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Abstract 

Objectives: Objective assessment of lameness in a clinical setting has been limited by the need 

for complex equipment. The introduction of a commercially available inertial sensor-based 

system of lameness diagnosis has made objective lameness assessment clinically available. 

The objective of the first part of this study was to validate the use of an inertial sensor-based 

system of lameness diagnosis to objectively identify a positive response to diagnostic 

anaesthesia of the equine foot. The second part of the study objectively examined clinical 

compensatory lameness, investigating the relationship between primary and compensatory 

lameness. 

Study design: A retrospective study of data obtained from horses that underwent clinical 

diagnostic anaesthesia while instrumented with an inertial sensor-based system of lameness 

diagnosis between August 2011 and October 2014 was performed. 

Method: Horses were grouped as positive or negative (referring to the change to lameness) 

depending on the response to diagnostic anaesthesia. Those horses categorized as positive were 

further grouped into those with forelimb lameness only, hindlimb lameness only, ipsilateral 

limb lameness, or contralateral limb lameness. Kinematic parameters of head and pelvic 

movement asymmetry were measured and the change in the parameters was calculated. The 

effect of diagnostic anaesthesia was determined using the Mann-Whitney rank sum test. 

Results: 

Assessment of local anaesthesia of the foot in horses with forelimb lameness: A positive 

response to diagnostic anaesthesia resulted in a significant improvement to the symmetry of 

movement in the affected limb. ROC curve analysis showed that the change in head movement 

asymmetry (vector sum) is an excellent diagnostic test (AUC=1.0). 

Forelimb compensatory lameness study: Improvement in forelimb lameness resulted in a 

significant decrease in pelvic movement asymmetry associated with the contralateral hindlimb 

(p<0.05). This was associated with improvement in push-off from the contralateral limb 

(p<0.01). 

Hindlimb compensatory lameness study:  Improvement in hindlimb lameness resulted in a 

significant decrease in head movement asymmetry associated with the ipsilateral forelimb 

(p<0.05). 

Conclusions: It is possible to classify changes that occur and assess the response following a 

diagnostic anaesthesia procedure using an inertial sensor-based system of lameness diagnosis. 

Significant change to hindlimb movement following diagnostic anaesthesia of the forelimb in 

horses with forelimb lameness was demonstrated. In addition, significant change to forelimb 

movement following diagnostic anaesthesia of the hindlimb of horses with hindlimb lameness 

was demonstrated. In summary, this study supports the use of the inertial sensor-based system 

of lameness diagnosis in objective assessment of lameness in the horse, and provides 

significant evidence to support the “law of sides” in horses with naturally occurring lameness. 

Furthermore, the objective assessment of lameness is possible in a range of clinical settings. 
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CHAPTER 1:  

Lameness and objective assessment of lameness in the horse  

 

1.1 Assessment of lameness, repeatability, scales used 

1.2 Force plates, video-based analysis and inertial sensor-based systems of lameness 

diagnosis 

1.3 Use of inertial sensor-based systems of lameness diagnosis 

1.4 Background and aims of the current study 

 

1.1 Assessment of lameness, repeatability, scales used 

 

Lameness examinations originally were entirely reliant upon subjective evaluation of the 

horse’s gait. The introduction of the American Association of Equine Practitioners (AAEP) 

lameness grading scale has given clinicians the ability to standardise grading of severity to 

some degree. However studies have demonstrated that the repeatability of subjective 

evaluation of lameness in horses and agreement between clinicians can be poor. Keegan et 

al. (2001)
 
carried out a study which concluded that even after a full lameness examination, 

experienced clinicians still only agreed upon whether a limb was lame or not 72.9% of the 

time on average, with agreement being slightly higher for forelimb lameness than for 

hindlimb lameness. The AAEP scale defines a grade 1 lameness as a lameness that is 

difficult to observe and not consistently apparent, regardless of circumstances. Grade 2 

lameness is defined as being difficult to observe at a walk or when trotting in a straight 

line, but is consistently apparent under certain circumstances (e.g. when lunging).  Grade 3 

lameness is described as being consistently observable at a trot under all circumstances. An 

AAEP lameness score less than 1.5 resulted in agreement only 61.9% of the time. Inter-

observer reliability has been shown to be poor in some cases, particularly for less 

experienced clinicians and for patients demonstrating low-grade lameness (Keegan et al., 

1998). Numerical and verbal rating scales have been compared and no significant bias was 

found amongst the 16 observers mean scores when using either scale (Hewetson et al., 

2006). Agreement between observers in this study was a little lower than seen previously; 

56% using a numerical rating scale and 60% using a verbal rating scale modelled on the 

AAEP lameness scale. Intra-observer agreement was achieved in 58% of the observations 

when using a numeric scale and 60% was achieved using a visual scale. Even though no 
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significant bias was seen amongst observers mean scores when using either scale, it was 

demonstrated that differences between scores exist and they should not be used 

interchangeably (Hewetson et al., 2006). Another study reported inter-observer agreement 

of 70% (Thomsen et al., 2010). However Fuller et al. (2006) demonstrated that inter-

assessor reliability of lameness scoring was only just acceptable.  

 

The need for objective measures for quantifying lameness so that changes can be more 

accurately appreciated and recorded in a repeatable manner during diagnostic lameness 

examinations was demonstrated in a study (Keegan et al., 1998) which concluded that the 

inter-observer agreement in the change in lameness score following a palmar digital nerve 

block was poor. Video recordings of lameness examinations have been found to be useful 

for many purposes including assessing intra-observer repeatability of lameness evaluations 

with an average of 75% repeatability seen in a study of proximal hindlimb flexion in 

horses (Armentrout et al., 2012). This study again emphasised the need for an objective 

means of lameness assessment, even though repeatability in this study was much better 

than in previous studies. 

 

1.2 Force plates, video-based analysis and inertial sensor-based systems of 

lameness diagnosis 

 

The gold standard measure for evaluation of lameness in horses is generally accepted to be 

the stationary force plate as it has all the qualities necessary to attain this standard (Adams 

and Stashak, 2011) and correlates well with subjective assessment of lameness using a 

grading system (Ishihara et al., 2009). This has been shown to provide repeatable, accurate, 

highly sensitive and specific measurements of kinetics in horses. Measurements in the 

reduction in ground reaction force (GRF) of a horse’s limb are obtained. In its simplest 

form these plates measure only vertical GRF, however more advanced plates measure 

vertical, horizontal and transverse GRF. The plate is a direct method of identifying and 

quantifying lameness in horses. This gold standard technique is however impractical for 

use by clinicians in practice due to the equipment required to obtain measurements. 

Installation and maintainance is complex and expensive. Video-based motion analysis 

systems, which are based on kinematics, have been used to provide an objective method of 

analysis of lameness in horses. Since either a treadmill or multiple cameras are required, 
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again there are severe limitations to this system’s use. Symmetry of the vertical head 

movement is correlated with the vertical movement of the forelimb in order to quantify 

lameness. The introduction of various inertial sensor-based systems of lameness diagnosis 

has allowed kinematic analysis to become more accessible compared with the previous 

method of kinematic gait analysis using video-based systems. These inertial systems can 

be easy to instrument (fit to the horse) and are user friendly. Good correlation between the 

video-based and accelerometer/gyroscopic-based systems has been demonstrated (Keegan 

et al., 2004) with excellent and good levels of agreement between the forelimb and 

hindlimb measurements respectively. Four transducers were used in some of the older 

systems with wires needing to be securely positioned. The great advantage that these 

accelerometer-gyroscopic systems have provided over subjective observation is the ability 

to analyse many parts of the stride. Although a video-based system provides at least the 

same amount of information, the advantage that the inertial sensor-based systems have is 

that they are easy to instrument and use and require far less equipment and can thus be 

easily applied to a clinical setting. Individual lame strides can now be divided into phases 

(impact, midstance, impact, breakover) and it is possible to investigate and quantify 

compensatory lameness that may be occurring secondarily.  The current models transmit 

data wirelessly.  

 

An inertial sensor-based system of lameness diagnosis has been compared with stationary 

force plate for detection of the more severely affected limb in cases of bilateral forelimb 

lameness and demonstrated good sensitivity (Keegan et al., 2012). Such cases can be 

challenging to assess in practice.  By using measurements in upward head movement 

asymmetry at the end of the stance phase and downward movement asymmetry during the 

first half of the stance phase it was demonstrated that it is possible to correctly identify the 

lamer forelimb in 78% of bilateral forelimb lameness cases. An overall measurement of 

head movement asymmetry during the trial allowed correct classification of the lamer 

forelimb in 83% of cases.  A recent study by (McCracken et al., 2012) provided evidence 

that such inertial sensor-based systems of lameness diagnosis are in fact very sensitive and 

able to identify lower grades of lameness than a consensus of three experienced 

veterinarians. Low-grade lameness cases have been frequently reported to be challenging 

for observers. This study induced lameness in horses by placing shoes that allowed 

lameness induction via sole pressure. Incremental increases in pressure were induced. 

Indeed the inertial sensor-based system of lameness diagnosis correctly selected the 
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affected limb in 58% of the trials when the lameness was at a lower level than that required 

by the subjective evaluation performed by three experienced veterinarians. In only 33% of 

the trials did the observers identify the affected limb at the same level of lameness as that 

required by the inertial sensor-based system of lameness diagnosis.  In five instances the 

observers were able to identify the affected limbs prior to the sensor system, however in 

these trials there appeared to be high variability in the data or all criteria for both 

evaluations in a trial were not met. 

 

1.3 Use of inertial sensor-based lameness systems of lameness diagnosis 

 

Recent advances in this inertial sensor-based system of lameness diagnosis technology 

have enabled movement of normal horses to be better understood such as the biomechanics 

of the sacroiliac joint (Goff et al., 2010). In order to fully assess lameness in horses a good 

working knowledge of normal biomechanics is essential. Keegan et al (2011) demonstrated 

that the use of two accelerometers, one placed on the head and the other on the pelvis 

midline croup region-(between the tubera sacralia, and a right forelimb gyroscope can 

provide repeatable measurements of head and torso asymmetry, with repeatability being 

slightly greater for the latter (Figure 1.1). Repeatability is essential for any diagnostic tool 

to be reliable and for results to be useful. The availability of such a tool, which allows 

measurement and quantification of changes in gait parameters to be made in a repeatable 

manner, is thus a powerful advancement. Hence this is an exciting time for kinematic 

research to aid with the diagnosis of lameness in horses.  

 

Kinematic measurements of gait have been used to determine improvement of lameness in 

horses with navicular disease after palmar digital nerve block in treadmill studies (Keegan 

et al., 1997). The accessibility of inertial sensors means that further studies can easily be 

performed. Appropriate measures to quantify the severity of lameness have been identified. 

These include the difference in maximum and minimum height of the head and pelvis 

between the right and left portions of the stride. Since these parameters do not vary with 

the average asymmetry over the examination and they have relatively low standard 

deviation when compared with other measures they are regarded as the most reliable. It 

would be beneficial to undertake studies to identify threshold values for inertial sensor-

based systems to allow assessment of responses to diagnostic procedures to be made and to 
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provide guidelines for practitioners to use when assessing lame horses with the aid of such 

sensor systems in practice. Marshall et al. (2012) identified that significant changes occur 

in pelvic movement asymmetry and maximum pelvic height following flexion tests in 

horses that are in regular work. Thus inertial sensor-based systems of lameness diagnosis 

can objectively assess responses to flexion tests. Cut-off values, with adequate sensitivity 

and specificity (0.71, 0.65 respectively) to identify a positive response were obtained in 

this study. Individual responses to flexion tests have been reported to be highly variable 

both within and between horses (Starke et al., 2012). An additional complicating factor has 

been that clinicians differ greatly in their assessment of such responses. Hence validation 

of objective measures to assess responses is needed.  Research into establishing further cut-

off values for other diagnostic procedures is required to guide veterinarians undertaking 

lameness examinations using this objective system. The system has been used to make 

comparisons of baseline lameness examinations compared with post diagnostic anaesthesia 

analyses (Figure 1.2), however the data has not been validated. Thus further studies into 

the use of this system are warranted.  
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Figure 1.1: Photographs of a horse instrumented with the “Lameness Locator
®

” inertial 

sensor based lameness system. Accelerometers are placed on the midline on the head (A) 

and between the tubera sacrale (B) and a gyroscope (C) is fitted to the pastern of the right 

forelimb. Photograph taken by S.Maliye at the Weipers Centre Equine Hospital. 
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Figure 1.2: Lameness Locator
®
 report in a clinical case for comparison before and after 

diagnostic anaesthesia of the left intercarpal joint. 
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1.4 Background and aims of the current study 

 

Lameness examinations can clearly be fairly complex. Tools to objectively measure 

motion and changes in the horse’s gait following diagnostic procedures undertaken in a 

clinical setting will enable more accurate and repeatable conclusions to be formulated by 

observers who in the past had been entirely reliant upon subjective measures. Additionally, 

there is need to further understand and standardise procedures carried out during lameness 

examinations, such as flexion tests and diagnostic anaesthesia. Inertial sensor based 

systems providing repeatable, objective measures have also been helpful in this area by 

aiding in the understanding of the effect that such procedures are having on a horse’s gait 

(Starke et al., 2012).  

 

The objective of the current study was firstly to investigate the use of an inertial sensor 

based lameness system to distinguish the response to diagnostic anaesthesia performed in 

clinical cases demonstrating forelimb lameness. Diagnostic anaesthesia is a commonly 

undertaken technique in practice being able to apply an objective system to guide 

assessment of the response to the procedure would be beneficial. Further objectives 

included investigating compensatory lameness in horses with hindlimb lameness and with 

forelimb lameness. Compensatory lameness is a reported phenomenon, however it has not 

been described and adequately characterised in a moderately sized population of horses 

with naturally occurring lameness in a clinical setting. It is the author’s subjective opinion 

that compensatory lameness is very frequently encountered in clinical cases and thus it is 

necessary to bare this in mind when assessing a lame horse. Lameness in more than one 

limb is frequently observed in clinical practice and it is necessary to consider the effect of 

compensatory lameness and to correctly identify the primary lame limb in order to 

effectively investigate the primary lameness. By further investigating the incidence of 

compensatory lameness in clinical cases using objective means, its importance may be 

accurately identified and its characteristics may become better understood.  
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CHAPTER 2: 

Use of an inertial, sensor-based lameness system of lameness 

diagnosis to distinguish between positive and negative 

subjective responses to diagnostic anaesthesia of the foot in 

horses with forelimb lameness 

The data presented in this chapter has been published in part: 

Maliye S, Voute LC and Marshall JF (2013). “An inertial sensor based system can 

objectively assess diagnostic anaesthesia of the equine foot”. Equine Veterinary Journal 

45, 26-30. 

 

2.1 Study design and objectives 

2.2 Materials and methods; horses, lameness examinations, diagnostic anaesthesia  

      2.2.1 Horses 

      2.2.2 Lameness examination 

      2.2.3 Equipment 

      2.2.4 Diagnostic anaesthesia                                                                                                         

2.3 Data analysis 

2.4 Results 

2.5 Discussion 

2.6 Conclusion 

 

 

2.1 Study design and objectives 

 

Marshall et al. (2012) demonstrated that inertial sensor-based systems are able to 

objectively assess the response to proximal hindlimb flexion tests. This was the first study 

to use an inertial sensor based lameness system in a clinical setting with a view to aiding 

clinicians during lameness investigations. Significant changes occur in pelvic movement 

asymmetry (PMA) and maximum pelvic height following positive responses to flexion 

tests in normal horses.
 
