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Abstract

Touch interaction is an increasingly ubiquitous input modality on modern devices. It appears
on devices including phones, tablets, smartwatches and even some recent laptops. Despite
its popularity, touch as an input technology suffers from a high level of measurement un-
certainty. This stems from issues such as the ‘fat finger problem’, where the soft pad of the
finger creates an ambiguous contact region with the screen that must be approximated by a
single touch point. In addition to these physical uncertainties, there are issues of uncertainty
of intent when the user is unsure of the goal of a touch. Perhaps the most common example is
when typing a word, the user may be unsure of the spelling leading to touches on the wrong
keys.

The uncertainty of touch leads to an offset between the user’s intended target and the touch
position recorded by the device. While numerous models have been proposed to model and
correct for these offsets, existing techniques in general have assumed that the offset is a de-
terministic function of the input. We observe that this is not the case — touch also exhibits
a random component. We propose in this dissertation that this property makes touch an ex-
cellent target for analysis using probabilistic techniques from machine learning. These tech-
niques allow us to quantify the uncertainty expressed by a given touch, and the core assertion

of our work is that this allows useful improvements to touch interaction to be obtained.

We show this through a number of studies. In Chapter 4, we apply Gaussian Process regres-
sion to the touch offset problem, producing models which allow very accurate selection of
small targets. In the process, we observe that offsets are both highly non-linear and highly
user-specific. In Chapter 5, we make use of the predictive uncertainty of the GP model
when applied to a soft keyboard — this allows us to obtain key press probabilities which we
combine with a language model to perform autocorrection. In Chapter 6, we introduce an ex-
tension to this framework in which users are given direct control over the level of uncertainty
they express. We show that not only can users control such a system succesfully, they can
use it to improve their performance when typing words not known to the language model.
Finally, in Chapter 7 we show that users’ touch behaviour is signficantly different across
different tasks, particularly for typing compared to pointing tasks. We use this to motivate
an investigation of the use of a sparse regression algorithm, the Relevance Vector Machine,

to train offset models using small amounts of data.
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Chapter 1
Introduction

Touch interaction is a ubiquitous input modality on devices from phones to laptops, and
even on newer technology like smartwatches. However, touch is a process with a high level
of inherent uncertainty. This uncertainty arises from a number of sources. These include:
the ‘fat finger problem’, which describes the fact that the soft pad of the finger creates an
ambiguity in touch location; occlusion, where users obscure the targets they aim at when
touching; sensing issues; and uncertainty of intent — for example, when typing a word the

user might not know the spelling, leading to touches on the wrong keys.

The combined result of these factors is an offset between the targets a user tries to touch and
the position at which their touch is recorded. This has been modelled both in commercial
devices (the original Android keyboard added a 10 pixel vertical shift to all touches) and in
research. However, existing models typically assume that this is a systematic effect and treat

the corrected input as certain. This is not necessarily the case.

Touch also has a random component. If a user tries to accomplish the same task multiple
times, their touches will fall with some random spread. This uncertainty is typically ignored

in existing models of touch, but we believe that this is a mistake.

The random component of touch makes it a candidate for analysis using probabilistic tech-
niques from machine learning. In this thesis, we shall show the results of a number of appli-
cations of such techniques to the touch problem. We show that by taking the uncertainty of
the process into account, performance gains can be made. Moreover, we show that users can
actually make use of a system in which they can explicitly control the level of uncertainty
they express to the system with a touch input, and that this can be be beneficial when entering

text.



1.1. Thesis Statement 2

1.1 Thesis Statement

Touch interaction is ubiquitous on modern mobile devices, but is still prone to inaccuracy
and error. This is due in large part to the inherent uncertainty related to touch, which stems
from a number of sources: ambiguity from the soft finger touching small targets; uncertainty
introduced by the hardware; and uncertainty of intent (e.g. the user being unsure of a word’s
spelling while typing). The core assertion of this work is that by modelling this uncertainty,

the quality of touch interactions can be improved.

We support this assertion through a number of experiments. In particular, we propose that
probabilistic modelling of the offsets between a users intended and recorded touch locations
can be used to allow more accurate selection of small targets. Further, this technique can also
improve the accuracy of typing on a soft keyboard. This improvement is shown through the
results of a number of user studies, highlighting the benefit of implicit uncertainty modelling.
Additionally, this approach is contrasted with an explicit uncertainty model, in which the user
can control the ability of the system to correct their input. We show that both approaches
have merit and can lead to increased performance in the text entry task. Finally, we present
the results of several studies into the training data requirements of the models described in the
rest of the thesis, and a sparse solution which potentially allows these models to be deployed

in the real world with small training sets.

1.2 List of Contributing Papers

The work described in this thesis has led to three conference papers. These are as follows:

1. D. Weir, S. Rogers, R. Murray-Smith, and M. Lochtefeld, “A User-Specific Machine
Learning Approach for Improving Touch Accuracy on Mobile Devices,” in Proceed-
ings of the 25th annual ACM symposium on User interface software and technology
— UIST 12. ACM Press, 2012, pp. 465-476.

2. D. Weir, D. Buschek, and S. Rogers, “Sparse selection of training data for touch
correction systems,” in Proceedings of the 15th international conference on Human-
computer interaction with mobile devices and services — MobileHCI 13. ACM Press,
2013, pp. 404-407.

3. D. Weir, H. Pohl, S. Rogers, K. Vertanen, and P. O. Kristensson, “Uncertain text entry
on mobile devices,” in Proceedings of the 32nd annual ACM conference on Human
factors in computing systems — CHI 14. ACM Press, 2014, pp. 2307-2316
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Chapter 4 of this thesis is based on the first of these papers, Chapters 5 and 6 are based on
the second paper, and Chapter 7 contains elements of the third paper. The analyses given in
this thesis are expanded treatments of the work in the papers, together with some additional

unpublished research.

1.3 Overview of Thesis and Research Contributions

The contributions made by this thesis are:

e A flexible offset model based on Gaussian Processes which describes the non-linear,

user-specific behaviour seen in touch in a fully probabilistic way.

e A text entry system which combines this touch model with a statistical language

model, representing a novel approach to touch variability in the text entry task.

e A study of the use of input pressure as a mechanism for negotiating uncertainty with
a text entry system, in order to prevent autocorrections on words outside the system’s

vocabulary.

e A detailed examination of the differences in touch behaviour across different tasks,
finding that touch behaviour for typing is significantly different than when pointing at
arbitary targets

e An exploration of the use of sparse machine learning techniques to learn touch models

with very small amounts of training data.

The remainder of the thesis is laid out as follows:

Chapter 2 discusses the research literature on which the remainder of the thesis builds. This
includes a thorough explanation of the nature and cause of the problems with touch, and
a review of the techniques that have been proposed to solve these problems. Additionally,
some discussion of the idea of autonomy handover between interactive systems and their

users is given, with examples from previous work.

Chapter 3 introduces the probabilistic modelling techniques used in the rest of the thesis —

Gaussian Process regression and Relevance Vector Machine regression.

Chapter 4 presents the use of Gaussian Process regression to model touch offsets. The
results of a user study demonstrate that offsets are highly non-linear and user-specific, and

that the GP model allows very accurate selection of small targets.

Chapter 5 applies the GP offset model to the text entry task. This makes use of the prob-

abilistic nature of the GP predictions, in conjunction with a statistical language model, to
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build an autocorrect system which is shown in a user study to perform as well as a leading

commercial keyboard.

Chapter 6 presents an alternate interaction approach to our uncertainty model, in which
users are given explicit control over the uncertainty they communicate to the system. This
allows them to prevent unwanted autocorrections when entering text that is not in the vocab-
ulary of a language model. This Chapter makes two contributions: first showing that users
can successfully control such a system; and secondly demonstrating that this control allows

them to enter text with fewer manual corrections.

Chapter 7 discusses the variation of offset behaviour across tasks. It shows that offset mod-
els trained on target acquisition tasks (where users press buttons or crosshairs) do not gen-
eralise well to predicting touch offsets when a user types. This implies that a successful
touch system requires multiple offset models. Given this, it is important to be able to build
these models using as little training data as possible, and to identify which corrective model
to apply at any given time. Thus, the Chapter also investigates the use of Relevance Vector
Machines to build sparse offset models using 10 or fewer training points. It is shown that

even with such a small amount of data, performance gains can be made.

Chapter 8 summarises the work, presents potential avenues for future research, and con-

cludes the thesis.



Chapter 2
Background

Summary. This chapter provides an overview of the relevant research literature related to
this work. This includes a review of touch interaction techniques, the problems inherent to
touch, and existing approaches to improving touch accuracy. In addition, we discuss the

concept of autonomy handover.

2.1 Introduction

This thesis presents a series of models for touch interaction based on some machine learning
techniques, which are discussed in Chapter 3. In particular, these models are designed to
improve the quality of touch interactions on mobile devices. There is an extensive history of
research on touch, and Section 2.2 summarises the important previous work. This includes
the development of touch hardware and the rise of multi-touch, as well as work looking at the
problems facing users of touch technology. A look at existing models for correcting touch

errors is also given.

In addition to modelling and correcting touch errors, the other primary motivation for the
work presented here is the idea of uncertainty handover. This is the concept of allowing
users to control the level of freedom a system has to correct their input, automate a task or
take some ‘smart’ action. This is often useful behaviour, but there are many situations where

users might wish to retain fine control. Section 2.5 gives an overview of work on this subject.
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2.2 Touch Sensing Technology

2.2.1 Early Touch Systems

Touchscreen technology has existed for some time. The first touchscreens were created by
Johnson [2] at the Royal Radar Establishment in 1965. His system was based on the change
in capacitance observed when touching a grid of wires overlaid on a monitor. He envisaged
the use of the technology in improving the efficiency of Air Traffic Controllers, but noted
that the potential applicability might extend to all computer displays. The system was quite

simple, supporting the detection of only a single finger.

Other capacitive touch sensors were developed at CERN [3] in the 1970s to aid in the control
of their particle accelerators. These transparent sensors more closely resemble the technol-

ogy found in modern devices, but were still limited to single touch detection.

Around the same time, the University of Illinois obtained a patent [4] for a touch screen
based on infrared sensing. Fingers were detected when they broke a series of infrared beams
just above the screen. This had the advantage of being able to detect any opaque object near
the screen, unlike capacitive sensors which could detect only capacitive objects like fingers
or metal styli. This technology was commercialised in 1983 in the Hewlett-Packard HP-150

personal computer.

Resistive touch screen technology was first patented by Samuel Hurst in 1975 [5]. Hurst’s
company Elographics also mass produced the first resistive screen in 1982. This technology
works by applying voltages to a series of thin layers and measuring the response. Touches

press the layers together and alter the voltage response, allowing coordinates to be calculated.

Resistive technology has the advantage of being able to work with any stylus-like object,
unlike capacitive screens which only work with capacitive objects like the human finger.
This allows users to operate these screens while wearing gloves or using an arbitary pen,
for example. The technology is also cheap to implement — the most basic implementation
requires only four wires. For this reason resistive technology was the primary choice in
portable devices like PDAs for many years, and has only recently been supplanted by ca-
pacitive screens in the majority of smartphones. One of the primary reasons that capacitive
screens have displaced resistive ones is that resistive sensing can only reliably detect a single
contact area, rather than many as is possible with capacitive screens. Today, resistive screens

are typically found only on low-end phones.
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2.2.2 Multitouch Devices
Optical Sensing

Multitouch sensing — that is, detecting more than one point of contact at a time — was
first developed at the University of Toronto in 1982 [6]. Their system, the Flexible Machine
Interace, consisted of a frosted glass panel with a camera under it. When fingers were in
contact with the panel, they created dark spots which could be observed by the camera and
mapped to touch coordinates in software. This system did not offer any visual feedback, and

acted only as an input device.

Other early camera based multitouch systems include VideoPlace [7] and DigitalDesk [8],
which allowed users to interact with images projected on the environment around them.
These papers broke ground in their creation of multitouch gestures such as ‘pinch-to-zoom’,
which are ubiquitous on modern mobile devices. However, the sensing technology was based

on somewhat clunky camera setups which were expensive and not portable.

Over the course of the next 20 years, a number of tabletop multitouch systems were created,
such as ActiveDesk [9] and DiamondTouch [10]. These systems used rear projected dis-
plays and optical sensing. Additionally, DiamondTouch could distinguish individual users
(or rather, the seats in which they were sitting) to facilitate colocated collaborative work. Wu
and Balakrishnan [11] studied the types of gesture possible in such an environent — includ-
ing multiple fingers, multiple hands, or even multiple users. These tabletop systems were the
forerunners for commercial products such as the Microsoft PixelSense (formerly known as

the Surface) ! which allow natural collaborative interactions.

ThinSight [12] is a thin optical touch sensor which can be embedded behind existing LCD
panels. It uses infrared sensing to detect fingers and parts of the hand close to the sensor
through the display. Touch features are extracted using computer vision techniques. The
authors posit the technology could be used to add multitouch to conventional screens. How-
ever, in recent years the reduction in cost of capacitive sensors has allowed capacitive screens

to be added to commercial laptops, removing the need for this technology.

Resistive Sensing

Resistive touch screens, while very popular in commercial devices, are relatively understud-
ied in the research literature. Of course, these screens have been present on the devices used
for studies on PDAs, but the screen technology itself has seen little innovation compared to

optical or capacitive sensing.

"htp://www.pixelsense.com
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One of the primary drawbacks of resistive screens is that they can normally only report a
single touch point. This is a limitation of the physics of the sensing — multitouch requires
the input space to be scanned in a grid, while resistive screens simply apply a voltage to the
whole screen to get a single coordinate value for each axis. Multitouch implementations have
been demonstrated at technical shows on resistive screens by companies such as Stantum?.
This technology does not seem to have made it to commercial devices, however, and the
implementations are not explained thoroughly. The US Patent Office has also issued a patent

for multitouch input on a resistive panel using a combination of finger and stylus input [13].

This patent was issued in 2010, three years after the release of the iPhone popularised capac-
itive touch technology for multitouch. Resistive screens are now typically found on low-end
devices, which may explain the lack of research focus, and the failure of multitouch to reach

commercial resistive screens.

Capacitive Sensing

Multitouch on capacitive sensors was also pioneered at the University of Toronto. The Fast
Multiple-Touch-Sensitive Input Device (FMTSID) [14, 15] was a tablet capable of sensing
an arbitrary number of touch inputs. It reported both touch locations and an approximation
of the touch pressure (based on area of contact and compression of the capacitve material)
for each finger. Like the Flexible Machine Interface, the FMTSID was an input only device

and could not display information, similar to some modern drawing tablets.

Westerman [16] studied the problem of finger tracking and hand pose estimation as part of
his PhD thesis. He created a number of algorithms for this which were subsequently com-
mercialised by his company FingerWorks. The company sold touch enabled keyboards and
gesture pads which supported a range of multitouch gestures to enhance user productivity.
The company was purchased by Apple and their multitouch algorithms incorporated into the

original iPhone.

Rekimoto introduced SmartSkin [17], a flexible framework for building interactive surfaces
of arbitrary size using a mesh of capactive sensors. This system introduced a number of
bimanual gestures for manipulating objects projected onto the mesh, and was capable of

estimating the distance of a user’s hands from the mesh to a reasonable accuracy.

The development of transparent capacitive multitouch controllers was much slower than the
progression of systems using visual touch tracking. It appears that much of the development
of such systems took place in industry, rather than in the research community, which focused

on optical tracking to a much greater extent. The first product allowing capacitive multitouch

http://www.stantum.com
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and display on the same screen was the Lemur, a music controller released in 2004°. After

that, capacitive touch displays were rare until the introduction of the iPhone in 2007.

Multitouch Mobile Devices

The world’s first smartphone was arguably the IBM Simon, released in 1992. It was certainly
the first phone with a touch screen, and had many interface elements that were a precursor to
the touch interfaces found on phones today. However, it supported only single touches and
was hindered by the processing and network technology of its time, and was discontinued

after only a few months.

The growth of smartphones began seriously in 2007 when the Apple iPhone was announced.
This introduced multitouch movements such as pinch-to-zoom and natural ‘flicking’ gestures
to a wide audience for the first time. Since then, smartphones and related multitouch devices
like tablets and newer laptops have become ubiquitous. The market for these devices is huge
—in 2013, it is estimated that around one billion smartphones were shipped, amounting to
over half of all mobile phones made that year. There is clearly a need for accurate input on
touchscreen devices, but as the next Section will discuss, there are a number of problems

which hinder touch accuracy.

2.3 Problems with Touch

Even early in the development of touchscreens, it was known that there were potential
sources of error. For example, in an early review of touchscreen technology in 1990, Sears
et al. [18] observed that the angle of the screen with respect to the user could introduce bias
in the user’s touch locations. Since then, a wealth of research has been done exploring the

accuracy of touch and the causes of such errors.

2.3.1 Touch Offsets

Studies have shown that users consistently touch below the center of an on-screen target if
the screen is tilted away from them [19, 20]. In the literature this is commonly known as a
touch offset — a mismatch between the user’s intended touch location and the recorded touch
location from the device. Figure 2.1 illustrates an example of this. For a touch aimed at the
crosshair target, centred at position (z,y), the user’s touch has been recorded at position

(«',y'), shown with a circle. These positions are offset from one another by (A, A,).

3www.stantum. com
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Figure 2.1: An example of a touch offset. The user aimed for the crosshair, but the system
recorded their touch at the circle.

Beringer [19] found that the size of the offset increased as the screen was tilted further to-
wards the horizontal. Sears [20] observed an additional effect on the offset based on whether
the screen was mounted above, below or level with the user’s eyeline. It should be noted that
these studies used fixed workstation monitors. On a mobile device, the problem is exacer-
bated since the orientation of the screen can change rapidly. In particular, if a user operates
a smartphone while walking the screen will move around with the impact of their steps and

the observed offsets may become large.

Both Beringer and Sears experimented with algorithms to correct for offsets in software.
They found that such corrective models increased accuracy and decreased selection time in
target acquisition tasks. Moreover, Beringer observed that the observed offsets had a user-
specific component — in general, it was better to adapt the reported touch location based on
a user’s own historical data than to use a model trained on data from multiple users. This
makes the offset problem more pronounced, since it is not possible to learn a single corrective

model.

Figure 2.2 illustrates another complication. It shows the recorded touch locations for two
users when they touched the ‘F’ key on a smartphone 10 times (this data was taken from
Chapter 7). One user (blue squares) has a low mean offset, and all of their touches are close
to the key center. The other (green circles) has a more pronounced offset, touching below
the key center with some touches straying into the key below. Note however that in both
cases, there is a spread in the observed touch locations for a given user. That is, there is a
random component to touch offsets in addition to the systematic component described above.
This also seems to be user specific in some way — the first user’s touches are quite spread
out horizontally, but relatively close vertically, while the second user has a more vertically

spread distribution. This creates an additional modelling challenge, and may help to explain
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Touches targetting the "F" key for two users

Figure 2.2: Touch locations for two users targetting the ‘F’ key 10 times on a soft keyboard.

why the probabilistic algorithms applied to touch in this thesis are successful; touch offsets

follow a distribution rather than being an analytic function of the target location.

2.3.2 Baseline Accuracy for Touch

A number of studies have been done exploring the accuracy of touch. Such research typically
aims to find a minimum target size which users are able to acquire with a given accuracy
(95% is a commonly used goal). However, the results and recommendations found in the

literature are quite varied, based on the conditions tested and the hardware used.

Desktop Touchscreens

On a large touch enabled monitor, Sears and Shneiderman found that 99% accuracy could
be achieved for square targets of 8 mm on a side. This relied on the lift-off selection strategy,
where the recorded touch point is taken where the finger leaves the screen, not where it first
makes contact. On the same hardware, using the land-on selection strategy meant that the
same accuracy could only be obtained with buttons of size 23 mm, nearly 3 times larger [21].
This suggests two phases to target acquisition on such screens: an inaccurate initial approach
to the screen followed by a more controlled refinement of the finger location to make a
selection. This prompted the authors to propose that touch screen targetting behaviour should

be modelled by two applications of Fitts’ Law [22], one for each phase.



2.3. Problems with Touch 12

For touch screen keyboards using similar large desktop monitors, Sears et al. [23] showed
that low error rates could be achieved for 8 mm keys but that typing speed rose steadily as

the size of the keys increased to 22.7 mm.

Mobile Devices - Stylus Input

On PDAs, the results were somewhat different. Using a stylus for input, studies have sug-
gested a minimum target size for soft buttons as low as 2.5 mm [24] and as high as 6 mm [25].
These numbers are quite low in comparison to the results above, suggesting stylus input is
more accurate than finger touch. This is not surprising, since the contact area of a stylus was
always smaller than the smallest targets used in these studies. Both of these studies were
based on single selections, and found that targeting speed increased and errors decreased as

button size increased.

However, when investigating stylus typing on PDAs, Mackenzie and Zhang found no effect
on text entry speed between 6-10 mm buttons [26]. This result was confirmed by Sears and
Zha [23] for buttons between 2 and 4 mm. This is unlike the results mentioned above for
typing on a desktop monitor, where speed rose with larger buttons. However, this can be
explained in terms of Fitts’ Law [22], which estimates the motion time (MT) to acquire a

target in terms of the distance D to the target and the width W of the target as:

D

MT =a+blog, (1+W) ;
where a and b are constants. The term log , (1 + %) is called the index of difficulty (ID).
The ID captures the intuition that targets are harder to hit when further away, but easier to
hit when bigger. The text entry studies scaled their keyboards uniformly, so that the interkey
distance and key width changed in proportion to each other and thus the ID was the same for
each condition. It is hence not surprising that the observed entry rate was the same across
conditions. In the target selection studies, the target sizes changed but the distances between
targets did not, so that the ID for each condition was different: thus the observed result that

smaller targets were more difficult to hit.

Mobile Devices - Finger Input

Parhi et al. [27] investigated one-thumb usage on a PDA for both single target (checkboxes or
confirmation buttons, for example) and multiple target (a numeric keypad) selection. They
recommended a minimum size of 9.2 mm for single target tasks and 9.6 mm for multiple
target tasks. This difference is rather small, and while their results showed statistical sig-

nificance, it seems somewhat unlikely that such a small variation in target size would lead



2.3. Problems with Touch 13

to measurable performance differences in general usage. The authors also noted an effect
of button size on entry rate for the multiple target task, even though the Fitts’ Law index of
difficulty was the same across all conditions. They explain this anecdotally by noting that
for conditions where the buttons are smaller than the pad of the thumb, users took extra care
in their selection process. This was not an issue in the stylus text entry experiments, since

the stylus was always smaller than the keys.

Other studies have suggested a range of minimum values for reliably acquiring targets.
Roudaut et al. [28] showed that users could reliably acquire 3 mm targets with their thumbs
while holding a phone in one hand, but only by using a zooming technique which made the
effective target size 9 mm. Vogel and Baudisch [29] used a related zooming method and their
participants were able to acquire 2.6 mm targets with 90% accuracy. Using only the fingers
and no targeting aid, the same accuracy was achieved only for 10 mm targets. Arguably only
the last of these results is relevant, since the introduction of zooming means that those tasks
are no longer direct pointing tasks. Rather, target selection becomes a two stage process

where the zoom must be activated first, followed by pointing in the magnified space.

Holz and Baudisch [30] suggest that using regular finger touch methods, 95% accuracy is
achievable for 8.6 mm targets. Using optical tracking, they suggest that the smallest target
size which users can theoretically acquire is around 2 mm, although their offset techniques

do not reach this limit.

In general, it seems that without corrective methods, users can only reliably acquire targets
of sizes between 9 and 10 mm using finger touch on current devices. Any technique which
allows acquisition of targets smaller than this minimum offers a useful improvement over

commercially available options.

2.3.3 Other Factors Affecting Touch Offsets

In addition to target size and the orientation of the screen with respect to the user’s eyes, a

number of other factors have been shown to affect touch offsets.

For fixed desktop touchscreens, Beringer and Peterson [19] showed that the horizontal offset
changed depending on which hand was used to touch targets, which they thought might be a

result of either visual parallax or the angle of the hand with respect to the screen.

They also found differences in the observed horizontal offsets between a study where users
had to select one from a grid of nine targets, and one where only a single target was shown at
atime. This is an early indication the touch task can have an effect on the offsets. Subsequent

studies have typically not considered this, focusing on the offsets in a specific task.

The way the user holds the device and performs touches has a noticeable effect. Wang and

Ren [31] showed that users have different accuracies depending on which finger they use,
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and that the angle of the finger with respect to the screen also caused accuracy changes. They
found that the thumb and little finger were less accurate for target selection than the other

three fingers.

Azenkot and Zhai [32] looked at text entry accuracy as a function of hand posture. They
found that touch behaviour was significantly different between one-thumb, two-thumb and
index finger usage. They used this to give a set of design recommendations for offsets in

different regions of the screen for the different hand postures.

Goel et al. [33] built WalkType, a system designed to improve text entry for walking users.
This was motivated by the observation that baseline error rates were higher when users
walked and typed. This suggests mobility is also a factor affecting touch, which is reasonable
to expect given the division of user attention and noisy device movements associated with

walking.

All of these factors can contribute to the size and direction of touch offsets. A single model
for increasing touch accuracy is thus extremely difficult to create. A more realistic goal is
a set of models for each of the different scenarios together with a framework for detecting
the usage context. Even this is a difficult proposition, since the range of possible contexts is
potentially infinite. The space of necessary offset models rapidly becomes very large, and

this issue has not yet been addressed by researchers.

Another alternative could be to develop a system which continuously updates an offset model
based on the most recent touches observed. However, this would by nature be quite slow to
adapt when a user changes input technique, say from two-thumb input to one-thumb. From
a Bayesian standpoint, a preferable approach might be to run several offset models at once,
and keep track of their running average accuracy over the past few touches. When a given
model has a consistently lower error over a certain number of touches, its corrections can
actually be applied to the user’s input. Of course, in practice this is likely an unreasonable
computational demand. It also requires the selection of some subset of the possible offset
models as ‘archetypal’ in some sense of the touches we expect to see, a problem which is in
itself difficult.

2.3.4 Causes of Touch Offsets

As described above, touch offsets can vary based on a range of factors. However, there are a
number root causes which can explain much of this variation. First, and perhaps most well
known, is the so-called ‘fat finger problem’ [34]. This is the issue that the area of a user’s
finger in contact with a touchscreen is often greater than the size of the targets they are trying
to touch. Thus, when trying to select from a dense grid of targets, it is easy to inadvertently

touch the wrong one. This problem is notable in text entry, where soft keyboards feature



2.3. Problems with Touch 15

many small, closely arranged targets. For example, the keys on the portrait keyboard of an
iPhone 5 are around 6 mm by 4 mm, but the human thumb is typically much larger than this.
The 50th percentile of thumb width is 23 mm for males and 21 mm for females [35]. Even if
only a third of the thumb is in contact with a touch screen, the touch area is already bigger
than the keys. Users have some ability to control this, since by touching at a sharper angle
or with reduced pressure they can decrease the size of the contact area, but in general the fat

finger problem is a significant source of ambiguity.

The fat finger problem may also be thought of as a mapping issue. The system ultimately
interprets each touch as a single (z,y) coordinate pair, but the finger makes a contact area
which is much bigger than a single pixel. The choice of the algorithm that maps this contact
area to a single point will clearly have an effect on touch accuracy, particularly if the output

of the algorithm does not align with the user’s idea of where they are touching.

A related issue of touch is the occlusion problem [36]. This refers to the fact that as a
touch actually happens, the finger is often occluding content on the screen, making it more
difficult for users to know where they are touching. This lack of feedback to the user in
where they have touched creates an additional source of error. This is closely tied to the fat
finger problem, but also encompasses some slightly more general effects. For example, if
stretching across a soft keyboard with the thumb, the parts of the hand not in contact with
the screen can also occlude the other keys from view. If the next key to be typed is occluded
in this way, the movement of the thumb to that key might be less accurate than if it could be
seen clearly.

Sensing issues can also contribute to the inaccuracy of touch interaction. Typical capacitive
sensors take the values obtained from an array of sensor pads and interpolate the maxima of
these values to obtain a set of (z, y) coordinates. However, a sensor response can be induced
by parts of the finger close to but not touching the array [37]. Thus, the interpolated position
corresponds to the centroid of a region which may not match up to the physical contact area,

introducing another small offset.

Further, capacitive sensors are subject to drift and bias based on their environment — changes
in temperature and ambient electrical activity can affect the observed capacitances [38].
Since the implementations are typically closed, it is difficult to know how sensor manu-
facturers take this into account in their coordinate algorithms. Even if some compensation
1s made, the range of potential usage localities of mobile touchscreen devices precludes the
creation of a universally applicable algorithm. Additionally, the compensations themselves
can introduce new problems. For example, the iPhone applies a small corrective vertical
offset to all touches. If two users on opposite sides of a table try to interact with the phone,
the user looking at the phone upside down will find it difficult to touch accurately because

this offset is now towards them, rather than away as the interface designers intended. These
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effects create additional offset in the reported touch coordinates from devices.

Holz and Baudisch [39] approached the problem from a different direction. Much of the
early work on touch offsets assumed that the fatness of the finger placed a hard limit on
the achievable accuracy for touchscreens. This work reframed the problem as a generalised
perceived input point problem, suggesting that even for a fixed screen, touch offsets are not
just a function of the target location but can be affected by factors such as the 3D angle of the
finger with respect to the screen. They hypothesise that by modelling some of these external

factors, touch accuracy can be improved below the ‘fat finger limit’.

By having participants repeatedly acquire a target on a capacitive touch pad, they showed
that all three of finger yaw, pitch and roll had a significant effect on the observed touch
offset. Using this, the authors built a system which could obtain these angles by scanning
a user’s fingerprints. They were able to compute intended touch locations to a level which
allowed accurate selection of targets smaller than the supposed limit for finger touch —
around 7.9 mm for 95% accuracy, an size reduction of about 20% over the state of the art at

that time.

The authors’ later work further refined their model of touch [30]. Here, they considered
users’ mental models of the touch process as an explanation for the offset problem. They
found evidence that users target using visual features on the dorsal side of their fingers —
for example, aligning the center of their fingernail with the intended target. This makes sense,
since the dorsal side is all that is visible to them while touching. However, in practice the
contact area on the palmar side of the finger does not align with these visual features. Since
capacitive sensing is only able to detect the palmar side, offsets are introduced. Essentially,
the authors pose the problems of touch as perceptual mismatch between sensor and human.
This is in line with the early work of Sears [20], who explained the vertical offset he found

on tilted touchscreens as a parallax effect of the viewing angle.

Using a visual tracking system, they tested accuracy when assuming a range of features were
used to acquire targets. The most successful model was the so-called projected center model.
This assumes that users target by aligning the horizontal center of their finger and the vertical
center of their fingernail with the target in order to touch accurately. Under this model, 95%
touch accuracy was obtained for targets of width 4.9 mm, which is around half the size of
minima reported in other work. Of course, the drawback of this approach is that it relies on
camera tracking of the finger, which is not possible on current mobile devices in everyday
usage environments. Despite this, the conceptual model presented in this work is very useful

in understanding touch.

