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SUMMARY 

This thesis is concerned with a theoretical and 
experimental study of rectangular reinforced earth retaining 
walls built on a rigid foundation. 

Previous design methods based on conventional earth 
pressure theory, the theory of elasticity and the finite 
element method have been reviewtHi along with the results 
of laboratory &nd field tests made by other investigators. 

A new Energy theory has been proposed for reinforced 
earth wall design in an attempt to overcome the disadvantages 
of previous approaches based on Rankine theory. This new 
theory takes account of a non-linear tension d~tribut1on 
over the length of the reinforcing ties, the deflected 

shape of the wall and of the effect of tie length on the 
tension developed. Simplified assumptions were 1I8.de to 
obtain expressions for the t:J.e tension and the factor of 
safety against pullout failure. 

Apparatus was constructed t~ enable model walls to be 

tested. Free field strain coils were developed to measure 
soil strains and the horizontal deflections of the front 
face of tbe walls. Strain gauges and pressure cells were 
calibrated for the measurelllent of t'.e tensio:ls and the 
vertical soil stresses. 

The model tests conducted were: 

(a) Tests to failure with the main observations being made 
on conditions ~t failure. In some of these walls, the tie 

ten3ions were also obtained. 
. 

(b) Instrumented walls not tested to failure. In these 

tests the stresses and deformations of the ties and the soil 
were observed during wall construction and after completion 

of the walls. 

The tests to failure were conducted on walls failing 

by tie breaking or tie pullout modes of failure, and using 
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perspex panel skin elements. In the tie breaking tests, 
aluminium foil ties were used. The results from these 

tests were compared with theoretical predictions and previous 
relevant tie breaking failure tests. 

The conventional design approaches based on the Rankine, 
Meyerhof and the Trapezoidal methods were found to predict 
practically the same critical wall heights but were only 
about 28 _per cent to 39 per cent of the experimental results. 
Various expressions designated T.L.L.A., T.L.L.D., T.P.P.D., 

LO.L.A., and LO.L.D. were obtained from the Energy theory, 
depending on different assumptions. Each of these ~ __ 

expressions predicted a range of critical heights which were 

slightly lower thanJ-----bnt; closer to the experimental results, 

t~~_n the values predicted by the existin~-~heories. The r 
maximum discrepancy between the experimental results and the 

Energy theories predictions was about 37 per cent of the 

observed values. 

The tie breaking test results were found to be consistent 
with other similar model tests conducted in France(7) and 
in the U.S.A. (45) 

The pullout tests wero conducted using either aluminium 
foil ties or perspex ties. The walls built with the perspex 
ties were instrumented to measure the tie tensions. The 

results from these tests indicated that the maximum tie tension 
decreased with increasing tie length. The existing theories 
were found to predict different patterns and magnitudes from 
the observed values while the Energy theory (T.L.L.D.) and 
(T.L.P.D.) reasonably toolt :lccount of the effect of tie length 
on the maximum tie tension. 

On comparing the observed adherence lengths and the 
corresponding predicted adherence lengths, the theoretical 

values were found to be larger than the experimental results, 
hence further tests were undertaken to check the internal 

wall stability on a non-ultimate strength concept. 

Thirty-five walls were built to a maximum height of 500mm. 

The walls were instrumented to obtain: 
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(i) The tie tensions at various wall levels. 

(ii) The wall deflections. 

(iii)The strains in the soil. 

(iv) The stresses in the soil. 

From the results of these tests the following relation-
ships were established~ 

(1) The tie tension distribution over the tie length 

and at various levels in the walls. 

(2) The maximum tension envelopes. 

(3) The tension versus fill height curves. 

(4) The horizontal strains over vertical and horizontal 

sections in the wall. 

(E) The wall deflection curves. 

(6) The vertical stress variation over a horizontal 

sectio~ in the wall. 

The compnrison between the observed tensions and the 
theoretical predictions revealed closer agreement with the 

Energy theory (LO.L.A.) than with the existing theories. 

The exper±mental safety factors against tie pullout 

failure were eval'~ted by assuming either the total tie 

length to be effective, or the tie length beyond the maximum 

tension position effective, and using either the maximum or 

average tie tensions. Experimental safety factors against 

pullout were calculated from the slope of the tie tension 

distribution curves, using a computer programme developed 

for this purpose. The experimental safety factor against 

tie pullout was found to be a minimum at the top of the 

wall and increased towards the bottom of the wall. 

Comparison with the existing and the Energy theories 

indicated that none of the existing theories gave a general 
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agreement with the observed results. The Energy theory 

(LO.L.A.) appeared to follow the general pattern of the 

observed points and agreement in magnitude was reached in 

some cases. 

(29) . 
Test results reported on a full scale wall built 

at Granton, were analysed. This was the first example of 

the use of reinforced earth in the U.K. 

It was found that the pattern of the tie tension 

distribution curves was. generally similar to the tension 

distributions observed in the model. In addition, it was 

found that the full scale wall behaviour was affected by 

the construction procedure, especially the compaction 

operation. Analysis of tie tensions showed that compaction 

effects on tie tensions were more pronounced at low (~ 1.5m) . 
fill heights above tie level. A simplified theoretical 

model gave a similar trend to the observed results and 

indicated that probably compaction did influence the tie 

tension. 

The observed tie tensions were noted as generally higher 
than the theoretical predictions, especially when a coefficient 

of earth pressure corresponding to the fill condition as , 
placed was used. The Energy theory (LO.L.A.) was found to 

give a pattern of the maximum tie tension distribution with 

wall height, which was similar to the general pattern of the 
observed results. 

The completed full scale wall had an adequate safety 

factor against pUllout and tie breaking failures. Analysis 

also showed th3t a critical etage may occur during the wall 

construction, since at low fill heights, above the tie level, 
the safety factor against pullout tended to be less than one. 

This was shown to be mainly due to compaction stresses. 

An established plane strain finite element programme was 

used to analyse both the model and the full scale walls. 

The analysis was mainly intended to investigate the 

magnitude and patterns of the various stresses and strains 
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acting in the soil, and the tie tension development. The 

programme uses a non-linear, stress dependent model for the 

soil behaviour and takes into account the incremental wall 

construction. It was found that the results of the finite 
element analysis were sensitive to the soil properties and 

other simplifying assumptions adopted in the programme. 

Comparison between the finite element solution and the 

model wall behaviour showed similarities in pattern between 

the predicted and the observed wall deflections although 

they did not correspond completely with each other in 

magnitude. The predicted tie tensions were generally greater 

than the observed tie tensions. 

In the knowledge that the actual full scale wall 

behaviour was affected by the construction procedure, the 

finite element analysis showed that the stresses and 
deformations of a full scale wall can also be affected by 

foundations and skin element conditions. 

It was f:iI1a.lly recommended that the En~rgy theory be 

extended to take account of the okin element aDd found~tioD 

con1itions and the compaction stresses. 
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NOTATION 

General constants 
F~ctor for comparison between existing theories 

Factor for comparison between Energy theories 

Tie X-sectional area 
Tie width 

Factor for comparison between critical wall 
height expressions 

Unit cohesion of soil 
Distribution factor 

Coefficients in the Energy theories (Total 
equilibrium) 

Depth of uniformly distributed surcharge load 
Coefficient in the Energy theories (Local 

equilibrium) 

Relative denSity 

Eccentricity 
Modulus of elasticity (Young's modulus) 
Modulus of elastiCity of tie material 

,Modulus of elastiCity of soil 
Tangent modulus of elasticity 

Initial tangent modulus of elastiCity 

Equivalent modulus of elasticity of reinforced 
earth material 

Tie/soil coefficient of friction 
Tota~ tie resiatance against pullout 

Fil1 beigbt above tie level 
Total fill height above base of a wall 
Critical height of a wall 

Vertical tie spacing 
Subscript denoting the number of a reinforced earth 

layer from top of the wall 
Ratio of horizontal to vertical stress 
Coefficient of active earth pressure 

Coefficient of at rest earth pressure 

Tie length & adherence length 
Increment of tie length 
Moment of earth pressure about the toe of the wall. 
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CHAPTER ONE 

INTRODUCTION 

1.1 General Introduction 

A rational method of reinforced earth design has recently 
been introduced by H. Vidal, a French architect and engineer. 
However, the soil reinforcement technique itself is probably 
an old practice. Lee et al(45) and Chang et al(15) described 

some forms of earth reinforcements occurring naturally or 
used by man. The stabilization of soil by plants' roots 

is well known. Man, throughout his history, has used 
various forms of soil reinforcement, e.g. in the construction 

of roads on swampy areas using tree trunks and branches, in 
the construction of low dykes from mud and sticks, the 

stabilizing of river bank soil by fagotting and in other 

applications. 

Reinforced earth can be defined as an association of 

earth with reinforcements wheraby the frictional forces 
betwgen the two materials are mobilized,. 

The term "earth" applies generally to all soil types. 
In practice, only soils which are predominantly granular 
are used. The ~einforcements have to be of high tensile 
stre~gth, corrosion resistant and offering a satisfactory 
angle of friction on soil. 

It was shown by Vidal(77,79) that reinforced earth 

could be u~ed for the construction of dif~erent works Such 

as quay walls, raft foundations, swimming pOQls, arches and 
other structures varying in shape and function. This 

reflects the flexibility of reinforced earth, although at 
present reinforced earth is used essentially in the con

struction of retaining walls, bridge abutments and earth 

embankments. 

A retaining wall with rectangular cross section, Fig 

(1.1) is constructed by alternating layers of compacted 

granular soil and metal ties which are distributed at 
convenient horizontal and vertical intervals. The ties 
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Cover joint 

Ties 

Fig,l.T Zchecatic repr~~tation of reinforced earth 
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are attached at one end to a thin membrane known as the 

skin which provides stability of the soil in direct contact 
with it and also maintains the life of the structure. Two 
types of skin elements are used in practice: 

(1) Semi-elliptical skin elements of non-corrosive metal 

(Fig 1.2.a). 

(2) Concrete panel skin elements (Fig 1.2.b). 

The use of reinforced earth material in retaining 

structures is known to possess certain advantages which make 

it preferable in most cases to conventional retainin& walls. 
These advantages were described by Schlosser and Vidal, (67) 
Barclay, (6) Darbin(23) and Gedney et al~30) The main 

advantages are: 

(1) Economy in the total cost of the job. 
A cost analysis of four types of retaining walls is shown in 

Fig (1.3) and demonstrates that reinforced aarth is the 
cheapest. 

(2) The material can withstaud large differential 

settlements, and has been used at sites with poor foundations 

and aleo in highway construction on steep slopes in 
mounta~nous areas. 

(3) The material is suttable for the construction of 
temporary retaining structures. 

The external and internal stability of reinforced earth 

walls has to be checked when the design of these walls is 

considered. The external stability of this type of 

retaining wall requires checking against: 

(i) overturning of the wall as a solid mass. 

(ii) Failure of the wall by horizontal shearing along 
the base or at any horizontal plane, parallel to 

the direction of the ties. 

(iii) Foundation failure. 



- 4 -

1.5-4.0 mm 

Fig 1.2.0 Elliptical metal skin element. 

Fig.1.2·b Concrete panel skin element(dimensions in mm). 
j 

l"ig.(1 .2 ) Types of skin elements 
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These aspects of reinforced earth wall design can be 
dealt with, within the context of conventional soil mechanics 

approaches. 

(iv) An external failure can also occur due to 

tearing or buckling of the skin elements. 

The internal stability of a reinforced earth wall is 

mainly dependent on the tie. forces. These forces are a 
function of various factors such as the wall geometry, the 
type of foundation, type of loading and the properties of 
materials used within and beyond the reinforced earth wall. 

Simple analytical methods, based on the conventional 
Rankine and Coulomb earth pressure theories, have been 

suggestgd for the design of the internal stability of reinforced 

earth walls. These methods are mainly based on the 

assumption of homogeneity and isotropy of the wall backfill. 

Reinforced earth; being essentially a composite material, 

deviates from these assumptions. 

Closed form solutions based on the theory of elasticity 

and the finite element method have also been applied to the 
analysis of reinforced earth material by Harrison et al(32) 
and to Romstad et al (54) respectively. -- --

Most of the model tests conducted to study the internal 
stability of reinforced earth walls, have been based on an 
ultimate strength concept and the main observations made were 

for conditions at failure. Existing design methods based 

on the conventional earth pressure theory, were tested on the 
. (3 7 63) 

basis of these model tests ann a discrepancy was found " . 
between the Rankine theory and the model test results. 

Although results from full scale walls have been found(29,63 

to be affected considerably by the construction procedure, 

. they are valuable in understanding reinforced earth behaviour 
and in evaluating the internal stability of a particular 
structure. Full scale walls have also been found(63) to 

behave in a different manner from the assumptions on which 

conventional design methods, such as the Rankine theory were 

based. 



- 7 -

This thesis is concerned with the theoretical and 

experimental investigation of the internal stability of 
rectangular reinforced earth retaining walls built on rigid 
foundations J the purpose being to evaluate existing and 
new theories against the actual performance of model and 
full scale reinforced earth walls. 

1.2. Scope of Thesis 

A review of literature pertaining to theoretical and 
experimental studies on reinforced earth retaining walls is 
presented. The simple analytical .design approaches are 
compared and discussed. 

An Energy theory based on the principle of elastic 

strain energy of ties and the external work done due to 

elastic deformation of the wall is developed to overcome 

the shortcomings of the simple linear Rankine design method 
which is currently accepted as a basis for reinforced earth 

wall design. 

Model reinforced earth retaining walls built on rigid 

foundations, using a cohesionless material are studied for 

ultimate and non-ultimate strength concepts. Some walls 
were instrumented to obtain the tie tension distribution 
the strains ~ the soil, the wall deflections, and the 
stresses in the soil. The observations fitted reasonably 
with the ~roposed new theoretical approach. 

Actual field data taken from the instrumented section in 
a full scale r~inforced earth retaining wall are evaluated in 
terms of the existing and the Energy theories. The full 
scale wall and model wall results were compared. 

Because of the complexity of reinforced earth wall 
behaviour and the various factors that could affect the wall 

performance, an established finite element programme is used 
to analyse the model and the full scale walls. The 
results of the analyses are presented and compared with 

observed wall behaviour. 

Finally conclusions are drawn from various approaches used 
to study reinforced earth retaining walls, and recommendations 

for future studies on these walls are made. 
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CHAPTER TWO 

LITERATURE REVIEW 

The aim of this chapter is to give a brief account of the 
theoretical and experimental studies which have been carried 
out on reinforced earth walls by previous investigators. 

These studies will only be outlined at this stage and will 

be referred to in detail where necessary in later chapters. 

The theory of reinforced earth was presented by Vidal in a 
series of papersn~a;9fiOin which he gave the basic concepts 

underlying the principle of reinforced earth. 

67 Schlosser and Vidal made further contributions·to 

design methods for reinforced walls. Simple equations, based 

on the Rankine and Coulomb earth pressure theories were given 

for the evaluation of the internal stability of these walls. 

Methods of determining the tensiOll in the ties were discussed 
and later modified by Schlosser 60.G1 on the basis of a 

different distribution of vertical pressure on horizontal 

sections suggested by Meyerhof. Schlosser also suggested 

methods of evaluating the resistance of ties to failure by 

pullout. 

Using similar methods to Schlosser and Vidal, Lee et a145 

developed simple equations for checking the internal stability 
. 63 of walls and Schlosser et al incorporated a reduction 

factor to design methods using the Rankine theory of eart~ 
pressur~, part~y to account for the difference noted between 
Rankine theory and the model test results and also to give an 

expression which agrees with the wall behaviour suggested by 

the tension distribution mechanism shown in Fig (2.1). 

Banerjee 5 envisaged a design method for the internal 

stability of reinforced earth retaining walls, based on a 

failure surface which is similar to the Coulomb failure plane. 

This method uses an empirical coefficient in the derivation of 
the expressions and takes account of the soil cohesion which 

is neglected in the other design approaches. 

72 
Symons gave a comprehensive review of most of the fore-
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going design methods. 

Harrison and Gerrard(32) presented a mathematical model 

for reinforced earth which is not of direct applicability 

to the reinforced earth retaining wall problem. 

Finite element methods have been applied to the 
analysis of reinforced earth retaining walls by vauloup(76) 
Yziquel(81) and Corte(2l) working in France. Banerjee (5) 

and Romstad et al(54) have also investigated this method 

in the U.K. and U.S.A. respectively. 

Model studies on reinforced earth retaining walls have 
been carrried out in Laboratoire Central des Ponts et 
Chaussees by several investigators(7,47,61,64 to 67) in the 

University of LYO~(3,9,17,46) in California(44,45) and also 
in Japan. (75) 

Fewer observations have been made on actual wall 
behaviour in the field. Schlosser and Vidal(67) and 

(62) 
Schl~sser presented results of observations on a wall 

at Incarville. Baguelin et al(4)reported surveys of the 

geometry, t~e site conditions and the theoretical safety 

factor~ against slippage at the base on Vigna (I) Viga (II) 
and Peyronnet walls. Marec et al (48) puolished information 

of wall geometry, soil and tie material properties and the. 
sizes ~nd statistics of the ties and the skin elements adopted 

in La Giraude, Bava, Menieri and Ricard walls. Tests from 
walls at Dunkirk in France were reported by different 
authors(6,47,61). Chang(14) published the final report 

on a wall in Los Angeles County, which was built by the 

Department of Transportation of the State of California, 
U.S.A .. Finlay and Sutherland(29) published the test results 

observed on a wall at Granton in the U.K. 
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CHAPTER THREE 

THEORY AND DESIGN OF REINFORCED EARTH RETAINING 
WALLS 

3.1 Introduction 

In this chapter the conventional analytical approaches 

to the design of reinforced earth walls are first considered. 

Methods of assessing the internal stability are compared as 

are the resultant expressions for the calculation of: 

(i) The tension in the ties. 

(ii) The critical wall height for walls failing by 

the ties breaking. 

(iii) The adherence length of a tie to prevent wall 

failure by tie pullout. 

The original methods of analysis were based ~n earth 

pres~ure theor2es such as Rankine and Coulomb. The 

Rankine theory is mainly used in designing full scale 

reinforced earth retaining walls. The· shear stresses 

which can d~velop at the soil/tis interface are neglected 

and this gives a linear tension distribution with wall 

depth which is at variance with reality(.61) The Rankine 

theory was found to give an overestimate of the tie tension 

when compared with observations on models and to imply a 

wall behaviour which is different from the wall behaviour 

observed on full scale wRIIJ~3) 

A new energy theory has therefore been advanced in this 

chapter. This theory is based on the equilibrium of the 
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external work done and the internal energy stored in the tie 

and takes into account: 

(i) The effect of tie length on the ~ension 

magnitude. 

(ii) The non-linear tension variation along the tie 

length and with the wall height. 

(iii) The deflected shape of the wall. 

Some attempt will be made in this chapter to indicate 

which of the theories is most appropriate for the general 

problem. This can be done for most of the theories only 

by comparing the results with those obtained from model 

or full scale tests, and this approac~ will be followed up 

in Chapters Five and Six. 

Conclusions drawn are given at the end of this chapter. 



- 13 -

3.2 Factors Influencing Stresses in Reinforcing Ties 

The level of tie tension in a reinforced earth wall 

and its mode of variation along a tie length is dependent 

on the following parameters: 

(1) Type of the soil used as the backfill material. 

(2) Type of the reinforcing tie material. 

(3) The spacing of the ties. 

(4) The tie position within the height of the reinforced 

earth wall. 

(5) The tie geometry (length, .... idth and thickness). 

(6) The flexibility of the skin elements. 

(7) The geometry of the reinforced earth wall. 

(8) The method of wall construction. 

(9) The properties of soil underlying the reinforced 

e£.rth wall. 

(10) The frictional characteristics of the interfaces 

between the soil and the ties and also b&tw8en the 

backfill and the skin elements. 

(11) The density of the backfill. 

(12) The moisture content of the backfill. 

(13) The type of loading on the reinforced earth wall. 

(14) The elastic properties of the backfill material. 

(15) Time effects. 
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Hence it is rather difficult to formulate a theory 

which takes all these parameters into account. In the 

theories outlined in this chapter, various simplifying 

assumptions have been made and are noted. 
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3.3 Theoretical Expressions For Tie Tension 

The analytical expressions derived by previous authors 

to determine the tie tension at various tie levels in a 

reinforced earth wall will be outlined at this stage. 

3.3.1 Rankine Theory 

The design of reinforced earth retaining walls, using 

the Rankine theory was discussed by Schlosser and Vidai~7) 
The reinforced earth mass was assumed to be isotropic and 

homogeneous, and the wall facing smooth. If these condi-

tions are satisfied, then the ve~tical direction will be a 

principal direction for the vertical stress. The express ion 

for the tension in the ties usi~g this method is obtained by 

considering the equilibrium of the horizontal pressure force 

acting on the wall face and th~ tension in the tie. 

frOM Fig (3.la) the vertical stress at any depth h is 

- . . . . . . . . . . . . . . . . . . . . . . . . . (3.1) 

and the horizontal stress is related to it by the coefficient 

of the earth pressure K 

ax - K. Y.h . . . . . . . . . . . . . . . . . . . . • . . .. (3. 2) 

This coefficient depends on the soil type, the wall 

deflection and geometry of the wall. For granular, dense 

backfills a very small deflection of the wall causes the 

value of K to drop to the minimum active state(73) and K 

will be equal to the coefficient of active earth pressure Ka. 

Considering local equilibrium of the tie and the skin 
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elements Fig (3.lb), the tie tension per unit width of the 

wall is 

T = ax. AH 

substituting for ax K • Y .h a 

The tension expression is 

T - Ka .l.h.4H ............................... (3.3) 

and the maximum tension at the bottom of the wall is 

Tmax = Ka· y. H. A H. . . . . . . . . . . . . . . . . . . . . . . (3.4) 

By adopting an approach which is similar to Rankine, 

Schlosser and Vidat67) and Schlosse~6~erived tension 

expressions based on a Trapezoidal and Meyerhof's vertical 

stress ~istributions respectively. The derivations of the 

tension expressions using these methods are as follows: 

3.3.1.1 The Trapezoid~l vertical stress distribution 

A trapez01dal ver.tical stress distribution due to the 

combined effect of vertical and horizontal thrusts is often 

assltlaed 011 horizontal planes within conventional retaining 

walls.: 

In considering this vertical stress distribution in the 

reinforced earth wall design, the wall is assumed rigid and 

capable of transferring the moment produced by the thrust 

on the ba~k of the wall to the sections near to the wall 

face Fig (3.2). 

The moment M due to the horizontal thrust P on a wall of 

height His: 
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M p.H 
3 

2 where P = i. Ka' Y . II 

M ~ Ka' Y . H3 

The vertical stress at sections 1 and 2, Fig (3.2) is given 

as 

_ W 
l 

+ M 
Z 

where Z ... L/6 and W = Y.H.L 

( 
2 

CJ == YH 1 + K (~) ) Y1 2 -, a 

The maximum tension per unit wall width 

Tmax = Ka· CJ Y1 . AH 

or Tmax 
... Ka YH.AH ( 1 +Ka (~) 2 ) •••••••••••• (3.5) 

3.3.1.2 Meyerhof's vertical stress distribution 

By adoptin~ Meyerbof's vertical stress distribution the 

effect of the thrust acting at the back of the wall in 

increasing the vertical stress is approximated by assuming 

a uniform stress distribution over a base length equal to 

L - 2e where e is the eccentricity of the reaction, Fig (3.3) • 

The vertical stress 0y - W 

L - 2e 

h p 1 h2 
= K.-where e - - 6 a L 3 W 

0y = Y.L.h 
h2 

L - 1 K - L 3 a 
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By taking the equilibrium of the horizontal stress 

acting over a wall height h and the force in the tie, 

the tie tension per unit wall width is given as 

T 

or T 

== Ka a y .4 H 

- K a 
Yh . 4H (3.6a) 

The maximum tension at the bottom of the wall is 

T max 
K yH 

a I _ 1 K ( H )2 
3" a r; 

3.3.2 Coulomb Theory 

. 4 H .......... (3.6b) 

The llse of the Coulomb earth pressure theory in the 

design of the internal stability of reinforced earth retain

ing wallslfaS first advanced by Schlosser & Vida1
61 ) 

who derived an expression for tie tension based on the 

assumption that the active earth pressure thrust was resisted 

by thA tension in the ties. 

In the special case of a retaining wall with smooth 

vertical face and horizontal backf!ll, the resultant total 

tension in the ties lying in plane AB. Fig (3.4a) may be 

computed by considering the equilibrium of a failure wedge 

ABC. The forces acting on this wedge are: 

(i) The weight W of the soil contained in the 

wedge ABC. 

(ii) The reaction R of the earth acting on plane AC. 

This is inclined at an angle. with the normal 

". 
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Given • 

1- Density of backfill 

. 2- Angle of internal friction of soil 

~- The friction angle between soil & wall facing = 0 
4- The total "'all height H 
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·6- The coefficient ot actiye earth pressure. ~ 

B 
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to this plane, since the soil is assumed to 

be in a failure state. 

(iii) The total tension XT which is ~he sum of the 

forces in the ties lying in the plane AC. 

From triangle of forces Fig (3 •. 4b) 

XT - W.tan(O - +) 
substituting W .., 0.5. YH2.Cotg 9 

2 
XT - 0.5. Y.H Cotg9 .tan(O - +) 

The maximum value of the total tension ~T is given when 

dXT - O. This gives -
dO 

0 - (.:!!... + -t ) 
4 2 

. XT .. 0.5. Ka' y.H2 (per unit wall width) . . 

Assuming a linear tension distribution with wall height, 

the tie tension at the ith layer, is . given by 

- i 
Ka. y .H. AH 

(D + 1) 

The maximum ten9ion Tmax per unit wall width, is obtained 

where 1. - n as 

Tmax - n 
. Ka. Y. H. AH 

n + I 
. . . . . . . . . . . . . . . .. (3. 7) 

Lee et al(45) also derived a tie tension expression 

using the Coulomb method but equated the moments about the 

toe of the wall, of the earth pressure thrust and the tension 
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in the ties. A linear tension distribution over the wall 

height has been assumed. The maxiumum tie tension per 

unit wall width T max was given as 

2 
T n 

K y • H. A H - . . . . . . . . . . . . . . . . . . max 2 a 
n - 1 

For walls in which n is large, the coefficients 
2 

(3.8) 

n and ---- in equations (3.7) and (3.8) approach unity. 
n2- l 

Therefore the maximum tension per unit wall width, given 

by these equations can be written as 

"max K • Y .H. 4H a . . . . . . . . . . . . . . . . . . . . . . . . .. (3. 9) 

Equation (3.9) is identical to equation (3.4). Therefore 

in the particular case of a rectangular wall with a large 

number of rsinforced layers and a smooth back, in which the 

tie tension is assumed linearly varying with the wall height 

the Rankine and Coulomb theories give identical tension 

expressions. 

Generally the Coulomb theo~y has the advantage that it 

can be adopted for walls with irregular geometry and rough 

back. 

3.3.3 Comparison between the maximum tension expressions 

The Rankine tie tension expression is mainly adopted in 

practice. The other design methods, mentioned in the 

previou3 section, give identical or slightly higher tie 
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tension than the Rankine theory. In order to show the 

differences between the Rankine, Coulomb, the Trapezoidal 

and Meyerhof tie tension expressions, the maximum tie 

tension expression given by these methods can be presented 

in the general form 

Tmax = A. KaY H. 4H per unit wall width •••.••.. (3.10) 

where A is a factor depending on the ratio of the wall 

height to tie length H , and also on the angle of the internal 
L 

friction of the soil •. In the cases of the Rankine and 

Coulomb theories, A = 1.0 for all H ratios and • values. 
L 

Considering the Trapezoidal and Meyerhof Methods 

the coefficient A is given by 

A - (1 + Jr
a 

( ~ ) 2) Trapezoidal . . . . . . . . (3.11) 

A - Y (1 _ 1 K ( H ) 2) 
3 a L 

Meyerhof • • . • • • •• (3.12) 

Values of A have been calculated for values of • and 

H ratios ranging between 250 _ 500 and 0.5 - 1.5 respectively 
L 
and plott~d against. values as shown in Fig (3.S). 

It can be seen that the maximum tension predicted fro. 

the Trapezoidal and Meyerhof vertical stress distributions 

increases with increasing H ratio and decreases with 
L 

increasing • values. These methods always predict larger 

tensions than the Rankine theory depending on the H ratio 
L 

and, values used in the design of the wall. 
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( 5> 
3.4 Banerjee's Analysis of Reinforced Earth Retaining Walls 

This approach is basically similar to Coulomb theory, 

but instead of resolving the forces in the yertical and the 

horizontal directions to get the total tension in the ties 

as a function of the angle of inclination of the failure 

plane, forces are resolved along the inclined plane and 

compared to get the safety factor against sliding of the 

wedge. In his analysis the soil is assumed to have a 

cohesion. c which increases the wedge resistance against 

sliding. 

Considering the equilibrium of the plane A-C, Fig (3.6), 

inclined at angle ~:. with the vertical, the total sliding 

and reSisting forces per unit wall width are calculated as 

The sliding force 

The resisting 
force Pr - 0.5 Y H2. sinp. tanp.tan; 

XT(taDt·cos, + slnp) + c.B. secp 

where c - unit cohesion of the soil 

The safety fact~ is given by 

P r -SF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Assigning, 

A - 0.51 H2 
w x -

XT 
A w 

The safety factor is given as: 

and -

(3.13) 

SF = tanf!. tan ++ x(tan+cot P + 1) + x . cosec 2 f! .•• (3.14) 
o 

x 

I 

" ! 
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This expression is a function of the non-dimensional 

tension parameter X and the angle of the failure plane 

inclination with the vertical p. These .two factors vary 

dependently (Appendix(I). In order to get the value of I' 

corresponding to the minimum safety factor,Banerjee assumed 

that X and P were independent. 

By differentiating equation (3.14) ~ith respect to p 

and equating it to zero, the value of P corresponding to 

the minimum safety factor was given as 

i ", 
II ... tan-1 

( 2 Xtan+ + Xo ) ...........••••..... (3.15) 

2tan+ + Xo 

In the case of granular soil Xo D 0 and 

R -1 ...... tan (X )" i ...... " ..... "0 • 0 •• 0 0 ••• 0 0 •• 0 •• (3. 16) 

B 

H 
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3.5 Theoretical Expressions for Critical Height of Walls 
Failing by Tie Breaking 

The concept of the critical wall heigh~ was introduced 

by Schlosser and Vida1
67 

in studying model walls failing 

by tie breaking. This concept made it possible to examine 

the theories against model test results without measuring 

the tension in the tie, by assuming that the maximum tie 

tension Tmax was equal to the tensile strength of the tie 

material Rt when failure occurred. 

In this section the different critical wall height 

expressions based on the conventional approaches and 

Banerjee's analysis will be presented and compared. 

3.5.1 The Rankine and Coulomb Methods 

The ~aximum tie tension over a wall width S is given by 

Tr.mx -
substituting 

and 

-
H . - H c 

-

Ka Y.H.AH.S 

(3.17) 

It is possible to get two expressions of the critical 

wall height by proceeding as in the Rankine and Coulomb cases 

and using the Trapezoidal and Meyerhof's vertical pressure 

distributions. 
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3.5.2 The Trapezoidal Method 

H c = H 2 
K . Y. 4H. S (1 + K (~) 

a a L 

(3.18) 

) 

3.5.3. Meyerhof Method 

- Rt 1 H 2 . 
( 1 - 3 Ka ( ~) ). . . • • .• (3. 19) 

Ka' Y • -4 H. S 

3.5. 4 Banerjee' s5 Method 

as 

He considered two cases: 

(a) Failure of the first tie at the bottom of the 

wall in tension. For this case it was assumed that 

the nOD-dimensional tension factor X was given by 

T 

Yh4HS 

cnp.lys is) • 

- 0.35 (as found from a finite element 

Proceeding as before, the critical wall heiibt 

was given as 

- . . . . . . . . . . . . . . . . . . . . . . .. (3. 2oa.) 
0.35. Y. 4H. S 

(b) The failure of all the ties in tension. 

The total non-dimensional factor X was given by Banerjee 

x _ XT 

0.5 Y H~ 
... 

where n is the number of ties per unit wall width 
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! 
)2 ................ : ......... (3.20b) 

The assumption of all the ties breaking simultaneously 

is only valid if the ties have a constant safety factor 

against tie breaking failure, which is not fulfilled for 

rectangular walls with constant strip density. In model 

studies Schlosser and Vidal(67) noticed that failure of 

rectangular reinforced earth walls with uniform strip 

distribution, starts at the toe of the wall. Therefore, 

equation (3.20a) given by Banerjee will be considered for 

comperison with other theories. 

3.5.5 Comparison between the expressions for critical wall 
height for cohesionless backfill 

In a similar manner to the comparison made between the 

tensiou expressions the author has expressed the critical 

wall height as 

Be - B (3.21) . . . . . . . . . . . . . . . . . . . . . . . . . . 
Ka Y • AR. S 

where B - 1.0 for the Rankine theory, 

B 
1 Trapezoidal (3.22) - He )2 

. . . . . . . . . . . 
I +K ( 

a L 

I R 
)2 ( e 

B - 1 - - K Meyerhof .............. (3.23) 
3 a L 

K 
B - a Banerjee (3.24) - .............. 

0.35 

The variation of the coefficient B with the angle of 
Hc 

internal friction ~of the soil and different ~ ratios 
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is shown in Fig (3.7). The Trapezoidal and Meyerhof's 

pressure distributions predict critical wall heights which 
He 

increase with decreasing _ ratio and increase with increas-
L 

ing ~value, but are always less than the critical wall 

height predicted by the Rankine theory. 

Banerjee's expression predicts lower critical wall 

heights than the Rankine theory for ~ values greater than 
H 

280 for all C ratios. 
L 

Further discussion of these methods will be made in the 

next chapter in terms of model test results. 
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3.6 Theoretical Design Methods Assuming Tie PullOut Failure 

3.6.1 Introduction 

In order to calculate the tie length which provides 

stability for walls failing by tie pullout, estimates of 

tie pullout resistance and the tension in a tie are 

required. The latter quantity may be calculated by one 

of the previous methods. The tie pullout resistance is a 

function of the tie surface area,its depth below the wall 

surface and the tie/soil coefficient of friction. Simplify

ing assumptions have been made in calculating this forcJ60). 

The coefficient of friction. f., is normally assumed constant 

and the vertical stress distribution is constant and 

ide~tica1 on opposite faces of the tie. 

3.6.2 60 61 
The Rankine and Meyerhof methods 'Schlosser ~ , 

(60) 
Schlosser derived expressions for the adherence 

length by assuming that all the tie length was effective in 

providing resistance against pullout failure. For a tie 

of length L aDd width b. and under an overburden pressure 

~h, the tie resistance against pullout failure Fr' is 

Fr - 2bL"th f .•...............••.••.••.••••••• (3.25) 

where f i3 the soil/tie coefficient of friction. The 

tension per unit wall width in a tie at a given depth. h. 

below the·surface of a reinforced earth wall can be calculated 

from the Rankine theory by equation (3.3). By equating 

equations (3.25) and (3.3) and considering a wall of width 

S, the adherence length was given as: 
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K 
L = a 

a. AH.S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. (3.26) 
2.b.f. 

6061 
In a similar manner Schlosser 1 derived an expression 

for the adherence length by assumingtheMey~method for the 

tie tension calculation, and equation (3.25) for estimating 

the tie resistance against pullout- failure. 

The adherence length was given as: 

L -a 

h
2 

K . a 

3L 
+ 

Ka h 2 
2bf (l - 3 (L) ) 

. . . . . . . . . . . . (3. 27) 

Equation (3.27) gives an adherence length which increases 

wi th waIl depth. At the top of the wall, i.e. when h - 0, 

this equation gives an identical result to equation (3.26). 

Schlosser 60 compared both equations for a full scale 

wall and found that for practical purposes, the results 

from the two equations can be taken as similar. Equation 

(3.26) js mainly used in practice for the design of 

reinf~rced earth retaining walls. 

45 
3.6.3 The Rankine Method using Lee's assUJIlption (Lee et al ) 

Lee et a1 45 derived an expression for. the adherence 

length by assuming that the tie tension is given by the 

Rankine theory, but that only the tie length extending 

beyond the Coulomb failure plane was effective in providing 

resistanca against tie pullout failure. 

Considering Fig (3.8) the tension in the tie at a 

depth hi below the wall surface, using Rankine theory is 

-
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The tie resistance against pullout at level i below 

the wall surface is 

-
The safety factor against pUllout 

Fri 
SF -

Ti 
substituting for Fri and Ti from the 

above equations 

SF - 2bf 

Ka AH.S 
( L - (H - hi) tanp) ............••.•.. (3.28) 

The adherence length can be obtained by substituting SF - 1 

and II - (45 + in equation (3.28) . This gives - - ) 
2 

L - KaAH S 
+ (H - hi)'A .....•.•... (3. 29) a 2bf 

Equation (3.29) predicts an adherence length which 

incre~ses with increasing wall haight. It gives a minimum 

adherence length at the base of the wall (i.e. wben hi - H) 

which is identical to the adherence length predicted by 

equation (3.26). 

3.6.4 The Coulomb force method 

1
(45) 

Lee _e_t _a_ envisaged a method of design for tie 

pullout failure based on the Coulomb theory. He assumed 

that the reLnforced earth wall behaves monolithically and 

that only the tie length extending beyond the Coulomb failure 

plane is effective in preventing tie pullout failure. 

