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Abstract 

The majority of the world's river basins remain ungauged and, therefore, the tried­

and-tested empirical techniques for predicting floods and droughts cannot be 

applied. An alternative approach, which is currently receiving a great deal of 

attention from research hydrologists, is to develop continuous simulation models 

whose parameters pertain to physical or hydrological properties of the river 

basins. However, difficulties related to scale, heterogeneity and complexity of real 

river basins have made a priori estimation of such parameters impossible: their 

estimation has always required calibration using river flow data. Therefore, 

estimating hydrological model parameters in ungauged river basins is one of the 

greatest challenges currently facing research hydrologists. In this thesis research 

advances towards this goal have been made at three different levels. 

First, at a conceptual level, a novel method for classifying river basins according 

to their physical properties is proposed. It is specifically designed for transferring 

hydrological model parameters from gauged river basins, where calibration is 

possible, to ungauged river basins. This approach relies on recognising that river 

basins can be similar in parts of their hydrological cycle but not in others. Thus, 

basins go through three independent classifications, one relative to each of the 

major components of the land phase hydrological cycle: interaction of soil water / 

vegetation and atmosphere; surface flow; and groundwater flow. This requires the 

ability to characterise the response of the components of the hydrological cycle 

independently, which leads to a second conceptual advance; rather than relying 

entirely on measured river flow data, from which it is difficult to separate out the 

effects of the three components, classification rules are devised on the basis of 

synthetic data produced by comprehensive, distributed, physically-based models. 

This thesis focuses on the surface flow component, applying the methodology to 

the identification of the best classifiers for surface flow through river networks. 

This required simulating river flow through a large number of Scottish river 

basins, which led to more practical research advances; all available commercial 

flow routing models were too cumbersome and required an impractical level of 



detail to be applied in such a large study. Therefore, a new flow routing modelling 

system was developed that extracts river network detail from digital databases and 

numerically solves a distributed flow routing model. 

Finally, on a detailed scientific level, significant insights have been made into the 

relationship between river network geomorphologic structure and stream flow 

response. In particular, it is shown that: a downstream hydraulic geometry 

relationship exists for Scottish rivers; although channel conveyance is a key factor 

in dictating network response, the features of the response hydro graph - namely 

the percentage attenuation of the flood peak and the lag in time to peak - scale 

linearly with both roughness and hydraulic geometry coefficients; much 

publicised invariant power law scaling rules for flood peaks in fact vary as a 

function of storm duration; statistical multivariate analysis of the simulated 

network flow responses demonstrated the low capacity of the network descriptors 

commonly used in regionalisation studies for characterising flow response. Four 

variables are shown to have significantly higher classifying power than the 

majority of the commonly used classifiers. Of these, two are entirely new to this 

thesis. 
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Chapter 1 

Chapter 1 

1 Introduction 

Hydrological models are currently employed to assess a wide variety of water 

resource and environmental issues such as regional water resource planning, flood 

risk assessment or assessing the effects of climate and land use changes on the 

hydrology of river basins. Ideally, all hydrological modelling approaches should 

be conducted using distributed physically based models that partition the region 

into small control volumes and describe the hydrological processes using the 

underlying physical equations. Theoretically, the parameters of such models could 

be directly measured in the field. However, the large amount of computer 

processing and data collection required for application of these types of models 

limit their practicality (Dooge, 1982). The alternative more pragmatic modelling 

approaches (e.g. Beven, 1997; Maidment et ai, 1996) require some element of 

calibration using hydrological data. Commonly, these hydrological data are river 

flows, which are expensive to collect and usually sparse for large river basins. In 

many parts of the world, river basins are ungauged or poorly gauged, and in some 

cases, existing measurement networks are declining (Sivapalan, 2003). As a 

consequence, for the majority of river basins, model parameters cannot be 

calibrated. This leaves the problem of estimating model parameters for ungauged 

river basins, which has recently become a keenly researched topic in hydrology. 

The International Association of Hydrological Sciences (lAHS) launched the 

IAHS decade on Prediction in Ungauged Basins (PUB) in 2003. This is a new 

initiative aimed at engaging the scientific community in formulating and 

implementing appropriate science programmes to make major advances in the 

capacity to predict the hydrology of ungauged basins (Sivapalan et aI, 2003). This 

initiative recognises that whichever of the currently available approaches is 

implemented - including extrapolation of hydrological response from gauged to 

ungauged basins; measurements by remote sensing; application of process-based 
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hydrological models - a key difficulty is that the model predictions cannot be 

conditioned or validated by observations in the ungauged basin of interest. 

Therefore, predictions in ungauged basins involve extrapolation of some kind 

from gauged to ungauged basins. The IAHS initiative focuses on reducing the 

uncertainty of predictions in ungauged basins through reducing uncertainties in 

the three components constituting a general hydrological prediction system: the 

model structure; the model parameters; the climatic inputs. This research 

participates actively in the realisation of these goals by aiming at improving 

methods for estimation of hydrological model parameters in ungauged basins. 

1.1 Estimating hydrological model parameters in ungauged basins 

The approaches previously used to estimate hydrological model parameters in 

ungauged river basins all derive from techniques used in regional flood frequency 

analysis where the objective is to infer river flow statistics for ungauged river 

basins, from those for gauged river basins. These techniques, generically called 

regionalisation techniques, involve 3 stages: the first is a classification stage and 

consists of grouping together the river basins whose river flow regimes are likely 

to be similar; the second stage uses the flow data from gauged river basins of each 

group (or region) to determine regression equations relating flow statistics and the 

physical/climatic river basin characteristics; the final stage consists of applying 

the regression equations to infer river flow statistics in the ungauged river basins 

of each region. 

When applied to estimate model parameters in ungauged basins, these techniques 

are modified so that flow statistics are replaced by model parameters. However, 

the success of these modified regionalisation techniques relies heavily on the 

reliability of the initial classification stage, which, in most published studies, is 

not tested or has been completely neglected. Since even the simplest hydrological 

models seek to simulate not just a particular flow statistic, but three major 

components of the land phase of the hydrological cycle - interaction of soil water 

/ vegetation and atmosphere; surface flow; groundwater flow - classification 
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schemes for estimating model parameters have sought groups of basins that are 

similar across all components of the land phase of their hydrological regime. The 

main difficulty in this arises from the fact that two river basins can exhibit strong 

similarities in parts of their hydrological regime whilst being very dissimilar in 

others. For example, it is possible that the topography and land uses of two 

adjacent river basins are sufficiently alike for their surface water flow regimes to 

be similar, but that they are underlain by very different geology, which makes 

their groundwater flow regimes likely to be dissimilar. Seeking groups of river 

basins that are homogeneous across all parts of their hydrological regime leads to 

a large number of groups, each of which contains only a few basins. It is therefore 

difficult to have confidence in the regression equations derived for inferring 

model parameters. An alternative approach, that has been suggested by some 

researchers, is to relax the degree of homogeneity in the classification stage, then 

create larger but less homogeneous groups. Again, it is difficult to have 

confidence in the regression equations derived from such groups since they have 

to explain more of the variability in model parameter values using basin 

characteristics. Studies such as Abdulla and Lettenmaier (1997) and Sloan (1999) 

report significant errors in regional modelling studies of the same area in central 

USA, which they both attribute to the fact that regionalisation of model 

parameters had been conducted within heterogeneous groups of sub-basins. If 

regionalisation techniques are to be improved for prediction in ungauged river 

basins, there is a need for a reliable method of classifying river basins into 

hydrologically homogeneous groups. The overall aim of this thesis is to develop a 

new classification scheme specifically for regionalising hydrological model 

parameters. 

3 



Chapter 1 

1.2 A new approach to classifying river basins for regionalisation 
of hydrological model parameters 

The classification scheme proposed in this thesis differs from the preVIOUS 

approaches alluded to in section 1.1 and detailed in Chapter 2, in two significant 

ways. The first is to discard the constraint that each basin only belongs to one 

group, and propose that it undergoes three independent classifications, one for 

each of the major components of the land phase hydrological cycle introduced 

earlier: interaction of soil water / vegetation and atmosphere; surface flow; 

groundwater flow. The advantage of this approach is that group sizes can remain 

fairly large without compromising homogeneity. Consequently, there will be 

increased confidence in the regression equations derived for each group. The 

second difference is in the methodology for testing which of the basin 

characteristics, among the ones that could potentially be used as classifiers, are the 

most appropriate. Having partitioned sub-basins into their major components, it is 

no longer possible to identify the best classifiers based on river flow gauging data 

alone. Therefore, an alternative scheme has been derived that relies on the output 

of detailed, physically based, distributed models. 

1.3 Summary 

The ability to classify river basins into relatively homogeneous groups is central 

to the successful application of hydrological models in areas where hydrological 

data are sparse. It allows regression relationships to be derived for inferring model 

parameters in ungauged river basins where no data exist for calibration. This 

research proposes a novel approach to river basin classification. It is anticipated 

that this new approach will significantly improve the reliability of regression 

equations used to infer model parameters in ungauged catchments. 

The development of a strategy for deriving this new classification scheme forms a 

major part of the PhD thesis. It is detailed in Chapter 3 and also in a peer reviewed 

British Hydrological Society (BHS) occasional paper (Reungoat and Sloan, 2002). 

4 
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In this thesis, the focus is placed on the derivation of the 'surface flow­

component' classification and a methodology for objectively selecting the 

variables that best characterise surface flow through the river network is 

developed. Chapters 4, 5 and 6 describe the tools developed in order to carry out 

the study. The results are presented and analysed in Chapters 7 and 8. 

5 
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Chapter 2 

2 Literature review: River basin classification 

As outlined in the introduction, the ultimate aim of this research is to devise a 

river basin classification method specifically designed for regionalisation of 

hydrological model parameters. There have only been a few studies, mainly 

conducted during the last two decades, with this same aim (e.g.: Burn and 

Boorman, 1993; Post and lakeman, 1996; Abdulla and Lettenmaier, 1997; 

Fernandez et ai, 2000; Merz and Bloschl, 2004). However, the classification of 

river basins has a long history in the context of regional flood frequency analysis, 

and most of the studies aimed at hydrological model parameter estimation have 

borrowed the classification techniques first exposed in this context. Therefore, this 

chapter starts with a review of the classification techniques used for regional flood 

frequency analysis, prior to embarking on a critical review of how those 

classification techniques have been employed for hydrological model parameter 

estimation. 

2.1 Regional flood frequency analysis 

The aim of flood frequency analysis is to estimate the magnitude of extreme high 

flow events that have a low probability of occurring, on the basis of historic flow 

data. The procedures used for frequency analysis of flood data recorded at a 

gauged river basin are well established. Statistics of the measured flood data are 

used to fit a continuous probability distribution, which describes the probability 

that a flow event of any given magnitude is exceeded. It is then assumed that the 

distribution is capable of modelling the exceedance probability of floods outwith 

the range of magnitudes in the original flood data sample. As a consequence, 

estimates of the magnitude of events with a low probability of being exceeded can 

6 
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be extrapolated. The reliability of these estimates is largely dependent on the size 

of the flood data sample. It is generally held that the magnitude of an event that 

has the probability liT of being exceeded, in any year (T is know as the return 

period), can only be reliably estimated from a data record of n years length if n is 

greater than T. Flow records are rarely longer than 50 years. Therefore, in typical 

flood studies where the magnitude of floods with a return period of 100 years or 

more is required, but the flow record is only of 50 year duration, the sample size is 

not sufficient to ensure reliable estimations. 

One approach, originally developed to overcome this problem of short data 

records at a gauged river basin, is called 'regional flood frequency analysis'. It 

relies on pooling data samples from river basins that are deemed to have similar 

flood frequency distribution to the river basin of interest, then conducting a 

traditional frequency analysis on the pooled data. This larger data sample 

decreases the uncertainty in the flood frequency estimates. The river basins that 

contribute to this pooled data set are said to belong to a 'homogeneous region' 

(NERC, 1975). However, the increased reliability is gained at the expense of 

having to identify data samples that have a similar frequency distribution. In other 

words, the first step in regional frequency analysis is to identify homogeneous 

regions. 

Despite the fact that ideally, for flood frequency analysis, homogeneous regions 

were defined according to similarities in flood statistics, initial attempts at 

identifying such regions paid little attention to flood frequency data. Fairly 

arbitrary methods were used to group river basins based on, for example, 

administrative boundaries (NERC, 1975). The assumption was that because river 

basins within these groups were physically close to one another, they would have 

similar frequency distributions. It rapidly became apparent that this assumption 

was flawed (Hosking et aI, 1985) and researchers sought alternative methods. In 

all of these methods, the similarity in flood frequency distributions was defined on 

the basis of arbitrarily chosen flood statistics. The methods differ in the choice of 

statistics (or group of statistics) and subsequent homogeneity / heterogeneity tests 

used. Reed et al (1995) proposed a classification of 703 UK river basins grouping 

them according to date-based indices defined by Peak Over Threshold (POT) 

7 
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series of flood and rainfall regimes. The Flood Estimation Handbook (NERC, 

1999) lays out the regionalisation procedures, for extending flood data samples 

that are currently considered to be best practice in the UK. These are based on 

methods proposed by Hosking and Wallis (1997) in which the L-moments of 

flood frequency distributions are used to determine homogeneity. This method of 

pooling data to extend records is now the industry standard for practising 

hydrologists. 

2.2 Flood statistics in ungauged river basins 

The desire to improve the reliability of flood frequency statistics at gauged river 

basins is still one of the main motivations for research in regionalisation. 

However, the general ideas and some of the methods first exposed in this context 

have been borrowed by researchers interested in estimating flood statistics in 

ungauged river basins where no flood data are available. In this case, a grouping 

method that defines regions according to similarities in flood statistics cannot be 

used. The alternative preferred by most researchers is to use a grouping method, 

such as cluster analysis, that defines regions based on similarities in the physical 

characteristics of river basins instead of flood statistics (e.g. Acreman and 

Sinclair, 1986). There are a number of difficulties associated with this approach. 

Two in particular have received considerable attention from researchers. First, 

cluster analysis conducted using the available physical characteristics might 

generate regions homogeneous in terms of physical characteristics but not in terms 

of flood frequency distribution. Second, the available physical characteristics 

might be too numerous or too highly correlated to successfully apply a cluster 

analysis. In order to overcome these problems, procedures allowing the selection 

of the most important variables associated with the flood statistic of interest have 

been included in the grouping methods. Multiple regression and principal 

component analysis are typical examples of such procedures. The methodology 

presented by Nathan and McMahon (1990) to classify 184 catchments located in 

southeastern Australia uses multiple regressions to select and weight the most 

appropriate variables, cluster analysis to derive preliminary groupings and finally 

8 



Chapter 2 

multi-dimensional plotting to minimise group heterogeneity. Other multivariate 

statistical analysis including canonical variates and canonical correlation analysis 

have been tested to identify the variables that contribute most to the association 

between flood statistics and basin characteristics (Bates et aI, 1998). 

The 'region of influence' (ROI) approach, suggested by Acreman and Wiltshire 

(1987) and subsequently implemented by Burn (1990a,b), is another grouping 

approach used to estimate flood statistics at ungauged river basins: each river 

basin has a potentially unique set of associated gauged river basins, which 

constitutes its ROI. When dealing with ungauged river basins, catchment 

characteristics are used as the attributes that define their similarity to the available 

gauged river basins (Zrinji and Burn, 1994). Gauged river basins are successively 

added to the ROI of the ungauged river basin, starting with the most similar. This 

process terminates when including an additional gauged river basin leads to a lack 

of homogeneity within the ROI. The homogeneity test, which controls the 

termination of the process, uses flood statistics like, for example, the sample L­

moment ratios proposed by Hosking and Wallis (1997). 

2.3 Estimating hydrological model parameters for ungauged river 
basins 

The previous two sections have been concerned with estimating flood statistics for 

river basins: section 2.1 dealt with improving reliable estimation of these in 

gauged river basins, by pooling flood data samples; section 2.2 dealt with their 

estimation in ungauged river basins. However, these flood frequency analysis type 

models are not suitable when prediction of more than a single flood statistic is 

needed, as is the case when assessing most water resources and flooding issues. 

For example, in many flooding problems the transient behaviour of high water 

levels in a vulnerable area such as a low lying settlement is required. This is 

usually achieved by implementing a comprehensive hydraulic model in a 

restricted reach of the river in the immediate locale of the settlement. Traditionally 

the boundary condition for flow at the upstream end is predicted using a flood 
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frequency analysis. However, this approach only produces a single extreme flow 

value rather than a hydro graph, thus, in one had to assume the river flow was in 

steady state. Cleary this is a gross simplification of the passage of a flood wave. 

Therefore there is an increasing demand for hydrological models that can simulate 

the entire behaviour of a river basin and produce hydrographs. In engineering 

faculties in UK universities a distinction has evolved in which the detailed 

simulation of in-stream hydrological processes in restricted reaches is called 

'hydraulic modelling' and the prediction of hydrographs is termed 'hydrological 

modelling'. This restriction is not apparent in other disciplines, such as geography 

or environmental sciences, or in other countries (Hornberger et aI, 1998). The 

introduction to this thesis outlined the unpractibility of 'distributed' physically 

based modelling approaches, which partition the catchment into small control 

volumes. 'Lumped' models are an alternative pragmatic approach: they partition 

the region into sub-basins and simulate spatially averaged hydrological variables 

in each sub-basin. Therefore, 'lumped' models offer many advantages. However, 

they still present difficulties related to the fact that there is no guarantee that the 

hydrological process equations shown to hold at the small scale of the control 

volume will hold at large sub-basin scales. Moreover, although the parameters 

have physical meaning, they do not directly represent physical properties of the 

sub-basin. It has indeed been shown that they are not just an average of the small­

scale parameters (Beven, 1995). Identification of these parameters is commonly 

obtained by calibration of the model against river flow data. This leads to the 

difficulties, highlighted in the introduction to this thesis, in applying such models 

to ungauged river basins where no flow data are available. As a consequence, the 

estimation of hydrological model parameters, rather than flood statistics, for 

prediction in ungauged basins, has become a significant research topic during the 

last decade. 

The methods proposed in the literature for estimation of hydrological model 

parameters in ungauged basins borrow heavily on those discussed in section 2.2. 

The main difference is that, in gauged river basins where data exist, a hydrologic 

model is applied and calibrated. The set of calibrated model parameters then 

replaces the flood statistics. This essentially means that the grouping method has 

to be able to create regions homogeneous according to the river basin's entire 

10 
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hydrological behaviour, which includes surface flow response but also other 

responses like groundwater flow and evapotranspiration. Some of the problems 

associated with grouping basins for estimating flood statistics are made worse as a 

consequence of this. For example, it was pointed out that there is no guarantee 

that similarity in terms of river basin characteristics implies similarity in terms of 

flood statistics, there is even less guarantee that similarity of river basin 

characteristics implies similarity of all aspects of the river basin's hydrological 

behaviour. In order to overcome this difficulty, particular attention has been 

placed on the initial selection of the most appropriate river basin characteritics. 

With all the published methods, an initial set of characteristics that can be used as 

classifiers is selected subjectively (e.g. Post and Jakeman, 1996). Then, some 

objective technique is used to reduce the size of the set. These techniques tend to 

fall into two categories: those that attempt to discard variables that are deemed to 

be poor classifiers, such as stepwise regression; and those that attempt to combine 

variables, such as principal component analysis (Nathan and MacMahon, 1990). 

However, published regionalisation studies based on such classification methods 

have had limited success. Studies such as Abdulla and Lettenmaier (1997) and 

Sloan (1999) report significant errors in regional modelling studies of the same 

area in central USA, which they both attribute to the fact that regionalisation of 

model parameters had been conducted within heterogeneous groups of sub-basins. 

This difficulty arises from the fact that seeking groups of river basins that are 

similar in their entire hydrological cycle leads to a large number of groups, each 

of which contains only a few basins. It is therefore difficult to have confidence in 

the regression equations derived for inferring model parameters. An alternative 

approach, that has been suggested by some researchers, is to relax the degree of 

homogeneity in the classification stage, then create groups that contain a larger 

number of basins but are less homogeneous. Again, it is difficult to have 

confidence in the regression equations derived from such groups since they have 

to explain more of the variability in model parameter values using basin 

characteristics. 
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2.4 Other methods used for river basin classification 

Two recent approaches used for catchment grouping can be highlighted: 

Considering that river basin grouping could be regarded as an example of the 

wider problem of classification of datasets, Hall and Minns (1999) applied 

artificial neural networks and fuzzy set techniques to flood and catchment 

characteristics datasets for Wales and the Southwest of England. Artificial neural 

networks (ANN s) are either able to 'learn' the relationship between a set of inputs 

and outputs (supervised learning process) or to 'recognise' patterns in input data 

(unsupervised learning process). In fuzzy classification, each site is allowed a 

degree of membership in more than one group. The study showed that 

combinations of catchment characteristics were a more logical basis for 

regionalisation than geographical proximity. 

Recently, Wolock et al (2003) used Geographical Information System (GIS) tools 

combined with principal component and cluster analysis to delineate 'hydrologic 

setting regions' in the US. Their grouping method is based on the concept that the 

basic building block of all landscapes (the 'hydrological landscape unit') includes 

an upland adjacent to a lowland separated by an intervening steeper slope. The 

attributes used to describe the hydrologic landscapes include 4 attributes relevant 

to the land surface form, 2 relevant to the geologic texture and 2 relevant to the 

climate. These 8 variables were subjected to a correlation analysis. Then, a 

cluster analysis using principal component results was conducted. The results 

showed that the hydrologic setting regions were effective in dividing the country 

into distinct areas as measured by differences in the landscape form, geologic 

texture and climate characteristics. However, the homogeneity of these regions in 

term of hydrological behaviour was not demonstrated. 
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2.5 Summary 

The classification of river basins has a long history, which has its roots in regional 

flood frequency analysis. The classification methods developed in this context 

have then been adapted to be applicable to the regionalisation of hydrological 

model parameters. In addition, some new classification methods have also been 

developed. However, published regionalisation studies based on such 

classification methods have had limited success. Two major unresolved 

difficulties have been identified in this literature review; the first consists in 

obtaining groups of basins that are homogeneous enough and contain a number of 

basins large enough for regression techniques to be reliably applicable; the second 

is in the selection of the variables that are the most appropriate classifiers. 
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3 Framework 

The introduction and subsequent literature review highlighted the need for a 

pragmatic method for classifying river basins specifically designed for 

regionalisation of hydrological model parameters. In this chapter, the novel 

concepts on which the proposed classification scheme relies are presented and a 

method for deriving the new scheme is developed. Devising the philosophy 

outlined below has been a significant part of the research in this thesis and has 

been presented in a publication (Reungoat and Sloan, 2002). In addition, a poster 

outlining the framework was awarded 'Outstanding Student Paper' at the 

American Geophysical Union fall meeting (2002) in San Francisco. 

3.1 A new scheme for classifying river basins - concepts 

The literature review identified two major difficulties when attempting to classify 

river basins into hydrologically homogeneous groups; the first consists in 

obtaining groups of basins that are homogeneous enough and contain a 

sufficiently large number of basins for regression techniques to be reliably 

applied; the second is in the selection of the variables that are the most appropriate 

classifiers. The proposed river basin classification scheme differs from previously 

used schemes (e.g. Burn and Boorman, 1993; Post and Jakeman, 1996; Abdulla 

and Lettenmaier, 1997; Fernandez et ai, 2000; Merz and Bloschl, 2004) in two 

significant ways, each attempting to address one of the two identified difficulties. 

The first, is to discard the constraint that each basin only belongs to one group, 

and propose that each basin undergoes three independent classifications, one 

relative to each of the major components of the land phase hydrological cycle: 

interaction of soil water / vegetation and atmosphere; surface flow; and 
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groundwater flow. The advantage of this approach is that • component-related' 

groups can contain a fairly large number of basins without compromising their 

homogeneity. Consequently, there will be increased confidence in the regression 

equations derived for each group. The second difference is in the methodology 

used for objectively testing which of the basin characteristics, from a set of 

potential classifiers, are the most appropriate. The set of classifiers is constrained 

by excluding climatic characteristics, which are used as hydrological model input 

data. It is further constrained by the fact that 'component-related' classifications 

are conducted, so that less characteristics are of importance in describing the 

hydrology of one river basin component (e.g. surface water flow), than the 

hydrology of the basin as a whole. However, there still remain a large number of 

potential classifiers and it is necessary to objectively test the relative importance 

of each of them. Such a test would normally require measured hydrological data. 

Herein lies the major difficulty and, consequently, the major research issue in 

partitioning river basins into component parts for classification. It is almost 

impossible to measure hydrological variables that can characterise the components 

(e.g. surface water) in isolation. However, sufficiently comprehensive hydraulic 

and hydrological models describing individually the river basin components do 

exist (e.g. open channel flow routing models) to allow synthetic data to be 

generated. Therefore, synthetic data are used to test the relative importance of the 

various pre-selected classifiers. The proposed objective test consists of 

simulations whose results are analysed using standard statistical multivariate data 

analysis methods. 

3.2 Deriving the new classification scheme - method 

The proposed method includes classification schemes for the three major 

components described by the standard hydrological models. Each 'component­

related' classification will lead to the estimation of the hydrological model 

parameters for that component alone. Thus the three • component-related' 

classifications have to be derived for all the model parameters to be estimated. 
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This thesis focuses on the derivation of the 'surface flow-related' classification 

which will be used for estimating the model parameters relevant to the surface 

flow component. In particular, the thesis will concentrate on flow through river 

networks. A practical method for objectively identifying the variables that 

characterise this flow is developed. This method involves three stages: first, is the 

generation of a large set of river network models suitable for flow routing 

simulation; second, is the derivation of synthetic flow data, using a flow routing 

model (sometimes called hydraulic model) to simulate the hydrological response 

at the outlet of each river network to a pulse of runoff distributed uniformly 

throughout the network; third, a statistical multivariate analysis of the synthetic 

data derived by simulation is conducted in order to identify the variables 

describing the network which best characterise the network hydrological response. 

3.2.1 Generation of river network data 

The application of common network flow routing models requires network 

structure and conveyance data. Network structure data are increasingly becoming 

available on digital databases. However, determining the conveyance of a network 

normally requires detailed surveys of river cross-sections. Collecting such data in 

the field is a difficult and expensive task. The construction, in such a way, of a 

large set of river network models is therefore unfeasible. To overcome this 

problem, synthetic model parameters are sampled from distributions of physically 

reasonable values. However, the aim is to keep the synthetic data to a minimum. 

Therefore, only the river model parameters that determine conveyance are 

sampled from statistical distributions. These distributions are constrained by using 

the rules of hydraulic geometry for stable channels. The synthetic conveyance 

data comprise channel top width and Manning's n. Determining approximate 

values for top width involves using the Leopold and Maddock power law (1953), 

(3.1) 

where W is the top width, Q is the bankfull flow and a and b are constants. This is 

an empirical formula and, in practice, the value of a varies within bounds for UK 

rivers (Hey, 1982). Therefore, rather than defining only one possible cross­

sectional geometry for each reach, a range of possible cross-sections are derived. 
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Similarly Manning's n values are selected. Therefore for each reach of the 

network, a range of possible conveyance data is derived. All the other parameters 

necessary for the application of the flow routing model are derived from real 

network structure information, taken from detailed maps. 

