.204 
0.29 
 
-0.213 
0.19 
 
-0.190 
0.25 
 
-0.131 
0.43 
 
0.15 
0.38 
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6.8.2 EDMVF response and carbohydrate, lipid and inflammatory 

profiles 

Univariate analysis was performed using Pearson correlation to assess the 

relationship between the change in EDMVF response and the change in the 

plasma concentrations of markers of carbohydrate, lipid and inflammatory 

profiles (Table 6.6).There was a trend for IL6 to be positively associated with 

the improvement seen in EDMVF response (p=0.047). 

Table 6.6 Univariate analysis of the change in EDMVF response and the change in plasma 
concentrations of markers of carbohydrate, lipid and inflammatory profiles 

Plasma marker V1-V3 EDMVF response V1-V3 
 

Fasting glucose 
Pearson correlation 
P value 
Insulin 
Pearson correlation 
P value 
HOMA 
Pearson correlation 
P value 
Total cholesterol 
Pearson correlation 
P value 
Total triglycerides 
Pearson correlation 
P value 
HDL 
Pearson correlation 
P value 
NEFA 
Pearson correlation 
P value 
CRP 
Pearson correlation 
P value 
IL6 
Pearson correlation 
P value 
TNFα 
Pearson correlation 
P value 

 
-0.020 
0.90 
 
-0.088 
0.60 
 
-0.084 
0.62 
 
-0.140 
0.40 
 
-0.034 
0.84 
 
-0.18 
0.29 
 
0.013 
0.94 
 
-0.010 
0.95 
 
0.324 
0.047 
 
0.021 
0.90 

 

  



Chapter 6  197 

6.8.3 EDMVF response and markers of lipotoxicity 

Univariate analysis was performed using Pearson correlation to assess the 

relationship between the change in EDMVF response and change in markers of 

lipotoxicity (Table 6.7). There were no significant correlations found in this 

analysis.  

Table 6.7 Univariate analysis of the change in EDMVF response and the change in markers 
of lipotoxicity 

Plasma marker V1-V3 EDMVF response V1-V3 
 

sICAM-1 
Pearson correlation 
P value 
sVCAM-1 
Pearson correlation 
P value 
oxLDL 
Pearson correlation 
P value 
GGT 
Pearson correlation 
P value 
Urinary isoprostanes 
Pearson correlation 
P value 
superoxides 
Pearson correlation 
P value 

 
-0.120 
0.48 
 
0.075 
0.66 
 
-0.050 
0.77 
 
-0.006 
0.97 
 
-0.184 
0.28 
 
-0.093 
0.62 
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6.9 Discussion 

As pregnancy progressed there was a significant improvement in the endothelium 

dependent microvascular function (EDMVF) response and increases in plasma 

concentrations of sVCAM-1 and oxidised LDL. These gestational changes were 

similar in both the lean and the OW/OB group. Previous studies have indicated 

that although all women exhibit an improvement in EDMVF during pregnancy, 

obese women show less improvement than lean women (Stewart et al., 

2007a).This was not found in the current study. However, as discussed in chapter 

5, this cohort was overall healthier and more affluent than previous populations 

which may account for the different findings. Higher deprivation scores have 

been linked to higher risk of cardiovascular mortality in both diabetic and non-

diabetic populations (Jackson et al., 2012). In addition, markers of chronic 

inflammation and endothelial activation (CRP, IL6 and sICAM-1) have been found 

to be significantly associated with poorer childhood living conditions and 

paternal manual occupations (Packard et al., 2011). There is also the obvious 

impact that smoking has on endothelial function (Ambrose and Barua, 2004), and 

in this study none of the participants smoked compared to previous study 

cohorts (Stewart et al., 2007a). The demographic similarities between the lean 

and OW/OB groups in our cohort may account for why no difference was seen in 

vascular function between our lean and OW/OB groups.  

 

In healthy pregnancy, sVCAM-1 has been found to increase significantly as 

pregnancy progresses (Beckmann et al., 1997). In the present study sVCAM-1 

increased significantly during gestation and these findings are consistent with 

published data in both lean and obese women (Stewart et al., 2007a). In the 

comprehensive study performed by Stewart et al, sVCAM-1 concentrations in 

both lean and OW/OB women were lower than our findings throughout 

pregnancy. In addition, Stewart et al did not find any differences between lean 

and obese women in each trimester in sVCAM-1. There are no reference 

standards so it is difficult to compare our findings to previous published data. 

 

In the present study plasma IL6 concentration was higher in lean women 

compared to OW/OB participants. This may be a result of up-regulation of IL6 

production by adipocytes in lean pregnancy if their adipose tissue has a greater 
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potential to undergo differentiation from pre-adipocytes to functional 

adipocytes compared to the adipose tissue of OW/OB individuals. In the mouse 

model, it has been suggested that IL6 plays a role in pulmonary vascular 

remodelling in pulmonary hypertension (Savale et al., 2009). Although this is an 

example of a pathological process, it does provide a potential explanation of 

higher IL6 levels as gestation advanced in this study. There does not appear to 

be any published data examining the role of IL6 in vascular remodelling in 

pregnancy. However, in our study, there was a trend for the increase in IL6 to be 

positively correlated with the improvement in EDMVF response (r=0.324, 

p=0.047). 

 

Previous authors have shown that plasma oxLDL levels are higher in pregnant 

women than in non-pregnant controls (Makedou et al., 2011). In healthy human 

pregnancy, gestational changes in LDL profile favours smaller species, which is 

thought to be a result of the increase in plasma triglyceride concentrations. This 

preference for smaller species of LDL is associated with an increased level of 

oxidised LDL (Belo et al., 2004). Lean and OW/OB women showed a significant 

increase in oxLDL during pregnancy in the present study, but there were no 

difference between the groups. Other authors have shown that although LDL-III 

concentration is higher in OW/OB pregnant women, only a proportion of the 

obese subjects exhibited oxLDL-III in a high enough concentration to have an 

atherogenic lipoprotein phenotype (Meyer et al., 2013), which is an indicator of 

metabolic pathology (Anber et al., 1996). In the current study, the OW/OB 

mothers may not be in this subset of high risk women who develop an 

atherogenic lipoprotein phenotype which would lead to a larger amount of small 

dense LDL that could be easily oxidised. If this is true then the current OW/OB 

cohort could be considered low risk as they exhibit a similar improvement in 

their EDMVF response compared to the lean group. The absolute change in 

oxidised LDL was not significantly correlated with the improvement in the EDMVF 

response for the entire cohort (Pearson’s correlation -0.050. p=0.77), which 

supports the theory that the OW/OB cohort did not include women with an 

atherogenic lipoprotein profile. In Meyer et al, the mean BMI of the obese group 

was 33.7kg/m2 (SD 4.2), and in the current OW/OB group this was 31.5 kg/m2 

(SD2.7). As the current OW/OB group had a lower BMI than the Meyer et al 

study, this may explain the lack of differences in oxLDL as well as in EDMVF 
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response and the other markers of lipotoxicity. Therefore, in order to see an 

effect of oxLDL concentration on EDMVF response, inclusion of women with 

higher BMI or perhaps greater central obesity may be required. 

 

Isoprostanes are markers of oxidative stress, which are produced as a result of 

the non-enzymatic peroxidation of arachidonic acid (Vincent et al., 2007). 

Previous authors have noted that both urinary and plasma measurements of 

these compounds can be used as biomarkers  in the estimation of lipid 

peroxidation (Cracowski et al., 2002). Published data have shown that in women, 

BMI significantly correlated with levels of urinary isoprostanes (8-iso-PGF2α) 

(Il'yasova et al., 2007, Keaney et al., 2003), and that in pregnancy women have 

elevated levels of both plasma and urinary isoprostanes (Ishihara et al., 2004). In 

the current analysis, there was some evidence that urinary isoprostanes rose 

during pregnancy (p=0.029) but there was no difference seen between lean and 

OW/OB women. Current literature suggests that plasma levels of isoprostanes 

are elevated in pre-menopausal women with increased central obesity (Crist et 

al., 2009). In the current study anthropometric differences were observed, but 

these findings related to upper body peripheral subcutaneous fat depots rather 

than either groups having preponderance for centrally accumulated 

subcutaneous adipose tissue. None the less, assessing plasma isoprostanes levels 

in both groups or stratifying the data based on waist hip ratio may be useful to 

assess the impact of lipid peroxidation and oxidative stress during pregnancy. 

Currently there is ongoing analysis of plasma samples from this cohort to 

ascertain the concentration of plasma isoprostanes. 

 

The initial analysis of microvascular function and markers of lipotoxicity did not 

find any differences between lean and OW/OB women in this cohort. For this 

reason, further analysis of the impact of anatomical fat depots on the EDMVF 

response and lipotoxic biomarkers were performed on the entire cohort. In this 

univariate analysis no significant associations were found. Therefore, for this 

cohort during pregnancy there was no impact of an increase in either total fat 

mass or anatomical fat depots on the gestational change in endothelial function 

or markers of lipotoxicity. This result may also indicate that these specific 

subcutaneous fat depots do not have a detrimental impact on endothelial 

function or promote lipotoxicity during healthy pregnancy.  
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Further analysis explored associations between the improvement in EDMVF 

response and gestational changes in direct measurements of energy metabolism, 

plasma markers of carbohydrate, lipid and inflammatory profiles and markers of 

lipotoxicity. There were no significant associations found in this analysis.  

 

A key strength of this present study was the use of laser Doppler imaging to 

assess microvascular function during pregnancy. The laboratory where the study 

was performed had experience of the technique (Ramsay et al., 2002a, Stewart 

et al., 2007a) and expertise in the methodology which was utilised by the 

researcher during the study (Ramsay et al., 2002b). The technique used to assess 

superoxide in whole blood, electron paramagnetic resonance (EPR), is an 

advanced objective technique performed by investigators experienced with the 

measurement. This analysis has included a comprehensive panel of vascular 

function and markers of lipotoxicity and all data was rigorously corrected prior 

to analysis in order to account for changes in blood volume and glomerular 

filtration rate during pregnancy. 

