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Abstract

Regression models for count data are usually based on the Poisson distri-

bution. This thesis is concerned with Bayesian inference in more flexible

models for count data. Two classes of models and algorithms are presented

and studied in this thesis. The first employs a generalisation of the Pois-

son distribution called the COM-Poisson distribution, which can represent

both overdispersed data and underdispersed data. We also propose a den-

sity regression technique for count data, which, albeit centered around the

Poisson distribution, can represent arbitrary discrete distributions. The key

contribution of this thesis are MCMC-based methods for posterior inference

in these models.

One key challenge in COM-Poisson-based models is the fact that the nor-

malisation constant of the COM-Poisson distribution is not known in closed

form. We propose two exact MCMC algorithms which address this problem.

One is based on the idea of retrospective sampling; we sample the uniform

random variable u used to decide on the acceptance (or rejection) of the

proposed new state of the unknown parameter first and then only evaluate

bounds for the acceptance probability, in the hope that we will not need to
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know the acceptance probability exactly in order to come to a decision on

whether to accept or reject the newly proposed value. This strategy is based

on an efficient scheme for computing lower and upper bounds for the nor-

malisation constant. This procedure can be applied to a number of discrete

distributions, including the COM-Poisson distribution. The other MCMC

algorithm proposed is based on an algorithm known as the exchange algo-

rithm. The latter requires sampling from the COM-Poisson distribution and

we will describe how this can be done efficiently using rejection sampling.

We will also present simulation studies which show the advantages of using

the COM-Poisson regression model compared to the alternative models com-

monly used in literature (Poisson and negative binomial). Three real world

applications are presented: the number of emergency hospital admissions in

Scotland in 2010, the number of papers published by Ph.D. students and

fertility data from the second German Socio-Economic Panel.

COM-Poisson distributions are also the cornerstone of the proposed density

regression technique based on Dirichlet process mixture models. Density

regression can be thought of as a competitor to quantile regression. Quan-

tile regression estimates the quantiles of the conditional distribution of the

response variable given the covariates. This is especially useful when the dis-

persion changes across the covariates. Instead of estimating the conditional

mean E(Y |X = x), quantile regression estimates the conditional quantile

function QY (p|X = x) across different quantiles p where p ∈ (0, 1). As

a result, quantile regression models both location and shape shifts of the

conditional distribution. This allows for a better understanding of how the

covariates affect the conditional distribution of the response variable. Almost
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all quantile regression techniques deal with a continuous response. Quantile

regression models for count data have so far received little attention. A tech-

nique that has been suggested is adding uniform random noise (“jittering”),

thus overcoming the problem that, for a discrete distribution, QY (p|X = x)

is not a continuous function of the parameters of interest. Even though this

enables us to estimate the conditional quantiles of the response variable, it

has disadvantages. For small values of the response variable Y , the added

noise can have a large influence on the estimated quantiles. In addition,

the problem of “crossing quantiles” still exists for the jittering method. We

eliminate all the aforementioned problems by estimating the density of the

data, rather than the quantiles. Simulation studies show that the proposed

approach performs better than the already established jittering method. To

illustrate the new method we analyse fertility data from the second German

Socio-Economic Panel.

Keywords: Quantile regression; Bayesian nonparametrics; Mixture models;

COM-Poisson distribution; COM-Poisson regression, Markov chain Monte

Carlo.
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Chapter 1

Introduction

1.1 Overview of methods

Quantile regression was first proposed by Koenker and Bassett (1978) as

a more robust method to outliers compared to the classic linear regression

(least squares regression). Since then it has been applied in areas such as

economics (e.g. effects of union membership on wages (Chamberlain, 1994),

hedge fund strategies (Meligkotsidou et al., 2009)), educational reform (e.g.

effects of reducing class size on students (Levin, 2001)) and public health

(e.g. pollution levels on upper quantiles (Lee and Neocleous, 2010)) among

many others. One reason for the popularity of quantile regression is that it

allows us to explore the entire conditional distribution, including the tails,

of the response variable given the covariates. Thus, we can focus on the

lower tail of the distribution if we are interested in poverty studies (which

concern the low-income population) and on the upper tail if we are interested

1



CHAPTER 1. INTRODUCTION 2

in tax-policy studies that usually concern the high-income population.

In addition, if the assumptions made in least-squares regression such as Gaus-

sianity or homoscedasticity do not hold, then, by just looking at the changes

to the mean, we may under/overestimate or even fail to see what is happening

to the conditional distribution of the response variable. Unlike least squares

regression, where all inferences depend on the estimated parameter β̂, quan-

tile regression allows us to be more precise since the estimated parameters β̂p

depend on the quantile p. Quantile regression can suffer from the problem

of “crossing quantile” curves, which is usually seen in sparse regions of the

covariate space. This happens due to the fact that the estimated conditional

quantile curve for a given X = x is not necessarily a monotonically increas-

ing function of p. This is a notable problem of quantile regression, for which

there exists no general solution. Koenker (1984) considers parallel quantile

planes in order to avoid the “crossing quantiles” problem. He (1997) and

Wu and Liu (2009) propose methods to estimate the quantile curves while

at the same time ensuring that they will be non-crossing. This problem also

affects nonlinear quantile curves where different methods for solving it have

been proposed. More information is given by Dette and Volgushev (2008);

Chernozhukov et al. (2009, 2010) and Bondell et al. (2010).

Most quantile regression techniques deal with a continuous response. The

problem with applying quantile regression to count data is that the distribu-

tion of the response variable is not continuous. As a result, the quantiles are

not continuous either, and they cannot be expressed as a continuous function

of the covariates. Machado and Santos Silva (2005) overcome this problem

by adding uniform random noise (“jittering”) to the counts. The general
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idea is to construct a continuous variable Z whose conditional quantiles have

a one-to-one relationship with the conditional quantiles of the counts Y and

use this for inference. After estimating the conditional quantiles of Z we

can now use the previous relationship to get the conditional quantiles of the

counts Y . This approach eliminates the problem of having a non-continuous

distribution for the response variable, but it has the drawback that for small

values of Y the estimated conditional quantiles QY (p|X = x) will not be

good estimates of the true conditional quantiles. This approach has been

applied in the analysis of traffic accidents in Qin and Reyes (2011) and Wu

et al. (2014), frequency of individual doctor visits in Winkelmann (2006) and

Moreira and Barros (2010), and fertility data in Miranda (2008) and Booth

and Kee (2009).

We overcome both aforementioned problems (“jittering” when Y takes small

values and the “crossing quantiles” problem) by estimating the conditional

density1 of the response variable and by obtaining the quantiles through

the density. The Bayesian density estimation methods that we will follow

throughout the thesis are based on Dirichlet process models, which are also

known as infinite mixture models. The idea behind mixture models is that the

observed data cannot be characterised by a single distribution but instead by

several; with the distribution used for a given observation chosen at random.

In a sense we treat a population as if it consists of several subpopulations. We

can apply these models to data where the observations come from different

groups and the group memberships are not known, but also to represent

1The word “density” will be used both for the probability mass function in the discrete

case and the probability density function in the continuous case.
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multimodal distributions. An infinite mixture model can be thought of as

a mixture model with a countably infinite number of components. It is

different to a finite mixture model because it does not use a fixed number of

components to model the data. The number of components can be inferred

from the data using the Bayesian posterior inference scheme. Neal (2000)

proposes different ways for sampling from the posterior of a Dirichlet process

model.

In order to be able to estimate any form of conditional density, we assume

that the conditional distribution of the counts Y can be expressed as a Dirich-

let process mixture of regression models where the mixing weights vary with

covariates. The weights are dependent on the distance between the values of

the covariates as proposed by Dunson et al. (2007) when considering Bayesian

methods for density regression. Density regression is similar to quantile re-

gression in that it allows flexible modelling of the response variable Y given

the covariates X = x. Features (mean, quantiles, spread) of the conditional

distribution of the response variable vary with X, so, depending on the pre-

dictor values, features of the conditional distribution can change in a different

way than the population mean. The difference between density regression

and quantile regression is that density regression models the probability den-

sity function rather than directly modelling the quantiles. Specifically, we

will assume that the conditional distribution of the counts can be expressed

as a Dirichlet process mixture of COM-Poisson regression models.

The Conway-Maxwell-Poisson (or COM-Poisson) distribution was first pro-

posed in Conway and Maxwell (1962) in the context of queuing systems with

state-dependent service rates and brought back to surface by Shmueli et al.
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(2005). Due to its extra parameter, compared to the Poisson distribution,

it is flexible enough to handle any kind of dispersion. The main reason why

the COM-Poisson is not used as much in practice is that its normalisation

constant is not available in closed form and approximations to it are ei-

ther computationally inefficient or not sufficiently exact. In the context of

COM-Poisson mixtures, we overcome this problem by resorting to an MCMC

strategy, known as the exchange algorithm (Murray et al., 2006). The key

idea of the exchange algorithm is to introduce auxiliary data, which allows

cancelling out the normalisation constants which are difficult to compute.

To recap, we will estimate the conditional density by bridging:

i) an MCMC algorithm for sampling from the posterior distribution of

a Dirichlet process model, with a non-conjugate prior, found in Neal

(2000).

ii) The MCMC algorithm in Dunson et al. (2007).

iii) A variation of the MCMC exchange algorithm of Murray et al. (2006).

Besides the above implementation of Bayesian density regression, we will also

focus on the COM-Poisson regression model. Shmueli et al. (2005) describe

methods for estimating the parameters of the COM-Poisson distribution and

show its flexibility in fitting count data compared to other distributions.

The advantage of this model is that it allows separation between a covari-

ate’s effect on the mean of the counts and on the variance of the counts.

The disadvantage is, as we have already mentioned, that the normalisation

constant has to be approximated. Minka et al. (2003) provide an asymp-
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totic approximation that is only reasonably accurate in some parts of the

parameter space.

We propose an exact MCMC algorithm that is based on the idea of retrospec-

tive sampling found in Papaspiliopoulos and Roberts (2008), and compute

lower and upper bounds for the acceptance probability of the Metropolis-

Hastings MCMC algorithm. The basic idea is that there is not always a need

to know the acceptance probability of the MCMC exactly. Often we can

make a decision (accept/reject) only based on lower and upper bounds for

the acceptance probability. We will also show how one can sample from the

COM-Poisson distribution and thus use the exchange algorithm for posterior

inference in COM-Poisson regression models.

In Chapter 5 we will demonstrate this method using data on emergency

hospital admissions in Scotland in 2010 where the main interest lies in the

estimation of the variability of admissions, as it is considered a proxy for

health inequalities. The COM-Poisson regression model is an ideal model for

this data set, since it allows modelling the mean and the variance explicitly.

As a result, we are able to identify areas with a high level of health inequal-

ities. Furthermore, the results show that in order for the MCMC to make

a decision between accepting or rejecting a move, the approximation of the

bounds of the acceptance probability does not, usually, need to be precise.
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1.2 Thesis organisation

Chapter 2 provides a literature review of distributions for count data, regres-

sion models for count data, quantile regression, mixture models, Dirichlet

processes, Bayesian inference and Bayesian density regression models, which

all form the background theory needed for the understanding of the thesis.

Chapter 3 introduces the proposed simulation techniques for intractable like-

lihoods, based on retrospective sampling and the exchange algorithm, and

presents the MCMC algorithms for each one.

Chapters 4 and 5 are each split into two sections; the first section is related to

the COM-Poisson regression model while the other is related to the Bayesian

density regression model. These refer to the regression models (Chapter 4),

and simulations and case studies (Chapter 5) for each model. The thesis is

structured in this way for two reasons: to show the similarities and differences

between the models, and to make it an easier read for people who are mainly

interested in a specific topic.

Conclusions and future work are included in Chapter 6.
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1.3 Contributions

The work presented in Chapter 3 (Section 3.2) and Chapter 5 (Section 5.2)

has been published in Stat with the title Retrospective MCMC sampling with

an application to COM-Poisson regression (Chanialidis et al., 2014) and was

presented at the 1st International Conference of Statistical Distributions and

Applications.

The work presented in Chapter 3 (Section 3.3) and Chapter 5 (Section 5.2)

has been submitted for publication with the title Efficient Bayesian inference

for COM-Poisson regression models.

The work presented in Chapter 4 has been published in the Proceedings of

the 21st International Conference on Computational Statistics with the title

Bayesian density regression for count data and was presented at the above

conference and the 2nd Bayesian Young Statisticians conference.

All the above contributions can be found on my website.2

2http://www.chanialidis.com

http://www.chanialidis.com


Chapter 2

Review of background theory

2.1 Distributions for count data

2.1.1 Poisson distribution

Count data are typically used to model the number of occurrences of an event

within a fixed period of time. Examples of count data may include

• the number of goals scored by a team.

• the number of telephone connections to a wrong number.

• the number of murders in a city.

The Poisson distribution is the most popular model used for modelling a

discrete random variable Y . It is used to describe “rare” events and it is

derived under three assumptions.

9
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1. The probability of one event happening in a short interval is propor-

tional to the length of the interval.

2. The number of events in non-overlapping intervals is independent, and

3. the probability of two events happening in a short interval is negligible

in comparison to the probability of a single event happening.

The probability mass function of the Poisson(µ) distribution is

P (Y = y|µ) = exp {−µ}µ
y

y!
y = 0, 1, 2, . . . (2.1)

The mean and variance of a Poisson(µ) are respectively

E[Y ] = µ,

V[Y ] = µ. (2.2)

The equations in (2.2) show that the Poisson distribution assumes that the

mean is equal to its variance; this is known as the equidispersion assumption.

This assumption also implies that the Poisson distribution does not allow for

the variance to be adjusted independently of the mean. In the presence

of underdispersed data (variance is less than the mean) or overdispersed

data (variance is greater than the mean) the Poisson distribution is not an

appropriate model and one has to use another parametric model, with an

additional parameter compared to the Poisson. For overdispersed data, one

of the distributions that may provide a better fit is the negative binomial

distribution.
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2.1.2 Negative binomial distribution

The probability mass function of the negative binomial(r, p) distribution is

P (Y = y|r, p) = py(1− p)r
(
y + r − 1

y

)
y = 0, 1, 2, . . . (2.3)

The mean and variance of a NB(r, p) are respectively

E[Y ] =
pr

(1− p)
,

V[Y ] =
pr

(1− p)2
. (2.4)

An alternative formulation of the negative binomial distribution is

P (Y = y|µ, k) =
Γ( 1

k
+ y)

Γ( 1
k
)y!

(
kµ

1 + kµ

)y (
1

1 + kµ

) 1
k

(2.5)

with mean and variance for the negative binomial(µ, k)

E[Y ] = µ,

V[Y ] = µ+ kµ2. (2.6)

The first parameter of this formulation is the mean of the distribution whereas

the second is referred to as the dispersion parameter. Large values of k are

a sign of overdispersion, while when k → 0 the variance of the distribution

(cf. (2.6)) is equal to the mean and we have the Poisson model as a special

case.

The negative binomial distribution can also be seen as a continuous mixture

of Poisson distributions in which the mixing distribution of the Poisson pa-

rameter µ follows a gamma distribution. In this way, we treat the Poisson

parameter µ as a random variable and we assign to it a gamma distribution.
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Later, in 2.1.4, we will see that there are a plethora of choices for the mixing

distribution.

Suppose that

y ∼ Poisson(µ),

µ ∼ gamma(a, b). (2.7)

Then

f(y) =

∫ ∞
0

f(y, µ) dµ

=

∫ ∞
0

f(y|µ)f(µ) dµ

=

∫ ∞
0

exp {−µ}µ
y

y!

ba

Γ(a)
µa−1 exp {−bµ} dµ

=
ba

Γ(a)

µy

y!

∫ ∞
0

µy+a−1 exp {−(b+ 1)µ} dµ

=

(
b

b+ 1

)a(
1

b+ 1

)y
Γ(y + a)

Γ(y + 1)Γ(a)
. (2.8)

which is the probability mass function of a negative binomial(r, p) with

p =
b

1 + b
, r = a. (2.9)

Equations (2.6) show that the negative binomial cannot model underdis-

persed data. Some well-known discrete distributions are summarised in Table

2.1.
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2.1.3 COM-Poisson distribution

The COM-Poisson distribution (Conway and Maxwell, 1962) is a two-parameter

generalisation of the Poisson distribution that allows for different levels of

dispersion. The probability mass function of the COM-Poisson(λ, ν) distri-

bution is

P (Y = y|λ, ν) =
λy

(y!)ν
1

Z(λ, ν)
y = 0, 1, 2, . . .

Z(λ, ν) =
∞∑
j=0

λj

(j!)ν
, (2.10)

for λ > 0 and ν ≥ 0.

The additional parameter ν, compared to the Poisson distribution, allows the

COM-Poisson distribution to model underdispersed (ν > 1) or overdispersed

(ν < 1) data. The Poisson distribution is a special case (ν = 1). The ratio

of two successive probabilities is

P (Y = y − 1)

P (Y = y)
=
yν

λ
. (2.11)

The range of possible values of ν covers all different kinds of dispersion levels.

Values of ν less than one correspond to flatter successive ratios compared to

the Poisson distribution. This means that the distribution has longer tails

(e.g. overdispersion). On the other hand, when ν is greater than one, we

have underdispersion.

The COM-Poisson distribution is a generalisation of other well known dis-

crete distributions:

• For ν = 0, λ < 1 the distribution is a geometric(1-λ).
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• For ν = 1 the distribution is a Poisson(λ).

• For ν →∞ it approaches a Bernoulli( λ
λ+1

) distribution.

For ν 6= 1 the normalisation constant Z(λ, ν) does not have a closed form

and has to be approximated.

Evaluating the normalisation constant Z(λ, ν)

Minka et al. (2003) give an upper bound for the normalisation constant and

an asymptotic approximation which is reasonably accurate for λ > 10ν . The

upper bound on Z(λ, ν) is estimated using the fact that the series λj

(j!)ν
con-

verges and lim
j→∞

λj

(j!)ν
= 0.

As a result there exists a value k such that, for j > k,

λ

jν
< 1. (2.12)

This ratio is monotonically decreasing, which means that for j > k, this

series converges faster than a geometric series with multiplier given by (2.12).

Minka et al. (2003) truncate the series at the kth term such that

Z(λ, ν) =
k∑
j=0

λj

(j!)ν
+Rk, (2.13)

where

Rk =
∞∑

j=k+1

λj

(j!)ν
(2.14)

is the absolute truncation error.

The absolute truncation error Rk is bounded by

λk+1

(k + 1)!ν(1− εk)
, (2.15)
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where εk is such that λ
(j+1)ν

< εk for all j > k. A computational improvement

that increases efficiency is to bound the relative truncation error given by

Rk

k∑
j=0

λj

(j!)ν

. (2.16)

For ν ≤ 1, truncation of the infinite sum is costly since there is a large

number of summations needed in order to achieve sensible accuracy. In that

case, Minka et al. (2003) use an asymptotic approximation for Z(λ, ν),

Z(λ, ν) =
exp {νλ 1

ν }
λ
ν−1
2ν (2π)

ν−1
2
√
ν

(1 +O(λ−
1
ν )). (2.17)

The formula in (2.17) has been derived for integer ν. The main message from

this formula is that the normalisation constant Z(λ, ν) grows rapidly as λ

increases or ν decreases.

Estimating the COM-Poisson parameters

Shmueli et al. (2005) describe three methods for estimating the parameters

of the COM-Poisson distribution and show its flexibility in fitting count data

compared to other distributions.

1. The first method is based on equation (2.11). Taking a log of both

sides of the equation

log

{
P (Y = y − 1)

P (Y = y)

}
= − log{λ}+ ν log{y}. (2.18)

The ratio on the left hand side can be estimated by replacing the prob-

abilities with the relative frequencies of y − 1 and y respectively. One
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can plot these values versus log {y} for all the ratios that do not in-

clude the zero counts. A COM-Poisson would be an adequate model if

the points fall on a straight line. If the data do appear to fit a COM-

Poisson model, the parameters can be estimated by fitting a regression

of log
{
P (Y=y−1)
P (Y=y)

}
on log {y}.

2. The second method is based on the maximum likelihood approach.

The likelihood for a set of n independent and identically distributed

observations y1, y2, . . . , yn is

L(y1, y2, . . . , yn|λ, ν) =

∏n
i=1 λ

yi∏n
i=1(yi!)ν

Z(λ, ν)−n

= λS1 exp {−νS2}Z(λ, ν)−n. (2.19)

where S1 =
∑n

i=1 yi and S2 =
∑n

i=1 log {yi!}.

Equation (2.19) shows that (S1, S2) are sufficient statistics for y1, y2, . . . , yn,

and that the COM-Poisson is a member of the exponential family since

it can be expressed in the form

L(y|θ) = γ(θ)φ(y) exp

{
k∑
j=1

πj(θ)tj(y)

}
(2.20)

where y = (y1, y2, . . . , yn)ᵀ and θ = (λ, ν).

For the COM-Poisson case

π1(θ) = log {λ}, π2(θ) = −ν,

t1(y) =
n∑
i=1

yi, t2(y) =
n∑
i=1

log {yi!}. (2.21)

3. The third method is based on Bayesian inference, see Section 2.5 for

more information on Bayesian inference. This approach takes advan-

tage of the exponential family structure of the COM-Poisson distribu-

tion to establish a conjugate family of priors. Kadane et al. (2006)
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show that the conjugate prior density of the COM-Poisson distribution

is of the form:

h(λ, ν) = λa−1 exp {−bν}Z−c(λ, ν) k(a, b, c) (2.22)

for λ > 0 and ν ≥ 0, where k(a, b, c) is the normalisation constant. The

posterior then is of the same form, with

a′ = a+ S1, b
′ = b+ S2, c

′ = c+ n. (2.23)

The conjugate prior can be thought of as an extended bivariate gamma

distribution. In order for equation (2.22) to constitute a density, it

must be non-negative and integrate to one. The values of a, b, c that

lead to a finite k(a, b, c)−1, which is given by

k(a, b, c)−1 =

∫ ∞
0

∫ ∞
0

λa−1 exp {−bν}Z−c(λ, ν) dλ dν, (2.24)

will lead to a proper density. A necessary and sufficient condition for

equation (2.22) to constitute a density is

b

c
> log

{
ba
c
c
}

+
(a
c
− ba

c
c
)

log
{a
c

+ 1
}

(2.25)

where bkc denotes the floor function which returns the highest integer

smaller than, or equal to, k. Estimating the double integral in (2.24)

is not straightforward since it includes an infinite sum. Kadane et al.

(2006) calculate the double integral by using a non-equally spaced grid

over the λ, ν space.
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Approximations for the mean and variance of the COM-Poisson

distribution

The COM-Poisson distribution belongs to the family of two-parameter power

series distributions (Johnson et al., 2005). Moments of this distribution can

then be obtained using the recursive formula:

E[Y r+1] =


λE[(Y + 1)1−ν ] r = 0

λ d
dλ
E[Y r] + E[Y ]E[Y r] r > 0

(2.26)

Using i) the asymptotic approximation for the normalisation constant, equa-

tion (2.17), ii) equation (2.26), iii) and the fact that V[Y ] = E[Y 2]− E[Y ]2,

Shmueli et al. (2005) show that the mean and variance can be approximated

by

E[Y ] ≈ λ
1
ν +

1

2ν
− 1

2
,

V[Y ] ≈ λ
1
ν

ν
. (2.27)

Reparameterising the COM-Poisson distribution

The previous parameterisation of the COM-Poisson distribution, see (2.10),

does not have a clear centering parameter, so we will use the reparameteri-

sation µ = λ
1
ν as proposed by Guikema and Coffelt (2008). The probability

mass function of the COM-Poisson(µ, ν) becomes

P (Y = y|µ, ν) =

(
µy

y!

)ν
1

Z(µ, ν)
y = 0, 1, 2, . . .

Z(µ, ν) =
∞∑
j=0

(
µj

j!

)ν
, (2.28)
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for µ > 0 and ν ≥ 0.

The mean and variance can be approximated by

E[Y ] ≈ µ+
1

2ν
− 1

2
,

V[Y ] ≈ µ

ν
. (2.29)

Thus, in the new parameterisation µ closely approximates the mean, un-

less both µ and ν are small. The mode of the distribution is bµc, as this

formulation is just a tempered Poisson distribution.

The fact that Z(µ, ν), and thus the probability mass function P (Y = y|µ, ν),

is very expensive to compute, has been a key limiting factor for the use of the

COM-Poisson distribution. In particular, in a Bayesian approach using the

Metropolis-Hastings algorithm, each move requires an evaluation of Z(µ, ν)

in order to compute the acceptance probability. In Chapter 3 we will present

two MCMC algorithms that do not need Z(µ, ν) to be computed exactly.