An expression for the safety factor against tie pull 

out failure was obtained by comparing the total tie reSisting 
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force against pullout and the earth pressure force as 

follows: 

The earth pressure force P for a wall height Hand 

width S 

p -

is 

2 
0.5 KaY.H 8-

The pullout resistance of a tie at level i Fig (3.8) is 

... 

aT' Fr i 

By s~ing all tie resistance& and comparing them to the 

earth pressure force P, the safety factorr against tie 

pullout was given as 
n 

SF - LI 2 hi (L - H tanp) + hi . tan,] ..• (3.30) 

i .. N 

N is the number of ties from top of the wall to the 

level whe~e the first tie cross as the theoretical Coulomb 

failure plane. 

Substituting fClr hi ICI iAH and H - nAH in equation (3.30) 

we get 

SF _ 4. b. f. A H 

K H2 S 
a 

n 

~ i (L - AH (n-i) v'"K;) ...... (3.31) 
i=N 

The adherence length can be calculated from equation (3.31) 

by assigning the safety factor equal one. 
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t4 . Hremp 
~tanp 1 
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I 
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.. 
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./ 
L n 

the 
Fig13~~.ParGmeters inlCoulomb & Banerjee design methods against 

tie pullout failure, 



- 37 -

3.6.5 The Coulomb moment method 

. (45) In th~s method Lee et al adopted the same assump-

tions previously made in the Coulomb force method. 

The expression of the safety factor against tie pull 

out was obtained by comparing the total resisting moment 

of the tie frictional force, and the earth pressure moment 

about the toe of the wall as follows: 

Tbe tie resisting moment RM, at level i, Fig (3.8) is 

The total 

RM .. 

-
resisting moment is 

n 

L 2b· f!'f.h L (H - hl..) 
i-N i i 

n 
ftM _ .L 2bf.Y.h i (L - (H - hi) tanp) (H-h i ) 

iaN 

The total moment due to the earth pressure force is 
Ka"l H3. S 

II - ----
6 

SF - RM/M 

SF -
l2bf 

K H3S a 

n 
~ hi(L - (H - hi)tanp) (H - hi) 

iaN 

substituting for hi ... 1. AH and H == n. A H. 

D 

SF - l2bf. AH2 ~ i(n _ lj t L - AH(n -i) ~ J ••• (3.32) 
K H3S i=N V ""a 

a 

The adherence length corresponding to the safety factor 

against pullout equal one can be calculated from equation 

(3.32). 
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3.6.6 
( 5) 

Banerjee's expression of the adherence length for 

cohesionless backfill 

For a soil with an angle of internal ~riction + and a 

unit cohesion c, according to Banerjee5 the sum of tension 

forces in the ties is given by 
II. 

l:T - ~ 2 o(b Li ( c -+ "V.h i tan+) •..•..•••••.•• (3.33) 
i-I 

Li and hi are shown in Fig (3.8) and ~is an empirical 

coefficient, suggested to be in the range O. 4 ~ 0(. ~ 0.60. 

For a w~ll of width S,'Banerjee's non-dimensional tension 

parameter X is given by 

x- l:T 

From &quation (3.14), in the case of granular soil and 

a safbty factor equal one, the non-dimension~l tension X is 

equal to the coefficient of active earth pressure Ka. Rence, 

XT 2 
- 0.5 ~.'t.H .8 (3.34) 

For granular soil c - O. The expression for the 

adberence can be derived by equating equat:t.ons (3.33) and 

(3.34), substituting 

- L - (H - hi tanf)) and 

carrying out the summation we get 
K H2 8 

a C A 
L - ------w---- + H tanp - H (2n +1) tanp 

a 20<.. bAH (n2 +11) ta.n. -1: 3 
. . • •. (3.35) 

where tanp - JKa . 
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3.6.7. Comparison between the theoretical design methods 
assuming tie pullout failure 

The foregoing theoretical design methods assuming tie 
pullout failure do not lend themselves to a simple compara-

tive analysis as has been done for the tie tension and 

critical wall height expressions in sections (3.3.3) and 

(3.5.5) respectively. This is because the final expressions 

contain terms which are directly comparable only for 

particular cases and cannot easily be compared in a general 

way. 

However, comparisons will ba made in Chapter Five based 

on reoults of model tests. 



- 40 -

3.7 Comments on existing theories 

In the foregoing sections the methods of analysis of 

reinforced earth walls have been presented.' Basically these 

methods were derived from the Rankine and Coulomb earth 

pressure theories, which assume that the backfill of a 

retaining wall is homogeneous and isotropic. The reinforced 

earth material being essentially a composite material, 

deviated from these assumptions. When the Rankine theory 

was applied to the reinforced, earth wall design it neglected 

the shear stresses developing at the soil/tie interface, 

which is a basic r~quirement for the internal stability of 

a reinforced earth wall. As a result, this theory gave a 

linear tension distribution with wall height, which was at 

i ith bs t i f 11 1 11 
(6~14) 

var ance w 0 erva ons made on u sca e wa s. 

The Rankine method implied a maximum tension near the wall 

face and the ~oulomb t~eory implied a constant tension along 

the tie length. Both implied assumptions were not in 

agreement with the tenSion variation along a tie observed on 

full scale wall.!l~67,29,14)These methods do not take into account 

the tie length effect on the tie tension which has been 

indicated in model tests~3,t7) The Rankine theory has beeB 

found to overes~imate the tie tension when compared with 

model test results(.63J 7 ) 

The Trapezoidal and Meyehof design methods were derived 

on similar bases to Rankine theory and differ from it only 

by considering the effect of the thrust on the back of the 

wall on the vertical stress distribution. Thus these methods 
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resulted in a higher tie tension than the Rankine theory 

and therefore will lead to a more conservative reinforced 

earth wall design. 

The methods of designing reinforced earth retaining walls 

based on failure surfaces,such as Banerjee's method.have 

been reported to be unsuitable for reinforced earth wall desig~~3) 

It is therefore necessary to derive a theory which takes 

into account the nonlinear tie tension variation along a tie 

length observed on full scale walls, the non -linear tie 

tension distribution with wall height, the deflected shape 

of wall and the tie length effect on the tension in a tie. 

The author has developed a theory based cn an energy approach 

which attempts to take these factors into account. The 

assumptions and derivations of this theory will be presented 

in the next section. 
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3.8 Strain Energy Theory 

3.8.1 Introduction and general statement of approach 

The strain energy theory obtains expressions for the 

reinforced earth wall design by establishing energy relations 

fro. elastic deformations of the reinforced earth wall facing 

and the ties, under the action of the earth pressure and the 

tecsion forces respectively. 

The external work done is calculated first by assuming 

that the wall yields to a stable position given by the 

genera1 function y(Z) under the action of the earth pressure 

force p(Z) which varies in the general manner shown in 

Fig (3.9). 

The incremental external work over a height dZ and 

wall width S is given by 

U 
ext - S. p (Z) • y (Z) • dZ ••••••••••••.•••••.••• (3.36) 

and the total external work can be calculated by s~ng 

these inCTe.ants over the total wall height H and width $ 

CiS 
H 

5 S p(Z) .y(Z).dZ ................. (3.37) 

o 

The external work done is assumed to be stored in the 

reinforcing ties as an elastic strain energy and the strain 

energy stored in the skin elements is assumed to be 

negligible. Provided that the tension distribution along 

the tie length is specified, the strain energy stored in the 
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Fig(3-10a) Earth pressure 

distribution @ 
Fig.(3-10b) Idealized deflected shape of wall. section A-B. 
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tie can be calculated by equation (11.1 ) derived in 

Append ix( I I ) 

L 

J 
o 

where 

which gives the internal work done as 

T(x) dx 
2 A'E 

r r. 
..... ,. ..................... . (3.38) 

T(x) function which gives the tension variation 

along the tie 

- cross-sectional area of the tie 

- the Young's modulus of the tie,material 

By equating the external work done at a given tie level 

and the strain energy stored in the tie, it is possible to 

obtRin an expression for the tie tension. 

3.8.2. Assumptions 

To produce an analytical solution, assumptions regarding 

the earth pressure distribution with the wall height, the 

tension variation along the tie length and the deflected 

shape of the wa1l have to be made. 

3.8.2.~. Pressure distribution over wall' height 

Different pressure distributions with wall height can 

be incorporated in equation (3.37). to calculate the external 

work. In the present study hydrostatic pressure distribution 

is assumed Fig (3.l0a)mainly to simplify the solution of the 

equation. 

For a wall without a surcharge the pressure at depth Z 
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below the wall surface is given by 

p(Z) - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.39) 

3.8.2.2. Tension variation along a tie length 

( 6329) 
Observations on field structures ~ showed that the 

tension variation along the tie length may have the following 

characteristics: 

(I) 
"-The maximum tension occurs at a distance (PL) from the 

wall face Fig (3.11). This distance varies according to 

the tie position in the reinfor~ed earth wall. It is small 

for ties lying at the bottom of the wall and increases with 

increasing wall height. 
,.. 

Therefore p may be assumed to 
1\ 

vary t-etween zero and 0.50 for real walls and 0 ~ 0( ~ 1. 

(2) The tension decreases to zero at the free end of the 

tie. 

In view of these observations twc assumptions have been 

made regardicg the tension distribution along the tie length. 

These are a linear distribution and a parabolic distribution 

ss shown in Fig (3.11). The strain energy stored in the tie 

was calculated from these tension distributions using 

equation (3.3S). For the assumed linear and parabolic 

tension variations, the strain energy stored in the tie was 

found to be 

Linear Ui -
Tm

2 .L .......... (3.40 a) 
6 A E r r 

Parabolic Ui 
4 Tm

2L ....... (3·40 b) =-
15 A E r r 
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T 

Fig,(3-11, Linearly varYing tension along a tie length. 

T 

---.I~~ __ ~(I--,-,4 JL:. 

L =1 

Fig.(3-11b) Parabolic variation of tension along a tie length.' 

Fig.(3-11) !!sumed tension distribution along a tie length used in the 
derivation of the energy theory expressions. 
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respectively as shown in Appendix( III> . 

Tm is the maximum tension along the tie Fig(3.ll). 

3.8.2.3. Deflected shape of wall 

The reinforced earth wall is assumed to behave as a 

composite material with a constant elastic modulus Eq 

, which is a function of the elastic modulus of the 

tie material Er , cross-sectional area A 
r 

and the area of 

the soil bounding the tie ASO and is given by 

E 
q - E A r. r 

A
SO 

67 
Schlosser and Vidal . . . . . . . . . . .. "(3. 41) 

The deflected shape of the wall was approximated by 

an approach similar to Jakobson(3S) Fig (3.12). The 

soil backfil1 ~ assumed to be initially in an at rest 

condition and the horizontal prebsure at depth Z below the 

wall sUi~face is given by 

KO' y.Z .................................... (3.42) 

. 
As tde wall deflects the pressure changes from an 

at rest state ~o an active state characterized by the co

efficient of active earth preasure K , the decrease in a 

pressure will be 

(KO - Ka)· "I . Z ••••••••••••••••••••••••••• (3.43) 

As the pressure changes the zone near the wall face will tend 

to fail. As a first approximation this zone is assumed to 

be a wedge bounded by a plane inclined at (45 + +/2) with the 

horizontal. Assuming that the skin elements do not inter-
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fere in the wall deflection, the displacement at depth Z 

is given by 

K - K o a 
y(Z)l = ---

Eq 

H - Z ............ (3.44a) • "'( • Z 
tan (45 + <1»/2) 

Since this equation includes the term (Ko - Ka) it is 

referred to as the pressure difference equation. Or, if only 

the active earth pressure 1.s assumed to cause this deforma-

tion, then the deflected shape of the wall is given as 

lCa H - Z .y.Z.--------------
Eq tan (45 + '$/2) 

y(Z)2· - .••.•..... (3. 44b) 

Since this equation is derived in terms of the active earth 

pressure coefficient Ka , it is r~ferred to as the active earth 

pressure equation. 

Equations (3.44a) and (3.44b) givp- a parabolic deflected 
shape of wall ~hich is similar to the idealized deflected 

. shape of wall shown ·in Fig (3.10b). 

A c 

·z 

L 
B 

FiF;ill-12) Wall deflection parametersC"tter .Takobson(35». 
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3.8.3 The Energy Theory 

3.8.3.1. Introduction 

Two approaches were used to obtain expressions for the 

tie tension, critical height of the wall failing by tie 

breaking, the safety factor against pUllout failure and the 

adherence lengths of the ties from the energy theory. These 

methods are: 

(1) A Total equilibrium energy approach in which the 

the external work is calculated first and then a distribu-

tion factor Ci is assumed in order to obtain the external 

work at each tie level. The strain energy stored at that 

wall level is equated to the external work. The governing 

equa't:ion is 

- Ci Uext ..........................•...•....••• (3.45) 

(2) A Local equilibrium energy approach in which the 

incremental external work at R depth h below the wall sur

face, over a sll'all wall height .. AH, is eqWtted to the 

strain energy of the tie calculated from the tie tension 

distribution. The governing equation is 

- 6U ext. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.8.3.2. Method 1: Total equilibrium energy approach 

(3.46) 

The total external work is calculated by adopting the 

general equation (3.37) and assuming a linear earth pressure 

distribution and equation (3.44a) for the wall deflection, 

i.e. 
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H 

= 5 J p (Z) . y (Z) . dZ 

0 

H K Y Z (K - K ) Y Z. (H - Z) dZ 
s j a. 0 a 

E .tan(45 + ~2) 0 q 

.. 

substituting for Eq 
E A 

r r 
K a 

... 1 - sinca. 

1 + sin4t 

and = (1 - si_) Jaky' s 36 expression 

and simplifying, we get: 

- sin .. ~· 5. 8 2 . AH. y2.H4 
.......• (3.47a) 

l2.A .F r r 

when the wall deflection equation (3.44b) is used instead of 

equation (3.44&). The external work expression will be 

- ~.5 2 2 4 
~ .S .AH y. H. 

. •............ (3.47b) 

This work 1s assumed to be stored as an elastic strain 

energy in the ties. To get the external work done at each 

tie level,a certain distribution of the total work has to be 

assumed. This may be achieved by adopting a distribution 

factor Ci which must satisfy the condition 

Linear, parabolic and sinusoidal modes of the external 

work distribution were considered. 

The linear distribution factor, first advanced by 

67 Schlosser and Vidal is of the form 
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2i ............................. (3.48a) 
n (n +1) 

The parabolic and sinusoidal distribution factors 

suggested by the author are 

-

6i (n - i) 

n (n2 - 1) 

in n 
sin -n. tan 2n 

parabolic ....... (3. 48b) 

sinusoidal ..•... (3.48c) 

These latter two variations are almost identical Fig (3.13), 

therefore either of them may be assumed for nonlinear energy 

variation with wall depth. 

Using Equation (3.45) and substituting for U
i

, Uext and 

Ci from equations (3.40), (3.47) and (3.48), the expressions 

for the tension in the ties from the total energy equilibrium 

are obtained. 

3.8.3.2.1. ExpreSSions from the total equilibrium energy 
ap'proach 

The assumptions used in the derivation of the energy 

expressions are summar ized in Table (3. I ) It is possible 

to get eight sets of expressions by combining the tension 

variation along the tie length, the energy distribution with 

wall depth and the wall deflection assumptions. The general 

form of these equations are: 

(i) The tie tension is given by 

T i - Jr Cl • K!· 5 • A~ 1 . s. Y. H2 •••.•••.. (3.49) 
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(ii) The maximum tension 

=vir[ C K2 . 5 AH 
2' a . L 

2 
S. Y . H ••.. 0 0 • • (3 0 50) 

(iii) The critical wall height for wall failing by tie 

I breaking 

H c 
= 

[

R
t 

. SoY 
~J2 ...••..••••• (3.51) 
V~ 

a 

(iv) The safety factor against pullout 

SF -
3/2 

2b L f 

SH2 

(v) The adherence length 

JC4 AH. 

. ~.5 
a 

• 0 •• 0 •• (3. 52) 

... (3. 53) 

where Cl , C2 , C3 , C4 and C5 are coefficients. Their 

values depend on the assump~ions adopted in the derivation of 

each equation. The values of these coefficients are shown 

in Table (3.~) lor each set of assumptions. 

", 
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o ~~--------------------------------~ 
1 

2 
RO. 
or 3 

layer . .4 

5 

6 

7 

8 

9 

8inUBoida 

10~----------------------------~~ 
. 0.0 0.1 0.2 

The coerricient or energy distribution- C1 

~~3}Ass~ptions of strain energy distribution ~ith wall depth 



Total 
equilibrium 

Local 
equilibrium 

Tension distribution 
over the ~i6 length 

Linear Fig (3.11a) 

Parabolic Fig(3.l1b) 

Linear Fig (3.11a) 

Parabolic Fig(3.11b) 

The strain energy 
distribution with 

wall height 

Linear, i. e . 
C == 2i 

i -n""'(-n-+~l~) 

ParaboliC, i.e. 

C == 61(n - i) 
i . 

n (n +1) (n-l) 

The deflected shape 
of the wall 

Using Eq. (3. 44a) 
derived by assuming 
pressure difference 

Using Eq. (3. 44b) 
derived by assuming 
active earth pressure 

Using Eq. (3.44a) 
derived by assuming 
pressure difference 

Using Eq. (3. 44b) 
derived by assuming 
active earth pressure 

TABLE (3.1) Summary of the approaches and assumptions used in the derivation of the 
energy theory expressions. 

(J1 
M:ao. 



~ Assumption C1 C2 C3 C4 Cs 

T.L.L.D. i sin. sin. (n+1) in(n+1) sin$ 
n (n+1) (n+1) sin. sin. i n(n+1) 

1 1 1 
T.L.L.A. n {n+I} n+ 1 (n+1) in (0+1) in(n+1) I 

T.L.P.D. 
3i (n- i) sin. In.sin$ 4 (n2~1) in(n2_1) 3(o-i)sio~ 

n(n2 _ 1) 2 -
in (n2 - 1) 4(n - 1) 3 n.81n$ 3 (n- i) sin~ 

T.L.P.A. 3i (n-1) )n 4 (n
Z 

-1) in (n
Z 

-1) 3 (n-i) 
- 2 . 2 -

in (n2 -1) n (n -1) 4(n - 1) 3 n 3 (n-i) 

T.P.L.D. isin4t sin* 1.6(n+l) 1. 6. i. n (n+l) sioep 
1. 6n(n+1) 1.6 (n+1) sin+ sinep 1. 6in (n+1) 

i 1 1. 6 (n+1) 1.6in(n +1) 1 
T.P.L.A. i. 6a (n+1) 1. 6 (n+1) 1.6in(n+1) 

T.P.P.D. 15i(n-i)siocp 15 n sin~' 32 (n2_1) ~. io(n2-1) 15 (n-i)sinq, 
8n (n2_1) 32' (n2-1) 15 n sin. 15 (n-i)sin. 8 1. n(n2-1) 

T.P.P.A. lSi (n-i) 15 n 32 (nZ _l) ~. i. n(n2_1) 15 (n - i ) 
8n (n2_1) 32' (n2_1) 

_.- -' 
i n (n2-l) 15 Jl 15 (n-i) 8 

-- -_. - --- ---

TABLE (3.2). The values of the Coefficients C1 , C2 , C3 , C4 and C5 corresponding to the differ
~nt assumptions in the total equilibrium energy equations. 

Abbreviations: The abbreviations shown in Table (3.2) stand for the assumptions adopted in 
the derivation of the tie tension expressions as indicated in Table (3.3). 

CJ1 
CJ1 
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TABLE(3.3) Abbreviations adopted in the designation of the 

expressions derived by the total equilibrium energy approach 

Energy Tie tension Energy distribution Earth pressure 
Approach variation over wall height in wall deflec-

tion 

Total Linear Linear Active - - - -
or or or 

Parabolic Parabolic Difference - - -

3.B.3.3. Method 2: Local equilibrium energy approach 

Using the local equilibrium energy approach based on 

equation (3.46), four sets of equations are obtained from 

different combinations of assumptions shown on Table (3.1). 

These equations are of the form: 

(i) Tension in the tie 

T -

. ~. 5 ) i 
( D1 • ~ • 'Y. h. AH. S . -VB-h ••••• (3.54) 

(ii) The maximum tension in the tie 

T -max 

(iii) 

-

~.5 
a 

L 

i 
) . 3/2 1 AH. S.H. 

The critical wall height 

1 _ (Dr)] 
. -V -;1:5 

a 

..•..•..••• (3.55) 

............ . (3. 56) 
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(iv) The safety factor against tie pullout 

2b f L 
3/2 1 

SF ... 
S. AH . V(D K2 • 5 (H - h) 4 a 

(v) The adherence length 

L a -
i 

~.5 (H -b) ) BAH 

2 b f 

••.•••••. (3. 57) 

•••.•• (3.58) 

where Dl , 02' 03' 04 and DS are coefficients. Their values 

depend on the assumptions adopted in the derivation of the 

particular equation. A list of the values of these 

coefficients is shown on Table (3.4) for each set of 

assumptions. 
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TABLE (3.4) The values of the coefficients D1 , D2 , D3 , D4 
and D5 corresponding to the different assump

tions in the local equilibrium energy approach 

~oefficient 
~ D1 D2 D3 D4 D5 

Assumpt ions ...... 

LO.L.D 6. sinej) 8 0n4J 9 
6 sin' 6 sin«l> ~1 

8sint 9 

6 8 9 
6 6 LO.L.A. - -

9 8 

LO.P.D. 15sin4» 5 sinet> 9 15sin+ l:sin4> -4 9 5 sinet> 4 

LO.P.A. 15 5 9 15 15 - - - -4 9 5 4 4 

Abbreviations 

The abbreviations stand for the assumptions adopted in the 

derivation of a particular equation as indicated in Table (3.5) 
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TABLE (3.5) Assumptions adopted in the local equilibrium 
approach 

Energy Tie tension Earth pressure 
Approach var.iation in wall 

deflection 

LOcal Linear Active - - -
or or 

Parabolic Difference -
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3.8.4 Comparison between the energy theory tie tension 

expressions 

Twelve tie tension expressions have been obtained by 

adopting different assumptions in the energy theory. It is 

necessary to choose only some of these equations to facilitate 

further comparative analysis with the other theories and test 

results. 

To help in visualizing the effect of the different 

assumptions, a wall comprising 15 layers and a G value of 
o 

40 was assumed. The tie tension expressions given by the 

energy theory were expressed in the general form 

sinet>. AH.~· 5 a 
L 

) 2 
• S. Y.H ••••••••• (3.59) 

where Ai is coefficient which is diff~rent for different 

assumptions and its values are shown in Table (3.6) against 

the corresponding assumptions: 
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TABLE(3.6) The values of the coefficient Ai corresponding 
to different assumptions 

Assumption 

T.L.L.D. 

T.L.P.D. 

T.P.L.D. 

T.P.P.D. 

T.L.L.A. 

T.L.P.A. 

T.P.L.A. 

T.P.P.A. 

LO.L.A. 

LO.L.D. 

LO.P.A. 

LO.P.D. 

/ 

Coefficient Ai 

\ I I 
/;(n+1) 

/31(;-1) 
n (n -1) 

I i 
-V 1. 6n(n+1) 

• 
_~15i(n-i) 

8n(n2-1) 

I i 
Vn(n +1) sin~ 

~i(n-i) 
~(n2-1)~in(;1 

~.6n~n+l)Sin~ 
-

5i (n - i ) 
8n(n2-1)sin~ 

i /6(n- i) 
-2\1 
n sin(J 

4-v'6(n-i) 
n . 

i 3.75 (n-i) 
-2 
n sin~ 

i 
-2 -V3. 75 (n-i) n 

N. B. The 
abbreviations shown 
in this table stand 
for the assumptions 
adopted in deriving 
a par~icular 
expression as shown 
on Tables (3.3), 
(3.5). 
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The values of the coefficient A. were computed and the 
1 

results are shown on Figs (3.l4) to (3.l6). Obviously, 

particular patterns of tie tension distribution with wall 

height emerged with similarities. A reduction in the number 

of equations can be made by choosing two from each 

general approach. Th~ following expressions have been 

selected: 

(i) T • L. L. D. ) 
) 

(ii) T.P.P.D. ) 

(iii) LO.L.A. ) 
) 

(iv) LO.L.D. ) 

(v) T .L.L.A. ) 
) 

(vi) T .L.P .A. ) 

Fig (3.14) 

Fig (3.15) 

Fig (3.16) 

It will be seen in Chapter Five that the tie tension 

expression based on the local equilibrium energy approach 

has been recommended in designing for the internal stability 

of reinfor~ed earth walls. 
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3.8.5 Comparison between the energy theory and the existing 

theories 

The analytical design expressions derived from the 

energy theory contain the same parameters, e.g. (K , L, h, 
a 

AH, S, H), as the existing theories. However, the 

functional relationships between these parameters is 

different in the energy and the existing theories. 

Because of these differences, it has been found difficult 

to compare generally between the energy and the existing 

theories. A detailed discussion and comparisons will be 

presented in future chapters in tgrms of test results. 

3.9 Conclusions 

The original methods of the reinforced earth wall 

design were based on the Rankine and Coulomb earth pressure 

theoriea, which assume that the backfill of a reinforced 

earth wall is homogeneous aud isotropic. Tbis assumption 

is unrealistic, since the presence of the ties in the soil 

mass modifies its properties. Th~ Rankine theory neglects 

the shear stresses developed at the soil/tie interface. 

For a wall with large numbers of layers, baving a 

smooth back and assuming a linear tension variation over wall 

heigbt in the Coulomb theory, the Rankine and Coulomb theories 

give identical tension expressions. The Coulomb theory 

can, however, be applied for walls with irregular geometry 

and a rough back. 
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Comparison between the Rankine, Coulomb, the Trapezoidal 

and Meyerhof's tie tension expressions showed that the latter 

two methods predict higher tie tensions than the Rankine and 

Coulomb theories. For practical purposes, i.e. when H/L 

ratio approaches unity and the values of 0 are relatively 

high, the differences in predicted tie tensions, between the 

Rankine, Coulomb, the Trapezoidal and Meyerhof are relatively 

small (i.e. ~ 25 per cent of Rankine values). 

The Rankine theory has mainly been used in practice. 

This theory gives a linear tension distribution with wall 

height, implies a maximum tie tension near the wall face, 

and overestimates the tie tensions when applied to model 

reinforced earth walls.',1? 

The methods of reinforced earth wall design based on an 

ultimate strength concept such as Banerjee's method, have 

been found 63 unsuitable for the reinforced wall design, 

mainly because these methods do not permit calculation of 

stresses in the ties at different wall levels. 

A new energy theory is presented. This is based on the 

premise that the external work done by the earth pressure is 

stored as an elastic strain energy in the ties. By assuming 

an earth pressure distribution with wall height, a deflected 

shape of wall and a tie tension variation over the tie length, 

analytical expressions which can be used for the reinforced 

earth wall design were obtained. 
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Six energy expressions for tie tension have been 

chosen as representing the ranges of tension distribution 

with wall height and tie tension magnitudes,indicated by a 

simple comparative analysis carried out between the energy 

expressions. 

It will be shown in Chapter Five that the local 

equilibrium energy approach assuming a linear tension 

variation over the tie length and an active earth pressure 

in the wall deflection equation (LO.L.A.), gives good agree

ment with the observed model wall behaviour. 
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CHAPTER FOUR 

THE MODEL DESIGN, WALL BUILDING PROCEDURE AND 
INSTRUMENTATION 

4.1. Introduction 

The use of models in the solution of soil mechanics 
problems is an accepted practice~~53~~1 Two types of models 

have mainly been used: Those which are intended to predict 
the detailed behaviour of the prototype and in which the 
principles of similitude are fully satisfied and the second 
types are those which serve as prototypes themselves and 
these require that the basic assumptions inherent in the 
analysis are satisfied, e.g. plane strain conditions. 

In the present investigation the latter type of model 
was adopted. This was thought to be more appropriate in 

understanding the prototype wall behaviour on a qualitative 
baSis, in testing the theories that may be used in designing 

full scale structures, in checking the theoretical assump
tions on which the theoretical analysis was ~ased and in 
examining different parameters related to the design of full 
sca Ie wa lIs • 

This chapter will describe the test apparatus including 
the instrum&Btation for measuring stresses in the ties and 
the soil, and strains in the soil. 

4.2. DetaLIs of Test Apparatus 

4.2.1 The Model 

Plane strain conditions were simulated by a rigid-sided 
open-fronted plywood box, Fig (4.l). The dimensions were 
chosen to ~ve reasonable volume of sand which could be handled 
by one person. A maximum wall height of 500 mm was chosen 
to ~ve measurable stresses and deformations in the wall. Tbe 
width of the model was decided by adopting a width upon height 
ratio greater than 1.3, to minimize the effect of the side 
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wall shear stresses in reducing the earth pressure force on 
the wall face. 43,58 The length of the model was determined 

by considering a length of the reinforced earth wall which 

is approximately equal to the wall height and a distance 

between the end of the wall and the rear side of the model 

which reduces the effect of the model rear side on the internal 
stresses. Tests dealing with this effect will be described 
later in the main test series. 

4.2.2 Other features of the test apparatus 

These includeda simple raining device consisting of a 

perforated sand container which was adjustable to a constant 

height above the layer being deposited to ensure a constant 

density. A false front was made for the box comprising five 

perspex ~lanks slotted into the sides of the box, Figs (4.2 

and 4.3) to prevent excessive forward wall movement and 

spillage of sand, to mount strain measuring devices at 
different levels and to provide, through an aluminium bracer 

(Fig 4.4 and 4.5) temporary support to the facing elements 

while the wall was under construction. 

4.2.3 Skin elements 

Previous mention of rigid and flexible skin elements 
in full scale walls has been made in Chapte~ One. Since the 
skin elements are assumed not to affect the internal stability 
of the reinforced earth wall, the present study is restricted 
to rigid skin elements only. 

These were designed such that they could rotate freely 
on each other to simulate the full scale panel behaviour. 

Therrigidi~y was ensured by adopting 6 mm thick perspex 

panels. More details about these panels will be given in 

Chapter Five. 

4.2.4 The soil 

Dry sand was used in this investigation. This sand had 

a particle size distribution shown in Fig (4.6) and a specific 
gravity of 2.65. The maximum and minimum dry densities 
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determined according to reference(39), were 1.6954 and 
3 1.3970 gm/cm respectively. 

The sand density has been shown previously to have 
little effect on the reinforced earth wall behaviour~5 
The present study was carried out at an average sand density 

of 1.6145 ~ .0100 gm/cm3 . This corresponds to a relative 

density of 76.5%. 

The shear strength of the sand was measured using 100 mm 
diameter, and 200 mm high triaxial samples, tested in a dry and 

saturated condition. These gave an angle of internal 
o + 0 friction a - 40.0 - .50 as shown in Figs (4.7) and (4.8). 

4.2.5 The Ties 

It has been noted that reinforced earth walls can fail 

by one of two mechanisms: (a) Breaking of the ties and 
(b) Slippage of the ties. To study stability against 

breaking it was necessary to use a thin material for the 

ties such as aluminium foil, but to study slippage a more 

rigid tie such as perspex could be used. 

Because of this, aluminium ties were cut in widths 
varjing trom 3 mm to 7 mm of thickness ranging between 20 and 

45 ~. The perspex ties were cut in 22 mm width from 
perspex sheets approximately 1.5 mm thick. 

The ties were provided with extensions made of adhesive 
tape to allow for attachment to the pel'spex panels. 

The coefficient of friction between the ties and the sand 
was determined using a controlled stress shear box, 134_ 
by 98.6 mm in plan, which wae filled with compacted sand 

average density equal to 1.590 gm/cm3 • 

Precautions were taken to ensure uniform distribution 

of the vertical stress and the effects from edges of the box 
were accounted for by conducting calibration tests while the 

box was empty, Figs (4.9a) and (4.9·b ). 

The coefficients of friction were found to be: 
Aluminium foil/sand coefficient of friction 
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f - 0.517, Fig (4JOa); perspex/sand coefficient of 
friction f = 0.398 (Fig 4.10b). 

The aluminium foil/sand coefficieint of friction was 
also determined from a direct pullout test, Fig (4.11), which 
gave f = 0.503 as shown in Fig (4.12). 

4.3 Wall Construction 

The lowest section of the perspex false front was placed 
in position and clamped. The lower panels were erected 50 
to 70 mm behind it using spacers between the panels and the 
false front. The panels were prevented from slipping for
ward by a small perspex upstand fixed in front of them. 

To prevent the sand from spilling around the ends of 

the wall facing elements, cotton wool was packed between them 
and the sides of the box, Fig (4.13). 

The sand was weighed and introduced behind the facing 
panels in 50 mm thick layers by pouring from the sand 
container held at a constant height of 500 mm above the layer 
being placed. Each layer was levelled off horizontally and 
checked by a spirit level. 

On reaching the level of the lowest series of ties, the 
ties ware fixed to the panels, then laid on the soil surface. 
Construction proceeded in the same manner for subsequent 
layers. The density of the sand backfill was determined 
from the known weight of the sand and the volume occupied. 

4.4 Sand Density Control 

One of the main problems in tests involving sand is in 
ensuring a uniform density throughout the volume of the 

container. 

Preliminary tests were carried out on sand compacted by 

tamping, vibration and by a raining device, and the results 
indicated that deposition by raining gave a more consistent 
density than the other methods. 

The density of the sand under the deposition procedure 
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was measured at various points within the sand mass in two 

ways: 
(1) By using a miniature vane to obtain values for 
torque and converting these to density by means of a 
calibration curve, Fig (4.14) and Table (4.1). 

(2) By using perspex boxes (50 x 50 x 40 mm) at 
various levels within the mass. 

shown. in Table (4.2). 

The results are 

The observations indicated that the perspex box system 
gave more reliable results, a standard deviation of 0.44% 

being obtained compared with 9% for the miniature vane method. 
The difference in average density, 1.6159 gm/cm3 compared with 

3 1.556 gm/cm was due to the height of deposition being 
different in the two cases. 

4.5 Stress Measurements on Tie3 

One of the objectives of the present investigation was 

to mo~itor the stresses built up in reinforcing ties while 
the wall was under construction. 

In full scale walls, electrical resistance strain gauges 

have beeu attached to the reinforcing ties, and the strains 
measurec have been converted to stresses by using the 14 
appropriate value of Young's modulus for the tie material 
or by individual calibration of the ties.29 

In model studies with alumjnium toil ties 13)111 thick, 

Lee et a1 45 used strain gauges mounted on bra.ss strips 
25 pm thick intr~duced in series with the aluminium foil. 
In these tests the lead wires appeared to interfere with the 

performance of the ties. 

Preliminary tests by the author using commercially avail

able strain gauges on aluminium ties 45 um thick led to the 
discovery that although the gauges worked well in tension, 
distortion of the ties in situ' caused the development of 

bending strains in the gauges. 
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<i) Po~ition of vane shear 

4 

The miniature vane shear reading in degrees 
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33 32 32 32 35 32.8 
-

Average torql1e • 34% ~. 
Torque variation in degrees:,,, densitY' -1.556.:1: 9% 

3 

~1 "2 
1.6212 1.6081 

1.6190 1.6000 

1.6178 1.6299 

1.6221 1.6191 

1.6150 1.6070 

'13 

1.6103 

1.6290 

1.6103 

1.6180 

1.6128 

erspex 

box •• 

to.t/, 

1.6132 

1.6160 

1.6193 . 

1.6190 

1.6116 

Average dens! V 

Table 4.2 The den~ity measurement at different layers of the wall 
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This bending effect was studied by means of a simple 

apparatus designed to produce measured tensile and bending 
stresses on a tie. Attempts were made to eliminate the 
e~fect of bending by using adhesive to make the gauges more 
rigid, and by measuring strain on both faces of the tie. 
The results of this investigation are summarised in Table 
(4.3). It was concluded that in order to minimize the 
bending effect the gauge must be rigid and the strains must 
be measured on both faces of the tie. 

As a result of these tests it was decided to attach the 
gauges to small perspex strips glued in series with the 
aluminium tie, Fig (4.15). This configuration was used in 
the first series of model tests described in Chapter Five, 
and apart from some problems which arose in connection with 
the different properties of the perspex and the aluminium, 
gave reasonable results. 

In order to study walls failing by pullout or under 
stable conditions, relatively rigid ties could be used. 
Because of this, and in order to eliminate problems arising 

from using two different materia~s, p~rspex ties were used. 
These were gauged on opposite faces,Fig (4.16) using strain 
gaug~s manufactured by Micro Measurements Company, TYpe 
EA-4l-125~120. These gauges were mainly adopted 
for the stress measurement in the present investigation. 

An attemp~ ~s also made to increase the bending stiff
ness of the tie at the strain gauges position to make them 
relatively insensitive to bending, Fig (4.17) shows the 
modified mounting for the strain gauges in the form of a 
gauged vertical perspex beam fixed to the ends of a slot in 
the perspex tie. This method of stress measurement was 
only used in a few tests because of the suspected modifica
tion of the frictional charactenstics of the tie, since 
slots were made to accommodate the gauges. 