 

The limitations of our study are that our OW/OB group had a lower mean BMI 

and appeared to be a particularly healthy cohort. It is likely that the selection 

protocol resulted in OW/OB women being recruited who were extremely healthy 

and not at risk of developing an adverse obstetric outcome. Therefore we have 

missed out on recruiting women within the 30% of the obese maternal population 

who are at risk of pregnancy complications (Figure 1.2). 

 

In conclusion, in the current study both lean and OW/OB women exhibited 

similar endothelial microvascular function improvement and increases in 

lipotoxic markers. Analysis of this data has shown that in healthy lean and 

OW/OB pregnancy, although there was an increase in markers of lipotoxicity, 

this had no detrimental effect on the improvement seen in EDMVF. In addition, 

the increase in the studied subcutaneous fat depots, changes in direct 

measurements of energy metabolism and plasma markers of carbohydrate, lipid 

and inflammation do not have an impact on the improvement seen in EDMVF. 

Therefore in OW/OB pregnancy there appear to be some women for whom their 
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obesity could be thought of as ‘benign’ as they exhibit the same gestational 

vascular improvement in pregnancy as lean women.  
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Figure 6.10 Summary of finding of chapter 6. In the cohort studied, lean and OW/OB women 
both exhibited an improvement in vascular function and increased endothelial activation and 
increased lipotoxicity (as measured by oxLDL). Findings suggest that OW/OB women could be 
considered as either metabolically healthy therefore responding to pregnancy in a similar way to 
lean women or unhealthy where they have poorer vascular improvement in pregnancy. 
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Chapter 7 General Discussion & Future Research 

7.1 General Discussion 

In the wider non-pregnant population Jensen et al (Jensen, 2008) have described 

in detail how different subcutaneous adipose tissue depots differ in terms of 

their function and their role in whole body fatty acid metabolism. Previous 

studies in pregnancy have suggested that there are differences in the 

distribution of adipose tissue accumulated during pregnancy, with obese women 

tending to have a propensity to central subcutaneous fat accretion, while lean 

women, tend to gain fat in the lower body compartment (Taggart et al., 1967, 

Soltani and Fraser, 2000). The work presented in this thesis was designed to test 

the hypothesis that the increased risk of adverse pregnancy outcomes for obese 

women was the result of the inadequate adipose tissue storage of fatty acids and 

the subsequent lipotoxicity leading to reduced vascular function during 

pregnancy (Jarvie et al., 2010).  

In this thesis, the idea of functional adipose tissue depots in pregnancy was 

explored. One objective of this thesis was to ascertain whether OW/OB women 

gained gestational fat in the central subcutaneous fat compartment (measured 

using suprailiac and costal skinfolds), while lean women gained gestational fat in 

the lower body subcutaneous compartments (measured by midthigh and 

suprapatellar skinfolds). In this study, it was observed that lean and OW/OB 

women gain similar amounts of total body weight and fat mass during pregnancy, 

and all fat depots increased during pregnancy. The findings in this thesis were 

that in OW/OB pregnancy there was no preference in anatomical location of 

adipose tissue accumulation during pregnancy. In contrast lean women did have 

an anatomical depot-specific deposition of subcutaneous adipose tissue during 

pregnancy however this was not in the lower compartment. The primary location 

for gestational fat deposition in lean women was the upper peripheral 

subcutaneous fat stores (measured by biceps and triceps skinfolds) but this 

specific to gestational age. This preferential accumulation appeared only to 

increase in the second trimester (from 15 to 25 weeks). This may suggest that 

lean women are able to switch easily from a lipogenic to a lipolytic profile in 

later pregnancy when the fetal energy demands are greatest and the body is also 
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preparing for labour and breastfeeding energy demands. In contrast the finding 

that the OW/OB group did not show a gestational time or anatomical site 

preference for subcutaneous fat deposition throughout pregnancy may indicate a 

lack of metabolic flexibility due to a continued lipogenic profile within the 

adipose tissue in OW/OB pregnancy. 

In this study OW/OB women were not of a particularly extreme BMI and in fact, 

as stated earlier, the OW/OB women did include some women who were classed 

as overweight. Thus it is not possible to conclude the pattern of subcutaneous 

fat accumulation observed in the OW/OB group under study here is the same as 

in obese pregnancies of much higher BMI. This makes it difficult to relate the 

present findings to obese women ‘at risk’ of an adverse outcome. Such women 

of extreme obese phenotype may show a propensity to central adipose tissue 

accretion. Furthermore, the visceral compartment was not measured and it is 

possible that in the OW/OB group in the current study, fat was accumulated in 

that depot initially. Once this storage site is replete then fat accumulated in 

subcutaneous sites, without preference for location as all grouped (upper body 

truncal, upper body peripheral and lower body) skinfolds increased throughout 

pregnancy. However, the present observations do give a comprehensive picture 

of how subcutaneous fat depots change in a group of healthy pregnant women 

(both lean and obese). This is important because, as highlighted above, in the 

non-pregnant population, location of fat stores is associated with increased 

inflammatory profiles and insulin resistance.  

The next aim was to explore whether any differences in gestational fat 

accumulation between lean and OW/OB women could be explained by direct 

measurements of energy metabolism. These included basal metabolic rate, 

physical activity and dietary energy intake and observations were related to 

gestational fat gain and anatomical location of its storage. These were important 

variables to assess longitudinally as they have a major impact on total body and 

fat mass gain in the general adult population, and therefore gestational changes 

in energy metabolism could impact on gestational fat accumulation. In this study 

both groups responded to pregnancy similarly with a gestational rise in BMR, a 

decline in MVPA and a similar change in their macronutrient intake. These 

findings support current published data in lean pregnancy populations (mean BMI 

24), where basal metabolic rate increased during pregnancy and physical activity 
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levels were maintained until 32 weeks where after they decreased (Lof and 

Forsum, 2006). 

The results of this study observed some expected differences between lean and 

OW/OB women; OW/OB women had higher BMR, related to their higher body 

mass, and were less active than lean women throughout pregnancy. BMR is 

related to body mass, and in the non-pregnant obese population, BMR has been 

found to rise with increased levels of obesity (Elbelt et al., 2010). Thus because 

body mass was very different between lean and OW/OB women, BMR was 

corrected for this using BMR/kg. However, in the present study even when 

corrected for this there was no relationship between the change in BMR/kg and 

the increase in gestational fat mass. The lean and OW/OB group gained similar 

amounts of fat mass during pregnancy, which would indicate that they have a 

similar overall energy intake/energy expenditure balance. Published data has 

indicated that physical activity (both non-exercise and activity induced) plays an 

important part in basal metabolic rate and total energy expenditure 

(Westerterp, 2008). During pregnancy, increased MVPA was directly correlated 

with an increase in BMR/kg. Therefore the overall higher BMR/kg and physical 

activity in lean women compared to OW/OB women and the higher absolute 

rates of BMR in the OW/OB group could explain why, despite different activity 

levels and similar diets, both groups gain similar amounts of weight and fat. 

 

In this study, there were no gestational differences observed in diet of the 

entire cohort during pregnancy or between the lean and OW/OB groups. In a 

more in depth analysis of the dietary data performed on the present study 

population (but not reported in this thesis) it was found that both lean and 

OW/OB women were not consuming enough vitamin D and folic acid, and 

although this did improve with vitamin supplementation, 20% of OW/OB women 

were still not achieving their recommended intake of vitamin D. In current 

published literature there is interest in the role of vitamin D deficiency and its 

impact on pregnancy and birth outcomes (Aghajafari et al., 2013, Rodriguez et 

al., 2014), although the association at this time remains contentious. 

 

Strategies during pregnancy to try and improve pregnancy outcomes in obese 

women have focused on diet and exercise. Recent data indicates that while both 
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diet and activity modification can reduce the risk of PET and GDM compared to 

controls, dietary changes are most effective at reducing gestational weight gain 

(Thangaratinam et al., 2012). Other data suggests that a combination of dietary 

and activity advice did not improve maternal outcomes including GDM and PET in 

obese and overweight pregnancies (Dodd et al., 2014a), although antenatal 

advice did improve maternal activity levels and diet (Dodd et al., 2014b). Pilot 

data from the UPBEAT trial has indicated that there is more scope for changing 

diet than physical activity during obese pregnancies (Poston et al., 2013). The 

UPBEAT trial is currently being undertaken to further evaluate the impact of 

these interventions on maternal outcome in obese pregnancies (Briley et al., 

2014). The different conclusions reported in the literature highlights the 

complex interactions of diet and activity on weight gain and maternal outcomes.  

 

These findings have important implications on adapting behaviour during 

pregnancy. In this Scottish population, trying to change the dietary habits of the 

OW/OB group may be difficult when it appears there is no difference between 

lean and OW/OB diets during the antenatal period. Physical activity in pregnancy 

would also be difficult to maintain if, as these results suggest, all women 

become less active during gestation. Any intervention that attempts to improve 

maternal health is extremely important. Any positive change would be beneficial 

to both mother and the fetus (either via fetal programming or by reducing 

gestational over-nutrition), because it will reduce the metabolic risk for the next 

generation. An important question is when is the most effective time to 

intervene? As discussed above the results of the UPBEAT trial will help to answer 

how diet and exercise modifications during pregnancy can improve perinatal 

outcomes. Targeting obese women before conception may be another 

possibility. However targeting the pre-conceptual population would require a 

much wider public health approach and cannot be addressed by obstetrics alone. 

The focus for trying to reduce the risk of adverse metabolic and vascular 

complications needs to be two fold, with pre-pregnancy (and inter-pregnancy) 

counselling and optimising of healthy lifestyle in obese women prior to 

conception and during pregnancy providing additional support by means of an 

intervention strategy to improve  physical activity and diet. 

Across the entire cohort, increases in subcutaneous adipose tissue depots were 

not related to any changes in the measured variables of energy metabolism. This 
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suggests that in the specific depots assessed in the current study, their 

gestational increase is not driven by changes seen in energy metabolism and may 

be hormonally driven. Unfortunately, the inability to assess the visceral fat 

compartment does not allow one to gain a complete picture of the impact of 

energy parameters on gestational fat gain. 