The first one (retrospective sampling algorithm) takes advantage of lower

and upper bounds of the normalisation constant Z(µ, ν) while the second

one (exchange algorithm) requires no computation of Z(µ, ν) at all.

2.1.4 Other distributions

Del Castillo and Pérez-Casany (1998) developed a family of distributions,

known as weighted Poisson distributions, that can handle both underdis-

persed and overdispersed data. A discrete random variable Y is defined to

have a weighted Poisson distribution if its probability mass function can be
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written as

P (Y = y|λ, r, a) = exp {−λ}λ
ywy
Wy!

y = 0, 1, 2, . . .

W = exp {−λ}
∞∑
j=0

λjwj
j!

(2.30)

where the weight function is defined as wy = (y+a)r with a ≥ 0, r ∈ R. The

Poisson distribution is a special case (r = 0). These distributions are used

for modelling data with partial recording: when the event Y = y occurs, a

Poisson variable is recorded with probability proportional to wy.

Ridout and Besbeas (2004) present a distribution for modelling underdis-

persed count data which is based on the weighted Poisson distribution. Its

difference lies in the weights wy = exp {r|y − λ|} which, in this case, are cen-

tered on the mean of the Poisson distribution. They refer to the distribution

as the three-parameter exponentially weighted Poisson distribution (EWP3).

Cameron and Johansson (1997) used the Poisson polynomial distribution to

model the number of takeover bids received by targeted firms. This distri-

bution is another weighted Poisson distribution with weight function of the

polynomial form

wy = (1 +
k∑
j=1

ajy
j)2, aj ∈ R. (2.31)

The COM-Poisson distribution can be seen as a weighted Poisson distribution

with weight function wy = (y!)1−ν (Rodrigues et al., 2009).

Another distribution that can handle under- and overdispersion is the gener-

alised Poisson distribution of Consul and Famoye (1992). A discrete random

variable Y is defined to have a generalised Poisson distribution if its proba-
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bility mass function can be written as

P (Y = y|λ, θ) =


exp {−λ− θy}λ(λ+θy)y−1

y!
y = 0, 1, 2, . . .

0 for y > m when θ < 0.

(2.32)

where λ > 0, max {−1,−λ
4
} ≤ θ ≤ 1 and m is the largest positive integer

for which λ+mθ > 0 when θ is negative. For θ = 0, the generalised Poisson

distribution reduces to the Poisson model, see (2.1). Positive (or negative)

values of θ correspond to overdispersion (or underdipersion). A weakness of

the generalised Poisson distribution is its inability to capture some levels of

underdispersion since for large (in absolute value) negative values of θ the

model in (2.32) is not a true probability distribution (unless truncated).

Rigby et al. (2008) present methods for modelling underdispersed and overdis-

persed data. The methods are classified into three main categories

1. Ad hoc methods.

2. Discretised continuous distributions.

3. Random effect at the observation level solutions.

The methods belonging in the first category do not assume an explicit dis-

tributional form for the discrete random variable. These methods require

assumptions on the first two moments of the response variable such as the

quasi-likelihood approach (Wedderburn, 1974). Alternative approaches in-

clude the pseudo-likelihood method (Carroll and Ruppert, 1982) and the

double exponential family (Efron, 1986).
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Discretised continuous distributions refer to methods which use continuous

distributions to create a discrete one. For example, let FW (w) be the cumu-

lative distribution function of a continuous random variable W defined in R+

then fY (y) = FW (y + 1)− Fw(y) is a discrete distribution defined on R+
y .

Including an extra random effect variable is another way to handle overdis-

persion. Given a random effect variable γ, the response variable Y has a dis-

crete probability function f(y|γ) whereas γ has probability (density) function

fγ(γ). The marginal probability function of Y is given by

fY (y) =

∫
f(y|γ)fγ(γ) dγ. (2.33)

The negative binomial distribution, see (2.8), is an example of this method

where the mixing distribution of the random effect follows a gamma distri-

bution. Table 2.2 shows some overdispersed count data distributions fY (y)

along with their mixing distributions fγ(γ), where f(y|γ) has a Poisson dis-

tribution. Among the overdispersed distributions seen in Table 2.2 are the

Sichel, the Delaporte and the Poisson shifted generalised inverse Gaussian

distribution.

The Sichel distribution is a three parameter distribution with probability

mass function

P (Y = y|µ, σ, ν) =
(µ
c
)yKy+ν(a)

y!(aσ)y+νKν

(
1
σ

) y = 0, 1, 2, . . .

c = Rν

(
1

σ

)
,

Rλ(t) =
Kλ+1(t)

Kλ(t)
,

Kλ(t) =
1

2

∫ ∞
0

xλ−1 exp {−1

2
t(x+

1

x
)} dx, (2.34)
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where Kλ(t) is the modified Bessel function of the third kind.

The mean and variance for the Sichel(µ, σ, ν) are given by

E[Y ] = µ,

V[Y ] = µ+ µ2

(
2σ(ν + 1)

c
+

1

c2
− 1

)
. (2.35)

The Delaporte distribution is another three parameter distribution with

probability mass function

P (Y = y|µ, σ, ν) =
exp {−µν}

Γ( 1
σ
)

(1 + µσ(1− ν))−
1
σ S y = 0, 1, 2, . . .

S =

y∑
j=0

(
y

j

)
µyνy−j

y!

(
µ+

1

σ(1− ν)

)−j
Γ

(
1

σ
+ j

)
(2.36)

where the gamma function Γ(x) is defined as

Γ(x) =

∫ ∞
0

xt−1 exp {−x} dx. (2.37)

The mean and variance for the Delaporte(µ, σ, ν) are given by

E[Y ] = µ,

V[Y ] = µ+ µ2σ(1− ν)2. (2.38)

More information on the Sichel, Delaporte, and other discrete univariate

distributions can be found on Johnson et al. (2005).

Finally, Rigby et al. (2008) introduce a new four parameter distribution,

the Poisson-shifted generalised inverse Gaussian distribution (PSGIG), which

includes the Sichel and Delaporte distributions as a special and a limiting
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case respectively. Its probability mass function is given by

P (Y = y|µ, σ, ν, τ) =
exp {−µτ}
Kν(1/σ)

T y = 0, 1, 2, . . .

T =

y∑
j=0

(
y

j

)
µyτ y−jKν+j(δ)

y!dj(δσ)ν+j
. (2.39)

The mean and variance for the PSGIG(µ, σ, ν, τ) are given by

E[Y ] = µ,

V[Y ] = µ+ µ2(1− τ)2

(
2σ(ν + 1)

c
+

1

c2
− 1

)
. (2.40)
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2.2 Regression models for count data

Linear model

In classic linear (least squares) regression the usual way of representing the

data yi, for i = 1, 2, . . . , n, as a function of the k covariates xi1, . . . , xik is:

yi = β0 + β1xi1 + . . .+ βkxik + εi i = 1, . . . , n. (2.41)

In matrix form,

y = Xβ + ε (2.42)

where

y =


y1

y2

...

yn


,X =


1 x11 . . . x1k

1 x21 . . . x2k

...
...

...
...

1 xn1 . . . xnk


,β =


β0

β1

...

βk


, ε =


ε1

ε2
...

εn


(2.43)

and βi are the unknown parameters that need to be estimated and ε is the

random part of the model. One of the assumptions of classic regression is the

independence of the errors with each other and with the covariates. In ad-

dition, the errors have zero mean and constant variance (homoscedasticity).

Applying the zero mean assumption of the errors in equation (2.41),

E(yi|xi) = β0 + β1xi1 + . . .+ βkxik (2.44)

where xi = (1, xi1, xi2, . . . , xik)
ᵀ. Least squares regression describes the be-

haviour of the location of the conditional distribution using the mean of the

distribution to represent its central tendency. The residuals ε̂i are defined as
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the differences between the observed and the estimated values. Minimising

the sum of the squared residuals
n∑
i=1

r(yi − xᵀ
i β̂) =

n∑
i=1

(yi − xᵀ
i β̂)2 (2.45)

where r(u) = u2 is the quadratic loss function, gives the least squares esti-

mator β̂ by

β̂ = (XᵀX)−1Xᵀy. (2.46)

The additional assumption that the errors ε follow a Gaussian distribution,

ε ∼ N(0, σ2In) (2.47)

where In is the n × n identity matrix, provides a framework for testing the

significance of the coefficients found in (2.46). Under this assumption the

least-squares estimator is also the maximum-likelihood estimator. Taking

expectations, with respect to ε, in equations (2.42) and (2.47) and by noting

that a linear function of a normally distributed random variable is normally

distributed itself we can rewrite the model in (2.42) as

y ∼ N(µ, σ2In), where µ = Xβ. (2.48)

The model in (2.48) models the relationship between the mean of yi, for

i = 1, 2, . . . , n, and the covariates linearly.

Generalised linear model

Equation (2.48) refers to data y that are normally distributed but can be gen-

eralised to any distribution belonging to the exponential family (Nelder and

Wedderburn, 1972). These models are known as generalised linear models

(GLM) and consist of three elements.
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1. A probability distribution that belongs to the exponential family of

distributions (“random component”).

2. A linear predictor ηi (“systematic component”) such that

ηi = β0 + β1xi1 + . . .+ βkxik = xᵀ
iβ. (2.49)

3. A link function1 g such that

E[Yi] = µi = g−1(ηi). (2.50)

A GLM can be used for data that are not normally distributed and for situ-

ations where the relationship between the mean of the response variable and

the covariates is not linear. The GLM includes many important distributions

such as the Gaussian, Poisson, gamma and inverse Gaussian distributions

(Dobson, 2001). The link and mean functions of some common distributions

can be seen in Table 2.3.

1It is called the link function because it “links” the linear predictor η to the mean of

the distribution µ.
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Generalised additive model

Generalised additive models (Hastie and Tibshirani, 1986) are an extension

to GLM’s. The relationship between the linear predictor ηi and the covariates

in a generalised additive model (GAM) is not restricted to be linear. For a

GAM model we have

ηi = β0 + β1f1(xi1) + . . .+ βkfk(xik), (2.51)

instead of equation (2.49) which applies for a GLM. The unknown functions

fi are not restricted to have a specific parametric form (e.g. polynomial) and

thus are flexible enough to explore any relationship between a covariate and

(the mean of) the response variable. Instead of estimating single parameters

(like the regression coefficients in a GLM), in generalised additive models, we

find a nonparametric function that relates the mean of the response variable

to the covariates. For a more detailed description of the generalised additive

model see Hastie and Tibshirani (1990); Wood (2006).

2.2.1 Poisson regression

The Poisson regression model, which is a special case of the GLM, is the most

common model used for count data. It has been used for modelling count

data in many fields such as insurance (e.g. number of insurance claims (Heller

et al., 2007)), public health (e.g. number of doctor visits (Winkelmann,

2004)), epidemiology (e.g. number of cancer incidences (Romundstad et al.,

2001)), psychology (e.g. number of cases of substance abuse (Gagnon et al.,

2008)), and many other research areas.
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This model can be specified as

P (Yi = yi|µi) = exp {−µi}
(
µyii
yi!

)
,

log {µi} = xᵀ
iβ, (2.52)

with mean and variance

E[Yi] = exp {xᵀ
iβ},

V[Yi] = exp {xᵀ
iβ}. (2.53)

Its assumption that the variance must be equal to the mean poses a problem

when the data exhibit a different behaviour. Most of the proposed approaches

to this problem focus on overdispersion (Del Castillo and Pérez-Casany, 1998;

Ismail and Jemain, 2007).

2.2.2 Negative binomial regression

One way to handle this situation is to fit a parametric model that is more

dispersed than the Poisson. A natural choice is the negative binomial. In

this model

P (Yi = yi|µi, k) =
Γ
(

1
k

+ yi
)

Γ
(

1
k

)
yi!

(
kµi

1 + kµi

)yi ( 1

1 + kµi

) 1
k

,

log {µi} = xᵀ
iβ, (2.54)

where the parameters µi and k represent the mean and the dispersion of the

negative binomial. For this model, the mean and variance are

E[Yi] = exp {xᵀ
iβ},

V[Yi] = exp {xᵀ
iβ}+ k exp {xᵀ

iβ}
2. (2.55)
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The variance of a negative binomial model is a quadratic function of its mean.

The negative binomial model approaches the Poisson(µi) model for k → 0.

For an extensive description on the negative binomial regression model see

Hilbe (2007).

2.2.3 COM-Poisson regression

Sellers and Shmueli (2010) propose a COM-Poisson regression model based

on the (λ, ν) formulation whereas Guikema and Coffelt (2008) propose a

COM-Poisson generalised linear model based on the (µ, ν) reformulation;

both formulations can be seen in Section 2.1.3. Modifying the latter model

we have

P (Yi = yi|µi, νi) =

(
µyii
yi!

)νi 1

Z(µi, νi)
,

Z(µi, νi) =
∞∑
j=0

(
µji
j!

)νi

,

log {µi} = xᵀ
iβ,

log {νi} = −xᵀ
i c. (2.56)

where Y is the dependent random variable being modelled, and β and c are

the regression coefficients for the centering link function and the shape link

function.

The mean and variance for the COM-Poisson model are approximated by
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E[Yi] ≈ exp {xᵀ
iβ},

V[Yi] ≈ exp {xᵀ
iβ + xᵀ

i c}. (2.57)

The flexibility of this model can be seen by looking at the right hand side

of (2.57). In this model larger values of β and c can be translated to higher

mean and higher variance, respectively, for the response variable. The above

approximations (especially the one for the mean) are really good when µ is

large and ν is small. A better approximation for the mean of the COM-

Poisson can be seen in page 20.

Sellers et al. (2012) present an overview of the different research areas in

which the COM-Poisson model has been used. These include biology (Ridout

and Besbeas, 2004), marketing (Kalyanam et al., 2007), and transportation

(Lord et al., 2008) amongst others. More information on the COM-Poisson

distribution and the COM-Poisson regression model is provided by Shmueli

et al. (2005); Kadane et al. (2006); Sellers and Shmueli (2013).

2.2.4 Other regression models

Rigby and Stasinopoulos (2001, 2005) introduced the generalised additive

models for location, scale, and shape (GAMLSS) as semi-parametric regres-

sion type models. They are parametric, in that they require a parametric

distribution assumption for the response variable, and semi in the sense that

the modelling of the parameters of the distribution, as functions of explana-

tory variables, may involve using nonparametric smoothing functions. They
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overcome some of the limitations of the generalised linear model (GLM) and

generalised additive model (GAM). In GAMLSS the exponential family dis-

tribution assumption for the response variable Y is relaxed and replaced by a

general distribution family, including highly skew and/or kurtotic continuous

and discrete distributions. The systematic part of the model, see (2.49), is

expanded to allow modelling not only of the mean (or location) but other

parameters of the distribution of Y as, linear and/or non-linear, paramet-

ric and/or smooth non-parametric functions of explanatory variables and/or

random effects.

A GAMLSS model assumes that, for i = 1, 2, . . . , n, independent and identi-

cally distributed observations yi have probability (density) function fY (yi|θi)

conditional on

θi = (θ1i, θ2i, θ3i, θ4i)

= (µi, σi, νi, τi) (2.58)

which is a vector of four distribution parameters, each of which can be a

function of the covariates. The first two population parameters µi and σi

are characterised as location and scale parameters, while the remaining pa-

rameter(s) are characterised as shape parameters, e.g. skewness and kurtosis
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parameters. Analogous to equation (2.49), a GAMLSS model is defined as

g1(µ) = η1 = X1β1 +

J1∑
j=1

Zj1γj1,

g2(σ) = η2 = X2β2 +

J2∑
j=1

Zj2γj2,

g3(ν) = η3 = X3β3 +

J3∑
j=3

Zj3γj3,

g4(τ ) = η4 = X4β4 +

J4∑
j=4

Zj4γj4, (2.59)

where µ,σ,ν, τ and ηk for k = 1, 2, 3, 4 are vectors of length n, βk =

(β1k, β2k, . . . , βJkk)
ᵀ is a parameter vector of length Jk, Xk is a fixed known

design matrix of order n×Jk, Zjk is a fixed known n× qjk design matrix and

γjk is a qjk dimensional random variable. The model in (2.59) allows the user

to model each distribution parameter as a linear function of the covariates

and/or as linear functions of the random effects. The GAMLSS models

presented in (2.59) is more general than the GLM, GAM, GLMM or GAMM

in that all parameters (not just the mean) are modelled in terms of both

fixed and random effects and that the distribution of the response variable

is not limited to the exponential family. The form of the distribution for

the response variable can be very general. More information on the available

distributions can be found in Stasinopoulos and Rigby (2007).

If we let Zjk = In and γjk = hjk = hjk(xjk) for k = 1, 2, 3, 4 then we have
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the semi-parametric additive formulation of GAMLSS

g1(µ) = η1 = X1β1 +

J1∑
j=1

hj1(xj1),

g2(σ) = η2 = X2β2 +

J2∑
j=1

hj2(xj2),

g3(ν) = η3 = X3β3 +

J3∑
j=3

hj3(xj3),

g4(τ ) = η4 = X4β4 +

J4∑
j=4

hj4(xj4). (2.60)

The Sichel, Delaporte, and Poisson shifted generalised inverse Gaussian dis-

tribution, in Subsection 2.1.4, are some examples of distributions that can

be fitted in the GAMLSSS model structure. For more information on the

available distributions for the GAMLSS model see Rigby and Stasinopoulos

(2005).

Finally, Sellers et al. (2012) present some distributions with the ability to

handle underdispersed and/or overdispersed data. They refer to the regres-

sion models from the distributions mentioned in Subsection 2.1.4. A good

source of reference for count data regression models is the book of Cameron

and Trivedi (2013).

2.3 Quantile regression

The quantile function Q(p) returns the value below which, random variables

of the distribution would fall with probability p. A definition that eliminates
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Distribution FY (y) QY (p)

Exponential (λ) 1− exp {−λx} − log {1−p}
λ

Pareto (α, β) 1− (α
y
)β α(1− p)−

1
β

Uniform (α, β) y−α
β−α p(β − α) + α

Logistic (µ, s) 1
1+exp {−(y−µ)/s} µ− s log

{
1−p
p

}

Table 2.4: Quantile functions of the exponential, Pareto, uniform and logistic

distributions.

the problem of having a non-continuous cumulative distribution function is

Q(p) = inf{x ∈ R : p ≤ F (x)}. (2.61)

It returns the value x such that

F (x) = P (X ≤ x) = p (2.62)

where F (x) is the cumulative distribution function (c.d.f.). Quantile regres-

sion was first proposed in Koenker and Bassett (1978) as a more robust

method to outliers compared to the classic linear regression (least squares

regression). It extends the concept of a quantile function to estimating the

conditional quantile distributions QY (p|X = x) and gives a more complete

picture of what the relation between the covariates and the response variable

is. In addition, it models location shifts and shape shifts of the conditional

distribution. In quantile regression, similar to (2.41) and (2.42),

yi = β0,p + β1,pxi1 + . . .+ βk,pxik + εi,p i = 1, . . . , n. (2.63)

and in matrix form

y = Xβp + εp (2.64)
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where

y =


y1

y2

...

yn


,X =


1 x11 . . . x1k

1 x21 . . . x2k

...
...

...
...

1 xn1 . . . xnk


,βp =


β0,p

β1,p

...

βk,p


, εp =


ε1,p

ε2,p
...

εn,p


(2.65)

Unlike least squares regression where all inferences depend on the estimated

parameter β̂, quantile regression allows us to be more precise since the es-

timated parameters β̂p are not constant across the conditional distribution

but depend on the quantile p.

Analogous to the equations of least squares regression,

E[εi|Xi = xi] = 0,

E[yi|Xi = xi] = xᵀ
iβ, (2.66)

in quantile regression

QY (εi,p|Xi = xi) = 0,

QY (p|Xi = xi) = xᵀ
iβp. (2.67)

Estimating the parameter β̂p requires minimising the sum of the absolute

residuals

β̂p = arg min
βp∈Rk

n∑
i=1

ρp(yi − xᵀ
iβp), (2.68)

where

ρp(u) =
(
pI[0,∞)(u) + (1− p)I(−∞,0)

)
|u|,

=
(
p− I(−∞,0)

)
u. (2.69)
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is the absolute loss functionThis function is also known as check function.

In general, a closed form solution does not exist since the check function is

not differentiable at the origin. Rewriting y as a function of only positive

elements

y = Xβp + εp

= X(β1,p − β2,p) + (ε1,p − ε2,p), (2.70)

where β1,p,β2,p, ε1,p, ε2,p ≥ 0 and setting

A = (X,−X, In,−In),

z = (βᵀ
1,p,β

ᵀ
2,p, ε

ᵀ
1,p, ε

ᵀ
2,p),

c = (0ᵀ,0ᵀ, p× lᵀ, (1− p)× lᵀ)ᵀ. (2.71)

where In is a n dimensional identity matrix, 0ᵀ is a k× 1 vector of zeros and

l is a n× 1 vector of ones reduces the previous problem to

min
z
cᵀz subject to: Az = Y (2.72)

which can be solved using linear programming techniques. If the design

matrixX is of full column rank there exists a solution for the above problem.

For more information see Buchinsky (1998); Schulze (2004).

An application of quantile regression can be seen in Koenker and Hallock

(2001) in which they present data for 235 European working-class households

and model the relationship between food expenditure and income. This rela-

tionship is known as an Engel curve. Engel curves are also used to describe

how the demanded quantity of a good or service changes as the consumer’s

income level changes, and they are used for tax policy and measuring inflation

among other things.
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Figure 2.1: Quantile regression lines for p ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}

are all in gray except the median that is in green. Mean regression

line is the dashed line in red. The right-hand panel shows an enlarged

version of the bottom-left part of the plot in the left panel.
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Figure 2.1 shows seven quantile regression lines for different values of p ∈

{0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}, where the median is indicated by the darker

solid line while the least squares estimate of the conditional mean function

is indicated by the dashed line. The last two are quite different due to the

non-robustness of least squares. There are two households with high income

and low food expenditure that drive the conditional mean downwards. As a

result, the mean regression line is a very poor estimate on the poorest house-

holds since the conditional mean is above almost all of them. The spacing of

the quantile regression lines reveals that the conditional distribution of food

expenditure is skewed to the left due to the narrower spacing of the upper

quantiles that indicates high density and a short upper tail.

Another application of quantile regression comes from a cross-sectional study

that measures growth and development of the Dutch population between the

ages of 0 and 21 years (Buuren and Fredriks, 2001). Focusing on the Body

Mass Index (BMI) of 7294 boys, Figure 2.2 shows that the tails and the

mean of the conditional distributions vary differently with age. The BMI is

defined as the individual’s body mass divided by the square of his height.

Its measure is kg/m2. A person is considered to be healthy weight when his

BMI is between 18.5 and 25. Conditional quantiles are important because

they provide the basis for developing growth charts and establishing health

standards. The rate of change with age, particularly for ages less than 10, is

different for each conditional quantile. For higher quantiles there is a drop in

BMI until the age of 5 and then it rises up to 25 (close to being overweight).

The BMI of underweight people seem to not increase as much as those with

healthy weight. A general review of quantile regression and its application
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areas can be found in Yu et al. (2003).

Quantile regression for count data

When being applied to discrete distributions, such as those arising from count

data, quantile regression methods need to be “tweaked” to deal with the fact

the quantiles are not continuous any more. Machado and Santos Silva (2005)

introduce a continuous auxiliary variable Z = Y + U where Y is the count

variable and U is a uniform random variable in the interval [0, 1). The density

of the new variable is

f(z) =


p0 if 0 ≤ z < 1,

p1 if 1 ≤ z < 2,

...
...

(2.73)

and the cumulative distribution function is

F (z) =


p0z if 0 ≤ z < 1,

p0 + p1(z − 1) if 1 ≤ z < 2,

...
...

(2.74)

where pi = P (Y = i).

As a result, the quantiles of Z are given by

QZ(p) =


p
p0

for p < p0,

1 + p−p0
p1

for p0 ≤ p < p0 + p1,

...
...

