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Abstract 

This research work developed an innovative computational approach to the preliminary 

design of low-thrust trajectories optimising multiple mission criteria.  

Low-Thrust (LT) propulsion has become the propulsion system of choice for a number 

of near Earth and interplanetary missions. Consequently, in the last two decades a good 

wealth of research has been devoted to the development of computational method to design 

low-thrust trajectories. Most of the techniques, however, minimise or maximise a single 

figure of merit under a set of design constraints. Less effort has been devoted to the 

development of efficient methods for the minimisation (or maximisation) of two or more 

figures of merit. On the other hand, in the preliminary mission design phase, the decision 

maker is interested in analysing as many design solutions as possible against different 

trade-off criteria. 

Therefore, in this PhD work, an innovative Multi-Objective (MO), memetic 

optimisation algorithm, called Multi-Agent Collaborative Search (MACS2), has been 

implemented to tackle low-thrust trajectory design problems with multiple figures of merit. 

Tests on both academic and real-world problems showed that the proposed MACS2 

paradigm performs better than or as well as other state-of-the-art Multi-Objective 

optimisation algorithms. 

Concurrently, a set of novel approximated, first-order, analytical formulae has been 

developed, to obtain a fast but reliable estimation of the main trade-off criteria. These 

formulae allow for a fast propagation of the orbital motion under a constant perturbing 

acceleration. These formulae have been shown to allow for the fast and relatively accurate 

propagation of long LT trajectories under the typical acceleration level delivered by current 

engine technology.  

Various applications are presented to demonstrate the validity of the combination of the 

analytical formulae with MACS2. Among them, the preliminary design of the JAXA low-

cost DESTINY mission to L2, a novel approach to the optimisation under uncertainty of 

deflection actions for Near Earth Objects (NEO), and the de-orbiting of space debris with 

low-thrust and with a combination of low-thrust and solar radiation pressure. 
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Chapter 1.Introduction 

Low Thrust (LT) propulsion systems, delivering a controllable acceleration in the order 

of 10-4-10-5 m/s2 with a mass flow rate of 10-6 to 10-8 kg/s, have become the propulsion 

system of choice for a number of past, current and future space missions. LT propulsion 

has been proposed for a wide range of applications, from the attitude control of 

Geosynchronous platforms, to the active removal of space debris, from the exploration of 

difficult to access targets in the solar system to the deflection of asteroids. 

The prospect of an increasing use of LT propulsion in the future comes along with the 

need to develop new effective and flexible mission design tools. While this need has 

already been partially satisfied by previous research, there are still a number of open 

problems that this work is going to address. In particular, this thesis will address the 

preliminary design of Low-Thrust trajectories that need to be optimal with respect to 

multiple criteria. 

In the early stage of the design of a space mission, scientists and decision makers are 

interested in exploring as many options as possible and to assess them against a number of 

criteria. In this phase, therefore, a set of solutions, satisfying multiple, and often conflicting, 

performance indicators, is required. The exploration of multiple options demands for the 

quick and reliable evaluation of the performance criteria. In this respect, model fidelity 

plays a fundamental role as very detailed and accurate solutions are not generally required 

at this stage but the value of the performance indicators needs to be sufficiently accurate to 

make reliable decisions. Therefore, the trade-off is between response fidelity and 

computational cost. The high fidelity design of LT trajectories would require, generally, 

the numerical solution of an expensive optimal control problem. Models representing the 

whole thrust arc as a single impulsive change of the velocity are too inaccurate to be 

applicable to extended LT arcs. Therefore, given the need of evaluating the cost of many 

LT transfer options, it is desirable to have a low-fidelity model for LT trajectories, which is 

at the same time realistic and computationally efficient. 

This thesis proposes a novel low-fidelity analytical model for the design of low-thrust 

transfers with constraint conditions at the boundaries of the transfer arc, and a new 

memetic Multi-Objective solver that delivers sets of Pareto efficient solutions with a 

contained computational cost.  
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1.1 Past, Present and Future of Low Thrust Propulsion 

From the 60s up to the early 90s the use of LT propulsion was limited to attitude control 

and station keeping, but since the end of the last century the number of missions which 

adopted LT as the primary propulsion system is steadily increasing. The first major 

breakthrough was NASA’s technology demonstrator mission Deep Space 1 (1998-2001), 

which used its NSTAR Ion engine to flyby asteroid 9969 Braille1. It was followed in 2003 

by JAXA’s Hayabusa2, which performed a rendezvous of asteroid 1998 SF36 Itokawa and 

returned samples to Earth in 2010. Despite some reliability issues with its four µ10 Ion 

engines and other on-board systems, it was regarded as a great success, since it was the 

first human-made object to reach an asteroid and return to the Earth. In the same year ESA 

launched SMART-1, a technology demonstrator, which used Hall Effect thrusters to reach 

the Moon. A rather exotic spacecraft which also employed ion propulsion, the Gravity 

Field and Steady-State Ocean Circulation Explorer (GOCE)3, was also launched by the 

European Space Agency in 2009 to study the terrestrial gravity field and other atmospheric 

phenomena. It completed its mission successfully and re-entered the atmosphere after 

running out of propellant in November 2013. 

NASA’s Dawn4,5 is under development and aims at shedding light on the formation of 

planets by visiting two dwarf planets in the asteroid belt, Vesta and Ceres. It is currently 

the only space mission bound to enter the orbit of two different extra-terrestrial bodies, 

something made possible by the high efficiency of its Ion propulsion system. Dawn left 

Vesta’s orbit in July 2012 and is expected to enter Ceres’ orbit in early 2015.  

Hayabusa-26, the follow-on mission of Hayabusa, is expected to be launched in 2014-

2015 and will follow a similar mission profile to its predecessor, reaching its target 

asteroid 1999JU3 in 2018-2019. 

 BepiColombo7, a joint effort by JAXA and ESA, will send two orbiters in Mercury’s 

orbit via a Low-thrust Multiple Gravity Assist (LTMGA) trajectory. Launch is planned for 

2016 with Mercury’s orbit insertion in 2024. 

In addition, LT propulsion is being, or has been, considered for a number of future 

missions, like the cancelled Jupiter Icy Moon Orbiter (JIMO)8  or JAXA’s proposed 

technology validation mission DESTINY9, which will also be one of the test applications 

of this thesis work. 

In this thesis, the term “Low Thrust” describes any propulsion system which generates a 

low but continuous acceleration for extended periods of time. In this sense, it does not refer 

to any particular class of propulsion devices, but only to relative magnitude of the thrust 
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acceleration they produce and, therefore, it can apply to a broad class of propulsion 

methods, as will be seen later.  

The term is often associated to Electric Propulsion (EP) technologies, in contrast to 

“High Thrust” propulsion, commonly associated to liquid or solid rocket engines. Both 

classes belong to the broader family of non-air-breathing jet engines but while in the latter 

case the exhaust fluid is accelerated as a result of a chemical reaction 

(combustion/decomposition followed by gas expansion), in the former the propellant is 

accelerated by exploiting electrical energy and principles of electromagnetism. EP is 

characterised by a very low thrust-to-mass ratio. By way of comparison, a state-of-the-art, 

chemically-propelled Mercury probe such as MESSENGER10 has a ratio around 0.60 m/s2 

while BepiColombo7, ESA’s planned Mercury probe with Solar Electric Propulsion (SEP), 

has a ratio in the range of just 7∙10-5 m/s2, or four orders of magnitude smaller than 

MESSENGER. The low thrust-to-mass ratio is offset by a much higher efficiency of 

Electric Propulsion compared to chemical propulsion. This is usually measured as the 

specific force per unit weight of mass flow, or Specific Impulse Isp. In the case of chemical 

engine, Isp can reach a maximum of 450s in the case of H2/O2 combinations while it can be 

in the range of 1500s for Hall Effect thrusters, 2000-3000s or more for Ion thruster and 

ongoing research (project VASIMR11,12 and DS4G13) foresees specific impulses up to 

20000s. This means that, for the same mass of propellant, the total velocity change (or ∆V) 

an EP system can provide is much higher than that of a chemical propulsion system.  

The velocity change provided by chemical systems is so short compared to the whole 

transfer time that can be confidently modelled as an impulse. On the contrary, LT 

propulsion systems need to thrust for extended periods of time, compared to the total 

transfer time, in order to achieve the same velocity change. This has three important 

consequences: the first is that a longer transfer time is required, the second is that gravity 

losses are typically higher (a higher total ∆V is required to reach the same target), and the 

third is that the impulsive approximation is no adequate to correctly model a thrust arc. 

While chemical trajectories can be decomposed in a finite (and usually small) number of 

impulsive velocity changes, interweaved with long coasting arcs, in the LT case it is 

necessary to define a continuous optimal  control policy at each time instant. In this sense 

the complexity of the design of an optimal LT transfer is comparably higher than the 

design of a multi-impulse transfer. 

As pointed out earlier, in this dissertation the term LT is not necessarily restricted just to 

electrical propulsion, but embraces any propulsion system which generates a low but 

continuous acceleration for extended periods of time. As it will be seen in another test case, 
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an example of this is the deflection of asteroids by means of laser ablation, in which the 

propelling acceleration is produced by the sublimation of the asteroid’s surface material 

irradiated by a high power laser (see Chapter 8). 

1.1.1 Low Thrust Trajectory Design 

The design of low-thrust (LT) trajectories requires the definition of the thrust profile 

that satisfies a Two-point Boundary Value Problem (2PBVP). In the literature, the design 

of low-thrust trajectories has been tackled in a number of different ways14,15, generally 

classified in two families: indirect methods and direct methods. Indirect methods16 

translate the design of a low-thrust trajectory into the solution of an optimal control 

problem and derive explicitly the associated first-order optimality conditions. The first-

order optimality conditions are a system of mixed differential-algebraic equations (DAE). 

Shooting, multiple-shooting, collocation and approximated analytical approaches have 

been proposed to solve the DAE system and satisfy the boundary conditions.  

Direct methods17,18,19,20 instead, do not derive the optimality conditions but transcribe 

the differential dynamic equations of motion into a system of algebraic equations and then 

solve a nonlinear programming problem. Numerical integration and collocation techniques 

have been proposed to transcribe the differential dynamic equations. Direct methods are 

generally computationally intensive while indirect methods can display some convergence 

problems. Both require some form of first guess solution. In the past decade, some low-

fidelity approximation techniques have been proposed to generate the first guess solution, 

based on shaping approaches21,22,23,24. 

No matter which approach is used, the differential equations governing the motion of 

the spacecraft are generally integrated numerically. Alternatively, albeit in few special 

cases, an analytical solution is also possible25.  Some authors have proposed ways to 

alleviate the computational cost associated with the numerical integration of the dynamics 

in direct methods by computing approximated analytical solutions. Sims and Flanagan26, 

Vavrina and Howell27 and Yam et al.28 used an approximation of the continuous thrust 

profile made of a sequence of impulsive ∆Vs and analytically propagated Keplerian arcs. 

Analytical solutions have been proposed for the integration of long low thrust, many-

revolution transfers. In particular, the works of J.A. Kechichian proposed various 

analytical or semi-analytical solutions to specific LT trajectory design 

problems29 , 30 , 31 , 32 , 33 , 34. Kechichian31 tackled the problem of the planar, eccentricity-

constrained, LT orbit raising, producing a closed form solution for the thrust control which 

takes advantage of the condition of constant eccentricity. In Ref. 32, instead, Kechichian 
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dealt with the problem of orbit raising with Earth shadow under tangential thrust and 

presented a solution in series expansion with respect to the eccentricity for the equations of 

motion, which is valid up to eccentricities of 0.2. Similarly, in Ref. 33, he treated the 

problem of optimal inclination change for quasi-circular orbits. Another work29 

reformulated Edelbaum’s problem with optimal control and applied the resulting solution 

to the design of transfers between non-coplanar, circular orbits. Other works30,34 

investigated the problem of LT trajectory optimisation under the effect of the J2 effect and 

derived the set of dynamical and adjoint equations for the solution of optimal control 

problems. Note that, the differential equation are not solved in closed form but integrated 

numerically. Similarly, Refs. 35  and 36  studied the integrability of the motion under 

continuous tangential acceleration and derived some interesting closed form solutions, for 

example for escape spirals. 

Kluever also proposed a number of design techniques based on averaging, and in 

particular in combination with a direct optimisation algorithm37. Gao and Kluever38 

proposed an analytical averaging technique on the eccentric anomaly for motion under 

tangential thrust. The resulting solution depends, however, on the approximate evaluation 

of elliptic integrals, the accuracy of which decreases with the eccentricity. Geoffroy and 

Epenoy39 also investigated the use of averaging techniques to problems under a set of 

environmental and technological constraints. The latter group includes boundaries on 

thrust magnitude and direction, while the former encompasses, for example, J2 perturbation 

and shadow effects. The resulting generalised method was applied to a number of 

minimum-time and minimum-fuel optimisation problems. Ferrier and Epenoy40 proposed a 

further development of this approach by introducing an improved methodology for treating 

the shadow effects. The methodology envisions that the discontinuity due to the shadow is 

handled by introducing two modified optimization problems in which this transition is 

smoothed, i.e. no longer discontinuous. The authors demonstrated that the solution of the 

original problem is bounded by those of the two auxiliary problems. 

Petropolous et al.41, proposed a thrust profile derived from a feedback Lyapunov 

controller, as a function of the mismatch between the current and target values of the 

orbital parameters.  More recently Colombo et al.42 proposed a semi-analytical solution for 

the case of tangential thrust, with modulus as a function of distance from the central 

attractor, which was applied to the Low-Thrust deflection of Near Earth Objects. 

Bombardelli et al.43, proposed a first order analytical solution based on perturbation theory 

for the case of purely tangential thrust. Lantoine and Russell developed an analytical 

solution to the case of inertial thrust by reformulating the perturbed Two Body problem as 



26 
 

a Stark problem (a well-known problem in quantum physics)44,45. Zuiani et al.46 proposed a 

first-order analytical solution based on a perturbative expansion of the perturbed Keplerian 

motion, which will be amply described in this dissertation. 

1.1.2 Multi-Objective Optimisation of Low-Thrust Trajecto ries 

While the design and optimisation of low thrust trajectories has generated a vast 

literature in the past decades, the optimisation with respect to multiple criteria has received 

less attention. Coverstone-Carroll et al.47 presented a very interesting methodology, for the 

Multi-Objective optimisation of interplanetary rendezvous transfers: a genetic algorithm-

based Multi-Objective evolutionary algorithm, NSGA48, generates pairs of departure and 

arrival dates each defining a 2PBVP, which is then solved with an algorithm implementing 

an indirect method49. 

Lee et al.50 further developed the Q-law concept by having an evolutionary algorithm 

specify the parameters of the feedback law. This methodology was then employed to the 

Multi-Objective design of LT transfers around the Earth. 

Schütze et al.51 devised a methodology for the Multi-Objective optimisation of Low-

Thrust, Multiple Gravity Assist trajectories (LT-MGA), adopting a shaped-based approach 

and a branch and prune method. The trajectory is modelled in a similar fashion to what is 

done for impulsive MGAs with the patched conics52 method, although here the Lambert 

arcs are replaced by exponential sinusoid arcs. 

Vasile53 proposed a novel methodology for the robust design of LT missions, in which 

uncertainties are modelled by means of Evidence Theory, while a memetic algorithm is 

used to solve the MOO problem. 

1.2 Motivations and Objectives 

This dissertation will explore the possibility of applying Memetic Multi-Objective 

(MMO) optimisation algorithms to the preliminary design of Low Thrust transfers. In this 

sense, one of key objectives will be that of developing and testing an efficient MMO 

algorithm. The proposed algorithm is to be assessed both on a standard set of benchmark 

problems and on a set of specific space-related test problems. At the same time, its 

performance will also be compared with other state-of-the-art stochastic algorithms. The 

metrics used to assess the quality of the algorithm will be: the reliability in identifying an 

approximation of the Pareto-optimal set, the quality of the approximation ( closeness to the 

actual Pareto set and extent to which the approximation covers the real Pareto set)and the 

associated computational cost measured in function calls. The computational cost, in 
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particular, is a key issue. Since the cost is measured as the total number of evaluations of 

the objective function(s), and since each evaluation translates in the propagation of a 

trajectory, it is desirable to keep the number of evaluations as low as possible and to 

minimise the computational cost of the propagation. Nevertheless, one has to take into 

consideration that, even with a high performance algorithm, and with a very simple 

optimisation problem (small number of design parameters and objective functions, and a 

very simple problem structure), the total number of function evaluations is likely to be in 

the range of a few thousand and can rise up to hundreds of thousands or even millions for 

complex problems. The high number of function evaluation derives from the need to 

reconstruct a set rather than identifying a single solution. 

Therefore, a second key objective will be that of reducing the computational cost of 

each function evaluation itself, by developing a fast propagation methodology for the LT-

perturbed orbital motion. 

Finally, since the number of function evaluations required to solve a MOO problem is 

also linked to the number of design parameters, this research will aim at developing a 

suitable control parameterisation that reduces the number of control variables while 

keeping a sufficient degree of flexibility for modelling realistic trajectories. 

1.3 Methodology and Expected Results 

This dissertation will focus on two main areas of research. The first will be the 

development of an efficient Multi-Objective optimisation algorithm. A hybrid-memetic 

approach will be adopted, which combines different heuristics. The selection criteria for 

candidate solutions will be based in a combination of Pareto optimality and a scalar figure 

of merit based on Tchebycheff decomposition. The entire population will performed a set 

of independent, explorative actions, defined individualistic, while a subset will interact 

with each other in order to exploit the most promising solutions found so far (social 

actions). In particular, social individuals will always try to improve the scalar Tchebycheff 

function assigned to each of them. It is expected that the latter feature will considerably 

improve the quality of the output solutions, by ensuring their uniform distribution on the 

Pareto front. The performance of the proposed algorithm will be validated on a number of 

both academic and space related test cases and compared to that of other state MOO 

algorithms. 

The other research path aims at the development of a set of analytical formulae for the 

propagation of perturbed Keplerian motion. This is achieved by means of a perturbative 

approach and by introducing some simplifying assumptions on the perturbative 
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acceleration. The configurations explored include a constant acceleration in the radial-

transverse reference frame, a constant tangential acceleration, a constant inertial 

acceleration and finally a perturbing acceleration of J2-like behaviour. It is expected to 

derive a set of formulae for each of these configurations, which describe the first-order 

evolution of the orbital elements and which will allow for a fast propagation of perturbed 

trajectory arc. Moreover, it is also envisioned to superimpose the effects of the above 

mentioned acceleration patterns in order to model more complex thrust and perturbation 

profiles. It will be shown that the formulae guarantee an adequate accuracy at a lower 

computational cost compared to numerical propagation methods. 

The accuracy of the analytical formulae is inversely proportional to the length of the 

propagated arc. One remedy proposed in this work is to periodically rectify the reference 

conditions for the analytical formulae. The rectification process implies a higher number of 

evaluations of the analytical formulae but provides an accurate description of the evolution 

of the osculating orbital elements and of the LT acceleration pattern. 

The other remedy explored in this thesis work is to use the analytical formulae for 

accurately and efficiently computing the average variation of the orbital elements over a 

single orbital revolution and then study the evolution of the averaged elements. This 

approach is particularly suited to the propagation of long, multiple-revolution trajectories. 

The combination of low-thrust analytical formulae and memetic Multi-Objective 

optimisation will be applied to the solution of a range of innovative problems from the 

disposal of space debris to the deflection of asteroids under uncertainty. 

1.4 Thesis Structure 

This dissertation is organised as follows: Chapter 2 will present in detail MACS, the 

MO stochastic algorithm developed by the author. Its performance is assessed on a wide 

range of test cases and compared to that of other state-of-the-art MOO algorithms. 

Chapter 3 introduces the approximate analytical solution for the perturbed Keplerian 

motion. The derivation of the analytical formulae is presented in detail as well as their 

numerical accuracy and computational time under a wide range of test propagations. Their 

performance is compared to a number of numerical integration methods. Some of the 

analytical expressions, cited in this chapter, are reported in full in Appendix A. A 

technique for the propagation of long, LT spiralling arcs, based on the rectification of the 

reference conditions for the analytical propagator. 

Chapter 4 describes Direct Finite Perturbative Element Transcription (DFPET), a direct 

transcription method for LT trajectory optimisation, based on the analytical formulae of 
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Chapter 3. As it will be shown, this allows for a fast solution of 2PBVPs compared to 

similar, but more computationally expensive, methods. Thanks to this feature, it can be 

embedded in a MOO instance, for the ∆V vs. time of flight design trade-off for an 

interplanetary rendezvous transfer, as in the test case presented at the end of the chapter. 

Chapter 5 presents methodologies, again based on the analytical formulae, for the 

propagation and optimisation of long, many-revolution transfers. A technique is proposed 

for the fast and accurate long-term propagation of LT transfer. This draws inspiration from 

orbital averaging techniques, but includes the analytical formulae for the short term 

propagation of the orbital motion along a revolution (see Chapter 5 for more details). A 

simplified control model is also proposed, which allows for a significant reduction of 

optimisation parameters, while retaining enough flexibility for describing typical LT 

many-revolution trajectories. 

Chapter 6 presents an interesting test problem, in which a hypothetical Debris removal 

spacecraft is to rendezvous with and de-orbit a number of different pieces of debris. The 

objective is that of finding the optimal removal sequence and timing with respect to time 

and propellant consumption. The problem has been therefore formulated as a MOO 

problem and solved with MACS. In order to attain a reasonable computational time, the 

simplified control model described in Chapter 5, together with the rectification technique, 

for the modelling of the trajectory. 

Chapter 7 details a “real world” application, in which the methodologies described in 

the previous chapters are applied to the preliminary mission study for JAXA’s mission 

DESTINY, a technology demonstrator for interplanetary exploration with LT propulsion. 

Finally, Chapter 8 presents an interdisciplinary study, which analyses the problem of 

deflecting an Earth-threatening asteroid with a space-based, solar-pumped, laser ablation 

system. Detailed models for the trajectory, system and ablation models will be described. 

In addition epistemic uncertainties are also introduced and treated by means of Evidence 

Theory. The complex Multi-Objective design problem that follows, is solved with a variant 

of MACS, which deals also with uncertain parameters in the objective functions. The 

deflected trajectory of the asteroid, in fact a LT arc, is modelled and efficiently propagated 

with the proposed rectification technique.  

1.5 Contributions 

The key contributions of this thesis are: 

• The development of a set of analytical formulae for the fast propagation of 

perturbed Keplerian motion. 
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• The development of a low-fidelity model for the optimal design of extended 

thrust arcs with boundary conditions. 

• The development of a new efficient Memetic Multi-Objective Optimisation 

algorithm based on a combination of population-based search and individual 

neighbourhood exploration. 

• The application of the above mentioned techniques to the solution of very 

challenging mission design problems, from the active removal of space debris to 

the optimal design of very long low-thrust spirals, to the deflection of asteroids 

(see Chapter 6, Chapter 7 and Chapter 8). 

• The introduction of two new problems in space mission design: the optimal 

sequential disposal of multiple pieces of debris and the optimisation of asteroid 

deflection manoeuvres under epistemic uncertainty  

The content of this dissertation was published in five journal papers and were presented 

in seven conference papers and presentations. 

Part of the Low Thrust analytical formulation was first presented at the 61st 

International Astronautical Conference in Prague, Czech Republic in 2010 and 

subsequently published as a journal article in Acta Astronautica46. An extension of the 

analytical formulation was presented at the 63rd International Astronautical Conference in 

Naples, Italy in 2012. 

An early version of MACS was presented at the 12th Congress on Evolutionary 

Computation (CEC 2010) in Barcelona, Spain in 2010 and appeared in the Proceedings of 

the Institution of Mechanical Engineers54. The new version, MACS2, described in this 

dissertation, was first presented at BIOMA2012 in Bohinij, Slovenia55 and then published 

in an issue of Computational Optimisation and Applications56. 

The test case of Chapter 6 on the optimisation of debris removal missions was published 

in the International Journal of Aerospace Engineering57, while the one on the robust design 

of asteroid deflection actions in Chapter 8 was presented at the conference “New Trends in 

Astrodynamics and Applications VI” in New York, U.S.A. in 2011 and then published in 

the journal Celestial Mechanics and Dynamical Astronomy58. 

The analyses for the preliminary design for DESTINY’s orbit raising (as in Chapter 7) 

were partially presented at the 23rd AIAA/AAS Space Flight Mechanics meeting in Kauaii, 

U.S.A., in 201359 and an internal report at the end of my JSPS fellowship at ISAS/JAXA60. 
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Chapter 2.Multi Agent Collaborative Search 

This chapter presents a novel formulation of Multi Agent Collaborative Search (MACS), 

for Multi-Objective optimization, based on Tchebycheff decomposition. 

The original version of MACS61,62,54 has been applied to a number of standard problems 

and real applications with good results, if compared to existing algorithms53,63,64. MACS is 

a hybrid population-based approach that blends a number of heuristics. In particular, the 

search for Pareto optimal solutions is carried out globally by a population of agents 

implementing classical social heuristics and more locally by a subpopulation implementing 

a number of individualistic actions. The reconstruction of the set of Pareto optimal 

solutions is handled through two archives: a local and a global one.  

The individualistic actions were devised to allow each agent to independently converge 

to the Pareto optimal set, thus creating its own partial representation of the Pareto front. 

Therefore, they can be regarded as memetic mechanisms associated to a single individual. 

It will be shown that individualistic actions significantly improve the performance of the 

algorithm. The Multi-Objective version of MACS54 also included a modified selection 

criterion, for both global and local moves, to handle Pareto dominance as well as new 

heuristics to allow the agents to move towards and along the Pareto front. 

The algorithm proposed here (referred to as MACS2) implements some key elements of 

innovation. Most of the search mechanisms have been simplified, but more importantly in 

this version Pareto dominance is not the only criterion used to rank and select the outcomes 

of each action. Instead, agents are using Tchebycheff decomposition to solve a number of 

single objective optimization problems in parallel. 

Furthermore, opposite to previous implementations of MACS, here all agents perform 

individualistic actions while social actions are performed only by selected sub-populations 

of agents. 

Recent work by Zhang et al.65 has demonstrated that Tchebycheff decomposition can be 

effectively used to solve difficult Multi-Objective optimization problems. Another recent 

example is Sindhya et al.66, that uses Tchebycheff scalarisation to introduce a local search 

mechanism in NSGA-II. In this paper, it will be demonstrated how MACS2 based on 

Tchebycheff decomposition can achieve very good results on a number of cases, 

improving over previous implementations and state-of-the-art multi-objective optimization 

(MOO) algorithms. 
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The new algorithm is here applied to a set of known standard test cases and to two space 

mission design problems. The space mission design cases consider spacecraft equipped 

with a chemical engine and performing a multi-impulse transfer. They are part of a test 

benchmark for multi-impulsive problems that has been extensively studied in the single 

objective case but for which only a few comparative studies exist in the Multi-Objective 

case93. 

The chapter is organized as follows: Section 2.1 contains the general formulation of the 

problem with a brief introduction to Tchebycheff decomposition; Section 2.2 gives an 

overview of the state of the art; Section 2.3 starts with a general introduction to the multi-

agent collaborative search framework and with a description of its first implementation, 

MACS, underlining the key difference between MACS and MACS2. Section 2.4 will first 

give a general overview of MACS2 and its heuristics before going into some of the 

implementation details. Section 2.5 contains a set of comparative tests that demonstrates 

the effectiveness of the new heuristics implemented in MACS2. The section briefly 

introduces the performance metrics and ends with the results of the comparison. Finally, 

Section 2.6 details the hybridisation of MACS2 with Monotonic Basin Hopping (MBH). 

2.1 Problem Formulation 

Multi-Objective Optimisation (MOO) is a branch of multi-criteria decision making 

which involves the solution of an optimisation problem in which multiple figures of merits 

are to be concurrently optimised (minimised or maximised). In mathematical terms this is 

usually formulated as: 

( )min
D∈x

f x                                                   (2.1) 

where D is the domain for the parameter vector x and f is the vector of the m scalar 

objective functions to be minimised: 

( ) ( ) ( )1 2: , ( ) ...
Tm

mD f f f→ =   f f x x x xℝ                   (2.2) 

Note that, without loss of generality, from now onwards it will be assumed that all 

objective functions are to be minimised. The domain D is also assumed to be a 

hyperrectangle defined as { }| , 1,...,l u
j j j jD x x b b j n = ∈ ⊆ =  ℝ . In a general Multi-

Objective optimisation problem, there is no single solution vector y which minimises all 

the scalar functions of f(x) at the same time. However, it will possible to identify a set of x 

vectors in which none of its members is indisputably better than the others. In a more 
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rigorous way, this is usually referred to as the Pareto set*, and is defined as the set of the 

non-dominated solution vectors. The concept of dominance, defines the optimality of a 

particular solution. With reference to (2.1), one can say that : 

( ) ( ) ( ) ( ){ }1,..., |l l k kf f l m k f f

⇔
≤ = ∧ ∃ ≠

x y

x y x y

≺

                  (2.3) 

 where x y≺  indicates the statement “x dominates y”. A solution vector in D that is not 

dominated by any other vector in D is said to be Pareto optimal. All non-dominated 

decision vectors in D form the Pareto set Dp and the corresponding image in criteria space 

is the Pareto front. Note that, starting from the concept of dominance, it is possible to 

associate, to each solution in a finite set of solutions, the scalar dominance index: 

( ) { }*

* *| ,d i p ii
I i i i N= ∈ ∧x x x≺                                  (2.4) 

where the symbol |.| is used to denote the cardinality of a set and Np is the set of the indices 

of all the solutions. All non-dominated and feasible solutions i D∈x  with pi N∈  form the 

set: 

 { ( ) 0}i d iX D I= ∈ =x x˚                                          (2.5) 

The set X is a subset of DP, therefore, the solution of problem (2.1) translates into 

finding the elements of X. If DP is made of a collection of compact sets of finite measure in 

n
ℝ , then once an element of X is identified, it makes sense to explore its neighbourhood to 

look for other elements of X. On the other hand, the set of non-dominated solutions can be 

disconnected and its elements can form islands in D. Hence, multiple parallel explorations 

can increase the collection of elements of X. 

2.1.1 Tchebycheff Decomposition 

In Tchebycheff's approach to the solution of problem (2.1), a number of scalar 

optimization problems are solved in the form: 

 ( ) ( )1,...,min ( ( ), , ) min max { | ( ) |}D D l m l l lg f zλ∈ ∈ == −x xf x λ z x             (2.6) 

where 1[ ,..., ]Tmz z=z  is the reference objective vector whose components are 

min ( )l D lz f∈= x x , for 1,...,l m= , and λl is the l-th component of the weight vector λ. By 

solving a number of problems (2.6), with different weight vectors, one can obtain different 

Pareto optimal solutions. Although the final goal is always to find the set Xg, using the 

                                                 
*  The term Pareto set is here used to refer to the non-dominated solution set in the domain of the 

parameter vector x. Similarly, the term Pareto front will be used to describe the map of the Pareto set in the 
space of the objective vector f(x). 
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solution of problem (2.6) or index (2.4) has substantially different consequences in the way 

samples are generated and selected. In the following, the solution to problem (2.6) will be 

used as selection criterion in combination with index (2.4). 

2.2 Related Works 

Multi-Objective optimisation problems are widely found in economics†, finance (e.g. 

portfolio optimisation) and engineering. Various methodologies have been proposed to 

solve this mathematical problem. Some simply involve the scalarisation of the 

minimisation problem by combining the various objective functions through a weighted 

sum. Thus, the well-established techniques for the solution of single objective problem can 

be easily applied to the scalarised function67.  However, different weights also produce 

different solutions, which means that one has to solve many single-objective problems in 

order to extract sufficient knowledge of the Pareto set. Other proposals68,69, extend the 

techniques of deterministic, gradient-based methods to the multi-criteria case. In similar 

way to the methods based on scalarisation, these methods too require an arbitrary 

definition of a search direction on the objectives’ space. The main issue with this class of 

methods is that they lack in global exploration of the search space and, therefore, are likely 

to converge to locally optimally Pareto sets. At the same time, they also require 

information on the gradient of the objective functions which, if not available analytically, 

has to be computed numerically (e.g. by Finite Differences).  

Alternative approaches, in the form of Metaheuristics have been successfully applied to 

Multi-Objective problems. The term Metaheuristics defines a wide class of techniques to 

solve optimisation problem and are characterised as being non-deterministic, in the sense 

that they rely on some form of randomisation to guide the search for solutions; in general, 

they do not rely on specific assumptions on problem structure and, therefore, are not 

problem-specific, at least on principle. 

Metaheuristics and in particular the subclass Evolutionary Algorithms have been first 

proposed in the 60s and since then have been successfully applied to Single Objective 

optimisation problems. While a rigorous definition of the class of Evolutionary 

Computation is beyond the scope of this dissertation, it is still possible to identify the main 

common points. All algorithms in this class are characterised by: 

• A population of candidate solutions, usually referred to as agents or individuals. 

                                                 
† The concept of Pareto dominance was originally proposed by the Italian economist Vilfredo Pareto at 

the beginning of the 20th Century. 
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• The population is progressively modified through a set of evolutionary 

mechanisms, which can be inspired from a wide range of phenomena, from 

physical (e.g. Simulated Annealing70), macro- (e.g. Ant Colony Optimisation, 

Particle Swarm Optimisation) or micro-biological (e.g. Genetic Algorithms). 

• A heuristic is used to select good candidate solutions. 

• The knowledge is inherited by the next generation. 

Algorithms in this family are be broadly classified into:  

• Genetic/Evolutionary Algorithms, which typically apply the genetic heuristics of 

mutation, cross-over and recombination to a set of binary-coded or real valued 

chromosomes. 

• Evolutionary Strategies, which generate new candidate solutions through a 

combination of evolution a probabilistic model. See for example the well-known 

Differential Evolution and its derivatives71 , 72, or the Covariance Matrix 

Adaption Evolutionary Strategy (CMA-ES)73. 

• Swarm-based Intelligence, in which the population is evolved in the search 

space by mimicking the behaviour of swarms normally found in biology; the 

most famous representatives of this class are the Particle Swarm Optimisation 

(PSO)74 and the Ant Colony Optimisation (ACO)75. 

Early examples of Multi-Objective evolutionary algorithms were obtained by modifying 

some of the above mentioned algorithms, usually by introducing selection and archiving 

criteria based on Pareto dominance76,77,78. The focus of current developments is mainly 

oriented towards improving the overall efficiency of the algorithms by adding mechanisms 

which address specific issues in algorithms behaviour (e.g. global exploration, local search, 

stagnation). The results of this effort are Hybrid Memetic Algorithms, a superclass in 

which different heuristics and metaheuristics, both deterministic and stochastic, are merged 

together79. In most cases, they aim at improving local search by combining stochastic-

based, global exploration with gradient-based methods80,81,66. Lara et al.82 proposed an 

innovative local search based on mathematical programming. Rigoni and Poles83 

hybridised an Evolutionary Algorithm with a Normal Boundary Intersection (NBI) 

technique. Another fairly successful algorithm, MOEA/D65, combines Differential 

Evolution and a selection criterion based on Tchebycheff Decomposition. 

2.2.1 Structure of an Evolutionary Algorithm 

A detailed background on Evolutionary computation is beyond the scope of the present 

dissertation and is widely available in the relevant literature84,85. However, it has been 
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chosen to devote this section to the description of a generic stochastic algorithm in order to 

help the reader in understanding the detailed algorithmic description of MACS2, which 

appears in this chapter. In the typical evolutionary algorithm one finds a set P, usually 

called population, which collects a fixed, finite number of agents or individuals. Each 

individual is assigned with one candidate solution vector x of the problem to be solved (see 

Eq. (2.1)), and also the related value of the objective function f(x). The population is 

evolved in a number of discrete steps, commonly called generations or also iterations, in 

order to find the set of x which best solves Problem (2.1). Although the actions performed 

at each generation to evolve the population can vary widely depending on the specific 

operations, one can nevertheless identify the most recurring set of actions, as shown in 

Figure 2.1 

 

Figure 2.1: Flowchart of a typical sthocastic algorithm. 

The first step consists in the initialisation of the algorithmic iterations. The initial 

population P0 is generated, normally by random sampling in the solution domain D. Also, 

some adaptive parameters which govern the evolution of the population are also initialised 

at this stage. After the initialisation, the iterative process starts. In the single iteration the 

first action involves the generation of a set of candidates solutions, with which to 
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eventually replace some or all the individuals of the current population Pk. The strategy, 

with which the candidates are generated and selected, is the core feature of each algorithm 

and the factor which more than others determines its performance. Therefore, all sorts of 

heuristics can be found in the literature, and they can generically be summarised as 

follows: 

( )/, , ,k
i i j j iF ≠=y x x p e   (2.7) 

which means that, each candidate solution yi (child of offspring), meant for replacing the 

agent xi (also called parent in this case), can be a function of: 

• its parent, xi. 

• one or more other members xj of the population Pk. 

• a set of algorithmic parameters pk, which can either be constant or be adapted 

iteration by iteration. 

• a set of one or more random numbers e. 

While the dependancy of yi on the stochastic component e and on pk is almost always 

present, the child might not always depend from its parent or from other elements of the 

population. For example when the child only from e and pk one has a simple random 

sampling. In addition, each parent can generate more than one offspring. 

The following step, involves the ranking of the candidate solutions according to a 

specific performance metric. For MOO, this is typically done with the dominance index, 

but other criteria have been proposed, like the Tchebycheff scalarisation presented here. 

Also, the choice of the subset on which the ranking is performed might considerably affect 

the evolution of the population. For example, one can simply rank the children against their 

own parent individual. On the opposite, one could rank the entire set of candidate solutions 

against the entire current population Pk. 

After the ranking, one has to select the candidates which will contribute to form the new 

population Pk+1. In most cases, one might simply choose to replace a number of the worst 

individuals in Pk with a similar number of the best candidates. However, one might for 

example also choose to preserve some of the worst individuals, if these are in less crowded 

areas of the domain D, in order to keep enough diversity in the population. 

In the final step of an algorithmic iteration, the set of parameters pk is updated according 

to an arbitrary rule. If present, the archive Ag might also be updated at this stage. The 

archive is a set which is specifically meant for storing the current best approximation, of 

the solution to Problem (2.1). In MOO, the archive will usually collect all the non-

dominated solutions found so far. 
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At the end of the iteration, a termination condition is evaluated to decide whether to exit 

the algorithm. The criteria normally adopted normally check whether a maximum number 

of iterations or function evaluations has been exceeded. 

2.3 The MACS framework 

As mentioned above, the key idea underneath Multi-Agent Collaborative Search is to 

combine local and global search in a coordinated way such that local convergence is 

improved while retaining global exploration86. This combination of local and global search 

is achieved by endowing a set of agents with a repertoire of actions producing either the 

sampling of the whole search space or the exploration of a neighbourhood of each agent. 

Actions are classified into two categories: social, or collaborative, and individualistic. The 

next section will detail how these actions were performed in the first implementation of 

MACS54.  

2.3.1 The first implementation of MACS 

As a first step, a population P0 of npop individuals, one for each solution vector ix  , 

with 1,..., popi n= , is deployed in the problem domain D. The population evolves through a 

number of generations.  

At every generation k, all individuals perform a set of collaborative actions, which 

consist of the following: 

• Two individuals xi and xj are selected such that i jx x≺   

• A new candidate is generated by linear interpolation between xi and xj. 

• A second candidate is generated by linear extrapolation between xi and xj, on 

the side of xi. 

• Two more candidates are generated by recombination of xi and xj, by single-

point crossover. Given a randomly selected component j, the two agents are split 

in two at the j-th component, one from component 1 to component j and the 

other from component j+1 to component n; and then we combine the two parts 

of each of the agents in order to generate two new solutions. 

• A tournament selection is performed among the four new candidate solutions, 

by which the one with the lowest dominance index is selected. 

A local restart mechanism is also implemented at this stage to avoid overcrowding of 

individuals. 
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After all the collaborative and restart actions have been implemented, the resulting 

updated population Ph is ranked according to Id and split in two subpopulations: Pl, 

which contains the best nelite inviduals, and Pu, with the worst npop-nelite individuals. The 

agents in each subpopulation implement sets of, so called, individualistic actions to collect 

samples of the surrounding space and to modify their current location. In particular, the 

individuals belonging to Pu are simply randomly mutated. 

The remaining nelite agents xi belong to Pl and implement a mix of actions that aim at 

either improving their location or exploring their neighbourhood Nρ(xi), a hyperectangle 

centred in xi. The actions described below are performed sequentially until an improved 

solution is found: 

• inertia, which consists in generating a new sample by moving along the 

direction given by xi at the current and at the previous generation, if the former 

is an improvement of the latter: 

1

1

( )k k k
ine i i i

k k
i i

r −

−

= + −y x x x

x x≺
   (2.8) 

 where r is a random number between 0 and 1. 

• differential, which performs a step inspired by Differential Evolution71 between 

xi and three randomly selected individuals x1, x2 and x3 in Nρ(xi): 

( )1 3 20.8iDE = + + −  y x e x x x   (2.9) 

 where e is a vector of random numbers between 0 and 1. 

• mutation, simple generation of a random sample ymut in Nρ(xi). 

• linear extrapolation, a sample ylin is extrapolated on the side of the best between 

xi and ymut. 

• quadratic extrapolation, if all the previous steps were unsuccessfull, a quadratic 

model λ(y) of Id is constructed from xi, ylin and ymut, and the point yquad 

corresponding to the local minima of is generated. 

In some implementations, these solutions are collected in a local archive Ai
l
 associated 

to xi and a dominance index is computed for all the elements in Ai
l. If at least one element 

in Ai
l has Id=0, then it will replace xi. If multiple elements of Ai

l have Id=0, then the one 

with the largest distance w.r.t. xi is selected.11 

Once the individualistic actions have been performed, the non-dominated solutions ar 

stored in the global archive Ag. The archive Ag is used to implement an attraction 

mechanism that improves the convergence of the worst individuals. During the global 
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archiving process a second restart mechanism that reinitialises a portion of the population 

(bubble restart) is implemented. 