Cut off values, with adequate sensitivity and specificity (0.71, 0.65 

respectively), were obtained in this study in order to identify a positive response. 

Individual responses to flexion tests have been reported to be highly variable both within 
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and between horses, but an additional complicating factor in assessing responses has been 

that clinicians differ greatly in their assessment of such responses. Hence validation of 

objective measures to assess responses to diagnostic procedures is needed to enable 

accurate assessment to be made.  

 

Diagnostic anaesthesia is frequently undertaken in clinical practice. However, easy to use 

tools to objectively assess the response along with guidelines are currently not available. 

The aim of the first part of this study was to ascertain whether an inertial sensor-based 

system could be used to distinguish between a positive and a negative response to 

diagnostic anaesthesia (“nerve block”) of the foot, and to objectively assess the effect of a 

positive response on the trot. Additionally, objective analysis of the movement of lame 

horses with naturally occurring lameness in a clinical setting has not previously been 

undertaken. Local anaesthesia of the foot was chosen as it is very frequently performed and 

is thus representative of local anaesthesia undertaken in a clinical setting. The author’s 

hypothesis (H1) was that the Equinosis
a
 inertial sensor based lameness system could 

distinguish between a positive and a negative response to a nerve block of the foot. The 

null hypothesis was thus that the inertial sensor based lameness system could not 

distinguish between a positive and a negative response to a nerve block of the foot. The 

aim was to compare changes in all forelimb parameters (movement asymmetry and head 

movement) and hindlimb movement asymmetry parameters, as measured by the Equinosis 

system, between subjectively classified positive and negative response groups. If this 

system could be used in this manner, then additionally it would be beneficial to establish 

guidelines for practioners to use when assessing a lame horse and using diagnostic 

anaesthesia to localise the lameness. 

 

2.2 Materials and methods; horses, lameness examinations, diagnostic 

anaesthesia  

 

2.2.1 Horses 

 

Medical records of adult horses undergoing examination for lameness at the Weipers 

Centre Equine Hospital, between August 2011 and December 2012 were retrospectively 



21 
 

 

reviewed. Horses (13 mares, 10 geldings; representing 8 Thoroughbreds, 2 ponies, 1 

Thoroughbred cross, 2 Irish Sport horses, 1 Fjord, 2 Hanoverians, 2 Dutch Warmbloods, 4 

Warmbloods and 1 Warmblood Cross), which underwent diagnostic anaesthesia of the 

medial and lateral palmar digital nerves of one (n=23) forelimb and had inertial sensor gait 

analysis performed were included for further analysis. Horses with hindlimb lameness 

were excluded. In cases of bilateral forelimb lameness, each horse was included in the 

study only once for a procedure performed on one limb. 

 

2.2.2 Lameness Examination 

 

Data was obtained whilst the horse was trotted in a straight line on a level concrete surface 

with a fairly loose lead rope. A minimum of 30 strides was required for the data to be 

accepted for the study. This involved the horse trotting four times the length of a concrete 

paved covered lameness hall. Frequently more involved assessment of the horse’s gait had 

been performed during each investigation, including lunging on a soft surface and lunging 

on a hard surface in order to allow full assessment of the horse’s gait by the observers. 

Data from these parts of the investigation were not included in this study. The lame limb 

was identified by a veterinarian experienced in lameness diagnosis (John F Marshall or 

Lance Voute), and the severity of lameness was graded according to the modified AAEP 

scale (0-5). Following confirmation of desensitization by application of blunt pressure 

distal to the site of diagnostic anaesthesia, the horse was again trotted in a straight line in 

similar manner to the baseline examination. The response to diagnostic anaesthesia was 

subjectively classified as positive or negative depending on whether a significant change in 

gait was observed by a veterinarian experienced in lameness diagnosis (John F Marshall, 

Lance Voute) blinded to the kinematic data. There are inevitable limitations to using a less 

sensitive technique (visual assessment) to validate a more sensitive technique (inertial 

sensor-based system of lameness diagnosis), which is further explored in the discussion. 

The modified AAEP lameness scale is defined as follows: 

Grade 1- lameness that is difficult to detect and inconsistent. 

Grade 2- lameness that is difficult to detect, but consistent. 

Grade 3- lameness that is consistently observable in a straight line.  
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Grade 4- obvious lameness with marked head nod.  

This scale is based on that reported by Schumacher et al., 2000. 

 

2.2.3 Equipment 

 

A commercially available sensor system
a
 was used to evaluate objectively lameness as 

previously described (Keegan et al., 2011, Marshall et al., 2012). The mean difference in 

millimetres in maximum head height after the stance phases of the right and left forelimb 

(HDMax) and similarly the minimum head height (HDMin) representing the difference in 

millimetres in minimum head height during the stance phases of the right and left forelimb, 

were recorded. Additionally, head movement asymmetry assigned to the stride of the limb 

(HMA) on which diagnostic anaesthesia was performed (blocked limb), the contralateral 

forelimb and pelvic movement asymmetry (PMA) assigned to both the ipsilateral and the 

contralateral hindlimbs was measured and stride number was recorded. HMA and PMA 

were calculated for each stride and assigned for that stride to either the blocked or 

unblocked forelimb and to either the contralateral or ipsilateral hindlimb to the blocked 

forelimb. Assignment to the limb was determined by the sign (+/-) of HDMin with 

negative values assigned to the left limb and positive values assigned to the right limb. 

Mean measures of HMA and PMA were calculated for all strides collected for each limb 

by dividing the sum of HMA and PMA for the strides assigned to that limb and dividing by 

the total number of strides collected. Data were collected pre and post diagnostic 

anaesthesia.  

Terminology used by Equinosis: HMA and PMA are the same as the A1/A2 ratio for the 

forelimbs and hindlimbs respectively. HDMax and PDMax refer to MaxDiff Head and 

MaxDiff Pelvis for fore and hindlimbs respectively. HDMin and PDMin refer to MinDiff 

Head and MinDiff Pelvis for fore and hindlimbs respectively. 
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2.2.4 Diagnostic Anaesthesia 

 

Anaesthesia of the palmar digital nerves (PDNB) was performed using a standard 

technique. Sensation at the heel bulbs was tested using a blunt probe prior to performing 

diagnostic anaesthesia on the lame limb. A 0.51mm x1.59cm needle was inserted at the 

proximal margin of the ungular cartilage on the lateral and medial sides in a distal direction 

and injecting 1.5ml of mepivicaine (Intra-Epicaine)
b
 at each site.  Similarly, anaesthesia of 

the palmar digital nerves and their dorsal branches (abaxial sesamoid, ASNB) was 

performed by inserting a 0.64mm x1.59cm needle at the base of the proximal sesamoid 

bones with the needle directed distally and injecting 1.5ml of mepivicaine (per site) on the 

lateral and medial side (Schumacher et al., 2004).  

 

2.3 Data Analysis 

 

The vector sum, VS, of HDMax and HDMin was calculated as √((HDMax)
2
+(HDMin)

2
)
 

for all examinations and served as a measure of head movement asymmetry. Vector sum 

(VS) was calculated for each horse for pre and post data, and assigned a sign according to 

the sign of HDMin of the pre and post data (i.e. VS was sign corrected). Thereafter, VS 

(both pre and post) of all forelimb lamenesses classified as left in origin (according to the 

HDMin sign of the baseline examination), was multiplied by -1 in order to allow 

comparison of right and left forelimb lamenesses and pre and post anaesthesia results of 

VS were compared and the change in VS was subsequently calculated.  

 

The difference (Δ) in each parameter between the examination prior and immediately 

following the diagnostic anaesthesia was calculated for all groups. Corrections were made 

for HDMax/HDMin in order to take into account the origin of forelimb lameness (left or 

right forelimb), since these are signed according to the origin of the lameness, so that the 

data for all horses could be fairly compared. A negative delta value this signified 

improvement to the lameness regardless of its origin (left or right). 

 



24 
 

 

A Shapiro-Wilk normality test was performed on all data sets before non-parametric data 

analysis was performed. The subjective lameness grades for the positive and negative 

response groups were compared using a Wilcoxon Rank Sum test. Thereafter, a Kruskal-

Wallis One Way analysis of Variance (ANOVA) based on ranks was performed on all 

inertial-sensor data sets. Statistical analyses were performed using commercially available 

software.
c
 Statistical significance was set P<0.05. 

 

To generate cut off values to differentiate between a positive and negative response to 

either of the two diagnostic anaesthesia procedures performed (PDNB or ASNB nerve 

blocks), Receiver Operating Characteristic (ROC) curves were generated for ΔVS, 

ΔHDMax and ΔHDMin, and ΔHMA for the blocked limb. These curves generally measure 

the true positive response rate compared with the false positive response rate. The areas 

under each curve were measured in order to measure the accuracy of the parameter to serve 

as a good diagnostic test (Gardner et al., 2006). In the case of this study, a positive 

Equinosis reading in the presence of negative clinical evaluation may actually be a true 

positive. 

 

2.4 Results 

 

In total 14 PDNB and 9 ASNB nerve blocks met the inclusion criteria for this part of the 

study. The response to diagnostic anaesthesia was subjectively grouped as positive (n=14) 

and negative (n=9) by observers’ clinical impression of the lameness.   The horses included 

in the analysis and their distribution into groups is displayed in Table 2.1. The site of 

lameness and diagnostic anaesthesia technique undertaken has been reported alongside the 

diagnosis made in each case. 

 

All horses in this study were lame in one or both forelimbs (modified AAEP grade 1-3). 

There was no significant difference (P=0.84) in lameness grade between the two groups 

(the median grade of both the positive and negative group was 2/5, and interquartile range 

(difference between the 75
th

 and 25
th

 percentiles), IQR, of both was 2, 2). In cases where 

the nerve blocks had been performed on both forelimbs (n=3), this was due to lameness 
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becoming apparent in the other forelimb after initial diagnostic anaesthesia had 

commenced on the more severely affected limb, however in these cases only data from one 

nerve block was included in order to avoid including the same horse in the analysis twice.                                                   

 

The data describing the distributions of the parameters (for delta values i.e. the change in 

parameter following the diagnostic anaesthesia undertaken) for the positive and negative 

groups is shown in Table 2.2. The data is presented as median and IQR. 

 

There was a significant decrease in HMA assigned to the blocked limb, PMA assigned to 

the contralateral hindlimb and VS following diagnostic anaesthesia in the positive response 

group (p<0.05) (Figure 2.1A-C). There was no significant effect of blocking on these 

parameters in the negative response group. The median ΔHMA of the blocked and 

contralateral forelimbs was significantly greater in the positive response group (median -

0.32, Interquartile range, the difference between upper (75
th

 percentile) and lower quartiles, 

(25
th

 percentile) (IQR), -0.95 -0.18, and median 0.071, IQR 0.011 0.22 respectively) than 

in the negative response group (median 0.33, IQR -0.05 0.46, median -0.01, IQR -0.08 

0.01 respectively) with P<0.001and P<0.01 respectively (Figure 2.1A). 

 

There was a significant decrease in PMA assigned to the contralateral hindlimb (median -

0.04, IQR -0.14- -0.03) in the positive response group (P<0.05) (Figure 2.1B) following a 

positive response to diagnostic anaesthesia of the foot. There was no significant change in 

PMA in the negative response group (median 0.02, IQR -0.04 – 0.04). No statistically 

significant difference was found between the two response groups in the ipsilateral 

hindlimb (Figure 2.1B).  

 

There was a significant difference in the ΔHDMax between the positive (median -9.88mm, 

IQR -25.01- -0.90mm) and negative (median 2.57, IQR -3.94 6.18) response groups 

(P<0.01). There was also a significant difference in ΔHDMin between the positive (median 

-15.59mm, IQR -36.45 -2.90mm), and negative (median 9.67mm, IQR 1.48 11.93mm) 

groups (P<0.001) as shown in Figure 2.1C. Additionally, there was a significant difference 
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in the ΔVS between the positive (median -19.237mm, IQR -30.263 -5.450mm) and 

negative (median 8.515mm, IQR 0.823 13.789mm) response groups (P<0.001). 

Horse 

number 

Result Diagnostic analgesia site Diagnosis 

1 Positive PDNB LF Lateromedial (LM) and dorso-palmar 

(DP) foot imbalance 

2 Positive PDNB LF Palmar heel pain, white line disease  

3 Positive ASNB LF Bilateral DP foot imbalance, deep 

digital flexor tendonitis  

4 Positive ASNB RF Bilateral navicular disease 

5 Positive PDNB RF Osteoarthritis (OA) of the DIPJ  

6 Positive PDNB LF Bilateral forelimb palmar heel pain 

7 Positive ASNB LF Navicular disease-moderate to severe 

8 Positive ASNB LF LF straight distal sesmoidean 

ligament desmitis 

9 Positive ASNB RF LM foot imbalance, DIPJ OA 

10 Positive ASNB LF Lateromedial foot imbalance, DIPJ 

OA 

11 Positive ASNB RF RF SDFT injury 

12 Positive PDNB LF Bilateral navicular disease. DP and 

LM foot imbalance 

13 Positive PDNB LF Bilateral navicular disease 

14 Positive PDNB RF Distal phalanx fracture 

15 Negative PDNB RF Active periosteal reaction of right 

metacarpal bone II 

16 Negative PDNB RF Subchondral bone injury affecting 

both medial femoral condyles. 

17 Negative PDNB RF No significant findings, lameness was 

very mild, no diagnosis made. 

18 Negative PDNB RF Unlocalised, significant improvement 

following low 4 point. 