(2.75)

From (2.75) we can see that the lower bound of the quantiles of Z is p. The

conditional quantiles QZ(p|Xi = xi) are then specified as

QZ(p|Xi = xi) = p+ exp {xᵀ
iβp} (2.76)
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Figure 2.2: Quantile regression curves for p ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}

are all in gray except the median that is in green. Mean regression

curve is the dashed line in red.
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where p is added in order to reflect the lower bound (2.75). Afterwards, the

variable Z is transformed in such a way that the new quantile function is

linear in the parameters

QT (Z;p)(p|Xi = xi) = xᵀ
iβp (2.77)

where

T (Z; p) =

 log {Z − p} for Z > p,

log {ς} for Z ≤ p,
(2.78)

with ς being a small positive number. The parameters βp are estimated by

running a quantile regression of T (Z; p) on xi. This is allowed, since quantiles

are invariant to monotonic transformations and to censoring from below up

to the quantile of interest (see Powell, 1986, 1991; Neocleous and Portnoy,

2008). The conditional quantiles of interest, QY (p|Xi = xi) can be found

from the previous quantiles

QY (p|Xi = xi) = dQZ(p|Xi = xi)− 1e (2.79)

where dpe denotes the ceiling function which returns the smallest integer

greater than, or equal to, p. Finally the quantiles of Z are found through

QZ(p|Xi = xi) = T−1(QT (Z;p)(p|Xi = xi)). (2.80)

While the jittering approach eliminates the problem of a discrete response

distribution, for small values of the response variable Y , the mean and the

variance in the transformed variable Z will be mainly due to the added noise,

resulting in poor estimates of the conditional quantiles QY (p|Xi = xi). As

an example, when Y = 0 the term log {Z − p} = log {U − p} could go from

−∞ to 0, simply due to the added noise.
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2.4 Mixture models

2.4.1 Finite mixture model

Mixture models are widely used for density estimation and clustering. The

idea behind mixture models is that the observed data cannot be characterised

by a simple distribution but instead by several; for each observation one of

these distributions is selected at random. In a sense we treat a population as

if it is made from several subpopulations. We can apply these models to data

where the observations come from various groups and the group members are

not known, but also to provide approximations for multimodal distributions.

The general form of a finite mixture model with K groups is

f(y) =
K∑
j=1

pjf(y|θj) (2.81)

where pi are the weights and f(y|θi) are the probability distribution functions

for each group. This can also be viewed as

ci ∼ Mult(1,π),

Yi ∼ F (|θci).

where π = (p1, . . . , pK). Introducing prior distributions on π and θ1, . . . , θK ,

π ∼ Dir
( α
K
, . . . ,

α

K

)
,

ci ∼ Mult(1,π),

θ1, . . . , θK ∼ G0,

Yi ∼ F (|θci). (2.82)
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After drawing the weights for each of the K mixture components, each obser-

vation gets allocated to a mixture component. The latent variable ci indicates

the cluster to which the ith observation belongs. We then draw parameters

for each mixture component from a distribution G0 and think of the obser-

vations Yi as coming from a distribution with parameters according to the

cluster observation i belongs to.

α

π

ci θk

G0

Yi

N

K

Figure 2.3: Graphical representation of the finite mixture model.

Alternative method

The standard frequentist method used to fit finite mixture models is the

expectation-maximisation (EM) algorithm (Dempster et al., 1977) which con-

verges to a zero-gradient point of the likelihood of the mixture parameters.

The EM algorithm interprets the data Y as incomplete and assumes that

there is a missing auxiliary variable, the group assignments. The complete

likelihood function has a less complicated form and can be easily maximised.
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The algorithm is an iterative procedure which alternates between two steps:

the expectation step in which it computes the conditional expectation of the

complete log-likelihood given the data Y and the current estimate of the pa-

rameters θ̂, and the maximisation step in which it computes the estimates

that maximise the expected log-likelihood found in the previous expectation

step. The key property of the algorithm is that the incomplete log-likelihood

increases after each iteration. There are drawbacks connected with the EM

algorithm. These refer to slow convergence, choice of initial values in order

to reach the global maximum in fewer iterations, and the choice of a suitable

stopping rule which detects that the algorithm has reached its global maxi-

mum. For more information on how to deal with these problems of the EM

see Pilla and Lindsay (2001); Biernacki et al. (2003); Karlis and Xekalaki

(2003)

Titterington et al. (1985); Lindsay (1995); McLachlan and Peel (2004); Frühwirth-

Schnatter (2006) provide comprehensive information on the history, applica-

tions, and theory of mixture models.

Parametric models that use a fixed number of mixture components can suf-

fer, depending on the number of mixture components used, from under- or

overfitting of data. As a result, model selection becomes both important and

difficult. The nonparametric approach is to use a model with unbounded

complexity. This can be seen as letting K → ∞ in equation (2.82). If the

parameters θk and mixture proportions π are integrated out, the only vari-

ables left are the latent variables ci that do not grow with K. It can be shown

that the number of components used to model n datapoints is approximately

(O(a log(n)). At most, n components will be associated with the data (“ac-
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tive” clusters)2 so the model stays well defined even whenK →∞. Using this

model eliminates the need to estimate the number of mixture components

and is a very popular method especially when the number of components

grows without bound as the amount of data grows.

2.4.2 Dirichlet distribution

The Dirichlet distribution is a multivariate generalisation of the beta distri-

bution and is used as a prior over probability distributions over finite space.

The probability density function of the Dirichlet distribution is

f(π1, . . . , πk−1, a1, . . . , ak) =
1

B(a)

k∏
i=1

πai−1
i π1, . . . , πk > 0 (2.83)

where

k∑
i=1

πi = 1,

B(a) =
k∏
i=1

Γ(ai)

Γ(
∑k

i=1 ai)
,

a = (a1, . . . , ak), ai > 0. (2.84)

Analogous to the beta distribution being the conjugate prior for the bino-

mial distribution, the Dirichlet distribution is the conjugate prior for the

multinomial distribution.

2Imagine having n = 1000 number of observations. In this case, the number of clusters

ci could go up to 1000.
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2.4.3 Dirichlet process

A Dirichlet process (Ferguson, 1973; Antoniak, 1974) can be seen as a infinite

dimensional Dirichlet distribution. In the same way as the Gaussian process

is a distribution over functions the Dirichlet process (DP) is a distribution

over distributions meaning that every draw from a Dirichlet process is a

distribution. One of the reasons why Gaussian processes are so popular in

regression and classification is because they do not restrict the data to a

specific model. In a similar way, using Dirichlet processes bypasses the need

to estimate the “correct” number of components in a mixture model.

A Dirichlet process is a common choice for a prior of an unknown distribu-

tion over infinite space. Instead of choosing a prior with a specific parametric

form, we incorporate the “uncertainty” about the prior distribution by sam-

pling from a class of distributions. Thus, by relaxing the parametric assump-

tions of the prior, we overcome the restrictions that those assumptions have

on the observed data. These draws are discrete probability distributions over

infinite sample space that can be written as an infinite sum of atoms.

The original definition of Ferguson (1973) defines the Dirichlet process using

partitions of the sample space Ω. If the distribution of G is a draw from the

Dirichlet process then for any partition of Ω of the form (B1, B2, . . . , Bk) the

vector of associated probabilities has a Dirichlet distribution, i.e.

(G(B1), . . . , G(Bk)) ∼ Dirichlet(αG0(B1), . . . , αG0(Bk)) (2.85)

where α can be thought of as the precision or concentration parameter and
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G0 the mean of the Dirichlet process (known as the base measure), since

E[G(B)] = G0(B), V[G(B)] =
G0(B)(1−G0(B))

1 + α
. (2.86)

An interesting feature of the Dirichlet process is that even if the base mea-

sure G0 is continuous, G is almost surely discrete. Thus if we draw a sample

θ1, . . . , θn from G the sample might exhibit ties, i.e. there is non-zero proba-

bility that the same value is drawn more than once. If G is continuous the

marginal distribution of the θi is continuous, but their joint distribution is

not. If we let α → 0 then θ1, . . . , θn are identical with probability one (one

cluster). If we let α→ +∞ then the θi are i.i.d. draws from G0 (n clusters).

Because of the discrete “spiky” nature of the joint distribution one typically

does not use a Dirichlet process to model the response variable of interest it-

self, but to model the parameters of the distribution of the response variable.

This can been viewed as employing a kernel to “smooth” the spiky density.

This will be discussed in more detail in Section 2.4.4.

We can view the Dirichlet process as a limiting case of the finite mixture

model (2.82). If α1 = . . . = αK (equation (2.84)) and K → +∞ and α1 → 0

such that α1K → α > 0 then the joint distribution of the θc1 , . . . , θcn tends

to the same distribution as obtained from the Dirichlet process.

“Stick-breaking” process

A way of visualising the previous statement, is with the “stick-breaking”

process (Sethuraman, 1991). Thinking of a draw G from a Dirichlet Process
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as an infinite sum of point masses

G =
∞∑
k=1

πkδθk , (2.87)

where δθk is the Dirac delta function taking the value ∞ at θk and 0 every-

where else. Each θk is a draw from the base distribution G0 and βk follows a

beta distribution

θk ∼ G0, βk ∼ beta(1, α), (2.88)

and the mixing proportions of each component are found using

πk = βk

k−1∏
i=1

(1− βi). (2.89)

The reason why it is called “stick-breaking” is because it is like having a stick

of length 1, breaking it at β1, and then assigning π1 to be the length of stick

we just broke off. Now recursively break the other portion to obtain π2, π3

and so forth. Figure 2.4 shows a random draw for the probability weights (of

each possible cluster) for different values of α for 100 observations. It can be

seen that as α increases, the number of mixture components with non-zero

weights tends to be higher.

2.4.4 Dirichlet process mixture model

We can think of a Dirichlet process mixture model as

G ∼ DP(α,G0),

θi|G ∼ G,

Yi|θ ∼ F (|θi), (2.90)
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Figure 2.4: One random draw for the probability weights for 100 observations

for α = 1, 5, 10.
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α G0

G

θi

Yi

N

Figure 2.5: Graphical representation of the Dirichlet process mixture model.

where G0 could be a Gaussian distribution and G an infinite pair of θk’s

that each one consists of a mean and a standard deviation. Ferguson (1983)

points out that these models can be seen as countably infinite mixtures since

realisations of the Dirichlet process are discrete with probability one. For a

large enough sequence of draws from G the value of any draw will be repeated

by another one. This is equivalent to saying that when we keep drawing the

same parameters, the observations that have those parameters belong to the

same cluster. In other words, the discreteness of the Dirichlet process gives

the Dirichlet process mixture model its clustering property. If θ∗1, . . . , θ
∗
m are

the unique values among all the θi and nk are the number of repeats of θ∗k

parameters the predictive distribution can be written as

θn+1|θ1, . . . , θn ∼
1

α + n
[αG0 +

m∑
k=1

nkδθ∗k ]. (2.91)

The probability of observing a repeated value is proportional to the number
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of times it is observed. Clusters with many observations will tend to get

bigger. Equation (2.91) relies on the exchangeability of the observations.3

Equation (2.91) is an important property, it is the basis of Gibbs sampling

algorithms for Dirichlet process mixture models and gives these a intuitive

interpretation, discussed in the next section.

Chinese restaurant process

The predictive distribution given in equation (2.91) leads to the popular

interpretation of the Dirichlet process as a basic form of the Chinese restau-

rant process (CRP). The basic CRP is a process in which n customers sit

down in a Chinese restaurant with an infinite number of tables (with infinite

capacity). Then

• the first customer sits at the first table.

• The mth customer has two options. He either sits at a table already

occupied with probability proportional to the people sitting there or he

sits at a new table with probability proportional to α.

The above procedure defines an exchangeable distribution over the partition

of the customers but also over the permutations of the customers. As more

customers come in, more tables become occupied but as expected from the

definition of the CRP, large enough tables tend to grow larger faster4. Think-

ing of the customers as the data and the tables as the clusters we can associate

3 Observations are called exchangeable when the joint probability distribution is in-

variant under any permutation.
4Also known as the “rich get richer” phenomenon.
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the Chinese restaurant process to the Dirichlet process mixture models. The

CRP view also is the basis for generalisations of Dirichlet process mixture

models.

Escobar (1994) used a Dirichlet process prior to provide a nonparametric

Bayesian estimate of a vector of Gaussian means. This method is based on

Gibbs sampling and can be easily implemented for models based on con-

jugate prior distributions. For non-conjugate priors, straightforward Gibbs

sampling requires the estimation of a (usually) difficult numerical integration.

West (1994) used a Monte Carlo approximation to this integral. MacEachern

and Müller (1998) proposed an exact approach for handling non-conjugate

priors which uses a mapping from a set of auxiliary parameters to the set of

parameters in use. Walker and Damien (1998) applied a different auxiliary

variable method which still requires the computation of an integral. Neal

(2000) reviews all the above methods and proposes a new auxiliary variable

method that improves on the previous ones by Walker and Damien (1998)

and MacEachern and Müller (1998).

Two short introductions to the Dirichlet process and the Dirichlet process

mixture model can be found in Orbanz and Teh (2010); Teh (2010). For more

information refer to MacEachern (1994); Escobar and West (1994); Frigyik

et al. (2010); Jara et al. (2011).

2.4.5 Flexibility of the COM-Poisson mixture model

As we have already mentioned we will use a mixture of COM-Poisson distri-

butions to approximate the unknown probability density. This allows us to
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estimate any probability density no matter its complexity.

Approximating underdispersed distributions

An advantage of the COM-Poisson regression model is in the way it captures

underdispersion. We illustrate this advantage by trying to approximate a

binomial distribution with large mean and small variance. Assume that

the number of trials of the binomial distribution is large (n = 60) and the

probability of success is high (p = 0.99). In this case the mean and variance

of the distribution we are trying to approximate are

E[Y ] = 59.4,

V[Y ] = 0.594. (2.92)

We will approximate this distribution with a Poisson, a COM-Poisson and

a mixture of COM-Poisson distributions. In both cases, the COM-Poisson

and Poisson approximations that minimise the Kullback-Leibler divergence

are plotted. Figure 2.6 shows the “best” approximations for the binomial

distribution (plotted in black). By “best” approximations we mean the ones

that minimise the Kullback-Leibler (KL) divergence which is defined as

KL(P,Q) =
∑
i

log

{
P (i)

Q(i)

}
P (i). (2.93)

where P is the true distribution and Q is an approximation of P .
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Approximating overdispersed dstributions

In the case of approximating overdispersed distributions, such as the geo-

metric, Figure 2.7 shows that the COM-Poisson distribution (plotted in red)

does well enough by itself and there is no need for using more than one as an

approximation of a geometric (plotted in black). On the other hand, for small

values of the probability parameter p of the geometric, a single Poisson dis-

tribution (plotted in green) cannot approximate accurately the geometric. In

that case one needs a mixture of Poisson or negative binomial distributions.
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Figure 2.6: Approximating a binomial with large mean and small variance with

a Poisson (green line), a COM-Poisson (red line) and a mixture of

COM-Poisson distributions (blue line).
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Figure 2.7: Approximating a geometric distribution (in black) with a Poisson (in

green), and a COM-Poisson distribution (in red).
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2.5 Bayesian inference

Bayesian and frequentist approaches to inference work within the same over-

all framework: there is a population parameter θ which we want to make

inferences about, and a likelihood distribution p(y|θ) which determines the

likelihood of observing the data y, under different parameter values θ. The

crucial difference is that in the Bayesian approach θ is treated as a random

variable. Thus, we can specify a probability distribution p(θ) for the pa-

rameter θ. This distribution, known as the prior distribution, represents our

beliefs about the distribution of θ prior to observing any data.

Bayesian inference can be thought of as the mechanism for drawing inference

from the combined knowledge of our prior beliefs (represented in the prior

distribution) and the data (represented in the likelihood). This knowledge

is expressed in the posterior distribution π(θ|y); which can be thought of as

representing our beliefs about the distribution of θ after we have observed

the data. Expressing Bayes’ theorem in terms of random variables we get

p(θ|y) =
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

,

=
p(y|θ)p(θ)
p(y)

,

∝ p(y|θ)p(θ). (2.94)

The denominator in the second line in (2.94) is a normalisation constant

which is independent of the parameter θ. This constant, also known as the

evidence, can be difficult to compute especially when θ is multivariate. There

are situations though in which p(y) can be computed easily. One of them is

when the posterior distribution belongs to the same family of distributions
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as the prior distribution. This can be checked using the final line in (2.94)

and is known as conjugacy whereas the prior is called conjugate prior.

We will introduce the basics behind Bayesian inference but more information

can be found in Gelman et al. (2004); Robert and Casella (2009). Another,

more introductory, good source of reference is Rogers and Girolami (2011).

Prior distribution

We have already mentioned that any inference on θ depends on the prior

distribution and the data. Different prior distributions will lead to different

inferences for the unknown parameter θ. This can also be seen in the final

line of (2.94). The prior distribution is chosen to represent our beliefs (or

ignorance) about θ and therefore it can be chosen to be informative or vague.

Informative prior distributions express both our knowledge and our uncer-

tainty about θ whereas vague priors are selected such that they have little

effect on the posterior distribution. This means that inferences on θ will not

be affected by our beliefs but only from the data (through the likelihood).

Posterior inference

Bayesian inference, like frequentist inference, uses point estimates and/or

interval estimates, known as credible intervals. Usually, the posterior mean

or median are used to describe the location of the posterior distribution

while the posterior variance (or standard deviation) can be used to describe

the scale of the posterior distribution. A credible interval is the Bayesian
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analogue of the confidence interval, although the two have different inter-

pretations. A 95% credible interval of [0.03, 0.06] has the straightforward

interpretation that there is a 95% probability that θ lies between 0.03 and

0.06.

2.5.1 Stochastic simulation

In simple models, the posterior p(θ|y) from (2.94) can be obtained in closed

form. If this is not the case one has to resort to other strategies, such as

stochastic simulation. Monte Carlo methods are techniques that use simula-

tion to obtain summary statistics (mean, variance, quantiles) of the posterior

distribution. There are ways that one can generate independent identically

distributed samples from standard distributions but for higher dimensions

this is not trivial. Markov chain Monte Carlo methods are methods for

drawing samples from the posterior distribution no matter its complexity.

These draws will however not be independent, but form a Markov chain. A

Markov chain is a sequence of random variables (θn)∞n=0 in which the future

is independent of the past, given the present. This can be seen as:

π(θn+1|θ0, θ1, . . . , θn) = π(θn+1|θn). (2.95)

For the MCMC methods to work, we have to use a Markov chain that has

as a stationary distribution the posterior distribution π(θ) = p(θ|y). The

main idea behind these methods is that after a period of time (more on

that in Subsection 2.5.2), they will consist of a sample from the posterior

distribution.
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Metropolis-Hastings algorithm

In the Metropolis-Hastings algorithm of Hastings (1970), a Markov chain is

constructed in which, when the current state is θ, a candidate state θ∗ is

drawn from a proposal distribution h(θ∗|θ) and then accepted with probabil-

ity p where

p = min
{

1,
π(θ∗)h(θ|θ∗)
π(θ)h(θ∗|θ)

}
, (2.96)

where π(θ∗) is the target distribution at θ∗. If θ∗ is rejected, the chain remains

at the current state θ. In order to accept the candidate θ∗ with probability p,

the acceptance probability p is compared to a random variable u ∼ Unif(0, 1)

and θ∗ is accepted if u < p.

The Metropolis-Hastings algorithm is a generalisation of other well known

MCMC algorithms:

• The Metropolis algorithm of Metropolis et al. (1953), in which the

proposal distribution is symmetric e.g. h(θ∗|θ) = h(θ|θ∗).

• The independent Metropolis, in which the proposal distribution is in-

dependent of the current state e.g. h(θ∗|θ) = h(θ∗).

• Gibbs sampling, in which the proposal distribution is a conditional

distribution of the target distribution e.g. h(θ∗|θ) = π(θ∗). In the case

of the Gibbs sampler π(θ∗) is the full conditional distribution given the

other parameters. The Gibbs sampler can be seen as a special case of

the Metropolis-Hastings algorithm where each move is always accepted

with probability one.
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A more thorough explanation of the Metropolis-Hastings algorithm and the

developments after its emergence, can be found in Chib and Greenberg

(1995); Casella and Robert (2011).

2.5.2 MCMC diagnostics

A crucial part of every MCMC algorithm is checking whether (and when) it

shows evidence of convergence. We have mentioned that the algorithm must

be run long enough to draw samples from the posterior distribution, but how

long is that specifically?

A first step would be to examine the trace plots and posterior densities of

every parameter. Usually this is done by running multiple MCMC chains,

with different starting values. For the MCMC algorithms to show signs of

convergence they must gravitate towards the same range of values for each

parameter. The point at which this happens gives an idea of the period that

we can discard, known as burn-in period.

Gelman et al. (2004) propose running multiple chains and provide a statistic,

R̂, that checks for signs of convergence. This diagnostic uses an analysis of

variance to assess convergence. Specifically, it calculates the between-chain

variance (B) and within-chain variance (W ), and assesses whether they are

different enough. Assuming one is running m chains, each of length n,

B =
n

m− 1

m∑
j=1

(θ.j − θ..)2, W =
1

m

m∑
j=1

(
1

n− 1

n∑
i=1

(θij − θ.j)2

)
(2.97)
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where

θ.j =
1

n

n∑
i=1

θij, θ.. =
1

m

m∑
j=1

θ.j (2.98)

An estimate of the marginal posterior of θ can be calculated as

V̂[θ|y] =
n− 1

n
W +

1

n
B. (2.99)

R̂ is defined as

R̂ =

√
V̂(θ|y)

W
(2.100)

and provides an estimate of the potential reduction in the scale of θ as the

number of simulations tends to infinity. A value of R̂ close to 1 suggests that

the chains have converged to the target distribution; Gelman et al. (2004)

recommend to run the chains until the value of R̂ for each parameter is below

1.1.

Due to the nature of a Markov chain, the posterior sample given from an

MCMC chain is correlated. Less autocorrelation in the parameter of the

posterior sample indicates better mixing of the chain and faster convergence.

This can be checked using autocorrelation plots. High autocorrelation can

be dealt with by adjusting the variance of the proposal distribution, jointly

updating the parameters that are highly correlated, keeping only every jth

iterate from the sample (known as thinning), and/or choosing a different

density for the candidate states.
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2.6 Bayesian density regression for continu-

ous data

Density regression allows flexible modelling of the response variable Y given

the covariates xi = (1, xi1, xi2, . . . , xik)
ᵀ. Features (mean, quantiles, spread)

of the conditional distribution of the response variable given the covariates,

vary with xi. So, depending on the predictor values, features of the condi-

tional distribution can change in a different way than the population mean.

2.6.1 Dunson et al. model

Dunson et al. (2007) propose Bayesian methods for density regression allow-

ing the probability distribution of the response variable to change flexibly

with predictors. The conditional distribution of the response variable is ex-

pressed as a mixture of regression models where the mixing weights vary

with predictors. They propose as a prior for the uncountable collection of

the mixture distributions a weighted mixture of Dirichlet process priors. The

weights are dependent on the distance between predictors’ values. Predictors

that are “close” to each other tend to have higher weight. This procedure

results in a generalisation of the Pólya urn scheme that does not rely on the

exchangeability of the subjects.

A large number of mixtures of normal densities can be used to approximate

any smooth density accurately and based on that, Dunson et al. (2007) focus
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on the following mixture of regression models:

f(yi|xi) =

∫
f(yi|xi,φi)Gxi(dφi), (2.101)

where

f(yi|xi,φi) = N(yi;x
ᵀ
i bi, σ

2
i ), (2.102)

with φi = (bᵀi , σ
2
i )

ᵀ and Gxian unknown mixture distribution that changes

according to the location of xi.

Assuming Gx ≡ G (mixing distribution does not depend on x) where G ∼

DP(a,G0); we end up with a DP mixture of normal linear regression models.

This is equivalent to

f(yi|xi) =
∞∑
h=1

πhN(yi;x
ᵀ
i bh, σ

2
i ), (2.103)

with π = (πh)
∞
h=1 an infinite sequence of weights that sum to one and

φh = (bᵀh, σ
2
h)

ᵀ, atoms sampled independently from the base distribution G0.

Conditioning on the allocation variable Z = (Z1, Z2, . . . , Zn)ᵀ, where Zi = h

means that the ith observation belongs to the hth mixture component, the

mean of this model is:

E[Yi|xi] =
∞∑
h=1

P(Zi = h)E[Yi|xi, Zi = h],

=
∞∑
h=1

πhx
ᵀ
i bh,

= xᵀ
i

∞∑
h=1

πhbh,

= xᵀ
i bh. (2.104)

where bh =
∑∞

h=1 πhbh. Since πh does not depend on xi the dispersion stays

the same across the conditional mean. In other words the model effectively
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allows the distribution of the residuals to be non-Gaussian, but this distribu-

tion is the same across the entire covariate space. The reason for this is that

despite incorporating an infinite number of normal linear regression models,

the model assumes that the weights are constant. It does not take into ac-

count the values of the predictor xi. This goes against our expectation of

“similar” predictor values leading to “similar” distribution for the response

variable. For a graphical explanation, see Figure (2.8), where we assume

that the regression model has two covariates (xi = (xi1, xi2)ᵀ) and given a

new predictor value x7 our goal is to estimate f(y7|x7). The predictors are

clustered into three different groups (different colour in each group). Each

group has its own parameters θ∗k for k = 1, 2, 3. Taking two possible values

for the new predictor x7 (with the + sign), it seems logical for the one on the

bottom left to belong to the “red” cluster and the one on the top left to a

new cluster. Assuming Gx ≡ G with G ∼ DP(a,G0) clusters the predictors

by just considering the number of predictors belonging to the same cluster.