2.3.2 From MACS to MACS2 

Compared to the first MACS, this work proposes a number of key innovations, which 

are introduced here and will be described in detail in Section 2.4:  

• The first involves the selection criteria. As seen in the previous section, MACS 

selected the new candidate solutions on the basis of the dominance index Id. In 

MACS2, Tchebycheff decomposition is used in combination with dominance-

based ranking to accept the outcome of an action. The idea is that each agent can 

either try to improve its dominance index or can try to improve one particular 

objective function by working on a subproblem characterized by a subset of 

weights λ. This combination extends the accepted individualistic moves and 

improves the spreading of the solutions in the criteria space. 

• The second innovation comes from an inversion of the policy to schedule 

individualistic and social/collaborative actions. In MACS, the first step of each 

algorithmic iteration consisted in the whole the whole performing a set of 

collaborative actions. In MACS2, this is now replaced by individualistic actions, 

performed independently by each individual. This inversion is quite significant 

as it translates into a parallel local search performed by the whole population, 

rather than having the local search performed by a selected number of 

individuals at a particular time of the evolution. 

• In line with this, a similar change has been made on the second main step 

performed at each generation. In MACS the collaborative actions where 

followed by individualistic actions, in which each agent of the elite population 

performed a set of actions to search locally for improvements in its 

neighbourhood. In MACS2, the first step of individualistic actions is followed 

by a set of actions performed among social individuals (somehow equivalent to 

the elite population) only. 

• The search heuristics have been somewhat simplified compared to MACS. The 

combination of interpolation, extrapolation and recombination of the 

collaborative actions in MACS has been replaced by the simple pattern search 

performed in the individualistic actions of MACS2. Similarly, the sequence of 

inertia, DE, mutation and linear/quadratic extrapolation of the individualistic 
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actions of MACS has been changed into a slightly different variant of DE in the 

social actions of MACS2. 

2.4 MACS2 with Tchebycheff Decomposition 

In this section, the key heuristics underneath MACS2 will be described in details. 

Compared to previous implementations of MACS54, this work proposes a number of key 

innovations. First of all, Tchebycheff decomposition is used in combination with 

dominance-based ranking to accept the outcome of an action. The idea is that each agent 

can either try to improve its dominance index or can try to improve one particular objective 

function by working on a subproblem characterized by a subset of weights λ. This 

combination extends the accepted individualistic moves and improves the spreading of the 

solutions in the criteria space. The second innovation comes from an inversion of the 

policy to schedule individualistic and social actions. In previous implementations, the 

whole population was participating in the implementation of social actions at every 

generation, while an elite of agents was implementing individualistic actions. In this 

version of MACS, this policy is inverted and now all the agents perform individualistic 

actions while selected subpopulations perform social actions either with other agents in the 

current population or with elements in the archive. This inversion is quite significant as it 

translates into a parallel local search performed by the whole population at each iteration, 

rather than having the local search performed by a selected number of individuals at a 

particular time of the evolution. More specific heuristics are described in the next sections.  

The use of either dominance or Tchebycheff scalarisation leads to the selection of 

different outcomes of the actions executed by the agents. With reference to Figure 2.2a, the 

dominance criterion can be used to select a displacement of agent x in the dominating 

region. In this case only strongly dominant solutions are accepted as admissible for a 

displacement of agent x. Tchebycheff scalarisation, instead, allows for movements in the 

region of decreasing g(x) in Figure 2.2a. 

This region extends the dominating region of Figure 2.2a and includes part of the non-

dominating region. Therefore, Tchebycheff scalarisation, as defined in (2.6) allows for the 

selection of weakly efficient solutions. If λ is kept constant the agent would progressively 

try to align along the direction ζ (see Figure 2.2b). The rectilinear line ζ divides the criteria 

space in Figure 2.2b in two half-planes, one, below ζ, where 

1 1 1 2 2 2| ( ) | | ( ) |f z f zλ λ− > −x x , the other, above ζ, where 1 1 1 2 2 2| ( ) | | ( ) |f z f zλ λ− < −x x . 

The rectilinear line ζ is, therefore, the locus of points, in the criteria space, for which 

1 1 1 2 2 2| ( ) | | ( ) |f z f zλ λ− = −x x . Figure 2.2b shows that by solving problem (2.6) one would 
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take displacements in any direction that improves f1, starting from a solution that is under 

the ζ line. If one of these displacements crosses the ζ line, the solution of problem (2.6) 

would then generate displacements that improve f2. This mechanism allows for the 

generation of dominating steps (see Figure 2.2c) as well as side steps (see Figure 2.2d). 

Side steps are important to move along the Pareto front (see Lara et al.82 for more details 

on the effect of side steps). 

 

a) Selection based on dominance index 

 

c) Selection based on Tchebycheff 

scalarisation 

 

c) Selection based on Tchebycheff scalarisation, 

strong dominance step 

 

d) Selection based on Tchebycheff scalarisation, 

side step 

Figure 2.2: Selection criteria. 

In MACS side steps were generated by accepting displacements in the non-dominating 

regions of Figure 2.2a when no dominant solutions were available. In MACS2 instead side 

steps are generated by selecting displacements according to Tchebycheff scalarisation 

when strongly dominant solutions are not available. Note however, that although 
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displacements are computed considering a combination of strong dominance and 

Tchebycheff scalarisation, the archive is filled with all the solutions that have dominance 

index Id=0 and a large reciprocal distance (see Section 2.4.4). 

2.4.1 General Algorithm Description 

A population P0 of npop virtual agents, one for each solution vector xi, with 

{ }1,..., _i n pop=  , is deployed in the problem domain D, and is evolved according to 

Algorithm 2.1. 

The population Ph at iteration h=0 is initialized using a Latin Hypercube distribution. 

Each agent then evaluates the associated objective vector ( )i i=f f x   and all non-dominated 

agents are cloned and inserted in the global archive Ag (lines 4 and 5 in Algorithm 2.1). 

The archive Ag contains the current best estimation of the target set Xg. The q-th element of 

the archive is the vector [ ]T
q q qφ=a ξ   where ξq is a vector in the parameter space and ϕq is 

a vector in the criteria space. 

Each agent is associated to a neighbourhood 
i

Dρ  with size ρi. The size ρi is initially set 

to 1, i.e. representing the entire domain D (line 6 in Algorithm 2.1). 

A set of nλ, m-dimensional unit vectors λk is initialized such that the first m vectors are 

mutually orthogonal. The remaining nλ-m vectors have random components instead. In two 

dimensions the vectors are initialized with a uniform sampling on a unit circle and in three 

dimensions with a uniform sampling on a unit sphere, while in n-dimensions with a Latin 

Hypercube sampling plus normalization, such that the length of each vector is 1 (see line 7 

in Algorithm 2.1). 

For each vector λk, the value of an associated utility function Uk is set to 1 (see line 8 in 

Algorithm 2.1). The utility function is the one defined in Zhang et al.65 and its value is 

updated every uiter iterations using Algorithm 2.5. In this work it was decided to maintain 

the exact definition and settings of the utility function as can be found in65, which the 

interested reader can therefore refer to for further details. 

Each λk represents a subproblem in Eq. (2.6), i.e. it is used to compute the scalar 

function gk. A total of ( )social pop popn round nρ=  λ vectors are inserted in the index set Ia. 

The first m indexes in Ia correspond to the m orthogonal λ vectors, the other nsocial-m are 

initially chosen randomly (line 9 of Algorithm 2.1). 

Each λk for 1,...,k nλ=  is associated to the element in Ag that minimizes gk such that: 

 arg min ( , , )
qk q kgφφ φ λ= z                                         (2.10) 
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where z is the vector containing the minimum values of each of the objective functions. 

Then, for each λl, with al I∈  and associated vector lφ , a social agent xq is selected from 

the current population Ph such that it minimizes ( , , )q lg λf z  . The indexes of all the selected 

social agents are inserted in the index set Iλ (see lines 14 to 17 in Algorithm 2.1). The 

indexes in Ia and Iλ are updated every uiter iterations. At the h-th iteration, the population Ph 

is evolved through two sets of heuristics: first, every agent xi performs a set of 

individualistic actions which aims at exploring a neighbourhood 
i

Dρ  of xi (line 20 of 

Algorithm 2.1), the function explore described in Algorithm 2.2 is used to implement 

individualistic actions. All the samples collected during the execution of individualistic 

actions are stored in the local archive Al. The elements of Al and the outcome of social 

actions are inserted in the global archive Ag if they are not dominated by any element of Ag 

(line 22 in Algorithm 2.1). Then, a sub-population Iλ of nsocial selected social agents 

performs a set of social actions (see line 23 of Algorithm 2.1). Social actions aim at 

sharing information among agents. More details about individualistic and social actions are 

provided in the following sections. The function com described in Algorithm 2.3 is used to 

implement social actions. 

At the end of each iteration the global archive Ag is resized if its size has grown larger 

than nA,max (line 25 in Algorithm 2.1). The resizing is performed by function resize 

described in Algorithm 2.4.  

The value nA,max was selected to be the largest number between 1.5nλ and 1.5nA,out, 

where nA,out is the desired number of Pareto optimal elements in Ag at the last iteration. 

This resizing of the archive is done in order to reduce the computational burden required 

by operations like the computation of the dominance index. It also provides an improved 

distribution of the solutions along the Pareto front as it discards solutions that are 

excessively cluttered. 

At the end of each iteration the algorithm also checks if the maximum number of 

function evaluations nfeval,max, defined by the user, has been reached and if so, the algorithm 

terminates. At termination, the archive Ag is resized to nA,out if its cardinality is bigger than 

nA,out. 
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Algorithm 2.1 MACS2 

 

2.4.2 Individualistic Actions 

Individualistic actions perform an independent exploration of the neighbourhood 
i

Dρ  of 

each agent. As in the original version of MACS54 the neighbourhood is progressively 

resized so that the exploration is over the entire D when the size ρi is equal to 1 and 

becomes progressively more and more local as the neighbourhood shrinks down. In this 

new implementation of MACS each agent performs only a simple sampling along the 

coordinates. The neighbourhood 
i

Dρ  is a hypercube centred in xi with size defined by ρi 

such that each edge of the hypercube has length ( )u l
iρ −b b . Algorithm 2.2 describes 

individualistic actions. 

The search is performed along a single component of xi at a time, in a random order: 

given an agent xi, a sample y+ is taken within 
i

Dρ  along the j-th coordinate with random 

step size ( 1,1)r ∈ −U , where ( 1,1)−U  is a uniform distribution over the closed interval [-1 

1], leaving the other components unchanged. If y+ dominates xi, y
+ replaces xi, otherwise 

Algorithm 1 MACS2

1: Set nfeval,max, npop, nsocial = round(ρpopnpop), F , tolconv , nA,out, uiter

2: Set nλ = 100m, nA,max = round(1.5max([nλ, nA,out]))
3: Set nfeval = 0
4: Initialize population Ph, h = 0
5: Insert the non-dominated elements of P0 in the global archive Ag

6: ρi = 1, ∀i ∈ {1, ..., npop}
7: Initialize λk for k ∈ {1, ..., nλ} such that ‖λk‖ = 1
8: Initialize utility function vector Uk = 1,∀k ∈ {1, ..., nλ}
9: Select the nsocial active subproblems λl, and save their indexes l in the index set Ia

10: Initialize δl = maxq φq,l −minq φq,l, zl = minq φq,l, q ∈ {1, ..., |Ag |}, l = 1, ...,m,
11: for all k ∈ {1, ..., nλ} do

12: φ
k
= argminφq

g(φq , λk, z), q = 1, ..., |Ag |

13: end for

14: for all λl, l ∈ Ia do

15: Select the [xqfq ] ∈ Ph which minimises g(fq , λl, z), l ∈ Ia
16: and save its index in the list of the social agents Iλ
17: end for

18: while nfeval < nfeval,max do

19: h = h+ 1
20: [Ph, nfeval, Al, ρ] = explore(Ph−1, nfeval, n, ρ,b

l,bu, f , λ, Iλ, Ia)
21: If necessary, update the vector of the best objectives z, with Al

22: Update archive Ag with non dominated elements of Al

23: [y, ϕ, nfeval, Ph, Ag ] = com(Ph, Ag ,bl,bu, nfeval, n, F, f , λ, Iλ, Ia)
24: if |Ag | > nA,max then

25: Ag = resize(Ag ,m, nA,max)
26: end if

27: if ( mod (h, uiter) = 0) then

28: [Ia, Iλ,U, φ] = select(U, λ, φ, Pk, Ag , z,m, nsocial, nλ)
29: end if

30: end while

31: Ag = resize(Ag ,m, nA,out)
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another sample y- is taken in the opposite direction with step size rr , with (0,1)rr ∈U . 

Again, if y- dominates xi,  y
- replaces xi. 

If yi is not dominating and is not dominated by xi and the index i of xi belongs to Iλ, then 

yi replaces xi if yi improves the value of the subproblem associated to xi. Whether a 

dominant sample or a sample that improves the value of the subproblem is generated the 

exploration terminates. This is a key innovation that exploits Tchebycheff decomposition 

and allows the agents to perform moves that improve one objective function at the time. 
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Algorithm 2.2 explore: Individualistic Actions 

 

The search terminates also when all the components of xi have been examined, even if 

all the generated samples are dominated (see Algorithm 2.2 lines 3 to 40). 

If all children are dominated by their parent, the size of the neighbourhood ρi is reduced 

by a factor ηρ. Finally, if ρi is smaller than a tolerance tolconv, it is reset to 1 (see Algorithm 

2.2 lines 41 to 46). In all the tests in this paper ηρ was taken equal to 0.5 as this value 

provided good results, on average, across all test cases. 

Algorithm 2 explore - Individualistic Actions

1: ∆ = (bu − bl)/2
2: for all i = 1 : npop do

3: Set Al,i =Ø, pi ∈ Ia
4: Take a random permutation IE of {1, ..., n}
5: for all j ∈ IE do

6: Take a random number r ∈ U(−1, 1)
7: y+ = xi

8: if r > 0 then

9: y+j = min{y+j + rρi∆j , b
u
j }

10: else

11: y+j = max{y+j + rρi∆j , b
l
j}

12: end if

13: if y+ 6= xi then

14: Evaluate ϕ+ = f(y+)
15: nfeval = nfeval + 1
16: if (y+ ⊁ xi) then

17: Al,i = Al,i ∪ {[y
+ ϕ+]}

18: end if

19: if y+ ≺ xi ∨ (i ∈ Iλ ∧ g(ϕ+, λpi , z) < g(fi, λpi , z)) then

20: xi = y+; break
21: end if

22: end if

23: y− = xi

24: Take a random number rr ∈ U(0, 1)
25: if r > 0 then

26: y−j = max{y−j − rrρi∆j , b
l
j}

27: else

28: y−j = min{y−j + rrρi∆j , b
u
j }

29: end if

30: if y− 6= xi then

31: Evaluate ϕ− = f(y−)
32: nfeval = nfeval + 1
33: if y− ⊁ xi then

34: Al,i = Al,i ∪ {[y
− ϕ−]}

35: end if

36: if y− ≺ xi ∨ (i ∈ Iλ ∧ g(ϕ−, λpi , z) < g(fi, λpi , z)) then

37: xi = y−; break
38: end if

39: end if

40: end for

41: if y− ≻ xi ∧ y+ ≻ xi then

42: ρi = ηρρi
43: if ρi < tolconv then

44: ρi = 1
45: end if

46: end if

47: end for

48: Al =
⋃

i=1,...,npop
Al,i
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All the non-dominated children generated by each agent xi during the exploration form 

the local archive Al,i. The elements of Al,i are inserted in the global archive Ag if they are 

not dominated by any element in Ag. 

Algorithm 2.3 com: Social Actions 

 

2.4.3 Social Actions 

Social actions are performed by each agent whose index is in the set Iλ. Social actions 

are meant to improve the subproblem defined by the weight vectors λk in Ia and associated 

to the agents xi in Iλ. This is done by exploiting the information carried by either the other 

agents in the population Ph or the elements in the archive Ag. 

Social actions implement the Differential Evolution (DE) heuristic: 

 1 2 3[( ) ( )]i i iK F= + − + −y x s x s s                                       (2.11) 

where the vectors sl, with 1,..,3l = , are randomly taken from the local social network IT 

of each social agent xi. The local social network is formed by either the nsocial agents closest 

to xi or the nsocial elements of Ag closest to xi. The probability of choosing the archive vs. 

the population is directly proportional to pAvsP (see line 3 of Algorithm 2.3). The parameter 

Algorithm 3 com - Social Actions

1: pAvsP = 1− e−|Ag |/nsocial

2: for all i ∈ Iλ do

3: AvsP = r < pAvsP ,r ∈ U(0, 1), pi ∈ Ia
4: if AvsP ∧ |Ag | ≥ 3 then

5: Select the nsocial closest elements of the archive Ag to the agent xi and save their indexes in
the set IT

6: else

7: Select the nsocial closest agents of the population Pk to the agent xi and save their indexes
in the set IT

8: end if

9: K ∈ U(0, 1)
10: Randomly select s1 6= s2 6= s3 ∈ IT
11: y = xi +K(s3 − xi) +KF (s1 − s2)
12: for all j ∈ {1, ..., n} do

13: r ∈ U(0, 1)
14: if yj < blj then

15: yj = blj + r(yj − blj)
16: else if yj > buj then

17: yj = buj − r(buj − yj)
18: end if

19: end for

20: if y 6= xi then

21: Evaluate ϕ = f(y)
22: nfeval = nfeval + 1
23: end if

24: If necessary, update z with ϕ
25: if g(ϕ, λpi , z) < g(fi, λpi , z) then

26: fi = ϕ, xi = y

27: end if

28: Update archive Ag with non-dominated elements of {[y ϕ]}
29: end for
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pAvsP is defined as | |/1 g socialA n
e

−− . This means that in the limit case in which the archive is 

empty, the population is always selected. on the other hand,  if the archive is much larger 

than the population, it is more likely to be selected. Note that, if the size of Ag is below 3 

elements, then the population is automatically chosen instead (line 4 of Algorithm 2.3) as 

the minimum number of elements to form the step in (2.11) is 3. The offspring yi replaces 

xi if it improves the subproblem associated to xi otherwise yi is added to the archive Ag if it 

is not dominated by any of the elements of Ag. The value of F in this implementation is 0.9. 

Social actions, described in Algorithm 2.3, dramatically improve the convergence speed 

once a promising basin of attraction has been identified. On the other hand, in some cases 

social actions lead to a collapse of the subpopulation of social agents in one or more single 

points. This is in line with the convergence behaviour of DE dynamics presented in Vasile 

et al.87. This drawback is partially mitigated by the remaining agents, which perform only 

individualistic actions. Algorithm 2.3 implements social actions. 

2.4.4 Archive Resizing 

If the size of Ag exceeds a specified value (as detailed in Section 2.4.1), a resizing 

procedure is initiated. The resizing procedure progressively selects elements from the 

current archive and adds them to the resized archive until its specified maximum size nA,max 

is reached. 

First the normalized Euclidean distances, in the objective space, between all the 

elements of the current archive are computed (lines 3-8 of Algorithm 2.4). 

Then, the l-th element, minimizing the l-th objective function, with 1,...,l m= , is 

inserted in the resized archive (lines 9 to 12 of Algorithm 2.4). The remaining nA,max -m 

elements are iteratively selected by considering each time the element of the current 

archive (excluding those which are already in the resized one) which has the largest 

distance from its closet element in the resized archive (lines 13 to 17 of Algorithm 2.4). 

This procedure provides a good uniformity in the distribution of samples. Future work will 

investigate the comparative performance of different archiving strategies like the one 

proposed in Laumanns et al.88 and Schütze et al.89. 
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Algorithm 2.4 resize: Archive Resizing 

 

Algorithm 2.5 select: Subproblem Selection 

 

2.4.5 Subproblem Selection 

Every uiter iterations the active subproblems in Ia and the associated agents in Iλ 

performing social actions are updated. The agents performing social actions are updated 

through function select described in Algorithm 2.5. 

The improvement γ between 
k

φ  (i.e. the best value of gk at current iteration in the global 

archive) and 
,old k

φ  (the best value of gk, uiter iterations before) is calculated. Then, the 

Algorithm 4 resize - Archive Resizing

1: nA = |Ag |, S =Ø
2: δj = maxi φq,j −mini φq,j , ∀j = 1, ...,m
3: for all q ∈ {1, ..., (nA − 1)} do

4: for all i ∈ {(q + 1), ..., nA} do

5: dq,i = ‖(φq − φi)/δ‖
6: di,q = dq,i
7: end for

8: end for

9: for all l ∈ {1, ...,m} do

10: S = S ∪ {argminq(φq,l)}
11: end for

12: Sn = {1, ..., nA} \ S
13: for all i ∈ {m+ 1, ..., nA,max} do

14: lS = argmaxl(minq(dq,l)), q ∈ S, l ∈ Sn

15: S = S ∪ {lS}
16: Sn = Sn \ {lS}
17: end for

18: Ag = {ai|∀i ∈ S}

Algorithm 5

1: φ
old

= φ

2: for all k ∈ {1, ..., nλ} do

3: φ
k
= argminφq

g(φq , λk, z), q ∈ {1, ..., |Ag |}

4: γ = (g(φ
old,k

, λk, z)− g(φ
k
, λk, z))

5: if γ > 0.001 then

6: Uk = 1
7: else

8: Uk = (0.95 + 50γ)Uk

9: end if

10: end for

11: tsize = round(nλ/60)
12: Ia = {1, ...,m}
13: for all i ∈ {m+ 1, ..., nsocial} do

14: Randomly select a subset Isel of tsize elements of {1, .., nλ}
15: k̄ = argmaxk Uk, k ∈ Isel
16: Ia = Ia ∪ {k̄}
17: end for

18: for all λl, l ∈ Ia do

19: Select the [xqfq ] ∈ Ph which minimises g(fq , λl, z), l ∈ Ia
20: and save its index in the list of the social agents Iλ
21: end for
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utility function Uk associated to λk is updated according to the rule described in Zhang et 

al.65 and reported in Algorithm 2.5, lines 2 to 10. 

Once a value Uk is associated to each λk, nsocial new subproblems and associated λ 

vectors are selected. The first m λ vectors are always the orthogonal ones. The remaining 

nsocial-m vectors are selected by taking ( / 60)sizet round nλ=  random indexes and then 

choosing the one with the largest value of Uk. This is repeated till Ia is full (see lines 11 to 

17 in Algorithm 2.5). Note that tsize cannot exceed the size of Itmp in Algorithm 2.5 if the 

number of social agents nsocial is small compared to nλ. 

Finally, the agent xi, that minimizes the scalar objective function in Eq. (2.6), is 

associated to each λk with index in Ia, and its index is included in the new subset Iλ (lines 

18 to 21 in Algorithm 2.5). 

2.5 Experimental Results 

This section presents the performance of MACS2 on a standard benchmark for Multi-

Objective optimization algorithms and on some space-related test cases. Through an 

experimental analysis an optimal settings for MACS2 is derived. The results obtained with 

MACS2 will also be compared with those of MACS and other known Multi-Objective 

optimization algorithms90. 

The standard benchmark problems aim at optimizing the UF1-10 functions in the 

CEC’09 test suite91 and the test instances ZDT2, ZDT4, ZDT692. UF1 to UF7 are bi-

objective test functions with 30 optimization parameters. UF8 to UF10 are tri-objective 

functions, again with 30 optimization parameters. 

The CEC’09 competition rules specified 300000 function evaluations and 100 and 150 

elements for the output Pareto fronts for the bi- and tri-objective functions respectively. 

ZDT2 ZDT4 and ZDT6 are bi-objective test cases with 30 parameters for the first one and 

10 for the remaining two. They are tested running the algorithm for 25000 evaluations and 

taking an output front of 200 elements. 

The space-related test instances are given by two trajectory optimization problems as 

described in Minisci and Avanzini93 and Vasile and Zuiani54. The former is a 3-impulse 

transfer between a circular Low Earth Orbit (LEO) with radius r0=7000km to a 

Geostationary Orbit (GEO) with radius r f=42000km. 

The latter test case, Cassini, describes a trajectory optimization instance from Earth to 

Jupiter with four intermediate gravity assists at Venus (twice), Earth and Jupiter 

respectively. 
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For both test cases the objective functions to be minimized are total ∆V and time of 

flight. The 3-impulse test case has 5 optimization parameters and is run for 30000 function 

evaluations while Cassini has 6 parameters and is run for 600000 evaluations as it was 

demonstrated, in the single objective case, to have multiple nested local minima with a 

funnel structure87. 

The metrics which will be used in order to evaluate the performance of the algorithms 

are chosen so to have a direct comparison of the results in this paper with those in previous 

works. Therefore, for the CEC’09 test set the IGD performance metric will be used91: 

 
*
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v a‖ ‖                               (2.12) 

where P* is a set of equally spaced points on the true Pareto front, in the objective space, 

while A is the set of points from the approximation of the Pareto front. As in Zhang et al.91, 

performance will be assessed as mean and standard deviation of the IGD over 30 

independent runs. Note that a second batch of tests was performed taking 200 independent 

runs but the value of the IGD was providing similar indications. 

For the ZDT test set and for the space problems, the success rate on the convergence 

Mconv and spreading Mspr metrics are used instead. Note that, the IGD metric has been 

preferred for the UF test problems in order to keep consistency with the results presented 

in the CEC'09 competition. Convergence and spreading are defined as: 
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with , ,max mini f i i f i= −δ a a . It is clear that Mspr is the IGD but with the solution 

difference, in objective space, normalized with respect to the exact (or best-so-far) solution. 

In the case of the ZDT test set, the two objective functions range from 0 to 1, therefore no 

normalization is required and Mspr is in fact the IGD. 

The success rates for Mconv and Mspr is defined as ( )conv conv convp P M τ= <  and 

( )spr spr sprp P M τ= <  respectively, or the probability that the indexes Mconv and Mspr 

achieve a value less than the threshold τconv and τspr respectively. The success rates pconv and 

pspr are computed over 200 independent runs, hence they account for the number of times 

Mconv and Mspr are below their respective thresholds. According to the theory developed in 

Minisci and Avanzini93 and Vasile et al.94, 200 runs provide a 5% error interval with a 95% 

confidence level. Values for thresholds for each test case are reported in Table 2.1. 
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Table 2.1: Convergence tolerances 

 3-impulse Cassini UF1 UF2 UF3 UF4 UF5 UF6 

τconv 5∙10-2 7.5∙10-3 5∙10-3 5∙10-3 2∙10-2 3.5∙10-2 3∙10-2 3∙10-2 

τspr 5∙10-2 5∙10-2 1∙10-2 1∙10-2 3∙10-2 3.5∙10-2 5∙10-2 3∙10-2 

 UF7 UF8 UF9 UF10 ZDT2 ZDT4 ZDT6  

τconv 5∙10-3 2∙10-2 3∙10-2 3∙10-2 1∙10-3 1∙10-2 1∙10-3  

τspr 1∙10-2 6∙10-2 4∙10-2 6∙10-2 3∙10-3 1.5∙10-2 3∙10-3  

 

MACS2 was initially set with some arbitrary values reported in Table 2.2. The size of 

the population was set to 60 for all the test cases except for the 3-impulse and ZDT 

functions. For these test cases the number of agents was set to 30. In the following, these 

values will identify the reference settings. 

Table 2.2: Reference settings for MACS2. Values within parenthesis are for 3-impulse and 
ZDT test cases. 

npop ρpop F Tolconv 

60 (30) 0.33 0.5 1∙10-4 

 

Starting from this reference settings a number of tuning experiments were run to 

investigate the reciprocal influence of different parameters and different heuristics within 

the algorithm. Different combinations of npop, ρpop, F and Tolconv were considered. 

Furthermore, the social moves were activated or de-activated to assess their impact. The 

success rates were then used to tune the algorithm in order to improve the spreading, and 

therefore the IGD. After an extensive testing of the algorithms, it was realized that the use 

of the success rates offers a clearer metric, than the mean and variance of the IGD, to 

understand the impact of some user-defined parameters. 

In the following, only the most significant results with the most significant metric are 

presented. Table 2.3 summarizes the success rates on the Cassini test case for different 

values of npop and ρpop but with all the heuristics active. 

Table 2.3: Tuning of npop and rpop on the Cassini test case. 

pconv    pspr    

ρpop\npop 20 60 150 ρpop\npop 20 60 150 

0.2 0.22 0.34 0.76 0.2 0.32 0.45 0.31 

0.5 0.16 0.41 0.78 0.5 0.45 0.48 0.26 

0.8 0.35 0.40 0.77 0.8 0.37 0.40 0.26 
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Table 2.4: Tuning of MACS2 on the 3-impulse and Cassini test cases. 

 3-impulse Cassini 

pconv
 pspr

 pconv
 pspr 

Reference 0.99 0.99 0.38 0.36 

no social 0.47 1 0 0.18 

npop=150, 

ρpop=0.2 

1 1 0.76 0.31 

F=0.9 0.97 0.99 0.50 0.36 

Tolconv=10-6 0.99 0.99 0.38 0.45 

Tolconv=10-2 0.97 0.99 0.33 0.39 

Table 2.5: Tuning of MACS2 on the UF test cases. 

  Reference no social  npop=150, ρpop=0.2 npop=20, ρpop=0.8 Tolconv=10-6 

UF1 

pconv
 1 1 1 1 1 

pspr
 1 1 1 0.11 1 

UF2 

pconv
 1 1 1 1 1 

pspr 1 1 1 0.46 1 

UF3 

pconv
 0.95 0.32 0.99 0.86 0.95 

pspr 0.99 0.11 1 0.97 1 

UF4 

pconv
 1 1 1 0.06 1 

pspr 1 1 1 0.54 1 

UF5 

pconv
 0.59 0.10 0.62 0.91 0.58 

pspr 0.85 0.21 1 0.39 0.85 

UF6 

pconv
 0.58 0.50 0.32 0.54 0.61 

pspr 0.40 0.42 0.45 0 0.37 

UF7 

pconv
 1 0.91 1 0.94 1 

pspr 0.98 0 0.98 0.74 0.97 

UF8 

pconv
 0.86 0 0.88 0.89 0.88 

pspr 0.8 0.01 1 0.04 0.54 

UF9 

pconv
 0.68 0.12 0.84 0.31 0.74 

pspr 0.60 0 1 0 0.64 

UF10 

pconv
 0 0.01 0 0.28 0.01 

pspr 0 0 0 0 0 

 

One can see that the best convergence is obtained for npop=150 and in particular when 

combined with ρpop=0.5. On the other hand, best spreading is obtained with medium sized 

populations with npop=60. A good compromise seems to be npop =150 and ρpop=0.2. 
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Results on the other test cases (as shown in Table 2.4, Table 2.5 and Table 2.6, with 

npop=150 and ρpop=0.2) show in general that large populations and small ρpop are preferable. 

This also means that social actions on a large quota of the populations are undesirable and 

it is better to perform social moves among a restricted circle of agents. Table 2.4 reports 

the results of the tuning of MACS2 on the 3-imp and Cassini test cases.  Table 2.5 and 

Table 2.6 report the results of the tuning of MACS2 on the UF and ZDT test sets 

respectively. 

Table 2.4 shows a marked improvement of pconv on the Cassini when the population size 

is 150. Likewise, Table 2.5 shows that in general, with a population of 150 agents, there is 

an improvement in performance and on pspr, in particular on the UF1, 2, 6, 8 and 9 test 

cases. Notable exceptions are the ZDT in Table 2.6, for which the best performance is 

obtained for a small population with npop=20. 

Table 2.6: Tuning of MACS2 on ZDT test cases. 

  ZDT2 ZDT4  ZDT6 

Reference 
pconv

 1 0 0.93 

pspr
 1 0 1 

no social 
pconv

 1 0 0.91 

pspr 1 0 0.98 

npop=150, 

ρpop=0.2 

pconv
 0.20 0 0.60 

pspr 0.17 0 1 

npop=20, 

ρpop=0.8 

pconv
 1 0.02 0.96 

pspr 1 0.02 1 

F=0.9 

pconv
 1 0 0.96 

pspr 1 0 1 

Tolconv=10-

6 

pconv
 1 0 0.96 

pspr 1 0 1 

MACS2 

(tuned) 

pconv
 1 0 0.96 

pspr 1 0 1 

MACS 

pconv
 0.82 0.81 0.63 

pspr 0 0.93 0 

The impact of F is uncertain in many cases, however, Table 2.7 shows for example that 

on the UF8 test case a better performance is obtained for a high value of F. Table 2.5 and 

Table 2.6 show that the default value for Tolconv already gives good performance and it 

does not seem advantageous to reduce it or make it larger. 
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The impact of social actions can be seen in Table 2.4, Table 2.5 and Table 2.6. Table 

2.4 shows that on the 3-impulse and Cassini test cases the impact is clearly evident, since 

there is a marked worsening of both pconv and pspr. On the UF benchmark, see Table 2.5, 

removing social actions induces a sizeable worsening of the performance metrics. This is 

true in particular for functions UF1, UF3, UF5, UF6, UF7, UF8 and UF9. Notable 

exceptions are UF2, UF4 and UF10. 

As a result of the tuning test campaign, the settings reported in Table 2.8 are 

recommended. Note that the recommended population size for all the cases except the ZDT 

functions, is 150 agents, while for the ZDT functions it remains 20 agents. 

Table 2.7: Tuning of F on the UF8 test case. 

F 0.1 0.5 0.9 

average IGD (variance) 6.75∙10-2 (3.20∙10-5) 6.06∙10-2 (2.56∙10-5) 5.57∙10-2 (1.87∙10-5) 

Table 2.8: Settings for MACS2 after tuning. 

npop ρpop F Tolconv 

150 (20) 0.2 (0.8) 0.9 1∙10-4 

With these settings, the performance of MACS2 was compared, on the UF test suite in 

Table 2.9, with that of MACS, Multi-Objective Evolutionary Algorithm based on 

Decomposition (MOEA/D65), Multiple Trajectory Search (MTS95) and Dynamical Multi-

Objective Evolutionary Algorithm (DMOEADD96). The last three are the best performing 

algorithms in the CEC09 competition90. 

Table 2.9: Performance comparison on UF test cases: average IGD (variance within 
parenthesis. 

 MACS2 MACS MOEA/D MTS DMOEADD 

UF1 4.37∙10-3 (1.67∙10-8) 1.15∙10-1 (1.66∙10-3) 4.35∙10-3  6.46∙10-3 1.04∙10-2 

UF2 4.48∙10-3 (1.16∙10-8) 5.42∙10-2 (4.19∙10-4) 6.79∙10-3  6.15∙10-3 6.79∙10-3 

UF3 2.29∙10-2 (5.21∙10-6) 6.56∙10-2 (1.42∙10-3) 7.42∙10-3  5.31∙10-2 3.34∙10-2 

UF4 2.64∙10-2 (3.48∙10-7) 3.36∙10-2 (1.66∙10-5) 6.39∙10-2 2.36∙10-2 4.27∙10-2 

UF5 2.95∙10-2 (1.56∙10-5) 6.44∙10-2 (1.17∙10-3) 1.81∙10-1 1.49∙10-2 3.15∙10-1 

UF6 3.31∙10-2 (7.42∙10-4) 2.40∙10-1 (1.43∙10-2) 1.76∙10-1 5.91∙10-2 6.67∙10-2 

UF7 6.12∙10-3 (3.14∙10-6) 1.69∙10-1 (1.22∙10-2) 4.44∙10-3 4.08∙10-2 1.03∙10-2 

UF8 4.98∙10-2 (2.05∙10-6) 2.35∙10-1 (1.77∙10-3) 5.84∙10-2 1.13∙10-1 6.84∙10-2 

UF9 3.23∙10-2 (2.05∙10-6) 2.68∙10-1 (1.71∙10-2) 7.90∙10-2 1.14∙10-1 4.90∙10-2 

UF10 1.41∙10-1 (5.59∙10-5) 1.25 (4.28∙10-1) 4.74∙10-1 1.53∙10-1 3.22∙10-1 
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As shown in Table 2.9, the tuned version of MACS2 outperforms the other algorithms 

on UF2, 3, 6, 8, 9 and 10, on UF1 is very close to MOEA/D, while it ranks second on UF5 

and 10 and finally third on UF7. In Table 2.6 one can find the comparison against the old 

version MACS on the ZDT test set. MACS2 results generally better except on the ZDT4 

case. Note that Mspr of MACS for both ZDT2 and ZDT6 is always between 6∙10-3 and 

9∙10-3, therefore always above the chosen threshold τspr. The poor performance of MACS2 

on ZDT4, might be due to the relative ineffectiveness of the pattern search along the 

coordinates on this particular test case. In the attempt to improve performance on ZDT4, a 

second test set was run with a slightly modified version of MACS2: the number of 

components which are explored by each agent at the h-th iteration was reduced to 1 only, 

compared to the n in Algorithm 2.2, at the same time, all individuals were performing 

social actions, i.e. nsocial=npop. With these modifications, a success rate of 0.66 both on 

convergence and spreading is achieved although the pconv and pspr on ZDT2 drops to 0 and 

the pconv on ZDT6 drops to 0.23. 

Table 2.10: Comparison of MACS, MACS2 and MOEA/D on 3-impulse and Cassini test 
cases. 

 3-impulse Cassini 

pconv
 pspr

 pconv
 pspr 

MACS 0.99 0.99 0.87 0.49 

MACS2 (tuned) 0.99 1 0.77 0.34 

MOEA/D 1 0.49 0.51 0.01 

MTS 0.57 1 0.05 0.32 

NSGA-II 0.03 1 0.90 0.26 

 

Table 2.10 shows a comparison of the performance of MACS2 on 3-impulse and 

Cassini, against MACS, MOEA/D, MTS and NSGA-II. Both MACS and MACS2 are able 

to reliably solve the 3-impulse case, while MOEA/D manages to attain good convergence 

but with only mediocre spreading. On the contrary, both MTS and NSGA-II achieve good 

spreading but worse convergence, indicating that their fronts are quite well distributed but 

probably too distant from the true Pareto front. 

Cassini is a rather difficult problem and this is reflected by the generally lower metrics 

achieved by most algorithms. Only MACS, MACS2 and NSGA-II reach a high 

convergence ratio, but for the last two, their spreading is still rather low. After inspection 

of each of the 200 Pareto fronts one can see that such a low spreading implies that the 

algorithm did not converge to the global Pareto front. Figure 2.3 illustrates the difference 
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between MACS and NSGA-II. The behaviour of MACS2 is similar to the one of NSGA-II. 

MACS achieves the best known value for objective function ∆v. Both NSGA-II and 

MACS2 instead fall in the basin of attraction of the second best value for objective 

function ∆vError! Bookmark not defined. . 

The performance of MOEA/D and MTS on Cassini is rather poor, with the former 

attaining only 50% convergence but with almost zero pspr; conversely, only one third of the 

latter's runs are below the spreading threshold and almost none meets the convergence 

criterion. 

 

Figure 2.3: Comparison of Pareto fronts for the Cassini test case. 

2.6  MACS2 with Monotonic Basin Hopping 

The use of Tchebycheff decomposition leads to the possibility to introduce Monotonic 

Basin Hopping steps97 in the action set of each agent. MBH steps are introduced as a 

sampling technique in the individualistic actions but only for the individuals which are 

solving the m pure single objective subproblems. 

In this variant of the individualistic actions, at each iteration, first the standard search 

along the coordinates is performed (as described in Section 2.4.2); then, the actions 

described in Algorithm 2.6, are performed. For each of the m single-objective subproblems, 

a sample is taken in the domain D and then MatLab®'s fmincon is used to solve this 

subproblem using this point as a first guess, attaining convergence to a local minimum. If 

this latter point is better than the current individual which solves this subproblem, it will 

replace it. Otherwise, the new point could still replace the current individual with a 

probability 1/n. 

This variant has been tested on the Cassini introducing the MBH step only in the action 

set of the two agents that are solving the extremal single objective problems. The Cassini 
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case resulted to be quite challenging for MACS2 it is known to have an interesting funnel 

structure87. The MBH steps yield a marked improvement in both convergence and 

spreading compared to the standard version of MACS2, with a pconv increasing to 85% and 

pspr to 99%. This improvement is related essentially to a much closer convergence in the 

part of the front corresponding to the minimum ∆V solution. 

 

a) NSGA-II and MACS full fronts 

 

c) MACS2 and MACS2+MBH full fronts 

 

c) NSGA-II 

 

d) MACS 

 

e) MACS2 

 

f) MACS2 with MBH step 

Figure 2.4: NSGA-II, MACS, MACS2 on the Cassini case: a) NSGA-II and MACS b) MACS2 
and MACS2 with MBH step c) NSGA-II close-up d) MACS close-up e) MACS2 close-up f) 

MACS2 with MBH step close-up. 
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Figure 2.4 shows the distribution of the Pareto fronts of MACS2 with MBH steps over 

the 200 runs. The MBH steps effectively contribute to increase the probability of 

identifying the single objective minimum, leading to an improved convergence also in its 

neighbourhood. However, the current implementation of MBH steps is less effective at 

improving other parts of the front and more work is required in this direction. 

Algorithm 2.6 Monotonic Basin Hopping. 

 

2.7 Conclusions 

This chapter has presented a version of Multi-Agent Collaborative Search based on 

Tchebycheff decomposition. 

Compared to the previous version of MACS a number of heuristics has been revised 

and in particular there was an inversion of the percentage of agents performing social and 

individualistic moves. The new version, denominated MACS2, demonstrated remarkable 

performance on known difficult benchmarks outperforming known algorithms. On the 

Cassini real case application, and on benchmark function ZDT4, MACS2 falls back behind 

its predecessor. In both cases there are multiple local Pareto fronts corresponding to strong 

attractors. From a first analysis it seems that the simple pattern search implemented in 

MACS2 is not sufficient and is limited by its search along the coordinates only. In MACS 

the search included random directions and directions derived from DE and PSO heuristics. 

