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Abstract

This research work developed an innovative comjmutak approach to the preliminary
design of low-thrust trajectories optimising mulkgipnission criteria.

Low-Thrust (LT) propulsion has become the propulssgstem of choice for a number
of near Earth and interplanetary missions. Consgtyen the last two decades a good
wealth of research has been devoted to the develapof computational method to design
low-thrust trajectories. Most of the techniqueswhwer, minimise or maximise a single
figure of merit under a set of design constraihtsss effort has been devoted to the
development of efficient methods for the minimisatior maximisation) of two or more
figures of merit. On the other hand, in the prefiary mission design phase, the decision
maker is interested in analysing as many desigatieas as possible against different
trade-off criteria.

Therefore, in this PhD work, an innovative Multi{@ttive (MO), memetic
optimisation algorithm, called Multi-Agent Collaladive Search (MACS2), has been
implemented to tackle low-thrust trajectory desigablems with multiple figures of merit.
Tests on both academic and real-world problems sHothat the proposed MACS2
paradigm performs better than or as well as othate®f-the-art Multi-Objective
optimisation algorithms.

Concurrently, a set of novel approximated, firslesy analytical formulae has been
developed, to obtain a fast but reliable estimatbbrthe main trade-off criteria. These
formulae allow for a fast propagation of the orbitaotion under a constant perturbing
acceleration. These formulae have been shownduw dtir the fast and relatively accurate
propagation of long LT trajectories under the tgp@cceleration level delivered by current
engine technology.

Various applications are presented to demonstnatedlidity of the combination of the
analytical formulae with MACS2. Among them, the lprenary design of the JAXA low-
cost DESTINY mission to 4, a novel approach to the optimisation under uaa#st of
deflection actions for Near Earth Objects (NEO)] #ime de-orbiting of space debris with
low-thrust and with a combination of low-thrust aswlar radiation pressure.
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Chapter 1.Introduction

Low Thrust (LT) propulsion systems, delivering aatollable acceleration in the order
of 10%10° m/¢ with a mass flow rate of 10to 10° kg/s, have become the propulsion
system of choice for a number of past, current famgre space missions. LT propulsion
has been proposed for a wide range of applicatidresn the attitude control of
Geosynchronous platforms, to the active removapaice debris, from the exploration of
difficult to access targets in the solar systertheodeflection of asteroids.

The prospect of an increasing use of LT propulsiothe future comes along with the
need to develop new effective and flexible missa@sign tools. While this need has
already been partially satisfied by previous redeathere are still a number of open
problems that this work is going to address. Intipalar, this thesis will address the
preliminary design of Low-Thrust trajectories thaed to be optimal with respect to
multiple criteria.

In the early stage of the design of a space missicentists and decision makers are
interested in exploring as many options as possibteto assess them against a number of
criteria. In this phase, therefore, a set of sohgj satisfying multiple, and often conflicting,
performance indicators, is required. The exploratsd multiple options demands for the
quick and reliable evaluation of the performandéeda. In this respect, model fidelity
plays a fundamental role as very detailed and atewolutions are not generally required
at this stage but the value of the performancecatdrs needs to be sufficiently accurate to
make reliable decisions. Therefore, the trade-aff between response fidelity and
computational cost. The high fidelity design of bajectories would require, generally,
the numerical solution of an expensive optimal canproblem. Models representing the
whole thrust arc as a single impulsive change ef \blocity are too inaccurate to be
applicable to extended LT arcs. Therefore, givenrtbed of evaluating the cost of many
LT transfer options, it is desirable to have a liaelity model for LT trajectories, which is
at the same time realistic and computationallyceffit.

This thesis proposes a novel low-fidelity analyticeodel for the design of low-thrust
transfers with constraint conditions at the bouregarnof the transfer arc, and a new
memetic Multi-Objective solver that delivers sefs Rareto efficient solutions with a

contained computational cost.
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1.1Past, Present and Future of Low Thrust Propulsion

From the 60s up to the early 90s the use of LT ysipn was limited to attitude control
and station keeping, but since the end of thedastury the number of missions which
adopted LT as the primary propulsion system isdgadncreasing. The first major
breakthrough was NASA'’s technology demonstratorsiars Deep Space 1 (1998-2001),
which used its NSTAR lon engine to flyby asteroib9 Braill€. It was followed in 2003
by JAXA's Hayabusg which performed a rendezvous of asteroid 199§ 86kawa and
returned samples to Earth in 2010. Despite somabiktly issues with its foup10 lon
engines and other on-board systems, it was regasled great success, since it was the
first human-made object to reach an asteroid annirréo the Earth. In the same year ESA
launched SMART-1, a technology demonstrator, whisld Hall Effect thrusters to reach
the Moon. A rather exotic spacecraft which also leygd ion propulsion, the Gravity
Field and Steady-State Ocean Circulation Explo@®CEY, was also launched by the
European Space Agency in 2009 to study the teimegtavity field and other atmospheric
phenomena. It completed its mission successfully amentered the atmosphere after
running out of propellant in November 2013.

NASA’s Dawri"”is under development and aims at shedding lightherformation of
planets by visiting two dwarf planets in the asigrdoelt, Vesta and Ceres. It is currently
the only space mission bound to enter the orbitwaf different extra-terrestrial bodies,
something made possible by the high efficiencyteflon propulsion system. Dawn left
Vesta’'s orbit in July 2012 and is expected to e@eres’ orbit in early 2015.

Hayabusa-2 the follow-on mission of Hayabusa, is expectedbédaunched in 2014-
2015 and will follow a similar mission profile tdsi predecessor, reaching its target
asteroid 1999JU3 in 2018-2019.

BepiColombd, a joint effort by JAXA and ESA, will send two drérs in Mercury’s
orbit via a Low-thrust Multiple Gravity Assist (LT®@A) trajectory. Launch is planned for
2016 with Mercury’s orbit insertion in 2024.

In addition, LT propulsion is being, or has beeonsidered for a number of future
missions, like the cancelled Jupiter Icy Moon QGebi(JIMO)® or JAXA's proposed
technology validation mission DESTINYYwhich will also be one of the test applications
of this thesis work.

In this thesis, the term “Low Thrust” describes @mgpulsion system which generates a
low but continuous acceleration for extended perioictime. In this sense, it does not refer

to any particular class of propulsion devices, dmily to relative magnitude of the thrust
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acceleration they produce and, therefore, it caplyap a broad class of propulsion
methods, as will be seen later.

The term is often associated to Electric PropuldigR) technologies, in contrast to
“High Thrust” propulsion, commonly associated tquid or solid rocket engines. Both
classes belong to the broader family of non-aiatineg jet engines but while in the latter
case the exhaust fluid is accelerated as a rest@ilt ao chemical reaction
(combustion/decomposition followed by gas expansiam the former the propellant is
accelerated by exploiting electrical energy anch@ples of electromagnetism. EP is
characterised by a very low thrust-to-mass ratypwBy of comparison, a state-of-the-art,
chemically-propelled Mercury probe such as MESSER8Has a ratio around 0.60 m/s
while BepiColombd, ESA’s planned Mercury probe with Solar Electriofulsion (SEP),
has a ratio in the range of justID® m/<, or four orders of magnitude smaller than
MESSENGER. The low thrust-to-mass ratio is offsgté much higher efficiency of
Electric Propulsion compared to chemical propulsidhis is usually measured as the
specific force per unit weight of mass flow, or &ifie Impulsels,. In the case of chemical
engine lsp can reach a maximum of 450s in the casegDFHcombinations while it can be
in the range of 1500s for Hall Effect thrustersp@{000s or more for lon thruster and
ongoing research (project VASIMR'?and DS4G®) foresees specific impulses up to
20000s. This means that, for the same mass of igopehe total velocity change (aV)
an EP system can provide is much higher than theatbemical propulsion system.

The velocity change provided by chemical systemsoishort compared to the whole
transfer time that can be confidently modelled asirapulse On the contrary, LT
propulsion systems need to thrust for extendedogsrof time, compared to the total
transfer time, in order to achieve the same veflocliange. This has three important
consequences: the first is that a longer trangfes ts required, the second is that gravity
losses are typically higher (a higher tof is required to reach the same target), and the
third is that the impulsive approximation is no @quigte to correctly model a thrust arc.
While chemical trajectories can be decomposedfinite (and usually small) number of
impulsive velocity changes, interweaved with lormpsting arcs, in the LT case it is
necessary to define a continuous optimal contodity at each time instant. In this sense
the complexity of the design of an optimal LT trmsis comparably higher than the
design of a multi-impulse transfer.

As pointed out earlier, in this dissertation therté.T is not necessarily restricted just to
electrical propulsion, but embraces any propulssgatem which generates a low but
continuous acceleration for extended periods oétiAs it will be seen in another test case,
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an example of this is the deflection of asteroiglgrieans of laser ablation, in which the
propelling acceleration is produced by the subliomabf the asteroid’s surface material

irradiated by a high power laser (see Chapter 8).

1.1.1 Low Thrust Trajectory Design

The design of low-thrust (LT) trajectories requitbge definition of the thrust profile
that satisfies a Two-point Boundary Value Probl@REVP). In the literature, the design
of low-thrust trajectories has been tackled in anber of different way$° generally
classified in two families: indirect methods andedt methods. Indirect methotfs
translate the design of a low-thrust trajectoryoitihe solution of an optimal control
problem and derive explicitly the associated fosder optimality conditions. The first-
order optimality conditions are a system of mixéfedential-algebraic equations (DAE).
Shooting, multiple-shooting, collocation and appmeated analytical approaches have
been proposed to solve the DAE system and salisfhoundary conditions.

Direct method¥ 181929

instead, do not derive the optimality conditiong branscribe
the differential dynamic equations of motion intsystem of algebraic equations and then
solve a nonlinear programming problem. Numerictdgration and collocation techniques
have been proposed to transcribe the differenfrabohic equations. Direct methods are
generally computationally intensive while indiresethods can display some convergence
problems. Both require some form of first guesstsoh. In the past decade, some low-
fidelity approximation techniques have been propgdsegenerate the first guess solution,
based on shaping approachég .

No matter which approach is used, the differerg@ations governing the motion of
the spacecraft are generally integrated numeric@lternatively, albeit in few special
cases, an analytical solution is also poséileSome authors have proposed ways to
alleviate the computational cost associated wighrthmerical integration of the dynamics
in direct methods by computing approximated anedytsolutions. Sims and Flanag3n
Vavrina and Howef’ and Yam et af® used an approximation of the continuous thrust
profile made of a sequence of impulsiés and analytically propagated Keplerian arcs.

Analytical solutions have been proposed for thegrdtion of long low thrust, many-
revolution transfers. In particular, the works ofA.J Kechichian proposed various
analytical or semi-analytical solutions to specific. T trajectory design
problemg®-30:31:32.33.34 Kachichiari' tackled the problem of the planar, eccentricity-
constrained, LT orbit raising, producing a closedhf solution for the thrust control which

takes advantage of the condition of constant edcéyt In Ref. 32, instead, Kechichian
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dealt with the problem of orbit raising with Earthhadow under tangential thrust and
presented a solution in series expansion with spehe eccentricity for the equations of
motion, which is valid up to eccentricities of 0Rimilarly, in Ref. 33, he treated the
problem of optimal inclination change for quasiadiar orbits. Another wofR
reformulated Edelbaum’s problem with optimal cohtind applied the resulting solution
to the design of transfers between non-coplanamuleir orbits. Other work8>*
investigated the problem of LT trajectory optimisatunder the effect of th& effect and
derived the set of dynamical and adjoint equatiforsthe solution of optimal control
problems. Note that, the differential equation iaoé solved in closed form but integrated
numerically. Similarly, Refs. 35 and 36 studied timegrability of the motion under
continuous tangential acceleration and derived sioteeesting closed form solutions, for
example for escape spirals.

Kluever also proposed a number of design techniduaseed on averaging, and in
particular in combination with a direct optimisati@lgorithn?’. Gao and Kluevef
proposed an analytical averaging technique on toerdric anomaly for motion under
tangential thrust. The resulting solution depefndsyever, on the approximate evaluation
of elliptic integrals, the accuracy of which de@es with the eccentricity. Geoffroy and
Epenoy?® also investigated the use of averaging technidaesroblems under a set of
environmental and technological constraints. Thitedagroup includes boundaries on
thrust magnitude and direction, while the formeranpasses, for exampli, perturbation
and shadow effects. The resulting generalised rdethas applied to a number of
minimum-time and minimum-fuel optimisation problerferrier and Epend{proposed a
further development of this approach by introduangmproved methodology for treating
the shadow effects. The methodology envisionstti&tliscontinuity due to the shadow is
handled by introducing two modified optimizationoptems in which this transition is
smoothed, i.e. no longer discontinuous. The autdersonstrated that the solution of the
original problem is bounded by those of the twoilsny problems.

Petropolous et dl', proposed a thrust profile derived from a feedbagrpunov
controller, as a function of the mismatch betwelea ¢turrent and target values of the
orbital parameters. More recently Colombo éf@oposed a semi-analytical solution for
the case of tangential thrust, with modulus as r&ctfan of distance from the central
attractor, which was applied to the Low-Thrust eefion of Near Earth Objects.
Bombardelli et af?, proposed a first order analytical solution basegerturbation theory
for the case of purely tangential thrust. Lantoarel Russell developed an analytical

solution to the case of inertial thrust by reforatirig the perturbed Two Body problem as
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a Stark problem (a well-known problem in quanturggitsf*“> Zuiani et af*® proposed a
first-order analytical solution based on a perttivieaexpansion of the perturbed Keplerian

motion, which will be amply described in this diga&on.

1.1.2 Multi-Objective Optimisation of Low-Thrust Trajecto ries

While the design and optimisation of low thrustjeéciories has generated a vast
literature in the past decades, the optimisatidh vaspect to multiple criteria has received
less attention. Coverstone-Carroll ef‘gbresented a very interesting methodology, for the
Multi-Objective optimisation of interplanetary resmlous transfers: a genetic algorithm-
based Multi-Objective evolutionary algorithm, NSt%Agenerates pairs of departure and
arrival dates each defining a 2PBVP, which is teelwed with an algorithm implementing
an indirect methot.

Lee et af® further developed the Q-law concept by having amigionary algorithm
specify the parameters of the feedback law. Thithauwlogy was then employed to the
Multi-Objective design of LT transfers around thartB.

Schiitze et dl* devised a methodology for the Multi-Objective ofiation of Low-
Thrust, Multiple Gravity Assist trajectories (LT-MK3, adopting a shaped-based approach
and a branch and prune method. The trajectory detted in a similar fashion to what is
done for impulsive MGAs with thpatched conic€ method, although here the Lambert
arcs are replaced by exponential sinusoid arcs.

Vasile® proposed a novel methodology for the robust desfgal missions, in which
uncertainties are modelled by means of Evidenceoijhevhile a memetic algorithm is

used to solve the MOO problem.

1.2Motivations and Objectives

This dissertation will explore the possibility op@ying Memetic Multi-Objective
(MMO) optimisation algorithms to the preliminarysign of Low Thrust transfers. In this
sense, one of key objectives will be that of depelg and testing an efficient MMO
algorithm. The proposed algorithm is to be assebs#il on a standard set of benchmark
problems and on a set of specific space-related pexblems. At the same time, its
performance will also be compared with other stdtthie-art stochastic algorithms. The
metrics used to assess the quality of the algorithiibe: thereliability in identifying an
approximation of the Pareto-optimal set, tjuality of the approximation ( closeness to the
actual Pareto set and extent to which the apprdaiomaovers the real Pareto set)and the
associatedcomputational costmeasured in function calls. The computational ,cast

26



particular, is a key issue. Since the cost is meaisas the total number of evaluations of
the objective function(s), and since each evalunatranslates in the propagation of a
trajectory, it is desirable to keep the number whleations as low as possible and to
minimise the computational cost of the propagatidavertheless, one has to take into
consideration that, even with a high performanagorthm, and with a very simple

optimisation problem (small number of design par@mseand objective functions, and a
very simple problem structure), the total numbefuniction evaluations is likely to be in

the range of a few thousand and can rise up torledsdf thousands or even millions for
complex problems. The high number of function estbn derives from the need to
reconstruct a set rather than identifying a sisgletion.

Therefore, a second key objective will be that educing the computational cost of
each function evaluation itself, by developing st faropagation methodology for the LT-
perturbed orbital motion.

Finally, since the number of function evaluatioeguired to solve a MOO problem is
also linked to the number of design parameters, tbsearch will aim at developing a
suitable control parameterisation that reduces rthmber of control variables while

keeping a sufficient degree of flexibility for mdbieg realistic trajectories.

1.3Methodology and Expected Results

This dissertation will focus on two main areas etaarch. The first will be the
development of an efficient Multi-Objective optirateon algorithm. A hybrid-memetic
approach will be adopted, which combines differeatrristics. The selection criteria for
candidate solutions will be based in a combinatibRareto optimality and a scalar figure
of merit based on Tchebycheff decomposition. Th#&epopulation will performed a set
of independent, explorative actions, definadividualistic while a subset will interact
with each other in order to exploit the most prangssolutions found so fars¢cial
actions). In particulaisocial individuals will always try to improve the scalbchebycheff
function assigned to each of them. It is expected the latter feature will considerably
improve the quality of the output solutions, by wirsg their uniform distribution on the
Pareto front. The performance of the proposed algorwill be validated on a number of
both academic and space related test cases andacaimip that of other state MOO
algorithms.

The other research path aims at the developmeatset of analytical formulae for the
propagation of perturbed Keplerian motion. Thisachieved by means of a perturbative

approach and by introducing some simplifying asdionp on the perturbative
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acceleration. The configurations explored includeoastant acceleration in the radial-
transverse reference frame, a constant tangentiaklexation, a constant inertial
acceleration and finally a perturbing acceleraténl,-like behaviour. It is expected to
derive a set of formulae for each of these configans, which describe the first-order
evolution of the orbital elements and which willoal for a fast propagation of perturbed
trajectory arc. Moreover, it is also envisionedstuperimpose the effects of the above
mentioned acceleration patterns in order to modmlentomplex thrust and perturbation
profiles. It will be shown that the formulae guase an adequate accuracy at a lower
computational cost compared to numerical propagatiethods.

The accuracy of the analytical formulae is inversaioportional to the length of the
propagated arc. One remedy proposed in this wotd eriodicallyrectify the reference
conditions for the analytical formulae. The rectfiion process implies a higher number of
evaluations of the analytical formulae but providesaccurate description of the evolution
of the osculating orbital elements and of the LEederation pattern.

The other remedy explored in this thesis work isuse the analytical formulae for
accurately and efficiently computing the averagaat@n of the orbital elements over a
single orbital revolution and then study the evolutof the averaged elements. This
approach is particularly suited to the propagatiblong, multiple-revolution trajectories.

The combination of low-thrust analytical formula@da memetic Multi-Objective
optimisation will be applied to the solution of ange of innovative problems from the
disposal of space debris to the deflection of aglerunder uncertainty.

1.4Thesis Structure

This dissertation is organised as follows: Chagtevill present in detail MACS, the
MO stochastic algorithm developed by the authar pkrformance is assessed on a wide
range of test cases and compared to that of othier-sf-the-art MOO algorithms.

Chapter 3 introduces the approximate analyticalitsmi for the perturbed Keplerian
motion. The derivation of the analytical formulaepgresented in detail as well as their
numerical accuracy and computational time underde wange of test propagations. Their
performance is compared to a number of numeridalgmtion methods. Some of the
analytical expressions, cited in this chapter, s¥ported in full in Appendix A. A
technique for the propagation of long, LT spiraliarcs, based on thiectification of the
reference conditions for the analytical propagator.

Chapter 4 describes Direct Finite Perturbative EleinTranscription (DFPET), a direct

transcription method for LT trajectory optimisatidmased on the analytical formulae of
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Chapter 3. As it will be shown, this allows for asf solution of 2PBVPs compared to
similar, but more computationally expensive, metothanks to this feature, it can be
embedded in a MOO instance, for th& vs. time of flight design trade-off for an
interplanetary rendezvous transfer, as in theciest presented at the end of the chapter.

Chapter 5 presents methodologies, again based eranhlytical formulae, for the
propagation and optimisation of long, many-revaatiransfers. A technique is proposed
for the fast and accurate long-term propagatiobTofransfer. This draws inspiration from
orbital averaging techniques, but includes the ydizal formulae for the short term
propagation of the orbital motion along a revolntigee Chapter 5 for more details). A
simplified control model is also proposed, whiclhowk for a significant reduction of
optimisation parameters, while retaining enougkxifidity for describing typical LT
many-revolution trajectories.

Chapter 6 presents an interesting test problerwhich a hypothetical Debris removal
spacecraft is to rendezvous with and de-orbit abmmof different pieces of debris. The
objective is that of finding the optimal removabsence and timing with respect to time
and propellant consumption. The problem has beemnettre formulated as a MOO
problem and solved with MACS. In order to attaineasonable computational time, the
simplified control model described in Chapter Hether with theectification technique,
for the modelling of the trajectory.

Chapter 7 details a “real world” application, iniatn the methodologies described in
the previous chapters are applied to the preligimaission study for JAXA’S mission
DESTINY, a technology demonstrator for interplang&xploration with LT propulsion.

Finally, Chapter 8 presents an interdisciplinanydgt which analyses the problem of
deflecting an Earth-threatening asteroid with acedaased, solar-pumped, laser ablation
system. Detailed models for the trajectory, system ablation models will be described.
In addition epistemic uncertainties are also initl and treated by means of Evidence
Theory. The complex Multi-Objective design probldmat follows, is solved with a variant
of MACS, which deals also with uncertain parameterghe objective functions. The
deflected trajectory of the asteroid, in fact adrt, is modelled and efficiently propagated

with the proposedectificationtechnique.

1.5Contributions
The key contributions of this thesis are:
* The development of a set of analytical formulae tloe fast propagation of

perturbed Keplerian motion.
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* The development of a low-fidelity model for the ioptl design of extended
thrust arcs with boundary conditions.

e The development of a new efficient Memetic Multij€diive Optimisation
algorithm based on a combination of population-basearch and individual
neighbourhood exploration.

* The application of the above mentioned techniqueshe solution of very
challenging mission design problems, from the a&ctemoval of space debris to
the optimal design of very long low-thrust spirdts,the deflection of asteroids
(see Chapter 6, Chapter 7 and Chapter 8).

e The introduction of two new problems in space noigsdesign: the optimal
sequential disposal of multiple pieces of debrid #re optimisation of asteroid
deflection manoeuvres under epistemic uncertainty

The content of this dissertation was publishedvie journal papers and were presented
in seven conference papers and presentations.

Part of the Low Thrust analytical formulation waBstf presented at the ®1
International Astronautical Conference in Praguezedh Republic in 2010 and
subsequently published as a journal article in A&stronautic®®. An extension of the
analytical formulation was presented at th& é3ternational Astronautical Conference in
Naples, Italy in 2012.

An early version of MACS was presented at thé” ongress on Evolutionary
Computation (CEC 2010) in Barcelona, Spain in 28460 appeared in the Proceedings of
the Institution of Mechanical Engineéts The new version, MACS2, described in this
dissertation, was first presented at BIOMA2012 ohiij, Slovenid® and then published
in an issue of Computational Optimisation and Aggtions®.

The test case of Chapter 6 on the optimisatiorebfid removal missions was published
in the International Journal of Aerospace Engimegfj while the one on the robust design
of asteroid deflection actions in Chapter 8 was@néed at the conference “New Trends in
Astrodynamics and Applications VI” in New York, U& in 2011 and then published in
the journal Celestial Mechanics and Dynamical Asbray®.

The analyses for the preliminary design for DESTIN#®rbit raising (as in Chapter 7)
were partially presented at the®BIAA/AAS Space Flight Mechanics meeting in Kauaii,
U.S.A., in 2018% and an internal report at the end of my JSPSvislip at ISAS/JAXA®.
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Chapter 2.Multi Agent Collaborative Search

This chapter presents a novel formulation of MAjent Collaborative Search (MACS),
for Multi-Objective optimization, based on Tchebgtihdecomposition.

The original version of MAC%°***has been applied to a number of standard problems
and real applications with good results, if compax@existing algorithntd®*%* MACS is
a hybrid population-based approach that blendsmabeu of heuristics. In particular, the
search for Pareto optimal solutions is carried globally by a population of agents
implementing classical social heuristics and mooally by a subpopulation implementing
a number of individualistic actions. The recondinrt of the set of Pareto optimal
solutions is handled through two archives: a lacal a global one.

The individualistic actions were devised to alloscle agent to independently converge
to the Pareto optimal set, thus creating its owrtigdarepresentation of the Pareto front.
Therefore, they can be regarded as memetic mechsrassociated to a single individual.
It will be shown that individualistic actions sifjeantly improve the performance of the
algorithm. The Multi-Objective version of MACS%also included a modified selection
criterion, for both global and local moves, to hanBareto dominance as well as new
heuristics to allow the agents to move towardsalodg the Pareto front.

The algorithm proposed here (referred to as MAG®p)ements some key elements of
innovation. Most of the search mechanisms have beeplified, but more importantly in
this version Pareto dominance is not the only gateused to rank and select the outcomes
of each action. Instead, agents are using Tchelfydaeomposition to solve a number of
single objective optimization problems in parallel.

Furthermore, opposite to previous implementationMACS, here all agents perform
individualistic actions while social actions arefpemed only by selected sub-populations
of agents.

Recent work by Zhang et &@lhas demonstrated that Tchebycheff decompositinrbea
effectively used to solve difficult Multi-Objectiveptimization problems. Another recent
example is Sindhya et &, that uses Tchebycheff scalarisation to introcudecal search
mechanism in NSGA-II. In this paper, it will be denstrated how MACS2 based on
Tchebycheff decomposition can achieve very goodilieson a number of cases,
improving over previous implementations and stdtdie-art multi-objective optimization
(MOO) algorithms.
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The new algorithm is here applied to a set of knetamdard test cases and to two space
mission design problems. The space mission desagescconsider spacecraft equipped
with a chemical engine and performing a multi-ingeutransfer. They are part of a test
benchmark for multi-impulsive problems that hasrbegtensively studied in the single
objective case but for which only a few comparasuadies exist in the Multi-Objective
casé’.

The chapter is organized as follows: Section 2ritaias the general formulation of the
problem with a brief introduction to Tchebycheffcdenposition; Section 2.2 gives an
overview of the state of the art; Section 2.3 staith a general introduction to the multi-
agent collaborative search framework and with amgson of its first implementation,
MACS, underlining the key difference between MAG®I MACS2. Section 2.4 will first
give a general overview of MACS2 and its heuristiiefore going into some of the
implementation details. Section 2.5 contains acsetomparative tests that demonstrates
the effectiveness of the new heuristics implemeritedACS2. The section briefly
introduces the performance metrics and ends wehréisults of the comparison. Finally,
Section 2.6 details the hybridisation of MACS2 wilonotonic Basin Hopping (MBH).

2.1Problem Formulation
Multi-Objective Optimisation (MOO) is a branch ofufti-criteria decision making
which involves the solution of an optimisation piexh in which multiple figures of merits
are to be concurrently optimised (minimised or maged). In mathematical terms this is

usually formulated as:
minf (x) 2.1)

XOD

whereD is the domain for the parameter vecxoandf is the vector of then scalar

objective functions to be minimised:
m T
f:D R f)=[f(x) f,(x) .. f.(x)] (2.2)
Note that, without loss of generality, from now ards it will be assumed that all
objective functions are to be minimised. The domBinis also assumed to be a

hyperrectangle defined a@:{xj | % D[q lﬂD]R, j:1,...,r}. In a general Multi-

Objective optimisation problem, there is no singtdution vectory which minimises all
the scalar functions dfx) at the same time. However, it will possible tentfy asetof x
vectors in which none of its members is indispwdiétter than the others. In a more
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rigorous way, this is usually referred to as theeRaset, and is defined as the set of the
non-dominated solution vectors. The concept of damte, defines the optimality of a
particular solution. With reference to (2.1), o@ cay that :
X<y
o (2.3)
{f(x)<f(y) 1=L..m O k|f(x)# f(y)}

wherex <y indicates the statement tominates/”. A solution vector inD that is not
dominated by any other vector D is said to be Pareto optimal. All non-dominated
decision vectors iD form the Pareto s&, and the corresponding image in criteria space
is the Pareto front. Note that, starting from tlmmaept of dominance, it is possible to
associate, to each solution in a finite set of ttmhs, the scalar dominance index:

Iy () :‘{i* ii” ON , Ox. < xi}‘ (2.4)

where the symbol |.| is used to denote the cartliradla set and\; is the set of the indices
of all the solutions. All non-dominated and feasibblutionsx; O D with iTON, form the
set:
X ={x;O0DI1,(x) =0} (2.5)
The setX is a subset oDp, therefore, the solution of problem (2.1) traresainto

finding the elements of. If Dp is made of a collection of compact sets of fimiteasure in

R", then once an element Xfis identified, it makes sense to explore its neairhood to
look for other elements of. On the other hand, the set of non-dominated isoisittan be
disconnected and its elements can form island3. iHence, multiple parallel explorations

can increase the collection of elementXof

2.1.1 Tchebycheff Decomposition
In Tchebycheff's approach to the solution of probl€2.1), a number of scalar

optimization problems are solved in the form:
min,, (g(f (x),%.,2)) = ming, (max., . @ 1f &)-2 [}) (2.6)
where z=[z,...,z,]' is the reference objective vector whose componearts
z =min, f(x), for | =1,...m, and/ is thel-th component of the weight vectbr By

solving a number of problems (2.6), with differergight vectors, one can obtain different

Pareto optimal solutions. Although the final goslalways to find the seXy, using the

" The term Pareto set is here used to refer to tredominated solution set in the domain of the
parameter vectax. Similarly, the term Pareto front will be useddescribe the map of the Pareto set in the
space of the objective vectf{x).
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solution of problem (2.6) or index (2.4) has subs#dly different consequences in the way
samples are generated and selected. In the foldp\ilive solution to problem (2.6) will be

used as selection criterion in combination withexd2.4).

2.2Related Works

Multi-Objective optimisation problems are widelyufed in economics finance (e.g.
portfolio optimisation) and engineering. Various thwologies have been proposed to
solve this mathematical problem. Some simply ingolthe scalarisation of the
minimisation problem by combining the various olijee functions through a weighted
sum. Thus, the well-established techniques foistiletion of single objective problem can
be easily applied to the scalarised functionHowever, different weights also produce
different solutions, which means that one has teesmany single-objective problems in
order to extract sufficient knowledge of the Parsén. Other proposafs® extend the
techniques of deterministic, gradient-based method&e multi-criteria case. In similar
way to the methods based on scalarisation, theshod® too require an arbitrary
definition of a search direction on the objectivegace. The main issue with this class of
methods is that they lack in global exploratiornled search space and, therefore, are likely
to converge to locally optimally Pareto sets. Ae tsame time, they also require
information on the gradient of the objective funas which, if not available analytically,
has to be computed numerically (e.g. by Finite &ghces).

Alternative approaches, in the form of Metahewsstiave been successfully applied to
Multi-Objective problems. The term Metaheuristicfides a wide class of techniques to
solve optimisation problem and are characteriseddeftsynon-deterministicin the sense
that they rely on some form of randomisation todguihe search for solutions; in general,
they do not rely on specific assumptions on probEmcture and, therefore, are not
problem-specific, at least on principle.

Metaheuristics and in particular the subclass Bimbary Algorithms have been first
proposed in the 60s and since then have been sfgtgspplied to Single Objective
optimisation problems. While a rigorous definitioof the class of Evolutionary
Computation is beyond the scope of this dissentattas still possible to identify the main
common points. All algorithms in this class arereleterised by:

* A populationof candidate solutions, usually referred t@gentsor individuals.

" The concept of Pareto dominance was originallyppsed by the Italian economist Vilfredo Pareto at
the beginning of the 20Century.
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 The population is progressively modified throughsat of evolutionary
mechanisms, which can be inspired from a wide ramfgphenomena, from
physical (e.g. Simulated Annealiffy macro- (e.g. Ant Colony Optimisation,
Particle Swarm Optimisation) or micro-biologicalgeGenetic Algorithms).

* A heuristicis used to select good candidate solutions.

» Theknowledgas inherited by the next generation.

Algorithms in this family are be broadly classifigdo:

» Genetic/Evolutionary Algorithms, which typically @iy the genetic heuristics of
mutation, cross-over and recombination to a sdidry-coded or real valued
chromosomes.

» Evolutionary Strategies, which generate new candidalutions through a
combination of evolution a probabilistic model. Seeexample the well-known
Differential Evolution and its derivativés' ", or the Covariance Matrix
Adaption Evolutionary Strategy (CMA-ES)

* Swarm-based Intelligence, in which the populatienevolved in the search
space by mimicking the behaviour of swarms normédiynd in biology; the
most famous representatives of this class are #nmgcke Swarm Optimisation
(PSOY* and the Ant Colony Optimisation (ACO)

Early examples of Multi-Objective evolutionary atgbms were obtained by modifying
some of the above mentioned algorithms, usuallynbpducing selection and archiving
criteria based on Pareto dominaffcé’® The focus of current developments is mainly
oriented towards improving the overall efficiendytlee algorithms by adding mechanisms
which address specific issues in algorithms behavi@.g. global exploration, local search,
stagnation). The results of this effort are Hybkimetic Algorithms, a superclass in
which different heuristics and metaheuristics, kagterministic and stochastic, are merged
togethef®. In most cases, they aim at improving local sedrghcombining stochastic-
based, global exploration with gradient-based g °® Lara et aP? proposed an
innovative local search based on mathematical progring. Rigoni and Polésd
hybridised an Evolutionary Algorithm with a Norm&oundary Intersection (NBI)
technique. Another fairly successful algorithm, M®B®®, combines Differential
Evolution and a selection criterion based on Tchbbff Decomposition.

2.2.1 Structure of an Evolutionary Algorithm
A detailed background on Evolutionary computatisméyond the scope of the present
dissertation and is widely available in the releviteraturé*®. However, it has been
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chosen to devote this section to the descriptioa @éneric stochastic algorithm in order to
help the reader in understanding the detailed ékgoic description of MACS2, which
appears in this chapter. In the typical evolutignalgorithm one finds a sd, usually
called population which collects a fixed, finite number aigentsor individuals. Each
individual is assigned with one candidate solutientorx of the problem to be solved (see
Eg. (2.1)), and also the related value of the diyecfunctionf(x). The population is
evolved in a number of discrete steps, commonlied@enerationsor alsoiterations in
order to find the set of which best solves Problem (2.1). Although theadiperformed
at each generation to evolve the population cay vwadely depending on the specific
operations, one can nevertheless identify the maxgirring set of actions, as shown in

Figure 2.1

INITIALISATION

GENERATE NEW CANDIDATE
SOLUTIONS

RANK CANDIDATES

SELECT CANDIDATES AND
UPDATE POPULATION

l

UPDATE PARAMETERS
UPDATE ARCHIVE

S

RETURN SOLUTION SET

Figure 2.1: Flowchart of a typical sthocastic algathm.

The first step consists in the initialisation ofetllgorithmic iterations. The initial
populationPy is generated, normally by random sampling in tlet®on domainD. Also,
some adaptive parameters which govern the evolatidhe population are also initialised
at this stage. After the initialisation, the itévatprocess starts. In the single iteration the

first action involves the generation of a set ohdidates solutions, with which to
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eventually replace some or all the individuals e turrent populatioRy. The strategy,
with which the candidates are generated and seéleist¢he core feature of each algorithm
and the factor which more than others determireepetformance. Therefore, all sorts of
heuristics can be found in the literature, and tlkap generically be summarised as
follows:

y. =F (xi X4 ,p",e) (2.7)
which means that, each candidate solutiofchild of offspring, meant for replacing the
agentx; (also callegparentin this case), can be a function of:

e its parentx;.

« one or more other membexsof the populatiorPy.

« a set of algorithmic parametepd, which can either be constant or &gapted
iteration by iteration.

» aset of one or more random numbers

While the dependancy of on the stochastic componemaind onp® is almost always
present, the child might not always depend fronpésent or from other elements of the
population. For example when tiohild only from e and p one has a simple random
sampling. In addition, each parent can generate ith@n one offspring.

The following step, involves theanking of the candidate solutions according to a
specific performance metric. For MOO, this is tylig done with the dominance index,
but other criteria have been proposed, like theebgbheff scalarisation presented here.
Also, the choice of the subset on which the ranksngerformed might considerably affect
the evolution of the population. For example, oae simply rank the children against their
own parent individual. On the opposite, one coaltkrthe entire set of candidate solutions
against the entire current populatien

After the ranking, one has to select the candidatash will contribute to form the new
populationPy.1. In most cases, one might simply choose to repdasember of the worst
individuals inPx with a similar number of the best candidates. Hmwveone might for
example also choose to preserve some of the watstiduals, if these are in less crowded
areas of the domain, in order to keep enough diversity in the popolati

In the final step of an algorithmic iteration, thet of parameters’ is updated according
to an arbitrary rule. If present, the archig might also be updated at this stage. The
archive is a set which is specifically meant farstg the current best approximation, of
the solution to Problem (2.1). In MOO, the archiwél usually collect all the non-

dominated solutions found so far.
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At the end of the iteration, a termination conditie evaluated to decide whether to exit
the algorithm. The criteria normally adopted noilsnaheck whether a maximum number

of iterations or function evaluations has been esed.

2.3The MACS framework

As mentioned above, the key idea underneath Muggs Collaborative Search is to
combine local and global search in a coordinateg¢ wach that local convergence is
improved while retaining global exploratinThis combination of local and global search
Is achieved by endowing a set of agents with artepe of actions producing either the
sampling of the whole search space or the exptoraif a neighbourhood of each agent.
Actions are classified into two categoriescial or collaborative andindividualistic The
next section will detail how these actions werefgrened in the first implementation of
MACS™.

2.3.1 The first implementation of MACS

As a first step, a populatioR, of n,,, individuals, one for each solution vectgr,
with i=1,..n_,, is deployed in the problem domdn The population evolves through a

number of generations.
At every generatiork, all individuals perform a set afollaborative actions, which
consist of the following:

+ Two individualsx; andx; are selected such that< x,

* A new candidate is generated lear interpolationbetweerx; andx;.

* A second candidate is generatedlipgar extrapolationbetweenx; andx;, on
the side ok;.

* Two more candidates are generatedrégombinationof x; andx;, by single-
point crossoverGiven a randomly selected compongrihe two agents are split
in two at thej-th component, one from component 1 to componeard the
other from componerjtt1l to componenh; and then we combine the two parts
of each of the agents in order to generate twoswutions.

* A tournament selectiors performed among the four new candidate solstion
by which the one with the lowest dominance indeselected.

A local restart mechanism is also implemented iatdtage to avoid overcrowding of

individuals.
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After all the collaborative and restart actions dvdeen implemented, the resulting
updated populatioPy, is ranked according tdq and split in two subpopulation$?,
which contains théestngjie inviduals, andP”, with the worst nyog-neiite individuals. The
agents in each subpopulation implement sets ofalled,individualistic actiongo collect
samples of the surrounding space and to modify thairent location. In particular, the
individuals belonging t®" are simply randomly mutated.

The remainingneite agentsx; belong toP' and implement a mix of actions that aim at
either improving their location or exploring theieighbourhood\,(x;), a hyperectangle
centred inx;. The actions described below are performed selignuntil an improved
solution is found:

e inertia, which consists in generating a new sample by nwpwalong the
direction given byk; at the current and at the previous generatiotieifformer

is an improvement of the latter:

xR -x <t
ylne I ( I I ) (2.8)
Xik <X, k-1
wherer is a random number between 0 and 1.
- differential which performs a step inspired by Differentialofition’* between

x; and three randomly selected individugjsx, andxzin N,(x;):
Yoe =X +e[ % +0.8(X; = X,) ] (2.9)

wheree s a vector of random numbers between 0 and 1.

* mutation simple generation of a random sampj@in N,(x;).

» linear extrapolation a sampleyi, is extrapolated on the side of the best between
Xi andymut

* quadratic extrapolationif all the previous steps were unsuccessfullyadgatic
model A(y) of Iy is constructed fromx;, yin and yme, and the pointyguad
corresponding to the local minima of is generated.

In some implementations, these solutions are deliein a local archivé' associated
to x; and a dominance index is computed for all the ef@minA;'. If at least one element
in Ai' hasl4=0, then it will replaces. If multiple elements oAi' havely=0, then the one
with the largest distance w.r4.is selected.11

Once theindividualistic actions have been performed, the non-dominatadiso$ ar
stored in the global archivdy. The archiveAg is used to implement an attraction
mechanism that improves the convergence of thetwodviduals. During the global
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archiving process a second restart mechanism elratialises a portion of the population

(bubble restaitis implemented.

2.3.2 From MACS to MACS2

Compared to the first MACS, this work proposes anber of key innovations, which

are introduced here and will be described in datsection 2.4:

The first involves the selection criteria. As seerthe previous section, MACS
selected the new candidate solutions on the basileeadominance indek;. In
MACS2, Tchebycheff decomposition is used in comtaamawith dominance-
based ranking to accept the outcome of an actibe.idea is that each agent can
either try to improve its dominance index or canttr improve one particular
objective function by working on a subproblem clotgazed by a subset of
weights 4. This combination extends the accepted individitialimoves and
improves the spreading of the solutions in theedatspace.

The second innovation comes from an inversion @ plolicy to schedule
individualistic andsocialcollaborativeactions. In MACS, the first step of each
algorithmic iteration consisted in the whole theoleh performing a set of
collaborativeactions. In MACS2, this is now replacedibgividualistic actions,
performed independently by each individual. Thigension is quite significant
as it translates into a parallel local search peréal by the whole population,
rather than having the local search performed bygekected number of
individuals at a particular time of the evolution.

In line with this, a similar change has been madetlee second main step
performed at each generation. In MACS tbellaborative actions where
followed byindividualistic actions, in which each agent of tekte population
performed a set of actions to search locally forpnowements in its
neighbourhood. In MACS2, the first step iaflividualistic actions is followed
by a set of actions performed amaugial individuals (somehow equivalent to
theelite population) only.