Recently, work has been done to better understand touch in terms of human motor control, in
the vein of Fitts” Law [22]. Bi et al. [40] proposed a dual-Gaussian-distribution hypothesis to

explain touch targeting behaviour. This says that touch targeting is best modeled by two in-
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dependent Gaussians. One models the basic speed-accuracy tradeoff inherent in the human
motor system, and the other the absolute precision of touch independent of this tradeoff.
From this, they derive Finger-Fitts (or FFitts) Law, an extension of Fitts’ Law formulation
specifically for touch. This was shown in three experiments to better account for the observed
variance in touch points than the original Fitts’ formulation, as well as providing better pre-
dictive power for user performance in a given touch system. Of course, using a mixture of
distributions is likely to fit better than a single one from a purely mathematical perspective,
but the approach here is in line with earlier findings by Sears and Schneiderman[21] that
target acquisition in touch is a two stage process: the finger is first moved to the approximate

location, then fine selection with the fingertip is performed.

Grossman and Balakrishnan [41] give an alternative probabilistic formulation of pointing
behaviour. They note asymmetric effects in the spread of touches in the direction the finger is
moving as compared to the spread in the perpendicular direction. This affects the probability
of a touch aiming at an interface element depending on the direction from which the finger
approaches. This is an indicator that previous touch location may have a bearing on touch

accuracy, and should potentially be considered in corrective models.

2.4 Approaches to Improve Touch Accuracy

The offset problem is well understood in the HCI community, and as touch technology has
grown more popular there has been considerable research effort directed at improving the
accuracy of touch input. Broadly speaking, this research can be divided into three overall

approaches:

e models that explicitly learn a function mapping between recorded and intended touch

locations;

e models that provide some targeting aid or parametric model to improve accuracy, but

do not explicitly model offsets;

e interface-specific models, which rely on knowledge of the task and/or interface layout

to increase accuracy.

There is some overlap between these broad categories. For example, the work in Chapter 5 of
this thesis combines both an offset model and task specific knowledge to increase text entry
accuracy. However, these categories provide a good framework for discussing the relevant

work.
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2.4.1 Offset Models

As described above, Beringer [19] was the first to build an explicit offset model for a desktop
touchscreen. His simple model computed the mean z- and y-offsets from a training block of
108 touches, and applied this to subsequently collected data. This reduced the mean x-offset
from 2mm to 1 mm and the mean y-offset from 1.6 mm to less than 0.3 mm. It was noted
that computing the offset from data from the same user reduced the error more than using
data pooled from a population of users. This is an early indication of the user specificity of

offsets.

Potter et al. [42] employed a small corrective offset such that the reported touch location
was slightly above the finger. The same offset was applied to all users in their study, and
details of how the size of the offset was chosen are not given. Their primary interest was in
comparing the land-on and lift-off selection strategies, but they still reported that this offset
gave an increase in selection accuracy when compared to having the touch point be right

under the finger.

Park et al. [43] studied the optimal placement of soft buttons for one-handed use on a mobile
phone. They divided the screen into 25 rectangular regions of size 13.9x10.4 mm and rated
these according to number of errors and ease of reach by the thumb. As a preliminary study,
they computed the mean offset for touches targeting two of the regions with the highest error
rates, and evaluated a simple offset model that applied these mean offsets to any touches
falling in those regions. This was shown to increase selection accuracy in those regions by
up to 20%, suggesting that even basic offset models can provide a substantial benefit to the

user.

In their attempt to explain the touch offset problem, Holz and Baudisch produced two correc-
tive models. The first was Ridgepad [39], a high precision touch device that scanned a user’s
fingerprints to determine the angle of their finger with respect to the screen. They applied a
corrective offset based on these angles which considerably reduced touch errors. They also
employed optical tracking using an overhead camera [30] to extract visual features of the fin-
ger to aid targeting. The best model for this system assumed the intended touch point was the
projection of the center of the fingernail onto the touch pad. While both of these approaches
significantly reduced error when compared to using the centroid of the touch contact as the
intended point, they require non-standard hardware that cannot be readily used in a mobile
setting. This is a notable drawback given that the majority of touchscreen devices are phones

or tablets.

Roudaut et al. [44] generalised the study of offsets from planar to curved surfaces. They
found a significant effect of curvature on both the size and variability of offsets. Placing
a target on convex curvature (protrusions from a surface) tended to decrease both the mean

offset length and the spread in observed touch locations. On concave surfaces (depressions in
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a surface), the mean offset length was increased but the spread was reduced. There was also
a relationship between the level of curvature and the relative size of the observed increases
and decreases. Spherical displays have been studied in the literature (e.g. [45]) and are
being commercialised by companies such as PufferFish*. Thus a good understanding to how

offsets generalise to arbitrary surfaces is important.

Henze et al. [1] conducted a large scale in-the-wild study of touch behaviour on smart-
phones. They deployed a game to the Android market in which players had to hit a series of
circular targets as quickly as they could. This allowed the authors to collect a large amount
of data about users’ offsets when hitting targets in different areas of the screen and on many
different devices. In total, they logged over 120,000,000 touch event from more than 90,000
installations of the game. Using this data, they learned two offset models. In the first, they
divided the screen into a 30 x 30 grid and learned the mean offset to apply to each grid cell.
In the second, they learned continuous fifth order polynomial functions which mapped the
touch coordinates to offset values. Both models were shown to significantly reduce the num-
ber of missed targets in a follow on evaluation. These functions were learned for all devices
of a given screen resolution, rather than on a user-specific basis, which potentially means the

models learned were not optimal.

The authors later carried out a second study on a similar scale, this time studying text entry
on soft keyboards [46]. They released a second Android game, where players had to type
words as fast as possible in order to gain points. They gathered 47,000,000 keystrokes from
over 70,000 installations. From this they obtained per-key distributions of touch locations
for each device in the dataset, and learned corrective functions for the systematic offsets.
They tested these functions in a follow up study, and showed that they led to a significant
decrease in text entry errors over the default Android keyboard. Again, these results were

not user-specific, creating potential for further improvement of the models.

Buschek et al. [47] studied the way in which offsets vary across devices. They had users
complete a crosshair targeting task on several different smartphones and learned linear re-
gression models for the offsets on each user-device combination. They then demonstrated
that it was possible to learn transfer functions which adapt a user’s offset model from one
device to another, or adapt a user’s model to suit a different user on the same device. This is
useful since it allows a user to change to a new phone and still enjoy the increased touch accu-
racy afforded by an offset model without providing a new set of training data. These adapted
models allowed for more accurate target selection than the device baseline in all cases. An
interesting finding of this work was that adapting based on other users of a given device was
more effective than adapting an individual’s model from another device. This suggests that

there is a bigger difference in offsets across devices than between users on the same device.

*http://www.pufferfishdisplays.co.uk
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However, models tailored to a specific user on a specific device always outperformed pooled

data models for the device, in line with the findings of previous research.

Discussion

A range of techniques to model offsets have been studied: subtraction of the global offset
mean; applying the same offset to any touch in a given region of the screen; continuous
polynomial predictive functions; and corrections based on the angle of the finger with respect
to the screen. Existing research has varied in whether offsets are applied at a device- or user-
specific level, despite evidence that the latter is the superior choice in terms of predictive

accuracy.

The methods described above all make the decision to model offsets as a purely systematic
effects. Even Roudaut et al. [44], who acknowledge that the observed touches for a given
target have a measurable spread, do not account for this random effect in their corrective
model. We believe this is a failing of the existing techniques — what if a touch falls right on
the boundary of two targets? In such a situation a deterministic offset model will assign the
touch with certainty to one of those targets. If instead the uncertainty in the touch location
was modelled, we would be able to say something about the probability that a touch was
intended for each of the targets, potentially allowing the system to make a more ‘intelligent’
response based on other available contextual information. This motivates the probablistic

approach taken to touch in this thesis.

2.4.2 Other Approaches

There are many other approaches that have been shown to increase touch accuracy without

explicitly modelling offsets.

Targeting Aids

A number of techniques exist based around the idea of removing or reducing the effect of
finger occlusion. The most basic of these is the lift-off selection strategy discussed previously
and studied in e.g. [42, 20]. In this, a cursor is shown when the user touches down but
selection is deferred until the finger leaves the screen, allowing fine positioning of the touch

target.

An extension of this is the work of Albinsson and Zhai [48]. This paper introduces a family
of interface widgets that allow pixel level selection of targets on touchscreens. Examples in-
clude CrossKeys, where an initial touch creates a set of crosshairs which can be adjusted with

a set of directional arrows to finely position the intended target; and 2DLever, which places
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an onscreen lever near the original touch, and coarse movements of one end are translated
into fine movements at the other, allowing accurate selection. These tools were shown to be
extremely accurate, but introduce a considerable time burden and take up a large amount of

screen space.

Zooming is another popular targeting aid. For example, TapTap [28] works by introducing
a two stage selection process for touches on a mobile phone. The first touch defines an
area of interest, which is then shown zoomed in a cutout window. A second touch within
this window allows fine selection of targets within the zoomed area. While occlusion is
still possible under this model, in general the zooming was sufficient to select small targets.
However, the drawback is that it doubles the number of touches required, and is thus not

suited for applications such as text entry.

Another zooming technique is described by Olwal and Feiner [49] which involves rubbing
a region of the screen to create a zoomed fisheye view. Targets can then be selected in the
zoomed region. However, the authors did not carry out an evaluation of this technique. It is
likely that zooming again makes target selection simpler, but if the targets are densely packed

(such as on a map) then occlusion can still occur.

Another common idea is to place the selection cursor at an offset to the finger location, so
that the selection process is not occluded. OffsetCursor [42] was the first system to do this.
It was shown that using OffsetCursor reduced errors when compared to standard touch, but
introduced a time penalty to selection. These findings were confirmed by Ren and Moriya

[50] for stylus-based touch devices.

One of the failings of OffsetCursor is that original implementations used a fixed offset for
all touches, which made some areas near the edge of the device untargetable. Later work,
such as that of Esenther and Ryall [51] or Benko et al. [52], used multiple finger pointing to
control the size and direction of the cursor offset, preventing these issues. Their techniques
were also shown to allow more accurate pointing than direct touch, but again they made
selection slower. The additional cognitive load of moving a cursor offset to the finger slows

down the interaction.

An issue of using a cursor offset is that it is unnecessary for large targets. However, all early
implementations of the technique had the offset active for all touches. Shift [29] corrects for
this by combining elements of zooming and offset cursors. For touches where the user needs
no assistance, the system functions like a regular touch screen. For fine target selection,
users press and hold on the screen, causing a zoomed view of the area occluded by the finger
to be shown in an unoccluded cutout window. Moving the finger controls a cursor in this
offset window to allow selection of the occluded targets. This technique performed similarly
to OffsetCursor in terms of accuracy for all targets, and allowed faster selection of large

targets. Further, it was subjectively preferred by users in the study. Both techniques allowed
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accurate selection of 6 pixel targets using fingers on devices designed for use with a stylus.

Similar techniques are also employed on commercial devices. Most smartphone keyboards,
for example, display a shifted image of the currently pressed key when the finger is down to

help prevent occlusion issues.

One important note with regard to these targetting aids as opposed to direct touch input is
that they change the fundamental task by introducing a two stage interaction. Users must
first make the cognitive step to activate the targetting aid, then perform selection in the aided
space. This makes these techniques difficult to compare directly in terms of selection ac-
curacy, since the activation step incurs different time penalties for each technique. Perhaps
information throughput rate might be a better metric to compare these different techniques

in future research.

Back of Device Interaction

A somewhat different approach to the occlusion problem is to move touch interaction to
the back of the device, so that the screen is not occluded at all. Baudisch and Chu [53]
have argued that this is particularly useful for devices with extremely small screens, where
a finger can occlude much of the available display space. In a study using small devices
with screens from 2.4 inches to less than 1 inch, they showed that back of device pointing
allowed accurate target selection regardless of screen size, but front touch (coupled with the
Shift technique described above) failed for screens smaller than 1 inch. This is important as

commercial availability of small touch enabled devices like smartwatches increases.

Back of device input has been shown to be both possible and usable on existing hardware.
BlindSight [54] placed a touch sensitive keypad on the back of a mobile phone so that users
could interact eyes-free while making calls. The authors showed that input accuracy reached
useful levels, and that study participants preferred BlindSight to a visual baseline condi-
tion. HybridTouch [55] allowed users to scroll content on a PDA using back of device drag

gestures, and these were also shown to be popular with participants.

While gestures and pointing on small devices are good, for larger devices back of device
input is quite inaccurate. Wigdor et al. [56] implemented ‘under the table’ touch on a
tabletop display, and found that 4.5 cm targets were necessary for 95% accuracy. This is

considerably larger than the minimum target size reported for other touch systems.

Of course, one of the limiting factors for back of device interaction is the lack of visual feed-
back — users are often unsure where there fingers are touching. To overcome this limitation,
a number of transparent or pseudo-transparent systems have been developed. LucidTouch
[36] uses a rear mounted video camera to keep track of the user’s fingers behind a tablet PC.

An transparent overlay on the screen shows where the user is touching, while still showing
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the regular on-screen interface. Users reacted positively to this technology, but interestingly
only found the overlaid visualisation useful for certain tasks. The authors do not comment
on how fast or accurate users were with this system, reporting only subjective preferences
for the different conditions in the study. This makes it difficult to assess how useful this
technology was for solving the occlusion problem which back of device interaction aims to

solve.

Ohtani et al. [57] looked at the accuracy and selection time on a visually transparent display
allowing both front and back of device touch. They found that users were faster at selecting
targets when using only the front of the display, but more accurate when able to use both front
and back. There was so significant difference in accuracy between front-only and back-only

touch.

There has also been work on using back of device information to improve the user experience
for conventional touch. Mohd Noor et al. [58] used the position of the hand at the back of the
device to predict where and when a touch on the front would occur. These predictions were
accurate to a distance of around 2 cm up to 200 ms before the user touched down. While not
inherently more accurate than other touch models, this approach allows interesting interface
improvements. For example, if we can predict which icon a user will touch, content for
the corresponding application or function can be preloaded to create the illusion of reduced

loading times and a smoother overall user experience.

Schoenleben and Oulasvirta [59] looked at typing using a touch keyboard on the back of a
specially modified tablet. Their system was designed for ten-finger touch typists, keeping the
standard mapping of fingers to keys on the back-of-device keyboard to allow users to transfer
their expertise. After 8 hours of training, participants could type at up to 46.2 words per
minute. Buschek et al. [60] extended this model by adding a machine learning algorithm for
moving the key locations based on the observed typing dynamics of individual users. Their
model included considerations of hand anatomy when weighting potential key movements,

and was shown to provide performance improvements of up to 40% over the basic keyboard.

Particle Filtering

There has also been work on estimating the location (and other features) of a finger near a
touch sensor using techniques from machine learning. In particular, a family of algorithms
known as Sequential Monte Carlo techniques [61] or particle filters have been used. These
algorithms treat the features of the finger — position, angle, width and so on — as random
variables following some distribution. The algorithms approximate this distribution over
time using a set of samples, or particles. The particles at a given time step are generated by

resampling particles from the previous time with probability based on how well they match
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the data observed at the sensors. An advantage of this is that estimates of the uncertainty in

each parameter can be obtained, indicating how certain the system should be about an input.

FingerCloud [62] used a particle filter to track the (z,y, z) position of a finger. Traditional
touch screens only report input when the finger is in contact with the screen, but adding
the third dimension allows interesting new applications. In the paper the authors describe a
single-finger map browsing application where the height of the finger controls the level of
zoom. On existing phones this is typically controlled by pinch gestures, which are difficult

to perform one handed.

In later work, the authors introduced AnglePose [37], which added a number of other fea-
tures to the model of the finger. In particular, the 3D pose of the finger, consisting of posi-
tion, width and yaw, pitch and roll angles, is tracked. A user study showed that explicitly
modelling these features allowed 95% selection accuracy of circular buttons only 6 mm in
diameter. An interpolation of the sensor values, as conventionally used in capacitive touch,
obtained the same accuracy only for 10 mm buttons. The particle filter model was further
shown to be more accurate than an iPhone for selecting densely packed targets. One expla-
nation for the observed increase in accuracy is that modelling the parts of the finger not in
contact with the screen helps to reduce the ‘shadowing’ effect on the sensors described in
Section 2.3.4.

One drawback of the particle filtering approach is the relative computational intensity. A
number of samples from the distribution (often upwards of 100) are maintained, and the
parameter values from these are averaged to produce inputs. The resampling and weight-
ing process for these particles is quite demanding. Additionally, adding multitouch to the
model involves adding a complete set of parameter values for each finger which needs to be
tracked, further increasing the load. Thus, while the technique is accurate and requires no
new interaction metaphor over traditional touch, it requires relatively powerful hardware to

run well.

The main difference between particle filter models and the techniques presented later in this
thesis is that the former requires the specification of a fixed set of parameters of the finger,
while our techniques assume only that a smooth mapping between our inputs and the touch
offsets exists. A fixed finger model has both advantages — it becomes easier to generate
simulated test data — and disadvantages — the assumptions made may not hold in practice.
Both techniques are capable of providing uncertainty estimates, which we consider to be an

advantage for reasons described previously.
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2.4.3 Interface Specific Models

The third category of approaches to improving the accuracy of touch input is those models
which are specific in some way to a particular interface or task. The models discussed so
far have been evaluated for selecting arbitrary targets, without knowledge of the semantic
meaning of those tasks. However, in HCI there is often a great deal of prior knowledge
about a given interaction. For example, in text entry we have information about the relative
likelihood of hitting each letter in the alphabet — ‘t’ is much more common than ‘z’. This
could be further conditioned on what the user has already typed. This Section looks at models

that leverage task-specific knowledge in order to allow more accurate input.

Using Target Location

The most basic form of interface-specific knowledge which can be exploited is the location
of interactive elements on the screen. If we assume that each touch on a device is intended
to accomplish some goal (this is not always the case, but distinguishing accidental from
intentional input is a hard problem), then it can be assumed that the touch was targeting
some button or other interface element on the screen, rather than empty space. Since the
interface for a given task is specified by the designer in advance, we can use use knowledge
of this layout to help the user touch.

An early implementation of this idea is the BubbleCursor [41], a variation on the lift-off
selection strategy where the cursor is a circle with variable area. The cursor expands to
encompass nearby targets, and gives clear visual feedback about what is selected. While
originally presented for use with a mouse, it has since been adapted to function on touch
screens (e.g. by Go and Endo [63]). This cursor prevents the user from failing to select if

their touch should fall in a small gap between buttons.

A similar idea is the Bayesian Touch framework of Bi and Zhai [64]. This builds on the
same authors’ Finger-Fitts Law [40], which was discussed earlier. Essentially this formulates
touch as an uncertain, ambiguous process. Rather than attempting to map finger touches to
one location, their model aims to calculate the probability that a given touch was meant
for each of the on-screen buttons or widgets. The most probable interface element is then
selected, even if the original touch did not fall within its visual boundary (VB). Performing
selection in this manner reduced error rates when compared to VB- or nearest-neighbour-

based selection.



2.4. Approaches to Improve Touch Accuracy 26

Text Entry

Text entry is perhaps the most ubiquitous task on mobile devices, whether it be for email,
SMS, web browsing, or document creation. In addition to knowledge of the layout of the
buttons on the keyboard, we have a great deal of knowledge of the sorts of things that users
type. Extensive statistical analyses of text corpora have given us information about the rel-
ative frequencies of letters and words. This information can be exploited when interpreting

the intented target of a touch.

Many models for text entry rely on using statistical language models to assign probabilities to
letter sequences. Goodman et al. [65] were the first to work with a language model and a soft
keyboard in conjunction. They learned Gaussian distributions for likely key press locations
from historical typing data, and used this to together with the language model probabilities
to search over interpretations of a sequence of touches. This was shown to reduce errors by

a factor of 1.67 over the uncorrected input.

Kristensson and Zhai [66, 67] combined a language model with a shorthand writing system
in SHARK?. Users enter text by drawing ‘sokgraphs’, a gesture consisting of trajectories
that pass through all the letters in a word in order. The system matches words by searching
the lexicon of the language model for words whose letters contain the letters in the gesture.

This was shown to be usable when searching over vocabularies of up to 57,000 words.

The authors later work improved the pattern matching of the keyboard [68]. Using geometric
pattern matching, they were able to identify the intended words for gestures even in cases
where the gesture missed all the letters. This technology was designed with stylus writing in
mind, but has since been commercialised in all major smartphone operating systems, initially
as the ShapeWriter keyboard.

Research has also looked at personalising soft keyboards based on a user’s touch history.
Himberg et al. [69] looked at moving the centroids of the keys on a soft numeric keypad
based on how users targeted those keys. Go and Endo [63] extended this technique to a full
keyboard in CATKey. Both systems displayed visual feedback about how the shapes and
locations of the keys changed over time, but neither study found a significant effect of the
adapatation on accuracy or entry rate. However, users displayed subjective preferences for

the adapted keyboards even though they provided no quantitative benefit.

Findlater and Wobbrock [70] took a similar approach, using a classification approach to as-
sign touches to keys based on a user’s history of previous touches. They compared adaptation
with and without visual feedback, and found that moving the key centroids but not changing
the visual appearance of the keyboard led to a significant improvement in text entry rate.
Visual feedback, on the other hand, had either no effect or in some cases actually decreased

performance. While users may prefer the visual appearance of the updating keyboard layout,
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it appears that this actually hinders them as they continually try to change their behaviour

based on new layouts.

Some models have also had success by adapting the size of key targets based on the next-
letter probabilities from a language model. In BigKey [71], this adaptation was done visually.
For example, if the characters in the current word were ‘th’, the system would make the
vowels and ‘r’ keys bigger as they are more likely to be the next characters typed. This

improved both speed and accuracy over a regular soft keyboard.

Gunawardana et al. [72] performed the same type of key target resizing but hid the visual
effects from the user. However, they noted that this process can sometimes prevent users
from hitting a key entirely if a neighbouring key is much more likely under the language
model. Thus, they added a feature which defines a small ‘anchor’ region at the geometric
center of each key, such that touches on the anchor will always trigger that key regardless
of overlap from resize neighbours. Through simulation, they showed that this approach was

superior to key target resizing alone.

While these resizing algorithms were based on touch data from many users, Rudchenko et
al. [73] showed that additional performance benefits were possible when training on user-
specific data. The personalised models gave a relative improvement of 21.4% over the pooled
data resizing algorithm. This matches the results found for other touch models described
earlier. The paper also introduces a game called Text Text Revolution which can generate
the data needed to train the resizing algorithm. The authors point to games as a good source
of training data for touch models, as playing them is not a burden on the user as an explicit
calibration process might be. This is a similar argument to that given by Henze et al. [1, 46]

in their large scale data gathering through Android games.

Other sensor information can also be leveraged to improve text entry. WalkType [33] com-
bines touch information with data from the accelerometers in a smartphone. It uses a classi-
fication based approach trained on typing data from 16 users to identify the intended keys for
users typing while walking. This was shown to significantly reduce uncorrected errors and
increase typing speed for walking participants. This paper provides evidence that the vari-
ance in a user’s touch distributions is sensitive to the context of use — walking introduces

additional noise.

2.4.4 Limitations of Existing Models

The models described above have all been successful in some respect at improving the touch
experience. There are a number of common themes in terms of the drawbacks and limitations

of these technologies. For example, many rely on custom hardware such as cameras or back
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of device sensing, which makes it unlikely that they can be deployed to existing commercial

devices.

Additionally, many systems are built using historical touch data gathered from many users.
However, numerous studies have shown that touch behaviour is highly user specific, and that
these pooled data models tend to perform worse than equivalent models trained on a user’s

own touches. There is a need for greater attention to this in touch models.

Another common issue is the use of parametric models, such as the polynomials used to de-
scribe offsets by Henze [1] or the ‘hinged rectangle’ finger model used by Rogers et al. [37].
These encode implicit assumptions about touch behaviour which may not hold in practice.
Machine learning offers a number of flexible, non-parametric approaches which make no
such assumptions, but these have thus far gone largely unused by the HCI community. One

of the primary contributions of this thesis is an application of such techniques to touch.

Many approaches to touch also ignore the uncertainty and variability of touch. Offset models
typically assume that there is a fixed offset vector given a single target location, but this is
not the case. The random component of touch offsets is typically neglected, which can lead
to bad decisions about what to do with a given touch. For example, consider a touch falling
between two targets. An uncertain model might assign a probability of 55% that the touch
was intended for the first target and 45% that it was meant for the second. If a certain model
always assigns to the first target (say), information is lost. In typing, having information
about these probabilities could be used to update the assignment of a touch to a key based on

previous or subsequent touches.

Finally, task- or interface-specificity can be looked at as a limitation. While encoding knowl-
edge about the types of touch the system can expect allows for higher input accuracy, it also
introduces the notion that each new interface needs a new touch model. This leads to a po-
tential explosion in the amount of training data which must be collected. It would be better
to have a single model which described touch in a general sense, or — perhaps more rea-
sonably — a small number of models which cover the most common tasks and require only

small amounts of training data.

2.5 Autonomy Handover

Besides the need for accurate methods for touch input, the other primary motivator of the
work in this thesis is the existing work on autonomy handover. This is the idea that in many
interaction tasks, the system will attempt to automate its behaviour in some way to make the
user experience better. However, there may exist situations where this is not what the user
wants — if this is the case, then it is advantageous to have a model where a user can take fine

control in certain situations and prevent automated behaviour from the system.
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As a concrete example, consider text entry. Modern smartphones have sophisticated auto-
correct algorithms which, in the majority of situations, correct for mistakes the user might
make. However, sometimes the user might want to enter a word unknown to autocorrect
— such as proper nouns, words from other languages, or slang — without having their in-
put changed. For example, the Scottish word ‘scunner’ is autocorrected to ‘scanner’ on all
major smartphone operating systems. In a system that allows autonomy handover, the user
should be able to take control and prevent such unwanted autocorrections from happening.
Chapter 6 of this thesis details the creation and evaluation of a text entry system with this
property.

This smooth negotiation of control between user and system has been described as the ‘h-
metaphor’ [74], referring to the analogy of the interplay between a rider and horse. If a rider
makes certain, frequent and deliberate movements, the horse follows instructions exactly. If
the rider’s control is vaguer, the horse will default to learned behaviour patterns and will take
over more control from the rider. The notion of tightening and loosening the reins maps well

to the interaction model described above.

In his doctoral work, Williamson [75] formulated a theoretical framework for interface de-
sign which frames interaction as a continuous control process. Under this model the system
is constantly trying to infer a distribution over potential user goals, and take action accord-
ingly. The idea of autonomy handover is important to this work, as is the representation and
propagation of input uncertainty through the system. Touch is a natural mechanism for such
a representation — we have seen that touch has a natural uncertainty, but that it is typically
ignored when performing input. By modelling this uncertainty, we can potentially obtain

new channels for interactions.

One existing application of this metaphor in a capacitive touch system is FingerCloud [62],
described earlier in the context of a particle filtering system. This system uses the height
of the finger above the sensor (which can be measured up to around 1cm) as a proxy for
certainty in a map-browsing application. The browser has a built-in set of interesting loca-
tions, and when the finger is held high above the screen it tends to gravitate the view towards
these locations. This corresponds to a situation where the user is looking at the map near
them but does not have a destination in mind — they want the system to show them inter-
esting places. However, when they have a goal in mind they can touch close to the sensor,

indicating certainty and preventing unwanted movements of the map.

Schwarz et al. [76] developed a framework for handling interactions with uncertain inputs.
Uncertainty is propagated through the system in a way that defers making a decision until
interaction cannot be made otherwise. This allows the system to maintain multiple hypothe-
ses about what the user is trying to do and update the relative probabilities of these based

on observed sensor information over time. They discuss a number of potential applications
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using this framework, such as allowing selection when a touch covers multiple buttons by
integrating a probability mass function for the touch over the buttons and selecting the more
likely one. A similar approach is proposed to assign mouse clicks to one of a number of

on-screen targets, allowing improved GUI pointing for users with motor impairments.

The same authors later formalised the statistical representation of their framework using
Monte Carlo sampling of the intent distributions [77]. They implemented a mobile app that
could model multiple possible interpretations of a gesture, and update visual feedback as the

probabilities of the different interpretations changed.

Pohl and Murray-Smith framed the process of autonomy handover as a spectrum of interac-
tions ranging from focused to casual [78]. Casual interactions can be utilised in situations
where it is not socially acceptable or physically safe to interact, such as waving a hand over
a phone to pause the music it is playing. Focused interactions are the more usual tasks where
engagement with the device is necessary, such as picking up the phone to search for a new
song to play. The authors propose utilising the volume around a device as the medium for

casual interactions, with the device itself reserved for focused interactions.

In addition to these formulations and systems where uncertainty is explicitly modeled to
control the autonomy tradeoff, this process can also be implicit. For example, although the
authors do not frame it in this way, WalkType [33] can be thought of in these terms. When
the user is walking, the system automatically infers this from the accelerometer readings
and is empowered to make bigger corrections to account for the greater uncertainty in touch
while walking. At slower paces or at rest, the user has more control over their input. The
uncertainty model here is hidden from the user and the control tradeoff is not explicit, but it

does still exist.

2.6 Conclusion

This Chapter has reviewed the literature related to the work that will be presented in the rest
of the thesis. An examination of the problems of touch has been given, with particular focus
on the idea of touch offsets between a user’s intended target and the location reported by the
touchscreen. A discussion of the causes of these offsets followed, along with a look at the
existing models which have been used to model and improve touch. Some of the limitations

of these existing models were discussed as motivation for this thesis.

Additionally, the idea of autonomy handover — negotiation of control between user and sys-
tem using uncertain inputs — was introduced. This important but relatively underused model

of interaction was discussed, and a number of examples from the literature were presented.
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Chapter 3
Bayesian Regression Models

Summary. This chapter introduces a number of statistical techniques which will be impor-
tant throughout the rest of this thesis. In particular, a brief discussion of Bayesian techniques
is given, followed by the introduction of Gaussian Processes (GPs) and Relevance Vector
Machines (RVMs).

3.1 Introduction

This thesis describes the design and implementation of a number of probabilistic models of
touch. To do this, we make use of several existing machine learning algorithms. This chap-
ter describes the Bayesian approach to regression, which is the task of learning continuous
functions which map inputs x to outputs f(x). In an offset modelling task, the inputs are

typically positions recorded by a device, and the outputs are the offsets.

The use of Bayesian regression is motivated by the observation in the previous chapter that
existing offset models have neglected the random component of touch. For example, Henze
et al. [1] used fifth order polynomials to model offsets. This assumes that if a phone records
a user’s touches in a given place, their intended target can be inferred exactly. We have seen
that this is not the case — given a target to touch multiple times, users will touch in slightly

different places at each repetition.

In Bayesian regression, the model predictions are not deterministic values but rather prob-
ability distributions over the output value. From these distributions we can quantify how
uncertain we should be about a given prediction, and use this predictive uncertainty as an
additional input. In particular, in Chapter 5 we use the predictive uncertainty to obtain the

probabilities that a touch on a soft keyboard was intended for each of the keys.

We begin by deriving the general predictive distribution for a Bayesian linear regression

model, and then focus on two closely related models that we shall make use of in later
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chapters — the Relevance Vector Machine (RVM) and Gaussian Process regression.