It seems reasonable to assume that a more flexible set of individualistic moves might 

further improve MACS2. This is the subject of current developments. In addition, the 

introduction of MBH steps in the Tchebycheff decomposition framework provided a net 

improvement of the performance. Also, from the tests performed so far the actual 

contribution of the utility function is uncertain and more investigations are underway.  

Algorithm 6 MBH - Monotonic Basin Hopping

1: for all i = 1 : m do

2: Take a random individual y0 ∈ D
3: j = {j ∈ Iλ|λj,k = 1, if k = i, λj,k = 0, if k 6= i}
4: Starting from y0, find a local minimum ymin of fi with a gradient-based optimiser
5: if fi(ymin) <= fi(xj) then

6: xj = ymin

7: fj = f(ymin)
8: else

9: Take a random number r ∈ U(0, 1)
10: if r < 1/n then

11: xj = ymin

12: fj = f(ymin)
13: end if

14: end if

15: end for
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The use of a selection operator based on Tchebycheff decomposition, instead, appears 

to be beneficial in a number of cases. In MACS2, in particular, agents operating at the 

extreme of the range of each of each objective are always preserved and forced to improve 

a subproblem. 

In summary, the results presented in this chapter have shown MACS2 to be a very 

efficient MO algorithm compared to other state-of-the-art proposals. Therefore, it is an 

excellent candidate for the solution of expensive optimisation problems involving Low 

Thrust dynamics, as will be shown in Chapter 4, Chapter 6, Chapter 7 and Chapter 8. 
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Chapter 3.Low-Thrust Analytical Formulae 

This chapter presents a set of analytical solutions for the perturbed Keplerian motion of 

a spacecraft under the effect of constant control acceleration. The proposed set of formulae 

can treat control accelerations that are fixed in either a rotating or inertial reference frame. 

Moreover, the contribution of the J2 zonal harmonic is included in the analytical formulae. 

It will be shown that the proposed analytical theory allows for the fast computation of long, 

multi-revolution spirals while maintaining good accuracy. The combined effect of different 

perturbations and of the shadow regions due to solar eclipse is also included. The accuracy 

and speed of the proposed analytical formulae are compared against a full numerical 

integration with different integration schemes. This chapter is organised as follows: 

Section 3.1 will introduce in detail the analytical formulae; Section 3.1.6 will present an 

analysis of their accuracy compared to numerical integration schemes while Section 3.2 

will focus on their applicability for propagating long trajectory arcs.  

3.1 Analytical Formulae 

Let the state of the spacecraft be expressed in terms of non-singular Equinoctial 

Elements98: 
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then, the perturbed Keplerian motion is governed by Gauss’ planetary equations: 
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with: 
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l is the mean longitude, analogous to the true longitude L, but defined as a function of the 

mean anomaly M instead of the true anomaly θ: 

 l Mω= Ω + +                                             (3.4) 

ar, aθ, ah, are the components of the thrust acceleration in the radial-transverse-normal 

(r-θ-h) reference frame, as seen in Figure 3.1, where O is the centre of the central 

gravitational body, ˆˆ ˆ, ,i j k are the unit vectors of the inertial reference frame centred in O, r 

is the position vector and ˆˆ ˆ, ,t r h are the unit vectors transversal, radial and out of plane. u is 

the perturbing acceleration vector, which in the radial-transversal reference frame is 

defined as which can also be expressed in terms of modulus ε, azimuth α and elevation β 

as: 
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Figure 3.1: Radial-transverse-normal (r- θ -h) reference frame. 

If one assumes that the modulus of the perturbative acceleration is small compared to 

the local gravitational acceleration, one can write: 
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By substituting (3.6) into Eqs. (3.2) one obtains a system of equations in the longitude 

L: 
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or, in vector form, taking E as the first five equinoctial elements as in (3.1): 
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As classical Regular Perturbation theory shows (see, for example, Holmes99 or Sanders, 

Verhulst and Murdock100), one can express the solution of Equation (3.8) as an expansion 
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in the small parameter ε, with respect to a set of reference conditions 

10 20 10 200 0[ , , , , ]Ta P P Q Q=E : 
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Substituting (3.9) into (3.8), and expanding the right side in Taylor series with respect to 

ε, one obtains: 

 

( )( )

( )( )

0 120

0

0

1 2

2 2
0 1

2

..., , ,
... 0

..., , ,
...

2

d F Ld d d

dL dL dL d

d F L

d

ε

ε

αε ε
ε

β
ε ε

ε

ε ε ε
ε

α β
=

=

+ +
+ + + = + +

+ +
+ +

E EE E E

E E
     (3.10) 

By collecting the terms which depend from the same powers of ε, neglecting second and 

higher order terms, one obtains: 
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Therefore the first-order expansion in ε becomes: 
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To obtain a first-order expansion for the time as a function of L, let one consider 

Equation (3.6) and apply a similar procedure as done for E (Note that, the last equation in 

(3.2) becomes now redundant and therefore will be ignored from now onwards). First, let 

one expand the time in the form: 

 2 3
20 31 ...t t t t tε ε ε= + + + +                                    (3.13) 

and define the right-hand side of (3.6) as H(a,P1,P2,L), then, by expanding H in Taylor 

series as done previously, one obtains: 
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and taking only the first order term in ε, one can write: 
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again taking only the first order term in ε, one obtains: 
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These two equations can be integrated in L to obtain an expression in the form: 

 0 1t t tε= +                                                    (3.17) 

where: 
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Note that the zero-order term t0 is not simply the time t00 corresponding to L0, but 

includes also the time variation given by the unperturbed Keplerian motion. In addition, 

the presence of the terms a1, P11, P21 essentially implies a double integration between L0 

and L. 

3.1.1 Constant Acceleration in the r-θ-h Frame 

If one assumes a constant acceleration modulus and direction in the r-θ-h frame, then 

Eqs. (3.7) take the following form: 
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(3.19) 

where the terms expressed as Ixx are integrals in L in the form Icn, Isn and I1n, with n = 

1,2,3, are integrals in L in the form: 
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where Φ0 is the term in (3.3) evaluated with P1=P10 and P2=P20. The analytical form for 

these integrals is reported in Appendix A. Regarding the first-order term of the time 

equation (3.18), as already noted in the previous section, some of the integrals in (3.20) are 

multiplied by a function of L and again integrated between L0 and L. For the term 

depending on a1, an analytical expression can be found in the form: 

 ( )
7

50
1 0 1 23

3 cos cos sinr h
t tI

a
t B Iϑ β α α

µ
= +                      (3.21) 

where: 

 ( ) ( ) ( )
( )
( )

0 0

11
1 22 2

0 0 0 0 0

1 1
   

1
t t

L L

L L

I
d d

L
I I

 
= − =  Φ Φ Φ Φ 
∫ ∫

L
L L

L L L
          (3.22) 

The analytical expressions for these integrals are also found in Appendix A. Numerical 

analysis has shown that neglecting the terms depending on P1 and P2 does not introduce a 

relevant error in the cases analysed in this paper. 

3.1.2 Constant Inertial Acceleration 

A constant acceleration in the inertial reference frame can be expressed, in the r-θ-h 

frame, as a function of the longitude L: 
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where γ0 derives from the initial acceleration azimuth α0 at L0, as: 

 0 0 0Lγ α= +                                                    (3.24) 

Note that the initial azimuth α0 and elevation β0 are expressed with respect to the r-θ-h 

frame at L0. By substituting (3.23) into (3.7), and after some manipulation, one can obtain 

an expression analogous to (3.19): 
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where the integral terms I1c1s3, I2c3 and I2s3 are given in Appendix A. Similarly, the first-

order perturbative term in the time equation translates into: 
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3.1.3 Constant Tangential Acceleration 

A constant acceleration along the tangential direction can be expressed, in the r-θ-h 

frame, as a function of the longitude L: 
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where D is expressed as: 

 ( )2 2
1 2 1 21 2 sin cosD P P P L P L= + + + +                         (3.28) 

Again, by substituting (3.27) into (3.7) one obtains: 
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              (3.29) 

D0 is simply D evaluated with P10 and P20. The three integral terms are more 

conveniently expressed with respect to the true anomaly θ and eccentricity e, assuming that 

( )0 0L ωθ Ω≈ − + : 
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where 
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The primitives of Ia, IP1 and IP2 are available in closed form and are reported in 

Appendix A. Note that, in (A.14) and (A.15) there are terms which represent incomplete 

elliptic integrals of the first and second kind, represented as E and F respectively. In this 

work, E and F are conveniently evaluated numerically using Carlson’s Duplication 

Algorithms101. Rearranging the terms in (3.29), one obtains, (omitting the expressions for 

Q1 and Q2): 
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           (3.32) 

In the case of tangential thrust, in the first order term of the time equation (3.18) one has 

terms which depend on the above mentioned elliptic integrals, which appear in (3.30). 

After some manipulations, one would obtain: 
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Expanding the terms in the integral, for example, considering only Ia (as in Eq. (A.14)), 

the following integral emerges: 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

2
0 0 00 0

2 2 2
0 0 00 0 0 0

2
0 0 0 0 00 0 0 0

2 2 2
0 00 0 0 0 0

1 2 cos sin1 1 1

1 cos 1 1 1 1 cos

1 2 cos s

4 4
, ,

2 21 1

4 4
,

in1 1
1 1 1 1 c

,
2 o21 s1

e e

e

e e e
E F

e e e e e

e e e
E F d

e e e e

e

e e

e e

θ

θ

ϑ ϑ ϑ ϑ
ϑ

θ θ
ϑ

ϑ

θ θ
θ

     + +
+ − −    

   + − + − +    

    + +
− + −    

   − + − +     

+ +

+ +

∫
 (3.34) 

 an expression for (3.18) with integral terms which have, for example, the following 

form: 
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Note that the terms 
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∫  are not available in 

closed form. Similar considerations apply to the terms in (3.32) depending on IP1 and IP2. 

Therefore, in this case, it has been chosen to numerically integrate the time equation as in 

(3.18) with a quadrature method. Numerical tests have shown that, by setting the number 

of integration nodes at 6 per revolution, adequate accuracy is achieved. 

3.1.4 J2 Perturbation 

The inhomogeneous gravity field of the Earth is usually modelled as a series expansion 

of harmonic functions whose coefficients are experimentally derived in order to match the 

observed motion of satellites. The strongest contribution to the motion of an Earth-orbiting 

satellite is given by the first zonal harmonic term, also known as J2-term98. The effect of 

the J2 term can be expressed as a perturbative term in the Gauss variational equations. In 

particular, the components of the J2 perturbation in the r-θ-h frame can be expressed as30: 
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         (3.36) 

where R is the planetary radius and G is: 

2 2
1 21G Q Q= + +                                                (3.37) 

By substituting (3.36) into (3.7) and with the procedure previously described one can 

write the first-order variation of the Equinoctial Elements due to the J2 perturbation. In a 

compact form, this can be expressed as: 
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where 2Jε  is defined as 2 2 2
2 0

J J R aε −= . G0 is G as in (3.37), evaluated with Q1=Q10 and 

Q2=Q20. The integral terms are represented as: 
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Their analytical expressions are reported in Appendix A. Note that there is no linear 

component in L in the expression of IJa (Eq. (A.17)), confirming the known result that J2 is 

not inducing any secular variation of the semi-major axis and thus the energy. There is, on 

the other hand, a short-term periodic variation of a over one orbital revolution. The 

remaining equinoctial elements (Eqs. (A.18), (A.19), (A.20) and (A.21)), present both a 

short-term periodic variation and a secular one, which is linear with respect to L. 

3.1.5 Superposition of Perturbations 

It has been assumed that the perturbing acceleration is small, and consequently that the 

variation of the orbital elements induced by this perturbation will similarly be small. For 

example, one can assume that the variation of the orbital plane due to J2 and out-of-plane 

thrust will be small and therefore the Equation (3.23) for the inertial acceleration is still 

applicable. In this sense, it is also possible to linearly superimpose the four analytical 

solutions shown in the previous sections to obtain an analytical expansion for the case in 

which these perturbations are acting together: 
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3.1.6 Accuracy of the Analytical Expansions 

This section contains an analysis of the accuracy and computational cost of the 

analytical formulae presented in the previous section. Accuracy and computational cost are 

evaluated against a numeric integration of (3.7) with different integration schemes and 

accuracies. An initial elliptical orbit, whose orbital parameters are given in Table 3.1, is 

propagated under the combined effect of J2 perturbation, an acceleration along the 

tangential direction of 10-4 m/s2 and an inertial acceleration of 10-6 m/s2 (equivalent to solar 

radiation pressure acting on a spacecraft with an area to mass ratio of 1/4.56 m2/kg at 1 

AU).  

Table 3.1: GTO orbital parameters. 

a e i Ω ω θ 

24478 km 0.73 6° 0° 0° 0° 

 

At first, the motion is propagated for an arc-length up to 2π and the performance of the 

analytical formulae is evaluated against three numerical integration schemes. This first 

analysis also provides an evaluation of the suitability of the analytical formulae as fast 

integration method to be used in the orbit averaging method introduced in Chapter 5. The 

numerical integration schemes are: a Gauss-Legendre quadrature with a number of nodes 

between 4 and 24, a Modified Euler method102 with a number of equally spaced steps 

between 4 and 16, and an 8th-order, Runge-Kutta method with 13 steps (RK8(7)13)103. 

Note that, the Modified Euler evaluates the integrand function twice per step, therefore the 

number of function evaluations is double the number of steps. For each method, the 

integration error is computed as the difference between the analytical formulae and a 

numerical integration performed with MatLab® ode113, implementing an Adams-Bashfort 

predictor-corrector method, with relative and absolute tolerances equal to 10-13. 
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a) 

 

b) 

Figure 3.2: Comparison with numerical integration: error on semi-major axis. a) Gauss-
Legendre b) Modified Euler and Runge-Kutta. 

 

a) 

 

b) 

Figure 3.3: Comparison with numerical integration: error on P1. a) Gauss-Legendre b) 
Modified Euler and Runge-Kutta. 

 

a) 

 

b) 

Figure 3.4: Comparison with numerical integration: error on P2. a) Gauss-Legendre b) 
Modified Euler and Runge-Kutta. 
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a) 

 

b) 

Figure 3.5: Comparison with numerical integration: error on time. a) Gauss-Legendre b) 
Modified Euler and Runge-Kutta. 

Figure 3.2a shows the error on semi-major axis. One can see that the Gauss-Legendre 

integration has a rather noisy behaviour already for short arc-length; only the case with 24 

nodes shows comparable accuracy to the analytical propagation. Moreover, it has to be 

noted that Gauss-Legendre quadrature will, at best, have the same accuracy of the 

analytical step since it is numerically calculating the same integral forms. Figure 3.2b 

shows a similar comparison with Modified Euler and RK8(7)13 methods and leads to 

analogous conclusions. The Modified Euler integrator gives good results only with a high 

number of steps. The RK8(7)13 scheme is extremely accurate for short arc-length, but as 

this increases, the numerical integral quickly diverges from the true solution. Figure 3.3 

and Figure 3.4 show the error on P1 and P2 and also reveal that Gauss quadrature can easily 

accumulate an error which is more than one order of magnitude larger than the analytical 

formulae. Figure 3.5 shows the error on time. In this case Gauss-Legendre quadrature with 

a high number of nodes has a slight advantage due to the fact that in the analytical 

formulae some of the terms depending on P11 and P21 are neglected. Addressing this issue 

will be the topic of future improvements.  

Figure 3.6 shows the computational cost of the different integration methods. From the 

figure, one can see that the cost of the analytical propagation is comparable with the 

Gauss-Legendre quadrature with 8 nodes or Modified Euler with 4 steps. As shown in the 

previous plots, these two methods are considerably less accurate than the analytical 

formulae, except for very short arcs. Only Gauss-Legendre with 24 nodes has comparable 

accuracy but its cost is three times that of the analytical propagation. Note that the 

analytical formulae in this comparison require the computation of relatively expensive 

elliptic integrals. If a constant acceleration in a r-θ-h frame is considered instead the 

computational cost is about a quarter of that of a constant tangential acceleration. 
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Figure 3.6: Comparison with numerical integration: computational cost. 

3.1.7 Accuracy vs. Initial Semi-major Axis and ε 

In this section, the behaviour of the error of the analytical formulae is investigated with 

respect to the initial semi-major axis and the magnitude of the perturbing acceleration. This 

is assessed by computing the error accumulated over one orbit as a function of the 

magnitude of the perturbative acceleration ε and of the semi-major axis a0 of the initial 

orbit. A number of initial Earth-centred orbits with eccentricity 0.7 and variable a0 were 

propagated with different ε, aligned along the tangential direction. Although here, for 

simplicity, only the tangential thrust case is considered, the same considerations are 

applicable also for the other acceleration patterns. Figure 3.7 shows the error on the semi-

major axis relative to a0 and as a function of a0 itself and ε. One can see that for a large 

initial semi-major axis and ε=10-3 m/s2 the error grows above 1%. However one should 

consider that 10-3 m/s2 is a performance level hardly attainable with the current Electric 

Propulsion technology. If the acceleration is instead in the range of 10-4-10-6 m/s2 the 

resulting propagation error remains below 0.001 for relatively large orbits with semi-major 

axis up to about 105 km. Note also that all orbits in the LEO to GEO class are integrated 

very accurately, with a relative error lower than 10-5. 

A similar behaviour can be observed in Figure 3.8 for P1 and in Figure 3.9 for the time t. 

The former is closely related to the orbit eccentricity and therefore it is desirable to keep 

the error per orbit below 10-5-10-6 which, as shown in the graph, can be attained in most 

cases except for high a0, large ε combinations. Figure 3.9 shows the error on time divided 

by the period of the initial osculating orbit and one can see that the perturbed orbit duration 

is also computed very accurately with the error being just a fraction of the total duration. 
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Figure 3.7: Relative error on a over one revolution w.r.t. a0 and ε. 

 

Figure 3.8: Error on P1 over one revolution w.r.t. a0 and ε. 

 

Figure 3.9: Relative error on time over one revolution w.r.t. a0 and ε. 
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3.2 Propagation over Long Arcs 

In this section, the speed and accuracy of the analytical first-order expansions is further 

assessed on the propagation of long arcs. For each of the four expansion formulae, an 

initial orbit around the Earth, with orbital parameters given in Table 3.2, is propagated 

analytically along an arc of length equal to 20 full revolutions. The difference between the 

value of the orbital elements along the propagated arc and the result of a full numerical 

integration of Gauss’ variational equations is then computed to give the errors difference 

∆a, ∆P1, ∆P2, ∆Q1, ∆Q2, ∆t. Both propagations are performed with Matlab and the 

numerical integration is performed with ode113 with relative and absolute tolerances were 

set at 10-13. 

Table 3.2: Initial orbit parameters. 

a e i Ω ω θ 

7500 km 0.1 6° 0° 10° 0° 

 

The first test assesses the accuracy and speed of formulae (3.19) and (3.21). The 

modulus of the acceleration in the r-θ-h frame is 10-4 m/s2, with α=π/2 and β=π/6. Figure 

3.10 shows that the error on the semi-major axis remains contained below 0.12 km after 20 

revolutions. 

 

Figure 3.10: Constant r-θ-h acceleration: error on semi-major axis. 

Figure 3.11 and Figure 3.12 show that the analytical approximation of P1 and Q1 is very 

close to the numerical solution with errors lower than 3∙10-7. P2 and Q2 show similar 
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Figure 3.11: Constant r-θ-h acceleration: error on P1. 

 

Figure 3.12: Constant r-θ-h acceleration: error on Q1. 

 

Figure 3.13: Constant r-θ-h acceleration: error on time. 

Figure 3.13 shows the difference on time of flight between the approximation computed 
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error by one order of magnitude with respect to the previous formulation proposed in 

Zuiani et al.46 for the same ratio of control and local gravity acceleration. Note that a good 

computation of the time is essential, in particular when one has to use this datum to 

compute the ∆V corresponding to the propagated thrusting arc. 

In this first, test the analytical propagation required 2·10-4 s compared to 0.5 s of ode113. 

However, note that a direct comparison of CPU time is rather difficult, since this value 

refers to the case in which the tolerance for ode113 is set at 10-13. On the other hand, if the 

tolerance were relaxed to 10-5 (a relative error comparable to the one of the analytical 

solutions) the CPU time for ode113 would be about 0.08 s, which is still two orders of 

magnitude slower than the analytical propagation.  

A second case was used to assess the accuracy of formulae (3.25) and (3.26). The same 

initial orbit is propagated with a 10-4 m/s2 constant acceleration in the inertial reference 

frame. Figure 3.14 shows that the error on the semi-major axis is lower than in the previous 

case (in part due to the fact that the semi-major axis has a periodic behaviour in this case).  

 

Figure 3.14: Constant inertial acceleration: error on semi-major axis. 

 

Figure 3.15: Constant inertial acceleration: error on P1. 
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Figure 3.16: Constant inertial acceleration: error on Q1. 

Similarly, Figure 3.15 and Figure 3.16 show that the approximated values for P1 and Q1 

match quite closely the numerical ones. Analogous considerations apply to P2, Q2 and t, 

the graphs of which are not reported for conciseness. 

In the third case, the orbit in Table 3.2 is perturbed with a tangential acceleration of 

ε=10-4 m/s2. Figure 3.17 shows the behaviour of the error on semi-major axis and one can 

see that, from the qualitative point of view, this is remarkably similar to the one in Figure 

3.10 for the r-θ-h acceleration. 

 

Figure 3.17: Constant tangential acceleration: error on semi-major axis. 

The same can be said for the error on P2 in Figure 3.18, which shows that the error is 

kept well below 10-6 after 20 orbits. The error on time remains below 2s, as seen in Figure 
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to the elliptic integrals, but it is still lower than for the numerical integration, at around 

8·10-4 s. 
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Figure 3.18: Constant tangential acceleration: error on P2. 

 

Figure 3.19: Constant tangential acceleration: error on time. 

Table 3.3: Initial orbit parameters. 

a e i Ω ω θ 

7197.8 km 0.1 6° 45° 10° 0° 

 

In the last case, the initial orbit in Table 3.3 is propagated under J2 perturbation only. 

Note that this orbit has a pericentre altitude of just 100km and has been chosen specifically 

to show a case in which 2Jε  is maximum. Of course, with such a low orbit, in real life one 

would have to take into account also the relevant contribution of the drag. As in the 

previous three cases, the general behaviour of the equinoctial elements shows a good 

match with the results of numerical integration. However, as shown in Figure 3.20, there is 

a slight, secular increase in the amplitude of the oscillations of the semi-major axis. Figure 

3.21 shows that the error on Q1 (the behaviour for Q2 is analogous) grows faster than in the 

other cases. If these parameters are converted to inclination i and right ascension of the 

ascending node Ω, grows faster than in the other cases, one can see that the error has a long 
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term deviation. This would negate the known result that J2 generates no secular variations 

in the inclination. While this variation is almost negligible along a single orbit, it might 

become problematic when a long integration interval is considered. Thus, a correction 

process will be introduced to mitigate the error growth in this and the other analytical 

solutions. 

 

Figure 3.20: J2 perturbation: error on semi-major axis. 

 

Figure 3.21: J2 perturbation: error on Q1. 

As underlined in Section 3.1.5, given the limited variations of the orbital elements it is 

also possible to sum the four first-order expansions seen before into a single approximated 

solution for Keplerian motion perturbed by constant tangential and inertial acceleration 

plus J2 perturbation. Figure 3.24 to Figure 3.27 show the propagation error associated to 

the combination of the three first-order expansions, for the initial orbit in Table 3.2. The 

mismatch with numerical integration is not worse than in the cases in which the 

perturbations are considered separately, confirming that the perturbative effects can be 

linearly combined. Also by comparing the error on the semi-major axis in Figure 3.20 and 

Figure 3.24, one can see that, for this specific case of a very low Earth Orbit, the main 

contribution to the error is actually given by the approximation on the J2 term. 
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Figure 3.22: J2 perturbation: error on inclination. 

 

Figure 3.23: J2 perturbation: error on Ω. 

 

Figure 3.24: Combined perturbations: error on semi-major axis. 
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Figure 3.25: Combined perturbations: error on P1. 

 

Figure 3.26: Combined perturbations: error on Q1. 

 

Figure 3.27: Combined perturbations: error on time. 
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compared the to the local gravity field. For longer spirals, however, an error control 

strategy is required to preserve accuracy even for small values of ε. 

The propagation error can be controlled by updating the reference condition E0 in Eq. 

(3.12) and (3.17) every n orbits. The update consists in taking the value for E(L) computed 

at the n-th orbit as the new reference condition E0 for the following n orbits. This 

technique, presented in Colombo et al.42, can be regarded as a rectification of the analytical 

propagation.  

The effectiveness of the technique is here demonstrated with the propagation of an 

initial circular orbit with semi-major axis 7000 km under the effect of an acceleration of 

ε=10-4 m/s2, along the tangential direction. The length of the propagation arc is equal to 

500 complete revolutions. The frequency of updates is set to n=20, leading to a total of 25 

evaluations of the analytical formulae. The analytical propagation required about 0.03 s 

while a numerical one with ode113 (Adams-Bashfort, with tolerance set at 10-13) took 

about 7 s. Figure 3.28 shows the variation of the semi-major axis and confirms that in this 

case its behaviour is almost linear. The approximation obtained with both rectification and 

averaging is very good. 

 

Figure 3.28: LEO propagation: semi-major axis. 

Figure 3.29 shows that the relative error in the semi-major axis remains below 5·10-4.  
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Figure 3.29: LEO propagation: relative error on semi-major axis. 

Figure 3.30 shows the effect of the rectification process on the error in eccentricity 

which remains below 1.2·10-5
 after 500 orbits. 

 

Figure 3.30: LEO propagation: error on eccentricity. 
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to a numerical integration with ode113-Adams-Bashfort. The computational times are 

around 0.6 seconds for the analytical and 15 seconds for ode113. 

Similarly to the previous case, Figure 3.31, Figure 3.32, Figure 3.33 and Figure 3.34 

show, respectively, the variation of semi-major axis, the eccentricity and the relative error 

on radius modulus and that on phasing. Figure 3.31 shows a very good match between the 

analytical and numerical propagations, as can also be seen in Figure 3.32 for the 

eccentricity. The match is very good up to the last few revolutions when the semi-major 

axis is very large and therefore the analytical formulae become relatively inaccurate. 

Figure 3.33 shows the relative error on the modulus of the position vector. The figures 

show that the relative error remains below 10-3 for a good part of the spiral and grows 

above 10-2 only towards the end when the semi-major axis grows above 5·104km. 

 

Figure 3.31: GTO propagation: semi-major axis. 

a) 
 

b) 

Figure 3.32: GTO propagation: eccentricity. a) entire trajectory b) close up of last orbits. 
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Figure 3.33: GTO propagation: relative error on radius. 

 

Figure 3.34: GTO propagation: phasing error. 

3.3 Conclusions 

This chapter has presented a set of analytical solutions for propagating low thrust 

trajectories under the effect of different perturbing acceleration. In particular, the proposed 

approach is suitable for treating constant acceleration in the r-θ-h reference frame, constant 

tangential acceleration, constant inertial acceleration, and J2 perturbation. The accuracy of 

the analytical solutions was shown to be suitable for the propagation of relatively long 

trajectory arcs around the Earth, if the control acceleration level is comparable to the one 

delivered by current EP engines or other propulsion means falling in the LT class. The set 

of formulae presented here are the starting point for all the subsequent techniques 

presented in this dissertation. In particular, in the next two chapters, two additional 

techniques will be proposed, that will further enhance the scope of application of the 

analytical formulae. 
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Chapter 4.Direct Finite Perturbative Element 

Transcription Method  

In this chapter, a direct transcription method for the design of optimal low-thrust 

transfers with constraint conditions at the boundaries is presented. The trajectory is 

decomposed into a number of finite elements, along each element, the orbital motion is 

propagated with the analytical formulation presented in Chapter 3. The trajectory is 

assumed to be an ε-variation of a Keplerian arc, where ε is a ‘small’ acceleration term due 

to the low-thrust action. A fast transcription of the trajectory into a nonlinear programming 

problem is thus obtained, the accuracy of which is controlled by the number of elements, 

assuming that every trajectory element remains a first order ε -variation of a Keplerian arc. 

It will be shown how this approach is particularly suitable to solve orbital rendezvous 

problem, such an Earth-Mars, direct transfer. Moreover, thanks to its computational 

efficiency, it can also be used for the solution of computationally demanding Multi-

Objective optimisation problems, where both the mass of propellant and the transfer time 

need to be minimized. This chapter is organised as follows: Section 4.1 will define the 

2PBVP and Section 4.2 will introduce the proposed transcription method to solve it. 

Section 4.3 will present the case study of an Earth-Mars transfer. The present method is 

also employed in conjunction with MACS2 to perform a ∆V vs. time-of-flight analysis for 

a given launch window. 

4.1 Problem Definition 

Recalling the formalism used in Section 3.1, let one assume that the state of a spacecraft 

as in orbital motion around a central body is defined in Equinoctial elements as: 
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From Eq. (3.2) the orbital motion, in vector form, can be expressed as: 

 ( )= , , , ,f t ε α βX Xɺ                                               (4.2) 
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If one takes ε as the acceleration modulus delivered by a controllable engine along the 

directions defined by the angles α and β, the problem is to find the control law that satisfies 

the boundary conditions: 
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                                                  (4.3) 

with tf=t0+ToF and ToF the time of flight, while minimizing the total ∆V of the transfer: 

 ( )
0
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t

V t dt∆ ε= ∫                                                 (4.4) 

In mathematical terms the problem can be formulated as a typical Two-Point Boundary 

Value Problem as follows: 
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4.2 Finite Perturbative Element Transcription 

The key idea is to exploit the set of analytical formulae presented in Chapter 3 for the 

propagation of the orbital motion. However, they cannot be directly applied to the solution 

of problem (4.5), because in the analytical formulae, the control acceleration has to be 

constant along the integrated trajectory arc. Furthermore, there is no independent control of 

the accuracy and of the arc length. In order to overcome these two issues the trajectory is 

decomposed into finite elements, each one representing an arc of prescribed amplitude. On 

each element, an approximated solution to Eqs. (4.2) is computed by means of the 

perturbative approach. In particular, it is chosen to use the set of equations (3.25) and 

(3.26) for the constant acceleration in the r-θ-h reference frame. This set has been preferred 

to those for the tangential reference because it basically offers the same degree of 

flexibility at a lower computational (as mentioned in Section 3.1.6) cost since no elliptic 

integrals are to be computed numerically. All the elements are then linked together to form 

the complete trajectory. In analogy to Direct Finite Element Transcription104,20, this novel 

transcription approach is called Direct Finite Perturbative Element Transcription (DFPET) 

method. A similar transcription method can be found in the work of Sims and Flanagan26. 

The approach of Sims and Flanagan makes use of a zero-order approximation of the 

perturbed Keplerian motion by decomposing the trajectory into n sub-arcs, with each sub-
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arc describing a leg of unperturbed Keplerian motion. The change in momentum due to a 

continuous thrust is lumped into ∆V discontinuities at the edges of each sub-arc. The main 

advantage resides in the fast closed-form computation of each Keplerian arc and its 

variation with respect to the states at the beginning of the arc. By analogy, in DFPET the 

simple Keplerian model with discrete ∆V impulses is replaced by a first-order perturbed 

Keplerian model with constant thrust along each sub-arc (see Figure 4.1). 

 

Figure 4.1: LT Direct Finite Perturbative Element Transcription Method. 

In DFPET, the i-th arc of amplitude ∆Li is defined by the following quantities: Xm, the 

six Equinoctial parameters at the mid-point of the arc and the three control parameters ε, α 

and β. To obtain the boundary points of the element, the perturbed motion is analytically 

propagated backward and forward along a subarc with amplitude ∆L/2. The mid-point 

along the arc ∆L is chosen as the base-point for the analytical propagation to improve 

accuracy, since the error increases superlinearly with amplitude of the arc and is 

proportional to ε (see Figure 4.7). Thus, a dual-sided propagation in the form: 
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                                (4.6) 

provides a better accuracy than a single forward one over the arc-length of equivalent total 

length ∆L. All arcs are then interconnected by imposing matching conditions at their 

boundaries (see Figure 4.2). The proposed dual-sided propagation is different from what is 

usually done in other Multiple Shooting methods, in which the propagation is carried out 

only forwards. 
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Figure 4.2: DFPET with centred reference node. 

4.2.1 Accuracy Analysis 

In order to test the integration accuracy of the Perturbative Finite Element Transcription, 

the backward and forward integration over a single arc was run for a wide range of time 

intervals, a constant transversal acceleration of 2.5∙10-5m/s2 and an initial circular orbit at 

1AU from the Sun. Time intervals ranged from 0.5 up to 100 days. Note that the centred 

reference node of the Perturbative Finite Element was adjusted in order to match, at the 

lower boundary, the above mentioned conditions of a 1AU heliocentric circular orbit. For 

each element size, the computed final state (i.e. the one at the upper boundary) was 

compared against the result of the integration of Eqs. (3.2) with a simple implementation of 

the Modified Euler Method102, and the MatLab® function ode113 (that implements a 

variable-order Adams-Bashforth-Moulton Predictor-Corrector method). Other algorithms 

of the ode family (e.g. ode45) were also tested, and ode113 was chosen as being the fastest 

among them for a given accuracy requirement. The numerical integration was started from 

the lower boundary of the Perturbative Finite Element. The required relative and absolute 

accuracies were both set at 10-13, in order to have a very accurate solution to which to 

compare the results of the propagation with DFPET and the Modified Euler Method. Thus, 

the results of ode113 were used as a reference to compute the relative error on the final 

state as shown in Figure 4.3 and Figure 4.4. Moreover, CPU time for the case in which 

ode113 is allowed to use relaxed tolerances (both set at 10-3) is also included in Figure 4.4 

for a further comparison. 
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Figure 4.3: Error on final state w.r.t. DFPET size for a heliocentric orbit. 

 

Figure 4.4: CPU cost w.r.t. DFPET size for a heliocentric orbit. 

In these tests, the DFPET transcription displays second-order behaviour with respect to 

temporal size of the element and a good accuracy even with a relatively large size of the 

element (see Figure 4.3). It should be noted that, in this test, the perturbation force is 

equivalent to a thrust of 0.5 N continuously acting on a 2000 kg spacecraft. This means 

that the ratio between the perturbative acceleration and the local gravity is relatively high. 

Finally, the DFPET method has a computational cost only marginally higher than the 

Modified Euler method (see Figure 4.4) but still at least one order of magnitude lower than 

the numerical integration with ode113, even with relaxed tolerances. 

A similar test was carried out also by propagating a perturbed LEO orbit for an element 

size ranging from 0.5 to 5 days, roughly equivalent to 50 revolutions. 

10
−1

10
0

10
1

10
2

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

∆t [days]

R
el

at
iv

e 
er

ro
r

Accuracy Vs. Finite Element size: error on final state

 

 

DFPET
Modified Euler

10
−1

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

∆t [days]

C
P

U
 T

im
e 

[s
ec

]

CPU cost Vs. Finite Element size

 

 

DFPET
Modified Euler

ode113 (Tol=10−13)

ode113 (Tol=10−3)



98 
 

 

Figure 4.5: Error on final state w.r.t. DFPET size for LEO propagation. 

 

Figure 4.6: CPU cost w.r.t. DFPET size for LEO propagation. 

Here the advantage of the analytic propagation is even more evident, as it outperforms 

the Modified Euler Method (see Figure 4.5), and is at least 60 times faster than the 

numerical integration with ode113 (see Figure 4.6). This is easily explained by the fact that 

in LEO the gravitational force of the Earth is many times higher than the perturbation force. 

It should also be noted that the analytic propagation is able to provide an accurate estimate 

even with only one (or even a fraction of) Finite Element per revolution.  

Finally, a simple test was performed to evaluate the accuracy with respect to the ratio 

between the thrust acceleration and the local gravitational force. An initial circular low 
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acceleration and the results were again compared against the numerical integration of the 

same orbit arc with ode113.  The relative error in the final state is shown in Figure 4.7. 

 

Figure 4.7: Error on final state w.r.t. thrust-gravitational force ratio. 

4.2.2 Solution of the 2PBVP Orbit Transfer Problem 

The DFPET approach can now be applied to the solution of problem (4.5), leading to 

the following  system of nonlinear algebraic equations: 
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The decision variables are the control vector components and the first five equinoctial 

elements of the midpoint of each arc. The vector u in Eqs. (4.7) collects all the values of 

the control vector components for all the arcs. Equality constraints are given by the 

matching condition between adjacent sub-arcs. The first and last sets of rows in eqC  contain 

respectively the boundary conditions on the initial and final state and the last row contains 

the constraint on the time of flight: the required time of flight ToF  has to match the one 

computed from the sum of the times of flight of the single sub-arcs as 
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( )1
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ToF t t t∆ −
= =

= −= ∑ ∑ . Note that continuity conditions with respect to the longitude 

are automatically satisfied since all the analytical expressions for the variation of the 

equinoctial elements are already parameterised with respect to L. Therefore, the matching 

constraints apply only to the remaining five equinoctial elements. Furthermore, the total 

longitude ∆Ltot covered by the trajectory arc is easily determined as 

0
0

FPET

tot f

n

i
iL L L L∆ ∆

=

== − ∑ . It should also be noted that, to increase the number of complete 

revolutions of the trajectory, it is sufficient to increase Lf, and thus ∆Ltot, by multiples of 2π. 

In the current implementation only a uniform mesh (with respect to L) was considered.  

Limits on the maximum delivered thrust are introduced as limits on the maximum 

perturbative acceleration. This is not entirely correct since, in fact, while the maximum 

thrust is constant, the maximum acceleration available gradually increases with time due to 

a gradual decrease of spacecraft mass. However, for the sake of the calculations in this 

paper, this approach is acceptable and allows for directly enforcing a reasonable upper 

limit on a decision variable. 

Problem (4.7) was solved by means of the MatLab® function fmincon, implementing a 

Sequential Quadratic Programming (SQP) method. Given nFPET sub-arcs, the problem has 

8nFPET decision variables and 8(nFPET+1)+1 scalar equality constraints. Because each 

control element is decoupled from the others, the Jacobian matrix is highly sparse with the 

structure shown in Figure 4.8. The figure shows an example with 10 sub-arcs, i.e. with 80 

variables and 56 scalar constraints. Size of the full matrix is thus 4480 but it has only 800 

non-zero elements. 

The sparsity pattern could be divided in three main regions: the left diagonal band, the 

right diagonal band and the lowermost row. The first corresponds to the derivatives of the 

constraints between adjacent sub arcs (as in Eqs. (4.7)) w.r.t. the modulus, azimuth and 

elevation of the thrust acceleration of each sub-arc. The band is composed by five-by-three 

sub-matrices each of which is basically the Jacobian of the first five Equinoctial elements 

at the lower (or upper) boundary as a function of ε, α, β. The two zero elements within each 

sub-matrix correspond to the derivatives of Q1 and Q2 w.r.t. α which are always nil as can 

be easily seen, for example, from Eqs. (3.19). 

The second region corresponds to the derivatives of the matching constraints with 

respect to the reference nodes. Here again one can see a band structure with five-by-five 

sub-matrices. The two zero elements are in this case the derivatives of the semi-major axis 

w.r.t. Q1 and Q2. 
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Finally, the lowermost row is composed of the derivatives of the time of flight w.r.t. to 

all the variables. 

 

Figure 4.8: Sparsity pattern of the Jacobian of the constraint function. 

4.3 Case Study: Low-Thrust Earth-Mars Transfer 

To test the proposed transcription method on a realistic transfer problem, a rendezvous 

transfer from Earth to Mars is considered. The problem is first as a simple boundary value 

problem and subsequently as a Multi-Objective problem using MACS2. 

4.3.1 Earth-Mars Rendezvous Boundary Value Problem 

For the simple boundary problem solution, the objective is that of finding a ∆V optimal 

transfer between Earth and Mars departing from Earth at t0=5600 MJD2000, with a time of 

flight of 1095 days, and with 2 complete revolutions. Maximum acceleration was set at 

2.5∙10-8 km/s2, equivalent to a thrust of 0.5 N applied to a 2000 kg spacecraft. Initial guess 

was given by a constant, transversal thrust profile of magnitude half the maximum 

acceleration. The orbit was modelled with 20 Finite Elements. The problem was solved 

with the fmincon active-set algorithm, with a tolerance of 10-8 both on constraint 

satisfaction and optimality condition. 

The solution obtained has a total ∆V of 5.6388 km/s. In order to check the accuracy of 

the analytical solution, the optimal thrust profile was numerically integrated forward in 

time to calculate the final state. The relative error between analytical and numerical final 

state was 3∙10-3.  
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Figure 4.9: Comparison of the optimized trajectories. 

 

Figure 4.10: Thrust modulus for Earth-Mars LT transfer. 

 

Figure 4.11: Acceleration azimuth α for Earth-Mars LT transfer. 
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Figure 4.12: Acceleration elevation β for Earth-Mars LT transfer. 

 

Figure 4.13: Variation of Keplerian Elements for Earth-Mars LT transfer: a. 

 

Figure 4.14: Variation of Keplerian Elements for Earth-Mars LT transfer: e. 
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Figure 4.15: Variation of Keplerian Elements for Earth-Mars LT transfer: i. 

 

Figure 4.16: Variation of Keplerian Elements for Earth-Mars LT transfer: Ω. 

 

Figure 4.17: Variation of Keplerian Elements for Earth-Mars LT transfer: ω. 
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Figure 4.10 shows the time history of the thrust modulus while Figure 4.11 and Figure 

4.12 show its azimuth and elevation respectively. Note that, for ease of visualization of the 

thrusting or coasting arcs, the angles have been plotted as equal to zero when the 

corresponding thrust modulus is zero. The thrust profile displays a typical on-off structure 

with four thrusting arcs concentrated around the pericenter and apocenter. The azimuth 

angle (see Figure 4.11) is almost constantly at 90º, which translates into a quasi-transverse 

in-plane component of the thrust. The small out-of-plane component (see Figure 4.12) is 

due to the small change in inclination between departure and arrival orbit. Figure 4.13 to 

Figure 4.17 show the time history of the Keplerian elements during the transfer. The semi-

major axis increases monotonically (see Figure 4.13), with the largest variations along the 

first and last thrusting arcs. The inclination (see Figure 4.15) shows also a similar pattern, 

while the eccentricity (see Figure 4.14) remains constant at about 0.17 for most of the 

transfer and then decreases to about 0.1 to match the  eccentricity of the arrival orbit.  