The search heuristics have been somewhat simptfietpared to MACS. The
combination of interpolation extrapolation and recombination of the
collaborative actions in MACS has been replacedhieysimplepattern search
performed in thandividualistic actions of MACS2. Similarly, the sequence of

inertia, DE, mutation and linear/quadratic extrapolatiorof the individualistic
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actions of MACS has been changed into a slightifgdint variant of DE in the

socialactions of MACS2.

2.4MACS2 with Tchebycheff Decomposition

In this section, the key heuristics underneath MAGEIlI be described in details.
Compared to previous implementations of MR $his work proposes a number of key
innovations. First of all, Tchebycheff decomposities used in combination with
dominance-based ranking to accept the outcome aicaon. The idea is that each agent
can either try to improve its dominance index ar tr& to improve one particular objective
function by working on a subproblem characterized & subset of weightd. This
combination extends the accepted individualistiovesoand improves the spreading of the
solutions in the criteria space. The second innomatomes from an inversion of the
policy to schedule individualistic and social anBo In previous implementations, the
whole population was participating in the implenaioin of social actions at every
generation, while an elite of agents was implenmgntindividualistic actions. In this
version of MACS, this policy is inverted and now tle agents perform individualistic
actions while selected subpopulations perform $@cions either with other agents in the
current population or with elements in the archiVieis inversion is quite significant as it
translates into a parallel local search performgdhle whole population at each iteration,
rather than having the local search performed Isglacted number of individuals at a
particular time of the evolution. More specific lnistics are described in the next sections.

The use of either dominance or Tchebycheff scatois leads to the selection of
different outcomes of the actions executed by gents. With reference to Figure 2.2a, the
dominance criterion can be used to select a displant of agenk in the dominating
region. In this case only strongly dominant solusicare accepted as admissible for a
displacement of agemt Tchebycheff scalarisation, instead, allows forveraents in the
region of decreasing xj(in Figure 2.2a.

This region extends the dominating region of Fig2uza and includes part of the non-
dominating region. Therefore, Tchebycheff scal@iosa as defined in (2.6) allows for the
selection of weakly efficient solutions. Afis kept constant the agent would progressively
try to align along the directiofi(see Figure 2.2b). The rectilinear liidivides the criteria
space in Figure 2.2b in two half-planes, one, below, where
A f,(x)=-2, P A,|f,x)- z,, the other, above, whereA, | f,(x)-z KA, |f,&)- z,|.
The rectilinear line{ is, therefore, the locus of points, in the crdespace, for which
Alf,x)-z EA,|f,x)- z, | Figure 2.2b shows that by solving problem (216 would
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take displacements in any direction that improiyestarting from a solution that is under
the (" line. If one of these displacements crosses(tliee, the solution of problem (2.6)
would then generate displacements that impréveThis mechanism allows for the
generation of dominating steps (see Figure 2.2ayelsas side steps (see Figure 2.2d).
Side steps are important to move along the Paretu fsee Lara et &f.for more details

on the effect of side steps).
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Figure 2.2: Selection criteria.

In MACS side steps were generated by acceptindatisments in the non-dominating
regions of Figure 2.2a when no dominant solutioesevavailable. In MACS2 instead side
steps are generated by selecting displacementgdangoto Tchebycheff scalarisation
when strongly dominant solutions are not availaldote however, that although
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displacements are computed considering a combmatib strong dominance and
Tchebycheff scalarisation, the archive is filledhwall the solutions that have dominance

index14=0 and a large reciprocal distance (see Sectiad)2.4

2.4.1 General Algorithm Description

A population Py of nyop virtual agents, one for each solution vectar with

i=1,..n _{pop} , is deployed in the problem domay and is evolved according to

Algorithm 2.1.
The populationPy at iterationh=0 is initialized using a Latin Hypercube distritout

Each agent then evaluates the associated objeeoter f, =f (x,) and all non-dominated

agents are cloned and inserted in the global agohj\(lines 4 and 5 in Algorithm 2.1).

The archivedq contains the current best estimation of the tasgeXy. Theg-th element of

the archive is the vectar, =[¢, @] wheref; is a vector in the parameter space gqis

a vector in the criteria space.

Each agent is associated to a neighbourhdodvith sizepi. The sizep; is initially set

to 1, i.e. representing the entire domRifline 6 in Algorithm 2.1).

A set ofn;,, mdimensional unit vectors is initialized such that the firsh vectors are
mutually orthogonal. The remainimg-m vectors have random components instead. In two
dimensions the vectors are initialized with a umfesampling on a unit circle and in three
dimensions with a uniform sampling on a unit sphereile in n-dimensions with a Latin
Hypercube sampling plus normalization, such thatiéimgth of each vector is 1 (see line 7
in Algorithm 2.1).

For each vectaily, the value of an associated utility functidpis set to 1 (see line 8 in
Algorithm 2.1). The utility function is the one dieéd in Zhang et & and its value is
updated everyi, iterations using Algorithm 2.5. In this work it waecided to maintain
the exact definition and settings of the utilitynétion as can be found °h which the
interested reader can therefore refer to for furtieails.

Each Jx represents a subproblem in Eg. (2.6), i.e. itssduto compute the scalar

function gk. A total ofn, = round(p ,,n,) 4 vectors are inserted in the index &et

The firstm indexes inl, correspond to then orthogonall vectors, the othemseciarm are
initially chosen randomly (line 9 of Algorithm 2.1)

Eachii for k =1,...,n, is associated to the elemen®nthat minimizegy such that:
@ =arg min% g@ A z) (2.10)
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wherez is the vector containing the minimum values ofreafcthe objective functions.

Then, for eachi;, with I 01, and associated vectq; asocial agentx, is selected from
the current populatioR, such that it minimizeg(f_,4,,z) . The indexes of all the selected

social agents are inserted in the indexIsdsee lines 14 to 17 in Algorithm 2.1). The
indexes in, andl; are updated eveny, iterations. At thén-th iteration, the populatioR,
is evolved through two sets of heuristics: firstiery agentx; performs a set of

individualistic actionswhich aims at exploring a neighbourhoﬁl},l of xi (line 20 of

Algorithm 2.1), the functiorexplore described in Algorithm 2.2 is used to implement
individualistic actions. All the samples collectddring the execution of individualistic
actions are stored in the local archi¥e The elements ofy and the outcome of social
actions are inserted in the global archiyef they are not dominated by any elemenfAgf
(line 22 in Algorithm 2.1). Then, a sub-populatibn of nseciar Selected social agents
performs a set ofocial actions(see line 23 of Algorithm 2.1). Social actions aan
sharing information among agents. More details abalividualistic and social actions are
provided in the following sections. The functioomdescribed in Algorithm 2.3 is used to
implement social actions.

At the end of each iteration the global archigs resized if its size has grown larger
than namax (line 25 in Algorithm 2.1). The resizing is penfioed by functionresize
described in Algorithm 2.4.

The valueny max Was selected to be the largest number betweam arkd 1.9 ous
wherena out is the desired number of Pareto optimal elememt&yiat the last iteration.
This resizing of the archive is done in order tduee the computational burden required
by operations like the computation of the dominaimeckex. It also provides an improved
distribution of the solutions along the Pareto fr@s it discards solutions that are
excessively cluttered.

At the end of each iteration the algorithm alsoctiseif the maximum number of
function evaluationsreamax defined by the user, has been reached and tfis@lgorithm
terminates. At termination, the archifg is resized ta o if its cardinality is bigger than

nA,out-
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Algorithm 2.1 MACS2

1: Set N feval,max> Npops Nsocial = 7qound(ppopnpop)’ F, tolconw, N A outs Witer

2: Setny = 100m, na maz = round(l.5 max([nx,nA, out]))

3: Setnfepar =0

4: Initialize population Py, h = 0

5: Insert the non-dominated elements of Py in the global archive A4

6: pi =1LVie{l,...,npop}

7: Initialize Ag for k € {1,...,ny} such that || Ax|| =1

8: Initialize utility function vector Uy, = 1,Vk € {1, ...,n)}

9: Select the ngyciq1 active subproblems A;, and save their indexes [ in the index set I,
10: Initialize §; = maxg ¢4, — ming ¢q 1, 21 = ming ¢q1,q € {1,...,|[Ag|}, I =1, ..., m,
11: forallk € {1,...,n)} do
12: ¢, =argming 9(Pg, Ak, 2), g =1,...,|Ag]

13: end for

14: for all \;,l € I, do

15: Select the [x4fy] € Pp, which minimises g(fy, A\;,2),l € I,

16: and save its index in the list of the social agents I

17: end for

18: while Nfeval < Nfeval,max do

19: h=h+1

20: [Pr,nfevals Al, p| = explore(Pr_1,Nfeval, M, P, bl b¥ £\ Iy, 1)
21: If necessary, update the vector of the best objectives z, with A;

22: Update archive A4 with non dominated elements of A;

23: [y7 ®s N fevals th Ag] = COTTL(Ph, A97 bl, buv Nfeval, Ty F, f7 >\7 I)m Ill)
24: if |[Ag| > 14 maz then

25: Ay =resize(Ag,m,NA maz)

26: end if

27: if ( mod (h, ujter) = 0) then

28: [Ia,Ix, U, ¢] = select(U, N\, ¢, Px, Ag,Z, M, Nsocials TN)

29:  endif n N

30: end while
i Ag =resize(Ag,m, A out)

W
—_

2.4.2 Individualistic Actions

Individualistic actions perform an independent exation of the neighbourhood,, of

each agent. As in the original version of MA€%he neighbourhood is progressively
resized so that the exploration is over the erfirevhen the size; is equal to 1 and

becomes progressively more and more local as tlghlm@urhood shrinks down. In this
new implementation of MACS each agent performs amlgimple sampling along the

coordinates. The neighbourho®) is a hypercube centred i with size defined by

such that each edge of the hypercube has lepgtit —b'). Algorithm 2.2 describes
individualistic actions.

The search is performed along a single componenrt af a time, in a random order:
given an agenk;, a sampley” is taken withinD, along thej-th coordinate with random
step sizer OU/(-1,1), wherel{(-1,1) is a uniform distribution over the closed interj-l

1], leaving the other components unchanged. llominatesx;, y* replacesx;, otherwise
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another samplg is taken in the opposite direction with step sizewith rr 02/(0,1).
Again, ify" dominatex;, y replaces;.

If yi is not dominating and is not dominatedXpynd the index of x; belongs td,, then
yi replacesx; if y; improves the value of the subproblem associated;.t&Vhether a
dominant sample or a sample that improves the vaiflube subproblem is generated the
exploration terminates. This is a key innovatioattexploits Tchebycheff decomposition

and allows the agents to perform moves that impomesobjective function at the time.
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Algorithm 2.2 explore: Individualistic Actions

I: A= (b"*—Dbl)/2
2: foralli =1: npop do

3 Set Ay ; =0,p; € Ia

4 Take a random permutation /g of {1,...,n}
5: forall j € Ig do

6: Take a random number r € U(—1,1)

7
8

yT=x
: if » > O then

0: yj' = mln{y;' + rpiAj,b}‘}
10: else

11: yj = maux{y;r + rpiAj,bé}
12: end if

13: if yT # x; then

14: Evaluate T = f(y ™)

15: Nfeval = Nfeval +1

16: if (yt # x;) then

17: A= AL U{lyt ¢t}
18: end if

19: ifyt <x; V(@i €IxAgleT, Ap;,2) < g(fi, \p;,2)) then
20: x; = yT; break
21: end if
22: end if
23: yo =X
24: Take a random number rr € 1(0, 1)
25: if » > 0 then
26: y; = max{yj_ —rrpiA;, bé}
27: else
28: y; = min{yj_ +rrp;A;j, b3}
29: end if

30: if y~ # x; then

31: Evaluate o~ = f(y~)

32 Nfeval = Nfeval + 1

33: if y~  x; then

34: AL =ALU{ly” o I}
35: end if

36: ify” <x;V(ielxNgle,A\p;,2) < g(fi, \p,,2)) then
37: xX; =Yy ;break

38: end if

39: end if
40: end for
41:  ify” = x; Ayt = x; then
42: Pi = NppPi
43: if p; < tolcon. then
44 pi =1
45: end if
46: end if
47: end for
48: Al = Ui:l,...,npop 1,3

The search terminates also when all the comporwén¢shave been examined, even if
all the generated samples are dominated (see #igo&.2 lines 3 to 40).

If all children are dominated by their parent, siee of the neighbourhoggl is reduced
by a factor,. Finally, if p; is smaller than a tolerant@cony it is reset to 1 (see Algorithm
2.2 lines 41 to 46). In all the tests in this papewas taken equal to 0.5 as this value

provided good results, on average, across alttess.
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All the non-dominated children generated by eadmexy during the exploration form

the local archived ;. The elements ofy; are inserted in the global archivg if they are

not dominated by any elementAg.

Algorithm 2.3 com: Social Actions

1: papsp = 1 — e~ 14gl/ms0cial
2: foralli € I do
3: AvsP =1 < paysp.,r € U(0,1),p; € Iq
4: if AusP A\ |Ag| > 3 then
5: Select the ngpciq1 closest elements of the archive Ay to the agent x; and save their indexes in
the set I
6: else
7 Select the ngoci4; closest agents of the population Py to the agent x; and save their indexes
in the set I
8: end if
9: K eu(0,1)
10: Randomly select s1 # so # s3 € I
11 y=x; + K(s3 —x;) + KF(s1 —s2)
12: forallj € {1,...,n} do
13: re U(0,1)
14: if y; < b} then
15: Yj :bé—l—r(yj—bé.)
16: elseif y; > b7 then
17: yj = bj —r(f —yj)
18: end if
19: end for
20: if y # x; then
21: Evaluate p = f(y)
22: Nfeval = Nfeval +1
23: end if
24: If necessary, update z with ¢
25: if g(p, A\p;,z) < g(£i, A\p,, z) then
26: fi=p,x; =y
27: end if
28: Update archive A, with non-dominated elements of {[y ]}
29: end for

2.4.3 Social Actions

Social actions are performed by each agent whasexirs in the sel;. Social actions

are meant to improve the subproblem defined bywight vectorsw in I, and associated

to the agents; in I,. This is done by exploiting the information cadrigy either the other

agents in the populatid?, or the elements in the archidg.

Social actions implement the Differential Evoluti@E) heuristic:

Y =X +K[(s, = %) +F(s,— g)] (2.11)

where the vectors, with | =1,..,&, are randomly taken from the local social netwigrk

of each social agent. The local social network is formed by either thgi, agents closest

to x; or thensecia €lements of\y closest tax. The probability of choosing the archive vs.

the population is directly proportional pa,sp (See line 3 of Algorithm 2.3). The parameter
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Pavsp is defined ad-e ™™ This means that in the limit case in which thehare is
empty, the population is always selected. on therobhand, if the archive is much larger
than the population, it is more likely to be sedectNote that, if the size &% is below 3
elements, then the population is automatically ehasstead (line 4 of Algorithm 2.3) as
the minimum number of elements to form the steRil) is 3. The offspring; replaces

x; if it improves the subproblem associatecitotherwisey; is added to the archivg, if it

is not dominated by any of the elementé\gfThe value of in this implementation is 0.9.
Social actions, described in Algorithm 2.3, drawcelty improve the convergence speed
once a promising basin of attraction has been iiesht On the other hand, in some cases
social actions lead to a collapse of the subpojoulaif social agents in one or more single
points. This is in line with the convergence bebaviof DE dynamics presented in Vasile
et al®”. This drawback is partially mitigated by the reniag agents, which perform only

individualistic actions Algorithm 2.3 implements social actions.

2.4.4 Archive Resizing

If the size ofAy exceeds a specified value (as detailed in Sed@idril), a resizing
procedure is initiated. The resizing procedure msgjvely selects elements from the
current archive and adds them to the resized aralmil its specified maximum SiZQ max
IS reached.

First the normalized Euclidean distances, in th¢eailve space, between all the
elements of the current archive are computed ([Ba8f Algorithm 2.4).

Then, thel-th element, minimizing the-th objective function, withl =1,...m, is
inserted in the resized archive (lines 9 to 12 @foAithm 2.4). The remaininga max -mM
elements are iteratively selected by consideringheame the element of the current
archive (excluding those which are already in thsized one) which has the largest
distance from its closet element in the resizedhiaec(lines 13 to 17 of Algorithm 2.4).
This procedure provides a good uniformity in thetrdbution of samples. Future work will
investigate the comparative performance of differarchiving strategies like the one
proposed in Laumanns et®§land Schiitze et &.
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Algorithm 2.4 resize: Archive Resizing

l: ng =|Ag|, S =0

2: 5j = maxy ¢q,j — min; (ﬁq’j,Vj =1,....m
3: forallg € {1,...,(na — 1)} do

4. foralli € {(¢+1),...,ma} do

S dg,i = |l(¢q — ¢:) /6|

6: di’q :dq7i

7 end for

8: end for

9: foralll € {1,...,m} do

10: S =S U {argming(¢g,1)}

11: end for

12: Sn = {1, ...,nA} \ S

13: foralli € {m+1,...,m4 maz} do

14: ls = argmax;(ming(dg,;)),q € S,1 € Sn
155 S=SU{ls}

16: Sn = Sn \{ls}

17: end for

18: Ay ={a;|Vie S}

Algorithm 2.5 select: Subproblem Selection

50, =9

2: forallk € {1,...,n)} do

3: ¢, =argming_ 9(¢g, Ak, 2),q € {1,...,|Ag|}
4: 7:(g(éoldeaAkaz)_g(9k7>‘k7z))

5: if v > 0.001 then

6: Ug,=1

7 else

8: Uk = (0.95 + 50”}/)Uk

9: end if

10: end for

L1: tgize = round(ny /60)

12: I ={1,...,m}

13: foralli € {m + 1, ..., ns0ciai } dO

14: Randomly select a subset I Of t5;.c elements of {1,..,m)}
15: k = argmax,, Uy, k € L5

16: I, = I, U {k}

17: end for

18: forall \;, [ € I, do

19: Select the [x4fy] € Pp, which minimises g(fy, A\;,2),l € I,
20: and save its index in the list of the social agents Iy

21: end for

2.4.5 Subproblem Selection
Every uier iterations the active subproblems lipn and the associated agents Ijn
performingsocial actions are updated. The agents performing sactabns are updated
through functiorselectdescribed in Algorithm 2.5.

The improvement betweenz)k (i.e. the best value @k at current iteration in the global

archive) andgoId ) (the best value ofy, uier iterations before) is calculated. Then, the
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utility function Uy associated t@y is updated according to the rule described in ghein
al®® and reported in Algorithm 2.5, lines 2 to 10.

Once a valudJi is associated to eadh, Nsocial NEW Subproblems and associated
vectors are selected. The firath vectors are always the orthogonal ones. The rentain

NsociarM Vectors are selected by takimg, =round(n, /60) random indexes and then

choosing the one with the largest valudJgf This is repeated till, is full (see lines 11 to
17 in Algorithm 2.5). Note that;,e cannot exceed the size lgf, in Algorithm 2.5 if the
number of social agentgqga is small compared .

Finally, the agentx;, that minimizes the scalar objective function ig. E2.6), is
associated to eadly with index inl,, and its index is included in the new sulgdtines
18 to 21 in Algorithm 2.5).

2.5Experimental Results

This section presents the performance of MACS2 staadard benchmark for Multi-
Objective optimization algorithms and on some spatsted test cases. Through an
experimental analysis an optimal settings for MAGS#8erived. The results obtained with
MACS2 will also be compared with those of MACS amtther known Multi-Objective
optimization algorithm®.

The standard benchmark problems aim at optimizimg WF1-10 functions in the
CEC’09 test suitt" and the test instances ZDT2, ZDT4, ZIT6UF1 to UF7 are bi-
objective test functions with 30 optimization pasters. UF8 to UF10 are tri-objective
functions, again with 30 optimization parameters.

The CEC’09 competition rules specified 300000 fiorcevaluations and 100 and 150
elements for the output Pareto fronts for the Ibid &i-objective functions respectively.
ZDT2 ZDT4 and ZDT6 are bi-objective test cases \@ithparameters for the first one and
10 for the remaining two. They are tested runnhegalgorithm for 25000 evaluations and
taking an output front of 200 elements.

The space-related test instances are given by rayectory optimization problems as
described in Minisci and Avanzitfiand Vasile and Zuiami The former is a 3-impulse
transfer between a circular Low Earth Orbit (LEOjthwradius r,=7000km to a
Geostationary Orbit (GEO) with radiug42000km.

The latter test case, Cassini, describes a trajeciatimization instance from Earth to
Jupiter with four intermediate gravity assists aéenus (twice), Earth and Jupiter

respectively.
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For both test cases the objective functions to enmized are totaAV and time of
flight. The 3-impulse test case has 5 optimizaparameters and is run for 30000 function
evaluations while Cassini has 6 parameters andnisfar 600000 evaluations as it was
demonstrated, in the single objective case, to maukiple nested local minima with a
funnel structur?.

The metrics which will be used in order to evaludwe performance of the algorithms
are chosen so to have a direct comparison of thétsan this paper with those in previous
works. Therefore, for the CEC’09 test set i&® performance metric will be us&d

1

IGD(A P) = > ming, lv-all (2.12)

IP" |5
whereP’ is a set of equally spaced points on the truet®arent, in the objective space,
while A is the set of points from the approximation of Breeto front. As in Zhang et 3.
performance will be assessed as mean and standsidtidn of thelGD over 30
independent runs. Note that a second batch of weserformed taking 200 independent
runs but the value of tH&D was providing similar indications.

For the ZDT test set and for the space problenssstitcess rate on the convergence
Mconv @and spreadingMs,, metrics are used instead. Note that, 6® metric has been
preferred for the UF test problems in order to keepsistency with the results presented
in the CEC'09 competition. Convergence and sprgaalie defined as:

1 . -

Mconv = |_A|aDAmInVDP* H v 5 a H (213)
1 . v—a

MsPr:_*|;,a*mlnaDA||TH (2.14)

with 8 =max a,; - min a;, . It is clear thatMsp is the IGD but with the solution

difference, in objective space, normalized witlpexg to the exact (or best-so-far) solution.
In the case of the ZDT test set, the two objedhinections range from 0 to 1, therefore no
normalization is required arMds, is in fact thedGD.

The success rates faWcn and Mg, is defined asp, =P(M_, <7, and

conv con

P = P(M,, <7,) respectively, or the probability that the index@gon, and Mgy

achieve a value less than the threshglg andzs,, respectively. The success rapgs, and
pspr are computed over 200 independent runs, henceaiteunt for the number of times
Mconv @andMsp; are below their respective thresholds. Accordmhe theory developed in
Minisci and Avanzinit® and Vasile et at?, 200 runs provide a 5% error interval with a 95%
confidence level. Values for thresholds for eash ¢tase are reported in Table 2.1.
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Table 2.1: Convergence tolerances

3-impulse  Cassini  UF1 UF2 UF3 UF4 UF5 UF6

Teov  5-107 75-10° 5-10° 5-10° 2:10° 3.5:10° 3-10° 3-10?
Tsr  5°107 5-10° 1-10° 1-10° 3-10® 3.510° 5-10° 3-107
UF7 UF8 UF9 UF10 zZDT2 ZDT4 ZDT6
Teov  5-10° 2-10° 3-10° 3-10° 1-10® 1-10®° 1-10°
Tspr  1-107 6-10° 4-10° 6-10° 3-10° 1.510° 3-10°

MACS2 was initially set with some arbitrary valueported in Table 2.2. The size of
the population was set to 60 for all the test casasept for the 3-impulse and ZDT
functions. For these test cases the number of agesd set to 30. In the following, these

values will identify theeferencesettings.

Table 2.2: Reference settings for MACS2. Values wiin parenthesis are for 3-impulse and
ZDT test cases.

nPOP Ppop F TOIconv
60 (30) 0.33 0.5 1-10*

Starting from this reference settings a number urfing experiments were run to
investigate the reciprocal influence of differemtrgameters and different heuristics within
the algorithm. Different combinations 0fyop, ppop F and Tol,ny Were considered.
Furthermore, the social moves were activated oadleated to assess their impact. The
success rates were then used to tune the algonitlorder to improve the spreading, and
therefore theGD. After an extensive testing of the algorithmsyés realized that the use
of the success rates offers a clearer metric, thenmean and variance of th&D, to
understand the impact of some user-defined parasete

In the following, only the most significant resuitsth the most significant metric are
presented. Table 2.3 summarizes the success natésedCassini test case for different

values ofnyep andppop but with all the heuristics active.

Table 2.3: Tuning of N,y and e, 0N the Cassini test case.

Pconv Pspr

Doy 20 60 150 ppodlhop 20 60 150

0.2 0.22 0.34 0.76 0.2 0.32 0.45 0.31
0.5 0.16 0.41 0.78 0.5 0.45 0.48 0.26
0.8 0.35 0.40 0.77 0.8 0.37 0.40 0.26
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Table 2.4: Tuning of MACS2 on the 3-impulse and Casni test cases.

3-impulse Cassini

Peonv Pspr Peonv Pspr
Reference  0.99 0.99 0.38 0.36
no social 0.47 1 0 0.18
Nop=150, 1 1 0.76 0.31
Ppo=0-2
F=0.9 0.97 0.99 0.50 0.36
TOleon=10° 0.99 0.99 0.38 0.45
TOlon=10° 0.97 0.99 0.33 0.39

Table 2.5: Tuning of MACS2 on the UF test cases.

Reference no social Nyo=150,0p07=0.2 Npor=20,9po=0.8 TOleon=10°

pCOnV 1 1 1 1 1
UF1

Pspr 1 1 1 0.11 1

pCOnV 1 1 l 1 1
UF2

Pspr 1 1 1 0.46 1

Peonv 0.95 0.32 0.99 0.86 0.95
UF3

Pspr 0.99 0.11 1 0.97 1

Peonv 1 1 1 0.06 1
UF4

Pspr 1 1 1 0.54 1

Peonv 0.59 0.10 0.62 0.91 0.58
UF5

Pspr 0.85 0.21 1 0.39 0.85

Peonv 0.58 0.50 0.32 0.54 0.61
UF6

Pspr 0.40 0.42 0.45 0 0.37

Peonv 1 0.91 1 0.94 1
UF7

Pspr 0.98 0 0.98 0.74 0.97

Peonv 0.86 0 0.88 0.89 0.88
UF8

Pspr 0.8 0.01 1 0.04 0.54

Peonv 0.68 0.12 0.84 0.31 0.74
UF9

Pspr 0.60 0 1 0 0.64

Peonv 0 0.01 0 0.28 0.01
UF10

Pspr 0 0 0 0 0

One can see that the best convergence is obtamey,f=150 and in particular when
combined withppo=0.5. On the other hand, best spreading is obtamt#dmedium sized

populations witm,,—=60. A good compromise seems torlgg, =150 anghpe=0.2.
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Results on the other test cases (as shown in TableTable 2.5 and Table 2.6, with
Npop=150 angpo=0.2) show in general that large populations andllssp,, are preferable.
This also means that social actions on a largeagobthe populations are undesirable and
it is better to perform social moves among a re&d circle of agents. Table 2.4 reports
the results of the tuning of MACS2 on the 3-imp &aksini test cases. Table 2.5 and
Table 2.6 report the results of the tuning of MAC&2 the UF and ZDT test sets
respectively.

Table 2.4 shows a marked improvemenpgf, on the Cassini when the population size
is 150. Likewise, Table 2.5 shows that in genexéh a population of 150 agents, there is
an improvement in performance and @y, in particular on the UF1, 2, 6, 8 and 9 test
cases. Notable exceptions are the ZDT in Table faréwhich the best performance is

obtained for a small population witQ=20.

Table 2.6: Tuning of MACS2 on ZDT test cases.

ZDT2 ZDT4 ZDT6
pCOﬂV 1 0 093
Reference
Pspr 1 0 1
. pconv 1 O 091
no social
Pspr 1 0 0.98
Npop=150, Peonv  0.20 0 0.60
Ppo=0.2 Pspr 0.17 0 1
Npop=20, Peonv 1 0.02 0.96
Ppo=0.8 Pspr 1 0.02 1
Peorv 1 0 0.96
F=0.9
pspr 1 0 1
Tolconv:lo pCOnV 1 O 0.96
6 Pr 1 0 1
MACS2  peonv 1 0 0.96
(tuned) Pspr 1 0 1
Peonv  0.82 0.81 0.63
MACS
pspr 0 0.93 0

The impact ofF is uncertain in many cases, however, Table 2.Wshor example that
on the UF8 test case a better performance is @utdor a high value df. Table 2.5 and
Table 2.6 show that the default value Tol..n, already gives good performance and it

does not seem advantageous to reduce it or médegeér.
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The impact of social actions can be seen in Talkle Table 2.5 and Table 2.6. Table
2.4 shows that on the 3-impulse and Cassini tesgscthe impact is clearly evident, since
there is a marked worsening of bqifa andpsp~ On the UF benchmark, see Table 2.5,
removing social actions induces a sizeable worgeafrthe performance metrics. This is
true in particular for functions UF1, UF3, UF5, UFBF7, UF8 and UF9. Notable
exceptions are UF2, UF4 and UF10.

As a result of the tuning test campaign, the sgdtimeported in Table 2.8 are
recommended. Note that the recommended populaterfa all the cases except the ZDT
functions, is 150 agents, while for the ZDT funoBat remains 20 agents.

Table 2.7: Tuning of F on the UF8 test case.

F

0.1

0.5

0.9

averagdGD (variance) 6.75107%(3.2010°) 6.0610° (2.56:10°) 5.57-10° (1.87-10°)

Table 2.8: Settings for MACS2 after tuning.

Mpop

Ppop F

Tolsony

150 (20)

0.2(0.8) 0.9

1-10*

With these settings, the performance of MACS2 wasmared, on the UF test suite in
Table 2.9, with that of MACS, Multi-Objective Evaionary Algorithm based on
Decomposition (MOEA/), Multiple Trajectory Search (MT§ and Dynamical Multi-

Objective Evolutionary Algorithm (DMOEADB). The last three are the best performing
algorithms in the CEC09 competititin

Table 2.9: Performance comparison on UF test casesveragel GD (variance within

parenthesis.

MACS2 MACS MOEA/D MTS DMOEADD
UF1 4.3710°(1.67-10°% 1.1510"'(1.6610° 4.3510° 6.4610° 1.0410°
UF2  4.4810°(1.1610% 5.4210°(4.1910% 6.7910° 6.1510° 6.7910°
UF3  2.29-10%(5.21:10°% 6.5610° (1.4210° 7.4210° 5.31:10° 3.3410°
UF4 26410 (3.4810") 3.3610%(1.6610°) 6.3910% 2.36:10° 4.27-10?
UF5 2.9510%(1.5610°) 6.44-10%(1.17-10% 1.81:10° 1.4910° 3.1510"
UF6 3.31-10%(7.4210%) 2.40:10"(1.4310%) 1.7610* 5.91:10° 6.67 102
UF7 6.12110°(3.1410°% 1.6910"'(1.2210° 4.4410° 4.0810° 1.0310°
UF8 4.9810%(2.0510°% 2.3510"'(1.77-10° 5.8410° 1.1310' 6.8410°
UF9 3.2310%(2.0510°% 2.6810"'(1.71:10° 7.9010° 1.1410' 4.9010°
UF10 1.41-10"(5.5910°) 1.25 (4.2810%) 4.7410" 15310 3.22-10"
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As shown in Table 2.9, the tuned version of MACS®#performs the other algorithms
on UF2, 3, 6, 8, 9 and 10, on UF1 is very closBI@EA/D, while it ranks second on UF5
and 10 and finally third on UF7. In Table 2.6 o ¢ind the comparison against the old
version MACS on the ZDT test set. MACS2 resultsayalty better except on the ZDT4
case. Note thalsy, of MACS for both ZDT2 and ZDT6 is always betweerl®® and

9-10°, therefore always above the chosen threshgldThe poor performance of MACS2
on ZDT4, might be due to the relative ineffectivemeof the pattern search along the
coordinates on this particular test case. In ttengit to improve performance on ZDT4, a
second test set was run with a slightly modifiedsi of MACS2: the number of
components which are explored by each agent dt-thdteration was reduced to 1 only,
compared to then in Algorithm 2.2, at the same time, all individsiabere performing
social actions, i.ehsociamNpop With these modifications, a success rate of Géth on
convergence and spreading is achieved althougpcgheandps,r on ZDT2 drops to 0 and
thepeonyOn ZDT6 drops to 0.23.

Table 2.10: Comparison of MACS, MACS2 and MOEA/D or3-impulse and Cassini test

cases.

3-impulse Cassini

Peonv  Pspr Peonv  Pspr
MACS 099 099 087 0.49
MACS?2 (tuned) 099 1 0.77 0.34
MOEA/D 1 049 051 0.01
MTS 057 1 0.05 0.32
NSGA-II 003 1 0.90 0.26

Table 2.10 shows a comparison of the performanc®ACS2 on 3-impulse and
Cassini, against MACS, MOEA/D, MTS and NSGA-Il. BAWIACS and MACS2 are able
to reliably solve the 3-impulse case, while MOEAtfianages to attain good convergence
but with only mediocre spreading. On the contragth MTS and NSGA-II achieve good
spreading but worse convergence, indicating theit flonts are quite well distributed but
probably too distant from the true Pareto front.

Cassini is a rather difficult problem and this éfleécted by the generally lower metrics
achieved by most algorithms. Only MACS, MACS2 an@&®A-Il reach a high
convergence ratio, but for the last two, their agieg is still rather low. After inspection
of each of the 200 Pareto fronts one can see tldt & low spreading implies that the
algorithm did not converge to the global Paretatrdé-igure 2.3 illustrates the difference
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between MACS and NSGA-II. The behaviour of MACS3imilar to the one of NSGA-II.
MACS achieves the best known value for objectivaction Av. Both NSGA-II and
MACS2 instead fall in the basin of attraction oktkecond best value for objective
functionAvE"o” Bookmark not defined. .

The performance of MOEA/D and MTS on Cassini iheatpoor, with the former
attaining only 50% convergence but with almost z®&gg conversely, only one third of the
latter's runs are below the spreading threshold antbst none meets the convergence

criterion.

Pareto Front Comparison

Global H
o MACS
NSGA-II i

7 8
Delta v [km/s]

Figure 2.3: Comparison of Pareto fronts for the Casini test case.

2.6 MACS2 with Monotonic Basin Hopping

The use of Tchebycheff decomposition leads to thesipility to introduce Monotonic
Basin Hopping stepgsin the action set of each agent. MBH steps am®duoced as a
sampling technique in the individualistic actionst lonly for the individuals which are
solving them pure single objective subproblems.

In this variant of the individualistic actions, @ch iteration, first the standard search
along the coordinates is performed (as describe®eantion 2.4.2); then, the actions
described in Algorithm 2.6, are performed. For eacthem single-objective subproblems,
a sample is taken in the doman and then MatLaBs fminconis used to solve this
subproblem using this point as a first guess, ratigiconvergence to a local minimum. If
this latter point is better than the current indual which solves this subproblem, it will
replace it. Otherwise, the new point could stilplexe the current individual with a
probability 1/n.

This variant has been tested on the Cassini intioduhe MBH step only in the action
set of the two agents that are solving the extresimaglle objective problems. The Cassini
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case resulted to be quite challenging for MACSZ2 known to have an interesting funnel
structurd’. The MBH steps yield a marked improvement in betinvergence and
spreading compared to the standard version of MA@&R apc.ny increasing to 85% and
pspr to 99%. This improvement is related essentially tomuch closer convergence in the
part of the front corresponding to the minimuivi solution.

Pareto fronts for MACS and NSGA-II Pareto fronts for MACS2

7000 ‘ 800 \ :
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Pareto fronts for NSGA-II (close up) Pareto Fronts for MACS (close up)
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Figure 2.4: NSGA-II, MACS, MACS2 on the Cassini cas: a) NSGA-Il and MACS b) MACS2
and MACS2 with MBH step ¢) NSGA-II close-up d) MACSclose-up €) MACS2 close-up f)
MACS2 with MBH step close-up.
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Figure 2.4 shows the distribution of the Paretmtisocof MACS2 with MBH steps over
the 200 runs. The MBH steps effectively contribute increase the probability of
identifying the single objective minimum, leadirgdn improved convergence also in its
neighbourhood. However, the current implementabdbriMBH steps is less effective at
improving other parts of the front and more workaquired in this direction.

Algorithm 2.6 Monotonic Basin Hopping.

I: forall: =1:mdo

2 Take a random individual yg € D

3 J={i € \jr=1ifk=14X;, =0,ifk #i}

4 Starting from yg, find a local minimum y,,,;,, of f; with a gradient-based optimiser
5: if f;(Ymin) <= fi(x;) then
6.

7

8

Xj = Ymin

: else
9: Take a random number r € 1/(0, 1)
10: if r < 1/n then
11: Xj = ¥Ymin
12: fj = f(ymin)
13: end if
14: end if
15: end for

2.7Conclusions

This chapter has presented a version of MAdgent Collaborative Search based on
Tchebycheff decomposition.

Compared to the previous version of MACS a numbenewristics has been revised
and in particular there was an inversion of thec@etage of agents performing social and
individualistic moves. The new version, denominat®CS2, demonstrated remarkable
performance on known difficult benchmarks outperfmg known algorithms. On the
Cassini real case application, and on benchmargtiumZDT4, MACS?2 falls back behind
its predecessor. In both cases there are multpl Pareto fronts corresponding to strong
attractors. From a first analysis it seems thatdimeple pattern search implemented in
MACS?2 is not sufficient and is limited by its seam@ong the coordinates only. In MACS
the search included random directions and direstaerived from DE and PSO heuristics.
It seems reasonable to assume that a more flegddleof individualistic moves might
further improve MACS2. This is the subject of cutrelevelopments. In addition, the
introduction of MBH steps in the Tchebycheff decasion framework provided a net
improvement of the performance. Also, from the geperformed so far the actual

contribution of the utility function is uncertaim@é more investigations are underway.
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The use of a selection operator based on Tcheldydeebmposition, instead, appears
to be beneficial in a number of cases. In MACS2panticular, agents operating at the
extreme of the range of each of each objectivealvays preserved and forced to improve
a subproblem.

In summary, the results presented in this chapsee lshown MACS2 to be a very
efficient MO algorithm compared to other stafethe-art proposals. Therefore, it is an
excellent candidate for the solution of expensiptinsisation problems involving Low
Thrust dynamics, as will be shown in Chapter 4,[i¢@6, Chapter 7 and Chapter 8.
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Chapter 3.Low-Thrust Analytical Formulae

This chapter presents a set of analytical solutionshe perturbed Keplerian motion of
a spacecraft under the effect of constant contro¢leration. The proposed set of formulae
can treat control accelerations that are fixeditimee a rotating or inertial reference frame.
Moreover, the contribution of th& zonal harmonic is included in the analytical fotasu
It will be shown that the proposed analytical tlyealfows for the fast computation of long,
multi-revolution spirals while maintaining good accuratlge combined effect of different
perturbations and of the shadow regions due to saolgse is also included. The accuracy
and speed of the proposed analytical formulae arepered against a full numerical
integration with different integration schemes. sTtdhapter is organised as follows:
Section 3.1 will introduce in detail the analytidatmulae; Section 3.1.6 will present an
analysis of their accuracy compared to numerictdgration schemes while Section 3.2
will focus on their applicability for propagatingrg trajectory arcs.

3.1Analytical Formulae
Let the state of the spacecraft be expressed mstesf non-singular Equinoctial
Element&®:

a
R =esin(Q+w)
P, = ecogQ +w)

Q= tanl—2 sinQ (3.1)
Q= tan'—2 co2
L=Q+w+6

then, the perturbed Keplerian motion is governeGhyss’ planetary equations:
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@ o\ [(Rsint-Roos)a+a(L)a]

dB __ |a P+sinL , . Qcos L- Q sinL

—1=B[|—|- L+| +——~—+sinL|a, - R

ot \/;l: a,Ccos +( (L) + sin ]ag 3 (L) a}
F

Qcos L- Q sinL
o) °

+cosL
¢—I_)+C05Ljae+|:l)
dQ _B L
dt—z\/;(1+Q1+Qz) o)
dQ, _B cosL
= —Z\f(1+Q1+Q2) o(L) >
\/7 RsinL+ B cosL 2B :
1+B q>(|_) A

_(1+<1>(L))(P2:=,inL—F’lcosi_)a , QcosL-Q, sinL }

oE) v e @2

with:

(3.3)

| is the mean longitude, analogous to the true tadgiL, but defined as a function of the
mean anomalivl instead of the true anomaly
[=Q+w+M (3.4)
a,, ay, an, are the components of the thrust acceleratiaghenradialtransverse-normal

(r-6-h) reference frame, as seen in Figure 3.1, wheres @he centre of the central

~

gravitational body/ , f K are the unit vectors of the inertial reference fazantred in O,

is the position vector ant F.h are the unit vectors transversal, radial and oylare.u is
the perturbing acceleration vector, which in theliaktransversal reference frame is

defined as which can also be expressed in ternmsodiuluse, azimutha and elevatiorf

as:
a £COSf cowr
u=<a,p =14 ECOSP sir (3.5)
a, gsing
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Figure 3.1: Radial-transverse-normal (r-0 -h) reference frame.