All the strain gauges used in the model tests, whether 
mounted on aluminium foil or on perspex were calibrated using 



No. of Sensitivity Material Range of strain Coating applied to tensile Response to Result of 
Type tie gauges on gauges stresses bending the test 

thit:knesses mounted 

Aluminium 45 ].In, to One Plastic Sensitivity Bending strain Appreciable 
Foil O. i5 mm coating ranging be- is 8N axial bending 

tween load per each stresses 
(lOO-26)].Is/N degree of 

rotation 

Aluminium Two Plastic Sensitivity " Appreciable 
Foil " gauges Coating (100-26»)ls IN bending 

mounted 
back-to-
ba<:k 

Aluminium " One Plastic Sensitivity to Bending Sltrain Improvement, 
Foil Coating plus axial stresses 0.4N al!;ial i.e. less 

Quick set reduced by loading per response to 
adhesive 46% degree of bending 

rotation stresses 

Aluminium tt Two Plastic .. Bending strain Bending 
Foil gauges Coating plus O.lN a~ial resulted in 

mounted Quick set load per nearly equal 
back-to- adhesive degree ot strains of 
back rotation opposite signs 

-- - - ----

!ABLE (4.3) Results of preliminary investigation into the stress gauges response to 
bend!n, and axial stresses 

i 

i 

! 

00 
C,1l 
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TABLE (4.4) Ranges of Calibration factors of the tension gauges 

Gauge Type 

Strain gauges mounted 
on perspex beams and 
connected in series 
with aluminium tie 
(Fig 4.9) 

Strain gauges mounted on 
pel'spex tie Fig 
(4.10) 

Strain gauges mounted on 
perspex beams and fixed 
in slots in perspex tie 
Fig (4. ll) 

Range of Calibration Factor 

(173-176) )lslN 

(20-38) )lslN . 

For half and full bridge 
configurations 
respectively. 

(24-33) )lslN 
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FACING PANEL. 

Quick set epoxy adhisive luminium foil tie(4 mm wide,45 pm thick) 

35 DID J 

Fig.~S Preliminary tension gauge design connected in series with 

aluminium foil tie. 

30 DID 50 DUD 70-mm 100 IIIIl 

L..-.----------tw 
,.00 DIll ., 

L --' L re: r II .r- -
1.5-1.37 D'I lUevation 

Fig!4JG Persl!ex tie with It tension gages 

25 DID 

~ ~ Ii 
mm r 7' .1/. . -,. tJ 

400 mm .1 
50 I'QIII . 50 nun 

r 
( I I 

Elevutlon 

Fig_4f17 Perspex tic with 3 tem.;ion gaugeR(Low rcspon!";c to bcndin;t type) 
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Fig,4.18 Set up for t}l.e calibration of tension gauges 



3000 

2000 

strain 

indicator 
1000 

output 

. JlB 

o 

3000 

.train . 

indici~g~ 
output-)lB 

1000 

o 

- 89 -

o 10 20 30 40 50 60 70 80 
Applied load-N 

( a) 

36. 2l:l:0. ,OpsIN 

o 10 20 30 40 50 60 10 80 90 

Applied lond-N 

(b) 

F ig'.4.19 Typical calibrn. Hon curves for s train gauges moul"!tcd on 

pcropex ties 22 om wide, 1.5 mm thick 
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the loading frame shown in Fig (4.18), to provide a direct 

reading of stress ~. electrical output. Precautions were 
taken regarding loading and unloading, repetition of loading 
cycles and the test temperature. Typical calibration curves 

are shown in Fig (4.l9)and the range of the calibration 

factors obtained is shown in Table (4.4). 

4.6 Strain Measurement in the Soil 

4.6.1 Introduction 

The importance of measuring the strain in models and 
s 

full scale structure is well recognized by previous I< 
investigators~7155 --

In the present study it is intended to observe the 

strains set up in the backfill of the model walls. 

68 
Selig reported that the main requirements of a 

suitable strain gauge are that the gauge should freely 
follow the movement of the soil and the gauge/soil attach

ment should be satisfactory. 

MOEt of the instruments used for straip measurements 

in soil are physically coupled. These consist of two 
discs connected by a sliding rod which provides a gauge 
lengtil between the discs. Movement is measured by linear 
transducer incorporated in the sliding rod. These types 
of gauge have problems of placement and interference of 
soil due to presence of the rod in the gauge length~ 

12 
other methods of straie measurement in soil use optical 

or X-ray 57 techniques. The optical methods have the 

disadvant~ge that only the strains adjacent to the trans
parent side of a model can be observed. These are liable 
to be considerably affected by friction on the side of the 

. model. The X-ray technique can only be used in thin models 

because of the limited power of penetration of the X-rays. 

In the present investigation free field strain coils 

were developed from an original design by Truesdale and 
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Anderson,?4 and were used for strain measurement in the 

backfill of the reinforced earth model retaining walls and 

also in the wall deflection observations. 

4.6.2 Theory of operation of the strain coils 

The strain coils theory is based on the differential 

transformer principle. The driver and detector coils 

Fig (4.20),correspond to the primary and secondary trans

former windings respectively. When a high frequency signal 

is applied to the driver coils, the magnetic field produced 

induces a voltage in the detector coils. The magnitude of 

the induced voltage is a function of the magnetic linkage 

and hence a function of the coils' separation. The output 

from the bridge is amplified so that a very small change in 

the spacing can be detected. 

The coils are connected in opposing series so that when 

the 3eparation of the embedded coils is identical to the 

reference coiLs the output voltage is zero. When the spacing 

of the embedded pair is altered the resulting voltage can be 

nullod by operating the micrometer attached to the reference 

pair. The chang9 in distance required is identical to the 
change in spac1ng of the embedded pair. 

4.6.3 Development of the strain measuring system 

This c~nsists of electrical equipment which plays an 
important role in the sensitivity and stability of the read
ings, and coils which act as sensing elements. 

4.6.3.1 The electrical equipment 

74 
Truesdale and Anderson originally used the 

electrical components indicated in Fig (4.21). Morgan 

and Gerrard49 used a similar circuit, Fig (4.22) and added a 
filter tuned to the oscillator frequency to increase the 

stability of the output signal. 
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In the present study a measuring circuit consisting of 
an available oscillator, a voltmeter and locally constructed 

filter amplifier unit was assembled, Fig (4.23). The 
circuit was designed so that it would pass and amplify only 

at a frequency equal to 15 KHZ which has been found 49 

to give maximum sensitivity. 

The new feature of the present circuit is the D.C. 
filter amplifier unit which increased the stability and 
sensitivity of the system. 

4.6.3.2 The coils 

74 In the original design by Truesdale and Anderson 

no detailed information was given about coil construction. 

Generally, the coil size is determined by the relative 

size of the coil with respect to the soil mass, the coils' 
separation and the sensitivity desired. For laboratory use 

small coils are needed to decrease the coils' effect on the 
sand medium. 

An empirical approach was undertaken to determine the 
coil sizes needed in this st11dy. 

Two sets of coils were manufactured. The first sets 
of coils were produced with the specifications shown on 
Table (4.5) and were used in the sensitivity, linearity checks 
and in assessing the effect of the sand medium on the calibra
tion factor of the coils. 

TABLE (4.5) Specifications Qf the first set of the strain 
coils 

Coil outside diameter 

Coil inside diameter 
Wire diamter 

Number of turns 
Coil electrical resistance 

Coil inductance 

49 mm 

14 DUn 

0.12 mm (40 S.W.G.) 
1,500 

140 n 
33 m.H. 

AY glue and HY 951 hardener were used to bind the coils. 
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The second set of coils was intended for m~asuring the 
strain in the wall backfill. The coils had to be as small 

as possible to minimize disturbance of the soil mas. in which 
they were installed, and using fine lead wires to avoid any 

possible reinforcing effect of the soil and permit free move
ment of the coils. The separation of the coils had to be 

as large as possible to provide a long gauge length without 
reducing sensitivity. Taking these requirements into 

consideration the coils were designed with the specification 
shown in Table (4.6) and eighteen pairs were manufactured. 

TABLE (4.6) Specifications of the second set of the strain 
coils 

Coil outside diamete~ 23 -Coil inside diameter 7 .. 
Wir~ diameter 0.1 mm 
Number of turns 1,800 
Coil electrical resistance 290 Q 

Coil inductJlDCe 39 mil 

DenSity a~er finishing 
gm/cm3 and potting in araldite 1.8-2. 1 

4.6.3.2.1 The lead wires 

If thin lead wires are used to connect tbe strain coils 
to the readout clrcuit, tbe wires wll1 be aasnetised and any 
agitation or presence of .. gnetic objects in their vicinity 
will cause ~on.iderable drift. Therefore thin flexible lead 
wires were used within the body of the sand up to tbe side 
of the model, wbe~e thick shielded wires were attached and 
then connected to tbe readout circuit. 

The coils intended to measure the wall deflection were 

equipped with shielded wires. 

4.6.4 Calibration of the strain coils 

In an ideal situation the embedded coils and the reference 

coils movements are identical. Because of the small 
differences in manufacturing the cOils,the movements of the 
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embedded and the reference coils are slightly different. 
Therefore a calibration procedure is needed to deduce the 
movement of the embedded pair of coils from the observed 

readings of the reference coils. 

The calibration procedure is also meant to assess the 

influence of the sand medium on the calibration factors 
established in air, to check linearity, reproducibility, 
and the stability of the readings and to assess the effect 
of translation or rotation of one coil with respect to the 

other coil on the calibration factor. 

4.6.4.1 Air calibration of the strain coils 

The strain coils and the reference coils were mounted 

on similar jigs, Fig (4.24) and the sensitivity, linearity 

and reproducibility of the readings were checked. 

A sensitivity as good as the bench micrometer resolution 
( -3 1 x 10 mm) was obtained with a driving voltage and 
frequency settings equal to 6V and 15 KHZ respectively for the 
large diameter coils. In the case of the small diameter 

coils th~.s sensitivity was achieved by adopttng a voltage 
and frequency settings of 12V and 15 KHZ respectively. 

By changing the strain coils separation, bringing the 
circuit to null position using the micrometer attachment on 
the reference coils and observing the readings on both 
micrometers a calibration curve was drawn for each pair of 
strain coils, Figs (4.25) and (4.26). The strain coil 
readings were found to vary linearly with the reference coil 
readings in the ranges of coils spacings adopted. The 
average calibration factor of the strain coils intended for 
measuring the strains in the model was 1.1024 with a standard 
deviation equal to 0.0158, i.e. 1.4 per cent which showed that 
the variation in the winding of these coils was small. 
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4.6.4.2 Effect of sand on the strain coils performance 

This calibration test was intended to assess the effect 

of the sand medium on the sensitivity and linearity of the 
coil readings which had been established in air. 

The large diameter coils were fixed on perspex discs 

and placed on top and bottom of a standard triaxial dry sand 

sample, Fig (4.27). Wooden spacers were provided at the 
top and bottom of the perspex discs to keep the coils away 

from metal that would otherwise interfere with the coil 

performance. 

The strains measured from the overall deflection of the 

sample were found to be in agreement with the strains measured 

using the strain coils, Fig (4.28). For the range of- the 

strains investigated the variation was linear. Thus the 

sand can be considered to have no effect on the strain coils' 

performance. 

4.6.4.3 Errors arising from the coils' misalignment 

The embedded coils and the reierence coils have to be 

initinlly placed coaxial and parallel. Deviation from this 
will result in decreasing the calibration factor of the coils. 

74 TruesdR.16 et al "found that the allowable relative rotational 

and lateral misalignment increased with increasing coils' 
spacing. If ths coils could be placed with not greater than 
00' 

. 10 -15 relative rotation and/or lateral misalignment of 10 
per cent of the coils' spacing, the arrors could be neglected. 

49 Morgan et al studied the effect of misalignment 

on the calibration factors of strain coils 24 mm in diameter 
and initially placed 13.5 mm apart. A decrease in the 

calibration factor of approximately 1 per cent was noted for 
o 2.5 mm coils' lateral misalignment and 10 coils' relative 

rotation. 

The coils developed in the present investigation were 

assumed to behave in a similar manner to the coils developed 
by previous investigators with regard to the rotational and 

lateral misalignment. 



- 101 -

1 

'1'0 readout --_..J 
apparatus 

mm 

• 
• 
• 

[SO-56} 

mm 
• 

• 

,.. 

oro w:.UJM 

.Flg.4.27~ up!or testing the performance of the strain coils in 

LS and mediu. ... .a. 

1.-' Ram 
2- Woode~ spa~ers 

3- Perspex discs 
4- strain c:>i18 

5- Sand sample 

6- Triaxial base 

1- O-rings 
8- Rubber membrane 

9- Lead wires 



4 

, 
strain 

measured by 

the coils 2 

£~ 

1 

4 

strain , 

o 

- 102 -

Loose sand 

1 2 4 5 
strain measured from sample deflection-'~ 

{o ) 

measured .!!!!!e sand 

by 

the cops 
~% 1 

1 

o 
o 1 2 4 5 

strain measured from sample deflection- 2. ~ 
( b) 

F~g.4.28 Effect of r;~nd 0'1 the atrain measured by the strain coils. 
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4.6.5 Coils'placement in the sand 

4.6.5.1 Vertical placement for measuring horizontal strains 

Coaxial and parallel alignment of the ~train coils was 
achieved by means of a simple jig consisting of an aluminium 
plate with two parallel slots made to accommodate the coils 
and give small tolerances to prevent the sand jamming between 
the coils and the sides of the jig, Flg (4.29). 

After the coils were placed and covered completely with 
sand a series of readings WQS taken, the average of which 
was adopted as the initial r~ading of the coils. Tbe 

initial coils~ separation was assumed equal to the reference 
colIs' separation. 

4.6.5.2 Horizontal placement for measuring vertical strains 

74 A method similar to Truesdale at al was adopted. 
An allgn~ent rod 1 mm diameter was passed through the strain 

coil which was initially placed flat on the sand surface. 
The level of the second coil was marked off on the alignment 

rod and the sand was distributed ~p to that mark. The second 
coil was then placed and it was gently pressed down. The 
alignment rod was removed after the upper coil was completely 
covered with sand. The initial reading was taken from which 
the initial coils' separation was registered. 

~.7 Stress MeaRurement in the Soil 

Pressure cells were chosen to measure the pressure . 
distribution in the backfill of model reinforced earth walls • 

An attempt was 
handle specific low 

by Morgan et a149 

. 
made to construct a pressure cell to 
stress levels in the model based on design 
and Scala 5 9 Unfortunately, 

calibration under hydrostatic pressure revealed that the 

pressure cell was not very sensitive to small pressure changes 
(sensitivity obtained was ~ l)Us/KN/m2>. This was thought 



104 -

" 

40JIUII 

I I . 
• 12. ~. 1 0 .l 25 .1.10 .1. 12.l (mID> 

PLAN -

I I I I I I 
L 10 mm .I 

ELEVATION 

. Pie. 4.29 Jig for vertical placement of strain coila in mo:!el walla. 



- 105 -

to be due to the small central deflection to diameter ratio 
(1/5,000) adopted in the design and the further stiffening of 
the cell diaphragm by the insulating wax and araldite layers 
Fig (4.30). 

It was therefore decided to use available Redshaw type 
pressure cells previously used by Neale 50 Fig (4.31). 

One of the basic difficulties in using pressure cells 
is in obtaining a relationship between applied pressure and 
output signal. Other observers 49 have shown that this 
relationship varies depending on whether the cell is 
calibrated hydrostatically, triaxially or in plane strain. 
The following section describes calibration procedures and 
results for Redshaw pressure cells under the three types of 
applied pressure. 

4.7.1 Calibration of Redshaw pressure cells 

4.7.1.1 Calibration under hydrostatic pressure 

This was intended to examine the pressure cell sensitivity 
to applied pressure and can also ~e used to convert the cell 
responses into pressure units when the cell was placed in the 
triaxial sampl~ or in the b~x fo~ calibration. 

Eight Redshaw pressure cells were calibrated hydrostati
cally by placing them in turn i~ a triaxial cell and applying 
hydrostatic pressure. The water pressure was varied ten 
times between 0 anrl 300 KN/m2 to rem~ve initial material 
non-linearity and then readings from three loading and 
unloading cycles of the pressure cell response and the 
applied pressure were recorded to establish a calibration 

factor for each presssure. A typical test result is shown 

in Fig (4.32). 

4.7.1.2 Sand calibration 

49 
It has been reported that in order to interpret 

the pressure cell readings care must be given to the 
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Fig.4.J2 Calibration curve of pressure cell No. 5 under 

hydrostatic pressure. 
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reproducibility in the calibration procedure,of the pressure 

cell placement, the stress field ann. the n.ensity of the soil. 

In this investigation the pressure cells were calibrated 

in triaxial sand samples to allow for the vertical and 

horizontal stresses calibration and in the test box to obtain 

the same stress field as the one to which the cells will be 

subjected when used in the model. The cell placements in the 

two calibration procedures was adopted as recommended by 

Hadala.31 

4.7.1.2.1 Triaxial calibration 

The pressure cells were placed in turn in horizontal 

and vertical orientations in the middle of a triaxial sand 

sample 200 mm high and 100 mm in diameter, prepared at an 

initial density which was approximately equal to the model 

sand density. Assembly and preparation of the samples 

proceeded as in the case of the conventional triaxial test. 

vertical stresses at were varied by applying static 

load on top of the ram and horizontal stresses a
3 

were 

applied throu~h the cell pressure. 

The strain indicator readings and the corresponding 

applie1 pressures were plotted and the relationship was 

approximated by a straight line to get a calibration factor 
for the vertical and horizontal stress aeasurements, e.g. 

Figs (4.33) and(4.34). 

4.7.1.2.2 Plane strain calibration 

The test box was closed at its front and the pressure 

cells were placed on top of a sand layer 50 mm thick and 

covered by a thin layer of sand, Fig (4.35). The initial 

readings were taken at this stage and layers of sand 50 rom 

thick were deposited using the raining device. The density 

of each layer was measured using small perspex boxes and the 

cell responses were recorded. This procedure was repeated 

for the subsequent layers, until the full height of the model 
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was reached. The vertical stresses were computed from the 

layers' densities and their corresponding overburden heights. 
The pressure cell responses were plotted against the over

burden pressures. The relationship was assumed linear and 
a calibration factor was obtained using regression analysis, 
e.g. Fig (4.36). 

4.7.2. Advantages and disadvantages of each method of 
calibration 

4.7.2.1 Triaxial calibration 

(i) Advantages 

(a) The pressure cell can be subjected to different 

st~ess ratios and more thorough investigation into the 

cell behaviour can be made. 

(b) The applied stresses can be accurately measured. 

(ii) Disadvantages 

(a) The pressure cells will be subjected to plane stress 
conditions when placed in the model, while these were 

calibrated in a triaxial stress situ8.ti\)n. This might 

lead to an error in the calibration factor. 

(b) The method is time consuming since each cell has 
to be tested separately. 

4.7.2. 2 Plane strain calibration 

(i) Advantages 

(a) The pressure cells are subjected to the same stress 
fielG in which they will be placed. 

(b) Less time is needed since eight of them could be 

calibrated in one test. 

(ii) Disadvantages 

<a) The pressure cells could only be subjected to one 
stress condition. 
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(b) The vertical stresses could only be approximately 
determined as equal to the overburden pressure. 1bis 
would result in an inaccuracy of the calibration factors. 

(c) The calibration for the horizont~l stresses is 

difficult to get. 

The calibration factors obtained from the plane strain 
calibration procedure were adopted to interpret the pressure 
cell readings observed in the main test series, since these 
were found to give more consistent results than the calibra~ 
tion factors of the pressure cells established in the triaxial 
cell. 

4.8 Conclusions 

(1) An apparatus has been designed and constructed, 
which can be used for building model walls. Different 

accessories which can give relatively uniform beds of 
sand or support the model wall as it is built up, were 
provided. 

(2) Instrumentation consisting of: 

(i) Tension gauges 
(ii) Free field strain coils 
(iii) Pressure cells 

were developed and calibrated. 
monitor the model wall behaviour. 

These can be used to 
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CHAPTER F lYE 

MODEL TEST RESULTS 

5.1.1 Review of previous model tests 

In this section a review of previous model tests, 

carried out to study the internal stability of reinforced 

earth walls, failing by tie breaking or tie pullout, will 
he presented. Most of these model reinforced earth walls 

tested failed by tie breaking and tns failure mode will 
first be considered. Few model tests have been previously 

conducted to study the tie pull out mode of failure. A limited 
number of model walls were instrumented, and some model walls 
reported were tested under a surcharge load. The test 

results from these various studi~s will now be discuseed. 

5.l.1a Tie breaking mode of fait"ure 

Mouel reinforced earth walls designed to fail by tie 

breaking were mainly intended to test the validity of the 
theoretical approaches suggested for designing reinforced 

earth walls assuming this type of failure. 

The factors influencing the critical haight of walls 
failing by tie breaking and considered by previous 
investigators, included the tenslle strength of the tie 
material, tre tie length, the bnckfill density, the vertical 
tie spacing, the skin elements, and the foundation conditions. 
A review of the reported results on the influence of these 
factors on the critical wall height will be given in this 

section. 

5.I.l.a.1 Tensile strength of tie material 

The effect of the tensile strength of the tie on the 

critical height of rectangular model reinforced earth walls 
with uniform tie distribution was investigated, using steel 
pins as backfill, by Schlosser and Vida167 Schlosser 
et al 63 ,Long et a147 and Bonfante at a1.9 Bacot3, 
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Binquet et al 7 , Chapuis et al 17 

Lee et a1 45 and Schlosser et a163 
-- --

, Lareal et a1 42 
--

used models with sand 

backfill. The critical wall heights observed in these 

tests were found to increase with increasing tensile 

strength of the tie which was varied by varying the tie 
Width3,?,17 or the horizontal tie spacing~5/4 71 67 

The observed critical wall heights were compared mainly 
wi th the Rankine theory predict ion 3,1 ~45a.nd in some studies 

the observed critical wall heights were compared with the 
theoretical critical wall heights predicted by Meyerhof 

and the Trapezoidal design methodsJ,9 The critical 

wall heights predicted by the three methods were seen to 

be appreciably lower than the observed critical heights 

with the exception of one study45 in which the observed 

critical wall heights were found to be in fair agreement 

with the Rankine theory prediction when medium dense sand 

was used as backfill material. 

Th~ discrepancy between the 

heights using the Rankine theory 
attributed by Schlosser et a1 63 

predicted critical wall 

and the observed data was 

to the simplifying 

assu4~tions on which the Rankine theory was based. Long 
et al attributed this discrepancy to the rigidity of the 

skin 9lements used 1n building th~ walls. Tests by Long 
et al 47 conducted to study the effect of tile skin element 

rigidity on the critical wall height, revealed that the 
skin element rigidity only slightly increases the critical 

height of low wodel walls. For high walls the skin element 
r'igidity was nC"ted to have no effect on the critical wall 

height. 

5.1.1.a.2 The tie length 

The influence of the tie length on the critical height 

of model 

Vida1 67 
reinforced earth walls was studied by Schlosser and 

et a1 61,66 , 
--
wall height 

Bacot 3 

, Levadoux et a 1 46 , Bacot3 
47 - - 7 

Long et al and Chapuis et al.1 
, Schlosser 

The critical 
was found to increase with increasing tie length. 
indicated that the ratio between the critical 
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H 
height of the wall and the tie length ~ , lay between 

2.5 - 3.55. Schlosser and Vidal (67) and Long et al (47) 

compared the observed critical wall heights with the 

theoretical values predicted by the conventional design 

methods. Fig (5.1) shows the relationship between the 

experimental results and the theoretical results using the 

Rankine, the Trapezoidal and Meyerhof methods and is taken 
from a review paper by Symons. (72) The information on 

which this figure is based is contained in the papers bl Schlosser and Vidal~67) Long et al(47) and Schlosser. (6) The 

Trapezoidal and Meyerhof methods predicted a similar pattern 

to the experimental results but the magnitudes of the 

theoretical critical heights were lower than the observed 

results. The Rankine method predicted a critical wall 

height ",hich was independent of the tie length. Schlosser 

et al (66) compared the experimental critical wall heights 

with the theoretical values predicted by the Meyerhof method, 

Fig (5.2). This method underestimated the observed critical 

wall height but followed a similar pattern to the experimental 

data. In this study Schlosser et al also showed that a --
reinforced earth wall could be built to slightly greater 

heigh~ on flexible foundations than on rigid foundations. 

S.I.1.a.3 Soil density and vertical tie s~acing 

Tests conducted by Long at al (47) in which the back

fill density was varied presented difficulty in keeping 
other par&meters nearly constant. The change in density 

resulted in changing the angle of internal friction 0, and 

hence the earth pressure coefficient. 

The critical wall height was found to vary directly with 

I and the experimental results were nearly 23 per cent 
1 
greater than the theoretical results calculated from the 

Rankine theory. 

Obs~rvations on critical wall heights reported by 
{44,45) 

Lee et aI, using loose and medium dense sand, indicated that 
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there was no noticeable difference between the critical 

height of walls built using loose and medium dense sand. 

Longet al47 investigated the effect of varying 

the vertical tie spacing 6H, on the criti~al height of 
model reinforced earth walls. The test results showed 

that the critical wall height Hc ' varies almost linearly 
1 with- . 

6H 

5.1. 1. b Tie pUllout mode of failure 

As stated in the introduction the observations 

described in Section 5.1.1a referred to walls failing by 

tie breaking. Fewer tests have been conducted into the 

pullout failure mode. Schlosser and Vidal S7 first 
recognised this type of failure which was brought about by 

slipping of the ties from the reinforced earth mass. 
Their test results indicated that for rectangular walls 

the minimum ratio between the tie length to total wall 
L height - should be approximately equal to 0.8 to prevent 
H 

this type of failure. 

Some tie pullout 

Lareal et al 42 and 

3 
test$ wer~ carried out by Bacot~ 

Levadoux et al~ working in --
France and indicated an increasing critical wall height 
increasing tie length. 

with 

Lee at al 45 studied walls failing by the tie pull 
out mode of failure, using loose and medium dense sand as 
backfill. The observed adherence length at failure was 

compared with the theoretical adherence length calculated 
by the Rankine and Coulomb adherence length expressions 

derived by Lee et al~5 The Coulomb methods were found 
to be in better agreement with the observed data than the 

Rankine theory, Fig (5.3). 

5.l.l.c Instrumented reinforced earth model retaining walls 

Some of the model tests previously described were 

instrumented to provide additional information regarding the 
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performanceof the reinforced earth walls. 

Schlosser and Vidal 67 and Long et al 47 used --
pressure recorders to measure the variation in vertical 

stresses at the base of model reinforced earth walls. The 

results were generally scattered but the average recorded 

stress compared well with the theoretical vertical stress 

computed from the backfill density 1 and the fill height 

h. 

Lee et a1 45 attempted to instrument eight model 

reinforced earth walls to obtain stresses in the ties, 

vertical and horizontal stresses in the soil. and horizontal 

wall deflection. Strain gauges were used to measure stresses 

in the ties near the reinforced earth wall face and in a 

few cases the strain gauges were located along the tie. 

The lead wires seemed to present a problem by affecting 

the stress distribution around the tie and in most of the 

tests only tie stresses at the reinforced earth wall face 

were measured. In these model tests n~ great emphasis 

was placed on the vertical and horizontal stresses measured 

by the pressure cells because of calibr~tion problems, and 

the horizontal wall deflection was measured relative to a 
def19cted wall position. 

S.l.l.d Model reinforced earth wall with surcharge 

Schlosser et al 65 reported results of model tests 
carried out to study failur~ of reinforced earth walls under 
a surcharge point load. A method of designing for this type 

of load was proposed. 

5.1.1. e Conclusions from previous modal tOasts 

(1) Most of the reinforced earth retaining walls 

tested were rectangular in cross-section with a uniform 

tie distribution. The majority of "these model tests 

used elliptical metal skin elements, aluminium foil 
ties and sand or stainless steel pins as backfill. 

(2) The majority of the model tests reported were 
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based on an ultimate strength concept and only 

conditions at failure were observed. This approach 
only gives an overall safety factor against failure 

by tie breaking and leads to an uneconomic design . 

. 
~3) The study of tie pullout mode of failure in 
model tests was limited to the observation of wall 
heights as the tie length was increased. No attempt 
was made to assess the stability of ties at different 
wall levels or to check the assumptions on which the 
theoretical design approaches assuming this type of 

failure, were based. 

(4) Few model tests were reported in which the stresses 
in the ties, the vertical soil stresses and wall deflec-

tion were measured. No attempt was made to measure 
the strain in the backfill of model reinforced earth 
retaining walls, which helps in indicating the state 
of stress in the reinforced earth backfill. 

5.1.2 Objectives of this study 

The present study was intended to serve as an extension 
to the previous model studies. 

~odel reinforced earth walls using an ultim&te strength 

concept will first be considered, with the aim of assessing 
the theoretical approaches based on this failure concept. 
The advantages and disadvantages of the ultimate strength 
approach for designing reinforced earth walls will be out
lined. 

An optimum design of a reinforced earth retaining wall 

requires checking the safety factors against tie breaking 
and tie pullout failure, at each tie level in the reinforced 
earth wall. This can only be done by measuring the stress 
distribution in the ties, Measurement of stresses and 
strains in the soil, and wall deflection will contribute to 
the understanding of the reinforced earth wall behaviour and 

allow the various assumptions on which different theories 
are based to be checked. This approach will also be followed 

up in the present experimental programme. 



- 123 -

5.1.3 Summary of the model test programme 

The present model test programme consisted of five 
tests series designated A, B, C, D and E. A summary of these 
test series will be outlined in this section. 

Properties of ties, skin elements and sand used in 
these tests are shown in Table (5.1). Previous mention of 
the skin elements and ties design has been made in Chapter 
Four sections (4.2.3) and (4.~) respectively. 

Series A tests 

Series A tests were intended to determine a minimum 
distance between the rear side of the model and the back of 

the reinforced earth wall at which the effect of the friction 
between the soil and the rear side of the modelon the reinforced 

earth wall behaviour can be neglected. 

In this series 33 reinforced earth walls were built up 

to an unstable height at which the ties pulled out of the 
sand mass. The critical height of these walls was observed 
as a function of the distance between the back of the wall 
and the rear side of the model, which was varied by construct
ing a movable wall inside the model. 

~esults of model reinforced earth walls tested in 
series A, in which the presence of the rear side of the 
model was knowu not to influence the critical wall height, 
were used as experimental data and the corresponding theoretical 
adherence lengths were computed and were compared with the 
observed adherence length. 

Series B tests 

The objective of series B tests was to examine the 
reinforced earth theories intended for the reinforced earth 
wall design assuming tie breaking failure. Eight model walls 
were built using 20 ~m thick aluminium foil ties and the 
maximum height of the walls was observed as the tie width 

was varied. The experimental critical heights were 



TABLE (5.1) - Properties of the ties, skin elements and sand used in the present model test programme 

Components 
r 

Series A & C 

Aluminium foil ties 

Thickness - 45 )1Dl 

Width • 4.4 mm 
Ties f - .510 

Tie LeDRth 

Series A - 305-315mm 
Series C = 400 DIll 

Perspex panels 

Thickness - 6 DID 

Skin Width • 150 mm 
elements Height - 100 JDJIl 

Weight - IN 

1m1n • Backfill 
\ Sand material "(max -

y -

Prc.perties of the components 

Series 13 

Aluminium foil ties 

fhickness - 20 )1D1 

Width (Varied) 

Length ... 400 mm 

Rt ... 1.011 ! .033 N/mm 

Perspex :;?8lle1s 

Thickness - 6 DIll 

Width 

Height 

Weight 

1.397 ~cm3 
1.6954 gm/cm3 

1.6145 PlIcm3 

I: 150 mm 

... 100 Jml 

= IN 

Series D Series E 

Perspex ties Perspex ties 

Thickness - 1.5 mm I Thickness a 1.31 mm 
Width ... 22.1 mm Width = 22.3 mm 

Length (Varied) 

f .. 0.398 

Perspex panels 

Thickness... 6 mm 

Width 

Height 

... 300 mm 

... 250 mm 

Weight ... 5.4N 

Relative density Dr 
G • 2.65 

'/J - 40
0 

Ka ... 0.217 

... 

Length .. 400 mm 

f - 0.398 

Series E t.ests used 
the same skin 
elements as Series . 
A and D to allow 
varying the 
tie·spacing. 

16.5% 

~ 
I:\:) 
~ 
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compared with the theoretical predictions using the 
conventional and the energy theories and also with previous 
relevant model test results. 

Series C tests 

The series C model reinforced earth walls were intended 
to serve as preliminary walls to investigate the methods of 

tie tension and wall deflection measurements. 

Three walls were built in this series to a maximum 
height of 500 Mm. The forces in the ties and horizontal 
wall deflection were observed during the construction of the 
walls, using the preliminary tension gauge design shown in 
Fig (4.15) in Chapter Four, and the strain coils respectively. 

The tension gauges, apart from problems regarding the use of 
two different materials in the gauge construction, gave 
reasonable results. The straifi coils satisfactorily measured 
the wall deflection. 

Series D tests 

The objective of this test series was to investigate 
the tie pullout mode of failure using an ultimate strength 
approach. In this test sttries it was also intended to 
observe variation in tie tension alo!lg a tie length and with 
increasing fill height above the tie level. The effect of 
the tie length on the maximum tension in the tie was assessed. 

In investigating the influence of tiE' length on the 
maximum tie tension various paramoters such as the tie level 
above the wall base can affect the maximum tie tension. To 
reduce the n~ber of parameters involved and to get measur
able stresses in the ties, large vertical tie spacing 
(250 - 125 mm) was adopted. Twenty-two uodel reinforced 
earth walls were built in this series, with varying tie 
lengths and horizontal tie spacing. 

Series E tests 

This test series was intended to study the internal stability 
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of reinforced earth walls on a non-ultimate strength basis. 
The previous tie breaking failure tests provide a method of 
designing reinforced earth walls failing by tie breaking, 
based on the most stressed tie in the wall which has been 
assumed to be at the bottom of the wall 61 This approach 
will lead to an overdesign for the ties in the middle and 
top of the wall. The pullout failure tests provide no 
information regarding the actual safety factors against tie 
pullout failure at different reinforced layers and because 
of the limited results from these tests, cannot be used to 
check the assumptions on which various theories were based. 
To overcome the limitations of the tie breaking and tie pull 
out tests series E was designed. 

This test series consisted of 35 walls built to a 
maximum height of 500 mm using a constant tie length of 400 

Mm. The tie tension was measured at different locations 
along a tie length and at various levels in the wall. The 
horizontai and vertical tie spacings were varied and the 
maximum tie tension over the wall height was determined and 
compared with different theories. The non-dimensional 
tension parameter)G and the safety factors against tie pull 
out at different tie levels, were computed and 
with the corresponding theoretical values. 

compared 

:n this test series the walls were also instrumented to 
measure the horizontal and vertical strain in the soil, the 
horizontal wall deflectiou and the vertical stresses in the 
soil. 

5.2 Series A Tests 
Model rear wall effect on maximum height of reinforced 

ea~th wall 

5.2.1 Introduction 

It has been mentioned in Chapter Four, Section 4~ 

that side effects on reinforced earth wall behaviour could 
. ~ 

arise from width upon height ratio of the model and also 
2 

from rigidity of the sides of the model. These effects 
have been taken care of in the design of the model by 
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adopting a width upon height ratio of 1.8 and stiffening the 
sides of the box to ensure its rigidity. A third possibility 
which might be of lesser importance, could arise from the 

limited extent of the model in the direction of the ties. 
If the distance between the rear side of the model and the 
back of a reinforced earth wall is not large, the friction 
of the rear side of the model would result in lowering the 
earth pressure on the back of the reinforced earth wall and 
this, in turn, could lead to a change in the vertical stress 
distribution in the reinforced earth fill. 

To investigate this problem, reinforced earth walls 
were designed to fail by tie pullout mode of failure, since 
this is more dependent on the vertical stress distribution 

than the tie breaking mode of failure. Two sets of walls 
were built using tie lengths equal to 315 and 305 Mm. 

These tie lengths were chosen to give critical wall heights 
which would cover the range of wall heights intended to be 
built in the model. In each set of walls the distance 
between the back of the wall and the rear side of the model 
was varied by constructing a movable barrier fitted inside 
the model and the maximum height of the walls was observed. 

The apparatus used in building the walls, the material 
propertias and the method of wall construction will be outlined 
in the following section. 

5.2.2 Apparatus and wall construction 

Box dimensions and skin elements used for building walls 
in series A tests are shown in Figs(5.4) and (5.5) respectively. 
The ties used consisted of 45 ~ thick aluminium foil, of 
average width 4.4 Mm. The soil/tie coefficient of friction 
used wa~ 0.51 and the average density of the sand backfill 

3 was 1.6143 gm/cm. The horizontal and vertical tie spacings 
were kept constant at 150 mm and 100 mm respectively. Tie 
len~hsadopted in this series we~ 315 and 305 Mm. The wall 
construction proceeded as was described in Section (4.3) in 

Chapter Four. 
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Initially the walls failed at lower heights than was 
expected. This was mainly because of the aluminium clamps 

used to anchor the ties after they were passed through the 
skin elements Fig (5.6a). The edges of the clamps tore the 
aluminium foil ties before the walls reached their maximum 
height. This resulted in an early tie breaking failure 

instead of a pullout failure. Adhesive tape was later 
used to fix the ties to the skin elements Fig (5.6b), and 

this proved to be a more satisfactory method than the 

aluminium clamps. 

All the walls built using the adhesive tape to attach 
the ties to the skin elements, failed by tie pullout. 

Some of these walls were used as data for comparison between 

experimental and theoretical adherence lengths. These were 
termed series A(l), and they will be presented later when 

discussing the results of the series D tests. 