The parameter φ7 = (bᵀ7, σ
2
7)ᵀ for the new predictor is going to be one of the

already existing parameters (of the three clusters) or a new value from G0.

Thus, the probability of x7 belonging to the “blue” cluster would be higher

than to each of the other two clusters.
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Figure 2.8: The predictors are clustered into three different groups with a dif-

ferent colour for each group. Two possible values of a new predictor

are shown with a + sign. Having a Dirichlet process as a mixing dis-

tribution will give high probability to the new predictor belonging to

the “blue” cluster (due to the “rich get “richer” phenomenon) even

though this does not seem realistic.

2.6.2 Weighted mixtures of Dirichlet process priors

Overcoming the previous restriction is done by proposing a prior Gx as

a weighted mixture of Dirichlet process priors. After placing a Dirichlet

process-distributed probability measure at each of the sample predictors’

values

G∗xi ∼ DP(a,G0) for i = 1, . . . , n (2.105)

then mixing across these measures

Gx =
n∑
i=1

bi(x)G∗xi (2.106)
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constructs an uncountable collection of probability measures for all possible

values x = (1, x1, . . . , xk)
ᵀ, where b(x) = (b1(x), . . . , bn(x))′ is a weight

function such that bi(x) ≥ 0, i = 1, . . . , n, and b(x)′1n = 1, with 1n the n×1

vector of 1s. The proposed weight function has the form:

b(x) = γiK(x,xi)/
n∑
l=1

γlK(x,xl) i = 1, . . . , n, (2.107)

where γ = (γ1, . . . , γn)ᵀ represent location weights and K is a kernel function,

such as

K(x,x′) = exp{−ψ‖x− x′‖2}. (2.108)

The above formulation ensures that distributions close to x are assigned high

weight in the prior for Gx, especially if these locations have high γ values.

2.6.3 Importance of location weights

Allowing the weights for some or most of the locations to be close to zero is

equivalent to γi/
∑

l γl → 1, which results in the ith component of the weight

function being one and all the others are zero. This means that no matter

how “close” or “far” the predictor values of a new observation are from xi

we will still have the same mixing measure G∗xi ≡ G. This gives us the

aforementioned DP mixture model. On the other hand, assigning uniform

weights to each location is not a good choice since the number of subjects at

any location will tend to be small. Thus, the weights γi are an important part

of this formulation since the allocation of subjects to different basis locations

allows the mixture distribution to change with predictors. A logical choice

for γi would favour a few dominant locations, the number of which would
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increase with sample size. This is accomplished by proposing the prior

γi ∼ gamma(k, n× k) k ∼ log-N(µk, σ
2
k), (2.109)

with µk and σ2
k placing high probability on small, but not minute, values.

2.6.4 Generalised Pólya urn scheme

Marginalising across Gx, the weighted mixture of DP priors, results in a gen-

eralisation of the Pólya urn scheme, which incorporates weights that depend

on the distance between subjects’ predictor values. Dunson et al. (2007) fi-

nally show that for any n×n matrixB, with elements (bij)
n
i,j=1 satisfying 0 ≤

bij ≤ 1 and bᵀi 1n = 1, there is a unique n×(n−1) matrixW = (w1, . . . ,wn)ᵀ

having row vectors wi = (wi,1, . . . , wi,i−1, wi,i+1, . . . , wi,n)ᵀ, with 0 ≤ wij ≤ 1

such that the conditional distribution of φi is equivalent to:

(φi|φ(i),X, a,B) =
a

a+ wi
G0 +

∑
j 6=i

wij
a+ wi

δφj . (2.110)

Letting pi0 = p0(xi) denote the n× 1 vector of probabilities corresponding

to P (Mi+ = m|xi), for m = 0, . . . , n− 1 with Mi+ =
∑

j 6=iMij, pij = pj(xi)

denote the (n − 1) × 1 vector of probabilities corresponding to P (Mij =

1,Mi+ = m|xi), for m = 1, . . . , n− 1 and

Γ0 =
(

1,
a

a+ 1
,

a

a+ 2
, . . . ,

a

a+ n− 1

)ᵀ
,

Γ1 =
( 1

a+ 1
,

1

a+ 2
, . . . ,

1

a+ n− 1

)ᵀ
(2.111)

we have that

wij =
apᵀijΓ1

pᵀi0Γ0

(2.112)
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is a set of weights between 0 and 1 that depend on B and a where

B = (b(x1), . . . , b(xn))ᵀ. (2.113)

and wi =
∑

j 6=iwij.An assumption for the clustering property of the DP is

that the data are exchangeable which does not hold now since the subjects’

predictor values are informative about the clustering. Instead of assuming

exchangeability, weights wij that depend on the subjects’ relative predictor

values are included in the conditional distribution. Letting wij = 1 for all

i, j we obtain the Pólya urn conditional distribution.

Derivation of generalised Pólya urn scheme

Dunson et al. (2007) condition on the allocation of subjects to mixture com-

ponents Z = (Z1, . . . , Zn)ᵀ and using the Pólya urn result they obtain the

conditional prior

(φi|Z,φ(i),X, a) ∼ a

a+
∑

j 6=i(Zj = Zi)
G0+

1

a+
∑

j 6=i(Zj = Zi)

∑
j 6=i

1(Zj = Zi)δφj

(2.114)

where Mij = 1(Zj = Zi) is a 0− 1 indicator that subjects i and j belong to

the same cluster.

The probability of M i = {Mij, j 6= i} = mi = {mij, j 6= i}, for mi ∈
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{0, 1}n−1 is,

P (M i = mi) =
n∑
j=1

Pr(Zi = j)
∏
h6=i

P (Zh = j)mih(1− P (Zh = j))1−mih

=
n∑
j=1

bj(xi)
∏
h6=i

bj(xh)
mih(1− bj(xh))1−mih

=
n∑
j=1

bij
∏
h6=i

bmihhj (1− bhj)1−mih . (2.115)

Finally, after marginalising across the distribution for M i:

(φi|φ(i),X, a,B) ∼
∑
h6=i

1∑
mih=0

{
n∑
j=1

bij
∏
l 6=i

bmillj (1− blj)1−mil}

×
( a

a+
∑

l 6=imil

G0 +
1

a+
∑

l 6=imil

∑
l 6=i

milδφl

)
. (2.116)

The above formula is a generalisation of the Blackwell and MacQueen Pólya

urn scheme.

We can express Equation (2.116) as

(φi|φ(i),X, a,B) = pᵀi0Γ0G0 +
∑
j 6=i

pᵀijΓ1δφj

= p0(xi)
ᵀΓ0G0 +

∑
j 6=i

pj(xi)
ᵀΓ1δφj . (2.117)

where pᵀi01n = 1 and pᵀij1n−1 ≤ 1. This is in the form of a weighted average

of Blackwell and MacQueen Pólya urn distributions. Finally, for any n × n

matrix B, with elements (bij)
n
i,j=1 satisfying 0 ≤ bij ≤ 1 and bᵀi 1n = 1,

there is a unique n× (n− 1) matrix W = (w1, . . . ,wn)ᵀ having row vectors

wi = (wi,1, . . . , wi,i−1, wi,i+1, . . . , wi,n)ᵀ, with 0 ≤ wij ≤ 1 such that the above

expression is equivalent to:

(φi|φ(i),X, a,B) =
a

a+ wi
G0 +

∑
j 6=i

wij
a+ wi

δφj , (2.118)
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2.6.5 MCMC algorithm

Let θ = (θ1, . . . , θk)
ᵀ denote the k ≤ n distinct values of φ = (φ1, φ2, . . . , φn)ᵀ

and let S = (S1, . . . , Sn)ᵀ be a vector of indicators denoting the global config-

uration of subjects to distinct values θ, with Si = h indexing the location of

the ith subject within the θ vector. In addition, let C = (C1, . . . , Ck)
ᵀ with

Ch = j denoting that θh is an atom from the basis distribution, G∗xj . Hence

CSi = Zi = j denotes that subject i is drawn from the jth basis distribution.

Excluding the ith subject, θ(i) = θ\{φi} denotes the k(i) distinct values of

φ(i) = φ\{φi}, S(i) denotes the configuration of subjects {1, . . . , n}\{i} to

these values and C(i) = (C
(i)
1 , . . . , C

(i)

k(i)
)ᵀ indexes the DP component numbers

for the elements of θ(i).

Conditioning on Z(i) but marginalising over Zi, Dunson et al. (2007) obtain

the following conditional prior for φi:

(φi|Z(i),φ(i),X, a) ∼
n∑
i=1

abij
a+

∑
l 6=i 1(Zl = j)

G0+
∑
m6=i

{ n∑
j=1

bij1(Zm = j)

a+
∑

l 6=i 1(Zl = j)

}
δφm .

(2.119)

Grouping the subjects in the same cluster, we obtain the expression

(φi|S(i),C(i),θ(i),X, a) ∼ wi0G0 +
k(i)∑
h=1

wihδθ(i)h
, (2.120)

where the probability weights on the various components are defined as

wi0 =
n∑
j=1

abij

a+
∑

l 6=i 1(C
(i)

S
(i)
l

= j)
,

wih =
b
i,C

(i)
h

∑
m6=i 1(S

(i)
m = h)

a+
∑

l 6=i 1(C
(i)

S
(i)
l

= Ch)
, h = 1, . . . , k(i). (2.121)
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Updating the prior with the likelihood for the data y, we obtain the condi-

tional posterior:

(φi|S(i),C(i),θ(i),X, a) ∼ qi0Gi,0 +
k(i)∑
h=1

qihδθ(i)h
, (2.122)

where Gi,0(φ) is the posterior obtained by updating the prior G0(φ) and the

likelihood f(yi|xi, φ):

Gi,0(φ) =
G0(φ)f(yi|xi, φ)∫
f(yi|xi, φ)dG0(φ)

=
G0(φ)f(yi|xi, φ)

hi(yi|xi)
, (2.123)

where

qi0 = cwi0hi(yi|xi),

qih = cwihf(yi|xi, θh), h = 1, . . . , k(i) (2.124)

and c is a normalisation constant.

The MCMC algorithm alternates between the following steps:

Step 1: Update Si for i = 1, . . . , n, by sampling from the multinomial condi-

tional posterior P (Si = h) = qih, h = 1, . . . , k(i). When Si = 0, sample

φi ∼ Gi,0 and CSi ∼ multinomial ({1, . . . , n}, bi).

Step 2: Update the parameters θh, for h = 1, . . . , k by sampling from the

conditional posterior distribution

(θh|S,C,θ(h), k,y,X) ∼
∏
i:Si=h

f(yi|xi, θh)}G0(θh), (2.125)

that has a simple form when G0 is chosen to be a conjugate prior.
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Step 3: Update Ch, for h = 1, . . . , k, by sampling from the multinomial

conditional with

(Ch|S,C(h),θ, k,y,X) ∼
∏

i:Si=h
bij∑n

l=1

∏
i:Si=h

bil
, j = 1, . . . , n. (2.126)

Step 4: Update the weights γj for j = 1, 2, . . . , n, by using a data augmenta-

tion approach motivated by Dunson and Stanford (2005); Holmes et al.

(2006). Letting Kij = exp{−ψ‖xi − xj‖2} and K∗ij =
Kij∑

l6=j γlKil
, the

conditional likelihood for γj is

L(γj) =
n∏
i=1

(
γjK

∗
ij

1 + γjK∗ij

)1(CSi=j)
(

1

1 + γjK∗ij

)1(CSi 6=j)

. (2.127)

This likelihood can be obtained by using 1(CSi = j) = 1(Z∗ij > 0), with

Z∗ij ∼ Poisson(γjξijK
∗
ij) and ξij ∼ exponential(1). Updating {Z∗ij, ξij}

and {γj} in Gibbs steps:

1. let Z∗ij = 0 if 1(CSi 6= j) and otherwise Z∗ij ∼ Poisson(γjξijK
∗
ij)1(Z∗ij >

0), for all i and j;

2. ξij ∼ gamma(1 + Z∗ij, 1 + γjK
∗
ij), for all i and j;

3. letting gamma(aγ, bγ) denote the prior for γj,

γj ∼ gamma(aγ +
n∑
i=1

Z∗ij, bγ +
n∑
i=1

ξijK
∗
ij). (2.128)

To compare with the MCMC algorithm for count data see Section 4.2.

2.6.6 Clustering properties

From equations (2.120) and (2.121) we have that
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• The probability of φi /∈ φ(i) is proportional to the precision parameter

α. The larger the value of α is, the higher the probability that the ith

subject will go to a new cluster.

• The probability of φi ∈ φ(i) is proportional to the number of subjects

that have predictor values close to xi.

• The probability that the subjects xi,xj will be in the same cluster is

inversely proportional to their distance.

Thus, the allocation of subjects to clusters is controlled by α and the distance

between each subject’s predictor values. Observations in sparse regions are

more likely to be allocated to a new cluster.

2.6.7 Predictive density and simulation examples

The primary goal of Dunson et al. (2007) is to estimate the predictive density

of a future observation ynew from a new subject with predictors xnew. They

show that

(ynew|xnew,S,C,θ, k,y,β,Σβ, τ,X) = ωn,0(xnew)N(ynew;xᵀ
newβ, τ

−1 + xᵀ
newΣβxnew)

+
k∑

h=1

ωn,h(xnew)N(ynew;xᵀ
newβh, τ

−1)

(2.129)

which is a finite mixture of normal linear regression models. The probability

weights depend on the location of xnew, which allows deviations on the density

across the space of the covariates. Finally, to examine any changes in the
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conditional density across the covariate space we can calculate the expected

predictive density by using a large number of iterations (after convergence)

and averaging over them. Another way to estimate the mean regression curve

can be by sampling with the above probabilities from the same iterations and

averaging over them. Dunson et al. (2007) simulate data under the normal

linear regression model

f(yi|xi) = N(yi;−1 + xi1, 0.01) (2.130)

where xi1 ∼ Unif(0, 1) and xi = (1, xi1)ᵀ and show that the predictive densi-

ties, across the covariate space, are very close to the true densities.

To show the “strength” of the method (Dunson et al., 2007), we simulate

data from Gaussian distributions with different assumptions for the mean

and variance.

1. Adding more covariates,

f(yi|xi) = N(yi;−2 + 5xi1 − 3x2
i2, 0.01) (2.131)

where xi1, xi2 ∼ Unif(0, 1) and xi = (1, xi1, xi2)ᵀ. Figure 2.9 shows the

predictive density of ynew at the 0.1, 0.25, 0.5, 0.75 and 0.9 quantiles of

the empirical distribution of xi1 with the covariate xi2 fixed at its sample

mean. The predictive densities are very close to the true densities.

2. Assuming there is a non-constant variance,

f(yi|xi) = N(yi;−2 + 5xi1, (1 + xi1)2) (2.132)

where xi1 ∼ Unif(0, 1) and xi = (1, xi1)ᵀ. Figure 2.10 shows that

the predictive densities capture the non-constant variance across the

quantiles.
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Figure 2.9: True conditional densities of y|x are represented with a black line

and posterior mean estimates are with a red line where the covariate

xi2 fixed at its sample mean. The first five plots refer to the quantiles

q = 0.1, 0.25, 0.5, 0.75, 0.9 of the empirical distribution of xi1 with the

covariate xi2 fixed at its sample mean. The final plot has the data

along with the true mean regression line in green and the estimated

regression line in red.
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Figure 2.10: True conditional densities of y|x are represented with a black line

and posterior mean estimates are with a red line. The first five plots

refer to the quantiles q = 0.1, 0.25, 0.5, 0.75, 0.9 of the empirical

distribution of xi1. The final plot has the data along with the true

mean regression line in green and the estimated regression line in

red.
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3. Finally, as a more interesting case we simulate data from a mixture

of two normal linear regression models, with the mixture weights de-

pending on the predictor, with the error variance differing and with a

non-linear mean function for the second component:

f(yi|xi) = exp{−2xi1}N(yi;xi1, 0.01)+(1−exp{−2xi1})N(yi;x
4
i1, 0.04)

(2.133)

where xi1 ∼ Unif(0, 1) and xi = (1, xi1)ᵀ. It is clear from Figure 2.11

that the estimated conditional densities are close to the true conditional

densities across the whole space.
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Figure 2.11: True conditional densities of y|x (for the third simulated example)

are in black and posterior mean estimates are in red. First five plots

refer to the quantiles q = 0.1, 0.25, 0.5, 0.75, 0.9 of the empirical

distribution of xi1. The final plot has the data along with the true

mean regression line in green and the estimated regression line in

red.
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2.6.8 Other approaches to density regression

Another approach to density regression is to model the joint density (of the

response variable and the covariates) and obtain the conditional density as a

byproduct. Müller et al. (1996) focus on estimating the regression function

g(xi) = E[Yi|xi] based on the complete data di = (yi,xi). They assume

that the distribution of d has a mixture form and fit a Dirichlet process of

multivariate Gaussian distributions to the complete data. They evaluate the

predictive expectation E[Yi|xi,D] where D = {di; i = 1, . . . , n}, from the

induced conditional distributions.

MacEachern (1999, 2001) proposed the dependent Dirichlet process (DDP),

which generalises the “stick-breaking” construction, see page 51, as an al-

ternative approach to define a dependent prior model for a set of random

measures Gx. This is done by assuming fixed weights π = (πh)
∞
h=1 while

allowing the atoms θ = (θh)
∞
h=1 to vary with xi according to a stochastic

process. Another way to allow dependence in random measures is to allow

the random measures to depend on a shared set of latent factors, which are

assigned Dirichlet process priors (Gelfand and Kottas, 2001). The dependent

Dirichlet process has been applied to spatial modelling (Gelfand et al., 2005),

functional data (Dunson and Herring, 2006), and time series (Caron et al.,

2008) applications.

Griffin and Steel (2006) incorporate dependency by allowing the ordering of

the random variables β = (βh)
∞
h=1 in the “stick-breaking” construction to

depend on predictors. They propose an order-based DDP which does not

have the fixed weights assumption of the “simple” DDP.
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Dunson (2007) proposed an empirical Bayes approach to density regression,

relying on a local mixture of parametric regression models which borrows

information by using a kernel-weighted urn scheme. This urn scheme incor-

porates two smoothing parameters which control the generation of new clus-

ters and borrowing of information. Dunson and Park (2008) propose a class

of kernel “stick-breaking” processes for uncountable collections of dependent

random probability measures to be used as a prior for Gx. This prior does

not depend on the sample data and induces a covariate-dependent prediction

rule upon marginalisation. Hannah et al. (2009) generalise existing Bayesian

nonparametric regression models to a variety of response distributions and

propose Dirichlet process mixtures of generalised linear models (GLM) which

allow both continuous and categorical inputs, and can model the same type

of responses that a GLM can. Ghosh et al. (2010) develop a Bayesian den-

sity regression model which is based on a logistic Gaussian processes instead

of the popular “stick-breaking” process. Wang and Dunson (2011) develop

a density regression model that incorporates stochastic-ordering constraints

which are natural when a response tends to increase or decrease monotoni-

cally with a predictor. For an overview of Bayesian nonparametric inference

in density estimation, density regression, and model validation see Müller

and Quintana (2004). In the programming language R, DPpackage (Jara

et al., 2011) includes functions to perform inference via simulation from the

posterior distributions for Bayesian nonparametric and semiparametric mod-

els. For non-Bayesian approaches to density regression we refer the reader to

Fan et al. (1996); Hall et al. (1999, 2004).



Chapter 3

Simulation techniques for

intractable likelihoods

In this chapter we propose two simulation techniques for intractable likeli-

hoods. The first one is based on a technique known as retrospective sampling

(Papaspiliopoulos and Roberts, 2008) and computes lower and upper bounds

for the likelihood. As a result, the target density and the acceptance proba-

bility of the Metropolis-Hastings algorithm can be bounded. These bounds

can be arbitrarily tight if needed, thus the MCMC algorithm will eventually

accept or reject the candidate state θ∗.

The second technique uses rejection sampling to draw from the COM-Poisson

distribution and takes advantage of the exchange algorithm (Murray et al.,

2006), which is able to draw posterior samples from distributions with un-

known normalisation constants. The resulting MCMC algorithms for both

techniques sample from the target of interest.

86
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The MCMC algorithms for both techniques are presented and at the end of

this chapter we use both algorithms to estimate the parameters µ and ν of

a COM-Poisson distribution. The algorithms give similar results in terms

of acceptance rates, summary statistics and autocorrelation of the posterior

sample.

3.1 Intractable likelihoods

The normalisation constant in the distribution of a random variable may not

be available in closed form; in such cases the calculation of the likelihood can

be computationally expensive. Specifically, the probability density function

p(y|θ) can be written as

p(y|θ) =
qθ(y)

Z(θ)
(3.1)

where qθ(y) is the unnormalised density and the normalisation constant

Z(θ) =
∑

y p(y, θ) or Z(θ) =
∫
p(y,θ) dy is unknown. If we use an MCMC

algorithm for posterior inference we need to evaluate the acceptance ratio

min{1, a} of the Metropolis-Hastings algorithm, which involves the calcula-

tion of

a =
p(y|θ∗)p(θ∗)
p(y|θ)p(θ)

h(θ|θ∗)
h(θ∗|θ)

,

=

{∏
yi

qθ∗(yi)Z(θ)

qθ(yi)Z(θ∗)

}
p(θ∗)

p(θ)

h(θ|θ∗)
h(θ∗|θ)

, (3.2)
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where p(θ) is the prior distribution of θ, h(θ∗|θ) is the proposal distribution

and1

p(y|θ) =
∏
yi

p(yi|θ). (3.3)

If the proposal distribution h(|) is symmetric in its arguments, then a sim-

plifies to

a =
p(y|θ∗)p(θ∗)
p(y|θ)p(θ)

=

{∏
yi

qθ∗(yi)Z(θ)

qθ(yi)Z(θ∗)

}
p(θ∗)

p(θ)
(3.4)

Both expressions (3.2) and (3.4) cannot be computed due to the ratio of the

unknown normalisation constants.

Approximations of the likelihood or approximate Bayesian computation (ABC)

methods can be used, but the resulting algorithms may not sample from the

target of interest. We will follow two different approaches that both lead to

an exact MCMC algorithm.

3.2 Retrospective sampling in MCMC

Ishwaran and James (2001) developed a method for sampling from a Dirichlet

process that does not rely on analytically integrating out components of the

hierarchical model. This method requires truncating the Dirichlet process

prior and as a result it introduces an error. Papaspiliopoulos and Roberts

1To simplify the notation we distinguish between the marginal and joint (unnormalised)

density by using a scalar (regular) and vector (bold) argument, respectively.
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(2008) proposed an exact way of sampling from a Dirichlet process, using

the method of Ishwaran and James (2001), known as retrospective sampling.

This technique exchanges the order of simulation to implement simulation of

infinite dimensional random variables in finite time. Amongst other purposes,

it has been used for simulation of diffusion sample paths by Beskos et al.

(2006) and Sermaidis et al. (2013). We propose a novel retrospective sampling

technique for MCMC.

As mentioned in Chapter 2, in simulation-based Bayesian inference we are

interested in drawing samples from the posterior distribution of the parame-

ters p(θ|y) ∝ p(y|θ)p(θ), where p(θ) denotes the prior distribution of θ. In

the Metropolis-Hastings algorithm a Markov chain is constructed in which,

when the current state is θ, a candidate state θ∗ is drawn from a proposal

distribution h(θ∗|θ) and then accepted with probability min{1, a} with a as

set out in equation (3.2). If θ∗ is rejected, the chain remains at the current

state θ. In order to accept the candidate θ∗ with probability min{1, a}, the

acceptance ratio a is compared to a random u ∼ Unif(0, 1) and θ∗ is accepted

if u < a.

The key idea of the proposed algorithm is that the acceptance ratio a from

(3.2) needs to be known exactly only if the random variable u and a are very

close. To be able to exploit this idea we need to exchange the order of simula-

tion. We first draw the uniform random variable u which is used to decide on

the outcome of the Metropolis-Hastings acceptance/rejection move and then

perform any calculations needed on the acceptance ratio. Depending on the

value of u, the acceptance ratio (which involves the normalisation constant

Z both in the numerator and denominator) may not be needed to be known
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exactly.