 

The third aim was to explore whether anatomical location of gestationally-

acquired fat influenced the maternal metabolic adaptation to pregnancy building 

on the work of Jensen et al which showed that the location of storage of fat in 

the non-pregnant population influences metabolic profile. Plasma markers of 

lipid and carbohydrate metabolism and inflammation were examined to 

determine whether any differences in fat distribution was associated with the 

adverse metabolic profile. In the current study the changes in gestational 

carbohydrate, lipid and inflammatory profiles observed are broadly similar to 

current published data. There were some unexpected observations in biomarkers 

of inflammation and adipocyte fatty acid metabolism. Lean women had higher 

concentrations of IL6 and NEFA during pregnancy than OW/OB women, and 

OW/OB women had a greater gestational decrease in CRP than lean women. 

These findings were not anticipated and are difficult to explain. 

 

Previous authors have commented that even in healthy pregnancy there is a rise 

in plasma IL6 levels (Freeman et al., 2004), suggesting that an increase in this 

inflammatory marker may reflect a physiological rather than pathological 

process. Two possible explanations could be suggested. Firstly a gestational 

increase in IL6 could be the result of increased secretion from adipocytes 

secondary to hyperplasia of functional preadipocytes in lean pregnancy. In obese 

pregnancy adipocytes may either not mature or there may be a hypertrophic 

rather than hyperplasic fat cell response (McLaughlin et al., 2007).  

Alternatively there may be a role for IL6 in vascular remodelling as has been 

examined in animal models. It has been shown that under hypoxic conditions, IL6 

receptor levels are increased and may play a role in pulmonary vascular 

remodelling in mice (Savale et al., 2009). It was also observed that the sVCAM-1 

levels were higher in the lean group than the OW/OB group. As mentioned in 

chapter 6, higher sVCAM-1 levels have been found during physiological vascular 
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remodelling in endometrial spiral arterioles (Craven et al., 1998) and during in 

vitro small vessel inflammation experiments (Ohanian et al., 2012). If plasma 

increases in IL6 and sVCAM-1 reflect an increased vascular remodelling process, 

this would suggest that lean pregnant women have a better remodelling 

potential than OW/OB women and may explain a better vascular response in 

pregnancy. This observation may reflect not just an ability to adapt during 

pregnancy but the remodelling potential in the post natal period and subsequent 

pregnancies. 

 

The final aim was to look for evidence of development of lipotoxicity using 

plasma and urine biomarkers in both lean and OW/OB pregnancy and to relate 

this to endothelial function. The hypothesis was that a gestational subcutaneous 

fat distribution could explain poorer maternal vascular response seen in obese 

pregnancies (Stewart et al., 2007a, Ramsay et al., 2002a). In the current study, 

no differences in endothelial function and lipotoxicity between lean and OW/OB 

women were observed. Both groups showed a significant improvement in EDMVF 

response as pregnancy progressed. In addition, no differences in the 

concentrations of markers of lipotoxicity were noted between the lean and 

OW/OB group. When the entire cohort was assessed, the gestational increases in 

the studied anatomical subcutaneous fat depots were not related to endothelial 

function or markers of lipotoxicity. Therefore the initial hypothesis that 

pregnant OW/OB women gain fat during pregnancy in the central subcutaneous 

adipose tissue depots leading to NEFA overflow with subsequent lipotoxicity and 

endothelial dysfunction was not supported. 

There are a number of reasons why there was no evidence of lipotoxicity in the 

OW/OB women. In this study it was observed that the lean women had the 

metabolic and vascular response to pregnancy which was anticipated from 

previous literature. However, as discussed previously, while there was some 

evidence that the OW/OB group exhibited some of the abnormal metabolic 

adaptations this was not as pronounced as expected. When the current OW/OB 

cohort was compared to previous studies (Stewart et al., 2007a, Ramsay et al., 

2002a), it became evident that the OW/OB cohort recruited here was relatively 

healthy and their metabolic response to pregnancy was more similar to that of 

lean women than that of previously studied obese groups. When the 
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demographic characteristics of the present OW/OB cohort were compared to 

those of a previous obese cohort that had a poorer metabolic and vascular 

response to pregnancy (Stewart et al., 2007a) it became obvious that the current 

group were all non-smokers (compared with 40% smokers), were of higher 

socioeconomic status and had a lower mean BMI. Thus it would appear that the 

current OW/OB cohort have ‘benign’ obesity. Therefore it is not surprising that 

there were no significant differences in vascular response and markers of 

lipotoxicity between these lean and OW/OB women. 

In the non-pregnant population, the concept of ‘metabolically healthy obesity’ 

or ‘benign obesity’ is a current area of interest, and it has been suggested that 

this group may account for up to thirty percent of obese adults (Primeau et al., 

2011). There is no current consensus on the definition of ‘metabolically healthy 

obesity’, but some authors have indicated that this group includes those obese 

individuals who are insulin sensitive and do not display abnormal lipid profiles, 

clinical hypertension or type 2 diabetes (Boonchaya-anant and Apovian, 2014). 

Other authors have included obesity with a favourable metabolic profile which 

includes low ectopic liver fat, low triglycerides, low inflammation, high HDL, low 

intima-media thickness, high adiponectin and low apolipoprotein B (ApoB) 

(Primeau et al., 2011, Stefan et al., 2008). In addition, data in non-pregnant 

adults show that obesity associated with visceral fat was associated with 

dyslipidaemia, atherosclerosis and insulin resistance but abdominal subcutaneous 

fat was not (Neeland et al., 2013).  

In a population of obese postmenopausal women the definition of ‘metabolically 

healthy obese’ was based on insulin sensitivity. Brochu et al, showed that those 

women described as ‘metabolically healthy’ obese also displayed smaller 

adipocyte cell size and less visceral fat (Brochu et al., 2001). In addition, obese 

individuals found to be metabolically healthy, again based on insulin resistance, 

had higher levels of the nuclear receptor subtype peroxisome proliferator-

activated receptor γ (PPAR-γ), which is important in stimulating adipogenesis 

(McLaughlin et al., 2007) and could lead to a hyperplasic rather than 

hypertrophic expansion of adipose tissue. In the current study, the OW/OB 

women recruited may be individuals who, although they exhibit increased insulin 

resistance compared to the lean group, are more insulin sensitive than other 

studied obese pregnant populations (Stewart et al., 2007a) and thus may still fit 
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into the ‘metabolically healthy obese’ category. If so they might be expected to 

exhibit similar gestational vascular improvement in pregnancy as lean women. 

On this basis, this study has not recruited women who are ‘at risk’ of obesity 

related obstetric complications.  

In this thesis, much useful data which has bearing on current ongoing research in 

maternal obesity and clinical practice was collected. The study adds evidence to 

the existing non-pregnant data showing that obesity is a heterogeneous 

condition, and that many obese women remain healthy during their pregnancies. 

This study has produced a variety of data showing that many healthy OW/OB 

women respond to pregnancy in much the same way as healthy lean women in 

terms of metabolic and vascular response. Although the OW/OB women exhibit a 

subtle degree of metabolic disturbance, this had no impact on either vascular 

function or biomarkers of lipotoxicity during pregnancy. In conclusion whilst 

there is a significant proportion of obese women who may display a lipotoxic 

phenotype resulting in poor vascular adaptation during pregnancy, there are also 

many OW/OB women for whom pregnancy remains a period of health and should 

not be considered, at least in terms of vascular and metabolic function as high 

risk in the clinical setting.  

 

7.2 Strengths and Limitations  

There are significant strengths to this study. This study has provided extensive 

phenotyping that has been performed at both a physiological and biochemical 

level. The strengths and expertise of the methodologies employed has been 

discussed at length in the relevant chapters. In the current literature, there are 

limited data available on metabolically healthy obese pregnancies. Although this 

data set does not contain at risk OW/OB women, it offers detailed observations 

of the healthy OW/OB pregnant response during pregnancy. The design of the 

study, (all women were observed longitudinally by the same researcher) adds 

statistical power to the findings in the current data set. By performing multiple 

measures of subcutaneous fat stores during pregnancy the current study has 

shown how these fat depots change over pregnancy in lean and potentially 

‘metabolically healthy’ OW/OB pregnant women; at the time of submission of 
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this thesis there were few published data available on this topic. In addition, not 

only has the current study extensively phenotyped a healthy cohort of women 

during pregnancy but the same measurements have been collected three months 

postnatally as well. In addition, there are stored samples for placentae, 

umbilical cord and cord blood which will be used in future studies. 

 

The limitations of the current study should be considered. The main limitation is 

that the obese women most at risk of vascular complications were not recruited 

to the study. This was despite continued publicity and recruitment drives by the 

researcher. This may have been because obese women with extreme BMI do not 

considered themselves at risk, have no interest in being involved with a study 

about body shape or because they are self conscious about their weight and 

therefore also do not wish to participate in such a study. One potential OW/OB 

recruit reported to the researcher that she felt victimised for being asked to 

participate because she was being recruited to the OW/OB group. The converse 

was true about the lean group, it did not take long to recruit these women and 

again this may be self selection – those interested in how their body works and 

responds during pregnancy also are probably motivated to exercise outwith 

pregnancy and maintain a healthy weight. The reasons why obese women may or 

may not take part in this type of study are multifactorial and probably not only 

based on self image but also perceived ‘ill-health’ by being approached to 

participate in a study based on BMI. On reflection, prior to commencement of 

recruitment to this study it may have been advantageous to consult with patient 

groups or member of the general public to review the study protocol. Such a 

review may have helped gauge opinion on whether the intensity of the study 

visits was deemed appropriate and help to streamline the visit protocol. This 

may have helped improve either recruitment or retention to the study. In 

addition, because we did not achieve the number of study participants (n=30), 

which have been detailed in section 2.6, the sample size and number of 

gestation time points is a limiting factor in the results we have obtained.  

 

Another limitation is that the visceral fat compartment was not assessed. 

Although in this study there is certainly a suggestion of site-specific 

accumulation of subcutaneous fat in lean pregnancies, unless there is 

information on the visceral fat compartment accumulation it is impossible to link 
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the impact of gestational fat gain to metabolic adaptations and lipotoxicity in 

pregnancy.  