5.2.3 Series A test results 

The resu1ts of series A tests regarding the relation 
between the parameters Hand LB shown in Fig (5.7), and the 

c 
subsidial·Y observations made during the w9.ll construction 
and af~er failure of the walls will be summariZed in this 
section. 

(i) The observed critical wall heights Hc and the 
corresponding distance LA between the back of the wall 
arid the movable barrier, are shown in Table (5.2) and 
Fig (5.8). The graph showed that when LB is greater 
than about 250 mm an almost constant failure height was 
given. Some scatter in the data was noted for the 
315 mm tie length, when LB was small. This is possibly 
because this length was just critical for tie pullout 
failure as indicated by the energy theory. By 
examining the ties after failure of the walls built 
using 315 mm tie length, some of the ties at the wall 

bottom were found broken. 
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TABLE (5.2) - Series A Test Results 

L = 315 mm L = 305 mm 

He 't H 

'" LB 3 Test LB e Test mm gm/em 
No mm mm gm/em3 

No mm 

7A 115 290 1.545 18A 125 355 1.592 

8A 115 400 1. 626 22A 5 350 1.609 

9A 115" 420 1.626 23A 55 355 1.649 

lOA 65 325 1.632 24A 250 385 1.609 

llA 65 420 1.614 25A 190 340 1.613 

12A 15 350 l. 637 26A 310 400 1.624 

13A 15 495 1.614 27A 370 376 1.627 

14A 15 500 1.613 28A 435 380 

15A 40 520 1.610 29A 470 380 1.591 

16A 165 420 1.610 33A 52!> 395 

17A 265 490 1.591 Wall design parameters 

19A 290 460 1.605 b - 4.39 mm ta.H - 100 DUn 

20A 265 447 1.582 f - 0.51 S - 150 mm 

21A 395 490 1.626 t - 45 ..um (,J - 40
0 

K - 0.217 a 
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(ii) Failure of the walls by tie pullout was 

observed to be catastrophic and abrupt. The measured 

deformations were small before failure. 

(iii) The inclination of the failure surface with 
the horizontal plane was determined approximately by 

measuring the position of the failure plane, at the 
wall surface, after failure of the walls. The 

average value of all tests was 67.80
• This is 

slightly greater than the theoretical value given by 

the Coulomb failure plane which is equal to 650 based 

on a triaxial angle of friction 0 = 400 measured at 
an average density equal to 1. 605 gm Icm3 . 

(iv) The wall deflection at 150 mm above the base 

of the model was also observed, during the construction 
of the wall and just prior to the collapse of the wall. 

This was expressed as a ratio of the total wall height 

prior to failure. An average value of this was 
o. t;75%. 

5.2.4 Con~1usions 

(i) The tests conducted in this series aimed at 
determining a distance, LB, between the back of the 
reinforced earth wall and the rear wall of the model, 
which when adopted, would produce a minimum effect by 
the rear wall on the stresses in the reinforced earth 
fill. The walls built with varying LB, failed at 
low heights when the distance LB was small, possibly 
du~ to the reduction in the vertical stresses by the 
friction of the rear wall of the model. An increase 
of the critical height of about 10% to 11.5' was noted 
when LB was greater than 250 Mm. The critical height 
of the walls remained almost constant for the 305 mm 
tie length. With the 315 mm tie length some scatter 
in the data was noticed for small LB, but the general 
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trend of the observations remained the same as the 
results obtained for the walls built using the 305 mm 

tie length. In the tests carried out in future series 
this distance was kept over 300 mm. 

. 
(ii) Some of the walls tested in this series were 

used as data for comparison between the observed and 
predicted adherence length and will be presented later 
when discussing the series D tests. 

(iii) From subsidiary observations on the wall it 
was noted that the angle of inclination of the failure 
plane was approximately equal to tho inclination of 
the theoretical Coulomb failure plane. 

(iv) The average ratio of the horizontal wall 
deflection and the total ~ell height was 0.675%. 
Probably this indicated that the soil backfill near 
the wall face was in an active state of earth pressure~3 

5.3 Series B tests 

Tie Breaking Mode of Failure 

5.~.1 Introduction 

In the ~revious test series the reinforced earth walls 
were designed to fail by tie pullout. Th& tests were 
mainly intended to study the effect of friction of the rear 
side of the model on the critical height of the wall. 

In the present test series eight walls were built and 
were designed to fail by tie breaking. These tests were 
intended to compare the actual tensile stresses developed 
in the ties ~ith the predicted values. The main observa
tion made in this series was of the maximum stable height 
to which the walls could be constructed.' Some subsidiary 
observations on the positions of breakage of the ties and 
the distance of the failure plane from the inside of the 
skin elements were also made. 

Comparisons were made between the critical heights of 
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walls tested in this series and the Rankine, the Trapezoidal, 
Meyerhof, Banerjee and the Energy theories and are discussed 
in the results and the conclusions of the present test 

series. 

5.3.2 Apparatus and wall construction 

The model and properties of the materials used in 
series B tests will be described in this section. 

The present test series used the test model and skin 
elements previously adopted in series A tests and schemati
cally shown in Fig (5.4) and (5.5). The ties were cut from 
aluminium foil rolls 20 ~m average thickness in 400 mm 
lengths • This length was adopted to exclude a tie pullout 
failure. The tensile strength Rt of the tie material was 
determined using the loading frame shown in Fig (5.9). 
Tests to rupture on 15 samples of varying widths of tie 

+ from 4.4 mmto l7.lmm, gave a value of Rt - 1.011 - 0.33 N/mm. 
The horizontal and vertical tie spacings adopted in this 
series wer& 150 and 100 mm respectively. The method of 
wall construction followed the sequence of wall building 
procedure previously described in Chapter Four, Section 
(4.3). 

5.3.3 Series B test results 

The main observations made on walls built in this 
test series, were of the critical height. Subsidiary 
observations were also made on the position of the failure 
plane. Tbese test results will be presented and compared 
with theoretical predictions in this section. 

A summary of series B test results is shown on Table 

(5.3). Fig (5.10) shows the observed critical wall heights 
and the corresponding tie width B, which is proportional 
to the tensile strength of the tie. The theoretical 
results were compared with the observed critical heights 
and all of the Energy theories gave closer agreem~nt than the 
existing theories. The .. Convepttonal de~ign ~ethqds ysing the 
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A Experimental results 
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Rankine, the Trapezoidal and Meyerhof methods predicted 
practically the same critical wall height and substantially 
underestimated the observed critical wall height. 
Banerjee's expression based on the assumption of breaking 
of the first tie at the bottom of the wall, gave appreciably 
lower values than the observed data. 

Two observations were made in order to determine the 
approximate position of the failure plane. 

(a) After each test the positions at which the ties 

broke were noted. The average value of the tie 
breaking position at each tie level was determined and 
was plotted against the wall height as shown in Fig. 
(5.11). The observed average tie breaking positions 
are generally contained within the Coulomb failure 
wedge. Most of the ties at the top of the walls 

did not break and failed by pulling out. 

(b) The position of the failure at the surface of 
the wall was noted in each test. Thp. average 
inclination of the failure plane with the horizontal 

o was 63.8 which was nearly equal to the theoretical 
inclination of the failure plane for an unreinforced 

wall, given by 9 - 45° + ~. For ~ - 40? the 

appropriate value for the bac~fill as placed, 9 - 65°. 

5.3.4 Comparison between series B test results and previous 
test results 

In the fo~egoing section the series B test results 

were presented and were compared with the values predicted 
by various ~heoretical approaches. In this section 
comparison will also be made between the critical wall 
heights observed in series B tests and the similar model 
test results conducted in France by the Laboratoire 

, 7 
Central des Ponts et Chaussees and in the U.S.A. by 

Lee et a145 
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TABLE(5.3) - Summary of Series B Test Results 

(Tie breaking mode of failure) 

Tie Critical 't . Wall design Test 0 
parameters No. Width height ~/cm3 

b - mm Hc - mm 

lB 2.39 150 62.1 
V EO: 1.6143 gm/cm 

28 3.41 235 64.19 
Dr - 76.5% 

(if - 40
0 3B . 4.42 255 66.8 

Ka - 0.217 48 5.64 335 57.7 

L - 400 mm 
58 6.81 420 -

AH - 100 mm 

S - 150 mm 68 3.40 170 64.3 

t - 20 )!Dl 

7B 4.12 270 64.3 
Rt - 1.011 N/mm 

88 4.78 33Q 67.45 

o - inclination of the failure plane measured at 
the surface of the wall. 

1.6is 

1.616 

1.603 

1.584 

1.629 

-

1.614 

1.640S 
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The French results were obtained using 9 ~m aluminium 

foil having a tensile strength equal to 0.525 N/mm width, with 
ties length equal to 600mm. The tie width was varied from 
3 to 10 mm. The sand was medium dense ~ith an average 

3 0 density equal to 1.5350 gm/cm and ~ - 35. Lee's model 
tests used sand at two densities, a medium dense sand 
with G - 440 and a density of 1.496 gm/cm3 and loose sand 

o 3 with G - 31 and a density of 1.3575 gm/cm. The ties used 
were cut from aluminium foil 13 pm thick with an average 
tensile strength of 1.267 N/mm width. The average tie 
length and width-were 400 and 3.9 mm respectively. Both 
the French and Lee's model tests used elliptical skin 
elements 30 mm and 25 mm in height respectively. In the 

French tests, as with the present laboratory model tests. 
the tie width was varied while the horizontal and vertical 

tie spacing was kept constant. In Lee's tests the 
horizontal tie spacing was val'ied and the tie width and 

the vertical tie spacing were kept constant. 

Fig (5.12) shows the experimental results from the 
Glasgow, the French, and Lee's ~odel test results, plotted 
against the non-dimensional parameter S.66 i.e. the soil 

Ar 
area bounding a tie divided by the tie cross-sectional area 
Ar • These test results followed the same pattern and gave 
the same order of critical heights. The differences in 
density seemed not to affect the experimental values. The 
Glasgow laboratory test results were slightly higher than 
the French, and Lee's results, possibly due to different 
skin elements being used. 

5.3.5 Conclusions 

(i) The observed critical wall heights increased with 
increasing tensile strength of the tie and were found 
to be in ·c loser agre.ement with the Energy theor ies th~n the 

existing theor.ie~Th~ Rankin~,the Trapezoidal and Meyerhof 
methods predicted practically similar critical heights 
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which were appreciably lower than the observed results. 
The discrepancy between the critical heights predicted 
by these latter methods and the observed values, ranged 
between 61% - 72% of the observed critical heights. 
The Banerjee equation based on the breaking of the 
first tie at the bottom of a wall assumption, also 
appreciably underestimated the observed critical heights. 

(ii) The critical wall heights observed in this test 
series were shown to be consistent with previous model 

test results carried out in France and in the U.S.A. 
The differences in density and skin elements used 
seemed to have no significant effect on the experimental 
results. 

(iii) The average inclination of the experimental 
failure plane measured at the wall surface and by 

observing the distances from the wall face at which tie 
breaks were found to be in reasonable agreement with 

the theoretical Coulomb value for an unreinforced wall 
• 0 C) given by 9 - 45 + /2. 

5.4 Series C Tests 
Preliminary walls 

5.4.1 Introduction 

The series A and B test~ were designed to fail by tie 
pullout or by tie breaking and no observation on the actual 
stresses in the ties and the soil were made. In the Dand E test 
series the intention is to monitor the wall behaviour to study 
the prefailure conditions in the wall. The present test 
series consisted of three walls designed to act as preliminary 
walls for checking the performance of the instrumentation 
used for tie tension and wall deflection measurements. 

The various stages in developing a reliable method for 
measuring stresses in the ties were presented in Chapter Four. 
It has also been mentioned that a preliminary tension gauge 
design consisting of 0.60 mm thick 6 mm wide x 35 mm long 
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perspex strip on which strain gauges were mounted on both 

faces was constructed. This was connected in series with 
the aluminium tie in the manner shown in Fig (4.15) in 
Chapter Four, and was used for tie tension measurement in 

the present test series. 

The horizontal deflection of the model wall face was 
initially measured using dial gauges. This system required 
additional accessories to provide a fixed datum for mounting· 
the dial gauges, which was found to occupy appreciable space 
in front of the model and obstructed the wall construction. 
To avoid this difficulty, a set of strain coils previously 
described in Chapter Four was used in this test series for 
measuring the horizontal deflection of the front face of the 

wall. 

The result from this test series indicated that the 

methods of stress measurement in the ties adopted in this 

series, apart from inconsisteDcies in the coefficientsof 
friction introduced by using two different materials for 
the tie and mounting the gauges, gave reasonable results. 

The strain coils satisfactor!ly measured the deflection of 
the front face of the wall. 

5.4.2 Apparatus and wall construction 

The series C tests used a similar arrangement of box and 
skin elements previously used in Series A and r tests and 
schematically represented in Figs (5.4) and (5.5). The 
ties used in this series were 400 mm in length cut in 4 mm 
widths from a 45 ~ thick aluminium foil roll. The 
horizontal and vertical tie spacings adopted were 150 mm 
and 100 mm respectively. The tie dimensions were chosen 
such that the wall would not fail within the height of the 
model, thus allowing investigation of the performance of 
the instruments used for monitoring the tie tension and the 
horizontal deflection of the wall face for the maximum range 
of height available in the model. The walls were constructed 
in a similar manner to Series A and B tests, a~opting the 
wall building procedure previously described in Chapter Four, 

Section (4.3). 
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5.4.3 Series C test results 

The test results obtained from Series C tests included 

the observations made on the tie tension and the horizontal 
deflection of the reinforced earth wall face. These will 
be presented in this section. 

5.4.3.a The tie tension 

The tie tension was measured in two model walls, using 

the preliminary tension gauge design previously described in 

the introduction of this test series. 

In the first test the tie tension variation along a tie 
length and with increasing overburden height was observed 

using tension gauges fixed in series at three locations 
along the aluminium foil tie Fig (5.l3a). Two gauged 

ties were placed at two different wall levels and the tension 
developed in the ties was obse~ved as the fill height was 

increased. The test results are shown in Table (5.4) and 

Fig (5.14) and indicated a maximum tie tension near the wall 

face whica decreased towards the free end of the tie. 

In the second test the tie tension near the wall face 
Fig (5.l3b) was observed. The results from this test are 
shown in Table (5.5) and Fig (5.15) and indicated an increas
ing tie tension with wall depth. 

5.4.3.b The wall deflection measurements 

As shown in Fig (5.16), the outward deflection of the 
front face of the wall was measured using five pairs of 
strain coils which had been previously calibrated against 
a pair of reference coils. The strain coils were fixed in 
pairs at each tie level one on the wall facing and the other 
on a fixed datum provided by 25 mm thick perspex planks 
situated in front of the model. Wall deflection measure
ments were taken after the placing of each 50 mm thick sand 

layer. 

The measured horizontal wall deflection in the various 
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Fig (5.130) Tie tension measurement along a tie length 

(Series c tests) 

L=400 mm 

l 
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!1 m 20, 160 .160 m; 

-- T-
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.. ... 150mm 
11 2 3 "Iso 

TABLE (5.4) - ~easured tie tension along the tie length 

(Series C tests) 

Measured tie tension along tie length -
Total Wall (Fi g5.13.a ) 
height 

mr;, 1 2 3 4 5 6 

100 0.67 0.55 0.42 

N 

200 4.8 6.3 3.7 0.74 0.60 0.42 

300 13.25 8.2 4.9 7.9 5.3 3 

400 15.2 9.6 6.2 9.3 6.6 3.7 

500 16.7 10.6 7.5 10.6 7.2 4.'9 
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Fig (5.13b) Tie tension measurement at 20 mm from the wall 

face (Series C tests) 

z~8 .. 5 _____ _ 

~ 350 "~~----_ 
~ 250 "3~--------___ _ 
> 
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no\ 

\~ocations of tension gauge~ 20 mm from 

wall face} 

TABLE (5.5) - ~easured tie tension near the wall face 

(Series C tests) 

I---

Total Wall Measured tie tension - N Q locations 
height 1 - 5, Fig (5.13.b ) 

mm 

. \ 

\ 
1 2 3 4 5 

200 2.7 - - - -
300 9.8 2.41 0.40 - -
400 9.9 4.66 4.3 2.8 -
500 13.5 6.2 2.0 10.0 3.5 
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stages of the wall construction was plotted against the 

wall depth, Fig (5.17) and showed a maximum wall deflection 
approximately at midheight of the wall. 

5.4.4 Discussion of Series C test results 

The results of the tie tension measurement using strain 
gauges mounted on perspex strip and fixed in series with the 
aluminium tie, gave reasonable tie forces regarding their 
magnitude and pattern. However, the present method of tie 

tension measurement was noted to have the limitation of 
using different materials for the tie and for mounting the 
strain gauges. The perspex and the aluminium have different 

coefficients of friction with the sand. Possibly this would 

result in modifying the shear stresses developing at the 
soil/tie interface and this id turn would probably affect the 

tie te~sion distribution along the tie length. 

In the 0 and E test series the strain gauges will be 

mounted directly on the perspex ties in the manner described 
in Chapter Foar, Section(~5) 

Measurement of the horizontal wall deflection usi~g 
the strain coils was satisfactory and possessed certain 
advantages over the dial gauge system, which was initially 
tried. The coils being uncoupled ~id llOt obstruct the 

the coils could easily be installed 
The readings are accurate enough 

movement of the wall and 
in the test apparatus. 
.1) ( ':' 1 000 mm , provided that the distance between , . 

the coils 

is kept in the 
cali bra tion. 

range of coils' separation used in the 
This can easily be achieved by providing 

sui table spacers to locate the coils at a predetermined 
initial separation Fig (5.16). 

5.4.5 Conclusions 

(1) The tie tension measurement using strain gauges 
mounted on perspex and connected in series with the 
aluminium tie gave reasonable results. An improvement 

in the tie tension measurement can be made by adopting 
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a perspex tie on which the strain gauges can be mounted. 
This overcomes the disadvantages of using two 

different materials. 

(2) The wall deflection measurement.using the strain 
coils was satisfactory. This method has the advantage 
that the strain coils being uncoupled did not obstruct 
the movement of the wall. 

installed and monitored. 

5.5 Series D Tests 
Tie pullout failure 

5.5.1 Introduction 

The coils could easily be 

Series D tests consisted of 22 model reinforced earth 
retaining walls, intended to investigate a tie pullout mode 
of failure. In this test series it was alao intended to 
observe the tie tension variation along a tie length and 

with increasing fill height above the tie level. The 
influence of the tie length on the maximum tie tension was 
also assessed in this test saries. 

In order to study the effect of the tie length on the 
maximum tie tension, the wall d~sign parameters such as 
the horizontal and vertical tie spacings and the soil 
density have to be considered. To decrease the number of 
parameters involved, the maximum tie tension was assumed to 
vary linearly with the horizolltal tie spacing as noted in 
previous model tests~5 A large vertical tie spacing 

was adopt~d (250 - 125 rom) and the wall built consisted of 
one or two reinforced layers. 

constant. 

The soil density was kept 

The tie length as. well as the horizontal tie spacing 
was varied in this test series. The main observations 

were of tie tension variation along a tie length and with 
increasing fill height above the tie level and the maximum 
wall height at failure. From these observations the 
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curves showing the tie tension distribution along a tie 
length were drawn. The curves of the maximum tie tension 

versus height of fill above the tie level were constructed 
and compared with the theoretical values. The maximum 

shear resistance of the tie at failure, was computed from 
the observed maximum tension values and was plotted against 

mean vertical stress Th to obtain a measure of the tie/soil 

angle of friction from failing reinforced earth model walls. 
The influence of the tie length on the maximum tie tension 
was assessed and was compared with the theoretical predic

tions. Comparison was also made between the adherence 
lengths observed in the present and the series A tests and 

the adherence lengths calculated by various theoretical 

approaches. 

The test apparatus and method of wall construction 

adopted in the Series D tests will be outlined in the follow

ing section. 

5.5.2 Apparatus and wall construction 

This test series used the box and skin elements shown 
in Figs (5.1S) and (5.19) respectively. 7be skin elements 
consisted of 6 mm thick perspex panels 300 mm wide and 250 

mm h1gh, which were designed to allow more than one tie to 
be fixed .on each facing element. Using these skin elements 
it was possible to vary the horizontal and vertical tie 
spacings to suit the requirement of each test. Perspex 
ties of 1.5 and 22.7 mm average thickness and width 
respectively with lengths ranging between 170 - 500 mm, 
were used in this series. ~he soil/tie coefficient of 
friction determined from a controlled stress shear box was 

0.398. A vertical tie spacing of 250 mm was adopted in 
most of the tests although in a few cases walls were built 
using a vertical tie spacing of 125 Mm. Three horizontal 
tie spacings of 100, 150 and 300 mm were used to construct 

the walls in the present test series. A summary of tie 
lengths, the observed critical heights and tie spacing are 
shown in Table (5.6). The walls tested in this series were 
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TABLE (5.6) - Summary of Tie Lengths, Spacings and 

Critical Wall Heights of Series D Tests (A H == 250 mm) 

Test L H H c S clL No. mm mm mm 

leD) 500 440 300 0.88 

2(D) 480 375 300 0.78 
3(0) 480 315 300 0·66 
4 (D) 480 365 300 0.76 

5 (D) 460 330 300 0.72 

6 (D) 490 410 300 0.84 

7 (D) 470 340 300 0.72 

8(D) 460 350 300 0.76 

9(D) 500 360 300 0.72 

10 (D) 500 465 300 0.93 
I 

11(D) 450 310 300 0.69 

12 (D) 440 320 300 0.73 

13 (D) 440 278 300 0.63 

14 (D) 250 330 150 1.32 

15 (D) 250 ~58 150 1.43 

16(D) 250 350 150 1.40 

17 (D) 240 305 150 1.27 

18 (D) 170 310 100 1.82 

20 (D) 250 265 300 1.06 !l H-125 

21(D) 170 350 100 2.06 

22(0) 161 340 100 2·04 
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constructed as outlined in Chapter Four, Section (4.3). 
The tie tension was observed using strain gauges mounted 
on both faces of the perspex tie as shown in Fig (4.16) 

in Chapter Four. This method of tie tension measurement 
gave more satisfactory results than the method previously 
adopted for measuring tie tension, in Series C tests. On a 
few occasions the tension gauge shown in Fig (4.17) in 
Chapter Four was used to check the tie tension magnitude 
observed in this test series. It was found that the tie 
tension measured using the latter tension gauge was similar 
to the tie tension measured using strain gauges directly 
mounted on the perspex tie. 

5.5.3 Theoretical background for Series D tests based on 
the Energy Theory (Total equilibrium approach) 

~r--r- : ... ~.::-..... ' .....•............ :.: ... e. .. .... " 
.. .. ~ .. . . d ............... : ";.'.: ".t·Ol·· '-vd·· . '. , .', " .... '. ·r.UA •• -'" • 
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Fig (5.20) Theoretical analysis of Series D tests 

Using the total equilibrium approach, the tie tension 
expressions were derived in Chapter Three for a case of a 
reinforced earth wall comprising n layers. A distribution 
factor was assumed to obtain the external work done at each 
tie level. In the present test series walls were built 
with one or two reinforced layers and the tie tension 
expressions can be derived using the total equilibrium energy 
approach by directly equating the external work and the 
internal strain energy stored in a tie. 

As shown in Fig (5.20), a reinforced earth wall of height 
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h acted on by a surcharge equal to Vd is considered. 
o 

The height of the wall h in this series corresponds to the o 
height of the lower facing element and d is the height of 
sand lying above the lower skin element. For the assumed 
linear and parabolic tie tension distributions over the tie 

length and a pressure difference in the wall deflection 
equation, the total equilibrium energy approach gives the 
following tie tension expressions: 

(i) Assuming linear tie tension distribution 

T = 

........ (5. 1) 

(ii) Assuming parabolic tie tension distribution 

sinG Ka
2

•5 • ~H t 2 2 t 
T == ( ) .-y. Sh «h + 2d) + 2d ) ... (T. P. D.) 

3.2L 0 0 

••.••... (5.2) 

The f~rm of the tie tension expression derived in 

Chap~er Three, using the local ~quilibrium approach, can be 

used directly in the analysis of Series U tests. 

5.5.~ Series D test results 

The Series D test results consisted of the tie tension 
measurements and the observed adherence lengths at failure 
of the walls. A summary of the tie tension observations is 
shown in Appendix ( IV ) and typical test results of these 
observations a3 well as the cbserved adherence lengths will 

be presented and compared with the corresponding theoretical 
values in this section. 

5.5.4.a Observations on tie tension 

As shown in Fig (5.20) the tie. ten sions were observed 
in a reinforced layer lying at 125 mm above the base of the 
model. The effect of increasing fill height on tie tension 
was observed at two, three and four locations along the tie, 

depending on the tie length. 
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5.5.4.a.~ The variation in tie tension along a tie 

Fig (5.21) shows the observed tie tension variation over 
the tie length. This indicated a maximum tie tension close 
to the wall face which decreased to zero at the free end of 
the tie. The observed mode of tie tension variation along 
a tie remained almost the same for. different tie lengths and 
overburden heights used in the tests. As tie tension 
measurements were made at only one wall level in this test 
series, the ties at the upper wall levels may have different 
mode of tie tension variation. This problem will be dealt 

with in Series E tests. 

5.5.4.0.2 Variation in tie tension with fill height above 
tie level 

The curves of the experimental and the theoretical 
maximum tie tension versus fill height above the tie level 

are shown in Fig (5.22). The observed tie tension increased 
with increasing fill height and the results indicated a tie 

length effect on the maximum tie tension. For long ties, 
the Rankine tie tension expression which is independent of 
the tie length predicted higher tie tension than the 
experi~ental results. As the tie length was decreased the 
disc~epancy between the Rankine theory and the observed data 
decreased. The Energy theory based on the total equilibrium 
energy approach (T.L.D.) was found to give a general agreement 
with the observed results. The local equilibrium approach 
(LO.L.A.) predicted relatively higher tie tension than the 
experimental results. 

5.5.4.b The tie pullout resistance 

A~ the moment of failure the maximum tie tension was 
assumed equal to the tie resitance Fr against failure by pull 
out. This is also a common assumption used by most of the 
theoretical adherence length expressions. Table (5.7) 

gives the values of the force Fr and the corresponding over
burden pressure, which was calculated from the measured 
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density ~ , during the test and the overburden height h. 

The shear stress was then calculated and plotted against 

the overburden pressure ~h. This gave an angle of friction 

between the tie and the soil equal to 220 Fig (5.23), which 

compared quite well with the tie/soil angle" of friction of 

21.50 measured using a controlled stress shear box test. 
This result probably indicates that the total length of a 

tie lying near the bottom of a reinforced earth wall is 

effective against tie pullout failure. 

5.5.4.c Effect of tie length on the tie tension magnitude 

For three wall heights of 250, 300 and 350 mm the values 
of the maximum tie tension were interpolated from the 

maximum tie tension versus fill height above the tie level 
curves. The maximum tie tension per unit wall width Tm/ S 
was plotted against the tie length. A typical result is 
shown in Fig (5.24). The experimental values showed a 

decrease in the maximum tie tension with increasing tie 
length. 

The experimental results were compared with the 

theoretical values predicted by the Rankine, the Trapezoidal, 

Meyerhof and the Energy theories, Fig (5.24). The Rankine 

the Trapezoidal and Meyerhof methods predicted a tie tension 
which 1S of different pattern from the experimental results 
and also of higher magnitude. The Energy theories (T.P.D.> 
and (T.L.D.> predicted nearly similar pattern and magnitude 
to the experimental results. The Energy theory local 
equilibrium approach (LO.L.A.), predicted tie tension values 
which were of a similar pattern to the experimental results but 

of higher magnitudes. 

~~ 
5.5.4.d )(H2VaH Versus horizontal tie spacing curve 

~a According to the energy theory the quantitY::2 -
tH AU 

varies linearly with the horizontal tie spacing S, 
irrespective of the variation in the tie length L. The 
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TABLE (5.7) - The Maximum Tie Resistance againstPu11 Out 

F and the corresponding Overburden Pressure (Series D 
r 

Test Results) 

gm/3 thkN/rJ 1:- F 
Test L 't Fr - N 22b L 

No. 
cm mm kN/m 

1 (D) 500 1.610 4.97 52.49 2.31 

2 (D) 480 1. 610 3.94 33.81 1.55 

4 (D) 480 1.610 3.79 31.10 1.43 

5 (D) 460 1.610 3.23 26.01 1.245 

6(D) 490 1.610 4.50 36.79 1.65 

7 (D) 470 1.610 3.39 28.11 1.32 

8 (D) 460 1.618 3.55 32.07 1.535 

9(D) 500 1.622 3.74 31.89 1.405 

10 (D) 500 i 1.6146 5.38 47.37 2.08 

11 (I') 450 1.6146 2.9~ 22.28 1 .. 09 

12 (D) 440 1.610 3.08 27.22 1.363 

13(D) 440 1.6033 2.41 21.13 1.057 

14 (D) ·250 1.6010 3.21 16.59 1.462 

15 (D) 250 1.6220 3.70 21.00 1.852 

16(D) 250 1.589 3.51 19.30 1.705 

17 (D) 240 1. 5960 2.81 15.84 1.450 

18(D) 170 1.6146 2.93 10.19 1.323 

20(D) 250 1.610 3.19 20.06 1.768 

21 (D) 170 1.6167 3.57 11.90 1.421 
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experimental values of this quantity were calculated for 

wall heights of 300 and 350 mm and were plotted against 

the horizontal tie spacing S, Fig (5.25). The experimental 

values of Tm vfL varied almost linearly with the 
"IH2 ~H 

horizontal tie spacing in agreement with the energy theory 

prediction. The Rankine theory, which does not take the 

tie length effect into account, gave a non-linear variation 
Tm if of -
~ 6H 

with respect to the horizontal tie spacing S. 

5.5.4.e Comparison between experimental and theoretical 

adherence length 

Two sets of experimental adherence lengths were made 

available for comparison with different theories. The first 

set of data was obtained from Series A tests, as has been 

mentioned previously. The walls were built with horizontal 

and vertical tie spacings of 150 and 100 mm respectively. 
The ties were cut in 4.4 mm width from aluminium foil which 

has a coefficient of friction of 0.51 with the sand. The 

second set of data consisted of the failure heights and the 

corresponding tie lengths noted in the preseut test series 

Table (5.6). Both experimental results were compared with 

the theoretical predictions as shown in Figs {5.26a} and 

(5. 26b) . 

Generally all the different theories predicted longer 

ties than the experimental results with the exception of 

the energy theory, total equilibrium approach {T.L.L.D.} which 

slightly underestimated the adherence length, when compared 

with the Series D test results. The adherence lengths 
predicted by the energy theory local equilibrium approach 

(LO.L.A.), were generally closer to the observed data than 

the adherence lengths predicted by the existing design 

approaches. 



-166-
I 

50 Total wall hei."dlt = ~O::LO-.!nua~ __ ---'C------1 

Observed result 

40t------ .. -.... ~ - --------------+--------~-r___f 

30~--------------~---------------+--~~~--------r--

~t 
201----------------+-------~~~==~~~~--------~__t 

Ener 

( LO.L.A. ) 

100 200 300 

Horizontal tie apacing - S ( .. ) 

50~---------------r------~~~~~~~~~~~----_.--, 

Obse:'Ved results. 
I 

40 

201----------------~----------~~~+_----~~r_----~ __ ~ 

100 200 300 
Horizontal tie spacing-S(ma) 

~x erimental & theoretical values - V horizontal 
tie spacing. 



- 167 -
[J Observations 

1-1 EnerGY th eory( 'I' .1.. P. D. ) 

2-2 " " (T.L.L.D.) 

3-3 tt 11 (I,O.L.A. ) 

4-4 Coulomb I'1oment 

5-5 Coulomb Force 

6-6 Rankine(Only tic length heyond Coulomb plane effective) 

7-7 Danerjea . 

8-8 Ranklne(.~:l tie length BGsumed effeotive) 

9- 9 Meyerhot 

600 5= 150 mm, AH:= 100 mm f 
3 't -= 1.61 5 grn/ cm 

o -s- 40 f b = 4.39 I1Ull f =0.510 , 

i' 500 D 

P -

1'1 

t:Q.0 

I 
~ 400 
~ .... 
~ 
~ 300 
tf 
~ 

~ 
o 

.,... 200 
~ .,... 
/j 

100 

o 
B 
0" 

D 

1 . 8 5 

200 400 800 1000 

Tie length -

rimental & theoretical adherene 

leng;th( series A( 1.) test results· -). 



- 168 -

c Observations 

1-1 Enercy theory(LO.L.A.) 

2-2 Ba.nerjee 

3-3 Coulomb Force 

4-4 Coulomb moment 

5-5 Rankine theory 

6-6 EnerGY theory(T.IJ.L.n.) 
7-7 Rankine(Only tie length beyond Coulomb plane effective: 

8-0 Meyerhol 

OO~----------------------+------------------------~----------
, 1000 2000 

Tie leng,th, -. L(JIJl) 

Flg(5:26.b)'Comparison betwacn experiment~l & theoreticaladherenc~ 
length(series D tests results). 



- 169 -

5.5.5 Conclusions 

(i) From tie tension measurements in a reinforced 

layer lying 125 mm above the base of the model, a 
maximum tie tension was observed ne~r the wall face, 
and was found to decrease to zero at the free end of 
the tie. This mode of tie tension variation remained 
almost the same for different tie lengths and over
burden heights used in the tests. 

(ii) The observed maximum tie tension was noted to 
increase with increasing fill height above the tie 
leve 1. The Ener gy theory (T. L. D.) predicted _ 

a maximum tie tension which was in general agreement 

with the observed values, for all tie lengths adopted in 
the tests. The local equilibrium energy approach(LQLAl 
predicted comparatively higher tie tension than the 
observed results. The Rankine theory predicted higher 
tie tension than the experimental values and the 
discrepancy between the Rankine values and the experi
mental results, decreased with decreasing tie length. 

(iii) The angle of friction between the perspex ties 
and the sand, estimated from the measured force in the 
tie prior to the wall fail\,re and the corresponding 
overburden pressure, agreed w6ll with ~he perspex/sand 
angle of friction measured using a controlled stress 
shear box test. This probably indicates that for a 
reinforced layer lying n~ar the base of a wall, all 
the tie length is effective against tie pullout failure. 

(iv) The maximum tie tension was noted to decrease 
with i~creasing tie length. The Rankine, the 
Trapezoidal and Meyerhof methods gave theoretical values 

of maximum tie tension which were of different pattern 
from the experimental results and appreciably higher 

in magnitude than the observed values. The Energy 
theory expressions took into account the tie length 
effect on the maximum tie tension, and gave nearly the 
same mode of variation as the experimental results. 
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The Energy theory (T.L.D.) and (T.P.D.) predicted nearly 
similar pattern and magnitude to the experimental results, 
although the local equilibrium energy approach (LO.L.A.) 

predicted relatively higher values than the experimental 

results. 

(v) In agreement with 
experimental values of 

the energy theory prediction, 
Tm _~ were found to vary 
~2VTH 

almost linearly with the horizontal tie spacing. 

the 

(vi) Comparison between the theoretical and the 

experimental adherence lengths, showed that generally 
all the theories predCted longer ties than required for 
stability. The Energy theory (LO.L.A.) predicted 
adherence lengths which were closer to the observed 
results than the existing design methods. 

5.6. Series E Tests 

Instrumented not carried to failure tests 

5.6.1 Introduction 

The prescnt test series was intended to study the 
internal stability of model reinforced earth walls by 
observing the stresses and strains in the ties and in the 
soil during and after the wall construction. 

In the previous Series 8 and D tests the internal 
stability of the model reinforced earth walls was studied 
on an ultimate strength basis and the main observations were 
concerned with conditions at failure. Although the tie 
breaking failure test results allowed a comparison to be 
made between the theoretical and the observed maximum tie 
tension, it gave no indication of the state of stress in 
the ties at the middle and top of the wall. The tie pull 
out test results gave an overall adherence length, but the 
actual safety factors against tie pullout failure were not 
revealed from the test results. The observations made on 
walls failing by tie breaking or tie pullout were limited 
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and cannot be used to investigate fully the assumption on 
which the theoretical analyses were based. 

The Series E tests were designed to overcome the limita
tions noted in the previous test series. Walls in this test 
series were built with the five horizontai tie spacings shown 
in Table (5.8). Using each of the five tie spacings an 
average of seven walls were built to obtain a record of the 
tie tension distribution along a tie length and in different 
levels of the walls, the horizontal and vertical strains in 
the soil, the vertical stresses in the soil and the 
horizontal wall deflection. A number of walls were built 
at each tie spacing, because for each wall built, not more 
than two ties were instrumented, in order to avoid the 
reinforcing action of the lead wires on the walls. 

From the results of the tie te~sion observations the 
curves of the tie tension variation along a tie length at 
different levels were constructed. The curves of the 
maxImum tie tension over the wall height, and the maximum 
tie tension versus fill height above a tie level were drawn 
and compared with the Rankine and the Energy theories 

predictions. The Rankine theory was chosen since it is 
mainly used for the design of full scale walls and also 
since the Coulomb, the Trapezoidal and Meyerhof methods give 
similar results to the Rankiae theory as shown in Chapter 

H Three, especially for L ratio a~d ~ values used in the 
present test series. The potential failure surfaces 
formed by joi~ing the positions of the maximum tie tension 
in each tie level were constructed. Curves showing the 
variation in the horizontal and vertical strains in the soil, 
the variation in the vertical stresses in the soil and the 
horizontal deflection of the face of the walls were also 

drawn. 