Digital terrain and river maps of Scotland have been imported into a GIS 

database. A suite of programs automatically generates all the topographic 

information on the river network upstream of a point of known coordinates. These 

programs first delineate the river basin draining through the selected point, then 

isolate its associated river network, and finally export a table containing a 

description of the nodes and reaches necessary for the flow routing. The table of 

network structure information is augmented by synthetic conveyance data for each 

reach of the network. Therefore, for each river network an ensemble of tables is 

generated, each one corresponding to a different set of 'possible' conveyance 

characteristics. Each flow routing simulation is repeated for each 'possible' 

network model, thus multiple physically reasonable realisations of each network 

are simulated. 

3.2.2 Flow routing simulation 

The success of the method is partly dependent on the choice of the flow routing 

model for simulating the response of a network to a pulse of runoff. This model 

must be capable of dealing realistically with spatially distributed information of 

physical properties, and have a proven track record of being able to accurately 

reproduce a network outlet flow when appropriately parameterised. In this thesis, 

Scottish rivers are analysed which are dominated by upland river networks, where 

channels are steep. Therefore, the simulations are conducted using a kinematic 

wave model. In order to have complete flexibility in the automation of the 

simulations, a new model is developed. This model numerically solves the 

kinematic wave equation including lateral inflow. The runoff into each reach of 

the network is assumed to be directly proportional to the area of the catchment 

draining into it, the input rainfall hydro graph and a runoff ratio. The same input 

rainfall hydrograph is used for all simulations. This hyetograph corresponds to a 

design extreme rainfall event, generated using the FEH storm design procedures 
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(NERC, 1999). In constructing such a runoff hydrograph, the aim is not to 

reproduce anyone particular storm event but rather to have a hydrograph with 

standardised shape and typical flow rates with which to compare the hydrological 

responses at the outlet of many river networks. 

3.2.3 Multivariate statistical analysis 

Ultimately, the aim is to identify variables describing the physical properties of 

the catchment network, which best characterise the hydrological response of the 

network. This is achieved conducting a multivariate statistical analysis. The first 

step in this analysis consists in applying standard clustering techniques to identify 

clusters within the network hydrological responses. Each network hydrological 

response is summarised by two simple variables measuring the peak flow 

attenuation and time to peak lag of the flood wave at the outlet of the network. 

The second step of the analysis consists in identifying the network descriptors that 

produce the clusters that best match the network response clusters. This is 

achieved by applying discriminant analysis to the clustered networks using 

variables describing the physical properties of these networks. Network descriptor 

variables traditionally and more recently used in regionalisation studies as well as 

original variables are investigated. A schematic diagram of the method is given in 

Figure 3.1. 
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Figure 3.1 Schematic diagram of the best classifiers objective test 

3.3 Summary 

Chapter 3 

This research proposes a novel approach to river basin classification specially 

designed for regionalisation of hydrological model parameters. This approach 

differs from other currently available methods in two significant ways. The first is 

to discard the constraint that each basin only belongs to one group, and propose 

that each basin undergo three independent classifications, one relative to each of 

the major components of the land phase hydrological cycle: interaction of soil 

water / vegetation and atmosphere; surface flow; groundwater flow. The second 

difference is in the methodology for objectively selecting which of the basin 

characteristics are the most appropriate classifiers. Synthetic data are used to test 

the relative importance of the various pre-selected classifiers. The proposed 

objective test consists of simulations whose results are analysed using standard 

statistical multivariate analysis techniques. 

Although the research outlined above describes an approach to identifying the 

most appropriate classifiers and classification schemes for three major 

components of the hydrological cycle, this thesis focuses on the surface flow 
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component. Thus it involves the derivation and statistical analysis of synthetic 

flow data corresponding to the hydrological responses of a large set of river 

networks to a standardised pulse of runoff. The research is in essence a pilot study 

aimed at refining and testing the proposed methodology. 
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4 Flow routing model 

The geomorphology of a river network is known to exert a significant influence 

on the shape of a flood hydro graph (Rodrigue-Iturbe and Rinaldo, 1997). Thus 

ideally, every catchment hydrology model would have an explicit representation 

of the river network and flow within it (Ewen and Parkin, 1996). However in 

practice, this rarely occurs. One might expect that of all the components of the 

hydrological cycle open channel flow best lends itself to a fully distributed 

modelling approach. Much of the data required to parameterise such a model, 

such as river cross-section and along stream profiles, are visible and accessible via 

remote sensing, unlike for example ground water flow where characterising the 

properties of an unseen aquifer is fraught with practical and conceptual difficulties 

(Fetter, 1994). Nonetheless, most hydrological models adhere to a parsimonious 

description of the effects of channel routing in line with their representation of the 

other hydrological components (Beven and Kirkby, 1979). The reason for this is 

that despite the fact that with a lot of money and labour one can build up a fairly 

comprehensive picture of channel form, the derived flow model will always 

require calibration. Therefore why bother with detailed description when a 

calibrated simple mathematical function will do the job equally well? This 

argument works well where long time series of hydrological data exist. However, 

as outlined in the previous chapter, it leaves hydrologists with a dilemma when it 

comes to ungauged basins. Two options then present themselves for investigation: 

fully distributed modelling or the approach advocated in this thesis of 

characterising the physical properties of the network that exert the strongest 

influence on the hydrograph, such that model parameters might be transposed 

from gauged to ungauged basins. The reason for adopting the latter approach is 

purely pragmatic: calibrating a model on a hydrologically similar network and 

translating it to the ungauged basin of interest is significantly quicker than 
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collecting all the data required to run a fully distributed model. Furthermore, the 

additional computational expense of the fully distributed approach seems 

unwarranted if one is ultimately no more confident in the resulting hydrograph 

simulation than from a prudently simplified lumped model. This then leads to the 

research problem, which forms the bulk of this thesis, of how best to characterise 

a river network. This has been an active research field for more than 70 years. 

Engineers such as Horton (1932, 1945), Strahler (1952) and Shreve (1966) 

attempted to classify networks according to the way they bifurcate as early as 

1932. Much of the research that followed has been driven by characterising the 

topography and topology of the network. During the latter part of the 20th century, 

several researchers began to try to incorporate key features of the river network 

into hydrological models, most notably with the Geomorphologic Unit 

Hydrograph (Rodriguez-Iturbe and Valdes, 1979) and the network width function 

(Mesa and Mifflin, 1988). While these have been shown to reproduce observed 

hydro graphs when suitably calibrated, it is still unclear whether they yield any 

understanding of how a river responds to a flood wave. For example, if the 

network width function for two rivers is similar, will the hydrographs in response 

to the same rainfall be similar? The problem is that the models represent the 

whole hydrological cycle and it is impossible to uncouple the hillslope and 

network responses. 

This difficulty in separating out the components of the hydrological cycle has very 

recently led researchers down a theoretical route when attempting to characterise 

flow through river networks. During the course of this PhD research, several 

eminent researchers have also started advocating similar approaches to the one 

adopted here, that is to use a distributed routing model to simulate flow through 

the network and then attempt to characterise the features of the network that exert 

the strongest influence on synthetic hydro graph shape. Much of the research has 

been abstract in the sense that it doesn't use real river networks (Gupta et aI, 1996; 

Veitzer and Gupta, 200 I; Menabde et aI, 200 I). Furthermore, the distributed 

models used are extremely simple, for example assuming a constant fixed velocity 

in every reach (Veitzer and Gupta, 200 I; Menabde et aI, 200 I). Nonetheless, this 

research is beginning to highlight some general patterns in network responses, for 

example in the way flood peaks scale with area in networks with different 
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bifurcation ratios. However, the simplicity of their modelling and the abstract 

nature of their river networks leave an air of doubt hanging over how their results 

will translate to real river networks. 

In this thesis, an attempt is made to keep the networks and the representation of 

flows as true to life as possible. Therefore a more standard approach to modelling 

the hydraulics of flows through a network is adopted. There is a wide variety of 

commercial software for modelling flow in river reaches. These tend to be aimed 

at simulating water levels to predict flood extent. These were investigated for use 

in this project, but all were found to be unsuitable for one or more of the 

following reasons: 

• Here the interest is in simulating hydrographs, which precludes models 

built on steady state Bernoulli energy conservation equation (e.g. 

HECRAS). 

• One dimension depth averaged hydraulic models based on a solution to the 

Saint Venant equations (e.g. ISIS) all adopt the hydrostatic assumption 

which supposes that pressure vertically downward in the water column 

varies as hydrostatic pressure. This assumption does not hold in steep 

channels and the numerical solutions to the underlying equations become 

unstable (Abbott, 1978). Furthermore, none of the commercial packages 

give access to the source code. 

• All commercial codes incorporate a graphical user interface. This makes 

automated data input impossible. In this thesis, flow through very many 

large river networks is simulated. Therefore some sort of automated data 

entry is essential. 

In the light of these problems with commercial packages, it became apparent that 

a new distributed flow routing model was required. 
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4.1 Channel flow routing 

4.1.1 Governing equations: the kinematic wave model 

All transient flow routing models are based on solving equations for the continuity 

of mass and momentum (Abbott, 1978). The forces that are incorporated into the 

momentum equation are a function of the channel form. When channels are steep, 

the two dominant forces are gravity and friction and it is usually assumed that the 

local acceleration, convective acceleration and pressure terms can be neglected in 

the momentum balance equation. Equation (4.1) is the Saint Venant continuity 

equation and equation (4.2) is obtained by simplification of the Saint Venant 

momentum equation where local acceleration, convective acceleration and 

pressure terms are neglected. Wind shear and eddy losses are also neglected. 

These assumptions are warranted when channels are steep. The flow is then 

described by the kinematic wave model. Chow et al (1988) assumes that the 

kinematic wave model is suitable for describing downstream wave propagation 

when channel slope is greater than 0.01%. Li et al (1975) showed that the 

kinematic wave model successfully simulates hydrographs on slopes as little as 

0.1 %. The network data used in this thesis for flow simulations correspond to 

upland Scottish catchments where the large majority of channels are steep. 

Indeed, a GIS analysis showed that 94% of channels had slopes greater than 0.1 %. 

Therefore the kinematic wave model is appropriate in most of Scotland's rivers 

and the routing model developed here solves the kinematic wave equation. 

Clearly, there are flat channels in Scotland, where pressure forces will propagate 

the flood wave rather than gravity and a more complete momentum equation is 

warranted. However the aim here is to investigate the characteristics of network 

shape that influence flood routing. Therefore, rather than significantly 

complicating the routing model by solving the full momentum equation, the 

channel slope is altered such that the wave can be propagated by gravity. The 

small errors introduced by doing this in a few reaches of the network are swamped 

by uncertainties in some of the key model parameters such as Manning's n. 

Furthermore, our kinematic model is significantly more comprehensive than 

models used by other researchers in characterising network responses. 
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(4.1 ) 

(4.2) 

where x is the distance along the channel, I the simulation time, Q(x,tJ the flow in 

the channel, A(x,tJ the channel cross section area, q(x,tJ the lateral inflow per unit 

of channel length, So the channel bottom slope and S, the friction slope. 

It is generally accepted that Manning's equation can be used to relate flow to 

cross-section area, 

Q= ~Sf A513 

nP 2/3 
' 

(4.3) 

where n is Manning's roughness coefficient and P the wetted perimeter. 

Equation 4.3 can be expressed in a more generic form as, 

(4.4) 

where 

(4.5) 

and 

P=3/5. 

Assuming that the channel depth is much smaller than its width, then the value of 

the wetted perimeter, P, can be approximated by the value of the channel width, 

W. The friction and bedslope are equivalent (equation 4.2), therefore, 
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(4.6) 

a is assumed to be constant along a reach of one channel. 

Both the steep and wide channel assumptions have been made by Li et al (1975) 

when successfully validating the kinematic wave model against measured runoff 

data at a catchment scale. Furthermore, if mean depth and width hydraulic 

geometry relationships shown to hold for a wide range of UK river reaches (Hey 

and Thome, 1986) are used to calculate a channel mean depth to width ratio, 

bankfull flows of for example 2 and 50 cubic metres give a depth to width ratio of 

0.09 and 0.06 respectively, validating the wide channel assumption. 

Equations 4.1 and 4.4 can be solved analytically to describe flow along uniform 

channels for a limited set of boundary conditions and inflow rates. In practice, 

where channel geometries change, or for large river networks, it is necessary to 

solve these equations numerically. 

4.1.2 Numerical solution to the kinematic wave equations 

A wide range of numerical solutions to the kinematic wave equation have been 

proposed (Franco and Chaudhry, 1998). Their relative merits reflect the intended 

use of the model and tend to be a trade off between accuracy and stability. The 

network model developed here is intended for use within an automated system, 

where multiple simulations of very many networks will be conducted. Therefore, 

stability is an imperative. An unstable model has the potential to produce spurious 

results, which unless immediately obvious, could bias any statistical analysis. 

Therefore, an unconditionally stable scheme was implemented. It is based on a 

paper by Li et al (1975). The stability criteria imposed may result in an 

unacceptable loss of accuracy. The accuracy of the scheme is tested by comparing 

the numerical scheme with an analytical solution to equations 4.1 and 4.4. 

The scheme is initially implemented for a single channel of length L with a time 

and space varying lateral inflow q(x,t), where x is distance down the channel and t 
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is time. It is assumed that flow at the upstream boundary is known for all time and 

that the initial flow along the length of the channel is also known, so that the 

system is defined by, 

(4.7) 

The channel is divided into n sections of equal length L1x and the simulation time 

into n time steps of equal duration Lit. 

Using the following backward finite-difference approximations 

where 

and 

aA A.I -A.I-1 

- I I --at ~t 

qJ +q.l-I 
q

_ I I - , 
2 

Q; ~ Q(i. !!.x,j' ~t), 

q: ~ q(i. !!.x,j' ~t) 

(4.8) 
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A,' r:::!A(i·~,j·!lt), 

a finite-difference approximation of equation 4.1 is, 

QJ _ QJ AJ _ AJ-I q' + q,-I 
/ /-1 + I / = / / 
~ III 2 

(4.9) 

Using equation 4.4, 

AI' =a(Q,' r (4.10) 

and 

(4.11 ) 

Substituting these into equation 4.9 and rearranging gives, 

( 4.12) 

To solve this we note that if, as is the case, the solution propagates forward in 

time and space, then the only unknown in equation 4.12 is Q;' and the equation 

can be re-written as follows, 

III . ( V3 -Q,' +a Q;' J -C=O, 
~ 

(4.13) 

where 

This non-linear equation is solved using Newton's iterative method. This offers a 

generic numerical solution to a non-linear equation of the form, 

F(Y)=O. (4.14) 
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F(Yk ) 

Yk+l = Yk - F'(Y
k

) , 
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(4.15) 

where F' is the first derivative of F , converges on a solution of equation 4.14 as 

k tends to infinity. Thus, starting with an initial guess, Yo' iterations are continued 

until there is no significant change in Yk • 

In the flow routing model, 

M 
F(Y)=-Y+aYP -C. 

Llx 
(4.16) 

The stability and convergence of the finite-difference scheme leading to equation 

4.12 are discussed in the following section. 

4.1.3 Stability and convergence of the numerical scheme 

Proof of the unconditional stability of the finite-difference scheme (equation 4.12) 

has been given by Li et al (1975). 

To test the convergence of the numerical solution, it is compared with a true 

solution, which has been derived analytically for a particular set of initial and 

boundary conditions. The numerical solution developed in the previous section is 

intended for use within a river network model. Therefore each reach of the 

network will receive flow at its upstream boundary and a lateral inflow. Despite 

the wide range of analytical solutions to the kinematic wave equation, none could 

be found for these boundary conditions. The closest model was by Streeter (1966), 

who derived an analytical solution for the flow caused by rain falling on a sloping 

plane. This solution has been modified for channels below. 
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Analytical solution to the kinematic wave 

An analytical solution to the kinematic wave equation has been developed for a 

river reach of length L with uniform cross-section. It has a continuous constant 

baseflow, Qo' entering at its upstream boundary and experiences a pulse of lateral 

inflow representing runoff from the catchment area (Figure 4.1). 

/ q 

/ 

--q 

Figure 4.1 Schematic diagram of channel 

The pulse starts at a time 10 with a magnitude qo' and drops to zero at a time II' 

The time II has been selected to be large enough such that the flow reaches 

steady-state at some time, t" before dropping back down to the baseflow, Qo 

(Figure 4.2). 
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o 
t 

Q,V: 
o 

t 

Figure 4.2 The three-part analytical solution 

Formally, the model is defined by, 

Q(x,O)=Qo, O~x~L, 

Q(O,t) = Qo , Vt, 

(4.17) 
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The solution is constructed in three parts. The first component describes the flow 

from the start of the pulse to the time t, when the system reaches steady state. The 

second part is trivial and describes the steady state conditions between t, and I" 

when the pulse drops. The third part describes the recession in flow beyond I, 

after the lateral inflow ceases (Figure 4.2). 

The analytical solution was derived using the characteristic equations, which 

allow the partial differential equation 4.1 to be converted into a system of first­

order ordinary differential equations. 

First, equation 4.4 is re-arranged to give flow rate as a function of area, 

(4.18) 

, 
F or convenience, let a = ( ~ ) Ii and 

1 
b = -, so that, 

f3 

Q = aA
h

• (4.19) 

Substituting this into equation 4.1 and differentiating gives, 

bA
h-18A 8A 

a -+-=q, 
8x 8t 

(4.20) 

which is the kinematic wave equation expressed in terms of cross-sectional area. 

Now consider the total (or material) derivative of A, 

dA = aA dx + 8A dt 
Ox at' 

(4.21 ) 

or, on dividing through by dt, 

dx 8A aA dA 
---+-=-. 
dt Ox 8t dt 

(4.22) 
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We now note that the material derivative, which holds for any description of flow, 

and the kinematic wave equation take very similar forms. 

Equating the coefficients of the partial derivatives in 4.20 and 4.22 gives, 

and 

dA 
-=q 
dt 

dx _ bAh-I --a . 
dt 

(4.23) 

( 4.24) 

The system of equations 4.23 and 4.24 constitutes the characteristic form of the 

kinematic wave equation. This pair of ordinary differential equations implicitly 

incorporates the momentum and mass continuity equations. They can be 

interpreted as inferring that if you are an observer travelling with the flow at a 

rateabA h
-

l
, you will see the cross-section area increase at a rate q. The only 

difference between this and standard derivations of the characteristic equations 

(Chow et al 1988) is that they have been developed in terms of cross-sectional 

area. The following specific solution, given the boundary and initial conditions 

(system of equations 4.17), is non-standard. 

First part of the solution: rising limb 

This part holds until steady state is reached at an, as yet, unknown time t,. First, 

equation 4.23 is integrated from t = 0, giving 

A(x,t) = Ao + qt (4.25) 

where Ao = A(x,t = 0). Using Manning's equation, Ao is obtained from the initial 

flow, 

(4.26) 
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Equation 4.25 holds for any specific characteristic. Now substituting 4.25 into 

4.24 gives, 

dx b( )h-l - = a Ao +qt . 
dt 

(4.27) 

Integrating this gives, 

(4.28) 

where Xo is the starting point of the characteristic at time t = 0 . Again, this holds 

for any specific characteristic. Now let's consider one characteristic in particular, 

starting at the most upstream point in the channel, Xo = o. We note that at steady 

state, Q(x) = Qo + qx. Substituting A (equation 4.25) into 4.28 and re-arranging 

gives, 

qx + aAg = aA(x,t)h (4.29) 

or 

qx+Qo = Q(x). (4.30) 

Therefore, the area on the characteristic described by 4.20 represents the area at 

steady state all the way along the channel. Now the time, t" to steady state is 

simply given by equation 4.28 with x = L and Xo = 0 , 

1 h qL b l I] 
t, = q (Ao + -;) - Ao . (4.31 ) 

The flow anywhere in the channel is given by, 

Q(x) = a(Ao + qt t (4.32) 
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until it reaches steady state. Therefore the flow at the outlet, x = L , is, 

Q(x = L) = a(Ao + ql Y , I < 1< t,. (4.33) 

Second part of the solution: steady state 

The second part of the solution is trivial in that the flow remains at steady state 

until time 11 when the pulse of lateral inflow q drops to zero, 

(4.34) 

Third part of the solution: falling limb 

For the falling limb of the hydro graph, we return to equations 4.23 and 4.24, 

which define the characteristic. However, in this case, equation 4.23 becomes, 

dA =0. 
dl 

Therefore the cross-sectional area along a characteristic is constant, 

A(X,/) = A(x). 

Substituting this into 4.28 gives, 

where 

(4.35) 

(4.36) 

(4.37) 
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Now let's consider the starting condition of being at steady state. From the first 

part of the solution (rising limb), we know that at t = I, , 

a h 
A(x,1 = IJ = AI = -(Ao + qlJ . 

q 

We also know (equation 4.28) that 

Therefore, substituting 4.38 and 4.39 into 4.27 gives, 

Therefore, 

a bah h-I ( ) 
X =-AI +-Ao +abAI I-II' 

q q 

(4.38) 

(4.39) 

(4.40) 

(4.41 ) 

This determines the cross-sectional area at a distance x down the channel at time I. 

To get an equation for flow we note, 

(4.42) 

and therefore, 

h-I 

Q (Q)h( ) a h x =-+ab - I-II --Ao . 
q a q 

(4.43) 
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At the outlet x = L and therefore the discharge is described by the non-linear 

equation, 

h-) 

Q (Q)h( ) a h 0= L - - + ab - 1 - I) - - Ao . 
q a q 

(4.44) 

This can be solved for any 1 using Newton's method. 

This completes the analytic solution. 

Comparison between numerical and analytical solutions 

Both the analytical and numerical solutions were implemented in FORTRAN 

codes, which take inputs of lateral inflow and upstream flow hydro graphs, and 

return the channel outlet hydro graph. 

The results of both solutions are compared for the same boundary conditions, and 

the sensitivity of the numerical scheme to space and time discretization is tested. 

The comparison is performed for a 10 kilometre long and 4 metre wide channel 

reach, which has a continuous constant baseflow of 2.7 cubic metres entering at 

its upstream boundary. The channel experiences a pulse of lateral inflow 

representing runoff from an area of 800 square kilometres. It starts at a time 

to = 0 with a magnitude corresponding to a rainfall of 40 millimetres per hour of 

intensity, and drops to zero after one hour and 15 minutes. Figure 4.3 shows the 

analytical results and the numerical results obtained for various values of Ax and 

At. 
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18000 

The analytical and numerical solutions are well matched. The numerical solution 

is insensitive to the values of dx and dt within the range of values that is feasible 

to use in a large network. Clearly if dx/dt was selected such that it was much 

larger than the kinematic wave celerity, we might anticipate errors, but this is 

easily avoided. The sharp change from increasing to steady flow that is apparent 

in the analytic solution is not reproduced by the numerical model. This can be 

attributed to numerical diffusion (Li et aI, 1975) and is a price one must pay for 

having unconditional stability. Since the model is to be used to perform automated 

simulations of large networks, it was felt that this was a relatively small price that 

was worth paying. Furthermore, the error is transient and short lived. 

4.2 From channel routing to network routing 

The numerical solution developed in the previous section simulates flows at nodes 

distributed along the length of a single channel with uniform cross-section, given 

the channel topography (slope and length), conveyance characteristics (top width 

and roughness coefficient) and the lateral inflow per unit length of channel. The 

lateral flow into each reach of the network is assumed to be uniform along the 

length of the reach, and directly proportional to both the area of the catchment 

draining into it and a runoff ratio . This information is combined in a variable 
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called channel 'weight', which is defined to be the area draining through the 

channel per unit length of channel multiplied by the runoff ratio. The 

instantaneous channel lateral inflow is obtained by multiplying the instantaneous 

values of rainfall intensity by the channel weight. 

Determining the solution at time t requires knowledge of flows at nodes 

distributed along the channel length at time t - t:.t and flow at the upstream 

boundary at time t . In channel networks where the kinematic wave approximation 

holds, the upstream boundary flow of any component channel at any time is the 

sum of discharges from all channels that lie immediately upstream at that time. 

This means that, solving flows for any channel requires the knowledge of which 

channels, if any, lie immediately upstream of that channel. To facilitate this, each 

channel of the network is assigned a unique identifier and associated with the list 

of channels corresponding to its immediate upstream channels. At the extremities 

of the network, this list is empty. Moreover, when calculating flows throughout 

the network, it is necessary to begin by solving for flows at the upstream 

extremities of the network and move systematically towards the outlet. To 

facilitate this, the channels constituting the network are ordered according to their 

relative position to the outlet. The ordering system is illustrated in Figure 4.4: 

once flows have been solved for all channels of nth order, flows can be solved for 

all channels of (n-l yh order. 

Figure 4.4 Network channels ordering system 
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A FORTRAN code was developed that takes details of the network and rainfall 

hyetograph and returns the hydro graph at the outlet of the network. It begins with 

the reaches at the extremities (level 5 in Figure 4.4) of the network. Given the 

flow at the previous time step (t - ilt), it predicts current flow along each of these 

(t). This then gives the upstream boundary conditions for reaches at the next level 

down (level 4 in Figure 4.4). In this way, water is successively routed through 

decreasing level reaches. When the flow has been simulated at time t for all 

reaches, the process is repeated to predict flow at time I + ill. 

4.3 Summary 

A model has been developed that is suitable for flow routing through river 

networks where channels are steep enough for back water effects to be negligible. 

The model implements a numerical solution to the kinematic wave equations 

including lateral inflow and propagates the solution from the upstream extremities 

of the network towards the outlet. The finite-difference scheme used for solving 

the equations is unconditionally stable and allows for convergence with results 

derived by solving the equations analytically for a hypothetical case. The model, 

implemented in a FORTRAN code, takes inputs of network data and rainfall 

hyetograph and returns the hydro graph at the outlet of the network. 
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5 Network Structure Data 

The ultimate goal of this thesis is to determine a suite of variables that describe a 

network and can be used to classify the hydraulic response of river networks to 

runoff events. It has already been argued in Chapter 3 that the only practical way 

to characterise the network response in isolation from all the other catchment 

hydrological processes that produce a real hydro graph is using a comprehensive 

flow routing model. To this end, a kinematic wave routing model for large 

networks was developed. Whilst recognising that all the parameters required 

cannot be measured, in this thesis the aim is to make the river model as true to 

reality as possible. This is in contrast to many of the recent studies on network 

responses (Gupta et aI, 1996; Veitzer and Gupta, 2001; Menabde et aI, 2001). 

Therefore where possible, data from real river networks are used. Furthermore, if 

significant conclusions are to be drawn on network response and the influence of 

network structure, then many networks need to be simulated. The logistics of 

parameterising even a single large network on the basis of field surveys make it 

impractical. Indeed, no literature could be found where bedslopes and conveyance 

data for every link of a large dentritic network were derived from surveys. 

Therefore in this research, it was imperative that the best remotely sensed data 

currently available be utilised in an automated manner to parameterise models of 

many real networks. This has been achieved by: 

1- Constructing a GIS database of the physical structure for Scottish river 

networks. 

2- Developing an algorithm for automated extraction, from the database, of 

catchment network topological data characterising the network structure 

suitable for use in the flow routing model. 