 

The analysis performed in this study looked at simple summary measures of the 

data such as change over time. Prior to analysis, biomedical statisticians 

provided advice on building a statistical model that would address the 

hypothesis and the aims of this study. The statistical analysis presented in this 

thesis using this model does address the key research questions from the outset 

therefore for the aims of this thesis the analysis was fit for purpose. However 

there are other approaches to analyse the collected data (such as area under the 

curve) any further analysis should take these approaches into consideration. 

 

Dietary data are notoriously difficult to record and, the gold standard technique 

of four day weighed dietary intake (Holmes et al., 2008) was not feasible in this 

study. Therefore, recall bias may have resulted in the lack of differences 

between the lean and OW/OB dietary data. One of the most consistent problems 

in dietary analysis is participant’s unintentional under-reporting of dietary 

intake. The dietary data was extensively studied for the occurrence of under 

reporting using the Goldberg cut-off value (Black, 2000)(not reported in this 

thesis). No differences were found in the rates of underreporting between the 

lean and OW/OB groups.  

 

Although there was comprehensive collection of data throughout pregnancy and 

three months’ postnatal (the latter not presented in the thesis) to compare lean 

and OW/OB women, the study did not have any data from either early pregnancy 

(less than 12 weeks) or non-pregnant women. Having a prospective data set from 

lean and OW/OB women preconception that were subsequently followed up 

through pregnancy and postnatally would be ideal, but recruitment and 

retention in this type of study would be extremely difficult. In the current study 

there was also no adipose tissue sampling. If, as in the non pregnant population, 

there are functional differences in depots (abdominal and lower body) then 

exploring this in ex vivo sample from pregnant women would be very 

informative. However it is difficult to anticipate when pregnant recruits will 

deliver their babies and collection of adipose tissue would only be appropriate at 

an elective caesarean section delivery. One could collect samples from a cross 



  215 

section of healthy lean and OW/OB women undergoing uncomplicated caesarean 

delivery but you would lack the antenatal data in this case. Another option could 

be collection of needle biopsies of subcutaneous fat at different gestation but 

this is unlikely to be acceptable to all participants. 
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7.3 Clinical implications  

This thesis provided support for the theory that not all obese women should be 

considered ‘high risk’ for an adverse pregnancy outcome based solely on their 

BMI. Thus current clinical practice needs to be reviewed. BMI is currently used to 

risk assess for GDM and PET at her initial antenatal appointment. It is also used 

to assess the need for thromboprophylaxis during pregnancy and referral for 

anaesthetic review. Although the latter risk assessment is still very valid, if an 

obese woman is metabolically healthy her risk of the former conditions may not 

be as high as previously thought. However, although many more obese than lean 

women develop antenatal complications, BMI may still be too unsophisticated a 

measure to accurately identify the 30% of obese women who do develop 

obstetric complications (see Table 1.2). By categorising every woman with a BMI 

of >30kg/m2 as high risk, many of these women are being unnecessarily 

medicalised during pregnancy. Resources within the NHS are limited, and the 

escalation of healthy obese women’s antenatal care to involve additional 

hospital appointments with consultant Obstetricians and specialist testing (such 

as glucose tolerance testing [GTT]), is not a good use of resources. In addition, 

with reference to figure 1.3, using BMI as a measure of risk means that the 

approximately 15% of lean women who are at increased risk of similar obstetric 

complications are not identified.  

 

Subsequently any new screening method of ascertaining metabolic risk requires 

to be simple and quick and to be able to perform in the busy antenatal clinic 

environment. If visceral fat proves to be a discriminating marker that can 

separate benign and metabolic obesity then it could be amenable to simple 

assessment at least for screening purposes. Abdominal waist circumference has 

been used as a measure of central and therefore visceral fat in the past. In 

pregnancy abdominal waist circumference has been assessed at 16 weeks’ 

gestation and larger waist circumferences (>80cm) have been associated with an 

increased risk of hypertensive disorders in pregnancy (Sattar et al., 2001). 

Newer techniques to measure visceral fat are currently being assessed in the 

non-pregnant adult population. One technique which looks promising and is 

conveniently quick to perform is the use of bioimpedance assessment (Khalil et 

al., 2014), which can now be used to identify the visceral fat compartment, and 
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highly correlates with measurements obtained by computed tomography 

(Yamakage et al., 2014). Most of these scales also measure total body mass 

which is part of the routine assessment of a woman at her initial antenatal 

appointment so this would not require additional time in the clinic.  

 

In 2012, the Scottish Government introduced the HEAT targets (Health 

Improvement, Efficiency, Access to Services and Treatment) antenatal access 

target which aims to have at least 80% of pregnant women from each SMID 

deprivation quintile booked for antenatal care by the 12th week of pregnancy to 

improve breastfeeding rates and other poor pregnancy outcomes (NHS, 2012a). 

The aim is to have this target met by March 2015. If this target is met and a 

screening tool to measure visceral fat then this fat depot could be measured at 

this earlier gestation. Its’ impact on metabolic profiles in early pregnancy could 

be could be assessed before gestational fat increases. In addition the 

measurement of visceral fat at 12 weeks’ gestation was predictive of adverse 

metabolically-related pregnancy outcome, then it could also work as a triage 

tool for further assessment of women. For instance if visceral fat was found to 

be in the upper tertile then an early measurement of fasting insulin or a GTT 

could be used to further select those women, possibly both lean and obese, with 

a higher risk of metabolic complications in pregnancy. Present policy is to have 

all women with BMI>30 to be screened for gestational diabetes (NICE, 2010), if 

another screening tool could be implemented it may reduced unnecessary tests 

and improve costings within the NHS. 
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7.4 Future Research 

7.4.1 Further potential analysis of existing data 

As there were no differences in vascular adaptation between the lean and 

OW/OB groups, the current cohort could be regrouped based on a functional 

assessment of central obesity such as insulin resistance or on vascular 

improvement in pregnancy. The hypothesis of this thesis was that lipotoxicity is 

the mechanism which results poorer vascular adaptation to pregnancy, then 

grouping women with ‘good’ versus ‘poor’ function who allow phenotyping of 

these women. This could also apply to classifying women based on insulin 

resistance, as this metabolic biomarker has been used to categorise 

‘metabolically healthy obese’ women.  

 

Alternatively the cohort could be assessed as one whole group and the changes 

assessed across the tertiles. In this analysis, absolute values of the variables 

described could be analysed rather than looking at simple changes between 

gestational time points. This would be helpful in confirming or refuting the lack 

of differences noted between the lean and OW/OB groups. This could be done 

for all values or perhaps using visit 3 to gain a cross sectional analysis of the 

data.  

 

There are alternative ways of analysing the data which could be employed using 

the entire cohort. These would include using incremental area under the curve 

in the total population with the addition of BMI as a covariate in the model. In 

addition, the possibility of multiple regression analysis could be explored to 

ascertain any differences in the absolute values as discussed above. 

 

7.4.2 Future analysis of stored samples and data 

In this study the dietary data was only assessed in terms of macronutrients (total 

fat, carbohydrate and protein intake). As mentioned above there has been more 

work performed on this data examining micronutrient intake (not included in 
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this thesis). There is also the potential to look at the essential fatty acid intake 

to include LC-PUFA, as well as comparing simple sugars and more complex 

carbohydrates (primarily starch) which could be correlated with maternal insulin 

resistance and anatomical adiposity. 

 

As yet, the postnatal data has to be analysed, which covers all of the same 

parameters described in each of the results chapters. Information on breast 

feeding rates and duration were collected and the impact of this on any loss of 

subcutaneous fat distribution and vascular function in the postnatal period 

warrants further investigation. 

 

Some tissue samples were obtained from our participants at delivery and 

included placental, umbilical cord and umbilical blood samples. Again assessing 

lipotoxicity markers in the umbilical cord blood and relating this to maternal 

markers of lipotoxicity and fatty acid metabolism would be informative.  

 

In addition it would have been interesting to measure LDL size to see if this 

explained the lack of differences between the groups in terms of oxidised LDL. 

Further assays on other markers of lipotoxicity such as plasma isoprostanes and 

oxysterols concentrations are currently being performed to look for evidence of 

lipotoxicity which will add more information to the comprehensive panel of 

markers we have already assessed. 

 

In order to try and establish whether obese women can also be considered 

healthy in terms of endothelial adaptation and lipotoxicity during pregnancy 

further assessment of CD36 expression and oxysterols would be important.  

Plasma sCD36, can be used as a marker of insulin resistance and ectopic liver fat 

accumulation (Handberg et al., 2012). If the recruited OW/OB group in this study 

are ‘metabolically healthy obese’, then lower concentration of sCD36 would 

support this theory. At the time of writing this thesis funding was not available 

to assess these markers although aliquots had been obtained for any further 

analysis.  
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7.4.3 Future research directions 

This thesis has shown that there is further research which needs to be performed 

into how to clinically categorise metabolic ‘at risk’ pregnancies. One of the most 

important avenues of future research that this thesis has indicated is the need to 

recruit women who exhibit a metabolically abnormal phenotype. A similar 

longitudinal study should be performed to include obese women who are with in 

this group. In turn they could be compared to the existing data collected in this 

study. This would allow the idea of obesity heterogeneity which exists in non-

pregnant adults, to be evaluated in the pregnant population. A future study 

should also be performed to include lean women who are considered 

‘metabolically unhealthy’ (i.e. insulin resistant lean individuals) and this would 

allow an even more extensive phenotyping of both lean and obese women who 

may be at risk of metabolic related obstetric complications. To classify those 

women in either ‘metabolically healthy’ or ‘metabolically unhealthy’ HOMA or 

visceral fat thickness could potentially be used as classification criteria. 

 

It would be vital that this future study assessed the visceral adipose tissue 

compartment measured throughout gestation as that was one of the limitations 

discussed in this thesis. Measuring this depot would yield information as to 

whether the size of this depot is important in early pregnancy and if it is an 

important site of gestational fat deposition. Further comparison of how these 

depots change in pregnancies complicated by gestational diabetes or pre-

eclampsia would be important in completing the lipotoxic phenotype. 