If one assumes that the modulus of the perturbaoceleration is small compared to
the local gravitational acceleration, one can write

da_r_Ja@ B (3.6)
d. h \u ®?*(L '

By substituting (3.6) into Egs. (3.2) one obtainsyatem of equations in the longitude

da_ 2a°B?| (R,sinL-R cosL) 1.
—=¢ 5 cosa +——sina | cogB
dL 7 ®*(L) (L)

drP B*a® cosL P+sinL  sinL | . cosL- Q sinL .
dlef P [[—q}z(L)cosa{ 1ch(|_) +¢2(L)Jsma] cos{?—PZQ @3(8 suﬁ]

dp, _ _B%a’|[ sinL B+cosL . cosL | . QcosL-Q, sinL _

aL 7 [wz(l_)cosom[ CD3(L) +cpz(l_)]5|nofjcos,8+P;L cb3(L) sm,[)’]
dqQ _ sinL (3.7)
o = ) gy ens
dQ, _ B'a’ cosL

E 2 (1+Q? Qz) (L)sinﬁ

or, in vector form, takinge as the first five equinoctial elements as in (3.1)

dE _
I—fF(E,L,a,,@) (3.8)

As classical Regular Perturbation theory shows, feeexample, Holmes or Sanders,

Verhulst and MurdocR, one can express the solution of Equation (3s8raexpansion
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in the small parametere, with

respect to a set of

reference conditions
E, = [ao’ Ro Bo Qo Qz(JT :

& tea e,

PoteRi+eR,
E=E,+¢E,+£E,+0(%) =1 B, +£P, +£7P, (+O(£%)
Q10 + 8Q11+ 52Q12

2
Qo +6Qy+£°Qy,

Substituting (3.9) into (3.8), and expanding thghtiside in Taylor series with respect to

(3.9)

g, one obtains:

dE,, O, ., _o d(eF(E,+¢E,+...La p)) "
d. ~ dL de )
, &0 (3.10)
,d (eF(E, +£E, +...La B))| £,
de? 2

By collecting the terms which depend from the sgmwers ofs, neglecting second and
higher order terms, one obtains:

dE

—2=0=E, =const

dL

o (3.11)
e—1=¢F(E,,L,a,

Therefore the firsbrder expansion inbecomes:

E,(L)=E,+¢[ F(EoL,0,8)dc (3.12)
Ly

To obtain a first-order expansion for the time a$uaction of L, let one consider
Equation (3.6) and apply a similar procedure asedonE (Note that, the last equation in

(3.2) becomes now redundant and therefore willgn@red from now onwards). First, let
one expand the time in the form:

t=t +et, +&t, +et,+... (3.13)

and define the right-hand side of (3.6)H(®,P1,P,,L), then, by expandingl in Taylor
series as done previously, one obtains:

dy, dt, o

dH o H 2
+..=H(a,,R,,B,,L)+—| &+— & +.. (3.14
dL dL dL (aO 107720 ) dg - dEz o ( )
and taking only the first order terménone can write:

dt, dt, dH &=
—+&—==H|a,,B,, By, L) +t——¢ 3.15
dL dL (ao 107 20 ) (E ( )
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again taking only the first order termdnone obtains:

d
95 — 1 (@, Poy Prr L)

dL
dt, _ | dH dH dH (3.16)
E— =& — t— Ri+t—5 P
dL da 8, Ro.Poo dE) 89,0, Po dE) ag, Pio Pao
These two equations can be integrated ia obtain an expression in the form:
t=t,+e&t, (3.17)
where:
L 3 3
to(L) = tog+ | 2B g
o\ u @ (z)
(3P sing |
T P2 ey |Ba(o) || 3.18)
: 387 a(c o’ (c) 7 P(c)
LU= [Rop, 20 AL gV ’ dc
LVH 2 ®7(r) 3P, +287 Cost_|p (c)
o’ () T ol(c))

Note that the zerorder termty is not simply the timdg corresponding td., but
includes also the time variation given by the utypbed Keplerian motion. In addition,
the presence of the termag P11, P2; essentially implies a double integration between

andL.

3.1.1 Constant Acceleration in the r8-h Frame
If one assumes a constant acceleration modulusiimaction in the ®-h frame, then

Egs. (3.7) take the following form:

2, 3
a™ =g +e? ZBoiaocosﬁ ( t 1 j cosr +1,, sim]
U Bo(L)  Po(Ly)

4, 2
prn :|:>10+€rz9h80;‘0[cos,8(—|02 comr + (1, P+ 1o+ 1) sim)=P{Qub.+~Qk.) si;zi?]
R =P +£rﬁh%[cosﬁ(l cost + (1, Pyt 5+ 1) $10)+P{Q . 5Qul.)sinA]
2 20 /,I s2 13 20 c3 c 1 10c 3 20" s3

4,5 2
Q" =Qure™ S 14+ ) Losing (3.19)

4, 2

Q"= Qe ™ B°22° [+ Q+ Q) s

where the terms expressedlgsare integrals irL in the formlg, s, andliy with n =

1,2,3, are integrals ibin the form:

© coss © sing S|
len= | =7 =dL; 1= dc; 1,,= dc (3.20)
Jagyes == =]




where®y is the term in (3.3) evaluated with=P o andP,=P5,. The analytical form for
these integrals is reported in Appendix A. Regaydihe firstorder term of the time
equation (3.18), as already noted in the previegtian, some of the integrals in (3.20) are
multiplied by a function ofL and again integrated betweép and L. For the term

depending oy, an analytical expression can be found in the form

7
" =3 /%BOS cosp( cowrl,, + siml,,) (3.22)
where:
! 1 1 1,(L)
| = - de 1= -2 dc 3.22
u L{qaoz(g)(qao(g) CDO(LO)] 2 [[CDOZ(L) (3-22)

The analytical expressions for these integralsatse found in Appendix A. Numerical
analysis has shown that neglecting the terms depgmeh P, andP, does not introduce a

relevant error in the cases analysed in this paper.

3.1.2 Constant Inertial Acceleration
A constant acceleration in the inertial refereneamie can be expressed, in the-h-

frame, as a function of the longitutle
a"=g"cosBcos(y,~L) &"=¢" cog,sify,- L) a"=£" s (3.23)
wherey, derives from the initial acceleration azimuthatL,, as:
Vo =a,+L, (3.24)
Note that the initial azimuthy and elevatiorf, are expressed with respect to theh-

frame atlLo. By substituting (3.23) into (3.7), and after somanipulation, one can obtain
an expression analogous to (3.19):

In In ZBOZaO3 i
a' =g t¢ Tcosﬁo[_( Roliot Isz) C03/0+(P20| it e ) SII}’J
4,2
R" =R, +e" B°Ta°{ €080, ~(Pols s+ 112+ 1 2 ) cOY o+
+(P10|c3+ I mlss)Sinyo}_Sin:B(PZO(Q e 57 Q obs }}
B %g.2
P =Pyg+e" O—SO{COSﬂo[_(onlss"'l rx9 COY g+
+(Polg +11,+ 1 )siny, | +sin 8P Q4. 7Q b, )}
B %a.2 _
B %a.2 _
Q" =Q,+e" 02_20(1+ Q@+ Qg)sm,[)’olc3
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where the integral termsciss 12c3 andlosz are given in Appendix A. Similarly, the first

order perturbative term in the time equation trates into:

:3\/%805 COSGO{_%{( Py g %I 12}+Siny{ls 3 qil)rzt)l 1;}(3'26)

20

3.1.3 Constant Tangential Acceleration
A constant acceleration along the tangential dmactan be expressed, in thé-h

frame, as a function of the longitutle
inL- inL+
P,sinL-BcosL _, =g ¥ P sinn+ B cod _, o (3.27)

t — At

=€
D % D

whereD is expressed as:
D =1+ P?+ B2+ 2(RsinL+ B, cosL) (3.28)

Again, by substituting (3.27) into (3.7) one obtain

a =g te

maps (2 &,

#o 5 Do(L) @(2) @y(z
=P+ e B3 [ 2Ryrsing)
H Lo D, (L) q)0([’) (3.29)
Pi=p +g BO“aOZ.T 2(|320+COSL)2
H Lo D, ([’)q)o (L)
Q' =Q
(22t = QZO

Do is simply D evaluated withPy, and P, The three integral terms are more

conveniently expressed with respect to the trueraipt and eccentricity, assuming that

0= L_(Qo""%):

E

a

2 e 2
1 2 B, dL:J-\/1+e0 +2Q’Cc2)39dz9:|
()| @ 5 (1+e cosd)

2(R +S|n£) _
10 ~dL=sin(Qy+ay)lp+co{Qo+ W), (3.30)
(£) oo ()

DO
S(PZOJrCOSL) L£=cog(Qy+ )l p = Si(Qq+wy)l 5,

o (£) @5 ()’

& —r & —

where
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A
_ g, +Ccosd
I, = dg
" !O J1+e?+2¢ cosd( ¥ g cod)’
. je sing
" A \1te?+2¢ cosd( g 0s8)’

(3.31)
dgd

The primitives ofl,, Ipy and Ip, are available in closed form and are reported in
Appendix A. Note that, in (A.14) and (A.15) thene derms which represent incomplete
elliptic integrals of the first and second kindpresented ak andF respectively. In this
work, E and F are conveniently evaluated numerically using @arls Duplication
Algorithms™®®. Rearranging the terms in (3.29), one obtains,t(om the expressions for

Q1 andQy):

2,4 3
a' =a0+gt—ZBO % I
7
B4a02
Pt = F>lo+£t207(sin(Qo+ W) o1+ cO4Q o+ w1, ) (3.32)

B4a02
P = on"'é“tZOT(COS(Qo"'wo)IPl_ in(Q 0+w°)|"2)

In the case of tangential thrust, in the first orgem of the time equation (3.18) one has
terms which depend on the above mentioned elliptiegrals, which appear in (3.30).

After some manipulations, one would obtain:

t - 805303'5 f 1 { —
tl (0) /,11'5 b[ ¢02(79) l3| a (79)

(68, + 27 cos? + 4cof) I, (9) +E y (3.33)

1

mo 4(1— qf) sind 1, ()

Expanding the terms in the integral, for examptgsidering onlyl, (as in Eq. (A.14)),
the following integral emerges:

¢ 1 [ 1 (:9 4e, J 1 [:9 4e, J Jl+e?+2e cosd g sif
| E|Z + F| Z - . -
5 (1+e,cosd)| e W e (1-e,)(1+ g cos?) (3.34)

2'(1+g)’ 2'(1+g)’

1 (6 4 |, 1 (64 | Jlte’+2qcoB g ]b,| ,
1-e | 2'(1+e)’) 1+ [ 2'(1+g) (1-&,)°(1+ & c0sb,)

an expression for (3.18) with integral terms whiwve, for example, the following

{153
f 2 (1+e) ) g

(1+ecosd)

form:

(3.35)
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Note that the termi0 (1+e, cosd) , Z;[ (1+e, cs)

dZ are not available in

closed form. Similar considerations apply to thentein (3.32) depending dp; andlp,.
Therefore, in this case, it has been chosen to noatlg integrate the time equation as in
(3.18) with a quadrature method. Numerical testeelghown that, by setting the number

of integration nodes at 6 per revolution, adeqaatairacy is achieved.

3.1.4 J, Perturbation
The inhomogeneous gravity field of the Earth isallsjumodelled as a series expansion
of harmonic functions whose coefficients are experitally derived in order to match the
observed motion of satellites. The strongest couation to the motion of an Earthrbiting
satellite is given by the first zonal harmonic temiso known as,-ternt®. The effect of
the J, term can be expressed as a perturbative termeilsuss variational equations. In
particular, the components of theperturbation in the 6-h frame can be expressed’as

s, _ 3ud,R? {12

B g E(QlcosL— Q sinl)’ - ﬁd)“( L)

" :%(Qz cosL+Q sinl)(Q cos- Q sin)®*( 1 (3.36)

61, R?
B°G%a’
whereR is the planetary radius aglis:

G=1+ Qz + QZ (3)3

3 —

(QeosL-Qsinl)(1- Q- Q) ®*(L)

By substituting (3.36) into (3.7) and with the pedare previously described one can
write the first-order variation of the Equinoctialements due to th& perturbation. In a

compact form, this can be expressed as:

2t =g te” 2 s (Lo LR P Qo Q)
0

1
R =R,+&™ 8G—ZBO4 g (Lo L. Py Py Quo Q2

0

F)2J2 = F)ZO + ng 86—%504 lJPz (LO’ L, F)].O’ on, QlO’ QZ() (338)
0
1-Q2- Q.
QlJz = o +£~]2 4G+BO420 I-]QL ( LO’ L, F:)lO’ ons Q]_01 QZ()
0
1-Q2 -Qy
Q2 =Qyute™ W'JQ (Lo: L Pios Poo Qi0Q 29
0 —0

73



where e is defined as™ = J,R? 3, %. Gois G as in (3.37), evaluated with=Q1o and
Q2=Q20. The integral terms are represented as:
(Pysinz = By cos(,)( 14Q,, cos - Q,, sin)’ - Gj)
+20,(£)(Q,,c0SL — Q, SIN) (Q,, o8 + Q, sin)
—cosc®, (L) ( 14Q,, sit. - Q,, cos)” - sz) +
| =12J' P, (L) 8(P10+(1+ ® (L)) sinL‘,)(Q20 Sit - Q,, c08)(Q,, cas+ Q,, sit)— |dc
4P,y (QC0SL —Q, S )’ (2- G, )

L
|, = 24] ®3 (z) dr
Ly

sincd, (L) (12(Q20 sin; - Q,, cog)” - GOZ) +

|y =12[ @, (£) 8Py +(1+ @ (L)) cox)(Q, SiL—Q,, co8)(Q,, cast Q,, sb)- |dL
4R, (QypCOSE = Qy Si)’ ( 2 Gy

l1q =12[ @ (£)(Qy COSE-Qy SinC) simd .
L
L

1o, = 12.[ P, (£)(QoCOSL - Qy SiNL) cogdr
L

(3.39)

Their analytical expressions are reported in Apperd Note that there is no linear
component irL in the expression df, (Eg. (A.17)), confirming the known result thitis
not inducing any secular variation of the send@jor axis and thus the energy. There is, on
the other hand, a short-term periodic variationaobver one orbital revolution. The
remaining equinoctial elements (Eqgs. (A.18), (A,1®.20) and (A.21)), present both a
short-term periodic variation and a secular oneaclvis linear with respect to.

3.1.5 Superposition of Perturbations
It has been assumed that the perturbing accelergtismall, and consequently that the
variation of the orbital elements induced by théstprbation will similarly be small. For
example, one can assume that the variation of thiégabplane due td, and out-of-plane
thrust will be small and therefore the Equatior283.for the inertial acceleration is still
applicable. In this sense, it is also possibleinedrly superimpose the four analytical
solutions shown in the previous sections to obsmranalytical expansion for the case in

which these perturbations are acting together:
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atot — ao +€I'19h alrzS’h + gln alIn + gt qt + €J2 qu
R = Ryt £ R{" +£" R+ R+ £ B
P = Pyt e BM €M R 46 By +e” B

Qltot — Q10+£rz9h llrz9h +gh llm + &t Qltl+£J2 122

tam = on + grﬂh 21“9’n +e" sz + ‘Ethlt + ‘EJZQzlJ2

tot — rghy rh Ing In ty t Jop J
7 =t te™ " +et et tem

(3.40)

3.1.6 Accuracy of the Analytical Expansions

This section contains an analysis of the accurany eomputational cost of the
analytical formulae presented in the previous eacthccuracy and computational cost are
evaluated against a numeric integration of (3.7hwdifferent integration schemes and
accuracies. An initial elliptical orbit, whose addi parameters are given in Table 3.1, is
propagated under the combined effect Jof perturbation, an acceleration along the
tangential direction of IHm/s* and an inertial acceleration of 1&n/<* (equivalent to solar
radiation pressure acting on a spacecraft withraa & mass ratio of 1/4.56°fkg at 1
AU).

Table 3.1: GTO orbital parameters.

a e i Q o 0

24478 km 0.73 6° 0° 0° 0©°

At first, the motion is propagated for an arc-ldngp to 2 and the performance of the
analytical formulae is evaluated against three migakintegration schemes. This first
analysis also provides an evaluation of the suitglof the analytical formulae as fast
integration method to be used in the orbit aveggnethod introduced in Chapter 5. The
numerical integration schemes are: a Gauss-Legandrdrature with a number of nodes
between 4 and 24, a Modified Euler metf8avith a number of equally spaced steps
between 4 and 16, and af-8rder, Runge-Kutta method with 13 steps (RK8(A%3)
Note that, the Modified Euler evaluates the intagréunction twice per step, therefore the
number of function evaluations is double the numbkisteps. For each method, the
integration error is computed as the differencevbeh the analytical formulae and a
numerical integration performed with Matl®abde113 implementing an Adams-Bashfort
predictor-corrector method, with relative and absstolerances equal to 10
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Figure 3.2: Comparison with numerical integration: error on semi-major axis. a) Gauss-
Legendre b) Modified Euler and Runge-Kultta.
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Figure 3.3: Comparison with numerical integration: error on P;. a) Gauss-Legendre b)
Modified Euler and Runge-Kutta.
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Figure 3.4: Comparison with numerical integration: error on P,. a) Gauss-Legendre b)
Modified Euler and Runge-Kutta.
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Figure 3.5: Comparison with numerical integration: error on time. a) Gauss-Legendre b)
Modified Euler and Runge-Kutta.

Figure 3.2a shows the error on semajor axis. One can see that the Gauss-Legendre
integration has a rather noisy behaviour alreadlfort arc-length; only the case with 24
nodes shows comparable accuracy to the analytroglagation. Moreover, it has to be
noted that Gauss-Legendre quadrature will, at beste the same accuracy of the
analytical step since it is numerically calculatitige same integral forms. Figure 3.2b
shows a similar comparison with Modified Euler aR&8(7)13 methods and leads to
analogous conclusions. The Modified Euler integrgiwes good results only with a high
number of steps. The RK8(7)13 scheme is extremsdyrate for short arc-length, but as
this increases, the numerical integral quickly digs from the true solution. Figure 3.3
and Figure 3.4 show the error BpandP, and also reveal that Gauss quadrature can easily
accumulate an error which is more than one ordenagnitude larger than the analytical
formulae. Figure 3.5 shows the error on time. Is tase Gauss-Legendre quadrature with
a high number of nodes has a slight advantage due fact that in the analytical
formulae some of the terms dependingRapnandP,; are neglected. Addressing this issue
will be the topic of future improvements.

Figure 3.6 shows the computational cost of theecffit integration methods. From the
figure, one can see that the cost of the analyficapagation is comparable with the
Gauss-Legendre quadrature with 8 nodes or ModHielér with 4 steps. As shown in the
previous plots, these two methods are considerdddy accurate than the analytical
formulae, except for very short arcs. Only Gausgedoelre with 24 nodes has comparable
accuracy but its cost is three times that of thalyaical propagation. Note that the
analytical formulae in this comparison require ttemputation of relatively expensive
elliptic integrals. If a constant acceleration inr-8-h frame is considered instead the

computational cost is about a quarter of that of@stant tangential acceleration.
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Figure 3.6: Comparison with numerical integration: computational cost.

3.1.7 Accuracy vs. Initial Semi-major Axis ande

In this section, the behaviour of the error of &malytical formulae is investigated with
respect to the initial seamnajor axis and the magnitude of the perturbingebsration. This
is assessed by computing the error accumulated owerorbit as a function of the
magnitude of the perturbative acceleratioand of the semi-major axe of the initial
orbit. A number of initial Earth-centred orbits tvieccentricity 0.7 and variabby were
propagated with different, aligned along the tangential direction. Althoulgére, for
simplicity, only the tangential thrust case is adesed, the same considerations are
applicable also for the other acceleration pattefigure 3.7 shows the error on the semi-
major axis relative t@, and as a function dd itself ande. One can see that for a large
initial semi-major axis and=10° m/s the error grows above 1%. However one should
consider that 16 m/s is a performance level hardly attainable with tuerent Electric
Propulsion technology. If the acceleration is iastén the range of 1810° m/$ the
resulting propagation error remains below 0.001rétatively large orbits with semi-major
axis up to about POkm. Note also that all orbits in the LEO to GE@sd are integrated
very accurately, with a relative error lower thd1

A similar behaviour can be observed in Figure 8r&Pf and in Figure 3.9 for the tinte
The former is closely related to the orbit ecceitiriand therefore it is desirable to keep
the error per orbit below 1910° which, as shown in the graph, can be attaineddstm
cases except for highy, largee combinations. Figure 3.9 shows the error on tinveddd
by the period of the initial osculating orbit angeocan see that the perturbed orbit duration

is also computed very accurately with the erronbgust a fraction of the total duration.
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Figure 3.7: Relative error ona over one revolution w.r.t.ap ande.
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3.2Propagation over Long Arcs

In this section, the speed and accuracy of theyficall first-order expansions is further
assessed on the propagation of long arcs. For elathe four expansion formulae, an
initial orbit around the Earth, with orbital parat@es given in Table 3.2, is propagated
analytically along an arc of length equal to 20 fal/olutions. The difference between the
value of the orbital elements along the propagaredand the result of a full numerical
integration of Gauss’ variational equations is tltemputed to give the errors difference
Aa, AP, AP, AQ;, AQ,, At. Both propagations are performed with Matlab ahd t
numerical integration is performed witlde113with relative and absolute tolerances were
set at 10>

Table 3.2: Initial orbit parameters.

a e i Q w 0

7500km 0.1 6° 0° 10° 0©°

The first test assesses the accuracy and speedrmatilbe (3.19) and (3.21). The
modulus of the acceleration in thé-k frame is 10 m/s, with a=#/2 andg=x/6. Figure
3.10 shows that the error on the semi-major axigres contained below 0.12 km after 20
revolutions.

Error on semi-major axis

0.12r

0.1-

0.02-

0 T I I
0 20 40 60

1 1 1 i
80 100 120 140
L [rad]

Figure 3.10: Constant r8-h acceleration: error on semi-major axis.

Figure 3.11 and Figure 3.12 show that the analyipproximation ofP; andQ; is very
close to the numerical solution with errors lowkart 310°. P, and Q, show similar

behaviours but are omitted here for the sake ofiseness.
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Figure 3.11: Constant r0-h acceleration: error on P..
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Figure 3.12: Constant r9-h acceleration: error on Q,.
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Figure 3.13: Constant r0-h acceleration: error on time.

Figure 3.13 shows the difference on time of flightween the approximation computed
with Eq. (3.17) and the numerical integration o thme equation. The approximated time
of flight accumulates an error that is less thanadter 20 orbits (a relative error of 3:40

This result demonstrates that the new approximgtimmposed in Eq. (3.17) reduces the
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error by one order of magnitude with respect to pnevious formulation proposed in
Zuiani et al*® for the same ratio of control and local gravitgeleration. Note that a good
computation of the time is essential, in particuldren one has to use this datum to
compute thetV corresponding to the propagated thrusting arc.

In this first, test the analytical propagation riegd 2-10* s compared to 0.5 s ofle113
However, note that a direct comparison of CPU timeather difficult, since this value
refers to the case in which the tolerancedde113is set at 18% On the other hand, if the
tolerance were relaxed to "1(a relative error comparable to the one of thelydical
solutions) the CPU time fandell13would be about 0.08 s, which is still two ordefs o
magnitude slower than the analytical propagation.

A second case was used to assess the accuraaymiide (3.25) and (3.26). The same
initial orbit is propagated with a T0m/s constant acceleration in the inertial reference
frame. Figure 3.14 shows that the error on the seajor axis is lower than in the previous

case (in part due to the fact that the semi-majisr lzas a periodic behaviour in this case).

62( 10’4 Error on semi—-major axis
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Figure 3.14: Constant inertial acceleration: erroron semi-major axis.
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Figure 3.15: Constant inertial acceleration: erroron P;.
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Figure 3.16: Constant inertial acceleration: erroron Q;.

Similarly, Figure 3.15 and Figure 3.16 show that dpproximated values f& andQ;
match quite closely the numerical ones. Analogaussicerations apply t&,, Q. andt,
the graphs of which are not reported for concisgenes

In the third case, the orbit in Table 3.2 is pdradh with a tangential acceleration of
¢=10"* m/<. Figure 3.17 shows the behaviour of the error@misnajor axis and one can
see that, from the qualitative point of view, tligemarkably similar to the one in Figure

3.10 for the @-h acceleration.

Error on Semi-major axis
0.16r

| | | i
80 100 120 140
L [rad]

n I I
0 20 40 60

Figure 3.17: Constant tangential acceleration: erroon semi-major axis.

The same can be said for the errorRonin Figure 3.18, which shows that the error is
kept well below 1§ after 20 orbits. The error on time remains bel®yas seen in Figure
3.19. Note that, in this case the computational iokigher than in the previous cases due
to the elliptic integrals, but it is still lower dh for the numerical integration, at around
8-10%s.
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Figure 3.18: Constant tangential acceleration: erroon P,.
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Figure 3.19: Constant tangential acceleration: erroon time.

Table 3.3: Initial orbit parameters.

a e i Q w 0

7197.8km 0.1 6° 45 10° 0©°

In the last case, the initial orbit in Table 3.3p®pagated undek perturbation only.
Note that this orbit has a pericentre altitudeust L0OOkm and has been chosen specifically
to show a case in which’ is maximum. Of course, with such a low orbit, @alrlife one
would have to take into account also the relevamitribution of the drag. As in the
previous three cases, the general behaviour ofethenoctial elements shows a good
match with the results of numerical integrationwéwer, as shown in Figure 3.20, there is
a slight, secular increase in the amplitude ofaballations of the semmajor axis. Figure
3.21 shows that the error @1 (the behaviour fo@Q, is analogous) grows faster than in the
other cases. If these parameters are converteacliodtioni and right ascension of the

ascending nod@, grows faster than in the other cases, one cathae#e error has a long
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term deviation. This would negate the known rethdt J, generates no secular variations
in the inclination. While this variation is almosegligible along a single orbit, it might
become problematic when a long integration inteigatonsidered. Thus, a correction
process will be introduced to mitigate the erroovgh in this and the other analytical

solutions.

Error on Semi-major axis
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Figure 3.20:J, perturbation: error on semi-major axis.
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Figure 3.21:J, perturbation: error on Q.

As underlined in Section 3.1.5, given the limiteatiations of the orbital elements it is
also possible to sum the four fistder expansions seen before into a single apmieted
solution for Keplerian motion perturbed by constéarigential and inertial acceleration
plus J, perturbation. Figure 3.24 to Figure 3.27 show pihgpagation error associated to
the combination of the three first-order expansjdas the initial orbit in Table 3.2. The
mismatch with numerical integration is not worsearthin the cases in which the
perturbations are considered separately, confirntiveg the perturbative effects can be
linearly combined. Also by comparing the error ba semi-major axis in Figure 3.20 and
Figure 3.24, one can see that, for this specifeeaaf a very low Earth Orbit, the main

contribution to the error is actually given by @qgroximation on thé, term.
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-3 Error on Inclination
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Figure 3.22:J, perturbation: error on inclination.
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Figure 3.23:J, perturbation: error on Q.
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Figure 3.24: Combined perturbations: error on semimajor axis.
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4 Error on ParameterlP
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Figure 3.25: Combined perturbations: error onP;.

5 Error on Parameter Q
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Figure 3.26: Combined perturbations: error onQ;.
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Figure 3.27: Combined perturbations: error on time.

3.2.1 Propagation Error Control over Long Spiralling Arcs
The results in the previous sections show thatpttogpagation error of the proposed

analytical solutions remains contained over redyiMong arcs provided that is small
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compared the to the local gravity field. For longgirals, however, an error control
strategy is required to preserve accuracy evesrf@il values ot.

The propagation error can be controlled by updativegreference conditioB, in Eq.
(3.12) and (3.17) eveny orbits. The update consists in taking the valueE{h) computed
at the n-th orbit as the new reference conditi&g for the following n orbits. This
technique, presented in Colombo et%atan be regarded asextification of the analytical
propagation.

The effectiveness of the technique is here dematestrwith the propagation of an
initial circular orbit with semi-major axis 7000 konder the effect of an acceleration of
¢=10" m/€, along the tangential direction. The length of fitepagation arc is equal to
500 complete revolutions. The frequency of updae®t ton=20, leading to a total of 25
evaluations of the analytical formulae. The analtipropagation required about 0.03 s
while a numerical one witlhde113(Adams-Bashfort, with tolerance set at*30took
about 7 s. Figure 3.28 shows the variation of #maignajor axis and confirms that in this
case its behaviour is almost linear. The approxonadbtained with both rectification and

averaging is very good.
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Figure 3.28: LEO propagation: semi-major axis.

Figure 3.29 shows that the relative error in thmismajor axis remains belowH*,
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Relative error on Semi-major axis
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Figure 3.29: LEO propagation: relative error on senirmajor axis.

Figure 3.30 shows the effect of the rectificatiolmgess on the error in eccentricity
which remains below 1.2- F@&fter 500 orbits.

X 10° Error on eccentricity
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Figure 3.30: LEO propagation: error on eccentricity.

Table 3.4: Rectification strategy

Interval [1I0km] a<3 3<a<85 8.5«a<10 a>10

Rectifications/
orbit

A further test considers the propagation from atiainGeostationary Transfer Orbit
(see Table 3.1) until escape condition is reachigil an acceleration of=10* m/< in the
tangential direction. This time, due the fact ttinet transfer is much longer and will span a
wide range of different orbit energies, a simpleaaiyic rule is implemented to define the
frequency of rectification. As detailed in Table43the frequency of rectification is

proportional to the value of the semi-major axise Binalytical propagation was compared
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to a numerical integration witlhdel13AdamsBashfort. The computational times are
around 0.6 seconds for the analytical and 15 secfordde113

Similarly to the previous case, Figure 3.31, FigBr82, Figure 3.33 and Figure 3.34
show, respectively, the variation of semi-majorsaxine eccentricity and the relative error
on radius modulus and that on phasing. Figure 8t@ivs a very good match between the
analytical and numerical propagations, as can #&eoseen in Figure 3.32 for the
eccentricity. The match is very good up to the fast revolutions when the semi-major
axis is very large and therefore the analyticaimiglae become relatively inaccurate.
Figure 3.33 shows the relative error on the modolughe position vector. The figures
show that the relative error remains below® ¥6r a good part of the spiral and grows
above 1G only towards the end when the semi-major axis grabove 5- 1&m.
Semi-major axis
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Figure 3.31: GTO propagation: semi-major axis.
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Figure 3.32: GTO propagation: eccentricity. a) entie trajectory b) close up of last orbits.
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Relative error on modulus of radius
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Figure 3.33: GTO propagation: relative error on radius.
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Figure 3.34: GTO propagation: phasing error.

3.3Conclusions

This chapter has presented a set of analyticaltisnki for propagating low thrust
trajectories under the effect of different pertatbacceleration. In particular, the proposed
approach is suitable for treating constant acctteran the r0-h reference frame, constant
tangential acceleration, constant inertial accét@maandJ, perturbation. The accuracy of
the analytical solutions was shown to be suitabletlie propagation of relatively long
trajectory arcs around the Earth, if the contralederation level is comparable to the one
delivered by current EP engines or other propulsi@ans falling in the LT class. The set
of formulae presented here are the starting paint dll the subsequent techniques
presented in this dissertation. In particular, ive thext two chapters, two additional
techniques will be proposed, that will further emte the scope of application of the

analytical formulae.
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Chapter 4.Direct  Finite  Perturbative  Element

Transcription Method

In this chapter, a direct transcription method tbe design of optimal lowhrust
transfers with constraint conditions at the bouiedais presented. The trajectory is
decomposed into a number of finite elements, aleach element, the orbital motion is
propagated with the analytical formulation presdnie Chapter 3. The trajectory is
assumed to be anvariation of a Keplerian arc, whetds a ‘small’ acceleration term due
to the low-thrust action. A fast transcription béttrajectory into a nonlinear programming
problem is thus obtained, the accuracy of whicbaoistrolled by the number of elements,
assuming that every trajectory element remainssadrders -variation of a Keplerian arc.

It will be shown how this approach is particulaskyitable to solve orbital rendezvous
problem, such an Earth-Mars, direct transfer. Mweeo thanks to its computational
efficiency, it can also be used for the solution coimputationally demanding Multi-
Objective optimisation problems, where both the snaispropellant and the transfer time
need to be minimized. This chapter is organisefobsws: Section 4.1 will define the
2PBVP and Section 4.2 will introduce the proposexhdcription method to solve it.
Section 4.3 will present the case study of an Elldins transfer. The present method is
also employed in conjunction with MACS2 to perfoanV vs. time-of-flight analysis for

a given launch window.

4.1Problem Definition
Recalling the formalism used in Section 3.1, le2 assume that the state of a spacecraft
as in orbital motion around a central body is dediim Equinoctial elements as:

a
R
P,
X=1 5 (4.1)

1

Q,
L

From Eg. (3.2) the orbital motion, in vector forcan be expressed as:

X=f(tX,£a,B) (4.2)

93



If one takes: as the acceleration modulus delivered by a coatstdl engine along the
directions defined by the anglesandp, the problem is to find the control law that Satis

the boundary conditions:

X(t,) =X, 9

{ X (to) =Xo
with t=to+ToF andToF the time of flight, while minimizing the totalV of the transfer:

A = [e(t)dt o

In mathematical terms the problem can be formulated typical Twéd?oint Boundary
Value Problem as follows:

ty

minJ = g(t)dt

a, %

S.t 5
Egs (4.2) O

4.2Finite Perturbative Element Transcription

The key idea is to exploit the set of analyticairalae presented in Chapter 3 for the
propagation of the orbital motion. However, theprmat be directly applied to the solution
of problem (4.5), because in the analytical forrauldne control acceleration has to be
constant along the integrated trajectory arc. feuntiore, there is no independent control of
the accuracy and of the arc length. In order taoaee these two issues the trajectory is
decomposed into finite elements, each one repriegesn arc of prescribed amplitude. On
each element, an approximated solution to Egs.) (4.2computed by means of the
perturbative approach. In particular, it is choseruse the set of equations (3.25) and
(3.26) for the constant acceleration in tiehr-reference frame. This set has been preferred
to those for the tangential reference because sically offers the same degree of
flexibility at a lower computational (as mentionedSection 3.1.6) cost since no elliptic
integrals are to be computed numerically. All thareents are then linked together to form
the complete trajectory. In analogy to Direct Réritlement Transcriptidf*° this novel
transcription approach is called Direct Finite Bdyative Element Transcription (DFPET)
method. A similar transcription method can be foimthe work of Sims and Flanadin
The approach of Sims and Flanagan makes use ofcaomter approximation of the

perturbed Keplerian motion by decomposing the ttajg inton sub-arcs, with each sub-
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arc describing a leg of unperturbed Keplerian motibhe change in momentum due to a
continuous thrust is lumped intd/ discontinuities at the edges of each-auth The main
advantage resides in the fast closed-form compumatif each Keplerian arc and its
variation with respect to the states at the begmmf the arc. By analogy, in DFPET the
simple Keplerian model with discrete/ impulses is replaced by a first-order perturbed

Keplerian model with constant thrust along eachaw(see Figure 4.1).

- Continuous thrust
{ Boundary/Match point

® Reference node

Figure 4.1: LT Direct Finite Perturbative Element Transcription Method.

In DFPET, thd-th arc of amplitudelL; is defined by the following quantitieX:™, the
six Equinoctial parameters at the mid-point of &he and the three control parametgrs
andg. To obtain the boundary points of the element,pgegurbed motion is analytically
propagated backward and forward along a subarc anmtiplitudeAL/2. The mid-point
along the ard\L is chosen as the base-point for the analyticapgation to improve
accuracy, since the error increases superlineaith wmplitude of the arc and is

proportional tos (see Figure 4.7). Thus, a dual-sided propagatidhariorm:

X*=f (Xm,A—ZL,E,O’,,Bj
(4.6)
X" = f(xm,—é,g,a,ﬂj
2
provides a better accuracy than a single forwaelawer the arc-length of equivalent total
length AL. All arcs are then interconnected by imposing mmatg conditions at their
boundaries (see Figure 4.2). The proposed duattgdgpagation is different from what is
usually done in other Multiple Shooting methodswinich the propagation is carried out

only forwards.
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Backward
ackwar Reference Forward

propagation S propagation
Xm

Lower boundary Upper boundary
AL

Figure 4.2: DFPET with centred reference node.

4.2.1 Accuracy Analysis

In order to test the integration accuracy of theuPbative Finite Element Transcription,
the backward and forward integration over a sirggle was run for a wide range of time
intervals, a constant transversal acceleration ®f1®°m/s* and an initial circular orbit at
1AU from the Sun. Time intervals ranged from 0.5tadl00 days. Note that the centred
reference node of the Perturbative Finite Elemeas wadjusted in order to match, at the
lower boundary, the above mentioned conditions dAB heliocentric circular orbit. For
each element size, the computed final state (he.dne at the upper boundary) was
compared against the result of the integrationgs. £3.2) with a simple implementation of
the Modified Euler Methdd? and the MatLab function odel13(that implements a
variable-order Adams-Bashforth-Moulton Predictom@otor method). Other algorithms
of theodefamily (e.g.ode45 were also tested, amdle113was chosen as being the fastest
among them for a given accuracy requirement. Theenical integration was started from
the lower boundary of the Perturbative Finite Elamé&he required relative and absolute
accuracies were both set at'#0in order to have a very accurate solution to Wiz
compare the results of the propagation with DFP&J the Modified Euler Method. Thus,
the results obdell3were used as a reference to compute the relatree en the final
state as shown in Figure 4.3 and Figure 4.4. Maeo@PU time for the case in which
ode113is allowed to use relaxed tolerances (both s&03} is also included in Figure 4.4

for a further comparison.
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Accuracy Vs. Finite Element size: error on final state
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Figure 4.3: Error on final state w.r.t. DFPET sizefor a heliocentric orbit.
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Figure 4.4: CPU cost w.r.t. DFPET size for a heliantric orbit.

In these tests, the DFPET transcription displagems@order behaviour with respect to
temporal size of the element and a good accuraeg @xth a relatively large size of the
element (see Figure 4.3). It should be noted ftimathis test, the perturbation force is
equivalent to a thrust of 0.5 N continuously actorga 2000 kgpacecraft. This means
that the ratio between the perturbative acceleraind the local gravity is relatively high.
Finally, the DFPET method has a computational @rdy marginally higher than the
Modified Euler method (see Figure 4.4) but stillegtst one order of magnitude lower than
the numerical integration withde113 even with relaxed tolerances.

A similar test was carried out also by propagatingerturbed LEO orbit for an element
size ranging from 0.5 to 5 days, roughly equivateriO revolutions.
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Figure 4.5: Error on final state w.r.t. DFPET sizefor LEO propagation.
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Figure 4.6: CPU cost w.r.t. DFPET size for LEO propgation.

Here the advantage of the analytic propagatiorvés enore evident, as it outperforms

the Modified Euler Method (see Figure 4.5), andaisleast 60 times faster than the

numerical integration witlbdel113(see Figure 4.6). This is easily explained by #et that

in LEO the gravitational force of the Earth is madimges higher than the perturbation force.

It should also be noted that the analytic propaga able to provide an accurate estimate

even with only one (or even a fraction of) Finiterdaent per revolution.

Finally, a simple test was performed to evaluate abcuracy with respect to the ratio

between the thrust acceleration and the local gonal force. An initial circular low

Earth orbit was propagated analytically for 0.5 slayith various levels of transverse
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acceleration and the results were again comparathgighe numerical integration of the

same orbit arc with ode113. The relative errahmmfinal state is shown in Figure 4.7.

f‘éccuracy Vs. thrust—gravitational force ratio: error on final stat
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Figure 4.7: Error on final state w.r.t. thrust-gravitational force ratio.

4.2.2 Solution of the 2PBVP Orbit Transfer Problem
The DFPET approach can now be applied to the soluf problem (4.5), leading to
the following system of nonlinear algebraic eqoast

NepeT

mind = " g4t
! i=1
X;-X
IS _ (4.7)
SLC = X! ~ Xl =2, Nper — L= C
;FPET _if
ToF -ToF = TcF - > 4,
i=1

ESEnao |l =L Neper

The decision variables are the control vector campts and the first five equinoctial
elements of the midpoint of each arc. The veatan Egs. (4.7) collects all the values of
the control vector components for all the arcs. dhty) constraints are given by the

matching condition between adjacent-guibs. The first and last sets of rowsdp contain

respectively the boundary conditions on the iniiadl final state and the last row contains
the constraint on the time of flight: the requitime of flight ToF has to match the one

computed from the sum of the times of flight of th&ngle sub-arcs as
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NepeT Nepet

ToF = ZAL? = Z (ﬁ —t_l). Note that continuity conditions with respect be tongitude
i=1

i=1
are automatically satisfied since all the analytiespressions for the variation of the
equinoctial elements are already parameterised negpect td_. Therefore, the matching
constraints apply only to the remaining five equaiied elements. Furthermore, the total
longitude ALy: covered by the trajectory arc is easily determineb
AL, =L, -L,= niE:TALi . It should also be noted that, to increase thebmuf complete

i=0

revolutions of the trajectory, it is sufficient tacreasd.;, and thug\L;, by multiples of2z.
In the current implementation only a uniform mesitl{ respect td.) was considered.

Limits on the maximum delivered thrust are introgldicas limits on the maximum
perturbative acceleration. This is not entirelyreot since, in fact, while the maximum
thrust is constant, the maximum acceleration alkdlgradually increases with time due to
a gradual decrease of spacecraft mass. Howevethdosake of the calculations in this
paper, this approach is acceptable and allows ifecttly enforcing a reasonable upper
limit on a decision variable.

Problem (4.7) was solved by means of the MafLamction fmincon,implementing a
Sequential Quadratic Programming (SQP) method. rGive=1 subarcs, the problem has
8negper decision variables and rigeert1)+1 scalar equality constraints. Because each
control element is decoupled from the others, #wdian matrix is highly sparse with the
structure shown in Figure 4.8. The figure shows&ample with 10 sub-arcs, i.e. with 80
variables and 56 scalar constraints. Size of therfatrix is thus 4480 but it has only 800
non-zero elements.

The sparsity pattern could be divided in three miagions: the left diagonal band, the
right diagonal band and the lowermost row. The fiaresponds to the derivatives of the
constraints between adjacent sub arcs (as in Bdg) (w.r.t. the modulus, azimuth and
elevation of the thrust acceleration of each sub-Hne band is composed by five-by-three
sub-matrices each of which is basically the Jacobfahe first five Equinoctial elements
at the lower (or upper) boundary as a function, af 5. The two zero elements within each
sub-matrix correspond to the derivativesafandQ, w.r.t. « which are always nil as can
be easily seen, for example, from Egs. (3.19).

The second region corresponds to the derivativethefmatching constraints with
respect to the reference nodes. Here again onsem@a band structure with five-by-five
sub-matrices. The two zero elements are in thie tfas derivatives of the semi-major axis
w.r.t. Q; andQ,.
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Finally, the lowermost row is composed of the datixes of the time of flight w.r.t. to

all the variables.

Sparsity pattern of Jacobian matrix of the constraints
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Figure 4.8: Sparsity pattern of the Jacobian of theonstraint function.

4.3Case Study: Low-Thrust Earth-Mars Transfer
To test the proposed transcription method on asteatransfer problem, a rendezvous
transfer from Earth to Mars is considered. The |gnobis first as a simple boundary value

problem and subsequently as a M@tyjective problem using MACS2.