The GP can model complex non-linear functions without making detailed parametric as-
sumptions about the form of the mapping, and provides robust estimates of the predictive
variance of its predictions. The RVM builds predictive models which are sparse in the train-
ing data, so that predictions are conditioned on only a small subset of the available data. This
allows efficient training and prediction, at the cost of some power in modelling the predictive

variance.

3.2 Bayesian Linear Regression

In this Section, we will define Bayesian linear regression, a probabilistic treatment of a
common data analysis task. We will derive the predictive distributions necessary to perform

inference in this framework.

One of the simplest regression models that is regularly encountered is the best fitting straight

line for a set of data. The equation of such a line is
Y = wp + wax,

where w; is the intercept of the line with the y axis and wy, is the gradient of the line. The

regression task consists of finding appropriate values for w; and ws.

This is a specific example of a more general class of models known as linear regression
models. In these, the variable y is expressed as a linear combination of regressands x =

[1,21,...,2p| plus some additive noise ¢, such that

y:xTw+€.

A common assumption is that € follows an independent, identically distributed Gaussian

distribution with zero mean and some variance o>

. The vector w is a set of weights w;,
one for each regressand. Determining these weights is the regression task. We often write
y = f(x) + ¢, with f(x) = x"'w.

There are two approaches to performing inference over w. The first is to find a point estimate.
The second, with which we will primarily be concerned in this Chapter, is the Bayesian

perspective, which aims to infer a probability distribution over w.

Bayes’ rule is a fundamental result in probability theory, which (speaking informally) ex-
presses how belief about the distribution of a quantity should change given the available

data. It states that the posterior distribution p(A|B) of a quantity A conditioned on data B
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is given by:
p(B]A)p(A)

p(B)
p(A) is the prior distribution on A, in which we can encode our initial beliefs about A.
p(B|A), typically called the likelihood, encodes the degree of belief in B given A. p(B) is
the marginal likelihood, encoding the probability of B integrated over all values of A. The

p(A|B) =

marginal likelihood is sometimes called the model evidence.

In Bayesian regression, our task is to find the posterior distribution of w given a set of
observations {x;, y; };*,. Letting X denote a matrix whose i-th column is x; and y a column
vector of the targets y;, we have from Bayes’ rule

_ p(y[X, w)p(w)
P20 =)

It is straightforward to show that the likelihood, assuming the Gaussian noise distribution

mentioned above, may be expressed as
pyIX, w) = N(X'w,o°I),

another Gaussian distribution. I is the NV x NN identity matrix.

We also assume a Gaussian prior on the weights, with covariance matrix

p(w) ~ N(0,%).

It is a standard result in probability theory that if the prior and likelihood are Gaussian, the

posterior will also be Gaussian. In particular, it can be shown that here we obtain
p(wly,X) ~ N(w, A™"),

where A = 0 2XX" + 27" and w = 0~ 2A~'Xy. This distribution is the end result we
are looking for, allowing us to make estimates of the parameters w or perform Bayesian

inference over all possible values.

An established necessity in regression is the process of regularisation, in which the estimated
weights are forced to be ‘small’ in some sense by adding a penalty to the objective function.
This process has two primary benefits. First, it prevents very large weights when the problem
is ill-conditioned, making the regression solutions more stable. Secondly, forcing the weights
to be smaller than the training data might otherwise suggest, the learned models are smoother,
such that they fit the training data slightly worse but can generalise better to unseen test

points. This is the principle of Occam’s Razor — the simplest available model which fits the
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data is often the best.

An advantage of the Bayesian approach to regression is that the assumption that the weights
should be small is included directly into the inference by the specification of the prior. The
¥ 7! term in A is equivalent to the regularisation parameter that would have to be added in a

non-Bayesian treatment.

3.2.1 Predictions

To make predictions on test data with the model derived above, we average over all possible
values for the weights, weighted by their probability. This is a sharp contrast to the non-
Bayesian case, where a single value of the weights (often calculated as the posterior mean
of the weight distribution above) is used to make predictions. The Bayesian treatment gives
a distribution of values of the function output f(x,) at the point x,. Writing f, to denote

f(x4), we have

p(f % X, y) = / p(ful%0, W)p(w|X, y)dw)

= N(o*xIA Xy, xITA x,).

The distribution is again Gaussian, with a mean given by the product of the posterior mean
weight and the test input, which makes sense given the Gaussian distribution of the weights.
The variance is quadratic in the test input, so that there is more uncertainty for larger test

inputs.

3.2.2 Input Projection

Linear models have that name because they are linear in the sense of the weights, not neces-
sarily in the sense of the data. That is, the regressands can each be a potentially non-linear
transformation of the data. For example, consider fitting a cubic model to a set of one di-
mensional data:

Y = w1 + wox + w3’ + wex® + €.

This is a linear combination of regressands which can be written in the form y = x'w + ¢

for x = [1, z, 2%, 237, but the higher powers of x are not linear functions.

More generally, we can consider functions ¢(x) which map D-dimensional inputs x to an M/
dimensional feature space. As long as this mapping is not dependent on w, we can perform
a linear analysis in feature space where we learn M rather than D weights. This allows for

more expressive models which are not simply linear in the data.
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Defining ® as the matrix whose columns are the vectors ¢(x) for all points x in the training
set, the analysis is very similar to the model derived above, with X replaced by ® at all

points. This leads to a predictive distribution
for N0 720 (x.)" AT @y, ¢(x.)" A7 p(x,)),

where now A = ¢ 2®®” + ¥~'. Computing this distribution requires inversion of an
M x M matrix. It can be shown (see Chapter 2 of [79] for a derivation) that this may be

rewritten as

fo ~ N(d(x)ZP(K + 0’I)y,
b(x.) Tp(x.) — p(x.) " TR(K + 0 °I) '@ Tp(x.)), (3.1)

where K = &7 X ®.

This predictive distribution requires inversion of a matrix of size N, the number of data-
points, which may be more convenient if the dimension M of the feature space is very high.

This is the typical equation given for generalised Bayesian linear models.

3.2.3 Hyperparameter Selection

The analysis above makes the implicit assumption that we have knowledge about the prior
distribution of the weights and the noise — that is, we have some good estimate for 0% and
>.. In general this is often not the case. The Bayesian response to this would be to place a
prior on these parameters, obtain a posterior distribution and integrate them out when making
predictions, as we did for the weights above. Unfortunately this typically results in predictive
distributions which are not Gaussian, and often not tractable at all.

It is therefore common to approximate the value of these parameters by their maximum a
posteriori (MAP) values. This means maximising the posterior distributions. A common
choice for the covariance of the prior distribution of the weights is to assume they are all
drawn from the same Gaussian, with variance 02 . These parameters of the priors are typically

called hyperparameters.

Applying Bayes’ rule again, the posterior of the hyperparameters can be written
2 2 )

If we place a uniform prior on the hyperparameters, maximising the posterior becomes equiv-
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alent to maximising p(y|X, 02, 02, the marginal likelihood of the data y. This is given by

p(y[X, 0% 02) = / Py X, w, 0?)p(wlo?)dw ~ A(0, C),

which has zero mean since y is linear in w and the prior on w.has zero mean. The covariance
isC =0+ o20d".

There is no closed form solution for maximising this distribution, so in practice the MAP es-
timates of the hyperparameters are found by gradient minimisation of the negative logarithm
of the marginal likelihood. Tipping [80] gives a description of this procedure, and the good-
ness of the approximation to the predictive distribution obtained by using MAP estimates for

2 2
o and o,

3.3 The Relevance Vector Machine

The Relevance Vector Machine (RVM), introduced by Tipping [80], is a variant of the
Bayesian regression techniques described above. We make use of this algorithm in Chap-
ter 7. It has the property of sparseness, such that all but a small number of the weights in the
model are zero or very close to zero, so that corresponding basis functions are not required
for predictions. Thus, the RVM can make predictions efficiently using only a small subset
of the training data. This is a significant benefit given that offset behaviour varies based
on a range of factors, discussed in Chapter 2. This means that many offset models may be

needed for different conditions, so training models with small amounts of data is an attractive
property.

The RVM is defined similarly to the standard Bayesian regression model, but with a different
prior on the weights. In particular, each weight has an independently defined prior, such that

p(wjloy) ~ N(0,a;1),

J

p(w|A) ~ N(0, A).

This is a joint prior over w with precision hyperparameters A = diag a, where a =

[aq, ..., an] (a precision is an inverse variance).

The basis functions for the RVM are typically, but not necessarily, taken to be Radial Basis

Function (RBF; also called Gaussian) kernels, defined as

—x.|2
o) = esp (<500 ).

There is thus one basis function for each training point x;.
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The derivation of the mean and variance of the distribution over weights for the RVM is very

similar to that for the general Bayesian regression case, and we obtain
w~ N(®T® +2A) '@y, (60 20Td + A) 7).

As in the general case, the prior on the weights acts as a regularisation term, forcing the
weights to be ‘small’. However, rather than being equally penalised by a single variance
o2, each weight in the RVM is individually penalised by its associated hyperparameter. The
larger the value of «;, the smaller the corresponding w;. Sparseness is achieved when some
of the precisions are effectively infinite, making the corresponding weights zero. This prunes

the basis functions with zero weights, so that they have no effect on model predictions.

The learning procedure for the RVM actually causes these sparseness conditions to occur,
such that the resulting model is based on only a small subset of the available data. The

training points which survive are called Relevance Vectors, hence the name of the algorithm.

Figure 3.1 shows an example of an RVM used to fit some one-dimensional data. The training
set consists of 10 points, shown as circles. The four green circles are the relevance vectors —
these are the only points the RVM uses to make predictions. The mean prediction is shown
by a blue line, and the 95% confidence interval of the predictions is shown by the shaded
grey area. Note that these intervals do not encompass all of the data, suggesting the RVM
may be too confident in its predictions. This is worth remembering when employing this

algorithm.

3.3.1 Learning in the RVM

As with the general Bayesian model, the task of training the RVM is equivalent to max-
imising the marginal likelihood of the training data with respect to the hyperparameters, or
equivalently minimising its negative logarithm. The predictive distribution for the weights is
again based on the MAP estimates of the hyperparameters, since a full Bayesian treatment is

not analytically tractable.

In his paper introducing the algorithm, Tipping [80] suggests in general the use of gamma
priors on each of the «; and an inverse gamma prior on ¢, but in practice recommends the
limiting case of improper uninformative uniform priors on these parameters. Additionally,
since all hyperparameters are variances or precisions, they must be positive to have any
meaning, so Tipping proposes to maximize the logarithm of each parameter. In order for the
MAP estimate to be equivalent to marginal likelihood maximisation, the uniform priors have
to be defined in logarithm space, which implies non-uniformity at the linear scale. It is this

choice which is ultimately responsible for the sparseness of the RVM. The reason for this is
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Figure 3.1: The predictive mean and 95% confidence intervals for an RVM trained on the 10
points shown by circles. The four green circles are the relevance vectors — only these are
used for prediction.

quite complicated, and outwith the scope of this work. For a detailed discussion, see Chapter
2in [81].

Expectation Maximisation

Tipping suggests that rather than using direct minimisation of the negative log marginal

likelihod, the RVM should be trained using an Expectation Maximisation algorithm.

This approximate procedure works iteratively, alternating between an Expectation or E-step
and a Maximisation or M-step. A full derivation of the procedure is not given here, but the

E-step consists of computing the mean
p=(®T® +o°A)"'@"y

and variance
L= (c®T®+A)!

of the posterior distribution of w using the current estimates of o and 0.
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The M-step then updates the hyperparameter estimates according to the following equations:

new __ 1
et Ey
(O_Q)new _ Hy — (I)I'I’H2 + TI'[(I)TQE] )

N

The parameter estimates of the «; and o are initialised using a prior, typically gamma or

uniform.

Sequential Training

Both of the algorithms described above for training the RVM share a problem — they both
begin by initialising all the weights to a non-zero value, and thus at least at first the training
process uses all of the data. These algorithms are cubic in N, and this can be a signficant

computational burden.

Indeed, the goal of a sparse algorithm is lower computational load by using only a subset
of the data. In many problem domains datasets are too large to perform the training opera-
tions without the use of a cluster computer. Thus, an alternative training algorithm has been

proposed which starts with all weights set to zero and adds basis functions sequentially [82].

This is based on the observation by Faul and Tipping that as a function of a single o, the op-
timisation of the marginal likelihood can be performed exactly [83]. The full algorithm is not
given here, but essentially in each iteration it computes the increase in marginal likelihood
for all bases not in the model, and adds the one that leads to the biggest increase. This pro-
cess is repeated until the total change in log «x is below a specified threshold, at which point

the marginal likelihood has reached a local maximum and the model is considered trained.

We have not made use of this algorithm in this thesis, since the datasets we consider when ap-
plying the RVM are not large enough to cause computational issues. However, this algorithm

may be useful in the future if implementing sparse regression on mobile devices.

3.4 Gaussian Processes

The approach to regression used in the Bayesian linear regression and RVM models is de-
scribed by Williams [84] as the weight-space view. An equivalent approach which leads
to the same result is the function-space view, where inference is performed over functions.
To perform such inference, we need to define distributions over functions rather than scalar
valued variables. To do this, we introduce the Gaussian process, defined as a collection of

random variables, any finite number of which have a joint Gaussian distribution. This may
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be thought of as a generalisation of the Gaussian distribution which governs the properties

of functions. We will show shortly that this definition implies a distribution over functions.

The motivation for this approach is as follows. In the weight-space view, the form of the
parametric model (the choice of basis functions) and the forms of the priors on the hyper-
parameters can result in a prior distribution on the joint distribution of the function values.
When predicting on test data, the quality of the predictive uncertainty depends on this im-
plicit prior on functions. For many models, these function priors are defined implicitly by
the other choices of the model, which can result in priors with undesirable qualities. In this
case, we may conclude that the prior on functions was itself undesirable, but it was intro-
duced almost accidentally by other assumptions in the model. The function-space view is
motivated by the desire to begin the analysis by explicitly defining a prior over the functions

we expect.

This also avoids the issue of having to select a particular class of function as basis functions
in a parametric model. Rather, the GP (roughly speaking) assigns a prior probability over
all possible functions, and lets us do inference in this space. This framework has a very
attractive property — namely that if we consider functions evaluated at a finite set of points,
we can perform inference and obtain posterior distributions over functions that are identical
to those we would derive if we were able to analyse the infinitely many other points in the
function domain. This framework offers both a sophisticated statistical view of regression

with computational feasability, which is both rare and desirable.

The GP is a collection of random variables which represent the values of the function f(x)
at locations x. Notationally, we index the random variables by the training points x;: f; :=

f(x;) is the random variable corresponding to the training example (x;, ;).

A Gaussian process is specified in terms of a mean function m(x) and a covariance function

k(x,x’). For a process f(x), these are defined as

The mean function is often taken to be zero, though it need not be. In all our usage of GPs,

we will assume a zero mean function.

Given a zero mean function, the important features of the GP are defined entirely by the
covariance function. The choice of covariance function implies a distribution over functions.
We can sample from the distribution of functions evaluated at a certain set of points X,. To
do this, we compute the covariance matrix K (X, X,) where K;; = k(x;,x;) and sample a
vector

f. ~ N (0, K(X,,X,)),



3.4. Gaussian Processes 41

f(x)
f(x)
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(a) Prior Samples. (b) Posterior Samples.

Figure 3.2: (a)Three functions sampled from a random GP prior with a Gaussian covari-
ance function. They have different means but similar characteristic length scales. (b) Three
sample functions from the posterior distribution obtained by training on the points shown as
black squares.

and plot pairs of (x., f.) values. Each vector sampled in this way represents a different

function, evaluated at the points X,.

Figure 3.2(a) shows an example of this using the popular Gaussian covariance function
k(x;,x;) = exp (—l||xz~ — Xj||2).

We can see that the three functions sampled look smooth and have different means, but
appear to have similar characteristic length scales. Informally, this may be thought of as the
distance you have to move in x space before the corresponding function values f(z) become
uncorrelated. The length scale gives a measure of how rapidly the functions can change. The
parameter [ in the covariance function controls this. Multiplying the covariance function by
a constant factor b allows us to scale the overall variance of the random functions. We make

use of this when we use GPs in later chapters.

3.4.1 Predictions

Drawing random samples from a GP prior is not generally interesting. We rather wish to
condition the sampled functions on the training data. According to the GP definition, any
subset of random variables has a joint Gaussian distribution. This therefore means the joint

distribution of the training targets f and the outputs f, at test points X, is Gaussian under the

H ~N(0, [K(X,X) K(X,X*)D_
f, K(X..X) K(X.,X.)

prior. That is,
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The posterior distribution over the test points may be inferred by conditioning this joint prior

on the observations, which yields

£X,, X, f ~ N(K(X,,X)K(X,X)f,
K(X,,X,) - K(X,,X)K(X,X)'K(X,X,)).

Function values at the test points X, can be sampled by computing the mean and covariance

matrix of this Gaussian, and sampling from the multivariate Gaussian they define.

Figure 3.2(b) shows three functions sampled from the posterior distribution obtained by con-
ditioning the prior described above on the four points shown as black squares. The mean
predictive function is shown as a dashed line, and the shaded grey region shows the 95%
confidence region for the GP predictions. Note that the functions interpolate the observa-

tions, and the predictive variances at the data are zero.

Note that his analysis assumes the case of no observation noise, which is rarely the case in
reality. Typically we only observe a noisy variable y = f(x) + €. As in the Bayesian linear
regression model, we assume additive i.i.d. Gaussian noise with variance 2. This gives us a

joint distribution between the observations and test targets of

y Vo KX, X)+0T K(X,X,)

f, KX, X)  K(X.X,)|/)
Again, we condition on the observations we arrive at the predictive distribution

£.|X,, X, f ~ N(K(X,,X)[K(X,X)+ o1y,
K(X,,X,) - K(X,,X)[K(X,X) + oI 'K (X, X,)).

Note that this has the same form as the predictive equation 3.1 for the Bayesian linear re-
gression model with projected inputs, where we have now defined the K(.,.) notation for
compactness. Thus the function-space view leads us to exactly the same results as the weight-

space view.

3.4.2 Learning for the GP

As with the previously described models, the training task consists of optimising the marginal
likelihood of the training data with respect to a set of hyperparameters. The noise variance
o2 is one hyperparameter which is always present, while the others depend on the specific
choice of covariance function. For example, the Gaussian covariance function described

above has one additional hyperparameter, the length scale /.
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The effect of varying the hyperparameters for this covariance function can be seen in Fig-
ure 3.3. We have sampled 10 points from the GP prior defined by a Gaussian covariance of a
given length scale and noise level. These points are indicated by red crosses. Then we have

trained four GPs on these points with different values of the hyperparameters.

-2 -1 0 1 2 -2 -1 0 1 2
X

()l =0.25,02=0.1

2 3 0 1 2 2 3 0 1 2
X
©l=102=0.1 (di=1,02=05

Figure 3.3: Mean predictive functions and 95% confidence intervals for four GPs trained on
the red crosses, each with different hyperparameter values.

Each plot shows the mean predictive function (blue line) and 95% confidence regions (shaded
grey) for one of the GPs. The model in panel (a) was trained using the same length scale and
noise variance as the generating model. The mean function interpolates the data exactly, and
the predictive variance can be seen to increase as we move away from the data points. Panel
(b) shows a model with the same length scale, but higher noise variance. The mean function
no longer interpolates the data, as it is somewhat smoother. The predictive variance is also
larger at all points. Effectively, more of the variation in the data has been explained as noise
rather than fitted by the model.

Panel (c) shows a model with the same noise variance as the original data but a longer length
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scale. The function is less complex than the true model, and the predictions do not match
the data completely — two points fall outside the 95% confidence intervals of the predictive
distribution. Panel (d) shows a model with higher noise and higher length scale than the
generative model. The predictive variance is very high, such that the model accounts for

most of the variation in the data as noise.

Throughout this thesis, we will apply Gaussian Process regression to touch offset modelling,

and will use the following combination of linear and Gaussian covariance terms:
k(x;,x;) =b (axiij + (1 —a)exp {=l|[x; — x;|[3}) + 0%,

where 9;; is 1 if ¢ = j and O otherwise. This choice was made after trying a number of
different covariance functions on data gathered in the next chapter. A discussion of this
process is given in Section 4.2.2. Thus we have four hyperparameters to optimise — a,
which controls the relative balance of the two terms, b, which scales the overall variance, [,

the length scale, and o2, the noise variance.

In Chapters 4 and 5, we optimise these parameters using cross validation on the training data.
In Chapter 7 we use the maximum marginal likelihood method. Both choices lead to good

predictive performance of the offset models.

3.4.3 The RVM as a Gaussian Process

As an interesting aside, we observe that the RVM may be thought of as a special case of a
Gaussian Process, with a particular covariance function, though it is not typically presented

in this way. The covariance is of the form

k(x,x') = Z a—j%(x)ﬁb]’(xl%

<

where the «; are the hyperparameters and ¢,(x) are the basis functions, one for each training

point as before.

This covariance function is somewhat unusual in that it depends on the training data. This
means that the implied prior over functions of this covariance depends on the data, which is

atypical for a Bayesian model. This property leads to some undesirable results.

For a test point x, far from any of the relevance vectors, all of the basis functions will have
a value close to zero. This means the predictive distribution with a mean close to zero and,
crucially, a variance close to zero. That is, the RVM has high certainty for inputs far from
the data. This is the opposite behaviour from what would we expect — the certainty should

be low since we are extrapolating far from the training data.
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Rasmussen and Quinonero-Candela [85] have argued that the root cause of this behaviour is
that the covariance function is degenerate (it has finite dimension). They proposed RVM*, a
modified algorithm, to solve this problem. However, this algorithm is no longer truly sparse,

requiring more data to make good predictions than the RVM.

3.5 Summary and Conclusion

This Chapter has presented an overview of Bayesian regression techniques, with particular
focus on the Relevance Vector Machine and Gaussian Process techniques. Both are powerful
modelling tools which can model complex, non-linear functions by projecting data into high-
dimensional space using a covariance function. The RVM creates solutions which are sparse
in the training data, at the cost of introducing some undesirable features of the predictive

variance.

In the remainder of this thesis we will use these algorithms to model touch. GPs are used
in Chapters 4, 5 and 7 and the RVM is used in Chapter 7. We will make particular use of
the fact that the predictive distribution of the GP can be obtained, including the predictive
variance. We use this in Chapter 5 to compute the probability that a given touch was meant

for each of the keys on a soft keyboard.

There are many aspects of these algorithms which we have not covered in this Chapter since
they are beyond the scope of the work in the thesis. For a detailed description of issues
surrounding Gaussian Processes, including a broad range of covariance function choices and
a comparison with other linear regression models, we refer the interested reader to the work

of Rasmussen and Williams [79].



46

Chapter 4

Modelling Touch Offsets using
Gaussian Processes

Summary. When interacting with touch screen devices, the physical contacts of a user’s
fingers are typically offset from their intended touch locations — that is, the points at which
they aimed. Existing research has focused on building device specific compensation models
for this problem from large datasets. This chapter describes the use of Gaussian Process
regression to model touch offsets. The learned offsets are both highly non-linear and highly
user specific. We find that personalized models outperform those built from data pooled
from many users, echoing results from previous models of touch. The GP approach has the
additional benefit of capturing information about the uncertainty in a user’s touches. The GP

model is shown to outperform techniques from the literature in a target acquisition study.

4.1 Introduction

As discussed in Chapter 2, touch interaction is subject to many sources of error. One of the
primary sources is the well-known “fat finger problem”: through the act of touching, the
user can occlude the targets they are aiming at, and on modern devices the screen resolution
is high enough that targets may be smaller than the contact area between finger and screen.
Further, Holz and Baudisch [30] framed the problem as one of visual perception. That is,
users see only the top of their finger but touch with the underside, and parallax effects can
create a mismatch between their perceived and actual touch points. The combination of
these factors results in a systematic offset between the user’s intended touch location and the

recorded touch location on the device.

As touch devices have become increasingly ubiquitous, there is a clear need for models to

correct for this offset and facilitate accurate input. Text entry is a particularly important use
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case impacted by offsets, since the keys on a soft keyboard are small and densely packed.
The keys on an iPhone 5 portrait keyboard measure 4x6 mm, smaller than the 8-10 mm
minimum target size reported as necessary for 95% accuracy in previous studies of touch.
Thus, even small offsets can result in touches hitting the wrong keys and causing frustration

for users.

As a result, a number of approaches have been proposed to model and correct touch offsets
— these were discussed in Section 2.4. These existing models have one or more of the

following limitations:

e reliance on custom hardware;
e detailed parametric models of the finger, which may not hold in all usage scenarios;

e derived from data pooled from many users.

The last of these is not obviously a drawback, but research has shown (e.g. [19]) that touch
offsets are user specific and that pooled data models perform worse than those tailored to

individual users.

This chapter describes the application of Gaussian Process regression to the touch offset
problem. GPs suffer from none of the drawbacks above: the algorithm can be implemented
on commercial touch hardware, makes no parametric assumptions about the form of the off-
set function, and can be applied on a user-by-user basis. Further, this Chapter demonstrates
the nonlinearity of touch offsets in greater depth than previous work, and investigates the
amount of training data required to train an offset model using Gaussian Processes. This
is one of the only studies that has treated touch as a machine learning problem, which is

perhaps surprising given previous findings about the variability of touch.

Statement of Original Work

The work in this chapter was primarily carried out by the author. The exception is the creation
of the Android logging application described in Section 4.4.5, which was implemented by a
colleague, Markus Lochtefeld. Markus also assisted in running participants through the user

studies mentioned herein.

4.2 Touch as a Machine Learning Problem

The offset modelling problem can be thought of as a regression task where the goal is to learn

a mapping between a set of inputs s and a two dimensonal output vector which is either an
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intended position (z’, ') or a touch offset (A,, A,). This was visualised in Figure 2.1. This
diagram assumes the inputs s are the touch locations recorded by the sensing algorithm on an
existing phone. In this Chapter we also consider an alternative set of inputs: the raw sensor
values from the device screen itself. The former is the typical input for offset models in the
research literature, since raw capacitive sensor values are seldom available on commercial

devices.

Thus there are four possible mappings we can learn:

1. sensor values to intended positions
2. sensor values to offsets
3. device positions to intended positions

4. device positions to offsets

The first and last of these are generally the most useful: sensors to intended positions because
it avoids using any intermediate positions from the device, and device positions to offsets
since it allows a compensation function to be learned which can be applied on top of a

device’s own coordinate reporting.

Note that this work refers primarily to capacitive touch screens — resistive screens were
once popular, but almost all touch devices in the past few years have moved to capacitive
technology. Each phone model has its own algorithm in hardware which converts capacitive
sensor readings into touch positions, and those positions are typically the only information
reported at an operating system level. However, if the capacitive sensor readings are available
directly, they offer a more interesting source of information for computing the intended touch

location.

To see why this is, consider Figure 4.1. This shows the sensor values from a Nokia N9
smartphone for a touch aimed at the white circle (the sensor values on this phone are available
through a debugging interface). The phone is being held in a landscape orientation, and the
touch comes from a user’s left thumb. Some low level noise can be seen in many sensors,
but by far the highest level of activation is seen in the sensors immediately surrounding
the touch area. The device’s reported touch location is shown by the blue circle, and is
offset from the intended target (the white circle). Now consider that if the device is held
in a different orientation or different fingers are used to touch, it may easily be possible to
produce a touch with the same reported location but a different infended location. In this
case, using the recorded location as input creates a problem, since we have the same input
potentially mapped to two (or perhaps even more) outputs. However, in different orientations
and with different fingers, the patterns of activated sensors will be different and thus using

the sensor values as input does not cause the same possible model ambiguity.
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Figure 4.1: Sensor outputs (black = high; white = low) for a touch aimed at the white circle.
The device’s reported touch location is indicated with a blue circle.

For this reason, we use the N9 as the primary device for the experiments in this Chapter. The
availability of the raw sensor values is a significant benefit. However, we will also consider
the use of device position as input, since this is all that is available on the vast majority
of devices. It is worth noting now that using device position as input leads to a potential
explosion in the number of necessary offset models. This issue will be revisited in more
detail in Chapter 7.

Given that the goal is to map complex vectors of sensor values to intended touch points,
Gaussian Processes are a good choice of modelling tool. This is due to the fact that we need

make no parametric assumptions about the form of the mapping function.

4.2.1 Problem Specification

As discussed in Chapter 3, a GP is specified entirely by its mean and covariance functions.
In all of the experiments in this chapter, we use a zero mean function. When predicting
an offset, this corresponds to predicting no offset in the absence of training data. When
predicting touch positions directly, the zero mean corresponds to predicting the center of the
screen in the absence of data (all coordinates are transformed to a unit square centered on the
origin, without loss of generality.) The latter is a harder problem, since the prior of predicting
the center is likely to be less accurate than just predicting the device coordinates, which are
already based on some processing. It is thus likely that more training data are required for
this task.

Note that the GP is typically used to predict one-dimensional outputs, so we have two
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choices. Either we can learn separate models for x- and y-offsets, or we can transform the
2D problem into one dimension. The latter is a more complex problem, since given NV train-
ing points it involves inversion of a matrix of size 2N x 2N, which is more computationally

intensive than inverting two N x N matrices.

The 2D problem can be transformed to one dimension using the following method. Given
N training examples, s1, ...,sy and associated target locations, (z1,y1), ..., (zn,yn), We
first stack all of the locations into a single vector:
T
Z=[T1, .  Tpye e SN YLy Yns - o YN
Note that this does not preclude us from modelling possible dependencies between z,, and

yn (see below). Also, when predicting offsets the vector z is replaced by a vector of offset

values instead of absolute positions.

We now build an N x N covariance matrix, C, where the n, m-th element is calculated by
evaluating the covariance function C'(s,, s,,). This matrix is then stacked up to produce the

full 2N x 2N covariance matrix, C:

C oC
aC C

o)

where « controls the strength of the dependence between z,, and y,,. Formally, the covariance
between x,, and x,, (or y, and y,,) is given by C(s,, s,,) whilst the covariance between z,,
and y,, is given by aC(s,,s,,). If @ = 0, we are effectively using independent regression
models for the x and y locations. This is unlikely to be an accurate assumption — work such
as [65] has found covariances between x and y in the spread of touches when targeting soft

keyboards, for example.

Finally, we assume a small amount of additive Gaussian noise (with variance o?). This
models the random component of touch — a user does not always have the same offset when
targeting the same location multiple times. Additionally, this parameter helps overcome
possible numerical problems resulting from trying to map very similar input sensor values to

different intended touch locations.

Our aim is to be able to predict (z/,y) locations (or offsets values if they were used for
training) for a new set of input values s’. To do this, we create a vector comprising the

covariance function evaluated between s’ and the N input vectors in the training set:

c=[C(s,81),...,C(s,sn)],
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which is then stacked up similarly to the training covariance matrix:

N c ac
c= :
ac ¢
The GP prediction is a 2-dimensional Gaussian with mean and covariance given by:

(@', y) ~ N %)

N -1
Y = Cs’,s’)—E[C+JQI] ¢’

Note that the inversion of the 2/N x 2/N matrix is not prediction specific and can therefore
be done just once after training data has been collected. Note that if o = 0, this predictive
Gaussian will have no covariance between the two dimensions (i.e. the top right and bottom
left elements of ¥ will be equal to zero). Both o and o2 are parameters that need to be

optimised.