 

 

.
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Appendices 

8.1 Appendix I 

PATIENT INFORMATION LEAFLET 
 

BODY SHAPE IN PREGNANCY STUDY 
 
We would like to invite you to take part in a research study. Before you decide you 
need to understand why the research is being done and what it would involve for 
you. Please take time to read the following information carefully. Talk to others 
about the study if you wish. 
 
Part 1 tells you the purpose of this study and what will happen to you if you take 
part.  
Part 2 gives you more detailed information about the conduct of the study. 
 
Ask us if there is anything that is not clear, or, if you would like more information. 
Take time to decide whether or not you wish to take part. 
 
PART 1 
1. What is the purpose of the study? 
Congratulations on your pregnancy!  
During pregnancy, a woman’s body goes through many normal changes both 
inside and out. We wish to study how a woman’s body shape changes during 
pregnancy, for instance where she gains weight. We think that where a woman 
gains her pregnancy weight may have an effect on her metabolic health. 
 
2. Why have I been chosen? 
We wish to study healthy pregnant women, like you, who have no current medical 
conditions and have fallen pregnant naturally. We are recruiting first time mums of 
different ages and weights.  
 
3. Do I have to take part? 
No.   
It is up to you to decide whether or not to take part.  If you do, you will be given 
this information sheet to keep and be asked to sign a consent form.  You are still 
free to withdraw at any time and without giving a reason.  A decision to withdraw at 
any time, or a decision not to take part, will not affect the standard of care you 
receive. 
 
4. What will happen to me if I take part? 
If you decide to take part in this study you will have three additional appointments 
during your pregnancy and one after you have delivered your baby. These will be 
with the research doctor, Dr Eleanor Jarvie. She is an obstetric doctor and once 
enrolled in the study you will be able to contact her directly regarding your 
appointments and your pregnancy. These appointments will be at approximately 
15 weeks, 25 weeks and 35 weeks of your pregnancy and when your baby is 
approximately 3 months old. 
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The tests require you to be fasted. We would ask that you not have anything to eat 
after 10pm the previous night.  You can drink water. If possible you should not 
drink caffeinated drinks (tea and coffee) or fizzy drinks. Please avoid any over the 
counter medications and try not to smoke.  The appointments will be at 8:00 or 
9:30 in the morning. We will provide breakfast for you. We anticipate that the 
appointments will take 90 minutes.    
 
In addition we would like to obtain tissue samples at the time of your delivery and 
gain information about your baby just after birth.  
 
5. What measurements are being recorded during and after my pregnancy? 
 
All tests are completely harmless to you and your baby. 
 
(A) We will measure your height, weight and blood pressure. 
 
(B) We will take a sample of blood (40ml which is about 3 tablespoons) and urine 
at each visit. 
 
(C) Body composition tests 
These tests are carried out to assess where in your body weight is put on during 
pregnancy.  The first test is skin fold thickness measurements. The second test is 
a measure of percentage fat mass and percentage lean mass measured by the 
way your body displaces air around it. This measurement is carried out seated in a 
person-sized chamber (or capsule) with a window while you are wearing a 
swimsuit or similar which you will need to bring with you. Private changing facilities 
are available. Dr Jarvie and a research nurse will be present. 
 
(D) Resting metabolic rate 
This is measured by assessing the air that you breathe in and out through a 
special clear plastic hood. 
 
(E) Endothelial function tests  
This test looks at blood vessel function. We assess how well the cells which line 
the blood vessels (endothelial cells) are working.  The assessment of skin blood 
flow is not painful. We have used this technique with pregnant ladies before and it 
is safe in pregnancy. 
 
(F) Dietary analysis 
We will be asking you about your diet and what you usually eat and drink. 
 
(G) Activity assessment 
At each visit we will give you an accelerometer (activity monitor) to take away with 
you. This is a small device (about the size of a mobile phone) that can clip onto a 
waistband and record the daily amount of activity of the wearer. We will ask you to 
wear this every day for 7 days. The accelerometer can then be posted back to 
Eleanor Jarvie in the pre-paid envelope provided.  
  



  223 

6. Samples at the time of your delivery 
(A) Fat cell samples 
We are interested in how fat cells work in different sites of the body.  We would 
like to obtain samples (a biopsy) of fat cells at your delivery but only if you happen 
to have a caesarean section delivery where there is a cut in the tummy already. 
We would not take samples of fat cells at natural or vaginal deliveries. The 
decision to have a Caesarean delivery is made by your own obstetrician in 
charge of your clinical care and not by the research team. 
 
We would take two samples. The first is from just under the skin after the cut has 
been made. The second is from fat cells within the abdominal cavity after the 
womb had been stitched closed, but before the skin is stitched closed. This is an 
additional procedure that takes approximately 1-2 minutes. It will not significantly 
lengthen the time of your operation.  
 
If you require a caesarean section because of concern about you or your baby’s 
wellbeing or your surgeon does not consider it appropriate, we may not collect 
these samples. 
 
(B)Samples from the placenta (afterbirth) 
We would like to gain information about how the placenta (afterbirth) functions 
during pregnancy.  Normally the placenta and its attached umbilical cord are 
delivered after the baby and it is discarded because it has completed its function.  
In our study, instead of the afterbirth being discarded it will be passed onto the 
laboratory where it will be studied.   
 
7. What do I have to do? 
You will be asked to attend four additional appointments (three during your 
pregnancy and one after when your baby is about three months old).  These 
appointments will be held in the Metabolic Suite at the University of Glasgow, 
which is next to the Western Infirmary of Glasgow.  Dr Jarvie can meet you at the 
entrance of the University (on University Avenue) and accompany you to the 
Metabolic Suite.  
 
So that we can collect tissue when you deliver, we would ask that you inform Dr 
Jarvie when you go into labour, or ask the midwife looking after you to inform her. 
There is a contact number at the end of this sheet. 
 
8. Expenses and payment 
You would not receive explicit payment for this study but we will reimburse you a 
nominal amount for your travel expenses or if you prefer we will organise a taxi to 
take you to and from your study appointment. 
9. What are the possible disadvantages and risks of taking part? 
There are no disadvantages or risks to you or your baby by taking part in this 
study.  These appointments do not replace your antenatal care and you will need 
to see your midwife as planned. 
 
10. What are the possible benefits of taking part? 
There is no direct benefit for you in taking part in this study. We hope that the 
information we get from this study will help improve the care of women who 
develop problems in pregnancy. 
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11. What if there is a problem? 
If you have a concern about any aspect of this study, you should ask to speak with 
the researchers who will do their best to answer your questions.  The contact 
number is provided in this form.  If you remain unhappy and wish to complain 
formally, you can do so through the NHS complaints procedure.  Details can be 
obtained from the hospital.   
 
12. Will my taking part in the study be kept confidential? 
Yes 
All the information which we collect will remain completely confidential.  
 

If the information in Part 1 has interested you and you are considering 
participation, please read the additional information in Part 2 before making any 
decision. 
 

PART 2 
13. What if relevant new information becomes available?  
Sometimes we get new information about the conditions being studied. If this 
happens, your research doctor will tell you and discuss whether you should 
continue in the study. If you or your research doctor decides not to carry on, we 
will inform your midwife or obstetrician. If you decide to continue in the study he 
may ask you to sign an updated consent form.  
 
If the study is stopped for any other reason, we will tell you and inform your 
midwife or obstetrician. 
  
14. What will happen if I don’t want to carry on with the study? 
If you withdraw from the study, we will retain the data that has been collected up to 
your withdrawal. However, should you wish for samples and data to be destroyed 
we will comply with this request. 
  
15. What if there is a problem? 
If you have a concern about any aspect of this study, you should ask to speak with 
the researchers who will do their best to answer your questions.  The contact 
number is provided in this form.  If you remain unhappy and wish to complain 
formally, you can do so through the NHS complaints procedure.  Details can be 
obtained from the hospital.   
In the event that something does go wrong and you are harmed during the 
research study, there are no special compensation arrangements.  If you are 
harmed and this is due to someone’s negligence, then you may have grounds for 
a legal action for compensation against NHS Greater Glasgow and Clyde, but you 
may have to pay your legal costs.  The normal National Health Service complaints 
mechanisms will still be available to you. 
 
16. Will my taking part in this study be kept confidential? 
Yes 
All the information which we collect will remain completely confidential. Any 
information about you which leaves the hospital will have your name and address 
removed so you cannot be identified from it. 
 
If you join the study, some of the data collected for the study may be looked at by 
authorised persons from the University of Glasgow. They may also be looked at by 
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people or representatives of regulatory authorities and by authorised people to 
check that the study is being carried out correctly. 
 
17. What will happen to any tissue samples or data that I give? 
Data and tissue samples collected from the study are retained by the University of 
Glasgow. Sometimes new research indicates further tests that would expand the 
knowledge coming from the study and we can use the archived material to carry 
out additional tests.  This allows us to maximise the amount of information on 
pregnancy complications that we can get from the study. Anonymised data and 
samples may be shared with collaborators in other institutions who may be able to 
offer specialised techniques that we do not have in Glasgow.   
 
18. What will happen to the results of the research study? 
New information that we gain from the study will be published in scientific journals.  
No specific individual from whom we have collected tissue will be identified in 
these publications.  These publications are available for all to read. 
 
19. Who is organising and funding the research? 
This research will be funded by the Wellbeing of Women (RCOG) with support 
from the Chief Scientist’s Office. 
 
20. Who has reviewed the study? 
All research in the NHS is looked at by independent group of people, called a 
Research Ethics Committee to protect your safety, rights, wellbeing and dignity. 
This study has been reviewed and given favourable opinion by National Research 
Ethics Committee. 
 