3- Generating physically reasonable distributions of conveyance parameters 

for each reach in the network, from which model realisations of the 
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conveyance parameters are selected. This later point is described in the 

following chapter. 

5.1 Derivation of a GIS database for the physical structure of 

Scottish rivers 

The most comprehensive surveys of the UK have been conducted by the UK 

Ordnance Survey (OS). They produced detailed terrain and feature maps. During 

the 1990s, the Centre for Ecology and Hydrology (CEH) based at Wallingford 

recognised the potential for converting these data into a digital form that might be 

used in hydrological studies to determine flow pathways and to delineate 

catchments. These tasks used to be some of the most time consuming and error 

prone in a hydrological study. After many years of work, they produced digital 

maps of terrain and rivers for the UK (Morris and Flavin, 1990). Terrain data are 

raster and comprise the average elevation (accurate to 0.1 m) in each cell of a 

regular 50m x 50m grid covering the UK. Such data are conventionally called a 

Digital Elevation Model (DTM). CEH have analysed this DTM to provide two 

additional data sets that potentially describe aspects of the hydrology. Firstly, a 

raster map of the direction in which water running across any cell in the grid 

would be likely to leave. This is based on the direction of greatest slope. 

Secondly, what is known as a flow accumulation map. This records the number of 

upstream cells that would drain through each cell on the grid if the terrain were 

covered in a film of water. This map is derived by analysing the flow directions. 

The river data are vector and comprise latitude and longitude data (x,y) for nodes 

that represent the start and end of reaches in the network, and (x,y) data for series 

of intermediate points, known as vertices, that define the shape of the reach. These 

data sets were imported into the Geographical Information System software 

ArcInfo. 

To facilitate the automated extraction of river network data for the network flow 

routing model, aspects of these data sets have been combined. Namely, the 

elevation, flow direction and flow accumulation at each node on the river network 
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have been extracted from the raster maps and stored digitally along with the 

vectors that describe the rivers. ArcInfo allows a table of additional data to be 

associated with the nodes of each reach (node Attribute Table). In this table, each 

node and reach are assigned unique identifiers and the length of a reach 

corresponds to the sum of the Euclidean distances between successive vertices. 

One might have expected that using ArcInfo GIS to interrogate the raster maps 

and find values at nodes in the river network would be a straightforward task. In 

principal, it is. However, it transpired that the standard Arc commands for 

achieving this did not work for interrogating the flow accumulation and flow 

direction data. This is because they assume that the raster data represents a 

continuous smoothly changing variable like elevation. Therefore, in interrogating 

the maps to find a value of the variable at a specific location, they take a distance 

weighted average of the values in neighbouring cells (Figure 5.la). However, flow 

accumulation is a discrete variable and can change significantly between 

neighbouring cells. For example flow accumulation can drop dramatically in 

moving from a cell on the main channel, where flow accumulation will be high, to 

one on the neighbouring hillslope, where flow accumulation will be very much 

lower (Figure 5.1b). A distance weighted average in this case gives a very 

distorted representation of the flow accumulation at a node. 

(a) (b) 

Channel 129m 130m 1044 , 4 3 

Node 
125m 123m 1054 2 1 

~~ 
~ 

123m 120m 3 ~ 2 

Figure 5.1 Raster representations of terrain elevation and flow accumulation 
variables: (a) Elevation; (b) Flow accumulation. 
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In addition to this problem with the standard ArcInfo commands, the software 

failed because the digital maps for the whole of Scotland were too large to hold 

simultaneously in the memory of a PC, even with 2GB RAM. Therefore, a 

computer program was written in the low level Arc Macro Language (AML) and 

FORTRAN to: 

• Partition the raster and vector maps into smaller more 

manageable units. 

• Interrogate the river vector map to find the location of nodes. 

• Identify the cells on the raster maps that coincide with the river 

nodes. 

• Extract a single value of flow accumulation corresponding to 

the cell that the node sits in. 

• Take a weighted average of the elevation in the four closest 

cells to the node location. 

• Add the elevation and flow accumulation data to the node 

attribute table. 

• Reconstruct the database for the whole of Scotland. 

Thus a comprehensive digital database for all the rivers in Scotland was 

constructed. It contains all the appropriate topological characteristics for every 

reach. However, despite all the nodes in the database being derived from 

Ordnance Survey data, it transpired that the river data and the DTM were 

inconsistent. Therefore, small but frequent corrections were required at the stage 

of deriving individual catchment networks for use in the flow routing model. 

Highlighting these inconsistencies, which is done later in this chapter, is 

extremely important. The CEH DTM, flow accumulation, flow direction and river 

network data is the industry standard dataset. It forms the basis of many decision 

support systems. Whilst it is marketed as being 'hydrologically consistent', it is 

not and this makes the automated extraction of a network a far less than 

straightforward procedure. 
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5.2 Automated extraction of catchment network data 

To implement the techniques for characterising the response of networks that is 

advocated throughout this thesis, it is necessary to extract the physical 

characteristics of river networks from a large number of catchments. This requires 

interrogating the raster maps and then the digital river database to first delineate 

catchments and then extract the networks they enclose. 

Catchment, or watershed, delineation is a straightforward procedure in the 

ArcInfo GIS, provided that 'sinks' have been removed from the DTM. Sinks are 

cells on the terrain model that are surrounded, in all directions, by cells with 

higher elevations. Thus any flow entering the cell has no route by which to leave. 

Such sinks are normally 'filled' for hydrological analysis by increasing the 

elevation in such a way that there is a continuous flow pathway from any cell to 

the boundary of the DTM, in this case, the sea. CEH market all their DTMs as 

being 'hydrologically corrected' and therefore, sinks had already been removed. 

The delineation procedure comprises simply specifying the outlet of the 

catchment. The GIS then uses the flow direction raster map to trace back upstream 

of the outlet, to all cells that could potentially drain through it. The catchment is 

then stored as a binary raster map; one value for inside the catchment and another 

for outside. 

5.2.1 Catchment network extraction 

Ideally, having derived the binary map for a catchment, the digital database could 

be interrogated in a straightforward manner to extract all nodes that fall within the 

catchment boundary. However, it was only after attempting this and inspecting the 

derived river networks in detail that the inconsistencies between the various data 

sets became apparent. Intermittently within a network, the downstream nodes of 

reaches were observed to have higher elevations than upstream nodes. Similarly, 

downstream nodes were often observed to have lower flow accumulations (less 

area draining through them) than upstream nodes, which is physically impossible. 

The inconsistencies arise because CEH have developed their own algorithm for 

generating the flow direction map. The DTM sold by CEH is as true as possible to 
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the original OS terrain data, with sinks removed. Using the GIS software, it is 

possible to generate flow directions from each cell based solely on the local slope. 

On comparing this to the flow accumulation map marketed by CEH, it transpired 

that there were many discrepancies. Furthermore, comparing it to the digitised 

rivers again there were significant differences. This is because basing flow 

direction solely on the local slope on a 50m x 50m grid neglects the role of micro 

topography on the path a river follows. Morris and Flavin (1990) recognised this 

and generated flow direction maps using additional information. They returned to 

the original digitised OS contour data and, in the proximity of rivers, identified 

the concave contour structure that would indicate a valley. During the 

interpolation procedure used to generate a DTM, such features are often smoothed 

out. Therefore, using the raw contour data, they were able to effectively mould the 

DTM so that the flow pathways as best as possible followed the river network. 

Thus the marketed flow direction and flow accumulation maps correspond not to 

the marketed DTM but rather to a modified DTM, which is not available. This 

fact is not advertised and is important to note for practitioners. 

With regard to this research, it simply meant that the CEH flow direction and 

accumulation maps should be used. However, despite the good agreement 

between the digitised rivers and the CEH flow direction and accumulation maps, 

inconsistencies still arose. For example, with the flow direction indicating rivers 

running parallel but one cell removed (50m away) from the digitised river. The 

variety of anomalies encountered was such that, despite best efforts, no algorithm 

could be generated to automatically correct them. Therefore an alternative way of 

extracting local catchment river networks was sought. 

5.2.2 Generating 'hydrologically consistent' network data based on digital 
terrain data 

Tarboton et al (1991) suggest an approach to generating network data that is 

consistent with an underlying DTM. It works on the assumption that the greater 

the area that can potentially drain through a point on a map the more likely there 

is to be a river at the point. Thus, their suggestion was that the flow accumulation 

map derived from a DTM could be used to approximate the path of watercourses, 
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in particular by setting a threshold in accumulation above which cells are retained 

and classified as rivers, and below which cells are discarded and assigned to 

hillslopes. The resulting raster map then comprises lines of cells representing 

rivers that can be converted into vector format. This method has been widely used 

(Naden et aI, 1999, Moussa, 2003) to insure that the network is consistent with the 

underlying DTM and the flow direction and accumulation maps. However, clearly 

one runs the risk of departing from the true paths of rivers, should, for example, 

the DTM have too coarse a resolution. Therefore, in adopting such an approach 

here, it is implicitly assumed that Morris and Flavin's (1990) algorithm has been 

effective in pulling the flow pathways close to those of real rivers. This will 

subsequently be tested by comparing derived and digitised river networks. Using 

the Tarboton et al (1991) algorithm, networks were derived for many Scottish 

catchments. Figure 5.2 shows a comparison between the digitised river network 

and derived network in a single catchment using three different flow accumulation 

thresholds. It can be seen that there is very close agreement between the routes 

taken by the derived rivers and true river paths. However, Figure 5.2 also serves 

to illustrate a problem with Tarboton's algorithm in its original form. Even at the 

local scale of a catchment, no single threshold applies for all branches in the 

network. Some branches terminate at a source that coincides with the true source 

when the threshold is high (Figure S.2a), but on the same map the extent of many 

of the other branches are under estimated. On the other hand with a very low 

threshold (Figure S.2c) it is possible for the derived network to extend to the 

sources high in the headwaters but a high number of spurious reaches are 

introduced. 
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(a) (b) 

(c) 

Figure 5.2 Digitised river network (blue lines) and DTM-generated flow paths 
derived for 3 decreasing flow accumulation threshold values: (a) 
Threshold 0.250km2

; (b) Threshold 0.215km2
; (c) Threshold 0.025 

km2
. 

The problem of selecting an appropriate threshold is compounded when deriving 

networks for many catchments automatically. The threshold is seen to vary 

significantly; this is probably as a result of land use and geological differences in 

the catchments. Thus, while the derived network paths were in agreement with the 

digitised paths (indicating that Morris and Flavin's flow accumulation map is a 

good representation), Tarboton' s algorithm cannot reproduce the extent of 

networks. Therefore, an alternative that combined elements of the true digitised 

network and Tarboton' s algorithm was developed. 

Rather than use a threshold in flow accumulation to determine where the rivers 

rise (their sources), the location of sources was taken directly from the digitised 

river database for Scotland. Within this database, sources were easily identified as 

they correspond to the extremities of the network and therefore to nodes that do 

48 



Chapter 5 

not coincide with the node of any other reach. Taking each source in turn, the cell 

containing it was located on the flow direction map (Figure 5.3). Using the flow 

direction, the path of least resistance through the landscape was determined. This 

resulted in a binary raster map indicating the cells that contain a river and those 

that do not. This was converted into a vector map. 

Figure 5.3 Watershed delineation, source-point localisation and drainage network 
derivation 

Figure 5.4 shows the derived networks compared to the digitised networks for 3 

catchments. The match is remarkable; there are a few minor anomalies. 
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Figure 5.4 Sampled examples of extracted DTM & sources - generated 
catchment drainage networks (red lines) compared with digitised 
rivers (blue lines) 
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This meant that networks that were very close to the true networks and had 

consistent values for flow direction and accumulation could be derived 

automatically. 

Only one hurdle remained in deriving hydrologically consistent catchment 

network data. The DTM is not consistent with the flow direction grid. Therefore, 

occasionally, it appeared that the upstream end of a reach was lower than the 

downstream. To rectify this, an algorithm was written to sequentially move 

through the network starting from the outlet, identifying the upstream and 

downstream end of each reach, and adjusting the elevation where required. A 

quantification of the required adjustments has not been officially published by 

CEH. However, in a personal conversation, it was reported that adjustments of 

less than 0.5 metres were required for less than 5% of the river channels. 

A complete description of the structure of a catchment network that is very close 

to the real network was therefore successfully derived. From these data, all the 

characteristics related to the network structure required by the routing model were 

calculated. An algorithm was developed that sequentially moved through the 

network, starting from the outlet, ordering the channels and identifying the 

channels directly upstream and adjacent to each channel. Based on the interpreted 

network organisation, slope and weight (area contributing to runoff) for each 

reach were calculated using the elevation and flow accumulation data 

respectively. 

The algorithms described above were implemented in a combination of Arc 

Macro Language (AML) and FORTRAN to extract many catchment networks for 

Scotland. 

5.2.3 Automation of the catchment network data extraction 

The algorithm developed in the previous section automatically extracts a 

catchment network given the latitude and longitude of the outlet. A list of 

catchment outlet locations corresponding to the Scottish river gauging stations is 

available in the Flood Estimation Handbook (NERC, 1999). Based on this, a list 
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of X and y coordinates of gauging stations was created. The algorithm was enabled 

in a batch program that moved through the outlets list extracting all the 

corresponding network data. 

Table 5.1 gives a sample of the network data file, which is extracted for each 

catchment. Appendix A gives a list of the catchment outlets for which network 

data were extracted. Estimates of catchment drainage area and median flood of the 

annual maximum series CQrned), as reported in the FEH (NERC, 1999), are also 

given, as well as network total length, as calculated by the GIS extraction 

algorithm. Figure 5.5 locates these catchments on the map of Scotland. In the case 

of nested catchments, for clarity of representation, only the hierarchically higher 

catchment is illustrated. 

channel ID,channellength,node ID,X,Y,Z,tlow accumulation 

3,220.71068,1,239700.00000,938600.00000,520.600,41.000 

3,220.71068,2,239750.00000,938400.00000,500.300,245.000 

2,341.42136,3,239600.00000,938650.00000,550.100,18.000 

2,341.42136,4,239750.00000,938400.00000,500.300,245.000 

5,191.42136,5,239800.00000,938300.00000,500.000,19.000 

5, 191.42136,6,239650.00000,938200.00000,479.300,311.000 

4,241.42136,7,239750.00000,938400.00000,500.300,245.000 

4,241.42136,8,239650.00000,938200.00000,479.300,311.000 

6,641.42136,9,237500.00000,938250.00000,473.100,70.000 

6,641.42136,10,237600.00000,93 7650.00000,367 .600,341.000 

8,903.55339, II ,238650.00000,937750.00000,647.400, 11.000 

8,903.55339,12,238050.00000,937500.00000,366.500, 710.000 

1,2210.66017,13,239100.00000,939000.00000,729.500,4.000 

I ,2210.660 17,14,238050.00000,937500.00000,366.500,710.000 

11,70.71068,15,238050.00000,937500.00000,366.500, 710.000 

11,70.71068, 16,238000.00000,937450.00000,366.500, 1393.000 

Table 5.1 Sample of an extracted catchment network data file 
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Figure 5.5 Catchment positions on the map of Scotland 

5.3 Summary 

A series of algorithms have been developed that perfonn automated extraction of 

catchment network data from a GIS database representing real Scottish river 

networks. Network data suitable for flow routing have been extracted for a large 

number of catchments. The extraction procedure uses an original method, which 

insures that the derived network structure data are very close to real networks and 

hydrologically consistent. 
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6 Estimation of conveyance parameters 

In this thesis, networks are characterised using simulated hydrographs. It has 

already been argued that, in contrast to many of the recent studies on network 

responses (Gupta et aI, 1996; Veitzer and Gupta, 200 I; Menabde et aI, 2001), 

flow in networks which are as realistic as possible should be simulated. Therefore 

as much real data as possible have been extracted from Ordnance Survey (OS) 

maps held in a GIS digital database. While as maps provide a fairly accurate 

description of river network structure, obtaining cross-sectional data, necessary to 

calculate the conveyance parameters of the routing model, for large river networks 

is much more problematic. Even surveying one cross-section on each reach of a 

single large river network would be an impractical and expensive task. In this 

study many river networks need to be simulated, which compounds the 

impracticality of surveying. To overcome this problem, empirical results on the 

generic nature of river morphology are used. In particular, an empirical estimate 

of channel top width is required, since the routing model conveyance formula is 

given by, 

(6.1 ) 

where, based on Manning's equation applied assummg that channel wetted 

perimeter can be approximated by the value of the channel top width, 

and 

_ nW213 

( )

315 

a- ~ 
vSo 

(6.2) 
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f3 = 3/5, 

where n is the channel Manning's roughness coefficient, W the channel top width 

and So the channel bed slope. 

Although various empirical models for river cross-section geometry can be found 

in the literature (e.g. Leopold and Maddock, 1953; Hey and Thorne, 1986; Huang 

and Warner, 1995), these have never been tested against data for Scottish rivers. 

Therefore an analysis was conducted that involved collecting river cross-sections 

from a wide spread survey of Scottish rivers and seeking an empirical relationship 

between channel width and some flow statistic. This was the first time that such 

an analysis was made specifically for Scotland. 

6.1 A brief review of generic patterns in river cross-section 

geometry 

Leopold and Maddock (1953) first introduced the term 'Hydraulic geometry' to 

name the functions describing the variation of some streamflow characteristics 

(width, depth, velocity) in relation to discharge. They analysed current-meter field 

measurements, collected for the purpose of computing discharge, by district 

offices of the U.S. Geological Survey over a period of seventy years for rivers all 

over the United States. They observed that at a given cross-section, streamflow 

characteristics vary with discharge as simple power functions of the form, 

W =aQh , 

D=cQf, 

V =kQm , 

(6.3) 

(6.4) 

(6.5) 

where W is the width of the water surface, D and V are the water mean depth and 

velocity across the cross-section, Q is the computed flow discharge and a, b, c,/, k 
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and m are all constants. They called these power law relationships 'at a station' 

hydraulic geometry. 

When examining the geometry of cross-sections at various gauging stations on the 

same river network, they noted similar power law relationships between W; D; V 

and flows of a particular return period. This they called 'downstream' hydraulic 

geometry. 

Leopold and Maddock (1953) reported that average values of exponents b,j and m 

are 0.26, 0.40 and 0.34 for at a station hydraulic geometry, whereas for 

downstream hydraulic geometry they are 0.5, 0.4 and 0.1 for a return period 

corresponding to bankfull flow. 

They compared the downstream hydraulic geometry relationships they observed 

for river channels with 'regime equations' published by Lacey (1930, 1939) on 

stable irrigation canals. Given the similarity of both sets of equations, they 

concluded that the same factors, which tend to maintain equilibrium channel 

forms in stable reaches, are also acting in river reaches to produce consistent 

patterns in the relation among hydraulic variables, even though the rivers are not 

in equilibrium. 

Nixon (1959) suggested that although rivers experience a range of discharges, 

they adjust to an effective single dominant discharge. This discharge is the 

constant flow rate that would develop the same shape and dimensions as the 

natural sequence of flows. Flume and field data suggest that this dominant flow 

rate is about bankfull discharge. Studies of sediment transport processes (Hey, 

1975; Hey and Thome, 1984) confinned Nixon's hypothesis. They showed that 

the frequency of flow, which transports most sediment in the long term, equates to 

the frequency of bankfull flow. 

Hey and Thome (1986) analysed data from 62 stable gravel-bed river reaches in 

England and Wales and related bankfull discharge to bankfull hydraulic geometry 

variables. Motivated by practical engineering design, they recommended the 

following equation, 
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(6.6) 

where a takes the value 4.33, 3.33, 2.73 or 2.34 depending on the type of 

vegetation and where the use of the 1.5-year return period flood is recommended 

ifbankfull discharge is not available. 

Huang and Warner (1995) analysed 529 observations from both stable canals and 

natural rivers in the USA and the UK in order to obtain general values of 

exponents for a quantitative multivariate downstream hydraulic geometry model 

incorporating the influence of bank strength. On the basis of this quantitative 

model, it is shown that downstream hydraulic geometry is determined not only by 

flow discharge, but also by channel slope, channel average roughness and 

sediment composition of the channel boundary. They proposed the following 

relations as the general form of river channel geometry, 

(6.7) 

(6.8) 

(6.9) 

where W, D, A, Q, n and S represent the channel width, depth, cross-sectional 

area, flow discharge, channel average roughness and slope respectively. When the 

coefficients Cw , CD and C A take constant values of 4.059, 0.427 and 1.733 

respectively, the above relations explain 87, 92 and 99 per cent of the variances, 

respectively, for 529 field observations mostly from natural rivers. 
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6.2 Validation of a downstream hydraulic geometry model for 

Scottish rivers 

In an attempt to validate a downstream hydraulic geometry model applicable for 

estimating Scottish rivers top width, records of real cross-sections were analysed. 

The Scottish Environmental Protection Agency (SEP A) holds historical records of 

all the flow measurements made in constructing stage-discharge relationships for 

their gauging stations. For most natural channels, flow is estimated by integrating 

velocity measurements over the cross-sectional area of flow. Area is estimated by 

measuring the depth at discrete points on the cross-section. These data are held on 

a variety of hard copy formats at the local SEP A offices. Therefore, their archives 

were trawled and the hard copy data were translated into a digital database. This 

allowed the discrete measurements of depth to be integrated (using a trapezoidal 

rule) to get cross-sectional areas associated with flows. It also allowed estimation 

of top-widths (difference between start and end points of depth measurements). 

Nixon (1959) suggested that rivers adjust to a single dominant discharge, and Hey 

(1975) that the frequency of this dominant discharge equals the frequency of 

bankfull flow. Therefore a good estimation of stable river top widths would be 

given by the application of a downstream hydraulic geometry corresponding to 

bankfull flow. Hey and Thome (1986) recommended the use of the l.S-year 

return period flood if bankfull discharge was not available. However these 

channel shaping bankfull discharges will occur with different frequencies in 

different networks. Indeed Nixon (1959) reported them as occurring with return 

periods in the range 0.09 to 2.7 years for UK rivers. When upland rivers are 

isolated from this study, for example the upper Tyne or the upper Wye, the 

frequency with which bankfull discharges occur is lower and consequently their 

return period is longer. For each of the sites analysed in this thesis, the value of 

Qrned, which is the FEH estimation of the median flood of the annual maximum 

series, is available (NERC, 1999). This corresponds to the 2-year return period 

flood. In the light of Nixon's report (1959), this value is used as an acceptable 

estimate of bankfull flow. 
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From SEP A's records, there were a range of flow rates, cross-sectional areas and 

widths associated with each measurement of flow at all the gauging stations. 

Furthermore, we had estimates of bankfull discharges courtesy of the statistical 

analyses conducted by CEH. However, gauging stations are rarely visited when 

the river is at bankfull. Therefore, we needed to infer top-width at bankfull from 

the available data if we were to derive a downstream hydraulic geometry 

relationship for Scottish rivers. This was achieved by extrapolating to bankfull 

characteristics using at a station hydraulic geometries. 

Therefore, for each of 30 gauging stations located at individual sites in Scotland, 

an at a station hydraulic geometry relationship for top-width was derived. This is 

illustrated for one station in Figure 6.1. It involved plotting top-width versus flow 

rate on a logarithmic scale, for the available range of flow measurements, and 

applying linear regression to derive the hydraulic geometry equation. Using the 

derived at a station hydraulic geometry equation and Qmed, as an estimate of 

bankfull flow, the value of top width corresponding to bankfull discharge was 

extrapolated. 
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Figure 6.1 Derivation of at a station hydraulic geometry 
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This was repeated for each site, allowing a relationship to be developed between 

estimates of top-widths and bankfull discharges. Figure 6.2 shows estimated top­

widths versus bankfull discharges on a logarithmic scale for the 30 sites. Linear 

regression was used to derive a downstream hydraulic geometry model 

corresponding to bankfull suitable for Scottish rivers. 
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Figure 6.2 Derivation of a downstream hydraulic geometry model for Scottish 
rivers 

The derived downstream hydraulic geometry model is: 

W QO.S = a b , (6.10) 

where a = 2.25 . 

95% confidence limits for regression relationship were derived giving lower and 

upper values for the coefficient a (Figure 6.3), 

lower a = 1.23 

upper a = 4.10. 
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Figure 6.3 Downstream hydraulic geometry model; 95% confidence regression 
analysis. 

The derived downstream hydraulic geometry model fits within the range of 

models proposed by Hey and Thome based on the analysis of stable UK gravel­

bed rivers. They found coefficient a ranging from 2.34 to 4.33. The analysis 

suggests that for Scottish rivers, slightly lower values of coefficient a apply. 

Therefore it would appear that hydraulic geometry relationships could be used to 

estimate conveyance parameters. 

6.3 Application of the top width model to all the reaches in a 

network 

Appendix A gives the values of Qmed at the outlet of each extracted network. 

These values are used as the best available estimates of bankfull flows at the 

outlet of each network. The estimation of channel top-widths along the network 

requires estimates of bankfull flows at each node of the network. Rodriguez-Iturbe 

and Rinaldo (1997) suggest that one of the regular factors among different river 

basins is the relationship between discharge of a given frequency of occurrence 

and drainage area, and that this relationship is a power law of the form Q a An , 
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where the exponent n varies according to the frequency of the considered flow. At 

bankfull discharge (where return period averages 1.5 years), the exponent is 

approximately equal to 0.75. Estimates of bankfull flow at each node along the 

network are therefore obtained assuming non-linear spatial scaling of bankfull 

flows with drainage area according to a power law relationship where the 

exponent is equal to 0.75. Thus if bankfull flow at the outlet of the catchment 

Qh (outlet) is known, bankfull flow for any node along the network Qh (i) can be 

calculated, based on the flow accumulation at that node ACC(i), as follows, 

. ( ACC(i) )0.75 
Qh (I) = Qh (outlet). 

ACC(outlet) 
(6.11 ) 

Applying the validated downstream hydraulic geometry model (equation 6.10), 

top widths at each node of the network, W(i), are calculated, 

( 
075 )05 

W(i) = a ( ACC(i) ) Qh(outlet) 
ACC(outlet) 

(6.12) 

The top-width along each reach is assumed to be an average of the top widths at 

upstream and downstream nodes. 

The coefficient a is uncertain but known to vary between 1.23 and 4.33. Therefore 

an ensemble of possible realisations of channel morphology is developed for each 

channel by selecting values of a lying between these two values. 

6.4 Roughness coefficient 

Similarly, parameterisation of the networks in term of Manning's roughness 

coefficient is performed by selecting a variety of Manning's n covering a wide 

range of possible values varying from 0.02 to 0.08 (Chow, 1959; Hornberger et 

a\., 1998). 
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In practice, it was only feasible to select 10 physically reasonable values of 

Manning's n and coefficient a. This yielded a total of 100 different physically 

plausible parameter sets for each catchment network. 

