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Preface

This thesis based on the work of the author, Yi-Ming Hu, during my stay at the University
of Glasgow. From October 2011 to March 2015, under the joint supervision of Prof. Martin
Hendry and Dr. Ik Siong Heng. We collaborated on a number of projects sharing the same

theme of data analysis methodology related to Gravitational Waves.

In Chapter 1, I introduce basic concepts of gravitational waves, their generation and detec-
tion. A brief history of Gravitational Wave experiments is introduced, and the anticipated
sources are listed and discussed. In addition, I discuss the role of data analysis in making
detections of Gravitational Waves, and what new science can we expect to make with the
help of Gravitational waves. The majority of this chapter is presented based on published

literature.

In Chapter 2, I discuss the power of Bayesian Inference and how to apply it to Gravitational
Wave data analysis. For the anticipated compact binary coalescence signals, the optimal
search method of matched filtering is introduced. The principles of Bayesian Inference are
also introduced, including the basic concepts, their difference from a frequentist approach
and the important potential for performing Bayesian Model Selection using the Bayes Factor.
A brief review of existing stochastic sampling strategies is presented; this includes a detailed
introduction to the algorithms of Markov Chain Monte Carlo and Nested Sampling, as well as
numerous implementations of these algorithms. The majority of this chapter is summarised
from published literature.

In Chapter 3, Bayesian Model Selection is performed on an astrophysical problem of dis-
tinguishing which model is better supported by the observed timing data for the magnetar
1E 2259+586 — either the ‘successive anti-glitches’” model or the ‘anti-/normal glitch pair’
model. A simple description of the parametric model of pulsar timing is made, and a Nested

Sampling algorithm is applied to the timing data, based on both successive anti-glitches and



an anti-/normal glitch pair. This work was proposed by me and carried out mainly by myself,
with helpful discussions and input from Matthew Pitkin, Ik Siong Heng and Martin Hendry.

In Chapter 4, a novel MCMC algorithm designed for efficient sampling of multi-modal pos-
terior, known as mixed MCMC is proposed. I discuss the motivation and implementation of
this novel algorithm, including an application to a toy model and a comparison of the results
with a theoretical calculation. This algorithm was initially proposed by me, and the work

was mainly carried out by myself.

In Chapter 5, I discuss the global optimisation of future generations of Gravitational Wave
detectors. I introduce the Figures of Merit used to judge the scientific output and effec-
tiveness of a Gravitational Wave detector network. The algorithm of mixed MCMC is then
applied to sample efficiently the high dimensional parameter space that represents the detec-
tor network. The optimisation is performed for both a 3-detector-network and a 5-detector-
network. This work was carried out in close collaboration with colleagues from several
institutions, with the majority of the work designing the methodology and implementing it

carried out by myself.

In Chapter 6, the setup and analysis of the significance Mock Data Challenge, also known as
the “Hamlet Test”, is described. In this Mock Data Challenge, two different types of method
for estimating the significance of Gravitational Wave triggers are compared against the theo-
retical significance. These methods are, when estimating the background distribution, either
to remove the foreground events or to keep them in. We discuss results for simple, real-
istic and complicated background distributions, as well as for zero, low, medium and high
foreground event rates. This work was carried out in close collaboration with colleagues
from multiple institutions, with the majority of Mock Data generation and the comparison,

analysis and interpretation of the results done by myself.



Summary

With the development of more and more elegant and sensitive interferometric gravitational
wave detectors, we are expecting the first direct detection of gravitational waves in a short
time. This triggers huge interest to develop more powerful tools to perform data analysis on
these signals, and to develop a good understanding of the analysis so that confident conclu-
sions can be made. A further step would be to view into the future, as the first detections will
boost the scientific demands for more powerful future generation detectors, which identifies

the task of optimising the site of such detectors.

Bayesian Inference plays a vital role in data analysis, and one excellent example that demon-
strates its usefulness is its ability to resolve the tension between multiple models using the
methodology of Bayesian Model Selection. In this thesis we apply this methodology to the
timing data of pulses from the pulsar 1E 2259+586. With a set of different choices for the
prior range, a fair and quantitative comparison can be made between two competing models:
that of so-called successive anti-glitches and an anti-/normal glitch pair. Our analysis of the
data shows a consistent support for the successive anti-glitches model, with a Bayes Factor
of ~ 45, where the uncertainty has been estimated from nested sampling and from multiple
runs that are slightly different, but still within a factor of two, showing a general consistency.
Simplifying the timing model will only make the Bayes Factor even bigger, while the two

event model is overwhelmingly supported over the one event model.

In gravitational wave data analysis, posteriors are generally complicated structures contain-
ing multiple modes. A novel algorithm to achieve efficient sampling for multi-modal pos-
teriors, known as mixed MCMC, is proposed in this thesis. This enables communication
between multiple regions within the parameter space by adopting a novel jump proposal.
We present the mixed MCMC algorithm and first apply it to a toy model problem, where
the likelihood may be determined theoretically. By comparing the theoretical and empiri-

cally sampled values of 2 log(L) for credible regions that correspond to 68.27%, 95.45% and



99.73%, we conclude that for our illustrative model the sampling result of mixed MCMC
is consistent with the theoretical prediction with small uncertainty. Since it does not re-
quire multiple chains with different temperatures, mixed MCMC can boost the efficiency of

sampling by design, compared with (for example) parallel tempering MCMC.

The sampling strategy of mixed MCMC can be helpful for not only Bayesian Inference, but
also more general problems like the global optimisation of future generations of Gravita-
tional Wave Detectors. As we expect such problem to be intrinsically high dimensional and
multi-modal, mixed MCMC is a suitable sampling method, and we develop and apply it in
this thesis. Based on our analysis it is concluded that for both a 3-detector-network and a
5-detector-network, Australia hosts the “best” site, in the sense that such site is most flex-
ible, i.e. it can be involved in the largest number of detector networks, involving different

component sites, that have a high ‘Figure of Merit’.

The work of gravitational wave data analysis leads to the ultimate goal of making a direct
detection of gravitational waves, which in turn requires the ability of distinguish astronomi-
cal signals from a noisy background, and assess the significance of each gravitational wave
‘trigger’ (i.e. candidate event) appropriately. There are two types of method for estimating
significance and these differ by the key distinction of either removing the foreground events
from the background estimation or keeping them in the analysis. This thesis presents the
results of a Mock Data Challenge (MDC), carried out within the LIGO Scientific Collabo-
ration using different data analysis pipelines, designed to investigate these two methods for
estimating significance. It contains a variety of background complexity ranging from simple,
realistic to complex, and foreground event rate ranging from zero, low, medium and high.
Analysis of the MDC results illustrated that generally all methods for determining the sig-
nificance agree well with each other, irrespective of the background complexity. However, a
discrepancy became apparent between the results for removal or non-removal of foreground
events, for events below a significance level of < 1073. Our results demonstrated that the
removal method is an unbiased estimator for the mean of the significance. However, as the
most scientifically interesting events are likely to have a very small numerical value for their

significance, such method would overestimate that significance for most of the realisations.
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Chapter 1
Introduction

Gravitational Wave (GW) science is a very exciting field for astronomy and more generally
for physics. The existence of such phenomena was predicted by Einstein in the year 1916
(1,12, 13, 14] and yet it remains undetected directly. The indirect detection of GWs was initially
made by [3]] in 1982, and further followed by [6], which observed the orbital evolution of the
PSR B1913+16 (Hulse-Taylor binary pulsar) [/, 8]. The measured orbital evolution of this
system is consistent with the gravitational radiation predicted by General Relativity (GR) to
within 0.2% [6]]. In figure the observation and the theoretical prediction for the orbital
evolution is depicted, which shows excellent consistency. In another binary pulsar system
PSR J0737-3039 a stronger constraint of GR was obtained, showing the observation and
theoretical prediction from GR agree to within a 0.05% uncertainty [9]. This confirmed
that Einstein’s theory of gravity, General Relativity (GR), provided a correct description of

gravitational phenomena to a very high accuracy.

A direct detection of GW has become the holy grail in gravitational research, but still we
have not yet reached the experimental sensitivity required to achieve this goal. In the year
of 2014, the BICEP2 group announced a detection of B—mode polarisation in the Cosmic
Microwave Background (CMB) [[10]. At first they interpreted this result as the first evidence
for inflationary gravitational waves (IGWs), but now it is generally believed that their obser-
vations demonstrated the effect of polarised Galactic dust emission [[10]. Even if we could
detect the B—mode polarisation in the CMB, that would still be indirect evidence for the

existence of GW.

Among the four fundamental forces, gravity is the least understood one. Ever since the
publication of the theory of General Relativity almost a century ago, enormous effort has
been spent attempting to understand the nature of gravity, with numerous alternative gravity
theories being proposed. All such theories, as long as they do not allow ‘action at a distance’,
will intrinsically imply the existence of gravitational waves and the theories only differ by

the form of GW predicted in each theory. GR is, however, still among the most promising
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Figure 1.1: Orbital decay from the binary pulsar system PSR B1913+16. The points are
actual observations with uncertainty, while the line is predicted by GR. Reproduced from [6]
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theories, as no evidence of deviation from GR has been so far observed [[11]].

GWs are the only observational channel that we can envisage with which to explore directly
the physics of strong gravitational fields. All other channels have to rely on some assump-
tions or theories and thus require an indirect link to be made in order to extract information
about the fields. We are therefore expecting to gain a huge amount of new physics and as-
tronomy knowledge by looking at the GW waveforms directly. For example, the detailed
mechanism of supernovae is still under debate, but directly observing the gravitational wave
information from core collapse supernovae will greatly help deepen our understanding of the
dynamical mechanism that describes them [[12]]. By carefully studying the GW waveforms
from binary Neutron Star (BNS), we can study the Equation of State (EoS) of the neutron
material in high pressure, which can never be studied anywhere else. The combination of in-
formation from GW and other channels, known as multi-messenger astronomy, can also help
understanding of the origin of short Gamma Ray Bursts (sSGRBs) [[13,14]. Multi-messenger
astronomy can also be viewed as an independent method of studying cosmology, providing a
cross check for the cosmological parameters [[15)]. However, all of the above scientific targets
require a huge amount of study beforehand, in which we would need to carry out theoretical

study as well as computationally-intensive data analysis, to unveil such scientific treasures.

1.1 Gravitational Wave formalism

The interesting GW sources generally originate far away from the Earth. Combined with
the fact that dipole radiation is not allowed according to GR (see below), and the coupling
between GW and normal matter is tiny [[1,4} 3} 2], the actual GW signal on Earth is generally
very weak. With various noise sources, we expect the first detected GW signal to be relatively
weak and embedded in noise. In order to enhance the chance of detection, one needs to
obtain as much knowledge as possible about the GWs, especially for sources with highly
predictable waveforms [2, 16, |17].

According to GR, gravitational radiation only occurs when the quadrupole and higher order
moments of a system has changed [1} 4} 3, 2]. We can define the quadrupole of a system

with density p as [2]]
Qi = /pacj:ckd3x. (1.1)

We have to note that this equation is only valid when the gravitational field within the system
is not strong [4]. Fortunately, even in situations where the internal gravity is strong, there
exists an alternative method to compute the quadrupole [4]. The observed gravitational wave

can be characterised by the strain that it produces —i.e. the fractional change in the separation
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between two points initially separated by proper distance [ — which is defined by [3]

h=7 (1.2)
For a system with changing quadrupole, it will produce a GW signal /. at a distance r given

by 4, 2]
2G - G E;"P
hjp = ——Qjp ~ = Tkin (1.3)

rc Ao
as an order of magnitude estimation, and E;; """ is the non-spherical part of the system’s
kinetic energy. For a far zone approximation where the distance to the source is much larger

than the GW wavelength, the observer’s metric can be expressed as g, = 1, + .

In GR, there are more equations than conditions, so there exist redundant degrees of free-
dom in the Lagrangian [18]. Usually in terms of GR it’s convenient to adopt the transverse

traceless gauge, or TT gauge [3., 18, 2]. Under the TT gauge, we can write

0 0 0 0

0 h hy O
h, = *

0 0 0 0

or,if wedefinee = e, ®e, —e,®e, and ey = e, Re,+e, ey, then we can simplify to
h=h,ey+hiex. Heree, =(0 1 0 0)"ande, = (0 0 1 0)" [2,14,3]]. This illustrates
that there are two polarisation modes for a gravitational wave, namely the plus-polarisation

and cross-polarisation, as illustrated in figure

It was not trivial for people to finally agree that GWs do contain energy, instead of simply
a coordinate transforming effect, and furthermore, like all other forms of energy, GWs can
themselves induce GWs. The power passing per unit area carried by a GW is determined by

(3, 4] 3
4B ¢ I, [C IR
arda T = T qgegthe Hhe) = (15 Tir) (14

where [ is the symmetric reduced quadrupole moment, which differs from the definition of

mcdr?

(@ by the trace, and the angle bracket means average over several wavelengths [4]. One can
obtain the GW luminosity Lgy of a GW system by integrating the equation (L1, 4, 3]

dE G ... .. .

Loy — 3B _ G e iy 1.5
GW dt 5C5<IZ][ > ( )

The pre-factor c% indicates that the luminosity for a GW system tends to be very small, unless

. -TT---‘ y .
for extreme scenarios where (/" [ ) is very large.
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Figure 1.2: Illustration of the two gravitational wave polarisations. When a GW passes by,
the space would be squeezed in one direction while stretched in the other direction, there are
two polarisation modes, known as the plus mode denoted as A, and cross mode denoted as
h. Reproduced from [19]

1.2 Gravitational Wave from Compact Binary Coales-
cence

The GW signal emitted from compact binary coalescence (CBC) systems, which consist of
two components of either Neutron Stars or Black Holes, are among the most promising signal
sources. Binary neutron star systems have been observed, and astronomical phenomena like
sGRB are believed to originate from such CBC events (see for example [20, 21} [15, 22, 23]
and the references within).