Note that, the discontinuities in both the plots of Ω and ω (see Figure 4.16 and Figure 

4.17 respectively) are due to the small initial inclination that causes numerical problems in 

the derivation of the Keplerian elements from the equinoctial non-singular elements. There 

is no mismatch in the value of the equinoctial elements instead.  

The same problem was solved with an implementation of the Sims and Flanagan 

method, and with DITAN, an optimal control solver based on a direct transcription with 

Finite Elements on spectral basis104,20. As for the DFPET solution, 20 sub-arcs were used 

to transcribe the transfer problem with Sims and Flanagan and the resulting nonlinear 

programming problem was solved with fmincon setting the tolerance for both constraint 

satisfaction and optimality condition to 10-8. 

DITAN uses SNOPT105  as nonlinear programming solver. A first solution was 

computed with 12 finite elements and the result was then improved by increasing the 

number of elements to 19. The maximum constraint violation was set to 10-8 and the 

required optimality to 10-6. 

Table 4.1: Performance comparisons for three different LT optimisation methods. 

 FPET S&F DITAN 
DITAN 

(refined) 

Elements 20 20 12 19 

∆V [km/s] 5.6388 5.6859 5.6429 5.5401 

Iterations 63 240 4602 11064 

tCPU [sec] 10.88 21.37 1045.3 3582.73 
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Table 4.1 summarises optimisation results for the three different methods and shows 

that both the DFPET and Sims and Flanagan give reliable first guess figures for the ∆V 

cost of the transfer. On the other hand, it also shows the inherent advantages of the DFPET 

method compared to Sims and Flanagan. While the total ∆V of the former is only 

marginally better, its required number of fmincon iterations, and thus CPU time, is much 

lower. Moreover, if one considers the trajectory shape (see Figure 4.9) and thrust modulus 

(see Figure 4.10) and angles (see Figure 4.11 and Figure 4.12), the DFPET solution 

compares well with the solution given by DITAN. In this sense, the FPET solution could 

be considered as a good sub-optimal solution of this transfer problem. 

4.3.2 Multi-Objective Earth-Mars Transfer Design 

Given its computational efficiency it is also possible to extend the field of application 

by using the proposed transcription method to solve a Global, Multi-Objective (MOO) 

Optimisation problem for trajectory design. As a first example, a simple direct, rendezvous 

transfer problem between Earth and Mars is considered. The aim is to find the transfers 

that are Pareto optimal with respect to the Time of Flight and the total ∆V, within a certain 

range of departure dates and transfer times. The optimisation parameters in this case are 

simply the departure date t0, the ToF and the number of revolutions around the Sun. 

MACS2 was used to generate a number of decision vectors. Then, for each decision vector, 

problem (4.7) is solved with fmincon. The boundary conditions for the solution of problem 

(4.7) are given by the ephemeris of the Earth at t0 and those of Mars at (t0+ToF). The 

boundaries of the search space for the decision vector of the MOO problem are reported in 

Table 4.2. 

Table 4.2: boundaries for optimization parameters for MO Earth-Mars transfer problem. 

 Lower Upper 

t0 [MJD2000] 5000 5779.94 

ToF [days] 100 1500 

nrev 1 3 

 

The number of revolutions is handled by MACS2 as a real variable and then is rounded 

to the nearest integer towards minus infinity when solving problem (4.7). The trajectory 

was transcribed with 20 finite perturbative elements. The constraints violation and 

optimality tolerances for fmincon where slightly relaxed compared to the tests in the 

previous sections, with the former set to 10-6 and the latter to 10-4. 
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The MACS2 algorithm was run for 40000 function evaluations. The results of four 

different runs were combined to extract a good approximation of the Global Pareto Front. 

Figure 4.18 and Figure 4.19 report the solution points in the parameter space and the 

Pareto front respectively. 

 

Figure 4.18: Parameters of the solutions for MO Earth-Mars LT transfer problem. 

 

Figure 4.19: Pareto front for MO Earth-Mars LT tran sfer problem. 

The Pareto front presents some discontinuities, which are due to the discrete variable 

nrev. In particular, the solutions with ToF up to 1000 days are all with only one complete 

revolution, while those with ToF between 1000 and 1400 days make two complete 

revolutions and finally the few over 1400 days make three complete revolutions. Figure 

4.20 to Figure 4.27 show the trajectories and corresponding control profiles for three 

different sample solutions extracted from the Pareto set and reported in Table 4.3: 
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2. The solution in the central part of the Pareto Front. 

3. The solution with minimum ∆V. 

The solution at the knee of the Pareto front: the solution is similar to 1 albeit with a 

lower ∆V and slightly higher ToF. 

Table 4.3: Summary of the four sample solutions. 

Sample 1 2 3 4 

t0 [MJD2000] 5737.01 5606.82 5222.81 5779.94 

t0 [UTC] 16/09/2015 

12:16:16.32 

09/05/2015 

7:41:13.92 

20/04/2014 

7:33:18.72 

29/10/2015 

03:21:36.00 

ToF [days] 439.21 704.25 1500 462.86 

nrev 1 1 3 1 

∆V [Km/s] 7.9338 5.6474 5.6047 5.6902 

 

The minimum ToF trajectory (see Figure 4.20) reaches Mars in almost exactly one 

revolution. On the other hand, this requires continuous engine operation for almost the 

whole transfer, as shown in Figure 4.21, which also translates into a ∆V cost of 7.93 km/s. 

Note that solutions with a lower ToF could be possible, for nrev lower than 1. 

 

Figure 4.20: Sample solution 1: trajectory. 
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Figure 4.21: Sample solution 1: acceleration modulus. 

 

Figure 4.22: Sample solution 2: trajectory. 

 

Figure 4.23: Sample solution 2: acceleration modulus. 
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The second trajectory reaches Mars in 704 days, with one revolution and a half and with 

three separate thrusting arcs (see Figure 4.22 and Figure 4.23). This allows for a better ∆V 

cost of 5.65 km/s. 

 

Figure 4.24: Sample solution 3: trajectory. 

 

Figure 4.25: Sample solution 3: acceleration modulus. 
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to the minimum ToF solution, see Figure 4.26, but due to its higher ToF the total ∆V cost is 

lower. The thrust profile in Figure 4.27 shows three separate thrusting arcs with a lower 

total thrust time compared to Figure 4.21. 
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Figure 4.26: Sample solution 4: trajectory. 

 

Figure 4.27: Sample solution 4: acceleration modulus. 
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trajectory has a ∆V of 54.9 m/s. The accuracy is 10-5, a truly remarkable result considering 

the high number of revolutions. 

 

Figure 4.28: Acceleration modulus ε for LEO-ISS LT transfer. 

 

Figure 4.29: Acceleration azimuth α for LEO-ISS LT transfer. 

Figure 4.28 and Figure 4.29 show the time history of the acceleration modulus and 

azimuth respectively (the elevation plot has been omitted since it is constantly null). The 

acceleration azimuth (see Figure 4.29), is almost constant at 90º, revealing a predominantly 
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(see Figure 4.31) shows a net increase during the transfer to reach the eccentricity of the 

arrival orbit, albeit it also has a periodic component during the thrusting spirals. 

 

Figure 4.30: Variation of Keplerian Elements for LEO-ISS LT transfer: a. 

 

Figure 4.31: Variation of Keplerian Elements for LEO-ISS LT transfer: e. 
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orbital elements, like the argument of perigee. The obvious solution would be to increase 

the number of trajectory up to at least 4 per revolution, although there would still remain 

the issue that this would by no means guarantee their proper positioning w.r.t. the apsidal 

points. Optimisation instances with a higher number of trajectory elements were tried, but 

there was an unacceptable increase in the computational time and too often fmincon did not 

manage to converge to a feasible solution at all. These computational issues are only 

exacerbated when one considers that typical transfers in Earth orbit (e.g. LEO to GEO, as 

shown in the following chapter), normally have hundreds of revolution, which would lead 

to an intractable number of the degrees of freedom, if the approach described in this 

chapter is used. The following chapter will therefore propose an alternative approach for 

tackling this class of trajectory optimisation problems. 

4.4 Conclusions 

This chapter presented a novel numerical approach for Low Thrust trajectory 

transcription. The novel approach makes use of a first-order analytical solution of Gauss’ 

planetary equations. The first order analytical solution was demonstrated to provide a fast 

and relatively accurate propagation of the perturbed Keplerian motion under the effect of a 

constant thrust. The first order approximation was implemented in a finite element 

formulation for the solution of two-point boundary value problems that was proven to be 

more computationally efficient and accurate than other state of the art methods. 

Furthermore, it was demonstrated how its computational efficiency makes the novel 

transcription method suitable for the solution of Global and Multi-Objective Optimisation 

problems for LT trajectory design, in which the 2PBVP needs  to be solved thousands of 

times. 

A limitation of the technique presented here is that it is ill suited for modelling transfers 

with many revolutions around the central body. In such a case, one is confronted with the 

dilemma of either accepting a large increase in the number of design parameters, which 

would make the optimisation problem computationally very expensive, or accepting too 

coarse a discretisation of the trajectory, which in contrast decreases the quality of the 

solution. Therefore, the next chapter will present rather different techniques specifically 

target at long spiralling transfers. 
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Chapter 5.Many-revolution, Low-Thrust Transfers 

In this chapter, various techniques are proposed, for treating many-revolution LT 

transfers with discontinuous control profiles. In particular, an averaging technique is 

proposed to fast propagate many-revolution transfers under the effect of optimised low-

thrust arcs, J2, light pressure and eclipses. While the examples in Chapter 3 dealt with 

continuous thrust profiles, in this chapter more general control profiles are considered. A 

simplified control parameterisation is used to define the thrusting pattern, which ensures 

enough flexibility to describe complex Low Thrust spirals. The effect of the shadow 

regions due to solar eclipse is also included in the model. The chapter also presents an 

application to the optimal design of a low-thrust spiral to transfer a spacecraft from an 

elliptical to a circular orbit around the Earth. Finally, an example of application to the de-

orbiting of space debris from Medium Earth Orbit (MEO) with a combination of Electric 

Propulsion and Solar Radiation Pressure is shown. The chapter is organised as follows: 

Section 5.1 will present the proposed model for discontinuous control profiles; Section 5.2  

will introduce the proposed averaging technique. These techniques will be then tested in 

the cases of Section 5.3. Finally, Section 5.4 will discuss in more detail the above-

mentioned application of these techniques to the de-orbiting of MEO satellites. 

5.1 Discontinuous Control Profiles and Eclipses 

In the numerical tests presented in Chapter 3, a simple continuous acceleration was 

considered. This section proposes a simple approach to introduce bang-zero-bang control 

profiles and eclipses. 

 

�

�

�

2�La
2�Lp

Apogee 

Thrusting 

arc 

Coasting 

arcs 

Perigee 

Thrusting 

arc 

Orbital 

motion 



116 
 

Figure 5.1: Control pattern. 

The interest is in the class of low-thrust transfers whose quasi-optimal control 

corresponds to two thrust arcs. For this class of transfers, each revolution can be divided 

into 4 sectors, as shown in Figure 5.1: a perigee thrust arc, an apogee thrust arc and two 

coasting arcs in between. The former, of amplitude ∆Lp, is meant to alter the radius of the 

apocenter, while the latter, of amplitude ∆La, alters the radius of the pericenter. The 

combined effect of the two thrust arcs can be used to control the inclination and the 

argument of the pericentre. The variation of the orbital elements along the thrusting arcs is 

computed with the analytical formulae. A plane change is realised introducing a non-zero 

elevation angle βp and βa. The amplitude of the arcs ∆Lp and ∆La, and the angles βp and βa, 

are the quantities to be controlled to match the desired terminal conditions. When a 

constant thrust is required for each arc, the mass of the spacecraft mf at the end of a thrust 

arc can be estimated assuming the control acceleration ε is constant along the thrust arc: 

0sp

t

I g
f im m e

ε∆−

=  (5.1) 

where mi is the mass of the spacecraft at the beginning of the thrust arc. The new mass 

is then used to recompute the control acceleration for the next thrust arc. This introduces a 

small underestimation of this acceleration, as in reality the latter will increase continuously 

over time as the mass is consumed.  

 

Figure 5.2 Evolution of the thrust acceleration with respect to a reference initial value. 

The evolution of the thrust acceleration during a thrusting arc is well described by the 

equation: 
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where ε0 is the acceleration for ∆t=0 . As shown in Figure 5.2, the increase of the 

acceleration w.r.t. a reference value is rather small for high Isp, being only 1-2% after a few 

days of thrusting. The error on the magnitude of the thrust acceleration directly translates 

into an error on the orbital elements and, in this sense, one could also estimate that the 

latter will be roughly half the error on the acceleration at the end of propagated arc. This is 

due to the quasi-linear behaviour of the error shown in Figure 5.2, which means that the 

average error on the acceleration during the thrusting arc is roughly half the error at the 

final time. Moreover one has to consider that, given the control strategy in Figure 5.1, a 

single propagated arc will typicall cover a fraction of a revolution, which, in Earth orbit 

has a period between a few hours and a few days. In light of this, the resulting error is 

therefore a fraction of a percent and is deemed acceptable in the scope of the present work. 

5.1.1 Eclipse Modelling 

In the case of long, multi-revolution transfers, the effect of a solar eclipse might be 

considerable if one takes into account the fact that, for example, during an eclipse the 

operation of an Electric Propulsion system will, most likely, have to be interrupted due to 

limitations on power generation and storage. Moreover, eclipses change due to the 

combined effect of the motion of the Earth around the Sun and the variation of orbit size 

and orientation due to engine thrust and other perturbative effects. In the case of a full 

numerical integration, eclipses are computed by checking shadow conditions at each step 

and eventually activating or deactivating some kind of eclipse flag. This leads to 

discontinuities in the integrand function. In an analytical approach, like the one here 

proposed, one can however exploit the fact that the entrance and exit points of the shadow 

cone (for the sake of simplicity, no distinction is made between umbra and penumbra 

conditions) can be computed beforehand and then the thrusting arcs can be updated 

accordingly. Other authors have already proposed a similar approach, see for example 

Kechichian33, in which orbits with eccentricity up to 0.2 are considered; Colombo and 

McInnes106 also applied a similar method but limited to the planar case. In this work, a 

cylindrical model for Earth’s shadow is adopted (see Figure 5.3), which is perfectly 

adequate in the case of a spacecraft in Earth orbit.  
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Figure 5.3: Shadow model. 

In order to identify the eclipse entry and exit points one has to find the true anomalies of 

the geometrical intersections between the cylinder and the osculating orbit. The 

mathematical formulation of this problem can be found in Escobal107 and Vallado108 and 

will not be repeated here. Starting from the osculating orbital elements and the current 

Sun-Earth vector, this formulation leads to a quartic equation in cosθ, which can be solved 

either analytically by means of Ferrari’s method, as is done in this work, or numerically 

with a root-finding algorithm. Note that out of the 4 roots of the quartic polynomial, two 

are spurious. Once the shadow entry and exit points are known, one can correct the 

thrusting and coasting arcs as shown in Figure 5.4.  

 

Figure 5.4: Thrust pattern with eclipse region. 

Apart from identifying the shadow regions, this formulation also allows one to 

analytically compute the time spent in the shadow region, tecl, for each orbit. 
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5.2 Orbital Averaging 

In Chapter 3, a set of analytical formulae for propagating the perturbed Keplerian 

motion was proposed. As a further step, it is proposed to use these formulae to compute the 

average variation of the orbital elements over a complete revolution and to numerically 

propagate the average orbital elements, as it is done in classical averaging techniques (see 

Ferrier and Epenoy39,40 and Tarzi et al.109). In the proposed averaging technique, the 

variation of the orbital elements is given by: 
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      (5.3) 

where E  represents the vector of the averaged orbital elements. ∆E2π is the net 

variation of the orbital elements computed over a complete revolution and T2π is the 

corresponding period. In most orbit averaging techniques, ∆E2π is computed by numerical 

quadrature of Gauss’ planetary equations over the true anomaly (or longitude). Here ∆E2π 

is provided by the evaluation of the analytical formulae at L=2π. As shown in Section 

3.1.6, this is advantageous in terms of computational cost for a comparable accuracy. The 

terms pL∆ , aL∆ , pβ  and aβ  are the control parameters mentioned in Section 5.1 and are 

computed as a piecewise linear interpolation with respect to time, from nnodes nodal values, 

uniformly spaced within the limits of the transfer period. For example, in the case of pL∆ , 

one can write: 

( ) ( ), ,p inter pp pL t f t∆ = t ∆L                                      (5.4) 

where ∆L p is a vector containing the nnodes nodal values, tp is the vector which collects 

the corresponding times at which the nodal values are specified, and finterp defines a 

piecewise linear interpolation. 

An additional equation describes the evolution of the averaged mass: 
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where ∆m2π is computed in discrete steps for each thrusting arc with Eq. (5.1). With a 

generic control profile as described in Section 5.1, at each revolution one would have to 

perform as many analytical propagations as the number of thrusting and coasting arcs. One 

can argue that in such a case, the cost of the analytical propagation might no longer be 
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advantageous compared to other methods. To assess this, a test analogous to that of Section 

3.1.6 was performed, in which the motion is propagated for one revolution under the effect 

of a tangential thrust for an arc of length 2/3π, followed by a coasting arc of length π/3 

(with J2 only), another propelled arc of length 2/3π, and finally another coasting arc of 

length π/3. Therefore, there are 4 separate propagations to be performed with the analytical 

formulae. This is an interesting case as it mimics the case of a bang-zero-bang control as 

described in Section 5.1. The accuracy and computational cost of the analytical solution 

are compared to a fully numerical integration performed with Gauss-Legendre quadrature, 

which, in the tests in Section 3.1.6, appeared to be the most competitive method in terms of 

accuracy and CPU cost. Two slightly different techniques are tested: in the first one, the 

motion is propagated without splitting the integration interval in the three discontinuous 

points; in the second one, the orbit is split into four intervals (as is done for the analytical 

propagation) and Gauss-Legendre quadrature is applied to each of them. The number of 

nodes for each interval is chosen such that the number of nodes is comparable to the first 

case when a single integration is performed. In particular, quadrature formulas 16 and 24 

nodes have been tested for the single interval case; for the split interval case, three 

combinations of 5+5+5+5, 7+3+7+3 and 6+6+6+6 nodes were tested. 

Figure 5.5 and Figure 5.6 show the error on semi-major axis, P1, P2 and time. Even in 

this case, the analytical propagation is more accurate than the numerical quadrature. Only 

the Gauss-Legendre quadrature with 6+6+6+6 nodes displays a comparable or better error 

on the semi-major axis (see Figure 5.5a), although it fares worse in the other cases. 

Interestingly, 7+3+7+3 has a low error on time during the last arc (see Figure 5.6b) 

although the other errors are quite high. As already underlined in Section 3.1.6, Gauss-

Legendre with 24 nodes has a slight advantage on the calculation of time. However, both 

Gauss-Legendre with 16 nodes and Gauss-Legendre with 24 nodes show a considerable 

sensitivity to the positioning of the integration nodes when a discontinuous perturbation is 

treated within a single interval. In fact, as can be seen in Figure 5.5 and Figure 5.6, the 

accuracy periodically improves with the length of the integration arc. In terms of 

computational cost (see Figure 5.7) only Gauss-Legendre with 16 nodes is cheaper than the 

analytical propagation, while the others are more expensive. These tests confirm the 

advantage of the analytical propagation, even in the worst case of a propagation arc of 

length 2π with discontinuities. 
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a) b) 

Figure 5.5: Comparison with numerical integration on discontinuous arcs: a) error on semi-
major axis b) error on P1. 

a) b) 

Figure 5.6: Comparison with numerical integration on discontinuous arcs: a) error on P2 b) 
error on time.  

 

Figure 5.7: Comparison with numerical integration on discontinuous arcs: computational 
cost. 
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5.3 Applications 

5.3.1 Spiralling with Solar Radiation Pressure and Eclipses 

This section presents a comparison between the averaged solution and the rectified 

solution for the case of a long term propagation of an initial planar elliptical orbit (as in 

Table 5.1) under the combined effect of a thrust acceleration along the tangential direction, 

solar radiation pressure (SRP) and Earth oblateness (J2 effect). 

Table 5.1: Initial orbit parameters. 

a e i Ω ω θ 

20000 km 0.5 6° 0° 0° 0° 

 

The initial mass of the spacecraft is 1000 kg, and it is assumed that the engine delivers 

10-2 N at a specific impulse of 3000 s. The cross section area used to compute the SRP 

acceleration is 1200 m2, a value chosen so that the resulting force is about half of the thrust 

of the engine. At departure, the Sun lies at the Summer Solstice point. The propagation 

time is set to one and a half years. The SRP direction is considered to be constant along an 

orbit, therefore allowing the use of the formulas in (3.25) for a constant inertial 

acceleration. The secular variation in the Sun-Earth direction is used to update the direction 

of the inertial acceleration. Moreover, eclipses are introduced with the methodology 

detailed in Section 5.1.1 and the consequent thrust interruptions are accounted for. The 

averaged propagation is performed with MatLab® ode23 which implements a Runge-Kutta 

integration method. The results are compared to a full numerical integration with ode113, 

and to the analytic propagation with rectification every orbit if no eclipse occurs or two 

times per orbit if an eclipse is present. The CPU time required by the averaged analytic 

propagation was 1.2 s while the full numerical integration required about 100 s. The 

rectification required about 7s, showing the additional advantage of the analytic averaging 

approach. Figure 5.8a shows the long-term, monotonic increase of the semi-major axis due 

to the tangential thrust. Figure 5.8b shows a close up of a portion of the curve. The dashed 

curve represents the full numerical integration, the dotted curve represents the analytical 

propagation with rectification and the solid curve the average solution. Note that the 

analytical formulas are evaluated only at the end of each revolution and at the transition 

out of the eclipse. The full numerical integration displays a short-term oscillation of a, due 

to J2 and SRP, a secular increment over a revolution. The averaged solution captures 

accurately the secular components while the analytical solution with rectification keeps 



123 
 

track of the periodic components, although in the figure only the value of the semi-major 

axis at the eclipse times is plotted. 

 

Figure 5.8: Spiralling with SRP: a) semi-major axis; b) Close-up. 

Figure 5.9 shows the long term variation of orbital eccentricity due to the combined 

effects of tangential thrust and SRP. Tangential thrust alone would produce a monotonic 

decrease of the eccentricity, however, SRP adds a long-term oscillatory component that is 

linked to the rotation of the Sun-spacecraft vector. SRP also produces a small long term 

deviation of the inclination due to the relative angle between the Ecliptic plane and the 

Equatorial plane, in which the initial orbit lies, as shown in Figure 5.10. 

  

Figure 5.9: Spiralling with SRP: eccentricity. 
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Figure 5.10: Spiralling with SRP: inclination. 

5.3.2 GTO to GEO Orbit Circularisation 

The previous section demonstrates the advantage of using the proposed analytical 

formulae for the long propagation of spirals with discontinuous control profiles and 

eclipses together with their use in conjunction with orbit averaging. In this section a further 

example will demonstrate how to combine the control parameterisation presented in 

Section 5.1 with orbit averaging to circularise an initial GTO into a GEO in a specified 

transfer time. The initial orbit parameters are as in Table 5.2.  

Table 5.2: Initial orbit parameters. 

a e i Ω ω θ 

24505.9 km 0.725 7° 0° 0° 0° 

 

The target orbit is a GEO with zero-inclination, therefore a plane change of 7° is also 

required. The time specified for the transfer is 225 days. Engine thrust is 0.35 N, with a 

specific impulse of 2000 s. The initial mass of the spacecraft is 2000 kg and mass 

consumption is also taken into consideration during the transfer using Eq. (5.1). Four nodes 

each are used to model the variation of ∆Lp, ∆La, βp and βa, leading to a total of 16 

optimisation parameters. The total ∆V is minimised while matching the final semi-major 

axis, eccentricity and inclination, obtained through the analytical propagator, with those of 

the target orbit: 
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This is basically a single-shooting, direct collocation method. The MatLab® fmincon-

sqp algorithm is used to solve Problem (5.6). The optimisation converges in 8 iterations 

and 25 seconds (on a Windows 7 platform), and the optimised solution has a ∆V cost of 

1.78 km/s. This result compares well with that given, for an identical test problem, by the 

solver MIPELEC (see Ferrier and Epenoy40), which returns a ∆V cost of 1.68 km/s in about 

14s of computational time on a UNIX-based Sun workstation. To compare the 

computational times, one has to consider that MIPELEC is written in FORTRAN77 and a 

MatLab code is usually at least one order of magnitude slower than an equivalent 

FORTRAN code. 

 

Figure 5.11: Orbit circularisation: semi-major axis. 

Figure 5.11, Figure 5.12 and Figure 5.13 show the variation of semi-major axis, 

eccentricity and inclination respectively. It can be seen that all quantities change 

monotonically from their initial values to the target ones. 

 

Figure 5.12: Orbit circularisation: eccentricity. 
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Figure 5.13: Orbit circularisation: inclination. 

Figure 5.14 shows the variation of perigee and apogee and it is interesting to see that the 

perigee rise gradually increases in speed. There is also a slight increase in the apogee 

radius due to the amplitude of the apogee thrusting arc which is compensated for in the last 

part of the transfer by a perigee arc (see Figure 5.15), with thrust in the negative tangential 

direction. Note that, these behaviours are consistent with the results shown in Geffroy and 

Epenoy39 and Tarzi et al.109, even if here a much more simplified model has been used. 

 

Figure 5.14: Orbit circularisation: perigee and apogee. 
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Figure 5.15: Orbit circularisation: thrusting arc l ength. 

Figure 5.16 shows the thrust azimuth α and elevation β in the t-n-h reference frame for 

the perigee and apogee thrusting arcs. It shows that the apogee arc always has a positive 

tangential component (i.e. energy-increasing), while the opposite is true for the perigee one 

since it has to compensate for the apogee altitude increase. The plane change effort is 

concentrated at the apocentre with an out-of-plane component around 15°. Note that the 

contribution of perigee thrusting to the plane change is only during the final part of the 

circularisation. 

 

Figure 5.16: Orbit circularisation: thrust azimuth and elevation. 
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Table 5.3 MEO orbit parameters for GNSS constellation. 

a [km] e i [deg] m0 [kg] 

29600 0 55.3 1000 

 

This section, presents the parametric analysis of some Low Thrust disposal options for 

satellites in Medium Earth Orbit (MEO) combining Electric Propulsion and Solar 

Radiation Pressure (SRP). The mass and orbit characteristics of a Galileo-type (GNSS) 

navigation satellite are taken as a reference for all the analyses in this section (see Table 

5.3). The objective is that of lowering the perigee of a spacecraft flying on an orbit defined 

by the orbital elements in Table 5.3, down to an altitude of 200 km at which the 

atmospheric drag can rapidly lead to a re-entry of the object into the atmosphere. Note that, 

the spacecraft mass in Table 5.3, is assumed to include the EP system as well as the 

propellant required for the deorbiting. The engine’s specific impulse is assumed to be 3000 

s, which is typical for state-of-the-art Electric Propulsion systems. 

From a system design point of view, it is interesting to analyse the electric thruster 

performance requirements (in particular the thrust level) as a function of the required de-

orbit time. Moreover, the analysis will explore the effect of combining SRP, by means of 

an area-to-mass ratio (A/m) augmenting device, with EP. 

The evolution of the GNSS orbit over time under the effect of a low-thrust action is 

propagated with the orbital averaging technique developed in Section 5.2. For each 

revolution the thrust is applied two times, around the pericentre and around the apocentre 

respectively. The thrust vector is aligned with the velocity vector when thrusting around 

the pericentre and opposite to the velocity vector with thrusting around pericentre. 

Moreover, both the apocentre and pericentre thrusting arcs have the same semi-amplitude 

∆LEP. This thrusting strategy has the combined effect of decreasing the pericentre and 

increasing the orbit eccentricity. In order to compute the thrust FEP to achieve the desired 

pericentre altitude in a given time ∆tdeorb, one has to solve the following non-linear 

equation in FEP: 

( ), , 200peri deorb EP EPh t F mL k=∆∆                            (5.7) 

where hperi is the final achieved perigee altitude. This simple one-dimensional problem was 

solved with a bisection method.  
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5.4.1 De-orbit with Electric Propulsion  

In this section, the GNSS de-orbiting is analysed considering EP propulsion only. The 

required thrust is derived for a range of de-orbiting times between 0.25 and 25 years and a 

range of thrusting arc amplitudes between 30° (one-sixth of an orbit) and 180° (i.e. a full 

orbit). Figure 5.17 shows the required engine thrust to achieve the required pericentre 

altitude in a range of times between 0.25 and 2.5 years, for different amplitudes of the 

apogee/perigee thrusting arcs. One can see that, if the thrust is applied continuously for the 

full orbit (ochre line), the required thrust level is around 0.4 N for the minimum time of 

0.25 years and is 0.05 N for 2.5 years. Even in the first case, the required thrust is within 

the capabilities of current EP systems. Note also that the required thrust level decreases 

exponentially with the deorbit time, and thus shows a linear behaviour if plotted in a 

logarithmic scale (see Figure 5.18). Thrusting for a full orbit is less mass efficient, as 

shown in Figure 5.19, since the required propellant mass ∆m, 85 kg, is some 60% higher 

than in the case in which the thrust is applied only for one sixth of each revolution (blue 

line). On the other hand, in this latter case, the required thrust is 1.05 N, which is more 

than double than the full orbit case.  

 

Figure 5.17: De-orbit analysis for deorbit times between 0.25 and 2.5 years: required engine 
thrust. 
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Figure 5.18: De-orbit analysis for deorbit times between 0.25 and 2.5 years: required engine 
thrust, logarithmic scale. 

 

Figure 5.19: De-orbit analysis for deorbit times between 0.25 and 2.5 years: propellant 
consumption. 
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Figure 5.20: De-orbit analysis for deorbit times between 2.5 and 25 years: required engine 
thrust. 

 

Figure 5.21: De-orbit analysis for deorbit times between 2.5 and 25 years: required engine 
thrust, logarithmic scale. 
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Figure 5.22: De-orbit analysis for deorbit times between 2.5 and 25 years: propellant 
consumption. 

Figure 5.20, Figure 5.21 and Figure 5.22 show analogous results for deorbit times 

between 2.5 and 25 years. The behaviour of the required thrust level is very similar to that 

of the previous case, although the values are one order of magnitude smaller. Note, 

however, that the propellant mass is basically constant with respect to the deorbit time, as 

shown in Figure 5.19 and Figure 5.22. 

5.4.2 De-orbit with EP and SRP 

This section considers the case in which the EP and the SRP are concurrently used to 

deorbit a spacecraft from MEO. The key idea is that of exploiting SRP, in order to 

naturally increase the orbit eccentricity, as suggested in past works by Colombo, Lücking 

at al.110,111,112 This can be achieved thanks to the fact that, in Earth orbit, SRP produces a 

secular oscillation of the eccentricity, with a period of about one year. The amplitude of the 

oscillations depends mainly on the initial semi-major axis and eccentricity and on the area-

to-mass ratio. It is clear that, if the area-to-mass ratio is large enough the pericentre of the 

orbit can be brought down to the required value within one year. However, this normally 

requires relatively large reflective surfaces. A way to reduce the area is to exploit the SRP 

only for the six months it induces a positive variation of the eccentricity.  

If the SRP is used in conjunction with electric propulsion the strategy can be similar to 

that adopted in Section 5.4.1 but this time the contribution of SRP is also added to the 

propagation for the six months it is active. The orbital propagation is performed with the 

averaging approach described in Section 5.3.1 including the effect of eclipses as illustrated 

in Figure 5.23. 
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Figure 5.23: Thrusting pattern with SRP and eclipses. 

Figure 5.24, Figure 5.25 and Figure 5.26 show the required thrust and mass for a 

spacecraft with a reference area-to-mass-ratio of 1 m2/kg. The results are plotted against 

the EP only case analysed in Section 5.4.1. 

 

Figure 5.24: De-orbit analysis for deorbit times between 2.5 and 25 years: required engine 
thrust. Solid line: EP only. Dash line: EP+SRP. 
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Figure 5.25: De-orbit analysis for deorbit times between 2.5 and 25 years: required engine 
thrust, logarithmic scale. Solid line: EP only. Dash line: EP+SRP. 

 

Figure 5.26: De-orbit analysis for deorbit times between 2.5 and 25 years: propellant 
consumption. Solid line: EP only. Dashed line: EP+SRP. 
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is compensated by an increase of the mass of the area augmentation device and related 

mechanisms. 

 

Figure 5.27: Deorbit analysis for 12 years. EP requirements vs. area to mass ratio: required 
engine thrust. 

 

Figure 5.28: Deorbit analysis for 12 years. EP requirements vs. area to mass ratio: propellant 
consumption. 
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the proposed approach was applied to the optimal design of long spirals with terminal 

constraints. The test cases examined in this chapter have confirmed the efficiency and 

accuracy of the proposed techniques. The case dealing the de-orbiting of MEO satellites, in 

particular, showed their flexibility in propagating the motion under the combined effect of 

engine thrust and orbital perturbation, and for a very long interval, up to 25 years. The 

good accuracy displayed in the experimental tests and the fast propagation speed make the 

proposed analytical theory particularly suitable for the global Multi-Objective optimisation 

of low-thrust spirals, as will be shown in Chapter 6 and Chapter 7. In particular, the next 

chapter will extend the de-orbiting of space debris from a single piece to multiple objects  
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Chapter 6.Multi-Objective Design of Debris Removal 

Missions 

The novel treatment of low-thrust spirals developed in the previous chapters and the 

MOO algorithm developed in Chapter 2, will be here applied to the design of a multi-target 

optimal disposal sequence for space debris in Low Earth Orbit. Two slightly different 

variants of the proposed low-thrust control model are used for the two main phases of a 

debris removal mission, i.e. the rendezvous with the target object and the de-orbiting 

trajectory. Furthermore, the chapter introduces a novel technique that builds a surrogate 

model of the de-orbiting arcs, which helps considerably in reducing the computational cost 

of evaluating a candidate solution. The chapter is organised as follows: Section 6.1 will 

give an overview of strategies for Debris removal, while Section 6.2 will briefly outline the 

IBSC concept and in particular will outline how to compute the thrusting acceleration 

generated on a given target object; Section 6.3 will analyse an hypothetical mission profile 

for the removal mission and most important, Subsections 6.3.1 and 6.3.2 will present in 

detail the proposed trajectory models. Section 6.4 will then show how the mission design 

problem can be then translated into as a series of Multi-Objective optimisation problems 

which are solved with a stochastic optimiser. The results are then presented and discussed. 

6.1 Space Debris Removal Strategies 

One of the most critical issues related to the exploitation of Space around the Earth is 

the threat posed by space debris. Since the beginning of the space era in the late 1950s, an 

increasing number of man-made, inert objects has been orbiting the Earth. Recent statistics 

revealed around 15000 trackable objects, for a total of some 6000 tons of material. Some 

of these objects are simply spent upper stages of launch vehicles, some others are satellites 

which are no longer active due to failures or to having reached their end of life. Others, 

however, are the results of past collisions. It is easy to imagine that even a single collision 

between two objects is likely to generate tens of smaller objects as a result. The outcome of 

a collision in an already crowded environment could generate a cascade of collisions 

generating an exponentially increasing volume of space debris. In fact, the debris produced 

by a collision is itself likely to collide with other objects, thereby producing other debris 

which will generate further collisions, and so on. This chain reaction, known as the Kessler 

Syndrome113, occurs once the rate of generation of debris due to collisions or simple 
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human-driven additions, exceeds the natural debris removal rate. According to Kessler, this 

reaction is likely to be ignited once the object density in a certain orbital band reaches a 

critical point; once started, it will probably render most spacecraft in that orbital band 

useless within a matter of months or years. 

Recent guidelines issued by international spacer regulatory institutions such as the 

United Nations Committee for the Peaceful Uses of Outer Space (COPUOS)114 and the 

Inter-Agency Space Debris Coordination Committee (IADC)115 prescribe some actions to 

be followed by national or private agencies putting satellites into orbit in order to mitigate 

debris growth. For example, it is demanded that every new mission in Low Earth Orbit 

(LEO) must be planned such that the satellite itself must re-enter in the Earth’s atmosphere 

within 25 years after the end of the mission. Alternatively, for higher orbits like 

Geostationary orbits, the requirement is for the spacecraft to be placed on a higher 

graveyard orbit. Measures like these, even if strictly applied (and at the moment 

compliance with them is on a voluntary basis) are only likely to slow down the 

accumulation of space debris around the Earth. Therefore, active removal actions will 

probably be needed in the near future to eliminate at least the most dangerous objects.  

There have been various proposals on how to remove inert objects from space. They can 

be generally classified in two major groups: contactless and with direct physical contact. In 

the latter category one can find methods based on some form of docking with or capturing 

the object. Once the removing spacecraft and the piece of debris are attached, the latter is 

dragged into a re-entry trajectory or to a graveyard orbit. Technical problems related to the 

attitude state of motion of the piece of debris and the fragility of appendices and cover 

material (including paint) make this removal solution complicated. A potentially 

interesting solution is represented by Project ROGER116, developed by EADS/Astrium 

with the support of ESA. Among contactless solutions on can find what is commonly 

referred to as the space broom117. It entails irradiating the target object with a high-power 

laser which will induce sublimation of the surface material; the ejecta plume will then 

generate a low thrusting acceleration which will slowly degrade the debris’ orbit until it 

reaches an altitude where atmospheric drag will accelerate its re-entry. Such a technique 

has the advantage that no physical contact is required, on the other hand current proposals 

envisage the use of lasers installed on Earth and beaming through the atmosphere. The 

beam collimation and thrust time is therefore limited and this solution is effective for 

small-sized objects only. Recent proposals have demonstrated that the use of in-space 

lasers systems might be more interesting even to remove larger objects118. Other proposals 

involve for example the use of electrodynamic tethers119, inflatable balloons120, which are 
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meant to be lightweight and efficient but require, however, the physical attachment of the 

device to the target object and are therefore of difficult application to existing debris. 

A recent idea simultaneously proposed by Bombardelli et al.121, Bonnal et al.122 and 

JAXA123 suggested the use of a collimated beam of ions generated by a spacecraft flying in 

formation with the piece of debris. In the following of the chapter, this concept will be 

called Ion Beaming Spacecraft (IBSC). The effect of the ion beam is that of producing a 

thrusting force, equal in magnitude but opposite in direction, on both the IBSC and the 

piece of debris. This force will induce a thrusting acceleration which can be controlled in 

order to modify the orbit of the piece of debris. A second ion engine is then fired in a 

direction opposite to the first one in order to keep the IBSC at a constant distance from the 

piece of debris. Among the advantages of this concept is the fact that it employs already 

existing and proven technologies; it does not require any contact with the target, and the 

fact that a single spacecraft can be used to fetch and deorbit multiple pieces of debris. In118 

one can find a similar concept that uses concentrated solar light instead of ions to generate 

a thrust and modify the orbit of debris. 

Assuming a scenario in which a single IBSC needs to de-orbit multiple pieces of debris, 

one would need to solve an interesting mission design problem: the optimisation of the de-

orbit sequence and trajectories for multiple target objects in minimum time and with 

minimum propellant. In the hypothetical mission scenario which is analysed in this work, it 

is assumed that a number of pieces of debris have been shortlisted as priority targets due to 

the threat they pose to satellites operating in LEO. For example Johnson et al.124 propose 

some criteria to choose the object whose removal will be most effective to mitigate the risk 

of collisions. They underline that an effective removal strategy must be targeted first to 

large objects in crowded orbits up to 1500 km. Thus, a removal mission by means of an 

IBSC is planned to be launched from the Earth. Its task is that of removing five objects 

lying on different low Earth orbits. The design of such a mission is a complex optimisation 

problem, because it requires the computation of multiple low-thrust, many-revolution 

transfers. Therefore, this case study proposes an approach to the fast estimation and 

optimisation of the cost and time duration of the fetch and de-orbit sequences, adopting a 

MOO approach. 

6.2 Ion Beaming System 

As shown by Bombardelli et al.121, the concept behind the Ion Beaming Spacecraft is 

relatively simple and envisions employing a spacecraft provided with two sets of Ion 

engines mounted along the same axis but in opposite directions (see Figure 6.1). The jet 
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from one of the sets will be directed towards the piece of debris and will exert a thrusting 

force Fp1 on it. Due to Newton’s third law, an opposite force of same magnitude will also 

act on the spacecraft itself, but this component will be balanced by the thrust Fp2 provided 

by the other set of Ion engines. 

 

Figure 6.1 Ion Beaming Spacecraft. 

Since it is necessary to keep the Shepherd spacecraft at a constant distance from the 

debris, the thrust Fp2 shall be such that the second derivative of the distance d between the 

two spacecraft is null: 
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Note that in Eq. (6.1) the acceleration terms due to the gravity of the central body have 

been neglected since it is assumed that the debris and the Shepherd are in close proximity 

and arranged in a leader-follower configuration. A more accurate and detailed modelling of 

the proximal motion dynamics of these two bodies is beyond the scope of this study. Thus, 

in the following sections, the IBSC-debris combination will be treated as a point mass, in 

order to apply two-body dynamics. By rearranging the terms in Eq. (6.1) one obtains: 
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Under the assumption that the total propulsive power of the IBSC Ptot is constant and 

that the total propulsive thrust is proportional to it Ftot, one can write: 
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Therefore, the maximum acceleration acting on the IBSC-debris combination can be 

computed as a function of the total available thrust Ftot: 

 
1

2
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IBSC debr
d d IBSC

F F

m m m
ε − = =

+
                                    (6.5) 

It is assumed here to have a 1000 kg IBSC with a total available thrust of 0.5 N. Such a 

high thrust would correspond to a substantial power and propulsion system mass, however 

this is deemed realistic if one considers that the payload of the IBSC is in fact its 

propulsion and power systems. Hence, the propulsion and power systems might be 

oversized compared to other applications in which ion engines are used for propulsion only. 