6.5 Summary 

This chapter completes the derivation of catchment network data suitable for flow 

routing. Although all the characteristics describing catchment network structure 

could be extracted from real river networks, the estimation of channel conveyance 

parameters required using empirical results of river morphology, in particular for 

channel cross-section geometry. A generic downstream hydraulic geometry 

model, validated based on the analysis of flow and cross-section measurements 

for Scottish rivers, was applied to estimate top-width along the network. In order 

to take into account uncertainties in the estimation of network conveyances, 100 

combinations of hydraulic geometry and Manning's roughness coefficients have 

been selected, leading to the generation of 100 plausible representations of each 

catchment network structure. 
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7 Simulation 

The central tenet of this thesis is that, since hydrological data on any individual 

component in the hydrological cycle of an entire basin are difficult to obtain, the 

only pragmatic alternative for characterising them is simulation using an 

appropriately parameterised physically based model. In addition, to allow patterns 

to be sought and statistically meaningful relationships between the simulated 

hydrological response and potential classifier variables to be derived, the model 

has to be applied to as many river basins as possible. This chapter describes flow 

routing simulations performed on more than 50 river basins throughout Scotland. 

The study has been restricted to Scotland for two reasons: firstly, the data on 

network morphology used in Chapter 6 could be obtained from SEP A and 

secondly, it limited the number of basins to that which could be reasonably 

handled during the course of a three-year PhD. First, the rainfall scenarios used to 

force the model in the later simulations are described, along with the pair of 

variables that are used to characterise responses. Then, a suite of preliminary 

simulations was conducted to determine whether the premise of the approach to 

characterising networks was valid and how best to characterise responses. Finally, 

flow through all the networks is simulated and the hydro graphs characterised. 

7.1 Input byetograpbs and response bydrograpbs 

Having attempted to retain as much information from real networks as possible, it 

is imperative that the flow scenarios simulated are physically realistic. However, 

if the local climatic conditions that prevailed at each of the networks were 

explicitly incorporated into the simulations, then it would be very difficult to 
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compare networks. Therefore, the same input hydrographs were applied to the 

entire set of networks. Input hydrographs were derived by assuming a rainfall 

hyetograph that was typical for Scotland and that rainfall is uniformly distributed 

over the catchment and a fixed proportion of it (runoff ratio) runs off immediately. 

This gross simplification of real runoff dynamics is warranted because the interest 

is in network responses and not runoff mechanisms. However, it is important to 

note that much of the shape of a runoff hydro graph is retained. This is in contrast 

to many other studies (e.g. Gupta et aI, 1996; Veitzer and Gupta, 2001; Menabde 

et aI, 2001) where an instantaneous pulse is used as the runoff hydro graph to force 

the network routing model. This may be warranted if the system behaves in a truly 

linear fashion. However, the indications from field studies where the flood peaks 

follow a power law relationship with area (Smith 1992; Gupta and Dawdy, 1995) 

are that this is not the case. The network routing model developed in Chapter 4 is 

inherently non-linear since flow velocities increase with flow depth according to 

Manning's equation. Thus, non-linearities in the response can be captured. Indeed 

it will be seen that the shape of the hyetograph affects the outlet hydrograph 

response in a non-linear manner; in particular that the storm duration affects the 

way that peak flows change as one moves down through the network. Therefore, a 

range of realistic hyetographs was used. 

7.1.1 Hyetograpbs 

The input hyetograph corresponds to a design extreme rainfall event, constructed 

using the FEH storm design procedures (NERC, 1999). In constructing such a 

rainfall hyetograph, the aim is not to reproduce anyone particular storm event but 

rather to have a storm profile with standardised shape and typical rainfall 

intensities with which to compare the hydrological responses at the outlet of the 

tested networks. 

FEH storm design procedures define rainfall intensity, duration and profile. The 

FEH contains UK wide maps showing median annual maximum rainfall values 

(RMED) for 8 durations varying between 1 hour and 8 days, which have been 

interpolated from rain gauge data. RMED events correspond roughly to a 1 in 2 

year extreme rainfall. According to the storm depth versus flood peak return 
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period graph for the UK (Shaw, 1994), a rainfall event that has a given frequency 

of occurrence will produce a flood peak that has a higher frequency of occurence. 

Therefore the choice of RMED rainfall events insures that the flows generated in 

channels designed based on bankfull equal to Qmed will stay in bank. For a I-hour 

duration, the median total depth of rain falling during a RMED event in Scotland 

is 12mrn. This value drops once an areal reduction factor is applied. The areal 

reduction factor is assumed to vary only with area and rainfall duration. For a 1-

hour duration, the areal reduction factors are 0.80 and 0.50 for 100 km2 and 5000 

km2 areas respectively. As the same input hydro graph needs to be applied to the 

entire set of networks which drain areas of varied sizes, an average reduction 

factor of 0.65 corresponding to the arithmetic average between 0.80 and 0.50 is 

applied to reduce the total depth of the RMED event from 12mrn to 7.8mm. 

Following FEH recommendations, the '75% winter profile' design storm formula 

is used to distribute 7.8mm over 1 hour and design a symmetric, single-peaked 

and bell-shaped storm profile, which is shown in Figure 7.1. 
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Figure 7.1 Profile of the I-hour design storm used for simulation 

For a I-day duration, the RMED average value is 60 mm. For a I-day duration, 

the areal reduction factors are 0.94 and 0.85 for 100 km2 and 5000 km2 areas 

respectively. An average reduction factor of 0.90 corresponding to the arithmetic 

average between 0.94 and 0.85 is applied to reduce the total depth of the RMED 

event from 60mrn to 54mrn. The storm profile obtained by distributing these 
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54mm using the FEH ' 75% winter profile' design storm formula is shown In 

Figure 7.2. 
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Figure 7.2 Profile of the I-day design storm used for simulation 

Linear interpolation was used to calculate areal rainfall amounts to be distributed 

over two other intermediate durations between 1 and 24 hours: 6 and 12 hours. 

The corresponding storm profiles are illustrated in Figure 7.3 and Figure 7.4. 
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Figure 7.3 Profile of the 6-hour design storm scenario 
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Figure 7.4 Profile of the 12-hour design storm scenario 

7.1.2 Lateral inflow 

As explained in section 4.2 of Chapter 4, the rainfall hyetographs are multiplied 

by channel weight for each reach in order to produce runoff that enters directly 

into the channel (lateral inflows). Channel weight is the area draining, laterally 

across the river bank, into the reach per unit length of channel multiplied by a 

runoff ratio. The focus here is on flow routing through networks rather than runoff 

generation, so that the runoff ratio is simplified to be spatially uniform over the 

catchment area. UK maps of Standard Percentage Runoff estimated from the 

Hydrology Of Soil Type classification (SPRHOST) are available in Volume 5 of 

the Flood Estimation Hanbook (NERC, 1999). SPRHOST values range from 2% 

to 60%. In order to amplify the extreme character of the input hydrograph applied 

to the set of networks, a runoff ratio value of60% is chosen and uniformly applied 

for channel weight calculation. 

7.1.3 Response bydrograpb variables 

For the preliminary simulations, a fairly standard approach was used to 

characterise the simulated outlet response hydro graphs. Attenuation was measured 

using the relative drop in peak flow rate between the input runoff hydrograph and 

the outlet hydro graph. The translation, or travel time of the flow wave, was 

measured using the time between the peak of the input runoff hydro graph and the 
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peak of the outlet hydrograph. This has been termed "lag in time to peak'. The 

networks available for testing drain areas varying between 102 and 1092 square 

kilometres (Appendix A). In order to be able to compare responses between 

networks, peak flow attenuation and lag in time to peak are measured using scale­

independent variables: peak flow attenuation is calculated as a percentage of the 

input hydro graph peak flow; and lag in time to peak is divided by the network 

drainage area. Using peak flow attenuation and lag in time to peak variables, each 

response hydrograph is then represented as a 'response point' on an x-y plot. 

7.2 Preliminary simulations 

Prior to describing the simulation whose results were eventually used to 

characterise the river networks, a suite of preliminary simulations were conducted 

to determine: 

1. Whether the underlying premise that different shaped networks produced 

different shape hydro graphs was valid? 

2. What was the most appropriate way to incorporate uncertainty In 

conveyance parameters? 

3. What were the most appropriate variables to use in characterising the 

response? 

4. Whether the networks alone, uncoupled from the land that drains into 

them, have their own signature hydrographs? 

5. What were the most appropriate storm hyetographs (or rainfall time series) 

to use? 

7.2.1 Do different shaped networks respond differently? 

Inherent in this whole thesis is the premise that different shaped networks will 

respond differently. Whilst this may seem intuitive, it has not been explicitly 

tested. Some authors have intuited similarly, for example Rodriguez-Iturbe and 

Rinaldo (1997), in a highly influential book where the fractal characteristics of 

river networks are used to describe network responses. Their theory is called the 
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Geomorphologic Unit Hydrograph (GUH). However, the GUH is explicitly built 

on an assumption that network shape dominates the response, not on the 

underlying principles of open channel hydraulics. Indeed, it violates some of 

these, the assumption of constant water velocity everywhere in a network being a 

case in point. Therefore, it is perhaps unsurprising that the GUH produces 

different hydro graphs for different shaped networks. 

Here, the premise is tested using one network extracted from GIS databases and 

two synthetic networks. The network extracted from GIS databases is illustrated 

in Figure 7.5. 

Figure 7.5 The network extracted from GIS databases which is used as 'model' 
for generation of synthetic networks. It has code w3001 (see 
Appendix A). 

In order to compare network structures, the area draining through every unit 

length of this extracted network was normalise to an average calculated based on 
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50 real Scottish river basins. Similarly, the channel slope in every link was 

normalised to the average corresponding to these 50 river basins. The two 

synthetic networks were generated in a MA TLAB program such that they had the 

same total length, area draining per unit length and slope as the normalised 

extracted network. The first network is very broad; if described in the upstream 

direction each channel splits into two channels until the total length is reached 

(Figure 7.6a). The second is long and thin; again describing it in the upstream 

direction, when a channel splits into two upstream channels, only one of these 

goes on to split again (Figure 7.6b). 

(a) 

(b) 

Figure 7.6 Diagram of 2 synthetic networks with same total length: (a) Synthetic 
Network 1; (b) Synthetic Network 2 (partial representation). 
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Figure 7.7 shows the simulated response points to the 24-hour storm for these 

three networks for one value of the conveyance parameters a and n. 

I. w3001 • Synthetic Network 1 • Synthetic Network 2 1 
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Figure 7.7 Response points for 3 different shaped networks; 2 synthetic networks 
and an extracted network which have the same drainage area, total 
length and average slope. 

It is clear that Synthetic Network 2 responds particularly differently from the 

other two networks, producing a flow response that is more than ten times more 

attenuated and delayed than the response produced by the extracted network. The 

flow response in Synthetic Network I experiences half the attenuation and delay 

that the flow in the extracted network experiences. The extreme response of 

Network 2 can be related to its ' extreme shape ' : Network 2, extremely long and 

thin, looks nothing like a network extracted from real data, whereas the shape of 

Network 1, although far too regular to correspond to a natural network, is more 

similar to the dendritic nature of most natural networks. The differences in 

response between Network I and Network 2 can intuitively be explained by 

looking at expected travel times of the flood wave from the extremities of the 

network to the outlet. Conveyance parameters and slope being the same for the 

two networks, travel time through each link of the network will be dictated by link 

length and therefore flow response by the distribution of travel distances to the 

outlet. The maximum distance to the outlet is much higher in Network 2 than in 

Network 1, which will be much more effective at routing water toward the outlet 

through its broad shape. 
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Although it is clear that network shape does affect hydrograph shape, the 

demonstration assumed absolute knowledge of both the roughness and the 

hydraulic geometry parameters. The question that immediately arises is, if one 

builds in the uncertainty in these parameters, would this mask the influence of 

network shape? To answer this, a very extreme test has been applied. Basically, it 

has been assumed that there is no measurement of either parameter. In fact, worse 

it is assumed that there is no prior knowledge of Manning' s n for each particular 

catchment, merely that it takes a value somewhere between the highest and lowest 

values reported in the fluvial hydraulic literature. Similarly, with the hydraulic 

geometry parameter, a, all that is being assumed is that it lies within the 95% 

confidence limit of possible values according to the analysis of Scottish cross­

sections (Chapter 6). This leads to 100 simulations conducted for each flver 

network using 100 values of the conveyance parameters array (ai,nj), ij = 1,10; 

where n is Manning's roughness coefficient, which takes 10 evenly spaced values 

between 0.02 and 0.08 and a is the hydraulic geometry coefficient, which assumes 

10 evenly spaced values between 1.23 and 4.33 based on the analysis in Chapter 

6. This is the most conservative suite of parameters that could be selected to 

describe the conveyance properties of each network. Figure 7.8 shows lag in time 

to peak per square kilometre of drainage area versus percentage of attenuation in 

peak flow for multiple realisations of each of 48 catchments in Scotland . 
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Figure 7.8 Multiple realisations of flow simulated for 48 catchments 
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On the basis of these results, the effects of conveyance and scale on catchment 

flow response will now be investigated. 

7.2.2 Importance of the conveyance parameters 

Figure 7.8 shows a wide variability in the resulting outlet response hydrographs' 

time to peak and attenuation within each catchment. This suggests that the 

conveyance parameters have an important influence on network flow routing 

response. This is important as it suggests that the combination of channel 

roughness and hydraulic geometry has a huge effect on network response, almost 

enough to obscure the effects of network shape. However, it should be made clear 

that experienced practical engineers can place far more realistic bounds, 

particularly on the roughness coefficient, than have been assumed here. Local 

knowledge and knowledge of the geology will reduce the bounds on potential 

values significantly. Basically, no prior knowledge has been assumed. For it to be 

plausible to apply a geologically based initial classification of river networks to 

group them together based on their likely conveyance parameters, it is imperative 

to show that the conveyance parameters do not react in some non-linear way with 

the network structure to produce idiosyncratic, unexpected responses for some 

networks. If such idiosyncratic responses were prevalent then small changes in 

network structure could lead to highly divergent responses and, therefore, it would 

be impossible to separate off the geological classification from the network shape 

classification. To test this, contour plots of the key response variables as a 

function of conveyance parameters were produced for each catchment. Figure 7.9 

shows one such plot. 
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(a) 
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Figure 7.9 Variability of network hydro graph responses with conveyance 
parameters: (a) Percentage attenuation of peak flow; (b) Lag in time to 
peak. 

Both peak flow attenuation and lag of time to peak appear to be linearly related to 

the conveyance parameters. There is generally a positive and constant gradient 

from the bottom left of the plots to the top right. Similar trends are observed for 

all the other catchments. This is important because it implies that the relative 

position of network response coordinates corresponding to a particular pair of 

conveyance parameters will not vary. Thus network response cluster patterns will 

be conserved from one set of value of conveyance parameters to the other. The 
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conservation of this pattern is explicitly checked later in this chapter. This makes 

it plausible to separate out the classification into two steps: first, classifying on the 

conveyance parameters (indexed by geology) and second, classifying on the basis 

of network structure. Therefore, where the aim is to classify on the basis of 

network structure, there is nothing to be gained from multiple simulations. The 

classification from any arbitrary pair of conveyance parameters can be transposed 

to any other pair. Thus in most of the remainder of this chapter, a single pair of 

values are used in simulations for all networks; Manning's n = 0.047 and a = 

2.608. These correspond to the mid point in the range of both. 

Whilst the results of the harsh test above clearly demonstrate the importance of 

having some prior knowledge of the conveyance properties of the network, in this 

thesis, the effect of network structure is concentrated on. As such, it runs the risk 

of being criticised for ignoring a major source of the variability in response. The 

reason for pursuing the effect of network shape over and above conveyance 

parameters is because it is relatively under researched in the UK. Conveyance and 

estimation of roughness has been the focus of the UK research community in 

fluvial hydraulics for the major part of the last century and still is. The two 

research networks funded by EPSRC in the last 5 years - one on fluvial 

geomorphology and the other on conveyance, where one of the intended outcomes 

was software for estimating roughness - are evidence of this. Thus with this 

pooling of knowledge it should be possible in the near future to make a crude 

estimate of, for example, Manning's n from key descriptive variables of the 

catchment. However, there has been almost no research into the effect of network 

structure, this is in contrast to the USA where it has assumed a very high profile in 

the last decade (e.g. Rodriguez-Iturbe and Rinaldo, 1997; Veitzer and Gupta, 

2001; Morrison and Smith, 2001). From the few notable exceptions in the UK, 

such as Naden's research using a network 'width function' to derive a hydro graph 

on the River Thames (Naden, 1992), it would appear that structure is important. 

However, what is not clear from this and other research like it (Mesa and Mifflin, 

1988) is how best to describe network structure and which elements of the 

structure exert the strongest influence in shaping a flood wave. 

76 



Chapter 7 

7.2.3 The importance of scale 

On the basis of Figure 7.8 it is possible to differentiate between catchment 

responses. However, much of the distinction between catchments can be attributed 

to differences in catchment drainage area: the response points appear closer to the 

x-axis for large catchments, whereas for smaller catchments response points are 

closer to the y-axis (catchment drainage areas are given in Appendix A). Thus the 

catchment's responses show a dependency on spatial scale. This is despite the fact 

that the drainage area has been implicitly incorporated in the variables used to 

characterise the response hydrographs. This suggests that the variables chosen to 

describe the response hydro graphs are not in fact scale independent. If a set of 

scale independent variables could be found this would greatly ease the 

classification of networks. This indicates that in order to quantify the effects of 

channel shape, the influence of both the uncertainty in the conveyance parameters 

and the area need to be removed. 

It is clear that catchment scale has an effect in the network response. This is the 

case even though the rainstorms in all the simulations to date are uniformly 

distributed over the entire catchment area. Many researchers have observed a 

power law relationship between catchment area and peak flow which they 

attribute to the heterogeneous distribution of rainfall over the catchment area, with 

small areas experiencing more intense rainfall more frequently than larger areas 

(e.g. Gupta and Dawdy, 1995; Gupta et aI, 1996; Morrison and Smith, 2001). 

Whilst this will undoubtedly affect the hydrograph, it appears from the 

simulations presented above that the scale in itself will affect the hydrograph 

shape. This then begs the question: is the scale effect purely a result of the area 

that drains into each reach or is it a property of the network structure? In addition, 

whilst the scale effect is undoubtedly present, it may reflect the inappropriateness 

of the particular pair of variables used to characterise the hydrological response of 

the whole network. Perhaps there are better, scale independent variables that 

might be used. Furthermore, until now, the simulations have been driven by a long 

24-hour storm. Storm duration clearly has a strong influence on the hydrograph 

shape, but does it have an effect in such a way that it would change the 

classification of networks? 
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Uniform Lateral inflow 

In the first set of simulations, lateral inflow to each channel is assumed to be 

proportional to the area draining through that channel. This means that a form of 

runoff generation process is incorporated in the network flow response simulation 

(albeit in a very simple way). A more sophisticated runoff generation process 

could be developed, but this would divert the simulation analysis from its original 

objective, which consists in characterising the flow routing through river network 

component in isolation from any other component constituting the overall 

hydrological response of a catchment. To achieve this goal, network flow has to 

be completely divorced from runoff generation processes. To this end, the 

simulations have been modified so that the runoff into each channel per unit 

length of channel is constant. This in effect means that every stretch of river in the 

networks drains the same area and the networks are divorced from the catchments 

they sit in. In Chapter 4, the concept of channel weight was introduced as being 

the product of drainage area per unit length and runoff ratio. Here, the uniform 

channel weight value was chosen equal to the mean channel weight values 

calculated for the 48 catchments used in the first set of simulations. 

Response variables spatial scaling 

By removing the dependency on runoff mechanisms and normalising the area 

drained per unit length of channel it is now possible to consider the channel 

structure in isolation. However, the very large variation in lag in time to peak per 

unit catchment area and percentage attenuation hinted that this particular pair of 

variables might not be as scale independent as was initially thought. In almost all 

other studies of how networks respond to a flood wave, a similar pair of variables 

is used (Moussa, 2003). By dividing variables that describe the downstream 

hydro graph by total catchment area, one is implicitly assuming that these 

variables scale linearly with area, or some measure of spatial scale. However, 

some network flow routing simulation studies, such as the ones conducted by 

Veitzer and Gupta (2001) and Menabde et al (2001), show that peak flows do not 

increase linearly as a function of drainage area as you move downstream in a 

network, but rather that the scaling dependence with drainage area follows a 
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power law relationship. Reported scaling exponents vary between 0.49 and 0.79 

depending on the type of routing model and synthetic networks used. Both studies 

use a highly simplified description of the flow in channels: analysis of peak flows 

based on the width function in the first study and flow routing modelled by a 

linear mass conservation equation in the second one. However, they both focus on 

network routing rather than on runoff generation, and use the same assumption of 

spatially uniform runoff into the network as is used here. Prior to these studies, it 

had long been assumed that the scale dependence of peak flows was borne out of 

spatial heterogeneities in the rainfall distribution and runoff mechanisms. 

Therefore, they were significant in changing perspective on the role of network 

structure. However, the highly simplified models used in these studies means that 

one is unsure whether the scaling observed is a manifestation of the model 

structure the authors have imposed or a true feature of networks. For example, in 

Menabde et al (2001) the cascade of linear reservoirs forced by an instantaneous 

pulse of rainfall gives a neat analytic form to the hydro graph that falls out of the 

linear assumption, but does it truly represent the way that a flood wave is 

modified as it moves through the network? In essence, both models assume 

uniform constant flow velocity along the network. Whilst it is possible to 

speculate about this, a more pragmatic approach is to use a model that better 

represents the hydraulics and put up with the inconvenience of not having a neat 

analytic solution (that might be wrong anyway). Here, the kinematic wave routing 

model is a much more realistic representation of channel flows. In addition, 

description of network structure (derived from OS maps) and of the way the 

channel cross-sections change within the network (derived from field data), is far 

more detailed than in either previous study. Therefore, a much more rigorous test 

of the scale dependence of these variables can be implemented. 

The way in which peak flows scale with drainage area was ascertained for 8 

networks, arbitrarily chosen but evenly distributed about Scotland. The time and 

magnitude of the peak flow were recorded at each node in the network. Figure 

7.10 shows the peak flows simulated along the 8 networks for a storm of duration 

24 hours. Since spatially uniform runoff is applied, the contributing area at each 

node of the network is measured as the total length of channel upstream of that 

node. 
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Figure 7.1 0 Simulated peak flows along 8 networks using the 24-hour duration 
storm 

These simulations show a linear scaling of peak flows with contributing area in all 

eight networks. This is a surprising result because it does not coincide with the 

power law relationship obtained by previous investigators. This may be a result of 

the assumption, made in both Veitzer and Gupta (2001) and Menabde et al (2001) 

studies, that networks are self-similar. Their studies simulate flow in synthetic 

self-similar river networks, whereas the simulations presented here are performed 

on networks extracted from GIS databases. 

Spatial scaling and network shape 

To see whether radically different network structures that have the same macro­

scale properties (drainage area and total channel length) as an extracted network 

can produce a different relationship between peak flow and scale, the simulations 

were conducted on the two synthetic networks introduced earlier in this chapter: 

one broad (Figure 7.6a) and the other very long and narrow (Figure 7.6b). Figure 

7.11 shows the results of simulations performed on these two synthetic networks 

and the extracted network from which their total channel length was derived. 
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Figure 7.11 Simulated peak flows along 2 synthetic networks and an extracted 
network which have the same drainage area, total length and average 
slope 

Again, even with these highly divergent network structures, peak flows show 

linear scaling dependence on drainage area. However, the gradient does differ 

between each of the networks. Thus, network structure does not seem to be 

responsible for the linearity of peak flow scale dependency on drainage area. 

However, as previously shown (Figure 7.7), it does influence the network 

response to a runoff event. 

This calls into question the generality of the scaling relationships reported by 

Veitzer and Gupta (2001) and Menabde et al (2001). Perhaps it is a function of the 

scenarios used in their simulation. Both these studies apply an instantaneous 

runoff input hydrograph, whereas the simulation scheme used here applies the 24-

hour input hyetograph described in section 7.1.1 (Figure 7.2). 

Spatial scaling and storm duration 

The network routing model was forced by the suite of storm profiles of durations 

varying between 1 and 24 hours described earlier. The simulated peak flows are 

plotted against the length of channel upstream in Figure 7.12. 
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Figure 7 .12 Logarithmic plots of simulated peak flows along 8 networks for 5 
storm durations: (a) 24-hour storm; (b) 12-hour storm. 
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Figure 7 .12 (continued) (c) 6-hour storm; (d) I-hour storm. 
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Figure 7.12 shows that the linear relationship between peak flow and drainage 

area holds for long stonn durations. As stonn duration decreases then the 

relationship becomes more non-linear. With the I-hour stonn, the relationship 

approximates to a power law with exponent 0.75. This result agrees with the 

results obtained by Veitzer and Gupta (2001) and Menabde et al (200 I). So their 

results are particular to short duration runoff events. As the duration of the event 

gets longer, it appears that the relationship becomes linear. This might be because 

in a long duration stonn, peak flow is approached much more slowly than in a 

short-sharp pulse-like stonn. Therefore, during this extended period of high flow, 

the flow in the network is much closer to steady state and flow at the outlet much 

more closely reflects the runoff. If this is the case in Scottish rivers, then it could 

have significant repercussions for Scottish Hydrology because it would allow the 

runoff characteristics in the headwaters of a catchment, which are notoriously 

difficult to measure, to be inferred from a description of network structure and 

long duration hydro graphs from much further down the catchment. What is clear 

is that any study that looks at scaling flood peaks in a network (even where real 

hydro graph data are used) should take into account stonn duration. This is not 

routinely done (Smith 1992; Gupta and Dawdy, 1995) 

Returning to the problem of obtaining variables describing the hydrological 

response of networks that can ultimately be used for classification, it would 

appear that the variables initially selected - lag in time to peak per unit area and 

percentage attenuation - are appropriate scale independent variables with which to 

compare networks for long duration stonns. However, for the Scottish river basins 

used in this study, the networks appear to almost move through a sequence of 

steady states, which makes differentiating between networks difficult. With short 

duration stonns, it is easier to differentiate between networks. However, the 

variables are scale dependent. Therefore, in the section that follows, a I-hour 

storm duration is used. The scale problem is circumvented by only comparing 

networks that drain the same area. 
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7.3 'At a scale' simulations 

It has been shown that in order to characterise the effect of network shape on 

hydrograph response it is necessary to divorce that response from both runoff 

characteristics and the uncertainty in conveyance parameters. Applying a spatially 

unifonn lateral inflow achieves the first of these. It was also shown that selecting 

one pair of 'average' values for the conveyance parameter array (a,n) will not 

affect the pattern of the resulting network flow response clusters. Finally, it was 

shown that networks could best be differentiated using short I-hour stonns, but 

that reducing the duration of the stonn leads to the constraint of comparing 

networks of similar scale. 