4.2.2 Choice of covariance function

Many different covariance functions (sometimes called kernels) have been used for GP re-

gression. Examples include: the Gaussian kernel
C(Sm Sm) = exp {_lHSn - SmHg} )
the linear kernel
C(Sn,Sm) = a + L8,

and the rational quadratic kernel

l —
C(Sn,Sm) = (1 + @HSn - sm||§> :

There are many other possibilities: the work of Rasmussen and Williams [79] gives a thor-
ough review. It is also possible to create composite covariance functions as linear combina-

tions of the basis kernels.

We chose a covariance function for our GP by training models with a range of different
covariance functions, including the Gaussian kernel and linear kernels with and without bias
terms, as well as linear combinations of these. We optimised the hyperparameters for these

functions on touch data for a single user, then tested the predictive performance on all others.
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We achieved best performance using a combination of a linear and Gaussian covariance:
C(Sn,sm) =0 (asr;fsm + (1 —a)exp {—len — sm||§}) ,

where a controls the relative influence of the linear and Gaussian terms and [ controls the
length scale of the Gaussian. Cross validation on @ gives an indication of the non-linearity of
the mapping from the input space to the intended touch location. We shall see later that using
the sensor values as input results in a highly non-linear function, whereas using the device’s
reported touch location as our input gives an even balance of the linear and non-linear terms.
This covariance function provided excellent performance. We shall use it throughout the

thesis when we employ GP offset models.

4.3 User Study

We carried out a user study in order to test the performance of GPs in the offset modelling
task.

4.3.1 Data Collection

We gathered data using a simple data collector written in Python that ran on the Nokia N9.
The software displayed crosshairs on the screen that the users had to touch. The crosshair po-
sitions were randomly generated in lower 50% of the screen: this is the area that is normally
occupied by the landscape keyboard of the N9 to simulate text entry in landscape mode. We
chose a landscape pose since it would require two thumb usage, which we believed would
give more complex offsets than one handed usage and thus present a more taxing modelling

challenge.

The N9’s screen had a display resolution of 480x854, with a physical screen size of 3.9
inches diagonally. Capacitive sensor readings were available through a debug interface at 10

bit resolution, with a sampling rate of approximately 30 Hz.

For each touch on a crosshair, the system recorded the intended location (the on-screen
location of the crosshair), the values of the capacitive sensors and the location reported by
the N9 for the touch event. We took the touch position at the point the user lifted their finger,
rather than the first point of contact. This is standard practice on current phones and has been
shown to be more accurate than the touch down position [20]. After the user lifted the finger

from the screen another crosshair would be displayed immediately.
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Figure 4.2: Experimental setup: participants held the phone in both hands and used their
thumbs to touch.

4.3.2 Participants

We obtained data from a total of 8 participants (3 female), aged between 23 and 34. Par-
ticipants were recruited from our local institution. All but one of our participants owned
smartphones and therefore had experience operating a touch-screen device. All participants
were computing science students or academics, and thus were expert users of information

systems — no novice level users provided data for our study.

4.3.3 Procedure

Participants completed the study while seated in a quiet office environment. Each participant
performed 1000 touches while holding the device in both hands in a landscape orientation
and using their thumbs to touch (see Figure 4.2). All data was recorded in a single session

without breaks, which took between 15 and 20 minutes to complete.

This scenario is representative of a number of potential real cases where users might sit and
tap with both thumbs: typing is one common example; playing games another. We did not
consider the effect of mobility — walking and tapping — in this study but investigate this

further in the next chapter.
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4.3.4 Data Preprocessing

Before building offset models, we rescaled all touch and target locations such that they were
in the unit square centered on the origin. This rescaling was based on the device size, such
that a target at the rightmost edge of the screen would have an x coordinate of 0.5, and a
target at the bottom of the screen a y coordinate of —0.5. In the case where we predict
intended locations from capacitive sensor values, this make the zero mean function of the
GP correspond to the center of the screen. We believe predicting the center of the screen
in the absense of data is a slightly more sensible assumption than predicting the upper left
corner, which is the zero of the device coordinate system. We transform the data back to
a millimeter scale when computing the error on our predictions and recommending target

sizes.

4.4 Results

4.4.1 Prediction from raw sensor values

In our first set of experiments, we use the raw values from the capacitive sensor to predict the
true touch location. We predict the location directly rather than an offset, since in principle
this algorithm could take the place of whatever technique is currently used to predict device

location.

Hyperparameter selection

To choose the covariance hyperparameters, 5-fold cross-validation was performed on the data
for subject 1 over a range of values for a, [, b, v, 0% and the optimal values from this analysis
were then used across all subjects. We chose subject 1 for this analysis. It is important to
note that these parameters control the GP covariance function, which defines how smooth
the resulting predictive functions can be, rather than defining the functions themselves. The

individual models are still learned on a user-specific basis.

In practice this means that the results for subject 1 are likely to be slightly optimistic, and
those for all other users pessimistic. Ideally, a cross-validation would be performed on a
per-user basis but the necessary computation is an unreasonable demand in a mobile setting
— any deployment of the system would have to use predetermined covariance parameters

such as these.

The chosen parameter values were: | = 0.05,b = 5,a = 0.1, = 0.9,0% = 1073, Of

particular interest are the values of a and a. a controls the weighting of the linear and
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Gaussian terms in the covariance function, and a value of 0.1 means that a much greater
weight is assigned to the Gaussian component. This suggests the offsets are highly non-
linear, since the linear term contributes a small amount of the overall offset term. v measures
the covariance between the x and y components of the model. The high value found here
suggests strong covariances between the components, such that the predictive distributions

of the GP are not axis-aligned.

Touch accuracy

The sensor data is pre-processed prior to use by first setting to zero any values that are less
than 150 (we found this was the typical background noise in the absence of touch input) and
then normalising each touch so that the sum of the sensor values is equal to 1. We then train a
GP mapping using these normalised sensor values as input and the intended target locations
as the training targets. The mean of the predictive Gaussian provided by the GP is used as

the inferred touch location.
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Figure 4.3: Target radii required to achieve 95% accuracy for a user’s touches for 400 and

800 training points, when raw sensor values are used as input to the GP. In each case the

blue boxplot shows the target sizes with the GP model, and the red plot the sizes for the
uncorrected touches. Boxplots show the distribution of target size over 10 repetitions.

We use virtual button accuracy as a first error metric, following [37] and [39]. This is com-
puted by assuming a circular button of a given radius is placed around the centre of the
crosshair at which the user was aiming and finding the proportion of touches that would fall
within this button. In Figure 4.3 we show the button radii required to achieve 95% selection
accuracy for a user’s touches. For each user, the blue boxplot shows the target sizes for the
GP model and the red boxplot the sizes for the uncorrected touches recorded by the NO.
The data were analysed for two different sizes N of the training set (400 and 800 touches).
We mentioned in Chapter 2 that previous research has found that 95% accuracy is typically
achieved for uncorrected touches with target sizes between 9 and 10 mm. This corresponds

to the 4.5 to 5 mm range on our plots.
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Figure 4.4: Comparison of performance between the N9 touch events (N9) and our Gaus-
sian Processes predictions using the raw sensor values as input (GP). Top row: Accuracy
for different virtual button sizes (800 training points). Bottom row: Learning curves. Sub-
ject 1 is an average user in terms of relative improvement, subject 3 a user whose offset
behaviour matches the native N9 algorithm, and subject 8 represents a user that doesn’t own
a touchscreen phone.

For each user, we repeated the experiment 10 times. At each repetition, we randomly sam-
pled N = 400 or N = 800 touches from the 1000 touches for each user and used the
remaining (600 or 200) samples for testing. Note that as we are interested in personalised
touch models, separate regression models are trained for each user. The boxplots above show

the distribution in 95% accuracy target size across these repetitions.

For N = 400, we see that for all users except numbers 3 and 5, the GP model performs
better than the N9. The differences between N9 and GP distributions is significant for all
users (paired t-test with Bonferroni corrections, p < 0.05). For the GP, the range in mean
across users of target sizes for 95% accuracy is from 3.35mm to 4.83mm, with an overall

mean of 4.01lmm. For the N9, the range is 3.47mm to 5.3mm, with a mean of 4.28mm.

For N = 800, we see that now only user 3 performs worse with the GP than the N9. With
added training data, predictive performance has improved for user 5. This suggests that 400
training points is not sufficient in all cases to reach optimal performance when using sensor
data as input to the GP. For the GP, mean target sizes range from 2.93mm to 4.4mm, with
an overall mean of 3.6lmm. The range for the N9 is from 3.45mm to 5.21mm, and the

overall mean across all users is 4.28mm. The bigger difference between the means in this
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experiment again supports the argument that 400 touches was an insufficient training set size.

The GP achieves 95% accuracy with targets 0.67mm smaller in radius, or 1.34mm in total
target size. This is small in absolute terms, but fairly large in the relative sense. Consider
that the buttons on the N9 keyboard are only 4.8mm wide — an additional offset of 1.3mm
can easily cause touches to miss their intended key.

To place these results in context, in Figure 4.4 we show more detailed results from subjects
1, 3 and 8 (representing a wide range of performances). These users were selected for close
analysis as they represent a range of performances. Subject 1 is around the middle of the pack
in terms of relative improvement (although they were the most accurate overall), subject 3 is
the user for whom our model gives no improvement, and subject 8 is a user with one of the

largest improvements.

The top plots ((a)-(c)) show the button radius results for buttons of radius 1mm to 7mm. The
solid curve is the performance of the GP regression and the dashed curve that of the N9s
native algorithm. For all subjects, results are indistinguishable at 6mm but large improve-
ments are evident at smaller button sizes for subjects 1 and 8. Subject 3 is the only subject
for which we see no improvement. Inspecting Figure 4.4(b), we can see that both models
perform very well for this subject — both the N9’s algorithm and the GP perform well, and
so very little improvement is possible.

It is also interesting to note that subject 8 is the only user in the study who does not own
a touch-screen device and is a user for which we see very large improvements. This may
mean that the other users, who already had smartphone experience, had adapted their touch
behaviour in some way based on this experience. If true, this would mean offset models allow
novice users to approach expert performance quickly, which is a very attractive property. It
is of course not possible to draw a strong conclusion from a sample of one, but investigating

the touch behaviour of novice users is an interesting potential avenue for future work.

Training set size

The bottom row in Figure 4.4 shows how the root mean squared error between the intended
and inferred touch location (in mm) varies as the training set size increases. The solid line
gives the GP performance and the shaded area shows plus and minus one standard deviation.
This was obtained by randomly taking a subset of touches for training and then testing on
the remainder. The N9 performance is averaged over the same set of test points (variance
in N9 performance was too small to visualise). We notice that for subjects 1 and 8, there is
a large drop up to 400 training examples and then performance appears to plateau. In [1],
participants recorded on average ~ 1000 touches each and therefore our proposed approach

could be trained using data collected in a similar manner. Subject 3 also plateaus at around
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400 training examples, but does not show any improvement. Again however, this can be
explained by the excellent N9 performance for this user (a root mean squared error value of

less than 2mm).

Across all users, this plateau in performance improvement is seen consistently. The largest
performance gains are found up to 300 touches, and each 100 additional points after that
adds a much smaller accuracy increase. We suggest that for a good GP offset model, on the

order of 300 training points should be used.

4.4.2 Prediction from device location

In our second set of experiments, we used the N9’s reported touch location as input instead
of the raw sensor values. This is motivated by the fact that it is not currently possible to

obtain raw sensor data on most touchscreen devices.

We predict an offset value rather than an absolute position. This approach is similar to the
offsets computed in [1] in that it is adding a post-processing step to the device’s reported
touch location but differs in two respects. Firstly, we are learning a continuous, user-specific
offset function which can, in theory, have a different value at any input location and secondly,
the GP regression does not restrict us to any particular parametric function family, such as

the 5th order polynomials used by Henze et al.

Hyperparameter selection

We once again optimise the GP covariance parameters by performing a cross-validation (in
this case using data from user 5; randomly chosen). We use data from a single user to learn

hyperparameters which are used for the whole population, following the same logic as above.

The optimal parameters were: [ = 100,b = 1,a = 0.5, = 0.3,0% = 1073. The value of

= 0.5 shows that in this case the linear and Gaussian terms in the covariance are afforded
equal weight. This suggests the functions learned here are more linear than in the previous
experiment, which intuitively makes sense — the space of possible device positions is much
smaller than the space of possible sensor values, and we can assume that the manufacturer’s
algorithm will make a prediction close to the intended location, otherwise the phone would

be unusable.

Touch accuracy

Figure 4.5 shows distributions of the target sizes required for 95% accuracy across 10 random
training sets for both the GP and the N9’s recorded touch points. Analysis was performed
for two training set sizes, N = 400 and N = 800.
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(a) N = 400. (b) N = 800.

Figure 4.5: Target radii required to achieve 95% accuracy for a user’s touches for 400 and 800
training points, when device position is used as input to the GP. In each case the blue boxplot
shows the target sizes with the GP model, and the red plot the sizes for the uncorrected
touches. Boxplots show the distribution of target size over 10 repetitions.

For N = 400, we see that for all users except number 3, the GP model performs better than
the N9. Recall that when sensor data was used as input, user 5 also performed worse than
the N9 with this training set size. This suggests that using device position as input gives
better performance, assuming 400 training examples. The differences between N9 and GP
distributions is significant for all users (paired ¢-test with Bonferroni corrections, p < 0.05).
For the GP, the range in mean across users of target sizes for 95% accuracy is from 3.09mm
to 4.96mm, with an overall mean of 3.90mm. For the N9, the range is 3.45mm to 5.22mm,

with a mean of 4.31mm.

For N = 800, we see smaller target sizes required for 95% accuracy. As in the sensor input
case, it seems that adding more training data still improves the predictive power of the GP
after 400 points are used. For the GP, mean target sizes range from 2.92mm to 4.93mm,
with an overall mean of 3.75mm. The range for the N9 is from 3.47mm to 5.23mm, and the

overall mean across all users is 4.30mm.

Note that the mean for the GP is actually slightly higher in this case. The difference between
the distribution over users in the sensor- and position-input cases is significant (paired ¢-test,
p < 0.05). This indicates that for N = 800, slightly better performance can be obtained by
using sensor input. This is an opposite result to the N = 400 case. These results suggest
that position is better when little training data is available, but sensor data overtakes it in
performance as training set size increases. This may be explained by the fact that the space
of possible sensor readings is much bigger than that of device positions, meaning it takes
more data to make good predictions. However, the larger space is more expressive, so the

best possible predictions using this data are better.

The work in [30] suggests a theoretical lower limit of 2.15mm for the radius of a button which

can be acquired with 95% accuracy. Their technique can acquire targets of radius 2.7mm,
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Figure 4.6: Comparison of performance between the N9 touch events (N9), a simple linear
regression model (Linear) (e.g. as in [1]) and our Gaussian Process’ predictions using the
NO9’s reported touch location as input (GP). Top row: Accuracy for different virtual button
sizes (800 training points). Bottom row: Learning curves. Subject 1 represents an average
user, subject 3 a user that already performs far above average already with the N9 screen and
subject 8 represents a user that never used a touch screen based phone before.

but doing so requires an overhead camera and an algorithm to extract salient features from
the outline of the finger. Clearly these are not reasonable restrictions in a mobile setting.
Our method achieves 95% accuracy with targets of radius between 2.8mm and 4.9mm, de-
pending on the user. All but one user has a 95% accuracy radius of less than 4mm. For
all subjects bar one, these sizes represents an improvement over the commercially available

sensing technology of the NO.

In Figure 4.6 we show more detailed results for subjects 1, 3 and 8. In addition, we also
give the performance of a simple linear regression model (see e.g. [86]) trained on the same
data. For subject 3 we again see no significant improvement but for subjects 1 and 8 we
see that both the linear regression and the GP outperform the N9’s native algorithm. Note
also that the GP outperforms the linear regression, suggesting that the touch offset is not a
linear function of the touch location. This is supported by the covariance function, where the

non-linear term was assigned equal importance to the linear kernel.

For subjects 1 and 8, the performance is never worse than that of the N9, whereas in pre-
dicting the intended location from the raw sensor values, the performance was worse when
there was little training data (see Figure 4.4(d) and (f)). This can be explained by the GP
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mean function, which is set to zero. When very little training data is available, the GP will
produce an output close to zero. For the offset prediction, this will give reasonable results
as the model output will not vary a very large amount from the N9 output. However, when
predicting the location rather than the offset, the zero mean predicts the center of the screen,
which is likely to be a poor prediction (unless of course the touch was targeting the center).

Thus, with any data at all, the offset model can offer an improvement over the N9.

Visualising offsets

When using the N9 touch location as an input, it is possible to visualise the offset functions
that are learned across the 2D input space, since the input space can be simply approximated

by a grid of (z, y) values. The same is not true for the space of sensor values.

The offsets are visualised for subjects 1, 3 and 8 in Figures 4.7 and 4.8. We divide the input
space into a grid, and use a GP trained on 600 of the user’s touches to make offset predictions

at each point in the grid.

Figure 4.7 shows the continuous horizontal and vertical offset functions. White corresponds
to a large positive value (to the right or up for horizontal or vertical offsets respectively) and

black a large negative value (to the left or down).

Figure 4.8 shows an approximation of the combined x and y offsets. It shows the predicted
offsets across the input space, binned into a 10 x5 grid. The size and direction of the offset for
each touch which falls in a given box is shown relative to the center of that box. This binning
is done only for ease of visualisation — all calculations were done with the continuous offset

functions.

We see very small offsets for subject 3, reflecting the fact that the N9 position is already very
close to the intended targets for this user. For users 1 and 8, it is immediately clear that the
offset functions are highly non-linear. The horizontal offset functions have two reasonably
flat areas separated by a steep ridge. Recall that the user is operating the system with two
thumbs (see Figure 4.2) and this ridge represents the point at which the thumb they are
using changes. The vertical offsets are more complex, likely reflecting the change in thumb

orientation as it reaches up and down.

To show the relative limitations of the linear model, Figure 4.9 shows the linear offsets
learned for subject 8. Comparing these with the bottom row in Figure 4.7, we can clearly see
the subtleties lost by the linear model. In particular, the horizontal offset in the linear model
changes smoothly from left to right, completely missing the sharp change required towards

the centre of the device where the user changes thumbs.

This nonlinearity is not immediately apparent when considering the touch problem, and this

highlights a benefit of the GP modelling approach. We were able to determine these nonlin-
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Figure 4.7: Continuous offset functions for three subjects for both x and y. The structure is
highly nonlinear, and both components of the device coordinate have an effect on the offsets.

ear offsets automatically, without making prior assumptions about the form of the mapping
beyond that it should be smooth.

4.4.3 1D vs 2D Regression

As described previously, we have used a two dimensional model up to this point, which
means that training our GP requires inversion of a 2N x 2N matrix, where NV is the size
of the training set. This is quite computationally intensive, and could be a limiting factor if

these models were to be implemented on a mobile device.

The alternative is to build separate models for the x- and y-offsets. This requires inverting
two N x N matrices, which is computationally easier than the two dimensional case. The

tradeoff is that we lose the ability to model covariances between the two components of the
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Figure 4.8: Offset values for subjects 1, 3 and 8. The input space is divided into a grid, and
offset values for several points in each cell are drawn at the center of that cell.

offset, which have been shown to exist [65].

However, in the analysis above we found that for predicting offsets, the covariance between
the offset components was only 0.3 times that of the covariance within components. Addi-
tionally, in our analyses so far we are only using the mean prediction of the GP, which may
be relatively unaffected by the transition from a 2D model to two 1D models. It may be

possible to obtain a performance improvement over the N9 using the simpler model.

To assess this, we carried out another set of experiments training these one dimensional
models on the data gathered in our study. We focus on the problem of predicting offsets
given device positions as input. We predict the horizontal and vertical offsets separately, and
compute the RMSE between the predicted position and the targets. We compare this to the

RMSE for the predictions from the two dimensional model.
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Figure 4.9: Offsets learned by linear regression for subject 8.

Figure 4.10 shows our results. For each user, two box plots are shown. The blue plot shows
the improvement over the N9 for a two dimensional model, as in our previous analysis,
while the red one shows the improvement for a pair of one dimensional models. We measure
improvement in terms of the relative difference in selection accuracy for buttons of 2mm
radius. An improvement of 0.1 means 10% more touches fell inside this radius for the
model than for the N9 position. The boxplots show the distributions of improvement over

10 random restarts, in which we train on 600 of the user’s touches and test on the remaining
400.

From this Figure, we can see that the models perform very similarly for all users. The
distributions over the 10 restarts are only significantly different for users 1, 4 and 5 under the
t-test at a significance level of 0.05. All other users have statistically similar results for both
2D and 1D offset models. Even the models which exhibit significant difference have a mean

performance variation of only a few percentage points.

As we have said, this similarity can be attributed to the fact that the benefit of the two di-
mensional model is that it captures the full structure of the predictive covariance, allowing
for predictive distributions which are not axis aligned. Here, however, we are only using the
mean of the predictive distribution, and the one dimensional GPs are able to learn this mean

offset to a similar degree of accuracy.

Effectively, the 2D model uses z, y and A, to predict A, or z, y and A, to predict A,. The
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Figure 4.10: Performance comparison between a two dimensional GP model (blue boxplot
for each subject) and a pair of one dimensional models (red boxplot). We see that the distri-
butions for both models are very similar.

1D models use only x and y as inputs to predict a single offset. It appears that using one

offset to help predict the other does not add signficant power to the model.

In general, we conclude that using a two dimensional GP may offer a small improvement in
performance over two one dimensional models, but that this improvement can be so small
in practical terms that it may not be worth the increased computational complexity. In later
Chapters we will use both approaches when constructing offset models, and these results

suggest the choice is relatively unimportant if selection accuracy is the only concern.

However, if the predictive distribution is to be used, the 2D model has the potential to be
more powerful, since touch distributions have been shown to have off-diagonal covariance
structure [65]. The 2D GP can predict these elements, while using 1D models restricts us to

independent x and y covariance, with no off-diagonal structure.

4.4.4 Predictive Covariance

The Gaussian Process prediction consists of a Gaussian distribution. Thus far we have just
used the mean of this Gaussian as a point estimate. Since we have used a single GP to
infer the complete two dimensional problem, we obtain full covariance structures for each
prediction. This means the predictive distribution does not need to be axis aligned. The co-
variance of this Gaussian is potentially useful as it describes the uncertainty in the prediction
and could therefore be used at an application level to obtain additional information about the

user’s touches.
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Figure 4.11: Log determinant of the predictive covariance matrix for different parts of the
space when the N9’s touch location is used as an input. Higher values (more yellow) indicate
the GP predictions are more uncertain. Panels show data for Subject 1, Subject 8 and an
average for all Subjects.
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In Figure 4.11 we visualise the log determinant of the predictive covariance matrix (a higher
value of this quantity corresponds to a broader distribution with greater uncertainty) at dif-
ferent points on the screen when the N9 touch location is used as an input. Panel (a) and
(b) show these visualisations for the models of Subject 1 and 8 specifically, while panel (c)
shows the average across all users. Green regions show relatively low uncertainty regions,

while yellow represents higher uncertainty.

The three plots exhibit a number of similarities. There are steep ridges at the edges, rep-
resenting the rapidly increasing uncertainty limit of the recorded data. There are also areas
of higher uncertainty down the center of the screen in each case. This area can most likely
be explained by the user changing thumbs in this area — they will not always change at ex-
actly the same horizontal position and therefore uncertainty in the required offsets is natural.
Finally, there are areas of increased uncertainty in the vertical center of the screen towards
the horizontal edges. We hypothesise that these are the areas directly beneath the user’s
thumbs, and the extra movement required to touch these points causes the higher uncertainty
observed. This is particularly pronounced for subject 1, who has such regions on each side
of the screen. Subject 8 has such a region on the right of the screen, but not on the left. The
population average displays vague indications of these center and side regions, but the effect

is less pronounced as we might expect from an average. Other users display similar effects.

This information about the uncertainty is a further advantage over previous offset models,
such as the polynomial function of [1], which can only give a point estimate of the offset.
This information suggests some consistent variation in model uncertainty across the space
for different users. This has potential implications for interaction design — it is best to avoid
placing small or important targets in the regions of higher uncertainty, since it may be harder

for users to acquire them reliably.

An example of an application which actually uses the predictive uncertainty is given in Chap-
ter 5. We build a soft keyboard which uses the GP to compute the probabilities for each key
given a touch from the user. These probabilities are used in combination with a statistical

language model to correct errors in the text the user types.

4.4.5 Generalising Results

To ensure that the results described above were not specific to a particular device and orien-
tation combination, we carried out a number of additional experiments. First, we had two
subjects (1 and 6, chosen at random) each generate 1000 additional touches, with the N9 in
a portrait orientation. Users held the device in one hand and touched using the thumb on that
hand. The touch targets were generated in the region corresponding to the device’s portrait
virtual keyboard. While significant conclusions cannot be drawn for a sample of two, the

results of this probe are included to contextualise our core results.
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Figure 4.12 shows our results. Again, we computed the virtual button accuracy as our perfor-
mance metric ((a) and (c)). We used the raw sensor values of the touches as the input to the
GP. For both users, we see that the GP is more accurate than the N9’s native algorithm. These
GPs were based on the optimal parameters found from the cross validation on the landscape
data, showing that the covariance parameters generalise well across orientation. The learn-
ing curves (4.12(b) and (d)) show that the GP outperforms the N9 after approximately 300
training points are generated. An interesting future research direction is the development of
a model which can predict touch location regardless of device orientation. This is potentially
possible since even when touching the same location, the sensor readings are likely to be

different across the different orientations.
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Figure 4.12: Virtual button accuracy and learning curves for portrait touches

We also replicated our experiment on a Google Nexus One running Android. Since this
device does not expose the raw sensor values in the screen, we were restricted to considering
the prediction problem using the device’s reported touch location as input. We had two
subjects (1 and 3, again chosen randomly) generate 1000 touches in landscape mode. The

protocol was identical to the original experiment.

Virtual button accuracies and learning curves for the GP, Android phone and a linear model
are shown in Figure 4.13. Once again we see that the GP outperforms both competing
models for all button sizes. Note also that one of the users shown is subject 3, for whom the
GP offered no improved performance compared to the N9. On the Android phone, we see a
large improvement for this user when using the GP. As with the N9, the learning curves are
below the device performance for even very small quantities of training data. This can again

be attributed to the zero mean of our GP.

These results are included merely as a probe — it is difficult to draw detailed conclusions
from a sample of two. However, there is no obvious reason why a different device or orienta-
tion should preclude the techniques used here from providing a performance benefit. Further,
the work in Chapter 5 uses offset models learned in portrait orientation on an Android device,
and performance gains are indeed observed. Chapter 7 also presents GP models trained on
data from a range of devices. We hope the reader can be convinced that the GP regression

framework is a powerful tool, which can be be used to model offsets on any device and for
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Figure 4.13: Performance on Android phone

any usage scenario.

4.4.6 Importance of user-specificity
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Figure 4.14: Improvements in accuracy rate for 2mm virtual buttons when using a user-
specific model (blue boxplot in each case) and a model trained on all users (red boxplot).

In Figure 4.7 we saw that the offset functions learned varied greatly across users. To quantify
what this means in terms of performance, we carried out an additional experiment where we
trained on a mixture of data from all subjects and evaluated the test performance of the
resulting model on the data for each individual. Figure 4.14 shows our results. For each
subject, two boxplots are shown. The blue plot shows the improvement in accuracy for a

2mm button over the N9 when training on 600 of that subject’s touches. The red plot shows
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the performance improvement when the model is trained on 600 touches drawn at random
from the data for all subjects. This experiment was done using the device location as the GP

input. Improvements were also seen for 3mm and 4mm buttons (results not shown).

In all cases, the performance improvement for the user-specific models is higher than that for
the model trained on all subjects. The differences are statistically significant for all subjects
(paired t-test, p < 0.05). For subject 3, whose touch behaviour is significantly different from
the norm (as evidenced by the earlier results), training on the other subjects’ data results in a

notable decrease in performance compared to the NO.

Thus it is clear that there is significant variation between users, and that training user-specific
models is advantageous. This reflects the findings of previous research, and represents an

advantage of our model over population-based approaches found in the literature.

4.5 Conclusion

In this chapter, we have presented the use of Gaussian Process regression to model touch.
This powerful statistical modelling tool allows to learn flexible mappings between inputs and
intended touch positions without making parametric assumptions about the form of these

mappings.

In particular, we looked at mapping capacitive sensor values from a Nokia N9 to intended
touch positions, and mapping the N9’s device position to a set of offset values. Over a set of
8 users, we found that the former mapping allowed a 23.47% reduction in errors compared
to the N9 when selecting 2mm radius buttons, 14.20% for 3mm buttons and 4.70% for 4mm
buttons. For the second mapping, the error reductions were 23.79% (2mm buttons), 14.79%
(3mm) and 5.11% (4mm).

Our models allowed 95% selection accuracy for buttons of radii between 2.8mm and 4mm,
depending on the user. The mean was 3.3mm, which is a smaller target size than the recom-
mended minima in previous research. This indicates the GP model allows highly accurate

touch input.

We also looked at the number of training points required to train these models. We found
that using sensor values as input, we typically needed 300 training examples to be able to
make good predictions. Additional performance gains could still be made as more data were
added, but the relative improvement became smaller for each training set size above 300.
When using device positions as input, we found that the performance gains became smaller

after 200 training touches.

An important finding of this work are that the touch offsets observed are both nonlinear and

highly user-specific. We found that learning a model on a user’s own data resulted in better
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predictive performance than a model trained on data pooled from many users. Indeed, for

one user the pooled data model was actually worse than not correcting at all.

The GP is a probabilistic model, and allows us to model the uncertainty of a user’s touch
patterns. Each prediction from the GP is a Gaussian distribution, with a covariance structure
that is learned for each user and varies across the phone’s screen. However, in the analyses
in this chapter, we have not made use of these probabilistic predictions. In the next chapter,
we present an application of our GP approach to text entry, a ubiquitous task on mobile
devices. We make use of the predictive distributions to compute the probability distribution

over letters on the keyboard for each touch.
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Chapter 5
Uncertain Text Entry

Summary. This chapter presents an application of our GP touch model which makes use
of the predictive uncertainty. In particular, we introduce GPType, a soft keyboard which
combines the GP with a statistical language model in order to correct erroneous input from
the user. The predictive distribution of the GP is used to obtain probability distributions
over the keys on the keyboard for each touch. We show that the system gives performance
comparable to a leading commercial product, indicating the value of modelling uncertainty

in this use case.

5.1 Introduction

In the previous chapter, the use of Gaussian Process regression for touch offset modelling
was introduced. One of the distinguishing features of this approach compared to existing
offset models is the fact that the predictions made are Gaussian distributions, with a learned
variance structure for each user. Thus, for a given touch we can make claims about the
likelihood that touch was intended for each element in an interface (see Figure 5.1 for an
illustration of this). In the analysis so far, no use has been made of this attractive property.
In this chapter, we present an application of the probabilistic touch model to the problem of

typing on a soft keyboard.

Typing is a ubiquitous task on touch devices today. Despite this, the process is still highly
error prone, as evidenced by the presence of corrective keyboards in all major smartphone
operating systems. As previously discussed, this is due in part to the densely packed keys on
the screen being smaller than the human finger, such that even a small touch offsets can cause
the wrong key to be hit. We define these errors as substitution errors. Nicolau and Jorge [87]
showed that as many as 7% of key presses can be incorrect when users type while walking.