Note that the validity of the methodology proposed in this paper would not be affected 

even if lower thrust levels were considered.  Thus, in this case, considering for example an 

800 kg debris, the magnitude of the acceleration, would be 1.923·10-7 km/s2. If one 

considers instead the spacecraft alone, the acceleration achievable would be slightly higher, 

5·10-7 km/s2. Given this order of magnitude, the thrust acceleration can be considered as a 

perturbative force compared to the Earth’s gravitational force and therefore the analytical 

approach to the propagation of the LT motion can be applied. 

6.3 Mission Profile 

The objective of this study is that of optimising the performance and cost of a debris de-

orbiting mission performed by a single spacecraft. As mentioned in the introduction, it is 

assumed that there are five pieces of debris of different masses and lying in circular orbits 

with different radii and orientations. It is assumed that, the IBSC departs from a low-Earth 

parking orbit, rendezvous with the first object, transfer it to an elliptical re-entry orbit, 

rendezvous with the second object, transfers it to a second elliptical re-entry orbit, and so 

on and so forth until all five pieces of debris are removed. One important issue is defining 

in which order the pieces of debris need to be de-orbited. In the following all possible 

sequences are generated a priori and optimised one by one.  

Each fetch and de-orbit operation is split in two phases: 

•A de-orbit phase, in which the perigee of the orbit of the piece of debris is lowered 

such that the orbit will decay naturally in a relatively short time. In this study it is assumed 

that this condition is met if the perigee altitude of the debris’ orbit is equal or lower than 

300 km. 

•A transfer phase, in which the IBSC rendezvouses with the next piece of debris (which 

lies on a circular orbit), after having abandoned the current piece of debris on an orbit with 

a 300 km perigee altitude. 
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Given the magnitude of the available thrust acceleration, both phases require a spiral 

orbit transfer. If a direct transcription approach is used to optimise each spiral the number 

of parameters that needs to be defined is very high leading to high computational times. 

The latter fact would make the solution of a Multi-Objective optimisation of all possible 

de-orbiting sequences computationally intractable. Thus, in this study a simplified, highly 

efficient, trajectory model is proposed for each one of the two phases. 

6.3.1 De-orbiting Trajectory Model 

The objective of the de-orbiting phase is that of lowering an initial circular orbit such 

that its perigee is equal or below 300 km, which basically translates into a perigee lowering 

manoeuvre. Therefore, it is appropriate to assume that in general, as soon as the initial 

circular orbit becomes slightly eccentric, one keeps thrusting around the apogee in order to 

lower the perigee. The thrust level will also be kept at its maximum in order to minimize 

gravity losses. Moreover, since the de-orbit condition is independent of the final orbit’s 

orientation, one can reasonably assume that the perigee lowering will be performed in-

plane. In this sense, the only Keplerian parameters which need to be altered are the semi-

major axis and eccentricity. With reference to Gauss’ variational equations as in Eq. (3.2), 

in the case of small eccentricity, a good suboptimal thrust direction can be obtained by 

thrusting around apogee with aθ as the only non-zero component of the thrust acceleration. 

Under these assumptions, one obtains a thrusting pattern very similar to the one in Section 

5.1, albeit here there is the apogee thrusting only and the direction is aligned with the 

transverse rather than the tangential direction, as in Figure 6.2. 

 

Figure 6.2 Thrusting arc around apogee with thrust directed along transverse direction 

The motion around the apogee thrusting arc can therefore be propagated with the 

formulae in Eq. (3.19). As explained above, the only non-zero component of the 
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acceleration will be aθ and since the aim is obtaining a decrease of the orbit energy it will 

also be in the negative direction. Therefore the acceleration azimuth will be α=-π/2 and the 

elevation β=0 (since, as already mentioned, the motion will be within the initial orbit 

plane). Note also that, since there is no out-of-plane acceleration component, Q11 and Q21 

are identically zero in this case. Thus, the set of formulae for propagating an apogee 

thrusting arc can be summarised as: 

1

1 1 11

2 2
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  

E E f   (6.6) 

where La is the apocentre longitude, L- and L+ are the longitudes at the start and end of 

thrusting respectively. ∆La is the semi-amplitude of the apogee thrusting arc. In a similar 

manner, the thrusting time is computed from Eq. (3.17) as: 

 ( )0 1, 2 2 , ,0
2thrust a a a at t L L L t L
πε  = − ∆ ∆ + ∆ − 

 
                   (6.7) 

Since the thrust magnitude and direction are fixed, the only free control parameter is the 

semi-amplitude ∆La for each orbit. In order to keep the number of decision variables to a 

minimum, the semi-amplitude for each orbit is computed from a piece-wise linear 

polynomial interpolating a limited number of ∆La,i over a number of orbits. The nodes 

∆La,i are equally distributed between orbit 1 and an arbitrary number of orbits (in this paper 

1200 was found to be adequate). In this paper the number of interpolating nodes was 

limited to 2: ∆La1 and ∆Laf.  

In order to evaluate the time and ∆V needed to de-orbit a piece of debris from its initial 

orbit with semi-major axis adebr0, given a set of decision (or control) parameters ∆La1 and 

∆Laf, the following procedure was implemented: 

1. Compute the set of initial Equinoctial parameters L0 and [ ]0 0 10 20

T

debra P P=E  

where P10 and P20 will be null due to the fact that the initial orbit is circular. 
2. Initialise the number of orbits, the total ∆V and time of flight to zero: 

 

0

0

0

orbitN

V

ToF

=
∆ =

=
 

3. Set 0
− =E E  and 0coastL L= . 

4. Initialise the mass of the IBSC: 

 0IBSC IBSCm m=  
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5. While Norbit is smaller than Norbitsmax: 

a.  1orbit orbitN N= +  

b. Interpolate the amplitude of the thrusting arc in the current orbit, i.e. ∆La 
and compute a aL L L− = − ∆  and a aL L L+ = + ∆ . 

c. Compute the acceleration εIBSC-debr acting on the IBSC-debris 
combination from Eq. (6.5). 

d. Compute the time of flight tcoast spent coasting from Lcoast to L-. 
e. Compute the Equinoctial parameters after the thrusting arc E+ as in Eq. 

(6.6). 
f. Compute the current perigee radius rp and if this is lower than the 

threshold 300pr km=  proceed to step 6, otherwise proceed to step g. 

g. Compute the thrusting time tthrust from Eq. (6.7) and update the total ∆V 
cost: 

 IBSC debr thrustV V tε −∆ = ∆ +                           (6.8) 

h. Update the total time of flight: 

 coast thrustToF ToF t t= + +                              (6.9) 

i. Update the IBSC mass: 

 ( )
0

2 exp 2IBSC debr thrust
IBSC IBSC debr debr

sp

t
m m m m

I g

ε −
 

= + − −  
 

           (6.10) 

j. Set − +=E E  and coastL L+=  

6. Back-track the value of the longitude Lf for which p pr r=  and compute the 

related and tthrust from Eq. (6.7) and update ToF and ∆V accordingly. Compute 
the Equinoctial parameters Ef at Lf from Eq. (6.6). 

At this point one gets the ∆V, the time of flight ToF and the semi-major axis and 

eccentricity of the final orbit (which are easily computed from Ef). It is important to note 

that, given the simplifications introduced, once one sets the initial mass and orbit of the 

piece of debris, and the characteristics of the IBSC propulsion system, i.e. Ftot and Isp, the 

de-orbit depends exclusively on the mass of the IBSC mIBSC0 at the beginning of the de-

orbit phase and the interpolating values for ∆La, i.e. ∆La1 and ∆Laf. Therefore, it was 

decided to pre-compute the corresponding ∆V and ToF for a given set of these three 

parameters and for each piece of debris (i.e. for each mdebr and adebr0). Table 6.1 reports 

upper and lower bounds for mIBSC0, ∆La1 and ∆Laf. and the number of samples taken, 

equally distributed. 

Table 6.1 Bounds and number of samples for the de-orbit parameters 

 mIBSC0 ∆La1 ∆Laf 

Lower bound mdry+100=350kg 0 0 

Upper bound mlaunch=1000kg π π 

Samples 8 50 50 
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Given the limited number of decision variables, for each piece of debris, one has 20000 

de-orbit instances to propagate. Since each instance requires typically 1·10-2 s of CPU time, 

with a code implemented in MatLab® and running on a 3.16 GHz, 4 GB desktop PC 

running Windows 7®, the whole computation can be completed in roughly five minutes. 

The set of de-orbit ∆V and ToF is then used to build a response surface, or surrogate model, 

of the de-orbiting process. Figure 6.3a and Figure 6.3b show examples of two-dimensional 

surface, respectively for ∆V and ToF, with respect to a fixed mIBSC0 of 300 kg. One can see 

that the two quantities show opposite trends, the ∆V being high when the ToF is low and 

vice versa. Figure 6.4a and Figure 6.4b show the final semi-major axis and eccentricity 

respectively. Note that the minimum ToF transfer corresponds to a quasi-circular spiralling 

trajectory in which the IBSC is thrusting continuously. On the other hand, the minimum 

∆V transfer corresponds also to the one with maximum final eccentricity. 

 

Figure 6.3 a) ∆V and b) ToF surfaces with respect to ∆La1 and ∆Laf for mIBSC0=300kg, 
adebr0=7128km and mdebr=1200kg mIBSC0=300kg, adebr0=7128km and mdebr=120kg 
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Figure 6.4 a) final semi-major axis and b) eccentricity after de-orbit with respect to ∆La1 and 
∆Laf for mIBSC0=300kg, adebr0=7128km and mdebr=120kg 

Now it is desirable that the surrogate model returns the ∆V cost as a function of mIBSC0, 

mdebr, adebr0 and ToF. From the available data relating the ∆V and ToF to the decision 

variables ∆La1 and ∆Laf one can derive the functional relationship between ∆V and ToF. 

Given a triplet mIBSC0, mdebr, adebr0, each ToF value defines a level curve on the ∆La1 and 

∆Laf plane (see Figure 6.3a), which can be mapped into a set of ∆V values (see Figure 

6.3b). Within this set, one can take the element with minimum ∆V. Thus, for each time of 

flight, between a minimum and a maximum, one can derive the corresponding minimum 

∆V cost. A similar procedure is followed to find the functional relationship between the 

final semi-major axis and the ToF. Note that there is no need to do the same for the 

eccentricity given the fact that the final perigee radius is fixed at pr  and therefore the final 

e can be computed from the final a. In this way one can build the two surrogate models: 
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Figure 6.5 3D Plot of surrogate models for, adebr0=7128km and mdebr=120kg: a) ∆V; b) af 

Figure 6.5a and Figure 6.5b show examples of tri-dimensional plots (mIBSC0-ToF-∆V 

and mIBSC0-ToF-af respectively) created by evaluating the surrogated models keeping adebr0 

and mdebr fixed. In Figure 6.5a one can see that there is a large plateau region 

corresponding to large time of flights and a smaller region close to the minimum ToF 

where the de-orbit cost increases very steeply and the final semi-major axis in Figure 6.5b 

similarly decreases. The complete procedure for the creation of the interpolated de-orbit 

cost models requires few minutes of CPU time and once completed allows for a very fast 

estimation of the de-orbit cost. The surrogated models will be extremely useful in the 

Multi-Objective optimisation of debris removal sequences as it will be shown in the 

following sections. 

6.3.2 Orbit Transfer Model 

According to the scenario presented in Section 6.3, after having left the debris on a re-

entry orbit, the IBSC will have to transfer to the orbit of the next debris and rendezvous 

with it. The design of such a transfer arc would normally require the solution of a time-

fixed 2PBVP, which would be computationally very expensive given the high number of 

control parameters and constraints involved. A second simplified model was then created 

to quickly estimate the cost of a low-thrust multi-revolution orbit transfer with boundary 

constraints. The approach and assumptions presented in this section are similar to those 

already introduced for the de-orbit model. 

First, given the limited acceleration provided by low thrust propulsion systems, one 

should consider that the orbit transfer will require a high number of multiple revolutions 

around the Earth, typical in the range of hundreds to few thousands. In this sense, it is 
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possible to argue that achieving the proper phasing to transfer from the initial to final orbit 

would not be a major issue. Even a small variation of ω and θ per revolution would be 

sufficient to attain the required orientation to rendezvous with the piece of debris. 

Moreover, it is important to bear in mind that, in order to de-orbit the previous debris in the 

sequence, the IBSC, started from a circular orbit which was subsequently modified into an 

elliptical one with perigee pr . Thus it would be also possible to conveniently adjust the 

start point of the de-orbit procedure from the circular orbit in order to obtain the proper 

phasing once this is completed. For all these reasons, it is assumed that in this particular 

case, the phasing problem will have a negligible effect on the ∆V and time required to 

rendezvous with the next piece of debris in the sequence. Therefore, in the following it is 

assumed that it is not necessary to match the arrival ω and θ computed with the simplified 

model with those of the target object. Matching the target inclination i and RAAN Ω, 

instead, cannot be ignored without introducing a considerable error in the ∆V cost. In order 

to match the inclination and RAAN difference, one need to take into account only the 

geometric angle between planes of the initial and final orbits, which is given by: 

 ( ) ( ) ( )( )0 0 0arccos cos cos sin sin cosf f fii i i iπ π+= − − − Ω −∆ Ω        (6.12) 

Thus in order to account for ∆i, the inclination of the initial orbit is fictitiously set to 

zero, while the final one is set at ∆i. The matching of the RAAN is assured by performing 

the circularisation properly. The assumption is that the deorbiting of one piece of debris 

starts at a true anomaly such that the resulting elliptical orbit has the line of apses 

perpendicular with the line of the nodes of the following piece of debris. Since the orbits of 

the debris are assumed to be circular, it is always possible to start the deorbiting at the right 

true anomaly with minimum delay. This hypothesis will be discussed in more detail with 

some numerical examples in Section 6.4. 

With these assumptions, the main issue in designing the multi-revolution transfer will 

be that of achieving the required change in the apogee and perigee radiuses in order to 

match those of the final orbit, and to achieve the required rotation of the orbit plane.  

The control pattern adopted (shown in Figure 6.6) is therefore very similar to the one 

seen in Section 6.3.1, but with the addition of a perigee thrusting arc, in order to affect the 

apogee altitude. The in-plane thrust component is again purely transverse but this time can 

have either positive or negative sign ( 2α π= ± ) depending whether the perigee (or 

apogee) needs to be raised or lowered. Since a plane change is required, the out-of-plane 

component of the thrust acceleration can be non-zero. Thanks to this the control parameters 

can be reduced to the semi-amplitude of the apogee and perigee thrusting arcs, ∆La and 
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∆Lp, the sign of the θ component of the thrust acceleration (i.e. the sign of 2,a pα α π= ± ) 

and the out-of-plane component in the same arcs, βa and βp. Define ∆Lthrust as half the total 

thrusting arc length and r t as the ratio of ∆Lthrust which is devoted to apogee thrusting. In 

order to have a parameterisation which accounts also for the sign of αa and αp the following 

one is proposed: 
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with 

[ ]
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L
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π π∈ −
∈

∆
 

To define the actual values of ∆Lthrust and rt in each revolution, an interpolating strategy 

with respect to time as described in Section 5.1 is adopted. Again the number of 

interpolating nodes can be chosen arbitrarily and is set to 2 in this case, ∆Lt1, ∆Ltf, r t1, rtf. 

For βa and βp, it is chosen to have a constant value along the entire transfer. The thrusting 

pattern along each revolution is shown in Figure 6.6. 

 

Figure 6.6 Thrusting arcs around apogee and perigee 

Given a set of control parameters 1 1t tf t tf a pr rL L β β∆ ∆    a multi-revolution 

transfer with specified duration ToF , departing from an orbit defined by [ ]0 0 0
T

a e  and 
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targeted to an orbit defined by f

T

f ia e ∆   , is propagated according to the following 

procedure: 

1. Compute the set of initial Equinoctial parameters L0 and 

[ ]0 0 10 2 10 200

T
a P P Q Q=E . Q10 and Q20 will be zero since the initial 

inclination is arbitrarily set to zero. 
2. Compute the set of target Equinoctial parameters 

21 2 1

T

f f f f ffa P P Q Q =  E . Note that 1fP  and 2fP  will be zero since in 

this case the target orbit is a circular one. 
3. Initialise the total ∆V and Time of flight to zero: 

 
0

0

V

ToF

∆ =
=

 

4. Set 0p
− =E E  and , 0coast aL L= . 

5. Initialise the mass of the IBSC: 

 0IBSC IBSCm m=  

6. While ToF ToF< : 
a. Compute the interpolated values for ∆Lt and r t. Hence calculate αa, αp, 

∆La and ∆Lp from Eq. (6.13). 
b. Compute: 

 
a a a a a a

p p p p p p

L L L L

L

L L

LL L L L

− +

− +

= − = +
= −∆ = +

∆ ∆
∆               (6.14) 

c. Compute the current acceleration acting on the spacecraft: 

 tot
IBSC

IBSC

F

m
ε =                                  (6.15) 

d. Compute the time of flight tcoast,p spent coasting before perigee from 
Lcoast,p to Lp

-. 
e. Compute the Equinoctial parameters after the thrusting perigee arc Ep

+ 
with an expression analogous to Eq. (6.6). 

f. Compute the thrusting time at perigee tthrust,p from Eq. (6.7). If 

( ) ,thrust pToF ToF t− <  proceed to step g. Otherwise, break the iterative 

sequence and go to step 7. 
g. Update ∆V and ToF: 

 ,IBSC thrust pV V tε∆ = ∆ +                            (6.16) 

 , ,coast p thrust pToF ToF t t= + +                       (6.17) 

h. Update the IBSC mass: 

 ,

0

exp thrust p
IBSC IBSC

sp

IBSCtm m
I g

ε 
= −  

 
                         (6.18) 

i. Set a p
− +=E E  and , pcoast aL L += . 

j. Compute the current acceleration on the spacecraft: 
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 tot
IBSC

IBSC

F

m
ε =                                          (6.19) 

k. Compute the time of flight tcoast,a spent coasting before apogee from 
Lcoast,a to La

-. 
l. Compute the Equinoctial parameters after the thrusting apogee arc Ea

+ as 
in Eq. (6.6). 

m. Compute the thrusting time at apogee tthrust,a from Eq. (6.7). If 

( ) ,thrust aToF ToF t− <  proceed to step n. Otherwise, break the iterative 

sequence and go to step 7. 
n. Update ∆V and ToF: 

 ,IBSC thrust aV V tε∆ = ∆ +                                 (6.20) 

 , ,coast a thrust aToF ToF t t= + +                            (6.21) 

o. Update the IBSC mass: 

 ,

0

exp thrust a
IBSC IBSC

sp

IBSCtm m
I g

ε 
= −  

 
                      (6.22) 

p. Set p a
− +=E E  and ,coast p aL L += . 

7. Back-track the point at which ToF ToF= and compute the corresponding 

equinoctial parameters 21 2 1

T

f f f f ffa P P Q Q =  E  and update ∆V 

accordingly. 
8. Compute the mismatch between the actual final conditions and the target orbit: 

 

( )
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1 2 1 2

2 2 2 2
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f f

eq f f f f f f

f f f f f f

a a
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 − 
 = − = + − + 
 

− = + − + 
 

           (6.23) 

Summarizing, the 2PBVP has been reduced to an optimisation problem in the form: 

 

1 1
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. . 0
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  

∆
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x

x

                          (6.24) 

Problem (6.24) can be solved with a gradient-based optimisation algorithm like 

MatLab®’s fmincon. Note that, the time of flight ToF  is specified a priori and therefore it 

might occur that this duration is too short as to obtain the change in the orbital parameters 

specified by the boundary constraints. In this case, the problem is infeasible and the 

optimisation is terminated after a maximum 50 if the constraints are not satisfied. 

In the following, an example of transfer from an elliptical orbit with 300 km perigee 

altitude and eccentricity 0.031 (corresponding to the final orbit of a de-orbiting strategy) to 

a circular orbit of 1100 km altitude (corresponding to the orbit of the next debris in an 



152 
 

hypothetical removal sequence). Parameters of the two orbits are reported in Table 6.2. 

Note that the total plane rotation ∆i in this case is 10 degrees. The specified time of flight 

is 70 days.  

Table 6.2 Parameters of departure and arrival orbits 

 a [km] e i [deg] 

Departure 6892.24 0.031 0 

Arrival 7478.16 0 10 

 

 

Figure 6.7 a) variation of semi-major axis, b) eccentricity, c) perigee and apogee radiuses for 
multi-revolution orbital transfer (coplanar case) 

First it is considered the case of a coplanar transfer, i.e. ∆i=0 will be computed. The 

optimisation problem was solved with fmincon in 6 iterations and less than 10 seconds, 

returning a minimum ∆V cost of 0.301 km/s, with 1001 revolutions. Figure 6.7a-c report 

respectively the variation of semi-major axis, eccentricity, apogee and perigee radii. One 

can see that a is monotonically increasing while e on the other hand is monotonically 

decreasing to zero. In order to reach the desired circular orbit, the perigee had to be raised 

by almost 700 km while the apogee had to be raised by some 400 km. This higher effort 

needed to raise the perigee explains the larger amplitude of apogee thrusting arcs ∆La 
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compared to perigee ones ∆Lp (as shown in Figure 6.8a). The azimuth thrust angles αp, αa 

(see Figure 6.8b) are both positive since both the perigee and apogee are raised. βp and βa 

are obviously zero because the transfer is coplanar and thus ∆i is constantly nil. 

 

 

Figure 6.8 Control parameters for multi-revolution orbital transfer (coplanar case): a) thrust 
arc length; b) azimuth and elevation 

The same problem, but this time with the 10º plane change specified in Table 6.2 

returns a ∆V of 1.480 km/s with 1004 revolutions. The high cost of out plane manoeuvres 

is well exemplified by the fact that the ∆V required is more than four times larger than a 

coplanar transfer. As can be seen in Figure 6.9a, Figure 6.9b, Figure 6.9d, semi-major axis, 

eccentricity, apogee and perigee radii show a similar behaviour to the coplanar case while 

this time also the inclination (as in Figure 6.9c) increases monotonically to 10 degrees. By 

analysing the control parameters in Figure 6.10a one can see that this time the amplitude of 

the perigee arcs in general larger than the apogee ones, even if, like in the coplanar case, 

the increase in perigee is much larger than that of the apogee. This fact is explained by the 

fact that the out-of-plane component at perigee βp is close to 90º (see Figure 6.10b), 

meaning that the thrusting action at perigee is mostly devoted to the plane change. In 

contrast, βa is smaller in magnitude, around -70º (the opposite sign is due to the fact that it 

is advantageous to invert the out-of-plane component twice per revolution), therefore with 

a higher in plane component devoted to perigee raising. 
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Figure 6.9 a) variation of semi-major axis, b) eccentricity, c) plane change, d) perigee and 
apogee radiuses for multi-revolution orbital transfer (10º plane change) 

 

Figure 6.10 Control parameters for multi-revolution orbital transfer (10º plane change): a) 
thrust arc length; b) azimuth and elevation 
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6.4 Multi-Objective Optimisation 

The aim is now that of optimising the timing and sequence of a removal mission by 

means of a single IBSC. It is assumed that the spacecraft departs from a LEO with a 250 

km semi-major axis altitude and coplanar with respect to the first piece of debris in the 

sequence. The five target objects have the orbital parameters and mass reported in Table 

6.3. The mass and orbital parameters have been chosen arbitrarily while adhering to the 

observations in Bombardelli and Pelàez121 and Liou and Johnson124 that the most 

dangerous debris are located in LEO and generally weigh a few hundred kilos. Different 

values for i and Ω are also taken in order to consider the fact that the pieces of debris, in 

principle, will be orbiting on different planes. Note that TDO,min has been computed with the 

procedure detailed in Section 6.3.1 and therefore depends  on the characteristics of the 

IBSC. Moreover, it is also important to remark that these are only best case figures values 

which were computed with a minimum hypothetical wet mass of 350 kg (much lower than 

the actual launch mass of 1000 kg). The surrogate models in Eqs. (6.11) can in general 

consider wet masses between 350 kg and 1000 kg, as shown for example in Figure 6.5a-b. 

Table 6.3 Mass, initial orbit parameters and minimum de-orbit time of the debris 

Debris nr. mass [kg] a [km] e i [deg] Ω [deg] TDO,min [days] 
1 500 6828.16 0 1 65 2.67 
2 120 7128.16 0 2 150 3.36 
3 300 6978.16 0 -2 200 3.68 
4 400 7478.16 0 -1 90 11.12 
5 800 7178.16 0 0 45 12.25 

 

Table 6.4 reports the relative inclination change between the orbit planes of the 5 

different objects, as computed from Eq. (6.12). 

Table 6.4 Relative inclination change |∆i| [deg] between orbit planes of the debris 

Debris nr. 2 3 4 5 
1 2.16 1.47 1.95 1 
2 - 3.63 2.65 2 
3 - - 2.52 2 
4 - - - 1 

 

The de-orbit sequence is defined by the order according to which the five pieces of 

debris are removed, the time needed to rendezvous with TRV and the time to de-orbit TDO 

each of them. The order is defined by the integer vector: 

 [ ]1 2 3 4 5i i i i i=ord                                  (6.25) 
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which collects the indexes of the objects in the a single debris removal sequence. Since 

there are five objects, there are 120 possible de-orbiting sequences. The other parameters 

are contained in the vector x: 

 
1 1 2 2 3 543 54, , , , , , , , , ,RV i DO i RV i DO i RV i DO i RV i DO i RV i DO iT T T T T T T T T T =  x      (6.26) 

The performance of each sequence is assessed according to its total ∆VTot cost and time 

of flight ToFTot. The latter is computed simply as: 

 TotToF =∑x                                              (6.27) 

The total ∆V cost is calculated sequentially by adding up the costs of each of the ten 

phases (rendezvous and de-orbit for each debris). In particular, the cost of the rendezvous 

∆VRV is computed by solving the optimisation problem (6.24) and the de-orbit cost ∆VDO is 

calculated from the surrogated model in Eq. (6.11). The final conditions after de-orbit are 

also computed from Eq. (6.11) since they will be the departure conditions for the following 

rendezvous step. The propellant mass consumption is also taken into account and updated 

throughout the entire sequence computation. In order to have only a real valued 

optimisation problem, it is chosen here to treat each of the 120 sequences as a bi-objective 

optimisation problem with ord fixed and ten design variables defined in x. Therefore, 

optimisation problem becomes: 

( ) ( )min Tot Tot
D

VToF
∈

 ∆
x

x x     (6.28) 

The domain D is defined by the upper and lower boundaries defined in Table 6.5. Note 

that the lower boundaries for de-orbit time are set according to the sequence and the 

minimum times reported in Table 6.3. 

Table 6.5 Optimisation boundaries 

Parameter TRV,i1 TDO,i1 TRV,i2 TDO,i2 TRV,i3 TDO,i3 TRV,i4 TDO,i4 TRV,i5 TDO,i5 

Lower Bound 5 TDO,min,i1 5 TDO,min,i2 5 TDO,min,i3 5 TDO,min,i4 5 TDO,min,i5 

Upper Bound 100 50 100 50 100 50 100 50 100 50 

 

Each bi-objective optimisation problem is solved with MACS2. MACS2 was run for 

40000 function evaluations with 30 agents. Each of the 120 optimisation instances required 

roughly 6 days of computational time to complete. The outputs are represented by the 

Pareto optimal solutions w.r.t. ∆VTot and ToFTot. Figure 6.11 to Figure 6.15 collect the 

Pareto fronts according to the number of the first object in the sequence, i.e. the first index 

in the vector ord, as introduced in Eq. (6.25). In each figure, each colour represents the 

Pareto front corresponding to one of the 24 debris removal sequences starting with the 
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same object. For example, Figure 6.11 includes the Pareto fronts of sequences 12345, 

13245, 14235, 15234, 12435 etc. . 

 

Figure 6.11 Pareto fronts for sequences starting with debris nr.1 

 

Figure 6.12 Pareto fronts for sequences starting with debris nr.2 

From a visual inspection of the fronts it is possible to see that sequences starting from 

debris nr. 1 seem to present the best ∆VTot-ToFTot combination, since for most of them the 

∆V cost is comprised between 2 and 2.5 km/s. The corresponding times of flight are 

comprised roughly between 100 and 500 days. The sequences starting with debris nr. 3 and 

nr. 2 also have a good ∆V while those starting with nr. 4 and nr. 5 appear to be worst. By 

combining all the partial Pareto fronts one obtains the globally optimal solutions, as 

reported in Figure 6.16.  
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Figure 6.13 Pareto fronts for sequences starting with debris nr. 3 

 

Figure 6.14 Pareto fronts for sequences starting with debris nr. 4 

One can see that the global Pareto front is composed by individual solutions belonging 

exclusively from sequence 13452, which is therefore globally dominant. In order to rank 

the degree of optimality of each sequence, it is proposed to use an approach inspired by the 

performance metrics for optimisation algorithms proposed in Chapter 2. Define PFg as the 

set of the points of the globally optimal Pareto front while PFord is the set of points 

belonging to the Pareto front corresponding to sequence ord. Define then the ranking 

parameter of sequence ord as: 
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 1

100 min

( )

, 1,...,

j g

N
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i j

i
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N

PF i N

∈=

− 
 
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∈ ∀ =

∑
ord

ord

ord ord

g

f g

δ
ord

f

                                (6.29) 

Conv is given by averaging the distance of each point of PFord from the closest point of 

PFg. The closest PFord is to PFg and the lower Conv will be. Table 6.6 reports the ranking 

of the sequences according to Conv.  

 

Figure 6.15 Pareto fronts for sequences starting with debris nr. 5 

 

Figure 6.16 Global Pareto front 
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Table 6.6 Ranking of the de-orbit sequences 

Rank ord Conv(ord) Rank ord Conv(ord) Rank ord Conv(ord) 

1 13452 0 41 42513 21.18 81 52143 31.43 
2 13542 5.14 42 15234 21.26 82 32145 31.62 
3 13524 6.61 43 32451 21.46 83 54123 31.72 
4 12453 6.78 44 52134 21.46 84 54132 31.83 
5 12543 7.25 45 34521 21.52 85 42135 32.43 
6 31542 9.41 46 35142 21.79 86 52314 32.70 
7 31452 9.85 47 35214 21.99 87 42531 33.05 
8 34512 11.59 48 34251 22.02 88 21435 33.96 
9 24513 12.15 49 52431 22.04 89 54231 34.05 
10 15243 12.16 50 45132 22.13 90 23145 34.31 
11 12534 12.33 51 54312 23.39 91 23514 34.56 
12 31254 12.37 52 21543 23.60 92 53421 34.67 
13 15432 13.24 53 24315 23.62 93 25341 34.71 
14 35124 13.87 54 41352 23.81 94 14325 34.91 
15 13254 14.22 55 43152 23.90 95 41253 35.20 
16 31524 14.36 56 12435 24.40 96 32514 35.42 
17 15342 14.48 57 34125 24.53 97 14235 35.65 
18 13425 16.30 58 15324 24.89 98 32541 36.42 
19 24531 16.53 59 53142 24.90 99 51234 36.81 
20 14523 16.65 60 23154 25.61 100 42153 36.91 
21 14352 16.69 61 53124 25.67 101 51423 38.10 
22 34152 17.16 62 51243 25.80 102 54321 38.25 
23 25134 17.17 63 43512 25.83 103 45231 40.16 
24 12354 17.47 64 31425 25.95 104 51432 40.98 
25 14253 17.63 65 12345 25.96 105 41523 41.91 
26 31245 17.81 66 21453 26.01 106 45321 44.72 
27 15423 17.85 67 52413 26.09 107 32415 45.05 
28 51342 17.88 68 51324 26.56 108 42351 45.38 
29 14532 18.05 69 35241 26.68 109 43521 45.43 
30 25413 18.07 70 25143 26.77 110 53214 45.72 
31 54213 18.17 71 24153 26.93 111 43251 45.87 
32 35412 18.48 72 34215 27.52 112 23541 46.11 
33 21345 19.32 73 21534 28.00 113 52341 46.89 
34 25431 19.43 74 32154 29.65 114 41325 47.14 
35 13245 19.55 75 43125 30.17 115 41532 47.50 
36 35421 19.56 76 23451 30.40 116 53241 48.31 
37 25314 19.97 77 24351 30.97 117 23415 48.84 
38 45213 19.98 78 45123 31.07 118 42315 48.85 
39 45312 20.07 79 24135 31.18 119 43215 52.91 
40 21354 20.07 80 53412 31.22 120 41235 65.42 
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Figure 6.17 Pareto fronts corresponding to the four best sequences according to Conv 

As one would expect, sequence 13452 has the lowest Conv since it coincides with part 

of the global Pareto front. Sequences 13524, 13542 and 12543 have also a low Conv index 

and thus they are quite close to the globally optimal solution, as shown in Figure 6.17. In 

general, as already noted before, there is a strong dependence of the quality of the 

sequence from its first element. One can see that the first ranks are occupied mostly by 

sequences starting with debris nr. 1 and 3, while those with nr. 4 and 5 have highest Conv 

and are therefore occupy predominantly the worst ones. Those starting with nr. 2 are 

somewhat in the middle. The fact that solutions with nr. 1 and 3 are privileged as first 

elements in the sequence might be explained from the fact that they lie in the two lowest 

orbits (see Table 6.3) and therefore are easier to reach (Please keep in mind that for the 

rendezvous with the first debris there is no plane change since it is assumed to depart from 

a coplanar orbit). Another interesting observation is that the best sequences tend to avoid 

the largest plane changes. For example, in 13452 the plane changes are 1.47º, 2.52º, 1º and 

2º. On the contrary, in the worst one according to Conv, i.e. 41235, they are 1.95º, 2.16º, 

3.63º and 2º. 
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Table 6.7 Best ∆VTot and ToFTot for each sequence. Best values are in bold. Worst values are 
underlined. 

ord min(∆VTot) 

[km/s] 

min(ToFTot) 

[days] 

ord min(∆VTot) 

[km/s] 

min(ToFTot) 

[days] 

ord min(∆VTot) 

[km/s] 

min(ToFTot) 

[days] 

12345 2.30 108.17 24513 2.17 106.64 42315 2.53 116.99 
12354 2.26 107.81 24531 2.26 105.94 42351 2.63 114.24 
12435 2.27 106.25 25134 2.24 102.96 42513 2.28 104.48 
12453 2.13 100.63 25143 2.41 109.53 42531 2.36 109.50 
12534 2.18 105.81 25314 2.30 107.66 43125 2.42 109.26 
12543 2.13 103.26 25341 2.49 107.22 43152 2.34 107.36 
13245 2.22 102.72 25413 2.26 104.36 43215 2.67 116.73 
13254 2.11 103.03 25431 2.27 107.97 43251 2.56 113.93 
13425 2.15 103.12 31245 2.20 100.73 43512 2.43 108.12 
13452 1.98 96.35 31254 2.10 103.46 43521 2.53 111.63 
13524 2.07 101.03 31425 2.30 106.79 45123 2.46 106.61 
13542 2.02 100.08 31452 2.12 97.810 45132 2.33 102.12 
14235 2.45 115.10 31524 2.15 104.32 45213 2.25 102.99 
14253 2.21 104.45 31542 2.12 100.52 45231 2.42 110.85 
14325 2.42 112.87 32145 2.44 111.30 45312 2.27 101.57 
14352 2.21 105.30 32154 2.35 107.73 45321 2.55 111.39 
14523 2.25 107.07 32415 2.51 115.31 51234 2.49 110.19 
14532 2.27 105.43 32451 2.33 107.85 51243 2.38 107.21 
15234 2.29 107.13 32514 2.38 107.70 51324 2.36 106.79 
15243 2.14 102.56 32541 2.40 109.14 51342 2.25 103.38 
15324 2.27 106.71 34125 2.42 109.68 51423 2.53 113.27 
15342 2.17 102.45 34152 2.33 104.78 51432 2.55 112.77 
15423 2.26 109.45 34215 2.36 112.19 52134 2.29 106.29 
15432 2.24 106.63 34251 2.30 107.17 52143 2.44 108.36 
21345 2.31 103.98 34512 2.18 101.86 52314 2.46 116.72 
21354 2.24 103.07 34521 2.24 104.80 52341 2.61 112.97 
21435 2.58 115.15 35124 2.27 103.81 52413 2.30 106.23 
21453 2.38 106.26 35142 2.30 105.62 52431 2.37 108.24 
21534 2.40 113.76 35214 2.32 109.19 53124 2.29 103.32 
21543 2.32 110.97 35241 2.37 111.19 53142 2.36 108.06 
23145 2.47 113.45 35412 2.28 101.50 53214 2.60 114.17 
23154 2.36 107.94 35421 2.29 108.91 53241 2.62 116.59 
23415 2.63 114.64 41235 2.70 116.91 53412 2.45 106.79 
23451 2.48 111.27 41253 2.47 107.83 53421 2.46 112.91 
23514 2.55 114.91 41325 2.55 113.15 54123 2.49 112.69 
23541 2.54 111.22 41352 2.37 108.25 54132 2.38 105.83 
24135 2.42 107.59 41523 2.54 111.57 54213 2.24 104.67 
24153 2.43 108.50 41532 2.57 112.14 54231 2.42 115.17 
24315 2.38 110.73 42135 2.44 115.59 54312 2.22 107.06 
24351 2.42 108.28 42153 2.47 108.75 54321 2.50 116.42 

 

Table 6.7 reports the minimum values for the performance parameters associated to 

each sequence, i.e. the extreme points of the Pareto fronts. Similar considerations to those 

made previously also apply to this case, with best values given by sequences starting with 

nr. 1 and 3 and the worst ones with nr. 4 and 5. 
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Table 6.8 Debris removal sequence and timing for minimum ∆VTot. 

Phase 
Final Keplerian elements Duration  

[days] 

∆V 

[km/s] 
mass [kg] 

a [km] e i [deg] Ω [deg] 

Departure 6628.16 0.010 1 65 - - 1000 

Nr. 1 reached 6828.16 0 1 65 5 0.115 996.11 

Nr. 1 de-orbited 6752.69 0.011 1 65 22.06 0.043 993.21 

Nr. 3 reached 6978.16 0 -2 200 88.10 0.239 985.17 

Nr. 3 de-orbited 6826.44 0.022 -2 200 25.96 0.084 980.63 

Nr. 4 reached 7478.16 0 -1 90 66.71 0.476 964.88 

Nr. 4 de-orbited 7055.54 0.053 -1 90 34.33 0.221 951.69 

Nr. 5 reached 7178.16 0 0 45 55.89 0.241 943.91 

Nr. 5 de-orbited 6912.18 0.034 0 45 30.77 0.144 931.48 

Nr. 2 reached 7128.16 0 2 150 56.98 0.297 922.12 

Nr. 2 de-orbited 6901.39 0.032 2 150 33.99 0.124 917.24 

 

Table 6.8 shows details about the best ∆VTot solution, with sequence 13452. Note that, 

in general, the ∆V cost of each phase is relatively low, thus leading to the minimum total 

cost of 1.98 km/s. Correspondingly, their duration is long, meaning that slow but more 

efficient transfers are preferred. This behaviour is also confirmed by the fact that the de-

orbit conditions have non negligible eccentricities, which means also that the amplitude of 

the apogee thrusting arcs during de-orbit (see Figure 6.2) is kept to a minimum. In this way 

propellant is devoted to lowering the perigee only with minimum variation of the apogee 

altitude. 

By analysing in more detail the ∆V cost breakdown, one can see for example that the 

highest figures, 0.476 km/s are given by the rendezvous with debris nr. 4 from the de-orbit 

conditions of debris nr. 3. This high value is justified by the fact that reaching the final 

orbit radius of 7478.16 requires an apogee raise of 501 km from 6977 km and a perigee 

raise of 800 km from 6678 km. At the same time there is also a rotation of the orbit plane 

of 2.52º. By comparison, the rendezvous with nr. 5 after the de-orbit of nr. 4 is 

comparatively cheaper even if the radius of the target orbit is still high. In this case the 

perigee raise is 500 km while the apogee on the other hand needs to be lowered by 252 km 

from 7430 km since piece of debris nr. 4 is released on a relatively eccentric orbit with 

e=0.053. Plane rotation in this case is only 1º. 
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Table 6.9 Debris removal sequence and timing for minimum ToFTot. 

Phase 
Final Keplerian elements Duration  

[days] 
∆V 

[km/s] 
mass [kg] 

a [km] e i [deg] Ω [deg] 
Departure 6628.16 0.010 1 65 - - 1000 

Nr. 1 reached 6828.16 0 1 65 5 0.115 996.11 
Nr. 1 de-orbited 6685.24 0.001 1 65 4.04 0.081 990.61 
Nr. 3 reached 6978.16 0 -2 200 8.59 0.312 980.14 

Nr. 3 de-orbited 6701.87 0.004 -2 200 6.29 0.154 971.87 
Nr. 4 reached 7478.16 0 -1 90 14.79 0.664 950.17 

Nr. 4 de-orbited 6789.06 0.016 -1 90 17.13 0.362 928.76 
Nr. 5 reached 7178.16 0 0 45 7.99 0.281 919.92 

Nr. 5 de-orbited 6715.72 0.006 0 45 15.9 0.252 898.39 
Nr. 2 reached 7128.16 0 2 150 9.87 0.466 884.28 

Nr. 2 de-orbited 6725.90 0.007 2 150 6.75 0.221 875.87 
 

Table 6.9 reports details about the minimum ToFTot solution, again with sequence 13452. 

In contrast to what has been remarked for the previous case, here obviously the duration of 

each phase is kept to a minimum. For example, values for de-orbit times are very close to 

the minima reported in Table 6.3. Conversely, ∆V costs are higher than those in Table 6.8. 