In order to achieve detection in noisy data, one needs to compute the waveform of CBC
events. For inspiral signals, the waveform is relatively easy to calculate, since the two com-
pact objects are still relatively well separated. Thus it is still valid to approximate them as
point masses, and the Post Newtonian (PN) approximation could be applied to so that analyt-
ical expression could be achieved [17, 24]. The higher order PN approximation is used, the
more time-consuming to generate the waveform, and more factors included [25]]. However,
in the merger stage when the compact objects get close enough, say, around the Innermost
Stable Circular Orbit (ISCO) beyond which the system plunge in and quickly coalesce,then
the PN can no longer track the waveform evolution, and more accurate simulation is required
[26]. This could be achieved by adopting the results of Numerical Relativity (NR) [27]. It
took researchers decades of effort to successfully simulate a binary black hole rotation with-

out crashing the code with NR. However, in recent years, the huge advantage of NR has
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been achieved, and we can expect to simulate the merger period accurately [26]. When the
compact binary merges into one body, it will either form an unstable HyperMassive Neutron
Star (HMNS), which will last for ~ 100ms before it collapses into a Black Hole (BH); or
it will directly collapse into a BH, depending on the EoS of the Neutron Star (NS) [28|, [14]].
After the two compact objects have merged into one black hole, the asymmetric part will
emit the ringdown signal, and eventually fade away [29, 30]. When the BH is formed, things
are getting simpler again, since the Effective One Body (EOB) formalism could be applied
to obtain the ringdown waveform [31} [32} 33, [26]. Still, such waveform generation would
consume large amounts of computational time, so the current strategy is to generate a set
of waveforms that covers the possible range of the parameter space. Later, the interpolation
with such waveforms could be applied to obtain waveforms with a specific parameter set
(34,135, 136].

In the following section, we estimate the GW strength from a CBC inspiral with a simple
heuristic order-of-magnitude estimation [3, 4]. For a binary with two components of mass

my and mo, the potential energy of the system is

R
G
U= —/ dr F(r) ~ — 212 (1.6)
. R
if we define the reduced mass p = % and the total mass M = m; + ms, then equation

can be rewritten as U ~ —G"TM. On the other hand, a CBC would be stable due to the
orbit circularisation as we will discuss in detail later. Applying the virial theorem, one can
obtain

(T) ~ (B ") ~ —(U) (1.7)
where T is the kinetic energy and the (-) represents average over time. Introducing M =
(/> M?/%, and combining with the fact that the frequency of the system is f ~ /M /R3, we

can rewrite equation [I.3]into [2, 3, [17]

G2 M5/3f2/3

ct r

h (1.8)

Assuming that the orbits are already circularised, we can approximate the orbit as circular.
Further we can assume that the phase evolution is much faster than the amplitude evolution,

or using the stationary phase approximation , namely the time evolution of the h(¢) is simply
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sin and cos functions to first order [2, (37, 38]]. Then the luminosity of the GW will be

3

&
Low ~ gpmdmrh?f?
G3 MQ M3
S R

G3 ‘
~ §M10/3f10/3 (19)

We can observe that the GW luminosity is strongly dependent on the distance between the
binaries, so the impact of gravitational radiation could be approximated by an impulse at
the periapsis, which would shrink the semi-major axis while keeping the pericentre distance
intact, effectively decreasing the orbit eccentricity. This explains the effect of orbit circular-
isation [39].

We can also deduce

dR dRdFE
dt dE dt
R G3 M2M3
GuM & RS
G? pM>
68 R3 )

(1.10)

which points to the frequency evolution

, R
f= 15
GQ M2
T

G 5/3 £11/3
~ 0—8./\/1 . (1.11)
This implies that, for CBC systems, the evolution of frequency accelerates as the binaries

approach each other more closely. Under such stationary phase approximation, the Fourier
transform of the waveform h(f) oc f~7/6 [38, 17, 2].

1.3 Detecting Gravitational Wave with Ground-Based
Detectors
Currently the most sensitive observation of GW comes from ground based laser interferom-

eter Gravitational Wave Detectors (GWDs), which essentially use laser interferometers to

detect tiny strain of the space [3, 2]. As shown in figure when a GW signal comes from
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the zenith with proper polarisation, one arm will be shrunk and the other one will be stretched
very slightly. The difference between the two armlengths will vary, and would contain the
trace of GW signal, which can be detected using sophisticated innovations in technology.

In the long wavelength limit where the wavelength is much longer than the detector length

Lacewrm STomacin Amm

-

PHOTODETECTON

MikROR
M ymmga

Alimpns

SELITTEN

Figure 1.3: Illustration of the principle of laser interferometer gravitational wave observatory,
the passing gravitational wave signal will induce difference between armlengths, and the
laser interferometer will detect such tiny variation. Reproduced from

scale, the coupling between the detector and the passing GW signal could be written as [4,
1 1.

We apply the Einstein summation notation where repeated indices are summed over [1] 18]
The expression of the detector tensor d differs for different configurations of detectors. For

a laser interferometer with two arms perpendicular to each other, it can be written as
d=L(e; Re, — ey ey).

We can express the strain amplitude from equation [I.2]as

SL(t)

T = F—‘r('ga ¢, ¢)h+(t) + I (97 Qb, ¢)hx(t) (1.13)
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where the antenna pattern of the detector F; and F; for a source from sky location 6, ¢ and

polarisation angle v/ [4} 13} [17]
1
F,=d:e, = 5(1 + cos? 0) cos 2¢ cos 2¢p — cos 0 sin 2¢ sin 21

and
1
Fo=d: ey = 5(1 + cos? 6) cos 2¢ sin 21 + cos 6 sin 2¢ cos 21,

where : is the double dot product, meanwhile

helt) = 22 MLS(OF(1+ cost ) o)
and
hy(t) = 4;)\/12 [T M f(£)]?/3 cos 1 cos[®(t)).
while ;
(I)(t) = ¢0 + 277—/;c f(t/)dt/ = ¢0 + 27 /tc mdf
with

df
i %71’8/5./\/12/3]011/3[ (ggg . LprM, f)2/3) + 4w (7M. f)
+ (T4 T So16 7 + 5907°) (TMf)Y]

according to [24] 37]. Here M, = M(1 + z) is the redshifted chirp mass, Dy is the lu-
minosity distance, ¢ is the inclination angle. We can thus conclude that the CBC signal is
controlled by nine parameters, including the intrinsic parameters chirp mass M, mass ratio
7, inclination angle ¢ which depends only on the source configuration, and extrinsic param-
eters 0, ¢, Dy, 1, an arbitrary reference time ¢. and related reference phase ¢,, which also
relate to the observer [41, 2| 3]]. The relationship between the three angles 0, ¢ and 1) is
demonstrated in figure [I.4]

1.4 A brief history of Gravitational Wave experiment

The first attempt to detect GWs was carried out in the 1960s. Weber built the first functioning
gravitational wave detector (GWD), known as the “Weber bar”, which uses the whole bar to
resonate with the passing GW signal [42} 43, 44]]. As shown in figure the passing GW
will induce a slight deformation of the bar, with the change in the length Al divided by the
original length of the bar [ defining the amplitude of the GW, h = %. If the frequency of the
passing GW lies near the resonance frequency of the detector, the detector would be excited

and resonance of the bar amplifies the signal. Similar configurations of GWDs were built
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¥ a
Plane of the sky

y-arm

Detector plane

Figure 1.4: Illustration of the definition and relationship between the two directional angles
0, ¢ and the polarisation angle ). Reproduced from [2]

throughout the world, including the Glasgow resonant detector [46]].

The first direct detection was claimed by Weber [42, 43, 44]]. However, following ex-
periments failed to repeat such a detection [46, 45]].The current laser interferometers have
reached a much higher sensitivity, while no single detection has been made yet [47)]. Thus
it’s generally believed the events detected by Weber were more likely to be noise than astro-

nomical events.

The first successful evidence of GW has been achieved by studying the binary Neutron Star
discovered by Hulse and Taylor [7, 5, 6], who were awarded the 1993 nobel prize “for the
discovery of a new type of pulsar, a discovery that has opened up new possibilities for the
study of gravitation”. [48]As shown in figure the measured orbital evolution of this
system match extraordinarily well with the theoretical prediction of gravitational radiation

(51161,

: 1927G>/3 [ B, ~/? ~ 73 37 ~
(1.14)

where Pbg r 1s the theoretical decay rate for the orbit period according to GR, Fj is the
orbit period, e is the eccentricity, m,, and m, are the mass of the pulsar and the component

separately and could be accurately determined via independent observation. The observation
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Figure 1.5: Bar detector in Munich together with H. Billing. Reproduced from [45]]



1.4. A brief history of Gravitational Wave experiment 12

of such BNS thus assures the existence of GW, and huge interest was triggered to search for
the GW signal directly.

Bar detectors are naturally limited to detect GW signals with h > 1072! [2]], while the
existing interferometers have reached sensitivity higher than such a limit. As shown in figure
for bar detectors like Auriga the sensitive frequency region is very narrow, and can

only reach a sensitivity around 102! [49]. So in recent decades, the interests of detecting
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Figure 1.6: The power spectral density for the bar detector Auriga. One can notice that the
most sensitive part can only reach around around 1072, and the sensitive frequency band is
very narrow. Reproduced from [S0]

gravitational waves have shifted from bar detectors towards laser interferometers. In 1992,
the building of the Laser Interferometer Gravitational-Wave Observatory (LIGO) was started,
and the initial generation of LIGO started operation in 2002 [S1]. A European counterpart
with a similar design of laser interferometer, known as Virgo, started operating in 2007, and
this global network of LIGO-Virgo has existed since then [52].

No confident detections of any kind of astronomical signal were detected during the opera-
tion of these initial generation detectors so far [47]. However, even the non-detection could
lead to scientific conclusions. For example, no GW signals were discovered for the Vela
pulsar [33] nor Crab pulsar [54], which puts a solid upper limit of the GW strength of such
young pulsars. This itself already put some constraints on the NS ellipticity [S3].

Since the end of observation by initial LIGO, the upgrading of this initial generation into sec-
ond generation GWDs, known as Advanced LIGO (aLIGO) [56]] and Advanced Virgo (AdV)
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[S7] respectively, has been under construction. These next generation GWDs are expected
to gain an increase of sensitivity by about 10 fold in all frequencies. Since the detection
volume is proportional to the third power of the detectable distance, such an improvement
translates into an increase of detection efficiency of approximately three orders of magnitude
[S8]], as illustrated in figure A new set of advanced GWD will be built in India, known

Figure 1.7: Sensitive volume for initial LIGO (central sphere) and advanced LIGO (outer
sphere). A factor of 10 improvement of sensitivity in & will lead to an increase of a factor
of 10 in distance. As sensitive volume would be proportional to the cube of the sensitive
distance, advanced LIGO is expected to enhance the detection probability by ~ 1, 000 from
the initial LIGO level. Reproduced from [59]

as the Indian Initiative in Gravitational-wave Observations (IndIGO) [60]. Huge progresses
has been made towards the full upgrade of LIGO detectors, which is expected to be finished

in near future.

In the mean time, the Japanese Large-scale Cryogenic Gravitational Wave Telescope Project,
or KAGRA, is under construction [61]. Combined with the UK-Germany prototype detector
GEO, a global detector network would provide a robust hardware facility to detect GW [62].
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There are various noise sources for a GWD, among them the most outstanding ones are grav-
ity gradient noise at very low frequency, quantum effects of light pressure at low frequency,
thermal noise in the middle, and shot noise at high frequency [2, [3]. Figure [I.8] demon-
strates the anticipated noise budget for alLIGO, indicating the frequency dependence of these
different effects.
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Figure 1.8: Expected noise budget of the advanced LIGO, with different components labeled
individually. In the low frequency range (f < 10H z), seismic noise, gravity gradient noise
and suspension thermal noise dominate, in the higher frequency the quantum noise would
contribute mostly to the noise budget. Figure reproduced from [63]]

The future generation of GWD is already in discussion, and the proposed Einstein Tele-
scope (ET) detector, which has an underground equilateral triangle configuration, will have
further increase of sensitivity by about another factor of ten 58 64]]. Meanwhile, the exten-
sion of the undergoing alLIGO to the A+ (or Quantum LIGO) has also been under serious
consideration as a near term upgrade [65]].

Meanwhile, longer armlengths will shift the ‘sensitivity bucket’, namely the most sensitive
range of the detector, towards lower frequency, which corresponds to ~ 100 — 1000Hz
in figure |1.8l Plans were also proposed to build detector in space. The proposed Laser
Interferometer Space Antenna (LISA) project aimed to launch three satellites into space to

form a equilateral triangle interferometer. The proposed armlength of LISA will be 5 million



1.5. Astronomical Sources for Ground-based Gravitational Wave Detectors 15

kilometres long, this enables the accurate observation of GW signal within 0.03 — 0.1Hz

range [66].

Unfortunately, the funding for research of LISA was cut down, thus there is no definite
launch plan for it in near future. The current proposal is to build a down-scaled spaced-
borne GWD, Evolved Laser Interferometer Space Antenna (eLISA) [67]]. However, the LISA
pathfinder, which is a single satellite aimed to test the technology applied on LISA, has
already been integrated and is scheduled to be launched in 2015 [68]. If it succeeds in
demonstrating the safeness and reliability of the technology, there’s still hope to continue
and extend the study of eLISA.

Other proposed future projects include the DECI-Hertz Interferometer Gravitational wave
Observatory (DECIGO) [69], which focuses on the frequency range between LISA and
aLLIGO, and Big Bang Observer (BBO) [[70], which is proposed to be the successor of LISA,
equipped with enough sensitivity to observe the GW emitted from shortly after the big bang.