However, in text entry there are important additional sources of uncertainty compared to
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regular touch. First, the user may be uncertain of the spelling of a particular word, leading to
incorrect input. Additionally, users frequently miss out characters (deletetion errors) or add
extra characters (insertion errors) when typing quickly. A touch model alone cannot account

for such errors.

Smartphones have long had autocorrection systems to catch and correct text entry errors.
Some such systems are simple, merely finding the word in a dictionary with the shortest
edit distance to the entered text. More commonly in the research literature (and increasingly
in commercial products) systems use statistical language modelling to improve their results.
This process analyses the entered text and assigns probabilities to candidate words based on a
generative statistical model of language, built from large corpora of text. Often, information
about previously entered words can be used to change these probabilities, thus taking into
account the grammatical structure of the language. This approach has been shown to be
powerful: for example, Goodman et al. [65] showed that it was possible to reduce error rates

by a factor of 1.67 to 1.87 using a language model to make corrections.

The primary contribution of this chapter is GPType, a text correction system which combines
both a GP offset model and a long-span language model. The GP gives a predictive distribu-
tion which we can integrate over the keys on the screen to give a set of per-key probabilities
for each touch, and the language model assigns probabilities to strings of text. The system
incorporates a flexible decoder algorithm that searches for the most likely text given these
two sets of probabilities. The decoder also allows for possible missing key presses, and pos-
sible extra key presses. The decoder was tested with a variety of correction strategies, such

as whether the decoder is free to change previous characters.

Each of the constituent models in GPType is a powerful tool for the text entry task. We will
present the results of a user study that shows the combination of the two models allows for
additional performance gains, and that GPType gives performance comparable to or better

than a leading commercial keyboard.

More broadly, GPType shows the benefits of modelling uncertainty in touch interaction. A
conventional offset model such as that of Henze et al. [1] would not be able to generate the
key press probabilities used here, which are user specific and vary depending on the learned
uncertainty in different parts of the screen. Thus, this chapter is an illustrative example of

the potential of probabilistic models when applied to problems in the HCI domain.

Statement of Original Work

Some of the work described in this Chapter was performed together with a number of collab-
orators. In particular, the language model and decoder algortithm we employ were created by
Per Ola Kristensson and Keith Vertanen. The author adapted these models to work together

with the GP, ported them to Android and carried out all user studies and subsequent analysis.
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5.2 Language Models

Approaches to text entry on touchscreens were described in Chapter 2. An important sub-
group of these approaches is those relying on language models, the first of which is described
in [65]. At the most basic level, a language model is a statistical tool which assigns a prob-
ability to a sequence of characters based on how likely it is to appear in a document. These
probabilities are normally learned from a text or speech corpus. Such corpora can be very

large, containing millions of words from thousands of documents.

Language models have been extensively studied in the literature. The earliest statistical
analysis of text was by Andrei Markov [88], who studied the probabilities of letter sequences
in classic Russian literature using what have come to be known as Markov models. This
analysis assumes the probability of a letter appearing is conditioned on the letters which
immediately precede it. This is an intuitive model — for example, if ‘th’ has appeared
already in a piece of English text, it is much more likely that the next character is ‘i’ or ‘e’

than say ‘g’.

Another early use of this reasoning came from Claude Shannon [89], who studied both letter
and word sequence probabilities using Markov analysis. He used this to illustrate the impli-
cations of coding and information theory. The term ‘language model’ was not coined until

the 1980s, when this type of analysis was applied to automatic speech recognition [90].

Formally, a language model aims to assign a probability to a sequence W of m words, p(wi"),
where w? denotes the sequence of words from position a to position b. In language modelling
convention, ‘word’ is used to denote an arbitrary string — the tokens w are not necessarily
words from a dictionary. A good language model should assign a high probability to genuine
text from the language it was trained on, and a low probability to a garbled sentence. A
popular performance measure is the cross entropy of the language model on the test sequence
W, defined as .
H(W) = —p(w]).

This quantity can be thought of as the number of bits necessary to encode the test data, and so
lower values of cross entropy are desirable. Perplexity, defined as 27(")_ is also frequently

used to measure performance.

As mentioned above, most language models make the Markov assumption that the probabil-
ity of a word is conditioned on the previous words. That is, the quantity which we usually
wish to know is p(w,,|w}* ). The probability of a whole sequence is then a product of such

probabilities.

As m becomes large, approximating this probability is intractable, so in practice the proba-

bilities are approximated by conditioning on a subset of previous words. A commonly used
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example is the trigram model:

P(win| ™) ~ plw|wy ),
which computes the probabilities based on the previous two words. More generally, a model
which makes predictions based on the last n words is called an n-gram model. The trigram
probability can be naively approximated by dividing the number of occurences of the se-
quence W, Wy, _1W,, in the training corpus by the number of occurences of w,, 2w, 1.

This approximation generalises in an obvious way to other values of n.

However, this approximation is quite noisy and has an obvious point of failure — if an
exact sequence of words never appears in the training set, it will have zero probability even
if it is a reasonable piece of text. Therefore language models have employed a variety of
‘smoothing’ techniques to assign probabilities to unseen n-grams. The most basic technique
is just to assign a count of 1 to all unseen sequences, but clearly this is not representative
of language. More advanced techniques combine higher order n-gram models with lower
order models to improve probability estimates. This has the effect of reducing the counts
of sequences seen in the corpus and increasing the counts for unseen sequences, making the

overall probability distribution more uniform — hence the name ‘smoothing’.

Two main families of smoothing techniques exist: backoff and interpolated models. Backoff
models work by using the n-gram model if the test sequence has a non-zero count in the
corpus, and backing off to the (n — 1)-gram model if it has a zero count. If necessary,
this process can be carried on recursively, terminating with the 1-gram (commonly called
a unigram) probability which expresses how common an individual word is in the corpus.

Formally, backoff models set

m—1 T(wm|wrmn:7lL+1>7 if C<wz—n+1) >0
psmooth<wm‘wm_n+1) = I m—1 . m
rY(wmfnJrl)pSmOOth(wM|wmfn+2)7 if C<wmfn+1) =0.

The distribution 7(. . .) varies across the different techniques in the literature, and the scale
factors y(w/~} ;) are chosen so that the conditional distributions sum to one. Examples of

backoff models include Katz smoothing [91] and Kneser-Ney smoothing [92].

Interpolated models utilise information from lower order models for all probability calcula-
tions, not just those for n-grams with zero counts. As the name suggests, they interpolate

between the n-th and (n — 1)-th order models. The distributions are of the form

psmooth(wm’wzi}wl) = 7—<wm‘wz:711+1) + ’Y(w%:}lﬂ)psmooth(wm’wz:}zw)'

Again, this definition is recursive with termination at the unigram level. Commonly used
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interpolated models include Witten-Bell smoothing [93] and absolute discounting [94].

A thorough review and comparison of smoothing techniques is given by Chen and Good-
man [95]. The authors also derive an extension of Kneser-Ney smoothing which they show

outperforms a variety of other methods on training corpora of varying size.

Another important technique in language modelling, particularly for use in a mobile setting,
is pruning. For large training sets, the number of n-grams can become high enough that
efficient search over the possibilities is intractable. Further, the size of the language model in
memory can cause issues. Thus, pruning techniques aim to reduce the size of the language

model without significantly affecting performance.

The most basic pruning technique is the use of count cutoffs. Here, all n-grams of a certain
length that have fewer than a given threshold of counts in the training set are ‘ignored’
in some algorithm-specific sense. In a backoff model, n-grams below these counts would
typically be assigned probabilities by backing off to a lower order model, even though they
might appear in small numbers in the training data. For example, a trigram model might
have 0-1-1 count cutoffs, meaning that unigrams with O counts are ignored, and bigrams and
trigrams with 1 or fewer counts are ignored. Not storing the probability information for these
infrequently occuring n-grams can drastically reduce the size of the model, but not adversely

affect performance [95].

Entropy pruning, first described by Stolcke [96], is another commonly used technique. This
is based on the observation that the relative entropy caused by removing a single n-gram
can be computed exactly for backoff models. The size of the model is reduced by removing
n-grams which minimise the entropy between the full and pruned models. In experiments, it
was shown that a model trained on a large dataset could be reduced in size by 74% without

significantly affecting the perplexity.

It has been shown that in some cases pruning and smoothing can conflict. Chelba et al. [97]
found that models smoothed using the Kneser-Ney method suffer from performance degra-
dation when aggressive entropy pruning is applied. Models smoothed with other techniques,

such as Katz smoothing, suffered much less degradation.

A range of other techniques to reduce cross entropy have been studied, though they are not
used in the construction of the language model used in this Chapter. These include caching
[98], clustering [99], sentence mixture models [100] and word skipping [101]. A review and

comparison of these techniques can be found in the work of Goodman [102].

5.2.1 Language Models for Text Entry

All the major smartphone operating systems include soft keyboards which use language

models. These are used in two ways. First, they can be used to complete the word a user is
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typing after only a few key presses, or in some cases even based on only previously entered
words. Secondly, they can be used to correct mistakes in a user’s typing, resulting either from
poor spelling or, more relevantly for this work, from problems introduced by the use of the
touchscreen. This Chapter focuses on the design and evaluation of GPType, a system which
does the latter task. The system combines the GP touch model introduced in the previous

Chapter with a language model to improve text entry accuracy.

Other systems have combined touch and language models in the past — these were discussed
in Section 2.4.3. In general, such a system aims to take as input a series of touches and infer
the intended letter sequence. This can be thought of as finding the maximum over letter
sequences of p(letter sequence|touch positions). GPType uses a novel search algorithm to

find this maximum, incorporating probabilities from both the GP and the language model.

5.3 The GPType System

GPType is a correction system consisting of three parts: (1) a language model (LM) which
assigns probabilities to sequences of text, (2) a touch model, which assigns probabilities to
each key on a keyboard given a touch location, and (3) a decoder which combines the LM

and touch model probabilities and decodes what the user was trying to type.

5.3.1 Language Model

We adapted a language model that has previously been used for a thumb-typing touchscreen
keyboard [103]. The Twitter-based language model was trained based on 778M tweets sent
between 12/2010 and 6/2012. Duplicate tweets, retweets, and non-English-language tweets
were eliminated via a language-identification module [104] (with a confidence of 95%).
Based on a tweet’s source string we removed all tweets that did not originate from a mobile
device. Tweets were split into sentences and we only kept sentences where all words existed
in a list of 330K words drawn from Wiktionary, Webster’s dictionary, the CMU pronouncing
dictionary, and GNU aspell. The final dataset consisted of 94.6 M sentences, 626 M words,
and 2.56 G characters.

The language model was built using the SRILM toolkit [105] (an open source tool created
by language modelling researchers) using a vocabulary of A-Z, space, apostrophe, comma,
period, exclamation point and question mark. The character-based 7-gram language model
was smoothed using Witten-Bell and no count cutoffs. The model was then entropy-pruned
to reduce the memory footprint in anticipation of using the model on a mobile device. The

final model had 225 K n-grams and a compressed disk size of 2.0 MB.
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5.3.2 Touch Model

As in Chapter 4 GP regression is used to model each user’s touch offset function. We chose
to implement GPType on an Android device, so that we could compare against SwiftKey,
a leading keyboard which does language modelling of its own. Such keyboards are not
available on the Nokia N9 we used for our previous study. As a result we have no access to
capacitive sensor data on our target phone, and so we learn a model which maps the phone’s

reported touch locations s = (z, y) to offsets (A,, A,).

As in the previous study, we choose the GP mean function to be zero since in the absence of

data we wish to predict no offset. Again, the covariance function
C(Sn,Sm) = asls,, + (1 —a)exp {—l||sn - sm||§} :

is used. This was chosen because it gave best performance on data from the tapping study
in Chapter 4 out of a range of covariance functions studied. As shown previously, this gives
excellent predictive performance. We use the technique described in Section 4.2 to model

the full 2D predictions task using a single GP.

From the predictive distribution for a touch, the probability of the touch being intended for
a given key can be found by integrating the density function over the rectangular area of
the key. In practice this is not possible analytically, so we approximate the probability by
sampling from the Gaussian, counting which keys the samples fall into, and then normalising
these counts to obtain probabilities. During model building, this process was evaluated using
100, 1000, and 10000 samples per touch. The performance difference between 1000 and
10000 samples was not significant, so for speed reasons we used 1000 samples in the on-

device deployment of GPType.

Figure 5.1 illustrates the operation of our touch model. In panel (a), the user touches the ‘H’
key. From this, we make a prediction in the GP — panel (b) shows the predictive distribution.
We use the distribution to obtain key press probabilities for each key on the keyboard. Panel
(c) shows the keys shaded according to these probabilities, with red keys being more likely.
‘H’ is still the most likely key, but some probability mass is assigned to the neighbouring

keys.

The covariances of the predictive Gaussians, and consequently the probabilities produced
by the model, are learned from training data. Thus, in areas of the screen where the offsets
are more variable, the Gaussians are larger and the probabilities more diffuse. This user-
specificity is an advantage over other probabilistic approaches, such as that proposed by Bi
and Zhai [64], which model the touch uncertainty with fixed parameters for all users. The

tradeoff is that users must provide calibration touches before using the system.
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Figure 5.1: Cartoon illustrating the operation of our touch model. (a) shows the user’s touch,
(b) the predictive distribution over intended targets from the GP, and (c) the keys shaded by
probability.

5.3.3 Decoder

We created a decoder which searches for the most probable character sequence given a se-
quence of touches. Each “touch” is in reality a discrete probability distribution over all of the
keyboard characters. These distributions were set according to the GP touch model described

above.

As we will describe shortly, we explored four different correction strategies in our inter-
face. Each strategy involved changing how much of the touch sequence the decoder was
allowed to change. To facilitate this, the decoder allows some touches to be marked as fixed.
Fixed touches served as language model context, but were not eligible for change during the
decoder’s search.

The decoder searches in the space of all possible character sequences for the non-fixed

touches in an observed sequence. During this search, a touch would most likely generate
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the actual key hit. But the decoder also allows substitution with all other possible keys ac-

cording to the provided touch distribution.

Our decoder allows an observed touch to be deleted without generating a character. Similarly,
it explores inserting all possible characters without consuming an observation. Both insertion

and deletion hypotheses incur a configurable penalty.

During its search, the decoder makes use of a character language model. As each output
character is generated, we combine the touch probability with the probability of the character
given the language model by taking a weighted product. The relative contribution of the

touch distribution and the language model is controlled by a configurable scale factor.

The search over all possible character sequences is exponential in the length of the sequence.
Pruning is thus critical to ensure real-time performance. During its search, any hypothesis
that becomes less probable then the current best answer is pruned. Additionally, we em-
ployed beam width pruning. In beam width pruning, the decoder tracks the best hypothesis
found thus far for each position in the touch sequence. Hypotheses that are too improbable
(i.e. outside the beam width) compared to the best one at a particular position are pruned. By
varying the beam width, we can control the speed accuracy tradeoff during recognition. The
free parameters of the decoder were optimized with respect to the data we used to learn the
GP probabilities.

5.4 Model Building

In order to build GPType, we required training data. This data came in two parts: (1) training
points for the GP offset model, and (2) typing data to which we could apply various correc-
tion strategies to identify the optimal technique. This section details the procedure conducted

to collect this data and the details of the resulting model.

5.4.1 Participants

We built our models based on data collected from 10 participants (4 female) who volunteered
for three 45 minute sessions. Each session was at least 24 hours after the end of the previous
one. Participants ranged in age from 19-31 (mean = 25.4, sd = 4.25). All participants were
smartphone owners, and rated themselves as intermediate to expert users of touchscreen

devices. At the end of the data collection period, participants were paid £10 for their time.
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5.4.2 GP Calibration

As in the previous Chapter, we need pairs of target-touch locations to train the GP and predict
a user’s touch offsets. In a pilot study, we initially collected this training data by asking the
user to target a series of crosshairs, as in our previous work. Somewhat surprisingly, we
found that the offset model learned for the pilot user on this data did not generalise to the
offsets observed when typing on the same device. Thus, for the model building study proper
we opted to collect two sets of calibration data to see if this finding was true in general or

unique to our pilot user.

We built two data collection applications which ran on a Samsung Galaxy SIII Mini smart-
phone, with Android version 4.0. The first displayed a sequence of crosshairs, placed ran-
domly in the region occupied by the phone’s soft keyboard in portrait orientation. Users were
asked to hold the phone in both hands and touch these targets as accurately as possible using
both thumbs. The application logged the target location and the touch position recorded by

the phone for each crosshair press. 300 touches were collected for each user.

The second application gathered data using a modified version of the Android keyboard. The
keyboard had a simplified layout consisting only of the alphabetic keys, space bar, period and
an enter key. Participants were asked to press a sequence of keys until 10 presses were logged
for each key, for a total of 290 training touches. When a key was pressed, the keyboard

logged the time and touch location, as well as the location of the center of the requested key.

In both cases, participants repeated the calibration process in three mobility conditions: sit-
ting, standing, and walking. This was motivated by previous research, such as WalkType
[33], which found that baseline text entry accuracy on a smartphone was significantly worse
when walking than when sitting. We hypothesised that the offset behaviour might there-
fore be different between the conditions, and wanted condition-specific calibration data. We
chose not to use a pace setter for the walking condition, as was used in the WalkType study,
instead asking participants to move at whatever speed they were comfortable walking and
typing. Participants walked in a set path, and their laps were timed so that walking speed

could be determined.

We trained our GPs offline, rather than on device. Before parameters were learned, touches
which were more than 3 key widths (or an equivalent distance in the crosshair application)
from the intended target were filtered out, as these were deemed likely to be mistakes which
would skew the learned offset model. Errors this large are more likely to be cognitive errors
(misunderstanding the stimulus) or accidental touches. The covariance function parameters
were optimised on a user specific basis using 10-fold cross validation to find the model which
minimised the RMS error between the mean corrected touch locations and the centers of the

crosshairs/target keys.
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For the second application, note that the implicit assumption that users target the key center
is without loss of generality — the GP can still learn a model, so long as the user always
targets the same key the same way. This assumption is supported by the work of Holz and
Baudisch [30], who have shown that users utilise visual features on the tops of their fingers

to acquire targets on touchscreens, and that this targeting behaviour is consistent over time.

5.4.3 Typing Data

Each participant also provided typing data. We used phrases from the Enron Mobile Email
dataset [106] as stimuli. This phrase set consists of phrases drawn from genuine emails and
has been shown to result in similar text entry performance as the MacKenzie and Soukoreff
[107] phrase set [108]. Additionally, since the emails were all written on mobile devices,
this phrase set contains text representative of things a user of GPType might actually enter.
Admittedly these emails were written in a business environment on Blackberries, so the rele-
vance of the content may not be high for the typical mobile device user today. Nevertheless,

the phrase set has been shown to be memorable and useful for text entry experiments.

We filtered out any phrases containing characters not on our keyboard, and then removed
sentences with fewer than 4 or more than 10 words. This left a set of 427 phrases. Partici-
pants were shown a random subset of these and asked to type them as quickly and accurately

as possible using our custom keyboard.

As there was no backspace key, participants had to leave any mistakes uncorrected. This was
done because the goal was to evaluate the quality of our model’s corrections on the text as
entered, rather than the ability of users to accurately transcribe text using the keyboard. Dur-
ing each of the three sessions, participants typed for 10 minutes in each mobility condition.
The order of mobility conditions was counterbalanced across both participant and session.
As in the calibration task, participants were instructed to hold the phone in two hands and

type with their thumbs.

5.4.4 Correction Strategies

The stream of touches for each typing session was passed through the best GP for that par-
ticipant to obtain offset touch locations and key press probabilities. These probabilities were
then passed through the decoder to obtain the corrected sentences. We evaluated four cor-

rection strategies:

S1 Single-Key Correction—for each touch, we compute the probability of each key accord-
ing to both the GP and the LM. We hold all previously entered characters as fixed

context when computing LM probabilities. The decoder takes the product of these
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probabilities for each key and corrects to the key with the highest combined probabil-
ity.

S2 Modifiable Context Correction—as S1, except that the decoder is also free to change n
previously entered characters, where n is a value that can be configured. This includes
characters in previous words, potentially up to the beginning of the entered text if n is
sufficiently high. Characters outside the correctable window are held as fixed context
for the LM.

S3 Word Correction—when the user types a word delimiter (space or period), the system
uses the LM and GP to identify the most likely word, holding previously entered words
as fixed context. This is essentially S2 with n dynamically chosen to be the number of
characters since the previous word delimiter. Note the assumption that word delimiter
characters are certain inputs — we assume the user does not touch these by accident.
This is a potentially flawed assumption, but is ubiquitous on existing smartphones,
which perform corrections at the end of a word.

S4 Single-Key + Word Correction—combination of S1 & S3. We input the most likely char-
acter according to the combination of the models at each key press, and then correct

entire words when space or period is hit.

5.4.5 Results
GP Calibration

To investigate whether the choice of training data — crosshair versus key targets — affected
the quality of the GP predictions, we experimented with training on one dataset and testing
on the other. That is, we built the GP covariance matrix using crosshair data and then made
predictions for the intended locations of each touch from the key target data. This was com-
pared to a model trained and tested using only the key data using 10-fold cross validation.
As a first error metric, we considered the root mean square error (RMSE) between the pre-
dictions and key centers. We use the RMSE between the device’s reported touch location

and the key center as a baseline.

Figure 5.2 shows our results. Plots show mean and standard error across the 10 users. The
bar labelled TypeType shows the results when training and testing on keyboard data, and
similarly CrossType denotes the model trained on crosshair data and tested on keyboard
data. As intended, training and testing on typing data leads to a reduction in RMSE over the
baseline — we learn the offsets and the corrective models generalise to new data. However,
training on crosshair data results in predictions on typing data that are actually worse than
the baseline. That is, the predictions are further away on average from the key centers than

the locations recorded by the phone.
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Figure 5.2: RMSE between predicted and intended locations for two models: one trained
on crosshair data and tested on typing data (crossType), the other trained and tested on only
the typing data (TypeType). The offsets learned from the crosshair data do not apply to the
typing data. Baseline is the RMSE between the phone’s recorded coordinates and the targets.

This result is somewhat troubling, since it suggests that in addition to factors like grip and
orientation, the task also has an effect on offset behaviours. If every new task and hand
posture needs a new offset model, the potential space of models rapidly becomes very large.
Gathering data to train such models would likely become a burden on the user very quickly.
A more thorough examination of this problem is given in Chapter 7 of this thesis. For the
remainder of this Chapter, however, we will use only GP models trained on typing data for

our analysis.

Correction Strategy

We next took the predictive distributions from our optimal GPs and used them to generate
key press probability distributions for each letter on the keyboard at each touch. Sequences
of these distributions were passed to our decoder algorithm, which applied the various cor-

rection strategies described above and compared the output to the stimuli shown to the users.
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Figure 5.3: Character error rates after applying our four different correction strategies to the
typing data gathered in our model building study, separated by mobility condition. Plots
show mean and standard error across all participants. The baseline method represents the
literal keys touched.

We measured performance in terms of the character error rate (CER) after correction, aver-

aged across all phrases and all users for a given mobility condition. CER is the number of
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characters that need to be inserted, substituted, or deleted in order to transform the corrected
text into the reference text, divided by the number of characters in the reference text. For
each correction strategy, we also tested a range of values for the cost and maximum number
of insertions and deletions, the beam width of the decoder’s search, and the relative scaling
of the probabilities from the LM and GP.

Our results are summarised in Figure 5.3. These plots show the mean CER achieved for
each correction strategy, along with the baseline error between the characters as typed and

the stimuli.

In general, we found that S3 and S4 were the optimal correction strategies — there was no
significant difference between them for any mobility. S2 was slightly worse than either of
these. In theory S2 represents the most thorough search, since at each new touch the system
is allowed to change all previous letters. In practice, multiple such corrections can introduce
insertion or deletion errors which accumulate over time, leading to the increased error rate
seen here. S1 is the worst of the correction schemes, since it is only able to fix cases where
the wrong key was hit, and cannot correct transposition errors such as typing ‘teh’ in place
of ‘the’.

The observed error rates were not significantly different between the sitting and standing
mobility conditions, but the error rates for the walking condition were significantly higher
(paired t-test, p < 0.05). The lowest error rates obtained using the optimal correction strate-
gies were 5.02% for sitting, 5.47% for standing, and 6.5% for walking. The baselines for
those conditions were 9.8%, 10.2% and 13.0%. Thus our simulated correction process was

able to reduce error rates by almost half in all mobility conditions.

Model Contribution

When performing a search for the most likely correction given a stream of touches, our
decoder algorithm assigns each potential candidate character at a given point in the search
a probability which is expressed as a weighted combination of the outputs of the GP and
language model. Given that the probabilities produced by the language model are typically
very small, we work with log probabilities to avoid numerical issues. In particular we take

the log probability of character c as
log P(c) = Aog Pgp(c) + (1 — X) log Pm(c).

The weight parameter \ was learned by cross validation for each user. We used values in 0.05
increments from 0.05 to 0.95. For all users, the value of A which gave the best performance
for correction styles S3 and S4 was in the range [0.35, 0.5] with a mean value of 0.41. This

indicates that a slightly higher weight was assigned to probabilities from the language model
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compared to those from the GP.

5.5 Evaluating GPType

With the information obtained from the model building study, we evaluated the best correc-
tion system in a second study. The goal of this study was to determine whether the benefits
shown in our offline simulations were reflected in a live typing task. We also wanted to as-
sess how our system compared to an existing commercial soft keyboard. For this we chose
SwiftKey!, a popular Android keyboard which also uses language modelling to perform in-
telligent correction. The details of the SwiftKey algorithm are not public, so in this study it

is used as a black-box.

We implemented the GP in Java, and ported the language model and decoder to Android. The
custom keyboard from the model building study was adapted to compute key press proba-
bilities and make corrections using the GPType algorithm. S3 was chosen as the correction
style, since it was as good at correcting as S4 and required fewer LM searches. This means

an overall improvement in the speed of operation and usability of the keyboard.

5.5.1 Participants

We recruited a further 10 participants (3 female) to take part in this evaluation. Ages ranged
from 18-28 (mean = 22.4, sd =4.22). 8 participants were smartphone owners and considered
themselves expert users. The other 2 did not own smartphones and had little experience using
touch screen devices. No participant in this study took part in the previous study. Participants

were paid £10 for their time at the conclusion of the study.

5.5.2 Apparatus

Participants typed using the custom logging application, again running on a Samsung Galaxy
SII with Android 4.0. This smartphone has a 4.3 inch screen with a 480 <800 pixel resolution.
A screenshot is shown in Figure 5.4. The stimulus phrase appears at the top of the screen,
and the text entered by the participant is shown below. The time remaining in the current
typing task is shown in the upper right. Visually, this keyboard was identical to the one used
in the model building study. The backspace key in the logging app was again disabled, as
the goal was to to evaluate the quality of the corrections made by GPType system without

participants manually backspacing to correct errors.

"http://www.swiftkey.net
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Figure 5.4: A screenshot of our logging application. The target phrase, the currently entered
text and our simplified keyboard are shown.

As mentioned above, typing data was also collected using the SwiftKey keyboard. The
keys on the custom keyboard have the same size and layout as those in SwiftKey, so the two
logging interfaces were very similar. As SwiftKey is a third party product, it was not possible
to disable the backspace key and so participants were instructed not to use it and accept any

corrections from the keyboard.

5.5.3 Procedure

The procedure for the study consisted of three sessions. In the first session, participants
provided keyboard calibration data for the GP in each of the three mobility conditions —
Sitting, Standing, and Walking. This calibration was done in the same way as in the model
building study, with the exception that only 5 examples of the user’s touch per key were
collected. This was different from the 10 used in the offline model building simulations,
in order to prevent input from slowing down due to large matrix operations when making
GP predictions. This was followed by a short break while the GP was trained — the nec-

essary matrix inversion was somewhat slow on the limited processing power of the mobile



5.5. Evaluating GPType 88

device. Afterwards, participants typed for five minutes, while seated, on each of the two
study keyboards to familiarise themselves with the layouts. No data was recorded for these
familiarisation sessions — they were simply to make sure the participants had experience
of both keyboard layouts. As in model building, participants typed phrases from the Enron
Mobile Email set [106].

In each of the two remaining sessions, participants performed 10 minutes of typing in each
mobility condition. They used GPType in one session, and SwiftKey in the other. All tasks
were carried out in a meeting room, with a clear and unobstructed path marked for walking.
As before, no pace-setter was used in the walking condition, and participants were free to

walk at whatever speed they felt comfortable while typing.

5.5.4 Design

The study was a within-subjects 2x3 factorial design with factors: Keyboard (levels: GP-
Type, SwiftKey) and Mobility (levels: Sitting, Standing, Walking). The presentation order of
the keyboards was counterbalanced across participants, and the order of mobility conditions
was partially counterbalanced across participants and between sessions. A full counterbal-

ancing was impossible with 3 levels and 20 sessions.

5.5.5 Results

We measure performance of the corrections produced by each keyboard in terms of CER be-
tween the corrected text and the stimulus phrase. Our results are summarised in Figure 5.5,
which shows the mean and standard error across all participants, separated by mobility con-
dition. The baseline is the CER between the keys hit by the participant’s touches and the
stimulus phrase. Also shown is a GP Only condition, in which we apply the mean offset
from the GP to the user’s touch and see which key was hit by the resulting touch. The GP

Only condition does not use the decoder or LM.

Both keyboards offer a significant improvement over the baseline in all mobility conditions
(paired t-test, p < 0.05). The CER reduction over the baseline for GPType was 4.9% for sit-
ting, 5% for standing, and 7.6% for walking. Further, GPType offers a small but significant
improvement over SwiftKey in the standing and walking mobility conditions (approximately
1% reduced CER for the standing condition and 1.3% for walking). No significant differ-
ence between the keyboards was observed in the sitting condition. This is likely an effect
of the participants’ touch offsets becoming more pronounced when standing or moving. In-
terestingly, the standing condition had the lowest CER for both baseline and the evaluated

keyboards. It is unclear why this should be the case.
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Figure 5.5: Character error rates for the two keyboards evaluated, separated by mobility
condition. Plots show mean and standard error across all participants. The baseline method
represents the literal keys touched, while GP Only shows the keys hit after the mean GP
offset is applied.

Also of interest is the fact that the GP Only condition is significantly better than the baseline.
This indicates that both the offset modelling and the decoding play a role in producing the ob-
served reduction in error rate. By computing the mean touch offset, many substitution errors
can be corrected. The decoder then decreases the error rate further by fixing transposition

errors and performing insertions or deletions.

Effect of User-Specific Variance

We have argued in this thesis that modelling the uncertainty of touch interaction adds value.
However, it is unclear from the results described above whether the user specific variance
learned from the GP is useful. It may be the case that a model with key press probabilities
from a fixed variance Gaussian would perform equally well. This could be useful as it
might allow the creation of a system with the advantages of GPType without the need for a

potentially lengthy training phase for each new user.