7.3.1 Definition of the scale criteria 

Perfonning 'at a scale' analysis of river network flow response requires the 

selection of sets of river networks of similar spatial scale or 'size'. The size of a 

river network is commonly identified with the size of its associated river basin, 

and therefore measured by its drainage area. In this thesis, the analysis of the role 

of the network in shaping hydro graph response has been stripped down to the 

network in isolation from the catchment it sits in. Too many previous studies have 

become embroiled in representing the combined effects of network and runoff 

(Smith, 1992; Gupta and Dawdy, 1995; Gupta et aI, 1996) and thus weaken their 

conclusions about network structure because it is impossible to determine whether 

it is network shape, hyetographs or runoff characteristics that dominate. This then 

prompted some researchers to describe response of highly idealised networks 

forced with highly idealised storms. For example, the use of fractals to describe 

network structure and in particular the highly idealised Peano networks became 

the focus (Rodriguez-Iturbe and Rinaldo, 1997; Veitzer and Gupta, 2001; 

Menabde et aI, 2001). Using these as a surrogate for true networks in the belief 

that almost all natural networks adhere to a self similar structure, it was shown 

that the magnitude of a flood peak scales with network size (Veitzer and Gupta, 

2001; Menabde et aI, 2001). However, this essentially assumes that all networks 

behave in the same way. Morrison and Smith (2001) were the first to attempt to 

disentangle the effects of runoff, hyetograph, rainfall spatial distribution and 
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network shape, in a study that used real networks. They used a less sophisticated 

routing model than that which is used in this thesis which, like those of Veitzer 

and Gupta (2001) and Menabde et al (2001), assumed a constant water velocity 

throughout the network. Nonetheless, their conclusion was that at scales greater 

than 100 square kilometres, the structure of the network became extremely 

important. However, implicit in their discussion of the results is an admission that 

this is in essence an empirical observation from their model results and, thus, to 

really test whether it is possible to distinguish between networks, the network has 

to be divorced from runoff mechanisms. Only then is it possible to begin to 

speculate on the effects of spatially varying rainfall or heterogeneous runoff 

mechanisms. It is for this reason that, whilst retaining the essential structure of the 

real networks, the area draining into them has been standardised. This is achieved 

by assuming a uniform lateral inflow per unit channel length. Under this 

assumption, two catchments with the same drainage area will not necessarily 

receive the same total runoff because similarity in drainage area does not imply 

similarity in total channel length. However, if uniform lateral inflow per unit 

channel length is applied on two catchments with same total length, both of them 

will receive the same total runoff, and each of them will route that amount of 

water towards the outlet. Therefore, when comparing network structure in 

isolation, networks with the same total length should be selected. This allows 

simple un-scaled variables like the lag in time to peak, in seconds, and the 

percentage of attenuation of the peak flow to be used to characterise the network 

outlet response hydrographs. 

7.3.2 Isolation of networks with same total length 

Two scales were investigated: networks with an approximate total length of 300 

kilometres and networks with an approximate total length of 600 kilometres. 

Clearly, if restricted to river basins in Scotland with precisely these total lengths 

of channel upstream of the gauging station (Appendix A), the sample would be 

very small indeed. Therefore, in catchments with longer total channel lengths, a 

single nested network was extracted. This was achieved using an algorithm that 

moves from the outlet of the network towards the extremities, searching for a 

node with the desired total upstream channel length. In a large network, there can 
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be many sub-networks with similar total length. To ensure that the statistical 

analysis of responses was not biased by having many networks with very similar 

structures, only one nested network was selected from each of the larger basins. 

7.3.3 Synthetic channel top widths 

The estimation of channel top widths along the network is based on the values of 

bankfull flow at nodes. These values are calculated based on the value of bankfull 

flow at the outlet of the network, scaling dependence on drainage area according 

to a power law. This in a way incorporates characteristics of the drainage area into 

the network structure model, which this attempt to characterise the flow routing 

component in isolation is trying to avoid. Therefore, synthetic values of 

contributing areas (flow accumulation) at each node of the network are generated 

that correspond to the synthetic uniform channel weight used for lateral inflow 

calculation. These synthetic values of flow accumulation are then used for 

bankfull flow scaling, and therefore channel top width scaling. Moreover, in order 

to eliminate any source of variability in the network structure that is related to 

characteristics of the cachment area, the same synthetic value of outlet bankull 

flow is used for all the networks. Both values of synthetic channel weight and 

outlet bankfull flow equal the 'real' values for one network arbitrarily chosen 

amongst the networks extracted from GIS. So in other words, the values of 

channel top widths along all the networks are based on the same value of outlet 

bankfull flow, and scale according to the same value of drainage area per unit 

channel length. 

Before presenting the final simulation results, which will be retained for the 

statistical multivariate analysis, a list will be drawn of the different steps that have 

gradually made possible a complete isolation of the network shape from the 

characteristics of the catchment it sits in. These consist in: 

1. Selecting one pair of average values for the conveyance parameter array 

(a,n), which is uniformly applied along the network. 

2. Generating a synthetic uniform contributing area per unit length of 

network, which is used for the application of a uniform lateral inflow. 
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3. Generating synthetic values of channel top widths, which are scaled on the 

basis of the synthetic uniform contributing areas and a value of outlet 

bankfull flow common for all the networks. 

4. Isolating networks of same total channel length. 

7.3.4 Simulation results 

A final pool of 46 networks with 300-kilometre total length was created from the 

networks in Table 5.2. One network was arbitrarily chosen to serve as a ' model ' 

for generation of synthetic flow accumulation and outlet bankfull flow values. The 

' real ' values of total drainage area and total network length associated with that 

network were used to calculate an average value of contributing area per unit 

length of channel. These were then used in the simulations of flow in all 46 

networks. Scaling of top width as one moves up the network was performed as 

previously described using the upstream hydraulic geometry relationship, W = 

aQb, where a equals 2.61 and b equals 0.5. Manning's n was fixed at 0.047. Figure 

7.13 shows time to peak lag versus peak flow percentage of attenuation 

corresponding to flow routing simulations conducted on the pool of 46 networks 

with 300-kilometre total length . 
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Figure 7.13 Simulated responses for 46 networks of 300km total length 
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7.3.5 Results of simulation for another conveyancing value 

In order to test the assumption that the relative position of the coordinates of lag 

in time to peak and percentage attenuation are independent of the specific values 

chosen for the conveyance parameters, the simulations were repeated for a second 

arbitrarily chosen pair of conveyance parameters. Results of simulations 

conducted for (a,n) equal to (3.64,0.067) are shown in Figure 7.14 . 
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Figure 7.14 Simulated responses for conveyance parameters (a,n) equal to 
(3.64,0.067) 

A comparIson between Figure 7.13 and Figure 7.14 shows that the relative 

position of the simulated response points is conserved, which confirms what the 

trends shown in Figure 7.9 suggested. 

7.3.6 Results of simulation with real channel top widths 

In the previous simulations, the channel top widths have been standardised. The 

reason for this was to enable the influence of network shape alone on hydrographs 

to be assessed. This remains the focus of the thesis. However, the use of synthetic 

channel top widths might appear as pushing too far the abstraction of the approach 

by standardising an element of the network which is an integral part of it. 

Therefore it is interesting and might be reassuring to see what happens to the 

network responses when ' real ' top widths are reintroduced. Figure 7.15 shows the 
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responses for the same storm and same networks as in Figure 7.13 , but with ' real ' 

top widths . 
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Figure 7.15 Simulated responses with ' real ' channel top widths 

The response points move, but not very much; the average change relative to the 

dataset range is 9% in peak flow attenuation and 6% in lag in time to peak. This 

suggests that network shape dominates the response and the cluster pattern 

identified in the following chapter. 

7.3.7 Results of simulation at another scale 

In order to test the assumption that network flow response best classifiers will not 

be dependent on the spatial scale at which the analysis is conducted, the analysis 

will be repeated at another scale. Simulated network flow responses are therefore 

generated for networks of another total length. 

24 networks of 600-kilometre total length are isolated. Simulations are repeated 

identical to the ones conducted on the pool of networks with 300-kilometre total 

length: the same value of uniform channel weight as applied on the 300-kilometre 

networks is used; the value of synthetic outlet bankfull flow is derived by up­

scaling the one applied to the 300-kilometre networks. The simulation results are 

shown in Figure 7.16. In the next chapter, these simulation results are analysed. 
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Figure 7.16 Simulated responses for 24 networks of 600km total length 

7.4 Summary 

Initially flow was routed through catchments that lie upstream of the gauging 

stations in 48 different river basins in Scotland. A long duration (24-hour) design 

storm was applied uniformly over the catchment area and a very crude 

representation of runoff in the form of a runoff ratio was applied. In these 

simulations, the bare minimum knowledge of conveyance parameters was 

assumed; simply that Manning' s n was equally likely to fall between the 

maximum and minimum values reported in the literature, and that the scaling 

exponent of top width fell within the 95 percentile range identified in the previous 

chapter for Scotland. The resulting hydro graph at the outlet of the river network 

was characterised using difference between the time to peak of the storm 

hyetograph and the hydrograph peak, which was tenned the ' lag in time to peak' , 

and the percentage attenuation of the flood peak. In an attempt to make these 

scale-independent measures, and in accordance with previous studies on large­

scale network hydrological responses, they were divided by catchment area. The 

simulations served to highlight two points. Firstly, it highlighted that the 

conveyance parameters do playa dominant role in shaping the flood hydrograph. 

This may seem a trivial finding to a hydraulic engineer used to calibrating 

hydraulic models in small reaches, but, in studies that look at entire networks, it is 
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often overlooked. Therefore, some local knowledge of the roughness or geological 

index to it is required when classifying network response. The second insight 

gained from these initial simulations was that scale effects are apparent. Indeed, 

on analysing simulation results, it transpired that even using these supposedly 

scale-independent variables, the effects of network shape were obscured by the 

effects of scale. Since this thesis concentrates on the effects of network shape on 

hydrographs, this was potentially a problem. However, it was not clear if these 

scale effects were attributable to the area draining into each reach and hence to the 

runoff mechanism that had been artificially imposed, or to the inadequacies of the 

variables chosen to characterise the hydrograph. The only way to truly determine 

the effects of network shape on the response was firstly to divorce it from the 

drainage area then determine whether the variables were indeed scale-dependent. 

On analysing 8 networks in detail, it was found that the variables were scale­

dependent. However, the degree of non-linearity in the scaling of flood peaks was 

a function of storm duration: near-linear scaling for long duration storms and 

power law scaling with an exponent of 0.75 for short duration storms. This is 

another important result that has been overlooked in previous studies. It has two 

consequences. Firstly, when analysing real hydrological data on how a flood wave 

is modified as it moves through a large network, it should be perceived as a 

function not only of in stream variables but also storm duration. Secondly, all 

previous theoretical studies on the response of large networks impose a short 

duration storm, in fact usually instantaneous. The generality of their results for 

real river basins and longer duration storm has then to be questioned. In the 

remaining simulations the problem of scale is circumvented by only comparing 

catchments of similar total lengths, in which case simply the difference between 

the time to peak of the storm hyetograph and the hydrograph peak and the 

percentage attenuation of the flood peak could be used. The resulting simulations 

gave synthetic hydro graphs for Scottish networks at two scales (300 and 600-

kilometre total channel length) with which to characterise specifically the effects 

of network shape on the hydro graph response. 
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Chapter 8 

8 Statistical multivariate analysis 

This chapter describes the statistical multivariate analysis leading to the 

identification of the best classifiers for surface flow through river networks. As 

outlined in Chapter 3, the first step in this analysis consists in clustering the 

simulated network flow routing responses derived in Chapter 7. In doing this, the 

aim is to form groups (clusters) of networks, which respond similarly to a uniform 

pulse of runoff. The first section of this chapter describes the derivation of these 

network response clusters. In the following section, a discriminant analysis, 

aiming at identifying the network descriptor variables that are best able to 

reproduce the cluster structure, is conducted. This involves selection and 

derivation of variables describing the network structure. The contribution to 

discrimination of these potential classifiers is then tested. 

8.1 Cluster analysis of simulated network responses 

8.1.1 Clustering method 

Cluster analysis techniques are used for grouping objects according to their 

similarity when no a priori division of the objects into categories is available. A 

large number of clustering techniques have been developed due to the fact that 

appropriate definition of a cluster varies according to the type and field of 

application. Cluster analysis techniques are commonly divided into two types; 

'hierarchical' and 'optimisation' methods. Hierarchical cluster analysis methods 

form clusters by hierarchically grouping sub-clusters (,agglomerative' hierarchical 

methods) or splitting parent clusters ('divisive' hierarchical methods) according to 
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their similarity or dissimilarity respectively. Divisive and agglomerative methods 

are clearly complementary and the majority of the published applications of 

hierarchical cluster analysis techniques use agglomerative methods (Hand, 1981). 

The main differences between the various hierarchical agglomerative techniques 

are in the different ways of deciding which pair of clusters should next be merged. 

The decision is a function of the different ways of measuring inter-cluster 

distances (similarities). The way the distance between two clusters is calculated is 

called the 'linkage' method. For example, in the 'nearest neighbour' (also called 

'single') linkage method, the distance between two clusters is the distance 

between the closest points, one from each of the two clusters, whereas it is the 

distance between the centroids of the clusters in the 'centroid' linkage method. 

Moreover, the measure of distance can also differ from application to application, 

although the most commonly used measure is the Euclidian distance (Everitt and 

Dunn, 1991). The results of a hierarchical cluster analysis are commonly 

represented by means of tree graphs called 'dendrograms' which provides a scale 

by which to measure the similarity between the merged clusters at each 

hierarchical step. The difference between hierarchical and optimisation clustering 

approaches is that in hierarchical methods, once assigned to a cluster, a point 

cannot be transferred to another cluster. With optimisation methods, points can be 

transferred between clusters in an attempt to optimise a given clustering criteria. 

Optimisation clustering techniques differ in the criteria and the searching 

algorithm that they use. 

Hand's practical suggestion is that when exploring data for possible clusters, 

different techniques should be tried (Hand, 1981). Indeed, most clustering 

analysis carried out in the field of hydrology, in the context of regionalisation 

studies, have incorporated and compared various clustering techniques (e.g.: 

Acreman and Sinclair, 1986; Nathan and MacMahon, 1990; Burn and Boorman, 

1993). Moreover, studies such as the ones of Acreman and Sinclair (1986) on 

Scottish catchments and Nathan and MacMahon (1990) on catchments located in 

south-eastern Australia suggest that the most appropriate partition may be 

identified by using a combination of clustering techniques, applying hierarchical 

techniques to obtain a first partition which can then be improved by applying 

optimisation approaches. Hierarchical methods provide a first visual screening of 
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the data through the dendrograms and optimisation approaches refine the initial 

partition by reallocating individual points. The appeal of this approach is 

reinforced by the fact that optimisation techniques have been shown to perform 

better when a good initial partition is provided (Milligan, 1980; Acreman and 

Sinclair, 1986). 

The clustering method adopted here consists of combining hierarchical and 

optimisation methods available in the MINIT AB statistical analysis commercial 

package. An initial partition is defined by comparing the dendrograms obtained by 

different hierarchical clustering linkage methods. The similarity measure most 

commonly used is the Euclidian distance (Acreman and Sinclair, 1986). Defining 

a partition by applying hierarchical methods requires a decision to be made about 

the desired number of clusters, which corresponds to 'cutting' the dendrogram at a 

certain step. Measurements of similarity level at each step are used to make a 

decision about the most appropriate step at which to cut the dendrogram. The 

similarity level at any step is the percentage of the minimum distance at that step 

relative to the maximum inter-object distance in the data. The dendrogram is cut 

at the step where an abrupt change in similarity level values is observed (Figure 

8.1). 

Similarity 
Level 

S 12 7 14 8 13 4 6 11 9 3 2 1 10 

Objects 

Figure 8.1 Dendrogram suggesting an optimised partition of 3 groups 

95 



Chapter 8 

Choice of the most appropriate linkage method is made according to the 

dendrogram that shows the clearest abrupt change in similarity level. An initial 

partition is thus obtained using a hierarchical approach. This partition is then 

improved applying an optimisation clustering approach. The application of 

optimisation clustering techniques requires initialisation of the procedure using an 

arbitrarily predefined partition or number of clusters. Here, the initial partition 

generated through the hierarchical approach is used to initialise the optimisation 

procedure. The optimisation technique used is the K-means approach, which was 

used by Burn and Boorman (1993) to classify UK catchments based on their 

similarity in flow response. This method applies MacQueen's algorithm 

(MacQueen, 1967), which evaluates each object of the predefined partition, 

moving it to the nearest cluster. The nearest cluster is the one that has the smallest 

distance between the object and the centroid of the cluster. When a cluster 

changes, by losing or gaining an object, the cluster centroid is recalculated. The 

process is repeated until no more objects can be moved into a different cluster. 

The final partltIOn is therefore obtained by a combination of clustering 

approaches. The choice of the number of clusters is defined by the hierarchical 

approach, which generates an initial partition. This initial partition is improved by 

applying the K-means optimisation clustering method. Results of the application 

of this procedure for clustering the simulated network flow routing responses at 

both 300 and 600-kilometre network total length scales are presented in the 

following sections. The variables used to describe each network response are the 

lag in time to peak and peak flow percentage of attenuation of the network outlet 

response hydro graphs. These variables being in different units, they are 

standardised by subtracting the mean and dividing by the standard deviation. 

8.1.2 Network response clusters at 300-kilometre total length scale 

The simulated hydro graphs at the outlet of the 46 networks of 300-kilometre total 

length were initially clustered using hierarchical agglomerative procedures. Six 

different linkage methods were tried - Single, Complete, Average, Median, 

Centroid, McQuitty's and Ward's methods - all of these are outlined in detail in 

Hand (1981). Visual comparison of the similarity level patterns on the 
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dendrograms produced by each method, as recommended (Hand, 1981), revealed 

that Ward's linkage method yielded the greatest similarity within clusters and the 

best differentiation between them (Figure 8.2a). In Ward's linkage method, the 

distance between two clusters is the sum of the squared deviations from points to 

the joint cluster centroids minus the sum of the squared deviations from points to 

their individual cluster centroids. The objective of this method is to minimise the 

within-cluster sum of squares. A scatter plot of the network responses showing the 

obtained initial partition is given in Figure 8.2h. 
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Figure 8.2 Hierarchical agglomerative clustering of the hydrographs for the 46 
networks of300km total length: (a) Dendrogram using Ward' s linkage 
method; (b) Initial partition. 

The improved partition obtained when the K-means optimisation clustering 

procedure is applied to the data, using the initial partition to initialise the 

procedure is shown in Figure 8.3. This partition, which is very similar to the 

initial one - only two points situated close to a boundary between two groups have 
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changed membership - is retained as the final cluster structure for the 300-

kilometre total length network responses. 
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Figure 8.3 Optimised partition; final 300km network responses clusters. 

8.1.3 Network responses clusters at 600-kilometre total length scale 

The same approach was applied to cluster the simulated hydrographs for the 24 

networks of 600-kilometre total length. Again, using Ward ' s method, 4 clusters 

were selected (Figure 8.4a). The obtained initial partition is shown in Figure 8.4b. 

The final partition derived by the K-means optimisation procedure is shown in 

Figure 8.5. 
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Figure 8.4 Hierarchical agglomerative clustering of the hydrographs fo r the 24 
networks of 600km total length: (a) Dendrogram using Ward' s linkage 
method; (b) Initial partition. 
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Figure 8.5 Optimised partition; final 600km network responses clusters. 

The clusters derived here are partitions, which have been derived using well­

established techniques. It is to be noted that no obvious 'natural' grouping of the 

response hydro graphs exists and that the derived partition therefore creates rather 

indistinct groups, which are close to one another. Applying different clustering 

procedures to the data set would probably lead to slightly different clustering 

structures. However, using any sensible measure of the distance between response 

variables, the clusters will not be too dissimilar. This is the first step toward 

investigating discriminating variables for that partition. It is anticipated that little 

would be gained in the context of this research by trying all the available 

clustering techniques. 

8.2 Discriminant analysis 

8.2.1 Method 

The generic statistical tenn 'discrimination' refers to the process of deriving 

classification rules from samples of already classified objects (Hand, 1981). The 

objective of a classification rule, also called 'decision rule' , is to minimise the 

probability of making an error in classifying an object based on that rule. 
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Here the network responses (usually termed 'the objects' in classical statistical 

literature) have been grouped using cluster analysis into four or five groups, 

depending on the scale. Let these groups be {DI. D2. DJ. D". D5}. The aim is to 

derive decision rules based on a set of physical characteristics (called 'the 

observations' in classical statistical literature) that describe the network. Suppose 

there are n different observation variables, x = {XI. X2. XJ ..... xn }, which could 

plausibly be used to derive the rule that places a network into the appropriate 

group. Consider, for the moment, the decision on whether some new network 

should be placed into group D I or D2• There is a set of observations x for each 

network in DI and D2. These are the 'training' observations. So for example. in the 

300-kilometre network classification (Figure 8.3), there are 13 networks in the 

group coloured with red squares. each of which has a set of observations. Thus it 

is possible to derive, empirically, a probability density function (pdt) for x within 

that group. Similarly, for all the other groups, pdfs could be derived. Let these 

conditional pdfs be fix). In practice, rather than relying completely on the 

empirical derivation of these probability distributions, an underlying parametric 

probability distribution is assumed. Here, as in all but the most specialised 

discriminant analysis, it is assumed that the J;(x) are adequately modelled by a 

multivariate normal distribution. Now an intuitively obvious classification rule 

falls out of this definition: 

Allocate the network with observations x to DI if /J(x) >/i(x) 

Allocate the network with observations x to D2 if h(x) > /J(x) 

It can be shown (e.g. Hand, 1981) that under the assumption that the J;(x) are 

multivariate normals, this rule can be conveniently written in terms of the means 

of the observed xs in the groups, PI and P2, and the covariance matrix S for 

observed x in the pair of groups. The rule then becomes, allocate the network with 

observations x to group D I if, 

(8.1 ) 
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Thus, when a decision between which of 5 groups is most appropriate has to be 

made, the rules are, allocate to, 

D/ if hlj(x) > 0 and hij(x) < 0 for i,j f. 1 

D2 if h2lx) > 0 and hy(x) < 0 for i, j f. 2 

D5 if h5lx) > 0 and hij(x) < 0 for i, j f. 5 (8.2) 

The particular discriminant analysis outlined above is called a 'linear discriminant 

analysis' because on multiplying out the matrix equation 8.1, the hij(x) become 

linear functions in x. These hy(x) are also called 'linear discriminant functions'. 

Although this arises from assuming multivariate normality within each group, 

Fisher (1936) derived the same rules based on defining a dummy variable, which 

was simply a linear combination of the observation variables, and looking for the 

combination that would separate the groups as much as possible. Fisher found that 

the coefficients of the linear equations that maximised group separation were the 

same as the coefficients defined by the linear discriminant functions described 

above. Consequently, one might expect the discrimination rules given in (8.2) to 

perform reasonably well even when the assumption of normality is not wholly 

justified (Everitt and Dunn, 1991). It is of some interest to note that the 

coefficients of the linear discriminant functions can be derived by regression 

(Everitt and Dunn, 1991). 

Because of their analytical tractability, linear discriminant analyses are widely 

used (Hand, 1981). In the hydrology field, Bates et al (1998) used a linear 

discriminant analysis approach to study the discriminating role of basin 

characteristics for regional floods in southestern Australia. 

The relative importance of the discriminant function coefficients indicates the 

relative contribution of each variable to the discrimination. In order to evaluate the 

performance of the discriminant function, the group membership allocated by 

discrimination is compared with the true membership. A 'classification index', 

corresponding to the percentage of correctly classified objects, is calculated. A 

cross-validation procedure is used in order to avoid optimistic estimation of this 
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index due to the fact that the same data is used for deriving the discriminant 

functions and allocating the objects to a group. This procedure consists in 

omitting each object one at a time, recalculating the discriminant functions using 

the remaining data, and then classifying the omitted object. 

In this thesis, the training set is the set of river networks clustered according to 

their similarity in hydro graphs produced by a pulse of runoff. The observations 

made on these classified objects are variables describing the network structure. 

These variables are potential classifiers whose relative contribution to 

discrimination is tested. The selection and calculation of these variables are 

described in the following section. 

8.2.2 Network descriptors 

The aim here is to assess potential classifiers and select the most appropriate for 

describing network response. The obvious place to start is with a review of the 

classifying variables used in the regionalisation studies that were described in 

Chapter 2. However, these studies try to capture the entire hydrological response 

of a river basin, whereas here the focus is on the flow routing through river 

networks. Therefore, only a subset of these catchment descriptors, which are 

relevant to network routing, is selected as a potential set of classifiers for network 

response. Many of these traditionally used descriptors have their roots in the 

analysis of extreme flow events that were conducted in an era before the wide 

spread use of computers and digital maps. In the last two decades, Geographical 

Information Systems and the increase in computational power on personal 

computers mean that a range of alternative classifiers, that were previously 

deemed too difficult to calculate, can be investigated. These derive from studies 

like the classical work of Shreve (1966) or the more recent work of Rodriguez­

Iturbe and Rinaldo (1997), which aim at characterising the physical structure of 

networks, without necessarily relating it to flood response. Therefore, the 

potential for these to be used as alternative new classifiers is reviewed. Finally, a 

set of completely new variables, unique to this thesis, is introduced. These 

variables are based on some very basic observations on the physics of fluid flow 

in networks. 
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Classifying variables used in the past 

Variables relevant to network routing that have been extensively used as 

classifiers include: the 'main stream length', which is defined as the longest flow 

path from a source to the outlet; the 'main stream slope', which is defined as the 

slope of the central 75% of main stream; the 'stream frequency', which 

corresponds to the number of stream junctions per unit of drainage area; and the 

'stream density', which corresponds to the length of channel per unit of drainage 

area. These classifiers have been used in regionalisation studies by Acreman and 

Sinclair (1986), Nathan and McMahon (1990), Burn and Boorman (1992) and are 

still used in more recent studies such as the ones conducted by Bates et al (1998), 

Hall and Minns (1999) and CaIver et al (2001). Other descriptors commonly used 

in regionalisation studies are the catchment 'relief', equal to the maximum 

elevation difference in the basin (Bates et aI, 1998; Wolock et aI, 2003) and a 

variable describing the 'shape' of the catchment, which is defined in various ways 

according to whether it measures the catchment elongation (Post and Jakeman, 

1996), rotundity (Bates et ai, 1998) or elliptical properties (Moussa, 2003). 

Here, the variables used as possible descriptors of the way a network modifies a 

flood wave have been selected because it is perceived that they might be able to 

classify network structure in isolation. Variables that describe the geometry of the 

network in relation to other characteristics of the basin, such as its drainage area, 

are adapted, when possible, into similar variables that capture the network 

structure in isolation. Moreover, and importantly, the selected variables need to be 

easily derived from digital network data. 

Reviewing the literature (mainly Acreman and Sinclair, 1986; Nathan and 

MacMahon, 1990; Burn and Boorman, 1992) led to seven previously used 

classifiers being considered. These, which will be referred to as 'standard' 

network descriptor variables, are: 

• NUM _Link; the number of links. Links are the segments of channel 

between two successive nodes in the network. This variable is equivalent 
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to the commonly used 'stream frequency' variable In the context of 

networks draining the same catchment area. 

• A V _ LLength; the average link length. 

• A V _ LSlope; the average link slope. 

• MAX_Dist; the commonly called 'main stream length' corresponding to 

the maximum distance of any point on the network to the outlet. 

• DROP _MaxD; the difference in elevation between the point of maximum 

distance to the outlet and the outlet. This variable is an adaptation of the 

traditional field measurement of the slope of the central 75% of main 

stream, which it is impractical to calculate from synthetic data. 