19 Negative PDNB RF Bilateral hindlimb proximal 

suspensory ligament desmitis 

20 Negative PDNB LF Tendonitis of lateral aspect of LH 

DDFT 

21 Negative PDNB RF Bilateral navicular disease 

22 Negative ASNB LF LH coxofemoral joint disease 

23 Negative ASNB RF Superficial digital flexor tendonitis at 

level of accessory carpal bone 

 

Table 2.1:  Location of the analysed diagnostic anaesthesia procedure performed and 

associated diagnoses for positive and negative responses to the nerve blocks performed. 
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Parameter (+/-ve) Median IQR 

HMA Blocked Limb (+ve) -0.316 -0.946, -0.179 

HMA Blocked Limb (-ve) -0.0455 -0.0455, 0.460 

HMA Contralateral Forelimb (+ve) 0.0709 0.0113, 0.218 

HMA Contralateral Forelimb (-ve) -0.0135 -0.761, 0.00615 

PMA Ipsilateral Hindlimb (+ve) 0.0631 0.0250, 0.107 

PMA Ipsilateral Hindlimb (-ve) 0.0105 0.0003000, 0.0411 

PMA Contralateral Hindlimb (+ve) -0.0406 -0.139,  -0.0264 

PMA Contralateral Hindlimb (-ve) 0.0160 -0.0441, 0.0431 

HDMax (+ve) -9.879 -25.013, -0.898 

HDMax (-ve) 2.569 -3.936, 6.184 

HDMin (+ve) -15.585 -36.453, -2.891 

HDMin (-ve) 9.665 1.479, 11.933 

VS (+ve) -19.237 -30.263, -5.450 

VS (-ve) 8.515 0.823, 13.789 

 

Table 2.2: Description of the parameters (for delta values i.e. the change in parameter 

following the diagnostic anaesthesia undertaken) for the positive and negative groups. The 

data are presented as median and IQR. 
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Figure 2.1: Box and whisker plots representing the data for (A) ΔHMA ratio (measure of 

asymmetry of movement) noted in the Blocked forelimb and Contralateral forelimb, (B) 

ΔPMA ratio assigned to the Ipsilateral hind limb and Contralateral hind limb, and (C) 

ΔMaximum Head Difference, ΔMinimum Head Difference and ΔVS in both the positive 

and negative response groups. There was a significant decrease in asymmetry (assigned to 

the respective limb) following a positive response to diagnostic anaesthesia noted in the 

blocked and contralateral hindlimbs, and a significant increase in asymmetry assigned to 

the contralateral forelimb. ΔHDMax, ΔHDMin and ΔVS measurements significantly 

changed in the positive response groups. No such significant change was noted in the 

negative response groups. *Significant change in parameter between the pre and post-

anaesthesia data (P<0.05). 
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ROC analysis was undertaken as it represents a measure of the true positive response rate 

compared with the false positive rate. This was undertaken in order to identify whether or 

not ΔHMA, ΔHDMax, ΔHDMin and VS would be useful diagnostic tests to identify a 

positive response. The analysis determined that the ΔHMA of the blocked limb, ΔHDMax, 

ΔHDMin and VS are useful diagnostic tests for identifying a positive response to 

anaesthesia (Figure 2.2; Area under curve=0.98, 0.83, 0.96 and 1.0 respectively). This 

represents high accuracy for ΔHMA, ΔHDMin and VS and moderate accuracy for 

ΔHDMax. A change in HMA of -0.08 was determined to have sensitivity of 0.92 and 

specificity of 0.89. A change in HDMax of -4.00 mm was determined to have sensitivity of 

0.71 and specificity of 0.78. A change of HDMin of -0.19 mm with a specificity of 0.93 

was determined to have sensitivity of 0.89.  A change of VS of -3.39mm was determined 

to have a sensitivity of 0.86 and specificity of 1.0. A change of VS of -2.46mm was 

determined to have a sensitivity of 0.93 and specificity of 1.0 (Figure 2.2).  
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Figure 2.2: Receiver Operating Characteristic curves for the change in head movement 

asymmetry assigned to the blocked limb (ΔHMA, black) and change in Maximum Head 

Difference (ΔHDMax, red), Minimum Head Difference in mm (ΔHDMin, green) and VS 

(ΔVS, yellow). ΔHMA of the blocked limb, ΔHDMax, ΔHDMin and VS are useful 

diagnostic tests for identifying a positive response to anaesthesia.  Area under curve=0.98 

(ΔHMA), 0.83 (ΔHDMax), 0.96 (ΔHDMin) and 1.00 (ΔVS).  
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2.5 Discussion 

 

In this study population it has been demonstrated that a positive response to a palmar 

digital or an abaxial sesamoid nerve block results in a significant change to the symmetry 

of movement both in the affected limb, contralateral forelimb and contralateral hindlimb 

which can be objectively assessed and quantified by an inertial sensor-based system of 

lameness diagnosis. Analysis of the data presented provides evidence to show that an 

inertial sensor-based system of lameness diagnosis can distinguish between a positive and 

a negative response to a nerve block since a significant difference was noted between the 

positive and negative response groups for almost all the parameters measured. Therefore 

the null hypothesis may be rejected. The significant change to the symmetry of movement 

between the forelimbs following a positive response to one of the nerve blocks performed 

is not unexpected as it is generally accepted that temporary abolition of the source of pain 

by diagnostic anaesthesia should result in restoration of symmetry of movement, i.e. equal 

and opposite movement on both forelimbs.  

 

A significant change to the symmetry of movement of the head and pelvis is identified. 

HDMax and HDMin significantly decrease with a positive response to diagnostic 

anaesthesia. During the stance phase and weight bearing, reflected in HDMin, as lameness 

improves the downward movement of the head on the blocked limb will increase as weight 

bearing becomes more even between the two limbs. Thus, the difference in head height 

between the two forelimbs during weight bearing becomes less, i.e. HDMin decreases with 

a positive response to diagnostic anaesthesia of the foot. Similarly HDMax, describing the 

difference in maximum head height after the stance phases of the right and left forelimbs, 

also decreases reflecting improvement in lameness following a positive response to 

diagnostic anaesthesia. Improvement in lameness is associated with greater push off from 

the lame limb resulting in greater maximum head height on the lame limb and a resultant 

decrease in HDMax since the apparent difference in head height after the stance phase of 

each forelimb becomes less as the actual maximum values of head height after the stance 

phase of each forelimb become more comparable once lameness is abolished.  
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A positive response to a PDNB or an ASNB nerve block results in a significant change to 

head movement, both during the stance phase (reflected in HDMin) and after the stance 

phase (reflected in HDMax) in this population of horses. Head movement is closely 

observed and alterations assessed during lameness investigations and thus these findings 

are of clinical significance. Analysis of the data presented in this chapter supports the 

importance of observing head movement when assessing lameness and changes to 

lameness, as both head movement during the stance phase and after the stance phase 

significantly change with improvement to the lameness. A decrease in HDMax will be seen 

by the observer as less vertical upward head movement after the stance phase of the 

contralateral forelimb compared to prior to the block. This is the result of increased push 

off from the lame limb and a relative reduction in push off on the contralateral forelimb as 

lameness improves, as mentioned previously. A change in HDMin signifying improvement 

in lameness will be seen as more downward movement of the head during the stance phase 

of the lame limb compared with that prior to the block. During lameness the horse will 

bear more weight during the stance phase of the contralateral forelimb, resulting in an 

apparent drop of the head or ‘head nod’ on the sound limb (Merkens et al., 1988). 

Following a positive response to diagnostic anaesthesia the difference in minimum head 

height is reduced and the apparent difference in head height or ‘head nod’ is abolished due 

to more downward movement of the head during weight-bearing on the blocked limb. 

Depending on the timing of the lameness (e.g. beginning of stance phase compared with 

end of stance phase) the changes to these two parameters reflecting improvement to the 

lameness may differ. Further work to determine the change in gait that is most appreciated 

by the observer is warranted. 

 

The data presented provides the first analysis of naturally occurring lameness in a 

moderately sized population of horses and supports previous findings that identified 

compensatory contralateral hindlimb lameness in horses with induced forelimb lameness 

(Uhlir et al., 1997). It has been previously reported that a positive response of forelimb 

lameness to diagnostic anaesthesia can affect contralateral hindlimb movement when the 

forelimb lameness is severe. However this finding may have been affected by the small 

population size, inclusion of horses with hindlimb in addition to forelimb lameness, and 

inclusion of horses with experimentally induced lameness (Uhlir et al., 1997). In contrast, 

the analysis of the current data was undertaken with a sufficient number of horses to reach 

clinical significance, using horses with naturally occurring forelimb lameness and with 
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horses with hindlimb lameness excluded.
 
This may have contributed to the conclusion that 

asymmetry of contralateral hindlimb movement due to primary forelimb lameness is a 

consistent pattern and is not restricted to horses with severe forelimb lameness (median 

lameness grade was only 2/5 in the current population of horses presented in this chapter). 

The findings are also more likely to be representative of lameness observed in clinical 

cases as all horses in this study were assessed in a clinical setting and the lameness 

observed was naturally occurring. 

 

Analysis of the current data provides evidence supportive of the existence of compensatory 

lameness in horses with forelimb lameness since a significant change to the symmetry of 

movement associated with the contralateral hindlimb (however not the ipsilateral hindlimb) 

was identified. Analysis of pelvic movement parameters (maximum and minimum pelvic 

height) was not undertaken during this part of the study as it was not necessary to address 

the hypothesis. However, this analysis may reveal further evidence of the existence of 

compensatory lameness and may further characterise compensatory lameness in cases with 

primary forelimb lameness. This will be explored in Chapter 4. The current findings 

provide information that is particularly important in assessing apparent multi-limb 

lameness, which highlights the importance of viewing the horse’s response to a procedure 

as a whole. An important part of this analysis was to identify cut-off values, which may be 

used as guidelines to assess a positive response to a PDNB or ASNB nerve block, which 

may be particularly useful to less experienced clinicians. Tools to guide assessment of 

responses are particularly helpful for challenging, low level lameness. Cut-off values have 

been identified with high sensitivity and high specificity. These “cut-offs” do however 

need to be interpreted with caution as they are based on the agreement of the Equinosis 

readings with clinical impressions, which can lead to false positives. The author would 

have expected the Equinosis sensitivity and specificity calculations to be higher if the 

inertial sensor-based system had been compared to an objective technique, such as a force 

plate. 

 

Limitations of the study need to be considered and include possible variations in data 

collection due to the nature of some horses not calmly trotting during the lameness 

evaluation procedure, only two observers carrying out the analysis of the response to the 

nerve block and though mares were overrepresented, a broad range of breeds were 
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included in the study.  The effect of the former should have been minimised by only 

including data where a minimum of 30 strides were collected. Each horse was only 

included in the study once to avoid misrepresenting the data, however this resulted in a loss 

of power within the analysis. Despite the latter, significant changes within the majority of 

the variables measured before and after diagnostic anaesthesia were noted. Clinical 

impressions were used to group the horse’s responses into “positives” and “negatives”. 

Using this less sensitive technique of visual assessment to validate the inertial sensor-based 

system of lameness diagnosis inevitably results in the positibility of a positive response 

having been missed by the observer, that would not have been missed by the inertial 

sensor-based system. Using an objective measurement technique for measuring movement 

asymmetry rather than visual assessment to form the “gold standard” would have been a 

better approach. There is a risk of over representing “false positives”, where there was a 

positive Equinosis reading but a negative clinical impression. This would have negatively 

affected the specificity calculation of the Equinosis technique. 

 

Investigation with the aim to determine whether an inertial sensor-based system of 

lameness diagnosis can be used to identify the foot as the source of lameness may prove 

interesting in the future. Further studies examining inertial sensor-based data obtained from 

horses with foot pathology confirmed by diagnostic imaging may provide important 

information.  

 

2.6 Conclusion 

 

The clinical application of an inertial sensor-based system of lameness diagnosis in 

lameness investigation has been demonstrated in this study. The findings provide 

significant evidence in order to reject the null hypothesis. In conclusion, it has been shown 

that it is possible to quantify changes that occur following a diagnostic anaesthesia 

procedure using this tool. Inertial sensor-based systems of lameness diagnosis can provide 

useful data not only for quantification of change, but also for classification of responses to 

procedures performed routinely in practice  (such as diagnostic anaesthesia performed in 

this chapter) and cut-off values have been identified with good sensitivity and specificity to 

assess the response to diagnostic anaesthesia of the foot. These “cut-off” values can 
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provide guidelines for practitioners performing and assessing the response to diagnostic 

anaesthesia of the foot in practice. An objective means of measuring lameness in a clinical 

setting has not been available prior to this time and the current findings thus suggest that 

this system has significant potential applications in a clinical setting.  

 

Communication between veterinarians can be improved by standard quantification of 

changes that have occurred following diagnostic procedures, as has been undertaken by 

using this inertial sensor-based system of lameness diagnosis in this manner. This system 

has the potential to considerably improve both repeatability in assessment and accurate 

objective recording of lameness severity and characteristics. It may be possible to use this 

system to monitor progression of disease and responses to treatments. An important 

finding was that forelimb lameness results in a significant alteration to symmetry of 

movement of the contralateral hindlimb, which has implications for the investigation of 

multi-limb lameness.  Though the “rule of sides” is well known (Uhlir et al., 1997, Kelmer 

et al., 2005, Weishaupt et al., 2006 and 2008, Keegan et al., 2007 and Ross et al., 2010), 

the analysis of the data shows that this pattern is common even for relatively low level 

lameness and likely to be under recognised clinically. This will be explored in more detail 

in the latter parts of this thesis. 

 

Expansion of this initial part of this study may be of benefit to aid practitioners performing 

diagnostic regional anaesthesia of other anatomical sites to assess responses to these 

procedures. This would be of particular benefit for cases that may be challenging to assess, 

such as horses with low level lameness or bilateral lameness. Additionally, through use of 

inertial sensor-based systems of lameness diagnosis, lameness can be more reliably related 

to phases of the stride than could have previously been undertaken by observation only, 

and thus clinicians may gain a deeper insight into and greater understanding of lameness in 

the future by using this system in clinical cases. Further investigation of compensatory 

lameness as briefly noted but incompletely explored in this chapter is warranted and will 

be undertaken in later chapters. 

 

a
 LamenessLocator®, Equinosis LLC, Columbia, MO USA

  

b 
Intra-Epicaine (2% mepivacaine hydrochloride) Dechra, Staffordshire, U.K 

c
 Sigmaplot 11.2 Systat Software Inc, Chicago IL USA 
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CHAPTER 3: 

Kinematic assessment of the horse’s gait and elucidating 

compensatory lameness: current knowledge 

 

3.1 Introduction to compensatory lameness and the “Rule of Sides”  

3.2 Forelimb lameness and its compensatory effects 

3.3 Hindlimb lameness and its compensatory effects 

3.4 Subclinical compensatory lameness                                                                                   

3.5 Compensatory lameness described in canines                                                                     

3.6 Summary, objectives and need for further investigation 

 

3.1 Introduction 

 

Compensatory load redistribution as a result of primary forelimb or hindlimb lameness is a 

well-known phenomenon commonly referred to as the “rule of sides” (Uhlir et al., 1997, 

Kelmer et al., 2005, Weishaupt et al., 2006 and 2008 and Keegan et al., 2007, Ross et al., 

2010). This phenomenon can result in the clinical observation of ‘false’ or compensatory 

lameness and potentially lead to a delay or misdiagnosis of orthopaedic disease. It refers to 

the observation of a false lameness, for example right hindlimb lameness resulting in 

alterations in symmetry and load distribution that may be interpreted as right forelimb 

(ipsilateral forelimb) lameness. Conversely right forelimb lameness has been reported to 

lead to alterations in load and symmetry frequently interpreted as left hindlimb 

(contralateral hindlimb) lameness. This phenomenon was supported in the first part of this 

Masters thesis when analysis of forelimb lameness and diagnostic anaesthesia of the foot 

was performed (see Chapter 2).  

 

Compensatory load redistribution in naturally occurring lameness has been neither fully 

characterised nor confirmed in a significant number of clinical cases. Patterns of 

compensatory load redistribution have been described in only a very limited number of 

horses with clinical or experimentally induced lameness and examination has been 
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restricted to a treadmill . Studies by Buchner et al., 1996a,b; Uhlir et al., 1997; 

Vorstenbosch et al., 1997; Weishaupt et al., 2004 and 2006 all report these patterns and 

these will be discussed briefly in the following subsections.    