4.3.1 Earth-Mars Rendezvous Boundary Value Problem

For the simple boundary problem solution, the dibjeds that of finding a\V optimal
transfer between Earth and Mars departing fromhEath=5600 MJD2000, with a time of
flight of 1095 days, and with 2 complete revolusBoMaximum acceleration was set at
2.5-10%km/<’, equivalent to a thrust of 0.5 N applied to a 2RgGpacecraft. Initial guess
was given by a constant, transversal thrust prafilemagnitude half the maximum
acceleration. The orbit was modelled with 20 Firilements. The problem was solved
with the fmincon active-set algorithm, with a tolerance of ®1@oth on constraint
satisfaction and optimality condition.

The solution obtained has a totaV¥ of 5.6388 km/s. In order to check the accuracy of
the analytical solution, the optimal thrust profileas numerically integrated forward in

time to calculate the final state. The relativeoetvetween analytical and numerical final

state was 310°3.
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Figure 4.9: Comparison of the optimized trajectories.
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Figure 4.10: Thrust modulus for Earth-Mars LT transfer.
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Figure 4.11: Acceleration azimuthe for Earth-Mars LT transfer.
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Acceleration elevation
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Figure 4.12: Acceleration elevatiorp for Earth-Mars LT transfer.
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Figure 4.13: Variation of Keplerian Elements for Eath-Mars LT transfer: a.
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Figure 4.14: Variation of Keplerian Elements for Eath-Mars LT transfer: e.
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Figure 4.15: Variation of Keplerian Elements for Eath-Mars LT transfer: i.

RAAN
150r : : ;
f;j ----- DFPET
! - - -DITAN
100; ,::: ' ' | —— Sims and Flanagan
\, -

Q [deg]

0 200 400 600 800 1000 1200
ToF [days]

Figure 4.16: Variation of Keplerian Elements for Eath-Mars LT transfer: Q.
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Figure 4.17: Variation of Keplerian Elements for Eath-Mars LT transfer: .
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Figure 4.10 shows the time history of the thrustiomos while Figure 4.11 and Figure
4.12 show its azimuth and elevation respectivelyteNhat, for ease of visualization of the
thrusting or coasting arcs, the angles have beettedl as equal to zero when the
corresponding thrust modulus is zero. The thrustilprdisplays a typical cwoff structure
with four thrusting arcs concentrated around thecpater and apocenter. The azimuth
angle (see Figure 4.11) is almost constantly at®wBbich translates into a quasi-transverse
in-plane component of the thrust. The small ouplaire component (see Figure 4.12) is
due to the small change in inclination between dapa and arrival orbit. Figure 4.13 to
Figure 4.17 show the time history of the Keplerd@ments during the transfer. The semi-
major axis increases monotonically (see Figure 4 \Rh the largest variations along the
first and last thrusting arcs. The inclination ($&égure 4.15) shows also a similar pattern,
while the eccentricity (see Figure 4.14) remainastant at about 0.17 for most of the
transfer and then decreases to about 0.1 to macle¢centricity of the arrival orbit.

Note that, the discontinuities in both the plot¥o&nd® (see Figure 4.16 and Figure
4.17 respectively) are due to the small initialimation that causes numerical problems in
the derivation of the Keplerian elements from thgaieoctial non-singular elements. There
is no mismatch in the value of the equinoctial edata instead.

The same problem was solved with an implementatibrihe Sims and Flanagan
method, and with DITAN, an optimal control solveasled on a direct transcription with
Finite Elements on spectral ba&t¢® As for the DFPET solution, 20 sub-arcs were used
to transcribe the transfer problem with Sims anan&ban and the resulting nonlinear
programming problem was solved wilimincon setting the tolerance for both constraint
satisfaction and optimality condition to'10

DITAN uses SNOPT% as nonlinear programming solver. A first solutiovas
computed with 12 finite elements and the result Wesn improved by increasing the
number of elements to 19. The maximum constraintation was set to 1band the

required optimality to 18,

Table 4.1: Performance comparisons for three diffeznt LT optimisation methods.

DITAN
FPET S&F DITAN _
(refined)
Elements 20 20 12 19
AV [km/s] 5.6388 5.6859 5.6429 5.5401
Iterations 63 240 4602 11064
tcpu [SEC] 10.88 21.37 1045.3 3582.73
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Table 4.1 summarises optimisation results for tired different methods and shows
that both the DFPET and Sims and Flanagan givabielifirst guess figures for thé&/
cost of the transfer. On the other hand, it alssmshthe inherent advantages of the DFPET
method compared to Sims and Flanagan. While thal ¢ of the former is only
marginally better, its required number fafinconiterations, and thus CPU time, is much
lower. Moreover, if one considers the trajectorgsh (see Figure 4.9) and thrust modulus
(see Figure 4.10) and angles (see Figure 4.11 &pare-4.12), the DFPET solution
compares well with the solution given by DITAN. tims sense, the FPET solution could
be considered as a good syfitimal solution of this transfer problem.

4.3.2 Multi-Objective Earth-Mars Transfer Design

Given its computational efficiency it is also pddsito extend the field of application
by using the proposed transcription method to s@v@lobal, Multi-Objective (MOO)
Optimisation problem for trajectory design. As stfiexample, a simple direcendezvous
transfer problem between Earth and Mars is consitl€éFhe aim is to find the transfers
that are Pareto optimal with respect to the TimElmfht and the totahV, within a certain
range of departure dates and transfer times. Thenigption parameters in this case are
simply the departure datg, the ToF and the number of revolutions around the Sun.
MACS2 was used to generate a number of decisiotorgeclhen, for each decision vector,
problem (4.7) is solved wittmincon The boundary conditions for the solution of peshl
(4.7) are given by the ephemeris of the Earthy @nd those of Mars dto+ToF). The
boundaries of the search space for the decisiotovetthe MOO problem are reported in
Table 4.2.

Table 4.2: boundaries for optimization parameters é&r MO Earth-Mars transfer problem.

Lower Upper
to [MJID2000] 5000 5779.94
ToF [days] 100 1500
Nrey 1 3

The number of revolutions is handled by MACS2 asad variable and then is rounded
to the nearest integer towards minus infinity wisetving problem (4.7). The trajectory
was transcribed with 20 finite perturbative elemsenthe constraints violation and
optimality tolerances fofmincon where slightly relaxed compared to the tests & th

previous sections, with the former set t6®Hhd the latter to 1D
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The MACS2 algorithm was run for 40000 function ewsdions. The results of four
different runs were combined to extract a good exipration of the Global Pareto Front.
Figure 4.18 and Figure 4.19 report the solutiom{moin the parameter space and the
Pareto front respectively.

Solutions in the parameter space
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Figure 4.18: Parameters of the solutions for MO Eah-Mars LT transfer problem.
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Figure 4.19: Pareto front for MO Earth-Mars LT tran sfer problem.

The Pareto front presents some discontinuitieschivare due to the discrete variable
Nrev. IN particular, the solutions withoF up to 1000 days are all with only one complete
revolution, while those withToF between 1000 and 1400 days make two complete
revolutions and finally the few over 1400 days méee complete revolutions. Figure
4.20 to Figure 4.27 show the trajectories and spweading control profiles for three
different sample solutions extracted from the Raset and reported in Table 4.3:

1. The solution with minimunioF.
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2. The solution in the central part of the Pareto Eron

3. The solution with minimumV.

The solution at the knee of the Pareto front: thieit®n is similar to 1 albeit with a

lower AV and slightly highefoF.

Table 4.3: Summary of the four sample solutions.

Sample 1 2 3 4

to [MJD2000] 5737.01 5606.82 5222.81 5779.94

to [UTC] 16/09/2015 09/05/2015 20/04/2014 29/10/2015
12:16:16.32 7:41:13.92 7:33:18.72 03:21:36.00

ToF [days] 439.21 704.25 1500 462.86

Nrev 1 1 3 1

AV [Km/s] 7.9338 5.6474 5.6047 5.6902

The minimumToF trajectory (see Figure 4.20) reaches Mars in aneasctly one

revolution. On the other hand, this requires cardius engine operation for almost the

whole transfer, as shown in Figure 4.21, which #lanslates into AV cost of 7.93 km/s.

Note that solutions with a lowdioF could be possible, for., lower than 1.

X 108 Trajectory

y [km]

-15 -1 -05 0 05 1 15 2
X [km] < 16

Figure 4.20: Sample solution 1: trajectory.
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Figure 4.21: Sample solution 1: acceleration modutu
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Figure 4.22: Sample solution 2: trajectory.
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Figure 4.23: Sample solution 2: acceleration modutu
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The second trajectory reaches Mars in 704 dayh, avie revolution and a half and with
three separate thrusting arcs (see Figure 4.2ZF@ue 4.23). This allows for a bett&¥
cost of 5.65 km/s.

x 10 Trajectory

0
0 2
] x10

Figure 4.24: Sample solution 3: trajectory.
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Figure 4.25: Sample solution 3: acceleration modutu

The minimumAYV trajectory reaches Mars in 1500 days (the uppendicet for the
ToF) with slightly more than three revolutions (segufe 4.24). As shown in Figure 4.25,
the four thrusting arcs are concentrated at pasamsd apoapsis, which allows for the
mitigation of gravity losses and therefore a bW cost of 5.60 km/s.

The knee solution has a similar phasing betweeimthal and final positions compared
to the minimumT oF solution, see Figure 4.26, but due to its highaf the totalAV cost is
lower. The thrust profile in Figure 4.27 shows thseparate thrusting arcs with a lower

total thrust time compared to Figure 4.21.

110



x 16 Trajectory

0.5
e 0
=,
> 05
_1,
-1.5
-15 -1 -05 0 05 1 15 2
X [km] < 1
Figure 4.26: Sample solution 4: trajectory.
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Figure 4.27: Sample solution 4: acceleration modutu

4.3.3 Transfer between LEO and ISS

The second test case considers a hypothetic adnsfer between the Ariane 5ATV
injection orbit and the ISS orbit, requiring anitalie increase of 9&m. The boundary
problem is formulated in an analogous way as thghBdars case, although the ISS
motion is modelled as a simple, planar, Kepleriartiom and the injection orbit is assumed
to be coplanar to the latter. The parameters ofléparture LEO are considered fixed, with
the exception of the initial true anomaly. Departure time is also considered to be fixed,
but the Time of Flight determines the position bé trendezvous with the ISS. It is
therefore essential to define the optimal phasktgvben the departure from LEO and the
encounter with the ISS.

The problem is to optimize th&V for a transfer withd, = 210°, ToF=2.02 days and

Nev=32. Forty finite perturbative elements were usedhe optimisation. The optimised
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trajectory has aV of 54.9 m/s. The accuracy is 3, truly remarkable result considering

the high number of revolutions.
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Figure 4.28: Acceleration modulus for LEO-ISS LT transfer.
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Figure 4.29: Acceleration azimutha for LEO-ISS LT transfer.

Figure 4.28 and Figure 4.29 show the time histdryhe acceleration modulus and
azimuth respectively (the elevation plot has beerited since it is constantly null). The
acceleration azimuth (see Figure 4.29), is almosstant at 90°, revealing a predominantly
transversal and in-plane thrust component, whietlinust modulus in Figure 4.28 shows a
long thrusting arc along the initial part of thartsfer which accounts for an almost linear
increase of the semi-major axis as seen in Figid@. &he long interruption of thrusting in

the middle part of the transfer is to allow phaswith the target orbit. The eccentricity
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(see Figure 4.31) shows a net increase duringrémsfer to reach the eccentricity of the

arrival orbit, albeit it also has a periodic componhduring the thrusting spirals.
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Figure 4.30: Variation of Keplerian Elements for LEO-ISS LT transfer: a.
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Figure 4.31: Variation of Keplerian Elements for LEO-ISS LT transfer: e.

It should be noted, that althoughinconconverged to a feasible solution, this is hardly
the optimal one. This is due to the fact that 40ewssed for a transfer with 32 complete
revolutions, which means that each trajectory elgncevers a bit less than a complete
revolution. This translates into the fact that ttypical bang-bang pattern, i.e. with
thrusting centered on the apsidal points and augastisewhere, cannot be adequately
described with such a limited number of elementsil&Vthis is not a huge problem in
transfers between quasrcular orbits (as in the present case), it keg issue in transfers

with large variations in the eccentricity. Simil@marks apply also to the control on other
113



orbital elements, like the argument of perigee. ®heious solution would be to increase
the number of trajectory up to at least 4 per netvoh, although there would still remain
the issue that this would by no means guarantee gheper positioning w.r.t. the apsidal
points. Optimisation instances with a higher numidetrajectory elements were tried, but
there was an unacceptable increase in the commughtime and too oftefmincondid not
manage to converge to a feasible solution at dlesé computational issues are only
exacerbated when one considers that typical tremsieEarth orbit (e.g. LEO to GEO, as
shown in the following chapter), normally have hreas of revolution, which would lead
to an intractable number of the degrees of freedibrthe approach described in this
chapter is used. The following chapter will therefpropose an alternative approach for

tackling this class of trajectory optimisation pierbs.

4.4Conclusions

This chapter presented a novel numerical approawh Lbw Thrust trajectory
transcription. The novel approach makes use ofstdider analytical solution of Gauss’
planetary equations. The first order analyticalBoh was demonstrated to provide a fast
and relatively accurate propagation of the pertuitfieplerian motion under the effect of a
constant thrust. The first order approximation wagplemented in a finite element
formulation for the solution of two-point boundarglue problems that was proven to be
more computationally efficient and accurate thameotstate of the art methods.
Furthermore, it was demonstrated how its computaticefficiency makes the novel
transcription method suitable for the solution dbléal and Multi-Objective Optimisation
problems for LT trajectory design, in which the 2HBneeds to be solved thousands of
times.

A limitation of the technique presented here ig thes ill suited for modelling transfers
with many revolutions around the central body. unhsa case, one is confronted with the
dilemma of either accepting a large increase innimeaber of design parameters, which
would make the optimisation problem computationaklyy expensive, or accepting too
coarse a discretisation of the trajectory, whichcantrast decreases the quality of the
solution. Therefore, the next chapter will presather different techniques specifically

target at long spiralling transfers.
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Chapter 5.Many-revolution, Low-Thrust Transfers

In this chapter, various techniques are proposed,treating mamyevolution LT
transfers with discontinuous control profiles. larfcular, an averaging technique is
proposed to fast propagate many-revolution trassfeder the effect of optimised low-
thrust arcsJ,, light pressure and eclipses. While the exampte€hapter 3 dealt with
continuous thrust profiles, in this chapter moreeagal control profiles are considered. A
simplified control parameterisation is used to wefthe thrusting pattern, which ensures
enough flexibility to describe complex Low Thrugtirals. The effect of the shadow
regions due to solar eclipse is also included & iodel. The chapter also presents an
application to the optimal design of a low-thruptral to transfer a spacecraft from an
elliptical to a circular orbit around the Earthn&lly, an example of application to the de-
orbiting of space debris from Medium Earth OrbitEM®) with a combination of Electric
Propulsion and Solar Radiation Pressure is showe. dhapter is organised as follows:
Section 5.1 will present the proposed model focaliginuous control profiles; Section 5.2
will introduce the proposed averaging techniqueesenhtechniques will be then tested in
the cases of Section 5.3. Finally, Section 5.4 wificuss in more detail the above-
mentioned application of these techniques to therbeging of MEO satellites.

5.1Discontinuous Control Profiles and Eclipses
In the numerical tests presented in Chapter 3glsi continuous acceleration was
considered. This section proposes a simple apprmacitroduce bang-zero-bang control

profiles and eclipses.

Orbital

<Notion

Apogee
Thrusting
arc

Perigee
Thrusting
arc

Coasting
arcs
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Figure 5.1: Control pattern.

The interest is in the class of lawrust transfers whose quasi-optimal control
corresponds to two thrust arcs. For this classafsfers, each revolution can be divided
into 4 sectors, as shown in Figure 5.1: a peripeast arc, an apogee thrust arc and two
coasting arcs in between. The former, of amplitddg is meant to alter the radius of the
apocenter, while the latter, of amplitude,, alters the radius of the pericenter. The
combined effect of the two thrust arcs can be usedontrol the inclination and the
argument of the pericentre. The variation of thatal elements along the thrusting arcs is
computed with the analytical formulae. A plane dmeis realised introducing a non-zero
elevation anglg, andg.. The amplitude of the arefi.;, and4L,, and the angles, andg,,
are the quantities to be controlled to match thsirdd terminal conditions. When a
constant thrust is required for each arc, the roa$ise spacecrafty at the end of a thrust

arc can be estimated assuming the control accieleris constant along the thrust arc:

et
m, = me's® (5.1)

wherem is the mass of the spacecraft at the beginnirtgethrust arc. The new mass
is then used to recompute the control accelerdtiothe next thrust arc. This introduces a
small underestimation of this acceleration, aseadity the latter will increase continuously
over time as the mass is consumed.
Evolution of thrust acceleration w.r.t. initial vakbeO.S 10%mié
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Figure 5.2 Evolution of the thrust acceleration wih respect to a reference initial value.

The evolution of the thrust acceleration durindhusting arc is well described by the

equation:
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where ¢ is the acceleration foat=0 . As shown in Figure 5.2, the increase of the

(5.2)

acceleration w.r.t. a reference value is ratherlsimrahigh s, being only 12% after a few
days of thrusting. The error on the magnitude efttirust acceleration directly translates
into an error on the orbital elements and, in 8esse, one could also estimate that the
latter will be roughly half the error on the accaten at the end of propagated arc. This is
due to the quasi-linear behaviour of the error shawFigure 5.2, which means that the
average error on the acceleration during the timysirc is roughly half the error at the
final time. Moreover one has to consider that, gitee control strategy in Figure 5.1, a
single propagated arc will typicall cover a fraatiof a revolution, which, in Earth orbit
has a period between a few hours and a few daykgHn of this, the resulting error is

therefore a fraction of a percent and is deemedmable in the scope of the present work.

5.1.1 Eclipse Modelling

In the case of long, multi-revolution transferse thffect of a solar eclipse might be
considerable if one takes into account the fact, tfta example, during an eclipse the
operation of an Electric Propulsion system will, sntikely, have to be interrupted due to
limitations on power generation and storage. Moeeo\eclipses change due to the
combined effect of the motion of the Earth aroumel Sun and the variation of orbit size
and orientation due to engine thrust and otherupeative effects. In the case of a full
numerical integration, eclipses are computed bykihg shadow conditions at each step
and eventually activating or deactivating some kiofd eclipse flag. This leads to
discontinuities in the integrand function. In analgtical approach, like the one here
proposed, one can however exploit the fact thaketiieance and exit points of the shadow
cone (for the sake of simplicity, no distinction ns&ade between umbra and penumbra
conditions) can be computed beforehand and thenththesting arcs can be updated
accordingly. Other authors have already proposeshdar approach, see for example
Kechichiarf®, in which orbits with eccentricity up to 0.2 arensidered; Colombo and
Mcinnes® also applied a similar method but limited to tHanar case. In this work, a
cylindrical model for Earth’'s shadow is adoptede(déigure 5.3), which is perfectly
adequate in the case of a spacecraft in Earth orbit
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Eclipse exit point

Sun-Earth direction

Eciipse entry point
Figure 5.3: Shadow model.

In order to identify the eclipse entry and exitrgsione has to find the true anomalies of
the geometrical intersections between the cylinded the osculating orbit. The
mathematical formulation of this problem can beniin Escobdf’ and Valladd”® and
will not be repeated here. Starting from the odaudaorbital elements and the current
SunkEarth vector, this formulation leads to a quagtiation incos), which can be solved
either analytically by means of Ferrari’s methosl,i@done in this work, or numerically
with a root-finding algorithm. Note that out of tlHeroots of the quartic polynomial, two
are spurious. Once the shadow entry and exit p@msknown, one can correct the

thrusting and coasting arcs as shown in Figure 5.4.

Orbital
motion

Figure 5.4: Thrust pattern with eclipse region.

Apart from identifying the shadow regions, this maation also allows one to

analytically compute the time spent in the shadegian,t.., for each orbit.
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5.20rbital Averaging
In Chapter 3, a set of analytical formulae for @oating the perturbed Keplerian
motion was proposed. As a further step, it is psgoioto use these formulae to compute the
average variation of the orbital elements over mpmete revolution and to numerically
propagate the average orbital elements, as itng do classical averaging techniques (see
Ferrier and Ependy*® and Tarzi et at’®). In the proposed averaging technique, the

variation of the orbital elements is given by:

B =E, + £, (1.E(r). AL (1),

b (5.3)
AE

- 2

Eavg Tzn

where E represents the vector of the averaged orbital ehsnAE,, is the net
variation of the orbital elements computed overomplete revolution and>, is the
corresponding period. In most orbit averaging tégpines,AE,,; is computed by numerical
quadrature of Gauss’ planetary equations overrtieednomaly (or longitude). HereE,
is provided by the evaluation of the analyticalnfiotae atL=21t As shown in Section

3.1.6, this is advantageous in terms of computaticnst for a comparable accuracy. The
termsac,, ALa, ,f?p and 3, are the control parameters mentioned in Sectidnafid are

computed as a piecewise linear interpolation watfpect to time, from,qgesnodal values,

uniformly spaced within the limits of the transfegriod. For example, in the casemf, ,

one can write:

ALp (1) = fep (T AL 1) (5.4)

whereAL, is a vector containing th&,qesnodal valuest, is the vector which collects
the corresponding times at which the nodal values specified, andinerp defines a
piecewise linear interpolation.

An additional equation describes the evolutionhef &veraged mass:

t
m()=m+ [ i, (7,81 (z) Al(r))dr
am, o (5.5)
where Ay, is computed in discrete steps for each thrustnegnath Eq. (5.1). With a
generic control profile as described in Section, &tleach revolution one would have to
perform as many analytical propagations as the murbthrusting and coasting arcs. One

can argue that in such a case, the cost of theytavadlpropagation might no longer be
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advantageous compared to other methods. To assgsa test analogous to that of Section
3.1.6 was performed, in which the motion is propegdor one revolution under the effect
of a tangential thrust for an arc of length®2/®llowed by a coasting arc of lengii3
(with J, only), another propelled arc of length 2/&nd finally another coasting arc of
lengthn/3. Therefore, there are 4 separate propagatiobs frerformed with the analytical
formulae. This is an interesting case as it mintihes case of a bargero-bang control as
described in Section 5.1. The accuracy and conmipuotdtcost of the analytical solution
are compared to a fully numerical integration pemnfed with Gauss-Legendre quadrature,
which, in the tests in Section 3.1.6, appearecktthb most competitive method in terms of
accuracy and CPU cost. Two slightly different teghes are tested: in the first one, the
motion is propagated without splitting the integratinterval in the three discontinuous
points; in the second one, the orbit is split ifdor intervals (as is done for the analytical
propagation) and Gauss-Legendre quadrature iseappdi each of them. The number of
nodes for each interval is chosen such that thebeumf nodes is comparable to the first
case when a single integration is performed. Iti@dar, quadrature formulas 16 and 24
nodes have been tested for the single interval; dasethe split interval case, three
combinations of 5+5+5+5, 7+3+7+3 and 6+6+6+6 nade® tested.

Figure 5.5 and Figure 5.6 show the error on semenexis, P;, P, and time. Even in
this case, the analytical propagation is more ateuwhan the numerical quadrature. Only
the Gauss-Legendre quadrature with 6+6+6+6 nodgsagis a comparable or better error
on the semi-major axis (see Figure 5.5a), althouigiares worse in the other cases.
Interestingly, 7+3+7+3 has a low error on time dgrithe last arc (see Figure 5.6b)
although the other errors are quite high. As alyeadderlined in Section 3.1.6, Gauss-
Legendre with 24 nodes has a slight advantage @wrdlctulation of time. However, both
Gauss-Legendre with 16 nodes and Gauss-Legendne24inodes show a considerable
sensitivity to the positioning of the integratioades when a discontinuous perturbation is
treated within a single interval. In fact, as candeen in Figure 5.5 and Figure 5.6, the
accuracy periodically improves with the length die tintegration arc. In terms of
computational cost (see Figure 5.7) only Gauss-heigewith 16 nodes is cheaper than the
analytical propagation, while the others are moxpeasive. These tests confirm the
advantage of the analytical propagation, even énlorst case of a propagation arc of

length 2t with discontinuities.
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5.3Applications

5.3.1 Spiralling with Solar Radiation Pressure and Eclipgs
This section presents a comparison between theage@rsolution and the rectified
solution for the case of a long term propagatioramfinitial planar elliptical orbit (as in
Table 5.1) under the combined effect of a thruseksration along the tangential direction,

solar radiation pressure (SRP) and Earth oblatgdgs$fect).

Table 5.1: Initial orbit parameters.

a e i Q w 0
20000km 05 6° ©0° 0° 0°

The initial mass of the spacecraft is 1000 kg, imsl assumed that the engine delivers
102 N at a specific impulse of 3000 s. The cross sactirea used to compute the SRP
acceleration is 1200 na value chosen so that the resulting force isiabalf of the thrust
of the engine. At departure, the Sun lies at thenr8ar Solstice point. The propagation
time is set to one and a half years. The SRP dwect considered to be constant along an
orbit, therefore allowing the use of the formulas (3.25) for a constant inertial
acceleration. The secular variation in the SunfEdirection is used to update the direction
of the inertial acceleration. Moreover, eclipseg amtroduced with the methodology
detailed in Section 5.1.1 and the consequent thnistruptions are accounted for. The
averaged propagation is performed with Maft.able23which implements a Runge-Kutta
integration method. The results are compared wdlanfimerical integration wittode113
and to the analytic propagation with rectificatievery orbit if no eclipse occurs or two
times per orbit if an eclipse is present. The Cikhktrequired by the averaged analytic
propagation was 1.2 s while the full numerical gnédion required about 100 s. The
rectification required about 7s, showing the addiil advantage of the analytic averaging
approach. Figure 5.8a shows the long-term, monotocrease of the semi-major axis due
to the tangential thrust. Figure 5.8b shows a clgsef a portion of the curve. The dashed
curve represents the full numerical integratiore, tlotted curve represents the analytical
propagation with rectification and the solid curtree average solution. Note that the
analytical formulas are evaluated only at the ehdazh revolution and at the transition
out of the eclipse. The full numerical integrataisplays a short-term oscillation af due
to J, and SRP, a secular increment over a revolutiore dVeraged solution captures

accurately the secular components while the amalyg8olution with rectification keeps
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track of the periodic components, although in tigere only the value of the semmajor
axis at the eclipse times is plotted.
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Figure 5.8: Spiralling with SRP: a) semi-major axis b) Close-up.

Figure 5.9 shows the long term variation of orbgatentricity due to the combined
effects of tangential thrust and SRP. Tangentialsthalone would produce a monotonic
decrease of the eccentricity, however, SRP addagterm oscillatory component that is
linked to the rotation of the Sun-spacecraft vecBRP also produces a small long term
deviation of the inclination due to the relativegenbetween the Ecliptic plane and the

Equatorial plane, in which the initial orbit liess shown in Figure 5.10.
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Figure 5.9: Spiralling with SRP: eccentricity.
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Figure 5.10: Spiralling with SRP: inclination.

5.3.2 GTO to GEO Orbit Circularisation
The previous section demonstrates the advantagesiofj the proposed analytical
formulae for the long propagation of spirals witlsadntinuous control profiles and
eclipses together with their use in conjunctiorhvatbit averaging. In this section a further
example will demonstrate how to combine the conpalameterisation presented in
Section 5.1 with orbit averaging to circulariseiaitial GTO into a GEO in a specified
transfer time. The initial orbit parameters arénaable 5.2.

Table 5.2: Initial orbit parameters.

a e i Q w 0
245059km 0.725 7° 0° 0° ©O°

The target orbit is a GEO with zenaclination, therefore a plane change of 7° i®als
required. The time specified for the transfer i% 22ays. Engine thrust is 0.35 N, with a
specific impulse of 2000 s. The initial mass of thgacecraft is 2000 kg and mass
consumption is also taken into consideration dutiregtransfer using Eq. (5.1). Four nodes
each are used to model the variation4bf, AL, fp, and f,, leading to a total of 16
optimisation parameters. The tot is minimised while matching the final semi-major
axis, eccentricity and inclination, obtained thrbube analytical propagator, with those of

the target orbit:
min AV

ALy AL, By By
s.t.

E(t) = Esro
E(t) = Eseo

(5.6)
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This is basically a singlshooting, direct collocation method. The MatEdmincon
sqp algorithm is used to solve Problem (5.6). The raation converges in 8 iterations
and 25 seconds (on a Windows 7 platform), and gitenised solution has 4V cost of
1.78 km/s. This result compares well with that giver an identical test problem, by the
solver MIPELEC (see Ferrier and Epeffyywhich returns alV cost of 1.68 km/s in about
14s of computational time on a UNIX-based Sun watksn. To compare the
computational times, one has to consider that MEEELls written in FORTRAN77 and a
MatLab code is usually at least one order of magietslower than an equivalent
FORTRAN code.

@ Semi-major axis
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. . . .
50 100 150 200 250
t [days]

Figure 5.11: Orbit circularisation: semi-major axis.

Figure 5.11, Figure 5.12 and Figure 5.13 show theation of semi-major axis,
eccentricity and inclination respectively. It camr Iseen that all quantities change

monotonically from their initial values to the tatgnes.
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Figure 5.12: Orbit circularisation: eccentricity.
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Inclination
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Figure 5.13: Orbit circularisation: inclination.

Figure 5.14 shows the variation of perigee and ep@nd it is interesting to see that the
perigee rise gradually increases in speed. Theddsis a slight increase in the apogee
radius due to the amplitude of the apogee thrustrogvhich is compensated for in the last
part of the transfer by a perigee arc (see Figuk®)5with thrust in the negative tangential
direction. Note that, these behaviours are condisté&h the results shown in Geffroy and

Epenoy® and Tarzi et a%, even if here a much more simplified model hasihesed.

x 10" Perigee/Apogee radius

I I I I
o 50 100 150 200 250
t [days]

Figure 5.14: Orbit circularisation: perigee and apaee.
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Figure 5.15: Orbit circularisation: thrusting arc | ength.

Figure 5.16 shows the thrust azimutland elevatiof in thet-n-h reference frame for
the perigee and apogee thrusting arcs. It showstlibaapogee arc always has a positive
tangential component (i.e. eneripgreasing), while the opposite is true for theigese one
since it has to compensate for the apogee altimd®ase. The plane change effort is
concentrated at the apocentre with an out-of-pl@maponent around 15°. Note that the
contribution of perigee thrusting to the plane deims only during the final part of the
circularisation.
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Figure 5.16: Orbit circularisation: thrust azimuth and elevation.

5.4De-Orbit Analysis for MEO Satellites with Electric Propulsion
and SRP
International agreemerits recommend that certain classes of man-made objects
Earth orbit should re-enter the atmosphere withity@ars after the end of their operational
life, in order to mitigate the growth of space debiTherefore, it is essential to devise

some form of disposal strategy already in the estdge of the design of a satellite.
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Table 5.3 MEO orbit parameters for GNSS constellatn.

a[km] e i[deg]  my[kg]

29600 0 55.3 1000

This section, presents the parametric analysi®wfesLow Thrust disposal options for
satellites in Medium Earth Orbit (MEO) combining eEfric Propulsion and Solar
Radiation Pressure (SRP). The mass and orbit dieaistiics of a Galiledype (GNSS)
navigation satellite are taken as a reference lfdha analyses in this section (see Table
5.3). The objective is that of lowering the perigéa spacecraft flying on an orbit defined
by the orbital elements in Table 5.3, down to atituale of 200 km at which the
atmospheric drag can rapidly lead to a re-enthefobject into the atmosphere. Note that,
the spacecraft mass in Table 5.3, is assumed tademdhe EP system as well as the
propellant required for the deorbiting. The engsingdecific impulse is assumed to be 3000
s, which is typical for state-of-the-art Electrimpulsion systems.

From a system design point of view, it is intemgtio analyse the electric thruster
performance requirements (in particular the thtegel) as a function of the required de-
orbit time. Moreover, the analysis will explore thect of combining SRP, by means of
an area-to-mass ratié/fm) augmenting device, with EP.

The evolution of the GNSS orbit over time under #ffect of a low-thrust action is
propagated with the orbital averaging techniqueebttmed in Section 5.2. For each
revolution the thrust is applied two times, arodhe pericentre and around the apocentre
respectively. The thrust vector is aligned with thedocity vector when thrusting around
the pericentre and opposite to the velocity veatath thrusting around pericentre.
Moreover, both the apocentre and pericentre thmgsircs have the same semi-amplitude
AlLgp. This thrusting strategy has the combined effdctiecreasing the pericentre and
increasing the orbit eccentricity. In order to catgpthe thrusEgp to achieve the desired
pericentre altitude in a given tim&tyeo, One has to solve the following non-linear

equation inFgp:

e (O

deorb?

Fem AL o) = 200km (5.7)

peri
whereh,ei is the final achieved perigee altitude. This sienphe-dimensional problem was

solved with aisectionmethod.
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5.4.1 De-orbit with Electric Propulsion

In this section, the GNSS aebiting is analysed considering EP propulsionyoiilhe
required thrust is derived for a range of de-onlgitimes between 0.25 and 25 years and a
range of thrusting arc amplitudes between 30° @xi of an orbit) and 180° (i.e. a full
orbit). Figure 5.17 shows the required engine thtasachieve the required pericentre
altitude in a range of times between 0.25 and 2&rg; for different amplitudes of the
apogee/perigee thrusting arcs. One can see thhg thrust is applied continuously for the
full orbit (ochre line), the required thrust leuslaround 0.4 N for the minimum time of
0.25 years and is 0.05 N for 2.5 years. Even infitke case, the required thrust is within
the capabilities of current EP systems. Note atst the required thrust level decreases
exponentially with the deorbit time, and thus shaavéinear behaviour if plotted in a
logarithmic scale (see Figure 5.18). Thrusting dofull orbit is less mass efficient, as
shown in Figure 5.19, since the required propeltaass4im, 85 kg, is some 60% higher
than in the case in which the thrust is applied/dat one sixth of each revolution (blue
line). On the other hand, in this latter case, rémguired thrust is 1.05 N, which is more
than double than the full orbit case.

De-orbit analysis: engine thrust vs. de—orbit time.
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Figure 5.17: De-orbit analysis for deorbit times bveen 0.25 and 2.5 years: required engine
thrust.
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De-orbit analysis: engine thrust vs. de—orbit time.
10 ;

— 30° (1/8" Orbit)
— 60° (1/3" Orbit)
—— 90° (Half Orbit)
——120° (2/3" Orbit)
—— 150° (5/8" Orbit)
180° (Full Orbit)

10

T

Fep NI

10

10 L
10°
At [yrs]

deorb

Figure 5.18: De-orbit analysis for deorbit times bveen 0.25 and 2.5 years: required engine
thrust, logarithmic scale.

De-orbit analysis: propellant mass vs. de-orbit time.
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Figure 5.19: De-orbit analysis for deorbit times bveen 0.25 and 2.5 years: propellant
consumption.
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De-orbit analysis: engine thrust vs. de—orbit time.

0.1 : ‘ : ‘
0.09 _ —30° (1/6" Orbit) ||
' —60° (1/3" Orbit)
0.08 ——90° (Half Orbit) |
.| —120° (2/3" Orbit)
' —— 150° (5/8" Orbit)
0.06f 180° (Full Orbit) |
z
a 0.05r
L
L
0.04f
0.03f
0.02f
0.01
O i i i i
0 5 10 15 20 25

Atdeorb yrs]

Figure 5.20: De-orbit analysis for deorbit times bveen 2.5 and 25 years: required engine
thrust.

De-orbit analysis: engine thrust vs. de—orbit time.
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Figure 5.21: De-orbit analysis for deorbit times bveen 2.5 and 25 years: required engine
thrust, logarithmic scale.
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De-orbit analysis: propellant mass vs. de-orbit time.
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Figure 5.22: De-orbit analysis for deorbit times bveen 2.5 and 25 years: propellant
consumption.

Figure 5.20, Figure 5.21 and Figure 5.22 show a@uals results for deorbit times
between 2.5 and 25 years. The behaviour of thareshjthrust level is very similar to that
of the previous case, although the values are ader f magnitude smaller. Note,
however, that the propellant mass is basically @orisvith respect to the deorbit time, as
shown in Figure 5.19 and Figure 5.22.

5.4.2 De-orbit with EP and SRP

This section considers the case in which the EPtle@®&RP are concurrently used to
deorbit a spacecraft from MEO. The key idea is tbltxploiting SRP, in order to
naturally increase the orbit eccentricity, as sstgg in past works by Colombo, Liicking
at al****1112This can be achieved thanks to the fact that,arthEorbit, SRP produces a
secular oscillation of the eccentricity, with aipdrof about one year. The amplitude of the
oscillations depends mainly on the initial semajor axis and eccentricity and on the area-
to-mass ratio. It is clear that, if the area-to-sn&tio is large enough the pericentre of the
orbit can be brought down to the required valuéniwibne year. However, this normally
requires relatively large reflective surfaces. Ayvt@a reduce the area is to exploit the SRP
only for the six months it induces a positive vaoa of the eccentricity.

If the SRP is used in conjunction with electric guitsion the strategy can be similar to
that adopted in Section 5.4.1 but this time thetrdomion of SRP is also added to the
propagation for the six months it is active. Thbita propagation is performed with the
averaging approach described in Section 5.3.1 diveduthe effect of eclipses as illustrated
in Figure 5.23.
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Figure 5.23: Thrusting pattern with SRP and eclipss.

Figure 5.24, Figure 5.25 and Figure 5.26 show #wgpired thrust and mass for a
spacecraft with a reference afteamass-ratio of 1 Afkg. The results are plotted against
the EP only case analysed in Section 5.4.1.

De-orbit analysis: engine thrust vs. de-orbit time. A/mglllm
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Figure 5.24: De-orbit analysis for deorbit times bveen 2.5 and 25 years: required engine
thrust. Solid line: EP only. Dash line: EP+SRP.
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o De-orbit analysis: engine thrust vs. de—orbit time. A/mgikm
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Figure 5.25: De-orbit analysis for deorbit times bveen 2.5 and 25 years: required engine
thrust, logarithmic scale. Solid line: EP only. Dak line: EP+SRP.
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Figure 5.26: De-orbit analysis for deorbit times bveen 2.5 and 25 years: propellant
consumption. Solid line: EP only. Dashed line: EPHSP.

The results show that the contribution of the SRRststently helps in reducing thrust
and propellant requirements. Moreover, the impa¢h® SRP contribution increases with
the allowed deorbiting time. In this sense, whibe 2.5 years the gain due to SRP is
negligible, for 25 years, the propellant savingchess around 50% and the thrust is also
more than 50% lower. On the other hand the deploynad control of an area
augmentation device (that for a 1000kg spacecraftldv translate into 1000 mof
reflective surface) implies a higher level of coeyity and mass of the mechanisms on
board the spacecraft. Such increase in the contplaxid mass of the spacecraft is not
accounted for in this analysis although one coutpi@ that the saving in propellant mass
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iIs compensated by an increase of the mass of #ee argmentation device and related
mechanisms.

De-orbit analysis: engine thrust vs. area—to—mass ratio
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Figure 5.27: Deorbit analysis for 12 years. EP redtements vs. area to mass ratio: required
engine thrust.

De-orbit analysis: propellant mass vs. area—to—mass ratio
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Figure 5.28: Deorbit analysis for 12 years. EP redtements vs. area to mass ratio: propellant
consumption.

Figure 5.27 and Figure 5.28 report the behaviouthef required engine thrust and
propellant with respect to the aremamass ratio for a deorbit in 12 years. As one s2e,

both thrust and propellant decrease linearly witlteasingdA/m

5.5Conclusions

In this chapter, an averaging technique was praptseontrol the propagation error and
to accurately propagate long spiralling traject®ndth discontinuous thrust profiles and
eclipses. Moreover, by introducing a simplified graeterisation for the thrusting pattern,
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the proposed approach was applied to the optimsigdeof long spirals with terminal
constraints. The test cases examined in this chdyatee confirmed the efficiency and
accuracy of the proposed techniques. The casendgak deorbiting of MEO satellites, in
particular, showed their flexibility in propagatitige motion under the combined effect of
engine thrust and orbital perturbation, and foreayMong interval, up to 25 years. The
good accuracy displayed in the experimental tastistlae fast propagation speed make the
proposed analytical theory particularly suitabletfee global Multi-Objective optimisation
of low-thrust spirals, as will be shown in Chapeand Chapter 7. In particular, the next
chapter will extend the de-orbiting of space defsom a single piece to multiple objects
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Chapter 6.Multi-Objective Design of Debris Removal

Missions

The novel treatment of lowhrust spirals developed in the previous chapsad the
MOO algorithm developed in Chapter 2, will be happlied to the design of a multi-target
optimal disposal sequence for space debris in LarthEOrbit. Two slightly different
variants of the proposed low-thrust control model ased for the two main phases of a
debris removal mission, i.e. the rendezvous with tharget object and the de-orbiting
trajectory. Furthermore, the chapter introduceeehtechnique that builds a surrogate
model of the de-orbiting arcs, which helps consbbrin reducing the computational cost
of evaluating a candidate solution. The chaptesrganised as follows: Section 6.1 will
give an overview of strategies for Debris remowdlijle Section 6.2 will briefly outline the
IBSC concept and in particular will outline how tompute the thrusting acceleration
generated on a given target object; Section 6.Bandlyse an hypothetical mission profile
for the removal mission and most important, Sulieest6.3.1 and 6.3.2 will present in
detail the proposed trajectory models. Sectionv@lithen show how the mission design
problem can be then translated into as a seridduiti-Objective optimisation problems

which are solved with a stochastic optimiser. Témults are then presented and discussed.