• MAX_Drop; the maximum elevation difference between any point on the 

network and the outlet. This variable is an adaptation, focused on the 

network structure in isolation from its drainage area, of the traditional 

'relief catchment descriptor, which is defined as the maximum elevation 

difference between any point in the basin and the outlet. 

• NUM _Source; the number of extremities in the network. This variable is a 

proxy for the commonly used 'shape' catchment descriptor, traditionally 

defined in relation to the catchment perimeter. 

Extending the set of possible classifiers 

With the objective of extending the possible classifiers to include variables that 

have not been used in the past for river basin classification but that do describe the 

network geometry, a review of the geomorphologically based hydrological models 

was conducted. There exists a suite of models that attempt to explicitly 

incorporate a description of the network structure. This is typified by the analytic 

approach developed by Rodriguez-Iturbe and Valdes (1979), who interpreted the 

response of a network to an instantaneous unit volume of runoff uniformly 

distributed in space as the travel time distribution of the particles of water to the 

basin outlet. The application of this model, which they called the 

'geomorphologic instantaneous unit hydrograph' (GIUH), requires ordering the 

streams constituting the network according to the Strahler ordering system 

(Strahler, 1957) defined as follows: exterior links have order 1; where two or 
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more links of order ml, m2, m3 ... join, with ml ~ m2 ~ m3 ... , the order of the next 

downstream link is the greater of ml and m} + 1. A 'Strahler stream' is defined as 

a sequence of links of the same order and the 'order of the network' as the 

maximum order identified in the network. The determination of the GIUH is 

accomplished by analysing the detailed motion of water particles in space 

according to the following rule: the only possible transitions out of a link of order 

mj are of the type mj to mj for j > i. This rule defines a collection of routes that a 

particle may follow to the basin outlet. The number of Strahler streams of a given 

order divided by the number of Strahler streams of the following order, called the 

'bifurcation ratio', was first defined by Horton (1945) who observed it to be 

approximately constant through semilog plots of number of Strahler streams 

against order. Horton's bifurcation ratio and other similar laws have lead to the 

development of the theory of the fractal structure of river networks and the study 

of the impact of such fractal characters on the GIUH in synthetic Hortonian 

networks (Rinaldo et aI, 1991; Rodriguez-Iturbe and Rinaldo, 1997). Such 

theories suggest that both network order and bifurcation are instrumental in 

describing network hydrologic response. Although the real networks analysed in 

this thesis have similar total length, they might not be of the same order. 

Moreover, they are certainly not strictly Hortonian. A Hortonian network shows a 

constant bifurcation ratio with order. The networks analysed here show a 

bifurcation ratio that varies with order in the range of a couple of units. Therefore, 

variables incorporating the network order and the average bifurcation ratio are 

added to the selection of potential classifiers to be tested. These variables are: 

• MAX_Order; the maximum order identified in the network according to 

the Strahler ordering system. 

• A V _ Bif; the network average Horton bifurcation ratio. 

Rodriguez-Iturbe and Valdes GIUH model (1979) has also been formulated in 

term of the 'width function'. The width function, first introduced by Shreve 

(1969), is defined as the number of links in the network at a given flow distance 

from the outlet. The first linkage of network hydrologic response with the width 

function came from Kirkby (1976), who argued that, for spatially uniform inputs, 

the maximum flood was proportional to the maximum of the width function. The 

concept was later refined and combined to the travel time interpretation of the 
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GIUH (Mesa and Mifflin, 1988; Rodriguez-Iturbe and Rinaldo, 1997). Two 

variables based on the width function were added to the list of potential 

classifiers. These are: 

• MAX_Width; the maximum of the width function. 

• Dist-MaxW; the distance from the outlet at the maximum of the width 

function. 

It is of interest to note that, in a recent study on continuous flood simulation, 

Calver et al (2001) incorporated variables based on the 'width function' in 

regionalising their model parameters to extend application to ungauged basins. 

New potential classifiers 

Hydrological models based on a network width function have proved popular and 

successful in modelling hydro graphs, especially of large river basins. For 

example, Naden (1992) successfully applied such a model to the whole of the 

River Thames. This might indicate that the width function in itself is a good way 

of classifying the response of a network. However, the models are laden with a 

raft of additional assumptions that provide a suite of free parameters, all of which 

can be calibrated and mask the true influence of the width function. In the 

discriminant analysis below, the classifying power of the width function is tested. 

Clearly however, the entire distribution of distances to the outlet cannot be used. 

Therefore, the distribution is described using its moments. Here, the first four 

moments are used: 

• MEAN_Dist; the mean of the distance to the outlet distribution. 

• STD _Dist; the standard deviation of the distance to the outlet 

distribution. 

• KURT_Dist; the kurtosis of the distance to the outlet distribution. 

• SKEW _ Dist; the skewness of the distance to the outlet distribution. 

The width function takes no account of typical slopes in the network. This may 

not matter for very large (regional to continental scale) river networks. where 

models based on it are increasingly being applied (Abdulla and Lettenmaier. 
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1997). However, at a regional scale, the elevation drop, particularly in the 

headwaters of a river network, must play a role in shaping the hydrograph. 

Therefore an attempt has been made to characterise the elevation drop from any 

point in the network. This is achieved using a similar approach to the width 

function in that a distribution is collated from every reach in the network and the 

outlet. Again, the whole distribution cannot be used as a classifier, so its first four 

moments are used: 

• MEAN_Drop; the mean of the elevation drop to the outlet distribution. 

• STD _Drop; the standard deviation of the elevation drop to the outlet 

distribution. 

• KURT Drop; the kurtosis of the elevation drop to the outlet 

distribution. 

• SKEW_Drop; the skewness of the elevation drop to the outlet 

distribution. 

Finally, energy concepts play such a dominant role in hydraulics it is perhaps 

surprising that they have remained on the periphery of hydrological modelling. 

Channel flow in large networks clearly adheres to the same fundamental hydraulic 

principles that can be expressed in terms of conservation of energy. and yet no 

researchers use an energy based classification scheme. Describing the potential 

kinetic and heat energy at any instant in time for an entire network would require 

a fully distributed description of the network. Here, indices are derived that are 

intended to measure both the potential energy and likelihood of energy being 

dissipated into heat. It is assumed that the potential energy in any reach is 

proportional to its elevation above the outlet of the network. Clearly, this ignores 

the mass of the water stored in the reach. However incorporating this level of 

detail into an index would make it impossible to derive from most digital 

databases of river networks. Further, it is assumed that the capacity to dissipate 

the potential energy into heat through friction is a function of the distance 

travelled through the network. Thus, the energy index is defined by the ratio of 

elevation drop to distance downstream to the outlet. A distribution of this index 

for the entire network can be derived by considering each reach that comprises it 

in turn. High reaches that are close to the outlet will have a high value of the 

109 



Chapter 8 

index, whereas low reaches that are distant from the outlet will have a low value 

for the index. Thus, in essence, the index combines the network width function 

with the elevation distribution giving a three dimensional picture of the network 

structure. Again, as with the previous distributions, it is impractical to consider 

the whole distribution as a classifier. Therefore, the first four moments are used as 

well as the maximum of the distribution: 

• MEAN_Eng; the mean of the energy index distribution. 

• STD_Eng; the standard deviation of the energy index distribution. 

• KURT_Eng; the kurtosis of the energy index distribution. 

• SKEW_Eng; the skewness of the energy index distribution. 

• MAX_Eng; the maximum of the energy index distribution 

A set of 24 variables suitable for the discriminant analysis is therefore defined. A 

set of algorithms was written in Arc Macro Language (AML) to interrogate the 

digital databases and derive all the variables above defined. Values for these 24 

network descriptor variables for the 300 and 600-kilometre total length networks 

are given in Appendix B. 

8.2.3 Discriminant analysis at 300-kilometre scale 

The objective is to find the variable or combination of variables, amongst the 24 

variables available for discriminant analysis, which are best able to reproduce the 

network response clusters. The number of possible combinations of these 

variables is too high for considering applying a trial and error analysis. Therefore 

a strategy for analysis is defined. 

Definition of a strategy for analysis 

The analysis is conducted in two steps. In the first one, a reduced set comprising 

the 7 'standard' descriptor variables described in section 8.2.2 is tested. The aim 

of this first step is to investigate to what extent the variables commonly used as 

classifiers are able to predict the network response clusters and which of these 

variables contribute most to the discrimination. The approach consists in applying 

the discriminant analysis described in section 8.2.1 to the set of variables and 
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observing the variation of the classification index when this set of variables is 

gradually reduced. Variables are discarded from the set starting from the variable 

that shows the lowest discriminant coefficient. An abrupt decrease in the 

classification index indicates the optimum set of variables. Hence a set of 'best 

standard classifiers' is defined. In a second step, the other 17 variables are pooled 

together with the best standard classifier variables and the analysis is repeated in 

order to determine the overall set of 'best classifiers'. 

Prior to discriminant analysis, a correlation analysis including the 24 candidate 

variables is conducted in order to measure the degree of linear relationship 

between each pair of variables in order to discard unnecessary variables. For each 

pair of variables, Pearson's product moment correlation coefficients and 

associated p-values for the hypothesis test of the correlation coefficient being zero 

are calculated. If one variable tends to increase as the other decreases, the 

correlation coefficient is negative. Conversely, if the two variables tend to 

increase together the correlation coefficient is positive. Two variables are 

considered to be highly linearly correlated when the p-value is lower than 0.0005, 

in which case one of the two variables is discarded. 

The correlation matrix corresponding to the 24 potential classifier variables 

calculated for the 300-kilometre networks is given in Table 8.1. 

III 



ChapterS 

NUM Link AV LL AV LSlope MAX Dist Drop MuD Diat MaxW MAX Width MEAN Diat STD_Diat KURT DIst SKEW Dist MEAN_Drop STD_Drop 
AV_LLength -0.862 

0.000 

AV_LSIope 0.501 -0.439 
0.000 0.002 

MAX_Dist -0.470 0.543 -0.262 
0.001 0.000 0.079 

Drop_MuD 0.296 -0.247 0.648 0.172 
0.046 0.098 0.000 0.252 

Dist_MaxW -0.131 0.088 -0.040 0.579 o.on 
0.384 0.563 0.790 0.000 0.611 

MAX_WKIth 0.530 -0.424 0.264 -0.720 -0.042 -0.473 
0.000 0.003 0.076 0.000 0.784 0.001 

MEAN_Dist -0420 0.414 -0.243 0.917 0.135 0.749 -0.690 
0.004 0.004 0.103 0.000 0.371 0.000 0.000 

STD_DIst -0.408 0.515 -0.182 0.967 0.218 0.565 -0.748 0.885 
0.005 0.000 0.227 0.000 0.146 0.000 0.000 0.000 

KURT_DIst -0.059 -0.028 -0.187 -0.228 -0.212 -0.201 0.4n -0.103 -0.404 
0.698 0.856 0.214 0.128 0.157 0.180 0.001 0.495 0.005 

SKEW_DIst I -0.172 0.321 -0.050 0.296 0.156 -0321 -0.295 -0.074 0328 -0.495 

0.252 0.030 0.742 0.046 0.301 0.029 0.046 0.623 0.026 0000 

MEAN_Drop I 0.432 -0.362 0.693 -0.033 0.821 -0036 0.159 -0.054 0.022 -0.135 0.097 
0.003 0013 0.000 0.827 0.000 0.812 0.290 0.721 0.885 0.371 0.521 

STD_Drop 0.305 -0.261 0.859 -0017 ons -0054 0.143 -0.043 0.043 -0.144 0.075 0.812 
0.039 0.080 0.000 0.912 0.000 0.722 0.345 0.n6 o.ns 0.340 0619 0.000 

KURT_Drop I 0.116 -0.119 -0.267 -0.205 -0.250 -0.168 0.189 -0144 -0220 0234 -0.183 -0244 -0.292 
0.442 0431 0.072 0172 0.094 0.265 0.209 0340 0141 0.117 0223 0102 0.049 

Table 8_1 Correlation matrix for the 300km network descriptor variables (upper number = correlation coefficient: lower number = p-
value) 

112 



ChapterS 

NUM_Llnk AV_LLeng!h AV LSlope MAX_Dlat Dr0I!_MaxD Dlat MaxW MAX_Width MEAN_Dlat STD_Dlst KURT _Dlat SKEW_Diat MEAN_Drop SrD Drop 
SKEW_Drop I -0.131 0.060 -0.149 -0.100 -0.213 -0.121 0.086 -0.041 -0.141 0.297 -0.192 -0.447 -0.134 

0.386 0.690 0.324 0.508 0.156 0.422 0.568 0.786 0.349 0.045 0.201 0.002 0.376 

MAX_Drop I 0.372 -0.321 0.826 -0.068 0.795 -0.097 0.171 -0.081 -0.011 -0.080 0.029 0.846 0.933 
0.011 0.030 0.000 0.654 0.000 0.522 0.256 0.593 0.941 0.598 0.848 0.000 0.000 

MEAN_Eng 0.564 -0.464 0.749 -0.425 0.623 -0.360 0.405 -0.486 -0.337 -0.172 0.154 0.864 0.700 
0.000 0.001 0.000 0.003 0.000 0.014 0.005 0.001 0.022 0.253 0.308 0.000 0.000 

STD_Eng 0.427 -0.337 0.837 -0.262 0.447 -0.100 0.244 -0.303 -0.154 -0.252 0.066 0.552 0.686 
0.003 0.022 0.000 0.079 0.002 0.509 0.103 0.041 0.306 0.091 0.665 0.000 0.000 

KURT_Eng I 0.211 -0.199 -0.021 -0.096 0.060 0.081 0.210 -0.018 -0.134 0.247 -0.192 0.193 -0.083 
0.159 0.184 0.887 0.527 0.691 0.593 0.161 0.905 0.376 0.098 0.200 0.199 0.583 

SKEW_Eng I 0.246 -0.233 0.030 -0.047 0.099 0.133 0.158 0.023 -0.071 0.217 -0.175 0.181 -0.058 
0.099 0.119 0.843 0.759 0.513 0.379 0.295 0.879 0.641 0.148 0.245 0.228 0.700 

MAX_Eng I 0.461 -0.379 0.570 -0.244 0.437 -0.035 0.295 -0.243 -0.184 -0.072 -0.007 0.586 0.458 
0.001 0.009 0.000 0.103 0.002 0.816 0.047 0.103 0.221 0.634 0.961 0.000 0.001 

MAX_Order 0.553 -0.560 0.189 -0.305 0.017 -0.015 0.297 -0.232 -0.280 -0.006 -0.163 0.151 0.089 
0.000 0.000 0.209 0.040 0.911 0.921 0.045 0.121 0.060 0.971 0.281 0.317 0.556 

AV_BIf 0.037 -0.040 0.195 -0.064 0.173 -0.097 0.020 -0.062 -0.050 0.031 -0.053 0.159 0.172 
0.809 0.790 0.193 0.671 0.251 0.522 0.897 0.682 0.741 0.841 0.729 0.291 0.253 

NUM_Source I 1.000 -0.860 0.508 -0.474 0.297 -0.132 0.534 -0.425 -0.411 -0.060 -0.171 0.433 0.309 
0.000 0.000 0.000 0.001 0.045 0.382 0.000 0.003 0.005 0.690 0.256 0.003 0.037 

Table 8.1 Correlation matrix for the 300km network descriptor variables (continued) 
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KURT _Dro!! SKEW_Drop MAX_Drop MEAN_Eng STD_Eng KURT _Eng SKEW_Eng MAX_Eng MAX_Order AV Bif 
SKEW_Drop I 0.727 

0.000 

MAX_Drop -0.050 -0.031 
0.741 0.837 

MEAN_Eng -0.142 -0.374 0.746 
0.346 0.011 0.000 

STD_Eng -0.207 -0.189 0.640 0.717 
0.168 0.209 0.000 0.000 

KURT_Eng 0.040 -0.293 -0.036 0.164 0.156 
0.792 0.048 0.814 0.277 0.300 

SKEW_Eng I 0.068 -0.213 0.002 0.154 0.243 0.954 
0.655 0.156 0.988 0.307 0.104 0.000 

MAX_Eng I -0.106 -0.348 0.455 0.674 0.785 0.648 0.680 
0.482 0.018 0.001 0.000 0.000 0.000 0.000 

MAX_Order 0.084 0.015 0.149 0.222 0.123 0.067 0.071 0.089 
0.578 0.920 0.324 0.138 0.414 0.659 0.641 0.555 

AV_BIf -0.103 -0.145 0.128 0.180 0.239 0.093 0.090 0.271 -0.736 
0.498 0.336 0.396 0.230 0.109 0.540 0.553 0.069 0.000 

NUM_Source I 0.117 -0.130 0.375 0.567 0.434 0.211 0.245 0.468 0.547 0.043 
0.440 0.390 0.010 0.000 0.003 0.159 0.100 0.001 0.000 0.777 

Table 8.1 Correlation matrix for the 300km network descriptor variables (continued) 
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None of the variables is completely independent of all the others; all show a high 

degree of linear correlation with at least one other variable. For example, as one 

might expect, the third and fourth moments of the distributions of distance to the 

outlet, elevation drop to the outlet and energy index are correlated. The negative 

correlation between the number of links in the network, NUM _ Link, and the 

average link length, A V _ LLength, is expected as the networks have the same total 

length; the higher the number of links, the shorter the links and therefore the 

lower the average link length. The positive correlation between the first moment 

of the elevation drop to the outlet distribution, MEAN_Drop, and the average link 

slope, A V _ LSlope, again, is expected; a high average elevation drop from any 

point along the network to the outlet describes a steep network where the average 

link slope is expected to be high. Many other examples of such correlations could 

be highlighted and interpreted here. However, whilst on the basis of the 

correlation analysis it is apparent that many of the variables are correlated, it is 

not clear at this stage whether two highly correlated variables have the same 

'discriminating power'. Thus, rather than arbitrarily discard one variable in favour 

of another that is highly correlated, both are thrown into the discriminant analysis. 

If two variables are highly correlated, the one that has the most discriminating 

power is retained and the other is discarded. The discriminating power of each 

variable is determined based on the relative importance of the linear discriminant 

function coefficients described in section 8.2.1; for each variable, a discriminating 

power corresponding to the average for all groups of the absolute values of the 

linear discriminant function coefficients is calculated. The higher the 

discriminating power is, the more the variable contributes to between-group 

separation. Therefore the derived strategy for selecting the best classifying 

variables is: 

1. Run a discriminant analysis with the entire set of variables to be tested. 

2. Isolate the variable that shows the highest discriminating power. 

3. Discard the variable or set of variables that are highly correlated (p-value 

lower than 0.0005) with the 'best discriminating variable' isolated in step 

2. 

4. Recalculate the discriminating powers for the remaining variables. 

5. Repeat steps 2 to 4 until the remaining variables are the least correlated (p­

value higher than 0.0005). 
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6. Calculate the classification index corresponding to discrimination with the 

' best discriminating least correlated variables' isolated in step 5. 

7. Discard the variable that shows the lowest discriminating power. 

8. Recalculate the classification index and discriminating powers for the 

remaining variables. 

9. Repeat step 7 and 8, observing the variations of the classification index in 

order to identify the optimum set of variables. 

Results of the discriminant analysis at 300-kilometre scale 

Table 8.2 summarises the analysis results. 

SEt ~ Ca!lSlficatioolmax (%) 

~I SIa'"dcrd Vaici:ies 34.8 
Best Osainirairg Iea;t cx:rraata:l AV LSlql!; AV u..eriItl1 26.1 
cIscard ICMeSt ca1ril1Jioo AV Lslooe 26.1 

SIa'"dcrd Best SIa'"dcrd Oassifias + Otas 52.2 
Best Osainirairg Iea;t cx:rraata:l t.JEI>N_Erg; M\X_0tEr. KI..RT_Ost; M\X_Wdth; !:'Q.O 

SKEW_D'q); SKEWJ=rg; CST Mrm 
cisard 1 IoJ..est cxm;bliial t.JEI>N_Erg; M\X_0tEr. Kl..RTJJst; M\X_Wdlh; 45.7 

SKEW _ D'q); SKEW J~.rg 

cisard 2 IoJ..est a:nribliial t.JEI>N_Erg; M\X_0tEr. KI..RT_Ost; M\X_Wdth; 52.2 
SKEW [)q) 

cIscard 31CMeSt ca1ri11JiQ1 r.£AN EilI flAX oar. KI..RT Ilst; flAX Wclh 52.2 
cisard 4 kMest a:nribliial t.JEI>N Erg; M\X 0tEr. KI..RT Ost 34.8 

cisard 5 ICMESt cxrtitxiioo ~ Eilt·M\X 0tEr 23.9 
cisard 61CMESt cxm;bliial ~Ero 28.3 

Table 8.2 Results of discriminant analysis at 300km scale. The variables are 
listed in decreasing order of discriminating contribution. 

When the 7 standard variables are used for reproducing the network response 

clusters, only 34.8% of the networks are correctly classified. When this set of 

variables is reduced to the pair of least correlated variables A V _LSlope and 

A V _LLength, the classification index drops to 26.1 %. The same classification 

performance is obtained when only AV _LSlope is used. These results suggest that 

the variables commonly used for characterising river basins hydrology are 

actually very poor classifiers of networks and, furthermore, that too many highly 

correlated variables are often used. A V _LSlope was identified here as the best 

discriminating standard variable and the other standard variables were di scarded 

for the rest of the analysis. 

11 6 



Chapter 8 

Turning now to the extended set of 17 'possible classifiers' and 'original' 

variables devised within this research, these are pooled together with 

AV _LSLope, and the same systematic weeding out of highly correlated and 

poorly discriminating variables was conducted. With all 18 variables, 52.2% of 

the networks were correctly classified. Thus, just under half of the networks were 

misclassified. This can rightly be seen as a worrying result in the context of the 

networks tested in this thesis. The reasons why this level of misclassification 

occurs are discussed in detail later. However, it should be borne in mind that when 

the 'standard' classifying variables are used, the misclassification is very much 

higher. With 18 variables to base the classification scheme on then one might 

expect a much higher level of classification especially if all variables are linearly 

independent (i.e. uncorrelated). However, there is a high degree of 

multicollinearity in the variables, which not only means that a reduced set of 

classifiers should be found, but that this set can also hamper the performance of 

the linear discrimimant analysis. Moreover, increasing the number of variables 

used for discrimination does not necessarily increase the classification 

performance (Hand, 1981). It is seen below that as discriminant variables are 

discarded from the analysis, the number of networks that are correctly classified 

can in fact increase. Therefore, first of all, the set of variables is reduced to a set 

of least correlated variables by discarding the correlated variables that show the 

lowest discriminating power. Discriminant analysis using these 'best 

discriminating least correlated variables' leads to a classification performance that 

is only slightly lower (50%) than when the entire set is used (52.2%), even though 

the set has been reduced from 18 to 7 variables. The list of these 7 variables is 

given in Table 8.2. This set is then gradually reduced from 7 to 1. discarding the 

variable that shows the lowest discriminating contribution at each step. 

Classification index and discriminating powers are calculated for each step. An 

abrupt decrease in classification performance is observed when the 4th 'lowest 

contributing' variable is discarded. This indicates that the set of best classifying 

variables is the one used in the previous step, including MEAN _ Eng. 

MAX_Order, KURT_Dist and MAX_Width. Further evidence that this is the best 

set of classifiers is given by the fact that 52.2% of the networks are correctly 
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classified. This classification performance, obtained USing 4 discriminating 

variables, is the same as the one obtained using 18 potential classifiers. 

Therefore the set of variables identified as best classifiers includes, in descreasing 

order of contribution, MEAN_Eng, MAX_Order, KURT_Dist and MAX Width. 

Thus the discriminant analysis has objectively picked up a set of only four, 

linearly independent classifiers that pertain directly and intuitively to key features 

of the shape of networks. None of these variables have been routinely used in 

previous classification studies. The values for the coefficients of the linear 

discriminant functions obtained for each group are reported in Table 8.3. 

Group 1 2 3 4 5 Discriminati~ Power 
MEAN_Eng 241 .1 583.8 560.1 1006.3 100.2 498.3 
MAX_Order 33.2 35.5 34.5 34.8 33.3 34.26 
KURT_Dist -20.7 -23.3 -23.1 -23.4 -24.5 23 
MAX Width 3.1 3.7 3.1 3.9 2.6 3.28 

Table 8.3 Linear discriminant function coefficients and derived potential 
classifier' s discriminating powers at 300km scale 

This set of variables is able to reproduce the clusters with a performance of 

52.2%. This is illustrated in Figure 8.6. 
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Figure 8.6 300km network grouping using the identified best classifiers 
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8.2.4 Discriminant analysis at 600-kilometre scale 

In order to verify that the best classifiers identified at the 300-kilometre scale are 

not scale dependant, the analysis is repeated at another scale, based on the cluster 

analysis conducted on the 600-kilometre network responses. 