 

3.2 Forelimb lameness and its compensatory effects 

 

A previous study of induced forelimb lameness of varying (subtle, mild and moderate) 

severity in 11 clinically sound horses using the solar pressure model provided evidence of 

compensatory load redistribution. The study described a selective decrease in diagonal 

impulse in the lame diagonal; the impulse was shifted in the lame diagonal to the hindlimb 

and in the sound diagonal to the forelimb (Weishaupt et al., 2006). Apart from in the lame 

diagonal where peak forces increased slightly in cases with induced moderate lameness, no 

equivalent compensatory overload situation was identified in the other limbs (Weishaupt et 

al., 2006). 

 

In a study of a mixed population of horses with experimentally induced and naturally 

occurring forelimb lameness, compensatory supporting limb lameness was identified in the 

contralateral hindlimb in 6 out of 10 horses (Uhlir et al., 1997). 5 of these horses had 

lameness induced by inducing solar pressure using a screw and the remaining 5 were cases 

with naturally occurring lameness. The study also identified compensatory ipsilateral 

forelimb lameness in all four horses with true hindlimb lameness.  

 

An experimental study of lameness induced by pressure to the sole of the fore or hindlimb 

found that contrary to the subtle and mild lameness groups, no obvious changes in 

movement of the head, tubera sacralia and withers was noted in cases with subclinical 

lameness. The latter was defined as lameness that could not be detected visually by 

experienced clinicians. However the vertical lift off acceleration of the affected forelimb 

was decreased in the subclinical lameness group (Orito et al., 2007). In the subclinical 

hindlimb lameness cases the lift off points of both hindhooves of both the treated and 

sound hindlimb shifted posteriad. The authors suggested that the trunk might have shifted 

anterior to reduce the load to the affected hindlimb.   
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Buchner et al. (1996a, b) aimed to further elucidate compensatory lameness by applying 

three degrees of solar pressure to 11 clinically sound horses. Hyperextension of the 

metacarpophalangeal joint and flexion of the distal interphalangeal joint during the stance 

phase decreased significantly in the lame limb in both fore and hindlimb lameness. In the 

contralateral non-lame limbs a compensatory increase in joint hyperextension occurred. 

Flexion of the proximal joints increased with increasing lameness. Hyperextension of the 

metacarpophalangeal joint and flexion of the distal interphalangeal joints during the stance 

phase in the lame limb were found to be the most useful indicators of lameness in both the 

forelimb and hindlimb. During both fore and hindlimb lameness, the vertical velocity of 

the trunk at impact of the lame limb significantly decreased. During the lame stance phase 

the trunk was kept higher above the ground, maximal acceleration decreased and 

displacement amplitude was smaller than without lameness. The study identified that the 

maximal vertical acceleration of the head and displacement amplitude of the tuber sacrale 

proved to be the best indicators to quantify a fore and hindlimb lameness respectively 

(Buchner et al., 1996a). Peak displacement of the withers and tuber coxae were also 

quantified at different phases of the stride. Movements of the head were more expressed 

than movements of the withers in the cases with forelimb lameness. The reverse was true 

during hindlimb lameness. During hindlimb lameness withers movement changes were 

small during the stance phase of the lame hindlimb, however head movement was 

unchanged during the stance phase of the lame hindlimb. The displacement amplitude of 

head movement decreased during the stance phase of the nonlame hindlimb.  

 

3.3 Hindlimb lameness and its compensatory effects 

 

A study by Uhlir et al. (1997) identified compensatory ipsilateral forelimb lameness in 

each of the four horses with true hindlimb lameness while trotting on a treadmill in 

accordance with the “rule of sides”. Several load redistribution mechanisms have been 

identified in induced hindlimb lameness models including one referring to the effect on the 

forelimbs. It was previously reported that the contralateral forelimb carries on average 

3.6% more of the diagonal vertical impulse during moderate induced hindlimb lameness 

(Weishaupt et al., 2004). An experimental study of forelimb and hindlimb lameness in 

normal horses demonstrated a compensatory increase in extension of the 

metacarpophalangeal joint and flexion of the distal interphalangeal joint in the contralateral 

non-lame limb (Buchner et al., 1996b). Following induction of an intermediate lameness in 
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the experimental study (Buchner et al., 1996) head displacement amplitudes were 

decreased during the stance phase of the non-lame hindlimb and maximum acceleration 

decreased in these horses.  

 

3.4 Subclinical compensatory lameness 

 

The author and Orito et al. (2007) defines subclinical as a lameness that cannot be detected 

visually by experienced observers. There is limited information reported about the 

existence of subclinical compensatory lameness. An experimental study of lameness 

induced by pressure to the sole of the fore or hindlimb found that contrary to the subtle and 

mild lameness groups, no obvious changes in the head, tuber sacrale and withers was noted 

in cases with subclinical lameness. However the vertical lift off acceleration of the affected 

forelimb was decreased in the subclinical lameness group (Orito et al., 1997).  

 

The prevalence of subclinical compensatory lameness has not been reported, however 

evidence from the first part of this thesis (Chapter 2) suggests that it is high in horses with 

forelimb lameness. A decrease in contralateral hindlimb movement asymmetry following 

diagnostic anaesthesia of clinical primary forelimb lameness using an inertial sensor-based 

system of lameness diagnosis provided evidence of significant load redistribution in horses 

(Maliye et al., 2013). 

 

3.5 Compensatory lameness described in canines 

 

Examination of compensatory lameness in dogs has been restricted to treadmill studies. 

Bockstahler et al. (2009) described the pattern of compensatory load redistribution in dogs 

with naturally occurring osteoarthritis of the elbow joint and induced weight-bearing 

lameness of the forelimbs compared with clinically sounds dogs. Naturally occurring 

osteoarthritis of the elbow joint resulted in reduced load on the affected limb and increased 

load on the contralateral hindlimb. The dogs with induced lameness showed comparable, 

but less marked alterations. This study relied upon the measurement of ground reaction 
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forces on a treadmill. The experimental model used pressure exerted by a syringe cup, 

which could not be easily controlled and thus the induced lameness produced may have led 

to less marked changes in the animals’ gait. Body weight may also have affected some of 

the measured parameters. Different load redistribution was identified in forelimb compared 

with hindlimb lameness. Mean and maximal vertical force during the stance phase was 

significantly larger in the two lame groups than in the sound group for the contralateral 

hindlimb, but no such changes were noted in the ipsilateral hindlimb. 

 

A study into the compensatory effects of induced hindlimb lameness in dogs revealed that 

vertical force was decreased in the ipsilateral hindlimb and increased in the contralateral 

hindlimb (Fischer et al., 2013). Peak force increased in the ipsilateral forelimb, however no 

change was noted for mean force and impulse when the dogs were walked or trotted. In the 

contralateral forelimb the peak force was unchanged, but the mean force was noted to 

significantly increase and the vertical impulse was noted to only increase during walking. 

During walking, the contralateral fore and hindlimbs stance duration increased during 

walking and trotting and decreased in the ipsilateral forelimb during walking. The 

compensatory mechanisms were similar regardless of the gait (Fischer et al, 2013). 

 

3.6 Summary, objectives and need for further investigation 

 

The above studies demonstrate the need to further investigate compensatory lameness.  

The patterns of compensatory hindlimb lameness identified in horses with forelimb 

lameness in Uhlir and Weishaupt’s studies are similar, and are commonly referred to as 

“the rule of sides”, however the true prevalence of this phenomenon is unknown. 

Investigations into the gait of canines with forelimb lameness also identified increased load 

on the contralateral hindlimb, thus this phenomenon also exists in other species. The 

studies reported in this chapter support the existence of ipsilateral forelimb lameness in 

horses with hindlimb lameness. 

 

The aim of further investigation as part of this study was to identify the number of horses 

showing evidence of compensatory lameness and to objectively characterise the 
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compensatory load redistribution observed in a moderately sized population of horses with 

naturally occurring forelimb and hindlimb lameness during clinical examination. This 

would be undertaken by examining the effect of alleviating lameness through diagnostic 

anaesthesia. Objective kinematic measurements of gait would be obtained using an inertial 

sensor-based system of lameness diagnosis, “Equinosis”. Buchner et al. (1996a) found the 

displacement amplitude of the tuber sacrale to be the best indicator to quantify the 

hindlimb lameness, thus there is supporting evidence for using the pelvic position 

parameters generated by the “Equinosis” system (PDMax and PDMin). An additional aim 

was to further characterise patterns of naturally occurring compensatory lameness relative 

to limb loading, as this has not been reported previously. 

 

Multi-limb lameness can be challenging to assess and it is important to assess the 

significance of compensatory lameness that may be present prior to undergoing diagnostic 

anaesthesia to localise the primary lameness. Observing the effect of forelimb blocking on 

hindlimb movement and vice versa may also prove beneficial in aiding identification of a 

positive response to diagnostic anaesthesia. 
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CHAPTER 4: 

The compensatory effect of clinical forelimb lameness on 

movement of the pelvis in the horse; using the Lameness Locator 

and diagnostic anaesthesia to characterise the effect on hindlimb 

and forelimb movement 

 

4.1 Study design 

4.2 Materials and Methods 

4.2.1 Medical record review 

      4.2.2 Kinematic lameness analysis 

      4.2.3 Lameness examinations and diagnostic anaesthesia 

      4.2.4 Classification of lameness 

      4.2.5 Data analysis 

4.3 Results 

4.3.1 Effect of diagnostic anaesthesia on forelimb kinematic parameters in horses with 

primary forelimb lameness                                                                                                                                     

4.3.2 Effect of diagnostic anaesthesia on hindlimb kinematic parameters in horses with 

primary forelimb lameness                                                                                                                                       

4.3.3 Correlation analysis of the effect of diagnostic anaesthesia on forelimb movement 

in horses with primary forelimb lameness 

4.4 Discussion 

4.5 Conclusions 

 

 

 

4.1 Study design 

 

The hypothesis was that forelimb lameness results in significant load redistribution and 

alteration to symmetry of movement of the hindlimbs, which appears as compensatory 

contralateral hindlimb lameness. The null hypothesis was thus that forelimb lameness does 

not result in significant load redistribution and alteration to symmetry of movement to the 

hindlimbs. Evidence to support the alternative hypothesis was presented in Chapter 2 and 

is supported by the literature discussed in Chapter 3. 
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An inertial sensor-based system of lameness diagnosis (Equinosis) was used in the 

investigation, in order to objectively investigate compensatory load redistribution in horses 

with clinical forelimb lameness by examining the effect of alleviating lameness through 

diagnostic anaesthesia in a population of horses with clinical multi-limb lameness. 

 

Multi-limb lameness can be challenging to assess. Therefore when examining the lame 

horse it is important to assess the significance of compensatory lameness that may be 

present prior to performing diagnostic anaesthesia to localise the primary lameness, in 

order to correctly identify the latter. The potential existence of compensatory lameness is 

thus important to consider when undertaking clinical lameness investigations. 

Additionally, observing the effect of forelimb blocking on hindimb movement may be of 

value in determining the response to diagnostic anaesthesia in practice.  

 

4.2 Materials and Methods 

 

4.2.1 Medical record review  

 

Medical records of horses that underwent lameness investigation between September 2011 

and October 2013 that included the use of an inertial sensor-based system of lameness 

diagnosis (Lameness Locator, Equinosis LLC) were retrospectively reviewed. Those 

horses that underwent diagnostic anaesthesia that resulted in significant improvement in 

lameness were included for further analysis. Significant improvement was defined both 

objectively using the guidelines provided by the manufacturers of Equinosis and 

subjectively (see section 4.2.3 “Lameness examinations and diagnostic anaesthesia”). 

 

4.2.2 Kinematic lameness analysis 

 

A commercially available inertial sensor-based system of lameness diagnosis (Lameness 

Locator, Equinosis LLC 
a
) was used during all lameness examinations to objectively 

evaluate lameness by measuring eight parameters as previously described (Keegan et al., 
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2011, Maliye et al., 2013 and Marshall et al., 2012).
 
A minimum of 30 strides was required 

for the data to be accepted for the study. The mean difference in millimetres in maximum 

head height (HDMax) after the stance phases of the right and left forelimb and similarly 

the minimum head height (HDMin) representing the difference in millimetres in minimum 

head height during the stance phases of the right and left forelimb were recorded. The 

mean difference in millimetres in maximum pelvic height (PDMax) after the stance phases 

of the right and left hindlimb and similarly the minimum pelvic height (PDMin) 

representing the difference in millimetres in minimum pelvic height during the stance 

phases of the right and left hindlimb were also recorded. Additionally, general measures of 

vertical head and pelvic movement asymmetry were calculated and assigned to either right 

or left forelimbs (HMA) and hindlimbs (PMA) as for the previous first part of the thesis 

(Chapter 2).  

 

4.2.3 Lameness examinations and diagnostic anaesthesia 

 

All horses included in the study underwent a complete examination, including a minimum 

of walk and trot in a straight line and lunging in a circle in both directions on hard and soft 

surfaces, by a veterinarian experienced in lameness diagnosis (John F Marshall or Lance C 

Voute). The primary lame limb was subjectively identified and the severity of lameness 

graded according to the modified AAEP scale (0-5).  

 

Inclusion criteria for forelimb lameness: Horses were included for further analysis only if 

the following objective conditions for confirmation of lameness were met (1) HMA of 

greater than 0.5 for forelimb lameness (2) HDMax and/or HDMin of greater than ±6mm 

for forelimb lameness. For all horses, the presence or absence of lameness had been 

determined subjectively (and now objectively) for all limbs.    

 

Immediately prior to diagnostic anaesthesia each horse was trotted in a straight line on a 

level concrete surface with a fairly loose lead rope for the purposes of control kinematic 

data collection. Skin sensation of the distal limb was tested as part of the physical 

examination process using a blunt probe prior to performing regional anaesthesia. 
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Thereafter, the diagnostic anaesthesia procedure was performed as determined by the 

clinician (John F Marshall or Lance C Voute). Following confirmation of desensitization 

by application of blunt pressure distal to the site of diagnostic anaesthesia, the horse was 

again trotted in a straight line in similar manner to the control examination. In cases where 

an intra-articular local anaesthesia block was performed the horse was trotted 10 minutes 

following the diagnostic procedure. The response to the diagnostic procedure was 

categorised by both subjective observation of a significant improvement in gait by the 

observing clinician (John F Marshall or Lance C Voute) and change in objective kinematic 

data as previously described (Maliye et al., 2013).  

 

Identification of a positive response: Forelimb lameness was defined by the criteria 

provided by Equinosis, the manufacturer of the inertial sensor-based system of lameness 

diagnosis. One or more of the parameters needed to be above threshold for the forelimb 

lameness cases (HMA of the affected forelimb above 0.5, HDMax/HDMin >-/+6mm) 

provided the clinician performing the investigation had confirmed this forelimb to be the 

site of lameness. A positive response was defined as a decrease in HMA of the blocked 

limb to below threshold of 0.5, or a decrease of HDMax/HDMin of greater than 50% with 

supportive evidence of a change in HMA. These thresholds were chosen as it was thought 

that they would adequately represent a marked improvement to the lameness. Horses were 

only included if the subjective assessment by the clinician performing the lameness 

investigation agreed with the objective assessment.  