Suppose we have a sequence of increasingly and arbitrarily precise lower and

upper bounds for p(y|θ), denoted by p̌(y|θ) and p̂(y|θ), respectively. Plug-

ging these bounds into (3.2) yields lower and upper bounds for the acceptance

ratio

ǎn =
p̌n(y|θ∗)p(θ∗)
p̂n(y|θ)p(θ)

h(θ|θ∗)
h(θ∗|θ)

,

ân =
p̂n(y|θ∗)p(θ∗)
p̌n(y|θ)p(θ)

h(θ|θ∗)
h(θ∗|θ)

. (3.5)

By construction ǎn ≤ a ≤ ân and we will assume that we can make bounds

arbitrarily precise, i.e. ǎn → a and ân → a as n → ∞. The proposed

algorithm for deciding on the acceptance of θ∗ then proceeds as follows.

1. Draw u ∼ Unif(0, 1) and set the number of refinements n = 0.

2. Compute ǎn and ân and compare them to u.

• If u ≤ ǎn, accept the candidate value.

• If u > ân, reject the candidate value.

• If ǎn < u < ân, refine the bounds, i.e increase n and return to

step 2.

Figure 3.1 illustrates this idea for three possible realisations u1, u2, u3, of the

Unif(0, 1) distribution, each one leading to a different outcome (accept, refine,

reject). Panel 3.1a shows the Metropolis-Hastings strategy where a is the

exact value of the acceptance ratio and u1, u2, u3 are the three realisations of

the Unif(0, 1) distribution. In the case of u2 we reject the candidate value θ∗
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since u2 > a whereas in the other two cases ( u1 or u3) we accept the candidate

value θ∗ since u1, u3 < a. The acceptance and rejection regions can also be

seen in the figure. Panel 3.1b shows the retrospective sampling strategy along

with the refinement region where we compute lower and upper bounds for the

acceptance ratio. For the realisations u1 and u2 of the Unif(0, 1) distribution

we can immediately make a decision since they do not fall into the refinement

region. In the case of u3 we have to refine the bounds. Panel 3.1c shows the

new bounds, where the refined lower bound is above u3 and as a result we

accept the candidate value θ∗.

Because the bounds ǎn and ân are arbitrarily tight, the algorithm will even-

tually accept or reject a candidate value θ∗. The algorithm will reach exactly

the same decision on acceptance or rejection as a vanilla Metropolis-Hastings

step with the likelihoods computed to full precision, however it has the key

advantage that it can reach a decision much more quickly.

We will assume in the following that the bounds p̌(y|θ) and p̂(y|θ) are ob-

tained by bounding each contribution, i.e.

p̌(y|θ) =
∏
i

p̌(yi|θ) p̂(y|θ) =
∏
i

p̂(yi|θ) (3.6)

with p̌(yi|θ) ≤ p(yi|θ) ≤ p̂(yi|θ). We will now explain how this algorithm

can be used in the context of the COM-Poisson distribution. For notational

convenience we will omit the subscript i.
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0 u1 u3 a u2 1

Acceptance region Rejection region

(a) Metropolis-Hastings scheme

0 u1 ǎnu3 ân u2 1

Acceptance region Refinement region Rejection region

(b) Retrospective sampling scheme (before refinement)

0 u1 u3 ǎn+1 ân+1
u2 1

Acceptance region Refinement region Rejection region

(c) Retrospective sampling scheme (after refinement)

Figure 3.1: Illustration of the retrospective sampling algorithm (panels b and c)

in contrast to the standard Metropolis-Hastings algorithm (panel a).

3.2.1 Piecewise geometric bounds

This section explains how the bounds required in the previous algorithm can

be constructed for discrete distributions with probability mass function given

by

p(y|θ) =
qθ(y)

Z(θ)
, (3.7)

where the normalisation constant Z(θ) =
∑

y qθ(y) is not available in closed

form. The COM-Poisson distribution, in Subsection 2.1.3, is an example of

such a distribution.

For ease of presentation we will assume that only computing the right tail is

computationally challenging. At the end of the section we will explain how

the method can be applied to bounding the left tail as well.
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A simple way of reducing the computational burden is to compute the nor-

malisation constant Z(θ) up to a kth term and use this as a lower bound for

Z(θ). An upper bound can be obtained by also considering an upper bound

for the remaining terms. For the approach to be computationally efficient, k

should be chosen to be not too large, which in turn implies that the upper

bound for the remaining terms will be rather loose.

On the other hand, if the ratio of consecutive probabilities is bounded by

constants over a certain range of y

b̌y0,y1 ≤
qθ(y + 1)

qθ(y)
≤ b̂y0,y1 , y ∈ {y0, y0 + 1, . . . , y1 − 1}, (3.8)

then tighter bounds can be obtained at little excess computational cost.

We will now construct bounds based on the constants b̌y0,y1 , b̂y0,y1 . These

tighter bounds are based on including piecewise bounds on a sequence of

increasingly large blocks of probabilities in the tails. This corresponds to

using the following lower bound and upper bound for Z(θ):

Ž(θ) = E(θ) + Č(θ),

Ẑ(θ) = E(θ) + Ĉ(θ) + R̂(θ), (3.9)

where E(θ) =
∑k1

j=0 qθ(j) is obtained by computing the sum of the first k1

terms exactly. Č(θ) and Ĉ(θ) are piecewise bounds on blocks of probabilities,

computed as set out below. R̂(θ) is an upper bound on the remaining terms.

If (3.8) holds, then for all j ∈ {0, . . . , r} with r = y1 − 1− y0

(b̌y0,y1)
j ≤ qθ(y0 + j)

qθ(y0)
=
qθ(y0 + 1)

qθ(y0)
· · · qθ(y0 + j)

qθ(y0 + j − 1)
≤ (b̂y0,y1)

j. (3.10)
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We can rewrite the sum of the block of r + 1 probabilities as

r∑
j=0

qθ(y0 + j) = qθ(y0)
r∑
j=0

qθ(y0 + j)

qθ(y0)
. (3.11)

Taking advantage of (3.10) and (3.11) we obtain the bounds:

čy0,y1(θ) = qθ(y0)
r∑
j=0

(b̌y0,y1)
j = qθ(y0)

1− (b̌y0,y1)
r+1

1− b̌y0,y1
≤

r∑
j=0

qθ(y0 + j),

ĉy0,y1(θ) = qθ(y0)
r∑
j=0

(b̂y0,y1)
j = qθ(y0)

1− (b̂y0,y1)
r+1

1− b̂y0,y1
≥

r∑
j=0

qθ(y0 + j).

(3.12)

These bounds are computed in blocks of probabilities.

Denote by s = (k1, . . . , kln) the sequence of end-points of the piecewise

bounds, we then define

Č(θ) =
ln−1∑
i=1

čki,ki+1−1(θ),

Ĉ(θ) =
ln−1∑
i=1

ĉki,ki+1−1(θ), (3.13)

which satisfies

Č(θ) ≤
kln−1∑
j=k1

qθ(j) ≤ Ĉ(θ). (3.14)

Finally, using (3.10) and (3.11) for the tail of the distribution, we get

∞∑
j=0

qθ(ykln + j) = qθ(ykln )
∞∑
j=0

qθ(ykln + j)

qθ(ykln )
. (3.15)

and

ĉkln ,∞(θ) = qθ(ykln )
∞∑
j=0

(b̂kln ,∞)j = qθ(ykln )
1

1− b̂kln ,∞
≥

∞∑
j=kln

qθ(j). (3.16)
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Thus we obtain the desired result that

Ž(θ) = E(θ) + Č(θ) ≤
∞∑
j=0

qθ(j) ≤ E(θ) + Ĉ(θ) + R̂(θ) = Ẑ(θ) (3.17)

The bounds on the normalisation constant Ž(θ), Ẑ(θ) and the number of

exact terms k1 should be indexed by n, the number of refinements, since

every time there is a need for refinement we have to choose a larger k1 and

the bounds will be different. For the rest of the section we will assume that

n is fixed. The bounds are increasingly tight as long as k1 →∞. In practice

the values of k1, . . . , kln are chosen depending on θ and on the magnitude of

the previous contribution to the sum made. In our experience, choosing ks

such that ks+1 − ks = ds for d ≈ 2 works well in practice.

So far we have set out how to compute bounds for the right tail of the

distribution. If the mode of the distribution is large, then it is advisable to

use the same strategy for the left tail too. The approach is essentially the

same, with the main difference being that the bounds are computed right to

left and that the summation will stop at zero. Instead of (3.9), we will have

Ž(θ) = Ě(θ) + Č(θ),

Ẑ(θ) = Ê(θ) + Ĉ(θ) + R̂(θ), (3.18)

where Ě(θ), Ê(θ) are lower and upper bounds on E(θ) =
∑k1

j=0 qθ(j). In a

similar fashion as (3.13), one can denote by t = (t1, . . . , tln = k1) the sequence

of end-points of the piecewise bounds and then define

Ě(θ) =
ln−1∑
i=1

ěti,ti+1−1(θ),

Ê(θ) =
ln−1∑
i=1

êti,ti+1−1(θ). (3.19)
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exacttail tailpiecewise geometric piecewise geometric exacttail tailpiecewise geometric piecewise geometric

Figure 3.2: Computing the lower and upper bounds of the normalisation con-

stant in blocks of probabilities. We first compute exactly the prob-

abilities close to the mode of the distribution, and then compute

the lower and upper bounds in blocks of probabilities where we only

have to compute exactly the first probability of each block.

A graphical explanation of the procedure can be seen in Figure 3.2 where the

first two blocks are comprised of three and five probabilities respectively.
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Bounds on the COM-Poisson normalisation constant

In the COM-Poisson case, the bounds in (3.8) and (3.12) are

b̌y0,y1 =

(
µ

y1

)ν
,

b̂y0,y1 =

(
µ

y0 + 1

)ν
, (3.20)

for y0, y1 > bµc and

čy0,y1(θ) = q(y0)
1−

(
µr+1

yr+1
1

)ν
1−

(
µ
y1

)ν ,

ĉy0,y1(θ) = q(y0)
1−

(
µr+1

(y0+1)r+1

)ν
1−

(
µ

y0+1

)ν , (3.21)

where r = y1− 1− y0 and q(y0) =
(
µy0

y0!

)ν
is the unnormalised density of the

COM-Poisson. Bounds for the left tail of the distribution are computed in a

similar way.

Figure 3.3 shows the lower and upper bounds of the normalisation constant

as a function of the computed number of terms. The piecewise geometric

bounds are plotted in dotted lines, the bounds and the asymptotic approx-

imation of Minka et al. (2003) are plotted with solid lines and a blue line

respectively. The true value of the normalisation constant is shown in red.

The top panel of Figure 3.3 shows the bounds and true value of the nor-

malisation constant Z(µ, ν) for three different pairs of (µ, ν). In all three

pairs the second parameter ν = 0.2 < 1. We can see from the top panel

that the piecewise geometric bounds do not need to compute a lot of terms

to approximate the normalisation constant precisely. As was expected, the

asymptotic approximation gets better as µ decreases.
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A similar result can be seen on the bottom panel of Figure 3.3. In the three

parameter pairs of the bottom panel the second parameter is increased every

time. The advantage of using the piecewise geometric bounds, thus first

computing the mode of the distribution and afterwards the terms close to

the mode, can be seen clearly by looking at the final plot. This plot shows the

bounds and true value of the normalisation constant Z(µ, ν) where µ = 40

and ν = 2. The bounds in Minka et al. (2003) need to compute three times

more terms to be as precise as the piecewise geometric bounds (Chanialidis

et al., 2014).

Bounds on the Weighted Poisson distribution

The bounds, found in (3.8), for the weighted Poisson distribution of Del Castillo

and Pérez-Casany (1998) for r > 0, see (2.30), are

b̌y0,y1 =
λ

y1

wy1
wy1−1

,

b̂y0,y1 =
λ

y0 + 1

wy0+1

wy0
. (3.22)

Similar bounds can be constructed for r < 0.
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3.2.2 MCMC for retrospective algorithm

We present an overview of the MCMC algorithm that takes advantage of

the bounds for the acceptance probability, see (3.5), and the bounds for the

normalisation constant Z(µ, ν), see (3.9).

Let y1, y2, . . . , yn be independent and identically distributed observations

from the COM-Poisson distribution with unknown parameters µ and ν.

Keeping up with the notation on page 87 this can be seen as having an

unknown parameter θ = (µ, ν).

Before we give the full MCMC algorithm we explain how the decision on

acceptance or rejection of a single move is decided. Suppose we have a new

candidate θ∗, drawn from a proposal h(|θ).

i. Draw one realisation u ∼ Unif(0, 1).

ii. For n = 1, 2, . . . repeat the following steps until a decision can be made

α. Evaluate the bounds ǎn and ân from (3.5) by computing the current

bounds Žn(θ), Ẑn(θ), Žn(θ∗) and Ẑn(θ∗) for the current precision

setting (number of exact terms and block lengths of piecewise geo-

metric bounds).

β. If u ≤ ǎn, accept θ∗.

If u > ân reject θ∗.

Otherwise (ǎn < u < ân), refine precision settings (by increasing

the number of exact terms and/or changing the block lengths of
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piecewise geometric bounds2) and go back to step α.

The steps of the MCMC algorithm can be summarised as

1. Start with an initial state θ0 = (µ0, ν0) for the unknown parameter θ.

2. For k = 1, 2, . . . , N.

(a) Propose a candidate state µ∗k for the first parameter of the COM-

Poisson distribution.

As a result the candidate state for θ becomes θ∗k = (µ∗k, νk−1).

(b) Perform the above steps for obtaining an accept/reject decision.

In the case of acceptance set µk = µ∗k. In the case of rejection

µk = µk−1.

(c) Propose a candidate value ν∗k for the second parameter of the

COM-Poisson distribution.

As a result the candidate state for θ becomes θ∗k = (µk, ν
∗
k).

(d) Perform the above steps for obtaining an accept/reject decision.

In the case of acceptance set νk = ν∗k . In the case of rejection

νk = νk−1.

3. After discarding an initial number of draws (burn-in period), the re-

maining draws can be regarded as a sample from the target distribution.

2see page 95 for details.
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3.3 Exchange algorithm

3.3.1 Algorithm

Møller et al. (2006) presented an MCMC algorithm, known as exchange algo-

rithm, for cases where the likelihood function involves an intractable normal-

isation constant that is a function of the parameters. The only assumption

for the algorithm to work is to be able to draw independent samples from the

unnormalised density. Møller et al. (2006) introduces an auxiliary variable x

on the same space as the data y and extend the target distribution

π(θ,x|y) ∝ p(y|θ)p(θ)p(x|θ0), (3.23)

for some fixed θ0. In this case, the proposal distribution for the joint update

(θ∗,x∗) is

h(θ∗,x∗|θ,x,y) = h1(x∗|θ∗)h2(θ∗|θ,y) (3.24)

which corresponds to the usual change in parameters θ → θ∗, followed by a

choice for the auxiliary variable. If one chooses

h1(x∗|θ∗) =
qθ∗(x

∗)

Z(θ∗)
(3.25)

where q and Z are the unnormalised likelihood and the normalisation con-

stant respectively, the Metropolis-Hastings acceptance ratio becomes

a =
p(x∗|θ0,y)

p(x|θ0,y)

p(θ∗|y)

p(θ|y)

h1(x|θ)

h1(x∗|θ∗)
h2(θ|θ∗,y)

h2(θ∗|θ,y)

=
p(x∗|θ0,y)

p(x|θ0,y)

Z(θ)qθ∗(y)p(θ∗)

Z(θ∗)qθ(y)p(θ)

qθ(x)Z(θ∗)

qθ∗(x∗)Z(θ)

h2(θ|θ∗,y)

h2(θ∗|θ,y)

=
qθ∗(y)p(θ∗)

qθ(y)p(θ)

h2(θ|θ∗,y)

h2(θ∗|θ,y)

p(x∗|θ0,y)

p(x|θ0,y)

qθ(x)

qθ∗(x∗)
,
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where, unlike Equation (3.4), every term can be computed. The crucial as-

sumption is that we can draw independent samples from (3.25). The choice

of θ0, even though is not necessary to construct a valid Metropolis-Hastings

algorithm, is important on the efficiency of the Markov chain. A point esti-

mate on θ0 could be the maximum pseudo-likelihood estimate based on the

observations y.

The aforementioned algorithm can have poor mixing among the parameters.

Murray et al. (2006) overcame this problem by introducing auxiliary variables

(θ∗,y∗) and sampling from an augmented distribution

π(θ∗,y∗,θ|y) ∝ p(y|θ)p(θ)p(y∗|θ∗)h(θ∗|θ) (3.26)

where h(θ∗|θ) is the proposal distribution and whose marginal distribution

for θ is the posterior of interest. The Metropolis-Hastings acceptance ratio

becomes

a =
qθ∗(y)p(θ∗)

qθ(y)p(θ)

h(θ|θ∗)
h(θ∗|θ)

qθ(y
∗)

qθ∗(x∗)

Z(θ)Z(θ∗)

Z(θ)Z(θ∗)

Specifically, for each MCMC update we first generate a new proposed value

θ∗ ∼ h(|θ) and then draw auxiliary data y∗ ∼ p(|θ∗). We accept the newly
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proposed value θ∗ with probability min{1, a} with

a =
p(y|θ∗)p(θ∗)p(y∗|θ)h(θ|θ∗)
p(y|θ)p(θ)p(y∗|θ∗)h(θ∗|θ)

,

=

{∏
yi

qθ∗ (yi)

Z(θ∗)

}
p(θ∗)h(θ|θ∗)

{∏
yi

qθ(y∗i )

Z(θ)

}
{∏

yi

qθ(yi)
Z(θ)

}
p(θ)h(θ∗|θ)

{∏
yi

qθ∗ (y∗i )

Z(θ∗)

} ,
=

{∏
yi
qθ∗(yi)

}
p(θ∗)h(θ|θ∗)

{∏
yi
qθ(y

∗
i )
}

{∏
yi
qθ(yi)

}
p(θ)h(θ∗|θ)

{∏
yi
qθ∗(y∗i )

} ,
=

{∏
yi
qθ∗(yi)

}
p(θ∗)

{∏
yi
qθ(y

∗
i )
}

{∏
yi
qθ(yi)

}
p(θ)

{∏
yi
qθ∗(y∗i )

} , (3.27)

where the normalisation constants cancel out. The last line only holds when

we choose a symmetric proposal distribution (e.g. h(θ|θ∗) = h(θ|θ∗)).

Looking at (3.4) and (3.27) we can see that
qθ(y∗i )

qθ∗ (y∗i )
can be thought of as an

importance sampling estimate of Z(θ)
Z(θ∗)

.

We can interpret this algorithm as follows. Before every update we have

the observed data yi and the current state of the chain θ. We now simulate

new data y∗i using the newly proposed parameter value θ∗ and contemplate

whether we should perform a swap, i.e. pair the observed data yi with the

candidate θ∗ and pair the auxiliary data y∗i with the current θ.

In order to be able to use the algorithm in the next section, one has to

be able to sample from the unnormalised density which, in the case of the

COM-Poisson distribution can be done efficiently using rejection sampling.
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3.3.2 Efficient sampling from the COM-Poisson distri-

bution

Suppose we want to generate a random variable Y from the COM-Poisson

distribution with probability mass function Pθ(Y = y) = qθ(y)
Z(θ)

where q(y) =(
µy

y!

)ν
and Z(θ) =

∑
y qθ(y). We will now propose a rejection sampling

algorithm which uses an instrumental distribution which is based on the

piecewise geometric upper bound Ẑ(θ) discussed in section 3.2.

As before we cut the range of Y into l+2 segments with boundaries k1, . . . , kl

such that all boundaries lie to the right of the mode. This idea can be

extended to boundaries to the left of the mode. The latter can be beneficial

if the mode is large.

We will now construct a discrete distribution whose unnormalised density is

identical to the unnormalised density of the COM-Poisson distribution for

y ∈ {0, . . . , k1}. For each segment y ∈ {kj + 1, . . . , kj+1} we use a shifted

truncated geometric distribution and for y ∈ {kl, kl+1, . . . , } we use a shifted

geometric distribution, i.e. using the notation from Section 3.2.

rθ(y) =



qθ(y) for y ∈ {0, . . . , k1 − 1}

qθ(k1) · (b̂k1,k2−1)y−k1 for y ∈ {k1, . . . , k2 − 1}

qθ(k2) · (b̂k2,k3−1)y−k2 for y ∈ {k2, . . . , k3 − 1}

. . . . . .

qθ(kl−1) · (b̂kl−1,kl−1)y−kl−1 for y ∈ {kl−1, . . . , kl − 1}

qθ(kl) · (b̂kl−1,∞)y−kl for y ∈ {kl, kl + 1, . . . , }

(3.28)
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The normalisation constant for rθ() can be computed efficiently, though its

calculation is not necessary in this context. Except for the first segment,

which can be chosen to be very small, the sum over rθ(y) is a geometric

progression, making it very efficient to evaluate. Sampling from rθ(y) is also

easy. We can first decide which segment to draw from and we can draw

within each segment (except for the first) using a closed form formula as

the c.d.f. of the shifted truncated geometric distribution has a closed form

inverse3.

By construction (cf. section 3.2) we have that qθ(y) ≤ rθ(y) for all y. If

gθ(y) = Pθ(Y = y) = rθ(y)
Zg(θ)

denotes the normalised density corresponding to

rθ(), then also Z(θ) ≤ Zg(θ), and

p(y|θ) =
qθ(y)

Z(θ)
,

≤ rθ(y)

Z(θ)
,

=
Zg(θ)

Z(θ)

rθ(y)

Zg(θ)
,

= Mgθ(y), (3.29)

with M = Zg(θ)

Z(θ)
. In addition,

p(y|θ)

Mgθ(y)
=

qθ(y)
Z(θ)

Zg(θ)

Z(θ)
rθ(y)
Zg(θ)

=
qθ(y)

rθ(y)
(3.30)

i.e. we can decide upon the acceptance and rejection by only considering the

unnormalised densities.

3Suppose we want to sample from a (truncated) geometric distribution, i.e. g(y) ∝

αy for y ∈ {0, . . . , δ}. The corresponding c.d.f. is F (y) = 1−αy+1

C with C = 1 − αδ+1

(C = 1 for the untruncated geometric distribution). The inverse of the c.d.f. is F−1(u) =

d log(1−Cu)log(α) e − 1.
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Finally, we can sample from a COM-Poisson distribution by

i. Draw a realisation y∗ ∼ rθ().

ii. Draw a random uniform u ∼ U(0, 1).

iii. If u ≤ qθ(y)
rθ(y)

, then accept y∗ as sample from qθ(); otherwise go back to

step i.

The proposed method has very high acceptance rates, usually in excess of

90%.

3.3.3 MCMC for exchange algorithm

We now present an overview of the MCMC algorithm for estimating the

parameters µ and ν from a COM Poisson distribution which takes advantage

of the procedure for sampling set out above and uses the exchange algorithm

(Murray et al., 2006).

Let y1, y2, . . . , yn be independent and identically distributed observations

from the COM-Poisson distribution with unknown parameters µ and ν.

The full MCMC algorithm is the same as the one given on page 100, ex-

cept that the decision on acceptance and rejection is carried out as follows.

Suppose we have a new candidate θ∗, drawn from a proposal h(|θ).

i. Draw an auxiliary sample y1, . . . , yn by drawing each yi from p(|θ∗) using

the rejection sampling method from Section 3.3.2.



CHAPTER 3. SIMULATION TECHNIQUES FOR INTRACTABLE
LIKELIHOODS 108

ii. Draw one realisation u ∼ Unif(0, 1).

iii. Compute the acceptance ratio a from equation (3.27).

iv. If u ≤ a, accept θ∗.

If u > a reject θ∗.

Note that in contrast to the retrospective algorithm described in Section 3.2,

this algorithm does not lead to the same Markov chain as an exact Metropolis-

Hastings sampler would. The simulation of the auxiliary sample y1, . . . , yn

acts as an additional stochastic component and thus the performance of the

proposed algorithm differs from the performance of an exact Metropolis-

Hastings sampler in terms of acceptance rate and autocorrelation, with the

former being typically lower and the latter being typically higher. We will

assess this difference in more detail in the next section.

3.4 Simulation study comparing the algorithms

In this section we present a small simulation study comparing the two algo-

rithms proposed in this chapter.

Let y1, y2, . . . , yn be independent and identically distributed observations

from the COM-Poisson distribution with parameters µ = 10 and ν = 0.8.

We will estimate the parameters of the COM-Poisson distribution using a

wide range of values for the number of observations (n = 10, 100, 1000). The
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prior distributions for the parameters µ and ν are

µ ∼ gamma(10, 1),

ν ∼ gamma(10, 1), (3.31)

with the same mean and variance (equal to ten). The proposal distribu-

tions for the parameters are dependent on the current state of the MCMC.

Specifically, the proposal distributions for µ and ν are

hµ ∼ gamma(µ2, µ),

hν ∼ gamma(ν2, ν). (3.32)

These gamma distributions are centered at the current value of each param-

eter and have variance equal to 1.