6.1Space Debris Removal Strategies

One of the most critical issues related to the @tation of Space around the Earth is
the threat posed by space debris. Since the begmiithe space era in the late 1950s, an
increasing number of man-made, inert objects has bebiting the Earth. Recent statistics
revealed around 15000 trackable objects, for d tdtaome 6000 tons of material. Some
of these objects are simply spent upper stagesuotch vehicles, some others are satellites
which are no longer active due to failures or teithg reached their end of life. Others,
however, are the results of past collisions. Basy to imagine that even a single collision
between two objects is likely to generate tensnwdilier objects as a result. The outcome of
a collision in an already crowded environment cogk&herate a cascade of collisions
generating an exponentially increasing volume aicepdebris. In fact, the debris produced
by a collision is itself likely to collide with o#r objects, thereby producing other debris
which will generate further collisions, and so ®his chain reaction, known as tKessler

Syndromé&™®, occurs once the rate of generation of debris tueollisions or simple

137



humandriven additions, exceeds the natural debris rah@te. According to Kessler, this
reaction is likely to be ignited once the objechsley in a certain orbital band reaches a
critical point; once started, it will probably resrdmost spacecraft in that orbital band
useless within a matter of months or years.

Recent guidelines issued by international spacgulaory institutions such as the
United Nations Committee for the Peaceful Uses ofe® Space (COPUOSYand the

Inter-Agency Space Debris Coordination CommitteeD(T)**

prescribe some actions to
be followed by national or private agencies putagellites into orbit in order to mitigate
debris growth. For example, it is demanded thatyewew mission in Low Earth Orbit
(LEO) must be planned such that the satellitefiteeist re-enter in the Earth’s atmosphere
within 25 years after the end of the mission. Altgively, for higher orbits like
Geostationary orbits, the requirement is for thacspgraft to be placed on a higher
graveyard orbit. Measures like these, even if strictly apgli(and at the moment
compliance with them is on a voluntary basis) ardy dikely to slow down the
accumulation of space debris around the Earth. €fbi, active removal actions will
probably be needed in the near future to elimiaateast the most dangerous objects.
There have been various proposals on how to remeveobjects from space. They can
be generally classified in two major groups: cotiéss and with direct physical contact. In
the latter category one can find methods baseame $orm of docking with or capturing
the object. Once the removing spacecraft and tbeepof debris are attached, the latter is
dragged into a re-entry trajectory or to a graveyabit. Technical problems related to the
attitude state of motion of the piece of debris #mel fragility of appendices and cover
material (including paint) make this removal sadati complicated. A potentially
interesting solution is represented by Project REBGE developed by EADS/Astrium
with the support of ESA. Among contactless solwti@mn can find what is commonly
referred to as thepace broort’. It entails irradiating the target object with ighpower
laser which will induce sublimation of the surfaceterial; the ejecta plume will then
generate a low thrusting acceleration which widlvdly degrade the debris’ orbit until it
reaches an altitude where atmospheric drag wilklacate its re-entry. Such a technique
has the advantage that no physical contact is redjuon the other hand current proposals
envisage the use of lasers installed on Earth aadnimg through the atmosphere. The
beam collimation and thrust time is therefore lgditand this solution is effective for
small-sized objects only. Recent proposals haveodstrated that the use of in-space
lasers systems might be more interesting evennove larger objects®. Other proposals

involve for example the use of electrodynamic tetHd inflatable balloon€®, which are
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meant to be lightweight and efficient but requitewever, the physical attachment of the
device to the target object and are thereforeftitdit application to existing debris.

A recent idea simultaneously proposed by Bombdreelal!*, Bonnal et af??and
JAXA' suggested the use of a collimated beam of ionsrgeed by a spacecraft flying in
formation with the piece of debris. In the follogimf the chapter, this concept will be
called lon Beaming Spacecraft (IBSC). The effecthaf ion beam is that of producing a
thrusting force, equal in magnitude but oppositairection, on both the IBSC and the
piece of debris. This force will induce a thrustimgreleration which can be controlled in
order to modify the orbit of the piece of debris.sAcond ion engine is then fired in a
direction opposite to the first one in order tokéiee IBSC at a constant distance from the
piece of debris. Among the advantages of this qunisethe fact that it employs already
existing and proven technologies; it does not megany contact with the target, and the
fact that a single spacecraft can be used to fatchdeorbit multiple pieces of debris*'th
one can find a similar concept that uses concetrsolar light instead of ions to generate
a thrust and modify the orbit of debris.

Assuming a scenario in which a single IBSC needetorbit multiple pieces of debris,
one would need to solve an interesting missiongiegioblem: the optimisation of the de-
orbit sequence and trajectories for multiple targbfects in minimum time and with
minimum propellant. In the hypothetical missionrsao which is analysed in this work, it
is assumed that a number of pieces of debris haee shortlisted as priority targets due to
the threat they pose to satellites operating in LEGr example Johnson et'af.propose
some criteria to choose the object whose removab&imost effective to mitigate the risk
of collisions. They underline that an effective waral strategy must be targeted first to
large objects in crowded orbits up to 1500 km. Trausemoval mission by means of an
IBSC is planned to be launched from the Earthtd#k is that of removing five objects
lying on different low Earth orbits. The designsofch a mission is a complex optimisation
problem, because it requires the computation oftiptal low-thrust, many-revolution
transfers. Therefore, this case study proposespanoach to the fast estimation and
optimisation of the cost and time duration of te&ch and de-orbit sequences, adopting a
MOO approach.

6.2lon Beaming System
As shown by Bombardelli et &, the concept behind the lon Beaming Spacecraft is
relatively simple and envisions employing a spaaigorovided with two sets of lon

engines mounted along the same axis but in oppdsietions (see Figure 6.1). The jet
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from one of the sets will be directed towards thee@ of debris and will exert a thrusting
force Fp1 on it. Due to Newton'’s third law, an opposite ®m@f same magnitude will also
act on the spacecraft itself, but this componeiithvei balanced by the thruBt, provided

by the other set of lon engines.

Ion Beaming Spacecraft

Space debris

Ion beam
Ion beam

d

Figure 6.1 lon Beaming Spacecraft.

Since it is necessary to keep the Shepherd spdicatra constant distance from the
debris, the thrusfp, shall be such that the second derivative of thiewdce d between the
two spacecratft is null:

d= FoomFa _Fa_ 0 (6.1)
r.nIBSC n?i
Note that in Eq. (6.1) the acceleration terms dug¢hé gravity of the central body have
been neglected since it is assumed that the dabdishe Shepherd are in close proximity
and arranged in a leadflower configuration. A more accurate and detdiodelling of
the proximal motion dynamics of these two bodielsegond the scope of this study. Thus,
in the following sections, the IBSC-debris combioatwill be treated as a point mass, in

order to apply two-body dynamics. By rearrangingtérms in Eq. (6.1) one obtains:

Foo = Fpl(l-l- mrerSCJ (6.2)

Under the assumption that the total propulsive pasiehe IBSCPyy is constant and
that the total propulsive thrust is proportionalttb;, one can write:

Fpl + sz = F U Py, (6.3)
thus:
F. = Fm£2+MJ (6.4)
m
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Therefore, the maximum acceleration acting on 880G-debris combination can be

computed as a function of the total available thFRyg
L
gIBSC—debr_ n.h - 2”& + n.I]BSC (65)
It is assumed here to have a 1000 kg IBSC withta &wvailable thrust of 0.5 N. Such a
high thrust would correspond to a substantial pcavet propulsion system mass, however
this is deemed realistic if one considers that plagload of the IBSC is in fact its
propulsion and power systems. Hence, the propulsiod power systems might be
oversized compared to other applications in whaichengines are used for propulsion only.
Note that the validity of the methodology proposedhis paper would not be affected
even if lower thrust levels were considered. Thushis case, considering for example an
800 kg debris, the magnitude of the acceleratioauld be 1.923-10 km/<. If one
considers instead the spacecraft alone, the aatieleiachievable would be slightly higher,
5.10° km/<. Given this order of magnitude, the thrust acegien can be considered as a
perturbative force compared to the Earth’s grawaitetl force and therefore the analytical

approach to the propagation of the LT motion caajied.

6.3Mission Profile

The objective of this study is that of optimisitng tperformance and cost of a debris de-
orbiting mission performed by a single spacecrast.mentioned in the introduction, it is
assumed that there are five pieces of debris fdréifit masses and lying in circular orbits
with different radii and orientations. It is assuirtaat, the IBSC departs from a low-Earth
parking orbit, rendezvous with the first objectnsfer it to an elliptical re-entry orbit,
rendezvous with the second object, transfers & second elliptical re-entry orbit, and so
on and so forth until all five pieces of debris e#emoved. One important issue is defining
in which order the pieces of debris need to be rddeml. In the following all possible
sequences are generated a priori and optimisetyoogre.

Each fetch and de-orbit operation is split in twages:

*A de-orbit phase, in which the perigee of the odfithe piece of debris is lowered
such that the orbit will decay naturally in a relaly short time. In this study it is assumed
that this condition is met if the perigee altituofethe debris’ orbit is equal or lower than
300 km.

*A transfer phase, in which the IBSC rendezvousd#s thie next piece of debris (which
lies on a circular orbit), after having abandorteel ¢urrent piece of debris on an orbit with
a 300 km perigee altitude.
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Given the magnitude of the available thrust acegien, both phases require a spiral
orbit transfer. If a direct transcription approastused to optimise each spiral the number
of parameters that needs to be defined is very la@gting to high computational times.
The latter fact would make the solution of a Mu@ibjective optimisation of all possible
de-orbiting sequences computationally intractableus, in this study a simplified, highly

efficient, trajectory model is proposed for eacle ofithe two phases.

6.3.1 De-orbiting Trajectory Model

The objective of the de-orbiting phase is thatafdring an initial circular orbit such
that its perigee is equal or below 300 km, whickidelly translates into a perigee lowering
manoeuvre. Therefore, it is appropriate to assume it general, as soon as the initial
circular orbit becomes slightly eccentric, one ketpusting around the apogee in order to
lower the perigee. The thrust level will also betkat its maximum in order to minimize
gravity losses. Moreover, since the de-orbit coadiis independent of the final orbit’s
orientation, one can reasonably assume that thgeeetowering will be performed in-
plane. In this sense, the only Keplerian parametéish need to be altered are the semi-
major axis and eccentricity. With reference to Gawuariational equations as in Eq. (3.2),
in the case of small eccentricity, a good subogtithaust direction can be obtained by
thrusting around apogee wigh as the only non-zero component of the thrust acagbn.
Under these assumptions, one obtains a thrustittgrpavery similar to the one in Section
5.1, albeit here there is the apogee thrusting enly the direction is aligned with the

transverse rather than the tangential directiom &sgure 6.2.

Orbital

Notion

Apogee
Thrusting

arc

Coasting
arc

Figure 6.2 Thrusting arc around apogee with thrustdirected along transverse direction

The motion around the apogee thrusting arc carefiner be propagated with the

formulae in Eq. (3.19). As explained above, theyonbn-zero component of the
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acceleration will bey and since the aim is obtaining a decrease of ithi¢ energy it will
also be in the negative direction. Therefore theekration azimuth will be=-z/2 and the
elevation=0 (since, as already mentioned, the motion will kéhiw the initial orbit
plane). Note also that, since there is noajlane acceleration componel; andQ;;
are identically zero in this case. Thus, the sefoofmulae for propagating an apogee

thrusting arc can be summarised as:

al(ZALa,i—ZT,Oj
a a
. B T | T
E'=|R =R +e le(ZALd,E,OJ =E +e'f(%l-d3,0} 6.6)
P Lt =L, +AL, R L =L,-AL, T
(20

wherelL, is the apocentre longitudk; andL" are the longitudes at the start and end of
thrusting respectivelyAL, is the semi-amplitude of the apogee thrusting lr@a similar

manner, the thrusting time is computed from Edl{Bas:
e = To (Lo = AL, 2AL ) + £t1(2ALa,—IET ,oj (6.7)

Since the thrust magnitude and direction are fixleel,only free control parameter is the
semi-amplitudeAL, for each orbit. In order to keep the number ofiglen variables to a
minimum, the semi-amplitude for each orbit is comepufrom a piece-wise linear
polynomial interpolating a limited number &fi,; over a number of orbits. The nodes
AL, are equally distributed between orbit 1 and aitramy number of orbits (in this paper
1200 was found to be adequate). In this paper thmeber of interpolating nodes was
limited to 2:ALa; andALgs.

In order to evaluate the time an¥ needed to de-orbit a piece of debris from itdahit
orbit with semi-major axiggenra given a set of decision (or control) parametirg; and
AL, the following procedure was implemented:

1. Compute the set of initial Equinoctial parameterand E, =[a,n0 Ro P

whereP,g andP,o will be null due to the fact that the initial orls circular.
2. Initialise the number of orbits, the tot®Y/ and time of flight to zero:

Norbit :O
AV =0
ToF=0
3. SetE™ =g, and L, =L,.
4. |nitialise the mass of the IBSC:
mIBSC =m

IBS@
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5. While Ngit is smaller thamNorpitsmax

a.

b.

J-

Nyt = Nope 1

orbit orbit

Interpolate the amplitude of the thrusting archia turrent orbit, i.eAL,
and computeL” = L, -AL, andL" = L, +AL,.

Compute the acceleratioregsc.gerr acting on the IBS&lebris
combination from Eq. (6.5).

Compute the time of flighttoastSpent coasting fromcpastto L.

Compute the Equinoctial parameters after the tmgsircE™ as in Eq.
(6.6).

Compute the current perigee radigsand if this is lower than the
thresholdr. - 30okm proceed to step 6, otherwise proceed to step g.

Compute the thrusting timg,s; from Eq. (6.7) and update the toteV/
cost:

AV = AV + Egoc gentinus (6.8)
Update the total time of flight:
TOF =ToF+ g+ s (6.9)
Update the IBSC mass:
Mesc = ( Mgsct2 rndeb) exr{_%%;btmmst] ~ 2My (6.10)
spd0

SetE" =E" andL___=L"

coast

6. Back-track the value of the longitude for which r =7 and compute the

related andinnust from Eq. (6.7) and updafeoF and AV accordingly. Compute
the Equinoctial parameteks atL; from Eqg. (6.6).

At this point one gets thaV, the time of flightToF and the semi-major axis and

eccentricity of the final orbit (which are easilgroputed fromEy). It is important to note

that, given the simplifications introduced, oncee aets the initial mass and orbit of the

piece of debris, and the characteristics of theQB®opulsion system, i.& andlsp, the

de-orbit depends exclusively on the mass of theClB&ssco at the beginning of the de-

orbit phase and the interpolating values Adr,, i.e. ALy; and ALy Therefore, it was

decided to pre-compute the correspondit and ToF for a given set of these three

parameters and for each piece of debris (i.e. &h @ye,r and agenrg). Table 6.1 reports

upper and lower bounds fangsco, ALax and ALy and the number of samples taken,

equally distributed.

Table 6.1 Bounds and number of samples for the detmt parameters

Missco ALy ALy
Lower bound Mary+100=350kg 0 0
Upper bound Mauncti=1000kg o o
Samples 8 50 50
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Given the limited number of decision variables, éach piece of debris, one has 20000
de-orbit instances to propagate. Since each insteetpéres typically 1-16s of CPU time,
with a code implemented in MatL&mand running on a 3.16 GHz, 4 GB desktop PC
running Windows 7, the whole computation can be completed in roudivy minutes.
The set of de-orbidV andToF is then used to build a response surface, or gateanodel,
of the de-orbiting process. Figure 6.3a and Figudd show examples of two-dimensional
surface, respectively faxV andToF, with respect to a fixethgscoof 300 kg. One can see
that the two quantities show opposite trends,Alebeing high when th&oF is low and
vice versa. Figure 6.4a and Figure 6.4b show thal §emi-major axis and eccentricity
respectively. Note that the minimuhoF transfer corresponds to a quasi-circular spirgllin
trajectory in which the IBSC is thrusting contingbu On the other hand, the minimum
AV transfer corresponds also to the one with maxirfinat eccentricity.

Time of flight for De-orbit AV cost for De-orbit

ToF [days]
N
o

45

2

! 1
ALaf [rad] 00 ALal [rad]

1
ALal [rad]
a)

Figure 6.3 a)AV and b) ToF surfaces with respect to\AL,; and AL 5 for m;gsco=300Kkg,
Qgepro=7128km andmgye,,=1200kgm; gsco=300Kg, agenrc=7128km andmye,,=120kg
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Final semi—-major axis after De—orbit Final eccentricity after De—orbit

3 3 AL, [rad] 3 3 AL, [rad]
a) AL_ [rad] a b) AL_ [rad]

Figure 6.4 a) final semi-major axis and b) eccenteity after de-orbit with respect to AL, and
AL 5 for mypsco=300Kg, 8genro=7128km andmge,,=120kg

Now it is desirable that the surrogate model retuh®AV cost as a function ofigsco
Myebr adebro @Nd TOF. From the available data relating thA®% and ToF to the decision
variablesAL,; and AL, one can derive the functional relationship betwA¥nand ToF.
Given a tripletmssca Myebn adebro €achToOF value defines a level curve on thé,; and
ALy plane (see Figure 6.3a), which can be mappedanget ofAV values (see Figure
6.3b). Within this set, one can take the elemetit wiinimumAV. Thus, for each time of
flight, between a minimum and a maximum, one cativedahe corresponding minimum
AV cost. A similar procedure is followed to find thenctional relationship between the
final semimajor axis and thdoF. Note that there is no need to do the same for the

eccentricity given the fact that the final perigedius is fixed a¥, and therefore the final
e can be computed from the firalIn this way one can build the two surrogate medel

AV = fAV.interp(TOF’ mBSCD’ n‘}iebr' adetﬂ)

_ (6.11)
af - faf,interp(TOF’ Ifr]BS(I)' rniebr’ atiem)
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Surrogate model for De—ortlV  Surrogate model for semi—-major axis after De-
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Figure 6.5 3D Plot of surrogate models forggeo=7128km andmys,,=120kg: a)AV; b) &

Figure 6.5a and Figure 6.5b show examples edlitnensional plotsigsscocTOF-AV
andmpsco TOF-& respectively) created by evaluating the surrogatedels keepin@qebro
and myepr fixed. In Figure 6.5a one can see that there ifarge plateau region
corresponding to large time of flights and a snmatkgion close to the minimuroF
where the de-orbit cost increases very steeplytla@dinal semi-major axis in Figure 6.5b
similarly decreases. The complete procedure forctieation of the interpolated de-orbit
cost models requires few minutes of CPU time antkaompleted allows for a very fast
estimation of the de-orbit cost. The surrogated efoavill be extremely useful in the
Multi-Objective optimisation of debris removal seqeges as it will be shown in the

following sections.

6.3.2 Orbit Transfer Model
According to the scenario presented in Section &t8y having left the debris on a re-
entry orbit, the IBSC will have to transfer to tbebit of the next debris and rendezvous
with it. The design of such a transfer arc wouldnmally require the solution of a time-
fixed 2PBVP, which would be computationally verypersive given the high number of
control parameters and constraints involved. A sdcgaimplified model was then created
to quickly estimate the cost of a low-thrust muétirolution orbit transfer with boundary
constraints. The approach and assumptions presemtinis section are similar to those
already introduced for the de-orbit model.
First, given the limited acceleration provided loyvlthrust propulsion systems, one
should consider that the orbit transfer will requa high number of multiple revolutions

around the Earth, typical in the range of hundredfew thousands. In this sense, it is
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possible to argue that achieving the proper phasingansfer from the initial to final orbit
would not be a major issue. Even a small variatbm and@d per revolution would be
sufficient to attain the required orientation tondezvous with the piece of debris.
Moreover, it is important to bear in mind thatpirder to deorbit the previous debris in the
sequence, the IBSC, started from a circular orbictvwas subsequently modified into an

elliptical one with perigee,. Thus it would be also possible to convenientljusidthe

start point of the de-orbit procedure from the wiac orbit in order to obtain the proper
phasing once this is completed. For all these regsbis assumed that in this particular
case, the phasing problem will have a negligibfeatfon theAV and time required to
rendezvous with the next piece of debris in thaisege. Therefore, in the following it is
assumed that it is not necessary to match theaarinvandd computed with the simplified
model with those of the target object. Matching tamget inclinationi and RAAN Q,
instead, cannot be ignored without introducing asterable error in th&V cost. In order
to match the inclination and RAAN difference, oneed to take into account only the
geometric angle between planes of the initial amal rbits, which is given by:

Ai =arccos{— (¢0] CC(ST—i f)+ sip sﬁw—i f) c(cﬂf —Qo)) (6.12)

Thus in order to account faxi, the inclination of the initial orbit is fictitialy set to
zero, while the final one is set at. The matching of the RAAN is assured by performing
the circularisation properly. The assumption i tine deorbiting of one piece of debris
starts at a true anomaly such that the resultitigtiedl orbit has the line of apses
perpendicular with the line of the nodes of théofeing piece of debris. Since the orbits of
the debris are assumed to be circular, it is alvp@gsible to start the deorbiting at the right
true anomaly with minimum delay. This hypothesidl Wwe discussed in more detail with
some numerical examples in Section 6.4.

With these assumptions, the main issue in desigtiiagnulti-revolution transfer will
be that of achieving the required change in thegeapaand perigee radiuses in order to
match those of the final orbit, and to achievertwired rotation of the orbit plane.

The control pattern adopted (shown in Figure 6s6herefore very similar to the one
seen in Section 6.3.1, but with the addition okagee thrusting arc, in order to affect the
apogee altitude. The in-plane thrust componeng@napurely transverse but this time can

have either positive or negative sigwr € +77/2 ) depending whether the perigee (or

apogee) needs to be raised or lowered. Since & plange is required, the out-of-plane
component of the thrust acceleration can be non-Zdranks to this the control parameters

can be reduced to the semi-amplitude of the apageeperigee thrusting arcal, and

148



ALy, the sign of thé) component of the thrust acceleration (i.e. the sija,,a = + 77/2)

and the oubf-plane component in the same ag:;sandf,. Define ALwwst @s half the total
thrusting arc length and as the ratio ofALryst Which is devoted to apogee thrusting. In
order to have a parameterisation which accountsfatshe sign oty anday, the following
one is proposed:

Q. = ”/2 ALthrust 2 O
* —7'[/2 AI‘thrust < O

g = a, 0<sr<1
*|-a, 1<r<2 (6.13)

ALa - rt |AL(hrust| O < r.t < 1
(2 - r.t)|AI—[hrust| 1< r.t < 2
ALp = |ALthrust| - ALa

with

ALthrustD[_]T 77]

r0[o0 2]
To define the actual values At st andr; in each revolution, an interpolating strategy

with respect to time as described in Section 5.ladepted. Again the number of
interpolating nodes can be chosen arbitrarily anseit to 2 in this cas@L, ALy, rua, r.

For fa andpy, it is chosen to have a constant value along tiieeetransfer. The thrusting
pattern along each revolution is shown in Figufe 6.
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Figure 6.6 Thrusting arcs around apogee and perigee
Given a set of control parametgidl, AL, r, f, B, [,]a multi-revolution

transfer with specified durationoF , departing from an orbit defined g, & 0] and
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targeted to an orbit defined by, ¢ Ai]T, is propagated according to the following

procedure:

1. Compute the set of initial Equinoctial parameterd, and
Eo:[a0 Bo Po Qo QZJT. Qo and Qo will be zero since the initial

inclination is arbitrarily set to zero.
2. Compute the set of target Equinoctial parameters

E,=[a R B Q Qf]T. Note thatR; and B; will be zero since in

this case the target orbit is a circular one.
3. Initialise the total\V and Time of flight to zero:

AV =0
ToF=0

4. SetkE, =E; andL =L,.

coasta —

5. Initialise the mass of the IBSC:

mIBSC - mIBS(D

6. While ToF < ToF:
a. Compute the interpolated values ik, andr.. Hence calculates, ap,
AL, andAL, from Eq. (6.13).
b. Compute:

L =L, -AL, L'=L_+AL,

- _ . _ (6.14)
L, =L,-AL, L =L, +AL,
c. Compute the current acceleration acting on theexpatt:
F
£ = — (6.15)
IBSC m|Bsc

d. Compute the time of flightcastp Spent coasting before perigee from
LcoastptO Lp.

e. Compute the Equinoctial parameters after the tmggterigee ar€,”
with an expression analogous to Eq. (6.6).

f. Compute the thrusting time at perigé@mus,, from Eq. (6.7). If

(TOF-ToF) < f,,s,, Proceed to step g. Otherwise, break the iterative

sequence and go to step 7.
g. UpdateAV andToF:

AV = AV + ngSCtthrust, p (616)
ToF =ToF+ anst, p+ tthrust r (617)
h. Update the IBSC mass:
&
n’]IBSC = mIBSCeXp - |BSCt[thSLp (618)
Ispgo

. - + —_ +

i. SetE, =E_ andLl.q.=L, .

j.  Compute the current acceleration on the spacecratft:
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= P (6.19)

ngsc - m
IBSC

k. Compute the time of flighte.asta Spent coasting before apogee from
Lcoast,ato La--

|. Compute the Equinoctial parameters after the tmystpogee arE,” as
in Eq. (6.6).

m. Compute the thrusting time at apogégusia from Eqg. (6.7). If
(ToF - ToF) < {,.,, Proceed to step n. Otherwise, break the iterative

sequence and go to step 7.
n. UpdateAV andToF:

AV = AV + gIBSCtthrust,a (620)
ToF =ToF+ Loasta+ 1:thrust a (621)
0. Update the IBSC mass:
&
Mgsc = mlBsceXp[_ lBISCtthrUSLa] (6.22)
spgo

p. SetE,; =E. and Ll ,=L,.
7. Backtrack the point at whichroF = ToF and compute the corresponding
equinoctial parametersE, =[a, R, B, Q Qf]T and update AV

accordingly.
8. Compute the mismatch between the actual final ¢mmdi and the target orbit:

& _ar
Cey= e~ 8 =, P2+ B’- B*+ B’ (6.23)
i =1, :Z(arctan/Qlf2+sz2 = arctad@1f2+c_ng2)

Summarizing, the 2PBVP has been reduced to an iatiion problem in the form:
min AV
stC,=0 (6.24)
withx =[ AL, ALy 1.1y 8,3, ]

Problem (6.24) can be solved with a gradient-basptimisation algorithm like

MatLab®™s fmincon Note that, the time of flightoF is specified a priori and therefore it
might occur that this duration is too short as btao the change in the orbital parameters
specified by the boundary constraints. In this cdBe problem is infeasible and the
optimisation is terminated after a maximum 50 € tonstraints are not satisfied.

In the following, an example of transfer from afipgical orbit with 300 km perigee
altitude and eccentricity 0.031 (correspondinghi®final orbit of a de-orbiting strategy) to

a circular orbit of 1100 km altitude (corresponditogthe orbit of the next debris in an

151



hypothetical removal sequence). Parameters ofweorbits are reported in Table 6.2.
Note that the total plane rotatia in this case is 10 degrees. The specified timisigift

is 70 days.
Table 6.2 Parameters of departure and arrival orbis
a [km] e i [deg]
Departure 6892.24 0.031 0
Arrival 7478.16 0 10
Semi—-major axis Eccentricity
760 , , , 0.03 ,
7400
_ 0.02
g 7200 1 o
@®©
0.01
7000
680 0
0 20 40 60 80 0 20 40 60 80
a) t [days] b) t [days]
Perigee/Apogee radius
760 , : ,
7400
g 7200
L
= 7000
6800
660

20 40 60 80
c) t [days]

Figure 6.7 a) variation of semi-major axis, b) ecawricity, c) perigee and apogee radiuses for
multi-revolution orbital transfer (coplanar case)

First it is considered the case of a coplanar feanse. Ai=0 will be computed. The
optimisation problem was solved witminconin 6 iterations and less than 10 seconds,
returning a minimunm\V cost of 0.301 km/s, with 1001 revolutions. Figét@&ac report
respectively the variation of semi-major axis, eddeity, apogee and perigee radii. One
can see thah is monotonically increasing while on the other hand is monotonically
decreasing to zero. In order to reach the desiredlar orbit, the perigee had to be raised
by almost 700 km while the apogee had to be raigesome 400 km. This higher effort
needed to raise the perigee explains the largelitahg of apogee thrusting ared ,
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compared to perigee onas, (as shown in Figure 6.8a). The azimuth thrustesw, aa

(see Figure 6.8b) are both positive since bothpttggee and apogee are raisgdandfa

are obviously zero because the transfer is coplaméithusAi is constantly nil.
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Figure 6.8 Control parameters for multi-revolution orbital transfer (coplanar case): a) thrust
arc length; b) azimuth and elevation

The same problem, but this time with the 10° plahange specified in Table 6.2
returns aAV of 1.480 km/s with 1004 revolutions. The high cokbut plane manoeuvres
is well exemplified by the fact that thev required is more than four times larger than a

coplanar transfer. As can be seen in Figure 6.gayé& 6.9b, Figure 6.9d, semmiajor axis,

eccentricity, apogee and perigee radii show a amhiehaviour to the coplanar case while
this time also the inclination (as in Figure 6.8@reases monotonically to 10 degrees. By
analysing the control parameters in Figure 6.1@aaam see that this time the amplitude of
the perigee arcs in general larger than the apoges, even if, like in the coplanar case,
the increase in perigee is much larger than th#tefpogee. This fact is explained by the
fact that the out-of-plane component at periggéds close to 90° (see Figure 6.10b),
meaning that the thrusting action at perigee istinatevoted to the plane change. In

contrastf, is smaller in magnitude, around -70° (the oppasde is due to the fact that it

is advantageous to invert the out-of-plane compbtweice per revolution), therefore with

a higher in plane component devoted to perige@is
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Figure 6.9 a) variation of semi-major axis, b) ecagricity, c) plane change, d) perigee and
apogee radiuses for multi-revolution orbital transkr (10° plane change)
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Figure 6.10 Control parameters for multi-revolution orbital transfer (10° plane change): a)
thrust arc length; b) azimuth and elevation
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6.4Multi-Objective Optimisation

The aim is now that of optimising the timing andjsence of a removal mission by
means of a single IBSC. It is assumed that theespaft departs from a LEO with a 250
km semimajor axis altitude and coplanar with respecthe first piece of debris in the
sequence. The five target objects have the orpaeameters and mass reported in Table
6.3. The mass and orbital parameters have beererctarbitrarily while adhering to the
observations in Bombardelli and Pel¥ézand Liou and Johnsdit that the most
dangerous debris are located in LEO and generadiglwa few hundred kilos. Different
values fori andQ are also taken in order to consider the fact tiwtpieces of debris, in
principle, will be orbiting on different planes. dathatTpo min has been computed with the
procedure detailed in Section 6.3.1 and therefeq@edds on the characteristics of the
IBSC. Moreover, it is also important to remark thisgse are onlpest casdigures values
which were computed with minimumhypothetical wet mass of 350 kg (much lower than
the actual launch mass of 1000 kg). The surrogatdeis in Egs. (6.11) can in general

consider wet masses between 350 kg and 1000 lstpoan for example in Figure 6.5a-b.

Table 6.3 Mass, initial orbit parameters and minimum de-orbit time of the debris

Debris nr.  masgkg] a[km] e i[deg] @ [deq] Tbo,min [daYS]

1 500 6828.16 O 1 65 2.67
2 120 7128.16 O 2 150 3.36
3 300 6978.16 O -2 200 3.68
4 400 7478.16 O -1 90 11.12
5 800 717816 O 0 45 12.25

Table 6.4 reports the relative inclination changdwieen the orbit planes of the 5

different objects, as computed from Eq. (6.12).

Table 6.4 Relative inclination changeAli| [deg] between orbit planes of the debris

Debris nr. 2 3 4 5
1 2.16 1.47 1.95 1
2 - 3.63 2.65 2
3 - - 2.52 2
4 - - - 1

The de-orbit sequence is defined by the order dawgrto which the five pieces of
debris are removed, the time needed to rendezvdhsTyy, and the time to de-orbipo

each of them. The order is defined by the integetor:

ord =[i, i, i, i, i (6.25)
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which collects the indexes of the objects in theirmle debris removal sequence. Since
there are five objects, there are 120 possiblertging sequences. The other parameters

are contained in the vecter
X:[TRv,g TDo,'h TRV,E TDo,i2 TRv,g Toqg -lr?v,g -IE)QA' TRV,Si TDQSi] (6-26)

The performance of each sequence is assessed iagcturdts totalAVyo cost and time

of flight ToFro. The latter is computed simply as:
ToR,, =) X (6.27)

The totalAV cost is calculated sequentially by adding up thstof each of the ten
phases (rendezvous and de-orbit for each debnigaiticular, the cost of the rendezvous
AVRyis computed by solving the optimisation problen24§ and the de-orbit coaVpo is
calculated from the surrogated model in Eq. (6.Thp final conditions after de-orbit are
also computed from Eq. (6.11) since they will be departure conditions for the following
rendezvous step. The propellant mass consumptialsastaken into account and updated
throughout the entire sequence computation. In rotde have only a real valued
optimisation problem, it is chosen here to treaheaf the 120 sequences as a bi-objective
optimisation problem witlord fixed and ten design variables definedxinTherefore,

optimisation problem becomes:
min [TOR (X) AV, (X)] (6.28)

The domairD is defined by the upper and lower boundaries @effim Table 6.5. Note
that the lower boundaries for de-orbit time are astording to the sequence and the

minimum times reported in Table 6.3.

Table 6.5 Optimisation boundaries

Parameter Trvi1 Tooir Trviz Toojz Trviz Toois Trvia Toois  Trvis  Too,s

Lower Bound 5 Toominii 9 Toominiz S Toominiz S Toominia S  Toominis

Upper Bound 100 50 100 50 100 50 100 50 100 50

Each bi-objective optimisation problem is solvedhMMACS2. MACS2 was run for
40000 function evaluations with 30 agents. Eacthefl20 optimisation instances required
roughly 6 days of computational time to completbe Toutputs are represented by the
Pareto optimal solutions w.rAVy,: and ToFr. Figure 6.11 to Figure 6.15 collect the
Pareto fronts according to the number of the bigect in the sequence, i.e. the first index
in the vectorord, as introduced in Eq. (6.25). In each figure, eaglour represents the
Pareto front corresponding to one of the 24 detmmsoval sequences starting with the
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same object. For example, Figure 6.11 includesRareto fronts of sequences 12345,
13245, 14235, 15234, 12435 etc. .
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Figure 6.11 Pareto fronts for sequences starting Wi debris nr.1
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Figure 6.12 Pareto fronts for sequences starting i debris nr.2

From a visual inspection of the fronts it is polsito see that sequences starting from
debris nr. 1 seem to present the et~ ToFr,: combination, since for most of them the
AV cost is comprised between 2 and 2.5 km/s. Theesponding times of flight are
comprised roughly between 100 and 500 days. Thaesegs starting with debris nr. 3 and
nr. 2 also have a goatV while those starting with nr. 4 and nr. 5 app@abé¢ worst. By
combining all the partial Pareto fronts one obtaihe globally optimal solutions, as

reported in Figure 6.16.
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Performance parameters for sequences starting with debris ni
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Figure 6.13 Pareto fronts for sequences starting Wi debris nr. 3
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Figure 6.14 Pareto fronts for sequences starting i debris nr. 4

One can see that the global Pareto front is congpbgeandividual solutions belonging
exclusively from sequence 13452, which is therefgiabally dominant. In order to rank
the degree of optimality of each sequence, itippsed to use an approach inspired by the
performance metrics for optimisation algorithmspgwsed in Chapter 2. Define P&s the
set of the points of the globally optimal Paretonfr while Pl is the set of points
belonging to the Pareto front corresponding to saqgeord. Define then the ranking

parameter of sequenoed as:
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Conyord) =

(6.29)

f.OPF,,0i=1,...,N,,
Convis given by averaging the distance of each pdiftkg,q from the closest point of
PFy. The closesPFyq is toPFy and the loweConvwill be. Table 6.6 reports the ranking

of the sequences accordingGonv.
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Figure 6.15 Pareto fronts for sequences starting i debris nr. 5
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Figure 6.16 Global Pareto front
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Table 6.6 Ranking of the de-orbit sequences

Rank ord Conyord) | Rank ord Convyord) | Rank ord  Conyord)
1 13452 0 41 42513 21.18 81 5214331.43
2 13542 5.14 42 15234 21.26 82 3214531.62
3 13524 6.61 43 32451 21.46 83 5412331.72
4 12453 6.78 44 52134 21.46 84 5413231.83
5 12543 7.25 45 34521 21.52 85 4213532.43
6 31542 9.41 46 35142 21.79 86 5231432.70
7 31452 9.85 47 35214 21.99 87 4253133.05
8 34512 11.59 48 34251 22.02 88 2143533.96
9 24513 12.15 49 52431 22.04 89 5423134.05
10 15243 12.16 50 45132 22.13 90 2314534.31
11 12534 12.33 51 54312 23.39 91 2351434.56
12 31254 12.37 52 21543 23.60 92 5342134.67
13 15432 13.24 53 24315 23.62 93 2534134.71
14 35124 13.87 54 41352 23.81 94 1432534.91
15 13254 14.22 55 43152 23.90 95 4125335.20
16 31524 14.36 56 12435 24.40 96 3251435.42
17 15342 14.48 57 34125 24.53 97 1423535.65
18 13425 16.30 58 15324 24.89 98 3254136.42
19 24531 16.53 59 53142 24.90 99 5123436.81

20 14523 16.65 60 23154 25.61 100 4215336.91
21 14352 16.69 61 53124 25.67 101 5142338.10
22 34152 17.16 62 51243 25.80 102 5432138.25
23 25134 17.17 63 43512 25.83 103 4523140.16
24 12354 17.47 64 31425 25.95 104 5143240.98
25 14253 17.63 65 12345 25.96 105 415231.91
26 31245 17.81 66 21453 26.01 106 4532144.72
27 15423 17.85 67 52413 26.09 107 3241%45.05
28 51342 17.88 68 51324 26.56 108 4235145.38
29 14532 18.05 69 35241 26.68 109 4352145.43
30 25413 18.07 70 25143 26.77 110 5321445.72
31 54213 18.17 71 24153 26.93 111 4325145.87
32 35412 18.48 72 34215 27.52 112 2354146.11
33 21345 19.32 73 21534 28.00 113 5234146.89
34 25431 19.43 74 32154 29.65 114 4132%47.14
35 13245 19.55 75 43125 30.17 115 4153247.50
36 35421 19.56 76 23451 30.40 116 5324148.31
37 25314 19.97 77 24351 30.97 117 2341%48.84
38 45213 19.98 78 45123 31.07 118 4231548.85
39 45312 20.07 79 24135 31.18 119 4321%2.91
40 21354 20.07 80 53412 31.22 120 4123%5.42
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Figure 6.17 Pareto fronts corresponding to the foubest sequences according t©onv

As one would expect, sequence 13452 has the |d@@stsince it coincides with part
of the global Pareto front. Sequences 13524, 1354212543 have also a Id@onvindex
and thus they are quite close to the globally oatisolution, as shown in Figure 6.17. In
general, as already noted before, there is a stdependence of thguality of the
sequence from its first element. One can see twfitst ranks are occupied mostly by
sequences starting with debris nr. 1 and 3, whitsé with nr. 4 and 5 have high€xinv
and are therefore occupy predominantly the worgsomhose starting with nr. 2 are
somewhat in the middle. The fact that solutionshwit. 1 and 3 are privileged as first
elements in the sequence might be explained franfatt that they lie in the two lowest
orbits (see Table 6.3) and therefore easierto reach (Please keep in mind that for the
rendezvous with the first debris there is no plem@nge since it is assumed to depart from
a coplanar orbit). Another interesting observai®that the best sequences tend to avoid
the largest plane changes. For example, in 1345pltdne changes are 1.47°, 2.52°, 1° and
2°. On the contrary, in the worst one accordin@tmy, i.e. 41235, they are 1.95°, 2.16°,
3.63° and 2°.
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Table 6.7 BestAV+, and ToF 1 for each sequence. Best values are in bold. Worsdlues are

underlined.
ord min(AVte) min(ToFr) | ord min(AVre) mMin(ToFr) | ord  min(AVre) min(ToFry)
[km/s] [days] [km/s] [days] [km/s] [days]
12345 2.30 108.17 | 24513 2.17 106.64 | 42315 2.53 116.99
12354 2.26 107.81 | 24531 2.26 105.94 | 42351 2.63 114.24
12435 2.27 106.25 | 25134 224 102.96 | 42513 2.28 104.48
12453 2.13 100.63 | 25143 241 109.53 | 42531 2.36 109.50
12534 2.18 105.81 | 25314 2.30 107.66 | 43125 2.42 109.26
12543 2.13 103.26 | 25341 2.49 107.22 | 43152 2.34 107.36
13245 2.22 102.72 | 25413 2.26 104.36 | 43215 2.67 116.73
13254 211 103.03 | 25431 2.27 107.97 | 43251 2.56 113.93
13425 2.15 103.12 | 31245 2.20 100.73 | 43512 2.43 108.12
13452 1.98 96.35 [31254 2.10 103.46 | 43521 2.53 111.63
13524 2.07 101.03 | 31425 2.30 106.79 | 45123 2.46 106.61
13542 2.02 100.08 | 31452 2.12 97.810 | 45132 2.33 102.12
14235 2.45 115.10 | 31524 2.15 104.32 | 45213 2.25 102.99
14253 2.21 104.45 | 31542 212 100.52 | 45231 2.42 110.85
14325 2.42 112.87 | 32145 2.44 111.30 | 45312 2.27 101.57
14352 2.21 105.30 | 32154 2.35 107.73 | 45321 2.55 111.39
14523 2.25 107.07 | 32415 251 115.31 | 51234 2.49 110.19
14532 2.27 105.43 | 32451 2.33 107.85 | 51243 2.38 107.21
15234 2.29 107.13 | 32514 2.38 107.70 | 51324 2.36 106.79
15243 2.14 102.56 | 32541 2.40 109.14 | 51342 2.25 103.38
15324 2.27 106.71 | 34125 242 109.68 | 51423 2.53 113.27
15342 2.17 102.45 | 34152 2.33 104.78 | 51432 2.55 112.77
15423 2.26 109.45 | 34215 2.36 112.19 | 52134 2.29 106.29
15432 2.24 106.63 | 34251 2.30 107.17 | 52143 2.44 108.36
21345 2.31 103.98 | 34512 2.18 101.86 | 52314 2.46 116.72
21354 2.24 103.07 | 34521 2.24 104.80 | 52341 2.61 112.97
21435 2.58 115.15 | 35124 2.27 103.81 | 52413 2.30 106.23
21453 2.38 106.26 | 35142 2.30 105.62 | 52431 2.37 108.24
21534 2.40 113.76 | 35214 2.32 109.19 | 53124 2.29 103.32
21543 2.32 110.97 | 35241 2.37 111.19 | 53142 2.36 108.06
23145 2.47 113.45 | 35412 2.28 101.50 | 53214 2.60 114.17
23154 2.36 107.94 | 35421 2.29 108.91 | 53241 2.62 116.59
23415 2.63 114.64 | 41235 2.70 116.91 53412 2.45 106.79
23451 2.48 111.27 | 41253 2.47 107.83 | 53421 2.46 112.91
23514 255 11491 | 41325 255 113.15 | 54123 2.49 112.69
23541 2.54 111.22 | 41352 2.37 108.25 | 54132 2.38 105.83
24135 2.42 107.59 | 41523 2.54 111.57 | 54213 2.24 104.67
24153 2.43 108.50 | 41532 2.57 112.14 | 54231 2.42 115.17
24315 2.38 110.73 | 42135 2.44 11559 | 54312 2.22 107.06
24351 2.42 108.28 | 42153 2.47 108.75 | 54321 2.50 116.42

Table 6.7 reports the minimum values for the penBomce parameters associated to
each sequence, i.e. the extreme points of the d>aogits. Similar considerations to those
made previously also apply to this case, with basies given by sequences starting with

nr. 1 and 3 and the worst ones with nr. 4 and 5.
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Table 6.8 Debris removal sequence and timing for mimum AVrq.