Using the results of the tie tension measurements, the 
non-dimensIonal tension parameter and the safety factors 
against tie pullout were evaluated from the results of the 
Series E tests and compared with the corresponding theoretical 
values. 
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TABLE (5.8) - Design Parameters of Series E Tests 

Design parameters 

bH S 
mm mm 

250 100 

83.3 100 

83.3 150 

83.3 300 

100 150 

Tie length - 400 mm 
Tie width 22.3 mm 

Tie thickness = 1.37 mm 

Skin elements 

Width - 300 mm 
Height ';"' 250 mm 
Thickness - 6 mm 

Width - 300 mm 
Height ... 250 mm 
Thickness .. 6mm 

Width '. 150 mm 
Thickness - 6 mm 
Height .. 100 mm 

3 Soil density = 1.610 gm/cm 
G = 400 
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The test apparatus, the wall design and properties of 
the test materials will be outlined in the following 

.section. 

5.6.2 Test apparatus, and wall design 

The test model and accessories used for building the 

walls in the present test programme were described in 

Chapter Four, Section (4.2). 

In designing the present series of model walls the 

main design parameters of a reinforced earth wall were first 

considered. These were the vertical and horizontal tie 
spacings, the skin elements, the size of the tie, the 

properties of the soil backfill ( " and ro, the soil/tie 
coefficient of friction and the total wall height. 

In practice the vertical tie spacing is chosen to give 

an optimum height of compacted layer 41 , a reasonable 

skin element size and weight and an easy method of wall 

building procedure to avoid bracing the wall during construc-

tion. Tbe horizontal tie spacing is restricted only by the 

size of the skin element if concrete panel skin elements 

are used, and by the flexural rigidity of the skin element, 

if elliptical metal skin elements are used. Lesser restric

tions are imposed on the vertical and horizontal tie spacings 
in the model. In the presG~t test series tie spacings 

were varied to provide a wid€r scope for comparison between 

the experimental data and the theoretical predictions. 

Table (5.8) shows the vertical and horiz'ontal tie spacings 

and skin elements used in each set of tests. The skin 

elements were assumed to have no effect on the internal 

stability of the wall and were chosen to allow the tie spacing 

to be varied. 

This test series used perspex ties to facilitate the 

measurement of the tie tension. The tie width was kept nearly 
the same as in the Series D tests at 22.3mm. A tie length 

of 400 mm was found necessary to exclude tie pullout mode 

of failure for walls built up to a maximum height of 500 mm 
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using the tie spacings shown in Table (5.8). The soil 

density, the angle of internal friction of the soil and the 

tie/soil coefficient of friction were the same as in the 
Series D tests at 1.610 gm/cm3 , 400 and 0.398 respectively . 

. 
The walls were constructed in the manner described in 

Chapter Four, Section (4.3). The instrumentation used 
consisted of strain gauges mounted on the perspex ties for 
measuring the tension in the ties, strain coils for measuring 
the strain in the reinforced earth backfill and also for 

measuring the horizontal deflection of the face of the walls. 
Pressure cells were used to measure the vertical stress 
distribution in the backfill of the walls. The development 
and calibration of these instruments was described in Chapter 

Four. 

A summary of the Series E test results is shown in 
Appendix (V ) . Typical test results of this test series 
will now be presented. 

S.6.3.a Tie tension variation along the ties 

Figs (5.27) and (5.28) show typical test results of 

the tie tension distribution along the tie length observed 
in the present test series. The maximum tie tension was 
found to occur in the front half of the tie and decreased 
to zero at' the free end of the tie. This pattern remained 
almost unchanged for different vertical and horizontal tie 
spacings adopted in the construction of the walls in this 
test series. Thetension distribution on ties at the 
bottom of the Series E walls, gave a similar pattern to that 
observed in the Series D tests. 

The present tie tension observations will be used to 

evaluate the experimental safety factors against pullout 
later in this study. 

S.6.3.b Maximum tie tension variation over the wall height 

The maximum observed tie tension at each tie level in 
the five walls studied in this test series was found to have 
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a similar pattern of distribution with wall depth. Typical 
test results from the walls studied are shown in Figs (5.29) 
and (5.30). The experimental maximum tie tension generally 
increased with increasing wall depth and a decrease in the 
value of the observed tie tension was noted at the tie 
level just above the base of the wall Fig (5.29). This is 
possibly due to the fixity of the toe of the wall. 

Figs (5.29) ,and (5.30) also show a comparison between 
the observed and the theoretical maximum tie tension 
envelopes, calculated using the Energy theory (LO.L.A.) and 

{T.L.L.D.}.and the Rankine theory (using Ka and Ko earth 
pressure coefficients). 

In Fig {5.29}, the Energy·Theory (LO.L.A.) generally 
followed the pattern of the points of observed maximum tie 
tension, but predicted higher magnitudes. The discrepancy 
between the Energy theory (LO.L.A.) and the observed results 
decreased for the case of the smaller tie spacing shown in 
Fig {5.30}. In this figure also the Energy theory {T.L.L.D.} 
slightly underestimated the observed maximum tie tension, 
although in Fig (5.29) this r.ethod predicted a maximum tie 
tension envelope which fell approximately within the observed 
results. 

At the top of the wall, as shown in Fig (5.29), the 
observed maximum tie tension approached the Rankine values 
using Kat and in Fig (5.30) the observed maximum tie tension 
was greater than the Rankine theory prediction USing an 
active earth pressure coefficient Ka , but less than the 
Rankine values based on an at rest earth pressure coefficient, 

Ko' 

At the bottom of the walls, the Rankine theory predicted 
higher tie tension than the observed results. 

5.6.3.c Maximum tie tension versus fill height above the tie 
level 

Fig (5.31) shows that the observed maximum tie tension 
increases with increasing fill height. The corresponding 
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theoretical curves calculated from the Energy theory (LO.L.A.) 
and (T.L.L.D.) and the Rankine theory gave a linear 
variation of tie tension with increasing fill height. The 
Rankine theory was found to predict higher tie tension for 
the ties near the bottom of the wall, Fig.(5.3l) a and b, 
and slightly smaller values for the ties near the top of the 
wall, Fig (5.31) c and d. 

5.6.3.d The maximum tension curve 

Fig (5.32) shows the curves formed by joining the 

observed positions of the maximum tension in the ties at 

different wall levels. The observed maximum tension curve, 

in Series E tests, was nearly coincident with the Coulomb 
failure plane, near the bottom of the wall. Near the top 
of the wall, the observed maximum tenSion-curve, for the 
case of relatively small tie spacings, Fig (5.32) a and c, 
tended to shift away from the Coulomb failure plane towards 

the face of the wall. 

Symons?2 
63 

and Schlosser et al 

accounted for reinforced earth wall behaviour on the basis 

of the maximum tension curve. This was reported as 

dividing the reinforced earth wall into twa zones. In the 
first ~one, located near the fac~ of the wall, the soil is 
in an active failure state and tend~ to pUllout the ties. 
In the sec0nd zone, located behind the maximum tension curve, 
the shear stresses exerted by the soil on the ties, are 
directed towal:ds the back of the wall, and the soil is 
anchoring the ties. 

72 52 63 
Symons, Price and Schlosser et al --

also reported that the maximum tension curves vary with 

various factors, not investigated here, such as the foundation 
condition, the soil tie coefficient of friction and the 
geometry of the wall. 

5.6.3.e Horizontal strain in the soil 

The horizontal strain in the backfill of some of the 
r-einforced earth walls built in the present Series E tests, 
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was measured at three different wall levels using the strain 
coil transducers described in Chapter Four, Section (4.6). 

As shown in Fig (5.33) and (5.34) the horizontal strain 
in the sand is a maximum near the wall face and decreases 
towards the back of the reinforced earth wall. The 
variation of the horizontal strain in the sand with wall 
height is shown in Figs(5.35) and (5.36). The horizontal 
strain increased with wall h~ht to a maximum near the 
middle of the wall, then decreased towards the top of 
the wall. The horizontal strain in vertical sections close 

to the wall face and near the middle of the reinforced earth 
wall, Fig (5.35) were found to be +ve, indicating expansion 
and probably the soil was tending towards an active state 
of stress. In a section lying furthest from the face of the 
wall -ve strains were observed, indicating compression, and 
probably the soil was tending towards a passive state of 

stress. 

The magnitude of the horizontal strain was found to 
increase with increasing vertical tie spacicgs, Figs (5.35), 

(5.36). 

5.6.3.1 Vertical strain in the soil 

Fig (5.37) shows the observed variati.on of the vertical 
strain in the soil with the distance from the face of the 
wall, measured at three levels in the reinforced earth wall. 
The vertical strains in the soil were generally compressive 
having a maximum value near the wall face. This is 
probably due to the effect of the horizontal thrust acting 
at the back of the wall. 

5.6.3.g Vertical stress in the soil 

The variation in the vertical stress at the bottom of 
Series E model reinforced earth walls was measured using 
the Redshaw pressure cells, previously described in Chapter 
Four, Section (4.7). In some cases the pressure cell 
readings were found to lie near the overburden pressure, 
Fig (5.38). In other cases, the pressure cell readings 
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were nearly twice the overburden pressure, Fig (5.39) 
indicating an instrumental error. 

The vertical soil strain patterns shown in Fig (5.37) 
and the corresponding soil stress pattern, shown in Fig 
(5.38), do not appear to be compatible. Although the soil 
strain patterns Fig (5.37) appear to indicate the effect of 
the horizontal thrust acting at the back of the wall, the 

soil stress pattern showed an opposite effect to what was 
expected. Doubts must be cast on the earth pressure measure
ments, with particular regard to the behaviour of the 
pressure cells. Previous investigators 28,44,50 using 

pressure cells for the soil stress measurement, have had 
similar problems. 

5.6.3.h The horizontal wall deflection 

Figs (5.40) and (5.41) show a summary of the horizontal 
deflections of two model reinforced earth walls, measured 
using the strain coils previously described in Chapter Four 

Section (4.6). The observations were noted during and 
after the wall construction. The maximum wall deflections 

occurred near the midheight of the walls. 

The calculated horizontal wall deflections from the 

measured horizontal strains in the soil are also shown in 
Figs (5.40)and (5.41) and these seem to compare reasonably 
with the wall deflections meas~ed directly by the strain 
coils, with one exception at the top of the wall in Fig 
(5.40) where the calculated deflection was smaller than 
the observed value. This indic&tes compatibility between 
the horizontal soil strain measurements and the observed 
wall deflections. 

5.6.4 Comments on Series E tests 

, 
In the Series E tests, the walls ~hich were not carried to fail-
ure,were built with different vertical and horizontal tie 
spacings, to a maximum height of 500 mm. In these tests 
the tie tension, the horizontal and vertical strains in the 
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soil, the vertical stresses in the soil and the horizontal 
deflections of the wall face were observed and the results 
were presented in the previous section. The observed 
maximum tie tension variation with wall height and with 
fill height above the tie level, was compared with the 
corresponding theoretical values computed from the Energy and 
Rankine theories. 

The intention in Sections 5.6.5 and 5.6.6 is to use the 
tie tension measurements in the Series E tests, to evaluate 
the non-dimensional tension parameter X and the safety 
factor against internal failure of the wall. The obs&rv&d 
~and safety factor values can be used to test the various 

theories for reinforced earth wall design. 

5.6.5 The non-dimensional tension parameter 
x _ ~T_m __ 

Vh AHS 

The non-dimensional factor" was first advanced by 
Schlosser and Vidal 67 in a study on a full scale wall. 
If the wall behaves in accordance with ths Rankine theory the 
non-dimensional tension JG will have a constant value at 
different wall levels, which will correspond to the co
efficient of active earth pressure Ka. Baner jee 5 
evaluated the non-dimensional tenSion, using the finite 
element method, for walls in service conditions and reported 
a value vf 0.35 for the non-dinensional tension facto~ 

In the present study the non-dimensional tension jC was 
computed from the observed maximum tie tension at different 
levels of Series E walls, built to a maximum he~ght of 500 Mm. 

The experimentalvalues were plotted against the fill height 
above a tie level Fig (5.42). The experimental ~ values 
were at a maximum near the top of the wall (i.e. small fill 
heights above the tie level h) and decreased towards the 

bottom of the wall. The theoretical non-dimensional tension 
calculated from the local equilibrium energy approach (LO.L.A.) 
gave a reasonable agreement with the observed non-dimensional 
tension variation. The conventional and Banerjee methods, 
predicted nondimensional tension values, which were of 
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different pattern and magnitude from the experimental 

results. Hence the adoption of the conventional and 

Banerjee methods in the design of reinforced earth walls, 

assuming tie breaking failure, will result in an over or 

under estimate of the actual tension in t~e ties. 

5.6.6 The internal stability of Series E model walls 

5.6.6.a Introduction 

An internal failure of a reinforced earth wall occurs 

normally by a tie breaking or tie pullout mode of failure. 

In practice, the safety factors against tie breaking failure 

are greater than needed for the design of a full scale wall 

since :-

(a) In order to account for corrosion which may occur 
during the lifetime of the structure, larger tie cross

sectional areas are adopted. 

(b) The safety factors against tie breaking are estimated 

in practice us~ the yield stress of the tie material as a 

failure criteria instead of the ultimate stress '9.'hich is 

greater than the yield stress. This leads to a hidden safety 

facto~ against tie breaking failure. 

(c) The conventional theories usually over estimate the actual 
stresses in the ties. This redults in a lower value of the 

theoretical safety factors compared with the actual safety 
factors against tia breaking. 

Therefore a full scale wall is more likely to fail by 
tie pullout than by tie breaking. In the present study 

the safety factor against tie pullout of Series E walls 

will be studied in more detail than the safety factor against 

tie breaking. 

5.6.6.b The safety factors against tie breaking of Series E 
walls 

The safety factors against tie breaking, SF. can directly 
be estimated from the equation: 



SF = 
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A a r. . . . . . . . . . . . . . . . . . . . (5.3) 

where: Ar is the tie cross sectional area 

a is the ultimate or yield stress of the tie 
material 

T is the maximum tie tension 
m 

For constant Ar and a values as in the case of the 
Series E tests, the safety factor depends on the tie tension. 
The actual safety factor against tie breaking of the 
Series E walls can be calculated from Equation (5.3) using 
the observed maximum tie tension envelope, for each tie 
spacing adopted in the construction of Series E walls, e.g. 
for the cases of the experimental and the theoretical 
maximum tie tension envelopes shown in Figs (5.29) and (5.30) 
the corresponding safety factors against tie break, were 
evaluated from Equation (5.3) and are illustrated in Fig 
(5.4:3) . 

The experimental safety factors against tie break 
were a maximum near the top of the wall and decreased towards 
the bottom of the wall. In Fig (5.43a) the experimental 
safe~y factor increased again at the bottom tie level. 

In Fig (5.43a) the Energy theory (T.L.L.D.) and the 
Rankine theory predictions fell near to the minimum 
experimental results, althou~h these methods, as shown in 
Fig (5.43b) tended to give an over or an under estimate of 
the experimental safety factor against tie break, depending 
on the wall level considered. The Energy theory (La.L.A.) 
seemed to predict smaller safety factors against tie break 
at the top and the middle of the walls than the Rankine and 
the Enorgy (T.L.L.D.) theories. At the bottom of the 
walls, the Energy theory (LO.L.A.) gave larger safety 
factors against tie break than the Rankine and the Energy 
(T.L.L.D.) theories. 
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5.6.6.c Safety factors against tie pullout failure of 
Series E Walls 

For an optimum design of a reinforced earth wall, 
failing by tie pullout, a theoretical pro~edure for evaluat

ing the safety factor against tie pullout at each tie level 

-is needed. 

The intention of the present study is to check the effect 
of the assumption of the tie length, which is effective in 

providing pullout resistance and also the effect of the tie 
tension (Maximum or average) on the experimental safety 

factor. The experimental and the theoretical safety factors 
against tie pullout will also be compared. This was done 
by evaluating the safety factors against tie pullout from 

2bl."{ hf the equation, SF - ...............•...•.•. (5.4) 
and using: 

T 

(1) The experimental maximum tie tension T and assuming 
m 

all the tie length effective against tie pullout failure. 

(2) The experimental maximum tie tension T and assuming 
m 

only the tie length extending beyond the maximum tension 
posit~on on the tie, as effective against tie pullout failure. 

(3) The experimental average tie tension Tav and assuming 
all the tie length effective against tie pullout failure. 

(4) The experimental safety ~actor against tie pullout was 

also evaluated from the slope of the observed tie tension 

distribution along the tie length curves, using the following 
67 relationship, originally advanced by Schlosser and Vidal. 

SF_2b~hf ..................... (5.5) 
( AT/ AL) 

Calculations of the safety factor against tie pullout based 
on equation (5.5) was facilitated by the computer programme 
shown in Appendix (V I ) The experimental safety factors 
calculated on the basis of the four preceding assumptions 

will be compared. Comparison will also be made between the 
experimental and the theoretical safety factors against tie 
pullout of the Series E walls. 
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The results obtained from this analysis will now be 

presented. 

5.6.6.d Experimental safety factors against tie pullout 

Figs(5.44) to (5.47)show the experimental safety factors 

against tie pullout calculated on the basis of assumptions 

I to 4 mentioned in Section 5.6.6.c. Methods 1, 2 and 3 

gave reasonably smooth curves and indicated that for a 

rectangular reinforced earth wall with uniform tie distribu

tion, the safety factors against tie pullout were a minimum 
at the top of the wall and increased to a maximum at the 

bottom of the wall. 

The method number 4 based on the slope of the tie tension 

distribution along the tie length curves, is probably the most 
realistic approach for calculating the experimental safety 

factor against tie pullout, but the derivation of the 

safety factor based on this approach, depends to a great 

extent on the number of the observations of tie tension 

along the tie length. For relatively few observations of tie 

tensions along a tie, as was the case of the Series E model 

tests, large scatter w~s noted in the experimental safety 

factor calculated from the slope of the tie tension 
distribution curves. Because of this, it was decided to 

use the experimental safety factors calculated from the 
maximum t;e tecsion and assumin~ that only the tie length 
extending beyond the maximum tension position as effective 

against tie pullout failure, for the comparison between the 

experimental and the theoretical factor of safety against 

tie pullout, since this method offered a minimum value of 

the experimental safety factor against tie pullout. 

5.6.6.e Comparison between experimental and theoretical 
safety factors against tie pullout 

The experimental safety factors against tie pUllout for 
the series E tests, calculated from the maximum tie tension 

and assuming all or part tie length effective and the 
corresponding theoretical predictions, computed from the 
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Rankine (all or part tie length effective), the Coulomb 

force, the Coulomb moment, Banerjee and the Energy (to.L.A.) 

and (T.L.L.D.) methods, are all shown in Figs (5.48) to 

(5.51) . 

The Rankine (all tie length effective), the Coulomb 

force, the Coulomb moment and Banerjee methods predicted 

constant safety factors with wall height, which seemed to be 

generally greater than the experimental safety factors against 

tie pullout at the top of the wall and to be smaller than 

it at the bottom of the wall. 

The Rankine (part length effective) predicted a linearly 

varying safety factor against tie pullout with wall depth 

which was generally smaller than the experimental values at 

the bottom of the wall although at the top of the wall seemed 

to lie near to the experimental results. 

The Energy theory (LO.L.A.) pl'edicted a non-linearly 

varying safety factor against tie pullout, which appeared 

to agree with the general trend of the experjmental pOints, 

although it did not correspond cOlnpletely in magnitude with 

the ~xperimental safety factors against tie pullout. The 

Energy theory (T.L.L.D.) predicted safety factors against 

tie p~ll out wnich were greater than the experim~ntal values. 

5.6.7 Conclusions from Series E tests 

(i) The tie tension distribution along the tie length 

curves, for ties lying in different levels of the model 

reinforced earth walls, had a maximum value of tie 

tension in the first h~lf of the tie which decreased 

to zero &t the free end of the tie. 

(ii) The plots of maximum tie tension versus wall height 

and maximum tie tension versus fill height above the tie 

level, indicated that the Rankine theory generally 

underestimated the observed maximum tie tension at the 

top of the wall, and overestimated it at the bottom of 

the wall. The Energy theory (LO.L.A.) was found to 
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predict a similar pattern to the observed maximum tie 

tension distribution with wall height, but with larger 

magnitudes. This discrepancy was noted to decrease 

with decreasing tie spacing. The Energy theory 

(T.L.L.D.), predicted maximum tie ten~ions which lie 

near to the observed values, although this method was 

noted to underestimate the maximum tie tension for 

walls built with relatively small tie spacing. 

(iii) At the bottom of the wall, the curves formed by 

joining the maximum tension positions in the ties, at 

different wall levels, were found to be nearly 

coincident with the Coulomb failure plane, for an 

unreinforced earth wall. At the top of the wall, these 

curves were noted to shift away from the Coulomb plane 

towards the wall face, when relatively small tie spacing 

was adopted. 

(iv) From measurements of the horizontal strains in 

the backfill of the wall, maximum positive strains were 

observed near the wall face, indicating expansion and 

probably the soil was tending towards an active state of 

str~ss. In a section lying furthest from the wall face, 

n9gative strains were observed, indicating compression 

and probably the soil was tending towards a passive 

&tate of stress. 

(v) The maximum horizontal deflection of the wall face 

was found to occur near the middle of the wall. The 

calculated wall deflections from the observed horizontal 

soil strains, were found to lie close to the wall 

deflections measured directly by the strain coils. 

Hellce the horizontal strain measurements were considered 

to be compatible with the observed wall deflections. 

(vi) The vertical soil strain was a maximum and 

compressive near the wall face and decreased towards 

the back of the wall. This was attributed to the 

effect of the horizontal thrust acting at the back of 

the reinforced earth wall. 
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(vii) The Redshaw pressure cells used for the vertical 

soil stress measurement, in some cases gave an 

inconsistent indication of the vertical soil stress, and 

in some other cases the measured vertical stress, by these 

presure cells, was found to lie near the overburden 

pressure ~h. The vertical soil strain pattern and 

the corresponding soil stress pattern did not appear to 

be compatible. This was attributed mainly to the 

errors associated with the pressure cells. 

(viii) The non-dimensional tension factor ~, computed 

from the observed maximum tie tension, was a maximum at 

the top of the wall and decreased towards the bottom of 

the wall. This behaviour was reasonably predicted by 

the Energy theory (LO.L.A.). Banerjee's non-dimensional 

tension factor was found to be different in magnitude 

anrl pattern from the obRerved results. 

(tx) For a rectangular model reinforced earth wall with 

uniform tie distriuu~ion, the safety factor against tie 

breaking was a maximum near the top of the wall and 

decreased with wall depth. The Energy theory (LO.L.A.) 

seemed to give a lower limit for the observed safety 

facto~. The Rankine and the Energy (T.L.L.D) theories predicted 

higher safety factors than the observed values in some cases. 

(x) For the Series E model walls the experimental safety 

factors against tie pullout were found to be a minimum 

near the top of the wall and increased with wall depth. 

(xi) None of the theories agreed completely with the 

observed safety factors against tie pullout, although 

the Energy theory (LO.L.A.) seemed to predict the general 

trend of the observed points. 

5.7. Conclusions from Chapter Five 

Detailed conclusions were given at the end of each test 

series carried out in the laboratory test programme. A 

summary of these conclusions will be outlined in this section. 
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Preliminary model walls were built to study the effect 

of the friction of the back of the model on the critical 
height of the reinforced earth walls and also to check the 

performance of the instrumentation designed to monitor the 

tie forces and wall deflections. A minimum distance of 250 
mm was found necessary between the back of the model and the 

back of the reinforced earth wall. The strain coils initially 
developed to measure the strain in the soil were found to be 

applicable also in the measurement of the horizontal wall 

deflections. The stresses in the ties were satisfactorily 

measured by mounting strain gauges on perspex. 

From the observed critical wall heights of walls failing 

by tie breaking and comparison with the theoretical predict'i~ns 
it was found that the Rankine, Meyerhof and the Trapezoidal 

methods predict practically identical critical wall heights 

which were about 28°'.-39°'0 of the observed cr i tical wall 
heights. The theoretical critical heights predicted by the 

Ene~gy theory, (T.P.P.D.), (T.L.L.D.), (T.L.L.A.), (LO.L.A.) 

and (LO.L.D.) approaches, were noted to lie nearer to the 
observed values than the existing theories. 

The GlaEgow tie 
to b~ consistent with 

conducted in France' 

breaking failure tes~ results were found 
the previous tie breaking failure tests 

45 and in the U.S.A. 

The adherence lengths obtained from walls failing by tie 

pullout were noted to be shorter than the theoretical 
adherence lengths predicted by the Rankine (all or part 

length effective), the Coulomb force, the Coulomb moment, 
Banerjee and the Energy theory (LO.L.A.). 

In the Series 0 tests, the effect of the tie length on 

the maximum tie tension was assessed and the maximum tie ten

sion was observed to decrease with increasing tie length. 
The Energy theory (LO.L.A.), (T. L.D.) and (T. P.O.) gave 

similar pattern to the observed data. The Energy theory 

(T. L.D.) and (T. P.O.) also reasonably agreed in magnitude 

with the observed tie tensions. The Rankine, Meyerhof and 
the Trapezoidal methods were found to give different pattern 



- 207 -

and magnitudes from the observed results. 

From tie tension measurements, on walls not tested to 

failure, a maximum tie tension was seen in the front half of 

the tie which decreased to zero at the free end of the tie. 

From the plots of the observed and the theoretical 

maximum tie tension variation with wall height, the Energy 

theory (LO.L.A.) was found to predict similar patterns to the 

observed results but with larger magnitudes and the 

discrepancy was found to decrease with decreasing tie spacing. 

The Energy t~eory (T.L.L.D.) predicted a maximum tie tension 

which lay within the observed maximum tension points. For 
walls built with relatively small tie spacings this method 

predicted tie tensions which were about 25% lower than the 

observed values. At the top and middle of the wall the 

Rankine theory generally underestimated the observed maximum 

tie tension (by ~28% of the observed value). At the bottom 

of the wall the Rankine theory overestimated. the maximum tie 
tension by; 37'1. of the observed value. 

T 
The observed non-dimensinnal tension factor ~ = __ m __ _ 

'th.fa HS 

was found to be a maximum at the top of the wall and decreased 

to a minimum value at the uottOII1 of the wall. The Energy 

theory (LO.L.A.) reasonably followed the pattern of the 

experimental results. Banerjee and the Rankine methods gave 

constant values of the non-dimensional tension factor?( , 

which were different in magnitude and pattern from the observed 

results. 

For rectangular reinfo~ced earth walls with uniform tie 

distribution, a maximum safety factor against tie break was 

noted at the top of the wall, decreasing towards the bottom 

of the wall. For these walls also a minimum factor of 

safety against tie pUllout was seen at the top of the wall 

and increased towards the bottom of the walls. 

Comparison between the experimental safety factors 

against tie pullout and the corresponding theoretical values 
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computed from the existing , the Energy (La.L.A.) and 
(T.L.L.D.) theories, indicated that there was no general 

agreement between the experimental safety factors against 

tie pullout and the values predicted by the existing theories. 
The Energy theory (LO.L.A.), predicted similar trends to the 
experiment results, but it did not correspond completely in 
magnitude with the experimental safety factors against tie 
pullout. The Energy theory (T.L.L.D.) predicted higher 

values of safety factors against tie pullout than the 
experimental results. 

From the horizontal soil strain measurements a maximum 
+ve strain, indicating expansion, was observed near the wall 

face and a -ve strain, indicating compression, was observed 
at a section lying furthest from the wall face. 

The deflections of the front face of the wall, calculated 
from the horizontal soil strain measurements were found to lie 

close to the measured wall deflection~. Hence, compatibility 
between the horizontal soil strain measurements and the 
horizontal wall deflections appeared to exist. 

~he vertical soil strain was observed to be a maximum and 

-ve indicating compression n~ar the wall face and decreased 
towards the back of the wall. This pattern was attributed 

to the effect of the horizontal thrust acting at the back of 

the wall. 

The measurements of the vertical soil stress were found 
to be inconsistent and the pattern of the vertical soil stress 
distribution was incompatible with the observed vertical soil 
strain measurem~nts. This was attributed probably to the 
difficulties associated with the pressure cells for the 
soil stress measurements. 
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CHAPTER SIX 

FULL SCALE REINFORCED EARTH RETAINING 

WALLS 

6.1 Introduction 

6.1.1 Objectives of the present chapter 

Reinforced earth retaining wall theories have been presented 
in Chapter Three. In Chapter Five, the behaviour of reinforced 

earth retaining wmls was studied on a laboratory scale model 
and the reinforced earth theories were tested on the basis 

of these model test results. 

In the present chapter, reference will be made to full 

scale walls reported in the literature and a brief review will 
be given of the test results reported on these walls. The 
observations reported on Granton field wall(29) will be 
considered in order to investigate the similarities and 

differences between model wall and field wall behaviour, 
to compare the reinforced earth theories with the field wall 

behaviour, and to investigate the effect of compaction on the 

stresses ~nd deformations measured in the Gra~ton wall. 

6.1.2 ~iterature review 

In Chapter Two reference has been made to full scale 
reinforced earth retaining walls reported in the literature. 

~e main walls which were instrumented and reported were: 

(a) The Incarville experimental wall 

(b) Dunkirk harbour wall 

(c) Los Angeles County wall, and 

(d) The Granton reinforced earth wall 

A brief review of these walls will now be given. 

6.1.2.a The Incarville experimental wall 

This was reported by Schlosser & Vidal(67) and Schlosser(~2) 
The wall was 10 m x 10 m in cross-section and 165 m long. 
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The backfill material consisted of gravelly sand, with angle 
of internal friction ~ and an average backfill density of 400 

and 20 kN/m3 respectively. A number of ties were equipped 

with strain gauges at 1.7m intervals. The vertical and 
horizontal pressures were measured using G~otzl pressure 
cells. Aluminium ties were used, with Young's modulus 
equal to 6.86 x 104 MN/m2 and tensile strength equal -to ,x 
324 MN/m2. 

At the bottom third of the wall two ties were coupled 

together and spaced at 1m centre to centre. In the middle 
third single ties were placed at 1m intervals and at the top 
third of the wall, single ties were placed at two metre 
intervals. The skin elements were elliptical in cross

section 0.25m high giving a vertical tie spacing of O.25m. 

6.1.2.a.l The Incarville wall test results 
(i) Tie tension 

The tie tension distribution along a tie length showed a 

substantial variation. Generally a maximum tie tension was 
observed n€ar ~he wall face and decreased towards the free 
end of the tie. The shape of tLe ti~ tension distribution 
curves was influenced by wall construction procedures such 

as compaction. 

The observed maximum ti~ tension was drawn versus the 
wall height and compared with the Rankine and the Trapezoidal 

methods. At the top of the wall, the maximum tie tension was 
found to lie near the Rankine theory prediction using an at 
rest earth pressure coefficient K. Near the bottom of the o 
wall, the observed maximum tie tension was nearly equal to 
the theoretical tie tension predicted by the Trapezoidal 

method. 

(ii) Vertical stresses in the soil 

The vertical stress distribution along horizontal 
sections in the Incarville wall was non-linear, being at a 

maximum near the wall face and decreasing towards the back 
of the wall. The ratio of the horizontal soil stress to the 
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ax 
vertical soil stress a- ' was found to vary between 0.5-0.6 

at the top of the wallYto 0.35 at the base of the wall. The 

measured stress ratio at the top of the wall was found to be 

greater than the coefficient of earth pressure at rest Ko and 

this has been at±ributed to compaction stresses. 

6.l.2.b 
41 

Dunkirk wall 

This was built as part of a storage yard in Dunkirk 
harbour in France. The wall was double-faced, 15m high by 

15m wide, was approximately 1,000m long and carried a 1,200 

tonne travelling crane. The wall was founded on a rather 

soft ground, and because of this the reinforced earth method 
was the only feasible solution, Barclay. (6) 

Three test sections in the wall were equipped with 
strain gauges for measuring tie tension. Long et al (47) 

and Schlosser(6l) presented some of these results which 

indicated a maximum tie tension near the wall faces and 

decreased to a minimum value at the line of symmetry of the 

wall. 

The forces developed in the ties as a result of the 

passage of the crene have been compared(63) with the theoretical 

values calculated from an assumed "'ertical stress distribution 
suggested by Schlosser et ale (63) At the top of the wall, 

the predicted t~e forces were ap9reciably higher than the 

observed tie forces. At the bottom of the wall the theoretical 
and the observed values appeared to approach similar v.alues. 

6.l.2.c The Los Angeles County wall 

This was reported by Chang(14), Chang et al(15) and 

Chang et al(16) The wall was built on HighWa;-39 near Los 

Angeles. The reinforced earth fill had a maximum height of 

16.8m, built on an embankment composed of random fill. 

The Rankine method was adopted for the design of 

reinforcements against both tie breaking and slippage failures. 

The backfill material had an angle of internal friction 



- 212 -

equal to 400
• The angle of friction between tIe-soil was 310. 

The reinforcements consisted of galvanized steel strips 3mm 

in thickness, 60 mm width with a total length ranging between 

7 and 14 metres. The elastic modulus of the strip material 
was 1.97 x 108 kN/m2 and Poisson's ratio wa·s 0.28. 

Wall instrumentation comprised: 

(i) slope indicators to measure internal deformations 

of the embankment; 
(ii) settlement platforms for vertical settlement 

observations; 
(iii) extensometers to measure soil strains; 
(iv) soil pressure cells; 
(v) strain gauges for measuring the strains in the 

tics and the skin elements; 
(vi) gauge points for measuring the wall and skin 

deformations. 

These were monitored during the wall construction and one 

year after the wall had been completed. 

6.1.2:c.l Test results 

(i) Tie tension 

The observed tie tensions in the Los Angeles County wall 
showed an appreciable variation with time. The maximum tie 
tension was found to develop in the middle portion of the tie. 
In some ties the tie tensi~n increased with time and approached 
the Rankine values based on an at rest earth pressure coefficient 
Ko. In some other ties, the observed maximum tie tension was 
found to vary with time and approached the Rankine values 
based on an active coefficient of earth pressure Ka. The 
variation in the tie tension with time was attributed to the 
settlement and horizontal movements of the foundation. 

Compressive tie forces were observed in some ties located 

near the bottom of the wall. This was attributed to the 
effect of the berm, constructed at the toe of the wall. 
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(ii) The soil stresses 

The coefficient obtained by dividi~ the horizontal soil 

stress by the vertical soil stress K = aX, was found to vary 

irregularly during the construction of the wall. This was 

attributed to compaction effects. As construction proceeded, 
the effect of compaction on the soil stress at a particular 
level appeared to become less. After the completion of the 
wall K values varied between 0.11-0.41 at one test section, 
compared with the active and an at rest coefficients of earth 
pressure of 0.22-0.36 respectively. At another test section 
K values varied in a wider range of 0.20-O.~O. 

(iii) Strain in the ties and the soil 

The observed strain in the ties and in the soil were 
found to be compatible, except in one of the test sections 
in which near the top of the wall the strain in the ties was 
found to be higher than the strain in the soil. This was 
attributed probably to slippage between the soil and the ties. 

(iv) Field pulling tests 

Dummy ties of lengths varii~g between 1.5 m to 14 m were 
installed in the reinforced earth fill, under overbu~den 
heights ranging from 2.3 m to 116m and were pulled out 
artificially. 

The results indicated that the soil/tie angle of friction 

decreased with increasing overburden height over the ties level. 
The investigato~s reported that this anomaly cannot be 
explained on any theoretical basis. The safety factor 
against tie pullout was evaluated from the observed peak tie 

resistance against pullout. For a constant tie length the 
safety factor against tie pUllout was seen to decrease with 
increasing overburden height. The observed peak tie resistance 
against pullout, was found to be greater than the theoretical 
skin friction force, when the tie length was over three metres. 

6.l.2.d The Granton wall 

Tbe Granton wall was the first example of the use of the 
reinforced earth method in the U.K. Finlay and Sutherland(29) 



- 214 -

reported on the wall geometry, structural components, method 

of construction and the results of the stresses and 

deformations observed on the wall during and after completion 

of the wall construction. 

The Granton wall is 105.84 m in length, with some sections 

curved in plan. The height of the wall varies between 1.79 

to 7.165 m measured from top of foundation slab to top of 

wall coping. 

The wall was founded on a burnt oil shale (blaes) which 

was used to replace a soft clay layer, originally present on 

the site. 

6.l.2.d.l Material properties 

The skin elements used in the Granton wall consisted of 

concrete panels, approximately 1.5 m x 1.5 m and 180 mm 

thick. The ties were of stainless steel 80 mm wide, 1.5 mm 

thick and 6.5 m in length. The average horizontal and 

vertical tie spacings were 0.75 m. The backfill material 

consisted of a burnt oil shale (blaes). This had an angle 

of internal friction of 460 and a cohesion c= 41.4 kN/m2 , 
3 measured at a field density of 16.65 kN/m , using an undrained 

triaxial test. The tie/soil coefficient of friction was 0.32. 

6.l.2.d.2 Wall instrumentation 

Electrical resistance, strain gauges were installed on 

ties to measure the tie tension at different locations along 

the tie length and also to m~asure the earth pressure on the 

panels. 

The vertical and horizontal movements of the faCing 

panels were measured by observing steel pins inserted in the 

panels. 