Moreover, one can see that the de-orbit trajectories are quasi-circular, which suggests that 

the thrusting arcs are not restricted to apogee passages but cover almost entirely each 

revolution (i.e., with reference to Figure 6.2, ∆La≈180°). 

A final note is devoted to the assumption mentioned in Section 6.3.2 that the delay due 

to phasing will be relatively negligible compared to the total transfer time. First of all, one 

has to consider that each de-orbit-rendezvous couplet is actually a transfer between two 

circular orbits with different altitude, phasing and orbit plane. In this sense, the related 

transfer strategy first lowers the perigee down to 300 km; then, in the second phase the 

apogee and perigee altitudes are adjusted to match those of the target orbit and at the same 

time the orbit plane is rotated around the line of nodes. In order to obtain a worst case 

estimation of the delay, it is chosen to decompose the latter into the contribution 

determined by the inclination change twait,∆i and the one given by in-plane phasing twait,∆ϕ. 

The former stems from the assumption made in Section 6.3.2 that the perigee lowering 

phase from the initial circular orbit is started such that the lines of apses is perpendicular to 

the line of nodes defined by the intersection of the orbit planes of the current piece of 

debris and the next one in the sequence. The maximum wait time is obtained when the line 

of nodes is aligned with the line of apses and is therefore given by half the orbit period of 

the departure circular orbit: 

 ( ), 0max wait i nt π∆ =                                            (6.30) 

where n0 is the angular velocity of the initial circular orbit. After the line of apses is 

properly aligned in order to reach the target orbit plane, there remains, however, the 
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problem of in-plane phasing. As a first step, the case of a quasi-circular transfer is 

considered, noting that this is actually the case for minimum ∆V sequences as the one 

reported in Table 6.8. If one considers the case of a transfer between two circular coplanar 

orbits, the phasing of the departure and arrival ones can by expressed as: 

 
( )

( )
0 0 ,

, 0

wait transf transf

f f wait transf

n t t

n t t

φ

φ

φ φ

φ φ
∆

∆

= + ∆

= + + ∆
                                  (6.31) 

where n is the angular velocity of the current orbit, nf is the one of the arrival orbit, is 

introducing along the transfer in order to match the phase of the arrival orbit. ∆ϕ0 is the 

nominal phase difference between the two orbits at time of departure, computed simply 

from the initial and final argument of perigee and true anomaly: 

 ( ) ( )0 0 0f fφ ω ω θ θ∆ = − + −                                      (6.32) 

ϕ0 and ϕf can differ by multiples of 2π, therefore, by combining Eqs. (6.31): 

 ( ), 0 2wait f transf f transft n n n t k kφ φ φ π∆ − = ∆ + ∆ + + ∈ℤ                (6.33) 

One can see that, once the transfer type is defined, the left side of Eq. (6.33) is constant 

and since k is an arbitrary integer, one can write: 

 [ ], 0 2Tot
wait Tot

f

t
n n

φ
φ πφ∆

∆= ∆ ∈
−

                               (6.34) 

and thus the worst case value for the delay twait is obtained obviously for 2Totφ π∆ = . Since 

we are dealing with a LT transfer in which the semi-major axis is continuously varied, also 

the angular velocity n at a certain point of the transfer is varying accordingly. Also, since it 

is assumed that the transfer is quasi-circular, one can insert a coasting arc of duration 

twait,∆ϕ at the point in which the ratio 1 fn n−  (which depends on the radii of the current 

and target orbits) is at its lowest. This condition typically occurs when the end of the de-

orbit phase is reached. 

If the transfer type is not quasi-circular but involves spirals with non-negligible 

eccentricity, then an arbitrary delay cannot be introduced without altering the position of 

the lines of nodes. However, it is still possible to introduce an arbitrary number of coasting 

arcs of duration equal to the orbital period of the osculating orbit, i.e. one full revolution. 

The phase variation obtained by one such revolution is: 

 ( )2

2 fn n
n

nπ

π
φ

−
∆ =                                           (6.35) 

Note that, given the orbits involved in the transfer, ∆ϕ2π will be generally a fraction of 

2π.  If a worst case phase variation 2Totφ π∆ =  is to be achieved, the following simple 
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strategy can be used to estimate the corresponding delay: first, k coasting revolutions are 

performed when the quantity |n-nf| is maximum. In this sense, one can write: 
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2
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arg min
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k
n

n

n n

k π

π

φ
π

φ

 
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= ∆
 

∆

                                             (6.36) 

This will bring the phase difference to a quantity which is lower than the maximum 

phase variation per revolution achievable, leaving a residual phase difference; 

 ( )22res knk πφ π φ∆ − ∆=                                            (6.37) 

A last coasting revolution is inserted to delete the residual when the semi-major axis 

which gives the proper angular velocity nres is reached: 

 ( )2arg( )res resn nπφ φ∆=∆=                                         (6.38) 

The total delay introduced in the worst case is therefore given by the sum of the periods 

of the coasting revolutions: 
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                                       (6.39) 

By applying the above strategies to the minimum ∆V and minimum time of flight 

sequences we can obtain a worst case estimation of the additional time introduced by 

phasing. The maximum delay introduced by the apses alignment in both cases would be 

0.14 days. For the minimum time of flight case in Table 6.9 (i.e. quasi-circular sequence), 

the worst case delay due to ∆ϕ is 2.68 days, leading to a total delay of 2.82 days. This 

value equates to a 2.93% increase compared to the nominal time of flight of 96.35 days, 

which can be considered acceptable for a preliminary study. On the contrary, in the case of 

minimum time of flight sequence as in Table 6.8, the delay due to ∆ϕ would be 4.58 days, 

and the total delay 4.72 days, corresponding to a 1.12% increase on the nominal time of 

flight of 419.79 days. For these reasons, neglecting the phasing appears to be an acceptable 

approximation in this preliminary study. 

6.5 Conclusions 

This chapter presented a practical application of the novel techniques proposed in this 

dissertation. They were applied to the design of a multi-target Multi-Objective orbit debris 

removal mission by means of an IBSC. The models proposed here for the computation of 

low-thrust many-revolution transfers, allowed for a considerable reduction in control 

parameters and, at the same time, a fast propagation of the low-thrust motion. The Multi-

Objective optimisation minimising both ∆V cost and total removal duration provided 
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thousands of different debris removal candidate solutions. The analysis of the results 

showed that the particular removal sequence 13452 is globally optimal. A ranking criterion 

was proposed to grade all the candidate sequences and identify those that are suboptimal. 

From the analysis of the sequences it was found that there is a dependency of the quality of 

the sequence on the first target object. Among the open issues for future developments, 

there is, for example, the integrating the sequence selection directly into the Multi-

Objective optimisation process, thus obtaining a mixed continuous and discrete 

optimisation problem. This can be crucial when missions with more than 5-10 debris are 

considered since the enumerative generation of sequence becomes increasingly expensive 

with the number of potential target objects.   
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Chapter 7.Low-Thrust Orbit Raising Design for the 

DESTINY Mission 

This chapter presents an overview of the preliminary design of the orbit raising phase 

for DESTINY, a proposal for a future JAXA interplanetary mission using Low Thrust 

propulsion. In this case study, the techniques described in the previous chapters are applied 

to a real-case mission design problem. This case, therefore, provides the evidence of the 

validity of the proposed techniques as operational tool for space mission design. The 

chapter is organised as follows: Section 7.1 will give an overview of DESTINY, while 

Section 7.2 will describe the optimisation problem; Section 7.3 will present the trajectory 

model used for the orbit raising. Section 7.4 will introduce the formulation of the MOO 

problem and will show some preliminary results. Section 7.5 will analyse the specific issue 

of eclipse avoidance during the orbit raising and finally Section 7.6 will show the solutions 

found with an extended control model, as suggested by these analyses. 

7.1 DESTINY Mission Overview 

The Demonstration and Experiment for Space Technology and INterplanetary voYage 

(DESTINY)9 is a technology demonstrator mission which is currently being developed as a 

candidate third mission of ISAS/JAXA’s small science satellite series. Its main objective is 

that of gaining flight heritage for a number of novel technologies, which include, among 

others, the new µ20 Ion engine, the new Epsilon launch vehicle, ultra-lightweight solar 

panels and an advanced thermal control. In addition, it will also provide a test-bed for new 

techniques for Low Thrust (LT), interplanetary mission design and operation. 

The proposed mission profile for DESTINY, as shown in Figure 7.1, envisions: 

1) Injection into an inclined elliptical orbit (with semi-major axis around 20000 
km) by means of the Epsilon rocket. 

2) Spiralling phase in which the µ20 engine will raise the orbit in order to 
encounter the Moon. 

3) Lunar swing-by. 
4) Injection into a Halo orbit at the Sun-Earth L2 Point. 
5) Additionally, if possible, a final escape from L2 is also desirable. 
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Figure 7.1 DESTINY preliminary mission profile9. 

The early LT orbit raising phase presents an interesting mission design challenge, since 

many trade-offs are to be made between different performance figures; at the same time,  

technological limitations on bus design impose a number of constraints on trajectory 

design. In particular, the time to reach the Moon encounter is upper bounded at 1.5 years 

but shorter transfer times might also be advantageous. On the other hand, in the latter case, 

the required ∆V is likely to be higher; while this, given the available fuel and the high 

efficiency of the µ20 engine, will not prevent reaching the Halo orbit, it will possibly affect 

the feasibility of the optional post-Halo escape phase. It should also be noted that, during 

the orbit raising phase, the spacecraft will spend a long period of time within the highly 

radiative environment of the Van Allen belts. This time should be minimised in order to 

reduce the total radiation dose and therefore the mass of the required shielding for 

electronic components. Similarly, eclipse duration during the transfer, influences both 

trajectory design, since engine operation has to be interrupted while in shadow, and 

spacecraft bus design, because it imposes constraints on battery sizing. Finally the 

conditions, in terms of orbit geometry, with which the Moon is encountered, also require 

trade-off analysis, since they are strongly linked with the trajectory design of the following 

phase, which will lead DESTINY spacecraft to the designated L2 Halo orbit.  

The presence of many conflicting requirements will be tackled in this work by adopting 

a Multi-Objective (MO) design approach, in which multiple performance figures are 

concurrently optimised. The trajectory will be modelled with the parameterisation 

described in Section 5.1 and it will be propagated with the averaging technique described 

in Section 5.2, while the Multi-Objective problem will be solved with MACS2 (see 

Chapter 2). 
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7.2 Problem Definition 

The purpose of this study is that of optimising the strategy for DESTINY’s orbit raising 

phase in order to concurrently minimise four figures of merit: the time of flight ToF, the 

total Ion Engine System operation time IES, the time spent within the radiation belt tbelt and 

finally the duration of the maximum eclipse encountered tecl,max. The latter, in addition, is 

to be kept below 1 h, due to constraints on battery size. The maximum time of flight 

allowed for the orbit raising phase is 550 days, i.e. about 1.5 years. 

As a result of the inputs from the design team of the Epsilon Launch Vehicle, the initial 

orbit parameters after release from the launcher are assumed to be those reported in Table 

7.1. 

Table 7.1 DESTINY initial orbit parameters in the J2000 Earth Fixed reference frame. 

a (km) e i Ω ω M 

20953 0.69 32° 21° 124° 5° 

 

Note that, the initial orbital elements are specified with respect to the J2000 Earth Fixed 

reference frame, i.e. a moving frame, and thus the actual value of Ω in the inertial reference 

frame is dependent on the launch epoch. After release from the launcher, a 30-day 

commissioning phase is imposed, in which the spacecraft is not allowed to perform any 

manoeuver. 

The terminal condition to be reached at the end of the orbit phase is a radius of 300000 

km at the intersection between the orbit and the current lunar orbital plane. This condition 

reflects the fact that, at this preliminary stage, it has been decided to uncouple the design of 

the orbit raising phase from that of the Lunar encounter and subsequent interplanetary 

phase. Note also that, given the relative angle between the lunar orbit plane and 

DESTINY’s, the intersection between the two can occur quite far from DESTINY’s 

apoapsis and therefore the latter might be much higher than 300000 km. 

The preliminary specifications for DESTINY spacecraft are reported in Table 7.2. 

Table 7.2 DESTINY spacecraft characteristics. 

Initial mass (kg) Engine thrust (mN) Specific impulse (s) 

400 40 3800 
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The powerful µ20 engine, mounted on a small spacecraft, produces a relatively high 

acceleration of 10-4 m/s2. At the same time, the high specific impulse of this ion engine 

ensures good propellant efficiency. 

The design parameters which are to be optimised are the departure epoch and the 

parameters of the thrust vector (see Section 7.3). For each candidate set for these 

parameters, the propagation technique presented in the previous section is used to 

propagate the orbital motion until the terminal condition of 300000 km radius on the lunar 

orbit plane has been verified, or else when the maximum time of flight allowed, 550 days, 

has been reached. From this it is possible to compute the total time of flight ToF, total 

engine operation time IES, the time within the radiation belt tbelt and the duration of the 

maximum longest eclipse tecl,max. Note that, tbelt is defined simply as the time for which the 

spacecraft is below 20000 km altitude. The candidate parameter sets will be generated by 

means of a Multi-Objective optimisation algorithm. 

7.3 Trajectory Model 

The control model chosen for DESTINY’s analyses is the one described in Section 5.1 

and shown in Figure 5.4. The propagation of the orbital motion is performed as in Eqs. 

(5.3) and (5.5). An additional equation is added in order to account for the time spent 

below 20000 km. The time tbelt spent below this altitude is also computed in averaged 

terms: 
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∆tbelt is defined as the time spent below 20000 during an orbital revolution, assuming an 

orbit whose orbital parameters remain constant along the latter. ∆tbelt can be easily 

computed as: 
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where rbelt is the radius corresponding to the outer edge of the belt, tkep is the time 

corresponding to the true anomaly θbelt, as computed from Kepler’s well-known time 

equation (see Battin98). θbelt is the true anomaly of the radius rbelt, given by: 
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In order to compute the length of the maximum eclipse tecl,max the duration tecl of the 

eclipse along a single revolution is computed (and stored) during the integration of Eqs. 

(5.3), assuming the cylindrical shadow model as described in Section 5.1.1 . Note that, this 

has to be done anyway in the computation of the averaged variation of the orbital elements 

∆E2π in order to account for engine operation discontinuities due to shadow. Then, after the 

propagation of the orbital motion is completed, the maximum value of tecl is taken. Note 

however, that this model is valid under the assumption that the relative position of the 

shadow region with respect to the orbit plane will not change considerably during an 

orbital revolution. In other words, the shadow region is assumed to be “frozen” along a 

single revolution. Given the typical time frame of the Sun’s dynamics, this assumption is 

perfectly valid when the orbital period is comparatively small, roughly up to a few days. 

For larger orbits, what happens is that the orbital period becomes of the same order of 

magnitude of the time which takes the orbit plane to cross the shadow region. In this sense, 

during an orbital period the portion of orbit in shadow changes considerably, and thus the 

“frozen” model proposed here is no longer applicable. At the same time, however, it also 

means that there will be just a single eclipse in that revolution and not a sequence of 

eclipses in close succession as it happens when the orbital period is small. Therefore, it can 

be assumed that with proper phasing correction at some point before this single eclipse, the 

latter can be shortened or even avoided altogether. For this reason, it is decided here to 

ignore these isolated eclipses, in the computation of the maximum eclipse duration, since 

eclipse avoidance strategies can be easily implemented at a later, more detailed design 

stage. 

As an example of the accuracy of the proposed propagation methodology, a sample 

trajectory is propagated both with the averaging method and with the full numerical 

propagation of the equations of motion. The chosen example exibits continuous tangential 

thrust for the first 200 days or so and then thrusting is localised only on shorter arcs around 

pericentre. Figure 7.2 shows that the proposed approach describes very accurately the 

behaviour of the apogee and perigee radius (i.e. semi-major axis and eccentricity), also 

during the last few orbits when the analytical approach tends to be less reliable due to the 

large distance from the attracting body. Similarly, Figure 7.3 shows that the evolution of 

the cumulative eclipse time is also well approximated by the proposed eclipse model. 
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Figure 7.2 Sample propagation: apogee and perigee radius. 

 

Figure 7.3 Sample propagation: cumilative eclipse time. 

 

7.4 Multi-Objective Optimisation of DESTINY’s Orbit Rai sing 

The design of DESTINY’s orbit raising phase can be formulated as a Multi-Objective 

optimisation problem in the form: 

 ( )min
D∈x

f x                                                      (7.4) 

where f is the vector of the objectives: 

 ,belt ecl max finToF IES t rt= + ∆f w                                (7.5) 
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w∆r fin is a penalisation term added to f in order to account for the fact that a given 

candidate transfer might reach a final radius on the Moon’s plane r fin lower than the target 

30000 radius within the maximum allowed ToF of 550 days. Therefore, ∆r fin is defined as: 

 ( )min 0 300000fin finr r = −∆                                     (7.6) 

w is simply a weight vector. 

x is the parameter vector and D is its domain. x comprises the departure epoch, 

decomposed as date in MJD2000 and time and  the semi-amplitudes of the perigee and 

apogee thrusting arcs, expressed as the values of ∆Lp and ∆La at 8 reference nodes, as in 

Eqs. (5.4). Note that date is meant as the integer part of the number of days since epoch 

6574.5 MJD2000 (2018/01/01T00:00:00 UTC), while time is intended as the number of 

hours since the midnight of the day defined by date. 

 , , 1,...,8p i a iL Ldate time i ∆ ∆= = x ⋯ ⋯ ⋯             (7.7) 

The reason, for which the departure epoch is here expressed as day and hour, is that 

preliminary tests revealed that the objective functions showed wide oscillations with 

respect to the departure epoch and that the two scales of these oscillations were of the 

magnitude of a day and a year. This is related to the orientation of the initial orbital plane 

with respect to the Ecliptic plane and the lunar plane. Since, as mentioned earlier, the 

initial orbital elements in Table 7.1 are defined as relative to the Earth, i.e. a rotating 

reference frame, it follows that Ω in the Equatorial inertial reference frame experiences a 

short term evolution due to the Earth’s rotation around its axis, superimposed to a long 

term variation due to the Earth’s motion in the solar system (plus other secular 

perturbations). Therefore, by decomposing the departure epoch into date and time, one is 

able to decouple these two dynamics. The boundaries for the domain D are reported in 

Table 7.3. 

Table 7.3. Boundaries for optimisation parameters. 

Variable date (d) time (h) ∆Lp,i (°) ∆La,i (°) 

Lower bound 0 0 0 0 

Upper bound 365 24 180 180 

 

In summary, each transfer is described by a total of 18 optimisation parameters. 

Regarding the performance parameters in the vector f, as already mentioned there are four 

figures of merit which are to be concurrently minimised, ToF, IES, tbelt and tecl,max, which 

would translate into a 4-objective optimisation problem. In the following sub-section, it is 
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decided to solve a reduced 3-objective problem first, without tecl,max as an objective or 

constraint. This is done because, generally speaking, a 3-objective problem is easier to 

visualise and analyse. It will also show how the solution set changes, when the fourth 

objective will be re-introduced and the full optimisation problem solved. In both cases the 

Multi-Objective optimisation problem in Eq. (7.4) is solved with MACS2. 

7.4.1 3-Objective Problem 

For this 3-objective problem, MACS2 is set to run for a maximum of 3·105 function 

evaluations. Population size is set at 150 individuals, of which 30 perform social actions.  

 

Figure 7.4. 3-Objective problem: a) Pareto front. Projections on the b) ToF-IES c) ToF-tbelt d) 
IES-tbelt sub-spaces. 

Figure 7.4a shows the optimal objective set. For more clarity, Figure 7.4b-c-d show 

their projections on the bi-dimensional subspaces. By examining the extreme points for 

each objective, one can see that, for example, the minimum transfer time is around 400 

days, which requires a total of 8600 hours of engine operations. On the other hand, the 

minimum IES solution requires around 6300 hours for a 550 days transfer. Similarly, the 

minimum time spent in the radiation belt is above 1400 hours. The ToF-IES projection in 

Figure 7.4b shows the typical pattern of propellant versus transfer time trade-off. This 

implies that any reduction in propellant consumption is paid for by an increase in transfer 

time and vice-versa. It is also interesting to note from Figure 7.4d that, in a similar way, 
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any reduction in propellant consumption below 7300 hours invariably requires an increase 

in tbelt. Moreover, the minimum ToF solution is also a minimiser for tbelt. The reasons for 

this will be explained later in this section. Figure 7.5 shows the distribution of the optimal 

solutions along the launch window and shows that they are aligned along a diagonal line in 

the date-time space. As mentioned earlier, date and time are determining the initial Ω in the 

Equatorial reference frame. Given the relative inclination between the Equator and the 

lunar orbit plane, this parameter consequently affects the elevation of the apsis direction 

w.r.t. the lunar orbit plane. Since the termination condition is defined at the intersection 

with this plane, the higher the elevation is, the higher the final semi-major axis will have to 

be and therefore the longer or the more expensive the transfer will be. Therefore, the 

optimal solutions line on the diagonal line which corresponds to the initial Ω which gives 

the lowest elevation of the line of apsis on the lunar orbit plane at the end of the transfer. 

 

Figure 7.5. 3-Objective problem: distribution of the optimal solutions w.r.t. the departure 
date: a) ToF b) IES c) tbelt. 

From Figure 7.4a one can identify three different classes of solutions: those which 

minimise time of flight and time in the radiation belt (1); those which minimise propellant 

cost (2); and finally, those which minimise tbelt but at the same time also somewhat 

minimise IES by allowing for the maximum ToF of 550 days (3). 
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Table 7.4 reports a comparison of the three solution types.  As one can see solution 1 

has the lowest time of flight, 392 days and at the same time also the lowest time spent 

within the radiation belt, 1431 hours. On the other hand, ion engine operation time is the 

highest, at 8632 hours. The opposite applies to the second solution, with an engine 

operation time of just 6349 hours but with the highest admissible time of flight of 550 days 

and a high tbelt of over 2000 hours. The third case is very interesting, for the reason that it 

has the minimum tbelt like the first one, but at the same time its fuel consumption is not as 

high as the first case, since the time of flight has been allowed to increase up to almost 550 

days. 

Table 7.4. Summary of sample solutions 

 Type date (d) time (h) ToF (d) IES (h) tbelt (h) 

1 min(ToF) 295 9.2 392 8632 1431 

2 min(IES) 266 8.7 550 6249 2032 

3 min(tbelt),max(ToF) 329 8.3 550 6865 1457 

 

In order to better understand the differences between the three cases, Figure 7.6, Figure 

7.8 and Figure 7.10 show the thrusting arc length and the time history of the 

perigee/apogee radii for each of them. From Figure 7.6a one can see that the semi-

amplitude of the thrusting arc for the minimum ToF case is always 180 degrees (except for 

the initial commissioning phase), which translates into a continuous thrust profile. And as 

Figure 7.6b shows, perigee and apogee are concurrently raised, with a monotonic decrease 

of the eccentricity, which reaches 0.2 at the end of the transfer. Note also that the Apogee 

is around 300000 km when the terminal condition is reached, which confirms what said 

earlier that the optimal solutions reach the terminal condition with the line of apses lying 

on the lunar orbital plane. 

From Figure 7.7, which plots the trajectory in the J2000 reference frame, one can also 

clearly appreciate that the typical shape of a continuous tangential thrust trajectory as the 

orbit shape gradually becomes less eccentric. 
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Figure 7.6. Minimum ToF solution: a) thrusting arc length; b) perigee/apogee radii. 

 

Figure 7.7. Minimum ToF solution: trajectory. 

From Figure 7.8a, one can see that for the minimum  IES solution, the thrusting arcs are 

located always around perigee with a semi-amplitude around 150-160 degrees. 

Consequently, the rate of increase of the orbit size is much lower (see Figure 7.8b) and at 

the same time the effort is focused on raising the apogee while the perigee experiences 

only a comparatively small increase up to around 30000 km, leading to the high tbelt 

mentioned before. 
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Figure 7.8. Minimum IES solution: a) thrusting arc length; b) perigee/apogee radii. 

In contrast to the minimum ToF case, the long coasting arcs around apocenter lead to a 

considerable increase in the eccentricity, as shown in Figure 7.9. 

 

Figure 7.9. Minimum IES solution: trajectory. 

The control strategy of the third case, as shown in Figure 7.10a, is a mix of the first two. 

In the first part, the thrust is continuous in order to raise the perigee above the radiation 

belt as soon as possible. After this has been achieved, at around 250 days, the length of the 

thrusting arcs is radically reduced in order to save propellant by concentrating on raising 

the apogee while keeping the perigee almost constant (see Figure 7.10b). 
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Figure 7.10. Minimum tbelt, maximum ToF solution: a) thrusting arc length; b) perigee/apogee 
radii. 

Figure 7.11 shows a view of the complete trajectory and clearly reveals the 

uninterrupted thrusting strategy in the initial part of the trajectory, followed by a phase 

with long coasting arcs around apocenter which lead to a gradual increase of the 

eccentricity, which is however lower than in the previous case. 

 

Figure 7.11. Minimum tbelt, maximum ToF solution: trajectory. 
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7.4.2 4-Objective Problem 

For the 4-objective case, MACS2 is run for a total of 6·105 function evaluations.  

 

Figure 7.12. 4-Objective problem: Projections of the 4-dimensional Pareto set on the a) ToF-
IES b) tbelt-tecl,max c) ToF-tbelt d) IES-tbelt e) ToF-tecl,max f) IES-tecl,max sub-spaces. Black asterisks 

denote solutions with tecl,max≤1 h.  

Figure 7.12 shows the set of the Pareto-optimal solutions, projected onto each of the bi-

dimensional sub-spaces. Black asterisks denote the solutions which have the longest 

eclipse below 1 hour. In this respect, it is immediately apparent that there is no feasible 

solution with IES below 8000 hours (see Figure 7.12a). Similarly, from Figure 7.12b one 

can see that all these solutions have tbelt which is 1600 hours at most. This suggests that, in 

this case, solutions with a fast initial orbit raising phase are optimal for avoiding eclipses. 
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Figure 7.13. 4-Objective problem: distribution of the optimal solutions w.r.t. the departure 
date: a) ToF b) IES c) tbelt d) tecl,max. Black asterisks denote solutions with tecl,max≤1 h. 

Figure 7.13 shows the distribution of the optimal solutions with respect to departure 

date and departure time. Generally speaking, their distribution is similar to that of the 3-

objective case shown in Figure 7.5, as they are roughly aligned along a diagonal line. 

Solutions with a feasible eclipse, however, are restricted to a very small region around 24/0 

h and 365/0 days, at the corners in Figure 7.13 (Note that, due to the annual periodicity of 

the Earth system, the regions at the four corners of the date/time plot, are by all practical 

means contiguous). This clearly shows that the introduction of the upper boundary on the 

maximum eclipse time is considerably limiting the launch opportunities and their 

performance, at least under the control model adopted. At the same time, however, it is 

important to consider that the solution of the Multi-Objective optimisation problem as 

formulated in (7.4) will return only the globally optimal solutions. This means that feasible, 

although inferior, solutions might still exist for other departure dates but, since they are 

dominated by other solutions, they are discarded during the optimisation process. On the 

other hand, at the preliminary design stage, it is desirable to investigate the existence of 

feasible solutions in less optimal regions of the launch window as well. This could also 

provide a good database of back-up solutions, should the optimal period for departure, as 
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shown in Figure 7.13, become infeasible due to other factors. A simple way to perform this 

kind of analysis would be to partition the parameter space (see Table 7.3) in a number of 

subsets along the date coordinate, and run separate Multi-Objective optimisation instances 

in each of them. However, this would require as many optimisation instances as the 

partitions of the domain D and at the same time, the fact that they would run separately 

would prevent an exchange of information between each of them. Therefore, the following 

alternative has been adopted, which requires only a single MO instance, and which consists 

in modifying the 4-Objective problem in (7.4) by adding two dummy performance 

parameters to f, as: 

, 1
365 365belt ecl max fin

date date
ToF IES t t r = − +  

∆f w

                 (7.8) 

This modification makes such that a solution, even if it is inferior to another with regard 

to ToF, IES, tbelt or tecl,max, is still not discarded by the optimisation algorithm as long as its 

departure date is different from the other. Or, in other words, the optimiser will 

automatically search for and store the optimal solutions, in terms of ToF, IES, tbelt or tecl,max, 

for each departure date. This modified 4-objective problem, formally a 6-objective one, is 

again solved with MACS2, with 106 function evaluations. 

Figure 7.14 shows the distribution of optimal solutions with maximum eclipse duration 

shorter than 1 hour and reveals the existence of two new clusters of solutions in addition to 

those already identified in the previous, 4-objective case. One lies in the summer period 

close to midnight time while the other is in autumn in the 15-20 h range. Although they 

differ slightly in terms of performance parameters, a number of considerations apply to 

both groups. First, they both have a higher time of flight than the winter/midnight class, 

ranging from 480 to 550 days. At the same time, their propellant cost is also quite high, as 

is tbelt, which is between 2000 and 2600 hours. As an example, Table 7.5 reports the 

relevant parameters for a typical solution in this group, which can be compared to those in 

Table 7.4. Figure 7.15 plots its thrusting arc length and time history of perigee and apogee 

radii. 

Table 7.5. Sample solution in Summer with feasible eclipse. 

date (d) time (h) ToF (d) IES (h) tbelt (h) tecl,max (h) 

198 23.3 498 8581 2140 0.92 
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Figure 7.14. Modified 4-Objective problem: distribution of the optimal solutions with tecl,max≤1 
h w.r.t. the departure date: a) ToF b) IES c) tbelt d) tecl,max. 

 

Figure 7.15. Summer solution with feasible eclipse: a) thrusting arc length; b) perigee/apogee 
radii. 

As Figure 7.15a shows, at the beginning, the thrusting arcs are located around perigee 

with a semi-amplitude of 120 degrees, which then progressively increases to 180 degrees 

(i.e. continuous thrust) at 250 days. This might seem quite odd at first since it has the 
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obvious drawback of increasing both the total transfer time and the exposure to the 

environment of the radiation belts, as testified by Table 7.5. Moreover, the relative 

geometry between the spacecraft’s orbit and the lunar one is far from optimal because, as 

can be seen in Figure 7.15b, the final apogee is well above 300000km, which means that 

the intersection with the lunar orbit plane is far from the line of apses. On the other hand, it 

is important to keep in mind that the driving factor for which this candidate solution has 

been selected is its low maximum eclipse duration. In this sense, the control profile is 

meant at altering the geometry relative geometry between DESTINY’s orbit and the 

shadow region in order to minimise eclipse duration. While a more detailed discussion of 

the specific issues of eclipses during DESTINY’s orbit raising and related avoidance 

techniques will be the topic of a future work, it is still important to introduce here a number 

of observations. First, one has to consider that, due to the relatively high inclination of 

DESTINY’s orbit with respect to the Ecliptic, and due to the periodicity of the apparent 

motion of the Sun around the Earth, the shadow region will intersect the orbit plane at 

more or less regular intervals. Therefore, eclipses are typically encountered in a number of 

separate phases. In other words, there will be parts of the transfer in which there is one 

eclipse per orbit, separated by phases in which there are no eclipses at all.  

 

Figure 7.16. Eclipse duration, argument of pericenter and true anomaly of shadow region for 
two sample solutions. 

A visualisation of this can be found in Figure 7.16, which shows the time history of 

three important quantities: the duration of each single eclipse tecl (blue line), the argument 

of perigee ω in the ecliptic reference frame (green line) and finally the true anomaly of the 

axis of the shadow region θecl on the orbit plane (red line). The continuous line refers to the 

case of the solution in Table 7.5, while the dashed line refers to a trajectory with same 
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departure epoch as the previous one, but with a simple continuous thrust profile as the one 

shown in Figure 7.6. As mentioned before, one can recognise three different eclipse 

phases: a very short one during the commissioning phase, a relatively long one between 50 

and 180 days and a shorter one between 240 and 290 days. In the case of the trajectory 

with reduced thrusting, in none of these three phases the duration of a single eclipse 

exceeds one hour, making this a feasible trajectory. On the contrary, for the continuous 

thrust case, in the third sequence of eclipses there is a peak of 2 hours duration. One can 

seek an explanation for this fundamental difference by examining the time history of θecl 

(the true anomaly of the axis of the shadow region) in each case. Given the eccentricity of 

DESTINY’s orbit, this parameter becomes very important since, the closer to the apocenter 

the shadow region is, the longer is the time the spacecraft will need to cross it. In the first 

case, θecl is around 90 degrees, which means that the shadow region lies much closer to the 

pericenter than the apocenter. In the second case, θecl is around 130 degrees, i.e. closer to 

the apocenter and this is the main reason for which eclipses are longer in this case. The 

cause for the different position of the shadow in the two cases is found if one checks the 

behaviour of the argument of pericenter: in both cases there is an asymptotic increase of ω 

with time. However, in the cases with full continuous thrust the transient phase ends earlier 

and the total variation of ω is some 40 degrees smaller than in the other case, leading to the 

critical eclipse at 300 days. This variation of ω is essentially due to the J2 effect. In this 

sense, while the continuous thrust solution experiences this perturbation for less since it 

raises the orbit very quickly, the solution with initial reduced thrust spends more time in 

proximity of the Earth and therefore the J2 effect acts for longer and leads to a larger 

rotation of the line of apses. As a side note, note also that, in this case, the second eclipse 

phase lasts longer and the third one is encountered at an earlier date than in the continuous 

thrust case. Without entering into too much detail, this is due to the fact the rotation of the 

line of nodes of the orbit is different in the two cases, again due to the different action of 

the J2 perturbation.  

In summary, it can be said that this solution is exploiting the J2 perturbation to passively 

rotate the line of apses and obtain a favourable relative geometry with the shadow region in 

order to avoid long eclipses. In order to obtain this, of course, it sacrifices time of flight 

and transit time in the radiation belt and consequently it is not a globally optimal transfer 

but nevertheless it constitutes a feasible alternative if a departure date in seasons other than 

winter becomes imperative. 
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7.5 Strategies for Eclipse Avoidance 

Preliminary results presented in the previous section suggested that a more detailed 

analysis of the eclipses encountered during the transfer is needed. First, the temporal 

sequence of the eclipses has been analysed, as shown in Figure 7.17a for a typical 

trajectory. Figure 7.17b shows the time evolution of the period of the osculating orbit. 

One can clearly identify three different uninterrupted sequences of eclipses, one per 

orbit. The first usually occurs after launch (~0-100 days), when the orbit is very small and 

consequently its period is also short (~8-12 hours). The second phase usually occurs in the 

150-280 days range and in this case the orbital period is typically between 18 and 54 hours. 

Note also that in this phase the spacecraft is passing through the radiation belts. The third 

phase occurs between 300 and 460 days and at this point the orbital period is in the range 

of a few days and can be of the same order of magnitude of the duration of the orbit 

plane’s crossing of the Earth’s shadow. In the latter case this translates into the fact that 

there are one or two consecutive eclipses at most, as one can see for example in Figure 

7.17a. Note also that, due to the apparent motion of the Sun around the Earth, the orbit 

plane crosses the shadow cone once every six months, although in the early phase of the 

transfer this interval is somewhat shorter due to the plane’s rotation caused by J2 

perturbation. 

 

Figure 7.17. a) Eclipse duration. b) Orbital period. 
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Figure 7.18. Maximum eclipse duration after: a) first b) second c) third eclipse phase. 

If, in any one of these phase, a single eclipse exceeds one hour duration, then the entire 

transfer becomes infeasible. To visualise how this gradually restricts the transfer 

opportunities, let one compute the duration of the first three eclipse phases, for a with 

continuous tangential thrust, for different departure dates and times. As Figure 7.18 shows, 

after each eclipse phase, the feasible regions in the date-time space are progressively 

reduced down to the winter/midnight range as already seen in the Multi-objective 

optimisation results presented in the previous sections. 

In order to formulate specific control strategies in order to avoid long eclipse it is also 

essential to understand which are the quantities determining its length and, among them, 

which can be effectively and easily controlled. Without entering into too much detail, the 

geometrical quantities which determine the duration of the eclipse are: 

• Orbit size and shape, i.e. semi-major axis a and eccentricity e . 
• Relative angle between the Sun-Earth direction and DESTINY’s orbit plane, i.e. 

current date and Keplerian parameters inclination i and right ascension of the 
ascending node Ω. 

• in-plane angle between the line of apses and the projection of the Sun-Earth 
direction, i.e. ω. 

Introducing specific strategies to control a and e might be problematic since their time 

history is already driven by the main design objective, i.e. encountering the Moon within 
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1.5 years from departure. Controlling i and Ω would require a considerable, out-of-plane, 

acceleration component, which is inherently expensive even in the case of orbit plane 

rotations of a few degrees. On the other hand, it might be possible to exert some control on 

the argument of perigee at a reasonable cost. In order to have a clearer idea on whether this 

is possible, a graph is created in order to visualise the values of ω which give a feasible 

eclipse duration for each instant in the time history of a certain transfer. This ω-eclipse plot 

is created by taking the time history of the Keplerian parameters of a trajectory of interest, 

obtained obviously by numerical propagation. For each time instant, consider all Keplerian 

parameters except ω as fixed. Then for values of ω between 0 and 2π, compute the eclipse 

duration according to the analytical method described in Section 5.1.1. An example of the 

resulting graph is reported in Figure 7.19, for a trajectory departing on 9 September.  

 

Figure 7.19. ω-eclipse plot for an infeasible trajectory departing on 2018/9/9. 

The green regions denote values of ω for which there would be no eclipse; the yellow 

regions denote values of ω which would give eclipses with duration below 1 hour; finally 

the red regions indicate values of ω giving infeasible eclipse durations. The blue line is the 

time history of the argument of perigee of the nominal trajectory, and it can be clearly seen 

that this transfer encounters a number of infeasible eclipse between 250 and 300 days. Also, 

one can also see the initial change in ω during the first 100-150 days due to the strong J2 

effect when the spacecraft is in close proximity to the Earth. It is important to remark that 

these regions have been defined by considering the time history of the other Keplerian 

parameters as fixed and is therefore subject to change somewhat if the control strategy is 

modified. However, it already suggests that, if it feasible to alter the argument of perigee 

by such an amount that it avoids the red regions, then this trajectory can be made feasible. 
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In order to do this, two different strategies are proposed: a passive ω-control, which 

exploits J2 perturbation to change ω, as already suggested by the new solution found in the 

previous section; an active ω-control, which adopts a thrusting strategy aimed specifically 

at changing the argument of perigee. 

7.5.1 Passive ω-control 

Considering the infeasible trajectory shown in the previous section, its continuous 

tangential thrust profile is altered such that during the first 50 days after end of 

commissioning phase, thrusting is performed only around pericenter, as shown in Figure 

7.20. 

 

Figure 7.20. Thrusting arc amplitude for passive ω-control. 

The ω-eclipse plot consequently takes the form shown in Figure 7.21, where one notes 

how the initial, reduce thrust phase makes such that more time is spent under the J2 effect 

so that the alteration in the argument of perigee is sufficient in avoiding the potentially 

long eclipse encountered at 250 days.  

Note also that, given the longer duration of this transfer, another eclipse phase appears 

towards the end. However, note that, the orbital period (represented by thick marks on the 

blue line) appears to be larger than the width of the red band, which translates into the fact 

that in this case one can have a single, isolated eclipse at most, as mentioned in the 

previous section. Specific strategies to deal with this single eclipse will be treated in a later 

section. The obvious drawback of this control strategy is that more time is spent within the 

radiation belts, since in order to exploit the J2 effect, the spacecraft has to be relatively 

close to the Earth. 
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Figure 7.21. ω-eclipse plot with passive ω-control strategy (Trajectory departing on 2018/9/9). 

7.5.2 Active ω-control 

In order to change the argument of perigee by means of the engine thrust, the tangential 

thrust control used until now is replaced by a control law which maximises the 

instantaneous rate of change of ω. Considering Gauss’ differential equations for this 

parameter98, with in-plane thrust acceleration: 
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In order to correct the infeasible trajectory seen in the previous section, this control law 

replaces the standard tangential acceleration in a phase lasting between 200 and 280 days. 

In this phase, the control acts exclusively to change the argument of perigee and there is 

little or no variation of the other orbital elements. This active change in ω can be easily 
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recognised in Figure 7.22. In this case too, there is a further eclipse phase appearing at the 

end of the transfer, and similar considerations apply as for the passive ω-control. Note also 

that, in this case the additional time spent within the radiation belt is likely to be much 

lower than with previous case, since the ω correction phase starts at 200 when the 

spacecraft is almost of the belt. On the other hand, however, propellant consumption is 

likely to be much higher since the ω-control phase does not contribute to raising the orbit 

energy and therefore is “wasted” from this point of view. Table 7.6 presents a comparison 

of the performance figures for the two different strategies. In both cases, the time of flight 

is around 70 days longer than a nominal, full thrust, case. Regarding propellant cost, the 

passive case even slightly cheaper than the full thrust case, since concentrating the 

thrusting arcs at perigee in the early phase is more efficient than thrusting along the entire 

orbit. On the other hand, the increase in time spent within the radiation belt is quite 

substantial, reaching 2000 hours. Opposite considerations apply to the active case, which 

has a high engine operation time of 10600 hours but a relatively low radiation belt time of 

1700 hours. 

 

Figure 7.22. ω-eclipse plot with active ω-control strategy (Trajectory departing on 2018/9/9). 

Table 7.6. Comparison of ω-control strategies 

Case ToF (d) IES (h) tbelt (h) tecl,max (h) 

Nominal (infeasible) 411 8982 1505 1.70 

Passive 484 8849 2001 0.99 

Active 481 10633 1711 0.99 
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7.5.3 Avoidance of Isolated Eclipses 

As previously mentioned, it has been chosen to neglect isolated eclipses because it had 

been assumed that by properly re-phasing the orbit before they happened, it would be 

possible to avoid them altogether. In order to verify the validity of his claim, let one take 

the transfer corrected with passive ω-control, as shown in the previous section. First, it is 

necessary to re-propagate the trajectory in the full dynamical model, in order to ascertain 

whether the final, isolated eclipse forecasted by the averaged propagator actually occurs or 

not. As Figure 7.23 shows, there is actually an isolated eclipse of 1.70 hours. A simple way 

of re-phasing the orbit such that this eclipse is avoided consists in introducing a short 

coasting arc some time before the eclipse is to be encountered. In this case it is chosen to 

insert it right after the second phase of eclipses is over, i.e. around 280 days. Figure 7.24 

shows the variation of the eclipse duration as a function of the coasting arc duration. One 

can see that, by inserting a coasting arc of duration between 1.35 and 1.85 days, a proper 

phasing is obtained such that the duration of the single eclipse is reduced below 1 hour and 

possibly even avoided altogether. 