21. Further Information 
Further information about this study may be obtained from Dr Eleanor Jarvie 
(e.jarvie@clinmed.gla.ac.uk) 
Dr. Eleanor Jarvie MBChB MRCOG 
Clinical Research Fellow  
Department of Reproductive & Maternal Medicine  
University of Glasgow 
Level 3, McGregor Building Western Infirmary of Glasgow 
Tel: 0141 211 2327 (office), study mobile 07790217442 
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8.2 Appendix II 

LIPOTOXICITY IN PREGNANCY STUDY 
VISIT PROTOCOLS 

BOOKING/RECRUITMENT VISIT – antenatal clinic (12-14 weeks’ gestation) 
Trained midwives or other clinical members of the study team will ask if pregnant 
women agree to take part in the study at the booking visit identified by the criteria 
listed below (tables 1 and 2).  Women who are interested in the study will have a 
consultation with the research doctor (Eleanor Jarvie EMKJ), to ensure their 
wellbeing, and to give them the opportunity to ask any questions. The research 
doctor will explain the additional appointments of the study, supply the participant 
with patient information leaflets, contact telephone numbers and first appointment 
time and location.  
Table 1 Inclusion criteria 

Criteria Rationale 

Primigravid 
 
 
 
Age 16-40 
 
 
Three groups lean BMI<25, 
 obese BMI≥30 kg/m2 
 
 
Caucasian 

No  influence of previous pregnancy on 
index pregnancy outcome 
Adverse outcomes will be excluded 
from analysis 
Women are of age to give consent and 
are within the range of normal healthy 
pregnancy 
Established poorer outcome in obese 
pregnant population (CEMACH, 2007) 
WHO criteria for obesity (WHO, 2004) 
Predominant ethnic group in Glasgow 

Table 2 Exclusion criteria 

 
VISIT 1 – 15 weeks’ gestation  

 Starting time 08:00  

 Subjects fasted for at least 10 hours overnight 

 Subjects to be met at the Faculty of Biomedical and Life Sciences (West 
medical building, University of Glasgow) entrance by research doctor (Dr 
Jarvie) 

 Informed written consent will be obtained (copy to remain with patient, with 
investigators and in medical notes) 

 Following consent, the demographic questionnaire will be completed which 
will highlight the maternal age and date of birth to check that the participant 
is suitable for the study before any investigations are commenced. 

 Actual dietary intake (24 hour recall) will be performed at this point in the 
appointment or at the time of the Food Frequency Questionnaire. 

Known metabolic disease (diabetes, thyroid disease, PCOS) 
Cardiovascular disease 
Parous women 
Assisted conception pregnancies 
Multiple pregnancies 
Previous loss >12 weeks’ gestation 
Co-existing conditions that require treatment 
Women with a complicated pregnancy outcome (excluded from analysis) 
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Table 3 - Demographic data 

Data Details 

Date of visit 
Age 
PMHx 
OBHx 
FHx including OBHx 

 
DOB, and age noted 
CVD/DM 
Infertility/PCOS/misc/TOP/AC 
CVD/DM/PET/GDM 

Social Hx 
 
 
 

Alcohol, drugs, smoking  
Medication esp contraception at PN visit 
employment 
postcode 

 
 

 
1) ENERGY METABOLISM/EXPENDITURE 

 Participant will then have indirect calorimetry performed.  (in total 20- 
25mins) 

Table 4 – procedure for indirect calorimetry 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 Ventilation hood and circuit must first be calibrated – 5 mins 
 The subject lies supine at  45 degree angle 
 Once the hood is in position they are asked to relax but not to 

fall asleep 
 Once their ventilation rate has reached equilibrium then the 

recording starts 
 Normally the first 5-10 mins will not be counted as subject will 

not be at a steady ventilation rate 
 Measurements – VO2 (ml/min) and VCO2 (ml/min) are 

recorded onto hard drive of computer, ratio of VO2/VCO2 and 
energy expenditure are also collected.  Measurements need to 
be converted into l/min for calculations. 
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2) ENDOTHELIAL FUNCTION 
Non-invasive peripheral endothelial function Laser Doppler Iontophoresis (LDI) will 
be performed immediately after the indirect calorimetry as the subject will be 
rested. Skin blood flow will be assessed using LDI combined with constant current 
iontophoresis of vasoactive agents to assess vascular reactivity and the role of the 
endothelium.  
Table 5  procedure for laser Doppler iontophoresis 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Changes in response to these drugs are quantifiable as the area under the curve 
(AUC) with repeated scans. This method is highly reproducible (Jadhav et al., 
2007) and has been previously used in a pregnant cohort(Stewart et al., 2007a).  
(in total 20mins) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 Measurements conducted in quiet, temperature 
controlled room 

 Subject lies semirecumbent position 
 Laser scanned over the areas to be assessed 
 Iontophoresis chambers attached to the flexor 

aspect of the forearms (avoiding broken skin, hair 
and superficial veins) 

 1% solution of Acetylcholine (dissolved in 0.5% 
saline) placed in the anode chamber 

 1% sodium nitroprusside (dissolved in 0.5% 
saline), placed in the cathode chamber 

 Skin perfusion is measured before, during and 
after an incremental current (baseline scan, four 

scans at 5A, four at 10A, four at 15A, and two 

at 20A, and five recovery scans) 
 Laser doppler imaging (red laser) is used to 

record the changes in endothelial reactivity 
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3) BLOOD & URINE SAMPLE COLLECTION 
Fasting blood (20ml in EDTA) and urine (25mL) will be collected. Blood and urine 
will be handed to technician for immediate processing. (5 mins) 
Table 8 –Sample processing 

 
 
4) ANTHROPOMETRIC TESTS/BODY COMPOSITION 

 Patient to change into swimming costume/underwear and observed in 
BODPOD)  

 Height (cm) and weight (kg) to be measured to 0.5 cm, and recorded 
 
Table 6 – procedure for BODPOD assessment 

 
Following BODPOD measurements participant will have anthropometric data 
measurements performed. Waist, Hip and thigh circumferences will also be 
measured in metric units. Skinfold thickness will be performed with the participant 
in their underwear and covered by a hospital gown.  Based on previous studies by 
Catalano(Okereke et al., 2004, Presley et al., 2000)  the skinfold thickness 
measurements shown in Table 5 will be used.  Our group has previously used the 
following criteria for waist and hip measurements(Stewart et al., 2007b). Thigh 
circumference has been publish with respect to being a risk factor for 
cardiovascular disease (Heitmann and Frederiksen, 2009). 
 
 
 
  

 They are also required to wear a swimming cap – provided – 
to prevent air being trapped in hair. 

 The machine is calibrated with the door open and an empty 
canister inside it to predict lung volume 

 The subject is then asked to sit in the BODPOD and rests her 
hands on her lap, and asked to remain still 

 The door is closed and recording starts – there is normally 
three separate recording and these take approximately 2mins 
each.  The door is opened in between measurements. 

 The data collected is stored on the hard drive of the 
computer, serial measurements for each subject will be kept 
i.e. longitudinal data can be compared. 

 

Blood: 

 Whole blood Electron Spin Resonance 

 Freeze aliquots of whole blood 

 Separation of rest of whole blood by Histopaque into plasma, 
white cells and erythrocytes 

 FACS analysis of white cells (Scott Claire) 

 Fresh plasma for lipoprotein fractionation (see Dorothy) 

 Freeze aliquots of plasma, white cells and erthyrocytes 
Urine: 

 Freeze aliquots of urine 
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Table 7 Sites for skin fold measurements 

 
 
5) DIETARY ASSESSMENT 

 Participant will be served breakfast  

 The participant will have usual (food frequency questionnaire) dietary intake 
assessed.  This will be performed using questionnaires which the 
participant will go through with the research doctor (EMKJ) (15mins) 

Table 9 Confounding variables in dietary assessment 

Information Details 

Hyperemesis 
Food frequency questionnaire 
 
 
 
Vitamin supplementation 
Smoking status 
Socioeconomic status 
Breast feeding status 

Yes/no/hospitalisation 
Socioeconomic status may affect this.   
If asking subject to fill in a questionnaire 
prior to appointment levels of literacy 
will affect reporting 
Pregaday/pregacare/ferrous sulphate 
Y/N current – how many 
Ex – how long/years smoked 

 
6) ACCELEROMETERS 

 Study participants will be supplied with an accelerometer, at each visit, 
which they will be asked to wear for one week (7 days).  This is to assess 
actual activity. (5 mins) 

 The accelerometers will be collected by the research doctor. 
(TOTAL VISIT TIME 90 MINUTES) 
VISIT 2 25 weeks’ gestation 
VISIT 3 35 weeks’ gestation 
Visit 2 and visit 3 will have same protocol as visit 1.   
 

 Triceps (midway between lateral projection of acromion and 
olecranon) 

 Biceps (anterior aspect of arm, midway between acromion 
and antecubital fossa) 

 Subscapular (at a 45 degree angle just below inferior angle 
of scapula) 

 Subcostal (midaxiliary line at the level of lowest rib) 
 Suprailiac (skinfold at the mid point between superior anterior 

iliac crest and lowest rib) 
 Mid thigh (at the midpoint between inguinal crease and 

proximal patella – anterior aspect of leg) 
 Suprapatellar (anterior aspect of the thigh just above the 

patella)  
 
Waist circumference level of umbilicus 
Hip circumference widest point over buttocks 
Thigh circumference (directly below the gluteal fold of the right 
thigh)  
Measure twice, to the nearest 0.5cm and mean 
If difference >2cm take a third measurement and mean 
Waist Hip Ratio (WHR) waist circumference divided by the hip 
circumference 



  231 

DELIVERY DATA 
Delivery data will be easier to obtain when women have elective delivery dates.  
Study participants have contact details for the research doctor and asked to inform 
if admitted in labour.  In addition, stickers which indicate that the labouring woman 
is involved in our study will be on the hand held pregnancy notes, and the 
attending midwife or doctor can then contact the research doctor on the dedicated 
study mobile phone.   A lot of the following data is normally recorded in delivery 
summary so could be collected retrospectively from maternity notes. 
 