Other methods of GW detection includes the Pulsar Timing Array (PTA), which takes ad-
vantage of the accurate timing of pulsars to capture small fluctuations in the Time Of Ar-
rival (TOA) of steady pulsars; and B-mode polarisation of CMB, which could trace back to
the end of inflation [71]. As noted earlier, the BICEP2 team originally claimed that they
detected such B-mode polarisation in CMB signal; however, this signal turns out to be very
likely coming from Galactic dust, which was not adequately considered by the BICEP2 team
[10]. GWs with frequency 100MHz to 100GHz and even higher could be detected with nov-
elly designed experiment, the potential source being relic GWs [[72]]. Interesting upper limits
on GW strength could also be given by monitoring the timing of the Global Positioning
System (GPS) system [73]. Progress has been made to use the whole Earth as a resonant
detector, and upper limits on GW signals could be achieved by checking seismic monitoring
data [74].

1.5 Astronomical Sources for Ground-based Gravita-
tional Wave Detectors

In addition to the tremendous efforts over recent decades to build ever more sensitive de-
tectors, the equally large amount of effort on the data analysis side is also vital in order
to create a robust analysis frame in which potential detections can be identified, and also

to make sure that we can properly understand the physics that such detections can reveal
(4175176 77, [78I].

The first question that theoretical researcher should answer is how likely is it that we could

detect a GW event, provided we could reach a certain sensitivity. This involves understanding
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the possible mechanisms that could emit large amounts of GW radiation [4, 2].

Currently, we believe that the CBC process of binaries comprising binary NS, binary BH,
or a mixture of both, would be the most promising physical mechanism to generate large
amounts of GW radiation in the most sensitive frequency range of the ground based GWD
[79]. The binary system will rotate around the centre of mass, while the GW radiation will
carry the angular momentum and kinetic energy away, shrinking the binary orbit closer. The
binary will rotate faster and the GW radiation will become stronger, until they reach the
ISCO, where the binary will plunge in and eventually merge into a BH, causing a ‘chirp’
signal. The peak frequency is directly related to the ‘chirp mass’, roughly speaking, the
heavier such binary system is, the lower the chirp frequency would be [2, [3]. BNS systems
are expected to be the best candidate, while binary Black Hole (BBH) systems are generally
heavier, thus only the merger and ringdown part of the waveform would be resolved for these
systems [80]].

CBC signals, especially BNSs, are expected to be responsible for triggering the sGRBs, thus
we can have rough estimation on the astronomical event rate of such events [81, 82]. How-
ever, the beaming angles of such events are highly uncertain [83} 184, [85], which causes the
large variance in the estimation [86]]. The other independent method to estimate such event
rate would be using population synthesis methods to predict the expected fraction of com-
pact binaries that could lead to a CBC. Since there are large uncertainties in both methods,
the estimation of the rate is very vague so far, and the “optimistic”” and “pessimistic”” estima-
tions differ by three orders of magnitude. In terms of the advanced LIGO-Virgo network, the
“realistic” estimation of the rate of BNS signals would be around 40 events per year [79].
Studies suggest that apart from sGRBs, kilonovae are also excellent electromagnetic (EM)
counterparts of the BNS events [20, 87]. Once a BNS event is detected together with an EM
signature, we can assure the detection is indisputable, and also the information combined
from both GW and EM channel would make the GW cosmology possible [88, 15} 22, 89].

The Intermediate-Mass Black Hole (IMBH) has been proposed to explain the growth of
supermassive black hole and is also predicted by the correlation of the BH mass and the
stellar environment. The GW observation of an Intermediate-Mass Ratio Inspiral (IMRI),
or the inspiral of a binary system with one IMBH and a stellar mass NS or BH, and the
merger of two IMBHs can lead to deeper understanding of the growth of supermassive Black
Hole (SMBH) and the interaction of the central black hole and the surrounding stars’ activity,

as well as putting solid constraints on the gravitational physics [90, 91, 92].

The existence of BNS is confirmed from both observation [[7, 5, 93] (and reference therein)
and population synthesis [94,1935]. There’s still lacking convincing evidence for the existence
of Neutron Star-Black Hole (NSBH) or BBH systems, mostly because lacking of traditional
observing channels. For IMBH, there is evidence favouring their existence, but the evidence
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IFO Source Niow Nye Nhigh Nraz
yr1 yr! yr! yr!
NS-NS 2x107*  0.02 0.2 0.6
NS-BH 7x107°  0.004 0.1
Initial BH-BH 2 x107* 0.007 0.5
IMRI into IMBH < 0.001 0.01
IMBH-IMBH 1074 0.001
NS-NS 0.4 40 400 1000
NS-BH 0.2 10 300
Advanced BH-BH 0.4 20 1000
IMRI into IMBH 10 300
IMBH-IMBH 0.1 1

Table 1.1: Estimated detection rates for the initial LIGO and the advanced LIGO detector era
for different sources. Notice the huge uncertainty in the estimation, with the most realistic
estimation for the binary neutron star merger event rate estimated around 40 per year. Table

adapted from [79].

is not decisive. In table the detection rates for these different types of events are shown.
The most optimistic and most pessimistic estimation for the rate differs by several orders of
magnitude. We can also notice that the non-detection of CBC events during the initial LIGO
can be well explained by the theoretical prediction, and there’s promising event rate for the

advanced detector era [79]].

CBC events are expected to be rare, but relatively bright in GW emission. However, another
potential detectable source for GW radiation would be the continuous wave (CW), which
is more quiet and more nearby [96]. For NSs with a mountain on the surface, there would
be an quadrupole radiation from the bump [2]. Although the GW strength of such source
is expected to be much lower than the CBC signal, since there are large amount of NSs
inside the Galaxy, such sources are expected to be much closer to the Earth [3]. The CW
signals are also expected to last for a long time, making it possible to accumulate very long
signal and thus accumulate the Signal-to-Noise Ratio (SNR) [97]. The strength of of the
GW is related to the size of the bump on the surface of NS. If we ever detect any loud signal
from CW sources, it would imply that the EoS of NS must be stiff enough to support a high
enough mountain [55]. The 5 and 6 scientific data S5 and S6, being the most sensitive
data recorded by initial LIGO, showed no conclusive evidence of the existence of CW signal,
putting a solid upper limit on the strength of the corresponding GWs [53) 154]. Notice that
both magnetic brake and CW radiation could lead to the observed long term spin-down of
pulsars, while young pulsars show very rapid spin-down. Prior to the non-detection of CW
from initial LIGO , no solid evidence could reveal the corresponding mechanism for such
observed spin-down. And now the conclusion can be made that at least for pulsars like Vela

and Crab pulsar, the spin-down corresponding to CW contributes no larger than 45% [53]].
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One could also detect the stochastic noise by correlating multiple detectors [98]]. When there
is more than one source in a given frequency bin, one can’t distinguish them from noise, and
this would happen if the detector is in low enough frequency and/or sensitive enough, like
we expected in eLISA and ET [2,199]. This source of signal behave just like noise in one
detector, changing the noise behaviour, and Parameter Estimation (PE) can not be accurately
performed for each individual source [100]. However, this source is astronomical and thus
could distinguished from local background noise. With data from multiple detectors, one can
possibly construct the so-called null stream, which by design contains no signal at all. This
is effectively “turning off” all astronomical sources. And by comparing the Power Spectrum
Density (PSD) of the null stream with individual detectors’ PSD, the contribution of a so-
called stochastic background could emerge and one can study the property as a population.
For eLISA, the population of Galactic binary White Dwarf (WD) and inspiral of binary
SMBHs would become a stochastic source, while for ET, thanks to its sensitivity, the remote

inspiral signals are expected to become stochastic noise [99].

The remaining sources are classified as burst signals, which refers to all short duration signals
that are either not well-modelled or the corresponding mechanism is badly understood [101),
2]

Bad modelling leads to an inefficient usage of the data, thus the burst signal must be loud
enough to be detectable. This requires the source to be either very close to the GWD, or

being intrinsically loud, or a combination of both.

One such known candidate is core-collapse supernova (CC-SN). In order to produce a
CC-SN, the mass distribution can not be isotropic, thus making it a promising GW source.
However, the modelling of the process of CC-SN is a puzzling problem, and we are far from
fully understanding it [102} [12]. The other issue relating to CC-SN is that it’s intrinsically
dimmer than a CBC signal in the GW channel [102]. So we only expect to detect very local
signals. This leads to us a benefit that the detection of the EM counterpart is almost certain
(75, 1103].

The other potential burst sources includes r-mode instability of NS [104], Type Ia supernova
[12], cosmic string cusp [3] and other unknown mechanisms. Just as the operation of radio
telescopes led to the discovery of pulsars and quasars, we can’t predict what new phenomena
the GW window can bring us. For these unknown sources, it’s simply impossible to predict
the waveform, and we can only deal them as burst signals where no model is used as an

auxiliary.
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1.6 The Role of Data Analysis towards Detecting Grav-
itational Waves

The lowest order of gravitational emission is generated from a quadrupole formalism [24].
Compared with dipole radiation like EM radiation, this is much weaker. The gravitational
constant (G itself is also many orders of magnitude smaller than the fine structure constant «,
making the GWs only very weakly couple with matter, which further explains the extreme
difficulty of their detection [3, i4]].

The current laser interferometers are already very sensitive so that even clouds passing by
or wind blowing could induce a detectable signature as the gravity gradient noise [105].
However, they are still not yet sensitive enough make a direct detection [33], 47, [106]. Even
with the advanced detectors like alLIGO and AdV, the first detections are expected to have
relatively low SNR [75]. How to pick signals up from the noisy background is the challenge
left to be tackled for the data analyst [77, 78, 107, [108]].

For well modelled signals like inspiralling CBC and CW, the GW waveform can be deter-
mined by the corresponding parameters like the chirp mass of binary system, or the frequency
for a pulsar. By coherently integrating the data over a long enough time, the signal can stand

out from the noise, thus increasing the SNR.

As illustrated in chapter|[I.T] the CBC signal could be decomposed into three distinct regions,
i.e. the inspiral, merger and ringdown [2, 4]. The inspiral stage is the longest, and any
misalignment between the template and the actual data would lead to cancellation, so it puts
best constraints on the phase parameters like chirp mass. The merger stage, although short
in time, is the most violent stage, and thus contributes significantly to the SNR [4, 26]. The
ringdown stage is also important as the perturbation of the geometry of spacetime around
the BH would be an ideal test field for gravity theories like GR [31, [32]. However, since
they are generated by three different methods, these stages need to be carefully spliced into
one waveform, to avoid a potential shift of phase for the waveform [26l]. As for physicists
in general, what’s most interesting is what physics we can learn from analysing the GW
data. So given the detected data, one wants to know what the corresponding physical system
should be, and how likely such a parameter combination is. This question relies upon the

application of statistics to the data, especially Bayesian Inference (c.f. chapter[2)) [47].

The important role that data analysis plays here is two-fold, namely the detection and mea-
surement [16]. Both aims could be fulfilled by performing Bayesian Inference, but the aim
of detection places a much stronger constraint on the speed of data processing, thus limiting

us to applying Frequentist methods (c.f. chapter [6)).

The current pipelines first generate a sparse template of waveforms, and then cross-correlate

on the data with each waveform [108, [109]. Astronomical CBC signals will trigger a large
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enough response of the data, such triggers with SNR larger than a certain threshold would
be recorded as potential candidates for astronomical signals. However, since the data was
matched with a large number of templates, thus even though the SNR threshold is supposed
to shield a large fraction of noise-mocked signal, there are still a large number of false alarms.
The current strategy of picking up the more plausible candidates is by looking at time and
mass coincidence between multiple detectors [[108, [109]. According to GR, GW signals
are supposed to travel at the speed of light, and the different detectors should record the
time of the CBC event trigger time differing by the time of flight that the GW takes to
travel across multiple detector [106]. The underlining philosophy is that the noise among
different detectors should be independent, so it is very rare for random noise to coincide in
time and in parameter space, while the astronomical signal should pass such threshold easily
[78,1107,[77]. However, at this stage, some amount of noise could still pass the threshold and
mimic the signal. So there is a final threshold on the combined SNR: coincidences that pass
such a threshold would be regarded as significant enough to make a confident announcement
about the detection. However, the understanding of the real meaning of significance is still
not solid enough, motivating us to learn more about the significance of the GW coincidence
events (c.f. chapter [6)).

Once a coincidence is significant enough, the corresponding data will be further passed to the
PE pipelines for detailed analysis [[17, 76, 47, 41]. The current bottleneck is the expensive
computational consumption during such a process: the full PE of the inspiral signal could
take as long as one week[l17, [110]. The process of PE calculates the source parameters (or
their posterior distribution to be precise) for some selection of points. Efforts have been
made to both decrease the number of points to be computed [41, [111],and the time spent to
calculate the statistic for each point [110} 35]. However, we should note that for advanced
detectors, when the low frequency sensitivity largely increased, the low frequency inspiral
signal could be observed for much longer time, thus making the process of PE even more

challenging [110].

1.7 Physics and Astronomy with Gravitational Waves

What can GW provide to physics and astronomy?

First of all, our understanding of gravity is still not mature, as currently the most successful
physics in large scale and heavy mass, GR, and the most successful physics in small scale,
Quantum Mechanics (QM), are not consistent with each other [[11]. And the gravity as a
fundamental interaction, can hardly be unified with the remaining three interactions. The
precise value of the gravitational constant is even under debate for the fourth significant
figure, as shown in figure [1.9|[L12].
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Figure 1.9: Measured value of the gravitational constant G' from different research groups.
Notice the values differs at the fourth significant figure. Picture modified based on lecture
from Jim Faller

Meanwhile, GR deviates from Newtonian gravity in strong fields and at high speed [1, 18].
Up until now, no direct measurement for GR effect had been made in a strong field environ-
ment [113]. The strength of field of WD is only ~ 1074, for NS it’s about ~ 0.1 [2]]. For
EM astronomy, the detection strongly relies on photon radiation, which either happens in the
outer region, or the environment has too thick optical depth that the photon from inner region
would lose the information related to the strong field [14, [103]. GW radiation, on the other
hand, only weakly couple with normal matter, so the ‘optical depth’ of the environment is
very thin, allowing the GW signal easily to carry the inner information towards the detector
[3]. This optical depth argument could also be applied to the big bang. Prior to the emission
of CMB, the optical depth is too thick for EM signal to travel [114]. However, GW signal
can be traced back until the end of inflation, leading to the potential direct study of the big
bang and inflation [[115} 115} [116].