 

4.2.4 Classification of lameness  

 

All horses were classified by the presence or absence of evidence of lameness in the other 

limbs. The primary lame limb had previously been identified during the initial lameness 

assessment undertaken by the primary lameness clinician. Horses were therefore grouped 

as (1) primary forelimb lameness only (FO), (2) primary forelimb with contralateral 

hindlimb lameness (FC) or (3) primary forelimb with ipsilateral hindlimb lameness (FI). 

The horses were also analysed as a whole group, with all subgroups combined, F-all (4). 
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4.2.5 Data analysis 

 

Each horse served as its own control. The vector sum, VS, of HDMax and HDMin was 

calculated as √((HDMax)
2
+(HDMin)

2
) for all examinations and served as a measure of 

head movement asymmetry. Following calculation of the change in magnitude of VS 

following diagnostic anaesthesia, the VS was assigned to the left or right side depending 

on the signs of HDMin (Keegan et al., 2012), since HDMin is always positive for a right 

forelimb lameness and always negative for a left forelimb lameness (Keegan, 2012). It was 

thus possible and necessary to take account for the cases where the individual horse 

switched from being lame in one forelimb to being lame in the contralateral forelimb. A 

change from a positive to a negative HDMin value was reflected as a negative VS value 

since the horse had become left forelimb lame.  

 

Subsequently the change (delta value) in all parameters following diagnostic anaesthesia 

was calculated for all horses by subtracting the pre-diagnostic anaesthesia data (control) 

from the post anaesthesia data. A negative change would thus signify improvement to 

lameness regardless of whether the lameness was left or right. Likewise a positive change 

would signify worsening of the forelimb lameness regardless of the origin of the lameness. 

Thus all negative delta values signified improvement to the baseline lameness and positive 

values signified worsening of the lameness regardless of whether or not the lameness was 

left or right in origin.  

 

A Shapiro-Wilk normality test was performed prior to data analysis. All parameters were 

described as the mean ± standard deviation (SD) or median and inter-quartile range (IQR) 

as appropriate. The percentage change of each parameter following diagnostic anaesthesia 

was calculated. The median and interquartile range of the percentage change in each 

parameter following diagnostic anaesthesia was calculated. Baseline kinematic parameters 

(all nine in turn) were compared between all four groups. The effect of diagnostic 

anaesthesia on all nine kinematic parameters within each group was determined by a paired 

t-test or signed rank test as appropriate. All statistical analyses were performed using 

commercially available software (SigmaPlot 11.2, Systat Software LLC 
b
).  
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Correlation analysis was performed using a Spearman’s test, to assess the relationship 

between PMA of the ipsilateral and contralateral hindlimb, PDMax and PDMin with 

HMA assigned to the blocked limb, HDMax, HDMin and the Vector Sum. This was 

performed for all four groups (FC, FO, FI and F-all) between each variable. Statistical 

significance was set at 5%. 

  

4.3 Results 

 

A total of 28 horses with primary forelimb lameness met the inclusion criteria for this 

study. Horses with primary forelimb lameness were grouped as follows: Group FO 

included 8/28 (29%), Group FC included 14/28 (50%), and Group FI included 6/28 (21%). 

The data in Table 4.1 describes the data by dividing the horses into groups identifying the 

site of diagnostic anaesthesia and states the diagnosis made for that horse. 

 

4.3.1 Effect of diagnostic anaesthesia on forelimb kinematic parameters in 

horses with primary forelimb lameness 

 

There was a significant decrease in HMA assigned to the blocked forelimb in all four 

groups (FO p<0.05, FI p<0.05, FC p<0.001, F-all p<0.01 Figure 4.1A, 4.1C, 4.1E, Figure 

4.2 left). There was a significant increase in HMA assigned to the contralateral forelimb in 

all four groups (FO p<0.05, FI p<0.05, FC p<0.001, F-all p<0.01 Figure 4.1A, 4.1C, 4.1E, 

Figure 4.2 left).  

 

There was a significant decrease in HDMin in all four groups (FO p<0.05, FC p<0.001, FI 

p<0.05, Figure 4.1B, 4.1D, 4.1F and F-all p<0.001 Figure 4.2 right) and in HDMax in the 

FO, FC and F-all (p<0.05, p=0.001, p <0.001 respectively, Figure 4.1B, 4.1D, 4.2 right). 

Vector sum significantly decreased following diagnostic anaesthesia in all four groups (FO 

p<0.05, FI p<0.05, FC p<0.01, F-all p<0.001 Figure 4.1, 4.2 right). 
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4.3.2 Effect of diagnostic anaesthesia on hindlimb kinematic parameters in 

horses with primary forelimb lameness 

 

In the FO and FC groups, there was a significant decrease in the PMA assigned to the 

contralateral hindlimb, and a significant increase in the PMA assigned to the ipsilateral 

hind limb following diagnostic anaesthesia (p<0.05, Figure 4.1A, 4.1C). This pattern was 

identical in the analysis of the data as a whole in the F-all group (p<0.001 for ipsilateral 

and contralateral hindlimb, Figure 4.2 left). There was no significant effect of diagnostic 

anaesthesia on PMA of the contralateral or ipsilateral hindlimb in the FI group. PDMax 

significantly decreased in the FC group (p<0.001) and in the F-all group (p<0.01). There 

was no significant effect of diagnostic anaesthesia on PDMin in any forelimb group 

(Figure 4.1B, 4.1D, 4.1F, 4.2 right).  

Median values (baseline and post anaesthesia) for all kinematic parameters within each 

group are reported (Table 4.2). 
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Horse Group Forelimb Diagnostic anaesthesia Diagnosis 

1 FO RF PDNB Palmar heel pain 

2 FO RF PDNB Distal phalanx fracture 

3 FO RF ASNB Navicular disease 

4 FO LF ASNB Navicular disease 

5 FO LF ASNB DIPJ OA 

6 FO LF ASNB DDFT tendonitis 

7 FO LF DIPJ DIPJ OA 

8 FO RF DFTS DFTS synovitis  

9 FC LF PDNB Navicular disease 

10 FC LF PDNB DDFT tendonitis 

11 FC LF PDNB DDFT tendonitis 

12 FC RF PDNB DIPJ OA 

13 FC LF ASNB Unilateral laminitis 

14 FC RF ASNB Navicular disease 

15 FC LF ASNB SDSL desmitis 

16 FC LF Low 4 point MCPJ OA 

17 FC LF Low 4 point DDFT tendonitis 

18 FC RF Median and ulnar nerves SDFT tendonitis 

19 FC LF Median and ulnar nerves MCII osteopathy 

20 FC RF DFTS DDFT tendonitis 

21 FC LF Radiocarpal joint Radiocarpal joint OA 

22 FC LF Intercarpal joint Intercarpal joint OA 

23 FI LF PDNB Navicular disease 

24 FI RF PDNB Navicular disease 

25 FI LF ASNB PIPJ OA 

26 FI RF Lateral palmar nerve SL desmitis 

27 FI LF DIPJ DIPJ OA 

28 FI LF MCPJ MCPJ OA 

 

Table 4.1: Table describing the affected forelimb, diagnostic anaesthesia technique, and 

diagnosis of horses included in the study.  

Abbreviations:  PDNB Palmar digital, ASNB abaxial sesamoid, DIPJ distal interphalangeal 

joint, PIPJ proximal interphalangeal joint, SDFT superficial digital flexor tendon, DDFT 

deep digital flexor tendon, DFTS digital flexor tendon sheath, SL suspensory ligament, 

SDSL straight distal sesamoidean ligament, MCPJ metacarpophalangeal joint, OA 

osteoarthritis 
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Parameter/Group HMA 

Blocked 

forelimb 

HMA 

Contralateral 

forelimb 

PMA 

Ipsilateral 

hindlimb 

PMA 

Contralateral 

hindlimb 

HDMax HDMin Vector 

sum 

PDMax PDMin 

 

FO-Baseline 

 

0.70 

 

0.03 

 

0.07 

 

0.14 

 

9.85* 

 

11.89* 

 

15.28* 

 

1.79 

 

1.04 

FO-Post 

anaesthesia 

0.32* 0.16* 0.15* 0.07* -1.44 -1.87 -3.03 1.34 0.10 

FC-Baseline 1.14 0.02 0.02 0.28 13.79 20.57 30.25 7.18 2.32 

FC-Post 

anaesthesia 

0.54* 0.11* 0.05* 0.21* 3.58* 5.22* 11.61* 1.63* 1.82 

FI-Baseline 0.70 0.07 0.23 0.07 5.88 11.33 14.19 2.46 6.00 

FI-Post 

anaesthesia 

0.33* 0.39* 0.26 0.02 2.68 -1.23* -6.78* 1.03 6.30 

F-all-Baseline 0.84 0.02 0.06 0.17 10.63 13.87 18.25 3.62 1.84 

F-all-Post 

anaesthesia 

0.43* 0.13* 0.14* 0.08* 1.60* 3.49* 5.22* 1.34* 1.54 

 

Table 4.2: Median values of kinematic parameters (baseline and post anaesthesia) for the 

horses in each group. 

*Significant difference in medians between baseline and post diagnostic anaesthesia. 

 

 



51 
 

 

s  

 

   

 

Figure 4.1: Box and whisker plots showing movement symmetry assigned to each limb 

(FO only, (A), FC, (C), FI, (E)); HDMax, HDMin, PDMax, PDMin and VS associated 

with the FO only group (B), FC group (D) and FI group (F) pre (prior to diagnostic 

anaesthesia) and post (after diagnostic anaesthesia) performed on the lame forelimb.  

* Significant difference (p<0.05)  

 

Analysis of the data as a whole (F-all) using a paired Signed Rank test revealed that there 

was a significant difference between the parameters measured pre and post anaesthesia for 

all parameters except PDMin. See box and whisker plots shown in Figure 4.2.  
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Figure 4.2: Box and whisker plots showing movement symmetry assigned to each limb 

(left) and head and pelvic movement asymmetry parameters (HDMax, HDMin, VS, 

PDMax, and PDMin; right) pre (prior to diagnostic anaesthesia) and post (after diagnostic 

anaesthesia) performed on the lame forelimb. The data collected in this part of the study 

was analysed as a whole (F-all). 

* Significant difference (p<0.05) 

 

 

4.3.3 Correlation analysis of the effect of diagnostic anaesthesia on forelimb 

movement in horses with primary forelimb lameness 

 

Spearman’s rank correlation analysis revealed a significant positive correlation between 

the change in HMA associated with the blocked limb and change in PMA associated with 

the contralateral hindlimb in groups FO (r=0.95, p<0.01) and FC (r=0.68, p<0.01), and 

between the change in vector sum and the change in contralateral hindlimb PMA in F-all, 

FO and FC groups. There was a significant correlation between vector sum and PDMax in 

F-all (r=0.54, p<0.01) and group FC (r=0.80, p<0.01).  

 

A significant negative correlation was identified between the change in HMA of the 

blocked forelimb and change in PMA of the ipsilateral hindlimb, and between the change 

in vector sum and the change in PMA of the ipsilateral hindlimb in both the F-all and FO 

groups. 
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Significant positive correlations were identified between the change in HMA associated 

with the blocked limb and the change in PDMax, and the change in vector sum and change 

in PDMax in the F-all and FC group. A summary of significant correlation analyses is 

provided in Table 4.3. 

 

Group 
Correlation parameters 

r value p value 
Forelimb Hindlimb 

FC HMA (blocked limb) PMA (contralateral 

hindlimb) 

0.684 <0.01 

FC HMA (blocked limb) PDMax 0.736 <0.01 

FC HDMax PMA 0.745 <0.01 

FC HDMax PDMax 0.873 <0.01 

FC HDMin PDMax 0.600 <0.05 

FC VS PMA (contralateral 

hindlimb) 

0.631 <0.05 

FC VS PDMax 0.798 <0.01 

FO HMA (blocked) PMA (contralateral 

hindlimb) 

0.952 <0.01 

FO HMA (blocked) PMA (ipsilateral hindlimb) -0.857 <0.01 

FO HDMin PMA (contralateral 

hindlimb) 

0.786 <0.05 

FO HDMin PMA (ipsilateral hindlimb) -0.905 <0.01 

FO HDMin PDMax 0.69 <0.05 

 

Table 4.3: Spearmans rank correlation analysis between the change to the parameters 

shown within the forelimb lameness group with evidence of contralateral hindlimb 

lameness (marked FC), and the forelimb only group (marked FO) is given for all 

significant correlations only. Spearman’s rank correlation coefficient, r, is given along with 

corresponding p values.  

 

4.4 Discussion 

 

This part of the study investigating compensatory load redistribution in clinical equine 

lameness by examining the effect of reducing lameness through diagnostic anaesthesia and 

measurement of kinematic parameters prior to and following diagnostic anaesthesia, has 

demonstrated the effect of lameness on the other limbs in horses with naturally occurring 

lameness under clinical examination conditions. This is in contrast to earlier studies that 

have used experimentally induced lameness and/or treadmill examination as a model of 
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load re-distribution (Buchner et al., 1996a, 1996b; Orito et al., 2007; Uhlir et al., 1997; 

Weishaupt et al., 2006). The data shows that a significant proportion of forelimb lameness 

cases have a concurrent ‘false’ or ‘compensatory’ lameness affecting other limbs that is 

improved by diagnostic anaesthesia of the lame forelimb. Of the 28 horses included in this 

study, a total of 14/28 or 50% had subjective and objective evidence of forelimb and 

contralateral hindlimb lameness. A total of 6/28 or 21% of horses had evidence of forelimb 

and ipsilateral hindlimb lameness. This supports previous findings that compensatory 

hindlimb lameness in horses with primary forelimb lameness is most frequently observed 

as contralateral hindlimb lameness. This illustrates the importance of identifying the 

primary lame limb in diagnostic lameness investigations. The data supports rejection of the 

null hypothesis as significant evidence of a change (following diagnostic anaesthesia) to 

hindlimb parameters was noted, most notably affecting symmetry of the contralateral 

hindlimb and PDMax. 

 

The findings of this part of the study are similar to the data analysed in cases where 

diagnostic anaesthesia of the foot was undertaken (Chapter 2 and Maliye et al., 2013); a 

significant effect of diagnostic anaesthesia on kinematic parameters of movement 

asymmetry (referring to head/forelimb movement) following diagnostic anaesthesia of the 

blocked forelimb was identified. This has been discussed in more detail within Chapter 2 

and reasons have been provided. The data in this chapter thus supports this general trend 

and Vector sum and HDMin were shown to be useful measures of head movement and 

were found to significantly change in all four groups. HDMax reduced significantly in all 

groups except the ipsilateral hindlimb group. It thus appears that the difference between the 

minimum head height during the right and left forelimb stance phase is more likely to 

reduce in most cases with forelimb lameness following a positive response to diagnostic 

anaesthesia. Lameness is thus associated with less downward movement of the head since 

in all cases HDMin significantly reduced following a positive response to diagnostic 

anaesthesia of the affected limb. Forelimb lameness regardless of source thus results in 

changes to the distribution of load, which may be observed as less downward movement of 

the head associated with the lame limb during lameness.  