6.l.2.d.3 Test results 

(i) The tie stresses 

The tie stresses in the Granton wall were found to 

increase from the face of the wall to a maximum in the front 
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half of the tie and decreased to zero at the free end of the 

tie. Comparison with the Rankine theory indicated that the 

average measured tension on the tie was 72% of the theoretical 
Rankine value using a design value of K = 0.30. For K = 0.163, a a 
the appropriate value for the fill as placed, the measured 
average tie tension was 30$ greater than the Rankine prediction. 
The compaction procedure was noted to affect the tie tension 
distribution as well as its magnitude. 

(ii) The wall movement 

The total downward vertical wall movement over a wall 
height of 6.30 m was 35 mm. Thefirst horizontal wall move
ments were taken after part of the fill had been placed. The 
average translation movement between panel joints was 4.7 mm 
and the rotational movement due to outward tilt of the panel 
was very much larger than the translation movement. This was 
of the order of nearly 50 mm and was mainly attributed to 
compaction procedure. 

(iii) Pressure on the panels 

Pressures on the panels observed at the Granton wall were 
found to be affected by the compaction equipment and pressures 
greater than those corresponding to the active earth pressure 
were observed. 

6.1.3 Conclusions from reports on field walls 

(1) In the Incarville wall, the tie tension distribution along 
the tie length, showed a substantial variation. This was 
attributed to the effect of the wall construction procedure. 
At the top of the wall, the observed maximum tie tension was 

nearly equal to the Rankine values based on the at rest 
coefficient of earth pressure K. At the bottom of the o 

wall, the maximum tie tension appeared to be coincident with 
the theoretical values calculated from a Trapezoidal vertical 
stress distribution. 

(2) In the Dunkirk harbour double-faced wall, a maximum tie 

tension was observed near the wall face decreasing to a minimum 
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value at the line of symmetry of the wall. 

(3) In the Los Angeles County wall, a maximum tie tension 
was found to occur in the middle portion of the tie and it 
showed an appreciable variation with time. . The variation 
of the tie tension with time was attributed probably to the 

settlement and horizontal movement of the foundation. 

(4) In the Granton wall, the tie tension increased from the 

back of the wall to a maximum in the front half of the tie and 
decreased to zero at the free end of the tie. The magnitude 

of the tie tension was found to be affected by the compaction 

operation. 

(5) In the Incarville wall, the ratio of the horizontal to 
vertical soil stresses was found to be greater, at the top 
of the wall, than the at rest coefficient of earth pressure 
K. This was attributed to the effect of compaction. At 

o 
the bottom of the wall, the stress ratio was greater than the 
coefficient of active earth pressure K , but less than K • a 0 

In the Los Angeles County well t~e effect of con~action 
on the stress ratio was noted to diminish with increasing fill 
height above the instrumentation level. 

6.2 Detailed Study of Tie Tallsion in a Full Scale Wall 

In the foregoing section, a literature review of the 
test results obtained from walls at Incarville, Dunkirk, Los 
Angeles and Granton was presented. 

UnlikA a model wall, a full scale wall is affected by 

the construction procedure. In an attempt to analyse the tie 
tension in a full scale wall, the observations made on the 

Granton field wall will be considered, since details of the 
Granton wall data are more accessible to the author than any 
other field wall. 

The aim of the present section is, therefore, for the 
Granton wall~- x 
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(1) To study the effect of compaction on the observed 

maximum tie tension, by means of a simplified theoretical 

analysis. 

(2) To compare the observed maximum tie tansion with the 
Energy and the Rankine theories. 

(3) To compare the observed and predicted non-dimensional 

tension 'X • 

(4) To evaluate the experimental safety factors against tie 
break and tie pullout and to compare the minimum observed 

results with the theoretical values. 

(5) To outline the similarities and differences between the 

observations from a model wall and the behaviour of the full 

scale wall at Granton. 

The results of these analyses will now be discussed. 

6.2.1 Effect of compaction on tie tension 

6.2.1.a Introduction 

The use of compaction equipment was reported by 

Casagrande(13) as causing an inc~ease in the lateral earth 
pressure in co~ventional retaining walls. After the passage 

of the compaction equipment, part of the lateral pressure 
developed by soil compaction is relieved. The remaining 
part of the lateral pressure developed by soil compaction was 
referred to by Sowers et al(69) as the residual compaction 
pressure. Sowers et al(69) also ~eported that the residual 

compaction pressures are considerably larger than the at rest 
earth pressures. D'Appolonia et al(22) found experimentally 
that the lateral pressures in the soil build up with increas
ing number of roller passes. Aggour and Brown(l) attempted 
to predict theoretically the lateral pressure developed during 
compaction behind conventional retaining w~lls. 

In the case of full scale reinforced earth walls the 

process of compaction was reported to have an effect on the 
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tie tension in the Incarville(67) and the Granton(29) walls. 

The ratios of the horizontal to vertical soil stresses, which 

were greater than the at rest coefficient of earth pressure 

K , observed in the Incarville wall, were attributed to o . 
compaction. (67) In the Los Angeles County wall, the effect 

of compaction on the stress ratio in the soil was found to 
diminish with increasing fill height above the instrumentation 
level. (14) 

In the present section it is intended to show the effect 

of compaction on the maximum tie tension observed at the 

Granton wall. This was done by considering for each tie, 

the curves of the observed maximum tie tension versus fill 

height, e.g. Fig (6.1). 

shown were straight lines. 

The corresponding theoretical curves 

To simplify discussions, the term 
6T shown in Fig (6.1) was evaluated from the observed and 
6h 

the theoretical curves and plotted against fill height above 
the tie level. For the case illustrated by Fig (6.1), the AT 

I1h 
values calculated from the Energy (LO.L.A.) and the Rankine 
theories were constant and equal to 0.99 and 1.52 respectively. 

6.2.l.b Results of the analysis 

As shown in Figs (6.2) and (6.3), the increase in the 

observed tie tension per unit increase in fi_l height t! ' 
above the tie level was computed for the cases of six ties 

in the Granton wall and drawn versus the fill height above the 

tie level. The corresponding theoretical !~ values 
calculated from the Energy (LO.L.A.) and the Rankine theories 
were constant. 

AT The general trend of the observed An with increase in 
fill height, was for a high value at low fill heights, 

AT followed by a reduction in the value of Ah as the fill height 
increased, until ~ tended towards the theoretical constant 

value as the wall approached its maximum height. 

The variation of the observed ~~ values with fill height, 

appears to be due to compaction stresses, since the compaction 
operation has been found 29 as affecting the tie tension in 
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the Granton wall. The pattern of t~ variation with 
increasing fill height above a tie level, shows that the 
compaction effect on the tie tension diminishes with increasing 

fill height. 

In the following section an attempt will be made to 

account theoretically for the observed variation in ~~ with 
fill height, by means of a simplified theoretical approach. 

6.2.l.c Theoretical analysis of compaction stresses 

(1) 
As pointed out by Aggour and Brown a rigorous analysis 

of the compaction pressures requires a knowledge of various 
factors, such as the loading and unloading moduli of the earth 
fill, the wall flexibility, the number of the roller passes 
and the backfill geometry. Hence it was found rather 
difficult to account theoretically for the variation in tie 
tension due to compaction stresses. 

However, the author has adopted a simplified theoretical 

model to study the effect of compaction on the tie tension on 
an approximate basis. In this model the roller was 

represen",ed by three point loads and its position was altered 
to outain the maximum horizontal stress on the facing panels. 
These calculations were made according to a modified 
Boussinesq theory suggested by Spangler, (70) for the analysis 

of stresses due to surface concentrated loads on conventional 
retaining walls, Appendix (VIla). The data pertaining to the 

roller are also shown in Appendix (VIlb). 

The theoretical AhT values computed from the transient 
A AT effects of the roller weight were added to the -- values 

Ah 
calculated from the Rankine theory and plotted against fill 
height, Fig (6.4). Also shown on Fig (6.4) are the average 
AT values obtained by interpolation from Figs (6.2) and (6.3). 
6h 

The fact that both the average observed points and the 
theoretical curve show a similar trend would seem to indicate 

that compaction does influence the build up of tension in the 
reinforcing ties. 
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6.2.2 Comparison between the observed and the theoretical 

maximum tie tension 

As shown in Fig (6.5), the maximum tie tensions observed 

at the Granton wall, were drawn versus the ~all height and 

compared with the Energy theory (LO.L.A.) and the Rankine 

theory predictions. 

The observed maximum tie tension points, generally indicated 

an increasing tie tension with wall depth. The low value of 

the observed maximum tie tension near the bottom of the wall, 

was probably due to the fixity of the toe of the wall. 

For K .,. 0.163, the appropriate value for the fill, the a 
Energy theory (LO.L.A.) and the Rankine theory predicted 

appreciably lower maximum tie tension than the observed 
results. The observed maximum tie tension points were 

found to be contained within the Energy theory (LO.L.A.> 
curves, evaluated by assuming K = 0.18 and 0.327, Fig (6.5). 

This fact seemed to indicate that the compaction 

procedure had increased the coefficient of earth pressure in 

the s(il. to values well above the coefficient of active 

earth pressure Ka - 0.163. 

To prevent this happening in practice, it is desirable 

that the compaction procedur3 should be controlled during 
construction. This is, in fect, done at present by means 
of a specification clause(41) which does not allow rolling 

wi thin a distance of two metres from the wall facing. However, 

in practice, it 1s not always possible to enforce this require

ment rigidly, a& illustrated by the performance of the Granton 

11 
(29) 

wa . 

6.2.3 The non-dimensional tension 

In an attempt to compare the model wall and field wall 

behaviour, the non-dimensional tension 'X'" Tm was 
'1h A H. S 

calculated from the maximum tie tension T observed in each m 
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level of the Granton wall; Tm being the maximum tension 

observed when the wall has reached its full height. The 

observed non-dimensional tensions were plotted against the 

height of fill above the ties. The results are shown in 

Fig (6.6). Although the observed non-dimensional tension 

values were affected by the wall construction procedure, 
they appeared to indicate a pattern of decreasing non

dimensional tension with increasing fill height above the 

tie level. This was the general trend of the experimental 
results observed on the laboratory scale models shown in 

Fig (5.42) in Chapter Five. 

Comparison between the observed and the predicted non

dimensional tension X , Fig (6.6) showed that the energy 

theory (LO.L.A.) gave a similar pattern to the experimental 

results. The Rankine and Banerjee methods gave constant 
values differing from the experimental results. 

6.2.4 The internal stability of the Granton wall 

The tie te~ions in the Granton wall have been found(29) 

to be affected by the compaction procedure and consequently 
the safe~y factors against tie breaking and tie pUllout were 

also affected. 

In the present section the safety factors against tie 

breaking and tie pullout will be evaluated from the observed 

maximum tie tension and the minimum values of these will be 

compared with the theoretical values. 

6.2.4.a Safety factor against tie break 

Th~ variation in the safety factor against tie break 
with fill height above the tie level is shown in Fig (6.7). 
These were evaluated for the cases of four ties from the 
relationship a Yl. Ar SF ... 

using a yield strength for the stainless steel of 0.49 
2 kN/mm . 
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Fig (6.7) shows a sharp decrease in the observed safety 

factor against tie break, in the first 1.5 metre height of 

fill above the tie. Probably this was due to the compaction 

stresses, which were more pronounced at smaller fill heights 

above the tie level. 

The safety factors against tie break of the completed 

wall were drawn versus wall height and are shown in Fig 

(6.8). These generally decreased with wall height to a 
m.inimum value of 4.93 at a wall level of 2.63 metre above the 

base of the wall and increased again with wall height. 

Table (6.1) shows 

the theoretical safety 

completed field wall. 

a comparison between the observed and 

factors against tie break, for the 

All the theories predicted a safety 

factor against tie break which is higher than the minimum 

experimental value, but less than the observed maximum value. 

The increase in the tie tension by the compaction 

operation, probably led to a decrease in the experimental 

safety factor against tie break. 

6.2.4.b The safety factor a~ainst tie pullout failure 

Fig (6.9) shows the variation of the safety factor against 
tie pullout with fill height above the tie level, for the 

cases of four ties in the Granton wall. 

using the relationship 

SF -

These were calculated 

and assuming the total tie length, L, as effective in providing 

resistanc~ against pullout. The observed maximum tie tension 

Tm was adopted in these calculations. 

The safety factor against tie pullout increased with 

increasing fill height above the tie level. Forthe case of tie 
C2 , Fig (6.9b), the safety factor was less than 1.0, for fill 

heights less than 1.70 m. As pointed out by Finlay and 
Sutherland(29) a localized slip might have taken place. 
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Observed maximum 
Observed average 
Observed minimum 

Wall design 
parameters 

f-

SF == 15.4 
SF .. 8.2 
SF .. 4.93 

Method 

2 
cry 1 -0.49 kN/mm Rankine 

b - BOmm Trapezoida 1 

t - 1. 5mm 
.. . Meyerhof 

. Ka - .163 
Banerjee 

AH - O.75m 
S a O.75m Energy 

(LO. L.A.) 
'( kN -16. 65 1m3 Energy 

H - 6.3m (T. L. L.A.) 

Safety factor 
against tie 

break 
(Theore~ ical) 

6.1 

5.3 

5.B 

6.4 

9.9 

10.1 .. 

TABLE (6.1) - Comparison between the observed and the 

theoretical safety factor against tie 
break (Granton full scale wall). , 
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The lowering of the safety factor against pullout to 

values less than 1.0 could be due to compaction. This may 

be shown by considering Fig (6.10) in which the safety 

factor against tie pullout and AT were drawn versus the 

fill height above the tie level,A~or the case of tie C
2

• 

When t~ values were high, possibly due to compaction stresses, 

the safety factor against pullout was less than 1.0. 

The safety factors against tie pullout of the completed 

Granton wall are shown in Fig (6.11) versus the wall height. 

The maximum safety factor against tie pullout was found at 

the bottom tie level. 

Table (6.2) shows a comparison between the observed 

maximum, average and minimum safety factor against tie pull 

out and the theoretical minimum valu~s. The actual safety 

factors of the wall against tie pullout could have been 

lowered by the construction procedure. For Ka - 0.163, 

corresponding to the state of the fill as placed all the 

theories predicted higher safety factors against tie pullout, 

than the observed minimum value of 1.70, but less than the 

obRerved maximum value of 4.75, ~xcept B~nerjee's method 

which gave appreciably higher safety factor than the observed 

maximum value. 

The Granton wall was fouud to have a minimum factor of 

safety againt;t tie brea.k of 4.93. This is appreciably greater 

than the minimum factor of safety against tie pullout of 

1.70. Therefore the wall is more likely to fail by tie pull 

~ut than by tie breaking, as h~s been pointed out in Chapter 

Five. 

6.2.5 Co~parison between model wall and full scale wall 

Although the observations made on the Granton wall, have 
(29) 

been reported to be affected considerably by the 

construction technique, some general similarities between the 

tie tensions measured in the Granton wall and the model walls, 

were found. These similarities can be summarized in the 

following points: 

(1) The tension distribution along the tie in the Granton 



- '~33 -

8 

1 2 3 4 

'7 
:.I ,. 

6 ~ 
I 

5 .It 

~ 4 E-t 
<1 
o1:J 

3 
~ 
~ 
0 

2 r-f 

~ 
PI 
.p 1 
m 
~ 

0 ~ 
tID 
Cd -1 
• 

Jk4 .- 2 
fIl 

IQ 
\ 
\ -

1 • 
\ . 
\ AT Ah 

9' 
\ ;:, .• r~ 

-K..~S:!:.. ~ ~ l 

I- ----- - ----V" - / ·V·.-o \ 

1 .J 
-- , . 

N 

5.F.= safety foe tor 

• 
o 5 

Y ill height above tie level - m 

Fip;.6.10 !-!ifect of compac tion on S.F. against pullout. 



- 234 -

~ 

/ . 
0 '0 

'~ 
'-. 
,., 1\ n 

I 
" .. 

r--..''''o I 
I 

o 1 2 3 I. " ~ Safety factor aga~nst ~ie pullout 

Fig. 6.11 - Variation in the observed safety factor against 
tie pullout failure with wall height (Granton wall 
H .,. 6.3 m) 

Observed maximum SF = 4.75 
Observed average SF = 3.00 

Observed minimum SF'" 1.70 

Wall design 
parameters Method. 

b - 80mm Rankine 

L - 6.5 m 
(all length 
effective 

K - 0.163 a Rankine 
.6H - 0.75m (part length 

S .,. a.75m effective) 

1- 16.65 KN/ Coulomb force 
3 

m Coulomb mOlllent 
f co 0.32 

Banerjee 

ISafety factor 
against tie pull 
out (Theoretical) 

3.63 

2.50 

3.2 

2.9 

7.5 

Energy (LO.L.A.) 2.66 

Energy (T .L. L.A b 2.02 
I 

TABLE (6.2) - Comparison between the observed and 
the theoretical safety factor against tie ull 
out ranton ull scale wall . 
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wall, was reported(29) to increase from the back of the wall 

to a maximum value in the front half of the tie and to decrease 

to zero at the free end of the tie. This observation was 

generally applicable to the tie tension distribution observed 

in the model walls. 

(2) In the Granton wall the maximum tie tension variation over 

the wall height was found to increase with wall depth and to 

drop at the tie level just above the base of the wall. This 

was also the trend of the tie tension curves observed on the 

model walls. 

(3) The non-dimensional tension parameter X , observed from 

Granton wall and the model walls was found to decrease with 
increasing fill height above the tie level for both walls. 

6.3 Conclusions From a Study cn Tie Tension at The Granton Wall 

In Sections(6.2.1) to (6.2.5) a study on tie tensions 

observed at the Granton full scale wall was presented. 

Concl'lsions reached in this study ..vill now be outlined. 

(i) Effect of compaction on the observed maximum tie tension 

was studied by considering the observed maximum tie tension 

versus fill height curves. probably the compaction operation 

increased the tie tension when t~e fill height above the tie 

was small. The effect of ·compaction on the observed tie 

tension diminished with increasing fill height above the tie 

19vel. A simplified theoretical model adopted to study the 

compaction effect, gave similar trends to the observed 

behaviour and i~dicated most probably that the compaction did 

influence the tie tension. 

(ii) In the Granton full scale wall, the observed maximum 

tie tension was appreciably higher than the Energy (LO.L.A.) 

and the Rankine theory predictions. This discrepancy can be 

attributed probably to the compaction effect. 

In practice it is desirable to contro~ the compaction 

procedure during the construction of the wall to minimize the 
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the build up of earth pressures on the wall facing. 

(iii) For the Granton full scale case, the observed non

dimensional tension parameter~, was found to decrease with 

increasing fill height above the tie level.- The Energy 

theory (LO.L.A.) gave a similar mode of variation to the 

observed results. The Rankine and Banerjee approaches gave 

constnnt values of 1( , which were different from the observed 

results. 

(iv) The safety factor against tie break, was found to 
decrease sharply with increasing fill height above the tie 

level, in the first 1.5 m fill height and then remained almost 

constant. The initial drop in the safety factor was 
attribut~d probably to compaction. The completed wall had a 

minimum factor of safety against tie break of 4. 93, which was 
less than the prediction of all the existing theories. 

(v) The safety factor against tie pullout was found to 
increase with increasing fill height above the tie level. 

The resulte indicated probable slipping of the ties due to 
compaction at fill height of lesE thail 1.7 m. 

The completed wall had an adequate factor of safety 

against tie pullout, with a minimum value of 1.70. This is 
less t~an the minimum safety factor against tie break of 

4.93 . Therefore the wall is more likely to fail by tie pull 
out than by tie break. All the theories predicted higher 

safety factors against tie pullout than the minimum observed 

value. 

(vi) Althoughthe tie tensions observed in the Granton wall 
were affected by the construction procedure, some similarities 
in the mode of variation of tie tension over the tie length 
and with wall depth and in the non-dimensional tension 
variation with fill height were noted to exist between the 
model wall and the Granton full scale wall. 
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CHAPTER SEVEN 

FINITE ELEMENT ANALYSIS OF MODEL AND FIELD 

REINFORCED EARTH RETAINING WALLS 

7.1 Introduction 

7.1.1 General 

The finite element approach has been widely and success

fully used in the solution of geotechnical engineering 

bl 20.,24.,25 i 1· 1· f I pro ems , nc ud1ng ana YS1S 0 conventiona retain-
ing walls!9 

The main difficulty in applying this method in the solution 

of soil mechanics problems arises from the complexity inherent 

in the stress-strain relationships of soils. Despite this 
shortcoming the finite element method proves useful and 

gives satisfactory engineering solutions even when relatively 

simple forms of soil idealization are adopted, e.g. Penman 

et a1 51 

In Chapter Two mention has been made of the use of the 
f ini te clement method in Franr.e 21,16,81 for the ana lys is of 

reinforced earth retaining walls. This analysis idealized 

the wall as a plane strain problem and used quadrilateral 

and bar elements to represent the soil and ties respectively. 

Reinforcement by sheet and perfect bond at the tie/soil 

interface w~re assumed. 

The results of this study i~dicated a tie tension 

distribution along the tie length which was at a maximum 

near the wall f~ce and decreased towards the free end of the 

tie. The results from this analysis were not compared by 

the authors with any observed data. 

5 Baner jee analysed reinforced earth walls in service 

conditions using a plane strain finite element programme in 

which the soil and ties were represented by triangular and 

bar elements respectively. The soil modulus of elasticity 
was assumed either constant or linearly increasing with wall 
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depth. 

X= T 
In the first case the nondimensional tension 

was found to vary parabolically over the 
'1h. ~H.S 

tie length having a maximum value at the middle of the tie 

equal to 0.35. This 'value was seen to vary over a range 

of ~ 10% in the case where the elasticity modulus was 

assumed linearly increasing with wall depth. 

29 
Finlay & Sutherland compared Banerjee's non-

dimensional tension with test results obtained at Granton. 

The experimental non-dimensional tension values were found 

to range between 0.26 - 0.80 with an average of 0.40. 

54 
More recently, Romstad et al and Chih-Kang Shen 

et aIlS adopted a composite material approach in 

deriving the stress-strain relationships of a reinforced 

earth mass. This was incorporated in a finite element 

programme, originally developed at the University of 

California, U.S.A. 

The reinforced earth mass was theoretically sub

divided into '~nit Cells"; a "Unit cell" comprising a tie 

bounded by centrelines of horizontal and vertical tie 

spacings. The equivalent composite materikl properties 

were calculated for each "unit cell". 

In forming the stress-strain matrix of the composite 

material it was assumed that the composite stress-strain 

state in a direction perpendicular to the tie was equal 

to the soil stress-strain state, the strain in the composite 

material para~lel to the centreline of the tie was equal to 
the strain in the soil and the soil/tie interface was in 

perfect bond. 

The first assumption made in deriving the composite 

material properties is valid. where the percentage3~y volume 
of the ties to the reinforced earth mass is small, 

which is the usual case in reinforced earth walls (e.g . . 
~ 0.023% for the Granton wall). The assumption of perfect 

bond at the soil/tie interface,made in the finite element 
analyses, is doubtful especially for low fill heights above 
the tie leve1 2 9 
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This programme was used to analyse Los Angeles County 

wall in California 14 ,U.S.A. The results of the 

theoretical analysis were compared with the observed data. 

Good agreement was noted between the computed and the observed 

soil stresses and horizontal wall movements. The computed 

stresses in the ties were appreciably greater than the 

measured stresses, although the computed stress distribution 

along the tie length, was generally similar to the observed 

distribution. 

The disagreement between the observed and computed 

results was mainly attributed to the plane strain assumption 

used in the programme, since the real wall was a three 

dimensional problem. The stresses in the ties continued to 
change with time. The programme does not take the time 

factor into consideration. 'l'hE'! construction of the wall 

was almost continuous. In the programme, only a finite 

number of construction increments is specified. 

This programme will be adopted in this chapter for the 

analyses of model and field walls. 

7.1.2 Objectives of the present study 

In the model tests presented in Chapter Five the follow

ing parameters were measured: 

(i) The lorces in the ties. 

(ii) The horizontal and vertical strains in the 

reinforced earth wall backfill. 

(iii) The vertical stress distribution near the bottom 

of the wall. 

(iv) The horizontal wall deflection. 

Although these constitute most of the important parameters 

needed to study the performance of a reinforced earth fill, 

there are some variables which were not observed, nor could 

be calculated from the observed data. These are: 

(i) The shear stresses in the soil. 
(ii) The shear strains in the soil. 

(iii) The principal stresses and the angle of orientation 

of the major principal stress .1ith the horizontal. 
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The present finite element analyses is carried out to compare 

the theoretical values with the experimentally observed 

results and to obtain a more complete picture of the stresses 

and strains in the reinforced earth fill. 

The field wall behaviour could also be affected by the 
presence of cohesion in the soil backfill, compaction, the 

foundation flexibility and the rigidity of the facing panels. 

The finite element analysis can help to study these factors. 

In this chapter the main features of the finite element 

programme adopted here will be given, the limitations of the 

programme will be outlined and the results of the analyses 

will be presented and compared with the model and field wall 

behaviour. The results of the finite element approach will 

be compared with predictions from reinforced earth design 

methods. 

Conclusions will be drawn at the end of this chapter. 

7.2 General Features of the Finite Element Programme used 

in this Investigation 

The listing and manual of the programme used in the 
14 

pres~nt study are given in a report by Chang The 

main features of this programme can be sumnmrized as follows: 

(1) It is a plane strain finite element programme which 

uses quadrilateral, triangular and bar (bending) 

elements. 
(2) 

33 
The quadrilateral element was developed by Herrmann 

and was shown to be more accurate than the previous 
simple elements. 

(3) The programme has two options to represent the non
linear, overburden dependent soil behaviour: 

(i) By providing a table of soil stiffness and 

Poisson's ratio at corresponding wall levels, the 

programme will interpolate the values of Young's 

modulus and Poisson's ratio at the centre of each 

element at a given wall depth. 

(ii) The empirical hyperbolic model first suggested 
40 by Kondner for representing the stress-strain 

curve of soil can be used. 
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(4) The programme has self generation procedures for 

locating the coordinates of the nodal points, specify

ing the element connection data and the boundary 

conditions. 

(5) External, internal and pressure loads .can be applied 

to any node at any construction increment. The self 

weight of the soil is automatically calculated by the 
programme and applied at each nodal point. 

(6) The programme takes into account incremental wall 

construction. 

7.3 Scope of the Finite Element Programme 

7.3.1 Input data 
14 

Details of this were given by Chang et al 

A brief summary is presented in Table (7.1). 

7.3.2 Output data 

This was descr ibed by Chang 14 • The programme . X 

mainly gives a p::-int out of the input data, the stresses 

and strains in the soil, the axial force and moment in the 

ties and the stresses and strains in the skin eleDents. The 

programme also gives the displacements of various nodal 

points, from which the wall deflection can be obtained. 

7.4 Limitations of the Finite Element Programme used in 

this Study 

In the introduction to this chapter it was stated that 

the accuracy of the finite element results depend to a large 
extent on the properties of the soil. Although a non

linear overburnen dependent model was used to represent the 

soil behaviour in this programme, a more realistic inelastic 

and orthotropic soil behaviour has to be incorporated in 
order to achieve a better accuracy. In addition, the 

accuracy of the results can be affected by the finite number 

of construction increments, the two dimensional ide~lization 

of the reinforce rl. earth wall, the simplifying assumptions 

used in obtaining the stress-strain relationships of the 

reinforced earth compOSite, and the presence of failure 
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TABLE (7.1) Summary of Input Data 

Information Details 

Title General title of the problem to be analysed 

Construction 
Increments 

Material 
properties 

Nodal point 
coordina te 
informa
tion 

ElemE"nt 
connection 
data 

The Boundary 
Conditions 

Miscellaneous 

The total number of construction increments 
used in the analysis. Each construction 
increment resembles a stage reached in the 
construction of the wall. 

The materials which may be used are: 
(i) 

(ii) 
(iii) 

(iv) 

Isotropic material 
Orthotropic material 
Reinforced earth material 
Strip plate (beam) material 

For each the appropriate elastic constants 
must be given. For the reinforced earth 
material additional information regarding 
tie spacings and elastic constants must be 
given. 

Using the self generatio~ options of the 
programme or otherwise, all the nodal 
points coordinates have to be specified. 

Using the self generation options of the 
programme or otherwise, all the element 
connection information, the material type 
of each element and the construction 
increment in which a particular element 
becomes part nf the structure has to be 
specified. 

The known displacements and forces at the 
appropriate construction increments must be 
given. 

The half-band width of the structural 
material must be checked not to exceed 
56. If it exceeds 56, then a new nodal 
numbering has to be tried. 
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zones in the backfill of reinforced earth wall which might 
develop near the wall face. 

7.5 Reinforced Earth Walls analysed by the Programme 

The series E laboratory tests and the Granton full 

scale wall previously described in Chapters Five and Six 
respectively, were analysed using the programme. 

The series E walls used perspex ties and were mainly 

intended to study reinforced earth wall behaviour by observ

ing the stresses and strains in the soil and the ties and 

the wall deflections. Various tie spacings used in building 

these walls are shown in Table (7.2). 

Th~ Granton reinforced earth wall was constructed using 

concrete panels as skin element and stainless steel for the 
ties. Tie spacing adopted is shown in Table (7.2). 

7.6 Details of the Data Used in the Finite Element Programme 

A summary of the finite element runs and the meshes 

used for the analyses of model and field walls are shown in 

Table (7.2) and Figs (7.1) to (7.3), respectively. The 

properties of the different materials used in the finite 

element analyses will be described in this section. 

7.6.1 Properties of soils 

It is important to establish the stress-strain 
characteristics of soil to be used in the programme. 

It has been mentioned in Section (7.2) that the present 

programme uses two options to account for the nonlinear 
overburden dependent soil behaviour. In the first option 

the tangent elastic modulus and the corresponding wall 

levels are fed into the programme. The second option 

uses equation (VI I 1-1 ) shown in Appendix( VIII) for the 

tangent modulus of the soil. The derivation of this equa

tion was based on the empirical hyperbolic model suggested 
by Kondner~Oto represent the stres-strain relationship of 



TABLE (7.2) - Details of the Finite Element runs on the Model and Field Reinforced Earth Retaining Walls 

Vertical Horizontal Skin Number Number liumber Number 
Run ~pe of Tie Tie Fol:ndat.Lon elements of of Mesh of of 
No. Structure Spacing Spacing Condition condition materials construction No. elements nodal 

AHnm Smm increments points 

1 Model E 250 100 Rigid No uffoot 2 10 1 80 99 - .. ~-

2 Model E 83.3 100 Rigid No effect 2 10 1 80 99 

3 Model E 83.3 150 Rigid No effect 2 10 1 80 99 

4 Model E 83.3 300 Rigid No effect 2 10 1 80 99 

5 Model E 100 150 Rigid No effect 2 10 1 80 99 

G Field Wall 750 750 Rigid No effect 3 4 2 56 15 
-

1 Field Wall 750 750 Rigid Rigid 4 4 2 60 75 

8 Field Wa.ll 750 750 Flexible No effect 4 4 3 84 109 

9 Field Wall 750 750 Flexible Rigid 5 4 3 88 109 
, 
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soils. This option was adopted in the present study, since 

the hyperbolic model was found 26 to approximate very 

closely the stress-strain curves of soils. 

The soil parameters used in this empirical relation

ship are shown in Table (7.3). These were determined from 

triaxial tests carried on 100 mm diameter sand and the burnt oil 
shale (blaes) samples. 

The Poisson's ratio y values for the sand 

were calculated from the axial and volumetric strains 

observed in the triaxial tests, using the equation 

y - (7.1) 
2 6 £, 

The triaxial test results gave Poisson's ratio of 0.39 

initially, increasing with increasing deviator stress to 

0.72. Previous investigators 25 noted this kind of 

variation in v , but with scw.ller values, e.g. Duncan et 

a1 2G obtained a range of 0.11 to 0.65 for a sand tested 

in a dense state and a range of 0.11 to 0.40 for a sand 

tested in a loose state. Tho increase in v values with 

increasing stress level was attributed by Duncan et a1 26 

to dilatancy effect. High values of y obtained in the 

prespnt tests may have been due t~ inaccuracies in measuring 

volume changes which occurred, using available laboratory 

equipment. 

An approximate procedure used by Penman et a151 

for determining v for the condition of small lateral 

deformation was adopted. This procedure requires a 

knowledge of K which may be obtained from the empirical 
o 

relationship suggested by Jaky36 and lately verified by 

Bishop 8 and Brooker et al '1 ' The value of v 

calculated in this way was equal to 0.263. 

poisson's ratio of the blaes was determined from the 

axial and volumetric strains observed in the triaxial test 

using equation (7.1). A representative value of v was 

taken as 0.31, Appendix ( V I1 1- c ) 
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7.6.2 Properties of ties 

The properties and dimensions of ties used in the model 

and field walls are shown in Table (7.4). 

The elastic modulus of the perspex was taken from the 

technical service note, published by I.C.I~4 Plastic 

Division, at a temperature of 200 C equal to the mean 

laboratory temperatutre. Laboratory tests on the tie material 
+ at this temperature gave values within - 4% of the I.C.I. 

value. 

The elastic modulus of the stainless steel ties, used 

in the Granton field wall, was determined from a laboratory 

test and is shown in Table (7.4). 

7.6.3 Properties of foundation material 

The model walls were assumed to rest on an infinitely 

rigid foundation. 

The Granton wall was analysed assuming a rigid founda

tion and flexible foundation conditions. In the latter case 

the 2.50 m dp.ep soft clay layer was modellerl by assuming it 

as an isotropic material and nominal values of E and v 

were assigned to represent soft clay and no volume 

change conditions respectively as shown in Table (7.5). 

7.6.4 Properties of skin elements and stone pitching 

In the model tests, the effect of the skin elements on 

the internal stability of the walls was neglected and the 

skin elements were designed to rotate freely on each other 

to simulate the full scale panel behaviour. In the present 

finite element analysis, the stiffness of the model skin 
elements was assumed not to affect the theoretical wall 

behaviour. 

For the Granton wall, nominal concrete elastic properties 
and density were assigned for the skin elements as shown in 

Table (7.6). The stone pitching at the back of the field 

wall was assumed to have identical elastic properties and 

density to the concrete. 
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TABLE (7.3) The Soil Properties 

The soil SAND BLAES 
parameter used in model tests used in the 

Granton wall 

Angle of internal 0 41 Friction (I 40 

Cohesion c 0 41.37 kN/m2 

Density 'I 1.587 x -5 3 
10 N/mm 16.65 kN/m3 

Poisson's 
ratio y 0.263 0.310 

Intercept - 2.12 N/mm2 1.39 x 104 kN/m2 a 

Slope 0 1.549 x 103 223 

where a and 0 are the intercepts and slope of the initial 

tangent modulus Ei.!. the confining prssure a 3 curve 

Equation (7.2) 

E ... 
i 

. . . . . . . . . . . . . . . . . .. (7. 2) 

Method of determining the constants a,b for the sand 

and the blaes is shown in Appendix (VIII), Sections (b) 

and (c) respectively. 
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TABLE (7.4) Properties of Ties 

Parameters Model Walls Field Wall 

Elastic modulus 2896 N/mm 
2 

@ 200 C 1.965 x 108 kN/m2 

Tie Width 22.3 mm 80 mm 

Tie Thickness 1.37 mm 1.5 DUD 

Tie Length 0.40 m 6.50 m 

Horizontal tie 
spacing 100, 150, 300 mm 750 mm 

Vertical tie 
spacing 83.3, 100, 250 DUD 750 DUD 

TABLE (7.5) Properties of Foundation Material 

Parameter Modf::tl Walls Field Wall 

Elasttc modulus Rigid foundation 1.20 x 104 kN/m2 

poisson's ratio " 0.495 

Density " 18.85 kN/m 3 
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TABLE (7 .6 ) Properties of 'Skin Elements 

Parameter The Field Wall Skin Element 
"Concrete" 

Area ( u ni t wi ct t h ) 0.18m2 

Moment of ( unit width) 0.486 x 10-3 m4 inertia 

Elasticity modulus 3.00 x 10 7 kN/m2 

PoiRson's raiio 0.300 
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7.7 Results of the Finite Element Analysis 

In this section the results obtained by idealizing the 

model and the field wall behaviour will be presented. 

Further comparison with the observed model and field wall 

behaviour will be presented in Section (7.8). 

7.7.1 Model Walls 

From the model wall results the contours of the follow
ing parameters were drawn: 

- The tie forces 
- The non-dimensional tension X= 

- The theoretical vertical stress 0 y 

- The theoretical horizontal stress ax 
Ox 

- The stress ratio --0--
y 

- The theoretical vertical soil strain 

T 

- The theoretical horizontal soil strain EX 

- The theoretical shear stress in the soil ~xy 

- T~e theoretical shear strain in the soil ~y 

7.7.la The tie forces 

Contours of the tie forces predicted by the finite 

element method for model walls built in series E tests are 
shown in Figs (7.4) to (7.8). 

It can be seen that 

distributi~n are similar 
horizontal tie spacings. 

the patterns of the tie force 

for the different vertical and 
The magnitude of the tie force 

depends on the tie spacing, and increases with increasing 
horizontal or vertical tie spacing. The finite element 

analysis gave a tie tension distribution along horizontal 

planes in the wall, which is a maximum near the wall face and 

decreases towards the back of the wall. 
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7.7.lb The non-dimensional tension 

From the predicted tie forces the non-dimensional tension 

'X- T _____ was computed for each tie spac~ng used in the 
'th. A H. S 

Series E tests and the results'are shown in Figs(7.9) to (7.13). 

The contour maps of the non-dimensional tension " are 
practically similar in pattern and identical in magnitude 
irrespective of the different horizontal and vertical tie 
spacings used in the walls. 