Final Keplerian elements Duration AV
Phase _ masgkg]
a [km] e i [deg] @[deg] [days] [km/s]
Departure 6628.16 0.010 1 65 - - 1000
Nr. 1 reached 6828.16 0 1 65 5 0.115 996.11
Nr. 1 de-orbited 6752.69 0.011 1 65 22.06 0.043 .ZB3
Nr. 3 reached 6978.16 0 -2 200 88.10 0.239 985.17
Nr. 3 de-orbited 6826.44  0.022 -2 200 25.96 0.084 80.68
Nr. 4 reached 7478.16 0 -1 90 66.71 0.476 964.88
Nr. 4 de-orbited 7055.54  0.053 -1 90 34.33 0.221 1.6%
Nr. 5 reached 7178.16 0 0 45 55.89 0.241 943.91
Nr. 5 de-orbited 6912.18 0.034 0 45 30.77 0.144 881
Nr. 2 reached 7128.16 0 2 150 56.98 0.297 922.12
Nr. 2 de-orbited 6901.39  0.032 2 150 33.99 0.124 7.3

Table 6.8 shows details about the b®gt,: solution, with sequence 13452. Note that,
in general, the\V cost of each phase is relatively low, thus leadm¢he minimum total
cost of 1.98 km/s. Correspondingly, their duratisdong, meaning thaslow but more
efficient transfers are preferred. This behavisualso confirmed by the fact that the de-
orbit conditions have non negligible eccentricitiedich means also that the amplitude of
the apogee thrusting arcs during de-orbit (seerEig2) is kept to a minimum. In this way
propellant is devoted to lowering the perigee amith minimum variation of the apogee
altitude.

By analysing in more detail th&V cost breakdown, one can see for example that the
highest figures, 0.476 km/s are given by the rewol@z with debris nr. 4 from the de-orbit
conditions of debris nr. 3. This high value is ffistl by the fact that reaching the final
orbit radius of 7478.16 requires an apogee raise0afkm from 6977 km and a perigee
raise of 800 km from 6678 km. At the same timedhsralso a rotation of the orbit plane
of 2.52°. By comparison, the rendezvous with nrafter the de-orbit of nr. 4 is
comparatively cheaper even if the radius of thgdrorbit is still high. In this case the
perigee raise is 500 km while the apogee on therdtand needs to be lowered by 252 km
from 7430 km since piece of debris nr. 4 is reldase a relatively eccentric orbit with

€=0.053. Plane rotation in this case is only 1°.
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Table 6.9 Debris removal sequence and timing for mimum ToF 1.

Phase Final Keplerian elements Duration AV massikg]
a [km] e i [deg] Q[deg] [days] [km/s]
Departure 6628.16 0.010 1 65 - - 1000
Nr. 1 reached 6828.16 0 1 65 5 0.115 996.11
Nr. 1 de-orbited 6685.24 0.001 1 65 4.04 0.081 @DO0.
Nr. 3 reached 6978.16 0 -2 200 8.59 0.312 980.14
Nr. 3 de-orbited 6701.87 0.004 -2 200 6.29 0.154 1.87
Nr. 4 reached 7478.16 0 -1 90 14.79 0.664 950.17
Nr. 4 de-orbited 6789.06 0.016 -1 90 17.13 0.362 8.B2
Nr. 5 reached 7178.16 0 0 45 7.99 0.281 919.92
Nr. 5 de-orbited 6715.72 0.006 0 45 15.9 0.252 3m8.
Nr. 2 reached 7128.16 0 2 150 9.87 0.466 884.28
Nr. 2 de-orbited 6725.90 0.007 2 150 6.75 0.221  .&75

Table 6.9 reports details about the minimtiak,; solution, again with sequence 13452.
In contrast to what has been remarked for the pusvcase, here obviously the duration of
each phase is kept to a minimum. For example, sdirede-orbit times are very close to
the minima reported in Table 6.3. Conversaly,costs are higher than those in Table 6.8.
Moreover, one can see that the de-orbit trajedare quasi-circular, which suggests that
the thrusting arcs are not restricted to apogesggas but cover almost entirely each
revolution (i.e., with reference to Figure 6A2,;,~180°).

A final note is devoted to the assumption mentiome8ection 6.3.2 that the delay due
to phasing will be relatively negligible comparedthe total transfer time. First of all, one
has to consider that each de-orbit-rendezvous ebuplactually a transfer between two
circular orbits with different altitude, phasingdaorbit plane. In this sense, the related
transfer strategy first lowers the perigee dowrB® km; then, in the second phase the
apogee and perigee altitudes are adjusted to nifabske of the target orbit and at the same
time the orbit plane is rotated around the linenofles. In order to obtain a worst case
estimation of the delay, it is chosen to decomptse latter into the contribution
determined by the inclination changigirai and the one given by in-plane phastpg .
The former stems from the assumption made in SediB.2 that the perigee lowering
phase from the initial circular orbit is starteatlsuhat the lines of apses is perpendicular to
the line of nodes defined by the intersection & trbit planes of the current piece of
debris and the next one in the sequence. The maximwait time is obtained when the line
of nodes is aligned with the line of apses andhésefore given by half the orbit period of

the departure circular orbit:
MaX(t, e ) = 7y (6.30)

where ng is the angular velocity of the initial circularbi. After the line of apses is

properly aligned in order to reach the target ogdédne, there remains, however, the
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problem of inplane phasing. As a first step, the case of aiguiksilar transfer is
considered, noting that this is actually the casenfiinimum AV sequences as the one
reported in Table 6.8. If one considers the case todnsfer between two circular coplanar

orbits, the phasing of the departure and arrivalaran by expressed as:

% = nOtwait Agp + A¢¥ransf (ttransf)
¢f = nf (twait,Aga + ttransf) + A%

wheren is the angular velocity of the current orbit,is the one of the arrival orbit, is

(6.31)

introducing along the transfer in order to matcé gihase of the arrival orbihg, is the
nominal phase difference between the two orbitsna¢ of departure, computed simply

from the initial and final argument of perigee ange anomaly:
A =(w, —aw)+(6, - 6,) (6.32)
$o andg; can differ by multiples of 2 therefore, by combining Egs. (6.31):
tait np (n -n, ) =A@ +AG . T Nt 2kT KOZ (6.33)

One can see that, once the transfer type is defthedeft side of Eq. (6.33) is constant

and since is an arbitrary integer, one can write:

forny =B Ag O[O0 27] (6.34)

wait,Ag ‘n _ nf ‘
and thus the worst case value for the délayis obtained obviously foAg@ , = 277. Since

we are dealing with a LT transfer in which the semaijor axis is continuously varied, also
the angular velocity at a certain point of the transfer is varying adoagly. Also, since it

iIs assumed that the transfer is quasi-circular, care insert a coasting arc of duration

twaitag @t the point in which the rati]ﬂn— nf‘ (which depends on the radii of the current

and target orbits) is at its lowest. This condittgpically occurs when the end of the de-
orbit phase is reached.

If the transfer type is not quasi-circular but itwes spirals with non-negligible
eccentricity, then an arbitrary delay cannot beonhticed without altering the position of
the lines of nodes. However, it is still possildaritroduce an arbitrary number of coasting
arcs of duration equal to the orbital period of tseulating orbit, i.e. one full revolution.

The phase variation obtained by one such revolusion
27mn—-n
Ag,.(n) :y (6.35)

Note that, given the orbits involved in the tramsfes,, will be generally a fraction of

2z. If a worst case phase variatidvgg , = 277 is to be achieved, the following simple
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strategy can be used to estimate the correspomtditay: first,k coasting revolutions are

performed when the quantity-f¥| is maximum. In this sense, one can write:

-

2 (6.36)

n, =arg mninA@n(n)
This will bring the phase difference to a quantiigich is lower than the maximum
phase variation per revolution achievable, leadngsidual phase difference;
Ag,.=2m-kAg,(n,) (6.37)

A last coasting revolution is inserted to delete thsidual when the semi-major axis

which gives the proper angular veloaitys is reached:

Nes =ar90\@,, () =A@, (6.38)

The total delay introduced in the worst case isgfoee given by the sum of the periods

max(twait,A(p) = 2"(5 +i} (6.39)

N Nes

By applying the above strategies to the minimawi and minimum time of flight

of the coasting revolutions:

sequences we can obtain a worst case estimatidheo&dditional time introduced by
phasing. The maximum delay introduced by the apigament in both cases would be
0.14 days. For the minimum time of flight case &ble 6.9 (i.e. quasi-circular sequence),
the worst case delay due A® is 2.68 days, leading to a total delay of 2.82sdahis
value equates to a 2.93% increase compared toattménal time of flight of 96.35 days,
which can be considered acceptable for a prelingisardy. On the contrary, in the case of
minimum time of flight sequence as in Table 6.& delay due tad¢ would be 4.58 days,
and the total delay 4.72 days, corresponding told% increase on the nominal time of
flight of 419.79 days. For these reasons, neglgdhe phasing appears to be an acceptable
approximation in this preliminary study.

6.5Conclusions
This chapter presented a practical applicatiorhefriovel techniques proposed in this
dissertation. They were applied to the design wiudti-target Multi-Objective orbit debris
removal mission by means of an IBSC. The modelpgsed here for the computation of
low-thrust many-revolution transfers, allowed forcansiderable reduction in control
parameters and, at the same time, a fast propagattithe low-thrust motion. The Multi-

Objective optimisation minimising botAV cost and total removal duration provided
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thousands of different debris removal candidateitsmis. The analysis of the results
showed that the particular removal sequence 13&g§bbally optimal. A ranking criterion
was proposed to grade all the candidate sequenceslentify those that are suboptimal.
From the analysis of the sequences it was founiditeae is a dependency of the quality of
the sequence on the first target object. Amongahen issues for future developments,
there is, for example, the integrating the sequesalection directly into the Muki
Objective optimisation process, thus obtaining axedi continuous and discrete
optimisation problem. This can be crucial when ioiss with more than 5-10 debris are
considered since the enumerative generation ofesegubecomes increasingly expensive

with the number of potential target objects.
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Chapter 7.Low-Thrust Orbit Raising Design for the
DESTINY Mission

This chapter presents an overview of the prelinyirdgsign of the orbit raising phase
for DESTINY, a proposal for a future JAXA interpkary mission using Low Thrust
propulsion. In this case study, the techniquesrdsest in the previous chapters are applied
to a realcase mission design problem. This case, therefoojides the evidence of the
validity of the proposed techniques as operatidonal for space mission design. The
chapter is organised as follows: Section 7.1 wilMegan overview of DESTINY, while
Section 7.2 will describe the optimisation proble®ection 7.3 will present the trajectory
model used for the orbit raising. Section 7.4 witroduce the formulation of the MOO
problem and will show some preliminary results.t®ec7.5 will analyse the specific issue
of eclipse avoidance during the orbit raising andlfy Section 7.6 will show the solutions

found with an extended control model, as suggdsyatiese analyses.

7.1DESTINY Mission Overview

The Demonstration and Experiment for Space Teclyyoémd INterplanetary voYage
(DESTINY) is a technology demonstrator mission which isently being developed as a
candidate third mission of ISAS/JAXA’s small sciergatellite series. Its main objective is
that of gaining flight heritage for a number of eb¥echnologies, which include, among
others, the newi20 lon engine, the new Epsilon launch vehicle,adlightweight solar
panels and an advanced thermal control. In additiomill also provide a test-bed for new
techniques for Low Thrust (LT), interplanetary nissdesign and operation.

The proposed mission profile for DESTINY, as showfigure 7.1, envisions:

1) Injection into an inclined elliptical orbit (withesi-major axis around 20000
km) by means of the Epsilon rocket.

2) Spiralling phase in which th@20 engine will raise the orbit in order to
encounter the Moon.

3) Lunar swing-by.

4) Injection into a Halo orbit at the Sun-EarthRoint.

5) Additionally, if possible, a final escape fromis also desirable.
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(1) Launched by Epsilon Rocket (R iectad (Bl Hee Dbl

€
~ " (3) Lunar Swing-by
(2) Accelerate with lon Engine

(5) Escape from L, Halo Orbit
Figure 7.1 DESTINY preliminary mission profile®.

The early LT orbit raising phase presents an isterg mission design challenge, since
many tradeoffs are to be made between different performdimpeaes; at the same time,
technological limitations on bus design impose anber of constraints on trajectory
design. In particular, the time to reach the Moanaginter is upper bounded at 1.5 years
but shorter transfer times might also be advantagie©n the other hand, in the latter case,
the required4V is likely to be higher; while this, given the awahle fuel and the high
efficiency of theu20 engine, will not prevent reaching the Halo qribivill possibly affect
the feasibility of the optional post-Halo escapag#h It should also be noted that, during
the orbit raising phase, the spacecraft will sparidng period of time within the highly
radiative environment of the Van Allen belts. Thime should be minimised in order to
reduce the total radiation dose and therefore tlassnof the required shielding for
electronic components. Similarly, eclipse duratauring the transfer, influences both
trajectory design, since engine operation has tanberrupted while in shadow, and
spacecraft bus design, because it imposes cortstram battery sizing. Finally the
conditions, in terms of orbit geometry, with whittle Moon is encountered, also require
trade-off analysis, since they are strongly linketh the trajectory design of the following
phase, which will lead DESTINY spacecraft to theigeated L Halo orbit.

The presence of many conflicting requirements belltackled in this work by adopting
a Multi-Objective (MO) design approach, in which ltmple performance figures are
concurrently optimised. The trajectory will be mbeé with the parameterisation
described in Section 5.1 and it will be propagatgith the averaging technique described
in Section 5.2, while the Multi-Objective problemilwbe solved with MACS2 (see
Chapter 2).
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7.2Problem Definition

The purpose of this study is that of optimising strategy for DESTINY’s orbit raising
phase in order to concurrently minimise four figuod merit: the time of flighToF, the
total lon Engine System operation tifi€S, the time spent within the radiation bgli; and
finally the duration of the maximum eclipse encauatitec; max The latter, in addition, is
to be kept below 1 h, due to constraints on batsgzg. The maximum time of flight
allowed for the orbit raising phase is 550 days,about 1.5 years.

As a result of the inputs from the design teamhefEpsilon Launch Vehicle, the initial
orbit parameters after release from the launchemasumed to be those reported in Table
7.1.

Table 7.1 DESTINY initial orbit parameters in the J2000 Earth Fixed reference frame.

a (km) e [ Q 0] M

20953 0.69 32° 21° 124° 5°

Note that, the initial orbital elements are spedifith respect to the J2000 Earth Fixed
reference frame, i.e. a moving frame, and thusatheal value of2 in the inertial reference
frame is dependent on the launch epoch. After selelaom the launcher, a 2y
commissioning phase is imposed, in which the spatteis not allowed to perform any
manoeuver.

The terminal condition to be reached at the entheforbit phase is a radius of 300000
km at the intersection between the orbit and threeati lunar orbital plane. This condition
reflects the fact that, at this preliminary stagbas been decided to uncouple the design of
the orbit raising phase from that of the Lunar emter and subsequent interplanetary
phase. Note also that, given the relative anglevémt the lunar orbit plane and
DESTINY’s, the intersection between the two canuocquite far from DESTINY’s
apoapsis and therefore the latter might be mudhenithan 300000 km.

The preliminary specifications for DESTINY spacdteae reported in Table 7.2.

Table 7.2 DESTINY spacecraft characteristics.

Initial mass (kg) Engine thrust (mN) Specific impail(s)

400 40 3800
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The powerfulu20 engine, mounted on a small spacecraft, prodacesatively high
acceleration of 1& m/s". At the same time, the high specific impulse d§ lon engine
ensures good propellant efficiency.

The design parameters which are to be optimisedtleredeparture epoch and the
parameters of the thrust vector (see Section F8). each candidate set for these
parameters, the propagation technique presentethanprevious section is used to
propagate the orbital motion until the terminal dition of 300000 km radius on the lunar
orbit plane has been verified, or else when theimam time of flight allowed, 550 days,
has been reached. From this it is possible to coenthe total time of flighfToF, total
engine operation timé&ES the time within the radiation belife;; and the duration of the
maximum longest eclipsgy max Note thatfyer is defined simply as the time for which the
spacecraft is below 20000 km altitude. The candigarameter sets will be generated by

means of a Multi-Objective optimisation algorithm.

7.3Trajectory Model
The control model chosen for DESTINY’s analysethis one described in Section 5.1
and shown in Figure 5.4. The propagation of thetalrimotion is performed as in Eqs.
(5.3) and (5.5). An additional equation is addedbider to account for the time spent
below 20000 km. The tim&e: spent below this altitude is also computed in aged

terms:

then(t) = jfbelt(r,ﬁ(r))dr
o (7.1)
— AtbeIt

belt —
T2

t'

Atperr is defined as the time spent below 20000 duringraital revolution, assuming an
orbit whose orbital parameters remain constant galtre latter. Atper can be easily
computed as:

T a1+ €2 [y
Aty = 0, a(l_ e) < Ber (7.2)
_tkep(_gbelt) +tkep(0bel)’ a(l_ e) RIS a(l+ e)
where rper is the radius corresponding to the outer edgehef lelt, tyep is the time
corresponding to the true anomaly.;, as computed from Kepler's well-known time
equation (see Battif). O is the true anomaly of the radiugy, given by:
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O = aCO{M] (7.3)

rbeIte

In order to compute the length of the maximum &di maxthe durationtey of the
eclipse along a single revolution is computed (atmted) during the integration of Egs.
(5.3), assuming the cylindrical shadow model asrilesd in Section 5.1.1 . Note that, this
has to be done anyway in the computation of theaaesl variation of the orbital elements
AE», in order to account for engine operation discasties due to shadow. Then, after the
propagation of the orbital motion is completed, theximum value ofg is taken. Note
however, that this model is valid under the assionpthat the relative position of the
shadow region with respect to the orbit plane witk change considerably during an
orbital revolution. In other words, the shadow oggis assumed to be “frozen” along a
single revolution. Given the typical time frametbé Sun’s dynamics, this assumption is
perfectly valid when the orbital period is compasay small, roughly up to a few days.
For larger orbits, what happens is that the orlp&iod becomes of the same order of
magnitude of the time which takes the orbit plamerbss the shadow region. In this sense,
during an orbital period the portion of orbit inastow changes considerably, and thus the
“frozen” model proposed here is no longer appliealdit the same time, however, it also
means that there will be just a single eclipsehat trevolution and not a sequence of
eclipses in close succession as it happens wheorbital period is small. Therefore, it can
be assumed that with proper phasing correctionraesoint before this single eclipse, the
latter can be shortened or even avoided altogeHwerthis reason, it is decided here to
ignore these isolated eclipses, in the computadfaiie maximum eclipse duration, since
eclipse avoidance strategies can be easily impledeat a later, more detailed design
stage.

As an example of the accuracy of the proposed et methodology, a sample
trajectory is propagated both with the averagingho& and with the full numerical
propagation of the equations of motion. The chaseample exibits continuous tangential
thrust for the first 200 days or so and then thingsis localised only on shorter arcs around
pericentre. Figure 7.2 shows that the proposedoapfpr describes very accurately the
behaviour of the apogee and perigee radius (imi-s&jor axis and eccentricity), also
during the last few orbits when the analytical aggh tends to be less reliable due to the
large distance from the attracting body. Similafygure 7.3 shows that the evolution of

the cumulative eclipse time is also well approxieadby the proposed eclipse model.
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Figure 7.2 Sample propagation: apogee and perigeadius.
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Figure 7.3 Sample propagation: cumilative eclipsarhe.

7.4AMulti-Objective Optimisation of DESTINY’s Orbit Rai sing
The design of DESTINY’s orbit raising phase canftrenulated as a MukDbjective

optimisation problem in the form:

rpmglf(x) (7.4)
wheref is the vector of the objectives:
f=[TOF IES fy toqmaTWAr g (7.5)
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WATrg, IS @ penalisation term added fton order to account for the fact that a given
candidate transfer might reach a final radius @Nloon’s planes, lower than the target

30000 radius within the maximum allow&dF of 550 days. Therefordys, is defined as:
Ar,, =min([ 0 300000-r,, |) (7.6)

w is simply a weight vector.

X is the parameter vector ardl is its domain.x comprises the departure epoch,
decomposed adate in MJD2000 andime and the sermamplitudes of the perigee and
apogee thrusting arcs, expressed as the valuak,cndAL, at 8 reference nodes, as in
Egs. (5.4). Note thadateis meant as the integer part of the number of dayse epoch
6574.5 MJD2000 (2018/01/01T00:00:00 UTC), whilme is intended as the number of
hours since the midnight of the day defineddaye.

x=|date time --- AL, - AL, -] FL..8 (7.7)

. ai

The reason, for which the departure epoch is hepeessed as day and hour, is that
preliminary tests revealed that the objective fiomd showed wide oscillations with
respect to the departure epoch and that the twesscd these oscillations were of the
magnitude of a day and a year. This is relatedhe¢oorientation of the initial orbital plane
with respect to the Ecliptic plane and the lunaanpl Since, as mentioned earlier, the
initial orbital elements in Table 7.1 are definedl ralative to the Earth, i.e. a rotating
reference frame, it follows tha& in the Equatorial inertial reference frame experes a
short term evolution due to the Earth’s rotationusud its axis, superimposed to a long
term variation due to the Earth’s motion in the asobystem (plus other secular
perturbations). Therefore, by decomposing the depaepoch intaate andtime, one is
able to decouple these two dynamics. The boundésiethe domainD are reported in
Table 7.3.

Table 7.3. Boundaries for optimisation parameters.

Variable date(d) time (h) ALy, (°) ALla;i (°)
Lower bound 0 0 0 0
Upper bound 365 24 180 180

In summary, each transfer is described by a totall® optimisation parameters.
Regarding the performance parameters in the véctas already mentioned there are four
figures of merit which are to be concurrently mirsed, ToF, IES, their andteq max Which

would translate into a 4-objective optimisationtgem. In the following sub-section, it is
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decided to solve a reducedoBjective problem first, withoutec;max @S an objective or
constraint. This is done because, generally spgalan3-objective problem is easier to
visualise and analyse. It will also show how thé&uson set changes, when the fourth
objective will be re-introduced and the full optsation problem solved. In both cases the
Multi-Objective optimisation problem in Eq. (7.4) solved with MACS2.

7.4.1 3-Objective Problem
For this 3-objective problem, MACS?2 is set to ram & maximum of 30 function

evaluations. Population size is set at 150 indizisluof which 30 perform social actions.
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Figure 7.4. 3-Objective problem: a) Pareto front. Pojections on the b)ToF-I1ES c) ToF -ty d)
| ES-tye: SUb-Spaces.

Figure 7.4a shows the optimal objective set. Foren®arity, Figure 7.4b-c-d show
their projections on the bi-dimensional subspa8gsexamining the extreme points for
each objective, one can see that, for exampleminenmum transfer time is around 400
days, which requires a total of 8600 hours of emgiperations. On the other hand, the
minimum IES solution requires around 6300 hoursaf&@50 days transfer. Similarly, the
minimum time spent in the radiation belt is abo¥®d hours. Thdo~IES projection in
Figure 7.4b shows the typical pattern of propella@tsus transfer time trade-off. This
implies that any reduction in propellant consumpti® paid for by an increase in transfer
time and vice-versa. It is also interesting to nioten Figure 7.4d that, in a similar way,

176



any reduction in propellant consumption below 7800rs invariably requires an increase
in ther Moreover, the minimunToF solution is also a minimiser fdge. The reasons for
this will be explained later in this section. Figut.5 shows the distribution of the optimal
solutions along the launch window and shows they tire aligned along a diagonal line in
the datetime space. As mentioned earlier, date and tirealatermining the initial in the
Equatorial reference frame. Given the relative imatlon between the Equator and the
lunar orbit plane, this parameter consequentlycédf¢he elevation of the apsis direction
w.r.t. the lunar orbit plane. Since the terminatmndition is defined at the intersection
with this plane, the higher the elevation is, tighbr the final semi-major axis will have to
be and therefore the longer or the more expensieetrtansfer will be. Therefore, the
optimal solutions line on the diagonal line whiatrresponds to the initial which gives

the lowest elevation of the line of apsis on thealuorbit plane at the end of the transfer.
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Figure 7.5. 3-Objective problem: distribution of the optimal solutions w.r.t. the departure
date: a) ToF b) IES C) tpgt.

From Figure 7.4a one can identify three differelatsses of solutions: those which
minimise time of flight and time in the radiatioelb(1); those which minimise propellant
cost (2); and finally, those which minimidgy; but at the same time also somewhat

minimiselES by allowing for the maximunioF of 550 days (3).
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Table 7.4 reports a comparison of the three salulypes. As one can see solution 1
has the lowest time of flight, 392 days and at shee time also the lowest time spent
within the radiation belt, 1431 hours. On the othand, ion engine operation time is the
highest, at 8632 hours. The opposite applies tosdmwond solution, with an engine
operation time of just 6349 hours but with the leigthradmissible time of flight of 550 days
and a hightpe: Of over 2000 hours. The third case is very intimgs for the reason that it
has the minimuntye; like the first one, but at the same time its foghsumption is not as
high as the first case, since the time of flighd baen allowed to increase up to almost 550

days.

Table 7.4. Summary of sample solutions

Type date(d) time(h) ToF(d) IES(h) tper(h)
1 min(ToF) 295 9.2 392 8632 1431
2 min(ES) 266 8.7 550 6249 2032
3 Min(ter), Max(ToF) 329 8.3 550 6865 1457

In order to better understand the differences betwibe three cases, Figure 7.6, Figure
7.8 and Figure 7.10 show the thrusting arc lengtid @he time history of the
perigee/apogee radii for each of them. From Figi@a one can see that the semi
amplitude of the thrusting arc for the minimdroF case is always 180 degrees (except for
the initial commissioning phase), which translatge a continuous thrust profile. And as
Figure 7.6b shows, perigee and apogee are condyrraised, with a monotonic decrease
of the eccentricity, which reaches 0.2 at the entth@ transfer. Note also that the Apogee
is around 300000 km when the terminal conditiomeisched, which confirms what said
earlier that the optimal solutions reach the teahgondition with the line of apses lying
on the lunar orbital plane.

From Figure 7.7, which plots the trajectory in 129000 reference frame, one can also
clearly appreciate that the typical shape of ainaonus tangential thrust trajectory as the

orbit shape gradually becomes less eccentric.
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Figure 7.6. Minimum ToF solution: a) thrusting arc length; b) perigee/apoge radii.
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Figure 7.7. Minimum ToF solution: trajectory.

From Figure 7.8a, one can see that for the minim&®@solution, the thrusting arcs are
located always around perigee with a semplitude around 150-160 degrees.
Consequently, the rate of increase of the orb& @zmuch lower (see Figure 7.8b) and at
the same time the effort is focused on raisingapegee while the perigee experiences
only a comparatively small increase up to aroun@0BOkm, leading to the highpei

mentioned before.
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Thrusting arc length x 10° Perigee/Apogee radius
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Figure 7.8. Minimum | ES solution: a) thrusting arc length; b) perigee/apoge radii.

In contrast to the minimuroF case, the long coasting arcs around apocentetdead

considerable increase in the eccentricity, as shaviagure 7.9.
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Figure 7.9. Minimum | ES solution: trajectory.

The control strategy of the third case, as showfigare 7.10a, is a mix of the first two.
In the first part, the thrust is continuous in artle raise the perigee above the radiation
belt as soon as possible. After this has been aethjet around 250 days, the length of the
thrusting arcs is radically reduced in order toespwopellant by concentrating on raising

the apogee while keeping the perigee almost condeea Figure 7.10b).
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Figure 7.10. Minimum tpy;, maximum ToF solution: a) thrusting arc length; b) perigee/apoge
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Figure 7.11 shows a view of the complete trajectanyd clearly reveals the

uninterrupted thrusting strategy in the initial tpaf the trajectory, followed by a phase

with long coasting arcs around apocenter which léada gradual increase of the

eccentricity, which is however lower than in theous case.
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Figure 7.11. Minimum tpy;, maximum ToF solution: trajectory.
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7.4.2 4-Objective Problem
For the 4objective case, MACS?2 is run for a total of® function evaluations.
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Figure 7.12. 4-Objective problem: Projections of te 4-dimensional Pareto set on the d)oF-
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denote solutions withteg max<1 h.

Figure 7.12 shows the set of the Pareto-optimaitsols, projected onto each of the bi-
dimensional sub-spaces. Black asterisks denotesthaions which have the longest
eclipse below 1 hour. In this respect, it is imnagely apparent that there is no feasible
solution withlES below 8000 hours (see Figure 7.12a). SimilarlgnfrFigure 7.12b one
can see that all these solutions hgyewhich is 1600 hours at most. This suggests that, i

this case, solutions with a fast initial orbit rags phase are optimal for avoiding eclipses.
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Figure 7.13. 4-Objective problem: distribution of the optimal solutions w.r.t. the departure
date: a) TOF b) |ES C) tpet d) tey max- Black asterisks denote solutions witlty max<1 h.

Figure 7.13 shows the distribution of the optimalutons with respect to departure
date and departure time. Generally speaking, thsiribution is similar to that of the-3
objective case shown in Figure 7.5, as they arghigualigned along a diagonal line.
Solutions with a feasible eclipse, however, ar&ricted to a very small region around 24/0
h and 365/0 days, at the corners in Figure 7.13¢Mwt, due to the annual periodicity of
the Earth system, the regions at the four cornktheodatdtime plot, are by all practical
means contiguous). This clearly shows that thedhiction of the upper boundary on the
maximum eclipse time is considerably limiting thaumch opportunities and their
performance, at least under the control model adbpAt the same time, however, it is
important to consider that the solution of the Mdbjective optimisation problem as
formulated in (7.4) will return only the globallyptmal solutions. This means that feasible,
although inferior, solutions might still exist fother departure dates but, since they are
dominated by other solutions, they are discardathduhe optimisation process. On the
other hand, at the preliminary design stage, ddsirable to investigate the existence of
feasible solutions in less optimal regions of thench window as well. This could also

provide a good database of back-up solutions, ghitvd optimal period for departure, as
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shown in Figure 7.13, become infeasible due torddors. A simple way to perform this
kind of analysis would be to partition the paramefgace (see Table 7.3) in a number of
subsets along thaéate coordinate, and run separate M@ibjective optimisation instances
in each of them. However, this would require as ynaptimisation instances as the
partitions of the domai and at the same time, the fact that they wouldseparately
would prevent an exchange of information betweearh &d them. Therefore, the following
alternative has been adopted, which requires oslggle MO instance, and which consists
in modifying the 4-Objective problem in (7.4) by daly two dummy performance
parameters t, as:

f:{ToF IES ., date ,_ date} Ar,,

Ll max 365 365
(7.8)

This modification makes such that a solution, ewénis inferior to another with regard
to ToF, IES, thetOF tecimax IS Still Not discarded by the optimisation algamitlas long as its
departure date is different from the other. Or, ather words, the optimiser will
automatically search for and store the optimaltsmhs, in terms o OF, IES tpei:OF tecmax
for each departure datd his modified 4-objective problem, formally a Bjective one, is
again solved with MACS2, with $@unction evaluations.

Figure 7.14 shows the distribution of optimal swing with maximum eclipse duration
shorter than 1 hour and reveals the existence @hw clusters of solutions in addition to
those already identified in the previous, 4-objextcase. One lies in the summer period
close to midnight time while the other is in autumnthe 15-20 h range. Although they
differ slightly in terms of performance parameteasnumber of considerations apply to
both groups. First, they both have a higher timdlight than the winter/midnight class,
ranging from 480 to 550 days. At the same timey thpellant cost is also quite high, as
IS the, Which is between 2000 and 2600 hours. As an ebanimble 7.5 reports the
relevant parameters for a typical solution in tisup, which can be compared to those in
Table 7.4. Figure 7.15 plots its thrusting arc tarand time history of perigee and apogee
radii.

Table 7.5. Sample solution in Summer with feasibleclipse.

date(d) time(h) ToF(d) IES(N) toer (N)  tecimax(h)

198 23.3 498 8581 2140 0.92
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Figure 7.15. Summer solution with feasible eclipse) thrusting arc length; b) perigee/apogee
radii.

As Figure 7.15a shows, at the beginning, the tmgsdrcs are located around perigee

with a semiamplitude of 120 degrees, which then progressiuadyeases to 180 degrees

(i.e. continuous thrust) at 250 days. This mighgnsequite odd at first since it has the
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obvious drawback of increasing both the total tmmng¢ime and the exposure to the
environment of the radiation belts, as testified Tgble 7.5. Moreover, the relative
geometry between the spacecraft’s orbit and tharlone is far from optimal because, as
can be seen in Figure 7.15b, the final apogee Isabeve 300000km, which means that
the intersection with the lunar orbit plane isffam the line of apses. On the other hand, it
is important to keep in mind that the driving factor which this candidate solution has
been selected is its low maximum eclipse duratlanthis sense, the control profile is
meant at altering the geometry relative geometriwéen DESTINY’s orbit and the
shadow region in order to minimise eclipse duratMhile a more detailed discussion of
the specific issues of eclipses during DESTINY bibraising and related avoidance
techniques will be the topic of a future work gtstill important to introduce here a number
of observations. First, one has to consider tha¢ @ the relatively high inclination of
DESTINY’s orbit with respect to the Ecliptic, andieto the periodicity of the apparent
motion of the Sun around the Earth, the shadoworewiill intersect the orbit plane at
more or less regular intervals. Therefore, ecliggestypically encountered in a number of
separate phases. In other words, there will besparthe transfer in which there is one

eclipse per orbit, separated by phases in whiate thiee no eclipses at all.

Eclipse duration and argument of pericenter
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Figure 7.16. Eclipse duration, argument of pericerdr and true anomaly of shadow region for
two sample solutions.

A visualisation of this can be found in Figure 7.%hich shows the time history of
three important quantities: the duration of eaciglsi eclipsde (blue line), the argument
of perigeew Iin the ecliptic reference frame (green line) aindlfy the true anomaly of the
axis of the shadow regidh on the orbit plane (red line). The continuous lieters to the
case of the solution in Table 7.5, while the dashmeel refers to a trajectory with same
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departure epoch as the previous one, but with plsisontinuous thrust profile as the one
shown in Figure 7.6. As mentioned before, one aarognise three different eclipse
phases: a very short one during the commissionage, a relatively long one between 50
and 180 days and a shorter one between 240 andl&80 In the case of the trajectory
with reduced thrusting, in none of these three @habe duration of a single eclipse
exceeds one hour, making this a feasible trajectOry the contrary, for the continuous
thrust case, in the third sequence of eclipsestisea peak of 2 hours duration. One can
seek an explanation for this fundamental differebgesxamining the time history @k
(the true anomaly of the axis of the shadow reginr@ach case. Given the eccentricity of
DESTINY’s orbit, this parameter becomes very impottsince, the closer to the apocenter
the shadow region is, the longer is the time thacspraft will need to cross it. In the first
case fec is around 90 degrees, which means that the shaelgian lies much closer to the
pericenter than the apocenter. In the second 6agés around 130 degrees, i.e. closer to
the apocenter and this is the main reason for whdaipses are longer in this case. The
cause for the different position of the shadowhie two cases is found if one checks the
behaviour of the argument of pericenter: in botbesahere is an asymptotic increase of
with time. However, in the cases with full contimsathrust the transient phase ends earlier
and the total variation @b is some 40 degrees smaller than in the other esding to the
critical eclipse at 300 days. This variationwfis essentially due to th& effect. In this
sense, while the continuous thrust solution expegs this perturbation for less since it
raises the orbit very quickly, the solution withtie reduced thrust spends more time in
proximity of the Earth and therefore tldg effect acts for longer and leads to a larger
rotation of the line of apses. As a side note, adge that, in this case, the second eclipse
phase lasts longer and the third one is encountdrad earlier date than in the continuous
thrust case. Without entering into too much dethik is due to the fact the rotation of the
line of nodes of the orbit is different in the twases, again due to the different action of
the J, perturbation.

In summary, it can be said that this solution igleting theJ, perturbation to passively
rotate the line of apses and obtain a favouratidgive geometry with the shadow region in
order to avoid long eclipses. In order to obtaiis,tlof course, it sacrifices time of flight
and transit time in the radiation belt and consatjyet is not a globally optimal transfer
but nevertheless it constitutes a feasible alteradta departure date in seasons other than

winter becomes imperative.
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7.5Strategies for Eclipse Avoidance

Preliminary results presented in the previous sacfiuggested that a more detailed
analysis of the eclipses encountered during thestea is needed. First, the temporal
sequence of the eclipses has been analysed, as showigure 7.17a for a typical
trajectory. Figure 7.17b shows the time evolutibthe period of the osculating orbit.

One can clearly identify three different uninteteg sequences of eclipses, one per
orbit. The first usually occurs after launch {+00 days), when the orbit is very small and
consequently its period is also short (~8-12 houreg second phase usually occurs in the
150-280 days range and in this case the orbitabgés typically between 18 and 54 hours.
Note also that in this phase the spacecratft isipgsisrough the radiation belts. The third
phase occurs between 300 and 460 days and atdinistpe orbital period is in the range
of a few days and can be of the same order of radmiof the duration of the orbit
plane’s crossing of the Earth’s shadow. In theetattase this translates into the fact that
there are one or two consecutive eclipses at nagsgne can see for example in Figure
7.17a. Note also that, due to the apparent motfaimeo Sun around the Earth, the orbit
plane crosses the shadow cone once every six maitheugh in the early phase of the
transfer this interval is somewhat shorter due he plane’s rotation caused hi
perturbation.

Eclipse duration

Orbital period
3r 10 : : :

1}
0.5\ /\ : 3
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O 1 i i i
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t[d] t[d]

Figure 7.17. a) Eclipse duration. b) Orbital period
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Figure 7.18. Maximum eclipse duration after: a) fisst b) second c) third eclipse phase.

If, in any one of these phase, a single eclipseeds one hour duration, then the entire
transfer becomes infeasible. To visualise how thradually restricts the transfer
opportunities, let one compute the duration of filg three eclipse phases, for a with
continuous tangential thrust, for different depaetdates and times. As Figure 7.18 shows,
after each eclipse phase, the feasible regionhendateiime space are progressively
reduced down to the winter/midnight range as alfeaden in the Multi-objective
optimisation results presented in the previouscest

In order to formulate specific control strategirsorder to avoid long eclipse it is also
essential to understand which are the quantitiésriéning its length and, among them,
which can be effectively and easily controlled. Wgiit entering into too much detail, the
geometrical quantities which determine the duratibthe eclipse are:

Orbit size and shape, i.e. semi-major ax&nd eccentricitye .

Relative angle between the Sun-Earth direction@RB8TINY’s orbit plane, i.e.
current date and Keplerian parameters inclinati@md right ascension of the
ascending node.

in-plane angle between the line of apses and tbggiion of the Sun-Earth
direction, i.ew.

Introducing specific strategies to conteonde might be problematic since their time
history is already driven by the main design olyegti.e. encountering the Moon within
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1.5 years from departure. ControllingndQ would require a considerable, enftplane,
acceleration component, which is inherently expangven in the case of orbit plane
rotations of a few degrees. On the other handightrbe possible to exert some control on
the argument of perigee at a reasonable costdier 0 have a clearer idea on whether this
is possible, a graph is created in order to visealhe values ab which give a feasible
eclipse duration for each instant in the time mstd a certain transfer. This-eclipse plot

is created by taking the time history of the Kellermparameters of a trajectory of interest,
obtained obviously by numerical propagation. Fahei@me instant, consider all Keplerian
parameters except as fixed. Then for values of between 0 andn2 compute the eclipse
duration according to the analytical method desttiim Section 5.1.1. An example of the
resulting graph is reported in Figure 7.19, forageictory departing on 9 September.

Evolution of ® and eclipse feasibility region
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{ Feasible eclipse |
: = = = Unfeasible cclipscl
L ¢ )

300 Unfeasible eclipse

Variation due to J, effect

50

......
........
P PR HH T
0 50 100 150 200
t[d]

i
300 350 400

Figure 7.19.w-eclipse plot for an infeasible trajectory departirg on 2018/9/9.

The green regions denote valueswofor which there would be no eclipse; the yellow
regions denote values af which would give eclipses with duration below luhdinally
the red regions indicate values@iving infeasible eclipse durations. The blue lis¢he
time history of the argument of perigee of the nmahirajectory, and it can be clearly seen
that this transfer encounters a number of infeasblipse between 250 and 300 days. Also,
one can also see the initial changeviuring the first 100-150 days due to the strdng
effect when the spacecratft is in close proximityite Earth. It is important to remark that
these regions have been defined by considerindirtie history of the other Keplerian
parameters as fixed and is therefore subject tagghgomewhat if the control strategy is
modified. However, it already suggests that, fiesisible to alter the argument of perigee

by such an amount that it avoids the red regidres; this trajectory can be made feasible.
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In order to do this, two different strategies arepwsed: a passive-control, which
exploitsJ, perturbation to change, as already suggested by the new solution fourien
previous section; an active-control, which adopts a thrusting strategy aimeekcsgically

at changing the argument of perigee.