 

Hindlimb kinematic parameters in horses with primary forelimb lameness changed in 

many horses following the diagnostic anaesthesia nerve block performed. There was a 
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significant alteration in pelvic movement asymmetry associated with both hindlimbs in the 

FO, FC and F-all forelimb lameness groups following the diagnostic anaesthesia nerve 

block. Specifically, the PMA assigned to the contralateral hindlimb decreased while the 

PMA assigned to the ipsilateral hindlimb increased following a positive response to the 

diagnostic anaesthesia nerve block in the lame forelimb. A similar finding was previously 

reported following diagnostic anaesthesia of forelimb lameness localised to the foot 

(Maliye et al., 2013) and an explanation has been provided in Chapter 2. However, the 

previous study did not investigate the reason for this increased contralateral hindlimb 

asymmetry further (Chapter 2, Maliye et al., 2013). The data in this chapter showed that in 

forelimb lameness cases with evidence of contralateral hindlimb lameness (Group FC), 

there was a significant decrease in PDMax following a positive block. This implies that 

compensatory lameness or load re-distribution in this group is associated with the push-off 

component of the stride. The finding was restricted to the two largest groups (FC and F-all) 

and this may reflect reduced power in detecting a change in the smaller groups or it may 

reflect a real difference in alteration to distribution of weight and symmetry between the 

groups. Specifically, forelimb lameness resulted in a decrease in push-off from the 

contralateral hindlimb that was improved by the diagnostic anaesthesia nerve block. 

Previous experimental studies have demonstrated a shift in loading from the lame forelimb 

to the diagonal hindlimb (Vorstenbosch et al., 1997; Weishaupt et al., 2006). Therefore, 

the reduction in push-off may be a reflection of increased loading off the limb. The 

previous studies have disagreed on whether forelimb lameness results in a compensatory 

weight-bearing ipsilateral hindlimb lameness (Weishaupt et al., 2006), or a contralateral 

hindlimb lameness (Uhlir et al., 1997) using ground-reaction force measurement and 

kinematics respectively. Weishaupt noted lowering of the sacrum during the stance phase 

of the contralateral hindlimb, which he interpreted as ipsilateral weightbearing lameness. 

The data presented in this chapter does not support changes in pelvic height during the 

stance phase/weightbearing (reflected in PDMin) as changing significantly in cases with 

forelimb lameness since a significant change in PDMin was not found in any of the four 

groups following the diagnostic anaesthesia nerve block of the affected forelimb. The 

current data representing naturally occurring lameness during a clinical examination is in 

agreement with the previous treadmill kinematic study that identified contralateral 

hindlimb lameness (Uhlir et al., 1997).  
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A previous experimental study described ipsilateral hindlimb lameness in two horses and 

found that diagnostic anaesthesia of the forelimb or removal of induced lameness resulted 

in decreased asymmetry of movement in the ipsilateral hindlimb (Uhlir et al., 1997). The 

data presented in this chapter shows that although there was a significant effect of 

diagnostic anaesthesia on the forelimb lameness, there was no significant change in any of 

the measured hindlimb kinematic parameters in the FI group. This difference may reflect 

the differences in experimental methods, data analysis and horse populations. These 

findings suggest that the lameness in the ipsilateral hindlimb of these horses analysed and 

presented in this chapter was a ‘true’ lameness and not the result of compensatory load 

distribution. By further analysing the individual case records of the 6 horses in this group it 

was unfortunately not possible to draw conclusions regarding the source of the hindlimb 

lameness in these cases. In one case the hindlimb symmetry was reported to have 

improved, thus it was thought that the hindlimb lameness was in part compensatory hence 

no further investigation was undertaken. In three cases no investigation of the hindlimb 

lameness was undertaken. In one case an extensive investigation of the ipsilateral hindlimb 

lameness was undertaken (local anaesthesia-low 6 point, deep branch of the lateral plantar 

nerve, tarosmetatarsal joint, medial femorotibial joint, tibial and peroneal) without 

alteration to the hindlimb lameness. In the final case an attempt was made to undertake 

diagnostic anaesthesia but this could not be safely undertaken, however evidence of mild 

osteoarthritis of the distal tarsal joints was noted on radiographs obtained and this may 

have been the source of hindlimb lameness observed. There is thus evidence to suggest that 

in some cases a second source of lameness (hindlimb) exists, in another case the lameness 

could not be localized (despite diagnostic anaesthesia) and although this may support the 

possibility that the hindlimb lameness in this case is compensatory, this may also not be the 

case as there are situations when a lameness cannot be successfully localized by diagnostic 

anaesthesia. The observers in the final case noted that the hindlimb symmetry improved 

(but was not abolished) following the diagnostic anaesthesia of the forelimb, and thus was 

thought to be compensatory in part. It is thus difficult to draw conclusions for the limited 

numbers of cases in this group. Further analysis of horses showing forelimb lameness and 

ipsilateral hindlimb lameness is thus warranted. 

 

Correlation analysis revealed positive correlations between change in HMA (blocked limb) 

with the change in PMA associated with the contralateral hindlimb in both FO and FC 

groups. This supports the theory of forelimb lameness resulting in compensatory 
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contralateral hindlimb lameness. In the FC group HDMax also positively correlated with 

PMA (contralateral hindlimb), thus further supporting this.  HMA (blocked limb) 

negatively correlated with PMA (ipsilateral hindlimb) in the FO group, and a similar 

though insignificant trend was noted in the FC group. This may be explained by the shift in 

weight distribution away from the ipsilateral hindlimb during lameness i.e. relative 

asymmetry more significantly assigned to the contralateral hindlimb during lameness. The 

latter would result in an apparent decrease in PMA assigned to the ipsilateral hindlimb. 

HDMin positively correlated with PDMax in both groups. This may suggest that the 

impact component of a forelimb lameness (head movement) and push off component of 

pelvic movement may frequently occur together and change in a similar manner. In the FC 

group the hindlimb pelvic push off component (PDMax) positively correlates with HMA 

(blocked limb) and HDMax too, thus suggesting that the pelvic push off component in this 

group generally more closely correlates with all kinematic forelimb parameters (HMA-

blocked limb, HDMax and HDMin) than in the FO group. In the FO group the pelvic push 

off component (PDMax) strongly correlates with the impact component of forelimb 

(HDMin), but none of the other variables. HDMin correlates with all hindlimb kinematic 

parameters except PDMin in the FO group; an explanation may be that the impact 

component of head movement in this group is more frequently seen than in the FC group 

i.e. the characteristics of the forelimb lameness type seen in the two groups FO and FC 

may be different.   

 

Overall, the analysis of forelimb diagnostic anaesthesia provides significant clinical 

evidence that forelimb lameness results in significant compensatory load distribution that 

is manifest as contralateral hindlimb lameness. The horses in the FI group failed to show 

changes in asymmetry assigned to the hindlimbs, which was in contrast to the other three 

groups. They also failed to show a change in vertical pelvic movement, which was in 

contrast to the FC and forelimb F-all where a significant change in vertical pelvic 

movement was detected. Furthermore, while a previous study found evidence of 

compensatory contralateral limb lameness in horses with severe forelimb lameness (Uhlir 

et al., 1997), this study has demonstrated detectable and significant load redistribution in 

the horse with mild or moderate forelimb lameness and both with and without observed 

hindlimb lameness. Analysis of the horses as a whole group has increased the power to 

detect significant changes in all parameters measured, thereby maximising the provision of 

information concerning kinematics/movement in these horses. By analysing the groups 
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according to the existence of evidence of hindlimb lameness this has allowed identification 

of compensatory lameness in horses with evidence of contralateral hindlimb lameness. It 

has also allowed identification of the existence of subclinical compensatory lameness. 

Additionally, the forelimb only (FO) group possibly best represents horses with forelimb 

lameness (no confounding with the possible existence of true hindlimb lameness) and thus 

analysis of these horses separately was thought to be important.  

 

4.5 Conclusions 

 

Analysis of the current data presented has expanded upon previous studies by 

characterising the compensatory hindlimb lameness observed in clinical cases with primary 

forelimb lameness in addition to objectively supporting the “law of sides” in a moderately 

sized population of horses. The data supports rejection of the null hypothesis as significant 

evidence of a change to hindlimb parameters following diagnostic anaesthesia was noted in 

many horses, most notably affecting symmetry associated with the contralateral hindlimb 

and PDMax. 

 

The data presented in this chapter shows that although there was a significant effect of 

diagnostic anaesthesia on the forelimb lameness, there was no significant change in any of 

the measured hindlimb kinematic parameters in horses with ipsilateral hindlimb lameness. 

These findings suggest that the lameness in the ipsilateral hindlimb of these horses 

analysed and presented in this chapter was a ‘true’ lameness and not the result of 

compensatory load distribution. The change to the hindlimb parameters in the FC group 

provides supporting evidence to suggest that this contralateral hindlimb lameness is not a 

true lameness. 

 

The findings of this study demonstrate that when assessing the lame horse it is important to 

eliminate hindlimb lameness as a possible cause of forelimb lameness and vice versa prior 

to performing further diagnostic techniques. Analysis of the data has demonstrated that 

subclinical compensatory lameness commonly occurs. It is thus useful when assessing the 

response to diagnostic anaesthesia in horses with forelimb and hindlimb lameness to define 
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the effect on both the hind and forelimb movement. The findings of this analysis, therefore 

has important implications for lameness examinations and the investigation of lameness, in 

particular multi-limb lameness. 

 

a. Lameness Locator, Equinosis LLC  

b. SigmaPlot 11.2, Systat Software LL 
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CHAPTER 5:  

The compensatory effect of clinical hindlimb lameness on head 

movement in the horse; using kinematic measurements in clinical 

cases and diagnostic anaesthesia to characterise the effect  

 

5.1 Objectives, Hypothesis and study design 

5.2. Materials and Methods 

      5.2.1 Medical record review 

      5.2.2 Lameness examinations and diagnostic anaesthesia 

      5.2.3 Kinematic lameness analysis 

      5.2.4 Objective identification of a positive response to the diagnostic anaesthesia     

    procedure undertaken 

      5.2.5 Data analysis 

 

5.3 Results 

      5.3.1 Medical record review 

      5.3.2 Effect of diagnostic anaesthesia on hindlimb movement 

      5.3.3 Effect of diagnostic anaesthesia on forelimb movement 

 

5.4 Discussion 

5.5 Conclusions 

 

5.1 Objectives, hypothesis and study design  

 

Several load-shifting mechanisms have been identified in induced hindlimb lameness 

models including one referring to the effect on the forelimbs. It was reported that the 

contralateral forelimb carries on average 3.6% more of the diagonal vertical impulse 

during moderate hindlimb lameness (Weishaupt et al., 2004). Kinematic analysis of horses 

with naturally occurring lameness and the occurrence of compensatory lameness in such 

cases is currently limited to individual cases, which does not allow general trends to be 
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confirmed. In one study all four horses with naturally occurring hindlimb lameness showed 

evidence of ipsilateral forelimb lameness (Uhlir et al., 1997). In a second study of horses 

with induced hindlimb lameness (Weishaupt et al., 2004) the vertical impulse was shifted 

to the contralateral forelimb during the lame diagonal stance. 

 

When assessing multi-limb lameness, in order to correctly identify the primary source of 

lameness, it is important to assess the significance of compensatory lameness that may be 

present prior to performing diagnostic anaesthesia. The existence of compensatory 

lameness is thus important to consider when undertaking clinical lameness investigations 

and establishing the prevalence of this effect. Characterising the compensatory lameness in 

clinical cases is therefore important. Additionally, observing the effect of diagnostic 

anaesthesia of the hindlimb on forelimb movement may be of value in determining the 

response to diagnostic anaesthesia in practice.  

 

The hypothesis (H1) was that hindlimb lameness results in significant load redistribution, 

which may be observed as ipsilateral forelimb lameness. Fore example, right hindlimb 

lameness results in load redistribution observed as right forelimb lameness. The null 

hypothesis was that hindlimb lameness does not result in significant load redistribution on 

the forelimbs. This hypothesis is supported by findings in individual cases of lameness as 

mentioned in Chapter 3 and by the “rule of sides” (Uhlir et al., 1997, Kelmer et al., 2005, 

Weishaupt et al., 2006 and 2008, Keegan et al., 2007 and Ross et al., 2010). The “rule of 

sides” refers to the observation of a false lameness, for example right hindlimb lameness 

resulting in alterations in symmetry and load distribution that may be interpreted as right 

forelimb (ipsilateral forelimb) lameness. Conversely right forelimb lameness has been 

reported to lead to alterations in load and symmetry frequently interpreted as left hindlimb 

(contralateral hindlimb) lameness. 

 

In order to test the hypothesis, an inertial sensor-based system of lameness diagnosis 

(Equinosis) was used to objectively investigate compensatory load redistribution in horses 

with clinical hindlimb lameness by examining the effect of alleviating lameness through 

diagnostic anaesthesia. The hypothesis was addressed by analysing kinematic parameters 

of forelimb movement. Analysis of changes to head movement asymmetry assigned to 
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each forelimb and changes to vertical head height (and vector sum representing HDMax 

and HDMin) was thus undertaken. If significant changes were detected within these 

parameters following improvement to the lameness after a positive response to diagnostic 

anaesthesia had occurred, this would be supportive of the H1 hypothesis. The aims in this 

small study were to identify the proportion of horses exhibiting characteristics of 

compensatory forelimb lameness, to establish the characteristics of the compensatory 

component and to establish if there is a correlation between hindlimb and compensatory 

forelimb parameters in cases with hindlimb lameness.  

 

 

5.2 Materials and Methods 

 

5.2.1 Medical record review 

 

Data obtained during lameness investigations performed between September 2011 and 

October 2014 at the Weipers Centre Equine Hospital, University of Glasgow, that included 

the use of an inertial sensor-based system of lameness diagnosis (Lameness Locator, 

Equinosis LLC) were retrospectively reviewed. Horses diagnosed with hindlimb lameness 

that had a positive response to diagnostic anaesthesia of the hindlimb as determined by 

subjective and objective assessment were included in further analysis. Horses were 

grouped for further analysis as (1) clinical hindlimb lameness only (HO), (2) hindlimb and 

ipsilateral forelimb lameness (HI) or (3) hindlimb and contralateral forelimb lameness 

(HC) according to objective criteria (see later) and the baseline examination findings. 

Additionally all horses were analysed together as the group (4) H-all, “all groups 

combined”. 

 

5.2.2 Lameness examinations and diagnostic anaesthesia 

 

Each horse undergoing diagnostic anaesthesia of a hindlimb was trotted in a straight line 

on a level concrete surface with a fairly loose lead rope during data collection. A minimum 

of 30 strides was required for the data to be accepted for the study. Sensation to the heel 

bulbs of both hindlimbs were tested using a blunt probe prior to performing regional 
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anaesthesia as part of the physical examination process. Thereafter, the diagnostic 

anaesthesia procedure chosen by the attending clinician experienced in lameness diagnosis 

(John F Marshall or Lance C Voute) was performed on the limb identified as being the 

lame hindlimb. In cases where a horse was bilaterally hindlimb lame only the lamer 

hindlimb was included. Following confirmation of desensitization by application of blunt 

pressure distal to the site of diagnostic anaesthesia, the horse was again trotted in a straight 

line in similar manner to the baseline examination. In cases where intra-articular local 

anaesthesia was performed the horse was trotted 10 minutes following the diagnostic 

procedure. The response to the diagnostic anaesthesia was categorised by objective data 

(see later for criteria) and subjectively by the primary investigator and only those horses 

where a positive response occurred were included in this study.   