The theoretical non-dimensional tension decreases from 
a maximum value at the top of the wall to a minimum value at 
the bottom of the wall and this is in agreement with the 
observed model and field wall behaviour and the energy 
theory (LO.L.A.) prediction indicated in Chapters Five and 
Six, Figs (5.42) and (6. 6) respectively. 

7.7. J c Stresses in the enil 

Contours o£ the vertical stress a , th~ horizontal 
a y 

x stress ax, the stress ratio ---- , and the maximum principal 
0y 

stress °1 , were drawn for .the· ti~ spacing (AB-1OO , S-15Omm) and are 
shown in Figs(7.l4) to (7.17). Similar patterns of stress 

distribution can be expected for the rest of series E tests. 

The variation in the vertical stress 0y along horizontal 
sections in the reinforced earth wall and its backfill are 
uearly uniform. This indicatos that the variation in the 
vertical stiffnesses of the wall and the backfill almost bave 
no effect on the vertical stress variation. 

Th~ contours of horizontal stresses Fig (7.15) showed 

a large drop at the back of the reinforced earth walls, 
probably due to the difference in horizontal stiffness of 
the reinforced earth wall and the soil backfill just behind 
it. The theoretical horizontal stresses are all compressive 
as was expected. 
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ax 
The contours of the stress ratio --- are shown in Fig 

a y 
(7.16). These have a minimum value of 0.1 in the backfill 

of the wall and a maximum value of 0.35 in the reinforced 

earth fill. Comparing these values with the active and at 

rest coefficients of earth pressure which are 0.22 and 0.36 

respectively, it can be seen that the finite element analysis 

predicts an at rest state of stress in the reinforced earth 
ax 

fill. Values of less than Ka may indicate the a y 
inadequacy of the isotropic assumption of the backfill soil 

behaviour 18 

Contours of the theoretical maximum principal stress 

are shown in Fig (7.17). These are generally uniformly 

distributed over horizontal sections in the reinforced earth 

fill, and no obvious potential failure surface can be deduced 

from the graph. 

7.7.l.d Strains in the soil 

Contours of the vertical and horizontal strains are 

shown in Figs (7.18) and (7.19) respectively. The contours 

of th~ vertical strains are similar to the vertical stress 

contours and almost regularly spaced over the vertical section. 

The horizontal strain contours show a large difference 

betweAn the horizontal strains in the reinforced earth fill 

and the strains in the backfill. The latter are much larger 

than the former. The positive sign of these indicates a 

stretch in the reinforced mass and its backfill. The 

contours of the lateral strains in the reinforced earth wall 

generally have a similar pattern to the contours of the tie 

forces shownin Fig (7.4). Probably this is due to the 

assumption of perfect bond between the tie and the soil used 

in the analysis. 

The contours of the shear stress and strain in the soil 

are shown in Figs (7.20), (7.21). The distribution patterns 

are generally similar and almost symmetrical about the 

dividing line between the reinforced earth fill and the 

retained soil behind it. 
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7.7.2 Field Wall 

In the Granton reinforced earth field wall the tie forces 
were observed. From the results of the finite element 

analysis, the theoretical contours of the ~ie forces and the 
non-dimensional tension were drawn for four different combina
tions of foundation and skin element rigidity. The results 
are shown in Figs (7.22) to (7.29). 

The effect of compaction on the reinforced earth wall 
behaviour was neglected, since a realistic representation 
requires a knowledge of the unloading modulus of the reinforced 
earth fill and the fill at the back of the wall. 

Therefore the forces developed in the ties are those due 
to the self weight of the fill, the weight of the spreader 

beam and the reinforced concrete cope. 

7.7.2.a Effect of foundation rigidity on the tie forces 

As has been mentioned in Section (~.~) in Chapter Six, 
the Granton site was underlain by a rather soft clay stratum 
2.50 metre deep, which overlies a gravel layer. To increase 

the safety factor adopted in designing the foundation of the 
wall to a value above 2.5, ~s' required by the Edinburgh City 

Engin6er , the whole area under the reinfor,ced earth wall 
was dug out and replaced with blaes. 

Two computer runs were made; one for flexible and the 
other for rigid foundation behaviour. In the first run the 
clay stratum was taken as an iGotropic material and nominal 
values of E and y were assumed, as described previously 
in the material properties. In the second run, the wall 
was assumed to rest on an undeformable foundation. In both 
cases the skin elements rigidity was neglected. The results 
are shown in Figs (7.22) and (7.25). The predicted tie 

forces were practically similar at the top and middle of the 
wall. At the wall bottom, however, larger tie forces were 
induced when a flexible foundation was assumed. 
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7.7.2.b Effect of skin elements rigidity on the tie forces 

In the Granton reinforced earth field wall skin elements 

used consisted of concrete panels. Finlay and Sutherland 29 

pointed out that these elements might have more effect on the 
wall behaviour than flexible metal skin elements. 

In the present programme there is provision for simulat
ing the rigid skin element behaviour by idealizing it as a 

beam element which has a stiffness and elastic properties 

corresponding to the actual skin element in the field. The 

effect of using such an idealization for the skin elements 

on the tie forces can be seen by comparing Figs (7.22), (7.23) 

and (7.24). When the skin element rigidity is considered, 

compressive tie forces are predicted at the top third of the 

wall for both the rigid and flexible foundation cases. The 
tie tension magnitude is generally decreased when the skin 

element rigidity is considered. 

7.7.2.c The non-dimensional tension 

The contours of the non-dimensional tension for the 

Granton reinforced earth wall, drawn for the four computer 

runs are shown in Figs (7.26) to (7.29). 

It can be seen that the magni~ude and pattern of the non

dimensional tension depend on the conditions of the skin 

elements and the foundation. 

Minimu~ non-dimensional tension was obtained when the 

skin element rigidity was taken into account. In this case 
the non-dimensional tension increased with wall depth, and was 

different from the theoretical result obtained in the 

model walls. 

When the skin element rigidity was ignored, the 

theoretical analysis using flexible foundation resulted in 

slightly higher non-dimensional tension than the analysis in 

which rigid foundation was adopted. 
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7.8 Comparison between the Observed and Predicted Reinforced 
Earth Wall Behaviour 

7.8.1 Model Walls 

7.S.1.a Tie forces 

The observed tie forces in the reinforced earth model 

walls and the predicted tie forces by the programme are 

shown in Figs (7.30) to (7.34). The predicted tie forces 

are appreciably larger than the observed tie forces and 

have a different mode of variation. The large discrepancy 

in the values of the observed and the predicted tie forces 
is probably due to the limitations of the present finite 

element programme, outlined in Section (7.4). In addition, 
the stiffness of the model skin elements was neglected in the 

theoretical analysis. Consideration of the skin element 
stiffness results in decreasing the magnitude of the tie 

forc~s, as will be shown in the Granton field wall analysis. 

7.S.l.b Vertical stresses in the soil 

Comparison between the observed and the theoretical 

verti~al soil stresses are shown in Figs (7.35) and (7.36). 

The predicted vertical soil stress lay very near to the 
theoretical overburden pressure ~h. 

In Fig (7.35) the measurad vertical stresses in 
sections 50 and 250 mm from t~e wall face, are nearly twice 

the theoretical values, which could be due to an instrumenta
tion ~rror. The measured vertical stress distribution shown 

in Fig (7.36) is in reasonable agreement with the predicted 

vertical stress. 

7.8.l.c Strains in the soil 

7.8.1.c.1 Horizontal strains 

The horizontal strains observed at three vertical 

sections in the model reinforced earth walls and the correspond
ing theoretical horizontal strains are shown in Tables (7.7) 

and (7.8). 
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The observed horizonta~ soil strains are substantially 
larger than the predicted horizontal strains. This 
difference may be attributed to: 

(1) The theoretical analysis is based on small 

strain assumption. 

(ii) Only elastic strains were predicted by the 

programme. The sand in the model was probably in a 
failure condition especially near the reinforced earth 

wall face. 

(iii) In the programme the horizontal strain of the 

composite was assumed ~qual to the strain in the soil. 

Probably this is not valid for low fill heights, above 
the tie level since slippage between the ties and the 
soil might occur. 

7.S.l.c.2 The vertical straine 

The predicted vertical strains in the soil are 

appreciably greater than the observed vertical strains as 
shown in Table (7.9). Most probably the vertical soil stiff

ness used in the theoretical analysis was larger than the 
actual stiffness of the soil, since the sand was tested at 
confinihg pressures slightly higher than the pressures 
encountered in the model. 

The predicted vertical soil strains are all -ve indicat

ing compress~on. In some regions of the wall +ve soil strain, 
indicating exp&nsion were measured. Probably this is due 
to a dilatancy effect, which is not accounted for in the 

programme. 

7.S.l.d Horizontal wall deflection 

The measured horizontal model wall deflections, using 

the free field strain coils and the computed wall deflections 
are shown in Figs (7.37) to (7.39). 

The predicted curves are nearly parabolic with the 

maximum deflection occurring near the midheight of the walls. 

Comparison between the experimental and the predicted 
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wall deflections, showed that the discrepancy between the 

observed and predicted deflections, probably depends on the 

number of ties per skin element and the vertical tie 

spacing AH, used in different tests. For the case of one 

tie per panel and ~H - 100 rom, Fig (7.37) reasonable agree

ment was obtained between the observed and predicted values. 

For the case of three ties per skin element and ~H - 250 mm 

Fig (7.38), the observed and predicted wall deflections 

reasonably agreed at the upper and lower thirds of the wall. 

At the middle of the wall, the observed deflection was 
appreciably larger than the predicted deflection, probably 

due to the large vertical tie spacing of 250 mm adopted in 

building this wall. For the case of six ties per panel and 

6H - 83.3, Fig (3.39), the observed horizontal wall 

deflection was smaller than the predicted wall deflection. 
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TABLE (7.7) - Comparison between the observed and predicted 

horizontal soil strain (model walls series E. 

6.H -= 100 mm, S ... 150 mm) 

Distance of Level above Observed Predicted 
the vertical base of horizontal horizontal section from the model strain strain 
wall face - (mm) E·x% E.x% mm 

50 0.78 0.044 

50 250 0.83 0.026 

375 0.22 0.015 

50 0.47 .024 

150 250 0.74 .021 

375 0.36 .014 

50 -.128 0.018 .-.. 
250 250 0.379 0.019 

375 0.360 0.012 

TABLE(7.8) - Comparison between the observed and predicted 

horizontal strains in the soil (model walls 

series E. AH - 250; S'" 100 mm) 

Distance of Level above Observed Predicted 
the vertical base of horizontal horizontal 
section from the model strain strain 
wall face - (mm) ~% £x% 

mm 

125 1. 64 .057 

50 250 4.8 .035 

375 0.183 .02 

125 0.23 .04 

150 250 -2.79 .033 

375 0.157 .017 

125 0.27 .048 

250 250 0.21 .039 

375 0.157 .019 
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TABLE (7.9) - Comparison between observed and predicted 

vertical strain in the soil (model wall, 

series E, ~H" 100, S = 156 mm) 

Distance of 
the horizontal 
section above 
the model base 

mm 

50 

150 

I 
I 

250 

Distance Observed 
from Vertical 

Wall face strain 
(mm) '1r% 

50 -.65 

150 -
250 -.05 

50 -.058 

150 +.15 

250 +0.09 

50 -.238 

150 +.21 

250 +.15 

-ve Compression 
+ve Expans ion 

Predicted 
Vertical 
strain 

£y% 

-5.4 

-5.05 

-4.96 

-:-4.37 

-4.33 

-4.25 

-3.36 

-3.42 

-3.39 
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7.8.2 Field wall 

In Section 7.8.1 comparisons were made between the 
measured and predicted stresses and deformations, in the 
model wall. Unlike the model wall, the measured stresses 
and deformations in the Granton field wall were found 
to be affected considerably by the construction procedure,29 
thus making a direct comparison between the idealized finite 
element solution and the actual field wall behaviour difficult. 
However, in this section the stresses and deformations 
predicted by the finite element approach will be presented 
together with the actual stresses and deformations observed 
in the Granton field wall, to find out to what extent the 
idealized finite element solution can grasp the basic modes 
of variation of the stresses and deformations measured in 
the Granton wall. 

7.8.2.a The tie forces 

Figs (7.40)-{7.41) show the measured and predicted tie 

forces distribution along the ties. The predicted tie 
force distribution showed an irregular variation differing 
from ~he observed tie force variation. 

7.8.2.b Pressure on panels and relative panel tilt 

The observed and predicted pressure on the panels and 
the relative panel tilts are 3hown in Figs (7.42)-{7.43) 
respectively. The observed values of the pressure on the 
panels and relative panel tilts do not coincide with the 
corresponding predicted values using different assumptions 
of foundation aad skin elements conditions. 
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7.9 Comparison between the finite element method and 
the Energy and Rankine theories 

The maximum tie tension observed in two model walls was 
compared with the theoretical maximum tie tension envelopes 
calculated from the energy theory, the Rankine theory and 
the finite element prediction and are shown in Figs (7.44) 
and (7.45). 

At the top of the wall the theoretical results obtained 
from the energy theory (LO.L.A.), the Rankine theory using 
an at rest earth pressure coefficient Ko and the finite 
element method are coincident. 

At the middle and bottom of the walls the finite 
element method predicted higher tie tension than the 
observed data. 

The general pattern of tha tie tension envelope predicted 
by the finite element method, is similar to the tension 
envelope predicted by the energy theory (LO.L.A.). 
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7.10 Conclusions 

In this Chapter the theoretical behaviour of model and 
field reinforced earth retaining walls was studied using the 
finite element method. The results from the theoretical 
analyses were presented and compared with the observed data. 
The study indicated that the finite element approach, gives 
a complete theoretical solution for the stresses and strains 

in a reinforced earth wall. Different parameters influencing 
reinforced earth wall behaviour, such as skin element and 
foundation conditions can be varied. In this way the finite 
element analysis serves as a versatile mathematical tool, 
which can be used to assess the relative influence of various 
factors on reinforced earth wall behaviour. 

However, from the results of the finite element method 
and discussions presented in thie chapter, several points 
arose, regarding the model and the Granton field wall 

behaviour. 

In the model the contours of the tie forces were found 
to be similar in pattern, irrespective of the tie spacing 
Qnd showed a mode of tie tension variation along horizontal 
sections in the wall, which is of a maximum at the wall face 
and decreases towards the bRCk o~ the wall. Comparison 
betwe~n the results of the finite element analysis and the 
observed stresses and deformations in the model revealed 
that the finite element analysis predicted appreciably larger 
tie forces 8nd vertical soil strains than the observed values. 
The predicted horizontal soil strains were appreciably lower 
than the observed values. While the computed horizontal 
wall deflections did not correspond completely in magnitude 

with the observed deflections, deflected shape of the wall, 
given by the computed and observed deflections was s~ilar. 
The discrepancy in the magnitude of the observed and predicted 
wall deflections was found to depend on the vertical tie 
spacing and the number of ties per skin element. For the 
case of one tie per skin element and AH - 100 mm reasonable 
agreement was noted between the observed and predicted wall 
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deflections. The computed vertical stresses lay very near 
to the overburden pressure tho The pressure cells in some 

cases gave an erroneous indication of the vertical stress 
and in other cases gave reasonable agreement with the computed 

vertical stresses. 

The discrepancy between the observed and predicted 
stresses and deformations in the model, was probably attributed 
to the limitations of the programme outlinedin Section"C7.4) • 
In the programme the sand was assumed to be isotropic and to 
behave elastically. It has been reported 26 that the 
behaviour of materials which dilate, such as the sand used 
in the present model, cannot be characterized accurately by 
a single value of Poisson's ratio y The stiffness of 
the skln element was neglected in the theoretical analysis 
of the model wallS, and this may also have had an effect in 
the deviation noted between the observed and predicted 
values. 

For the full scale situation, the finite element method 
helped to study the relative effects of the skin element and 
found~tion conditions on the Granton fi9ld wall. The 
actual stresRes and deformations developed in the Granton 
wall, have been found 29 to be affected by the wall 
constl'uction procedure,and these were presented together 
with the idealized finite element solution. The finite 
element results showed some similarities in modes of varia
tion with the observed field wall data, but the magnitudes 
were different. 

Comparison between the finite element solutions, 

the Energy and the Rankine theories, for cases of two model 
walls, revealed that the finite element prediction coincided 
with the energy theory (LO.L.A.) and the Rankine theory 
using an at rest coefficient of earth pressure K, at the 

o 
top of the wall, although the finite element method 
appreciably overestimated the stresses in the ties near the 
middle and bottom of the walls. 

For the application of the finite element method in the 
design of full scale reinforced earth walls, the effects of 
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various aspects such as compaction stresses, skin element 
stiffness and foundation conditions have to be accurately 
modelled in the analysis. If the backfill material is 
expected to dilate or contract, such as sand in dense and 
loose states respectively, procedures which reflect the 
effect of the shear stresses on the volume change 
have to be incorporated in the finite element analysis. 
Generally the use of the finite element in the design is 
costly in terms of preparation time and computer facilities. 
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CHAPTER EIGHT 

CONCLUSIONS· 

Detailed conclusions of the studies carried out on the 
reinforced earth retaining walls in this thesis have been 

recorded at the end of each chapter. Conclusions based on 

all the studies presented in the preceding chapters will only 

be outlined in this concluding chapter. 

With reference to the existing theories applied to 
reinforced earth retaining walls, rectangular in cross-section 

and using a cohesionless material as backfill, the following 

conclusions were reached: 

(1) For walls consisting of a large number of layers and 
having a smooth back the Rankine and the Coulomb theories 
predict identical values of tie tension. 

(2) The Trapezoidal and Meyerhof vertical stress distributions 

resulted in higher tie tensions ~han the Rankine theory, 
H 

depe~ding on the L ratio of the wall and G value of the back-
fill material. In most cases in practice, where ~ ~ I 
and Q is relatively high, the Trapezoidal method predicts 
higher tie tensions than Meyerhof met~od and the difference 

between the t1e tension predicted by the T4·apezoidal and the 
Rankine methods is about 25 per cent or less compared to the 

Rankine values. 

(3) The Rankine theory, being the main theory currently used 

in the design of reinforced earth walls is based on the 
simplifying assumption that the vertical direction is principal 

for the vertical stress. This gives a linear tie tension 
distribution witQ wall depth and implies a maximum tie tension 

at the face of the wall. 

(4) None of the above theories takes into account a nonlinear 
tie tension variation over the tie length. All the above 
theories predict a maximum tie tension at the bottom of the 

wall. 
With reference to the Energy theory developed in the 

present study the following conclusion was reached: 
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(5) This theory can take into account non-linear tension 
distribution both over the tie length and over the wall 
depth, the effect of the tie length on the tie tension, and 

the deflected shape of the wall. 

With reference to the model test results, and their 
comparison with design predictions, the following conclusions 

were reached: 

(6) The observed critical heights of walls failing by tie 
breaking were appreciably higher than the theoretical values 
predicted by the Rankine, the Trapezoidal, Meyerhof and 
Banerjee methods. The various Energy theory expressions 
(LO.L.A., LO.L.D., T.L.L.A., T.L.L.D. and T.P.P.D.) each 
predicted different critical heights but all the results 
from the Energy theories were closer to the observed values 
than the predictions from the exist1ng theories. 

(7) Comparison between the experimental and the theoretical 

adherence lengths, indicated that generally all theories 
overestimated considerably the adherence length. The Energy 
theory (LO.L.A.) predicted shorte~ ties than any of the 

existing theories. 

(8) Measureme~ts of the tie ter-sion in the model reinforced 
earth walls indicated that the tie tension inereases from the 
face of the wall to a maximum in the front half of the "tie and 
decreases to zero at the free e~d of the tie. For ties near 
the bottom of the wall the maximum tie tension generally lies 
near the wall face. 

(9) The observed maximum tie 
with increasing tie length. 
{T.L.D. knd T.P.D.> predicted 

tension was found to decrease 
The Energy theory expressions 
nearly similar trends and 

magnitudes to the observed values, although the Energy theory 
(LO.L.A.) gave higher magnitudes but with similar trend. 
The Rankine theory predicted a constant value of tie tension 

which was independent of the tie length. The Trapezoidal 
and Meyerhof methods predicted a decreasing tie tension with 
increasing tie length which approached the Rankine values 
when the tie length L was large. The Rankine, the 
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Trapezoidal and Meyerhof methods predicted higher magnitudes 
of tie tension than the observed values. 

(10) The observed maximum tie tension was found to increase 
with increasing wall depth but a decrease in the value of 
the observed maximum tie tension was noted at bottom tie 
level. The Energy theory (LO.L.A.) gave a similar mode of 

variation to the experimental results. This method predicted 
larger tie tensions for walls built with relatively large tie 
spacings, and the difference was found to decrease with 
decreasing tie spacing. The Energy theory (T.L.L.D.) gave 
a maximum underestimate of the observed tie tension of 
about 25 per cent of the observed value. The Rankine theory 
gave a maximum underestimate of the observed tie tenSion, at 
the top of the wall, of about 28 per cent and minimum over
estimate of 37 per cent of the observed tie tension at the 
bottom of the wall. 

T 
(11) The non-dimensional tension factor ~ _ __m __ __ 

"h ~HS 

for model walls built to a maximum height of 500 mm, was 
found to be a maximum at the top of the wall (~ 0.40) 
and decreased to a minimum value at the bottom of the wall 
(~0.075). The Energy theory (LO.L.A.) gave a similar 
pattern to the observed results. The Tr&pezoidal and 
Meyei..'hof methods predicted an increasing non-dimensional 
tension factor with fill height which was different in 
magnitude and pattern lrom the obsel'ved non-dimensional 
tension factor)C. The Rankine and Banerjee methods gave 
constant values of the non-dimensional tension equal to 0.22 
and 0.35 respectively which were also different from the 
observed values. 

(12) For a rectangular reinforced earth wall with uniform 
tie distribution, the safety factor against tie break was a 
maximum at the top of the wall and decreased towards the 
bottom of the wall. The safety factor against tie pullout 
calculated on the basis of various assumptions of tie tension 
(maximum or average) and the tie length (all or part effective), 
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was a minimum at the top of the wall and increased towards 
the bottom of the wall. 

(13) The Energy theory (LO.L.A.) appeared to give a lower 
limit of the observed safety factor against tie break. The 
Energy theory (T.L.L.D.) and the Rankine theory predicted 
higher safety factors against tie break in some cases. 

(14) Comparison between the experimental and the theoretical 
safety factors against tie pullout, indicated that none 
of the existing methods suggested by the previous investigators 
for calculation of the safety factor against tie pullout, 
completely agree with the experimental results. 

The Energy theory (LO.L.A.) appeared to predict the 
general trend of the experimeutal results, although it did 
not correspond completely in magnitude with the experimental 
values. The Energy theory (T.L.L.D.) predicted higher 
magnitudes and a different pattern from the experimental 

results. 

(15) Measurements of the horizontal strains in the soil, 
showed maximum positive strains indicating expansion, near 
the wall face and negative strains indicating compression 
at sections lying furthest from the wall face. From these 
strain measurements, it was concluded that the state of stress 
in the suil near the wall face was probably tending towards 
an active ~tate of stress and the soil furthest from the 
wall face was probably tending towards a passive state of 
stress. 

(16) The wall deflections calculated from the observed 
horiz~ntal strains in the soil, were found to lie close to 

the directly measured horizontal wall deflections, indicating 
compatibility between the observed horizontal soil strains 
and the measured wall deflections. 

(17) The pattern of the vertical soil strain appeared to 
indicate the effect of the horizontal thrust at the back of 



- 297 -

the wall. The pattern of the vertical soil stress did not 
show such an effect. These two measurements do not appear 
to be compatible and were attributed probably to inconsistent 
pressure cell behaviour with particular regard to their 

calibration factors. 

From analysis of tie tension at the Granton full scale 

wall the following conclusions have been reached: 

(18) A study of the maximum observed tie tension versus fill 

height curves indicated that compaction stresses affect the 
observed tie tension for low (~ 1.50m) fill heights above the . 
tie level, and that the compaction effect diminishes with 
increasing fill height above the tie level. A simplified 
theoretical analysis showed a similar effect and supported 
the supposition that the large increases in tie tension at 
relatively low fill height~ above the tie was due to the 
compaction operation. 

(19) The plots of the observed maximum tie tensions with 
wall height along with predictions from the corresponding 
Energy theory (La.L.A.> and the Rankine theory indicated that 
both thaories appreciably underestimated the observed 
maxlm~ tie tension. The Energy theory (LO.L.A.) was found 
to predict a pattern of tie tension distribution which is 
similar to the general pattern of the observed tie tension. 
The observed maximum tie tension points were found to lie 
within the theoretical curves calculated from the Energy 
theo~y for K - 0.18 and 0.327. Therefore, compaction 
probably resulted in increasing the K value of the backfill. 
To prevent this happening in practice it is desirable that 
compaction procedure should be controlled. 

(20) The non-dimensional tension factor ~, evaluated from 
the observed maximum tie tenSion, was found to be a maximum 
at the top of the wall (~0.30) and decreased towards the 
the bottom of the wall (~O.l). This behaviour was predicted 
by the Energy theory (LO.L.A.). Banerjee and Rankine gave 
constant non-dimensional tension factors which ~e different 
from the observed results. 
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(21) The construction procedure appeared to lower the 
actual safety factors of the wall against tie break and 

tie pullout. Localized slippage of the ties was possible 
when the fill heights above the tie level were less than 
1.7Om. The completed full scale wall had a large safety 
factor against tie break having a minimum value of 4.93 and a 

smaller safety factor against tie pullout and its minimum 
value was equal 1.70. Hence a full scale wall is more 

likely to fail by tie pullout than by tie break. 

(22) Some similarities in behaviour were noted between the 
Granton full scale wall and model walls regarding the tie 
tension distribution along a tie length and with wall height, 
and also with the variation in the non-dimensional tension 
factor with fill height above a tie level. 

From theoretical studies on the model walls based on 
a plane strain finite element programme, the following 

con~lusions have been reached: 

(23) The plane strain finite el~ment analysis predicted a 

maximum tie tension at the wall face decreasing towards the 

back of the wall. 

(24) The non-dimensional te~sion factor X , predicted by 

the finite element analysis was found to rRnge between 0.45 
at the top of the wall to 0.10 at the bottom of the wall. 
This range wa~ slightly higher than the observed range of 

the non-dimensional tension factor, which was found to lie 
between 0.40 at the top of the wall to 0.075 at the bottom 
of the wall. 

(25) The finite element analysis predicted generally 
appreciably higher magnitudes of tie tensions and vertical 
strains in the soil than the observed values. The predicted 
horizontal strains in the soil were appreciably lower than 
the observed values. The analysis predicted similar patterns 
of wall deflections to the observed results and the 

magnitudes of the two sets of results seemed to correspond 
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with each other in some cases. The discrepancy between the 
observed and the predicted values was attributed probably to 
the limitations of the finite element programme, with 
particular regard to the idealization of the sand as an 
elastic material. 

From the analysis of the Granton field wall, based on 
the finite element approach, the following conclusions were 

reached: 

(26) The observed wall behaviour was found to be affected 
by the construction procedure. The finite element analysis 
indicated that the theoretical wall behaviour was also 
affected by the foundation and the skin element conditions. 

(27) Tbe finite element analysis predicted some similarities 
in mode of variation of the observed tie tensions, although 
the magnitudes were different. No agreement was reached 
between the observed relative panel tilts and pressure on 
the panels a~d the corresponding theoretical values. 

(28) For the use of the finite element method in the design 
of fell scale wall, additional factors such as compaction, 
foundations and skin elements have to be taken into account. 
If tde backfill material is expected to dilate under the 
shear stresses, procedures which refl~ct the changes in 
volume under shear stresses would have to be incorporated 
in the finite element analysis. 

Conclurling Remark 

The present study aimed at investigating the behaviour 
of reinforced earth wallS, rectangular in cross-,ection with 
cohesionless backfill and built on rigid foundation, on an 
experimental and theoretical basis. 

From the observations on model walls, a design procedure 
founded on an energy approach has been developed. Comparisons 
with experimental results obtained from laboratory scale 
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model walls indicated closer agreement with the Energy 
theory (LO.L.A.) than the existing theories. 

The Energy theory was further applied for a full scale 
wall case and it was found to predict smaller tie stresses 
than the observed values. This was attributed to the 
construction procedure which appeared to have an effect on 
the full scale wall behaviour. 

Recommendations for further studies on reinforced earth 
walls will be outlined in the following section. 

Future Work 

The following recommendMtions are made for further 
studies on reinforced earth retaining walls: 

(1) The Energy theory proposed by the author for the design 
of reinforced earth walls can be further extended to take 
account of the foundation flexibility, the skin element 
stiffness and the compaction stresses. 

In this theory various mod6s of wall deflection, earth 
pressure distribution and tension variation over the tie 
length may be incorporated in the analysis. The results 
may be compared with model test results. 

(2) The model studies conducted by the author were limited 
to rectangular walls. From the Energy theory it was shown 
that there may be an advantage in building walla of different 
shapes to reach a nearly optimum design. 

(3) Study of model walls under different types of surcharge 
loadings is also recommended. 

(4) Full scale wall behaviour may be affected by different 
factors such as: 

(a) The residual compaction stresses. 
(b) The stiffness of the skin elements. 
(c) The flexibility of the foundation. 
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(d) The presence of clay fraction in the wall back 
fill. This affects the soil-tie coefficient of 
friction and the internal stability of the wall. 

These aspects may be studied on laboratory scale models. 
Points Q.b ,c and d can also be studied on an analytical 
basis. 

(5) Study of suitable tie materials to be used in full scale
reinforced earth structures. At present stainless steel and 
aluminium are mainly used. Plastics and certain fabrics 
may be considered as other alternatives. 

(6) Study of corrosion of metal ties. 

(7) The finite element analysis could be further developed to: 

(1) Account for inelastic and anisotropic soil 

behaviour. 

(11) Represent the soil as a no-tension material. 

(111) Allow for slip betwe~n th~ soil and the ties 

and tbe development of plastic zones near the wall face. 

(iv) Account for volume changes in the soil and the 
subsequent changes in their elastic properties. 
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APPENDIX I 

Relationship between the non-dimensional tension 

factor X and the angle ~ of inclination of the 
failure plane with the vertical 

The relationship between the non-dimensional tension 

factor X and the angle ~ , of inclination of the failure 

wedge with the vertical, Fig (3.6) was tested by calculating 

the numerical values of -x. and p from equation (3.14), 

using values of safety factors ranging from 2 to 8 and angles 

of internal friction of soil a, from 250 to 50°. The 
o 0 values were varied from 10 to 80 and the corresponding 

~ values were calculated. Results of calculations for 

a cohesionles9 material are shown in Table (1.1). It can 

be seen from Table (1.1) that X. values increase with 

increasing ~ values, up to a maximum and then decrease. 

Similar behaviour of the relationship between )G and 

p was noted for the case of a backfill material with some 

cohesion. 



Angle of The non-dimensional tension factor - ~ 
failure 
wedge 3afety factor 'SF • 2' Safety factor 'SF - 4' Safety factor 'SF • 6' Safety factor 'SF. 8' 
with the 
Tertica1-p t;-25° ~}O0 ~35° -..400 f;.25° t;-)Oo __ 350 ;_400 ~25° ~30° ~.35° ~.40° rj.2So rj_30° rj_3S0 rj_400 

10 0.526 0.444 0.378 0.322 1.015 0.912 0.780 O.(,V,' 1.674 1.380 1.184 1.016 2.113 1.848 1.585 1.)64 

20 .802 0.692 0.597 0.513 1.679 1.465 1.281 1.118 2.556 2.239 1.965 1.723 3.433 ).012 2.649 2.)28 

30 0.958 0.833 0.721 0.618 2.064 1.833 1.625 1.433 3.170 2.833 2.529 2.248 4.277' 3.833 3.436 3.063 

40 1.0341 0.898 0.770 0.64& 2.320 ~.0~3 1.860 1.648 3.605 3.267 2.950 2.648 4.891 4.452 4.041 3.648 

50 1.0381 0.884 0.134 0.587 2.416 2.231 1.994 1.161 3.913 3.518 3.254 2.934 5.351 4.926 4.514 4.108 : 

60 0.9392 0.75 0.561 0.368 2.515 2.250 1.985 1.716 4.091 3.15 3.409 3.063 5.667 5·250 4.833 4.410 

10 0.615 0.342 0.061 -.234 2.324 1.995 1.655 1.298 4.034 3.647 3.248 2.830 5.744 5.300 4.842 4.362 

80 -.596 -1.151 -1.754 -2.403 1.253 0.659 .0257 -0.661 3.101 2.474 1.806 1.0813 4.949 4.289 3.586 2.823 

--~ 
-- ..... - - ...... --- --_ .. _- --- --_ .. _- -- ------ -- -- ---- -----~ 

TABLE (I-I) - Values of the non-dimensional tension~, corresponding to the angle of inolination of the failure wedge 
'tilth the vertical ca10ulated from Equation (3.14) for dlfferent vaJ.ues of SF and ; (cohesionless material 

~ - 0) o 

w 
o w 



• 
C 

l c:IIC 
D 

T(x) 

o 

C 

0 
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APPENDIX II 

Equation of strain energy s"tored in a tie 

due to normal loads 

x 

C 

dx 

.--_.L-__ - C 

°lt~O V 

C4 - j -4~ 
C-I-------- r C 

Ar oL a...--....----O 
fjV +Ni-d X 

0, -r-----I--\!D 
o - .. -- --r---- -,ef 

~~;l:O " 

b c 

Fig I ~:!. __ _ 
In order to calculate the strain energy stored in a 

tie only axial stresses were asaumed to be acting on a tie. 

As shown in Fig (II.l) the elastic strain energy due to an 

external load TOe) can be calculated by the principle of 

strain energy described by standard text books on the 

tbeory of structures, e.g. Bo~g et al!IO) 

The tensile strain C - «v + av dx) - v) Idx 
x ax 

'x _ av 
ax 

As the displacement of Section C-C, Fig (II.l.a) changes by 

an amount dv, the displacement of section D-D changes by an 
av 

amount d (v + - clx) and ax changes by do x. 
dx 

Consider the work done by external force T(x) and 

neglectlng higher order terms. 
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Work done - A . a . d(v + av) - A a . dv 
r x ax r x 

- Ar " ~x d(Bv ) dx 
ax 

Work done 
(Tie length dx) 

substituting 

- dU -1 

or dU1 -
Ix -

Total work dODe - U
1 -

L ~ 

Law) 

dx. dCTx 

- J 
Ar· x 

---.ctx 
o 2E 

l r 

or J 
T2 (x) 

dx •• " ••••• (11.1) 
2A . E 

r r 
-

o 
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APPENDIX III 

Calculation of strain energy stored in a tie 

For the assumed linear and parabolic tie tension 
distribution shown in Fig (3.11), the strain energy stored 

1n a tie can be calculated as follows. 

Fro. the assumed linear tie tension distribution along 

the tie, Fig (3.ll.a) the total strain energy Ui , stored 
in a tie can be calculated from equation (11.1). 

u -i 

u -1 

,. ,. 
(1+2~'P 

The value of Vi depends on 

" (2 D(. -1» ...•••..• (111.1) 

,. "-
0( and f3 For the case 

wben the .. xlmum tie tension lies at tbe wall face, or when 
the ratio of the teDSion at the wall face to the maximum tie 

ten.inn - O.S'Ui is .. ximum and is given by: 

•••••...•.•..•...••••• (111.2) 

For the case when a parabolIc tie tension distribution 
over the tie len,tb was assumed Fig (3.ll.b) the equation of 
the curve can be written as: 

2 T(x) - ax + bx + c 

where x 18 the distance along the tie and a , b, c are constants 

and their values can be evaluated from the boundary conditions: 

d TI~) 0 
,. 

(1) - at x - pL 
dx 



(11) Tm -
(1i1) 0 -
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a ( P L) 2 + b ( ~ L) + c 

aL
2 

+ bL + c 

From which the general equation for the curve can be 
obtained as: 

The strain energy stored can be calculated from equation 
(11-1) as: 

u -1 
lOA E (1 _ 8) 4 

r r r 

+ 8) ..•.• (111.3) 

when the aaxiaum t1e tens10n lies at the face of the wall or 
A-

at the middle of tbe tie, p- 0 and 0.5 respectively, the 
.train energy 1s 

- 4 

15 
,.. 

Ta
2

.L 

A E r r 

........ .............. (111.4) 

For value. of ,,1y1ng between 0 and 0.5,Ui increases 
or dec~ea8e. s11lbt1y. 
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APPENDIX IV 

Series D test results 

The results of tie tension measurements from the Series D 
tests are presented in Tables (IV.l) to (IV.4). In this 
series 22 walls were built, using perspex ties 22.7 mm wide 
and of varying lengths. The soil/tie coefficient of 
friction was 0.398. Tbe results of walls No.3 and 19 are 
Dot included in tbese tables, since wall No. 3 was not 
instrumented and wall No. 19 failed earlier than was expected. 
The tie tensions in tbe walls shown in Tables (IV.3)and 
(IV.4), were aeasured at position (i) shown in Fig (IV.l). 
In these tables also band T denote tbe fill height above 
the tie level aDd tbe tie tension respectively. 

