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Preface

This thesis based on the work of the author, Yi-Ming Hu, during my stay at the University
of Glasgow. From October 2011 to March 2015, under the joint supervision of Prof. Martin
Hendry and Dr. Ik Siong Heng. We collaborated on a number of projects sharing the same
theme of data analysis methodology related to Gravitational Waves.

In Chapter 1, I introduce basic concepts of gravitational waves, their generation and detec-
tion. A brief history of Gravitational Wave experiments is introduced, and the anticipated
sources are listed and discussed. In addition, I discuss the role of data analysis in making
detections of Gravitational Waves, and what new science can we expect to make with the
help of Gravitational waves. The majority of this chapter is presented based on published
literature.

In Chapter 2, I discuss the power of Bayesian Inference and how to apply it to Gravitational
Wave data analysis. For the anticipated compact binary coalescence signals, the optimal
search method of matched filtering is introduced. The principles of Bayesian Inference are
also introduced, including the basic concepts, their difference from a frequentist approach
and the important potential for performing Bayesian Model Selection using the Bayes Factor.
A brief review of existing stochastic sampling strategies is presented; this includes a detailed
introduction to the algorithms of Markov Chain Monte Carlo and Nested Sampling, as well as
numerous implementations of these algorithms. The majority of this chapter is summarised
from published literature.

In Chapter 3, Bayesian Model Selection is performed on an astrophysical problem of dis-
tinguishing which model is better supported by the observed timing data for the magnetar
1E 2259+586 – either the ‘successive anti-glitches’ model or the ‘anti-/normal glitch pair’
model. A simple description of the parametric model of pulsar timing is made, and a Nested
Sampling algorithm is applied to the timing data, based on both successive anti-glitches and



an anti-/normal glitch pair. This work was proposed by me and carried out mainly by myself,
with helpful discussions and input from Matthew Pitkin, Ik Siong Heng and Martin Hendry.

In Chapter 4, a novel MCMC algorithm designed for efficient sampling of multi-modal pos-
terior, known as mixed MCMC is proposed. I discuss the motivation and implementation of
this novel algorithm, including an application to a toy model and a comparison of the results
with a theoretical calculation. This algorithm was initially proposed by me, and the work
was mainly carried out by myself.

In Chapter 5, I discuss the global optimisation of future generations of Gravitational Wave
detectors. I introduce the Figures of Merit used to judge the scientific output and effec-
tiveness of a Gravitational Wave detector network. The algorithm of mixed MCMC is then
applied to sample efficiently the high dimensional parameter space that represents the detec-
tor network. The optimisation is performed for both a 3-detector-network and a 5-detector-
network. This work was carried out in close collaboration with colleagues from several
institutions, with the majority of the work designing the methodology and implementing it
carried out by myself.

In Chapter 6, the setup and analysis of the significance Mock Data Challenge, also known as
the “Hamlet Test”, is described. In this Mock Data Challenge, two different types of method
for estimating the significance of Gravitational Wave triggers are compared against the theo-
retical significance. These methods are, when estimating the background distribution, either
to remove the foreground events or to keep them in. We discuss results for simple, real-
istic and complicated background distributions, as well as for zero, low, medium and high
foreground event rates. This work was carried out in close collaboration with colleagues
from multiple institutions, with the majority of Mock Data generation and the comparison,
analysis and interpretation of the results done by myself.



Summary

With the development of more and more elegant and sensitive interferometric gravitational
wave detectors, we are expecting the first direct detection of gravitational waves in a short
time. This triggers huge interest to develop more powerful tools to perform data analysis on
these signals, and to develop a good understanding of the analysis so that confident conclu-
sions can be made. A further step would be to view into the future, as the first detections will
boost the scientific demands for more powerful future generation detectors, which identifies
the task of optimising the site of such detectors.

Bayesian Inference plays a vital role in data analysis, and one excellent example that demon-
strates its usefulness is its ability to resolve the tension between multiple models using the
methodology of Bayesian Model Selection. In this thesis we apply this methodology to the
timing data of pulses from the pulsar 1E 2259+586. With a set of different choices for the
prior range, a fair and quantitative comparison can be made between two competing models:
that of so-called successive anti-glitches and an anti-/normal glitch pair. Our analysis of the
data shows a consistent support for the successive anti-glitches model, with a Bayes Factor
of ∼ 45, where the uncertainty has been estimated from nested sampling and from multiple
runs that are slightly different, but still within a factor of two, showing a general consistency.
Simplifying the timing model will only make the Bayes Factor even bigger, while the two
event model is overwhelmingly supported over the one event model.

In gravitational wave data analysis, posteriors are generally complicated structures contain-
ing multiple modes. A novel algorithm to achieve efficient sampling for multi-modal pos-
teriors, known as mixed MCMC, is proposed in this thesis. This enables communication
between multiple regions within the parameter space by adopting a novel jump proposal.
We present the mixed MCMC algorithm and first apply it to a toy model problem, where
the likelihood may be determined theoretically. By comparing the theoretical and empiri-
cally sampled values of 2 log(L) for credible regions that correspond to 68.27%, 95.45% and



99.73%, we conclude that for our illustrative model the sampling result of mixed MCMC
is consistent with the theoretical prediction with small uncertainty. Since it does not re-
quire multiple chains with different temperatures, mixed MCMC can boost the efficiency of
sampling by design, compared with (for example) parallel tempering MCMC.