 

5.2.3 Kinematic lameness analysis 

 

A commercially available inertial sensor-based system of lameness diagnosis
b
 was used to 

objectively evaluate lameness by measuring eight parameters as previously described 

(Keegan et al., 2006 and Marshall et al., 2012, Chapter 1). The mean difference in 

millimetres in maximum head height (HDMax) after the stance phases of the right and left 

forelimb and similarly minimum head height (HDMin) representing the mean difference in 

millimetres in minimum head height during the stance phases of the right and left forelimb 

were recorded. The mean difference in millimetres in maximum pelvic height (PDMax) 

after the stance phases of the right and left hindlimb and also the minimum pelvic height 

(PDMin) representing the difference in millimetres in minimum pelvic height during the 

stance phases of the right and left hindlimb were recorded. Additionally, general measures 

of vertical head and pelvic movement asymmetry were calculated and assigned to either 

right or left forelimbs (HMA) and hindlimbs (PMA) by the software and these 

measurements were recorded. Data were collected prior to and following the diagnostic 

anaesthesia procedure.  

 

Horses were included if there was evidence of a unilateral hindlimb lameness as defined 

objectively as a PMA greater than 0.17 and PDMax and/or PDMin greater than +/-3mm. 

All cases were further classified according to any evidence of forelimb lameness (hindlimb 
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lameness only, HO, hindlimb lameness and ipsilateral forelimb lameness, HI, or hindlimb 

lameness and contralateral forelimb lameness, HC). Criteria for forelimb lameness were 

vector sum greater than 8.5mm in the baseline (pre-anaesthesia data). These criteria had 

previously been established for identification of lameness by the manufacturers of 

Equinosis and had been investigated in a previous study (Keegan et al., 2012).  

 

5.2.4 Objective identification of a positive response to the diagnostic 

anaesthesia  

 

A positive response to the diagnostic anaesthesia procedure undertaken was defined as a 

change in pelvic movement asymmetry (PMA) assigned to the blocked limb to below 

threshold (≤0.17) or decrease in mean difference in maximum pelvic height after the stance 

phase of the right and left hindlimb (PDMax) or decrease in mean difference in minimum 

pelvic height during the stance phase of the right and left hindlimb (PDMin) of greater than 

50% with supportive evidence of a change in PMA. This threshold of 0.17 was chosen 

since the manufacturers of the Equinosis system have established this to be adequate for 

the identification of lame horses (Kramer et al., 2004). 

 

5.2.5 Data analysis 

 

Each horse served as its own control. A Shapiro-Wilk normality test was performed on all 

data sets prior to data analysis. For PDMax/PDMin raw data, corrections were made in 

order to take into account whether the hindlimb lameness was right or left in the baseline 

examination (all left hindlimb lamenesses were multiplied by -1), so that both right and left 

hindlimb lamenesses could be combined for analysis. Similarly for HDMax/HDMin data 

corrections were made in order to take into account whether the forelimb lameness was left 

or right in origin (left forelimb lamenesses were multiplied by -1) according to the sign of 

HDMin in the baseline examination, to allow the data to be combined for analysis. 

Subsequently the change (delta value) in all parameters following diagnostic anaesthesia 

was calculated for all horses by subtracting the pre-diagnostic anaesthesia data (control) 

from the post anaesthesia data. A negative change would thus signify improvement to 
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lameness regardless of whether the lameness was left or right. Likewise a positive change 

would signify worsening of the forelimb lameness regardless of the origin of the lameness. 

Thus all negative delta values signified improvement to the baseline lameness and positive 

values signified worsening of the lameness regardless of whether or not the lameness was 

left or right in origin.  

 

The vector sum (VS) of HDMax and HDMin was calculated as √((HDMax)
2
+(HDMin)

2 
) 

for all examinations and served as a measure of head movement asymmetry. Vector sum 

(VS) was calculated for each horse for pre and post data, and assigned a sign according to 

the sign of HDMin of the pre and post data (i.e. VS was sign corrected). Thereafter, VS 

(both pre and post) of all forelimb lamenesses classified as left in origin (according to the 

HDMin sign of the baseline examination), were multiplied by -1 in order to allow 

comparison of right and left forelimb lamenesses and pre and post anaesthesia results of 

VS were compared and the change in VS was subsequently calculated.  

 

The changes (pre and post anaesthesia) to each of these parameters were analysed for each 

parameter by a paired t-test or signed rank test, depending on the distribution of the 

population, in order to assess the significance of the change. A comparison of the baseline 

(pre anaesthesia) parameters obtained was made between the HO, HC and HI groups using 

a Rank Sum test or t-test as appropriate in order to identify whether or not there was a 

significant difference in hindlimb lameness characteristics between the three populations.  

All statistical analyses were performed using commercially available software (SigmaPlot 

11.2, Systat Software LLC).  

 

Spearmans or Pearsons Correlation Analysis as appropriate was performed in order to 

identify correlations between the hindlimb and forelimb parameters measured in both 

groups. Comparisons were made between hindlimb parameters (change of PMA assigned 

to each hindlimb, PDMax, PDMin) with each of the forelimb parameters (change of HMA 

of each forelimb, vector sum, HDMax and HDMin) within each group (HO, HI, HC and 

H-all). Statistical significance was set at 5%. 
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5.3 Results 

 

5.3.1 Medical record review 

 

A total of 37 horses met the complete inclusion criteria for this study. These horses were 

grouped as (1) clinical hindlimb lameness only (HO group, n=19, 51%), (2) Hindlimb and 

ipsilateral forelimb lameness (HI group, n=10, 27%) or (3) HL and contralateral forelimb 

lameness (HC group, n=8, 22%). Additionally all groups combined were analysed (n=37). 

See Table 5.1. 
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Horse Group Hindlimb Diagnostic anaesthesia Diagnosis 

1 HO LH Deep branch of lateral plantar nerve Suspensory ligament desmitis 

2 HO LH Deep branch of lateral plantar nerve Suspensory ligament desmitis 

3 HO LH TMT joint OA of distal tarsal joints 

4 HO RH TMT joint OA of distal tarsal joints 

5 HO LH TMT joint OA of distal tarsal joints 

6 HO RH TMT joint OA of distal tarsal joints 

7 HO LH TMT joint OA of distal tarsal joints 

8 HO LH Digital flexor tendon sheath Annular ligament syndrome 

9 HO LH Deep branch of lateral plantar nerve Suspensory ligament desmitis 

10 HO LH TMT joint OA of distal tarsal joints 

11 HO RH Deep branch of lateral plantar nerve Suspensory ligament desmitis 

12 HO RH Deep branch of lateral plantar nerve Suspensory ligament desmitis 

13 HO RH Deep branch of lateral plantar nerve Suspensory ligament desmitis 

14 HO RH Deep branch of lateral plantar nerve Suspensory ligament desmitis 

15 HO LH TMT joint OA of distal tarsal joints 

16 HO RH Deep branch of lateral plantar nerve Suspensory ligament desmitis 

17 HO RH TMT joint OA of distal tarsal joints 

18 HO RH TMT joint OA of distal tarsal joints 

19 HO RH TMT joint OA of distal tarsal joints 

20 HI LH Deep branch of lateral plantar nerve Suspensory ligament desmitis 

21 HI RH Deep branch of lateral plantar nerve Suspensory ligament desmitis 

22 HI RH Deep branch of lateral plantar nerve Suspensory ligament desmitis 

23 HI RH TMT joint OA of distal tarsal joints 

24 HI LH TMT joint OA of distal tarsal joints 

25 HI LH TMT joint OA of distal tarsal joints 

26 HI LH Low 6 point Plantar proximal phalanx 

bone chip/fragmentation 

27 HI LH Deep branch of lateral plantar nerve Suspensory ligament desmitis 

28 HI RH TMT joint OA of distal tarsal joints 

29 HI LH TMT joint OA of distal tarsal joints 

30 HC LH Deep branch of lateral plantar nerve Suspensory ligament desmitis 

31 HC RH Deep branch of lateral plantar nerve Suspensory ligament desmitis 

32 HC RH TMT joint OA of distal tarsal joints 

33 HC LH  Deep branch of lateral plantar nerve Suspensory ligament desmitis 

34 HC RH Deep branch of lateral plantar nerve Suspensory ligament desmitis 

35 HC LH Deep branch of lateral plantar nerve Subtarsal pain 

36 HC LH Deep branch of lateral plantar nerve Suspensory ligament desmitis 

37 HC RH TMT joint OAof distal tarsal joints 

 

Table 5.1: Table of lameness group, limb, site of diagnostic anaesthesia and respective 

diagnoses of the horses included in this study. TMT refers to the tarsometatarsal joint. OA 

refers to osteoarthritis. 
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The horses included a broad range of breeds and horses of varying ages. The HO group 

was comprised of horses between 4-22 years of age; 8 mares and 11 geldings; 4TB/TB 

crosses, 1 Clydesdale, 5 Warmbloods, 1 cob, 1 Connemara x Dutch Warmblood, 2 ponies 

(Welsh and other) and 4 SPB, 1 Friesian. The HI group comprised of horses between 5-15 

years; 6 mares, 4 geldings; 3 TB/TB crosses, 3 Warmbloods/Warmblood crosses, 1 cob 

and 3 ponies. The HC group comprised of horses between 7-22 years of age; 3 mares, 5 

geldings; 5 TB/TBXs, 2 Warmbloods and 1 Sport horse. 

 

5.3.2 Effect of diagnostic anaesthesia on hindlimb movement 

 

PMA assigned to the contralateral hindlimb significantly increased (HO, H-all P<0.001, 

HI, HC P<0.01) and PMA assigned to the affected (blocked) hindlimb significantly 

decreased in all groups (HO, HC and H all groups combined P<0.001 and HI P<0.005) 

following diagnostic anaesthesia (Figure 5.1A-D). A positive response to diagnostic 

anaesthesia resulted in a significant decrease in PDMax in the HO, HC and H-all groups 

(P<0.001) and HI (P<0.01). PDMin significantly reduced in all groups (P<0.005) except 

the HC group (P=0.054, Fig 5.1). 

 

5.3.3 Effect of diagnostic anaesthesia on forelimb movement 

 

HMA assigned to the ipsilateral forelimb significantly reduced in all groups (H-all and HI 

P<0.001, HO P<0.05) except the HC group (P=0.112). The HMA assigned to the 

contralateral forelimb significantly increased in the HI group only (P<0.05) following 

diagnostic anaesthesia performed on the lame hindlimb. HDMax, HDMin and VS all 

significantly reduced in the HI group (P<0.01, P<0.01, P<0.05 respectively). Neither 

HDMax, HDMin or VS parameter significantly reduced in the HO group (P=0.07, P=0.271 

and P=0.357 respectively). HDMax significantly reduced in the HC group (P<0.05); 

HDMin and VS did not significantly change. All three parameters (HDMax, HDMin and 

VS) significantly reduced when the data were analysed as a whole group (P<0.01, P<0.05, 

P<0.01 respectively). The data are displayed in Figure 5.2.  
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Figure 5.1: Box and whisker plots showing movement asymmetry (HMA for the forelimbs 

and PMA for the hindlimbs) assigned to each limb (HI (A), HC (B), HO (C) and H-all (D)) 

prior to diagnostic anaesthesia (pre) and after diagnostic anaesthesia (post) performed on 

the lame (affected) hindlimb.  

* Significant difference (P<0.05) between pre and post anaesthesia groups. 
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Figure 5.2: Box and whisker plots showing PDMax, PDMin, HDMax, HDMin (in 

millimetres) and vector sum, VS, associated with the HI (A), HC (B), HO (C) and H-all 

(D) groups prior to diagnostic anaesthesia (pre) and after diagnostic anaesthesia (post) 

performed on the lame (affected) hindlimb.  

* Significant difference (P<0.05) between pre and post anaesthesia groups. 

 

 

Median values (baseline and post anaesthesia) for each of the kinematic parameters within 

each group are reported (Table 5.2). 
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Parameter/Group PMA 

Blocked 

hindlimb 

PMA 

Contralateral 

hindlimb 

HMA 

Ipsilateral 

forelimb 

HMA 

Contralateral 

forelimb 

PDMax PDMin HDMax HDMin Vector 

sum 

 

HI-Baseline 

 

0.26 

 

0.03 

 

0.67 

 

0.14 

 

6.09 

 

1.05 

 

9.15 

 

9.00 

 

11.98 

HI-Post 

anaesthesia 

0.15* 0.12* 0.35* 0.27* 3.08* -1.33* 3.56* 0.65* 9.67* 

HC-Baseline 0.22 0.03 0.08 0.86 4.60 2.74 11.62 12.13 15.31 

HC-Post 

anaesthesia 

0.15* 0.11* 0.06 0.51 0.08* 1.15 7.46* 12.27 16.46 

HO-Baseline 0.23 0.04 0.34 0.25 5.10 1.27 0.67 2.78 5.68 

HO-Post 

anaesthesia 

0.14* 0.10* 0.25* 0.28 2.20* -0.81* -0.73 1.31 3.07 

H-all-Baseline 0.23 0.04 0.36 0.26 5.10 1.27 4.15 5.15 8.36 

H-all-Post 

anaesthesia 

0.15* 0.11* 0.25* 0.34 2.20* -0.30* 1.81* 1.77* 7.75* 

 

Table 5.2: Median values of kinematic parameters (baseline and post anaesthesia) for the 

horses in each group. 

*Significant difference in medians between baseline and post diagnostic anaesthesia. 

 

 

A comparison of the baseline (pre anaesthesia) hindlimb parameters (PMA assigned to the 

blocked limb, PDMax and PDMin) obtained was made between the HO, HI, HC and H-all 

groups using a Kruskal One Way analysis based on Ranks, and revealed no significant 

difference in the hindlimb parameters between the four groups.  

 

No significant correlation between any of the forelimb and hindlimb parameters was 

identified in any of the four groups. 

 

 

 

 



72 
 

 

5.4 Discussion 

 

A forelimb lameness that improved significantly with hindlimb diagnostic anaesthesia was 

identified in over a quarter of hindlimb lameness cases (27%). All groups analysed showed 

significant improvement (reduction) to the asymmetry assigned to the ipsilateral forelimb 

(except the HC group). A significant increase to the asymmetry of the contralateral 

forelimb was noted in the HI group only. Significant reduction to head height (VS, HDMax 

and HDMin) was identified in the HI group and in the hindlimb lameness group analysed 

as a whole (H-all) following diagnostic anaesthesia. A significant reduction in HDMax was 

identified in the HC group, however HDMin and VS both increased marginally in this 

group, which is in contrast to all the other groups were a reduction to all three parameters 

was noted. The reduction in the parameters noted provides evidence to suggest that there is 

a subclinical compensatory component in these horses. Furthermore the data shows that 

subclinical compensatory forelimb lameness occurs fairly commonly in horses with 

hindlimb lameness. Although a reduction to all three parameters pertaining to head 

movement was noted in the hindlimb lameness only group (HO), none of the changes were 

significant. 