(1) (11) (iii) (iv) JTie 

30 180 330 480 

distance f:-o:a centre of strain gauge to wall face 

wall 
face 

I ~ 
(1) (ii) (·.ii) ( v) 
I 

30 180 330 460 
diatance from centre of strain gauge to wall face - mm 

Fig (IV.l) - Positions of strain gauges on ties (Series D tests) 
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Fill Measured tie tension - N -
height at positions on tie shown 

InforllUl t ion above in Fig (IV. 1) 
about the test tie level 

h (i) (ii) (iii) (am> 

Test No. I 75 15.05 9.96 8.53 

L-500- 100 17.4 12.52 9.4 

Aft- 250 - 125 24.4 17.31 12.4 

S - 300 -
195 31.3 23.45 17.37 

"( - 1. 610 gr 210 35.0 27.06 19.8 

250 43.3 33.4 22.7 

H - 440 - 285 53.1 40.78 27.66 
e 

315 55.86 - -

(i) (ii) (iii) 

Test No. 2 70 9.8 7.7 3.87 

125 16.0 13.8 6.84 
L - 480 ... 175 25.2 21.6 11.4 

Aft - 250 .. 225 30.3 26.9 15.1 
S • 300 ... 250 39.2 35.0 19.8 

Y - 1.610 ~ 

He - 365_ 

TABLE (IV.l) - R .. ult. of tie tension measurements in 
Seri •• D teatl! 

(iv) 

1.5 

1.8 

2.6 

4.6 

5.3 

6.23 

7.7 

-

(v) 

0.82 

0.96 

2.18 

2.93 

4.4 
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Fill Measured tie tension - N -
Information height at positions on tie shown 

about the test above in Fig (IV. 1) 
tie level 

h . 
(mm) (i) (ii) (iii) (iv) 

Test No. 5 (D) 75 3.50 4.4 4.24 

L - 460 DUn 125 13.40 12.30 7.31 

AH - 250 mm 145 16.90 14.48 9.45 

S - 300 mm 175 20.90 18.40 11.78 
l' _ 

1.610 gm/3 190 26.0 21.8 13.15 
em 

H - 330 mm e 

Test No. 14 (D) (i) (il) 

L - 250 mID 70 2.4 2.3 

AH - 250 DUD 113 9.8 4.9 

S - ISO mm 160 12.5 6.72 

1. 1.6010gm ... I 200 16.6 6.72 
.) em 

H - 330 DUD 
e 

Test No. 15 (D) (i) (ii) 

L - 250 IIUIl 80 4.63 -
~H - 250 mm 120 10.9 5.52 

S - 150 DUn 185 14.7 7.2 
~ 

l - 1.622 gm/3 230 21.0 -
em 

H = 357·5 mm c 

TABLE (IV.2) - Results of tie tension measurements in Series D 

tests 



-311 -

h - height of fill above tie level 

T - Tie tension 

Test Information L - 480 H ... 365 .. "" 1.610 gm/cm3 

No. about the ' c ' 
AH - 250 mm, S = 300 mm test . 

4 (D) h - mm 75 115 132 195 240 

T - N 6.85 16.4 20.4 26.4 31.1 

Information L - 490 mm, H .. 410 mm 
about the c 3 

test l - 1.610 gm/cm, f.H'" 250 mm, 

S - 300 nun 

6(D) 
h - mm 100 125 180 235 270 285 

T - N 10.8 16.64 22.46 31.4 39.16 36.79 

Information L - 470 mIn, He - 340 mm, AH ... 250 DUn 

about the S - 300 mIn, '" - 1.610 gm/em3 
test 

7 (D) h -- 85 122 180 215 

T - N 9.66 16.41 23.8 28.1 

Inforo t ion L - 460 mm, H - 350 mm, AH ... 250 mm 
about the e 

-l-... 1.617 gm/cm3 
test 

S -300 DUn 

8 (D) h - DUll 110 125 165 190 205 225 

T - ~ 9.8 14.95 20.46 24.11 29.90 32.1 
--roo 

Information L - 500 mm, Hc - 360 mm, AH ... 250 mm 
about the 

S - 300 mm, "'t - 1.622 gm/cm 3 
test 

9(D) h - IUD 110 165 205 235 

T - N 17.5 24.4 30.1 31.89 

In forllUl t ion L - 500 mm, Hc - 465 mm, AH - 250 mm 
about the S - 300 DUn, Y - 1.6146 gmlcm 3 

test 

10 (D) 
h - lUll 100 121 175 235 285 330 340 

T - N 2.14 10.2 20.2 29.7 36.21 40.4 47.4 

Information L - 450 mm, Hc - 310 mm, AH - 250 mm 
about the S - 300 mm, y- 1.615 gm/cm3 

test 

11 (D) h - ... 90 135 165 185 

T-N 10.36 14.77 19.62 22.3 

TABLE (IV.3) - Results of tie tension measurements in 

Series D Tests 



IS pU -912-
h = height of fill above tie level 

T • Tie tension 

Test 
No. 

12 (D) 

13(D) 

16(D) 

17 (D) 

18 (D) 

20(D) 

21(D) 

22(0) 

Information 
about the 

test 

h - mm 

T - N 

Information 
about the 

test 

h - rom 

T - N 

Information 
about the 

test 

h - mm 

T - N 

Informs tion 
about the 

test 

h - :nm 

T - S 

Inf9rmation 
about t~e 

test 

h - mm 

T - N 

InformatioD 
about the 

test 

h - DUD 

T - N 

Information 
about the 

test 

h - DUll 

T - N 
InformatioD 
about the 

test 

h - IUD 

T - N 

L - 440 mDl, H - 320 DUn, 6H == 250 mm e 
S - 300 DUn, '( == 1.6150 gm/em3 

118 128 195 

8 13.2 27.2 

L - 440 mm, He - 278 DUn, AH == 250 mm 

S - 300 nun, '( == 1.603 gm/em3 

110 125 153 

13.66 19.1 19.1 

L - 250 mm, H - 350 mm, AH - 250 mm 
S - 150 mm, e '{ - 1.589 gm/em' 

85 I 130 185 205 225 

7.07 I 11.8 16.0 17.7 19.3 

L - 240 DlDl, He - 305 1I1JIl, AH - 250 mm 
S - 150 mm, Y - 1.5960 gm/em3 

85 130 180 

7.3 10.76 15.84 

L - 170 DlDl, He - 310 mm, t.H == 250 mm 
S - 100 mm, ¥ - 1.615 gm/em3 

80 130 185 

5.65 8.63 10.20 

L - 250 mm, H - 265 mm, AH "" 125 mm e 
S - 300 mru, V-I. 610 gm/em3 

80 125 188 

3.20 13.74 20.0 

L - 170 mill, H - 350 mm, t.H == 250 mm 
e 3 

S - 100 mm, 'i == 1.617 gm/cm 

85 130 175 205 225 

3.7 7.5 9.85 11.90 14.60 

L - 167 mm, H - 340 mm, AH == 250 mm e 
S - 100 mm, ,,== 1.595 gm/cm3 

130 175 215 

6.94 8.72 11.8 

TABLE (IV.4) - Results ot tie tension measurements in Series D 
tests 
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APPENDIX (V) 

Series E Test Results 

A summary of the tie tensions measured in the Series E 
tests is presented in Tables (V.l) to (V.5). The tie tensions 
in this series were measured at different positions on ties 
shown in Fig (V. 1). These positions are designated consecutively 
from (a) to(wand are entered in Tables (V.l) to (V.5). 

The observations of the horizontal and the vertical 
strain in the soil and the vertical stress in the soil, were 

aade at vertical sections in the wall lying at 50 mm, 150 mm 
and 250 .. trom the wall face. These three positions,Fi9V.2 are 
indicated as (i), (ii) and (i1i) respectively and entered in 
Tables (V.6) to (V.9) in which these observations are 

8U11U1Ulrized. 

A summary of the horizontal wall deflection measured in 

the Series E tests is shown in Table (V.IO). The numbers 
in the table refer to the positions of the strain coils on 
the face of the wall as shown in Fig (V.3). 

b 
Q 

,,01SO 70 

I f 2 I 

wall face "'HOII~O--~1~~-'"'!!f~o~o------

I n q 

vall tace 

t 
Q 

250 

centre of stain gauge to the inside of 

Fig (V.1) - Positions of strain gauges on ties 

for the measurement of tie tension ( Series E tests) 
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, I -. 
I ' I 

~ ~o 1~ 2~0.Distance from wall facing -mm 
Wall,'I' --, I -'--L--' ~'Line of symmetry of the 

facing ~i) j(ii) ~iii) \ vall 

Fig(V.2) -Positions of transducers for measuring stresses & 
.trains in the soil from the facing of the wall 

500 500 
(y) ---'450 

(viii ---'375 .-Position of strain coils 

(iv ----350 
/ 

(111 ----250 Wall facing 
(Vii) --- 250 

(il ---, 50 (yi) ---, 25 

(i) - - -- 50 
00 00 

"" above baae-1UIl .... Level abcve base-mm Level 

Fig (V.,) - Positions ot strain coils OD the wall facing. 

Tie level Fill Measured tie tension - N - observed 
above base height at positions on tie shown 
of lIlodel above in Fig (V. 1) 

mm tie level 
b - JIIIl a b c d e 

125 6.4 7.1 6.3 5.5 3.8 

125 250 15.3 17.3 15.7 12.0 6.9 

375 19.5 23.9 23.1 17.7 10.1 

375 125 4.34 5.42 9.51 9.41 -

TABLE (V.l) - Results ot tie tension measurements in the 
Series E tests (AH" 250 mm, S .. 100 mm) 
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Tie level Fill Tie tension - N - observed at 
above base height positions on tie shown 
of the model above tie in Fig (V. 1) 

!DID level 
!DID f g i j 

150 2.4 3.2 3.9 3.6 

50 350 9.9 12.8 12.9 10.8 

450 12.0 16.3 16.10 14.1 

s t u 

100 1.68 3.5 3.9 

150 250 5.4 9.5 9.7 

350 8.0 13.6 14.1 

n p q 

50 1.5 2.6 1.9 

250 ISO 6.4 9.5 8.0 

250 9.2 14.9 14.4 

k 1 m 

50 1.0 1.3 1.8 
3SO 

ISO 5.4 9.4 10.1 

TABLE (V.2) - Hasults of tie tension measurements in the 

Series E tests ( ~H - 100 mm, S - 150 mm). 
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Tie level Fill Tie tension - N - observed 
above base height positions on tie shown in 
of the model above tie Fig (v. 1) 

IUD level' - DlII 
f g i j 

83 1.53 1.53 0.96 0 

166 1.55 1.91 0.51 0 

208 2.20 2.38 1.21 0 

42 250 2.30 2.38 1.21 0 

333 3.14 3.61 1.99 0 

416 4.30 4.16 2.4 0.62 

458 4.6 3.72 2.4 0.62 

42 l. 36 1.58 1.76 2.2 

167 5.00 5.00 5.30 3.76 
208 I 

250 4.84 4.60 6.00 3.76 

292 5.23 6.50 6.71 4.46 

n p q r 

83 2.50 2.10 2.4 2.0 

292 166 5.2 7.3 5.6 5.0 

208 7.0 9.9 8.9 7.30 

83 1.62 2.83 2.3 2.9 
375 

125 5.02 6.6 6.0 5.7 

TABLE (V.3) - Results of tie tension measurements in the 

Series E tests ( 6H - 83.3, S - 100 mm) 

at 
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Tie level Fill Tie tension - N - observed at 
above base height position on tie shown in 

ot the model above tie Fig· (v. 1) 
aua level - IDIIl 

t g i j 

250 5.8 7.1 7.8 7.1 

42 333 7.9 9.7 10.4 7.1 

458 10.2 13.5 14.7 9.9 

s t u 

167 6.3 4.5 5.4 -
125 250 10.0 8.7 8.4 -

375 14.9 14.7 14.5 -
84 6.12 5.4 - .-

208 I 
167 7.20 6.3 - -

. 
292 11.70 12.6 - -

I 

i 
n p q r 

83 2.7 4.4 3.6 3.9 
292 

208 8.8 12.3 10.4 8.3 

k 1 m 

83 1.5 3.7 3.1 -
375 

125 4.3 7.1 5.9 -

TABLE (V.4) - Results of tie tension measurements in the 
Series B tests ( ~H - 83.3 mm, S - 150 mm) 
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Tie level Fill Tie tension - N - observed at 
above base height position on tie shown in 

of the Dlodel above tie Fig (V. 1) - level - _ . 
f g i j 

166 5.5 4.9 4.7 4.5 

208 8.6 8.7 6.1 5.6 
42 

333 10.5 10.4 8.4 7.6 

458 12.1 13.4 11.2 10.2 

83 2.5 4.0 3.4 2.6 

167 10.7 13.8 12.7 8.5 
125 

250 13.4 18.8 18.0 12.4 

375 19.3 26.8 25.0 15.9 

k 1 m 

84 7.7 8.0 8.6 

208 167 9.9 13.5 12.6 

292 14.0 2(\.7 17.8 

D P q r 

83 1.7 3.5 3.5 2.7 
292 

208 6.7 11.3 11.0 9.9 

It 1 • 
83 2.7 3.3 4.4 

375 
125 6.1 9.8 10.9 

TABLE <V,S) - Results of tie tension measurements in the 

Series I tests ( AH - 83.3 mm, S - 300 nun) 



+ve Expansion 
-v Compression 

Instrument-
Tie ation level 

Spacing above base 
of model 

<mm> 

~H - 100 
mm 

S - 150 
mm 50 

250 

350 

AH - 250 125 -
S - 100 

mm 

250 

250 

375 
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Fill height 
above instru-
mentation 

level 
<mm> 

50 

150 

200 

250 

350 

450 

50 

150 

250 

50 

150 

125 

250 

375 

40 

125 

250 

125 

250 

125 

Horizontal strain in 

:~~~tio~t%i~b~~:v~~1at 
(Fig (V.2) 

i-Ex% ii-Ex% iii- EX% 

0.055 - -
0.108 0.0554 -0.0665 

0.172 0. 0724 -0.0665 

0.397 0.258 -0.223 

0.621 0.406 -0.258 

0.783 0.467 -0.128 

0.145 0.105 0.11 

0.693 0.623 0.334 

0.832 0.761 0.379 

- - -0.021 

0.22 0.360 0.361 

0.34 0.022 0.090 

1.41 0.160 0.175 

1. 64 0.270 0.230 

1.8 0.340 -0.600 

3.06 0.520 -0.500 

3.8 0.710 -0.400 

1.91 0.230 -3.140 

4.8 0.210 -2.790 

0.183 0.157 0.157 

TABLE (V.6) - Results of horizontal soil strain measurements in 
the Series E tests 
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+ ve Expansion 
- ve Compression 

Tie Instrumenta- Fill height Horizontal strain in 
Spacinl t10n level above instru- sand ~ observed at 

above base mentation positions i, ii, iii shown 
of model level . in Fig <V.2) 

(IUD) <am) i- Ex" ii- Ex" iii- EX% 

83 0.057 0.010 0.050 

125 O.lOS 0.010 0.120 

t\H - 83.3 167 0.22 0.146 0.190 
mID 42 

8 - 100 270 0.26 0.195 0.200 ... 
333 0.110 0.052 0.020 

375 0.190 0.067 0.039 

84 0.223 0.108 0.0702 

187 0.379 0.112 0.0234 
208 

250 0.147 -0.121 -0.243 

292 0.180 -0.095 -0.205 

166 0.057 0.010 0.050 

t.H - 83.3 208 0.108 0.070 0.120 
mID 

S -150 42 250 0.220 0.146 0.191 - 416 0.110 0.005 0.0196 

458 0.190 0.067 0.039 

125 0.298 0.137 0.076 

250 208 0.330 0.155 0.057 

250 0.447 0.175 0.119 

TABLE (V.7) - Results ot horizontal soil strain measurements 
1n the Series E tests 



+ve Expans ion 
-ve Compression 

Tie Instrumenta-
tion level Spacin& above base (mm) of model 

<-) 

MI- 100 
11m 

50 

S - 150 
mm 

50 

150 

250 
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Fill height 
above instru-
mentation 

level 
<-> 

50 

100 

250 

350 

450 

50 

ISO 

250 

350 

450 

150 

250 

350 

150 

250 

Vertical strain in sand 
Ey% observed at posi-

tions i,ii,111 
shown in Fig <V.2) 

i- £y% ii- Ev% . i1i- Ey% 

-0.25 -0.04 -0.048 

-0.31 - -0.22 

-0.474 - -0.363 

-0.503 - -0.347 

-0.508 - -0.500 

-0.286 - -0.122 

-0.633 - 0.016 

-0.534 - 0.091 

-0.624 - 0.038 

-0.630 - -0.050 

0.042 0.124 0.099 

0.029 0.164 0.079 

-0.058 0.153 0.090 

-0.164 0.0816 0.089 

-0.238 - 0.150 

TABLE (V,S) - Results of vertical soil strain measurements 
in the Series E tests 
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Instruaenta- Fill height Vertica12soil stress 
Tie tlon level above instr- ~y KN/m observed at 

Spacing above base ullentation positions i, ii, ii~, 

<aaa> of .odel level (mm) shown in Fig (V.2) 
(-) i ii iii 

SO 0.20' - 0.79 

1:;0 1.30 - 2.60 

50 250 2.20 - 3.70 

Aft - 100 3:;0 3.50 5.10 --
S - 150 450 4.50 - 6.50 - 50 0.62 0.285 0.68 

150 150 2.5 2.36 2.91 

2:;0 3.63 3.32 4.35 

350 4.80 4.69 6.19 

~H - 250 
125 5.22 1.59 4.54 .. 250 8.62 3.52 7.82 

S - 100 125 .. 375 11.16 5.93 10.80 

TABLE (V,9) - aesults of vertical s011 stress measurements 
iD tbe Serie. B tests 
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Tie Total fill Observed horizontal wall deflections 
Spacln& height -- at positions shown in 

(atat) <lUll> Fig <V.3) 

i ii iii iv v 

100 0.488 
AH - 100 

•• 150 0.63 0.804 

S - 150 300 1.23 1.67 1.087 .... 
400 0.94 1.79 0.83 0.54 

600 1.13 2.04 1.07 1.44 0.50 

~H - 100 150 0.973 
IIUI 

S - 150 
200 0.32 0.11 - 300 0.20 0.624 0.463 

500 1.81 1.98 1.18 1.024 0.170 

vi vii viii 

AH - 83.3 125 0.31 0.38 -8 - 150 
208 0.44 0.686 - 250 0.73 1.521 

270 0.750 1.515 . 0.18 

458 0.921 1.96 0.25 

500 0.99 2.081 0.76 

~H - 83.3 125 0.189 

•• 208 0.33 

S - 100 292 0.704 .... 
355 0.820 

500 0.960 

~H "'250 125 0.820 0.311 

•• 250 1.21 1.23 
S .. 100 375 1.93 3.547 0.581 •• 500 2.31 4.382 1.650 

.. 

TABLI{V.I0) - Result. of horizontal wall deflections in the 
§!r Ie. B te.ts 
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APPENDIX VI 

Method of evaluating the experimental 
safety factors against tie pUllout 

A computer progra..e was developed by the author and the 
.. In purpose was to calculate the experimental factor of safety 
... lnst tie pullout fro. the tie tension distribution along 
tbe tie lenlth curves. Tbis programme also calculates the 
experi.ental safety factors against tie pullout using the 
.. xl.u. tension in tbe tie and assuming either all the tie 
lenlth or only the tie length beyond the maximum tension 
po.ition as effective a .. inst tie pUllout failure. An 
experi.ental safety factor against tie pullout is also cal
culated by tbe progra ... fro. the average tie tension and 
••• uainl all tbe tie lengtb as effective against pUllout. 

Por the calculation of the experimental safety factor 
... ln8t tie pullout froa the slope of the observed tie tension 
di.trlbution alonl the tie, a smooth curve of the degree n 
(n - nu.ber of observations) is passed through the observed 
points. The slope of tbe tie teasion curve is calculated at 
predeterained interval8 along the tie, from the difference in 
tie tension 6T between adjacent potnts and the corresponding 
incre.ont of tio lenath fJ. L. The programme evaluates the 
.afety factor a,.in8t tie pullout at each interval along the 
tie uc inl equ. t IUD (5.5)' An average safety factor is then 
calculated fro. tbe a.fety factors evaluated at discrete 
locallties over tbe tie lenlth. 

Feature8 of the progra .. e 

The procra .. e con.iats of the main calling programme and 
tbe 8ubroutine I MTBRP , which is based on the Lagrange inter
polation polynoaial. 

Sy.bols used io tbe programme 

NUMPR 
WIDTIf 

LENOn. 

- nu.ber of problems to be analysed 
- width of reinforcing tie 
- ienlth of reinforcing tie 



GAMA 
TANU 
H 

NI 

xCI) 

Backfill density 

coefficients of friction between soil and tie 

fill height above tie level 

number of observations of tie tension along a tie 

= positions along a tie at which tie tension was 

observed 

FX(I) 

FPHI 

= observed values of tie tension along a tie 

tie resistance against pullout. 

Programme Listing 

A listing of the computer programme, used for the 

evaluation of the experimental safety factors against 

tie pullout is given in the following pages. 



\.J Lt.VEL 21 MAIN [JAIE. = 11u'+0 ll/~::>/u 

C 
C 
C 
C 

c 
c 

IOU 
101 
lO~ 

1u3 
13U 

140 
l~U 

l~l 

200 
~03 
~lj4 

2u5 
206 

~U" 
20ti 
cO~ 

120 

O~ I 11\ 1" I-Jt ~.-t hl b 

PKu(,RI\ i"l u::,t.. LI0k AI\J Gt. 1 N Tt.kPULA T 1 Ui >i r Okl'lULA . 
TO CALCULATt. l N T~kMt.ulATt VALUt.~ U~ - ~UN~IIUN A 
Ttl::>ULATtlJ FUk t.lJUAL UK UNUJUAL ll\i rt.KVAL::' 

Xl =AK ~AY Ur GIVeN V ALtS O~ X 
F X = At<k~ Y U~ I- UI H .. T Hm 
LJIt-\UJSIU,'i X(C\J) ,I-A(cIJJ ,L(SO) ,T(~u) 
o 11 Jl t. 1 'I ~ I U; Z L ( ~ lJ ) , T T b U ) 

l) H IU S I u' J TIl L t. (c U ) 
D! f'-IU'6IUiIJ lJl (::>U) ,UL(:,U) ,!:> fC(=>O) ,u'-t"nl (5U~ 
Rt.;\L Lt.NG fH 
F()~~i ' I AT (iU .~4) 

F OR ~'lJ\ T (f S. 2) 
F 0 k j., A T <I , T 5 , 'l; t> S t. k V t. UTI t. T t N S I U 1\1 • ,I II, I 6 , t X - COO K LJ f , T ~ 8 , 

* • TIt T t:. r J:::' ION' • I / , ,. ~ , • 01 S' , T J 3 ~ , I'J' ,II (f 1 U .2 ,1=>}. , FlO. 2) ,I> 
FURMAT(lHl,dl\,~UA'+,III) -
F UK~I) A T ( IS) 
FOi-< i"IAl (IS) 
FUK~AT('l,,/I,Tb"Ul~T. ALNG. TIt.',12~"ULt,T42.'Tt.NSIONt, 

* lb2,'uT',Tfc,'t"uLL K~SlST.'.T9U"~Aft. ~ACT.·,/I. 
* T 1 ~ , ' C H => t ,T C '7 • ' c.. j": :;" , T '+ 5 , , N' • T t ~ , ' f'-J' , T 18 ; , Nt, II , b ( b;\ , flO. 4) ) 

FOkl-',AT(6X,flU . 4,ecx .FlO.4) - -
FOKMAT(~lO.c) . 
FORI-1 AT <l1,T::>. , !:> . ~ . FkUM AVt::kAGE lUJ:,ION = •• f 1lJ.4) 
FOR i"IAT <l1,T::>, IlIi u TH =' ,rlO.~,I, f::>, 'Lt.NGIH =' ,f 10.2,1 
*,T=>"U~~SITY =', .. 
llPtll.4t1,T::>, 'nt.luHT AbUVt:. Tit. = '" 
*01-'1- lO.~.I,T:J' 'LUU·. Ur fRIC1IUN =, ',fl0.4) 

FUr.:i-1AT (II,T:H I :·; A.\ . TIt kESIST. h\.]Ail'>lST t-JULLOUT=( tF 10.4) 
FOI~I"'AT(~t='lO.e,t.11.4,flo.4) . 
F0kMAT(II,To,1 Inc AVk; Sf CAL. fkUM i-CUKVt. SLOPE. =',F10.4) 
FO~MAr(II,T::>,'Tlt. Kt~lS. L-t.tft.CrIV~ btYUNU T-P~AK =t,flO.4) 
fOK~AT(II}T~,I::'~ ASSUM . ALL L-[~ttCIIVE ~',fl~.4, II, 

*TS,'SF A~!:>U~t . L-M·Tt.k T-Pt..AK t.F-I-CV. " =',tlO.4) 
RtAU(~,140)NUM ~H ." 
R[A0(5,20b)WIUTh,L~NG!H,GAMA,TANU 

KOUNT=Q 
CUN T I I\jUt: 
KOUI''4T=KOUNT+ 1 
RtAO(::>,lUO,~NU;100) TITLt 
RtAU<':>,cO(})rl 
Rt::t,Ub.130lNl 
Rl AU (=>. 1 u 1> (l\ ( 1) d = It N 1) 
RtAO(5dol) (I-XU) d=l,Nl) 
fPhI=2*wIUTrl~LL ; Ulho0AMA*H*TANU 
!,oj k 1 T t_ ( 6 , 1 0 3 ) i 1 11. .. t . 
'1'1 ~ ITt. (b • 1 0 2 ) (A ( 1 ) ,F A ( 1 ) , I = 1 , I\j 1 ) 

Vi KIT E. ( b , 2 U 4) ~ II u r H t L t:- N C; T H , u A i"1 A , t1. T ,.d'-l U 

WK ITt. (b, 2 uS) r t-'Hl 
NN=10 " 
t3Iu=rX(l) 
I IG=l 
UOIIIJJ=~,I'J! 
If-(~1\.].LT.F)c'(JJ))00 1U 112 
Gu TO III 
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u Lt.v EL i?l MJ.\lN 

ll~ Blt;=t->,,(JJ) 
I~IG=JJ 

111 CUf'l r I!''1Ut. 
u- C T v:::Li:_ f~t;Tr1-" I L:liu)"'" 1 0 
FPHl~=~*~lUJ~*LI"C1V*G~MA*H*T~NU 
~';rd Tt. (0 ' cl,t'- ) I" r-tl 1 ~ 

Sfl=f~hI/~>"ll ~ lt;) 

SFc=l"~hl~/fA{lolu) 

w Hlrt.(b,~U~)~l"l . ~tc 

C ************~******** 
C *********~**~******** 

liAIt. = 77U4 ti 

C Pkt.t"'t.J\K HJTc.~~IJL . Ai'-JU SAFt. TY I" A('I. t;ALCULA T IUN 
C ********************* 

N=ltsIG 
II- (1\I.t:::.U.l) Gu Tu .3U 
AIrJC =A (j dIG ) I NN 
Z(1)=AIllC/2.U 
IJ07 dL=2 ' ('II 
7.(L)= L(l)+Al C* (L-I) 

7 bel)'''' T I NUt. 
C.4LL lI-.jTU~P (A.I- A, IJ ,L,I\lN, T> 

D03031X=I,/"ll 
ZZ (LO =l ( Ix) 
TT(IX)=T(l x) 

JOJ CU NT I NUt. 
c ********~***~v******* 
C THt. POST PE.AK 11 Tt.k t>()LATIUI\I AND ::>Aft:.TY rACTOH CAL. 
C *************~o****** 

NN=3*~I J 

N=Nl+l-I d lG 
AI NC= (X( N l)-~(l b lu»/NN 
Z(1)=A(! d lG)+ AI NC /2. 
l)O lU L=2,N N 
Z ( L ) = Z ( 1 ) + A !:'JC * (L -1 ) 

10 COf\! T !f'IUE 
X(l)=X(I ~ IG) 
F X ( 1 ) =1"- )" ( I H 1 u) 

IK= N-l 
00511=1,11\ 
X(11+1) =A(l o1u +II) 
FX(11+1) =f~(l J lu·l1) 

:> CONTI NUe:. 
CALL Ir'-lTt.RP(x,FX,N,Z'I~N,T) 

M2=NN 
I'1=l'll +M2 
SU t1T=O . U 

00 202 IO =l, NI 
20~ SUMT=SUHT+fX(lU) 

Til V=SUr-IT I N I 
SF=r~HI/TAV 
~.J I< 1 T t: ( 6 , ~ U 3 ) ~ ~ 
o 03 () 1 I ~ = 1 , . 'I C 

T T ( I X + 111 ) = T ( 1 " ) 
Zl(IX+MI)=ZllJ.) 



G Lt.VtL ~l MA I N 

jlJl CurHl i'Jut. 
NI,\=r·j -l 
DOcb 0 JJ= 1 ,N.'1 
U1 (JJ) ==TT(JJ)-TT(JJ+l) 
UL ( JJ)=LL(JJ·!)-LLlJJ ) , 
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u t- fJ H 1 (J J ) ::: C * .J! l) r:1" LJ L l J J ) * G M 1'11\ * H * I A I'W * 1 0 
~t-C(JJ)=~t-~~l(JJ)/~rlJJ) 

~b\J C0U r I j,Ut. 

ll/c:>/L 

IV ~ IT t ( Cl , 1 :> v) <L L ( L) , LJ L (L> , T T (L> ,U 1 (Ll ,u F ..... H 1 (Ll ,s f C ( L) ,L = 1 • f'J M ) 
." K r r t. ( 6 , 1 ~ 1 ) L L (I-d ,1 r U·j) 
SU:"'~~ =0 . 0 
DtJ 11 r\=ll,j~ 

11 SUM~F=~lH::'f ·~FC ( 1\ ) 

SF AV=SU: ISf I r:.'1. 
~'HH T c. ( 6 , 2 u 7 ) ~ t- A V 

lj7~ It- (KOU IJ r-r'~U,'I""'rO 12u, luU, 70Ll 
3U CUNT !loJUt. 

W~ITt:.(6,ru2) l)..(ll ,t-X(!) tl=l,r .. l> 
N=tH 
NN=40 
,.\ Ir4C=.x. ( I d) / rJI'l 
Z ( 1) =A 11 .C/2 . 0 
Du 40 I1H=2,N, 

40 Z(IIu) == Z(l)·~l ~C* (llB-l) 
CALL HTt.kp('(',r J.. t IJ,L,NN,T) 
1-J 1J, ==f'JN-1 
002 Lj I.) J I = 1 , 1'11'1 
OFPHt(JI)=2*~ rLJTh~UL(JI)*GAMA*H*TANU*lO - - -
DTtJI)=T(JI)-TlJl ·l) 
DL(Jl)=L(JI+l)-LlJl) 
SFC(Jl)=ufPnl(JlJIUTlJI) 

t!.\.j'-;J COi'IT I;-lul:.. 
~'i R IT t. ( 6 tl ~ () ( L (Ll ,u L (Ll ,T (L) ,u T (Ll ,U f PH J. (U ,5 t- C ( L) ,L = 1 ,j\j M ) 
~~ R 1 T t: (b , 1 ~ 1 ) L ( :~, ) , T (NI'l) . 

SUM SF=O .u 
DO S~ 1K=1,3Lj 

~~ SUf'-l::,r =Sul-15F ..-:> FC (11'\) 
SF AV=5Ur I!:>F / j'j. 
I'J R ITt::. (6 , 2 U 7 ) ::,F ~ 'J 
GO TO cj<:JLj 

700 STuP 
ENU 
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Lt.V£L 21 1 i'lTt.kP OA I t. = " 7048 

SUt'KOUTI Nt. 1 · rt.t-<f-'(A.~)\,'\hl,Nr'JtT> 
Dlr·lr..I~SH) I'j X,(C:U) ,~'A(cU) ,r<X(~O) ,AI'JUI"1'(::>U) ,UNLJM(~O) ,AL(SO), 

~·Z(SO) ,T(SU) 
o 0 d ts b L = 1 ,~j 1'~ 

C **oo*o*o*~.*o***o****** 

C TO C'ALCULA T t. . UA 
C *******vw~****.**** •• ** 

Ox=1.0 

JOU 
t 
c 
c 

o v 30 0 I = 1 , ,'J 
RJ..(l)=AoS(Z(L)-'A(l» 
Qx=<.JX .;:.~" ( I) 
CONT.! NUr.. 
*********************** 
TO CALCULATt. · NUM~KATO~ 
**********0************ 
00 33 1=1,f\l 
ANUM(!)=AbSlWX/t-<X,(l» 

33 CONT I r~ut. 
C O****************~***** 
C TUCALCULATr..·fHr.. UtNUM~RATOR 
c *********************** 

::>00 

bOll 

c.oo 
L 
c 
c 

.,OU 

1 

66 

DU 500 l=l'l~j ' 
U MJ t\1 ( I ) = 1 • U 
UO bOO I=l.,~ 
DU bOO J=l,, '1 
If(l .f'.t::. J) LJI';L: ·. ~i) = AdS(l)NUi'l(l)*(X(l)-'A(J») 

CONT 1II.Jut 
00 ~OO T=1,;\1 
AL ( I) =l;I'Idr·' (1) 1L' I'IUfl (i) 

TO LH:Tl:..KI 'ili'It.· THt. !;)lul'~' Of AL 
*********~*~****w****** 
KK=O 
OU 900 1=1, .'1 
IF (Z (Ll • u T. X ( 1> ) t\K=KI\.+ 1 
CON T I r·JUr.. 
II.=KK+2 
UO 1 LL=[l. ~ ,2 

AL (LL) =-}\L (LL) 
DO 6b I=l,t\K,~ 
I ~=KK -I 
If- UR .GT. U ) J..L(lrd=-AL(IR) 
COi\JrINUt. 
T(l_)=U.u 
OlJ '-t I.i 0 0 1;:: 1 , r j 
T (Ll =T (L) +~.L {1> *1- ld 1) 

CUi': T !i'.Ut . 
~ t. rU~ f '~ 
c. r· ll) 

11/2::,/U4 • 

" --. 
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APPENDIX VII 

(a) Stresses due to concentrated surface loads 

Spangeler 70 gave the following formula for the 

calculation of the horizontal stresses due to concentrated 

surface loadings acting on a conventional retaining wall; 

p - ~ 
X2.Z 

... (VII-I) 

where P - horizontal unit pressure at any point on 
the wall 

Pw - applied wheel load 

X - horizontal distance from load to point on 
the wall 

Y - lateral distance from load to point on wall 

Z - vertical distance from load to point on wall 

Ro -
This formula was based on a modified Boussinesq theory. 

(b) Specifications of the roller used in the Granton wall 

Type 10-Ton smooth-wheeled roller 

Dasic weight - 106.3 KN 
Water ballasted weight -
Weight of front wheel 

Weight of rear wheels 

Pressure front wheel 
Pressure rear wheels 
Front wheel diameter 

-
... 
= 
= 

122.3 KN 

37.17 KN 

69.12 KN 
1372 KN/m2 

2234 KN/m2 

1.22 m 

Rear wheel diameter = 1.52 m 

Rear wheel width - 0.61 m 
overall length of roller - 4.57 m 
Overall rolling width = 1.88 m 
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APPENDIX VIII 

(a) Tangent modulus of soil used in the programme 

The overburden dependence of soil modulus Et is mod~led 
in the programme by the following equation' 

(b) 

( 1h(1-sin0)sin0 Et ... Ei 1-
2c cos0 + 2 sinG ("'h _ 2 c ) 

N0 ;J 
- tan2 (45 + G ) 

2 

2 
) .... (VIlLI) 

- a + 0 OJ a + 0 (l-sinO')~h 

c 

G 

h 

... 

-
-
= 

density 

cohesion 

angle of internal friction 

overburden height 

Determination of E. for the sand 
1 

The stress-strain curves obtained for tile sand from a 

series of triaxial tests, e.g. Fig(VIII.l), were approximated 
by a hyperbolic relationship originally advanced by Kondner40 

which is of the form: 

.................... (VIII.2) 
q + r£ 

~l and a3 are the major and the minor principal stresses 

respectively 

q 

r 

-
... 

reciprocal of the initial tangent modulus, Ei 

reCiprocal of the asymptotic value of the deviator 
stress 

The values of q and r were determined from the triaxial 

test results, using Equation (VIII.2) and transforming the 

hyperbolae into straight lines as shown in Fig (VIII.2). 

This was done for each case of pressure cell a
3 

and the 

corresponding initial tangent modulus was determined for each 

case. 
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A straight line was assumed for the relationship between 

a 3 and Ei . The constants a and b were determined using 

regression analysis as shown in Fig (VIII.3). 

(c) Determination of Ei and v for the blaes· 

In order to determine the initial tangent modulus Ei 

of the blaes, the stress-strain curves obtained from a 
series of triaxial tests were approximated by Equation 

(VIII.2). The experimental results were found as not 
completely fitting into the hyperbolic model given by 

Equation (VIII.2). The initial tangent moduli were then 

determined directly from the stress-strain curves of the 

blaes as shown in Fig (VIII.4) • .. 
The values of the initial tangent moduli were plotted 

against the cell pressure ~3 and a straight line relation
ship was assumed, Fig (VIII.S), from which the values of 

a and b were determined. 

The Poisson's ratio of the blaes was determined from 

the triaxial test results in ~h~ manner described in 

Section (7.6.1). The results of the measurements are 

shown in Fig (VIII.6). 
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Fig. VIII-3 Variation in the initial tangent modulus 

with cell pressure for dry sand tested in a 

~riaxial condition. 
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