We follow the procedure for both MCMC algorithms, retrospective and ex-

change, detailed on page 100 and 107 respectively. Figures 3.4 and 3.6 show

the trace plots, density, and autocorrelation plots for the parameters when

the retrospective MCMC is used (for n = 100). Figures 3.5 and 3.7 show the

trace plots, density, and autocorrelation plots for the parameters when the

exchange MCMC is used (for n = 100). Table 3.1 shows summary statistics,

effective sample sizes and 95% highest posterior density intervals. The table

and the aforementioned figures show that the results from the MCMC algo-

rithms for n = 100 are similar. When using a smaller number of observations

one can see that the acceptance probability for the retrospective MCMC is

higher than the one for the exchange MCMC algorithm. Similarly, the auto-
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correlation is smaller for the retrospective MCMC and as a result we get a

larger effective sample size.
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Figure 3.4: Trace plots and density plots for µ and ν using the retrospective

MCMC for n = 100.
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Figure 3.5: Trace plots and density plots for µ and ν using the exchange MCMC

for n = 100.
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Figure 3.6: Autocorrelation plots for µ and ν using the retrospective MCMC for

n = 100.

0 5 10 15 20 25 30

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Lag

A
ut

oc
or

re
la

tio
n

0 5 10 15 20 25 30

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Lag

A
ut

oc
or

re
la

tio
n

Figure 3.7: Autocorrelation plots for µ and ν using the exchange MCMC for

n = 100.
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Chapter 4

Flexible regression models for

count data

In this chapter we present two flexible regression models for count data and

propose MCMC algorithms based on the simulation techniques of Chap-

ter 3. Regarding the first model, the COM-Poisson regression model, we

give some background information on shrinkage priors which, besides being

used for variable selection, allow us to have the Poisson regression model as

the “baseline” model.

For the second model, the Bayesian density regression model, we show the

added flexibility one gains when using a mixture of COM-Poisson regression

models for fitting underdispersed and overdispersed distributions.

113
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4.1 COM-Poisson regression

4.1.1 Model

We will implement a Bayesian approach for inference in the model (2.56),

P (Yi = yi|µi, νi) =

(
µyii
yi!

)νi 1

Z(µi, νi)
,

Z(µi, νi) =
∞∑
j=0

(
µji
j!

)νi

,

log{µi} = xᵀ
iβ ⇒ E[Yi] ≈ exp {xᵀ

iβ},

log{νi} = −xᵀ
i c⇒ V[Yi] ≈ exp {xᵀ

iβ + xᵀ
i c}.

and propose two efficient and exact MCMC algorithms based on the simu-

lation techniques of Chapter 3. For the regression coefficients of the COM-

Poisson model we will use both vague and informative priors. We will use

independent diffuse Gaussian priors with a mean of zero and a variance of

106 as a vague prior. As an informative prior we will use the Bayesian

lasso (Tibshirani, 1996) and spike and slab priors (Mitchell and Beauchamp,

1988), which put a penalty on large values of the coefficients. We will focus

on a combination of the two approaches by placing a non-informative prior

on the “mean” coefficients β and an informative prior on the “dispersion”

coefficients c. This allows us to have the Poisson regression model as the

“baseline” model since we put a higher probability on the νi being equal to

one, compared to the use of vague priors for c. Practically, this means that

we want to see enough evidence to believe that the Poisson regression model

is not appropriate. In addition, these priors can also be used for variable se-
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lection, which can be important, especially in the presence of a large number

of covariates. For both cases (informative and vague priors), the proposal

distribution h is chosen to be a multivariate normal centered at the current

value.

4.1.2 Shrinkage priors

In this section we will explain how shrinkage priors can be introduced into

the model. We will focus on placing shrinkage priors on c, i.e. we will assume

a diffuse Gaussian prior for β. The methods set out below however can also

be applied to place a shrinkage prior on β.

Tibshirani (1996) proposed a method for estimating regression coefficients

in linear models. This technique is known as the lasso for “least absolute

shrinkage and selection operator”. This method minimises the sum of the

squared residuals subject to a constraint for the regression coefficients. The

constraint is that the sum of the absolute values of the coefficients must

be less than a constant. As a result, it shrinks some coefficients and sets

others to zero. This method improves the prediction accuracy of the model

and can be used for interpretation since it can determine a smaller subset

of coefficients with non-zero effects. Tibshirani (1996) suggested that lasso

estimates can be interpreted as posterior mode estimates when the regression

parameters have independent and identical Laplace (i.e. double exponential)

priors.

Park and Casella (2008) consider a fully Bayesian analysis for the lasso

method by using a conditional (on the variance) Laplace prior for the regres-
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sion coefficients. In the COM-Poisson regression model this can be specified

as

c|t2j ∼ N(0,Dt),

t2j |λ2 ∼ exponential

(
λ2

2

)
,

λ2 ∼ gamma(a, b), (4.1)

where Dt = diag(t21, . . . , t
2
p). Park and Casella (2008) take advantage of the

representation of the Laplace as a scale mixture of Gaussian distributions

with an exponential mixing density and they update the regression coeffi-

cients and their variances in blocks.

The full conditional densities for the unknown regression coefficients β, c do

not have a closed form and thus require a Metropolis-Hastings update while

on the other hand the posterior densities for the unknown parameters t2j , λ
2

in model (4.1) are

1

t2j
|λ2, cj ∼ inverse Gaussian

(√
λ2

c2
j

, λ2

)
,

λ2|t2j ∼ gamma

(
p+ a,

1

2

∑
t2j + b

)
. (4.2)

The update of c is the same as in a model with a standard Gaussian prior,

the only difference being that, conditionally on the t2j , the “prior” covariance

of c is given by (4.1).

Mitchell and Beauchamp (1988) proposed another method for variable selec-

tion. The idea behind it is that the prior of every regression coefficient is a

mixture of a point mass at zero and a diffuse uniform distribution elsewhere.

Ishwaran and Rao (2005) proposed a continuous bimodal distribution for the
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indicator variables φj. This form of prior is known as a spike and slab prior

and can be specified as

c|t2j , φj ∼ N(0,Dt),

t2j |a, b ∼ inverse gamma(a, b),

φj|v0, v1, ω ∼ (1− ω)δv0() + ωδv1(),

ω ∼ uniform(0, 1) (4.3)

where Dt = diag(t21φ1, . . . , t
2
pφp). The parameter ω controls how likely the

binary variable φj equals v0 or v1. Since it controls the size of the models

it can be seen as a complexity parameter. It must be noted that one may

use a beta prior for w to incorporate prior knowledge. The parameter v0

should have a positive value equal to zero and the value of v1 is set to one

by default. The indicator φj takes the value 1 with probability w or some is

equal to 0 with probability 1 − w. The resulting prior for the variance Dt

is a bimodal mixture of inverse gamma distributions, where one component

is strongly concentrated on very small values (e.g. the spike with φj = 0)

and a second component with most mass on larger values (e.g. the slab with

φj = 1).

The full conditional densities for the unknown regression coefficients c in

model 4.3 do not have a closed form, and thus require a Metropolis-Hastings

update while the full conditional densities for the unknown binary indicator

variables φj are Bernoulli distributions with probabilities

p1,j =
1

1 +
AI,j
BI,j

,

AI,j
BI,j

=
1− ω
ω

√
v1

v0

exp

{
− 1

2v0t2j
c2
j +

1

2v1t2j
c2
j

}
. (4.4)
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The full conditionals for the variance parameters t2j are

t2j |cj, φj ∼ inverse gamma

(
1

2
+ a,

c2
j

2φj
+ b

)
(4.5)

while for the complexity parameter ω

ω|φj ∼ beta(1 + n.v1, 1 + n.v0),

n.v0 = #{j : φj = v0},

n.v1 = #{j : φj = v1}. (4.6)

More details on the Bayesian lasso and spike and slab models can be found

in Ishwaran and Rao (2005); Belitz et al. (2009); Kneib et al. (2009).

4.1.3 MCMC for COM-Poisson regression

In Chapter 3 we presented MCMC algorithms for estimating the two param-

eters of the COM-Poisson distribution. In this section we will set out how

these can be adapted to a regression setting. The algorithm stated below

will be based on the exchange algorithm presented in Subsection 3.3.3, how-

ever one can construct a similar algorithm using the retrospective sampling

approach from Subsection 3.2.2. For the sake of simplicity, we describe the

algorithm for multivariate Gaussian priors of the coefficients. The modifica-

tions needed in order to include shrinkage priors have been described above.

We will start by stating how we can reach a decision on the acceptance or

rejection of a set of parameters proposed by an MCMC move. The difference

to the setting from Chapter 3 is that due to the regression setting each

observation has its own pair of parameters θi = (µi, νi).
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To reduce correlation between successive states of the posterior sample, the

MCMC consists of two different sets of moves for updating the regression

coefficients β and c. We alternate between these moves at every sweep of

the MCMC. The first proposes a move from β to β∗ and afterwards from c

to c∗. The second proposes a move from (βi, ci) to (β∗i , c
∗
i ) for i = 1, 2, . . . , p,

where p is the number of variables.

The two parts of the MCMC algorithm can be specified as

A. First part:

1. We draw β∗ ∼ h(|β) where the proposal h() is a multivariate

Gaussian centered at β, and

θi = (µi, νi), θ∗i = (µ∗i , νi),

µi = exp {xᵀ
iβ}, µ∗i = exp {xᵀ

iβ
∗},

νi = exp {−xᵀ
i c}, ν∗i = νi. (4.7)

We can now use one of the two methods set out below to decide

on the acceptance or rejection of the newly proposed value β∗.

Exchange algorithm

The decision of acceptance or rejection of a proposed value in the

exchange algorithm is in principle carried out in the same way as

set out on page 107. However we have to draw y∗i ∼ p(|θ∗i ) and

(3.27) becomes

a =

{∏
yi
qθ∗i (yi)

}
p(β∗)p(c∗)

{∏
yi
qθi(y

∗
i )
}

{∏
yi
qθi(yi)

}
p(β)p(c)

{∏
yi
qθ∗i (y∗i )

} . (4.8)
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In this case we also have to compute

qθi(yi) =

(
µy

y!

)ν
qθ∗i (yi) =

(
(µ∗)y

y!

)ν
qθi(y

∗
i ) =

(
µy
∗

y∗!

)ν
qθ∗i (y∗i ) =

(
(µ∗)y

∗

y∗!

)ν
. (4.9)

Retrospective sampling

In the retrospective sampling framework we can use the algorithm

stated on page 100 to decide on acceptance, rejection or refine-

ment, with the only modification being that we need to compute

bounds on the normalisation constant separately for each observa-

tion as θi
∗ and θi are (potentially) different for each observation.

Specifically, we have to evaluate the bounds ǎn and ân from (3.5)

by computing the current bounds Žn(θ), Ẑn(θ), Žn(θ∗) and Ẑn(θ∗)

for the current precision setting. If the uniform realisation u ∼

Unif(0, 1) is smaller or greater than the acceptance ratio bounds

ǎn and ân respectively; then we can make a decision on accepting

or rejecting the candidate value β∗. In any other case we have to

refine the bounds until we can make a decision.

2. We now draw c∗ ∼ h(|c) where the proposal h() is a multivariate

Gaussian centered at c, and

θi = (µi, νi), θ∗i = (µi, ν
∗
i ),

µi = exp {xᵀ
iβ}, µ∗i = µi,

νi = exp {−xᵀ
i c}, ν∗i = exp {−xᵀ

i c
∗}. (4.10)

We can now use one of the two methods set out below to decide

on the acceptance or rejection of the newly proposed value c∗.
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Exchange algorithm

In the case where we use the exchange algorithm we also have to

compute

qθi(yi) =

(
µy

y!

)ν
qθ∗i (yi) =

(
µy

y!

)ν∗
qθi(y

∗
i ) =

(
µy
∗

y∗!

)ν
qθ∗i (y∗i ) =

(
µy
∗

y∗!

)ν∗
. (4.11)

Retrospective sampling

We have to evaluate the bounds ǎn and ân from (3.5) by comput-

ing the current bounds Žn(θ), Ẑn(θ), Žn(θ∗) and Ẑn(θ∗) for the

current precision setting. If the uniform realisation u ∼ Unif(0, 1)

is smaller or greater than the acceptance ratio bounds ǎn and ân

respectively; then we can make a decision on accepting or reject-

ing the candidate value β∗. In any other case we have to refine

the bounds until we can make a decision.

B. Second part: For j = 1, . . . , p:

We draw β∗j ∼ h(|βj) and c∗j ∼ h(|cj) where the proposal distri-

bution h() is a univariate Gaussian centered at βj, cj respectively

and for ι 6= j copy β∗ι = βι and c∗ι = cι. Furthermore,

θi = (µi, νi), θ∗i = (µ∗i , ν
∗
i ),

µi = exp {xᵀ
iβ}, µ∗i = exp {xᵀ

iβ
∗},

νi = exp {−xᵀ
i c}, ν∗i = exp {−xᵀ

i c
∗}. (4.12)

We can now use one of the two methods set out below to decide
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on the acceptance or rejection of the newly proposed values β∗j

and c∗j .

Exchange algorithm

In the case where we use the exchange algorithm we also have to

compute

qθi(yi) =

(
µy

y!

)ν
qθ∗i (yi) =

(
(µ∗)y

y!

)ν∗
,

qθi(y
∗
i ) =

(
µy
∗

y∗!

)ν
qθ∗i (y∗i ) =

(
(µ∗)y

∗

y∗!

)ν∗
. (4.13)

Retrospective sampling

We have to evaluate the bounds ǎn and ân from (3.5) by comput-

ing the current bounds Žn(θ), Ẑn(θ), Žn(θ∗) and Ẑn(θ∗) for the

current precision setting. If the uniform realisation u ∼ Unif(0, 1)

is smaller or greater than the acceptance ratio bounds ǎn and ân

respectively; then we can make a decision on accepting or reject-

ing the candidate value β∗. In any other case we have to refine

the bounds until we can make a decision.

4.2 Bayesian density regression for count data

Similar to Dunson et al. (2007), we focus on the following mixture of regres-

sion models:

f(yi|xi) =

∫
f(yi|xi,φi)Gxi(dφi), (4.14)
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where

yi|xi,φi ∼ COM-Poisson (exp{xᵀ
iβi}, exp{−xᵀ

i ci}) . (4.15)

The conditional density of the response variable given the covariates is ex-

pressed as a mixture of COM-Poisson regression models with φi = (βi, ci)
ᵀ

and Gxi is an unknown mixture distribution that changes according to the

location of xi.

Compared to the continuous model described in Section 2.6, three complica-

tions arise from the use of the COM-Poisson distribution.

• Rather than just having a set of mean regression parameters for each

cluster, we now need regression parameters for both the mean and the

excess variance.

• The full conditional distributions of these regression parameters are not

available in closed from.

• Evaluating the normalisation constants of the COM-Poisson distribu-

tion is expensive.

These complications are dealt with on the first step of the MCMC algorithm

presented in the next subsection. Even though for the first Step of the

MCMC algorithm of Dunson et al. (2007), presented in Subsection 2.6.5, it

was trivial to allocate observations to clusters with probabilities proportional

to the posterior weights (2.124); in this case the normalisation constant c is

unknown and this makes things more complicated. We overcome this problem

by using the conditional prior of the weights, see (2.121), as the proposal
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distribution, see algorithm 5 in Neal (2000), and applying a variation of the

exchange algorithm for the first step of the proposed MCMC algorithm.

MCMC for Bayesian density regression

The MCMC algorithm alternates between the following steps:

Step 1: Update the cluster allocations Si for i = 1, . . . , n, using the con-

ditional prior of the weights, see (2.121), as the proposal distribution.

Afterwards we draw parameters θ∗ and an observation y∗i for this pro-

posed allocation. We accept, the parameters and the allocation, with

probability min{1, a} with

a =
qθ∗(yi)p(θ

∗)h(θ|θ∗)qθ(y∗i )
qθ(yi)p(θ)h(θ∗|θ)qθ∗(y∗i )

,

=
qθ∗(yi)qθ(y

∗
i )

qθ(yi)qθ∗(y∗i )
, (4.16)

which is the product of the unnormalised likelihoods. We can interpret

this step as follows. We avoid the problem of computing the posterior

probability of each observation belonging to a cluster by proposing a

new allocation using the prior probability and sampling parameters for

this allocation. We now simulate new data y∗ using the newly proposed

parameter value θ∗ and contemplate whether we should perform a swap.

In the case that we do swap we also accept the proposed allocation Si.

Even though it is not trivial to update just the allocations, it is simple

to update the allocations and the parameters together.

Specifically,
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a) if the proposed move is to go to a new cluster we draw a parameter

θ∗ = (µ0, νo) for that cluster from G0 and at the same time sample

an observation y∗ from the COM-Poisson(µ0, ν0). We accept the

proposed value θ∗ with probability min{1, a} with a as in (4.16).

In this case we accept the proposed move to the new cluster.

If the proposal is accepted, CSi ∼ multinomial ({1, . . . , n}, bi).

b) If the proposed move is to an already existing cluster h, we sample

an observation y∗ from the COM-Poisson(µh, νh) and accept with

the same probability as in (4.16). If the proposal is accepted,

CSi = Ch.

Step 2: Update the parameters θh, for h = 1, . . . , k by sampling from the

conditional posterior distribution

(θh|S,C,θ(h), k,y,X) ∼
∏
i:Si=h

f(yi|xi,θh)G0(θh), (4.17)

using the Metropolis-Hasting algorithm with acceptance probability as

in (3.27).

Step 3: Update Ch, for h = 1, . . . , k, by sampling from the multinomial

conditional with

(Ch|S,C(h),θ, k,y,X) ∼
∏

i:Si=h
bij∑n

l=1

∏
i:Si=h

bil
, j = 1, . . . , n. (4.18)

Step 4: Update the location weights γj for j = 1, 2, . . . , n, by using a data

augmentation approach used in Dunson and Stanford (2005); Holmes

et al. (2006). Letting Kij = exp{−ψ‖xi − xj‖2} and K∗ij =
Kij∑

l 6=j γlKil
,

the conditional likelihood for γj is

L(γj) =
n∏
i=1

(
γjK

∗
ij

1 + γjK∗ij

)1(CSi=j)
(

1

1 + γjK∗ij

)1(CSi 6=j)

. (4.19)
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This likelihood can be obtained by using 1(CSi = j) = 1(Z∗ij > 0), with

Z∗ij ∼ Poisson(γjξijK
∗
ij) and ξij ∼ exponential(1). Updating {Z∗ij, ξij}

and {γj} in Gibbs steps:

1. let Z∗ij = 0 if 1(CSi 6= j) and otherwise Z∗ij ∼ Poisson(γjξijK
∗
ij)1(Z∗ij >

0), for all i and j;

2. ξij ∼ gamma(1 + Z∗ij, 1 + γjK
∗
ij), for all i and j;

3. letting gamma(aγ, bγ) denote the prior for γj,

γj ∼ gamma(aγ +
n∑
i=1

Z∗ij, bγ +
n∑
i=1

ξijK
∗
ij). (4.20)

To compare with the MCMC algorithm for continuous data see Subsec-

tion 2.6.5.

Predictive density

Our goal is to estimate the predictive density of a future observation ynew

from a new subject with predictors xnew.

Following Dunson et al. (2007) we get

(ynew|xnew,S,C,θ, k,y,β,Σβ, τ,X) =

ωn,0(xnew)COM-Poisson(ynew; exp{xᵀ
newβ}, exp{−xᵀ

newc})

+
k∑

h=1

ωn,h(xnew)COM-Poisson(ynew; exp{xᵀ
newβh}, exp{−xᵀ

newch}) (4.21)

which is a finite mixture of COM-Poisson regression models. The probability

weights depend on the location of xnew, which allows deviations on the density

across the space of the covariates.
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To examine any changes in the conditional density across the covariate space

we can calculate the expected predictive density by using a large number of

iterations (after convergence) and averaging over them.



Chapter 5

Simulations and case studies

This chapter demonstrates the advantages of using the COM-Poisson regres-

sion model and Bayesian density regression models we have presented in

Chapter 4.

Simulations have been carried out that illustrate the advantages of each

model. The former models’ ability to separate a covariate’s effect on the

mean of the response variable from that on the variance is a strength that

other models (such as Poisson, negative binomial) do not have. For the latter

model, the simulations show that it consistently outperforms the “jittering”

method of (Machado and Santos Silva, 2005) in estimating the conditional

quantiles of a distribution.

We illustrate the methods by analysing three different real-world data sets:

emergency hospital admissions in Scotland for 2010, number of published

papers by students during their Ph.D. studies, and the number of births for

128
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women past childbearing age.

For the first two data sets, the advantages of using the COM-Poisson distri-

bution are evident. The COM-Poisson regression model is able to identify

places in Scotland with high variability in admissions, a sign of health inequal-

ities. The COM-Poisson model also provides a clearer picture, compared to

the regression models used in literature, of what the effect of a covariate on

the response variable is. The COM-Poisson regression model shows that co-

variates that look as if they have an effect on the mean of the response (e.g.

the prestige of a Ph.D. students’ supervisor) in Poisson or negative binomial

regression, actually have an effect on the variance of the response variable

instead.

The third, and final, data set shows the strength of the Bayesian density

regression model and the advantages over the “simple” COM-Poisson re-

gression model. The Bayesian density regression model is able to fit distri-

butions which are more complex than what can be represented by a single

COM-Poisson distribution.

5.1 Simulations

5.1.1 COM-Poisson regression

As already mentioned, the COM-Poisson regression model is a flexible alter-

native to count data models mainly used in the literature, such as Poisson or

negative binomial regression. The key strength of the COM-Poisson regres-
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sion model is its ability to differentiate between a covariate’s effect on the

mean of the response variable and the effect on the (excess) variance. This

can be seen if we simulate from the model (2.56),

P (Yi = yi|µi, νi) =

(
µyii
yi!

)νi 1

Z(µi, νi)
,

Z(µi, νi) =
∞∑
j=0

(
µji
j!

)νi

,

log{µi} = xᵀ
iβ ⇒ E[Yi] ≈ exp {xᵀ

iβ},

log{νi} = −xᵀ
i c⇒ V[Yi] ≈ exp {xᵀ

iβ + xᵀ
i c},

with

X =


1 x11 x12 x13

1 x21 x22 x23

...
...

...
...

1 xn1 xn2 xn3


,β =


0

0

0

0.5


, c =


0

0

0

−1


, (5.1)

where xi = (1, xi1, xi2, xi3)ᵀ and xij ∼ N(0, 1) for i = 1, 2, . . . , n and j =

1, 2, 3 where n is the number of the observations. The regression coefficients

for the mean and the variance are zero for the first two covariates (and the

intercept). The third covariate is statistically significant for both the variance

and the mean of the distribution, but with opposite sign. Larger values (of

the third covariate) correspond to larger mean of the response variable and

smaller variance.

We simulate n = 100 observations, which have empirical mean and variance

of 1.4 and 2.3, respectively. The 95% and 68% credible intervals for the

coefficients for the Poisson, negative binomial, and COM-Poisson regression

model can be seen in Figures 5.1 and 5.2. Figure 5.1 shows the credible
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intervals for the regression coefficients of µ for all the models. The Poisson

and negative binomial model falsely assume that the third covariate has a

negative effect on the mean of the response variable. This happens due to the

covariate having a negative effect on the variance of the response variable.

On the other hand, the COM-Poisson regression model correctly identifies

all regression coefficients for the mean of the response variable. The credible

intervals for the regression coefficients of ν for the COM-Poisson model can

be seen in Figure 5.2 where the only statistically significant variable is the

last one. For this simulation we have not used any of the shrinkage priors.
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Figure 5.1: Simulation: 95% and 68% credible intervals for the regression coeffi-

cients of µ.
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Figure 5.2: Simulation: 95% and 68% credible intervals for the regression coeffi-

cients of ν.
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5.1.2 Bayesian density regression

For Bayesian density regression, we will use simulations to compare our es-

timation of the quantiles with the existing method of “jittering”. We will

simulate data from four different distributions1

Yi|Xi = xi ∼ COM-Poisson(exp{1− xi1}, exp{3 + xi1}),

Yi|Xi = xi ∼ 0.3COM-Poisson(exp{xi1}, exp{xi1})

+ 0.7COM-Poisson(exp{2− 2xi1}, exp{1 + xi1}),

Yi|Xi = xi ∼ Binomial(10, 0.3xi1),

Yi|Xi = xi ∼ 0.4Poisson(exp{1 + xi1}) + 0.2Binomial(10, 1− xi1)

+ 0.4Geometric(0.2), (5.2)

where xi1 ∼ Unif(0, 1) and xi = (1, xi1)ᵀ. We will implement the MCMC

algorithm presented in Section 4.2, for 10000 iterations with the first 5000

used as a burn-in period. Each simulation has been run for ten different

seeds for n = 50, 100, 500. Figure 5.3 shows the approximation for the prob-

ability mass function of the first simulation, for one of the ten different seeds.