To investigate this, we carried out some offline simulations on the data gathered from the
study. For each touch from a user, we recalculated all the key press probabilities by placing
a Gaussian distribution with a fixed variance on top of their offset touch location. These
probabilities were then passed through the decoder offline to generate corrections, which

were compared to the original stimuli to obtain CER values.

We used the offset touch location in order to separate effects from modelling the offset and
the variance. In practice of course, these offsets are optimised on a user specific basis so
the results of the simulation will be somewhat optimistic in comparison to what could be

obtained on a real device without training.

We used Gaussian distributions aligned to the axes of the keyboard, with covariance matrices

o, O
an'

of the form
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In contrast, the GP predictions can potentially have non-zero elements off the diagonal of
the covariance matrix, resulting in distributions which are not axis aligned. However, in the
absence of the knowledge gained from using the GP, it is unclear how the distributions might
look so we believe axis alignment is a reasonable assumption to make. We repeated the
simulation process for a range of values of o, and o,, and found the values which gave the

largest average reduction in CER between the baseline and the predictions across all users.

Figure 5.6 summarises the results of this process. Shown are the lowest character error rates
for GPType, the best performing fixed variance model for each mobility condition, and the

uncorrected baseline, averaged across all users. Error bars represent standard error.
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Figure 5.6: Character error rates for GPType and a related model using fixed rather than user
specific variances. Plots show mean and standard error across all participants. The baseline
method represents the literal keys touched. GPType provides lower error rates in the Walking
condition.

We found no significant difference between GPType and the fixed variance model in the
Sitting and Standing mobility conditions. For the Walking condition, we found that GPType
offered a 1.5% lower average CER than the fixed variance model. This, along with the
earlier observation that this condition had the highest baseline error rate, suggests that there

is a more significant noise effect when walking and typing than when sitting or standing.

Further, this increase in noise is not uniform — otherwise a scaling of o, and o, would be
able to account for the effect, which is not what these results indicate. There are a number
of possible factors which might cause this noise increase. First, the variance across users
might become more pronounced when walking, so that a single set of parameters in the fixed
variance model does not adequately capture the variation. Alternatively, the level of variance
in different areas of the screen might be more extreme in the walking condition, so that the

fixed variance model does reflect the differences across the space.

To evaluate the effect of the first of these factors, we look at the learned hyperparameters
for our participants. Figure 5.7 shows the mean and standard deviation across all users of
the noise parameter ¢ in the GP covariance function. The values of ¢ are not significantly
different between Sitting and Standing, but the noise parameter is indeed higher on average

for the Walking condition than for the other two. Further, the standard deviation is around
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50% higher in this condition, indicating more pronounced variations between users as they
type. This indicates why the fixed variance models performs worse than GPType for walking

users.
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Figure 5.7: Mean and standard deviation across all users of the noise parameter o learned
by the GP. The noise level is higher in the Walking condition than in either of the other two.
The standard deviation is also higher for the Walking condition, but is still small relative to
the mean.

This result shows that taking into account the variability of individual users is useful when
modelling touch. In particular, it provides a measurable benefit for users typing as they walk.
Given that smartphones are often used in settings outside the home or office when users are

on the move, this is an attractive property of the system.

Entry Rate

We also measured participants’ text entry rates for both keyboards. However, we saw no
significant difference between GPType and SwiftKey in any condition. This is perhaps to be
expected, given that the physical layout of the keyboards was the same and that backspace

was disabled, so the observed entry rates do not subsume manual error correction.

Further, we found no significant variation in entry rate between the mobility conditions.
Across all participants, the mean entry rate for both keyboards was approximately 30 words
per minute, where a word is taken as any five character string. One might expect a decrease
in entry rate when walking as the user’s attention is divided, but this was not the case in
our study. This can potentially be explained by the lack of a pace setter — users were free
to choose a walking speed at which they felt comfortable typing, and it seems they chose

speeds which did not affect their text entry rates.
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5.6 Conclusions

This Chapter has presented the design, implementation and evaluation of GPType, a text
correction system which exploits the probabilistic nature of our GP offset model to improve
text entry accuracy. GPType is a novel combination of an uncertain touch model and a long-
span language model. In our user study, we showed that the system could reduce absolute
character error rates by 4.9% while sitting, 5% while standing, and 7.6% while walking. The
increased reduction seen for walking users highlights the ability of our model to account for

the greater inherent noise present while walking and typing.

GPType’s performance in the study was as good or slightly better than SwiftKey, a leading
commercial keyboard for Android. However, it is worth noting that SwiftKey performs
longitudinal adaptation to a user’s typing patterns, learning their commonly used words
and phrases over time. Since our participants used it for only a single 45 minute session,
SwiftKey was not given a chance to do this adaptation. In an extended study, it may be the
case that SwiftKey eventually outperforms GPType, but nevertheless we contend that our

system is an effective solution, offering commensurate performance to the state of the art.

An important auxiliary finding of the development of GPType was that an offset model
trained by asking users to touch a series of crosshairs did not work well when predicting
a user’s intentions in touching a soft keyboard. This suggests that task is a relevant feature
to consider when thinking about touch offsets, in addition to physical considerations such
as hand posture or angle of the device with respect to the user. Does every task require a
different offset model? If so, collecting training data may become an issue. Our users spent
approximately five minutes calibrating in each of three mobility conditions, and for some
users that might be an unreasonable requirement for each new interface they use. The effect
of task on offset model performance, and an alternative offset model which can be trained

much quicker than the GP, will be discussed in Chapter 7 of this work.

More than just being a text entry system, GPType acts as an example of a model which
models the uncertainty in an interaction in order to improve that interaction. However, this
model is hidden from the user. In the next Chapter, we explore the use of a system in which
the uncertainty model is explicit — the user can directly convey their certainty about inputs
to the system. We use this model to answer the question: what happens when autocorrect
fails?
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Chapter 6
Explicit Uncertainty Control

Summary. This chapter introduces an alternative approach to uncertainty modelling, in
which the user can explicitly control the level of uncertainty they express to the system with
their touches. Again, we focus on a text entry use case, which we motivate by observing that
there are cases where an autocorrect system changes input against the user’s intention. We
show that users have a good mental model of how autocorrect works, and introduce Force-
Type, a pressure sensitive keyboard which allows users to change the probability distribution
over keys. By pressing hard on a key, they make the touched letter more certain and pre-
vent unwanted autocorrection. We show that this gives a performance improvement when

entering out of vocabulary words.

6.1 Introduction

The GPType system presented in Chapter 5 is a flexible autocorrect system which combines
information from multiple probabilistic sources in order to improve text entry accuracy. It
serves as an example of the value of a system which models the uncertainty in a user’s input,
and propagates that uncertainty until a prediction needs to be made. Predictions in GPType
are corrections at the end of words, and the uncertainty information for each key press in
the characters of the word is used to make these predictions. Clearly this approach has
merit, since it leads to performance slightly better than the state-of-the-art. However, like all
existing autocorrect systems its operation is opaque to the user — the uncertainty model is
hidden.

In this Chapter, we propose another model of uncertain touch interaction, in which the user
can explicitly control the level of uncertainty. Again, this is implemented in the form of a text
entry solution, since that task is ubiquitous on mobile devices and error prone. While auto-

correction can account for many errors, there are situations where it can produce unwanted
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results. For example, proper nouns, abbreviations, slang, and words from local dialects are
all examples of words the user might want to type that are not in dictionaries or language
models used by autocorrect systems. These words might be corrected by the device when

the user doesn’t want this.

The method presented here allows users to prevent these by empowering the user to com-
municate certainty about their inputs to the system. In particular, we present ForceType,
a keyboard which allows autocorrection to be dynamically turned on and off using touch
pressure. By typing harder on a word they do not wish to be changed, the user can prevent
unwanted corrections. This model of explicit uncertainty control complements the GPType
model from the last Chapter, since users need only engage it when they want to prevent a
correction. For regular typing without unusual words, GPType or another standard autocor-

recting keyboard is sufficient.

Statement of Original Work

The work in this chapter was performed in collaboration with Henning Pohl, a PhD student
at the University of Hannover. The work was done during his internship at Glasgow and
subsequently during a visit by the author to Hannover. Henning developed the hardware side
of ForceType and created the logging software. The author handled the interface with the

language model and performed the subsequent offline analyses of the data.

6.2 The Autocorrect Trap

Current generation phones employ a range of autocorrection techniques (e.g., adaptive but
clamped target resizing [72]). These techniques, as well as GPType, implicitly model un-
certainty: the user has little influence on the way autocorrection works. In any such system,
users might be able to reject a proposed correction, delete a character and retype with au-
tocorrection switched off, or select the corrected word and pick from the originally typed
version or other suggestions. These implementations can themselves introduce potential for
error. On 108, for example, corrections are rejected by tapping a small cross in a popup bub-
ble over the word. This target is even smaller than the keyboard keys, and reliably acquiring
it can be challenging. Nevertheless, these measures theoretically allows users to control text
correction according to their needs, but there are still widespread frustrations' and situations
where text prediction falls short. When typing proper nouns or other words not in standard
dictionaries, using regional dialects, or mixing languages, autocorrection is often not flexible

enough to adapt.

'Mttp://www.damnyouautocorrect . com/
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We thus propose giving users control over how their phones correct text. Empowering users
to vary the level of text correction per word allows them to fall back to text correction for
phrases they deem correctable while being able to ‘tighten the reins’ during phrases they feel

their phones cannot handle.

Before developing such a system, the question of whether this is a useful and usable system
or not must be considered. To successfully use this concept, users must have a good mental
model of the way autocorrect works, and the sorts of words and phrases that will be corrected.
To get an idea of how the capabilities of autocorrection are viewed by users, we conducted

an online survey.

We designed a questionnaire listing 20 phrases of varying levels of difficulty—some con-
sisting only of common English words and others with proper nouns, slang, and/or words or
phrases borrowed from other languages (e.g., summa cum laude). Participants were recruited
using mailing lists and social media. For each phrase, participants were asked to rate on a
5-point Likert scale whether they thought autocorrect would change it or not when entered
on a smartphone, based on their own experiences with autocorrect. A rating of 1 indicated
that participants were certain a phrase would be corrected, and a rating of 5 indicated they

were certain it would not.

We received 28 responses (8 female, ages 17-44, mean 29.0, s.d. 7.5) to the questionnaire.
Asked to rate their English language skills, 86% of participants rated themselves as func-
tionally native speakers. The rest of the participants still rated themselves at a near native

level.

To establish a ground truth of whether the phrases would be autocorrected or not, we entered
them into three smartphones—an iPhone 5 running i0S 6.1, an LG E700 running Windows
Phone 7.5, and a Samsung Galaxy S3 Mini using the SwiftKey keyboard on Android 4.1.
Care was taken to ensure that the phrases were typed without transposition errors, so that all
autocorrections were the result of the phones not recognising one of the entered words rather
than spelling errors. We noted for each phone which phrases were autocorrected. In cases
of disagreement, where some phones corrected and others did not, majority voting was used
to produce a singe binary value for each phrase. Such disagreement occured on 5 of the 20
phrases, with Windows Phone and iOS disagreeing with the majority for 2 phrases each and

Android for one phrase.

We next split the user ratings for corrected and uncorrected phrases and produced histograms
showing the counts for each rating. By normalising these histograms we obtain discrete
probability distributions over the ratings for the two groups of phrases. Our results are shown
in Figure 6.1. For phrases that would actually be autocorrected, the most probable rating is
1 (certain correction) and the least probable is 5 (no correction). The monotonic decrease

across the other ratings shows a clear trend, indicating our respondents had a good sense of
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Figure 6.1: For a set of 20 phrases, we asked 28 people whether they thought their phone’s
autocorrect would (a) change it when entered, or (b) leave it unchanged. Participants gave
a rating between 1 (will definitely be changed) to 5 (will definitely not be changed). We
classified each phrase by testing it for autocorrection on several different phones. This figure
shows the probability of each point on the rating scale for both classes (changed and un-
changed). Note how users’ understanding of when autocorrect would be active aligns well
with when autocorrect actually was active (right side). Understanding of when it would not
be active is less pronounced but follows a similar trend.

phrases that would be autocorrected.

For phrases that were not corrected, the trend is less pronounced. The most likely rating is for
no correction and there is a remarkably high probability that users rate these uncorrectable
sentences as certain or near certain corrections. In essence, they overestimate how likely
autocorrect systems are to take action. This is not necessarily an issue—if a user takes action
to prevent autocorrection when none would have occurred, there is no difference to their final

input.

The distributions over ratings are significantly different (Wilcoxon test, p < 0.01) for the
two groups of phrases. This suggests that users have a functional mental model of the way

autocorrect operates.

The results suggest that users could make use of a system that affords finer control over text
correction behaviour. Respondents were able to identify when a phone would make an un-
wanted correction. As an example, the phrase containing summa cum laude was corrected
on two out of the three phones tested, and respondents correctly identified this as a phrase
which would be corrected. However, this Latin term is in reasonably common usage in uni-
versities which award Latin honours and these autocorrections are unwanted. This pattern
was repeated for other phrases, indicating users are able to identify situations where prevent-
ing autocorrection is desirable. This motivates the work presented in the remainder of this
Chapter.
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6.3 ForceType: Pressure as Certainty

Given that users already have a mental model of which words are likely to be autocorrected,
we desire an input modality which enables them to express certainty about words they do not
want corrected. In essence, we wish to allow users to negotiate control between themselves
and the decoder. For normal typing, the autocorrect functions as it does on current phones,
but when the user suspects the word they are entering is unknown to the phone’s dictionary

they can smoothly limit the autocorrect behaviour.

We choose pressure as the factor to control this negotiation. When the user wishes to indicate
certainty, they simply press harder on the keys. It has been shown that users can reliably
select between different targets by varying their input pressure [109], and the idea of pressing
hard for a different input behaviour is simple to grasp. We are interested in an increase in
pressure after the user has acquired a key by touch, rather than a momentary high pressure
contact from a high impact velocity. Controlling the latter was shown to be more difficult for

users.

Other research has considered negotiated uncertainty through user input. In [62], the authors
use the height of the finger above the screen as a proxy for uncertainty when browsing a
map — as the height increases, the system increasingly attracts the view to nearby points of
interest. Fine control is restored when the user brings the finger back to the screen. Although
‘hover’ input of this form is now being introduced on commercial phones such as the Sam-
sung Galaxy $4, it 1s not an appropriate choice for a typing application. [110] shows users
display unintentional drift when varying hover height, so controlling the uncertainty via this
modality might be suboptimal given that text entry requires some degree of accuracy - hence

our choice of the pressure modality.

Another potential input modality we considered was the use of time dependent key presses.
A user could press and hold on a key to increase their certainty about that input instead of
pressing harder. This has the advantage that it could be implemented on a regular smart-
phone without significant difficulty. However, it adds time to typing over and above any
time penalty added by the need for the user to recognise that a correction might need to
be prevented, which we consider an undesirable property. Further, on current smartphones
pressing and holding on certain keys is used to select accented versions (e.g. ‘€’ instead of
‘e’). Overloading the semantic meaning of this input modality might be an irritant for some

users.

As a minor nomenclature note, we observe that ‘pressure’ in this context is not technically
a correct usage. Pressure is a measure of force per unit area, whereas HCI systems that use
‘pressure’ as a modality do not take area into account and thus are technically force-sensitive,

not pressure-sensitive. Despite this, we use the pressure terminology here for consistency
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with the literature. We do however name our system ForceType, both as an acknowledgement
of this observation and to avoid any confusion with PressureText, a previously published

pressure sensitive text system.

6.3.1 Pressure and Touch

Pressure has been used as an input modality in a wide range of interactive systems. Pressure
Widgets by Ramos et al. [111] was an early system that looked at users’ ability to control
touch pressure in a pen based interface. The hardware used had a space of 1024 possible
pressure values, and the authors divided this space into ‘levels’ of equal size. Users in their
study had to select from between 4 and 12 pressure levels using one of four selection tech-
niques. They found that only 6 levels could reliably be distinguished by users — any finer
subdivision of the pressure space resulted in error rates of 10% or more. They also found
that lifting off once the desired pressure level was reached allowed faster selections than
‘dwelling’ on a target for a given time without significantly increasing the error rate. Fi-
nally, they noted the importance of visual feedback when selecting between pressure levels
— participants were unable to reliably make selections eyes-free after an hour of training,
but with feedback achieved good performance very rapidly. This is not necessarily an issue
for a system like ForceType, where no specific level of pressure must be reached to prevent
autocorrection. Rather, increasing pressure smoothly changes the probability distributions
in favour of making the pressed key more certain. However, future versions of the system
might benefit from implementation on a real smartphone rather than our custom hardware,
where visualisation would allow for feedback about the applied pressure and the corrections

(or lack thereof) that will be applied given the current input.

With Force Gestures [112] Heo and Lee explored augmenting tapping and dragging gestures
with varying input pressure. They evaluated their expanded gesture set on a web browser
and an e-reader application. Users were able to perform the five gestures available in the
application with around detection 95% accuracy after only a short demonstration and a few
minutes of practice. They observed that users preferred gestures where visual feedback on
their pressure was given, and that dragging gestures with high pressure were seen as fatiguing

by users.

A more general study on the performance of pressure in touch interaction was carried out by
Stewart et al. [113], who investigated the effect of hand posture on pressure control. They
compared selection between pressure level using fingers on the screen, using the fingers at
the back of the device, and using a set of ‘grip gestures’ where pressure is applied to both
sides of the device at once. They found that the grip gestures offered a small improvement in
selection accuracy over either of the one-side methods, and were preferred by users. Further,

they studied whether audio and vibrotacticle feedback could facilitate eyes-free pressure
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based interaction, and found that while selection times were not affected compared to the

visual feedback condition, selection accuracy decreased by 10 to 30%.

Pressure in Text Entry

A number of systems have explored the use of pressure to augment text entry on touch
devices. PressureText [114] uses a pressure sensitive keypad to perform text entry. This
uses the paradigm of mapping multiple letters to a single numeric key, as found on older
mobile phones (‘abc’ mapped to the 2 key, ‘def’ to 3, and so on). Rather than pressing the
key multiple times to cycle the letters (‘multitap’), this system uses input pressure to select
between the letters. This was shown to be slower than multitap for novice users, but with

training users attained higher maximum typing speeds with pressure than with multitap.

Brewster and Hughes [115] used pressure as a mode switch on a touchscreen keyboard.
Users were able to automatically capitalise letters by increasing their touch pressure. They
compared two pressure selection stategies — quick release at the desired pressure level and
dwelling on the key to select — to typing using a standard soft keyboard with a shift key.
They found the quick release keyboard was faster to use than the standard one, but caused
more errors. The dwell keyboard had the opposite properties, causing fewer errors than the

standard keyboard but slightly increasing the mean time per key.

One-Press Control applied a similar mode switch paradigm to physical PC keyboards aug-
mented with pressure sensors. Once a key is pressed, users can perform a range of pressure
variations before releasing the key to take a number of contextual actions. Capitalisation
was one example, as was cycling through a list of proposed suggestions in a search engine
dropdown. These pressure control techniques were learnable in under 15 minutes of use with

around 80% accuracy.

Clarkson et al. [116] studied potential applications of pressure sensitive buttons on a mobile
phone with a physical keypad. They present the use of automatically tagging emails typed
with higher input pressure as high importance messages. This is similar in a sense to our
ideas, since it involves assigning ‘weight’ to a piece of text based on how hard the user types

when entering it.

Another system which shares some elements with our idea is TypeRight [117]. This is based
on a physical desktop computer keyboard where the resistance of a key to being pressed can
be dynamically control. Using a language model, the system makes it harder to press keys
which do not create words in the system dictionary, with the goal of reducing spelling errors
as users type. The keyboard effectively makes it harder to type out-of-vocabulary (OOV)
words. Our approach takes the reverse approach to combining pressure with a language
model — we assume that autocorrection is sufficient to fix most spelling errors, and design

a system which makes it easier to enter OOV words when a user is sure they wish to do this.
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Pressure on Smartphones

All of the systems described above use custom hardware to determine input pressure, whether
that takes the form of physical buttons with built in pressure sensors, pressure sensitive
graphics tablets, or custom extensions built around smartphones. This makes these sys-
tems difficult to implement on commercial hardware. The Android operating system reports
a pressure value for touches which is based on the detected contact area of the finger, but this
is subject to significant noise since finger posture and the overall size of the user’s hands also

affect this area.

Recently, systems such as GripSense [118] and VibPress [119] have looked at approximating
input pressure on commercial smartphones using accelerometer and gyroscope data. These
systems involve pulsing the phone’s vibration motor when a user touches and measuring the
dampening of the response as a proxy for the pressure. This uses the observation that for
harder presses, more of the vibration is absorbed by the user’s hand. GripSense could dis-
tinguish three pressure levels at 95% accuracy, and VibPress four levels at 90% accuracy.
These techniques might allow our ideas to be tested on a current device, but constantly puls-
ing the motor as the user types might prove very distracting. Additionally, our system relies
on smooth variation of pressure to control uncertainty negotiation, so these approximated

techniques might not be sufficient for our needs.

6.3.2 The ForceType System

We designed and implemented a prototype pressure sensitive text entry system, which we
call ForceType. The system uses the same language model and decoding algorithm as for
GPType, but rather than generating key press probabilities from a GP we use a pressure
dependent touch model. In theory this technique could actually be used in conjunction with
a GP offset model, but in this study we wanted to clearly identify the performance gains
available by giving users control of their uncertainty. Adding a GP gives another factor in
the touch model which could potentially explain some improvements, and we wanted to be

sure to avoid any such effect.

In the new touch model, we take the likelihood p(K|T") of a key given a touch is computed
as a Gaussian:
p(K|T) = N(Kc|pr, o7),

where K¢ is the centre of the key, pur is the touch location and 0% is the variance. This
assumes a circular distribution, which is not entirely in line with the rectangular shape of
the keys, but this simplifying assumption reduces the number of parameters which must be

learned and was found to work quite well in practice.
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Figure 6.2: The touch model used by our correction system. For each key K, we evaluate the
likelihood of its centre K under a Gaussian on the touch point . The standard deviation
or is controlled by pressure. Higher pressure causes a narrower distribution.

These likelihoods are computed for each key on the keyboard and normalised to give a dis-
crete probability distribution. It is here that we introduce pressure sensitivity, by changing

the variance of this Gaussian dependent on the pressure. In particular, we take the variance

C
or = —,
wr

where C' is a constant and wy is the pressure for touch 7. Stewart et al. [113] showed
that although many researchers have used non-linear mappings between input pressure and
sensor response, with well conditioned sensors this relationship can be shown to be linear. In
initial pilots of the system, we found that this simple inverse relationship between pressure

and variance worked well, so we did not experiment with alternative models.

With this model, for high pressure touches the variance is small and the probability mass is
concentrated in the pressed key, whereas for lower pressure touches the probability mass is
spread over the keyboard, allowing correction to take place. The touch model is illustrated
in Figure 6.2. Note that we evaluate the Gaussians at the key centers to produce likelihoods,
rather than sampling as in GPType, since we are using simple circular Gaussians with the
same variance in all directions. If the system were extended to incorporate a more advanced
touch model with offset compensation, sampling to obtain key press probabilities would

likely be a better strategy.

The constant C' in our likelihood term needs to be calibrated appropriately. In particular, a
value such that the distribution for a ‘typical’ touch has a standard deviation equal to half a
key width is desirable. This means that predictions for such a touch assign the majority of
the probability mass to the pressed key and its neighbors, and a smaller probability for more

distant keys.

To determine an appropriate value for C', we collected data in a short and informal prelimi-
nary study. We asked 10 participants to repeatedly write the quick brown fox jumps over the

lazy dog, an English pangram, on our input device, a pressure sensitive touch pad called the
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ForcePad (more information on this hardware is given in the next section). This was done
without presenting any feedback about what was typed, and in the absence of any correction
scheme. This provided us with pressure information for typing with every key on the key-
board. From a histogram of the logged pressure information, it was the clear the data were
not normally distributed and had high positive skew. We chose to fit a gamma distribution to
the data. Next, from the 2333 collected datapoints we removed 144 outliers (>30 away from
the mean — these were primarily points where the hardware reached its upper sensing limit).
We then refitted a gamma distribution to the remaining data. The mean of this distribution
was 168.28 g/cm? (0 = 106.20 g/cm?). We then chose C' such that the Gaussian distribution

for a touch with this mean pressure had a standard deviation equal to half a key width.

6.3.3 Comparison to Offset Modelling

An interesting observation is that the pressure sensitive model presented here can accomplish
an increase in text entry accuracy in a different manner to an offset model such as GPType.
The offset model accounts for the user’s own offsets and for noise in different parts of the
screen and assigns probability mass to keys in a way that can often correct for touches hitting
the wrong key. The pressure sensitive model allows users to type more softly when they
are uncertain of a word’s spelling, spreading their probability of more keys and giving the
language model more influence in the corrections made. Alternatively they can type harder
when they are certain of a spelling and don’t want the language model to have any ability to

act.

Both approaches offer value, and it is possible that a combination of offset modelling and
pressure control could offer further improvements to the text entry experience. This is an
interesting avenue for future work, particularly as it becomes more feasible to measure or

approximate pressure on touch screen devices.

6.4 Evaluating ForceType

We conducted a user study to determine the effects of pressure-based control of text correc-

tion. We hypothesize that:

H1 Pressure adaptive text correction requires fewer word corrections by the user than con-
stant scale text correction
H2 Users are faster when typing words unknown to text correction when utilising pressure

adaptation
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To test these hypotheses, we had participants type a series of phrases in two conditions:
with and without pressure adaptation. For the latter, we use the same correction model but
rather than adapt the variance of the touch Gaussian based on pressure we used a fixed value,
chosen such that the standard deviation was equal to one key width. This corresponds to the
standard deviation in the pressure sensitive model when the touch has mean pressure and

approximates the behaviour of autocorrect on modern smartphones.

We used a between-subjects design for the study, so that each participant used only one
correction model. This decision was made due to the difficulty of having a participant learn
the pressure sensitive model and then asking them to “type normally” for the other condition.

The conditions could thus not be properly counterbalanced in a within-subjects design.

In order to assess the impact of using the model on the text entry speed for the pressure group,
the phrase set used needs to contain both correctable phrases, containing only words known
to the correction model, and uncorrectable phrases, containing at least one word unknown to
the model. The former should not require pressure typing invocations if the user has a good
understanding of the language model behaviour, while the latter set will require one or more

invocations.

6.4.1 Participants

We recruited 16 participants (5 female, age 21-39, mean=25.69, s.d.=4.48), where all but
three were smartphone owners. On average, participants had over 3 years of smartphone
experience. On a 1-5 scale (1 = beginner, 5 = functionally native), participants rated their
English language skills at an average value of 3.06. Each participant was randomly assigned
to one of the two conditions—text entry with pressure adaptive autocorrect and text entry

without. After the experiment, participants were given a small non-monetary gratuity.

6.4.2 Apparatus

For pressure sensing and finger tracking we use a Synaptics ForcePad sensor. The de-
vice weights 526 g and measures 14.2 x 12.2 x 1.1cm. The touch-sensitive area covers
10.9 x 6.9 cm on the device’s surface. The sensor’s diagonal thus is 12.9 cm—within roughly
6 % of a Samsung Galaxy SIII’s 12.19 cm. Overall, the Forcepad is slightly larger but con-
siderably heavier (an SIII only weighs 133 g) than current mobile devices. However, it does
provide a comparable experience when holding the device in landscape mode and typing.
Thus, we feel that the Forcepad is a valid placeholder device for evaluating how future mo-
bile devices incorporating pressure sensing touch could be used. Overall we expect that entry
rates will be lower than on a comparable phone because of the additional weight and slightly

bulky form factor.
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The ForcePad provides capacitive tracking with pressure information for up to 5 fingers.
Force readings are provided with 6 bit resolution at 67Hz. We take the maximum value in
the last 10 frames before the finger lifts off as the pressure value for a touch. We used maxi-
mum rather than average values as there were occasional issues where the reported pressure
would become large and negative immediately after finger liftoff. The force sensitivity of
the ForcePad made us choose this device instead of experimenting with approaches using
accelerometers to infer typing pressure (e.g. [120, 119]). Such approaches are typically lim-
ited or inaccurate, and in the first instance we wanted accurate values to assess how users

controlled the system.

Figure 6.3: We modified a Synaptics ForcePad to allow for graphical feedback to users while
typing by attaching an LCD display on top of the device. The display is controlled via an
Arduino (not shown). A modified version of the iOS landscape keyboard is glued to the
device. Shift, voice-recognition, and mode switch buttons were removed and the space key
extended to encompass the @-key.

The ForcePad is an input-only device and cannot display visual feedback or instructions di-
rectly on its surface. Using an external monitor for feedback, however, would not allow
us to evaluate normal typing behaviour. Users would be forced to repeatedly change fo-
cus between the monitor and the ForcePad. We thus modified the ForcePad by attaching a
132 x 32 px LCD to the device. With a medium sized font this can display three lines of text.
The LCD was glued to the top of the ForcePad which brings the overall weight up to 651 g
but does not impede hands holding the device. An Arduino is used for control and allows
the connected PC to set display content via the serial port. This combination of ForcePad
and LCD enables us to simulate future mobile devices with pressure sensitive touch. One
limitation of this hardware is there is no visual feedback on corrections before they happen.

Again, we expect that this difference from a conventional phone is likely to reduce the overall
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entry rates for the study — this is another reason that exploring pressure proxies on current

smartphones is a focus for future work.
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Figure 6.4: We use a modified version of the iOS landscape keyboard. Shift, voice-
recognition, and mode switch buttons were removed and the space key extended to encom-
pass the @-key.

To simulate an onscreen keyboard, we glued a keyboard overlay on the ForcePad. We used
a modified version of the 10S landscape keyboard with all buttons triggering mode switches
removed (as not to confuse participants). This keyboard is shown in Figure 6.4. The glued
on keyboard did not introduce new haptic cues and thus provides an experience comparable

to current smartphone keyboards.

6.4.3 Procedure

We used a subset of the English NUS SMS Corpus (version 2012.04.30) as phrase set [121].
This dataset contains 41537 text messages, sent primarily by users in Singapore, India, and
the USA. Text messages often contain slang and shorthand, making them a good example of
the a text where autocorrect fails. However, not all messages are equally appropriate for our

evaluation and we removed all messages that:

e are shorter than 15 or longer than 50 characters

e contain any character not in the set given by the ISO basic latin alphabet plus the space
and period characters

e are shorter than three words

e contain unknown one-letter words

This first filtering leaves us with set of 5733 phrases. Our main concern is our requirement
for unknown words in the messages, i.e., words that can not be found in a standard dictionary
known to a language model. To determine such unknown words, we make use of the built-in

Android en—us dictionary. We now split our phrase set in two parts:
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correctable phrases Are phrases that only contain words found in the dictionary (n =
1272).

uncorrectable phrases Contain at least one word not found in the dictionary (n = 4461).

Uncorrectable phrases, therefore, are those which could contain text unknown to the lan-
guage model and might result in undesired autocorrections. For every participant, 20 cor-
rectable and 20 uncorrectable phrases were picked at random. While phrases were chosen
randomly, a post-hoc analysis showed that there was no significant difference across users
in the number of out of vocabulary (OOV) words per sentence (p > 0.4). Participants were
not provided with an indication of whether a phrase is correctable or not. They were left
to decide whether a given phrase had any words which might be autocorrected when they
shouldn’t be.