The same strategy as for analysis of the 300-kilometre networks was applied for 

selecting the best classifiers. The correlation matrix calculated for these data is 

given in Table 8.4. 
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NUM Link AV LLength AV_LSlope MAX Disl Drop MuD Dlsl MaxW MAX_Width MEAN Dlsl STD Disl KURT Dial SKEW Disl MEAN Drop STD_Drop 
AV_LLength -0.932 

0.000 

AV_LSlope 0.224 -0.303 
0.293 0.150 

MAX_Dial -0.370 0.336 -0.076 
0.075 0.109 0.723 

Drop_MuD 0.141 -0.318 0.633 0.005 
0.510 0.131 0.001 0.982 

DisCMaxW -0.168 0.168 -0.010 0.765 -0.054 
0.432 0.434 0.964 0.000 0.803 

MAX_Width 0.368 -0.271 0.052 -0.648 -0.056 -0.493 

0.077 0.201 0.809 0.001 0.795 0.014 

MEAN_Dist -0.409 0.377 -0.077 0.958 -0.115 0.808 -0.648 
0.047 0.069 0.719 0.000 0.594 0.000 0.001 

STD_Dial -0.310 0.265 -0.020 0.951 0.052 0.820 -0.773 0.913 

0.140 0.210 0.925 0.000 0.810 0.000 0.000 0.000 

KURT_Dial 0.006 0.068 -0.126 -0.297 -0.201 -0.363 0.745 -0.243 -0.554 

0.978 0753 0.558 0.159 0.347 0.081 0.000 0.252 0.005 

SKEW_Dial 0.148 -0.236 0.276 0.123 0.430 -0.227 -0.254 -0.090 0.151 -0.375 

0.489 0.267 0.191 0.568 0.036 0.286 0.231 0.677 0.481 0.071 

MEAN_Drop -0.004 -0.143 0.756 0.168 0.749 0.168 -0.293 0.142 0.247 -0.333 0342 

0.985 0.504 0000 0.433 0.000 0.380 0.164 0.507 0.245 0.112 0102 

STD_Drop I 0.030 -0.155 0.822 0.071 0.787 0.092 -0.097 0.015 0.123 -0249 0324 0.907 

0.868 0.471 0.000 0.741 0.000 0.670 0.651 0.945 0.568 0241 0122 0000 

KURT_Drop I 0.356 -0.417 -0.235 -0.306 0.074 -0.197 0.497 -0.363 -0.312 0.196 -0.077 -0.322 -0.250 

0.088 0.043 0.270 0145 0.732 0.357 0.013 0.081 0.138 0.359 0722 0.125 0238 

Table 8.4 Correlation matrix for the 600km network descriptor variables (upper number = correlation coefficient; lower number = p-
value) 
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NUM_Link AV_LLength AV_LSlope MAX Dist Drop_MaxD Dist_MaxW MAX_Width MEAN_Dist STD Dist KURT Dist SKEW Dist MEAN Drop STD_Drop 
SKEW_Drop I 0.244 -0.273 -0.212 -0.198 0.023 -0.176 0.478 -0.250 -0.254 0.257 -0.096 -0.462 -0.268 

0.251 0.197 0.320 0.353 0.915 0.411 0.018 0.239 0.231 0.225 0.648 0.023 0.206 

MAX_Drop 0.188 -0.313 0.794 -0.058 0.649 0.018 0.098 -0.132 0.003 -0.182 0.312 0.808 0.911 
0.378 0.136 0.000 0.786 0.000 0.935 0.649 0.539 0.990 0.394 0.137 0.000 0.000 

MEAN_Eng 0.158 -0.283 0.726 -0.316 0.757 -0.184 -0.002 -0.367 -0.164 -0.269 0.364 0.839 0.793 
0.462 0.180 0.000 0.132 0.000 0.391 0.992 0.077 0.390 0.204 0.080 0.000 0.000 

STD_Eng 0.247 -0.298 0.715 -0.257 0.685 -0.073 0.104 -0.345 -0.137 -0.241 0.324 0.618 0.673 
0.244 0.158 0.000 0.226 0.000 0.734 0.630 0.099 0.524 0.257 0.122 0.001 0.000 

KURT_Eng 0.264 -0.330 -0.036 -0.194 0.196 -0.301 0.251 -0.275 -0.220 0.150 0.151 0.059 -0.001 
0.213 0.116 0.869 0.363 0.359 0.154 0.236 0.194 0.301 0.483 0.480 0.785 0.996 

SKEW_Eng 0.350 -0.426 -0.001 -0.035 0.238 -0.206 0.160 -0.138 -0.087 0.133 0.266 0.044 -0.009 
0.093 0.038 0.996 0.872 0.262 0.330 0.399 0.521 0.687 0.536 0.210 0.840 0.967 

MAX_Eng 0.334 -0.457 0.287 -0.286 0.485 -0.325 0.123 -0.383 -0.231 -0.082 0.309 0.398 0.361 

0.110 0.025 0.174 0.176 0.016 0.122 0.567 0.065 0.278 0.704 0.142 0.054 0.083 

MAX_Order 0.106 -0.178 -0.071 -0.379 0.064 -0.227 0.287 -0.384 -0.361 0.078 0.018 -0.002 0.068 
0.621 0.404 0.741 0.068 0.766 0.285 0.174 0.064 0.083 0.716 0.933 0.993 0.753 

AV_Bif 0.323 -0.246 0.191 0.194 0.026 0.132 -0.130 0.178 0.209 -0.098 0.089 0.011 -0.034 
0.123 0.247 0.371 0.363 0.904 0.537 0.544 0.405 0.327 0.649 0.681 0.960 0.873 

MUM_Source J 1.000 -0.930 0.225 -0.375 0.142 -0.167 0.382 -0.414 -0.318 0.017 0.141 -0.007 0.033 
0.000 0.000 0.291 0.071 0.508 0.435 0.066 0.044 0.130 0.938 0.512 0.974 0.677 

Table 8.4 Correlation matrix for the 600km network descriptor variables (continued) 
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KURT _Drop SKEW_Drop MAX_Drop MEAN Eng STD_Eng KURT _Eng SKEW_Eng MAX_Eng MAX_Order AV_Bif 
SKEW_Drop I 0.882 

0.000 

MAX_Drop 0.080 0.013 
0.710 0.952 

MEAN_Eng -0.062 -0.265 0.809 
0.773 0.211 0.000 

STD_Eng 0.105 0.013 0.789 0.832 
0.625 0.952 0.000 0.000 

KURT_Eng 0.635 0.411 0.156 0.222 0.227 
0.001 0.046 0.465 0.297 0.287 

SKEW_Eng 0.627 0.485 0.153 0.119 0.197 0.934 
0.001 0.016 0.476 0.578 0.357 0.000 

MAX_Eng I 0.446 0.218 0.478 0.594 0.573 0.853 0.796 
0.029 0.306 0.018 0.002 0.003 0.000 0.000 

MAX_Order 0.469 0.350 0.251 0.180 0.133 0.396 0.298 0.424 
0.021 0.094 0.237 0.400 0.534 0.056 0.157 0.039 

AV_BIf -0.294 -0.229 -0.139 -0.084 0.008 -0.251 -0.122 -0.253 -0.892 

0.163 0.281 0.516 0.698 0.9n 0.237 0.571 0.233 0.000 

NUM_Source I 0.361 0.251 0.192 0.157 0.250 0.262 0.348 0.331 0.106 0.324 
0.083 0.236 0.370 0.465 0.239 0.216 0.096 0.115 0.623 0.122 

Table 8.4 Correlation matrix for the 600km network descriptor variables (continued) 
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35 linear relationships with p-value lower than 0.0005 are identified. Mo t of 

these relationships were also identified at the 300-kilometre scale. Two are 

different: the correlations between STD _Eng and DROP _ MaxD and between 

KURT_Dist and MAX_Width were identified with a p-value equal to 0.002 and 

0.00 I respectively based on the 300-kilometre dataset, whereas they are identi tied 

with a p-value lower than 0.0005 based on this dataset. 20 correlations that were 

identified with a p-values lower than 0.0005 at the 300-kilometre scale are 

identified with higher p-values based on this dataset and 14 of these how p_ 

values higher than 0.05. This suggests that when the total length of the networks 

analysed increases from 300 to 600 kilometres, the linear independency between 

the potential classifying variables increases. 

A summary of the discriminant analysis results is given in Table 8.5. 

Set ~ ClassIfication Indax (O/~ 

JlJI Stardard Vaia:lIes 33.3 
Best Ilsaininciilllieast careIcied AV J .. sIqle; f'I..M Solrc:B~~ .. MIxD. flAX Ilst 50 
discMl 1 kMest CXJI"Cib..tial AV J,..sIqJe; f'I..M Solrc:B;QtJ>,. MlxD 45.8 
discad 2 kMest CXJI"Cib..tial AV J.sk¥le; tUv1 Scuc2 50 
c1sc3t13 ICMoeSt cormlUim AVJ.sope 45.8 

Sardard Best StandcId aassifiefs + Qhers 
Best Ilsaininciilllieast cmaated M:I>N_Erg; flAX_erg; fIAX_O"der. S<EW_Ilst; 37.5 

KLRr Ilst; SKBV3lq>; OST WeNII 
ciscad 1 kMest CXJI"Cibltial M:PN_Erg; flAX_Erg; fIAX_O"der. S<EW_Ilst; 50.0 

KLRr Ilst; SKEW_1l'q> 
c1sc3t1210WilSt cormbLtim Pt£AN_~ ,.W'-~ PMX-'l"dar; 9<EW_llst; 54.2 

KI..RT Ilst 
discad 3 kMest cxrtrib..tial M:I>N_Erg; flAX_erg; flAX O"der. SKEW Ilst; 25.0 
discMl4 kMest ~ M:I>N_Em; flAX _Erg; flAX 0tEr 25.0 
discMl 5 kMest CXJI"Ciblticrl M:I>N_Em; flAX _erg 20.8 
discad 6 ICMeSI cxrtribltioo M:I>N_Erg 37.5 

Table 8.5 Results of discriminant analysis at 600km scale. The variables are 
listed in decreasing order of discriminating contribution. 

The best standard classifier identified at this scale is A V _LSlope, as it was at the 

300-kilometre scale. Classification based on this single variable leads to a 

performance of 45.8%, which is much higher than that obtained based on that 

same variables at a smaller scale (26.1 %). 

The second step of the analysis including the extended set of ' possible classifier ' 

and 'original ' variables leads to the identification of the set of best clas ifiers 
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which includes, in decreasing order of contribution, MEAN_Eng, MAX_Eng, 

MAX_Order, SKEW_Dist and KURT_Dist. Classification based on these 5 

variables leads to a performance of 54.2%. The values for the coefficients of the 

linear discriminant functions obtained for each group are reported in Table 8.6 

Group 1 2 3 4 Discriminating Power 
MEAN_Eng 2357.9 3114 1889.8 1013.7 2093.85 
MAX_Eng -127 -131.2 -122.6 -121.7 125.625 
MAX_Order 33.3 36.1 34.5 35.1 34.75 
SKEW_Dist -15.3 -17.6 -15 -11.5 14.85 
KURT Dist -5.3 3.2 -4.2 -11 5.925 

Table 8.6 Linear discriminant function coefficients and derived potential 
classifier's discriminating powers at 600km scale 

3 of the 4 best discriminating variables identified at the 300-kilometre scale are 

included in the set of best classifiers identified at this scale. These are 

MEAN_Eng, MAX_Order, and KURT_Dist. More variables are necessary to 

achieve a similar classification index at the 600-kilometre scale than were at the 

300-kilometre scale. However the size of the dataset available at the 600-

kilometre scale is much smaller (24 networks) than the one used for discriminant 

analysis at the 300-kilometre scale (46 networks). This might explain in part the 

differences in the results, which are however not divergent. At both scales, 

MEAN_Eng is the network descriptor that shows by far the highest discriminating 

contribution. 

8.3 Best Network Classifiers 

24 network descriptor variables have been tested for their potential capacity to 

characterise network flow response in 46 networks whose total length is 300 

kilometres. 4 have been identified as best able to reproduce network flow 

response clusters. It is worth noting that none of the variables are from the set that 

was called 'standard' because of their prevalence in previous classification 

studies. However, it should be noted that the 'standard' variable that shows the 

best discriminating power, AV _LSlope, bears a marked similarity to the overall 
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best classifier, MEAN_Eng, as both variables take into account a measure of the 

average slope of the network. The variable with the most discriminating power, 

MEAN_Eng, is one that has been devised as part of this thesis, with the intention 

of describing the energy stored and the potential to dissipate it in the network. The 

other three best classifiers all pertain to the plan-view shape of the network: two 

describe the network width function. MAX_Width is an index of how splayed out 

a dendritic network is. KURT Dist, the kurtosis in the width function, is a 

measure of the peakiness of the distance to the outlet distribution. Distributions 

that are flatter than a normal distribution, and consequently have higher values in 

their tails, will have a negative value of kurtosis; whereas those that are 'spikier' 

than a normal distribution, with most of the distribution bunched up around the 

mean (or some central value) and lower probabilities in the tails, will have a 

positive value of kurtosis. Thus in terms of the network width function, it is an 

index of whether the number of channels occurring varies fairly uniformly with 

distance (negative kurtosis) or there is a high concentration of channels at one 

particular distance (positive kurtosis). The final discriminating variable. 

MAX Order, is interesting. It dates back to insights of Horton, Strahler and 

Shreve at the beginning of the last century. They believed that the way rivers 

bifurcate as you move upstream towards the headwaters would playa key role in 

shaping hydrographs. MAX_Order is an index of the nature of the bifurcations 

that have taken place. If MAX_Order is high, it indicates that the river splits into 

fairly evenly sized rivers, whereas a low value of MAX_Order means that when 

the channels split, there is a dominant main channel and smaller tributaries. 

When the total length of the networks analysed is increased from 300 to 600 

kilometres, the best set of classifiers changes slightly. Three of the variables 

remain the same: MEAN_Eng; MAX_Order and KURT_Dist. MAX_Width is 

replaced by SKEW _ Dist and MAX_Eng. SKEW _ Dist measures how skewed the 

network width function is. A high positive skew means that there are more 

reaches of the network that are close to the outlet than distant, whereas a negative 

skew indicates that there are more reaches distant from the outlet than close. It 

would appear, therefore, that as scale increases, how splayed the network is (as 

measured by MAX_Width) is less important in influencing the hydro graph than 

where the splaying occurs (as measured by SKEW Dist). The inclusion of 

125 



Chapter 8 

MAX_Eng is perhaps surprising since this is an extremely poor statistic to use to 

describe the distribution of the energy index in the whole network. It only pertains 

to the one reach where the energy is at a maximum. 

The sets of best classifiers at both scales only allow for approximately 50% of the 

networks to be allocated to their true membership. Nonetheless, the classification 

based on the new variables devised here is far more successful than the one based 

on the 7 variables commonly used in the context of regionalisation studies (which 

leads to a classification index of 35%). Moreover, only 4 variables are required 

and all of these are relatively easily derivable from a digital database. Therefore it 

is anticipated that the use of these variables will improve the classification of river 

networks in regionalisation studies. The question still remains as to why almost 

50% of the networks are misclassified. The answer may lie in the original groups 

identified during the cluster analysis of network responses. The boundaries of the 

clusters (Figure 8.3 and Figure 8.5) are close to one another. This means that there 

is no absolutely obvious grouping in the networks, and hence a network that sits 

close to the boundary within its own group is also fairly close to the adjacent 

group. This might be due to the nature of Scottish river networks. It may be that 

they are actually relatively homogeneous in their structure and that much more 

distinct groups would have fallen out of an analysis of all UK river networks. For 

example, one might envisage that rivers that drain the 'chalky' South Downs of 

England would have a very different structure and signature hydrograph than 

typical Scottish rivers. The consequence of this relative homogeneity can be seen 

when the nature of the misclassification is analysed. Close comparison of Figure 

Figure 8.3 and Figure 8.6 reveals that where a network has been misclassified, for 

most part, it falls into a group that sits adjacent in the plots of hydro graph 

responses. Thus while the misclassification is occurring, the decision rules that 

have been derived by discriminant analysis are not placing the networks in wildly 

different groups. 
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8.4 Summary 

A multivariate statistical analysis was conducted on 46 Scottish river networks 

and their simulated responses to a pulse of runoff, the aim being to identi fy a set 

of descriptor variables that best characterise surface flow through river networks. 

The analysis was conducted in two steps. Firstly, cluster analysis was applied to 

form groups of networks that responded similarly to the same pulse of runoff. 

Secondly, linear discriminant analysis was applied to a set of network descriptor 

variables with the aim of testing these for their capacity in reproducing the 

network response clusters. 

Of all the variables tested, 4 stand clear in showing the best capacity to reproduce 

these clusters: the mean of the energy index (ratio of elevation drop to distance to 

the outlet) spatial distribution along the network; the network order as defined by 

Strahler (1957); the Kurtosis of the distance to the outlet spatial distribution along 

the network; and the maximum of the width function as defined by Shreve (1969). 

These variables have not traditionally been used in regionalisation studies and, 

therefore, should prompt a reassessment in the research community of what are 

the important properties of networks in shaping a flood wave. The discriminating 

rules based on these variables failed to classify 50% of the networks. However, 

considering the relative and, prior to this thesis, unexpected homogeneity in the 

responses of Scottish rivers, it is remarkable that the discrimination rules managed 

to classify 50% of the networks correctly. It is anticipated that if the procedures 

that led to the selection of the best classifiers were applied to a more diverse 

group of networks, selected from across the whole of the UK, more distinct 

clusters would arise, for example with all Scottish networks falling into one or 

two more populous groups. Then, discriminating functions based on the same 4 

variables may be able to correctly classify a higher proportion of the networks. 
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Chapter 9 

9 Conclusions and Future Research 

The first section of this chapter aims to conclude with a concise summary of the 

research advances made in this thesis. A second section underlines areas of future 

research. 

9.1 Conclusions 

Research advances in the area of hydrological modelling have been made in this 

thesis at three different levels: a conceptual one; a practical one; and a scientific 

one. 

At a conceptual level: 

• A novel method for classifying river basins specially designed for 

estimation of hydrological model parameters in ungauged basins applying 

regionalisation techniques has been developed. This method is based on 

two novel concepts: the first is that the constraint of each basin belonging 

to only one group is discarded and instead, each basin undergoes three 

independent classifications, one relative to each of the major components 

of the land phase hydrological cycle: interaction of soil water I vegetation 

and atmosphere; surface flow; and groundwater flow. This insures that 

there are sufficient members of any single group to have a realistic 

prospect of deriving an empirical relationship between descriptive 

variables and hydrological model parameters. The second is in the 

methodology for objectively selecting which of the basin characteristics 

are the most appropriate classifiers. There is very rarely hydrological data 
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that can characterise the response of individual components of the 

hydrological cycle. In most catchments, only the flow at the outlet is 

measured. Therefore, the objective test devised in this thesis consists in 

analysing synthetic data derived by simulation using standard statistical 

multivariate analysis techniques. This thesis focused on the surface flow 

component, applying the methodology to identify the best classifiers for 

flow through river networks. 

At a practical level: 

• A new integrated modelling system for simulating flow in large river 

networks has been developed that extracted all relevant information on 

network structure from digital databases of Scotland, and solved a 

kinematic wave routing model. This is already being used in other research 

projects at Glasgow University. 

• A novel algorithm has been developed for ensuring that river networks 

derived from a digital terrain model adhered as closely as possible to those 

on Ordnance Survey maps. This involved locating the source of each river 

and tracing the path of steepest descent down to the catchment outlet. It is 

anticipated that this will form the basis of a short journal paper warning 

hydrologists of the perils of using traditional techniques that employ a 

discrete threshold in flow accumulation to determine where rivers rise. 

• The first extensive test of hydraulic geometry relationships for Scotland 

has been conducted. From this, a clear and consistent relationship between 

the median annual maximum flow and channel widths for Scotland was 

derived. 

At a scientific level, significant insights have been made into the relationship 

between river network geomorphologic structure and stream flow response. These 

include: 
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• The importance of channel conveyance in dictating the stream flow 

response of a network. Whilst this may seem obvious, it has been 

neglected in previously published theoretical studies of network 

behaviour; most other models assume a constant water velocity in each 

reach of the network. However, the features of the hydrograph, namely 

percentage attenuation and lag in time to peak, scale linearly with both 

roughness and hydraulic geometry conveyance parameters. If these two 

variables are plotted for a large number of networks for a given pair of 

conveyance parameters, then the relative position of the networks on a 

second plot for a different pair of conveyance parameters does not change. 

• The influence of stonn duration on the scaling of peak flows with drainage 

area. Flood peaks in a network scale following a power law with drainage 

area. This has been reported by previous researchers. However, it is shown 

in this thesis that the exponent in the power law relationship is a function 

of stonn duration. This is a result that could not be achieved using the 

simple linear flow routing models used by previous researchers. It is a 

direct result of the more realistic non-linear kinematic wave model used 

here. It is of particular significance if real river flow records are to be 

analysed to look for scaling relationships because it implies that stonn 

duration should be a factor. Thus multifractal scaling laws should include 

stonn duration as one of the variables. 

• The identification of 4 network descriptor variables as best classifiers for 

the surface flow through river network component. A total of 24 potential 

classifiers were tested. Of these, 7 have been widely used in the past, 4 

have been suggested in the literature as being pertinent, and 13 were new, 

derived specially for this thesis based on knowledge of the physics of fluid 

flow in rivers. These were whittled down to 4 best classifiers. None of 

these were classifiers that have been used in previous regionalisation 

studies. Traditionally, no objective test has been applied and the set of 

classifiers used reflected the particular prejudices of the individual 

researcher (Newson, 1978). Therefore the objective method used in this 
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thesis for arriving at the classifying variables warrants them being selected 

in future studies in preference to the more traditional classifiers. 

• The demonstration that the most powerful classifier is based on the 

'energy index' spatial distribution along the network, which was derived 

specially for this thesis. 

9.2 Future Research 

This thesis left significant scope for future research in the context of the ambitious 

overall research project that piloted a whole new philosophy for classifying river 

basins and estimating hydrological model parameters in ungauged basins. It also 

opened up unexpected future research avenues in a variety of different ways. 

In the context of the overall project 

• Developing similar classification schemes for groundwater and soil­

vegetation-atmosphere models will take many more years of research. 

• Devising regression equations to transfer hydrological model parameters 

from gauged to ungauged basins within the same group and then 

validating them is a further PhD in itself. 

Unexpected avenues include: 

• The investigation of the influence of storm duration on the scaling of peak 

flows along a network, observed in synthetic data, in suitably analysed 

river flow records from nested catchments. 

• The potential benefits of integrating the 'energy index' distribution in 

function based hydrological models. Currently, for large scale 

hydrological modelling, network width function-based models are 
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commonly used. It should be possible to derive a similar model that uses 

the 'energy index' distribution instead. On the evidence of this thesis, such 

a model would better characterise the hydrological response. 
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Appendices 

Appendix A 

List of catchment outlets for which network data were extracted from GIS 

databases: Gauge Code, Name, Grid References, Catchment Area and outlet flow 

statistic Qmed are taken from Appendix B, Volume 3 of the Flood Estimation 

Handbook, (NERC, 1999); Network Length corresponds to the total length of 

channel calculated by the network data GIS extraction algorithm detailed in 

Chapter 5. 

Code Name Grid References Area Net.Length Record 
River Site X y km' km 

w3001 Shin Lairg 258100 906200 495 993 1950-1955 
w3oo2 Carron Sgodachail 249000 892100 241 354 1974·1992 
w3003 Oykel Easter Tunnaig 240300 900100 331 603 1978-1992 
w4oo1 Conon Moy Bridge 248200 854700 962 1683 1945·1955 
w4oo3 AI ness Alness 265400 869500 201 275 1974·1992 
w6003 Moriston Invermoriston 241600 816900 391 827 1930-1943 
w7oo2 Findhorn Forres 301800 858300 782 1196 1958-1991 
w7oo3 Lossie Sheriffmills 319400 862600 216 306 1958-1994 
wS002 Spey Kinrara 288100 808200 1012 1703 1951·1994 
wS003 Spey Ruthven Bridge 275900 799600 534 914 1951·1972 
w8OO4 Avon Delnashaugh 318600 835200 543 818 1952·1994 
w8005 Spey Boat of Garten 294600 819100 1268 2022 1951·1994 
w8007 Spey Invertruim 268700 796200 400 695 1952·1994 
w8008 Tonnie Tromie Bridge 278900 799500 130 260 1952·1988 
w8009 Dulnain Balnaan Bridge 297700 824700 272 399 1952·1994 
wS010 Spey Grantown 303300 826800 1749 2713 1952·1994 
wS011 Live! Minmore 320100 829100 104 149 1981·1994 
w9001 Deveron Avochie 353200 846400 442 566 1960-1994 
w9002 Deveron Muiresk 370500 849800 955 1112 1960-1994 
w9003 Isla Grange 349400 850600 176 220 1969-1994 
w9OO4 Bogie Redcraig 351900 837300 179 230 1981·1994 
w10002 Ugie Inverugie 410100 848500 325 281 1972·1994 
w10003 Ythan Ellon 394700 830300 523 484 1983-1994 
w11001 Don Parkhill 388700 814100 1273 1320 1970·1992 
w11002 Don Haughton 375600 820100 787 897 1972·1994 
w11003 Don Bridge of Alford 356600 817000 499 617 1974·1994 
w11004 Urie Pitcaple 372100 826000 198 181 1986-1994 
w12oo1 Dee Woodend 363500 795600 1370 1808 1929-1994 
w12002 Dee Park 379800 798300 1844 2350 1973-1994 
w12003 Dee Polhollick 334400 796500 690 956 1976-1994 
w12oo5 Muick Invermuick 336400 794700 110 167 1977·1994 
w12006 Gaim Invergaim 335300 797100 150 198 1978-1994 
w12007 Dee Mar Lodge 309800 789500 289 430 1982·1994 
w12008 Feugh Heugh Head 368700 792800 229 333 1985-1994 
w13001 Bervie Inverbervie 362600 773300 123 146 1979-1994 
w14oo1 Eden Kemback 341500 715800 307 351 1967·1992 
w15007 Tay Pitnacree 292400 753400 1149 2086 1952·1992 
w15008 Dean Water Cookston 334000 747900 177 135 1953·1992 
w15010 Isla Wester Cardean 329500 746600 367 440 1972·1992 
w15013 Almond Almondbank 306700 725800 175 262 1974·1992 
w15017 Braan Ballinloan 297900 740600 197 292 1975-1992 

141 

Qmed 
m't. 
63 
193 
375 
312 
84 

314 
359 
40 
135 
102 
225 
158 
96 
59 

101 
246 
30 
119 
230 
42 
23 
41 
63 
119 
106 
93 
20 

429 
572 
312 
67 
59 
196 
138 
37 
43 
332 
30 

101 
120 
120 



Appendices 

Appendix A (continued) 

Code Name Grid References Area Net.Length Record Qmed 
River Site X y km2 km ma,. 

w16001 Earn Kinkell Bridge 293300 716700 591 950 1949-1992 193 
w16002 Earn Aberuchill 275400 721600 177 302 1955-1972 58 
w16003 Ruchill Water Cultybraggan 276400 720400 100 192 1960-1992 165 
w16004 Earn Forteviot Bridge 304300 718400 782 1259 1974·1992 251 
w17001 Carron Headswood 283200 682000 122 209 1968·1992 82 
w17002 Leven Leven 336900 700600 424 589 1968-1972 29 
w17005 Avon Polmonthill 295200 679700 195 266 1971-1992 59 
w18001 Allan Water Kinbuck 279200 705300 161 302 1957·1981 66 
w18002 Devon Glenochil 285800 696000 181 320 1956-1972 41 
w18003 Teith Bridge of Teith 272500 701100 518 1093 1956-1972 183 
w18005 Allan Water Bridge of Allan 278600 698000 210 376 1972·1992 96 
w18008 Leny Anie 258500 709600 190 410 1974·1992 90 
w19001 Almond Craigiehall 316500 675200 369 506 1956-1991 120 
w19005 Almond Almondell 306600 668600 229 347 1962·1992 78 
w19006 Water of Leith Murrayfield 322800 673200 107 135 1962·1991 31 
w19007 Esk Musselburgh 333900 672300 330 451 1962-1991 70 
w19008 South Esk Preston holm 332500 662300 112 185 1963·1988 19 
w19011 North Esk Dalkeith Palace 333300 667800 137 193 1962·1991 41 
w2oo01 Tyne East Linton 359100 676800 307 343 1959-1991 49 
w2oo03 Tyne Spilmersford 345600 668900 161 169 1962·1991 31 
w21003 Tweed Peebles 325700 640000 694 1091 1939-1992 175 
w21005 Tweed Lyne Ford 320600 639700 373 610 1961-1992 124 
w21006 Tweed Boleside 349800 633400 1500 2400 1961·1992 400 
w21oo7 Ettrick Water Lindean 348600 631500 499 898 1961·1992 233 
w21008 Teviot Orminston Mill 370200 628000 1110 1638 1960-1992 343 
w21010 Tweed Dryburgh 358800 632000 2080 3177 1949-1981 449 
w21011 Yarrow Water Philiphaugh 343900 627700 231 408 1962·1981 83 
w21012 Teviot Hawick 352200 615900 323 539 1983-1992 184 
w21013 Gala Water Galashiels 347900 637400 207 290 1963-1992 51 
w21015 Leader Water Earlston 356500 638800 239 321 1966-1992 60 
w21016 Eye Water Evernouth Mill 394200 663500 119 143 1967-1992 34 
w21020 Yarrow Water Gordon Arms 330900 624700 155 274 1967·1980 52 
w21022 Whiteadder Water Hutton Castle 388100 655000 503 711 1970-1988 117 
w21023 LeetWater Coldstream 383900 639600 113 136 1973-1981 48 
w21024 Jed Water Jedburgh 365500 621400 139 221 1972·1988 59 
w21025 Ale Water Ancrum 363400 624400 174 246 1973-1992 43 
w21027 Blackadder Water Mouth Bridge 382600 653000 159 197 1974·1991 39 
w21031 Till Etal 392700 639600 648 964 1956-1977 81 
w21032 Glen Kirknewton 391900 631000 199 344 1961·1982 42 
w21034 Yarrow Water Craig Douglas 328800 624400 116 208 1969-1973 32 
w22007 Wansbeck Mitford 417500 585800 287 371 1963·1994 95 
w23002 Derwent Eddys Bridge 404100 550800 118 172 1955-1964 42 
w23OO3 North Tvne Reaverhill 390600 573200 1008 1893 1959-1985 403 
w23004 South Tvne Haydon Bridge 385600 564700 751 1214 1959-1992 416 
w23005 North Tvne Tarset 377600 566100 285 554 1960-1978 214 
w23006 South Tyne Featherstone 367200 561100 322 510 1966-1992 248 
w23007 Derwent Rowlands Gill 416800 558100 242 336 1963·1992 38 
w23008 Rede Rede Bridge 366800 583200 344 615 1968·1992 126 
w23010 Tarset Burn Greenhaugh 378900 587900 96 157 1970-1978 61 
w23015 North Tvne Barrasford 392400 572100 1044 1941 1947·1969 456 
w24003 Wear Stanhope 398400 539100 172 334 1958-1992 119 
w24008 Wear Wilton Park 417400 530900 455 782 1974-1992 182 
w25002 Tees Denk Bank 393200 526000 217 469 1959-1973 280 
w25018 Tees Middleton in Teesdale 395000 525000 242 506 1972·1992 181 
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Appendices 