With the detection of GW, we can also solve various astronomical puzzles. The actual mech-
anism of galaxy formation is under heated debate, while SMBH certainly play an important
role, but the detailed process, especially when two galaxies merge, and the question of how
the two SMBHs lose their angular momentum and merge into one single SMBH, is still un-
known [[117]. The Gamma Ray Burst (GRB) phenomenon, especially the sGRB, is also not
fully understood [118}[119]. Although some knowledge about them has been gathered, and
the link between GRBs and corresponding celestial objects were established, the central en-
gine of the GRB still remains unclear (86,120} 37,21, 87]. The binary evolution of stars, and
especially the end of such evolution, also remains a puzzle, causing the huge uncertainty in
the estimation of CBC event rates [95, [7/9]. With a large enough number of GW detections,
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especially CBC signals, the CBC event rate could be determined accurately, thus shedding
some light on the binary evolution problem [121} 117, 39]. Also, a more detailed study of
the waveform, especially the merger and ringdown waveform could distinguish the EoS of
NSs [32, 31].

The combination of multiple channels, including EM, GWs and neutrinos, opens a field
of multi-messenger astronomy [14, 122, [123] [124]]. If a nearby massive star undergoes a
supernova (SN) explosion, we can study the physical process of the outer region by collecting
the EM signal, while the GW and neutrino can carry detailed information about the inner
region, enabling a much more comprehensive understanding of the SNe [12]]. However, it’s
very likely that the EM counterpart of a CBC event is weak, so that the EM telescopes need
to know where to point to in order to find them [75]]. This requires the data analysis of GWDs
to perform rapid sky localisation. Normally this is achieved by using the difference in TOA
for the data, assuming the signal to have a flat wavefront and that the difference is caused
by the fact that wavefront reaches different GWD sites at different times. Taking the factor
that GWs travel at the speed of light, one can reconstruct the sky location of the source with
trigonometry. Such strategy relies on a widely separated GWD network, with more than two

detectors in operation [[75}125].

The other significant potential application of GW and multi-messenger astronomy is to study
cosmology with GW [15,1126, 127]. One of the usual methods to study the cosmology is to
measure the distance and redshift of a group of standard candles, which leads to the accurate
description of the redshift evolution history, and thus to decipher the cosmology [128, [129].
However, this process may require closer objects to calibrate the farther object, and step by
step towards very distant cosmological objects. In this process, the calibration error will

propagate all the way down to the distance of standard candle [[130].

On the other hand, CBC signals, containing both strength information and the chirp mass
information by themselves, represent a self-calibrated source, so one can determine the dis-
tance of a CBC source without the error propagation of multiple levels of calibration [15].
If the EM counterpart of such events were discovered in the mean time, one can accurately
measure the redshift of such event, thus fulfilling all essential elements to perform GW cos-
mology [15, 131} 132]].

To achieve that, the ability of detecting much more and much further events is needed,
echoing the request to build future generation GWDs like ET [358, 164, 99]]. For such de-
tectors, thanks to the excellent performance of low frequency, a CBC signal could stay in
band for a very long time, and the huge amount of signals makes it even possible that for
every moment, the data contains detectable signals [99]. With such a rich collection of
sources, one can perform a more robust statistical study, and a large number of phenomena

could be studied, like gravitational lensing and star formation history across different periods
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(116} 1133] 1134, 95, 1335]].

These scientific objectives all rely on a careful choice of the sites for the GWDs [136, [137].
Current detectors are actually all located in sub-optimal regions, as they are too close to
the seashore, and the micro-seismic noise could constraint the limit of noise background
(c.f: chapter [5)). The future generation GWD are still in the early design stage and the site
selection is under serious consideration. In this process, one should always bear in mind
that since GWD has an all-sky response, so a global GWD network is more than a simple
summation of multiple components [136]. Also, one should consider the factor that the real

world is full of uncertain factors, so the detectors’ site should be as flexible as possible.
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Chapter 2

Applying Bayesian Inference to
Gravitational Wave Data

As we described before, subject to numerous limits, we expect GW signals to be quite weak
(e.g. [4, 312,197, 198]). With the first detected signal expected to have an SNR of merely
around 10, data analysis techniques are required to obtain useful physical knowledge from
the weak raw data [3, 2]. Among the various potential GW sources, CBCs , especially BNS
inspiral signals are expected to be best understood [26, [109, [138]]. Given a set of physical
parameters to describe the CBC systems, the phase and amplitude evolution of the GW
waveform in the inspiral stage can be predicted with high precision, under the PN scheme
(see for example [[139, 24, 140, (141, [142] and the references within). With the knowledge
of the noise, one can calculate the probability to obtain such an observed data stream from a

certain parameter set [41, (76} 143].

For a CBC system, especially for the inspiral stage where the physics is best understood, the
evolution of the system can be efficiently computed with high accuracy, thanks to the for-
malism of PN [17, 144, 25,145, 146]]. By filtering the data with such predicted waveforms,
a high response would be initiated if a signal of this form is embedded within the data. This
method is known as matched filtering (29, 147, 148 138].

The matched filtering strategy is applied to the problem of detecting and estimating the pa-
rameters of a CBC signal, while Bayesian Inference also plays an important role in the
parameter estimation of CBC signals [99, 149, 47,150, [16]. In other words, matched filter-
ing is applied within a Bayesian context. We discuss these methods more thoroughly in the

following sections.
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2.1 Matched Filtering

In order to make the detection of gravitational waves, matched filtering, or cross-correlating
the expected waveform to the observed data, is adopted. The basic logic of matched filtering
is to check whether the data is consistent with an astrophysical waveform embedded in the

noise with expected characteristics.

For a stationary random process n(t), the Power Spectral Density, or PSD, describes the
variance of the random process at different frequencies. The truncated Fourier Transform of

a random process is defined as

I :
nr(w) = — dt e “in(t), 2.1
o) === | (1) 1)
and the long term average of the square of truncated Fourier Transform
Sp(w) = lim E [|a(w)|?] (2.2)
T—o0

is defined as the PSD [17, 151, [16].

Furthermore, we can define the autocorrelation function C,,(7) = E|[x(t)x*(t — 7)]. Accord-

ing to Wiener-Khinchin theorem, the one-sided PSD is just the Fourier transform of C,,(7)

Su(f) = / h Cy(1)e? ™t dr, (2.3)

oo

where f > 0 [2,13,116,[151].

For the recorded data d(t), we expected it contain both background noise n(¢) and the fore-

ground gravitational wave signal h(t),
d(t) = h(t) + n(t)

although for most cases the signal is much too weak to be detectable, the data could be

treated as noise.

If we have discrete samples at t; = ¢ x dt,7 € N, then it’s straightforward to show that the
probability of getting data d(t) sampling from the random process represented by Sy, (f) is

el exp(—sdTC~1d)
P(d‘sh(f» = [QWdGZt(Cn)]I/Q )

(2.4)

where C,, ;; = C,[(i — 7)dt], and C~* is just the inverse matrix of C,,. In the limit 6t — 0,
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observing time 7" — oo, we can express [[16]

TC-'d — /°° ay S + A ()

o Sn(f)
3 L di(f)d(f)
= 4R /D df AR (2.5)

Where d(f) represents the Fourier Transform of d(t) [16]. We can thus define the scalar
product of (g|h) as [2,[17, 3, [16]

(glh) =

(2.6)

where h is the GW signal, and n is the noise [2, 17,3, [16]. Since expected value for (h|n)
is zero, so the expected value of the SNR can be re-expressed as \/W . By applying the
Cauchy-Schwarz inequality, one can prove that when the actual signal is h, the SNR value
will be maximised and it constructs an optimal filter such that p,p = \/W is then defined
as the optimal SNR (152,138, 17].

On the other hand, if we want to perform PE on the GW data, we need to first construct
the likelihood function P(d|w), namely, the probability of obtaining data d, given the fact
that the GW signal is determined by a set of parameters p [41]. This is equivalent to the
probability that the residual after removing the expected signal with g from observed data,
or 16,13, [17]]

P(d — h()|Noise) — exp[—%(d ~hld—h)). @.7)

With the linearity of the Fourier Transform, one can expand equation [2.7

P (d = h(p)|Noise) = eXp{—%[(d!d) + (hlh) = 2(hld)]}

o exp{—5[(hlh) — 2(hld)]) 2.8)

The maximum of likelihood happens when the partial derivative of the likelihood over any

parameter is zero, or [16]
Jlog(L)

o

=0. (2.9)
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It’s not hard to rewrite this condition as [[16]]

(@ i h) o (2.10)
o

2.2 Bayesian Inference

In the field of statistics, there are two main branches known as frequentist and Bayesian
(153 154} [155]. They differ fundamentally in the definition of probability. For example,
it is meaningless to discuss the probability for a single event in frequentist language, with-
out introducing a hypothetical identical independent distribution [156]]. Frequentists can of
course predict the probability of obtaining one value before throwing the dice, but the cor-
rect expression would be “if the dice would be thrown for infinite times under identical and
independent circumstances, what’s the probability of getting one, or, what’s the fraction of
circumstances getting one out of all experiments”[[156,1155]]. Frequentist analysis agrees with
common sense, but the meaning is not straightforward, and needs appropriate interpretation
(156} 1157].

Bayesian Inference, on the other hand, gives a straightforward definition of the probability,
and it is meaningful to ask what is the probability of a single event in a Bayesian context
(readers are encouraged to read this very interesting blog [158]). The benefits from adopting
a Bayesian Inference approach also apply to the fact that the previous knowledge could be
taken into consideration as the prior. In cases where the background knowledge is well
understood while the data are of bad quality, then the final estimation, or the posterior, will
be dominated by the prior. In cases where data are of excellent quality, the prior would be

updated by this observation. So today’s posterior could be tomorrow’s prior [156, [157].

There are cases where one is more interested in certain subset of parameters than others,
such uninteresting parameters are called nuisance parameters, like phase in the CBC sig-
nal. Bayesian Inference can also provide a convenient method to marginalise over nuisance
parameters, which produce conclusions independent of any specific choice of nuisance pa-
rameter. Under the Bayesian framework, the definition of Bayes Factor (BF) (see chapter
can also quantitatively compare the goodness of fitting for two models with different
numbers of parameters, which is applied to a wide range of problems [159,1160,[161]. So in
the field of GW data analysis, especially for CBC signals, Bayesian Inference methods are

heavily used to perform the parameter estimation [4 1} 76, [75].

We quantify the probability as the belief of certain conclusion to be valid. Such belief should
be a real measure between 0 and 1, with 0 meaning definitely false and 1 implying definite
truth [156} [157].
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We define that the probability of an event A will happen to be P(A). If the event A does not
happen, then we denote that as A, and it is natural in simple situations to expect that event A

either happens or does not happen, which translates to
P(A)+P(A) =1. (2.11)

This is recognised as the sum rule. We further define the conditional probability as follows:
under the condition when the event B is valid, the probability for event A to happen is
P(A|B). It is easy to prove that if A and B are independent, then P(A|B) = P(A) [156,
157].

The joint probability of event A and B is written as P(A, B), which represents the probabil-
ity of event A and B both being valid. It can be re-written as product of the probability of

event A, and the conditional probability of event B under the condition that A valid, namely
P(A,B) = P(A)P(B|A). (2.12)

This expression is called the product rule [156].

One can notice that in such a factorisation, events A and B are equivalent, and so this joint

probability could equally be rewritten as

P(A, B) = P(B)P(A|B). (2.13)

By linking equations and [2.13|together, we can obtain an equation

P(B)P(A|B)

P(BIA) = =55

(2.14)
Equation [2.14]is recognised as Bayes’ theorem named after Thomas Bayes, and it relies on
two simple assertions, namely the sum rule (equation [2.T1) and product rule (equation 2.12).
The proof of these rules are non-trivial, one can find an example from appendix B of [157].

However, the derivation based on them is relatively straightforward.

What makes the Bayesian Inference approach different from the frequentist is not the for-
mulation of equation [2.14] but rather the interpretation of the equation. In both cases, we
construct models to explain the data, for example, if we know the mean p and standard

deviation o of a distribution, we can guess it to be Gaussian distributed N (u, o).

For practical purposes, we can replace the symbol A by the data D, while B is replaced by
the parameter values 6, like i and o in the case of a Gaussian distribution. Such relevant
information is represented by I, which includes but is not limited to the model one chooses
(156, 1157].
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6|1 P(DI9, 1)
P(DIT)

P
P6|D,I) = ( (2.15)
1. The posterior P(0|D, I) is the degree of belief for 6, given the observation of data D

and the underlying information 1.

2. The prior P(0|1) is the degree of belief for § under the given prior information 7,

before the actual observation.

3. The likelihood P(D|6,I) is the probability to obtain the observed data D if the actual

parameter is ¢, under the information /.

4. The evidence or marginal likelihood P(D|I) is the degree of belief that the observed
data are consistent with the underlying information /. This expression is independent

of the # and plays the role of a normalisation constant.

Bayes’ Theorem can be interpreted as follows: the degree of belief for 6, or the posterior, is
updated by the observation D through the likelihood, from the original prior. The likelihood
is not guaranteed to be normalised over ¢ (although by definition it’s guaranteed to be nor-
malised over D). So the evidence is needed to make sure the posterior would be normalised

over 6.

Notice that for frequentists, it’s meaningless to ask what is the probability of 6, because in

the physical world, there is only one (unknown) true value of 6.

Bayesian Inference is sometimes criticised for the subjectiveness in the choice of the prior.
Although one can try to adopt an uninformative prior, it is not a trivial problem to make the
prior truly uninformative and such a prior might even not exist [155]. However, as long as
the data is of high enough quality, the importance of the prior will be diluted.[[156, [157].
The updating property of Bayesian Inference makes it possible to combine information from
different sources (for example [103]]); meanwhile the definition of probability is more intu-
itive, makes the result more straightforward, while one should interpret frequentist’s results

properly before drawing any solid conclusion [[153}[154]].