At the beginning of the study, we gave participants the chance to familiarize themselves with
our prototype. Participants then had to complete 40 trials. In each trial, they were shown
the complete phrase on a PC monitor in front of them and then had to copy that phrase. The
PC monitor was used because the full phrases would often not fit on the LCD screen and
we wanted participants to know the full sentence before typing. Once they began typing, the
phrase on the monitor was hidden. During text input, the phrase (clipped to the display size
and current position) is shown alongside the input text on the device. We asked participants
to copy the phrases accurately—if they noticed a mistake, whether from a language model
correction or their own typing, they were instructed to correct it. After using backspace to
delete part of a word, autocorrect was disabled until the next word. This is equivalent to
the behaviour on current phones and prevents infinite correction loops. Participants had to

submit each phrase with the return key.

6.5 Resulis

Prior to performing detailed analysis, we performed a ‘sanity check’ of sorts in which we
looked at the baseline text entry accuracy of each user. As a result, we removed data from
one participant from the subsequent analysis, as his touch offsets were so large, he rarely hit
the right key. His uncorrected error rate in terms of the keys hit was over 70%, and even after

language model correction his error rate remained above 50%.

6.5.1 Text Entry Errors

Our first concern is to assess whether ForceType allows users to enter text more efficiently

or not. As our performance measure, we use active correction rate (ACR), defined as the
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Figure 6.5: ForceType requires significantly fewer active corrections from users when enter-
ing text. Required corrections dropped by ~ 10 percentage points. Additionally, ForceType
enabled users to enter phrases > 20% faster. Errors bars are 1 std dev in both plots.

proportion of words which the user has to actively correct by backspacing and retyping. This
is similar to the metric used in [117], where they looked at the number of times backspace
needed to be pressed. If H1 is accepted, we should see a decrease in ACR since users can use
pressure to prevent autocorrection of non-standard words. We chose this metric over CER,
since in this study users were able to manually change unwanted corrections. In GPType,
corrections made by the system could not be changed, since we wanted to evaluate the quality
of the corrections, not the ability of users to control the system. This choice is supported by
the results — the mean CERs for the two study groups were not significantly different (~ 3%

in each case).

Our results are shown in Figure 6.5a. Using pressure adaptation, the average user had an
ACR of 10.86%, compared to a value of 19.48% for users without pressure adaptation. This
is a significant decrease compared to the baseline condition (independent two-sample 7-test:
t12 = —3.48, p < 0.005). We can thus reject the null hypothesis and accept H1.

It is worth noting that the ACR values for both groups are quite high. This is explainable
by the nature of the phrase set used — since they come from an SMS corpus, many of
the phrases contain words not found in common English. Again, this choice was made to
ensure that participants actually encountered phrases where the language model might make
an unwanted correction. This has the potential of magnifying the apparent effectiveness of
ForceType compared to typical usage, but we would argue that SMS makes up a significant
portion of the usage of mobile phones, and some people are attached to ‘text speak’ even
though their phones might try to correct them. Unfamiliarity with the form factor of our

apparatus may have also increased the number of errors made.

6.5.2 Typing Speed

We also looked at how using pressure adaptation changes the text entry speed. As a metric we

used words per minute (WPM), with 5 letter words. Our results are shown in Figure 6.5b.
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With pressure adaptation active, users typed 19.23 WPM, while without they only typed
15.42 WPM. This is a significant increase in typing speed (independent two-sample z-test:
t12 = 3.5002, p < 0.005). We can reject the null hypothesis and also accept H2. We note that
these entry speeds are quite low in comparison to other keyboards — as disussed before, we
attribute this to the bulky form factor and limited visual feedback afforded by our hardware.
We expect that if the system were implemented on a conventional smartphone, the overall

speed would be higher.

We also looked at the impact of uncorrectable phrases on typing speed. A small drop in speed
could be expected, as users have to invest more mental effort in processing those phrases and
deciding to use ForceType. For ForceType, we saw WPM go down by 3.97 for uncorrectable
sentences compared to correctable ones. For the control condition, the speed reduction was
2.61WPM. Both changes are significant (p < 0.05) while the difference between the two
changes is not (p > 0.13). That is to say, ForceType introduces cognitive load and reduces the
typing speed more in absolute terms, but since it offers a higher baseline speed when entering
unusual phrases, the proportionate change is not significant. In this sense, ForceType and the
control are both equally affected by uncorrectable phrases, resulting in a small performance

drop. Overall, ForceType resulted in faster typing speed.

6.5.3 Use of Pressure

An analysis of how our participants used pressure was also performed. This is important
because it may affect the design of the system. If, for example, the typing pressure when
the user wishes to suppress the language model is always above some threshold that is never
otherwise reached, the system can be reduced to a binary mode switch and the full range of
pressure values need not be modeled. Alternatively, it might be the case that users in the

pressure dependent group simply typed with increased pressure at all times.

We began by comparing the pressure values for all touches in the study, looking for differ-
ences between those users in the pressure adaptation condition and those in the control. As in
the calibration study, we observed that the distribution of observed values had high positive
skew, and so we fitted a gamma distribution to each participant group. These distributions
are shown in Figure 6.6. The distributions are fitted to all recorded touches, including those

for both correctable and uncorrectable sentences.

Somewhat surprisingly, we see that the average touch pressure for the users in the pressure
adaptation condition is lower than in the control. We applied the two-sample Kolmogorov-
Smirnov (KS) test, and the distributions are significantly different with p < 0.01. It seems
that when given the knowledge that the system was pressure sensitive, their default behaviour

was to type more softly than they otherwise would. It may be that participants had uncer-
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Figure 6.6: Distributions of observed pressure values for participants in the two study groups.
Those in the pressure adaptation condition had a lower typical pressure.

tainty about how much force was required to prevent a correction, and typed lightly to avoid

accidentally doing this.

Next, we considered the differences between pressure values for correctable and uncor-
rectable sentences. We would expect that if participants actually make use of ForceType,
the pressure values for uncorrectable sentences should be higher since users will take action
to prevent corrections in these sentences. This analysis is only presented here for users in
the pressure adaptation condition — a similar analysis of the control showed no significant
differences between the sentence types. This is to be expected, given users in the control had

no idea of the force sensitivity of the hardware.

0 2 4 6 8 10
Force (N) Force (N)

(a) Correctable sentences. (b) Uncorrectable sentences.

Figure 6.7: Distributions of observed pressure values for correctable and uncorrectable sen-
tences. The former theoretically can be entered without any ForceType usage. Pressure
values were higher for uncorrectable sentences, indicating participants made use of Force-

Type.

Figure 6.7 shows the fitted distributions for the two sentence types. The most likely pressure
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for uncorrectable sentences is higher than that for correctable sentences. The distributions
are significantly different (two-sample KS test, p < 0.01). This indicates that participants
were able to identify situations where an OOV word was present and invoke ForceType to
prevent any corrections. This supports our belief that users have a good mental model of text

entry, and are able to control a system with an explicit uncertainty model.

Note however that the although the distributions are different, the peaks are still relatively
close together (0.098 N and 0.279 N). The distributions are also not very sharply peaked —
pressure values in the 2—6 N range are quite likely for both sentence types. These properties
make it difficult to set a single pressure threshold at which to start preventing corrections.
A threshold between the two peaks would cause many failed or accidental invocations of
ForceType, and one higher than the second peak would still allow corrections in some cases
where users were trying to prevent it. This validates the decision to use a continuous model

of pressure when computing key press probabilities.

Finally, we look at differences between pairs of users. Touch offsets have been shown to be
highly user specific, so we might expect that the pressure distribution will also vary between
users. To minimise errors from multiple testing, we applied both the two-sample KS test and
the Mann-Whitney U-test, with Bonferroni corrections, to the data from each pair of users.

This tests the null hypothesis that two samples come from the same underlying distribution.

For all pairs of users, the null hypothesis is rejected by the KS test with p < 0.01. Under
Mann-Whitney, the null hypothesis is rejected for all but 3 of the 16 users with p < 0.01.
The remaining 3 users are each similar to the other two, but not to the rest of the population.
Taking the more conservative of these two test results, the pressure distribution for the ma-
jority of users was significantly different from all other users. There may be groupings of
users with similar pressure profiles, but in general there is substantial variation across users.
This again implies the difficulty of a thresholding approach to pressure typing, and shows the
value of a full pressure model for each user. Given this result, it may be possible to further

reduce the ACR by tailoring the weighting of the language and touch models to each user.

Additionally, this result may suggest why the control condition had such a high ACR. The
fixed variance touch distributions were based on a ‘typical’ touch as defined by pooled data
from 10 users. Had a fixed variance been defined on a user specific basis, it might have
been possible to achieve better results. However, in practice we wanted to compare against a

model which did not require training, similar to existing text entry systems.

6.6 Conclusions

This chapter presented ForceType, a system designed to tackle cases where traditional au-

tocorrect systems fail. By allowing users to convey certainty in their input using pressure,
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autocorrect can be dynamically turned off to allow entry of words not in standard word lists,

such as acronyms or words from local dialects.

ForceType was successful in increasing typing speed and reducing the number of cases where
users had to manually correct their entered text. Our results also show that there is significant
variation in the use of pressure across users. As with touch offsets, modelling this variation

may raise the potential ceiling for text entry accuracy.

In ForceType, our model of the uncertainty is explicitly controlled by the user, allowing finer
control over the system when the user can anticipate undesired autocorrection behaviour.
This stands in contrast to the GPType system presented in Chapter 5, where the uncertainty
model is hidden from the user. Such hidden models are applicable in the majority of sit-
uations, but the layer of control offered by ForceType allows users to smoothly take back
control from a system when they need to. We found that people have good models of words
which need correction, but are often overly concerned about the potential for interference
from autocorrect. In situations where they are unsure, increased pressure can give them
peace of mind that they are in control. When typing normally, nothing changes for them, but
if they see a need they can step in and retain control. This puts the work here in line with the
Focused-Casual Interaction Spectrum proposed by Pohl and Murray-Smith [78]. We believe
the results here show that giving users control over their uncertainty is a viable interaction

paradigm.
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Chapter 7
Training Data Requirements

Summary. The touch models we have reported on in the thesis so far require a substantial
training set — on the order of hundreds of points — to make good predictions. This Chapter
considers whether we can avoid this limitation. This is motivated by a study into the differ-
ences in touch behaviour across tasks. These differences are significant, and this suggests
the need for many models to be trained. Given this, we investigate the use of the RVM to
train sparse offset models with small training sets. We show that these models give good

performance on a range of datasets representing different tasks and hand postures.

7.1 Introduction

In previous chapters, we have built Gaussian Process offset models using calibration data
gathered from a set of known targets. However, we have always trained and tested our
models using data from the same task — for example, touching crosshair targets. However,
in Chapter 5 we experimented with an offset model trained on crosshair targets and tested
on typing data, and found that this model gave worse predictions than the baseline. This

suggests that the offsets were quite different between these two tasks.

It is therefore worthwhile to look in more detail at how users’ offset behaviour changes
based on the touch task they are performing. It may be that each new task requires a com-
pletely different offset model. This chapter presents the results of a user study into the
cross-compatability of offset models based on a number of target acquisition tasks and a

typing task.

We find that users exhibit significantly different offset behaviour when typing than when
pressing buttons or aiming for crosshair targets — in particular, the offset functions we learn
for typing are more complex than those for the Fitts’ Law style pointing tasks, perhaps due to
the fact that offsets may change depending on previously hit keys when typing. We conclude
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that the choice of calibration task is an important consideration when developing an offset

model.

There has already been research that shows that a range of factors affect touch offsets — hand
of use, thumb vs index finger input, even effects of the particular device. Our results suggest
the necessary space of models is even larger than previously realised, since task-specific

models are needed for each of the conditions mentioned above.

Given this, if offset models are to be widely adopted there is a need for a mechanism to
train them with as little data as possible, since some users may be unwilling to perform
substantial amounts of calibration for each new condition. We thus seek to find an offset
modelling framework which is less intensive in terms of training data requirements than the

GP, which required hundreds of training examples to reach full effectiveness.

In particular, we use Relevance Vector Machines to build sparse offset models using fewer
than 10 training points. We find that these sparse models outperform population based poly-
nomial models, and are better than user-specific polynomials when the number of training
points is fewer than 20. The locations of the points used to make predictions in these models
are highly conserved across users, indicating some parts of the screen are more important
than others when collecting training data. These results hold for both one- and two-handed

usage.

Statement of Original Work

One of the datasets analysed in this chapter — the one thumb RVM dataset — was gath-
ered by a student, Daniel Buschek, during an internship at Glasgow. However, all analyses

reported here were produced by the author, as were the other datasets and software.

7.2 Touch Variability Across Tasks

The impact of task on touch offset behaviour has not been extensively studied in the liter-
ature. Beringer and Peterson [19] gave an early indication that it might be a factor in their
1985 work on desktop touchscreens. They found differences in the horizontal offsets seen
between a study where users had to select a single target from a grid of nine, and another

study where users tapped a single target on an otherwise blank background.

Essentially all other studies into offset behaviour have focused on a single task for training
and testing. Henze et al. published two large studies on touch behaviour, one based on hitting
round targets [1] and the other on typing [46]. In each case they learned a polynomial offset

correction function, but they did not compare these models. However, looking at the plots of
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the predicted offsets for the Galaxy S phone in the two papers, different offsets can be seen

for the models in some parts of the screen.

We have also seen some evidence in this thesis that task has an impact on touch offsets.
Recall that in Chapter 5, we collected two sets of calibration data for our GP model for use
in a soft keyboard. One set consisted of presses on the keys of the keyboard, and the other
of touches aimed at crosshair targets. We found that for all users, training the GP on the
crosshair data resulted in predictive performance on the key press data that was worse than
performing no correction at all. Training and testing on the key press data gave a performance

improvement over the uncorrected baseline, however.

Given this observation that offset models from crosshair data did not generalise to typing,
it is a natural progression to ask how offsets vary across other tasks. In particular, we wish
to collect touch data for a range of tasks and then assess whether offset models trained on
one task produce accuracy improvements when they are tested using data from other tasks.
Further, we wish to investigate the causes of any observed differences between tasks. The
GP framework gives a way to do this in terms of the covariance function hyperparameters
— these provide a measure of the relative complexity and variability of the learned offset

models.

There are two hyperparameters of interest — the noise variance o2 and the covariance length
scale /. The former measures the noise found in the training data — that is, it quantifies the
random component of a user’s offsets. Variation in this across the tasks might explain the

incompatability of offset models trained on different tasks.

The length scale hyperparameter [ controls how smooth the offset functions can be. A lower
value of [ means the offset function can change more rapidly between two targets at a given
separation. That is, lower values of [ result in potentially more complex offsets. If one or
more tasks result in more complex functions, then applying these functions to simpler data

will result in poor predictions.

7.2.1 User Study

To explore these issues, we collected data in a user study. We created a web app to collect
touch data. This was implemented using the HTML 5 Canvas element for drawing, with
JavaScript and PHP for logging functionality. This choice was made in favour of developing
a platform-specific app so that a wider range of devices and participants could be targeted.

We recruited participants using university mailing lists and social media.

Since the application was hosted online, the study was carried out remotely rather than in
the lab. Participants accessed the application through the web browser on their own phones.

They were instructed to complete the touch tasks while seated in a quiet area, but obviously
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we cannot guarantee that this was the case as we did not have control over the participants.
This reduces the internal validity of the study, but increases the external validity of our results
by capturing touch data in a wider range of settings. This tradeoff between external and

internal validity for remote touch studies is discussed in [1].

Design
We chose to collect data for a total of six tasks, as follows:

T1 Full typing — Participants transcribed phrases using a custom soft keyboard.

T2 Key press data — Participants were shown the same soft keyboard as in T1, and given

instructions of the form ‘Press E’. This is the calibration task used in Chapter 5.

T3 Random crosshairs — Participants had to touch crosshairs that were randomly placed on

the screen.

T4 Fixed crosshairs — Participants had to touch crosshairs placed at the locations of the
center of our keyboard keys. Only one crosshair was shown at a time however, rather
than the full grid.

TS Random buttons — Participants had to touch rectangular buttons, the same size as the

keys on the keyboard, placed randomly on the screen. One button was shown at a time.

T6 Fixed buttons — Participants had to touch rectangular buttons in a identical layout to the

keyboard, but with no labels. The target button was highlighted.

These tasks allow us to investigate a range of different aspects of this problem. T1, T2 and
T6 all use the same button layout, but allow us to test whether the offset behaviour is different
with different stimuli. T1 and T2 split the user’s attention between the instruction and the

keyboard, while in T6 the buttons are the stimuli.

Comparing T3 and TS5 allow us to assess any impact of different target shapes on the offset
behaviour for arbitrary target locations. T4 and T6, meanwhile, test whether using crosshairs

instead of buttons has any effect for a fixed set of target locations.

The tasks fall into three broad categories. T3—T6 are all variants on Fitts’ Law style target
acquisition tasks, and can be grouped together. T2 has the additional contextual requirement
of identifying the location of the target key on the keyboard, and is a category of its own. T1
is related to T2, but as a typing task it has a different associated mental load. In T2, users are
given one instruction at a time, whereas in T1 they have a whole phrase to type and can plan

ahead to future touches.
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Given our earlier observations in Chapter 5, we hypothesise that the observed offset be-
haviour between T3-T6 and T1, and between T3-T6 and T2, will be different. It is not clear
in advance whether T1 and T2 are sufficiently different to induce different offset behaviour,

but we hypothesise that they are.

Note that in designing this set of tasks, we have assumed a standard English QWERTY layout
for the keyboard. We could equally have picked targets in some other layout — say, the split
layout of the KALQ keyboard [103] — and this would likely have led to different offset
behaviours. However, from a modelling standpoint this is not an issue. The GP framework is
flexible to any layout of interface elements, and this is a key strength of our approach. Some
knowledge of the size of targets is needed if we wish to calculate key press probabilities, but
there are no restrictions on what those sizes can be (other than the limitations of screen size).

This modelling flexibility is a very convenient property.

Participants

We recruited 16 participants (5 female). Participants ranged in age from 18 to 33 (mean =
26.0, sd = 4.5). 14 participants were right handed, and the remainder left handed. The ma-
jority of participants (13) had 3 or more years of smartphone experience, and no participant
had less than 1 year. Participants were not paid for their time, but were able to opt-in to a

prize draw for an online retail voucher.

Procedure

Participants accessed the logging application online, and after providing demographic infor-
mation and informed consent, were led through the tasks. Order of presentation was counter-
balanced across participants. Prior to each task, a short instruction page was shown. For T3
and T3, a sequence of 300 targets were shown. For T2, T4 and TS5, we collected 10 touches
per target, for a total of 290 touches. For T1, participants had to transcribe 13 phrases, taken
from the dataset of Vertanen and Kristensson [106]. The first 3 phrases were not considered
in our analysis, to allow participants time to become familiar with the keyboard. The total
length of the remaining 10 phrases varied, but all participants provided at least 300 touches
in this task. Thus, for each participant we collected at least (300 x 3 + 290 x 3) = 1770

touches. The maximum number of touches collected for any one participant was 2054.

In all tasks, participants were asked to hold their phone in portrait orientation and touch
targets with both thumbs. For each touch we recorded the touch down and up positions and
times, along with the position of the intended targets. For tasks T2-T6, no feedback was

given about the touches.
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Figure 7.1: The interface used for the typing task in our study. The stimulus is shown at the
top of the screen and the currently typed characters are shown as asterisks and spaces below.
Users were asked to ensure the asterisks lined up with the stimuli.

For T1, participants were shown only a series of asterisks and spaces to ensure that their
input lined up with the stimulus phrase. A backspace key was added to the keyboard for
this task, to allow users to correct when they believed they had made a mistake. This was
done in order to ensure we had knowledge of the intended keys for the touches — we do not
mind if a user hits an adjacent key, as that factors into our offset model, but if a character is
skipped or an extra one typed, the sequence of touches and intended targets gets out of sync
and it is difficult to correct this without hand annotation of the data. Thus users were asked
to make sure the asterisks lined up with the stimulus and each word had the correct number

of characters. Figure 7.1 illustrates this interface.

Analysis

We began by filtering from our dataset all touches that were more than three target widths
away from the center of their intended target. This is a standard filtering, used for example
in [122], which defines these touches as ‘blunders’. Such touches are likely to be errors and

could affect the performance of the offset models.

For each user-task combination we trained GP regression models using 70% of the available
data. For that task, we evaluated the predictive performance on the remaining 30%. As

an error metric, we used the root mean square (RMS) error between the model predictions
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and the intended locations. We compared this against the baseline RMS error between the

recorded touch up locations and the targets.

Given the large number of models to be trained, we learned separate one-dimensional GPs
for the horizontal and vertical offsets, which is faster than a single two-dimensional model
as used in previous Chapters. We optimised the hyperparameters for each user and task
using type-1I maximum likelihood maximisation of the marginal likelihood. As discussed
in Chapter 4, a user specific optimisation of these parameters is not necessarily realistic in
a wide deployment but was important here in order to quantify differences in the models

across tasks.

Then, for the touch data for each other task we made offset predictions using the trained
model and evaluated the RMS error between those predictions and the targets for those other
tasks. In effect, we use the offsets learned on one task to make predictions of the intended

targets for each other task, and see whether those predictions are good.

7.2.2 Results

Figure 7.2 summarises our results in a Hinton diagram. The ¢, j-th box shows the perfor-
mance when training on task 7 and testing on task j. Black boxes indicate a performance
improvement over the baseline, while white boxes indicate a predictive performance worse
than the baseline. Larger boxes indicate a larger difference from the baseline. These boxes
represent the average percentage differences in RMSE across all users. For cases where no
box is shown (e.g. training on T4, testing on T2) the relative change compared to the baseline

was less than 1%, too small to visualise.

To provide scale for the diagram, the rightmost column contains a single box which shows
the size of a 100% increase or decrease relative to the baseline. Note that this almost the
same size as the box for training on typing data and making predictions on the random
crosshair data. This is the largest negative performance effect of any pair of tasks. This
box corresponds to a decrease in performance of 101% — that is, the predictions were on
average just over twice as far from the target as the uncorrected baseline. This is a significant

problem if we wish to deploy offset models on real devices.

A number of interesting features are present. On the diagonal, we can see that training
and testing on the same task always gives the largest possible improvement. This is to be
expected — the GP is a flexible regression tool and can fit the offset models for a given task
easily. However, strikingly, the first row shows that training on typing data and testing on

any other tasks results in predictions that are significantly worse than the baseline.

This indicates that the offset functions for the typing task are quite different from those

learned from other tasks. Similarly, training on any other task and testing on the typing
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Figure 7.2: Hinton diagram indicating the performance difference over the baseline when
training and testing on different tasks. Black boxes represent improved performance, white
boxes show decreased performance. The size of the boxes shows the relative size of the
increase or decrease. The rightmost box is for scale and represents a 100% improvement
relative to the baseline.

data (the first column) results in worse performance than the baseline. Thus, we suggest
that where possible, offset models for typing should be learned on typing data and not on

pointing tasks.

For T2-T6, the performance when using a model from a different task is often better than
the baseline, but worse than training on the specific task. In cases where the performance is
worse than the baseline (e.g. train on key presses, test on random crosshairs), the difference
is quite small. This suggests that the touch behaviour for different pointing tasks is broadly
similar, but varies slightly based on target type and placement. We can see that training on
TS5 always results in a performance improvement over the baseline, for non-typing data. This
is the task using randomly distributed buttons — therefore, in cases where it is not possible
to collect task-specific data to build an offset model, we make the design recommendation

that calibration data is gathered from button targets.

Explaining Differences

To explain why the observed offset behaviour is different, we turn to the learned covariance
parameters for each task. For each user, we pairwise compared the distributions of values for

o over the 10 restarts for each task. There is no significant difference in the noise variance
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across the tasks (¢-test, p > 0.4) for all users but one. The exceptional user had significantly
higher variance for the typing data model compared to all others. This means that, in the
majority of cases, the random component of a user’s touches is independent of the task
— instead, the observed performance differences come from differences in the systematic

offsets across tasks.

We also examined how consistent the variation across user and task for o was. Does the
user with the highest variance in one task have the highest variance for the other tasks? To
quantify this, we took the set of o values learned for each user and task, and sorted it by
user for each task, generating six ordered lists. For each pair of these lists, we computed the
Kendall tau rank distance between them. This counts the number of discordant pairs in the
list, where user 7 is below user j in one list and above user j in the other, or vice versa. These

counts are normalised to give the proportion of the orderings which disagree.

The values obtained vary significantly, from a minimum disagreement of 0.2857 between
the orderings for the fixed and random buttons tasks, to a maximum of 0.6286 between
typing data and random crosshairs. In general the orderings vary significantly across the
tasks, reflecting a lack of consistent structure here. The noise variances are all fairly closely
grouped in the 0.01-0.02 range, and the fact that a user is more variant than others for a given
task tells us little about their relative variance in other tasks. The exceptional user described
above was notable in that for T1 they were the most variable user but for T2-T6 they were

consistently in the bottom two.

We now consider the values of the length scale [. We perform a similar analysis, comparing
the values for given tasks pairwise for a given user. We find values of [ that are significantly
lower for T1 and T2 than for any other task (¢-test, p < 0.01). Additionally, the values for
T1 are significantly lower than for T2. These findings are true for all users. This confirms

the initial hypothesis that the offset behaviours for the three task categories are different.

A smaller length scale means that the offset function can change more rapidly between two
touch points which are relatively close — in general this means the offset behaviour for these
tasks is more complex. T1 and T2 are the tasks which involve the soft keyboard, indicating
users touch in a more complex fashion given the additional cognitive load of these tasks. For
the pointing tasks T3-T6, [ is larger, meaning the offset function is simpler. Trying to apply a
complex offset function to simple touch data, or vice versa, leads to the observed worsening

in performance.

As a visual example, Figure 7.3 shows a visualisation of the offsets learned for T1 and T3
for one of our users. In each case, we evaluated the offset functions in a grid over the area
covered by the soft keyboard in T1. The keyboard is shown for clarity. The two surfaces
are quite different, with the T3 trained model tending to have offsets towards the bottom

right of the screen, while the T1 trained model has offsets towards the bottom row of letter
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keys. This is perhaps an indication that when typing the user’s thumbs rested around this row
between key presses. In the bottom right corner of the screen, the two models predict offsets
in entirely opposite directions Other users also display differences between offset surfaces
for the different tasks, and further there are different surfaces for the same task across users.

As our previous work, and that of others, has shown, touch offsets are highly individualised.
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(a) Random Crosshairs (b) Typing

Figure 7.3: Offset surfaces for a single user trained on the Random Crosshairs and Typing
tasks. The location of buttons on our soft keyboard are shown for reference. The offset
patterns are distinctively different, to the point that in the bottom right corner they point in
opposite directions.

The observed additional complexity in T1 compared to T2 may be a result of the fact that
typing is a more serial process — offsets may change based on the previously hit key, for
example. Using the previous touch point(s) as additional input to the GP may be an interest-
ing direction for future work on offset modelling. Also, all of our participants had at least 1
year of smartphone experience. It is possible that their typing behaviour has come to depend
to some degree on autocorrect systems and knowledge of the QWERTY layout. It would
be interesting to repeat our study with a set of novice users and see if the same conclusions

about offset behaviour hold.

7.2.3 Discussion

The results here are quite striking. There is clear separation in touch behaviour between tasks
involving acquiring button or crosshair targets and tasks involving typing phrases or pressing

keys on a soft keyboard. This is a novel finding, and has implications on previous research.

Henze et al. [1, 46] developed offset functions at a device specific level by collecting large
amounts of calibration data using games, one using circular targets and one where users had
to type words. Our results suggest that these models would likely not be cross compatible —

a universal touch model is difficult, if not impossible, to construct.
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Buschek et al. [47] looked at the creation of functions to adapt a user’s offset model from one
device to another, or to adapt a pooled data model for a given phone to a specific user. These
models were all based on crosshair data. Our results add an additional layer of complexity
to this work, since task is also a factor which must be considered. An interesting avenue for
future work is to take a similar approach to these authors and try to adapt models trained on
one task to suit another task. The observed changes in model complexity may be systematic

in some way.

An interesting observation is that here we found training on key press data and testing on
typing data resulted in a small decrease in performance over the baseline. This is equivalent
to the GP Only condition in our text entry study in Chapter 5, but there we found this gave
an improvement in text entry accuracy. The differences in results can perhaps be attributed
to the different feedback given in the two studies for typing data. Here, only asterisks were
shown, while in the GPType study users could see which keys they were hitting and may have
adjusted their touch behaviour on the fly in response to this. The effect of visual feedback

on touch behaviour is another area which should be explored in future work.

7.3 Sparse Offset Models

Given that our results here suggest a number of different offset models are necessary to
adequately deal with different tasks, it becomes important to be able to train these models
using as little data as possible. Gathering data for these models is not trivial. Data from
typing, for example, is not typically acceptable as we must be sure where the user was
aiming. When typing users are most often composing new text rather than transcribing
something known to the system, so the intended target of each key press is not known in
advance. One could assume that the final text submitted was representative of these intended
targets, but the capability of autocorrection to fix transposition errors in text means this is

not necessarily the case.

To get round this problem, researchers have typically included a calibration phase in their
studies. Henze et al. [1] used a touch-based game, whilst we have used bespoke calibration
applications to collect training data. The problem is particularly acute for individualised
models as we cannot rely on data from other people — all training data must come from the
current user. Given that the phone may be used in multiple modes (portrait, landscape, one
hand, two hand, thumb, finger, etc), and that each mode-task combination may require its

own set of training data, the burden on the user becomes far too onerous.

In this Section, we investigate whether it is possible to train individual offset models with
very small quantities of data (i.e. fewer than 10 calibration touches). We are not interested,

in this study, in finding out how many touches users might tolerate, although this is clearly
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important. Rather, we are looking to push the number required to train touch models down
as low as possible. As well as answering the question ‘how many points are required’, we
will also compare different touch models to see which models perform best in this small
data setting. In particular, we propose that it is very important that any touch model, when
presented with a very small set of calibration touches shouldn’t make the touch problem

WOISE.

The work here has two strands. In the first, we use recorded touch data to investigate, in
a perfect scenario, how few calibration touches can be used to define a model. For this,
we use the Relevance Vector Machine (RVM), discussed in Chapter 3, as it is a regression
algorithm that produces a solution that is sparse in basis vectors (corresponding to training
points). The solution is therefore defined with respect to a (typically) small subset of the total
training data. This represents an ideal scenario as we perform the analysis on a large touch
dataset. However, it provides an indication of the number of touches required to produce
improvements in touch accuracy of the baseline of no offset model. The results suggest that
good performance can be achieved with fewer than 10 training points and that the location
of the chosen calibration points is highly conserved across different users. However, this
analysis is entirely idealised and gives us only a lower bound on the number of training

examples required.

The second strand involves investigating how rapidly it is possible to train models starting
from no data. In other words, if we sequentially add more data points to the model, how
rapidly does the error drop? This is perhaps a more useful line of investigation, since a real
world deployment of an offset model would start from this point. In Chapter 4, our results
showed improvement was almost immediate when a GP regression model was trained using
the recorded touch position as an input and the intended touch position as an output. Here, we
perform a similar analysis but focus in on the very small dataset sizes and look at data from
different devices and different input algorithms. We discover that the RVM can get excellent
performance even with datasets so small that it would be impossible to train parametric

models.