 

Figure 7.23. Eclipse duration for trajectory departing on 9/9/2018 with passive ω-control 
strategy. 
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Figure 7.24. Duration of the final isolated eclipse as a function of coasting arc duration. 

7.5.4 Final Remarks on Eclipse Avoidance 

The results presented in the previous sections provide a good basis for some general 

guidelines for an integrated strategy for eclipse avoidance. The proposed strategy relies on 

the combination of three different techniques to avoid the eclipses in different phases of the 

transfer. In particular: 

1. For sequences of eclipses occurring in the early part of the transfer, successful 
avoidance of long duration can be obtained by adjusting the initial conditions, i.e. 
launch date and time, in order to obtain favourable orbit geometry with respect 
to the shadow region and its short term evolution. This proper choice of 
departure epoch appears the only viable choice for this early phase since it is not 
possible to introduce any active control, since this would need to begin much in 
advance before the projected critical eclipse, and adding to this there is the 30-
day commissioning phase in which no thrusting is allowed. 

2. For the eclipses occurring in the middle part of the transfer, eclipse duration 
mitigation can be achieved both by proper setting of the initial conditions or, 
should this not be feasible, by controlling the evolution of the argument of 
perigee ω. This can be achieved either by exploiting the J2 perturbation 
(spending more time in the Earth’s proximity) or by using the engine thrust to 
rotate the line of apses. 

The avoidance of eclipses in the last part of the transfer can be achieved by simple 

phasing adjustments if the duration of the crossing between the orbit plane and the Earth’s 

shadow is shorter than the current orbital period. 

7.6 Multi-Objective Optimisation with Extended Control Model 

The model used in the Multi-Objective optimisation is thus modified and extended in 

order to introduce the possibility of controlling the argument of perigee. This is achieved 

by introducing two different sets of parameters: 
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• a first set, in order to model a phase of the transfer in which only active, ω-
controlling thrust, is used. The parameters used are the start time t0,ω and its duration 
∆t ω. 

• a second set, which control the asymmetry of the thrusting arc with respect to the 
line of apses. As described in Section 5.1, nominally the thrusting arcs are 
symmetrical around the line of apsis. Here, an offset angle η is introduced, in order 
to allow for arcs which might be asymmetrically arranged with respect to the line of 
apses, as shown in Figure 7.25. The effect of having an asymmetric arc is that of 
producing a rotation of the line of apses and therefore a change in the argument of 
perigee. As has been done for ∆La and ∆Lp, this parameter too is defined as a 
piecewise linear interpolation in time with respect to 8 reference nodes. 

 

Figure 7.25. Transfer pattern with offset angle. 

Now the model includes a total of 20 optimisation parameters and MACS is run with 

106 function evaluations.  

Figure 7.26 shows the optimal solutions which have both tecl,max below 1 hour and tbelt 

below 2000 hours. While the distribution of the solutions is not dissimilar to Figure 7.14, 

there are a number of differences which must be noted.  A first remark is for the lower 

boundaries for the feasible solution. Regarding the results shown in Section 7.4.2 it was 

commented that there was no feasible solution (eclipse-wise) with a IES time below 8000 

hours. However, analysis of the new results showed that the threshold has been lowered to 

slightly less than 7900 hours. Further inspection of the solution showed that this particular 

class of solutions was adding a slight offset angle at the end of the transfer. The second 

remark is that the quantity and quality of the solutions in the summer range has improved 

considerably. If one compares Figure 7.26c (or Figure 7.27c) with Figure 7.14c it is 

possible to see that, while in the latter hardly any solution had a tbelt below 2000 hours, in 

the former there is a wide range of solutions with this feature. Some of them even have a 

time in the radiation belt as low as 1650 hours, only marginally higher than the minimum 

at 1400 hours. This is achieved by exploiting the active ω-control described in the previous 

section. The obvious drawback is, however, that the IES cost is quite high, being in the 
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10000-12000 hours range. If one considers solutions with tbelt above 2000 hours, then the 

cost might be reduced below 10000 hours IES, as shown in Figure 7.27b. 

 

Figure 7.26. Modified 4-Objective problem with extended control model: distribution of the 
optimal solutions with tecl,max≤1 h and tbelt<2000 h w.r.t. the departure date: a) ToF b) IES c) 

tbelt d) tecl,max. 

The minimum tbelt summer solution is very similar to the active ω-control solution 

shown in Section 7.5.2, while the minimum IES one resembles the passive one of Section 

7.5.1 and therefore they will not be reported here. The minimum time of flight case, 

however, is quite interesting, since it combines features of both. This solution has a 55-day 

active ω-control phase right after the commissioning phase (yellow line in Figure 7.28) 

which has the double of effect of directly changing the argument of perigee and, since the 

orbit raising is somewhat slowed down, of exploiting J2 for the same purpose. These 

combined effects produced the large change in ω required to avoid a long eclipse at 250 

days, as shown in Figure 7.29. Again, the obvious drawbacks are a higher IES operation 

time and time in the radiation belt, although the latter is still below 2000 hours (see Table 

7.7). 
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Figure 7.27. Modified 4-Objective problem with extended control model: summer solutions 
with tecl,max≤1 h w.r.t. the departure date: a) ToF b) IES c) tbelt d) tecl,max. 

 

Figure 7.28. Minimum ToF summer solution: trajectory. 

Table 7.7. Summary of summer solutions 

Type date (d) time (h) ToF (d) IES (h) tbelt (h) tecl,max (h) 

min(ToF) 257 21.9 454 9971 1963 0.74 

min(IES) 237 18.5 547 8289 2294 0.98 

min(tbelt) 190 23.8 501 11202 1658 0.99 
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Figure 7.29. Minimum ToF summer solution: ω-eclipse plot. 

7.7 Conclusions 

As shown by the results presented here, the application of a Multi-Objective 

optimisation approach to the design of the initial orbit raising phase for DESTINY 

produced an extensive database of candidate transfers, widely spread over the launch 

window. This provided the mission analysts with a wide overview of possible transfer 

strategies and their inherent trade-offs. Moreover, this design campaign was extremely 

useful in revealing some the key challenges in designing this particular phase of the 

mission. Among them, there are the conflicting requirements of minimising the time spent 

in the radiation belt and the IES operation time, or similarly the trade-off between the latter 

and the transfer time. Most importantly, the upper limit of 1 hour on eclipse duration 

imposes severe restrictions on the departure epoch. Once this issue was clearly identified, 

specialised analysis of the eclipse dynamics provided first hints on how to tackle the 

problem, which were later confirmed by further Multi-Objective optimisation analyses 

with an extended control model. This led to establishing that the successful avoidance of 

the long eclipses relies on a combination of proper choice of initial conditions, exploitation 

of the J2 effect and active control of the argument of perigee. The results of the Multi-

Objective optimisation showed that with the implementation of these techniques it is 

possible to have transfer opportunities for 75% of a year’s launch window. The analysis 

performed in this case study provides a solid basis for more detailed trajectory design in 

future design phases of DESTINY. 
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Chapter 8.Evidence-Based Robust Design of Asteroid 

Deflection Missions 

This chapter presents a novel approach to the robust design of deflection actions for 

Near Earth Objects (NEO). In particular, the case of deflection by means of Solar-pumped 

Laser ablation is studied here in detail. The basic idea behind Laser ablation is that of 

inducing a sublimation of the NEO surface, which produces a low thrust, thereby slowly 

deviating the asteroid from its initial Earth threatening trajectory. This chapter investigates 

the integrated design of the Space-based Laser system and the deflection action generated 

by laser ablation under uncertainty. The integrated design is formulated as a Multi-

Objective optimisation problem in which the deviation is maximised and the total system 

mass is minimised. Both the model for the estimation of the thrust produced by surface 

laser ablation and the spacecraft system model are assumed to be affected by epistemic 

uncertainties (partial or complete lack of knowledge). Evidence Theory (see the 

introduction in Appendix B) is used to quantify these uncertainties and introduce them in 

the optimisation process. An example of design of the deflection of asteroid Apophis with 

a swarm of spacecraft is presented. 

In order to achieve a fast propagation of the NEO motion under the ablation-induced 

force, the rectification methodology described in Section 3.2.1 is employed. The MOO 

problem under Uncertainty is solved with a modified version of MACS2. 

This chapter is organised as follows: first, some background on NEO threat and 

mitigation strategy will be provided; then, the mathematical models for trajectory, 

spacecraft system and deflection action will be introduced; after this, the uncertainties are 

analysed and quantified through Evidence Theory. A Multi-Objective optimisation 

problem is then solved to find optimal deflection solutions under uncertainty. The final 

section also presents an analysis of sensitivity to identify which epistemic uncertainty is 

the most significant in the context of asteroid deflection with laser ablation. 

8.1 NEO Mitigation Strategies 

During the last two decades, Near Earth Objects (NEO) have attracted considerable 

interest from the scientific community in general and in particular in the space field. The 

reasons for this are twofold: first, from a strictly scientific point of view, asteroids can 

provide precious data to reconstruct the genesis of the solar system. In this sense, NEOs, in 
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contrast to other small celestial bodies, are relatively easy to reach and explore, thanks to 

their small dimensions, lack of atmosphere and vicinity to the Earth. On the exploration 

side, there is a number of past or ongoing missions aimed at the study of small celestial 

bodies, such as NEAR125, Rosetta126, Deep Space 1127, Hayabusa2, Deep Impact128 and 

Dawn4,5. 

The second reason instead is linked with the potential threat they represent for our 

planet. According to the most recent tracking data, over 1000 NEOs have been classified as 

potentially hazardous to the Earth, i.e. they have an Earth Minimum Orbit Intersection 

Distance (MOID) of 0.05 AU or less and an absolute magnitude of 22.0 or less129. This 

suggests that the danger of a catastrophic event in the mid to long term is not unrealistic. 

The historical perspective of past impact events (e.g. Tunguska in 1908) is an important 

reminder of the dire consequences this could have on our fragile ecosystem. 

Therefore, the scientific community has proposed a number of mitigation strategies and 

techniques to counteract the hazard of a NEO impact. The first serious technical study, 

Project Icarus130, dates back to 1967 but only in the 90s the theme has started to be widely 

explored by scientists and engineers and various strategies have been proposed. Among 

them we find techniques producing an impulsive change in the asteroid motion such as 

Nuclear blast131 and Kinetic Impactor132, or attached Chemical engines133; there are others 

which produce a continuous low thrust like in the case of using attached Electrical 

thrusters133, or electrically propelled gravitational tugs134, or by means of the low thrust 

produced by surface Ablation, the latter induced either by solar collectors135 or laser 

beam136. Other more exotic systems include Mass Drivers137, which involve the controlled 

ejection of asteroid’s surface material in order to produce a series of small impulsive 

changes in its motion; there are proposals also for passive methods, like the idea of 

painting part of the asteroid to modify its optical properties and thus take advantage of the 

Yarkovsky effect138. 

A recent study64 presented a quantitative comparison of different deflection 

methodologies that suggested that surface ablation techniques could represent an advantage 

compared to other methodologies. 

The principle behind the surface ablation strategies is that of inducing the sublimation 

of the surface material of the asteroid. This will create an ejecta plume and an associate 

small continuous thrust. This thrust, over extended periods of time, will slowly deviate the 

asteroids from its initial orbit. Ablation strategies based on direct irradiation with 

concentrated solar light were proposed by Melosh and Nemchimov135 who envisioned 

using a single large solar concentrator to irradiate a relatively small spot on the surface of 
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the asteroid so that the resulting heat will induce the sublimation. Other authors proposed 

the use of lasers in conjunction with a nuclear power source139,140,141,142. Extensive studies 

on the dynamics of the deflection with high power lasers were proposed by Park and 

Mazanek142 envisaging a single spacecraft with a Micro Wave laser. The combination of 

solar concentrators with lasers (directly or indirectly pumped) was recently proposed by 

Maddock and Vasile in 2008143. The idea is to use a formation of smaller concentrators, 

each powering a solar-pumped laser. Thus, the spacecraft could be placed further from the 

NEOs, in this way also avoiding almost entirely the contamination due to the ejecta plume. 

Recent numerical and experimental analyses144,145,143,146,147 have already investigated the 

basics of the solar-pumped, laser ablation concept. There are, however, some epistemic 

uncertainties on the physical properties of the asteroid and on some design low Technology 

Readiness Level (TRL) components of the spacecraft. This work addresses the impact of 

uncertainties on the performance of the laser system. In order to do so, an approach based 

on Evidence Theory is introduced148. This approach requires the evaluation of several 

deflected asteroid trajectories, and this is done here by means of the analytical propagator 

described in Section 3.2.1.  

8.2 Trajectory and Deflection Model 

In order to assess the performance of the laser ablation approach, a hypothetical asteroid 

based on 99942 Apophis is considered. Its orbital elements are suitably modified in order 

for it to intercept the Earth in 2036. The effectiveness of the deflection action is measured 

by the magnitude of the impact parameter b with respect to the Earth at the time of the 

expected collision, as shown in Figure 8.1, where V∞ is the incoming velocity of the 

asteroid and Ev  is the velocity of the Earth. 

 

Figure 8.1 Impact parameter. 
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The impact parameter is computed by projecting the deviated position of the asteroid on 

the Earth’s b-plane at the epoch of the expected impact149. In this case study, the 

undeviated orbit has b=0. 

The computation of b requires the variation of the orbital elements due to the deflection 

action. From the variation of the orbital elements one can use the deflection formulas in42 

or the nonlinear proximal motion equations in150 to compute the position and velocity 

relative to the Earth. The variation of the orbital elements is obtained here by integrating 

Gauss’ Variational Equations in non-singular equinoctial elements (as in Eq. (3.2)), by 

means of the rectification method. Note that, as described in Section 8.4, the thrust 

acceleration is computed by evaluating the ablation model. In particular, the thrust 

magnitude shows a wide variation with a periodic pattern along the trajectory. In this sense, 

the ablation model needs to be evaluated quite often in order to detect this variation. The 

frequency of the rectification of the reference conditions for the analytical formulae 

therefore follows this rationale, i.e. the frequency with which the model is evaluated 

dictates the amplitude of the trajectory arcs. The basic idea is to have short arcs when the 

thrust is high and larger ones when the thrust is low. In order to achieve this, during the 

propagation the arc length ∆L is dynamically adjusted with the simple law: 

10 10log log 1
min exp max

maxL A L
k

ε ε − + +  ∆ = ∆  
                         (8.1) 

where ε is the current value of the thrust acceleration, εmax  is the largest value it has 

assumed so far and A, k and ∆Lmax are constants which were tuned empirically in order to 

achieve a good compromise between accuracy and CPU cost compared to the numerical 

integration. This was done by performing a high number of propagations of the trajectory 

and ablation models with different candidate sets of tuning parameters. As a result, the set 

which guaranteed a negligible error on the impact parameter b with respect to the 

numerical integration at the lowest computational cost was chosen. As an example, using 

the rectification to propagate the trajectory and ablation models implemented in Matlab® 

on an Intel Core Duo® 3.16 GHz machine running Windows 7® e  requires between 0.2 

and 2 seconds (depending on the length of the trajectory), compared with up to 30 seconds 

when using numerical propagation. 

8.3 Spacecraft System Model 

The solar-pumped laser ablation concept envisions the use of a formation of nsc identical 

spacecraft, each provided with a solar-pumped laser system. These will be flying in the 

proximity of the asteroid (see Figure 8.2) with a distance from the asteroid’s surface 
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between 1 and 4 km 151. Note that the plume shape in Figure 8.2 is a qualitative depiction 

of the contamination model by Kahle et al.152 as in Section 8.4. 

 

Figure 8.2 Spacecraft’s proximal motion with respect to the asteroid. 

Each spacecraft in the formation (see Figure 8.3) is composed of a large primary mirror 

M1, which focuses the solar rays on a smaller secondary mirror M2. The solar rays are then 

conveyed onto a solar array S, which powers a laser plus other subsystems. The laser beam 

is directed towards the NEO by means of a directional mirror Md. A set of radiators 

dissipates the excess heat in order to keep the temperature of the solar array and the laser 

within operational limits. 

 

Figure 8.3 Laser spacecraft system. 

The dry mass of the spacecraft is computed as: 

( )dry dry C S M L R busm k m m m m m m= + + + + +
                          (8.2) 
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where mC is the mass of the harness, mS is the mass of the solar arrays, mM is the mass 

of the mirrors, mL is the laser mass, mR is the radiator mass and mbus is the mass of the bus 

and the constant kdry represents the margin on dry mass. The masses of the various 

subsystems are computed with simple analytical formulas. The harness mass is expressed 

as a fraction of the combined mass of the laser and solar array: 

( )C C S Lm MF m m= +
                                            (8.3) 

The radiator mass AR is proportional to the area needed to dissipate the excess power. 

MFC is the mass fraction for harness. The latter is computed from a steady state thermal 

balance between the Solar input power and the emitted power which is not reported here 

for the sake of conciseness. 

R R Rm Aρ=                                                     (8.4) 

where ρR is the radiator specific mass per surface unit area. The mass of the solar arrays 

is proportional to their area AS: 

S S S Sm k Aρ=                                                    (8.5) 

where ρS is the solar array specific mass per surface unit area and the constant kS 

represents the margin on solar array mass. 

The same applies to the mirror’s mass: 

( )
1 2

2M M M d M Mm k A A Aρ= + +
                                    (8.6) 

where ρM is the mirror specific mass per unit area, kM is the margin on mirror mass, AM1 

is the area of the primary mirror and AM2 and Ad are the areas of the secondary and 

directional mirror respectively. They are defined as: 

2 1

1

0.01M M

M
d

r

A A

A
A

C

=

=
                                                (8.7) 

where Cr is the concentration ratio, i.e. the ratio between the solar power density on the 

solar concentrator and that of the spot area on the asteroid. The mass of the laser is 

proportional to its output power: 

L L L L Lm k Pρ η=                                                    (8.8) 

where ρL is the laser specific mass per input unit power, kL is the margin on laser mass 

and the input power PL depends on the solar input Pin and the efficiency of the solar array 

SAη : 

1L SA in MP P Aη=
                                                 (8.9) 
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Finally the total mass of the spacecraft is computed by adding a fixed mass fraction for 

the propellant: 

1.1 1.1sc dry p dry p drym m m m MF m= + = +
                           (8.10) 

where MFp is the mass fraction for propellant and the factor 1.1 accounts for the mass of 

the tanks. The total mass of the formation is simply: 

sys sc scm n m=
                                                  (8.11) 

and the global conversion efficiency of the laser system is given by: 

sys L SA P Mη η η η ε=
                                            (8.12) 

where ηL, ηSA, ηP, are the efficiency of the Laser, solar arrays and power bus 

respectively and εM is the emissivity of the mirror. The constants kdry, kS, kM, kL represent 

system margins that are chosen according to standard practice in space systems 

engineering and to design maturity153. For example, for the dry mass a 20% margin (i.e. 

kdry=1.2) is used since this is what is normally done in a preliminary mission design study; 

for the solar arrays, a 15% margin is deemed adequate given the maturity reached by the 

related technology; for the mirror mass instead, a higher value of 25% was preferred; 

finally, given the fact that high power lasers for space applications are still in their infancy, 

a 50% margin must be used for the laser (see Table 8.1). Margins are used when 

uncertainties are not quantified exactly. In the following, therefore, margin parameters will 

be equal to 1 when uncertainties are quantified through Evidence Theory.  

Table 8.1 System design margins 

kdry kS kM kL 

1.2 1.15 1.25 1.5 

 

One of the critical aspects of the design of the laser ablation system is that the quantities 

ηL, ηSA, ρR, ρL and ρM are poorly known. This is due to the fact that some of the related 

technologies are still in an early development stage. In particular, the efficiency and mass 

of the laser for space application are considered to be quite uncertain. As a matter of fact, 

there are two methods for powering the laser: in direct pumping, the solar energy is used to 

directly excite the electrons thereby generating the laser beam; on the other hand, in 

indirect pumping, the energy is first converted into electrical power, which then powers a 

semiconductor laser. Currently, high efficiency (up to 35%) directly pumped lasers have 

been discussed at a theoretical level, while existing systems achieve only a few percent of 

power efficiency145. Indirect pumping, instead, has shown very good performance albeit 
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mainly in non-space applications and with lower power outputs. For indirect pumping 

systems, there is quite some uncertainty on the energy conversion efficiencies that will be 

achieved in the short or medium term. Efficiencies around 40-50% should be easily 

attainable even with current proven technology (combining semiconductor laser with 

fibres) but some laboratory tests have suggested that much higher values, around 65%, are 

probably achievable, assuming over 80% wall-plug efficiency of the semiconductors and 

over 80% of the fibres145. Solar arrays are also a critical factor in the performance of an 

indirect pumped laser system. Recent advances in multiple junction cell technology have 

allowed for efficiencies close to 30% but it is not totally unrealistic to expect that near 

future improvements will move this threshold as high as 40-50% under concentrated light 

with partial efficiency recovery through thermocouples. 

A third critical element is the radiator. As a matter of fact, given the relatively low 

power conversion efficiency of the solar arrays-laser combination (from ~10% to ~30% at 

best), most of the input solar power is rejected as heat and therefore must be dissipated by 

the radiators. While well proven, high emissivity, radiator technology is already available, 

the problem lays in the weight per emitting area for large systems. While for small radiator 

this is around 1 kg/m2, for large surfaces this could be as high as 4 kg/m2 145. It is clear that 

these wide ranges on many different parameters can considerably affect the overall size of 

the laser system and consequently the mass of the laser formation to be put in orbit. At the 

same time, the lack of detailed knowledge on the physical characteristics of the NEO can 

markedly affect the system’s capability in sublimating enough surface material as to 

generate enough thrust to deviate the asteroid. 

The performance index which is output by the system model is the total system mass of 

the Laser satellite formation msys. The input design parameters are the number of spacecraft 

nsc, the diameter of the primary mirror dM1 and the concentration ratio Cr. As already 

mentioned, the parameters subjected to uncertainties are ηL, ηSA, ρR, ρL and ρM. 

8.4 Deflection Action Model 

As shown in previous works64,144,145, the yield of the ablation process can be modelled 

with the simple energy balance (assuming no ionisation): 

( )
0

exp 1
2

rot out

in

y t

sc rot in rad cond
suby t

dm
n v P Q Q dtdy

dt E
= − −∫ ∫

                  (8.13) 

where, dmexp/dt is the mass flow rate of sublimated material,  nsc is the number of 

spacecraft in the formation, vrot is the linear velocity of the asteroid surface due to its 
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rotation, Esub is the enthalpy of sublimation. The input power per unit area from the laser 

is: 

( )
2

01 AU
in sys r A

A

r
P C S

r
η ς

 
= −  

                                    (8.14) 

where ςA is the albedo of the asteroid, S0=1367W/m2 is the solar flux at 1 AU, rAU is the 

astronomical unit and rA is the Sun-asteroid distance. Here the assumption is that the 

amount of reflected laser light is comparable to the amount of reflected visible light. For a 

highly effective volumetric absorber, experimental evidence has shown that for given 

asteroid analogue target materials – sandstone, olivine, and a porous composite mixture – 

that the majority of the incoming laser intensity is absorbed rather than reflected. Energy is 

emitted in the form of an extended, but contained, exhaust of gas and ejecta. This has been 

demonstrated for a 90 W continuous wave laser operating at a frequency of 808nm 146,147. 

The heat loss due to black body radiation is: 

4
rad bbQ Tσε=                                                (8.15) 

where σ is the Stefan-Boltzmann constant, εbb is the black body emissivity, T is the 

asteroid surface temperature. The loss due to thermal conduction is expressed as64: 

( )0
A A A

cond subl

c k
Q T T

t

ρ
π

= −
                                  (8.16) 

with Tsub as the temperature of sublimation of the surface material and cA, kA and ρA as 

its specific heat, thermal conductivity and density respectively. The ablation-induced 

acceleration can therefore be calculated as: 

exp ˆsub A
A

vm

m

Λ
=f v

ɺ

                                               (8.17) 

where ̂ Av  is the unit vector along the NEO heliocentric velocity, 
2
πΛ ≈  is the scattering 

factor that assumes that the plume is uniformly distributed over an angle of 180 deg, mA is 

the asteroid mass and v  is the average velocity of the ejecta: 

42

8 B subl

Mg SiO

k T
v

Mπ
=

                                             (8.18) 

where kB is the Boltzmann constant and 
42Mg SiOM  is the molecular mass of Forsterite. 

Note that no ionization model is considered here. This assumption is consistent with the 

sublimation model in Kahle et al. where the power density is analogous to the one used 

here. A more accurate model is out of the scope of this work, and in fact the proposed 

methodology is aimed at modelling and propagating uncertainties in order to evaluate the 
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impact on the quantities of interest, such as the achievable miss distance. An unmodelled 

component has to be regarded as a source of model uncertainty. More specifically, the 

incident laser energy absorption and the expansion of the gas depend on the level of 

ionization (see Phipps et al.141). An uncertainty on energy absorption and gas expansion is 

equivalent to adding uncertainty to the sublimation Enthalpy and to the parameters 

defining the expansion velocity, as it will be presented in the next section.  

The thrust model needs to be completed with a suitable model of the contamination of 

the optics. In fact the plume of gas and debris coming from the ablation process is expected 

to flow and impact the spacecraft. The contamination model used here is the one developed 

by Kahle et al.152 and further elaborated by Vasile and Maddock151. This model assumes 

that the sublimation of asteroid’s surface is analogous to the generation of tails in comets 

and that the plume will expand as the exhaust gases of a rocket engine (as shown in Figure 

8.2). Note that, such a model is not strictly consistent with the hemispherical scattering 

model used for computing the ablation thrust. Moreover, experimental data147 is showing 

that neither the hemispherical model nor the one by Kahle et al., shown in Figure 8.2, 

accurately represent the expansion of the plume. However, they are used in the present 

work because each represents the worst case condition for thrust generation and mirror 

contamination respectively. The density of the expelled gas plume is computed as: 

( )
2

2
exp

1
exp

/

cos
2

spot
C

spot S SC spot

m d
j

vA r d
κρ −

 
= Θ  + 

ɺ

                        (8.19) 

where jC=0.345 is the jet constant, κ=1.4 is the adiabatic index, Aspot and dspot are 

respectively the area and diameter of the Laser spot on the asteroid; rS/SC is the norm of the 

distance vector of the spacecraft with respect to the spot on the asteroid. Θ is given by: 

max2

πϕ
ϕ

Θ =
                                                    (8.20) 

In the Hill reference frame rS/SC is defined as: 

/

sin

cos
A

A

ell v

S SC ell v

x r

r y r

z

θ
θ

− 
 = − 
 
                                                 (8.21) 

where the radius of the ellipsoid is: 

( )( ) ( )( )2 2

cos s
A A

I I
ell

I A v I A v

a b
r

b t a in tω θ ω θ
=

+ + +
                        (8.22) 
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x,y and z are the coordinates of the spacecraft with respect to  the asteroid in the Hill 

reference frame, as shown in Figure 8.4, and aI and bI are the axes of the ellipsoid (the 

asteroid is assumed to be a rotation ellipsoid),. 

 

Figure 8.4 Hill reference frame. 

The asteroid is assumed to be spinning around the z-axis with angular velocity ωA. θA is 

the elevation of the spot over the y-axis. The model also assumes that all the particles 

impacting the mirror condense and stick to it. The variation of the thickness of the 

contamination layer on the mirror is thus computed as: 

exp2
coscond

vf
layer

vdh

dt

ρ
ψ

ρ
=

                                      (8.23) 

where the layer density ρlayer is 1 g/cm3. The speed of the ejecta is multiplied by 2 to 

account for the gas expansion in a vacuum. ψvf is the view factor taken as the angle 

between the normal of the mirror and the incident flow of gas. Finally, the power irradiated 

on the asteroid’s surface is multiplied by a degradation factor τ: 

( )exp 2 condhτ η= −
                                            (8.24) 

where η=104 cm-1 is the absorption coefficient for Forsterite.  

It is important to observe that, according to the relative motion as in Figure 8.2, the 

mirrors would be exposed to the plume only for roughly half the period of the orbit of the 

asteroid, i.e. when the spacecraft has positive x coordinate. 

Figure 8.5a shows a typical acceleration profile computed without considering the 

contamination of the mirror. The figure compares the profile obtained from numerical 

integration of the trajectory and ablation models with a high order Runge-Kutta method, 

with the one obtained with analytical propagation, with the arc-length adaption rule 

introduced in Section 8.2. The periodic behaviour is due to NEO’s motion around the Sun 
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which accounts for oscillations in the solar flux captured by the primary mirror. The two 

integrations are in good agreement and the difference is due to Eq. (8.1). Figure 8.5b and 

Figure 8.5c show the same case but with the introduction of the contamination model in150. 

One can see that the amplitude of the acceleration oscillation decreases by more than two 

orders of magnitude already during the first revolution around the Sun and then stabilises 

at around 10-11-10-13 m/s2 for the rest of the trajectory.  

From Figure 8.5 it is important to observe that the analytical propagation approximates 

very accurately the acceleration profile when its magnitude is high during the first 

revolution and less correctly when it is decayed for the remainder of the trajectory. This 

will not affect the accuracy on the computation of the impact parameter since the 

contribution of the first part will be much more relevant than the second, which will be 

almost negligible. 

 

 

Figure 8.5 Typical acceleration profile: a) without contamination b) with contamination c) 
with contamination (semi-logarithmic scale). 

As will be detailed in Section 8.5, from an analysis of the literature on NEO, one can 

observe a considerable variability of the physical parameters of asteroids, in particular Esub, 
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Tsub, cA, kA and ρA, which are at the same time quite controversial and very critical to the 

laser ablation system design. 

All these sources of uncertainty are of epistemic nature as they correspond to the 

present lack of knowledge on the asteroid physical properties. Due to the nature of the 

uncertainty, probability theory would be inadequate to model and quantify its value, 

therefore it is here proposed to use Evidence Theory to build a correct uncertainty model 

and introduce it in the combined optimal design of the deflection and spacecraft system. 

8.5 Construction of the Uncertain Intervals 

As mentioned in the introduction, Evidence Theory will provide the theoretical 

framework with which to model uncertainties. An introduction to relevant features of 

Evidence Theory is available in Appendix B, thogether with the references to the related 

literature. In this section, the uncertain intervals and the associated BPA for each uncertain 

parameter are defined. Moreover, the situation in which the estimates about the uncertain 

intervals and their associated confidence come from different sources will be simulated. In 

order to do this, in this study the assumption is that the values of uncertain physical and 

technological parameters stem from the opinion of three different experts, as reported in 

Table 8.2, Table 8.3 and Table 8.4. Each expert expresses its own opinion on the uncertain 

intervals and assigns a personal confidence level to each of them. The confidence level 

represents the perception that experts have in their own level of knowledge. The opinions 

of the three experts could also be in disagreement with each other. This disagreement can 

be manifold. In the first instance, the experts can have different opinions on the amplitude 

of the interval itself and therefore propose slightly different boundaries. Secondly, even if 

the intervals proposed by different experts are the same, they can associate to them a 

different confidence and therefore estimate different BPAs. Moreover, some experts can 

also give a very generic indication that the given parameter can oscillate between a 

minimum and maximum value with equal confidence, which corresponds to giving a single 

wide interval with BPA equal to 1. And last, the expert can have no opinion at all on some 

quantities. 

For the technological parameters ηL, ηSA, ρR, ρL and ρM, the three experts behaves as 

follows. Regarding the laser efficiency, expert a in Table 8.2 is rather conservative and 

assigns a high confidence of 70% to the proposition that the efficiency will be between 

40% and 50%; he/she is less confident about the possibility of achieving efficiencies 

comprised between 50% and 60% and therefore the related probability assignment is 30%. 

Expert b, in Table 8.3, on the other hand is probably more realistic and assigns only 30% 
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confidence to the interval of 40-50% efficiency, while giving 60% to the 50-60% 

efficiency interval and finally introducing another interval between 60% and 66.4% with a 

confidence of 10%. Expert c, in Table 8.4, is very optimistic about future developments of 

lasers and therefore assigns 100% confidence to the statement that lasers could reach 

efficiencies between 55% and 66.4%. For the laser specific mass, expert a gives 40% 

confidence about the specific mass being comprised between 0.005 and 0.01 kg/W while is 

more oriented towards higher specific masses in the interval of 0.01-0.02 kg/W and 

therefore assigns 60% confidence to the latter. Expert b, on the other hand, is convinced 

that lightweight laser systems are possible and therefore assign 100% to the 0.01-0.02 

kg/W. Expert c does not give any opinion on this topic (reported as n/a in the table). For 

the solar array efficiency, expert a is again rather sceptical and proposes only one interval 

between 20% and 30%, obviously with 100% confidence. Expert b suggests only a 40% 

confidence for the 20-30% efficiency range and instead assigns a 60% confidence about 

achieving higher efficiencies comprised between 30% and 50%. Expert c again doesn’t 

express any opinion on the topic (reported as n/a in the table). Regarding the mirror 

specific mass, expert a is equally oriented towards values between 0.1 and 0.3 kg/m2 and 

0.3 and 0.5 kg/m2, therefore confidence will be 50% for both. Expert b again proposes only 

one interval with 100% confidence for values ranging from 0.3 and 0.5 kg/m2. Expert c 

instead is very optimistic about the development of lightweight mirrors with specific 

masses between 0.01 and 0.05 kg/m2. Finally for the radiator, expert a suspects that 

radiator specific mass will be higher for large radiators like those envisioned for laser 

ablation spacecraft and therefore suggests 40% for values comprised in the 1-2 kg/m2 and 

60% for values between 2 and 4 kg/m2. Expert b doesn’t give an opinion on the topic 

(reported as n/a in the table) while expert c gives a generic indication that the mirror 

specific mass will surely be between 1 and 3 kg/m2. 

As already pointed out in Section 8.4, physical properties can differ considerably from 

one asteroid to the other. At the same time, different sources report different physical 

parameters for the same asteroid. Moreover, data is currently limited to ground based 

observations and a limited number of fly-by missions to only a few NEOs, such as Eros, 

Itokawa, Steins and Lutetia. However, these missions demonstrated that the fundamental 

nature, composition and geometries of NEOs are highly variable. Any generic group of 

physical characteristics can introduce a significant error within the analysis. Furthermore 

substantial error bars in Tsub, cA, kA and ρA also exist from the inferred spectra analysis and 

shape regularity – including period of rotation, form and shape model, and surface 

properties154,155,156. For example, available source show a range of two orders of magnitude 
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for the sublimation enthalpy: it is as low as 2.7·105 J/kg for some rare E type asteroids 

composed by carbonaceous and Enstatile Chondrites while it can reach 1.9686·107 J/kg for 

some S type asteroids with Olivine composition. For Silicum based bodies, the values are 

intermediate, around 5·106 J/kg. In this respect, for example, expert a gives 100% 

confidence to enthalpy being generically comprised between values as low as 2.7·105 and 

as high as 6·106 J/kg. Expert b gives more details, proposing only 20% confidence for a 

lower range between 2.7·105 and 106 J/kg for Chondritic objects and assigning instead 80% 

confidence to enthalpies comprised in the 107-1.9686·107 J/kg typical of S-type Olivine 

asteroids. Expert c, while agreeing on the boundaries of this interval, assigns only 30% 

confidence to it and also is more persuaded about a different lower interval between 4·106 

and 6·106 J/kg, to which he assigns a 70% confidence. Analogously, for the specific heat, 

most sources reported values between 500 and 600 J/(kg·K), which are typical  of Olivine-

based S type asteroid but also of M and C types such as Lutetia and Mathilde. It is 

interesting to note, however, that in some cases like the E type asteroid Steins the estimates 

can range from 470 up to over 750 J/(kg·K).  Thus, expert a suggests two uncertain 

intervals: the first from 375 to 470 J/(kg·K) with 30% confidence, and  the second one 

from 470 to 600 J/(kg·K) with 70% confidence. Also expert b proposes this latter range, 

but with 40% confidence only. He also proposes a higher interval from 600 up to 750 

J/(kg·K) with 60% confidence. Expert c gives a generic indication that the specific heat 

will be between 470 and 750 J/(kg·K). For the thermal conductivity, the range spans two 

orders of magnitude: for common S-type, Olivine bodies and for some E type asteroids it is 

around 1.47-1.6 W/(m·K); it is as low as 0.2 W/(m·K) for others like M-type Lutetia and 

C-type Mathilde. In this sense, expert a assigns 20% confidence to an interval to a low 

interval for relatively rare M/C-type bodies with conductivities comprised between 0.2 and 

0.5 W/(m·K). On the other hand, he/she gives 80% to the assumption that the conductivity 

will be between 1.47 and 1.6 W/(m·K). Expert b is again rather generic giving just a 

minimum of 0.2 W/(m·K) and maximum of 2 W/(m·K). Expert c is unable to give an 

opinion (reported as n/a in the table). Regarding the density, sources report values 

comprised between 1100 and 2000 kg/m3 for most C-type asteroids, and between 2000 and 

3700 kg/m3 for S-types and some M-type ones. According to this, expert a thinks that S-

type objects will be more common and therefore assigns 70% to the latter interval and 30% 

to the former. This time too, expert b is very vague, giving indications of a lower bound at 

1100 kg/m3 and an upper at 3700 kg/m3. Expert c disagrees with the lower limit and sets it 

at 2000 kg/m3 instead. Finally, the sublimation temperature shows a more limited 

variability, with values around 1700 K for S-type and up to 1812 K for other examples. 
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This small variability is also reflected in the experts’ opinion, since expert a assumes the 

values related to S-type asteroids, between 1700 K and 1720 K, with 100% confidence. 

Expert b proposes a range spanning 1720-1812 K, again with 100% confidence, while 

expert c proposes a wider range from 1700 K to 1812 K.  

The three sources of information are data-fused following a similar procedure to the one 

described by Oberkampf and Helton157. As a representative example, the procedure is here 

applied to the data-fusion of the estimates concerning the laser efficiency. As already 

discussed, the opinions given by three experts are: 

a. Conservative opinion: “The Laser efficiency will be between 40% and 50% with 

70% confidence and between 50% and 60% with 30% confidence”. 

b. Realistic opinion: “The Laser efficiency will be between 40% and 50% with 

30% confidence, between 50% and 60% with 60% confidence and between 60% 

and 66.4% with 10% confidence”. 

c. Optimistic opinion: “The Laser efficiency will be between 55% and 66.4% with 

100% confidence”. 

These statements, in mathematical terms can be written as: 

a. 
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Then, to represent and then combine the data given by the three experts, for each of 

them a matrix is constructed as follows157: 

1. First, one has to list all the possible values the experts propose as lower and 

upper boundaries for the uncertain intervals. In this case the lower boundaries 

are [ ]0.4 0.5 0.55 0.6 and upper boundaries are [ ]0.5 0.6 0.664. 

2. Then, a lower triangular matrix Ai is defined for each source of information, 

which has as many columns as the possible lower boundaries and as many rows 

as the possible upper boundaries. Thus, each element of this lower triangular 

matrix represents a certain interval with its lower and upper limits. If the expert 

has associated a confidence level to that interval, then the element of the matrix 
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assumes that value and is zero otherwise. For example, the matrix for expert a 

will have the following structure: 

 0.4 0.5 0.55 0.6 

0.5 0.7 0 0 0 

0.6 0 0.3 0 0 

0.664 0 0 0 0 

In the present case, the three matrices are as follows. 

a. 

0.7 0 0 0

0 0.3 0 0

0 0 0 0
aA

 
 =  
    

b. 

0.3 0 0 0

0 0.6 0 0

0 0 0 0.1
bA

 
 =  
    

c. 

0 0 0 0

0 0 0 0

0 0 1 0
cA

 
 =  
    

At this point the three sets of intervals can be combined into a single one by computing 

the weighted average of matrices as: 

3
a a b b c ck A k A k A

A
+ +=

                                        (8.25) 

where ka, kb, and kc are weights which can be defined arbitrarily in order to give 

different influence to each source of information. In this case, all sources are given the 

same importance and therefore the weights are all set to 1. The resulting matrix is 

therefore: 

0.3333 0 0 0

0 0.3 0 0

0 0 0.3333 0.0333

A

 
 =  
    

from which one derives the uncertain intervals as: 

[ ] ( )
[ ] ( )

[ ] ( )
[ ] ( )

1 1

2 2

3 3

4 4

0.4,0.5 0.3333

0.5,0.6 0.3

0.55,0.664 0.3333

0.6,0.664 0.0333

U BPA U

U BPA U

U BPA U

U BPA U

= =

= =

= =

= =
 

A similar procedure was followed for the remaining nine uncertain parameters, leading 

to the results reported in Table 8.5 and Table 8.6. Note that information fusion of different 

sources for this specific case is still an open problem. The use of a weighted average is 
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only one possibility. A thorough analysis of the right information fusion technique is out 

the scope of this work. 

Table 8.2: Uncertain parameters estimates from expert a. 

 Lower Upper BPA  Lower Upper BPA 

cA [J/KgK] 
375 470 0.3 

Lη
 

0.4 0.5 0.7 

470 600 0.7 0.5 0.6 0.3 

kA [W/mK] 
0.2 0.5 0.2 

SAη
 

0.2 0.3 1 
1.47 1.6 0.8 

ρA [kg/m3] 
1100 2000 0.3 

Mρ
  [kg/m2] 

0.1 0.3 0.5 

2000 3700 0.7 0.3 0.5 0.5 

Tsub [K] 1700 1720 1 Lρ
 [kg/W] 

0.005 0.01 0.4 

0.01 0.02 0.6 

Esub [J/kg] 2.7·105 6·106 1 Rρ
 [kg/m2] 

1 2 0.4 

2 4 0.6 

Table 8.3: Uncertain parameters estimates from Expert b. 