2.3 The Bayes Factor and Model Selection

In practice, there are frequently situations when different models are to be compared, so it
is interesting to know which model is better supported by the model (for example [162]).
However, it is not an easy task to compare models quantitatively if the two models have

different numbers of parameters. For example, independent and identically distributed (i.i.d.)
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Gaussian noise, can be fitted with only a small number of parameters. However, a polynomial
fit with a large enough number of terms could always give a nearly perfect result. One can
find more scientifically interesting examples from [[156]] and [157]. It’s easy to discard the
perfect fitting scheme, since it makes a very strong assumption about the model. As the
philosopher William of Occam proposed, one should not add more assumptions if the data
could be explained by simpler theory, this spirit of “shaving” complicating components is
concluded as the Occam’s razor which prefers the simpler model when two models can
explain the data equally well [156,[157]. What’s tricky is the intermediate situation, where a

slightly more complicated model could explain the observed data better than the pure noise.

Suppose there are two different models M4 and Mp. The dilemma can be expressed as the
degree of belief for each model, given the fact that we observed the data D). This can be
formulated as the posterior P(M4|D, I)

Mu|I)P(D| My, 1)
P(D|I) '

P(M|D,I) = il (2.16)

The odds ratio O 4p is defined as the ratio of two posteriors of model M4 and Mp, namely

_ P(Ma|D,I) — P(Ma|I) P(D|Ma,I)
Oas = 5o D.1) = P(sll)  P(D|Mp, 1) (2.17)

% is recognised as the Bayes factor, which is the ratio between

the evidences of two models [156, [157]].

Here the ratio Byg =

If a model M has a parameter €, one needs to marginalise over all possible values of 6 to

compute the evidence

P(D|M,I) = /de P(D,0|M, 1)

— /de P(D|0, M, I)P(O|M,I). (2.18)

If we have no knowledge beforehand, we can assume total ignorance of these two models,
P(MalI)
P(Mg|I)
ratio is completely determined by the Bayes factor [[156} [157].

thus no preference for either, so the ratio can be set to unity. In such case the odds

To understand why the Bayes factor naturally disfavours a complicated model, a heuristic
proof is given in [157]] and [[156]. Let us consider a model M 4, which contains one parameter
0, with a flat prior between 6,,;, and 6,,,., the prior for any # between the allowable region
would be (A#)~! where A0 = 0,00 — Opmin [156]. Meanwhile the model Mp contains no
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free parameter at all. Thus we can re-express equation [2.18] as

1
P(D|M, 1) = E/de P(DI|6, My, I).

We can replace the integral with an approximation given by the product of the maximum
likelihood P(D|f, M, I) and the effective width 66 under the definition that

~ (2.19)
P(D‘H, MA> [)
so that 06 represents the characteristic scale, and further simplify equation to
1 .
P(D|My,I) = EP(DW’ My, I) x 60
00 .
= —P(D|0, Mu,1). 2.20
AO ( | y 1A, ) ( )

Notice that the integral over # won’t be normalised in equation [2.18] as § appears as a con-
dition in the equation. Recall that the normalisation requirement of likelihood applies to the

data, rather than the parameter, so it does not generally normalise over 6 (c.f. chapter[2.2)).

Normally, with more parameters, one can fit the data better, thus the maximum likelihood
P(D|, M, I) should get bigger than the maximum likelihood of the simpler model M, or
P(D|Mpg, I). However, the inclusion of every extra parameter will introduce another factor
of %. So unless the likelihood function has a wide spread over the additional 6 (namely,
a not-so-small §6 value) or a much higher likelihood value, or a combination of both, the
simpler Mp will be preferred. We can easily see that this formalism will punish the fine-
tuned model, while supporting the robust model which can fit data well with less sensitivity

to the change of parameter.

The odds ratio, or practically, the Bayes factor tells how much the data favours one model
against another. In practice, we use the table as a guide line to interpret the Bayes factor
into strength of evidence [[163].

The odds ratio provides a quantitative Occam’s razor, which can compare models with dif-
ferent dimensionality, provides a practical rule to execute Occam’s principle “entities must
not be multiplied beyond necessity” [[156, (157, [164]]. Thus it is of primary concern to de-
velop techniques to compute the odds ratio (for example [165} 166, 167, 168160, [169] and
reference within), in order to apply this method to astrophysical problems [161} 113,112,170,
101} [171].
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Oug strength of evidence
<1 Negative (support Mp)

1 < Oap < 10?2 | Negligible support of M,
10Y/2 < O < 10 | Substantial support of M 4
10 < Oup < 10%/2 Strong support of M4
1032 < O < 100 | Very strong support of M4

100 < Oyp Decisive support of M 4

Table 2.1: odds ratio value and their corresponding strength of evidence. This table serves
just as a reference purpose. Table adapted from [[163]].

2.4 Stochastic Samplers

The methodology of frequentist statistics once dominated the field of probability for a good
reason [[156]]. In order to perform the Bayesian Inference, the posterior distribution over the
parameter space needs to be computed. If this can not be achieved analytically, we have
to compute numerically, which may involve a large amount of computing resources. On
the other hand, the frequentist probability seems to provide a natural tool for distinguishing
the two models, namely the p-value, defined as the estimated probability of obtaining the
observed result, under the assumption that the null hypothesis Hj is true. [[172]. However,
one need to notice that the definition of the p-value is complicated and a large portion of
users misuse it in this context [172]. This is not saying that frequentist method is wrong
(154, [153]], but simply implies the fact that the correct interpretation of the result requires

non-trivial effort.

A naive way of performing Bayesian inference is by placing grid points uniformly over the
parameter space [173) 174, [175, [176]. Placing only 10 points in each dimension means
10 points in total for N dimensions. In such cases, the computational burden will grow
exponentially with the dimensionality of the underlying information, which shortly makes
the strategy unaffordable. There are cleverly developed methods to bypass such a curse of
dimensionality, among them, the two most recognised and widely applied methods in the
field of gravitational wave astronomy are Markov Chain Monte Carlo (MCMC) (see for
example [156, 177,178,179, 180] and the references within) and nested sampling (see for
example [[157, 181} [182] and the references within).

2.4.1 Markov Chain Monte Carlo (MCMC)

A Markov Chain is a process where the next point’s position depends only on the previous
point’s position, while Monte Carlo is a general methodology which adopts random numbers

to perform computations [156].

The most common and simple MCMC algorithm is the Metropolis-Hastings algorithm [156),
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183, [184]. To start with, a random location is selected in the parameter space. For the
i + 1% step, the location 6, is determined by the previous i'* step 0; by the transition
probability or transition kernel P(6;41]0;) [156]. A convenient setup includes a proposal
density q(6*]6;) and a corresponding acceptance probability. A proposal is randomly drawn
from the probability distribution function (PDF) ¢(6*|6;), and it would be accepted with the
acceptance probability, or otherwise, rejected, in which case ¢;,; = ;. One can prove that

the sampler’s density will be representative of the posterior PDF [156]].

To be explicit, the new point’s posterior is calculated and then compared with the previous

posterior, forming a Metropolis ratio r,

_ P@ID.D) q6:18")

r= . (2.21)
P(6:;|D, I) q(6+10;)
The new point is accepted with an acceptance probability o defined as [156]
. . P(9*!D,I)q(9i!9*))
a(f;,0") =min(1l,r) = min ( 1, (2.22)
0.0 =mint,r)=min (1, i L

Under such a design, an MCMC sampler can start from anywhere in the parameter space that
is allowed by the prior. Since the starting point is more likely to be located in regions with
relatively low posterior, the following points will generally be going uphill in the posterior,
but sometimes it is also possible for the sampler to jump downwards. After a period of burn-
in which could take as much as half of the samples, the memory of the start point would
be washed out. In order to prevent the influence of the choice of starting point, the burn-in
stage would generally be discarded, so that the remaining samples will be representative of
the posterior [[185, 1156, [177]].

The algorithm of MCMC is sampling towards the target distribution P(#|D, I), which is
call the stationary distribution of the Markov chain [156]. An MCMC chain should keep
sampling until convergence to a stationary distribution is achieved [185]. In order to achieve
convergence, the sampler must satisfy three properties (186, [156]]:
1. Irreducible
The sampler must have positive probability of sampling in points with non-zero pos-
terior, instead of becoming stuck in one specific region.
2. Aperiodic

The sampler should NOT oscillate between finite states.

3. Positive recurrent

There exists a stationary distribution, otherwise it is meaningless to discuss the con-

vergence problem.
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As the Metropolis-Hastings sampler satisfies all requirements for regular posteriors, it is

guaranteed to converge to a stationary distribution.

The criterion of detailed balance is a sufficient but not necessary condition for the conver-
gence of MCMC, illustrated as follows

P(0;)q(0;-110:) = P(0;-1)q(0:|0; 1) (2.23)

The concept of detailed balance in thermodynamics could help to understand this require-
ment. In thermodynamics, if we define the probability of a particle to be in state ¢; as P(6;),
and the probability of it to jump from state 6; to state 6, ; as q(6;_1|0;), detailed balance
requires that during a certain period, the probability for a particle to jump from state 6; to
state 6;_; should be exactly the same probability as for it to jump from state 6, _; to state 6;
[187].

Since detailed balance is a stronger requirement than convergence, some Markovian Chain
that does not meet the requirement of detailed balance can still be able to converge to the
target distribution (for example, [[188]). However, it is much easier to check and to implement
if one has chosen the criterion to be detailed balance. We can prove that detailed balance can

lead to the convergence on the target distribution as follows [156]],

Joint probability(6;,0;+1) = P(6;)P(0:4+1|0;)
= P(0;)q(0i410;) (0, 0i11)
0:)
(

/‘\/‘\

B P(Qi 1)q(9¢|9i 1)
= P(0:)q(0i11/0;) min (1 P(Q—:)Q(Qi—i—l"g—:) >

= min (P(0;)q(0i1110;) , P(0i11)q(0:]0i41))
= a(bi11,0:)P(0i11)q(0:|0:41)
- P(9i+1)P(‘9¢‘9i+1) (2.24)

If we marginalise over all possible #; values, then

/ A0, P(0,110) P(6) — / A0, P00, P(65.1)

= Pl6i) [ 46 P616) (2.25)
= P(bi1)

where in the second line, the integral is naturally normalised to unity [156].

Equation guarantees that the probability of sampling any parameter 6 is just the posterior
of that parameter. This property makes it very easy to infer any numerical integral concerning

the probability density. For any function f(6), the integral over parameter space can be
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approximated by numerical summation

/ do f(6)P() ~ % >_ 1) (2.26)

2.4.2 Nested Sampling

Although MCMC is very versatile and is able to perform Bayesian Inference in a large vari-
ety of problems, especially problems with high dimensionality, it has its own shortcoming.
For example, most of the MCMC samples will concentrate on the high posterior regions, and
are unable to explore the vast majority of the parameter space. This is helpful to keep the
MCMC focused in interesting regions, thus alleviating the so-called curse of dimensionality,
which is the outstanding problem that the computational requirements scale faster than the
dimensionality. However, this also means that the part of parameter space with low posterior
will be mostly ignored, and it’ll become a big problem for normal MCMC samplers to esti-
mate the evidence accurately (although notably there have been some effort to alleviate this
problem, see for examples [189, [165]). The Nested Sampling method, on the other hand,
is designed to estimate the evidence, in addition having the ability to perform parameter
estimation [157, 166, [167]].

To start with, let’s look at the calculation of the canonical partition function in statistical

mechanics. The partition function Z(3) is defined as

Z(B) = /d@ exp(—LBE(0)). (2.27)

If one has the knowledge of the Density of States (DOS)

g(E) = / 46 §(E — E(6)), (2.28)

where ¢ is the Dirac delta function, one can transform equation into
2(9) = [ B g(8) exp(~5E) (2.29)

Now let us step back to the Bayesian point of view, and we regard F/(6) as the — log P(D|0, M, I),
and

g(E) = /de P(O|M, 1)§(E — E(6)).

We can regard this as assigning a measure according to the prior. In this form, the evidence

value is simply the partition function when § = 1 [190].
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The philosophy of Nested Sampling is to achieve the integral Z = f_oooo dE g(F)exp(—F)

numerically.

We define prior mass as

X(L) = / d6P(6|M, 1) (2.30)
P(D|0,M,I)>L

which is integrated over the parameter space that contains a likelihood value larger than set
L. The X value is constrained between 0 and 1 [157,[167].

The evidence integral can be translated as

Z = /OO dE g(E) exp(—F)

[e.9]

1
= /dXL(X) (2.31)
0

Q

N
> Li(Xi— Xi).
1=2

The algorithm of Nested Sampling will sample a number of points #; from the prior, and
calculate the corresponding likelihood L;, which is later sorted as L; < Lo < ... < L.
Naturally, one can conclude X; > X, > ... > Xy, as illustrated in figure 2.1] [157].

L

L,

L,
L

L

X; X5 X

(a) Likelihood contour. (b) Corresponding X (L).

Figure 2.1: An illustration of likelihood contours and corresponding X (). Since the def-
inition of X (L) is the prior mass that’s integrated over the parameter space with likelihood
larger than L, the larger the likelihood value, the smaller the X value is. Picture reproduced

from [191]].