The top panel of Figure 5.4 shows the true quantiles (dotted lines) and the

estimated quantiles (solid lines) using our approach while the bottom panel

shows the true quantiles and the quantiles from using the “jittering” method

of Machado and Santos Silva (2005). Figure 5.5 shows the sum of the ab-

solute differences between the true and estimated quantiles accross the co-

variate space. It can be seen that our method outperforms jittering (with or

without splines). Figures 5.6, 5.7 and 5.8 refer to the second simulation. Fig-

ures 5.9, 5.10 and 5.11 refer to the binomial distribution while Figures 5.12,

1More simulations can be found in Appendix B.
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5.13 and 5.14 refer to the final simulation.

In order to compare the methods we will also use the estimated quantiles

across the covariate space and compare them with the true quantiles. This

will be done for the quantiles p = (0.01, 0.05, 0.1, 0.15, . . . , 0.95, 0.99) (e.g.

21 different quantiles) and covariate values x = (0.01, 0.02, . . . , 0.98, 0.99)

(99 different covariate values). For each one of the ten simulations we will

average over both the quantiles and the covariate values. Finally, we replicate

this procedure for all the different realisations of the simulation and then

average across them. Specifically, if qp,x is the true conditional quantile at

quantile p and when the value of the covariate is x and q̂p,x is an estimate of

the conditional quantile then

∑
q

∑
x

|qp,x − q̂p,x| (5.3)

gives us the sum of the absolute error accross different quantiles and different

values of the covariate. We average over the quantiles and the covariate values

(by dividing with 21×99) and averaging accross ten different simulations (by

dividing with 10). This can be seen as

1

10

1

99

1

21

∑
m

∑
q

∑
x

|qp,x − q̂p,x,m| (5.4)

where q̂p,x,m is an estimate of the conditional quantile at quantile p and when

the value of the covariate is x for the simulation m. We also have included

splines in the quantile regression model of Machado and Santos Silva (2005)

and estimated the quantiles for this model.

Table 5.1 shows the integrated average absolute mean errors obtained using

both methods for different number of observations. The discrete Bayesian
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density regression (BDR) estimates outperform the “jittering” method and

in almost all cases the “jittering” method leads to crossing quantiles (except

when N = 500). Finally, it is important to note that we get similar results

for different values of the parameter α of the Dirichlet process. We attribute

this to the fact that the distance between covariates’ values plays a more

important role than the value of α, as far as the cluster assignment of an

observation is concerned (cf. page 77).
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Figure 5.3: True probability mass function of the first distribution in (5.2) is

in black and posterior mean estimates are in red. The plots refer

to the quantiles q = 0.01, 0.05, 0.1, 0.25, 0.40, 0.5, 0.75, 0.9, 0.95 of the

empirical distribution of xi1.
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Figure 5.4: The data for the first simulated example, along with the true and

estimated quantiles for q = 0.1, 0.5, 0.95 across the covariate space.
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Figure 5.5: Sum of absolute differences between true and estimated quantiles

across the covariate space.
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Figure 5.6: True probability mass function of the second distribution in (5.2) is

in black and posterior mean estimates are in red. The plots refer

to the quantiles q = 0.01, 0.05, 0.1, 0.25, 0.40, 0.5, 0.75, 0.9, 0.95 of the

empirical distribution of xi1.
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Figure 5.7: The data for the second simulated example, along with the true and

estimated quantiles for q = 0.1, 0.5, 0.95 across the covariate space.
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Figure 5.8: Sum of absolute differences between true and estimated quantiles

across the covariate space.
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Figure 5.9: True probability mass function of the third distribution in (5.2) is

in black and posterior mean estimates are in red. The plots refer

to the quantiles q = 0.01, 0.05, 0.1, 0.25, 0.40, 0.5, 0.75, 0.9, 0.95 of the

empirical distribution of xi1.
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Figure 5.10: The data for the third simulated example, along with the quantiles

for q = 0.1, 0.5, 0.95 across the covariate space.
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Figure 5.11: Sum of absolute differences between true and estimated quantiles

across the covariate space.



CHAPTER 5. SIMULATIONS AND CASE STUDIES 147

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

Quantile 0.01

ynew

f(
y|

x)

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

Quantile 0.05

ynew

f(
y|

x)

0 5 10 15 20

0.
0

0.
2

0.
4

Quantile 0.1

ynew

f(
y|

x)

0 5 10 15 20

0.
0

0.
2

0.
4

Quantile 0.25

ynew

f(
y|

x)

0 5 10 15 20

0.
0

0.
2

0.
4

Quantile 0.4

ynew

f(
y|

x)

0 5 10 15 20

0.
0

0.
2

0.
4

Quantile 0.5

ynew

f(
y|

x)

0 5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

Quantile 0.75

ynew

f(
y|

x)

0 5 10 15 20

0.
0

0.
2

0.
4

Quantile 0.9

ynew

f(
y|

x)

0 5 10 15 20

0.
0

0.
2

0.
4

Quantile 0.95

ynew

f(
y|

x)

Figure 5.12: True probability mass function of the fourth distribution in (5.2) is

in black and posterior mean estimates are in red. The plots refer to

the quantiles q = 0.01, 0.05, 0.1, 0.25, 0.40, 0.5, 0.75, 0.9, 0.95 of the

empirical distribution of xi1.
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Figure 5.13: The data for the fourth simulated example, along with the quantiles

for q = 0.1, 0.5, 0.95 across the covariate space.
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Figure 5.14: Sum of absolute differences between true and estimated quantiles

across the covariate space.
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5.2 Case studies

5.2.1 Emergency hospital admissions

As an illustration of the COM-Poisson regression method, we consider data

on the hospital emergency admissions for each intermediate geography (1235

in total) in Scotland for the year 2010. Scotland is divided into 6505 small

areas, called datazones, each containing around 350 households. An inter-

mediate geography is comprised of neighbouring datazones. The Scottish

Index of Multiple Deprivation (SIMD) is the Scottish government’s official

tool for identifying datazones suffering from deprivation. This index pro-

vides a relative ranking for each datazone, from 1 (most deprived) to 6505

(least deprived). The ranking is based on seven aspects of deprivation: in-

come, employment, health, education, access to services, crime, and housing.

Since the ranking itself does not provide any way of identifying areas that

are “deprived” versus “not deprived”, analysis of the SIMD requires the user

to apply a cut-off to identify the most deprived areas. The Scottish govern-

ment’s cut-off for a datazone to be considered deprived is to belong in the

15% most deprived datazones in Scotland. Using the SIMD ranks for areas

larger than datazones (such as intermediate geographies) one can consider

the percentage of datazones within that intermediate geography that are in

the 15% most deprived e.g. if an intermediate geography is comprised of 20

datazones and 10 of them are in the 15% most deprived then its local share

is 50%. This can also be applied in larger areas such as local authorities.

Tables 5.3 and 5.4 refer to the local share of deprived datazones for each
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local authority in Scotland. Local authorities in the west of Scotland such

as Glasgow City, Inverclyde, North Ayrshire, North Lanarkshire, and West

Dunbartonshire have a high local share of the most deprived datazones while

at the same time their local share of least deprived datazones is small. Parts

of the east of Scotland (Edinburgh City, East Lothian) show the opposite

trend. It is important to note that the local share percentages of each local

authority are not always showing which areas are deprived. Local authorities

such as Eilean Siar, Orkney Islands, and Shetland Islands do not have any

datazones in the 15% most deprived in the 2009 SIMD. This happens due to

the small number of intermediate geographies they are comprised of and not

because they are considered to be affluent areas.

This approach, of using a cut-off point for the datazones, has its drawbacks

since datazones that just miss the 15% cut-off point are treated the same

as the ones that are far away from it. A better approach, and the one fol-

lowed in the thesis, would be to weight every datazone and average over all

the datazones that belong to the same intermediate geography. Datazones

with a small SIMD rank (most deprived) will have a higher weight and each

datazone’s SIMD rank contributes for the deprivation of the intermediate ge-

ography they belong to. The advantages of applying the above modifications

on the SIMD rank are:

• Including information from all the datazones of an intermediate geog-

raphy instead of looking only at the 15% cut-off point.

• Penalising intermediate geographies which are comprised of deprived

datazones.
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Table 5.2: Levels of income deprivation in Scotland’s 15% most deprived areas.

Number of income Total % income

deprived people population deprived

15% most deprived areas 232050 742210 31.3%

Rest of Scotland 468430 4479890 10.5%

All of Scotland 700480 5222100 13.4%

It is important to remember that the SIMD identifies areas; not individuals.

If our focus is on all deprived people then a different approach needs to be

taken, e.g. using the underlying data from one of the domains, rather than

the overall index. Table 5.2 shows that not everyone living in a deprived

area is deprived, and not all deprived people live in deprived areas, even

when looking at individual domains.

The Scottish Government classifies urban and rural areas across Scotland

based on two criteria: population and accessibility to areas of contiguous high

population density postcodes (that make up what is known as a settlement).

The joint classification can be seen in table 5.5. Using this classification as an

ordinal covariate is not appropriate due to how it is coded. For example the

6th class (accessible rural area) is closer to an urban area than the previous

two. Instead, we will use as covariates the percentages of those classes within

each intermediate geography, e.g. if an intermediate geography is comprised

of 6 datazones where 3 of them are coded as large urban areas and the other

3 as accessible small towns, the percentages of the first and the third class

will be 50% and 0% for all the other classes. For ease of interpretation we

center all covariates.
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Table 5.3: The local share considers the percentage of a local authority’s data-

zones that are amongst the 15% most deprived in Scotland.

Local authorities Local share Local authorities Local share

Aberdeen City 10.49 Highland 5.48

Aberdeenshire 1.33 Inverclyde 38.18

Angus 4.23 Midlothian 3.57

Argyll & Bute 8.20 Moray 0.86

Clackmannanshire 18.75 North Ayrshire 24.02

Dumfries & Galloway 5.70 North Lanarkshire 21.29

Dundee City 30.17 Orkney Islands 0.00

East Ayrshire 17.53 Perth & Kinross 3.43

East Dunbartonshire 3.15 Renfrewshire 20.09

East Lothian 2.50 Scottish Borders 3.85

East Renfrewshire 4.17 Shetland Islands 0.00

Edinburgh, City of 10.93 South Ayrshire 12.24

Eilean Siar 0.00 South Lanarkshire 14.57

Falkirk 8.63 Stirling 6.36

Fife 11.26 West Dunbartonshire 26.27

Glasgow City 43.52 West Lothian 9.00
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Table 5.4: The local share considers the percentage of a local authority’s data-

zones that are amongst the 15% least deprived in Scotland.

Local authorities Local share Local authorities Local share

Aberdeen City 35.58 Highland 4.79

Aberdeenshire 21.93 Inverclyde 2.73

Angus 9.86 Midlothian 14.29

Argyll & Bute 4.10 Moray 8.62

Clackmannanshire 9.38 North Ayrshire 2.79

Dumfries & Galloway 4.15 North Lanarkshire 6.22

Dundee City 11.17 Orkney Islands 0.00

East Ayrshire 6.49 Perth & Kinross 12.57

East Dunbartonshire 47.24 Renfrewshire 17.76

East Lothian 18.33 Scottish Borders 4.62

East Renfrewshire 57.50 Shetland Islands 0.00

Edinburgh, City of 39.53 South Ayrshire 16.33

Eilean Siar 0.00 South Lanarkshire 12.31

Falkirk 13.20 Stirling 18.18

Fife 12.36 West Dunbartonshire 2.54

Glasgow City 4.76 West Lothian 16.11
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Table 5.5: Scottish Government joint urban/rural classification.

Class Class name Description

1 Large urban areas settlements of over 125000 people.

2 Other urban areas settlements of 10000 to 125000 people.

3 Accessible small towns settlements of between 3000 and 10000 people,

and within a 30 minute drive time

to a settlement of 10000 or more.

4 Remote small towns settlements of between 3000 and 10000 people,

and with a drive time between 30 and 60 minutes

to a settlement of 10000 or more.

5 Very remote small towns settlements of between 3000 and 10000 people,

and with a drive time of over 60 minutes

to a settlement of 10000 or more.

6 Accessible rural areas Areas with a population of less than 3000 people,

and within a 30 minute drive time

to a settlement of 10000 or more.

7 Remote rural areas Areas with a population of less than 3000 people,

and with a drive time between 30 and 60 minutes

to a settlement of 10000 or more.

8 Very remote rural areas Areas with a population of less than 3000 people,

and with a drive time of over 60 minutes

to a settlement of 10000 or more.
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In order to be able to apply the COM-Poisson regression model in this con-

text, we need to also take into account the population and age structure of

each intermediate geography. This is achieved by reflecting expected counts

(Ei) of hospital emergency admissions for each intermediate geography. The

expected counts are computed using the age structure of each intermediate

geography’s population, together with estimates of the probabilities of hos-

pitalisation in each age group. To account for the spatial autocorrelation

of the data we use a conditional autoregressive model, which is specified as

follows

P (Yi = yi|µi, νi) =

(
µyii
yi!

)νi 1

Z(µi, νi)
,

Z(µi, νi) =
∞∑
j=0

(
µji
j!

)νi

,

log

{
µi
Ei

}
= xᵀ

iβ + φi ⇒ E[Yi] ≈ Ei exp {xᵀ
iβ + φi},

log{νi} = −xᵀ
i c⇒ V[Yi] ≈ Ei exp {xᵀ

iβ + φi + xᵀ
i c}.

(5.5)

Y is the dependent random variable being modelled (emergency hospital

admissions), Ei is the expected emergency hospital admissions for the ith

intermediate geography, φi are the random effects for the parameter µ, while

β and c are the regression coefficients for the centering link function and the

shape link function. Finally, the covariates xi are comprised of: the depri-

vation weight of the intermediate geography i, the percentages of each ur-

ban/rural class within the intermediate geography i (using large urban areas

as the baseline model), and 32 dummy variables that relate the intermediate

geography i to its local authority.
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The conditional autoregressive prior (CAR) being used for the random effects

φi in this model is given by

φk|φ−k ∼ N

(
ρ
∑n

i=1 wkiφi
ρ
∑n

i=1wki + 1− ρ
,

τ 2

ρ
∑n

i=1 wki + 1− ρ

)
(5.6)

and was proposed by Leroux et al. (2000) for modelling varying strengths

of spatial autocorrelation. It can be seen as a generalisation of Besag et al.

(1991) CAR prior where the first model can only represent strong spatial

autocorrelation and produces smooth random effects. The random effects

for non-neighbouring areas are conditionally independent given the values of

the random effects of all the other areas. The parameter ρ can be seen as

a spatial autocorrelation parameter, with ρ = 0 corresponding to indepen-

dence, while ρ = 1 corresponds to strong spatial autocorrelation. In the first

case there is an absence of spatial correlation in the data and the overdis-

persion is not caused by a spatial heterogeneity, while in the second case all

the overdispersion is due to the spatial autocorrelation. When 0 < ρ < 1,

the random effects are correlated and the data present a combination of spa-

tial structured and unstructured components. Lee (2011) compares four of

the most common conditional autoregressive models and concludes that the

model by Leroux et al. (2000) is the most appealing from both theoretical

and practical standpoints.

In this formulation the coefficients have a direct link to either the mean

or the variance, providing insight into the behaviour of the dependent vari-

able. Larger values of β and c can be translated to higher mean and higher

variance for the response variable, respectively. We implement a Bayesian

approach for the previous model, and propose an efficient and exact MCMC

algorithm based on the piecewise geometric bounds and the retrospective
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sampling algorithm. We use diffuse multivariate normal priors for the re-

gression coefficients with a mean of zero and a variance of 106. A uniform

prior on the unit interval is specified for ρ, and a uniform prior on the interval

(0, 1000) is adopted for τ 2. In addition, the proposal distribution h is chosen

to be a multivariate normal centered at the current value.

Table 5.6 shows the non-model-based regression coefficients for each local

authority (32 local authorities in total). These coefficients refer to the inter-

cepts of the 32 regression models (one for each local authority) each using an

offset (e.g. logEi), but no other covariates. These 32 models are specified as

follows

P (Yi = yi|µi, νi) =

(
µyii
yi!

)νi 1

Z(µi, νi)
,

Z(µi, νi) =
∞∑
j=0

(
µji
j!

)νi

,

log

{
µi
Ei

}
= β0 ⇒ E[Yi] ≈ Ei exp {β0},

log{νi} = −c0 ⇒ V[Yi] ≈ Ei exp {β0 + c0}. (5.7)

Each of the 32 models includes only the intermediate geographies which be-

long to the same local authority. It must be noted that some of the local au-

thorities are comprised of a small number of data points, for example Orkney

Islands, Shetland Islands, and Eilean Siar include less than 10 intermediate

geographies.

Table 5.7 shows the regression coefficients for the model in (5.5). The COM-

Poisson coefficients for ν of most covariates are positive which is a sign of

overdispersion. Table 5.7 shows that there is a wide range of values for the

coefficients c. They can take negative values (Orkney Islands) and up to
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greater than 2 (Dumfries & Galloway, Scottish Borders). The regression

coefficients b1, c1 for the deprivation weights have positive posterior median

estimates, 0.87 and 0.05 respectively, with (0.84, 0.90) and (−0.36, 0.52) as

their 95% credible intervals. This translates to higher emergency hospital

admissions for intermediate geographies with high deprivation. This is not

true for the variance, since the credible interval includes negative values. The

data have a strong spatial autocorrelation as can be seen, in Table 5.8, from

the credible intervals of the autocorrelation parameter ρ.

Figures 5.15 and 5.16 show the medians (plotted as diamonds) and the 95%

credible intervals (plotted as lines) for the regression coefficients for both

models. The black lines refer to the non-model-based coefficients whereas

the red lines refer to the regression model including all covariates. In the

top panel it can be seen that adjusting for the covariates (deprivation, ur-

ban/rural classification, and local authorities) shifts the regression coeffi-

cients towards zero. As we mentioned earlier, modelling the variance is the

main interest in this application since it helps us identify areas with health

inequalities. Comparing the panels in Figures 5.15 and 5.16 reveals a differ-

ent pattern for the mean effects and variance effects of the local authorities.

Local authorities with large µ coefficients (corresponding to poor health) do

not necessarily have large ν coefficients (corresponding to large health in-

equalities). This can be seen in local authorities such as North Ayrshire,

North Lanarkshire and South Ayrshire.

The coefficients for the percentages of each class are shown in Figures 5.17

and 5.18 where large urban areas are considered to be the baseline model.

The remaining classes are plotted with regards to their distance from an
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Table 5.6: Posterior medians of the non-model-based regression coefficients for

each local authority.

Local authorities β0 c0 Local authorities β0 c0

Aberdeen City -0.03 3.59 Highland -0.06 3.41

Aberdeenshire -0.26 2.10 Inverclyde 0.18 3.62

Angus -0.16 2.15 Midlothian -0.13 2.31

Argyll & Bute -0.07 3.05 Moray -0.25 2.27

Clackmannanshire -0.18 2.57 North Ayrshire 0.18 3.06

Dumfries & Galloway -0.18 3.23 North Lanarkshire 0.18 2.93

Dundee City 0.04 3.14 Orkney Islands -0.17 2.29

East Ayrshire 0.16 3.24 Perth & Kinross -0.13 3.02

East Dunbartonshire -0.15 3.14 Renfrewshire 0.06 3.59

East Lothian -0.25 2.48 Scottish Borders 0.01 3.10

East Renfrewshire -0.26 2.99 Shetland Islands -0.18 3.23

Edinburgh, City of -0.31 3.69 South Ayrshire 0.11 3.10

Eilean Siar -0.02 2.26 South Lanarkshire 0.01 2.54

Falkirk -0.15 2.26 Stirling -0.21 3.43

Fife -0.14 2.75 West Dunbartonshire 0.13 2.57

Glasgow City 0.20 3.59 West Lothian 0.09 3.08



CHAPTER 5. SIMULATIONS AND CASE STUDIES 161

Table 5.7: Posterior medians for the regression coefficients of the full model.

Covariates βi ci Covariates βi ci

Deprivation weight 0.87 0.05 Eilean Siar 0.00 0.39

Other urban area 0.00 -0.31 Falkirk -0.19 1.48

Accesible small town -0.04 0.06 Fife -0.14 1.40

Remote small town -0.04 -0.12 Glasgow City 0.03 1.72

Very remote small town 0.15 0.91 Highland 0.00 1.87

Accesible rural area -0.08 -0.01 Inverclyde 0.04 1.39

Remote rural area -0.19 0.11 Midlothian -0.11 1.39

Very remote rural area -0.09 0.51 Moray -0.12 1.44

Aberdeen City 0.05 1.26 North Ayrshire 0.07 1.19

Aberdeenshire -0.05 1.49 North Lanarkshire 0.06 1.08

Angus -0.11 1.93 Orkney Islands -0.11 -0.33

Argyll & Bute -0.02 1.62 Perth & Kinross 0.03 1.26

Clackmannanshire -0.21 1.68 Renfrewshire 0.04 1.70

Dumfries & Galloway -0.10 2.42 Scottish Borders 0.12 2.38

Dundee City -0.07 1.58 Shetland Islands -0.13 1.04

East Ayrshire 0.07 1.87 South Ayrshire 0.12 1.17

East Dunbartonshire 0.05 1.57 South Lanarkshire -0.01 1.45

East Lothian -0.16 0.69 Stirling -0.08 1.75

East Renfrewshire -0.03 1.29 West Dunbartonshire -0.03 1.05

Edinburgh, City of -0.20 1.92 West Lothian 0.05 1.68
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Table 5.8: Posterior medians for the variance and spatial autocorrelation of the

random effects.

Median 2.5% 97.5%

τ 2 0.004 0.002 0.008

ρ 0.927 0.783 0.971

urban area. The black circle represents the large urban area class whereas

the blue, brown and violet lines represent the urban area, small town and

rural area classes respectively. It can be seen that very remote small towns

have higher (on average) emergency hospital admissions (see Panel 5.17) and

higher excess variance (see Panel 5.18) compared to large urban areas.

Finally, Figure 5.19 shows the standardised incidence ratio of the average

emergency hospital admissions using the non-model-based coefficients (on

the left) and the coefficients of the full model (on the right).
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Figure 5.15: Credible intervals for the regression coefficients of µ for the Local

authorities. The non-model-based regression coefficients of Table

5.6 are shown in black and the full model of Table 5.7 in red.
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Figure 5.16: Credible intervals for the regression coefficients of ν for the local

authorities. The non-model-based regression coefficients of Table

5.6 are shown in black and the full model of Table 5.7 in red.
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Figure 5.17: Credible intervals for the regression coefficients for µ for each class

in Table 5.5.

Range of bounds for the acceptance probability

This section discusses the computational aspects of the retrospective algo-

rithm used for inference in this example. The computational speed of the

retrospective technique depends on which strategy is chosen to refine the

bounds. We chose to increase the number of terms that are computed ex-

actly for the estimation of the normalisation constant and use the piecewise

geometric bounds for the remaining terms. We start by computing exactly

240 terms for every Z(µi, νi) and every time the bounds need to be refined

we compute 100 more terms for the observations that have a large difference

between the upper and lower bound. Tables 5.9 and 5.10 show the percent-

ages of every possible outcome (acceptance, rejection, or further refinement)

for different number of refinements. Almost half of the time, for both param-

eters, there is no need to refine the bounds and we can make an accept/reject

decision on just computing 240 terms. Tables 5.11 and 5.12 show the mean

values for the difference of the log bounds. One can see that, even when a
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Figure 5.18: Credible intervals for the regression coefficients for ν for each class

in Table 5.5.

large number of refinements is needed in order to make a decision, the dif-

ference of the log bounds is still large. This shows that there is no need to

be very precise in our bounds. The weighted averages for the log differences

and the computed terms are also shown. The weighted average for the log

difference of the bounds when the MCMC rejects the candidate value for the

first parameter is 2.51 which means that a rejection decision can often be

reached with very loose upper and lower bounds.
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Figure 5.19: SIR for emergency hospital admissions.
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Table 5.9: Percentages for refinements when updating the parameter µ.

Refinements Accepted Rejected Still need refinement

0 9.6% 43.2% 47.2%

1 11.5% 20.1% 15.6%

≥ 2 7.3% 8.3% 0%

Total 28.4% 71.6%

Table 5.10: Percentages for refinements when updating the parameter ν.

Refinements Accepted Rejected Still need refinement

0 11.9% 27.2% 60.9%

1 16.3% 23.8% 20.8%

≥ 2 9.6% 11.2% 0%

Total 37.8% 62.2%
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{â

n
}
−

lo
g
{ǎ
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{ǎ

n
}

0
33

.9
%

3.
51

24
0

60
.3

%
3.