 

The compensatory forelimb lameness observed in this clinical population was ipsilateral in 

origin and therefore agrees with previous descriptions as defined by the “law of sides” 

(Uhlir et al., 1997 and Ross and Dyson et al., 2010). This study has provided the first 

objective data in a significant number of clinical cases to support this often quoted clinical 

guideline. Of the cases classified as demonstrating forelimb lameness 55% were classified 

as ipsilateral. Contralateral forelimb lameness in cases with hindlimb lameness was less 

commonly reported in these cases, noted in 45% of cases classified as demonstrating 

forelimb lameness. Further analysis of the data in this contralateral forelimb lameness 

group revealed that the forelimb lameness observed in this subpopulation has different 

characteristics to the other three groups. Median HDMin and VS values both increased 

insignificantly in this group, which as previously mentioned, is in contrast to all the other 

groups were a reduction to all three parameters was noted. A significant reduction in 

HDMax (but not HDMin or VS) was noted in this group however no significant change to 

the asymmetry of the ipsilateral forelimb was noted in this group, which again is in 

contrast to the other three groups where a significant reduction to the HMA assigned to the 

ipsilateral forelimb was noted. The median value of HMA (ipsilateral forelimb) was almost 
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unchanged between the pre and post diagnostic anaesthesia data. Vector sum is accepted as 

being the best parameter to measure head movement, and in this contralateral forelimb 

lameness group a significant change to this parameter was not noted. Thus the conclusion 

is that the horses classified as demonstrating contralateral forelimb lameness are in fact 

horses with true forelimb lameness and thus no improvement to the head movement and 

forelimb asymmetry parameters or similar trends pertaining to these parameters following 

diagnostic anaesthesia, as observed within the other groups, is noted in this group. A future 

study to evaluate the source of forelimb lameness in this population is warranted.  

 

The difference in minimum head height (HDMin) significantly decreased in the HI group 

and all horses analysed as a whole group following a positive response to local anaesthesia. 

Although median HDMin reduced following diagnostic anaesthesia in the HO group, this 

change was not significant (see Figure 5.2C). This may be due to the lack of power due to 

the relatively small group size, or it may reflect a real difference between the groups. The 

former seems less likely as the HI group was smaller than the HO group. The finding 

within the HI group may be explained by the apparent difference in head height during the 

stance phases of the two forelimbs. Less downward movement of the head on the 

contralateral forelimb will occur during the stance phase following improvement to the 

hindlimb lameness and subsequent load re-distribution (Weishaupt et al., 2004) thus the 

average difference in head height during the stance phases of the right and left forelimbs 

becomes less. This implies that during hindlimb lameness in this group there is a 

significant alteration in head movement downwards during the weight-bearing and loading 

phase as a result of the altered distribution in weight. A study of induced and naturally 

occurring hindlimb lameness revealed that the head moves down less during the stance 

phase of the ipsilateral forelimb (Keegan et al., 2004). One would thus expect more 

downward movement of the head during the stance phase of the ipsilateral forelimb 

following abolition of the hindlimb lameness, and thus the apparent difference in head 

height between the weightbearing phases of the two forelimbs becomes less. 

 

In cases classified as demonstrating hindlimb lameness with ipsilateral forelimb lameness 

(HI group), compensatory forelimb lameness was both impact and loading related 

(HDMax, HDMin and VS all significantly reduced). However, in cases with only hindlimb 

lameness (HO) neither push-off (HDMax) or impact/loading (HDMin) significantly 
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changed, nor did the vector sum although the medians of each reduced following the 

diagnostic anaesthesia undertaken.  Increased severity of the hindlimb lameness in the HI 

group and greater load re-distribution would be a feasible explanation. However, this was 

not supported by the comparison of the baseline (pre anaesthesia) parameters undertaken 

between the groups. In none of the hindlimb lameness groups did the severity or 

characteristics (in terms of movement asymmetry of the respective hindlimb nor impact or 

push off component referring to PDMax/PDMin in hindlimb lameness) of the primary 

lameness significantly differ between the subgroups. In the analysis of all horses with 

hindlimb lameness group the forelimb lameness observed was both impact and loading 

related (HDMax, HDMin and VS all significantly reduced) in a similar manner to the HI 

group. Analysis of the kinematic parameters of the HC group revealed that the forelimb 

lameness in this group may appear to be push-off related (HDMax significantly reduces), 

however the more reliable parameter vector sum in fact increases marginally. 

 

In forelimb lameness, one would expect to see greater push-off from the sound limb (see 

Chapter 2). In the case of compensatory lameness, greater push-off from the contralateral 

forelimb was observed in two groups (HI group and H-all), which will be observed as 

ipsilateral forelimb lameness. VS only significantly changed in the HI and H all groups 

combined between pre and post anaesthesia parameters, similarly to HDMax/HDMin. In 

this population of horses (HI and H-all), all three parameters identified significant changes 

to head movement asymmetry, however using VS alone perhaps better represents vertical 

head height in other situations. The HC group may be an example of this since HDMax 

significantly reduced, however VS insignificantly increased. This highlights the possible 

danger of overinterpreting a change to one parameter in isolation. Head movement 

asymmetry (HMA) of the ipsilateral forelimb significantly reduced following a positive 

response to diagnostic anaesthesia in all groups except the HC group. HMA assigned to the 

contralateral forelimb only significantly increased in the HI group only. The former may be 

explained in part by the general decrease in vertical head movement asymmetry following 

a positive response to diagnostic anaesthesia due to fewer alterations in load redistribution 

i.e. the return to more symmetrical movement in the absence of lameness. In the data 

presented in Chapter 2, greater head movement asymmetry of the contralateral forelimb 

following a positive response to local anaesthesia in a forelimb was noted and a similar 

phenomenon was noted when analysing the data for the current population. This may be 

due to the measures of head movement asymmetry (HMA) being relative measures related 
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to the number of asymmetric strides assigned to one forelimb, which inevitably is loosely 

related to the number of asymmetric strides assigned to the other forelimb. It may also 

represent a true worsening of the asymmetry of the contralateral forelimb due to the effect 

of altering sensation to the other forelimb, which may alter the symmetry of movement. In 

the HC group the median HMA assigned to the contralateral forelimb reduced in contrast 

to all the other horses, implying that symmetry to that limb was restored and one may 

suspect that the origin of the lameness in that forelimb in this group is thus perhaps 

different to the other three groups. The apparent minimal change to the median HMA 

assigned to the ipsilateral forelimb in this group would support the absence of a 

compensatory component to this forelimb lameness in this group. 

 

The significant improvement in PMA of the blocked limb and significant worsening of the 

PMA in the contralateral hindlimb following a positive response is to be expected, as there 

will be alterations in weight distribution from one hindlimb to another to restore symmetry 

of movement following improvement to the lameness. This trend was noted in all four 

groups. Median PDMax and PDMin significantly decreased in all groups (except PDMin 

in the HC group) implying that the impact and push off component as a result of the 

hindlimb lameness was reduced by diagnostic anaesthesia. Hindlimb lameness in this 

population of horses therefore appears to result in alterations to push off and impact in all 

groups except the HC group where the hindlimb lameness was only push off related.  

 

Given the significant changes noted to the asymmetry of the forelimbs in a fairly large 

proportion of the horses (changes in the asymmetry of at least one forelimb in all horses 

except those in the HC group) and given the significant changes in the vertical head 

movement during and after the stance phase/VS in both the HI group and all horses group, 

the author believes that there is sufficient evidence to reject the null hypothesis. There is 

significant load redistribution as a result of hindlimb lameness and this may be observed as 

ipsilateral forelimb lameness in over a quarter of horses with hindlimb lameness. In a 

larger proportion of cases this phenomenon is observed sub-clinically. 

 

Limitations to the analysis and findings of the study are in part similar to those in Chapter 

2 and 4; variations in horse movement due to only analysing a minimum of 30 strides for 
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each data entry may have had an affect on the data and subjective analysis was reliant on 

one of only two observers. Additionally, since the source of lameness varies between 

horses and the diagnostic anaesthesia technique undertaken in each case was one of several 

possible techniques, it is possible that subtleties may have been missed and that 

characteristics of lameness associated with certain diagnoses result in specific alterations to 

specific kinematic parameters which could not be elucidated due to the analysis being 

undertaken as a group regardless of diagnostic anaesthesia technique performed. However 

the latter was not an objective, although it would be of interest to further investigate the 

kinematics associated with specific conditions. Since certain conditions are bilateral, a 

positive response to diagnostic anaesthesia in some cases resulted in the horse becoming 

lame on the other hindlimb, thus this may have resulted in a more marked change to the 

forelimb parameters than in cases with a unilateral condition. This may have resulted in the 

change in some parameters being overrepresented, for example the parameters associated 

with limb movement asymmetry (HMA/PMA). However, since the directionality of the 

vertical pelvic and head movements was taken into account (HDMax/HDMin, 

PDMax/PDMin), this should only have affected the latter parameters by the magnitude of 

the delta values being larger than in a case associated only with a unilateral lameness. No 

significant correlation between any of the forelimb and hindlimb parameters was identified 

in any of the four groups, which was surprising, and may reflect lack of statistical power of 

the study. 

 

It is unknown from this study whether specific hindlimb lamenesses have a push off or 

impact component i.e. if specific types of lameness display more specific kinematic 

characteristics e.g. horses with osteoarthritis of the distal tarsal joints. One may expect that 

some hindlimb lamenesses may show characteristics of a push off component only. Further 

analysis of data from a larger population of horses with hindlimb lameness objectively 

confirmed and various diagnostic anaesthesia techniques undertaken would possibly reveal 

the answer. If there were such characteristics identified, it may be possible for clinicians to 

more rapidly diagnose the source of lameness, by narrowing the possible source of 

lameness from the beginning of the investigation, purely by assessing the characteristics of 

the horse’s movement in the baseline examination. 
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5.5 Conclusions 

 

By analysing the data from this population of horses with hindlimb lameness it has been 

possible to expand upon previously assumed knowledge by characterising the 

compensatory forelimb lameness observed in clinical cases, in addition to providing 

evidence objectively supporting the “law of sides” in a moderately sized population of 

horses. Analysis of all horses as a whole group revealed that the forelimb lameness 

consists of a push off and an impact component. HDMax, HDMin and vector sum were 

significantly reduced following a positive response to diagnostic anaesthesia. When 

assessing the lame horse it is important to eliminate forelimb lameness as a possible result 

(compensatory component) of hindlimb lameness prior to performing further diagnostic 

techniques. In the current population compensatory forelimb lameness was observed in 

27% of horses with hindlimb lameness (referring to head height), although significant 

changes in asymmetry occurred in all four limbs in almost all horses (all horses except in 

the hindlimb lameness with contralateral forelimb lameness group). The former can be 

visually detected as the height of the head in space. The latter parameter of head movement 

asymmetry originates from the number of asymmetric strides assigned to each limb and 

may refer to horizontal asymmetry of the head. Examination of the data shows that 

significant changes to the asymmetry of both forelimbs occur in most cases of hindlimb 

lameness (except the hindlimb with contralateral forelimb lameness group), however 

significant changes in vertical head movement is only identified in a proportion of these 

cases (restricted to the HI group in this population). This has implications for lameness 

investigations. When assessing the response to hindlimb diagnostic anaesthesia in horses 

with ipsilateral forelimb lameness it is useful to define the effect on both the hind and 

forelimb movement. Additionally, the data shows that a small (insignificiant) improvement 

to the head movement asymmetry occurs in many horses following local anaesthesia of the 

hindlimb, and this is thus phenomenon of ipsilateral forelimb lameness in horses with 

hindlimb lameness, affects many horses to differing degrees.  

 

Contralateral forelimb lameness in combination with hindlimb lameness was observed in 

22% (8/37) of cases with hindlimb lameness and may reflect true forelimb lameness and 

true hindlimb lameness rather than compensatory forelimb lameness as a result of the 

primary hindlimb lameness, as the forelimb lameness did not significantly change in this 
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group following a positive response to diagnostic anaesthesia. In groups where there was a 

significant change to the forelimb parameters the movement asymmetry assigned to at least 

one of the forelimbs significantly changed. Additionally in two of the groups the vector 

sum along with HDMax and HDMin significantly reduced. Further investigation into the 

phenomenon of contralateral forelimb lameness is warranted.  
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CHAPTER 6:  

Practical, objective assessment of lameness in the horse and 

elucidating compensatory lameness: Summary 

 

The analysis undertaken in this study has led to the conclusion that the “Lameness 

Locator®” inertial sensor-based system of lameness diagnosis may be used in an easy and 

effective manner to guide veterinarians undertaking lameness examinations. The need for 

further objective evaluation of the lame horse has been described by previous studies. This 

project has provided useful and significant information for clinicians performing lameness 

examinations both with and without an inertial sensor-based system of lameness diagnosis. 

The inertial sensor-based system of lameness diagnosis has significant potential and 

expansion of its use in the future may lead to a better understanding of lameness in horses 

with specific clinical diagnoses and studies undertaken into its use in evaluating lameness 

in horses under different conditions may prove beneficial e.g. during lunging. 

 

The first part of this study investigated the use of an inertial sensor-based system of 

lameness diagnosis as part of lameness evaluations and evidence was provided to support 

its usefulness in classification of a positive response to a diagnostic anaesthesia. The ability 

of the system to adequately distinguish a positive from a negative response to a very 

commonly performed diagnostic anaesthesia (nerve block of the foot) was demonstrated. 

Evidence of compensatory lameness in the horses in this population was identified as 

significant improvement in pelvic movement asymmetry of the contralateral hindlimb. 

This provided supporting evidence of the existence of compensatory lameness in horses 

with forelimb lameness. In this first part of the investigation the lameness was restricted to 

lameness of the foot. However, expansion of the investigation was undertaken in Chapter 

4. Comprehensive analysis of hindlimb movement and kinematics was performed in depth 

in order to fully investigate this phenomenon in a larger population of horses with forelimb 

lameness originating from various sources. 

 

Further investigation into compensatory lameness was undertaken in two parts. Firstly, 

forelimb lameness was investigated along with its compensatory components, followed by 
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hindlimb lameness and its compensatory effects. An inertial sensor-based system of 

lameness diagnosis (“Lameness Locator®”) was used to objectively investigate 

compensatory load redistribution in horses with clinical lameness by examining the effect 

of alleviating lameness through diagnostic anaesthesia. The study demonstrated that (1) 

forelimb lameness results in significant load redistribution, which may be observed as 

contralateral hindlimb lameness and (2) hindlimb lameness results in significant load 

redistribution, which may be observed as ipsilateral forelimb lameness. This is supported 

by findings in individual cases of lameness as mentioned in Chapter 3 and by the “rule of 

sides”.  

 

This project has investigated two important aspects of lameness in the horse: objective 

assessment of lameness and compensatory lameness in both forelimb and hindlimb 

lameness. This inertial sensor-based system of lameness diagnosis can be a useful tool in 

lameness investigations and some guidelines have been provided to aid interpretation of 

changes to kinematic parameters in this project. Further investigation of the use of this 

system in lameness examinations would be beneficial and would possibly further support 

this use of the system in a clinical setting. Investigations of the use of the system in 

lameness investigations performed under different conditions e.g. during lunging, and 

investigation of the kinematics of specific conditions e.g. suspensory ligament desmitis 

versus osteoarthritis of the distal tarsal joints may reveal characteristics associated with 

specific conditions which may lead to a more rapid diagnosis being made, are potential 

future avenues to pursue. 
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