To set up the Nested Sampling algorithm, one needs to spread a number n of (for example
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n ~ 1,000) live points uniformly in the prior. The point with the smallest likelihood value
will be recorded as the first sampled point #,. That live point would be updated by a randomly
drawn point, which will have a likelihood value bigger than it. In this way, the sampler will
go upwards to higher likelihood regions, just like stripping off layers of an onion. For each
update at step k, the mass X, is defined as the mass X (L) with the lowest likelihood among

all live points. For a random update, the shrink rate t = X} 1/ X}, follows a distribution
P(t) = nt"!

thus gives
(logty = (—1+1)/n

Since Xy = 1, while X, = H§:1 = t;, one can prove that

(log X;,) = (=k £ Vk)/n (2.32)

Combined with equation [2.31] one can explicitly calculate the estimation of evidence. One

can also compute the information ‘H defined as

(2.33)

H= /dX P(X)log[P(X)] ~ Z L (XkZ_ Xi-1) log [&} .

k
From the information 7, one can estimate the uncertainty in the estimation of evidence, so

that

log Z ~ log <Z Ly (X — Xk_1)> TS (2.34)
k

n
The algorithm is designed to have sparse sampling in low likelihood regions, where the
contribution to the evidence is negligible, while high likelihood regions would be densely

sampled so that the uncertainty in the final estimation can be minimised [157, 166, 167].

The algorithms of MCMC and Nested Sampling listed in chapter [2.4] are just the rules of
thumb. In order to deal with specific problems, there are lots of different variants to im-
plement the idea of both MCMC and Nested Sampling, so that the methods are tailored to
different requirements. In the remainder of this chapter, the main variants of MCMC and

Nested Sampling will be discussed.

2.4.3 Parallel Tempering MCMC

One of the key problems for MCMC is the multi-modal problem, where there exist multiple

modes in the posterior distribution, or multiple distinct regions within the parameter space
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that can explain the data with high confidence. For a simple Metropolis-Hastings algorithm,
if the sampler wants to jump from one mode to another, it has to go through a ‘valley’ in the
posterior, which usually takes a sequence of low probability downwards jumps, which the
sampler will take an extremely long time to achieve, so although theoretically it is possible,

it is practically exceedingly unwise.

The philosophy of parallel tempering MCMC is to implement multiple chains, with some
chains sampling a flatter posterior, and the others sampling the target distribution [[192, 193,
194]. With the communication between the chains enabled, it can guide the samplers to

achieve jumps between distinct regions of the parameter space.

The flattened distribution has a posterior
Pr(0|D,I) < P(O|I)P(DI|h, I)"

where the parameter 7' = % is defined as the “temperature” of a chain. In the scheme of
parallel tempering, a temperature ladder is constructed, so a series of (say, n) chains are
configured with different temperatures, 7y < 77 < ... < T;,, where the lowest temperature
Ty = 1. It is not hard to see that higher temperature chains are more similar to the prior, and
the posterior with temperature of oo degenerates to the prior [[192, (193] [194, [165. 156, 195
177].

Neighbouring chains have a constant ratio in temperature. For a chain with higher tempera-
ture, the posterior is flatter, and it is more likely for the sampler to jump from one mode to
the other. Occasionally, a swap between two neighbouring chains labelled as 7 and j + 1 is

proposed, the acceptance of such a swap being given by the probability

. { PTj(9i+1|D7I)PTj+1(6i‘D7[)}
r=min« 1, .
PTj(ei‘D>I)PTJ'H(eiJrl‘D?[)

(2.35)

From this scheme, one can keep the low temperature chains sampling according to the target
distribution, while the high temperature chains will be auxiliary in the sense of guiding swaps
between modes [177,(195].

2.4.4 Delayed Rejection MCMC

For most cases, the bottleneck of computation for an MCMC algorithm lies in the numerical
calculation of the posterior. So it is somehow a waste of computational ability when the

proposed point 92‘1) is finally rejected, according to the acceptance ratio. We slightly modify

equation into

PO ;60"
o (6:,6f,)) = min (1, Oty) @6 “))).

P(0;) a(6;10:)
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Although some rejection is necessary to give us information about the posterior, it would
be efficient to not discard the calculated information immediately, but reuse it by proposing

candidates incorporating the information, with g2 (6, |6(,, 0:)

The acceptance ratio for the newly proposed point 92‘2) is

P(07) 1 (07,)105)) a2(6:167,,, 075)) 1 — aa (6, %)) (236)

aq(0;, 071, 075) = min | 1, ” p— "
1601, Bl) ( P(6;) Q1(9(1)|‘9i) 92(9(2)|9(1)a9i) 1—041(9%‘9(1))

The final term is to account for the fact that the proposed 02*1) was not accepted. This scheme
can be extended to higher order [196, 197, [198]].

2.4.5 Reversible Jump MCMC

Normal MCMC is relatively powerless in dealing with model selection due to the inaccu-
rate estimation of the evidence (see for example [165, [159] for efforts of computing evi-
dence with MCMC). However, the reversible jump MCMC can propose jumps between two
different models. Assume two models with different dimensions, in addition to the usual
Metropolis-Hasting algorithm, one should also design a trans-dimensional proposal density,

which would be in equilibrium under movements between the models [[160, [197]].

The central problem of reversible jump MCMC is the construction of the jump proposal
between different models. A badly constructed jump proposal between models might lead to
an inefficient swap between models, and might lead to biased results, so attempts have been

made to construct robust jump proposals between models [[169]].

2.4.6 Automated MCMC

For a Markov chain, the points are expected to be correlated with the adjacent points; the
closer the points are, the more correlated they are. The correlation between a point and

another point separated by 7 is represented as autocorrelation function

Ry - ELOG) = (66 +7) — ] 037

o2

where 1 and ¢ are the mean and standard deviation for the distribution, and the average is
taken over index . We also identify the characteristic length of the autocorrelation function

as the autocorrelation length.

When optimising the MCMC algorithm, it is not trivial to make sure the proposal density
is well designed. If the proposed jump is too large, the acceptance ratio could be too low

to be efficient; on the other hand, if the proposal jump is too small, then the sampled points
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will have a very high autocorrelation length, so the MCMC will take a long time until it
explores a large enough portion of the parameter space [199,156]. An optimal proposal will
lie in somewhere in the middle, enabling a high enough acceptance probability, while the

autocorrelation length is low enough so that the sampling process will be more efficient.

Efforts have been made to make this process automatic and robust. For example, Gregory
proposed a method [156] 200] that before running the MCMC algorithm, a target acceptance
rate is set. From time to time, the actual acceptance rate will be compared with the reference
[177]. The similar idea is implemented in the MCMC version of LALInference within the
LSC Algorithm Library (LAL), however, by proposing new candidates from the covariance

matrix of sampled points, which makes the automation process more versatile [41, [76]].

2.4.7 Affine Invariant MCMC

Recently, a specific implementation of MCMC has attracted huge attention[201]. By design-
ing an sampling algorithm invariant to affine transformation, the sampler should be equally

effcient over all convex bodies for given dimensionality [201].

In the design of such algorithm, there exist a group of copies of the system each with a

sampelr, or an ensemble of walkers, and for step ¢ every walker X}, is evolved with
Xi(t) =Y = X; + Z(Xy(t) — X)) (2.38)

where X; with j # k is another walker in the ensemble, and Z is a scaling variable that

makes sure the detailed balance is satisfied.

The most beneficial aspect of this proposal is that it could achieve a low autocorrelation
length with a relatively high acceptance rate [201]. So in principle this method could be very
efficient. Also, normal implementation of MCMC usually requires a tuning of the running
parameters to make it work as expected. In this affine invariant MCMC, since the proposal
is independent of the covariance matrix, such tuning is not necessary any longer, making it
versatile and convenient to use. The EMCEE python implementation of it has become one
of the most popular MCMC tools recently [202]. And in the field of GW data analysis, the

idea is customised to perform efficient PE [111].

2.4.8 MultiNest

There are also different variants for the implementation of Nested Sampling. As the update
of the live points should be in principle randomised according to prior mass, which means

the live points will become more and more concentrated, until they shrink into a small region
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in the parameter space [157, 166, [167], some proposal methods of the probability could be

computationally expensive [203].

The MultiNest algorithm use ellipsoids to approximate the distribution, so that it can effi-
ciently propose new points from within the ellipsoidal approximation. So this method is

especially efficient for multi-modal scenarios [168} 181, [191].

2.4.9 Combinations

The methods mentioned in this section can be combined together to construct new methods
[186]]. For example one can combine the delayed rejection and reversible jump [197], com-
bine MCMC and Nested Sampling [203] or combine importance sampling with MultiNest
[191]. Importance sampling is a strategy to propose independent samples from a simpler
form of distribution than the target distribution, thus one can perform numerical integral ef-
ficiently. Notice also that [111] implemented an affine-invariant ensemble sampler together
with parallel tempering to tailor for the multi-modal feature, and efforts are being taken to

implement this method in LAL to achieve fast analysis.
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Chapter 3

Bayesian Model Selection on
Anti-Glitch Models

The application of Bayesian Inference is vital to problems which involve model selection.
There are situations where multiple models can explain the observed data comparably well,
and with similar complexity, or cases where more complex models explain the data better,
then the general Occam’s razor will not be practical. As we’ve discussed in chapter [2.3]
Bayesian Inference methods naturally provide a quantitative Occam’s razor. In this chapter,
an actual application of Bayesian Model Selection is perform on such a problem from the

observation of an anti-glitch event [162].

Neutron stars generally have strong magnetic fields and rotate with a very steady period.
A phenomenon known as a glitch has been observed in multiple pulsars, where the pulsar
undergoes a sudden frequency change, and usually an increase of frequency is observed. It
has been suggested that glitches are caused by internal processes of the pulsar [204]. With
the interior of the neutron star being in a superfluid state, the magnetic fields within the core
are concentrated into quantised vortex lines, and the vortex can be pinned to the crust, which
causes the surface crust rotate slightly slower than the inner core. A sudden twist would lead

to the spin up of the crust, which leads to the observed glitch [2035].

However, there’s a small group of neutron stars with exceedingly high magnetic field (~
10*@G). Such strong magnetic fields can support some interesting phenomena, like soft
gamma repeaters [200]. In previous work, an unusual spin-down glitch, or anti-glitch is also

observed in a magnetar [[162].

In the year 2013, Archibald et al. [162] discovered an unexpected anti-glitch phenomenon
in magnetar 1E 22594586. Unlike a normal glitch, which undergoes a sudden spin up, this
magnetar experienced a sudden spin-down. The mechanism which caused this phenomenon
is still under discussion (e.g. [207, 208} 209, 210, 211]]), but to our knowledge no model
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explicitly predicted an anti-glitch prior to this discovery, although [205] predict a similar
potential phenomenon in SGR 1900+14 [[162].

The data analysis performed by [[162] shows that during the observation, 1E 22594586 un-
dergoes two timing events separated by 50-90 days. The first event is a certain anti-glitch,
while the nature of the second event is less certain. If it is also an anti-glitch this might
require a qualitatively different physical model to explain its origin. Importantly, however,
the analysis performed in [[162] was unable to distinguish between these two types of glitch

for the second event.

Since we know very little about the mechanism behind such a rare phenomenon, any infor-
mation about it could be helpful to understand its physical cause. In this work we seek to
use the data themselves, employing the methods of Bayesian model selection, to distinguish
between two competing models, wherein the second event is a glitch, or anti-glitch, respec-
tively. More specifically, we compute the ratio of the evidence for each model (as defined in

Section [2.3) and investigate whether this ratio favours one model over the other.

The structure of this chapter is as follows. In Section [3.1 we briefly review relevant details
of the model for the time of arrival of pulses from the progenitor. Section presents the
results of our analysis, including a careful check on their robustness. Finally Section

summarises our conclusions.

3.1 Timing Model

The magnetar 1E 2259+586 was routinely observed by the X-ray Telescope (XRT) onboard
Swift every 2-3 weeks, with more frequent observations being made shortly after discovering
the first anti-glitch event reported in [[162]. The observations give the time of arrival (TOA) of
each X-ray pulse (which can be corrected to the solar system barycenter), which in turn gives
the pulse phase of the magnetar. Together with each TOA, the X-ray flux is also recorded.
An increase in the X-ray flux helps to pinpoint the epoch of the first glitch event, while for
the second event, no obvious flux change was detected — thus contributing to the confusion
about the second event’s type. The observational data of the magnetar is shown as in figure
(reproduced from [162]).

We model the magnetar’s phase evolution, ¢(t), with the standard Taylor expansion of fre-
quency and frequency derivatives [212] using terms up to second order, when no (anti-)glitch

happens, it will follow that

o(t) = J, v()dt
= [} dt'lvy + ot + O(it?)] (3.1
= vy(t —to) + 50(t — to)* — Ag(2).
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Figure 3.1: Upper panel: 1E2259+586s spin frequency as a function of time, determined
by short-term fitting of (typically) five TOAs. The grey horizontal error bars indicate the
ranges of dates used to fit the frequency, and the vertical error bars (generally smaller than the
points) are standard 1o uncertainties. The red and blue solid lines in a represent the fits to the
pulse TOAs, with red represents an anti-/normal glitch pair model, and the blue represents
a successive anti-glitch model. Middle panel: Timing residuals (differences between the
initial model and observed data) of 1E2259+586 after fitting only for the pre-anti-glitch
timing solution. The inset shows the same timing residuals, zooming in on the anti-glitch
epoch. Lower panel: The absorbed 2 — 10keV X-ray flux. The error bars indicate the
1o uncertainties, and the green line is the best-fit power-law decay curve with an index of
—0.3840.04. The dashed vertical lines running through all panels indicate the glitch epochs,
the black line being the anti-glitch, and blue and red lines the second event in the models of
the best fit. The timing residuals for these fits can be seen in the Supplementary Information.
Figure reproduced from [[162]
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Notice that the period of a pulsar’s phase is unity instead of 27, so for each TOA t;, there is
a integer [V; so that the pulsar has been through N; cycles since (. If we define ¢(t;) = 0,

then ¢(t;) = N;, and we can write
1
Ao(t;) = vyt — to) + 51)(@» —t0)? — N;. (3.2)

The effect of a (anti-)glitch on the phase timing model will be a sudden change in the fre-
quency and frequency evolution after the event [213]]. Suppose that the epoch of the glitch is
Ty, then the accumulated phase at T}, is

L.
gf)g = VO(Tg — to) + EV(TQ — tQ)Q (33)
meanwhile the instantaneous frequency v, is

Vg = 1) + V(Tg — to)

The glitch will cause a sudden change in all high order terms. We take the sudden change
of frequency and its derivative as Ar and Az separately. The frequency evolution after the

glitch is then written as
v(t) = (vy + Av) + (0 + AD)(t — T,) + Oi(t — T,)?

for ¢ > T,. And then we can write the time evolution of phase by

t

o(t) = / v(t)dt' + ¢y + Ay t>T,. (3.4)
Ty

Therefore the difference between the phase model with and without the (anti-)glitch under

the assumption that no decaying frequency increment is required due to none being fitted by

[162] is

1
Ap(t) = Av(t = Ty) + At — T,)? + Ad, (3.5)
where A¢, captures the residual change of phase not well modeled by the frequency change.
We further define N
Ri _ sz — 1iVy
14

as the time residual after subtracting the model predictions from the data. Here ¢; is the

predicted pulse phase at the i’ observation time t; (i.e. ¢(#;)), N; is the exact phase at

the TOA, which by definition is an integer, and v is the frequency according to the model.
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Together with the observed timing uncertainty, o;, we can form

N

R\’
=Y (;) . (3.6)

i=1

For the purpose of performing Bayesian Inference, we define the likelihood as proportional
to exp(—x?/2), and use it to evaluate the evidence for each model. We apply the Nested
Sampling algorithm [203]] (c.f. chapter [2.4.2)) to compute the evidence of both models, and
further the Bayes factor is calculated to determine which model is more supported by the
data.