7.5.1 Passivew-control
Considering the infeasible trajectory shown in firevious section, its continuous
tangential thrust profile is altered such that dgrithe first 50 days after end of
commissioning phase, thrusting is performed onbuad pericenter, as shown in Figure
7.20.

Thrusting arc length
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Figure 7.20. Thrusting arc amplitude for passivan-control.

The w-eclipse plot consequently takes the form showhigure 7.21, where one notes
how the initial, reduce thrust phase makes suchntizgie time is spent under tligeffect
so that the alteration in the argument of perigesufficient in avoiding the potentially
long eclipse encountered at 250 days.

Note also that, given the longer duration of thansfer, another eclipse phase appears
towards the end. However, note that, the orbitabpe(represented by thick marks on the
blue line) appears to be larger than the widthhefred band, which translates into the fact
that in this case one can have a single, isolatligse at most, as mentioned in the
previous section. Specific strategies to deal Witk single eclipse will be treated in a later
section. The obvious drawback of this control siystis that more time is spent within the
radiation belts, since in order to exploit theeffect, the spacecraft has to be relatively

close to the Earth.
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Figure 7.21.w-eclipse plot with passivaw-control strategy (Trajectory departing on 2018/9/9.

7.5.2 Active o-control
In order to change the argument of perigee by mehtise engine thrust, the tangential
thrust control used until now is replaced by a oaniaw which maximises the
instantaneous rate of change ®of Considering Gauss’ differential equations forsthi
parametef, with in-plane thrust acceleration:

dw:ﬂ{—cos@e cea +

d efu

wheree¢ is the modulus of the acceleration ands its azimuth in the é-h reference

2+ecoyd

Sirfe sha 7.9
1+ecosd } (7.9)

frame. Imposing stationariety of (7.9) with respict, one obtains:

di“jj_‘t‘):o = co( te cof) sim+ sii( Re cé§ aos 0 (7.10)
a
And thus the control law far in order to maximise/minimise the variation@fs:
a= tan‘l(— tarﬁw) +kir
1+ecosd
k=0-L<g<t k=1"<p<” (7.11)
minimum: 2 3 maximum: 2 32
k=1"L<p<2" k=0"<p<"
2 2 2 2

In order to correct the infeasible trajectory seethe previous section, this control law
replaces the standard tangential accelerationpinage lasting between 200 and 280 days.
In this phase, the control acts exclusively to ¢feathe argument of perigee and there is

little or no variation of the other orbital elemenfhis active change i can be easily
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recognised in Figure 7.22. In this case too, tieeefurther eclipse phase appearing at the
end of the transfer, and similar considerationdyagp for the passive-control. Note also
that, in this case the additional time spent wittiia radiation belt is likely to be much
lower than with previous case, since thecorrection phase starts at 200 when the
spacecraft is almost of the belt. On the other hdwdvever, propellant consumption is
likely to be much higher since tlhecontrol phase does not contribute to raising tiét o
energy and therefore is “wasted” from this poinvigw. Table 7.6 presents a comparison
of the performance figures for the two differematdgies. In both cases, the time of flight
is around 70 days longer than a nominal, full thraase. Regarding propellant cost, the
passive case even slightly cheaper than the fulisthcase, since concentrating the
thrusting arcs at perigee in the early phase iserefficient than thrusting along the entire
orbit. On the other hand, the increase in time spdgthin the radiation belt is quite
substantial, reaching 2000 hours. Opposite coralideis apply to the active case, which
has a high engine operation time of 10600 hoursalbetatively low radiation belt time of
1700 hours.
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Figure 7.22.w-eclipse plot with activem-control strategy (Trajectory departing on 2018/9/9.

Table 7.6. Comparison ofw-control strategies

Case ToF(d) IES(h) ter(h) tecimax(h)

Nominal (infeasible) 411 8982 1505 1.70
Passive 484 8849 2001 0.99
Active 481 10633 1711 0.99
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7.5.3 Avoidance of Isolated Eclipses

As previously mentioned, it has been chosen toewtgdolated eclipses because it had
been assumed that by properlypteasing the orbit before they happened, it wowdd b
possible to avoid them altogether. In order tofyehe validity of his claim, let one take
the transfer corrected with passiwecontrol, as shown in the previous section. Fits
necessary to re-propagate the trajectory in tHedfiiamical model, in order to ascertain
whether the final, isolated eclipse forecastedhgyaveraged propagator actually occurs or
not. As Figure 7.23 shows, there is actually afatsd eclipse of 1.70 hours. A simple way
of re-phasing the orbit such that this eclipsevsided consists in introducing a short
coasting arc some time before the eclipse is terfm®untered. In this case it is chosen to
insert it right after the second phase of eclipsesver, i.e. around 280 days. Figure 7.24
shows the variation of the eclipse duration asretion of the coasting arc duration. One
can see that, by inserting a coasting arc of dumatetween 1.35 and 1.85 days, a proper
phasing is obtained such that the duration of thgle eclipse is reduced below 1 hour and
possibly even avoided altogether.

Eclipse duration
2,

0.57

0 100 200 300 400 500

Figure 7.23. Eclipse duration for trajectory deparing on 9/9/2018 with passives-control
strategy.
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Figure 7.24. Duration of the final isolated eclips@s a function of coasting arc duration.

7.5.4 Final Remarks on Eclipse Avoidance
The results presented in the previous sectionsigeoa good basis for some general
guidelines for an integrated strategy for eclipgei@ance. The proposed strategy relies on
the combination of three different techniques toidthe eclipses in different phases of the
transfer. In particular:

1. For sequences of eclipses occurring in the eanty gdahe transfer, successful
avoidance of long duration can be obtained by aidigighe initial conditions, i.e.
launch date and time, in order to obtain favouraistet geometry with respect
to the shadow region and its short term evoluti®his proper choice of
departure epoch appears the only viable choicthfsrearly phase since it is not
possible to introduce any active control, since thould need to begin much in
advance before the projected critical eclipse, ahding to this there is the 30
day commissioning phase in which no thrusting levedd.

2. For the eclipses occurring in the middle part & thansfer, eclipse duration
mitigation can be achieved both by proper settihghe initial conditions or,
should this not be feasible, by controlling the lation of the argument of
perigee w. This can be achieved either by exploiting the perturbation
(spending more time in the Earth’s proximity) or lging the engine thrust to
rotate the line of apses.

The avoidance of eclipses in the last part of thedfer can be achieved by simple
phasing adjustments if the duration of the crosbietyveen the orbit plane and the Earth’s

shadow is shorter than the current orbital period.

7.6Multi-Objective Optimisation with Extended Control Model
The model used in the Multi-Objective optimisatienthus modified and extended in
order to introduce the possibility of controlliniget argument of perigee. This is achieved

by introducing two different sets of parameters:
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» a first set, in order to model a phase of the feans1 which only activew-
controlling thrust, is used. The parameters usedte start timé,, and its duration
At ,.

* a second set, which control the asymmetry of thesting arc with respect to the
line of apses. As described in Section 5.1, norhyindle thrusting arcs are
symmetrical around the line of apsis. Here, anebfésgley is introduced, in order
to allow for arcs which might be asymmetricallyaarged with respect to the line of
apses, as shown in Figure 7.25. The effect of lgagim asymmetric arc is that of
producing a rotation of the line of apses and fioeeea change in the argument of
perigee. As has been done fok, and ALy, this parameter too is defined as a
piecewise linear interpolation in time with respec8 reference nodes.

Offset angle

Figure 7.25. Transfer pattern with offset angle.

Now the model includes a total of 20 optimisatiargmeters and MACS is run with
106 function evaluations.

Figure 7.26 shows the optimal solutions which hb@th teq; maxbelow 1 hour andpe
below 2000 hours. While the distribution of theusimns is not dissimilar to Figure 7.14,
there are a number of differences which must becotA first remark is for the lower
boundaries for the feasible solution. Regardingrdsailts shown in Section 7.4.2 it was
commented that there was no feasible solutionggelivise) with dES time below 8000
hours. However, analysis of the new results shavatlithe threshold has been lowered to
slightly less than 7900 hours. Further inspectibthe solution showed that this particular
class of solutions was adding a slight offset arsgléhe end of the transfer. The second
remark is that the quantity and quality of the sohs in the summer range has improved
considerably. If one compares Figure 7.26c¢ (or fEga.27c) with Figure 7.14c it is
possible to see that, while in the latter hardly aalution had dye; below 2000 hours, in
the former there is a wide range of solutions wlitis feature. Some of them even have a
time in the radiation belt as low as 1650 hourdy emarginally higher than the minimum
at 1400 hours. This is achieved by exploiting tbéva w-control described in the previous

section. The obvious drawback is, however, thatlff cost is quite high, being in the
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1000612000 hours range. If one considers solutions withabove 2000 hours, then the
cost might be reduced below 10000 hours IES, asshho Figure 7.27b.
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Figure 7.26. Modified 4-Objective problem with exteaded control model: distribution of the
optimal solutions with tey max<1 h andt,g;<2000 h w.r.t. the departure date: aJloF b) IES ¢)

tbelt d) tecl,max-

The minimumtye: SUMmMer solution is very similar to the actiwecontrol solution
shown in Section 7.5.2, while the minimuBS one resembles the passive one of Section
7.5.1 and therefore they will not be reported hdhee minimum time of flight case,
however, is quite interesting, since it combinegudees of both. This solution has a 55-day
active w-control phase right after the commissioning ph@sdlow line in Figure 7.28)
which has the double of effect of directly changihg argument of perigee and, since the
orbit raising is somewhat slowed down, of expl@tiy for the same purpose. These
combined effects produced the large change irequired to avoid a long eclipse at 250
days, as shown in Figure 7.29. Again, the obvioasvbdacks are a highd¢ES operation
time and time in the radiation belt, although tatdr is still below 2000 hours (see Table
7.7).
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Figure 7.27. Modified 4-Objective problem with extaded control model: summer solutions
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Figure 7.28. Minimum ToF summer solution: trajectory.

Table 7.7. Summary of summer solutions

Type date(d) time(h) ToF(d) IES(h) toer(h) tecimax(h)
min(ToF) 257 21.9 454 9971 1963 0.74
min(IES) 237 18.5 547 8289 2294 0.98
min(tyer) 190 23.8 501 11202 1658 0.99
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Evolution of @ and eclipse feasibility region
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Figure 7.29. Minimum ToF summer solution: w-eclipse plot.

7.7Conclusions

As shown by the results presented here, the apiplicaof a MultiObjective
optimisation approach to the design of the initabit raising phase for DESTINY
produced an extensive database of candidate transfédely spread over the launch
window. This provided the mission analysts with mlevoverview of possible transfer
strategies and their inherent trade-offs. Moreotleis design campaign was extremely
useful in revealing some the key challenges ingiésg this particular phase of the
mission. Among them, there are the conflicting rexraents of minimising the time spent
in the radiation belt and tHES operation time, or similarly the trade-off betweha latter
and the transfer time. Most importantly, the uppent of 1 hour on eclipse duration
imposes severe restrictions on the departure efgaete this issue was clearly identified,
specialised analysis of the eclipse dynamics pealifirst hints on how to tackle the
problem, which were later confirmed by further Mi@bjective optimisation analyses
with an extended control model. This led to estdidfig that the successful avoidance of
the long eclipses relies on a combination of prab@ice of initial conditions, exploitation
of the J, effect and active control of the argument of peeigThe results of the Multi-
Objective optimisation showed that with the impletagion of these techniques it is
possible to have transfer opportunities for 75%a ofear’s launch window. The analysis
performed in this case study provides a solid bgisnore detailed trajectory design in
future design phases of DESTINY.
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Chapter 8.Evidence-Based Robust Design of Asteroid

Deflection Missions

This chapter presents a novel approach to the tatesgn of deflection actions for
Near Earth Objects (NEO). In particular, the calsdeflection by means of Solpumped
Laser ablation is studied here in detail. The bad®a behind Laser ablation is that of
inducing a sublimation of the NEO surface, whicbduces a low thrust, thereby slowly
deviating the asteroid from its initial Earth thiesaing trajectory. This chapter investigates
the integrated design of the Space-based Lasasrsyatd the deflection action generated
by laser ablation under uncertainty. The integratedign is formulated as a Multi-
Objective optimisation problem in which the dewatiis maximised and the total system
mass is minimised. Both the model for the estinmatib the thrust produced by surface
laser ablation and the spacecraft system modeassemed to be affected by epistemic
uncertainties (partial or complete lack of knowlellg Evidence Theory (see the
introduction in Appendix B) is used to quantify $keuncertainties and introduce them in
the optimisation process. An example of desigrhefdeflection of asteroid Apophis with
a swarm of spacecratft is presented.

In order to achieve a fast propagation of the NEQion under the ablation-induced
force, therectification methodology described in Section 3.2.1 is employdte MOO
problem under Uncertainty is solved with a modifiedsion of MACS2.

This chapter is organised as follows: first, somaekiground on NEO threat and
mitigation strategy will be provided; then, the hmmnhatical models for trajectory,
spacecraft system and deflection action will beothiced; after this, the uncertainties are
analysed and quantified through Evidence Theory.MAlti-Objective optimisation
problem is then solved to find optimal deflectianiutions under uncertainty. The final
section also presents an analysis of sensitivitidémtify which epistemic uncertainty is

the most significant in the context of asteroidelgion with laser ablation.

8.1NEO Mitigation Strategies
During the last two decades, Near Earth ObjectsQ)NRave attracted considerable
interest from the scientific community in generatlan particular in the space field. The
reasons for this are twofold: first, from a stycHcientific point of view, asteroids can

provide precious data to reconstruct the genediseo$olar system. In this sense, NEOs, in
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contrast to other small celestial bodies, are ika&bt easy to reach and explore, thanks to
their small dimensions, lack of atmosphere andniticito the Earth. On the exploration
side, there is a number of past or ongoing missamed at the study of small celestial
bodies, such as NEAR, Rosettd’®, Deep Space't’, Hayabus3 Deep Impact® and
Dawn*®.

The second reason instead is linked with the pialettireat they represent for our
planet. According to the most recent tracking dat@r 1000 NEOs have been classified as
potentially hazardous to the Earth, i.e. they hameEarth Minimum Orbit Intersection
Distance (MOID) of 0.05 AU or less and an absolu@gnitude of 22.0 or le&S. This
suggests that the danger of a catastrophic evehieimid to long term is not unrealistic.
The historical perspective of past impact eventg. (Bunguska in 1908) is an important
reminder of the dire consequences this could haveuo fragile ecosystem.

Therefore, the scientific community has proposedimber of mitigation strategies and
techniques to counteract the hazard of a NEO impdw first serious technical study,
Project Icaru§® dates back to 1967 but only in the 90s the theasestarted to be widely
explored by scientists and engineers and varioasegies have been proposed. Among
them we find techniques producing an impulsive geam the asteroid motion such as
Nuclear blast! and Kinetic Impactdr? or attached Chemical engifi&s there are others
which produce a continuous low thrust like in thase of using attached Electrical
thruster$®® or electrically propelled gravitational tdg% or by means of the low thrust
produced by surface Ablation, the latter inducethezi by solar collectofs® or laser
beant®®. Other more exotic systems include Mass Drit%rsvhich involve the controlled
ejection of asteroid’s surface material in orderptoduce a series of small impulsive
changes in its motion; there are proposals alsoptmsive methods, like the idea of
painting part of the asteroid to modify its optipabperties and thus take advantage of the
Yarkovsky effect®®

A recent study presented a quantitative comparison of differerfledtion
methodologies that suggested that surface abletmiques could represent an advantage
compared to other methodologies.

The principle behind the surface ablation strategsethat of inducing the sublimation
of the surface material of the asteroid. This wittate an ejecta plume and an associate
small continuous thrust. This thrust, over extengedods of time, will slowly deviate the
asteroids from its initial orbit. Ablation strategi based on direct irradiation with
concentrated solar light were proposed by Melosth Bemchimov®®> who envisioned

using a single large solar concentrator to irr&datelatively small spot on the surface of
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the asteroid so that the resulting heat will indthee sublimation. Other authors proposed
the use of lasers in conjunction with a nuclear @osourc&®14°141192 Extensive studies
on the dynamics of the deflection with high powasdrs were proposed by Park and
Mazanek*? envisaging a single spacecraft with a Micro Waaget. The combination of
solar concentrators with lasers (directly or indile pumped) was recently proposed by
Maddock and Vasile in 2068. The idea is to use a formation of smaller conegots,
each powering a solgnumped laser. Thus, the spacecraft could be plas#ter from the
NEOs, in this way also avoiding almost entirely tomtamination due to the ejecta plume.
Recent numerical and experimental anal{8d§>'4*14¢1*have already investigated the
basics of the solar-pumped, laser ablation conCEpére are, however, some epistemic
uncertainties on the physical properties of theragd and on some design low Technology
Readiness Level (TRL) components of the spacecrafs work addresses the impact of
uncertainties on the performance of the laser syshe order to do so, an approach based
on Evidence Theory is introducll This approach requires the evaluation of several
deflected asteroid trajectories, and this is dogre by means of the analytical propagator
described in Section 3.2.1.

8.2Trajectory and Deflection Model
In order to assess the performance of the lasatiablapproach, a hypothetical asteroid
based on 99942 Apophis is considered. Its orbleahents are suitably modified in order
for it to intercept the Earth in 2036. The effeetiess of the deflection action is measured

by the magnitude of the impact paramdiewith respect to the Earth at the time of the

expected collision, as shown in Figure 8.1, whégés the incoming velocity of the

asteroid andv; is the velocity of the Earth.

VE Earth

h b-plane

Vao

Figure 8.1 Impact parameter.
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The impact parameter is computed by projectingiheated position of the asteroid on
the Earth’s kplane at the epoch of the expected impHctIn this case study, the
undeviated orbit has=0.

The computation o requires the variation of the orbital elements ttuthe deflection
action. From the variation of the orbital element® can use the deflection formula¥in
or the nonlinear proximal motion equations>fto compute the position and velocity
relative to the Earth. The variation of the orbements is obtained here by integrating
Gauss’ Variational Equations in non-singular eqatra elements (as in Eqg. (3.2)), by
means of therectification method. Note that, as described in Section 8.4, thrust
acceleration is computed by evaluating the ablatioodel. In particular, the thrust
magnitude shows a wide variation with a periodittgga along the trajectory. In this sense,
the ablation model needs to be evaluated quiten afteorder to detect this variation. The
frequency of the rectification of the reference ditions for the analytical formulae
therefore follows this rationale, i.e. the frequengith which the model is evaluated
dictates the amplitude of the trajectory arcs. bhsic idea is to have short arcs when the
thrust is high and larger ones when the thrusbvg In order to achieve this, during the
propagation the arc lengttl is dynamically adjusted with the simple law:

AL = min{Aex{ ~log £+ t’glofmax-" 1) ALmax:|

(8.1)
where ¢ is the current value of the thrust acceleratian,ax is the largest value it has
assumed so far aml k and AL are constants which were tuned empirically in ptde
achieve a good compromise between accuracy and d@BlUcompared to the numerical
integration. This was done by performing a high bamof propagations of the trajectory
and ablation models with different candidate sétsioing parameters. As a result, the set
which guaranteed a negligible error on the impaatameterb with respect to the
numerical integration at the lowest computatior@dtovas chosen. As an example, using
the rectification to propagate the trajectory and ablation modejsiémented in Matlah
on an Intel Core DU®3.16 GHz machine running Window§ @ requires between 0.2
and 2 seconds (depending on the length of thectoayd, compared with up to 30 seconds

when using numerical propagation.

8.3Spacecraft System Model
The solar-pumped laser ablation concept envisioasise of a formation ok identical
spacecraft, each provided with a solar-pumped lagstem. These will be flying in the

proximity of the asteroid (see Figure 8.2) with igta@hce from the asteroid’s surface
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between 1 and 4 kii*. Note that the plume shape in Figure 8.2 is aitgiale depiction
of the contamination model by Kahle et as in Section 8.4.

spacecraft
N

7
7/ I trajector
N | J Y

——_

Fsun/a

Figure 8.2 Spacecraft’'s proximal motion with respetto the asteroid.

Each spacecraft in the formation (see Figure 8.8pmposed of a large primary mirror
M3, which focuses the solar rays on a smaller secgndaror M,. The solar rays are then
conveyed onto a solar arr&which powers a laser plus other subsystems. d$ar beam
is directed towards the NEO by means of a direationirror Myq. A set of radiators

dissipates the excess heat in order to keep thpetature of the solar array and the laser

within operational limits.

,}‘Md
}/ \
\ |
AI_‘_’ I

Y s
Figure 8.3 Laser spacecraft system.

The dry mass of the spacecraft is computed as:

My =Ky (M + M+ m+ e ) ©.2)
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wherenc is the mass of the harness; is the mass of the solar arragsy is the mass
of the mirrorsm_ is the laser massy is the radiator mass ama,sis the mass of the bus
and the constankyy represents the margin on dry mass. The massekeoVdrious
subsystems are computed with simple analytical fikeis1 The harness mass is expressed
as a fraction of the combined mass of the laseisatat array:

m = MFC( m+ ﬁ'[) (8.3)

The radiator masAg is proportional to the area needed to dissipateettcess power.
MFc is the mass fraction for harness. The latter rmpated from a steady state thermal
balance between the Solar input power and the esingower which is not reported here

for the sake of conciseness.
m; = OrA (8.4)
wherepr is the radiator specific mass per surface undé.afée mass of the solar arrays
is proportional to their aregs:
Mg = K0 sAc (8.5)
where ps is the solar array specific mass per surface arét and the constakg

represents the margin on solar array mass.

The same applies to the mirror's mass:
= + +2

wherepy is the mirror specific mass per unit arleg,is the margin on mirror masay;
is the area of the primary mirror ad,, and Aq are the areas of the secondary and

directional mirror respectively. They are defined a

A,, =0.01A,
A
A=
C, 5.

whereC,; is the concentration ratio, i.e. the ratio betwtdensolar power density on the
solar concentrator and that of the spot area onastteroid. The mass of the laser is

proportional to its output power:
m =kp P (8.8)

wherep, is the laser specific mass per input unit powgeis the margin on laser mass

and the input powelP, depends on the solar inpRt, and the efficiency of the solar array

OSA:

R =’7$APinA1v5 9B
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Finally the total mass of the spacecraft is comgbinye adding a fixed mass fraction for

the propellant:
m,=m,, +1.1m= m, +1.1MEF m, (8.10)

whereMF, is the mass fraction for propellant and the fattdraccounts for the mass of
the tanks. The total mass of the formation is sympl

rnsys = nSCmS( 8:(1)
and the global conversion efficiency of the lagatem is given by:
Neys =N 1A € w (8.12)

where n., nsa np, are the efficiency of the Laser, solar arrays gmiver bus
respectively ands v is the emissivity of the mirror. The constakds, ks, ku, k. represent
system margins that are chosen according to stdn@aactice in space systems
engineering and to design matutffy For example, for the dry mass a 20% margin (i.e.
kiny=1.2) is used since this is what is normally dana preliminary mission design study;
for the solar arrays, a 15% margin is deemed adeigen the maturity reached by the
related technology; for the mirror mass insteadiigher value of 25% was preferred;
finally, given the fact that high power lasers $pace applications are still in their infancy,
a 50% margin must be used for the laser (see Taldlg Margins are used when
uncertainties are not quantified exactly. In thiofeing, therefore, margin parameters will

be equal to 1 when uncertainties are quantifiegudin Evidence Theory.

Table 8.1 System design margins

kdry kS kM kL
1.2 1.15 1.25 1.5

One of the critical aspects of the design of tisedablation system is that the quantities
nL, Nsa PR, pL @ndpy are poorly known. This is due to the fact that sawh the related
technologies are still in an early development estdg particular, the efficiency and mass
of the laser for space application are considendoktquite uncertain. As a matter of fact,
there are two methods for powering the lasediiact pumpingthe solar energy is used to
directly excite the electrons thereby generating lhser beam; on the other hand, in
indirect pumping the energy is first converted into electrical goywhich then powers a
semiconductor laser. Currently, high efficiency (op35%) directly pumped lasers have
been discussed at a theoretical level, while exgstiystems achieve only a few percent of

power efficiency™. Indirect pumping, instead, has shown very goodopmance albeit
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mainly in nonspace applications and with lower power outputs. iRdirect pumping
systems, there is quite some uncertainty on theggremnversion efficiencies that will be
achieved in the short or medium term. Efficiencasund 40-50% should be easily
attainable even with current proven technology (oiming semiconductor laser with
fibres) but some laboratory tests have suggestadiioch higher values, around 65%, are
probably achievable, assuming over 80% wall-plugiehcy of the semiconductors and
over 80% of the fibréé> Solar arrays are also a critical factor in thefgrenance of an
indirect pumped laser system. Recent advances lapfeyunction cell technology have
allowed for efficiencies close to 30% but it is rnotally unrealistic to expect that near
future improvements will move this threshold ashhags 40-50% under concentrated light
with partial efficiency recovery through thermoctag

A third critical element is the radiator. As a neatbf fact, given the relatively low
power conversion efficiency of the solar arraystasombination (from ~10% to ~30% at
best), most of the input solar power is rejecteties and therefore must be dissipated by
the radiators. While well proven, high emissivitgdiator technology is already available,
the problem lays in the weight per emitting arealdoge systems. While for small radiator
this is around 1 kg/f for large surfaces this could be as high as tkg. It is clear that
these wide ranges on many different parametersaasiderably affect the overall size of
the laser system and consequently the mass oaslee formation to be put in orbit. At the
same time, the lack of detailed knowledge on thgsigll characteristics of the NEO can
markedly affect the system’s capability in sublimgtenough surface material as to
generate enough thrust to deviate the asteroid.

The performance index which is output by the systendlel is the total system mass of
the Laser satellite formatiansys The input design parameters are the number cespaft
Ns,, the diameter of the primary mirr@liy; and the concentration ratiG;. As already

mentioned, the parameters subjected to uncertaiate,, 7sa pr, pL aNdpw.

8.4Deflection Action Model

As shown in previous worR&™**1*° the yield of the ablation process can be modelled

with the simple energy balance (assuming no ioioisat

drTLX _ Yrot fout 1
Tp - 2nscvrot ;!; t‘_[ a( Rn - Qrad - Q:ond) dtd)

(8.13)
where, dm/dt is the mass flow rate of sublimated materiais. is the number of

spacecraft in the formatiow, is the linear velocity of the asteroid surface doets
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rotation, Es,p is the enthalpy of sublimation. The input power peit area from the laser
Is:

2
P, =7,C.(1-¢,) %(r;‘—“j

A

(8.14)
whereg, is the albedo of the astero®=1367W/nf is the solar flux at 1 AUy is the
astronomical unit anda is the Surasteroid distance. Here the assumption is that the
amount of reflected laser light is comparable ® dmount of reflected visible light. For a
highly effective volumetric absorber, experimengaidence has shown that for given
asteroid analogue target materials — sandstongneliand a porous composite mixture —
that the majority of the incoming laser intensgyabsorbed rather than reflected. Energy is
emitted in the form of an extended, but contairmedhaust of gas and ejecta. This has been
146,147

demonstrated for 80 W continuous wave laser operating at a frequeic08nm

The heat loss due to black body radiation is:
Qua = T, T* (8)1

whereo is the Stefan-Boltzmann constang, is the black body emissivityl is the

asteroid surface temperature. The loss due to tieomduction is expressedas

/c k
Qcond:(Tsubl_-I(-)) A?NOA
(8.16)

with Tgyp as the temperature of sublimation of the surfaagenal andca, ka andpa as
its specific heat, thermal conductivity and densigspectively. The ablation-induced
acceleration can therefore be calculated as:

AV,
— ”pr v A

M @1

sub

2
n

where " is the unit vector along the NEO heliocentric iy A Is the scattering
factor that assumes that the plume is uniformlyritsted over an angle d80deg,ma is
the asteroid mass ar\d is the average velocity of the ejecta:

8k, T.

V= subl
7iM

MgZSiq (8.18)
wherekg is the Boltzmann constant aMlyg2sio, is the molecular mass of Forsterite.

Note that no ionization model is considered hetds Bssumption is consistent with the
sublimation model in Kahle et al. where the powengity is analogous to the one used
here. A more accurate model is out of the scopthisfwork, and in fact the proposed

methodology is aimed at modelling and propagatingettainties in order to evaluate the
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impact on the quantities of interest, such as ttieemable miss distance. An unmodelled
component has to be regarded as a source of modeltainty. More specifically, the
incident laser energy absorption and the expansfothe gas depend on the level of
ionization (see Phipps et 4f). An uncertainty on energy absorption and gas ®esipa is
equivalent to adding uncertainty to the sublimatiénthalpy and to the parameters
defining the expansion velocity, as it will be greted in the next section.

The thrust model needs to be completed with alsleitamodel of the contamination of
the optics. In fact the plume of gas and debrisingrfrom the ablation process is expected
to flow and impact the spacecraft. The contamimatimdel used here is the one developed
by Kahle et af®® and further elaborated by Vasile and Maddotkrhis model assumes
that the sublimation of asteroid’s surface is agalss to the generation of tails in comets
and that the plume will expand as the exhaust gafs@socket engine (as shown in Figure
8.2). Note that, such a model is not strictly cetesit with the hemispherical scattering
model used for computing the ablation thrust. Meegpexperimental dat¥ is showing
that neither the hemispherical model nor the oneKakle et al., shown in Figure 8.2,
accurately represent the expansion of the plumeveder, they are used in the present
work because each represents the worst case @mditr thrust generation and mirror
contamination respectively. The density of the drgegas plume is computed as:

2
. rnexp dSpOt i
Poo = o= COSO)«-1
P V'Aépot[zrs sctd spo ( ) (8.19)

where jc=0.345 is the jet constank=1.4 is the adiabatic indexsyor and dspor are

respectively the area and diameter of the Lasdr@pthe asteroid;s/scis the norm of the

distance vector of the spacecraft with respedieécspot on the asteroi@.is given by:
-
- (8.20)
In the Hill reference framesscis defined as:
X=r,

sisc=| YT e||COS€x

sing,,

z (8)2
where the radius of the ellipsoid is:
My = 2k
\/(b, cos(c«)At+6'vA))2 +(a1 sin(wAt+ 6?VA))2 8.22)
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X,y andz are the coordinates of the spacecraft with resfgecthe asteroid in the Hill
reference frame, as shown in Figure 8.4, andndb, are the axes of the ellipsoid (the
asteroid is assumed to be a rotation ellipsoid),.

Figure 8.4 Hill reference frame.

The asteroid is assumed to be spinning around-theszwith angular velocitwa. 0 is
the elevation of the spot over the y-axis. The madeo assumes that all the particles
impacting the mirror condense and stick to it. Weiation of the thickness of the

contamination layer on the mirror is thus compuwed

v
T = ZPon cogy,
Player (8.23)
where the layer densifyayer is 1 g/cmi. The speed of the ejecta is multiplied by 2 to

account for the gas expansion in a vacuwg.is the view factor taken as the angle
between the normal of the mirror and the incidéawfof gas. Finally, the power irradiated

on the asteroid’s surface is multiplied by a degtaah factor::
r= exp(_27hcond) (8.24)

wherey=10* cmi' is the absorption coefficient for Forsterite.

It is important to observe that, according to teative motion as in Figure 8.2, the
mirrors would be exposed to the plume only for idydhalf the period of the orbit of the
asteroid, i.e. when the spacecraft has positiveoxdinate.

Figure 8.5a shows a typical acceleration profilenpated without considering the
contamination of the mirror. The figure compares irofile obtained from numerical
integration of the trajectory and ablation modelthva high order Runge-Kutta method,
with the one obtained with analytical propagatievith the arc-length adaption rule

introduced in Section 8.2. The periodic behavisudile to NEO’s motion around the Sun
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which accounts for oscillations in the solar flieptured by the primary mirror. The two
integrations are in good agreement and the difteres due to Eq. (8.1). Figure 8.5b and
Figure 8.5¢c show the same case but with the inttimlu of the contamination model*ii
One can see that the amplitude of the accelerasaillation decreases by more than two
orders of magnitude already during the first retiolu around the Sun and then stabilises
at around 18*-10"% m/< for the rest of the trajectory.

From Figure 8.5 it is important to observe that @nalytical propagation approximates
very accurately the acceleration profile when itagmtude is high during the first
revolution and less correctly when it is decayedtfe remainder of the trajectory. This
will not affect the accuracy on the computation tbé impact parameter since the
contribution of the first part will be much mordeaeant than the second, which will be

almost negligible.
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Figure 8.5 Typical acceleration profile: a) withoutcontamination b) with contamination c)
with contamination (semi-logarithmic scale).

As will be detailed in Section 8.5, from an anadyef the literature on NEO, one can

observe a considerable variability of the physpaalameters of asteroids, in particuiagy,
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Tsub Ca, Ka @ndpa, which are at the same time quite controversidl \eery critical to the
laser ablation system design.

All these sources of uncertainty are of epistemature as they correspond to the
present lack of knowledge on the asteroid physacaperties. Due to the nature of the
uncertainty, probability theory would be inadequédemodel and quantify its value,
therefore it is here proposed to use Evidence theobuild a correct uncertainty model

and introduce it in the combined optimal desigthef deflection and spacecraft system.

8.5Construction of the Uncertain Intervals

As mentioned in the introduction, Evidence Theoryll yprovide the theoretical
framework with which to model uncertainties. Anraduction to relevant features of
Evidence Theory is available in Appendix B, thogetlith the references to the related
literature. In this section, the uncertain intesvahd the associated BPA for each uncertain
parameter are defined. Moreover, the situation ickwvthe estimates about the uncertain
intervals and their associated confidence come fildfarent sources will be simulated. In
order to do this, in this study the assumptiorhet the values of uncertain physical and
technological parameters stem from the opinionhoée different experts, as reported in
Table 8.2, Table 8.3 and Table 8.4. Each expentessps its own opinion on the uncertain
intervals and assigns a personal confidence levelath of them. The confidence level
represents the perception that experts have in ¢hen level of knowledge. The opinions
of the three experts could also be in disagreeméhteach other. This disagreement can
be manifold. In the first instance, the experts bawe different opinions on the amplitude
of the interval itself and therefore propose sliglilifferent boundaries. Secondly, even if
the intervals proposed by different experts are same, they can associate to them a
different confidence and therefore estimate difielPAs. Moreover, some experts can
also give a very generic indication that the giygarameter can oscillate between a
minimum and maximum value with equal confidenceiciitorresponds to giving a single
wide interval with BPA equal to 1. And last, thepext can have no opinion at all on some
guantities.

For the technological parameters 7nsa pr, p. @ndpy, the three experts behaves as
follows. Regarding the laser efficiencgxpert ain Table 8.2 is rather conservative and
assigns a high confidence of 70% to the propositi@t the efficiency will be between
40% and 50%; he/she is less confident about thsilpby of achieving efficiencies
comprised between 50% and 60% and therefore thgeceprobability assignment is 30%.
Expert b in Table 8.3, on the other hand is probably nresdistic and assigns only 30%
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confidence to the interval of 480% efficiency, while giving 60% to the 50-60%
efficiency interval and finally introducing anothieterval between 60% and 66.4% with a
confidence of 10%Expert c,in Table 8.4js very optimistic about future developments of
lasers and therefore assigns 100% confidence tcstiitement that lasers could reach
efficiencies between 55% and 66.4%. For the laperciic massgexpert agives 40%
confidence about the specific mass being comphbstdeen 0.005 and 0.01 kg/W while is
more oriented towards higher specific masses initerval of 0.01-0.02 kg/W and
therefore assigns 60% confidence to the laBE&pert h on the other hand, is convinced
that lightweight laser systems are possible andefbee assign 100% to the 0.01-0.02
kg/W. Expert cdoes not give any opinion on this topic (repordsah/a in the table). For
the solar array efficiencygxpert ais again rather sceptical and proposes only ctez\vial
between 20% and 30%, obviously with 100% confidecgoert bsuggests only a 40%
confidence for the 20-30% efficiency range andaadtassigns a 60% confidence about
achieving higher efficiencies comprised between 39d 50%.Expert cagain doesn’t
express any opinion on the topic (reportednés in the table). Regarding the mirror
specific massexpert ais equally oriented towards values between 0.1G8dkg/nf and
0.3 and 0.5 kg/f therefore confidence will be 50% for boExpert bagain proposes only
one interval with 100% confidence for values raggirom 0.3 and 0.5 kg/mExpert c
instead is very optimistic about the developmentligitweight mirrors with specific
masses between 0.01 and 0.05 Kg/finally for the radiatorexpert asuspects that
radiator specific mass will be higher for large iadors like those envisioned for laser
ablation spacecraft and therefore suggests 40%alaes comprised in the 1-2 kdfrand
60% for values between 2 and 4 k@/rExpert bdoesn’t give an opinion on the topic
(reported axn/a in the table) whileexpert cgives a generic indication that the mirror
specific mass will surely be between 1 and 3 Kg/m

As already pointed out in Section 8.4, physicalperties can differ considerably from
one asteroid to the other. At the same time, differsources report different physical
parameters for the same asteroid. Moreover, dataigently limited to ground based
observations and a limited number of fly-by missida only a few NEOs, such as Eros,
Itokawa, Steins and Lutetia. However, these missi@monstrated that the fundamental
nature, composition and geometries of NEOs arelyigariable. Any generic group of
physical characteristics can introduce a significamor within the analysis. Furthermore
substantial error bars iRy Ca, Ka @andpa also exist from the inferred spectra analysis and
shape regularity — including period of rotationynfio and shape model, and surface

propertie$®*1°°1°® For example, available source show a range ofofalers of magnitude
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for the sublimation enthalpy: it is as low as 20P-1/kg for some rare E type asteroids
composed by carbonaceous and Enstatile Chondrités ivcan reach 1.9686-10/kg for
some S type asteroids with Olivine composition. &icum based bodies, the values are
intermediate, around 5-4Q)/kg. In this respect, for examplexpert agives 100%
confidence to enthalpy being generically comprisetiveen values as low as 2.7 40d

as high as 6-£01/kg. Expert bgives more details, proposing only 20% confideforea
lower range between 2.7-21é&nd 16 J/kg for Chondritic objects and assigning inst@@#
confidence to enthalpies comprised in thé-1@686-16 J/kg typical of S-type Olivine
asteroids Expert ¢ while agreeing on the boundaries of this interaaisigns only 30%
confidence to it and also is more persuaded abdiffexent lower interval between 4-°10
and 6- 108 J/kg, to which he assigns a 70% confidence. Amalely, for the specific heat,
most sources reported values between 500 and @@PKYJ, which are typical of Olivine-
based S type asteroid but also of M and C typeé siscLutetia and Mathilde. It is
interesting to note, however, that in some cagestlie E type asteroid Steins the estimates
can range from 470 up to over 750 J/(kg-K). Thaxpert asuggests two uncertain
intervals: the first from 375 to 470 J/(kg-K) wiB®% confidence, and the second one
from 470 to 600 J/(kg-K) with 70% confidence. Alsxpert bproposes this latter range,
but with 40% confidence only. He also proposesghér interval from 600 up to 750
J/(kg-K) with 60% confidenceexpert cgives a generic indication that the specific heat
will be between 470 and 750 J/(kg-K). For the tredroonductivity, the range spans two
orders of magnitude: for common S-type, Olivineibedand for some E type asteroids it is
around 1.47-1.6 W/(m-K); it is as low as 0.2 W/(mfér others like M-type Lutetia and
C-type Mathilde. In this sensexpert aassigns 20% confidence to an interval to a low
interval for relatively rare M/C-type bodies witbr@uctivities comprised between 0.2 and
0.5 W/(m-K). On the other hand, he/she gives 80%hdcassumption that the conductivity
will be between 1.47 and 1.6 W/(m-Kgxpert bis again rather generic giving just a
minimum of 0.2 W/(m-K) and maximum of 2 W/(m-Kgxpert cis unable to give an
opinion (reported asi/a in the table). Regarding the density, sources tepalues
comprised between 1100 and 2000 kyfan most C-type asteroids, and between 2000 and
3700 kg/ni for S-types and some M-type ones. According ts, thpert athinks that S-
type objects will be more common and thereforegassy0% to the latter interval and 30%
to the former. This time to@xpert bis very vague, giving indications of a lower bouatd
1100 kg/ni and an upper at 3700 kginExpert cdisagrees with the lower limit and sets it
at 2000 kg/m instead. Finally, the sublimation temperature shoav more limited

variability, with values around 1700 K for S-typedaup to 1812 K for other examples.
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This small variability is also reflected in the ex{s’ opinion, sinceexpert aassumes the
values related to-§pe asteroids, between 1700 K and 1720 K, with%@onfidence.
Expert bproposes a range spanning 1720-1812 K, again 0% confidence, while
expert cproposes a wider range from 1700 K to 1812 K.

The three sources of information are data-fusddvahg a similar procedure to the one
described by Oberkampf and Heltdh As a representative example, the procedure & her
applied to the data-fusion of the estimates comegrthe laser efficiency. As already
discussed, the opinions given by three experts are:

a. Conservative opinion: “The Laser efficiency will between 40% and 50% with
70% confidence and between 50% and 60% with 30%d=oce”.

b. Realistic opinion: “The Laser efficiency will be taeeen 40% and 50% with
30% confidence, between 50% and 60% with 60% cenfid and between 60%
and 66.4% with 10% confidence”.

c. Optimistic opinion: “The Laser efficiency will beetween 55% and 66.4% with
100% confidence”.

These statements, in mathematical terms can bewas:

U'=[0.4,04 BPA(°U')= 0.7

* Jaz=[0504 BPA(*U?)= 0.

"U'=[0.4,04 BPA(*U')= 0.3
b. 1 U?=[0504 BPA*U?)= 0.6
"U®=[0.6,0.664 BPA"U%)= o.

c. U=[055066} BPA°U)="

Then, to represent and then combine the data diyetine three experts, for each of
them a matrix is constructed as folldws
1. First, one has to list all the possible values éRkperts propose as lower and

upper boundaries for the uncertain intervals. Is ttase the lower boundaries

are[0-4 0.5 0.55 O-Fand upper boundaries a{r@-5 0.6 0-66]4.