Table 10 Delivery data to be collected 

Record: 

 Birth weight 

 APGAR scores 

 placental weight 

 mode of delivery 

 labour yes/no 

 gestation at delivery 

 sex of baby 
 
Collect (where feasible): 

 placental tissue (Full thickness biopsy sections of third trimester placentae 
will be obtained [approximately five grams] at time of delivery from four 
separate pre-determined areas on each placenta, distinct from the umbilical 
cord insertion, and then samples will be randomised. Three biopsies will be 
immediately snap frozen in liquid nitrogen and stored at -70°C, one biopsy 
will be washed in PBS and fixed in 10% neutral buffered formalin and 
paraffin-embedded for immunocytochemistry. 

 cord blood from the umbilical vein 

 endothelial cells from cord – collagenase digestion 

 maternal adipose tissue (subcutaneous and visceral) approximately 1cm3 
will be collected from the incision site at time of Caesarean section, and 
washed in phosphate buffered saline. One half sample will be fixed in zinc 
formalin. The other half biopsy will be immediately snap frozen in liquid 
nitrogen and stored at -70°C.  

 
 
Visit 4 – postnatal data (12 weeks following delivery) 
The postnatal visit for the mother would be similar to visit 1-3.  Additional 
information regarding breastfeeding status and contraception use is required (see 
Tables 8 and 9). 
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 STUDY IDENTIFICATION 

NUMBER______________ 

LIPOTOXICITY IN PREGNANCY STUDY (LIPS) 

Your Consent Please initial 
box 

I confirm that I have read and understand the patient 
information sheet dated May 2011 (version 5) for the above 
study. I have had the opportunity to consider the information, 
ask questions and have had these answered satisfactorily.  

 

I understand that my participation is voluntary and that I am 
free to withdraw without giving any reason, without my medical 
care or legal rights being affected. 

 

I understand that relevant sections of my medical notes and 
data collected during the study may be looked at by individuals 
from the University of Glasgow, from regulatory authorities or 
from the NHS Trust, where it is relevant to my taking part in 
this research. I give permission for these individuals to have 
access to my records. 

 

I understand that data and samples used in this study may be 
used in relevant future research. I give my consent for this. 

 

I consent to the collection of blood samples at each visit and 
tissue samples at delivery. These samples will be retained by 
the section of Reproductive and Maternal Medicine at the 
University of Glasgow. 

 

I consent to the collection, processing, reporting and transfer 
within and outside Europe of my anonymised data for 
healthcare and/or medical research purposes. 

 

I agree to take part in the above study  

 

 

_______________   ________________  _________________ Name 
of Patient   Date     Signature  
 
 
_______________   ________________  __________________ 
Name of Person   Date     Signature  
obtaining consent  
 

When completed, 1 for patient; 1 for researcher site file; 1 (original) to be kept in medical notes  
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DEMOGRAPHIC QUESTIONNAIRE – LIPOTOXICITY IN PREGNANCY STUDY 
(this questionnaire should be completed on the first visit – please see ‘update’ page 
for visits 2 and 3 and postnatal section for visit 4) 

 

Date of visit 

Study identification number  

Maternal date of birth  

Maternal age  

Current gestation  (weeks)  

Estimated date of delivery  

Postcode for social deprivation 
score 
(use postcode minus last 2 letters 
to avoid identification of street 
where they live) 

 

Highest level of education  

Current employment   
 

Personal Past medical history 

condition yes no 

Cardiovascular disease , angina, 
essential hypertension  

  

Diabetes Type 1 
 

  

Diabetes Type 2    

Thyroid disease   

Asthma or breathing problems   

bowel conditions (irritable bowel)   

kidney disease   

Musculoskeletal e.g. arthritis    

Previous operations 
 
 

  

 
Obstetric History 

 yes no 

Hospital admissions in this 
pregnancy 
 
 

If yes please detail  

Hyperemesis/severe morning 
sickness, if so what treatment 
 

 
 
 
 

 

Miscarriage/Termination of 
pregnancy 
 

  

Assisted conception  
 

  

Polycystic ovarian syndrome 
 

  

Problems conceiving   
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Family medical history 

Condition yes no 

Cardiovascular disease in any 
relatives 
 

1st degree  

Relative  
2

nd
 degree  

Relative  

Relationship to 
subject 
_________________ 

 

Diabetes any relatives  

Type 1  

Type 2  

Gestational diabetes mellitus    

 

1st degree  

Relative  
2

nd
 degree  

Relative  

Relationship to 
subject 
_________________ 

 

Pre-eclampsia in female relatives 
 

  

Intrauterine growth restriction 
Stillbirth or recurrent miscarriage 
in your family members 
 

  

Drug & Medicines History 

 yes no 

Are you currently taking any 
regular prescribed medications 

If yes details of meds  

Are you taking vitamins 
supplements? If so what brand 

  

Are you taking any fish oil 
capsules 

  

Have you recently used or are you 
using over the counter 
medications? 
i.e. gaviscon 

  

Social history  

 yes no 

Alcohol ( a unit of alcohol is one 
25ml single measure of whisky 
(ABV 40%), or a third of a pint of 
beer (ABV 5-6%) or half a 
standard (175ml) glass of red 
wine (ABV 12%). 
 

Current      Y 

                  N 
No of unit/wk___ 
 

Prior to preg  Y 

                      N 
No of unit.wk___ 

 

smoking Current      Y 

                  N 
No of cig.day___ 
 

Prior to preg  Y 

                      N 
No of cig/day___ 

If ex smoker, when did they 
stop, how long did they 
smoke for and how many a 
day 

Recreational drug use 
Please specify type and pattern of use 
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Update section: (for visits 2 and 3) 
Since your last visit have there been any changes in your health including 
stopping/starting smoking 
 
 
 
 
 
 
Since your last visit have you started to take any prescribed medications/vitamins 
or fish oils (please specifiy) 
 
 
 
 
 
 
Since your last visit, has anything changed in your pregnancy that you think is 
important (additional trips to hospital/admissions to hospital/moved house) 
 
 
 
 
 
 
Postnatal details only 

Date of delivery 
 

 
 
 

Place of delivery 
 

 
 
 

Method of contraception currently 
used 
 

 

Initial infant feeding method 
Tick as appropriate and detail 

Bottle fed Breast fed 
If yes for how long 

 

Top up feeding? 

Current Infant feeding status 
 

 
 

Bottle fed Breast fed 

Top up feeding? 

Fish oil capsules  

Vitamins  

Prescribed medications  
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LIPOTOXICITY IN PREGNANCY STUDY - RESTING METABOLIC RATE ASSESSMENT 

 
SUBJECT ID _______________________ DATE ______________________ 
 
TIME  _______________________ GESTATION __________________ 
FASTING    YES/NO 
IF POSTNATAL BREAST FEEDING YES/NO 
FIRST TEN MINUTES ACCLIMITISATION PERIOD 

TIME 
(x) 

DRIFT  
VO2 

VO2 
(ml/min) 

DRIFT  
VCO2 

VCO2 
(ml/min) 

RER EE CHO FAT PRO 

1.00          

2.00          

3.00          

4.00          

5.00          

6.00          

7.00          

8.00          

9.00          

10.00          

11.00 HOOD JUST ON 

12.00          

13.00          

14.00          

15.00          

16.00          

17.00          

18.00          

19.00          

20.00          

21.00          

22.00          

23.00          

24.00          

25.00          

26.00          

27.00          

28.00          

29.00          

30.00          

31.00          

32.00          

33.00          

34.00          

35.00          

36.00          

37.00 HOOD JUST OFF 

38.00          

39.00          

40.00          

41.00          

42.00          

43.00          

44.00          

45.00          

46.00          

47.00          
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LIPOTOXICITY IN PREGNANCY STUDY – BODPOD BODY COMPOSITION ASSESSMENT 
 

SUBJECT ID _______________________ height____________________________ 
 
TIME  _______________________ weight____________________________ 
 
 
Measurement 1: GESTATION _________________ DATE _________________________ 
FASTING    YES/NO 

Total body mass (kg)  

Total fat mass (kg)  

Total fat free mass (kg)  

Percentage body fat (%)  
 
 
 
Measurement 2: GESTATION _________________ DATE _________________________ 
FASTING    YES/NO 

Total body mass (kg)  

Total fat mass (kg)  

Total fat free mass (kg)  

Percentage body fat (%)  
 
 
 
Measurement 3: GESTATION _________________ DATE _________________________ 
FASTING    YES/NO 

Total body mass (kg)  

Total fat mass (kg)  

Total fat free mass (kg)  

Percentage body fat (%)  
 
 
 
Measurement 4: GESTATION _________________ DATE _________________________ 
IF POSTNATAL BREAST FEEDING YES/NO 
FASTING    YES/NO 

Total body mass (kg)  

Total fat mass (kg)  

Total fat free mass (kg)  

Percentage body fat (%)  
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24 HOUR DIETARY RECALL QUESTIONNAIRE 

 LIPOTOXICITY IN PREGNANCY STUDY 
 

I would like you to tell me everything that you had to eat and drink 
yesterday. 
By yesterday I mean, from midnight to midnight, (or from the moment you 
got up until you went to bed yesterday). 
 
Include everything that you had to eat and drink at home and away from home, 
including snacks, tea, coffee, sweets and soft drinks.  
 
First we’ll make a list of the foods you ate and drank all day yesterday (DAY). 
 
Next I’ll ask you about the foods including amounts and then I’ll ask you a few 
questions.  
 
It may help you to remember what you ate by thinking about where you were, 
whom you were with, or what you were doing yesterday; like going to work, eating 
out or watching television.  
 
Feel free to keep these activities in mind and say them aloud if it helps you. 
 
If you would like to start at midnight at the beginning of (DAY). 
 
There are some foods that people often forget. In addition to what you have 

already told me about, did you have any: 

 Coffee, tea, soft drinks or milk 

 Alcoholic drinks 

 Biscuits, cakes, sweets, chocolate bars or other confectionery 

 Crisps, peanuts or other snacks 

 Sauces, dressings, 

 Anything you have not already told me about? 

 
 Type of food or drink 

• How was it bought – fresh, canned, frozen, dehydrated etc? 
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• Was it home-made – if so – what was in it? Don’t forget to record any recipes on 

the Recipe Pages. 

• How was it cooked – boiled, grilled, fried etc? 

• If it was cooked in fat, or fat was used in pastry or cakes or any other dish, what 

sort of fat or oil was used? 