 Lower Upper BPA  Lower Upper BPA 

cA [J/KgK] 
470 600 0.4 

Lη
 

0.4 0.5 0.3 

600 750 0.6 
0.5 0.6 0.6 
0.6 0.664 0.1 

kA [W/mK] 0.2 2 1 SAη
 

0.2 0.3 0.4 

0.3 0.5 0.6 

ρA [kg/m3] 1100 3700 1 Mρ
  [kg/m2] 0.3 0.5 1 

Tsub [K] 1720 1812 1 Lρ
 [kg/W] 0.01 0.02 1 

Esub [J/kg] 
2.7·105 106 0.2 

Rρ
 [kg/m2] n/a 107 1.9686·107 0.8 

Table 8.4: Uncertain parameters estimates from Expert c. 

 Lower Upper BPA  Lower Upper BPA 

cA [J/KgK] 470 750 1 Lη
 

0.55 0.664 1 

kA [W/mK] n/a SAη
 

n/a 

ρA [kg/m3] 2000 3700 1 Mρ
  [kg/m2] 0.01 0.05 1 

Tsub [K] 1700 1812 1 Lρ
 [kg/W] n/a 

Esub [J/kg] 
4·106 6·106 0.7 

Rρ
 [kg/m2] 1 3 1 

107 1.9686·107 0.3 
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Table 8.5: Uncertain intervals of NEO physical properties. 

 Lower Upper BPA 

cA [J/KgK] 

375 470 0.1 
470 600 0.3667 
470 750 0.3333 
600 750 0.2 

kA [W/mK] 
0.2 0.5 0.1 
1.47 1.6 0.4 
0.2 2 0.5 

ρA [kg/m3] 
1100 2000 0.1 
2000 3700 0.5667 
1100 3700 0.3333 

Tsub [K] 
1700 1720 0.3333 
1720 1812 0.3333 
1700 1812 0.3333 

Esub [J/kg] 

2.7·105 106 0.0667 
2.7·105 6·106 0.3333 
4·106 6·106 0.2333 
107 1.9686·107 0.3667 

Table 8.6: Uncertain intervals of technological parameters. 

 Lower Upper BPA 

Lη
 

0.4 0.5 0.3333 
0.5 0.6 0.3 
0.55 0.664 0.3333 
0.6 0.664 0.0333 

SAη
 

0.2 0.3 0.2 
0.3 0.5 0.3 
0.2 0.5 0.5 

Mρ
  

[kg/m2] 

0.3 0.5 0.5 
0.1 0.3 0.1667 
0.01 0.05 0.3333 

Lρ
 [kg/W] 

0.005 0.01 0.2 
0.01 0.02 0.8 

Rρ
 [kg/m2] 

1 2 0.2 
1 3 0.5 
2 4 0.3 

8.6 Multi Objective Optimization under Uncertainty 

Once the uncertainties on system design and asteroid physical characteristics are 

defined, one can try to find the optimal design of the deflection system under uncertainty. 

The performance, i.e. the achieved deviation, needs to be maximised while minimising a 

measure of the cost of the mission, e.g. the mass into space. According to the spacecraft 

system model presented in previous sections, performance and cost can be optimised with 

respect to four design parameters: the diameter of the primary mirror dM, the number of 
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spacecraft nsc, the warning time twarn (time from the beginning of the deflection action to 

the time of the expected impact with the Earth) and the concentration ratio Cr. The 

performance measure to be maximised is the impact parameter b, while the cost measure to 

be minimised is the total mass of the formation msys. This leads to a classical Multi-

Objective optimisation problem. The impact parameter is computed by means of the 

deflection and ablation model detailed in Section 8.2 and Section 8.4 while the total system 

mass is derived as in Section 8.3. 

As a first step one can determine the set of Pareto optimal solutions for a fixed value of 

the uncertain parameters ηL, ηSA, ρR, ρL, ρM, Esub, Tsub, cA, kA and ρA. Their value was chosen 

according to the available literature154,155,156 and are reported in Table 8.7. Moreover, since 

at this stage uncertainties are not yet accounted for with Evidence theory, system margins 

as in Table 8.1 are included in the model, in order to replicate the standard system 

engineering method to deal with uncertainty. 

Table 8.7: Set of fixed values for uncertain parameters. 

NEO Physical properties Technological parameters 

Parameter Value Parameter Value 

cA [J/KgK] 750 Lη
 0.6 

kA [W/mK] 2 SAη
 0.41 

ρA [kg/m3] 2600 Mρ
  [kg/m2] 0.1 

Tsub [K] 1800 Lρ
 [kg/W] 0.005 

Esub [J/kg] 5·106 Rρ
 [kg/m2] 1.4 

Table 8.8: Boundaries for optimization parameters. 

 Lower Upper 
dM [m] 2 20 

nsc 1 10 
twarn [yrs] 1 8 

Cr 1000 3000 

 

The multi objective optimisation problem to be solved is: 

( ) ( )min , ,system
D

m b
∈

 − x
x u x u

                                    (8.26) 

where x is the design parameter vector comprising x=[dM, nsc, twarn, Cr]
T, for which the 

boundaries are in Table 8.8, and u  is the vector of uncertain parameters with values in  

Table 8.7. The impact parameter b appears with the minus sign since it has to be 

maximised. For the solution of problem (8.26) system margins are introduced with the 

values in Table 8.1. 
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Note that the presence of the discrete variable nsc makes this a mixed integer-nonlinear 

Multi-Objective optimisation problem. The optimisation problem was solved with MACS2. 

When epistemic uncertainties are introduced through Evidence Theory the MOO 

problem (8.26) has to be reformulated in order to maximise the Belief in the optimal value 

of impact parameter and total system mass. Formally problem (8.26) would translate into 

the MOO under uncertainty: 

max ( ( , ) )

max ( ( , ) )

min

min

b
D

sys m
D

b

m

Bel b

Bel m

ν

ν

ν
ν

∈

∈

− <

<
x

x

x u

x u

                                   (8.27) 

The solution of problem  would require the computation of the Belief value for different 

design parameters and for different values of the thresholds νb and νm for all possible 

values of the uncertain parameters u within the uncertain space U: for each x, set (B.5) 

needs to be computed for each of the functions b and msys for different νb and νm 

respectively and the cumulative functions (B.6) need to be independently computed for 

both b and msys.. The identification of the set (B.5) would need the computation of the max 

and min of b and msys over all the focal elements in U. However, the number of focal 

elements in U is an exponential function of the number of uncertain parameters147 which 

translates into an exponentially increasing number of optimisation problems required to 

compute the cumulative quantities in (B.6). In practise, however, the full Belief and 

Plausibility curves are not required and one can study only the worst and best case 

scenarios. 

The best case scenario corresponds to the design, uncertainty vectors and thresholds that 

yield a Plausibility equal to 0. Below this value of the thresholds the deflection mission is 

not possible assuming the available body of knowledge of spacecraft systems and asteroid 

physical properties. The worst case scenario corresponds to the design, uncertainty vectors 

and thresholds that yield a Belief equal to 1. Above this value of the thresholds the mission 

is certainly possible, given the current body of knowledge, but would be suboptimal. 

The optimal design vector and thresholds that yield a Belief equal to 1 for all possible u 

in U can be computed solving the following Multi-Objective minmax problem: 

( ) ( )( )min max , max ,system
D U U

m b
∈ ∈ ∈

 −
 x u u

x u x u
                        (8.28) 

In fact, for a given x, the minimum possible threshold value corresponds to the 

maximum value of msys and –b over the whole uncertain space U, for which boundaries are 

reported in Table 8.5 and Table 8.6. Because the focal elements in U can be overlapping or 
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can be disconnected, the identification of the maximum of msys and –b might be 

problematic as one would need to explore each focal element independently and therefore 

face an exponential number of optimisation problems. In order to avoid this exponential 

complexity, all focal elements are collected, through an affine transformation, into the unit 

hypercube U  such that they are not overlapping or disconnected.  

The optimal design vector and thresholds that yield a Plausibility equal to zero for all 

possible u in U can be computed by solving the following Multi-Objective minmin 

problem: 

( ) ( )( )min min , min ,system
D U U

m b
∈ ∈ ∈

 −
 x u u

x u x u
                          (8.29) 

Again as before the focal elements are mapped into the unit hypercube U  and the 

search is run over U . Note that, differently from the case of problem (8.26), system design 

margins are no longer needed and therefore the values for kdry, kS, kM, kL are all set to 1. 

The two mixed integer optimisation problems (8.28) and (8.29) are solved with a variant 

of MACS2, called MACS2ν, as described in the following section. 

8.6.1 MACS2ν 

MACS2ν is an algorithm based on MACS2, and is aimed at solving Multi-Objective 

minmin/minmax problems. The steps of the algorithm are summarised in Algorithm 8.1.  

Algorithm 8.1 MACS2ν 

 

MACS2ν uses the standard MACS framework to explore the design space D, which has 

already been described in detail in Chapter 2. The main differences lay in the fact that now 

the objective function J(x) is given by: 

Algorithm 7 MACS

1: Initialise Population P0

2: Apply Algorithm Cross-check on population P0 and itself

3: Initialise archives Al and Ag

4: k = 0

5: while nfeval < nfeval,max do

6: Apply individualistic moves and generate trial population Pt

7: Apply Algorithm Cross-check between population Pt and Pk

8: Apply Algorithm Cross-check between population Pt and archive Al

9: Update archive Al

10: k = k + 1; Pk ← Pt

11: Apply social moves and generate population Ps

12: Apply Algorithm Cross-check between population Ps and Pk

13: Apply Algorithm Cross-check between population Ps and archive Ag

14: Update archive Ag

15: Pk ← Ps

16: Validate archive Ag

17: end while
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( ) ( )max , 1,...,
T

U
lf l m

∈
 = =
 u

J x x u                              (8.30) 

where m is the number of the objective functions. Therefore, in this algorithm, when a 

new candidate solution x is generated, for each fl, a global optimisation to maximise fl is 

run over the space of uncertain parameters U with probability p and the resulting umax is 

associated to the new x. If no optimisation is run on U, then the new candidate solution 

inherits the u of its parent. Moreover, a number of strategies are implemented, which 

exploit the knowledge in the current population and in the archive in order to ensure that 

the u associated to each x is a maximiser of fl. These strategies are described in Algorithm 

8.2 and Algorithm 8.3. The first algorithm acts on couples of solutions [xi,ui] and [xj,uj], 

belonging to two different sets Si and Sj, and cross-checks whether the local maximum 

fl(xi,uj
*), where uj

* lies in a neighbourhood of uj, is higher than fl(xi,uj
*); if so, it associates 

this new point uj
* to xi. Algorithm 8.3 instead is meant to validate the archive and ensures 

that, for each objective function fl, its best minimiser ximin,l found so far is really such. In 

order to do so, a global search is run over U and the new candidate maximum ug is checked 

against the one currently associated with ximin,l and, if it gives a higher fl, it replaces it. The 

process is repeated until the increase in fl is below a certain threshold. 

Algorithm 8.2 Cross-check 

 

Algorithm 8

1: Given two generic sets of solutions Si and Sj

2: for all {[xi,ui]} ∈ Si do

3: for all {[xj ,uj ]} ∈ Sj do

4: for all l ∈ {1, ...,m} do

5: Compute local maxima fl(xi,u
∗

j ) and fl(xj ,u
∗

i )

6: if fl(xi,u
∗

j ) > fl(xj ,ui) then

7: ui ← u∗j
8: end if

9: if fl(xj ,u
∗

i ) > fl(xj ,uj) then

10: uj ← u∗i
11: end if

12: end for

13: end for

14: end for
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Algorithm 8.3 Validate 

 

8.6.2 Solution of the MO Problems under Uncertainty 

The solution of problems (8.28) and (8.29) provides the intervals for both the 

performance and the design parameters. In particular, the worst case corresponds to the 

maximum Belief condition: 

( ) ( )( )[ , ] arg min max , max ,

( ) 1

system
D U U

m b

Bel
∈ ∈ ∈

 = = −
 

=
x u u

y x u x u x u

y               (8.31) 

The best case instead corresponds to the minimum Plausibility point: 

( ) ( )( )[ , ] arg min min , min ,

( ) 0

system
D U U

m b

Pl
∈ ∈ ∈

 = = −
 

=
x u u

y x u x u x u

y
                (8.32) 

As a comparison, a minmin problem analogous to (8.32) is solved with the 

reintroduction of system design margins. Finally the 4 optimisation problems are 

considered both in the case with and without the contamination are solved. In summary, a 

total of 8 Pareto curves are generated, 4 each for the cases with and without the 

contamination: 

1. deterministic, i.e. a bi-objective optimisation problem on D∈x  as in (8.26). The 

system model does include the margins specified in Table 8.1 and constant values 

for uncertain parameters u are used as in Table 8.7. The problem is solved with the 

standard MACS2. 

2. minmax, bi-objective optimisation problem as in (8.28). The system model doesn’t 

include margins. The problem is solved with the modified MACS2. 

3. minmin, bi-objective optimisation problem as in (8.29). The system model doesn’t 

include margins. The problem is solved with the modified MACS2. 

4. minmin with margins, bi-objective optimisation problem as in (8.29). It is analogous 

to the previous one but this time the system model does include the margins 

specified in Table 8.1. The problem is solved with the modified MACS2. 

Algorithm 9 Validate

1: Given an archive Ag and ∆→∞
2: for all l ∈ {1, ...,m} do

3: while ∆ < tol do

4: imin,l = argmink fl(xk,uk)
5: Run global search over U and generate putative global maximum u

g
i

6: if fl(xi,u
g
i ) > fl(xi,ui) then

7: ui ← u
g
i

8: end if

9: ∆ = fl(xi,u
g
i )− fl(xi,ui)

10: end while

11: end for
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Figure 8.6a and Figure 8.6b report the Pareto fronts for the deterministic, minmin and 

minmax problems, with and without contamination respectively. 

Qualitatively, the case with and without contamination are very similar but Figure 8.6a 

shows that, without contamination, the best deviation achievable is one order of magnitude 

larger than in the case with contamination (see  Figure 8.6b). Since the system model is the 

same, the range of total system mass is the same in both cases. 

The uncertainties in the input parameters translate into a difference between the minmin 

and minmax curves of about two orders of magnitude in attainable deviation and one order 

of magnitude in system mass. The achievable deviation easily reaches 105-106 km in the 

best case scenario with a total formation mass below 30000 kg, while in the worst case 

scenario even with a system mass of 105 kg the best achievable deviation does not exceed 

104 km. This issue is even more apparent in the case with mirror contamination in which 

the worst case deviation barely reaches 103 km. It is important to point out that the huge 

variability in performance does not imply that the laser ablation is an unreliable deflection 

method as the type of uncertainty is epistemic. It implies instead that: given the present 

body of knowledge a reliable deflection mission would require a massive system in orbit, 

the potential margin for improvement would be considerable, current knowledge on this 

deflection method is too low to provide an exact quantification of its performance. Note 

also that the Pareto front for the case minmin with margins has higher system mass for the 

level of deviation attained with respect to the standard minmin case. 
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Figure 8.6 Multi objective optimization: Pareto fronts a) no contamination b) with 
contamination. b is represented in logarithmic scale. 

Figure 8.7a and Figure 8.7b show the distribution of optimal design solutions in the 

three case studies, without and with contamination respectively. The plots present the 

values only for three design variables, i.e. the diameter of the primary mirror, the number 

of spacecraft and the warning time. The concentration ratio is not reported because all the 

optimal design points show the maximum allowed concentration ratio allowed, i.e. 3000. 

 

Figure 8.7 Multi objective optimization: Pareto sets a) no contamination b) with 
contamination. 

In Figure 8.7 one can clearly identify two different families of design solutions in the 

minmin and minmax case. In the latter, solutions with a high number of spacecraft and a 

small diameter of the primary mirror are preferred. Arguably, many spacecraft are needed 

because the physical properties of the asteroid are such that inducing sublimation requires 

a large amount of power; at the same time the efficiency of the laser system is much lower 

and in particular the radiator mass per unit area is much higher and therefore it is 

convenient to have many smaller spacecraft, i.e. with a smaller primary mirror. Coherently 

with this, for diametrically opposite reasons, in the minmin case designs with few 

spacecraft with large concentrators are preferable. This result brings to an interesting 

general conclusion: for low performance components a monolithic system is suboptimal 

with respect to a disaggregated system as the mass of a monolithic system grows faster 

than the linear growth of the mass of the disaggregated counterpart.  Note that, although 

redundancy was not modelled, the robust analysis suggests that a highly redundant system 

is preferable in the case of high uncertainty on the design parameters, as it would be logical 

to expect. 

Finally one can note that in the case without contamination the maximum warning time 

of eight years is always optimal. This is easily explained given the fact that the magnitude 

of the thrust acceleration is relatively constant (albeit within a minimum and maximum 
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values, see Figure 8.5a) and therefore the longer this is acting on the NEO, the better. 

When the contamination of the mirrors is considered, then the optimal warning time is 

around 7.27 years. In this case, in fact, the acceleration profile essentially is reduced to a 

single large thrust impulse followed by a perturbation some orders of magnitude smaller 

than the initial peak (as shown in Figure 8.5b and Figure 8.5c). In this case, thus, the 

phasing of the initial pulse becomes extremely important (see Colombo et al.42). 

8.6.3 Belief and Plausibility Analysis 

To further analyse the influence of each individual uncertain parameter, five design 

points from the solution set of the deterministic case in Figure 8.6a were selected. For each 

of them, the belief and plausibility curves for both the impact parameter b and the system 

mass were reconstructed. The curves were computed with an algorithm based on the 

evolutionary binary tree technique in Vasile et al.158: 

1. Given the performance parameter Ji and a constant design parameter vector x , 

the single objective optimisation problems: 

( )
( )

min

max

min ,

max ,

i
U

i
U

J

J

ν

ν
∈

∈

=

=
u

u

x u

x u
                                      (8.33) 

are solved with IDEA over the entire uncertain space given by the unit hypercube U . 

This returns the upper and lower limit for the performance parameter. 

2. nν values νj are defined equally spaced in the interval [ ]min maxν ν . 

3. The initial unit hypercube U  is partitioned in two sub-hypercubes 1U  and 2U . 

The “cut” is performed such that it coincides with the boundaries of adjacent 

focal elements which form the hypercube U . Define ϒ  as the set of sub-

hypercubes lU . 

4. For each value of the threshold νj, the following iterative procedure is 

performed: 

a. 
( )
( )

0

0

j

j

Bel

Pl

ν

ν

=

=
  

b. For each sub-hypercube lU ∈ ϒ  : 

• Solve problem (45) on lU  and store min
lν  and max

lν . 

• If max
l

jν ν≤ , then: 
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( ) ( ) ( )
( ) ( ) ( )

l
j j

l
j j

Bel Bel BPA U

Pl Pl BPA U

ν ν

ν ν

= +

= +
 

• Else, if min max
l l

jν ν ν< < , partition lU  into two new sub-hypercubes 

1lU  and 2lU . Remove lU  from ϒ  and add 1lU  and 2lU . 

• Repeat step b. until a termination condition is met, e.g. the maximum 

number of partitions has been reached or the current lU  corresponds 

to a single focal element and therefore cannot by further divided. 

Alternatively further subdivisions are also avoided if the BPA of lU  

is lower than a certain threshold, which means that its contribution to 

the Belief and Plausibility curves would be negligible. 

(Note that step b. is to be skipped if problem (8.33) has already been solved on lU  and 

the results already stored are used instead). 

c. For each min max|m m m m
jU U ν ν ν = ∈ ϒ < <  : 

( ) ( ) ( )j j mPl Pl BPA Uν ν= +
 

We report here only the curves for designs 1 and 5, for the case without contamination 

only. These two are the most relevant since they correspond to the upper and lower edge of 

the deterministic Pareto front (see Figure 8.6a). The curves for the other three design points 

are qualitatively similar. Figure 8.8a and Figure 8.8b show design point 5, corresponding 

to the lower left part of the Pareto front, i.e. minimum mass/minimum deviation. 

 

Figure 8.8 Belief/Plausibility curves for design 5: a) impact parameter b b) system mass. 

The deviation obtained is indeed very small, going from few tens of meters for Bel=1 to 

few thousands for Pl=0. At the same time, the curves of the system mass show that it 
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cannot be lower than 680 kg but also will not exceed 765 kg even in the worst possible 

condition. 

 

Figure 8.9 Belief/Plausibility curves for design 1: a) impact parameter b b) system mass. 

Similar observations are applicable to Figure 8.9a and Figure 8.9b, which consider the 

design point corresponding to maximum deviation and maximum system mass. In this case 

however, the difference between the condition with Bel=1 and Pl=0 is much wider: ~106-

104 km for the impact parameter b and ~1.09·105-2·104 kg for the mass. This means that in 

the worst case, a successful deviation is still achievable, albeit with a small margin, but the 

total launch mass of the formation will be quite high. Note that, in the case of design 1, the 

performance values for worst and best conditions (Bel=1 and Pl=0) are coinciding with the 

values at upper edge of the minmax and minmin Pareto fronts respectively, as reported in 

Figure 8.6a. This is explained by the fact that the design points corresponding to the upper 

edge of the deterministic, minmin and minmax curves are identical and correspond to the 

point with nsc=10, dM=20 m and twarn=8 years as in Figure 8.7. However, this is not the 

case in general (as already discussed in the previous section) and therefore for example the 

performance values for the Bel=1 and Pl=1 conditions for design points 2 to 4 will be 

different from the best case and worst case conditions defined by the minmin and minmax 

Pareto fronts. 
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Figure 8.10: Belief/Plausibility curves for b w.r.t. the physical parameters. 

It is interesting to observe that the Bel/Pl curves for b follows a stepped trend with three 

large variations while the mass’ curves have a more gradual increase from 0 to 1. This 

possibly means that the impact parameter is mostly influenced by a single physical 

parameter rather than by a combination of many of them. In order to identify the most 

influent parameter, one can calculate the Belief and Plausibility curves for design point 1 

with respect to each individual physical parameter while considering the remaining ones as 

constants with the values in Table 8.7. This analysis does not consider the coupling or 

interdependency of the parameter and therefore does not provide a complete picture of the 

impact of one uncertain parameter on the system performance. Nonetheless it gives a 

qualitative indication of the relative importance of the uncertain parameters. The results are 

shown in Figure 8.10. 
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In Figure 8.10a one sees that in the case of the sublimation enthalpy the difference in 

impact parameters between the points at Bel=1 and Pl=0 is much greater than in the four 

other cases (Figure 8.10b to Figure 8.10e).  

This shows that the wide boundaries introduced on the enthalpy are a driving factor in 

determining the wide spreading between the best case and worst case impact parameter b. 

It also means that, with the current knowledge on the value of the sublimation enthalpy 

(see Table 8.5), a tight enclosure of the performance of the laser ablation system is not 

possible. 

8.7 Conclusions 

This chapter presented the combined orbital and system model for the Multi-Objective 

optimisation under uncertainties of the deflection of an asteroid with laser ablation. A fast 

and accurate analytical propagation of the low-thrust deflection action, through 

rectification, combined with MACS2, allowed for the fast computation of the Pareto set of 

optimal solutions for the asteroid deflection problem. The Multi-Objective optimisation 

without accounting for uncertainty showed that solar-pumped laser ablation can easily 

achieve considerable NEO deviations with a launch mass within current or near future 

technological capabilities. The uncertainty on some critical technologies and NEO physical 

characteristics were modelled and quantified through Evidence Theory. By including these 

uncertainties in the optimisation process, one can observe that in the worst case scenario 

the effectiveness of the whole concept is severely compromised. The analysis of the Belief 

and Plausibility curves has revealed that the sublimation enthalpy is the most critical 

uncertain parameter, due to its wide range of values which depends on asteroid type and 

also to the disagreement of different sources. The Optimisation Under Uncertainty (OUU) 

proposed in this chapter highlighted the key knowledge areas which will require better 

investigation in the near future. Furthermore, it provides a quantitative measure of which 

solutions should be adopted to make the deflection mission more robust. A remarkable 

result emerging from the OUU is that a multi-spacecraft mission is significantly more 

resilient against uncertainty than a single-spacecraft mission with equivalent power. 
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Chapter 9.Conclusions 

The topic of this dissertation was the Multi-Objective design of LT trajectories and its 

applications. Among the objectives, enunciated at the beginning of this dissertation, there 

was the development of an efficient MOO algorithm, of which, MACS2 is the result. 

Another key objective was the elaboration of a methodology for the fast propagation of LT 

motion, and this was achieved through the set of analytical formulae and the propagation 

techniques of rectification and averaging based on them. A third objective was that of 

devising a simple but flexible parameterisation of the control thrust, which had to be able 

to model the typical patterns of LT trajectories. This objective was achieved by the control 

parameterisation proposed in Chapter 5 for Multi-revolution trajectories. For long, 

rendezvous transfer with few complete revolutions, a different strategy was devised, based 

on a piecewise constant thrust profile. 

The combination of these three techniques forms a powerful and efficient set of tools 

for the multi-criteria, preliminary design of mission employing LT propulsion techniques. 

It is expect that this means will find their natural application in the early stages of the 

design of a space mission. In this regard, the case study on DESTINY presented in Chapter 

7 is already a first example of application. 

9.1  Summary and Findings 

In the following the major findings and advancements are discussed separately along 

with a summary of the methods and applications developed in this thesis. 

9.1.1  Memetic Multi-Objective Optimisation 

One of the main paths of research focused on the development of an efficient MOO 

algorithm, MACS2, which was amply described in Chapter 2. MACS2 hybridised the 

concept of population-based search with neighbourhood exploration. The former was 

embodied by the Differential Evolution scheme while for the latter a Pattern Search 

technique was adopted. In addition, the common selection criterion based on Dominance 

was supplemented by a criterion based on scalarised Tchebycheff functions. The latter 

allowed for a more uniform distribution of the points on the Pareto Front. Furthermore, the 

use of the scalarisation resolves the ambiguity in the selection process based purely on 

dominance in the case in which dominating solutions cannot be found and there are 

multiple non-dominated alternatives. The combination of these two selection criteria is 
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regarded as a key contribution of this research work. The performance of MACS2 was 

validated in comparative tests with other state-of-the-art optimisation algorithms, on a set 

of benchmark problems. In these test cases, MACS2 showed an equal or better 

performance compared to the other algorithms. Of particular interest, was also the good 

performance of the algorithm on the test cases with more than two objectives. 

9.1.2 Approximated Analytical Solution of Perturbed Keplerian 

Motion 

In parallel, a considerable effort was devoted to the reduction of the computational 

effort required to propagate the orbital motion under the effect of a LT acceleration. The 

proposed techniques were centred around the set of analytical formulae described in 

Chapter 3. These were derived, by means of perturbation theory, as a first order solution to 

the equations of motion. Four different acceleration patterns were considered: constant 

acceleration in the r-θ-h reference frame, constant tangential acceleration, constant inertial 

acceleration, and J2 perturbation. The numerical tests, presented in this dissertation, have 

shown that the combination of accuracy and computational cost of these formulae renders 

them advantageous compared to numerical integration schemes, when a low-to-medium 

fidelity propagation is required. Moreover, the above mentioned acceleration patterns can 

also be superimposed, allowing for enough flexibility to model more complex thrusting 

patterns. Compared to other analytical techniques presented by previous authors, the scope 

of application of the formulae presented here was not restricted to low-eccentricity orbits.  

Moreover, different thrusting patterns can be treated simultaneously, differently from other 

formulations which can handle, for example, only tangential43 or inertially fixed44 

acceleration. The main limitation was the decaying of accuracy with the increase of the 

propagation interval. In order to mitigate the error growth over very long propagation arcs, 

a technique was implemented, involving the rectification of the reference conditions used 

in the analytical formulae. A by-product of this was that, each time the reference 

conditions are changed, so can be the perturbative acceleration, which allows for better 

describing time-varying acceleration patterns. 

The other approach, described in Chapter 5, combined the analytical formulae with 

orbital averaging techniques. In particular, the formulae were used for accurately and 

efficiently computing the variation of the orbital elements over a single orbital revolution. 

This is an important innovation compared to existing averaging techniques. In the 

numerical tests of Chapter 5, it was shown that this approach is particularly suited for the 

propagation of long, multiple-revolution trajectories. The computational advantage, over 
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other numerical integration techniques, was noteworthy. The test case, described at the end 

of the chapter, on the de-orbit of MEO satellites, also confirmed the above mentioned 

flexibility in modelling complex perturbation patterns, like the combination of LT, SRP 

and J2 of this case. 

9.1.3 Control parameterisation for LT trajectories 

Regarding the control parameterisation, the key objective pursued in this dissertation 

was that of having a reduced number of design parameters to describe the evolution of the 

control thrust. At the same time, these should allow for enough flexibility to model realistic 

thrust profiles. The first strategy adopted, presented in Chapter 4, was meant for modelling 

interplanetary trajectory arcs, with few (if any) complete revolutions around the central 

body. It envisioned subdividing the trajectory into a number of sub-arcs, each with a 

constant acceleration vector in the radial-transverse reference frame. The propagation was 

performed with the rectification method, while the optimisation of the control parameters 

was done here with a Multiple Shooting method. The numerical tests on Earth to Mars 

transfer problems have shown that this approach allows for the fast computation of 

minimum ∆V transfers. The resulting bang-bang thrusting pattern and the ∆V cost was very 

consistent with the solution obtained with a more expensive, high-fidelity model. 

Moreover, the 2PBVP solver was combined with MACS2 to perform a Multi-Objective 

analysis for a given launch window. 

For multi-revolution transfers, a different approach was followed, since subdividing the 

trajectory into a high number of sub-arcs would have led to an excessively large number of 

design parameters. On the other hand, reducing the number of sub-arcs, for example, even 

to just one per revolution, would not have allowed to catch the switching pattern over a 

revolution, which is typical of these transfers. For these reasons, the control 

parameterisation described in Section 5.1 was introduced, which exploited the assumption 

that, over each revolution, the thrusting arcs were located only around the pericentre and 

apocentre and that the in-plane thrust direction was always aligned with the tangential 

direction, in order to maximise the change in orbit energy. In this way, the thrust control 

over a single revolution could be described with just a small number of parameters. The 

long-term evolution of these parameters was conveniently modelled with simple 

interpolating functions. As a result of this, the final set of design parameters was composed 

by the parameters of these functions. Additional parameters could be easily introduced to 

the model, as done, for example, for the out-of-plane acceleration component in the 

examples of Chapter 5 and in Chapter 6, or for the ω-varying thrusting pattern in Chapter 7. 
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The optimisation of the control parameters for this thrusting model was performed with 

a gradient-based method in the test cases of Chapter 5 and in Chapter 6. In the former 

chapter, the solution of the GEO circularisation problem provided similar results to those 

found in the available literature. 

9.1.4 Active Debris Removal 

Three case studies were presented in more detail to assess the validity of the proposed 

methodologies. Chapter 6 presented the interesting case of the MO design of a multi-

rendezvous mission for debris removal. A surrogate model was introduced for describing 

the deorbiting arcs, while the rendezvous arcs were modelled with the control 

parameterisation described above. The propagation was performed with the rectification 

method. This features effectively allowed for lowering the computational cost of 

evaluating each candidate trajectory. Then, the solution of the MO instances with MACS2 

identified the most convenient fetch-and-deorbit sequences. 

9.1.5 Long-spiral Mission Design  

Chapter 7 applied the techniques for MO, LT trajectory optimisation to the preliminary 

design of a JAXA mission, DESTINY. The MO formulation enabled to tackle the peculiar 

combination of design requirements and system-derived constraints for this mission. In 

particular, the first MO runs immediately revealed the criticality of the issue of eclipse 

mitigation, which severely limited the transfer opportunities. The flexibility of the 

proposed trajectory model was again put to test, since it was easily expanded in order to 

introduce a thrusting pattern which maximises the change of argument of perigee. Further 

MO runs clearly showed the effectiveness of this modification in extending the range of 

transfer opportunities. The performance of MACS2 was also put to a test since it had to 

deal with 3- to 6-objective (although in the latter case 2 objectives were spurious) with a 

relatively high number of design parameters. The complex dynamics of this orbit raising 

trajectory were realistically modelled with orbital averaging. It is also interesting to note 

that, in this case study, a further step was taken with regard to the parameter optimisation: 

differently from the previous examples, in which the control parameter optimisation was 

taken care of by a gradient-based algorithm, in this case MACS2 acted directly both on the 

control and in other parameters, like departure epoch and time of flight. In summary, the 

data obtained from the MO analysis of the trajectory, by means of the proposed tools, gave 

the mission designer a wide overview of the relative merits of the various transfer options. 
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9.1.6 Asteroid Deflection Under Uncertainty 

In Chapter 8, the interdisciplinary design of a spacecraft constellation for NEO impact 

mitigation was formulated as a MOO problem. The LT-like dynamics of the NEO 

deviating trajectory were conveniently propagated with the analytical formulae. Epistemic 

and technological uncertainties, due to various sources, were introduced into the model 

through Evidence Theory. A specialised variant of MACS2, tailored for OUU, was 

developed and used to solve the MOO problems. These gave, at a glance, a good overview 

of the worst-case and best-case scenario, as well as identifying the most critical sources of 

uncertainty for the performance of the spacecraft constellation. 

9.2 Future Work 

The work in this thesis paved the way to several possible new developments. MACS2 

has shown to be a powerful framework for implementing effective memetic strategies. 

Possible improvements will include mixing different local search strategies to improve the 

performance in the case of multimodal functions as the Cassini trajectory one. A possible 

path, which has already showed some promise in the context of this work, is that of the 

hybridisation with the Monotonic Basin Hopping methods.  

Another important development field for the MOO algorithm would be that of 

introducing heuristic for the explicit treatment of constraints. Note that, in this dissertation, 

problem constraints were treated implicitly by the MOO algorithms, for example with 

penalties on the objective function (see, for example, Section 7.4). An explicit mechanism 

for tackling constraints within the optimisation process would extend the field of 

application of the proposed techniques to optimisation problems of even higher complexity. 

The multi-rendezvous problem presented in Chapter 6 also suggested a further 

extension of the MOO algorithm to mixed continuous/discrete optimisation problem. This 

involves the concurrent optimisation both of discrete parameters (e.g. the debris sequence 

in this case) and of the continuous ones (thrust profile parameters, departure/rendezvous 

times etc.). A tool to solve such a mixed problem would, for example, allow solving an 

optimisation problem similar to that of Chapter 6 but with a higher number of target debris. 

In the case Chapter 6 this was limited to five because each of the 125 possible sequences 

had to be treated separately. 

Finally, as for the analytical formulae, future research can be aimed at further extending 

the range of acceleration patterns. In particular, an approximate solution for 3rd body 

perturbation could be highly desirable. Some previous works159 , 160 might provide an 

important starting point. 
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Appendix A.Analytical Integrals 

The integrals which appear in the equations in Chapter 3  are expressed as: 
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Appendix B.Evidence Theory 

Evidence Theory161 ,157, 162 , 163 , 164, or Dempster-Shafer Theory, is a mathematical 

framework to model epistemic uncertainty and can be interpreted as a generalisation of 

classical probability theory. Epistemic uncertainties are typical of the preliminary phase of 

the design of a space mission since the experts from each engineering discipline involved 

are asked to provide reasonable estimations regarding the size, mass, power consumption 

or performance of individual components. The whole design process can be 

mathematically represented as a multidisciplinary optimisation problem in which a number 

of design parameters are uncertain or their values derive from opinions or estimations. 

In Evidence Theory, the values of uncertain or vague design parameters are expressed 

by means of intervals with associated belief (degree of confidence in the range of values). 

Each expert participating in the design assigns an interval and a belief according to their 

opinion or rare experimental data. Evidence Theory treats these epistemic uncertainties 

better than probability theory since there is no reason to prefer one distribution function 

over another. Ultimately, all the pieces of information associated to each interval are fused 

together to yield two cumulative values, Belief and Plausibility, that express the confidence 

range in the optimal design point. In particular the value of Belief expresses the lower limit 

on the probability that the selected design point remains optimal (and/or feasible) even 

under uncertainties. More precisely it represents the lowest level of confidence in the 

computed value of the cost function (and/or the constraints). 

B.1.Definition of Uncertainty 

Uncertainties are usually classified in two distinct categories, aleatory and epistemic 

uncertainty. According to Helton165, the definition of each type is: 

• Aleatory Uncertainty arises from what is considered to be an inherent 

randomness in the behavior of the system under study. Also known as: 

Stochastic uncertainty, Type A uncertainty, Irreducible uncertainty, Variability, 

Objective uncertainty. 

• Epistemic Uncertainty arises from a lack of knowledge about a quantity that is 

assumed to have a fixed value in the context of a particular analysis. Also known 

as: Subjective uncertainty, Type B uncertainty, Reducible uncertainty, State of 

Knowledge uncertainty, Ignorance. 
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• Error, also called numerical uncertainty, which is defined as “a recognizable 

deficiency in any phase or activity of modelling and simulation that is not due to 

lack of knowledge”162. Such uncertainties are well-known, and a good 

estimation of the error is generally available. This point distinguishes errors 

from epistemic uncertainties. Aleatory uncertainties are due to the random 

nature of input data while epistemic ones are generally linked to incomplete 

modelling of the physical system, the boundary conditions, unexpected failure 

modes, etc. 

In the case of preliminary space mission design, analysts face both types of uncertainty. 

For example, the initial velocity of the spacecraft, the gravity model or the solar radiation, 

all present aleatory uncertainties. On the other hand, a good deal of the parameters defining 

the characteristics of spacecraft subsystems are not known a priori and their value cannot 

be computed because it depends on other unknown parameters. Therefore their value has to 

be first estimated on the basis of previous experience or educated guesses by a group of 

experts. The uncertainty associated to those parameters is therefore epistemic. 

B.2.Quantification of Uncertainty in Evidence Theory 

Let one define the frame of discernement h as the set of mutually exclusive elementary 

propositions. A possible elementary proposition can be for example  

1 1 1[ , ]ii
E u u u= ∈   (B.1) 

which translates into “the parameter u1 is comprised a certain interval 1 1[ , ]ii
u u “ . E is 

therefore an element of h.  

Let one define the power set 2h as a set collecting subsets of h. One can assign, to each 

proposition in 2h, a Basic Probability Assignment (BPA), defining the level of confidence 

in the proposition itself. This corresponds to the probability of an event in classical 

probability theory. The properties which apply to the BPA are as follows: 

( )
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( )
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BPA E E
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∅ =
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∑
h

h
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  (B.2) 

Therefore, the BPA is a function that maps the power set into [0;1]. The elements of 2h 

are solely defined by their associated BPA being strictly positive, and are commonly called 

Focal Elements (FE). 
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Unlike probability theory, unions and intersections of subsets of h are not necessarily 

included in the power set. This means that, given two events F and G, evidence on the 

event F G∪  and F G∩  does not give or require information on either events F and G. In 

contrast to probability theory, the complement of an element of h is not necessarily in the 

power set. This translates into the fact that an expression similar to P(E)=1-P(E̅), is not 

necessarily true in Evicence Theory. One the contrary, an expression like the following can 

apply: 

,

( ) ( ) 1i i

i

j

i j

BPA E BPA E E+ ∪ =∑ ∑   (B.3) 

With reference to Equation (B.1), this for example means that the intervals can not only 

be disconnected, but also overlapping. Therefore, the power set 2h and the BPA are less 

structured than their counterparts of probability theory and allow for greater flexibility in 

representing incomplete or contradictory information. 

If the space uncertain parameters is multidimensional, the power set is composed by the 

Cartesian product of elements of the power sets of each parameter’s frame of discernment: 

2(h1,h2)=2h1×2h2 . Given two focal elements 1
1 1 1[ , ]i ii

FE u u u= ∈  and 2
1 1 1[ , ]j jj

FE u u u= ∈ , 

for variable u1 and u2 respectively, the associated BPA of 1 2
i jFE FE×  is the product of the 

BPA of the two corresponding focal elements: 

( )( ) ( ) ( )1 2 1 1 2 2 1 1 1 2 2 2, [ , ] [ , ] [ , ] [ , ]i j i ji j i j
BPA u u u u u u BPA u u u BPA u u u∈ × = ∈ ⋅ ∈ (B.4) 

This also means that, the total number of focal elements for all uncertain parameters is 

given by the product of the number of focal elements for each parameter. 

B.3.Belief and Plausibility 

Differently from Probability Theory, Evidence Theory uses two complementary 

quantities to measure the cumulative confidence, or belief, in a given proposition: Belief 

and Plausibility. To explain their meaning, let one consider a performance parameter y, 

which is a function f of the design parameters x and of the uncertain parameters u. The set 

of all y which are below a certain threshold ν is defined as: 

{ }: ( , ) , ,vY y y f v D U= = < ∈ ∈x u x u
                             (B.5) 

then the Belief and Plausibility associated to the proposition y<ν are: 
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with 

{ }
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1

: ( )

: ( ) 0

j
B v

j
P v

I j U f Y

I j U f Y

−

−

= ⊂

= ∩ ≠
                                    (B.7) 

It should be noted that IB is always a subset of IP, i.e. B PI I⊆  and in this sense Belief 

and Plausibility can be interpreted as respectively the lower and upper boundary for the 

likelihood of an event. 

To better illustrate how focal elements contribute to Belief and Plausibility, let one 

consider the focal elements in Figure B.1. The purple dotted line represents the set Yν. All 

focal elements which are fully contained in Yν (in green in the figure) belong to the set IB, 

while those which at least intersect it (the blue and the green elements), belong to set IB. 

 

Figure B.1: Focal Elements, Belief and Plausibility sets. 

Differently from the probability of an event and its opposite, Belief and Plausibility are 

not strictly complementary. Instead the following relationships apply, as also shown in 

Figure B.2: 
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Figure B.2: Belief and Plausibility 
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