2. Then, a lower triangular matri®; is defined for each source of information,
which has as many columns as the possible lowendaries and as many rows
as the possible upper boundaries. Thus, each eleofighis lower triangular
matrix represents a certain interval with its lowwed upper limits. If the expert
has associated a confidence level to that intetirah the element of the matrix

216



assumes that value and is zero otherwise. For deatiye matrix forexpert a
will have the following structure:
04 05 055 0.6

05 | 0.7 0 0 0

0.6 0 0.3 0 0
0.664| O 0 0 0

In the present case, the three matrices are asviall

07 0 0 O
A= 0 0300
N 0 0 00

03 0 0 O
A= 0 06 0 0
o 0 0 0 01

0000
A=l0 00 0
. 0010

At this point the three sets of intervals can bealoimed into a single one by computing

the weighted average of matrices as:

p-KATA® kA

(8.25)

where k,, k,, and k. are weights which can be defined arbitrarily irdearto give
different influence to each source of informatidm.this case, all sources are given the

same importance and therefore the weights areedlltes 1. The resulting matrix is

therefore:

0.3333 O 0 0
A=l O 0.3 0 0
0 0 0.3333 0.033%

from which one derives the uncertain intervals as:
U'=[0.4,0.4 BPA(U')= 0.3333
u®=[0504 BPA(U*’)=03
U®=[0.55,0.664 BPA(U°)= 0.333
U*=[0.6,0.664 BPA(U‘)= 0.033:
A similar procedure was followed for the remainimige uncertain parameters, leading
to the results reported in Table 8.5 and Table 8die that information fusion of different

sources for this specific case is still an operblenm. The use of a weighted average is
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only one possibility. A thorough analysis of thghti information fusion technique is out

the scope of this work.

Table 8.2: Uncertain parameters estimates fronexpert a.

Lower Upper BPA Lower Upper BPA
(KK] 375 470 0.3 0.4 05 07
C
. J 470 600 0.7 & 0.5 06 0.3
o WITK] 0.2 0.5 0.2 n 0.2 0.3 L
m . .
1.47 16 08 SA
/] 1100 2000 0.3 0 0.1 03 05
m
PALES 2000 3700 07 " koMl o3 05 05
TunlK] 1700 1720 ) 0.005 0.01 04
. koWl 001 002 06
Ewnl[d/kg] 2716 616 1 ! 2 04
sub [J/KQ] s : AR [kg/n12] 2 4 06
Table 8.3: Uncertain parameters estimates fronkExpert b.
Lower Upper BPA Lower Upper BPA
470 600 0.4 0.4 0.5 0.3
Ca [J/KgK] n 0.5 0.6 0.6
600 750 0.6 0.6 0.664 0.1
ke [W/MK] 0.2 2 1 Nen 0.2 0.3 0.4
0.3 0.5 0.6
pa [kg/m] 1100 3700 1 Pu kgm?] O3 0.5 1
Tsun [K] 1720 1812 1 A [kg/W] 0.01  0.02 1
2.7-10 10° 0.2
EwolIkal 107 1968610 08 R [kgin] na
Table 8.4: Uncertain parameters estimates fronkxpert c.
Lower Upper BPA Lower Upper BPA
Ca [J/KgK] 470 750 1 . 0.55 0.664 1
Ka [W/mK] n/a Nsa n/a
pa [kg/m’] 2000 3700 1 Py [kg/n?] 0.01 0.05 1
Tsun [K] 1700 1812 1 A [Kg/W] n/a
4-16 6-10 0.7
Esun [J/k 1 3 1
swlhAl ) gege.10 03 AR ki)
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Table 8.5: Uncertain intervals of NEO physical progrties.

Lower Upper BPA
375 470 0.1
470 600 0.3667
CAKOKT 420 750 0.3333
600 750 0.2
0.2 0.5 0.1
ka [W/mK] 1.47 1.6 0.4
0.2 2 0.5
1100 2000 0.1
pa [kg/m] 2000 3700 0.5667
1100 3700 0.3333
1700 1720 0.3333
Tsuw [K] 1720 1812 0.3333
1700 1812 0.3333
2.7-10 10° 0.0667
2.7-16 6-10 0.3333
Ewlkal 1 610  0.2333

10’ 1.9686-10 0.3667

Table 8.6: Uncertain intervals of technological paameters.

Lower Upper BPA
0.4 0.5 0.3333
0.5 0.6 0.3
n 0.55 0.664 0.3333
0.6 0.664 0.0333
0.2 0.3 0.2
Nen 0.3 0.5 0.3
0.2 0.5 0.5
0.3 0.5 0.5
P 0.1 0.3 0.1667
[kg/m’] 0.01 0.05 0.3333
0 0.005 0.01 0.2
t[ka/W]  0.01 0.02 0.8
1 2 0.2
PR [kg/mZ] 1 3 0.5
2 4 0.3

8.6Multi Objective Optimization under Uncertainty

Once the uncertainties on system design and adtgroysical characteristics are

defined, one can try to find the optimal desigrite@ deflection system under uncertainty.

The performance, i.e. the achieved deviation, néedse maximised while minimising a

measure of the cost of the mission, e.g. the nmssspace. According to the spacecraft

system model presented in previous sections, pe#iece and cost can be optimised with

respect to four design parameters: the diameténeofprimary mirrordy, the number of
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spacecrafns, the warning timé,,m (time from the beginning of the deflection actimn
the time of the expected impact with the Earth) d@inel concentration rati€,;. The
performance measure to be maximised is the im@aehpeteb, while the cost measure to
be minimised is the total mass of the formatiogs This leads to a classical Multi
Objective optimisation problem. The impact paramesecomputed by means of the
deflection and ablation model detailed in Sectidgha@hd Section 8.4 while the total system
mass is derived as in Section 8.3.

As a first step one can determine the set of Panatinal solutions for a fixed value of
the uncertain parameteys, 7sa pPr: AL, PMy Esub Tsub Ca, Ka @ndpa. Their value was chosen

15513%53nd are reported in Table 8.7. Moreover, since

according to the available literatt®
at this stage uncertainties are not yet accourttewith Evidence theory, system margins
as in Table 8.1 are included in the model, in orttereplicate the standard system

engineering method to deal with uncertainty.

Table 8.7: Set of fixed values for uncertain paranters.

NEO Physical properties Technological parameters
Parameter Value Parameter Value
Ca [/KgK] 750 n, 0.6
ka [W/mK] 2 Nsa 0.41
pa [kg/m?] 2600 Pu [kg/n?] 0.1

Teun [K] 1800 P [kg/W] 0.005
Esus [J7k0] 5-16 Pr [kg/m] 1.4

Table 8.8: Boundaries for optimization parameters.

Lower Upper
Ay [m] 2 20
nSC l 10
twarn[YrS] 1 8
C 1000 3000

The multi objective optimisation problem to be smlvs:

min[ m,..(x.0) ~b(x,0)] (8.26)

xOD

wherex is the design parameter vector compristrfdy, Nse, twarn, C]", for which the
boundaries are in Table 8.8, amds the vector of uncertain parameters with valimes
Table 8.7. The impact parametbrappears with the minus sign since it has to be
maximised. For the solution of problem (8.26) systamargins are introduced with the

values in Table 8.1.
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Note that the presence of the discrete variahlenakes this a mixed integapnlinear
Multi-Objective optimisation problem. The optimigat problem was solved with MACS2.

When epistemic uncertainties are introduced thro&gidence Theory the MOO
problem (8.26) has to be reformulated in order &ximise the Belief in the optimal value
of impact parameter and total system mass. Fornpadiplem (8.26) would translate into
the MOO under uncertainty:

rPD%xBeI bk u)<v,)

maxBel(m, x.u)<v)

miny,

minv,, (8.27)

The solution of problem would require the compotaof the Belief value for different
design parameters and for different values of tiresholdsv, and v, for all possible
values of the uncertain parametersvithin the uncertain spadd: for eachx, set (B.5)
needs to be computed for each of the functibnand msys for different vy, and v
respectively and the cumulative functions (B.6)chée be independently computed for
bothb andmsys. The identification of the set (B.5) would need tomputation of the max
and min ofb and mss over all the focal elements d. However, the number of focal
elements inU is an exponential function of the number of uraierparametefd’ which
translates into an exponentially increasing nundfeoptimisation problems required to
compute the cumulative quantities in (B.6). In piss; however, the full Belief and
Plausibility curves are not required and one camystonly the worst and best case
scenarios.

The best case scenario corresponds to the desigertainty vectors and thresholds that
yield a Plausibility equal to 0. Below this valuktbe thresholds the deflection mission is
not possible assuming the available body of knogdedf spacecraft systems and asteroid
physical properties. The worst case scenario qooreds to the design, uncertainty vectors
and thresholds that yield a Belief equal to 1. Adthis value of the thresholds the mission
is certainly possible, given the current body obwiedge, but would be suboptimal.

The optimal design vector and thresholds that y@eRklief equal to 1 for all possible
in U can be computed solving the following Multi-Objgetminmaxproblem:

rIlDiQ |: rPDg:Xmsystem(X ,U) [EL?)(_ b(X Y )):|

(8.28)
In fact, for a givenx, the minimum possible threshold value corresporawghe
maximum value ofnsys and b over the whole uncertain spadefor which boundaries are

reported in Table 8.5 and Table 8.6. Because ttel flements ity can be overlapping or
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can be disconnected, the identification of the mmaxn of ms,s and b might be
problematic as one would need to explore each felemhent independently and therefore
face an exponential number of optimisation problemsorder to avoid this exponential
complexity, all focal elements are collected, tlglowan affine transformation, into the unit
hypercubeU such that they are not overlapping or disconnected

The optimal design vector and thresholds that yseRlausibility equal to zero for all
possibleu in U can be computed by solving the following Mu@ibjective minmin
problem:

min[
xOD

MINM,ger(X,U)  min(=b(x ’“))}

(8.29)
Again as before the focal elements are mapped timtounit hypercub&) and the
search is run ovad . Note that, differently from the case of probleBr26), system design

margins are no longer needed and therefore thesdtukyy, ks, ku, k_are all set to 1.
The two mixed integer optimisation problems (8.28y (8.29) are solved with a variant
of MACS2, called MACSZ, as described in the following section.

8.6.1 MACS2v
MACS2v is an algorithm based on MACS2, and is aimed btirspp Multi-Objective
minminminmaxproblems. The steps of the algorithm are sumniisélgorithm 8.1.

Algorithm 8.1 MACS2v

Initialise Population Py
Apply Algorithm Cross-check on population Py and itself
Initialise archives A; and A,
k=0
while Nfeval < Nfeval,max do
Apply individualistic moves and generate trial population P
Apply Algorithm Cross-check between population P; and P
Apply Algorithm Cross-check between population P; and archive A;
Update archive A;
10: k:k+1;Pk<—Pt
11: Apply social moves and generate population Ps
12: Apply Algorithm Cross-check between population Ps and Py
13: Apply Algorithm Cross-check between population Ps and archive A4
14: Update archive Ay
15: Py, +— Ps
16: Validate archive A,
17: end while

A Ul S e

N

MACS2v uses the standard MACS framework to explore tisggdespac®, which has
already been described in detail in Chapter 2.mhi differences lay in the fact that now

the objective functiod(x) is given by:
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J(x) Z[T%Xf' (x ,u)}T l=1,.m (8.30)

wherem is the number of the objective functions. Therefan this algorithm, when a
new candidate solutior is generated, for eadhy a global optimisation to maximidgis
run over the space of uncertain parametémsith probabilityp and the resultin@imax is
associated to the new If no optimisation is run otJ, then the new candidate solution
inherits theu of its parent. Moreover, a number of strategies iatplemented, which
exploit the knowledge in the current population amdhe archive in order to ensure that
theu associated to eachis a maximiser of;. These strategies are described in Algorithm
8.2 and Algorithm 8.3. The first algorithm acts ewuples of solutionsx[,u;] and [;,u],
belonging to two different set§ and S, and cros€hecks whether the local maximum
fi(x,u;'), whereu; lies in a neighbourhood o, is higher tharii(x;,u; ); if so, it associates
this new poimu,-* to x;. Algorithm 8.3 instead is meant to validate thehare and ensures
that, for each objective functidp its best minimisekimin; found so far is really such. In
order to do so, a global search is run d¥emnd the new candidate maximwis checked
against the one currently associated with, | and, if it gives a highd, it replaces it. The

process is repeated until the increask imbelow a certain threshold.

Algorithm 8.2 Cross-check

1: Given two generic sets of solutions .S; and S
2: for all {[x;,u;]} € S; do
3: for all {[x;,u;]} € S; do

4: foralll € {1,...,m} do

5 Compute local maxima f;(x;, u;‘) and f;(x;,u})
6: if fi(xs,u}) > fi(x;,u;) then
7 u; u;f

8: end if

9: if fi(x;j,u}) > fi(x;,u;) then
10: u; < u;

11: end if

12: end for

13: end for

14: end for
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Algorithm 8.3 Validate

1: Given an archive Ay and A — oo
2: foralll € {1,...,m} do
3: while A < tol do

4: imin,l = argming fi(xy, uy)

5: Run global search over U and generate putative global maximum ug
6: if fi(xi,uf) > fi(xi, u;) then

7: u; < uf

8: end if

o: A = fi(xi,ul) — fi(xi, ;)

10: end while

11: end for

8.6.2 Solution of the MO Problems under Uncertainty
The solution of problems (8.28) and (8.29) providee intervals for both the
performance and the design parameters. In partjctida worst case corresponds to the

maximum Belief condition:

y =[x.0] =arg r;giDn[ MaxM, (X 1) maf-b(x U))}
Bel(y) =1 (8.31)

The best case instead corresponds to the minimaosiBility point:

y =[x, u] =arg min[ minm,.,..(x u)  min(=b(x u))}

xOD [ uOU
Pl(y)=0 (8.32)
As a comparison, aminmin problem analogous to (8.32) is solved with the
reintroduction of system design margins. Finallye tBd optimisation problems are
considered both in the case with and without th&amination are solved. In summary, a
total of 8 Pareto curves are generated, 4 eachthfercases with and without the
contamination:

1. deterministi¢ i.e. a biobjective optimisation problem oD as in (8.26). The
system model does include the margins specifietainle 8.1 and constant values
for uncertain parameters u are used as in TableT8& problem is solved with the
standard MACS2.

2. minmax bi-objective optimisation problem as in (8.28heTsystem model doesn’t
include margins. The problem is solved with the fied MACS2.

3. minmin bi-objective optimisation problem as in (8.29heTsystem model doesn’t
include margins. The problem is solved with the mied MACS2.

4. minmin with marginsbi-objective optimisation problem as in (8.29)islanalogous
to the previous one but this time the system matieds include the margins
specified in Table 8.1. The problem is solved wfith modified MACS2.
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Figure 8.6a and Figure 8.6b report the Pareto $rémt thedeterministic minmin and

minmaxproblems, with and without contamination respestiv

Qualitatively, the case with and without contamioratare very similar but Figure 8.6a
shows that, without contamination, the best demmatichievable is one order of magnitude

larger than in the case with contamination (segurfé 8.6b). Since the system model is the

same, the range of total system mass is the sabwhrcases.

The uncertainties in the input parameters trangtatea difference between tineinmin

andminmaxcurves of about two orders of magnitude in atfalmaeviation and one order

of magnitude in system mass. The achievable deviatasily reaches 300° km in the

best case scenario with a total formation masswb&@000 kg, while in the worst case

scenario even with a system mass of i@ the best achievable deviation does not exceed

10" km. This issue is even more apparent in the cagemirror contamination in which
the worst case deviation barely reache$Kif. It is important to point out that the huge

variability in performance does not imply that taser ablation is an unreliable deflection

method as the type of uncertainty is epistemiémitlies instead that: given the present

body of knowledge a reliable deflection mission \Wdorequire a massive system in orbit,

the potential margin for improvement would be cdesable, current knowledge on this
deflection method is too low to provide an exacamjification of its performance. Note

also that the Pareto front for the cas@minwith margins has higher system mass for the

level of deviation attained with respect to thendErdminmincase.

Pareto fronts for Laser system MOP

.| = Deterministic
= = -minmin
== minmax

minmin with margin:

5

4 6 8 10 12
System mass [kg] x1d*

Pareto fronts for Laser system MOP

b [km]

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

-/ == minmax

—— Deterministic
= = =minmin

minmin with marging

L L L L

2 4 6
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Figure 8.6 Multi objective optimization: Pareto fronts a) no contamination b) with
contamination. b is represented in logarithmic scale.

Figure 8.7a and Figure 8.7b show the distributibromtimal design solutions in the
three case studies, without and with contaminatiespectively. The plots present the
values only for three design variables, i.e. thediter of the primary mirror, the number
of spacecraft and the warning time. The concewoinatatio is not reported because all the

optimal design points show the maximum allowed enmtr@tion ratio allowed, i.e. 3000.
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Figure 8.7 Multi objective optimization: Pareto se$ a) no contamination b) with
contamination.

In Figure 8.7 one can clearly identify two diffetdamilies of design solutions in the
minminandminmaxcase. In the latter, solutions with a high numbfespacecraft and a
small diameter of the primary mirror are preferrAdguably, many spacecraft are needed
because the physical properties of the asteroiguk that inducing sublimation requires
a large amount of power; at the same time theieffay of the laser system is much lower
and in particular the radiator mass per unit aeanuch higher and therefore it is
convenient to have many smaller spacecraft, i.th avismaller primary mirror. Coherently
with this, for diametrically opposite reasons, imetminmin case designs with few
spacecraft with large concentrators are preferabhes result brings to an interesting
general conclusion: for low performance componentaonolithic system is suboptimal
with respect to a disaggregated system as the ofassmonolithic system grows faster
than the linear growth of the mass of the disaggfextycounterpart. Note that, although
redundancy was not modelled, the robust analygigesis that a highly redundant system
is preferable in the case of high uncertainty andbsign parameters, as it would be logical
to expect.

Finally one can note that in the case without amimation the maximum warning time
of eight years is always optimal. This is easilplaxed given the fact that the magnitude

of the thrust acceleration is relatively constaalbgit within a minimum and maximum
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values, see Figure 8.5a) and therefore the lorgsri¢ acting on the NEO, the better.
When the contamination of the mirrors is considetbdn the optimal warning time is
around 7.27 years. In this case, in fact, the acagbn profile essentially is reduced to a
single large thrust impulse followed by a pertuidratsome orders of magnitude smaller
than the initial peak (as shown in Figure 8.5b &mlre 8.5c). In this case, thus, the

phasing of the initial pulse becomes extremely irtayt (see Colombo et ).

8.6.3 Belief and Plausibility Analysis
To further analyse the influence of each individuatcertain parameter, five design
points from the solution set of the deterministse& in Figure 8.6a were selected. For each
of them, the belief and plausibility curves for lbdhe impact parametérand the system
mass were reconstructed. The curves were compuitbkd an algorithm based on the
evolutionary binary tree technique in Vasile et>.
1. Given the performance paramefiiand a constant design parameter vegtor
the single objective optimisation problems:
Vo =003, (1)

max

Ve = X3, (X 1) (8.33)

are solved with IDEA over the entire uncertain gpgtven by the unit hypercuhg.

This returns the upper and lower limit for the pemiance parameter.

2. n,valuesy; are defined equally spaced in the inter[\}éyl.-n me] :

3. The initial unit hypercub& is partitioned in two subypercubesJ! andU?.
The “cut” is performed such that it coincides witte boundaries of adjacent
focal elements which form the hypercube. Define Y as the set of sub-
hypercubes)'.

4. For each value of the threshold, the following iterative procedure is
performed:

Bel(vi):o
" PIfy,)=0
b. For each sub-hypercutté OY :

+ Solve problem (45) ot' and stord/k, andVi...

o If Vlmx <V, then:
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Bel(v].) = Bel(vj ) + BP/(\_L'J)
PI(v,)=PI(v,)+BPAT)

» Else, if I)min <V <I)m(, partitionU' into two new suthypercubes

U' andU'?. RemoveU' from Y and addU™ andU'?.

* Repeat step b. until a termination condition is,reed. the maximum
number of partitions has been reached or the dudrerorresponds
to a single focal element and therefore cannot uthér divided.
Alternatively further subdivisions are also avoidéthe BPA ofU'
is lower than a certain threshold, which meansiteatontribution to
the Belief and Plausibility curves would be nedigi

(Note that step b. is to be skipped if problem 3$13as already been solved dh and
the results already stored are used instead).

c. ForeachU"=[U"DY|vji <v, <vn]:

min max

PI(v,)=PI(v,)+BPAT,)

We report here only the curves for designs 1 arfdrithe case without contamination
only. These two are the most relevant since theiyespond to the upper and lower edge of
thedeterministicPareto front (see Figure 8.6a). The curves foother three design points
are qualitatively similar. Figure 8.8a and Figur8iBshow design point 5, corresponding

to the lower left part of the Pareto front, i.enimum mass/minimum deviation.

Belief and Plausibility for b, design nr.5 Belief and Plausibility for System mass, design nr.5
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Figure 8.8 Belief/Plausibility curves for design 5a) impact parameterb b) system mass.

The deviation obtained is indeed very small, gdnogn few tens of meters f@ek1 to
few thousands foPI=0. At the same time, the curves of the system mshssv that it
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cannot be lower than 680 kg but also will not exicéé5 kg even in the worst possible
condition.

Belief and Plausibility for b, design nr.1
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Figure 8.9 Belief/Plausibility curves for design 1a) impact parameterb b) system mass.

Similar observations are applicable to Figure &8d Figure 8.9b, which consider the
design point corresponding to maximum deviation Br@ckimum system mass. In this case
however, the difference between the condition gigl=1 andPI=0 is much wider: ~19
10* km for the impact parametbrand ~1.09- 1092- 1¢ kg for the mass. This means that in
the worst case, a successful deviation is stilleaable, albeit with a small margin, but the
total launch mass of the formation will be quitghiNote that, in the case of design 1, the
performance values for worst and best conditi@e=1 andPI|=0) are coinciding with the
values at upper edge of thenmaxandminmin Pareto fronts respectively, as reported in
Figure 8.6a. This is explained by the fact thatdbsign points corresponding to the upper
edge of thedeterministic minminandminmaxcurves are identical and correspond to the
point with ns=10, dy=20 m andt,,=8 years as in Figure 8.7. However, this is not the
case in general (as already discussed in the prewection) and therefore for example the
performance values for the Bel=1 and PIl=1 condstifor design points 2 to 4 will be
different from the best case and worst case camditdefined by theninminandminmax

Pareto fronts.
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Figure 8.10: Belief/Plausibility curves forb w.r.t. the physical parameters.

It is interesting to observe that the Bel/P| curfa® follows asteppedrend with three
large variations while the mass’ curves have a ngpaelual increase from 0 to 1. This
possibly means that the impact parameter is masflyenced by a single physical
parameter rather than by a combination of manyhefnt In order to identify the most
influent parameter, one can calculate the Belief Blausibility curves for design point 1
with respect to each individual physical parametieite considering the remaining ones as
constants with the values in Table 8.7. This amsalgees not consider the coupling or
interdependency of the parameter and therefore wategrovide a complete picture of the
impact of one uncertain parameter on the systerfonpesince. Nonetheless it gives a

qualitative indication of the relative importandetloe uncertain parameters. The results are
shown in Figure 8.10.
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In Figure 8.10a one sees that in the case of thinsation enthalpy the difference in
impact parameters between the pointBeat1l andPI=0 is much greater than in the four
other cases (Figure 8.10b to Figure 8.10e).

This shows that the wide boundaries introducedhenenthalpy are a driving factor in
determining the wide spreading between the best aad worst case impact paramdter
It also means that, with the current knowledge lom talue of the sublimation enthalpy
(see Table 8.5), a tight enclosure of the perfogeanf the laser ablation system is not

possible.

8.7Conclusions
This chapter presented the combined orbital antesysnodel for the MultObjective

optimisation under uncertainties of the deflectidran asteroid with laser ablation. A fast
and accurate analytical propagation of the Ilowsghrwaeflection action, through
rectification, combined with MACS2, allowed for the fast comjiata of the Pareto set of
optimal solutions for the asteroid deflection peyhl The Multi-Objective optimisation
without accounting for uncertainty showed that splamped laser ablation can easily
achieve considerable NEO deviations with a laun@ssmwithin current or near future
technological capabilities. The uncertainty on samigcal technologies and NEO physical
characteristics were modelled and quantified thinodgidence Theory. By including these
uncertainties in the optimisation process, one aaserve that in the worst case scenario
the effectiveness of the whole concept is sevaretgpromised. The analysis of the Belief
and Plausibility curves has revealed that the mdilon enthalpy is the most critical
uncertain parameter, due to its wide range of \wlukich depends on asteroid type and
also to the disagreement of different sources. @pegmisation Under Uncertainty (OUU)
proposed in this chapter highlighted the key knaolgke areas which will require better
investigation in the near future. Furthermore,ritvides a quantitative measure of which
solutions should be adopted to make the defleatission more robust. A remarkable
result emerging from the OUU is that a multi-spaaécmission is significantly more

resilient against uncertainty than a single-spadeanission with equivalent power.
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Chapter 9.Conclusions

The topic of this dissertation was the Mwlibjective design of LT trajectories and its
applications. Among the objectives, enunciatechatlteginning of this dissertation, there
was the development of an efficient MOO algorithoh,which, MACS2 is the result.
Another key objective was the elaboration of a métiogy for the fast propagation of LT
motion, and this was achieved through the set afytinal formulae and the propagation
techniques of rectification and averaging basedham. A third objective was that of
devising a simple but flexible parameterisatiortted control thrust, which had to be able
to model the typical patterns of LT trajectoriesisTobjective was achieved by the control
parameterisation proposed in Chapter 5 for Muklibhetion trajectories. For long,
rendezvous transfer with few complete revolutiandjfferent strategy was devised, based
on a piecewise constant thrust profile.

The combination of these three techniques formsveegul and efficient set of tools
for the multi-criteria, preliminary design of miesi employing LT propulsion techniques.
It is expect that this means will find their naluagplication in the early stages of the
design of a space mission. In this regard, the sagly on DESTINY presented in Chapter
7 is already a first example of application.

9.1Summary and Findings
In the following the major findings and advancernseate discussed separately along
with a summary of the methods and applications ldgeel in this thesis.

9.1.1 Memetic Multi-Objective Optimisation

One of the main paths of research focused on tkela@ment of an efficient MOO
algorithm, MACS2, which was amply described in Glea®2. MACS2 hybridised the
concept of population-based search with neighbadhexploration. The former was
embodied by the Differential Evolution scheme white the latter a Pattern Search
technique was adopted. In addition, the commorcsete criterion based on Dominance
was supplemented by a criterion based on scalafisbebycheff functions. The latter
allowed for a more uniform distribution of the ptsiron the Pareto Front. Furthermore, the
use of the scalarisation resolves the ambiguityha selection process based purely on
dominance in the case in which dominating soluticasnot be found and there are

multiple non-dominated alternatives. The combimatad these two selection criteria is
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regarded as a key contribution of this researchkwdhe performance of MACS2 was
validated in comparative tests with other staft¢he-art optimisation algorithms, on a set
of benchmark problems. In these test cases, MACK@&ved an equal or better
performance compared to the other algorithms. Qfiquéar interest, was also the good
performance of the algorithm on the test cases mithe than two objectives.

9.1.2 Approximated Analytical Solution of Perturbed Keplerian
Motion

In parallel, a considerable effort was devotedhe teduction of the computational
effort required to propagate the orbital motion enthe effect of a LT acceleration. The
proposed techniques were centred around the sainalffytical formulae described in
Chapter 3. These were derived, by means of petiarbtheory, as a first order solution to
the equations of motion. Four different acceleratpatterns were considered: constant
acceleration in the 8-h reference frame, constant tangential accelerationstant inertial
acceleration, and, perturbation. The numerical tests, presented is dlssertation, have
shown that the combination of accuracy and comjmunal cost of these formulae renders
them advantageous compared to numerical integraotiemes, when a low-to-medium
fidelity propagation is required. Moreover, the abanentioned acceleration patterns can
also be superimposed, allowing for enough flexipito model more complex thrusting
patterns. Compared to other analytical techniquesegmted by previous authors, the scope
of application of the formulae presented here watsrestricted to low-eccentricity orbits.
Moreover, different thrusting patterns can be gdaimultaneously, differently from other
formulations which can handle, for example, onlygentiaf® or inertially fixed
acceleration. The main limitation was the decayahgaccuracy with the increase of the
propagation interval. In order to mitigate the elgoowth over very long propagation arcs,
a technique was implemented, involving the redaifan of the reference conditions used
in the analytical formulae. A by-product of this svdhat, each time the reference
conditions are changed, so can be the perturbatigeleration, which allows for better
describing time-varying acceleration patterns.

The other approach, described in Chapter 5, cordbihe analytical formulae with
orbital averaging techniques. In particular, themfolae were used for accurately and
efficiently computing the variation of the orbitllements over a single orbital revolution.
This is an important innovation compared to exgtiaveraging techniques. In the
numerical tests of Chapter 5, it was shown that #piproach is particularly suited for the
propagation of long, multiple-revolution trajecesi The computational advantage, over
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other numerical integration techniques, was notdwoiThe test case, described at the end
of the chapter, on the dwbit of MEO satellites, also confirmed the abawentioned
flexibility in modelling complex perturbation pattes, like the combination of LT, SRP

andJ, of this case.

9.1.3 Control parameterisation for LT trajectories

Regarding the control parameterisation, the keyahje pursued in this dissertation
was that of having a reduced number of design patensito describe the evolution of the
control thrust. At the same time, these shouldnaflar enough flexibility to model realistic
thrust profiles. The first strategy adopted, préseém Chapter 4, was meant for modelling
interplanetary trajectory arcs, with few (if anyyneplete revolutions around the central
body. It envisioned subdividing the trajectory iraonumber of sub-arcs, each with a
constant acceleration vector in the radial-trarsveeference frame. The propagation was
performed with the rectification method, while thgtimisation of the control parameters
was done here with a Multiple Shooting method. Tienerical tests on Earth to Mars
transfer problems have shown that this approaobwallfor the fast computation of
minimumAV transfers. The resulting bang-bang thrusting patted theAV cost was very
consistent with the solution obtained with a mongensive, high-fidelity model.
Moreover, the 2PBVP solver was combined with MAG82erform a Multi-Objective
analysis for a given launch window.

For multi-revolution transfers, a different apprbagas followed, since subdividing the
trajectory into a high number of sub-arcs wouldenkad to an excessively large number of
design parameters. On the other hand, reducinguhmber of sub-arcs, for example, even
to just one per revolution, would not have allowedcatch the switching pattern over a
revolution, which is typical of these transfers. r Fthese reasons, the control
parameterisation described in Section 5.1 wasdntred, which exploited the assumption
that, over each revolution, the thrusting arcs wecated only around the pericentre and
apocentre and that the in-plane thrust directios alavays aligned with the tangential
direction, in order to maximise the change in odmergy. In this way, the thrust control
over a single revolution could be described witst ja small number of parameters. The
long-term evolution of these parameters was comvely modelled with simple
interpolating functions. As a result of this, tleal set of design parameters was composed
by the parameters of these functions. Additionahpeeters could be easily introduced to
the model, as done, for example, for the out-ofplacceleration component in the
examples of Chapter 5 and in Chapter 6, or foeth&rying thrusting pattern in Chapter 7.
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The optimisation of the control parameters for thizisting model was performed with
a gradientbased method in the test cases of Chapter 5 ahapter 6. In the former
chapter, the solution of the GEO circularisationlgpem provided similar results to those

found in the available literature.

9.1.4 Active Debris Removal

Three case studies were presented in more detaggess the validity of the proposed
methodologies. Chapter 6 presented the interestasg of the MO design of a multi-
rendezvous mission for debris removal. A surrogatelel was introduced for describing
the deorbiting arcs, while the rendezvous arcs weredelled with the control
parameterisation described above. The propagates) performed with theectification
method. This features effectively allowed for louwgr the computational cost of
evaluating each candidate trajectory. Then, thetsol of the MO instances with MACS2
identified the most convenient fetch-and-deorbifusances.

9.1.5 Long-spiral Mission Design

Chapter 7 applied the techniques for MO, LT trajecioptimisation to the preliminary
design of a JAXA mission, DESTINY. The MO formutati enabled to tackle the peculiar
combination of design requirements and system-ddrisonstraints for this mission. In
particular, the first MO runs immediately reveaklbe criticality of the issue of eclipse
mitigation, which severely limited the transfer opginities. The flexibility of the
proposed trajectory model was again put to testesit was easily expanded in order to
introduce a thrusting pattern which maximises thange of argument of perigee. Further
MO runs clearly showed the effectiveness of thidiincation in extending the range of
transfer opportunities. The performance of MACSZ \aés0 put to a test since it had to
deal with 3- to 6-objective (although in the lattarse 2 objectives were spurious) with a
relatively high number of design parameters. Themex dynamics of this orbit raising
trajectory were realistically modelled with orbiaeraging. It is also interesting to note
that, in this case study, a further step was takémregard to the parameter optimisation:
differently from the previous examples, in whicke tbontrol parameter optimisation was
taken care of by a gradient-based algorithm, is thise MACS2 acted directly both on the
control and in other parameters, like departurecleEnd time of flight. In summary, the
data obtained from the MO analysis of the trajggtby means of the proposed tools, gave

the mission designer a wide overview of the retatnerits of the various transfer options.
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9.1.6 Asteroid Deflection Under Uncertainty

In Chapter 8, the interdisciplinary design of acgmaaft constellation for NEO impact
mitigation was formulated as a MOO problem. The-likE dynamics of the NEO
deviating trajectory were conveniently propagateth the analytical formulae. Epistemic
and technological uncertainties, due to various@sj were introduced into the model
through Evidence Theory. A specialised variant oAG&H2, tailored for OUU, was
developed and used to solve the MOO problems. Té@se, at a glance, a good overview
of the worst-case and best-case scenario, as svaleatifying the most critical sources of

uncertainty for the performance of the spacecraistellation.

9.2Future Work

The work in this thesis paved the way to severakjibe new developments. MACS2
has shown to be a powerful framework for implenrenteffective memetic strategies.
Possible improvements will include mixing differdatal search strategies to improve the
performance in the case of multimodal functionshesCassini trajectory one. A possible
path, which has already showed some promise ircohéext of this work, is that of the
hybridisation with the Monotonic Basin Hopping medis.

Another important development field for the MOO @ithm would be that of
introducing heuristic for the explicit treatmentaanstraints. Note that, in this dissertation,
problem constraints were treated implicitly by kO algorithms, for example with
penalties on the objective function (see, for examPection 7.4). An explicit mechanism
for tackling constraints within the optimisationopess would extend the field of
application of the proposed techniques to optinmosgbroblems of even higher complexity.

The multi-rendezvous problem presented in Chapteals suggested a further
extension of the MOO algorithm to mixed continualisz¢rete optimisation problem. This
involves the concurrent optimisation both of diserparameters (e.g. the debris sequence
in this case) and of the continuous ones (thrustilprparameters, departure/rendezvous
times etc.). A tool to solve such a mixed problewuld, for example, allow solving an
optimisation problem similar to that of Chapter tith a higher number of target debris.
In the case Chapter 6 this was limited to five lbbeeacach of the 125 possible sequences
had to be treated separately.

Finally, as for the analytical formulae, futuregasch can be aimed at further extending
the range of acceleration patterns. In particutar,approximate solution for3body

§59 ,160

perturbation could be highly desirable. Some previavork might provide an

important starting point.
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Appendix A.Analytical Integrals

The integrals which appear in the equations in @rep are expressed as:
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Appendix B.Evidence Theory

Evidence Theoryf! 1°7:162.163.164 o DempsteShafer Theory, is a mathematical

framework to model epistemic uncertainty and cannberpreted as a generalisation of
classical probability theory. Epistemic uncertastare typical of the preliminary phase of
the design of a space mission since the expents &ach engineering discipline involved

are asked to provide reasonable estimations regpattie size, mass, power consumption
or performance of individual components. The whalesign process can be

mathematically represented as a multidisciplingrynoisation problem in which a number

of design parameters are uncertain or their valeeise from opinions or estimations.

In Evidence Theory, the values of uncertain or ¥adasign parameters are expressed
by means of intervals with associated belief (degreconfidence in the range of values).
Each expert participating in the design assignsterval and a belief according to their
opinion or rare experimental data. Evidence Thdosgts these epistemic uncertainties
better than probability theory since there is nasom to prefer one distribution function
over another. Ultimately, all the pieces of infotioa associated to each interval are fused
together to yield two cumulative values, Belief &fldusibility, that express the confidence
range in the optimal design point. In particulae ttalue of Belief expresses the lower limit
on the probability that the selected design poamhains optimal (and/or feasible) even
under uncertainties. More precisely it represehts lbwest level of confidence in the

computed value of the cost function (and/or thest@mts).

B.1.Definition of Uncertainty
Uncertainties are usually classified in two disticategories, aleatory and epistemic
uncertainty. According to Heltdfr, the definition of each type is:

* Aleatory Uncertainty arises from what is considered be an inherent
randomness in the behavior of the system underystddso known as:
Stochastic uncertainty, Type A uncertainty, Irrablecuncertainty, Variability,
Objective uncertainty.

e Epistemic Uncertainty arises from a lack of knowjedibout a quantity that is
assumed to have a fixed value in the context @rtiqular analysis. Also known
as: Subjective uncertainty, Type B uncertainty, iRdale uncertainty, State of

Knowledge uncertainty, Ignorance.
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» Error, also called numerical uncertainty, whichdefined as “a recognizable
deficiency in any phase or activity of modellingdasimulation that is not due to
lack of knowledge®®. Such uncertainties are wéhown, and a good

estimation of the error is generally available. sTiioint distinguishes errors
from epistemic uncertainties. Aleatory uncertamtigre due to the random
nature of input data while epistemic ones are gdlyelinked to incomplete

modelling of the physical system, the boundary domts, unexpected failure
modes, etc.

In the case of preliminary space mission desigalyats face both types of uncertainty.
For example, the initial velocity of the spacecrdite gravity model or the solar radiation,
all present aleatory uncertainties. On the othadha good deal of the parameters defining
the characteristics of spacecraft subsystems dr&nmovn a priori and their value cannot
be computed because it depends on other unknovampéers. Therefore their value has to
be first estimated on the basis of previous expedeor educated guesses by a group of

experts. The uncertainty associated to those paeasns therefore epistemic.

B.2.Quantification of Uncertainty in Evidence Theoky
Let one define thérame of discernement/as the set of mutually exclusive elementary

propositions. A possible elementary proposition loarior example
E=u 00y, u] (B.1)
which translates intéthe parameter y is comprised a certain interv@ﬂi,ﬁi] “.Eis

therefore an element of/
Let one define the power s&t’as a set collecting subsetsof One can assign, to each
proposition in2”, a Basic Probability Assignment (BPA), defining tlievel of confidence
in the proposition itself. This corresponds to t®bability of an event in classical
probability theory. The properties which apply ve BPA are as follows:
BPA( E)>0,0 ED2”
BPA(E)=0,0ED2”
BPA(O)=0

> BPA(E)=1

ED2”

(B.2)

Therefore, the BPA is a function that maps the pase¢into [0;1]. The elements &f”
are solely defined by their associated BPA beingtbt positive, and are commonly called

Focal Elements (FE).
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Unlike probability theory, unions and intersectiarfssubsets of//are not necessarily
included in the power set. This means that, givem ¢ventskF and G, evidence on the
eventF G and F n G does not give or require information on eitherrgg& andG. In
contrast to probability theory, the complement mfedement of7/is not necessarily in the
power set. This translates into the fact that goression similar tdP(E)=1-P(E), is not
necessarily true in Evicence Theory. One the contem expression like the following can
apply:

> BPAE)+) BPAED E)=1 (B.3)
i i

With reference to Equation (B.1), this for examppleans that the intervals can not only

“"and the BPA are less

be disconnected, but also overlapping. Therefére power sef
structured than their counterparts of probabilitgdry and allow for greater flexibility in
representing incomplete or contradictory informatio

If the space uncertain parameters is multidimeradjdhe power set is composed by the

Cartesian product of elements of the power setach parameter’s frame of discernment:

2A"B=2 %2 | Given two focal elementSE' = u O[y, y;] and FE; = y D[ﬂj,f{j] ,

for variableu; andu, respectively, the associated BPAFE' x FEj2 is the product of the

BPA of the two corresponding focal elements:
BPA((y, u) 0Ly, yIxy, yl)= BPA I _p ™ 8)0 BRAGL_p~ 3| (B.4)

This also means that, the total number of focahelats for all uncertain parameters is

given by the product of the number of focal eleradat each parameter.

B.3.Belief and Plausibility
Differently from Probability Theory, Evidence Thgowuses two complementary
guantities to measure the cumulative confidenceyetief, in a given proposition: Belief
and Plausibility. To explain their meaning, let atensider a performance parameger
which is a functiorf of the design parametexsand of the uncertain parametetsThe set
of all y which are below a certain threshelé defined as:

Y, ={y: y= f(x,u)< yxO DuO Y

(B.5)
then the Belief and Plausibility associated togh@positiony<v are:
Bel(Y) =Y BPAU)
iOig
PI(Y,)= > BPAU)
e (B.6)
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with

lp={i:0! 0ty
o ={i Ul nfy,) =0 (8.7)

It should be noted thdg is always a subset of, i.e. | Ul and in this sense Belief

and Plausibility can be interpreted as respectitieéy lower and upper boundary for the
likelihood of an event.

To better illustrate how focal elements contribtdeBelief and Plausibility, let one
consider the focal elements in Figure B.1. The leudotted line represents the ¥gt All
focal elements which are fully contained¥n(in green in the figure) belong to the &gt

while those which at least intersect it (the blod the green elements), belong tolget

AN
i

b
7

u

Figure B.1: Focal Elements, Belief and Plausibilitysets.

Differently from the probability of an event and mpposite, Belief and Plausibility are
not strictly complementary. Instead the followinglationships apply, as also shown in
Figure B.2:

Bel( A)+ Bel A<1
PI(A)+PI(A)21

Bel( A)+ PI( A) =1 ©.5)
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Bel(A)

Uncertainty

PI(A)

Bel( A)

Figure B.2: Belief and Plausibility
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