7.3.1 RVMs for the Offset Problem

Recall from Chapter 3 that given a set of observed inputs x, the RVM makes predictions of

the form

0(%) =Y Wi (x).

For the touch offset problem, x are the sensed touch locations, §(x) is the approximation to
the offset between the sensed and intended location, ¢,,(x) are the basis functions and wy,

are the weights. If we have a set of N training points {x,,?,}"_,, the RVM algorithm finds

n=1°
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values for the weights such that §(x) generalises well to test data but relatively few of the

weights are non-zero. In this way, only a small proportion of the basis functions are used.

7.3.2 Dataset

We evaluated the RVM on an existing set of touch data [47]. This data was gathered in a
user study where users were shown a series of 300 crosshair targets on a smartphone and
asked to touch them as accurately as possible. Participants were seated and held the phone
in one hand, touching using the thumb on that hand. The dataset contains touches from 30
subjects on 13 different smartphones. All subjects repeated the study on multiple phones,
but not all subjects used all phones. In this chapter, we analyse 43200 touches from the 3
phones for which most data was collected — the iPhone 4 (25 subjects), Nokia N9 (24) and
Nokia Lumia 900 (22).

7.3.3 Making Predictions

To train an RVM using this data, we chose the basis functions ¢,,(x) = K(x,x,,), where
K (x,x,,) is the radial basis function kernel between the test point x and the training exam-
ple x,,. In this way, we have a number of basis functions equal to the number of training
points — 300 for each session. The basis functions given non-zero weights by the RVM
(the ‘relevance vectors’) are those points which are important for making predictions of the

intended target for new test touches.

The predictive function from the RVM is one-dimensional — that is, although (z, y) training
pairs are used to compute the basis functions, the RVM can only predict either x or y. Thus,
we need to train two models for each session, each of which will have different relevance
vectors. This is potentially interesting, as it allows us to to find which areas of the screen we
need to collect data from to predict each of the dimensions, and also which points are used
to predict both = and y. Note that in the remainder of the Chapter, we will discuss models in
terms of requiring n training points for making predictions — unless otherwise stated, this

refers to the sum of the number of points needed for the two RVMs.

7.3.4 Results
Predictive Performance

For each session, we train the two RVMs and evaluate their predictive performance. We
perform 5-fold cross validation, holding out 60 touches for testing at each step. Our perfor-

mance metric is the RMS error between the predicted location of the RVM and the intended



7.3. Sparse Offset Models 125

0.06

EERVM
[ JQuadratic (all data)
Il Baseline

0.05

o
o
=

o
o
R

RMSE (Fraction of Screen)

0.01

iPhone 4 - x iPhone 4 -y N9 - x N9 -y Lumia 900 — x Lumia 900 -y

Figure 7.4: Mean and standard deviation in RMS error across all sessions for several phones
and predictive models. The baseline is the error between the orginally recorded touches and
the targets.

touch location (position of the crosshair in the trial). As a baseline, we compare against a
second order polynomial of the form § = wy + w1z + wox? + w3y + wyy?, fitted using
least squares regression. This allows us to investigate how a sparse solution performs in

comparison to a model learned on all the available data.

In [1] the authors learn an offset function using a fifth order polynomial. However, we found
that the typical number of relevance vectors was small enough that it was not possible to
train a well conditioned fifth order model (such a model would require 11 datapoints at least,
due to the 11 features required). The number of relevance vectors was typically fewer than
5, so we desire a baseline model which can be trained with a similar amount of data. A
linear model is likely to be too simple, so we opted to use a quadratic baseline, which can be

trained with 5 points if necessary.

Our results are summarised in Figure 7.4. We present results for the three most common
devices in the dataset. For each device, the plot shows the mean and standard deviation
in RMS error across all sessions for the RVM and the quadratic model. We also show the
RMS error between the recorded and intended locations in the absence of any correction as

a baseline.

We see that the RVM and the polynomial both perform better than the baseline. These
differences are both statistically significant (paired ¢-test, p < 0.05). We also see that the
RVM provides a small performance improvement over the polynomial model. For all but
the x conditions on the iPhone and N9, this improvement is also significant. That is, in four
out of six conditions the RVM performs as well as or better than a model with many times
more training data. This makes it an attractive algorithm for building offset models given the

previously identified need for a new model for each new task.
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Number of Relevance Vectors

iPhone 4 N9 Lumia 900

Figure 7.5: Mean and standard error across sessions in the number of relevance vectors used
to predict each dimension for three different phones.

Number of Points Required — the Ideal Case

Figure 7.5 shows the number of relevance vectors used to predict each dimension for each
of the three most common phones. We can see that for each device, the RVM typically
selects between 2 and 5 relevance vectors for each dimension. That is, on average we need
to evaluate the kernel function at fewer than 10 training points from the original 240 to make
good predictions on test data. Across all sessions, the number of relevance vectors used to
predict x is always between 1 and 9. For y, the range is 1 to 13. Given that our basis functions
are relatively simple r.b.f kernels, the fact that y predictions required more points on average

suggests that vertical offsets are more complex than horizontal ones.

The variability for the vertical offsets on the Lumia 900 is by far the highest. This may be
because this is the largest device of those studied by a large margin, meaning that some users
could not fully extend their thumbs to the distant parts of the screen. Thus, grip adjustments
were sometimes necessary, so that the offset patterns potentially changed. This means the

RVM needs more relevance vectors to model these cases.

Additionally, the fact that in some cases the RVM retains only one training point per di-
mension as informative is quite interesting. This means that the offset at a single point is
representative of the whole screen, suggesting quite a simple offset pattern. This may be be-
cause the dataset analysed consists of one thumb touches, so there are no effects of changing

hand that lead to more complicated offsets.

Note that this minimum number of points is something that we may not be able to meet in
practice as the RVM analysis has many points available to start with and finds which of those
are important for prediction. In reality, when a new user picks up a device we have no data

and want to build a model as fast as possible.
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Distribution of Relevance Vectors

The RVM analysis also allows us to explore where these points are positioned in the input
space. This can give insight into which areas of the screen are important when learning the
offset function. In order to do this, we use a kernel density estimate to produce a probability

density function of the point location for each phone type.

For a given phone, we collect all relevance vectors extracted for all users and sessions on
that phone, and place a narrow Gaussian at each of these points. To estimate the density at a
new point x’, we take the average of all of these training point densities evaluated at x’. This
is known as a kernel density estimate [123]. By evaluating the density estimate at each point
in a grid, we can visualise the surface over the screen. Figure 7.6 shows the density of the
points used to make predictions on each phone for both horizontal and vertical co-ordinate

predictions.

There is a clear structure evident, showing that some areas of the screen are more important
than others for making predictions. Additionally, it is interesting to note that the points which
are most important for predicting = are distributed quite differently from those for y. The

distributions are somewhat different for the different phones as well.

For predicting x, the most important areas are at the right and left edges of the screen. The
exact positioning of the important areas on the left edge varies by phone — for the iPhone,
the whole edge has a similar importance, whereas models on the N9 relied more on points in

the bottom left corner, and the Lumia 900 used points in the top left.

To predict y offsets, the most important points are in the corners of the screen. In particular,
the N9 puts a high importance on training points from the bottom left corner of the screen for
predicting this offset. The Lumia 900 assigns much higher weight to the left corners than the
right. This phone had the largest screen of any device in the dataset, and reaching targets on
the left side (when using the phone with the right hand) was difficult for users with smaller
hands. This makes the offsets at this side of the screen more pronounced, and thus training

data in that area is more important.

Since all participants in the study which generated this data held the phones in their right
hands and touched with the right thumb, these distributions are specific to that usage mode.
For left handed usage, we would expect a horizontal mirroring. Two handed usage is more

complex, and requires more data.

These relevance vector distributions are potentially of interest for interaction design. The
points where the distributions are peaked are important precisely because they are harder to

model, and so this could be used to inform the placement of interface elements.

Further, these distributions may be helpful in developing future offset models. They enable

us to identify which parts of the screen are most important in determining the offset function,
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Figure 7.6: Kernel density estimates for the distribution of relevance vectors on three phones
in portrait orientation. Peaks of the distribution indicate the important training point locations
for constructing touch offset surfaces. The important points for predicting X and Y offsets
are quite different, and there is variation across phone model.
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so target locations for training examples could be sampled from these distributions rather

than randomly placed on the screen. This is an interesting avenue for future work.

Generalising to New Users

The analysis above represents an ‘ideal world’ situation, in which we start with a fairly large
dataset of touches for a user and use the RVM to extract the relevant training points. This is
not the desired use case in general — we wish to learn a model for a new user which requires

only a small number of training points.

An algorithm designed to work with a small training set needs to satisfy two properties.
First, it must be stable. That is, when there is very little data (fewer than 5 examples) the
predictions should not be worse than the baseline where no offset correction is performed.
Secondly, the performance should improve quickly as training data is added. We have seen
that the RVM produces good predictive performance using a small set of basis vectors, so

we now investigate the performance of the algorithm when starting from no data.

We assume no knowledge of the relevance vector distributions produced in the previous
Section, and instead seek to learn how quickly performance improvements can be obtained
given some number of randomly located training points. To conduct the analysis, we take the
training examples for a user, permute them into a random order, and add them to the training
set in small increments. We train an RVM at each increment and compute the predictive
performance on a held out test set. In addition, we also train a quadratic model using the
same points and a least squares regression based on the kernel matrix passed to the RVM. We
evaluate the performance of the models using 2, 5, 10, 15, 20, 50 and 100 training points. Our
performance measure is the root mean square error between the model predictions (2, y')

and the true positions (z, y).

Figure 7.7 shows the results averaged across all sessions on all three phones. We rescaled
device coordinates to a unit square to allow cross-device comparison. The performance value
for each session was obtained by averaging the RMSE over 20 random restarts of the process

described above. This helps ensure we use a variety of subsets of the training data.

The plotted curves show the mean test RMS and standard error across all sessions, and
thus represent a mean of means. To provide a comparison to a more traditional population
approach, we also fitted a quadratic predictor based on all of the collected training data. The
performance of this model is shown by the black dashed line. We can see that the RVM
error is equivalent to that of the population quadratic model with only 5 training points, and
better with 10. The population model was trained with thousands of data points, so this is an

impressive result.

The parametric models, by contrast, have higher error for the smallest values of n. The
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Figure 7.7: RMS error as a function of training set size for four prediction models. Results
show mean and standard error across all subjects over 20 random restarts. The baseline is
the RMSE between the targets and original touches.

results for the individualised quadratic model are only shown for n = 10 and above. This is
because these models require at least 5 training points, and with exactly 5 they suffer from

significant overfitting and make very poor predictions on the test data.

For the RVM, the average improvement over the population model at 10 training points was
small but statistically significant (paired ¢-test, p < 0.05). This analysis shows the power of
the RVM for very quickly building offset models that offer an improvement over commercial

hardware and existing correction strategies.

It is interesting to note that the user specific quadratic model exceeds the performance of the
population model for 20 or more training points. This is in line with our earlier findings,
which suggested that user specific offset models performed better than population based

techniques.

When 100 or more training points are used, the RVM, kernel regression and individual
quadratic models all give similar performance. However, the RVM approaches this per-
formance limit more quickly, with little improvement after 20 training points, whereas the

other models improve steadily as data are added up to 100 points.

Also shown is an uncorrected baseline, indicated by the green dashed line. This shows the
RMSE between the recorded touches and the target locations, without any offset correction.
We can see that as soon as any training data are added, the RVM immediately outperforms
this baseline. The same is not true for the individual quadratic model and the kernel regres-

sion, which only consistently outperform the baseline when 20 or more training points are
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used. This is an attractive quality of the RVM — it does not make things worse when little
data is available, and thus can begin offering improvements to the user’s touch accuracy very

quickly.

Note that we have assumed a random sampling of points when gathering data to train RVM
models. This may not be the best approach — it may be possible to reach the best possible
performance with even less data than we used here. For example, we could sample training
points according to the kernel density estimates of the relevance vector distributions. Alter-
natively, we could employ an active learning approach, where we place training points in
areas of high variance under the models obtained with the current data. Investigating this is

an area for future work.

7.3.5 RVMs using Two-Thumb Data

The small number of training points required by our model in the above analyses suggests
the offset surfaces are quite simple on this dataset. This may be because the dataset used
consists of touches from only one thumb. Two-thumb touch behaviour is likely to be more

complex, and so we turn now to an RVM analysis of some of our previously gathered data.

In particular, we analyse the data gathered in the first part of this Chapter, in which users
provided data for a variety of tasks. We will focus on the data for the typing task and the task
using randomly positioned crosshairs as targets. The latter is chosen for comparison with the
one thumb crosshair data from the previous Section, while the former had quite a different

offset pattern to the other tasks.

If the offset behaviour for two-thumb usage is indeed more complex, we would expect that
the average number of relevance vectors required to predict the offsets in each dimension
would be higher. Further, in our GP analysis of this data we found that the typing offsets
were typically more complex than those for pointing tasks. We would therefore expect that
an RVM trained on typing data would retain more relevance vectors than one for pointing
data.

Method

We again perform an ‘ideal world’ analysis, starting with a full set of training data and run-
ning the RVM algorithm to see how many relevance vectors are obtained, and their locations.
We use the RVM to predict offset values given device locations as inputs. As before, we train
two separate models for each session, one to predict z offsets and one to predict y. We hold
out 20% of the data from each session for testing, evaluating model performance based on

the RMSE between the target locations and RVM predictions. All coordinates are rescaled
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Figure 7.8: Mean and standard deviation in RMS error across all users for the Random
Crosshairs and Typing tasks. The baseline is the error between the orginally recorded touches
and the targets.

to a unit square, since as before our dataset contains data from multiple phones which we

wish to compare.

Results

Our results are shown in Figures 7.8 and 7.9. For each of the Random Crosshairs task (T3
in the earlier study) and the Typing task (T1), Figure 7.8 shows the mean RMSE between
the target and RVM prediction while in Figure 7.9 we see the average number of relevance
vectors n needed to predict offsets in each dimension. The baseline condition is the RMSE
between the phone’s touch coordinate and the target center. Results are averaged across
multiple users and not separated by phone, since most of the devices in the study appeared

only once.

We see that the RVM outperforms the baseline for each dimension in both tasks. All of these
differences are significant (¢-test, p < 0.05). Thus, it is still possible to get a performance
improvement for two-thumb usage when using the sparse model. The improvements seen
for the typing data are larger than for the Random Crosshairs task. The Typing task also
has a higher baseline error, suggesting users are less accurate when typing than when hitting

crosshairs.

In terms of the number of relevance vectors required, several interesting results are present.
First, for both tasks we see that the mean value of n for predicting y (vertical) offsets is quite
low. In fact, it is lower than the values found for this dimension for one handed data. This
is contrary to our supposition that offsets for two-thumb usage would be more complex and

thus require more relevance vectors. However, on reflection this is potentially reasonable
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Figure 7.9: Mean and standard error across sessions in the number of relevance vectors used
to predict each dimension for the Random Crosshairs and Typing tasks. The x dimension of
the Typing data requires by far the most relevance vectors.

to expect. In one-handed usage, the thumb has to reach across the entire screen, possibly
extending beyond the user’s comfortable range and thus the difference in observed offsets
between the two edges of the phone might be quite pronounced. In two-handed use, however,
each thumb has only to stretch over approximately half of the screen, resulting in fewer

extreme movements and more consistent vertical offsets.

The next observation is that the number of relevance vectors required to model the x offsets
in the typing data is very high — around 18 on average. This is substantially more than the
values of 2-3 seen in the previous study and for the Random Buttons task. This suggests that
these offsets are much more complex than those in the other tasks, in line with the findings

of the first part of this Chapter. This observation is in line with expectation.

As described previously, these complex offsets are likely the result of the rapid changing
between thumbs as the user types. The exact point that this transfer occurs on the screen will
vary depending on the previous keys hit, and so the area in the center of the keyboard is quite

uncertain.

Interestingly, the same complexity in horizontal offsets is not seen for data from the Random
Crosshairs task, which require a similar number of relevance vectors to model as the one-
handed use case. We attribute this to the slower nature of these selections — each time a new
target appears, the user must identify its location and then touch. While typing, they may be
planning ahead about which keys the fingers will move to next and generally operating more
quickly, leading to the some of the observed complexity increase. All of our users had a year

or more of smartphone experience, so there is also likely to be some learning effect there.
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Relevance Vector Distribution

As before, we analyse the distribution of relevance vectors across the screen for each di-
mension and each task, to see whether this holds useful information. We compute a kernel
density estimate of the spatial distribution and plot it over a grid. For comparison between
these plots and those for the one thumb data, we show offsets over the whole screen but note
that data was only collected in the bottom half, in the region corresponding to the keyboard.
This region is indicated with a dashed line — while the relevance vector distributions extend
into the top half of the screen, no points are actually located here.
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Figure 7.10: Kernel density estimates for the distribution of relevance vectors for two-thumb
usage for targeting randomly placed crosshairs and typing. Peaks of the distribution indicate
the important training point locations for constructing touch offset surfaces. The distributions
for the Random Crosshairs task are smoother.

The distributions are shown in Figure 7.10. As expected, we can immediately see a sharp
ridge in the horizontal center of the space for the distribution of x relevance vectors for the
typing task. This supports the belief that the change in offset caused by using one thumb or
the other near the center of the screen is an important factor in this task.

For the vertical offsets in the typing task, the relevance vectors are concentrated on the left

side of the screen. It is unclear why this should be the case. Perhaps, as theorised above, the
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Figure 7.11: RMS error as a function of training set size for four prediction models applied
to two thumb data from the Random Crosshairs task. Results show mean and standard error
across all subjects over 20 random restarts. The baseline is the RMSE between the targets
and original touches.

offsets for each thumb are quite similar and thus the offsets for the right side of the screen

can be inferred from relevance vectors on the left.

The distributions for the Random Crosshairs task are less sharply peaked than those for the
Typing task — the important locations for determining these offsets are more spread over
the screen. In general, the center of the screen seems to have a lower concentration of
relevance vectors than the edges for this task. Since these distributions are drawn from the
relevance vectors of all users, it may be that this indicates a lack of a consistent targeting
behavior across users — different parts of the screen are important for predicting the offsets
of different users, so that the aggregate distribution is less well defined than for the Typing
task. It may be that the added semantics of the Typing task lead to consistent behaviour over
users, or that the set of possible targets for the Crosshair condition is bigger so we see more

variation in the observed data.

Performance for Small Training Sets

We also analysed the performance of our model as a function of training set size, as we did
for the one thumb data. We employed an identical protocol, randomly permuting the data
and adding them to the training set in small increments, training an RVM at each incre-
ment. Figure 7.11 shows our results on the Random Crosshairs data. This data is plotted for

comparison with Figure 7.7, which shows one thumb data for the same task.
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We see very similar results to those observed in the one thumb case. The RVM is better than
the baseline for any amount of data, and outperforms a pooled data quadratic model for 20 or
more training points. The user specific quadratic and kernel regression models are not better
than the pooled data model until 50 training points are used. Performances for the three
user specific models converge at 100 training points. Interestingly, the baseline accuracy on
this data is lower than in the one thumb case. This may be because when interacting with
one thumb, the user sometimes has to stretch across the entire width of the screen to touch,

leading to a large offset. This problem is avoided when touching with both thumbs.

7.4 Conclusion

In this Chapter, we considered the training data requirements for offset models. Existing
research has shown differences in touch behaviour based on factors such as grip, mobility
condition, angle of the screen with the respect to the user, and others. Here, we extend this

by considering the relationship between touch task and user offset behaviour.

We collected data in a remote online study for 16 participants performing 6 tasks, including
a range of pointing tasks, pressing keys on a soft keyboard, and a text transcription task.
We find that training on a given task always gives higher performance when testing on that
task than training on data from any other. Further, using models trained on typing data to
predict offsets for pointing tasks, or vice versa, actually leads to worse performance than not

correcting.

We were able to explain the observed differences between tasks in terms of the complexity
of the offset functions for the various tasks — in general, typing offsets are the most com-
plex, followed by keyboard button presses, and finally pointing offsets are simplest. Using
a model trained on one class of data to predict on another class with different complexity
tends to make things worse, or at least reduce the size of the potential improvement. Clearly,
calibration task is an important consideration when developing offset models, and should be
tailored to the intended task.

Given that we now know task is an important factor in addition to physical considerations
like hand posture and mobility condition, it becomes apparent that a general touch offset
model is almost impossible to construct. Instead, we need many models for the different
tasks and usage conditions. Existing offset correction systems have used hundreds or thou-
sands of training points. To reduce the burden on the user of providing training data for
many models, we also studied the use of the Relevance Vector Machine as an alternative
probabilistic algorithm for touch. The RVM is a powerful tool because it is sparse in terms

of training data — models can be trained with far less data than other techniques.
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We found that for one-handed usage, models with good predictive performance could be
learned with 10 or fewer training points, and that best performance was reached by the time
50 training points were used. For two-handed use, we found that good predictive perfor-
mance was still possible with very few training points. Additionally, we found more points
were needed to accurately model typing data than a pointing task, confirming the increased
complexity in typing offsets discussed in the first part of the Chapter. These results make the
RVM a potentially useful to train these models in almost real time as a new user interacts

with a device, which is not necessarily possible with existing offset models.

We also found that the locations of points used by the RVM to train offset models were
conserved across users and devices. This could be used to inform the design of interfaces, or

to aid in selecting training data locations for future offset models.

While the work in this Chapter was motivated by a desire to investigate the practicalities
of a wide deployment of offset models, we believe that the results found are independently
interesting. The variation in touch behaviour across tasks in particular is a novel result, with
broad implications as touch technology continues to grow in popularity and appear in more

devices which users encounter daily.
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Chapter 8
Conclusions

Touch is a ubiquitous input modality on modern smartphones and is increasingly popular
on devices such as laptops and smartwatches. Despite how common this modality is, the
underlying technology is still quite error prone. As discussed in Chapter 2, there are a number
of factors which contribute to this. These include the ambiguous contact area between the
user’s fingers and the screen, and the visual occlusion of small targets by the hand. Touch
errors manifest themselves as an offset between the user’s intended target and the location
recorded by the device. A number of models have been proposed to try and compensate for

these offsets.

However, touch errors are not entirely systematic. They also exhibit a random component. If
a user tries to acquire the same target multiple times, their touches will define a distribution.

This means that touch is subject to significant uncertainty.

There may be other forms of uncertainty in play for touch interaction, such as uncertainty of
intent — for example, when typing a user might be uncertain about the spelling of a word,
leading to bad input. Existing models of touch tend to ignore the uncertainty, and those that
do take into account (e.g. [64]) do so at a global, rather than user-specific, level. However,
it has been shown that there is significant variation across users in terms of touch behaviour
[19].

In this thesis, we have proposed these use of machine learning techniques to model touch
offsets and uncertainty on a per user basis. We looked at Gaussian Process regression, a
flexible non-parametric algorithm, and the Relevance Vector Machine, a related technique
which requires very little training data. Using this we built offset models which allowed

accurate selection of targets smaller than the unaided finger can reliably acquire.

Our goal in using these algorithms was to show that by modelling the uncertainty, we can
provide measurable benefits to the user. We consider two complementary approaches, one in

which the uncertainty model is hidden from the user and one that gives the user control over
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the uncertainty. In this thesis we have shown that these models can be used to improve text
entry accuracy, but more generally we believe our work stands as an example of the value of

modelling uncertainty in touch.

8.1 Summary of Contributions

This work makes a number of contributions, which were motivated by our thesis statement

in Section 1.1. We restate this again here to remind the reader:

Touch interaction is ubiquitous on modern mobile devices, but is still prone to
inaccuracy and error. This is due in large part to the inherent uncertainty related
to touch, which stems from a number of sources: ambiguity from the soft finger
touching small targets; uncertainty introduced by the hardware; and uncertainty
of intent (e.g. the user being unsure of a word’s spelling while typing). How-
ever, this uncertainty is typically neglected in current touch systems. The core
assertion of this work is that by modelling this uncertainty, the quality of touch

interactions can be improved.

We support this assertion through a number of experiments. In particular, we
propose that probabilistic modelling of the offsets between a users intended and
recorded touch locations can be used to allow more accurate selection of small
targets. Further, this technique can also improve the accuracy of typing on a soft
keyboard. This improvement is shown through the results of a number of user
studies, highlighting the benefit of implicit uncertainty modelling. Additionally,
this approach is contrasted with an explicit uncertainty model, in which the user
can control the ability of the system to correct their input. We show that both
approaches have merit and can lead to increased performance in the text entry
task. Finally, we present the results of several studies into the training data re-
quirements of the models described in the rest of the thesis, and a sparse solution
which potentially allows these models to be deployed in the real world with small

training sets.

In support of the assertion that uncertainty modelling improves touch, we have made the

following contributions:

e Chapter 4 presented a flexible offset model using Gaussian Process regression which
describes the non-linear, user-specific behaviour seen in touch in a fully probabilistic
way. This was shown to allow accurate selection of small targets. We also demon-
strated that user specific touch models outperform those trained on data from many

users.
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e Chapter 5 presented a text entry system which combines our GP touch model with a
long span statistical language model. This makes use of the probabilistic nature of
the GP predictions to obtain probability distributions over keyboard keys. Using this
system, we obtained text correction performance comparable with the state of the art.

This highlights a particular example of the benefits of uncertainty models.

e Chapter 6 presented a study of the use of input pressure as a mechanism for negotiating
uncertainty with a text entry system, in order to prevent autocorrections. This is a
model which gives explicit control of the uncertainty to the user, and our results show
that not only are users able to control such a model, they can use it to give performance

improvements when entering text unknown to a correction system.

e Chapter 7 presents a thorough examination of the differences in touch behaviour across
different tasks. We show that offsets are different for a typing task than for a range of
pointing tasks, and explain this by demonstrating that the offset surfaces for the typing
task are more complex. This chapter also gave an exploration of the use of sparse
machine learning techniques to learn touch models with very small amounts of training
data. In particular, we used the Relevance Vector Machine model to analyse a number
of datasets, showing that in the best case models with good predictive power could be
learned with 10 or fewer training examples. We further showed that the locations of
points which are used by these sparse models are highly conserved across users and

devices, which has potential implications for interface design.

8.2 Future Work

There are a number of interesting directions for future work which could follow from the

results presented in this thesis. This Section will describe these.

8.2.1 Combining GPType and ForceType

In this thesis, we presented implicit and explicit uncertainty models separately. GPType
in Chapter 5 implicitly modelled the uncertainty in the user’s touches to obtain predictive
distributions over keys on a soft keyboard, and used these to correct text. ForceType in
Chapter 6 gave users explicit control over their uncertainty so that they could prevent the

system from correcting words that were not in its vocabulary.

These approaches, however, are not at odds with one another, but rather could be used to-
gether. The robust offset model of GPType corrects for many errors and allows more in-

teresting baseline touch distributions than the simple ones used in ForceType. ForceType
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could thus be applied on top of GPType, with pressure allowing the GP distributions to be
modified to prevent any corrections. The correction algorithms are very similar, so the com-
bination would be easy to implement from an algorithmic standpoint. The system would just
apply the mean GP offset for the recorded touch position, and the predictive covariance from
the GP would correspond to an ‘average’ touch. The predictive distribution could then be

broadened or narrowed depending on pressure.

Implementing this combination of models and measuring how its performance compares to
the individual techniques is a useful area for future work. To do this, it would be useful to
implement ForceType on an existing smartphone using one of the pressure approximations

found in the literature, or alternatively using a pressure proxy like touch time or area.

This is not such a straightforward proposition, as the practicalities of this remain to be re-
solved — for example, existing pressure sensing methods on phones have operated by puls-
ing the vibration motor and measuring the dampening of the response. Having the phone
pulse while typing, for example, may be unpleasant or distracting to the user. An alternative
approach would be to augment a phone with force sensors, although this means that the solu-
tion would not be widely deployable. Commercial entities including Apple and Qualcomm
have pending patent applications for capacitive screens with built in force-sensors: if these
products reach the market, then the task of implementing ForceType on a regular device will

become significantly easier.

8.2.2 Offset Models for Novice Users

We found in Chapter 4 that the user in our study who had never used a smartphone before
had high baseline error and received a large improvement from applying the offset model.
It would be interesting to investigate whether this is true for novice users in general. If so,
this has potential benefits for rapidly improving touch performance for people who have not

used touch devices — for example, elderly users.

Related to this, the use of ForceType is conditioned on having some kind of mental model of
which words will and won’t be corrected, which novice users typically won’t have. There-
fore it would be interesting to see how ForceType is used by novices, and if there are any

performance benefits for these users.

8.2.3 Further Analysis of Sensor Data

In Chapter 4, we compared touch models which predicted intended positions from capacitive
sensor data to those which predicted offsets from device positions. The latter class of model

was shown to require less data to make good predictions, and was used throughout the rest
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of the thesis because capacitive sensor values are not directly available on the majority of

phones.

However, an advantage of sensor data based models is that they avoid issues of mapping
different inputs to the same output, since the sensor space is much larger and more expressive
than the device location space. Given our later observations about the variation of offsets over
task, and existing research about the effect of hand posture on touch behaviour, it would be
interesting to see whether a single model based on sensor data would be able to handle these
variations. It may be that the sensors are expressive enough that we could sidestep the need

for multiple different offset models for a range of contexts.

8.2.4 Effect of Visual Feedback on Touch Behaviour

One interesting observation from the work in Chapter 7 was that offset models trained on key
press data (gathered with instructions like ‘Press E’) did not make good predictions on typing
data. However, in Chapter 5 we trained such a model and found that it gave an improvement

over the uncorrected baseline for typing data.

The primary difference between the conditions for these two studies was that in the former,
the user did not see which keys they had typed while in the latter they did. It may be that this
difference in visual feedback caused a change in the observed touch behaviour, even over the

short sessions in the studies.

Therefore an interesting line for future work is a comparison between touch tasks with dif-
ferent levels of visual feedback, to see whether this feedback has a systematic effect on touch

behaviour.

8.2.5 Online RVM Training

A final area for potential future work is a real world implementation of our RVM offset
model. In Chapter 7, we showed the existence of consistent distributions over relevance
vector locations. It would be interesting to compare an approach sampling touch points
from these distributions to train the model versus one which takes training points at random.
Further, it would be interesting to see in a real setting how iteratively training these models
improves touch accuracy. This could be done by presenting a task where the user has to select
one from a grid of closely packed targets, and training RVMs on the fly as more and more
data are collected. The touch accuracy over time could be monitored, giving an indication of

how rapidly we see an improvement using the RVM.
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8.3 Summary and Conclusions

Touch is a complicated process, and subject to a great deal of uncertainty. In this thesis we
have shown how a robust model of this uncertainty can be used to improve touch accuracy.
We have built probabilistic offset models and used their predictions to improve text entry
accuracy. Further, we have shown that users can gain performance benefits from a system in

which they can control the level of certainty they express to the system.

While there are still outstanding issues to consider, we believe that the work herein presents a
compelling case for the power of probabilistic techniques in solving problems in this domain.
Uncertainty is often neglected in interaction, and our results show that this results in a loss
of useful information which can be used to improve the quality of interaction with mobile

devices.
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