55
24

0

1
40

.5
%

1.
11

26
4.

71
28

.1
%

1.
13

26
4.

66

≥
2

25
.6

%
0.

40
42

6.
15

11
.6

%
0.

43
42

0.
55

W
ei

gh
te

d
av

er
ag

e
1.

74
29

7.
84

2.
51

26
7.

75



CHAPTER 5. SIMULATIONS AND CASE STUDIES 170

T
a
b
le

5
.1
2
:

M
ea

n
va

lu
es

fo
r

th
e

d
iff

er
en

ce
of

th
e

lo
g

b
ou

n
d

s
an

d
th

e
co

m
p

u
te

d
te

rm
s

w
h

en
u

p
d

a
ti

n
g

th
e

p
a
ra

m
et

er
ν

.

R
efi

n
em

en
ts

A
cc

ep
te

d
A

cc
ep

ta
n
ce

C
om

p
u
te

d
te

rm
s

R
ej

ec
te

d
R

ej
ec

ti
on

C
om

p
u
te

d
te

rm
s

lo
g
{â
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5.2.2 Publications of Ph.D. students

Long (1990) examined the effect of education, marriage, family, and the

mentor on gender differences in the number of published papers during the

Ph.D. studies of 915 individuals. The population was defined as all male

biochemists who received their Ph.D.’s during the periods 1956-1958 and

1961-1963 and all female biochemists who obtained their Ph.D.’s during the

period 1950-1967. Some of the variables that were used in the paper are

shown in Table 5.13. For ease of interpretation we standardise all covariates

by subtracting their mean and dividing by their standard deviation.

Table 5.13: Description of variables.

Variable Description

Gender of student Equals 1 if the student is female; else 0.

Married at Ph.D. Equals 1 if the student was married

by the year of the Ph.D.; else 0.

Children under 6 years old Number of children less than 6 years old

at the year of the students Ph.D.

Ph.D. prestige Prestige of the Ph.D. program in biochemistry

based on studies. Unranked institutions

were assigned a score of 0.75 while ranked

institutions had scores ranging from 1 to 5.

Mentor Number of articles produced by Ph.D. mentor

during the last 3 years.

The study found, amongst other things, that females and Ph.D. students

having children publish fewer (on average) papers during their Ph.D. studies.

In addition, having a mentor with a large number of publications in the last

three years has a positive effect on the number of publications of the Ph.D.
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student.

We will focus on the students with at least one publication (640 individuals)

with empirical mean and variance of 1.42 and 3.54 respectively, a sign of

overdispersion. We compare the Poisson, negative binomial, and the COM-

Poisson regression models. For the COM-Poisson regression model we will

also use the shrinkage priors for the regression coefficients discussed in Chap-

ter 4. In this example, the exchange algorithm will be used for posterior

simulation. We prefer using the exchange algorithm due to its simplicity

compared to the retrospective sampling algorithm since there is no need to

estimate the normalisation constant at all or estimate bounds for the accep-

tance probability. As a result, te exchange algorithm is usually faster, in

computational time, than the retrospective algorithm.

Figure 5.20 shows the 95% and 68% credible intervals for the regression

coefficients of µ for all the regression models. The Poisson and negative

binomial models have similar results. The only difference between them is

that the effect of having children is not statistically significant using the

latter model. The gender of a Ph.D. student and the number of articles by

the Ph.D. mentor are the only covariates that are statistically significant for

both the Poisson and negative binomial models. Specifically, these models

conclude that female Ph.D. students publish less on average than male Ph.D.

students and that a mentor who has published a lot of articles has a positive

effect on the number of articles of the Ph.D. student. On the other hand

for the COM-Poisson models, the previous two covariates seem to not have a

statistically significant effect on the mean of the number of articles published

by a Ph.D. student.
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Regarding the gender covariate it must be noted that there are four male

Ph.D. students with a large number of articles published (11, 11, 15, 18) that

could be considered as outliers. If these four students are taken out of the

dataset, the gender covariate does not have a significant effect for the Poisson

and negative binomial models. In addition, the empirical means of the male

and female Ph.D. students are 1.5 and 1.2 respectively while the empirical

median is 1 for both genders. Thus the COM-Poisson regression model seems

to be doing a better job at not concluding that there is an effect of the gender

covariate.

Figure 5.21 shows the 95% and 68% credible intervals for the regression

coefficients of ν for the COM-Poisson regression models. This figure shows

that there seems to be a positive effect of the mentor covariate on the variance

of the articles of the Ph.D. student. The more articles a mentor publishes

(during the last 3 years) the larger the variance for the number of articles

published by a Ph.D. student. This seems to be reinforced further when

we look at the empirical variances of students having mentors with an above

average number of articles published versus students having mentors with less

than average number of articles published. The empirical variances for the

former group is 5.8, with the latter group having a variance of 2.1 respectively

(ratio of around 2.8). The corresponding empirical means are 1.9 and 1.2

(ratio of around 1.6). In Poisson-distributed data one would expect the

ratios to be roughly equal.
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Figure 5.20: Publication data: 95% and 68% credible intervals for the regression

coefficients of µ.
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Figure 5.21: Publication data: 95% and 68% credible intervals for the regression
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5.2.3 Fertility data

We finally use a data set from Winkelmann (1995) based on data from the

second (1985) wave of the German Socio-Economic Panel. The data consist

of 1243 women over 44 in 1985, who are in first marriages and who answered

the questions relevant to the analysis. The variables that were used in the

paper can be seen in Table 5.14. For ease of interpretation we standard-

ise all covariates by subtracting their mean and dividing by their standard

deviation.

Table 5.14: Description of variables.

Variable Description

Nationality Equals 1 if the woman is German; else 0.

General education Measured as years of schooling.

Post-secondary education (vocational training) Equals 1 if the woman had

vocational training; else 0.

Post-secondary education (university) Equals 1 if the woman had

a university degree; else 0.

Religion The woman’s religious denomination

(Catholic, Protestant, Muslim)

with other or none as the baseline group.

Year of birth Year that the woman was born.

Age at marriage Year that the woman was married.

The empirical mean and variance of the response are 2.39 and 2.33 respec-

tively. The unconditional variance is already slightly smaller than the un-

conditional mean. Including covariates the conditional variance will reduce

further, thus suggesting that the data show underdispersion. For this reason,

the negative binomial model was not used in this context.
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Parametric regression

The results for the different parametric models for count data are shown

in Figures 5.22 and 5.23. The credible intervals for the coefficients of µ

are similar across all the models. Looking at Figure 5.23 we can see that

vocational education, age, and age at marriage are statistically significant.

Even though the estimated regression coefficients seem similar one might

want to ask the question which model describes the data the best.

Model selection

Spiegelhalter et al. (2002) defined the deviance information criterion (DIC)

as a (more) Bayesian alternative to model assessment tool like AIC and BIC.

The DIC can be applied to non-nested models and its calculation does not

require maximisation over the parameter space, like the AIC and BIC. It

is comprised of two terms, one representing goodness-of-fit and another for

model complexity. It is defined as

DIC = pD +D,

= 2D −D(θ),

= 2pD +D(θ), (5.8)

where D = E[−2 log f(y|θ)] is the expectation of the deviance, pD = D −

D(θ) is known as the effective number of parameters and θ is the posterior

estimate of the parameters (mean, median, etc). Computing the second term

of the DIC is done by estimating the deviance at each iteration of the MCMC

chain and then finding the average. A smaller DIC indicates a better fit to
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the data set. For more information one can see Spiegelhalter et al. (1998,

2002).

The results can be seen in Table 5.15. The COM-Poisson model always

outperforms the Poisson and the negative binomial models. Using the models

with informative priors for the regression coefficients of ν gives similar results

as the model with diffuse priors.

Figures 5.24-5.29 show the sample and predicted relative frequencies (for the

number of children) for the six biggest groups in the data set. Information

about the groups and the number of women within each group are presented

in the figures. The figures reinforce the notion that the COM-Poisson re-

gression model provides a better fit to the data, compared to the Poisson

alternative.



CHAPTER 5. SIMULATIONS AND CASE STUDIES 179

−0.5 0.0 0.5 1.0 1.5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
age at marriage

age

rural

Muslim

Protestant

Catholic

university

vocational education

schooling

German

intercept

Poisson
COM−Poisson
COM−Poisson lasso
COM−Poisson spike

Regression coefficients for µ

Figure 5.22: Fertility data: 95% and 68% credible intervals for the regression

coefficients of µ.
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Figure 5.23: Fertility data: 95% and 68% credible intervals for the regression

coefficients of ν.
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Figure 5.24: Sample and predicted relative frequencies for the number of chil-

dren.
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Figure 5.25: Sample and predicted relative frequencies for the number of chil-

dren.
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Figure 5.26: Sample and predicted relative frequencies for the number of chil-

dren.
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Figure 5.27: Sample and predicted relative frequencies for the number of chil-

dren.
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Figure 5.28: Sample and predicted relative frequencies for the number of chil-

dren.
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Figure 5.29: Sample and predicted relative frequencies for the number of chil-

dren.
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Bayesian density regression

Despite the COM-Poisson model providing a better fit to the data than its

parametric competitors, it does not seem to fully capture the conditional

distribution of the response. The COM-Poisson regression model is able to

identify the mode correctly across all six groups but cannot always estimate

the density accurately (cf. Figures 5.25, 5.29). The mode of the distribution

of the sample relative frequencies for both these groups is at two and all other

values, even the ones close to two, have small relative frequencies. This

is difficult to capture even for the COM-Poisson model which has higher

predicted relative frequencies to values close to two. This can be seen in

Figure 5.25 looking at the, sample and predictive, relative frequencies at

values one and three.

As a further improvement we will now employ the Bayesian density regression

model presented in Section 4.2. The Bayesian density regression model has

the COM-Poisson regression model as its “baseline” model, but also has the

ability to use an adaptive mixture of these models. Figures 5.30, 5.31 show

the sample and predicted relative frequencies of the previous models along

with the predictive relative frequency of the Bayesian density regression.

Both figures show that the proposed Bayesian density regression model pro-

vides a better fit to the data. This is due to the new model assigning most of

the observations to an underdispersed COM-Poisson regression model with

mode at two, and the rest of them to an overdispersed COM-Poisson re-

gression model with mode at two. When we use the “simple” COM-Poisson

regression model the second COM-Poisson regression model is “merged” with
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the first one and as a result we lose valuable information.

Model selection

Watanabe (2010) introduced the widely applicable information ctiterion, also

known as WAIC or the Watanabe-Akaike criterion, that also works with

singular models and thus is particularly helpful for models with hierarchical

and mixture structures in which the number of parameters increases with

sample size and where point estimates do not make sense. This criterion can

also be considered as a generalisation of the DIC seen in 5.2.3. Like the DIC,

WAIC estimates the effective number of parameters to adjus for overfitting.

Instead of pD (in the case of DIC), two adjustments have been proposed.

These are

pWAIC1 = 2
n∑
i=1

(logE[f(yi|θ)]− E[log f(yi|θ)]) ,

pWAIC2 =
n∑
i=1

V[log f(yi|θ)], (5.9)

Computing these terms can be done by replacing the expectations with av-

erages over the number of posterior draws, similar to computing pD. We will

focus on pWAIC1 which is also similar to pD. Gelman et al. (2013) scale the

WAIC of by a factor of 2 so that it is comparable to DIC since in the original

definition WAIC is the negative of the average log pointwise redictive density

and thus is divided by n). As a result, the WAIC can be defined as

WAIC = −2 (lppd− pWAIC) (5.10)

where lppd =
∑n

i=1 log
∫
f(yi|θ)fpost(θ) is the log pointwise predictive den-

sity (where fpost(θ) = f(θ|y)). This equation shows another advantage of
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the WAIC, instead of conditioning on a point estimate (mle, posterior mean,

posterior median) it averages over the posterior distribution. This can be

very important especially in a predictive context. For more information on

the WAIC see Vehtari and Gelman (2014); Gelman et al. (2014). In the

programming language R, the package LaplacesDemon (Hall, 2012) includes

a function which takes as an argument a n × s matrix of log-likelihoods (n

data points and s samples) and calculates the WAIC. Table 5.16 shows the

DIC and WAIC for the fertility data.

Table 5.16: Minimum DIC for the “simple” COM-Poisson regression model (with

lasso priors) and WAIC for the Bayesian density regression model for

the fertility data (minimum criterion is in bold).

DIC WAIC

Fertility data 4121.43 4116.54

Table 5.17 shows the Kullback-Leibler divergence of the predicted distri-

butions from the observed distribution for each of the six groups, further

supporting the claim that the Bayesian density regression model provides

the best fit to the data.
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Figure 5.30: Sample and predicted relative frequencies for the number of chil-

dren.
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Figure 5.31: Sample and predicted relative frequencies for the number of chil-

dren.
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Chapter 6

Conclusions and future work

Conclusions

In this thesis we proposed and presented

1. a parametric Bayesian regression models for count data which is more

flexible than frequently used methods such as Poisson regression or

negative binomial regression;

2. two different simulation techniques for intractable likelihoods; and

3. a much more flexible Bayesian density regression model for count data,

The first regression model is the “simple” COM-Poisson Bayesian regression

model. We showed through simulations and case studies that its ability to

differentiate between a covariate’s effect on the mean of the response and the

one on its variance can give a more complete picture of the effect a covariate

194
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has on the conditional distribution of the response variable. The regression

models for count data that are mainly used in the literature (Poisson and

negative binomial) can give a false picture of the effect of a covariate on the

response variable. The COM-Poisson, on the other hand, is able to detect

the true effects of a covariate on the response variable (cf. Subsection 5.1.1).

We have used informative (shrinkage) priors for the regression coefficients of

this model and argued that the usage of these priors corresponds to using

the Poisson regression model as the “baseline” model. This means that

using this model we can, at a small additional computational cost, represent

underdispersion or overdispersion, if necessary, but otherwise fall back to

classical Poisson regression. Three different data sets have been analysed and

we have shown that the COM-Poisson regression model provides a better fit

to the data compared to the alternative models (Poisson, negative binomial)

in terms of DIC.

We have presented an extensive case study for COM-Poisson regression in

which we modelled emergency hospital admissions data in Scotland. By

using a COM-Poisson distribution we were able to model the mean and the

variance explicitly. As a result, we were able to identify areas with a high

level of health inequalities (Chanialidis et al., 2014).

One challenge of fitting models involving the COM-Poisson distribution is

that its normalisation constant is not known in closed form. We have pro-

posed two simulation techniques which avoid having to compute this nor-

malisation constant exactly. The first approach, retrospective sampling, was

based on sequentially computing lower and upper bounds on the normalisa-

tion constant for distributions for which the ratios of consecutive probabilities
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can be bounded over ranges of the random variable. Using these bounds we

are often able to make a decision of the acceptance or rejection of a proposed

value before the calculation of the normalisation constant gets too expen-

sive. Indeed, the results have shown that in order for the MCMC algorithm

to make a decision between accepting or rejecting a candidate move, the

bounds on the acceptance probability do not need to be tight.

The second simulation technique was based on the exchange algorithm (Mur-

ray et al., 2006). Its key idea is that the inclusion of an auxiliary sample in

the acceptance ratio allows for cancelling out the normalisation constants,

which are expensive to compute. This however requires being able to sam-

ple from the COM-Poisson distribution efficiently. In Subsection 3.3.2 we

have showed how one can use rejection sampling to draw efficiently from the

COM-Poisson distribution.

The second regression model is based on an adaptive Dirichlet process mix-

ture of COM-Poisson regression models. This model can be thought of as an

extension to the “simple” COM-Poisson regression model in the same way

that the COM-Poisson regression model can be thought of as an extension

to the Poisson regression model. It provides more flexibility compared to

the “simple” COM-Poisson model and is flexible enough to model underdis-

persed and overdispersed distributions (Section 2.4.5). We take advantage

of the flexibility of this Bayesian density regression model and we use it to

determine the conditional quantiles by estimating the density of the data,

thus eliminating the problems of applying quantile regression to count data

(Section 2.3).
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Future work

We mentioned on page 104 that if one compares the acceptance ratios of

the exchange algorithm, in equation (3.27), and the Metropolis Hastings,

in equation (3.4), the only difference is that the ratio of the normalisation

constants Z(θ)
Z(θ∗)

is replaced by qθ(y∗)
qθ∗ (y∗)

. This can be seen as an importance

sampling ratio of Z(θ)
Z(θ∗)

. An alternative approach that takes advantage of

the exchange algorithm has been proposed by Alquier et al. (2014). Instead

of simulating a single auxiliary vector y∗ they use an unbiased estimator

of Z(θ)
Z(θ∗)

at each step of the exchange algorithm by simulating a number

of auxiliary vectors y∗1,y∗2, . . . ,y∗M from p(|θ∗) and then approximate the

ratio of normalisation constants by

1

M

M∑
m=1

qθ(y
∗m)

qθ∗(y∗m)
≈ Z(θ)

Z(θ∗)
. (6.1)

As a result an approximation, ã of the acceptance ratio, a, is computed. For

M = 1 the new MCMC will be the same as the exchange algorithm, and

when M →∞ the new MCMC will be equivalent to the Metropolis-Hastings

algorithm. Alquier et al. (2014) demonstrate the method on a simple sin-

gle parameter model and then apply their methodology to more challenging

models (e.g. network data). Even though for 1 < M < ∞ the new algo-

rithm is not guaranteed to sample from the target distribution, Alquier et al.

(2014) show that the new method, termed as “noisy” Monte Carlo, performs

better compared to the exchange algorithm in terms of bias (on the poste-

rior means). This is due to the improved mixing in the approximate “noisy”

algorithm.

Another possible way to improve mixing for the exchange algorithm would
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be to combine it with a modified delayed rejection scheme (Mira, 2001). In-

stead of proposing a parameter θ∗ and sampling a single observation y∗ from a

COM-Poisson with parameter θ∗; one could sample more auxiliary variables

y∗1,y∗2, . . . ,y∗M , use the first one along with θ∗ as the new candidate values

of the Metropolis-Hastings algorithm (e.g.(y∗1,θ∗)); in case of rejection the

new candidate pair will be (y∗2,θ∗) and so on. It will be interesting to imple-

ment both ideas (“noisy” algorithm and delayed rejection algorithm) along

with the exchange algorithm for both the proposed models (COM-Poisson

and Bayesian density regression) and draw comparisons between them.
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Appendix A

MCMC diagnostics

R (R Core Team, 2014) was used for all the computations in this paper.

Trace plots, density plots, autocorrelation plots (for every regression coeffi-

cient) and results for the Gelman and Rubin diagnostic, (Gelman and Rubin,

1992), were employed to assess convergence of the MCMC sampler to the pos-

terior distribution, using the coda package (Plummer et al., 2006). Regarding

the COM-Poisson regression model, we present MCMC diagnostics for the

emergency hospital admissions case study in Section 5.2.1. The MCMC was

run for 60000 iterations with the first 20000 as the burn-in period. Three

simulations were run, with different starting values, with a multivariate po-

tential scale reduction factor R̂ = 1.08 (Gelman et al., 2004). In the next

pages we present the trace plots and autocorrelation for the first eight regres-

sion coefficients. The first regression coefficient (e.g. β1, c1) corresponds to

the deprivation weight while the rest correspond to the classes of Table 5.5

(using large urban areas as the baseline model). The trace plots of all the

200
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other regression coefficients which are not in the appendix, can be found on

my website.1

For the Bayesian density regression model we cannot apply similar diagnos-

tics since the number of clusters change for every iteration, thus the number

of regression parameters are not constant across the MCMC algorithm. One

can plot the number of clusters across iterations and find the empirical prob-

ability of having K clusters (Dunson et al., 2007). We will focus on the

second simulated example on page 134.

Similar diagnostics have been applied to all simulations and case studies.

1http://www.chanialidis.com/diagnosticsMCMC

http://www.chanialidis.com/diagnosticsMCMC
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Emergency hospital admissions

0 10000 20000 30000 40000 50000 60000

0.
6

1.
0

Iterations

Trace of var1

0.6 0.7 0.8 0.9 1.0 1.1 1.2
0

10

Density of var1

N = 60000   Bandwidth = 0.003003

0 10000 20000 30000 40000 50000 60000

−
0.

3
0.

0

Iterations

Trace of var2

−0.3 −0.2 −0.1 0.0 0.1

0
5

15

Density of var2

N = 60000   Bandwidth = 0.005324

0 10000 20000 30000 40000 50000 60000

−
0.

2
0.

1

Iterations

Trace of var3

−0.3 −0.2 −0.1 0.0 0.1 0.2

0
4

8

Density of var3

N = 60000   Bandwidth = 0.004346

0 10000 20000 30000 40000 50000 60000

−
0.

6
0.

0

Iterations

Trace of var4

−0.6 −0.4 −0.2 0.0

0
4

8

Density of var4

N = 60000   Bandwidth = 0.007721

Figure A.1: Trace plots for β1, β2, β3, β4.
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A.2 Bayesian density regression

Simulation

One of the simulations on which we applied the Bayesian density regression

model was

Yi|Xi = xi ∼ 0.3COM-Poisson(exp{xi1}, exp{xi1})

+ 0.7COM-Poisson(exp{2− 2xi1}, exp{1 + xi1}),

where xi1 ∼ Unif(0, 1) and xi = (1, xi1)ᵀ. For more information one can see

page 134. Figure A.5 shows the number of “active” clusters for each itera-

tion, after the burn-in period. Table A.3 shows the empirical probabilities

of having K clusters, after the burn-in period. Figure A.6 shows the cumu-

lative mean probabilities for each value of y (in colour) along with the true

probabilities (in grey) for y = 0, 1, . . . , 15 and xi1 = 0.25 while Figures A.7

and A.8 show the 95% highest posterior density intervals for the estimated

probabilities and the KL divergence between the true probability distribu-

tion and the cumulative means of the estimated probabilities respectively

(for xi1 = 0.25).



APPENDIX A. MCMC DIAGNOSTICS 209

0 1000 2000 3000 4000 5000

2
4

6
8

Iterations

C
lu

st
er

s

Figure A.5: Number of clusters across iterations.
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Number of clusters Probability

1 0.05

2 0.34

3 0.15

4 0.12

5 0.10

6 0.11

7 0.06

8 0.04

9 0.03

Table A.3: Empirical probabilities of having K clusters.
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Figure A.6: Cumulative mean probabilities for each value of y (in colour) along

with the true probabilities (in grey) for y = 0, 1, . . . , 15, for xi1 =

0.25.



APPENDIX A. MCMC DIAGNOSTICS 212

0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Quantile 0.25

ynew

f(
y|

x)

Figure A.7: The 95% highest posterior density intervals for the estimated prob-

abilities along with the true probabilities, for xi1 = 0.25.
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Figure A.8: KL divergence between the true probability distribution and the

cumulative means of the estimated probabilities for xi1 = 0.25.



Appendix B

(More) Simulations

Bayesian density regression

In addition to the simulations in Chapter 5 we also simulate data from the

following distributions:

Yi|Xi = xi ∼ 0.9COM-Poisson(exp{1− xi1}, exp{3 + xi1})

+ 0.1COM-Poisson(exp{1 + 3xi1}, exp{4 + 4xi1}),

Yi|Xi = xi ∼ Binomial(20, 0.5),

where xi1 ∼ Unif(0, 1) and xi = (1, xi1)ᵀ. We will implement the MCMC

algorithm seen in 4.2, for 10000 iterations with the first 5000 used as a

burn-in period. In the first simulation the second mixture component has

small probability weight and its mean changes radically across the covariate

space. Figure B.1 shows the approximation for the probability mass function

of the first simulation (for N = 100). The top panel of Figure B.2 shows

214
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the true quantiles (dotted lines) and the estimated quantiles (solid lines)

using our approach while the bottom panel shows the true quantiles and the

quantiles from using the “jittering” method of Machado and Santos Silva

(2005). Figures B.3 and B.4 refer to the second simulation.
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Figure B.1: True probability mass function is in black and posterior mean

estimates are in red. The plots refer to the quantiles q =

0.01, 0.05, 0.1, 0.25, 0.40, 0.5, 0.75, 0.9, 0.95 of the empirical distribu-

tion of xi1.
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Figure B.2: The data for the first, in the appendix, simulated example, along

with the quantiles for q = 0.1, 0.5, 0.95 across the covariate space.
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Figure B.3: True probability mass function is in black and posterior mean

estimates are in red. The plots refer to the quantiles q =

0.01, 0.05, 0.1, 0.25, 0.40, 0.5, 0.75, 0.9, 0.95 of the empirical distribu-

tion of xi1.
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Figure B.4: The data for the second, in the appendix, simulated example, along

with the quantiles for q = 0.1, 0.5, 0.95 across the covariate space.
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