Appendix A (continued) 

Code Name Grid References Area Net.Length Record Qmed 
River Site X Y km2 km m3,s 

w75017 Ellen Bullgill 309600 538400 96 87 1975-1983 53 
w76008 Irthing Greenholme 348600 558100 335 307 1967-1993 194 
w76009 Caldew Holm Hill 337800 546900 147 106 1968-1993 80 
w76010 Petteril Harraby Green 341200 554500 160 98 1970-1993 25 
w77001 Esk Netherby 339000 571800 842 1553 1961-1993 604 
w77002 Esk Canonbie 339700 575100 495 881 1963-1988 360 
w77003 Liddel Water Rowanbumfoot 341500 575900 319 641 1974-1992 261 
w77005 Lyne Cliff Bridge 341200 566200 191 322 1976-1983 123 
w78003 Annan Brydekirk 319100 570400 925 1671 1967-1992 296 
w78005 Kinnel Water Bridgemuir 309100 584500 229 461 1979-1992 129 
w79002 Nith Friars Carse 292300 585100 799 1613 1957-1992 454 
w79004 Scar Water Capenoch 284500 594000 142 297 1963-1992 148 
w79005 Cluden Water Fiddlers Ford 292800 579500 238 481 1964-1992 109 
w79006 Nith Drumlanrig 285800 599400 471 1011 1967-1992 316 
w80001 Urr Dalbeattie 282200 561000 199 340 1964-1992 102 
w81002 Cree Newton Stewart 241200 565300 368 752 1963-1992 225 
w81003 Luce Airyhemming 218000 559900 171 341 1967-1991 155 
w82001 Girvan Robstone 221700 599700 246 483 1963-1991 87 
w82003 Stinchar Balnowlart 210800 583200 341 693 1975-1991 197 
w83003 Ayr Catrine 252500 625900 166 305 1969-1980 128 
w83004 Lugar Langholm 250800 621700 181 375 1973-1992 150 
w83005 Irvine Shewalton 234500 636900 381 587 1973-1992 215 
w83006 Ayr Mainholm 236100 621600 574 973 1976-1992 251 
w83802 Irvine Kilmarnoch 243000 636900 218 353 1913-1987 71 
w84001 Kelvin Killermont 255800 670500 335 444 1947-1992 96 
w84003 Clyde Hazelbank 283500 645200 1093 1530 1955-1993 272 
w84004 Clyde Sills 292700 642400 742 1074 1955-1992 199 
w84005 Clyde Blairston 270400 657900 1704 2321 1955-1993 383 
w84007 South Calder Water Forgewood 275100 658500 93 90 1965-1992 21 
w84012 White Cart Water Hawkhead 249900 662900 227 347 1963-1992 123 
w84013 Clyde Daldowie 267200 661600 1903 2543 1963-1987 392 
w84014 Avon Water Fairholm 275500 651800 266 392 1964-1992 188 
w84015 Kelvin Dryfield 263800 673900 235 310 1947-1987 62 
w84017 Black Cart Water Milliken Park 241100 662000 103 189 1968-1972 28 
w84018 Clyde Tulliford Mill 289100 640400 933 1387 1969-1981 240 
w84019 North Calder Water Calderpark 268100 662500 130 136 1963-1992 39 
w85002 Endrick Water Gaidrew 248500 686600 220 378 1963-1981 119 
w86002 Eachaig Eckford 214000 684300 140 446 1968-1972 80 
w93001 Carron New Kelso 194200 842900 138 404 1979-1992 187 
w96001 Halladale Halladale 289100 956100 205 321 1975-1992 140 
w96002 Naver Apigill 271300 956800 477 916 1978-1992 154 
w97002 Thurso Halkirk 313100 959500 413 557 1972-1992 107 
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Appendix B 

Values (SI units) for the 24 network descriptor variables defined in Chapter 8. 

300km total length networks 

3001 381 
3003 505 
4001 506 
4003 
7002 
7003 
8004 
8010 
9002 
10002 
10003 
11001 
12002 
15007 
15017 
16004 
17002 
18002 
18003 
18005 
20001 
21010 
21022 

21031 
23004 
23007 
23015 
24008 
76008 
77001 
77005 
79002 
80001 
81002 
81003 
82001 
82003 
83005 
83006 
84001 
84013 
86002 
93001 
96001 
96002 
97002 

292 
527 
359 
461 
331 
307 
170 
215 
197 
402 
387 
267 
292 
304 
473 
365 
347 
297 
345 
430 
353 
430 
404 
507 
534 
121 
424 
308 
545 
463 
545 
490 
441 
567 
319 
435 
299 
379 
532 
662 
539 
501 
477 

AV LLen th 
720.4 
634.6 
648.7 
941.6 
621.4 
853.5 
615.9 
911.6 
946.6 

1654.2 
1285.3 
1374.5 
778.7 
812.9 

1016.1 
1066.4 
989.9 
675.9 
784.6 
947.0 

1076.2 
876.0 
720.3 
920.0 
766.3 
758.4 
617.8 
591.4 

2540.5 
770.7 
1045.5 
582.7 
676.4 
573.5 
667.1 
676.0 

579.0 
1028.4 
757.6 
1091.0 
856.4 
594.7 
463.2 
594.9 
585.8 
685.2 

0.07 
0.14 
0.06 
0.08 
0.04 
0.13 
0.06 
0.04 
0.01 
0.02 
0.03 
0.08 
0.14 
0.07 

0.12 
0.04 
0.11 
0.15 
0.05 
0.05 
0.07 
0.05 
0.06 
0.08 
0.06 
0.07 
0.09 
0.02 
0.06 
0.05 
0.10 

0.03 
0.09 
0.03 
0.06 
0.08 
0.03 
0.05 
0.06 
0.03 
0.18 
0.18 
0.03 
0.05 
0.03 

37325.6 
38602.6 
26721.5 
37613.5 
39146.1 
36243.4 
31947.2 
36962.0 
42106.8 
37307.0 
27957.2 
31028.6 
29975.0 
28990.9 
31857.9 
48398.2 
24579.4 
27557.2 
35239.6 
44191.7 
27531.5 
47672.5 
25986.6 

44652.4 
26332.1 
19946.0 
57626.4 
27440.1 
37229.8 
30068.5 
32723.5 

26826.5 
31388.6 
39062.6 
37688.4 
30752.8 
38316.2 
26483.0 
33735.7 
25803.1 
25183.0 
26128.0 
21646.0 
33767.0 

653.0 
611.4 
489.3 
437.2 
912.1 
544.4 
231.5 
166.0 
206.3 
359.2 
476.9 
621.7 
624.8 
504.4 
337.9 
535.1 
392.0 
332.1 
233.7 
524.7 
331.3 
518.4 
505.0 
483.7 
387.1 
416.3 
447.4 
413.4 
476.2 
460.1 

308.5 

399.5 
342.8 
435.9 
483.0 
250.9 
328.8 
155.6 
234.0 
494.5 
625.5 
377.3 
355.9 
323.9 

14675 
17150 
16000 
21025 
12075 
20425 
23775 
18875 
29325 
24525 
25625 
23225 
25075 
16025 
15300 
20275 
36125 
11475 
19800 
22825 
34575 
19675 
22300 
13325 
32875 
17375 
6375 
17325 
21375 
27075 
18825 
21750 

14075 
14950 
27775 
27125 
17975 
30575 
14500 
19275 
23725 
20725 
13225 
14900 
22625 

MAX Width MEAN Dlat 
18 18223.5 
27 15003.4 
18 17712.9 
18 
27 
18 
22 
17 
17 
13 

16 
15 
23 
23 
20 
19 
20 
16 
25 
25 
25 
18 
24 
14 
24 
18 
22 
27 
18 
28 
21 
27 

18 
25 
21 
20 

23 
27 
18 
28 
22 
24 
26 
26 
31 
25 

16664.2 
14760.8 
17596.4 
19375.4 
18590.5 
16015.1 
19887.8 
20375.1 
21095.4 
16788.3 
17461.9 
14687.5 
16160.9 
18545.0 
26195.9 
12472.2 
16487.4 
20675.2 
260799 
15315.9 
26260.1 
13987.9 
25136.6 
13804.5 
11000.1 
25065.4 
17437.4 
21967.6 
15993.8 
17810.6 
14042.3 
15721.7 
19992.9 

18371.3 
13878.5 
21955.9 
13161.5 
19995.1 
13772.7 
14274.4 

12345.5 
13069.7 
17974.8 
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Appendix B - 300km total length networks (continued) 

Code STD Diat KURT Diat SKEW Diat MEAN Dro 

3001 7307.6 -0.8228 -0.1020 117.3 

3003 6053.2 -0.4552 -0.4415 240.9 121.6 3.6540 1.4483 768.5 

4001 9559.3 -1.0127 0.0922 264.9 163.6 -0.4038 0.4838 809.8 

4003 8572.6 -0.3483 0.2629 290.9 135.0 -1.0706 -0.0084 611.4 
7002 5990.7 -0.8987 -0.1161 309.2 117.0 -0.0575 -0.6082 554.4 
7003 9382.3 -0.9313 0.2223 147.5 99.8 -0.9092 0.2587 437.2 
8Q0.4 9243.1 -0.6904 0.0233 324.5 193.0 0.1788 0.7996 932.3 

8010 8660.5 -0.8937 0.0174 238.6 130.1 -0.8316 0.1909 6092 

9002 7944.4 -0.8790 0.1578 82.4 52.2 0.0725 0.7172 3009 

10002 9075.1 -1.0522 -0.1010 56.3 35.5 -0.4727 0.5411 1660 

10003 9779.3 -0.8729 0.0327 77.6 38.5 -0.0201 0.2561 209.1 

11001 9328.9 -1.0153 -0.1716 92.5 66.3 0.5355 0.9199 359.2 

12002 6612.9 -0.7488 -0.4713 227.4 136.0 -0.8964 0.0843 618.9 

15007 7029.9 -0.7888 -0.3069 276.6 153.8 -0.3504 0.5128 814.6 

15017 6879.5 -0.8519 0.0245 225.6 111.7 -0.0934 0.5473 624.8 

16Q0.4 6740.9 -0.7566 -0.2659 220.7 166.7 -1.0541 0.3584 721.5 

17002 6786.6 -0.3211 -0.3149 76.9 78.2 0.3347 1.1947 352.8 

18002 12879.8 -1.1128 -0.2005 246.9 154.0 -0.8883 0.1358 645.5 

18003 5526.4 -0.8160 0.0393 175.5 148.9 -0.2873 0.7442 686.7 

18005 6182.9 -0.3821 -0.5961 117.5 91.7 -0.0629 0.8245 439.9 
20001 7008.3 0.0434 -0.6940 137.1 91.2 -0.2653 0.6627 450.5 
21010 10559.6 -0.4986 -0.4692 198.6 93.4 -0.0253 0.4198 524.7 

21022 6029.3 -0.5098 -0.3213 138.2 71.9 -0.3659 0.3808 353.9 

21031 12153.2 -0.9209 -0.1298 161.1 129.6 -0.4619 0.7400 542.1 

23Q0.4 5751.2 -0.5424 -0.1612 248.4 106.2 -0.4309 0.0760 551.8 

23007 12253.8 -1.0884 -0.3260 230.1 123.6 -0.7597 0.2029 512.7 

23015 6275.8 -0.9101 -0.1777 159.1 86.2 -0.4772 0.4074 402.1 

24008 4816.1 -1.0238 0.0051 229.6 103.7 -0.5826 0.0942 482.7 
76008 15402.1 -0.8479 0.6154 166.1 100.1 -0.5198 0.2999 503.6 
77001 6078.3 -0.1364 -0.7401 146.4 76.8 0.6795 0.7700 457.2 
77005 8983.6 -0.7443 -0.5154 148.9 95.7 0.5060 0.9098 476.2 

79002 6342.3 -0.4056 -0.3105 227.7 109.8 -0.8384 -0.0542 521.6 

80001 8054.6 -0.9548 -0.1254 140.4 63.8 -0.2498 -0.0178 355.7 

81002 6293.9 -0.6674 -0.0237 239.7 135.0 -0.4864 0.3246 690.7 

81003 7039.2 -0.7737 -0.0379 145.0 62.4 0.3795 0.3258 385.9 

82001 8623.6 -0.7453 -0.1934 166.4 93.8 -0.6198 0.1272 501.4 

82003 8622.2 -0.8145 0.1425 180.0 100.3 -0.0937 0.6198 527.4 
83005 6543.6 -0.6833 0.1450 133.6 78.7 -1.0630 0.0302 333.8 
83006 9609.6 -0.8337 -0.4789 176.3 76.7 -0.1766 0.2037 455.6 
84001 4955.0 -0.2546 -0.1890 116.2 125.6 0.3547 1.2400 487.5 
84013 7336.2 -0.2189 -0.5082 148.4 60.9 0.2308 0.3707 360.8 
86002 7181.6 -1.2536 -0.1806 217.4 163.2 -0.9809 0.1906 680.9 
93001 5718.9 -0.6717 -0.3043 258.0 172.0 -0.1861 0.5554 814.8 
96001 6015.8 -0.7932 0.1352 132.7 65.2 1.8849 1.0714 377.3 
96002 4977.4 -0.4837 -0.6050 128.4 77.8 -0.1170 0.5378 426.6 
97002 6967.4 -0.5730 -0.2530 77.8 65.4 1.1090 1.3198 323.9 
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Appendix B - 300km total length networks (continued) 

Code MEAN En MAX Order AV Blf NUM Source 
3001 0.0073 5 3.76 193 
3003 0.0176 21.4976 0.1102 5 4.11 256 
4001 0.0201 0.0212 11.2864 3.0044 0.1635 5 4.43 254 
4003 0.0169 0.0090 67.4732 5.8567 0.1793 4 5.31 148 
7002 0.0222 0.0120 218.5959 10.8473 0.3033 5 4.45 269 
7003 0.0076 0.0038 -0.3589 0.3519 0.0185 5 3.90 181 
8004 0.0175 0.0087 30.1850 3.6494 0.1440 5 3.96 234 
8010 0.0127 0.0042 1.5755 0.9075 0.0302 5 3.62 167 
9002 0.0057 0.0047 15.3383 3.4752 0.0385 5 3.75 155 

10002 0.0027 0.0011 1.3892 0.8121 0.0083 5 3.21 86 
10003 0.0044 0.0025 2.3115 1.2992 0.0178 4 4.84 108 
11001 0.0041 0.0023 9.9915 2.3805 0.0195 4 4.63 99 
12002 0.0127 0.0064 3.5593 0.9109 0.0603 5 3.60 202 
15007 0.0178 0.0126 3.9600 1.7497 0.0877 5 3.90 196 
15017 0.0170 0.0077 1.1010 1.0316 0.0546 5 3.66 146 

16004 0.0146 0.0124 3.0743 1.4434 0.0819 4 5.54 148 
17002 0.0039 0.0041 11.2770 2.7839 0.0331 5 3.54 154 
18002 0.0118 0.0141 11.1980 3.1266 0.1071 5 4.26 238 
18003 0.0156 0.0150 3.0059 1.6295 0.0802 5 3.97 186 
18005 0.0070 0.0048 1.0981 0.8354 0.0298 4 6.14 177 
20001 0.0062 0.0031 0.2368 0.7301 0.0177 5 3.67 150 
21010 0.0085 0.0054 21.0179 3.9345 0.0522 5 3.66 173 
21022 0.0094 0.0066 88.0276 7.9589 0.1079 5 4.13 216 
21031 0.0059 0.0041 2.6809 1.1839 0.0268 5 3.94 177 
23004 0.0195 0.0111 63.5152 5.8791 0.2030 5 4.23 216 
23007 0.0098 0.0056 43.9477 5.2909 0.0764 5 3.83 204 
23015 0.0126 0.0073 11.3920 2.6423 0.0588 5 4.04 255 
24008 0.0218 0.0080 1.4751 0.9358 0.0662 5 4.08 270 
76008 0.0072 0.0045 3.6508 1.8621 0.0281 4 3.98 61 
77001 0.0088 0.0084 196.9802 12.7648 0.1699 5 4.00 214 
77005 0.0063 0.0021 0.6542 0.6863 0.0163 5 3.70 155 
79002 0.0141 0.0048 0.6869 0.4476 0.0362 5 4.41 278 
80001 0.0081 0.0025 4.6968 1.0941 0.0319 5 3.96 235 
81002 0.0177 0.0095 2.2252 1.3737 0.0629 6 3.18 275 
81003 0.0098 0.0038 22.2136 3.6889 0.0433 5 4.07 247 
82001 0.0085 0.0085 124.7743 10.3471 0.1380 5 3.91 223 
82003 0.0106 0.0073 72.9977 6.5761 0.1238 5 4.13 288 
83005 0.0097 0.0053 -0.1688 0.6289 0.0250 5 3.60 160 
83006 0.0090 0.0041 2.4269 1.6586 0.0302 5 4.14 220 
84001 0.0082 0.0084 1.3722 1.3813 0.0440 5 3.52 151 
84013 0.0081 0.0056 152.0117 10.0402 0.1200 5 4.00 191 

86002 0.0201 0.0319 33.3070 5.0433 0.3375 5 4.50 275 
93001 0.0187 0.0144 11.9618 2.3509 0.1367 5 4.39 338 
96001 0.0121 0.0067 14.5768 3.1138 0.0748 5 4.16 274 
96002 0.0099 0.0060 16.8325 2.7894 0.0754 5 4.05 254 
97002 0.0036 0.0021 0.7331 1.0731 0.0165 5 4.00 242 
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Appendix B (continued) 

600km total length networks 

3001 1036 
3003 
6003 
7002 
8004 
9002 
11001 
12002 
15007 
16004 
17002 
21008 
21010 
23004 
23015 
24008 
77001 
78003 
81002 
82003 
83005 
84013 
96002 
97002 

934 
850 
869 
862 
619 
715 
764 
752 
713 
549 
791 
830 
758 
869 
1024 
975 
822 
971 
939 
507 
964 
979 
687 

646.1 
776.5 
691.8 
667.1 
915.8 
920.1 
717.6 
816.8 
897.8 
1073.8 
799.9 
735.7 
774.9 
714.7 
619.5 
658.6 
794.1 
670.2 
668.1 
1157.6 
676.6 
672.0 
810.6 

0.07 
0.12 
0.08 
0.11 
0.06 
0.08 
0.12 
0.13 
0.11 
0.04 
0.06 
0.10 
0.08 
0.06 
0.09 
0.08 
0.10 
0.07 
0.06 
0.03 
0.09 
0.05 
0.02 

MAX Dlat 
37811.5 
30549.3 
36580.0 
45734.6 
58007.2 
51447.3 
69835.6 
34979.2 
59673.7 
35664.3 
46339.6 
41889.0 
42187.5 
36926.2 
49337.3 
42357.6 
46703.8 
47922.5 
43037.5 
48553.8 
49462.4 
41257.6 
31904.3 
57255.1 

Code STD_Dlat KURT Dlat SKEW Dlat MEAN Oro 
3001 8511.8 -0.6861 -0.1711 115.4 
3003 6468.4 -0.4908 -0.2899 225.7 
6003 8602.7 -0.8478 -0.2526 254.0 

7002 
8004 
9002 
11001 
12002 
15007 
16004 
17002 
21008 
21010 
23004 
23015 
24008 
77001 
78003 
81002 
82003 
83005 
84013 
96002 
97002 

11636.4 
13171.3 
11633.8 
18431.3 
7490.0 
16325.0 
7239.4 
10601.4 
9644.0 
8982.2 
9926.3 
12045.5 
10471.8 
10421.7 
11215.9 
10089.2 
9677.4 
10417.1 
9573.6 
7723.7 
14550.9 

-1.0428 
-0.7212 
-0.7951 
-1.1116 
-0.4448 
-1.2494 
-0.4368 
-0.5494 
-0.4801 
-0.5486 
-1.2864 
-0.9096 
-0.9114 
-0.3511 
-0.6242 
-0.7557 
-0.1643 
-0.3693 
-0.7324 
-0.9245 
-0.9885 

-0.2202 
-0.0230 
-0.0219 
-0.0674 
-0.3034 
-0.2134 
-0.1585 
-0.4769 
-0.5315 
-0.2604 
0.0423 
-0.2138 
-0.2224 
-0.5308 
-0.5354 
-0.2861 
-0.0426 
-0.4702 
-0.0690 
-0.3274 
-0.3962 

299.4 
350.1 
214.7 
235.4 
285.8 
371.6 
266.6 
143.2 
173.4 
165.0 
260.7 
162.4 
275.9 
206.9 
198.8 
194.7 
169.5 
144.1 
138.1 
141.9 
114.1 

641.8 
772.2 
575.3 

1039.9 
438.7 
542.3 
894.0 
734.6 
519.9 
422.3 
380.0 
377.8 
676.4 
439.0 
543.0 
428.4 
414.3 
453.6 
506.9 
277.8 
368.5 
359.5 
399.1 

117.0 
153.9 
154.5 
196.5 
114.5 
131.1 
170.8 
177.7 
165.4 
81.3 
77.3 
111.3 
128.4 
86.8 
132.4 
99.4 
142.7 
125.3 
91.1 
85.8 
79.5 
98.0 
71.8 

16875 
23450 
35750 
26975 
28175 
46875 
23325 
53725 
18475 
28825 
27275 
19825 
10825 
24750 
30650 
36600 
34025 
27125 
24600 
26875 
22925 
25775 
45425 

-0.1675 
-1.0549 
0.6203 
-0.4124 
-0.3612 
0.5869 
-0.4076 
-0.9011 
0.3342 
0.2179 
0.4765 
-0.6510 
0.2301 
-0.6010 
-0.4264 
0.0640 
0.1574 
0.9703 
-1.1925 
0.2726 
1.9124 
1.2687 

Appendices 

MAX Width MEAN Dlat 
37 18391.5 
40 
31 
25 
30 
26 
22 
36 
23 
37 
30 
33 
32 
24 
23 
28 
33 
37 
31 
38 
31 
35 
37 
25 

1.2126 
0.6785 
-0.0624 
0.8037 
0.3579 
0.4528 
0.8006 
0.1740 
0.2143 
0.9670 
0.2831 
0.8878 
0.0911 
0.6979 
0.0723 
0.3419 
0.7342 
0.6992 
0.9068 
0.0462 
0.7258 
1.1554 
1.0696 

16350.1 
20875.8 
24940.3 
28996.5 
28440.5 
35163.4 
19734.3 
32416.3 
19645.2 
27029.7 
25440.1 
24196.7 
19515.2 
27041.2 
24450.3 
28289.0 
27950.5 
23670.2 
24767.7 
26539.8 
21792.5 
18042.7 
31099.3 

773.0 
842.1 
640.4 
1060.1 
592.7 
682.7 
945.3 
976.1 
800.0 
437.2 
519.5 
582.0 
677.8 
454.0 
609.4 
566.6 
703.0 
700.9 
551.3 
360.7 
485.3 
682.8 
399.1 
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Appendices 

Appendix B - 600km total length networks (continued) 

Code MEAN En MAX Order AV Blf NUM Source 
3001 0.0074 5 5.04 528 
3003 0.0145 0.0092 198.7578 10.5138 0.2502 6 3.58 474 
6003 0.0139 0.0101 3.1699 1.5515 0.0694 5 4.57 432 
7002 0.0126 0.0061 14.6927 2.4781 0.1100 5 4.60 442 
8004 0.0126 0.0074 67.1262 6.6978 0.1316 5 4.64 436 
9002 0.0074 0.0027 25.2915 2.6292 0.0433 6 3.25 312 

11001 0.0075 0.0043 6.8953 2.4190 0.0323 5 4.38 360 
12002 0.0147 0.0085 6.3798 1.6515 0.0885 6 3.43 387 
15007 0.0159 0.0134 1.5790 1.4908 0.0898 5 4.54 379 
16004 0.0139 0.0084 0.6414 0.6340 0.0525 5 4.55 364 
17002 0.0057 0.0033 2.5900 1.7853 0.0188 5 4.11 278 
21008 0.0072 0.0031 8.8327 1.9391 0.0325 5 4.54 400 
21010 0.0071 0.0053 15.4456 2.7376 0.0682 5 4.54 419 
23004 0.0146 0.0066 1.2100 0.0907 0.0907 5 4.50 379 
23015 0.0068 0.0049 60.0256 5.4850 0.0990 5 4.87 438 
24008 0.0115 0.0041 5.9592 1.4692 0.0401 5 4.91 517 
77001 0.0076 0.0033 2.0887 1.2786 0.0230 5 4.77 494 
78003 0.0066 0.0037 -0.0983 0.5489 0.0217 5 4.63 419 
81002 0.0086 0.0063 39.9844 4.1158 0.1293 6 3.54 490 
82003 0.0072 0.0044 26.0933 4.0746 0.0539 5 4.68 477 
83005 0.0052 0.0023 -1.1041 -0.1494 0.0107 5 4.00 254 
84013 0.0071 0.0056 42.9889 5.1426 0.0725 5 4.86 487 
96002 0.0085 0.0056 1.5526 1.1403 0.0404 6 3.59 497 
97002 0.0037 0.0014 7.6289 2.0967 0.0147 5 4.42 348 

148 