3.2 Results

In our analysis, the two models under consideration only differ in the sign of the frequency
change for the second event. In order to avoid undue influence of the prior range on the

Bayes Factor, we assign identical prior ranges to all common parameters in both models.

3.2.1 Setting the Priors

From table 1 of [162], the parameters are given to be vy = 0.143285110 + (4 x 107?)Hz,
v = —9.80 4 0.09 x 10715Hz s~!. The Epoch (MJID) is the time t, when v(ty) = 1. Since
the magnetar has been observed for a long time (e.g. [214, [215]]), and the spin before the

anti-glitch is not of interest, we fix those parameters to be constants.

In table the estimated value and corresponding uncertainties for glitch parameters are
given from the analysis of TEMPO?2 fitting, adapting from [162]. Notice that the phase
parameter Ag, is not given in [162]. It is a usually a small value, so we set the mean of
A¢, = 0 while the uncertainty oag, = 0.05. Later we will find out that this o choice

encapsulates the parameter with the highest posterior value.

In both models, there are two independent (anti-)glitch events and for each event there are 4
parameters required to describe it: its epoch ¢ and the changes in the frequency Av, its first
derivative A and the phase A¢, caused by the event. Thus, in total there are eight param-
eters for each model. In order that the two models should have a common parametrisation
we suppose that in the second model, after the second event (which is a normal glitch in this
model), the frequency becomes v, = v — Av while in the first model, after the second event
(which is an anti-glitch) the frequency becomes v, = v 4+ Av. In this way Av is a positive

parameter for the second event in both models. With this design, the two models can have
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Pararmeter Value ¢ Uncertainty oy
Epoch(MJD) 55, 380.000 —
v(s™h) 0.143,285,110 4 x107°
v(s72) —9.80 x 1071 9 x 10717
Anti-/normal glitch pair
Epoch1(MJD) 56,035 2
Avy(s7h) —4.5 x 1078 6x 1077
Ay (s72) —2.7x 1071 2 x1071°
Epoch2(MJD) 56,125 2
Avy(s™) 3.6 x 1078 7x 1077
Ap(s™2) 2.6 x 10714 2 x 10710
Successive Anti-glitch
Epoch1(MJD) 26,039 2
Avy(s7h) -9 %1078 1x10°8
Ay (s72) —1.3x 1071 4 x 1071
Epoch2(MJID) 56, 090 3
Avy(s™) —6.8 x 1078 8 x 107°
Ay (s72) 1.1 x 1074 4 x 1071

Table 3.1: Parameter estimation for the timing model from TEMPO?2 fitting, including epoch,
frequency and first derivative of frequency before glitch and after the two glitch events for
both models. Table modified from [162]]. Note this is being used to inform the choice of
prior.

exactly the same priors, thus minimising the influence of the choice of prior on the final value

of the Bayes Factor.

For the epoch of the first anti-glitch event there is an obvious change in flux between the 19"
and 20" observation; hence we set the prior for the epoch to be flat between these two data
points. For the priors on other parameters we make use of their estimated values 6, together
with their uncertainties oy, as reported in [162]. Specifically we adopt a conservative, uni-
form prior of width equal to 2n times the uncertainty for each parameter — where we will
adopt different values of n in order to explore the robustness of our results to the choice of

prior, i.e. to check that our prior boundaries contain the vast bulk of the likelihood.

Thus for each parameter (and where M, refers to model 7) the lower boundary of the uniform
prior is set to be min(0y;, — nog.nr,, Orr, — nop.01, ), While the upper boundary is set to be
max(0y, + nog.arn,0n, + nog.ar,). Note however, that since Av for the second event is

always positive, its lower limit is set to be min(0, Avy, — noava s AV, — NOALAL )-

We tested cases for n equals to 3, 5 and 10, to make sure our conclusion would be indepen-
dent from any specific choice of prior range. In tables and we show the upper
and lower boundaries for cases with n equals to 3, 5 and 10.
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Parameter

Lower Boundary

Upper Boundary

Epoch1(MJD)
AVl (S_l)
ADl (S_Z)

Agbg,l

Epoch2(MJD)
Avy(s™h)
ADQ (8_2)

Ang,Q

56031.484167333
—1.2x 1077
—33x10714

—0.15
56081
0
—1x 10715
—0.15

56045.4437822243

—2.7x107%
—1x 10715
0.15
56131
9.2 x 10798
3.2 x 10714
0.15

Table 3.2: Upper and lower boundaries of timing parameters in the case where n = 3.

Parameter

Lower Boundary

Upper Boundary

Epoch1(MJD)
AVl (Sil)
Ay (s72)

Ang,l

Epoch2(MIJD)
Avy(s™)
ADQ (872)

A¢g,2

56031.484167333 56045.4437822243

—1.4x 1077
—3.7x 1074
—0.25
56075
0
—9x 10715
—0.25

~1.5%x 10798
7x 10710
0.25
56135
1.08 x 10797
3.6 x 10714
0.25

Table 3.3: Upper and lower boundaries of timing parameters in the case where n = 5.

Parameter

Lower Boundary

Upper Boundary

Epoch1(MJD)
AVl (S_l)
ADl (872)

Agbg,l

Epoch2(MJD)
Avy(s™)
ADQ (S_z)

Agbg,2

56031.484167333 56045.4437822243

—-1.9x 1077
—5.3x 10714
—0.5
56060
0
—29x 1014
—0.5

1.5 x 1079
2.7 x 1071
0.5
56145
1.48 x 10797
5.1 x 10714
0.5

Table 3.4: Upper and lower boundaries of timing parameters in the case where n = 10.
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3.2.2 Comparing the Models

To calculate the evidence, a nested sampling code was applied with a stopping criterion set
to equal e~® —i.e. when new live points made an additional contribution to the evidence that
was smaller than a fraction e~° of the total, the nested sampling code was stopped. The value
of n used for setting our priors was initially taken to be 10 —i.e. far beyond the 50 region.

29 respectively,

The two models were found to have evidence values of ~ 3% and ~ e~
which yields a Bayes Factor of 42.5 + 3.4 in favour of the successive anti-glitch model over
the anti/normal glitch pair model. The uncertainty on the Bayes Factor was calculated using
equation[2.34] According to the definition of [[163]], a Bayes Factor larger than 40 is already

very strong evidence in favour of the successive anti-glitch model (c.f. table[2.1).

For each model the posterior distribution of the model parameters was resampled appro-
priately from our nested sampling results. In figure [3.2] we show posteriors for the param-
eters of the second event in the double anti-glitch model. The contour lines correspond
to 68.3%,95.5% and 99.7% credible intervals. The maximum posterior corresponds to the
following best-fitting parameter values: epoch = MJID 56088.4; Av = —8.2 x 1078 Hz;
Av = 5.2 x 1071° Hz/s; phase change = —0.012 cycles.

3.2.3 Robusthess Check

We tested the robustness of our results by changing the width of our uniform priors and re-
running the nested sampling analysis. Table [3.5]shows the mean Bayes Factor obtained as
n is changed from 10 to 5 to 3. We see that the Bayes Factor fluctuates around a value of
~ 45, but in all cases our conclusions are consistent. Such a value is also consistent with the
estimation from multiple runs as illustrated in table [3.6] The uncertainty values estimated
between table [3.5]and table [3.6]are slight different, but at most they differ by a factor of two.
The interpretation of the value is displayed in table [2.1|[[163]. A Bayes Factor value of ~ 45,
as it’s located in the region of (103/ 2 100) , demonstrates a “very strong support” of the first

model, here being the successive anti-glitches model.

The parameter space has been changed to check the influence on the conclusion. Since the
Ag, for both timing events in both models were not estimated in [162]], we set these phase
change parameter to zero and the Bayes Factor increases to around 375, which shows an

even stronger support for the successive anti-glitches model.

The timing residuals, after subtracting the best fitting double anti-glitch model, are shown
in the upper panel of figure [3.3] This consistency confirms that two anti-glitch events can
explain the observed data well.

So far, there have been some physical models proposed in order to explain the putative anti-

glitch event (see [3.3] for detailed discussion). Some authors (e.g. [207,208]) have suggested
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Figure 3.2: Parameter posterior contours for the second anti-glitch event with the successive
anti-glitch model, showing 68.3% (solid), 95.5% (dash-dotted) and 99.7% (dotted) credible
intervals, based on ~ 500 points resampled from the nested sampling samples.
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Figure 3.3: Upper panel: Timing residuals of the observed data for two successive anti-
glitch events, with best fit parameters as determined by our analysis. Lower panel: Timing
residuals of the observed data for only one anti-glitch event. Clearly, two anti-glitch events

better explain the data than having a single anti-glitch.
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Table 3.5: Estimated Bayes Factors and evidences with uncertainties, obtained from different
prior ranges on the model parameters, represented by different n values (for the definition of
n see main text). A Bayes Factor of around 45 is obtained in each case, indicating consis-
tently strong evidence favouring a successive anti-glitch scenario over an anti/normal glitch
pair. The natural logarithm of evidence were consistently estiamted with an uncertainty of
around 0.05.

n value 10 5 3
Bayes Factor 424+ 34 43.5£3.1 48.6 £ 3.4
Successive Anti-glitch Evidence exp(—28.53) exp(—27.77) exp(—27.58)
Anti-/normal glitch Evidence  exp(—32.28) exp(—31.54) exp(—31.46)

that the second timing event is not consistent with these physical models, and moreover have
questioned whether the observational evidence for the second event is strong enough in the
first place. However, as shown in the lower panel of figure if we consider only the
first event the timing residual will quickly diverge away from zero thereafter, thus showing
strong support for the existence of a second timing event. Note that the timing residuals
for an anti/normal glitch pair model are also similar to the upper panel in figure [3.3] further
supporting the case for a second timing event (but emphasising that to distinguish between

an anti/normal glitch pair and an anti-glitch pair is less straightforward).

We also applied model selection to the case of two timing events versus 1 anti-glitch, and
the Bayes Factor was found to be ¢?*® — i.e. overwhelmingly favouring the 2 events sce-
nario. This result demonstrates how the Bayes Factor can favour a more complicated model,
notwithstanding that it may require additional parameters, when the data are of sufficient

quality and a simpler model cannot give a satisfactory fit.

Finally a batch of simulated glitch-free residual data was also generated, with each point
drawn from a Gaussian distribution using means and standard deviations from TEMPO2
fits and TOA errors. Nested sampling was applied to this simulated data, and the Bayes
factor was computed for the comparison of a successive anti-glitch model and an anti/normal
glitch pair model. We calculated 15 Bayes Factor ratios based on 15 realisations of fake
anti/normal glitch-free data. We found that the Bayes Factors fluctuated around unity, i.e.
exp(0.17 £ 0.33), showing that intrinsic randomness in glitch-free data will not cause a

preference of one model over the other.

Notice that in table [3.5]the uncertainty is estimated from the Nested Sampling algorithm, and
might be not representative. We therefore carried out different nested sampling runs with
different random seeds, and list the corresponding results in table Notice that although
the uncertainties are slightly different between estimation from nested sampling and from
standard deviation calculation, the mean values are consistent, and the values are generally

independent of the choice of n value.
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Table 3.6: Bayes Factors of different realisations with mean and standard deviation. All
realisations demonstrate a strong support for the successive anti-glitch events model, the
estimated Bayes Factor fluctuate around 45 with standard deviation ~ 4. The standard de-
viation is slightly different from the estimation from equation [2.34] while the mean value is
consistent. The standard deviations of both models’ evidence are also provided.

n value 10 5 3

Realisation 1 41.3 43.5 46.1
Realisation 2 424 435 46.1
Realisation 3 53.0 44.4 50.1
Realisation 4 425 479 53.3
Realisation 5 41.1 41.1 51.8
Realisation 6 38.2 40.5 49.2
Realisation 7 45.3 42.6 49.2
Realisation 8 51.5 44.5 47.3
Realisation 9 38.6 39.0 47.8
Realisation 10 46.4 39.5 49.5
Realisation 11 54.4 41.6 49.5
Realisation 12 46.2 43.6 46.8
Realisation 13 442 42.3 45.9
mean 45.0 42.6 48.7
standard deviation 52 24 23

successive anti-glitch evidence stdev  0.04 0.05 0.04
anti-/normal glitch evidence stdev ~ 0.08 0.03 0.02

3.3 Discussion and Conclusions

We have shown that a model with two successive anti-glitches better explains the observed
pulsar data presented in [162] when compared with an anti/normal glitch pair model. Our
analysis was robust against variations in the prior ranges, with a Bayes Factor consistently
larger than 40 in favour of two anti-glitches. Meanwhile, the Bayes Factor between two
events and one event is very large (¢2°®), showing conclusively that the two events scenario

is favoured over one event.