• If it was a dried / dehydrated product, was it reconstituted using water, milk or 

both? 

• Was the item coated before cooking – if so – was it flour, batter, egg, 

breadcrumbs etc? 

• Was it unsweetened, sweetened with sugar/honey, or artificially sweetened? 

• Was it low fat / low calorie? 

 
 

Measurement Imperial Metric 

Volumes 1 cup 0.568 pint 250 ml 

 I mug ~300ml 

Weight Tsp 5ml (3.5ml) 

 Tbsp 15ml or 30g (14.2ml) 

 ounce 28.3g 

 1.76 oz 50g 

 3.52 oz 100g 

 

Routine foods Yoghurt pot standard 125g 

 Med bowl cereal 45g 

 Slice bread med 30g 

 Slice bread thick 45g 
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Time         Description of food 
or drink  

Amount  Brand  Leftovers 
y/n 
amount  

 
 
 
 
 

 
 

Slices_______ 
 
Tsp_________ 
 
Tbsp________ 
 
Cup_________ 
 
Mug_________ 
 
Wgt if known 
___________ 
Bowl size 
___________ 
Plate size 
___________ 
Added fat? 
___________ 

  

  
 

Slices_______ 
 
Tsp_________ 
 
Tbsp________ 
 
Cup_________ 
 
Mug_________ 
 
Wgt if known 
___________ 
Bowl size 
___________ 
Plate size 
___________ 
Added fat? 
___________ 
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FOOD FREQUENCY QUESTIONNAIRE LIPOTOXICITY IN PREGNANCY 

STUDY 
 

DATE  

STUDY IDENTIFICATION NUMBER  

VISIT NUMBER/GESTATION  

 
 
1. What kind of bread do you usually eat    

 - white  

 - brown, granary, wheatmeal  

 - wholemeal  

 - other kind (please specify)  

 - no usual type  

 - do not know  

 - do not eat bread  

 
 
2. What do you usually spread on bread? 

 - butter  

 - hard/block margarine  

 - soft margarine  

 - reduced fat spread  

 - low fat spread  

 - no usual type  

 - do not know  

 - do not spread fat on bread  

 
 
3. How much do you usually eat in a day? 

 less 
than 
1 

1 2-3 4-5 6+ 

 - slices of bread/rolls      

 - biscuits (including chocolate biscuits)      

 - cakes, scones, sweet pies and pastries      

 
4. What kind of milk do you usually use for drinks in tea or coffee and on 

cereals etc? 

 - whole milk  

 - semi-skimmed  

 - skimmed  

 - other kind (please specify)  

 - no usual type  

 - do not know  

 - do not drink milk  
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5. Do you usually take sugar in: 

 YES NO 

 (a) tea   

 (b) coffee   

 DO NOT DRINK TEA/COFFEE   

 
6. At table do you: 

 YES NO 

 - generally add salt to food without tasting first   

 - taste food and then generally add salt   

 - taste food but only occasionally add salt   

 - rarely or never add salt at table   

 
7. Which type of breakfast cereal do you normally eat? 

 - high fibre (eg All Bran, Branflakes, Shredded 
   Wheat, Muesli, Porridge, Weetabix 

 

 - other (eg Cornflakes, Rice Krispies, Special K
   Sugar Puffs, Honey Snacks 

 

 - no usual type  

 - do not eat breakfast cereal  

 
8. How often do you eat these foods only fill in one box for each food 

 Per day (times)  Per week  Per month 

 6+ 4-5 2-3 onc
e 

 5-
6 

2-
4 

onc
e 

 1-3 Les
s 
than 
onc
e 

Breakfast cereal            

Fresh fruit            

Cooked green vegetables 
(fresh or frozen) 

           

Cooked root vegetables 
(fresh or frozen) 

           

Raw vegetables or salad 
(including tomatoes) 

           

Chips            

Potatoes, pasta, rice            

Meat            

Meat products            

Poultry            

White fish            

Oil rich fish            

Cheese            

Beans or pulses            

Sweets, chocolates            

Ice cream            

Crisps, savoury snacks            

Fruit juice (NOT squash)            

Soft/fizzy drinks            

Cakes, scones, sweet pies 
or pastries 
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biscuits            

 
 
9. In summary: 

(a)  how many times do you eat fruit and vegetables or pure fruit juice 
   
       per day  OR     per week  OR        per month 
 

(b) how many times do you eat oil rich fish 
 
                  per day  OR     per week  OR        per month 
 
 

(c) how many times do you eat sweets, chocolates, cakes, scones, sweet 
pies, pastries or biscuits 

 
           per day  OR     per week  OR        per month 
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Recipe pages: 

 
 
Recipe pages: 

 
 

  

 

 



  245 

Physical activity monitor diary 
 
This activity monitor is only to be worn when you are up and about. 
You don’t need to wear it in bed or when having a shower or 
swimming. Please note down the times that you got up and went to 
bed so that we can discount this data from analysis. 
 
 
ACTIVITY MONITOR  
BEGINS _________________ 
FINISHES ________________ 
 

 
 
 
After the final day could you please send the activity monitor back to 
me in the pre-paid envelope as soon as is convenient. 
 

Many thanks 
Ellie  
 
 

 

 

 

 

 

  

 Get up  Bedtime 

Saturday 7/7/12   

Sunday 8/7/12   

Monday 9/7/12   

Tuesday 10/7/12   

Wednesday 11/7/12   

Thursday 12/7/12   

Friday 13/7/12   

Saturday 14/7/12   
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8.3 Appendix III 

physical activity 
parameter 
 

visit  
(gestation 
wk) 

lean  
mean (SD) 
[n] 

OW/OB  
mean (SD) 
[n] 

2 sample t-
test  
p value 

 
total wear time 
(mins/day) 

 
V1 (15) 
 
V2 (25) 
 
V3 (35) 
 

 
803.5 (67.8) 
[22] 
810.7 (54.4) 
[23] 
785.2 (68.9) 
[22] 
 

 
810.0 (60.6) 
[14] 
813.6 (83.2) 
[14] 
796.8 (85.2) 
[12] 

 
0.77 
 
0.91 
 
0.69 
 
 

sedentary 
activity wear 
time (mins/day) 
 

V1 
V2 
V3 

550.8 (77.0) 
541.7 (64.8) 
526.6 (68.7) 
 

571.3 (47.0) 
565.4 (82.3) 
553.8 (86.7) 

0.29 
0.38 
0.37 
 

light activity 
wear time 
(mins/day) 

V1 
V2 
V3 
 

216.9 (72.3) 
238.2 (66.4) 
235.7 (33.4) 

214.2 (69.4) 
228.6 (73.1) 
226.3 (66.5) 

0.91 
0.66 
0.55 

MVPA wear time 
(mins/day) 
 

V1 
V2 
V3 
 

34.3 (20.0) 
30.1 (23.8) 
20.5 (17.4) 

21.6 (11.5) 
19.4 (10.4) 
14.0 (10.7) 

0.03 
0.16 
0.25 

ratio 
sedentary:total 
wear time  

V1 
V2 
V3 
 

0.69 (0.08) 
0.71 (0.07) 
0.67 (0.05) 

0.71 (0.07) 
0.70 (0.08) 
0.70 (0.08) 

0.39 
0.30 
0.31 
 

ratio light:total 
wear time 

V1 
V2 
V3 
 

0.27 (0.08) 
0.29 (0.08) 
0.30 (0.05) 

0.27 (0.07) 
0.28 (0.07) 
0.28 (0.07) 

0.77 
0.61 
0.45 

ratio MVPA:total 
wear time 

V1 
V2 
V3 
 

0.04 (0.02) 
0.04 (0.03) 
0.03 (0.02) 

0.03 (0.01) 
0.02 (0.01) 
0.02 (0.01) 

0.02 
0.08 
0.14 
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Anatomical Adiposity & Metabolic Response in Lean and Non-Lean 
Pregnancies 
Maternal obesity is a risk factor for GDM. Adipocyte dysregulation is thought to 
be a possible pathway for this pregnancy complication. This longitudinal study 
assessed distribution of subcutaneous fat accumulation in lean pregnancies (LP) 
and non-lean pregnancies (NLP) and whether different anatomical sites had 
impact on metabolic markers (glucose, insulin, TG, NEFA). Adipose tissue 
accumulation was measured by skinfold thickness by the same trained operator. 
Plasma markers were measured by routine methodology. Statistical analysis was 
performed using paired t-test, and Pearson’s correlations. 
 
There was no significant difference in gestational weight gained by LP (n=27) 
compared to the NLP (n=8). In healthy LP there was a significant increase in 
abdominal skinfolds (costal, suprailiac) (28.9mm v 34.4mm p=<0.0001) and lower 
body peripheral (midthigh, suprapatellar) (35.0mm v 43.5mm p=<0.0001) across 
gestation. In NLP, upper body peripheral (biceps, triceps, subscapular) (73.2mm 
v 86.7mm p=0.012) and lower body peripheral skinfolds (61.4mm v 75.1mm 
p=0.002) were significantly increased over gestation. 
 
In LP there was significant gestational increases in insulin (3.0mU/L v 6.7 
p=<0.0001) and TG (1.2mmol/l v 2.5 p=<0.0001) but not Glucose or NEFA.  In LP 
gestational changes in insulin were inversely correlated with deposition in upper 
body peripheral during pregnancy (r=-0.55, p=0.009). 
 
In NLP there was significant gestational increases in TG (1.8mmol/l v 3.0 
p=0.003) but not insulin, glucose or NEFA. In NLP upper body skinfolds were 
correlated with gestational change (GC) in fasting glucose (r=0.91, p=0.002) and 
GC in TG (r=0.97, p=0.002).  
 
We found that LP has significant increase in central adiposity, but this does not 
drive metabolic response. Although NLP gain fat preferentially in lower body 
depots, this does not have an effect on the changes seen in TG and glucose. We 
continue to collect data on the NLP (n=16 in total) for validation of findings and 
investigate the effect of fat accumulation on endothelial function, oxidised LDL 
and superoxide formation in LP and NLP. 
 