Prior to the discovery of an anti-glitch there were already several published papers presenting
mechanisms that could cause enhanced spin-down, while after its discovery a number of
further mechanisms have been proposed seeking to explain its physical origin. Roughly
speaking, we can divide the proposed mechanisms into three groups: internal , accretion

and magnetospherical.

The internal mechanism is related to that causing glitches in normal pulsars, which can
often be satisfactorily explained by the coupling of the crust with the inner faster-rotating
superfluid [216], where for a normal pulsar the superfluid interior could not spin slower than
the crust. However, as the observed object 1E 2259+586 is a magnetar, where the dominant

source of free energy is magnetism instead of rotation, the spin evolution could be vastly
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different from that of normal pulsars. [217] suggested that a magnetar could drive differential
rotation, which allows a lag in the rotation of the superfluid interior. A sudden rearrangement
of the inner structure could induce the interior and crust to corotate again, which would be
observed as a sudden spin-down, or anti-glitch [162]. Another possible explanation for the
faster-rotating crust might be the twist of a crust patch. As the superfluid vortex is pinned
to the crust, a plastic deformation for such a patch will lead to a slower rotating superfluid.
A rapid twist would correspond to a conventional spin-up glitch, similar to a normal pulsar
counter-part. However, while a gradual twist would have little effect on the secular spin
evolution, a rapid unpinning of the associated vortices would give a sudden spin-down, or
anti-glitch 218, 205]]

Accretion mechanisms suggest that the anti-glitch is caused by the accretion of retrograde
material from either a Keplerian ring [211] or from an asteroid [210]. Besides retrograde
accretion [209]], also proposes an enhanced propeller effect to explain the anti-glitch. Al-
though most accretion models are able to explain both events during the observation, either
with or without being accompanied by radiation, this mechanism does not fit the model of

magnetars, which has already been supported by many observations. (e.g. [213]).

Magnetospheric models (e.g. [207,, 208, 205]) explain the observed anti-glitch with either an
enhanced particle wind or a twisting of the magnetic field lines. Although these models fit the
observational data for magnetars, most magnetospherical explanations are accompanied with
strong radiation and/or a change in pulse profile — neither of which were observed during the
second timing event for 1E 2259+586. The magnetospheric mechanism is not favoured since

figure shows that our analysis strongly favours the existence of the second event.

Among these three mechanisms, our analysis shows that the internal mechanism is most
favoured. We note that a satisfactory model should be able to explain the two successive
anti-glitches that happened within a relatively short period. If the sudden unpinning of the
quantum vortex due to the twist of crust patch is responsible for the anti-glitch, for example,
then the gradual plastic deformation of the crust patch should be able to accumulate enough
angular momentum within a timescale of several months. If the two anti-glitches are caused
by the same mechanism, then the observations may put some constraints on that mechanism.
Enhanced radiation, pulse profile changes and enhanced spin-down were observed for the
first event while none of these phenomena was observed for the second. Future observations
of similar phenomena with higher timing accuracy and sampling frequency will be helpful

in order to more fully understand the mechanism responsible.

In this work we’ve demonstrated how applying Bayesian Inference methods to astrophysical
problems can help to distinguish between multiple competing models. The prior is made fair

to all models so that the conclusion is not influenced by subjective choice of prior[]

I'This work is published in the ApJ. Let., and I am the first author as well as the corresponding author.
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Chapter 4

Mixed MCMC

One of the main targets of Bayesian inference is to estimate the posterior distribution of
desired parameters. To estimate posterior distributions, one naive solution is to use an ex-
haustive algorithm to calculate the posterior over a dense grid of points in the parameter
space. Such brute-force methods will have little or no practical value when dealing with
medium-to-high dimensional problems since the computational burden will be prohibitively
high. For such problems the ability to concentrate sampling in regions where the posterior
probability is high is very important if we are to implement Bayesian inference methods

efficiently.

Recall from chapter 2.4] we’ve discussed methods such as Markov Chain Monte Carlo
(MCMC) and Nested Sampling and the several variants. These methods are well tailored to
explore the posterior distribution over high dimensional parameter spaces. While the com-
putational cost of brute-force methods increases exponentially with the dimension, MCMC

usually only grows slowly with dimension [176} 203].

Generally, the method of MCMC works well so long as the posterior surface is sufficiently
smooth. However, when the posterior distribution has a complicated structure, MCMC will
become inefficient. For example, MCMC samplers are known to get “caught” in a local
mode of the posterior, and unable to jump out and explore any other isolated modes in the
parameter space [219, [193]. So a lot of methods have been proposed to make the MCMC
sampling more efficient (e.g. [[180, 198, [196l])

In this chapter, we discuss a novel method, mixed MCMC, to deal with such issues. The
conventional MCMC algorithm is robust for exploring the detailed structure of the posterior
surface, and we want to retain that property while enabling some global “communication”
between different regions of the parameter space so that the sampler can make jumps between

those regions without requiring a very long exploration time.

Readers are reminded that we design the algorithm of mixed MCMC so that it’s tailored for
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multi-modal posteriors with some limited knowledge of the posterior. As discussed in chap-
ter the implementation of mixed MCMC would require some rough information about
the posterior, which naturally limit the application of the method. However, time-consuming
algorithms could be used to assist obtaining such information, and there are situations where

these information is already available.

4.1 Method

As we recall from chapter 2] the algorithm of MCMC sets out to sample a chain of points in
the parameter space and at the i iteration (i.e. after i — 1 points have already been sampled)
a candidate point 8* is randomly sampled from some specified proposal distribution, based
solely on the position of the previous point in the chain §¢*—1). The corresponding poste-
rior for this candidate point is calculated, and compared with the posterior at ¢—1). The
candidate is accepted only with a certain acceptance probability (see chapter [2.4). One can
observe that the sampling will generally proceed “uphill” —i.e. to regions of the parameter
space where the value of the posterior is larger — while sometimes it can also go “downhill”

to regions where the posterior takes on lower values [[156, (157, 177, [154].

4.1.1 Markov Chain Monte Carlo

Hereafter, we define the posterior f(0) = p(0|D, I), the prior 7(0) = p(@, I) and likelihood
¢(0) = p(D|6, ), where 0 is the parameter set, D is the data and I is the information.

The simplest form of Markov Chain Monte Carlo (MCMC) is known as the Metropolis
algorithm, which can be achieved by the following steps [156} 157, 177, 1220].

1. Arbitrarily choose a starting point 8 that satisfies f(8”) > 0, and a symmetric
proposal distribution J(80,|60,). Set step index i=0.

2. Increment i by 1.
3. Randomly propose a new parameter set 8* by sampling from .J (-\9(“1)).

4. Calculate the Metropolis ratio given by

f(67)

= 4.1
A @D

5. Accept the proposed parameter set 8 with acceptance probability

(6", 0%) £ min(1,r) (4.2)
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If r > 1, then the candidate is accepted, so the new point is ) = 0*.

If r < 1, draw a random number rand from a uniform distribution U|0, 1], and if

rand < r, then set 0% = 0*; otherwise set 8) = g~

Steps 2-5 are repeated until a large enough number of points have been sampled. This ter-
mination could be controlled by a preset number, or by monitoring the samples’ distribution
and check if it’s sufficiently stable [[185]]. The beginning period, which is generally called as
the “burn-in” stage, is discarded to prevent the influence of the arbitrary choice of starting
point 8.

The Metropolis-Hastings (M-H) algorithm is a more general form of the Metropolis algo-
rithm. In the Metropolis algorithm, the proposal distribution is symmetric, thatis J(6,|0;) =
J(0,|6.), but this condition is not necessary. In the M-H algorithm we relax this symmetric

condition, so that equation (121;1'[) should be modified as follows

£(07)J(8"V]07)
£0U)(07(60 1)

4.3)

r =

It is clear that when the proposal distribution is symmetric, equation (4.3) is identical to

equation (4.1)).

It can be shown that the number density of the sampled points will represent a sample from
the posterior distribution [156]. Thus estimation of the parameter(s) that characterise the

posterior distribution becomes possible with a sufficiently large number of sampling points.

4.2 mixed MCMC

If the starting point and/or the proposal density is not properly chosen, the MCMC sampler
might become stuck in a local mode, and will not be able to appropriately explore the whole
parameter space. This might introduce a statistical bias in the parameter estimation carried
out by MCMC, particularly when the target distribution is multi-modal. Thus motivates the
realisation of mixed MCMC as a really Markovian realisation of MCMC that can sample the
posterior efficiently [193, 185} 1202].

Here we propose a novel method which we term mixed MCMC to perform Bayesian infer-
ence on multi-modal posterior distributions. This method can allow the sampler to commu-
nicate between different local maxima, so that the sampler will be able to represent local
peaks, as well as to explore the global structure. As noted previously, our method requires
some limited information about the location of the multiple modes before sampling. In many

cases, however, we will have at least some rough prior knowledge about the posterior, and
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we can use this information to guide the sampler. Even in the absence of such prior knowl-
edge, other existing global sampling methods can be tailored for this purpose to speed up
this process [193} 181, 221]].

4.2.1 Algorithm

The main difference between the algorithm for mixed MCMC and the conventional MCMC
algorithms simply roots in the use of a novel form of proposal density. The sampler should
be able to generate candidates from different sub-regions, while a proper choice of Metropo-
lis ratio will ensure that the sampling between those different sub-regions satisfies detailed

balance.

Suppose, as a result of existing prior knowledge, or with the help of some other global
sampling method, we have some information about the posterior distribution that is sufficient
to identify the existence and the rough location of the several modes in posterior distribution,
where the location of the #*" mode is labelled as 0?. We can then divide the parameter space
into several distinct sub-regions each of which we assume contains a single mode of the
posterior [156, 200].

We should bear in mind that this method is designed for multi-modal posteriors, thus the pro-
posal density should be designed in a way that it can propose new candidates in all posterior
modes. Thus we assign to the ! sub-region what we term a picking up probability, p,, which

determines the probability to get a new candidate in the ¢!

sub-region. Ideally, this proba-
bility should be proportional to the marginal likelihood (also known as the evidence) within
the sub-region — i.e. the probability that the candidate point lies within that sub-region. Note

also that the picking up probability should satisfy the normalisation requirement »  p; = 1.
t

At the same time it will maximise the efficiency of our approach if p; o th £(0)d6, where
V, is the volume of the ! sub-region of the parameter space.

Suppose we decide to generate a candidate point in the t**

sub-region, while the current
(i.e. most recently updated) point #C—1) is located in the s** sub-region. Then a normalised
multivariate distribution (most conveniently taken to be a Gaussian) centering around the
point 69 — 02 + 6(—1) is used as proposal density, and a candidate is drawn from this
distribution. After calculating the value of the posterior at this candidate point, and then
computing the Metropolis ratio, 7, in the usual way, we can decide to accept the candidate

point with the acceptance probability « as before.

In more detail our mixed MCMC algorithm can be illustrated with the following pseudo-

code.

1. Obtain some rough approximation to the posterior distribution using other methods.
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Identify m modes in the parameter space, and estimate their central locations given by
00
b

2. p; to be the picking up probability, defined as proportional to the volume of the ¢
sub-region, with >, p, = 1. Set step label i = 0
3. Randomly pick a starting point, ).

4. while(not converged)

(a) Seti=i+l

(b) Randomly pick a sub-region number ¢ with probability p; and assign s to be the
current sub-region index. s, ¢t € {1,...,m} where m is the number of all sub-
regions.

(¢) Generate the candidate point 8* = 8¢~ +02 —6°+§6 drawn from the proposal
density ~ .J(-|@¢~1)

(d) Calculate the Metropolis ratio r based on the candidate and the previous point,

_ __f(6*)ps
"7 R D),

(e) Generate a random number rand ~ U[0, 1].

(f) Accept the proposed parameter set 8 with acceptance probability c = min(1, r)

as follows:
if(r > rand), update, 8@ = g*
else 9 = g(i—-1)

The mixed MCMC algorithm set out above is strictly Markovian, and detailed balance is
achieved by construction. Thus the number of points sampled in given sub-region should
provide an estimate of ratio between local evidences. As noted above, in order to maximise
the efficiency of the algorithm the picking up probability p, should better be proportional to
the local evidence.

Also, we can notice that when the proposed point and the previous point are located in
the same sub-region, then the algorithm reduces to the conventional M-H algorithm, which

further verifies its validity.

One needs to take care to allow certain burn-in stage before allowing the mixed MCMC
sampling, if the 62 apart too far away from the peak, the sampler might stop sampling at all

in the corresponding mode.
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4.3 Toy Model

We demonstrate our mixed MCMC algorithm using a simple toy model. On a two dimen-
sional x — y parameter space, we considered a posterior distribution as the sum of a pair of
well-separated bivariate normal distributions. Where the parameters are x and y, and the two
artificial posterior modes locate in (uf, 1Y) and (u3, p4), each mode can be described by a
bivariate normal distribution with a diagonal covariance matrix, where the standard deviation
in each direction is o, 0! for the first mode and ¢%, o) for the second mode. The form of

this posterior is, therefore:

(x —pi)?  (y— )

Fla.y) = Crexpl - 12 = i)
oyl .
FOeR e e )

The coefficients C'; and C' allow the two modes to differ in height, and when integrated over

the entire parameter space the normalisation condition implies that

/ dz dy f(z,y) = 1. (4.5)
T,y

For simplicity, we chose uf = —pu% = =3, 0 = 05 = 0.1, uf = =0, 0] = 0§ = 0.1
and the ratio of two coefficients C; : Cs is keptas 1 : 3.

In this toy model test, we only concentrate on the validity of the mixed MCMC method, and
do not consider in detail other factors such as its efficiency or generality. Thus, we assume
prior knowledge of the separated structure of the posterior distribution. Given this assump-
tion, it is possib