The sampling strategy of mixed MCMC can be helpful for not only Bayesian Inference, but
also more general problems like the global optimisation of future generations of Gravita-
tional Wave Detectors. As we expect such problem to be intrinsically high dimensional and
multi-modal, mixed MCMC is a suitable sampling method, and we develop and apply it in
this thesis. Based on our analysis it is concluded that for both a 3-detector-network and a
5-detector-network, Australia hosts the “best” site, in the sense that such site is most flex-
ible, i.e. it can be involved in the largest number of detector networks, involving different
component sites, that have a high ‘Figure of Merit’.

The work of gravitational wave data analysis leads to the ultimate goal of making a direct
detection of gravitational waves, which in turn requires the ability of distinguish astronomi-
cal signals from a noisy background, and assess the significance of each gravitational wave
‘trigger’ (i.e. candidate event) appropriately. There are two types of method for estimating
significance and these differ by the key distinction of either removing the foreground events
from the background estimation or keeping them in the analysis. This thesis presents the
results of a Mock Data Challenge (MDC), carried out within the LIGO Scientific Collabo-
ration using different data analysis pipelines, designed to investigate these two methods for
estimating significance. It contains a variety of background complexity ranging from simple,
realistic to complex, and foreground event rate ranging from zero, low, medium and high.
Analysis of the MDC results illustrated that generally all methods for determining the sig-
nificance agree well with each other, irrespective of the background complexity. However, a
discrepancy became apparent between the results for removal or non-removal of foreground
events, for events below a significance level of < 10−3. Our results demonstrated that the
removal method is an unbiased estimator for the mean of the significance. However, as the
most scientifically interesting events are likely to have a very small numerical value for their
significance, such method would overestimate that significance for most of the realisations.
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Chapter 1

Introduction

Gravitational Wave (GW) science is a very exciting field for astronomy and more generally
for physics. The existence of such phenomena was predicted by Einstein in the year 1916
[1, 2, 3, 4] and yet it remains undetected directly. The indirect detection of GWs was initially
made by [5] in 1982, and further followed by [6], which observed the orbital evolution of the
PSR B1913+16 (Hulse-Taylor binary pulsar) [7, 8]. The measured orbital evolution of this
system is consistent with the gravitational radiation predicted by General Relativity (GR) to
within 0.2% [6]. In figure 1.1, the observation and the theoretical prediction for the orbital
evolution is depicted, which shows excellent consistency. In another binary pulsar system
PSR J0737-3039 a stronger constraint of GR was obtained, showing the observation and
theoretical prediction from GR agree to within a 0.05% uncertainty [9]. This confirmed
that Einstein’s theory of gravity, General Relativity (GR), provided a correct description of
gravitational phenomena to a very high accuracy.

A direct detection of GW has become the holy grail in gravitational research, but still we
have not yet reached the experimental sensitivity required to achieve this goal. In the year
of 2014, the BICEP2 group announced a detection of B−mode polarisation in the Cosmic
Microwave Background (CMB) [10]. At first they interpreted this result as the first evidence
for inflationary gravitational waves (IGWs), but now it is generally believed that their obser-
vations demonstrated the effect of polarised Galactic dust emission [10]. Even if we could
detect the B−mode polarisation in the CMB, that would still be indirect evidence for the
existence of GW.

Among the four fundamental forces, gravity is the least understood one. Ever since the
publication of the theory of General Relativity almost a century ago, enormous effort has
been spent attempting to understand the nature of gravity, with numerous alternative gravity
theories being proposed. All such theories, as long as they do not allow ‘action at a distance’,
will intrinsically imply the existence of gravitational waves and the theories only differ by
the form of GW predicted in each theory. GR is, however, still among the most promising
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Figure 1.1: Orbital decay from the binary pulsar system PSR B1913+16. The points are
actual observations with uncertainty, while the line is predicted by GR. Reproduced from [6]



1.1. Gravitational Wave formalism 3

theories, as no evidence of deviation from GR has been so far observed [11].

GWs are the only observational channel that we can envisage with which to explore directly
the physics of strong gravitational fields. All other channels have to rely on some assump-
tions or theories and thus require an indirect link to be made in order to extract information
about the fields. We are therefore expecting to gain a huge amount of new physics and as-
tronomy knowledge by looking at the GW waveforms directly. For example, the detailed
mechanism of supernovae is still under debate, but directly observing the gravitational wave
information from core collapse supernovae will greatly help deepen our understanding of the
dynamical mechanism that describes them [12]. By carefully studying the GW waveforms
from binary Neutron Star (BNS), we can study the Equation of State (EoS) of the neutron
material in high pressure, which can never be studied anywhere else. The combination of in-
formation from GW and other channels, known as multi-messenger astronomy, can also help
understanding of the origin of short Gamma Ray Bursts (sGRBs) [13, 14]. Multi-messenger
astronomy can also be viewed as an independent method of studying cosmology, providing a
cross check for the cosmological parameters [15]. However, all of the above scientific targets
require a huge amount of study beforehand, in which we would need to carry out theoretical
study as well as computationally-intensive data analysis, to unveil such scientific treasures.

1.1 Gravitational Wave formalism

The interesting GW sources generally originate far away from the Earth. Combined with
the fact that dipole radiation is not allowed according to GR (see below), and the coupling
between GW and normal matter is tiny [1, 4, 3, 2], the actual GW signal on Earth is generally
very weak. With various noise sources, we expect the first detected GW signal to be relatively
weak and embedded in noise. In order to enhance the chance of detection, one needs to
obtain as much knowledge as possible about the GWs, especially for sources with highly
predictable waveforms [2, 16, 17].

According to GR, gravitational radiation only occurs when the quadrupole and higher order
moments of a system has changed [1, 4, 3, 2]. We can define the quadrupole of a system
with density ρ as [2]

Qjk =

∫
ρxjxkd

3x. (1.1)

We have to note that this equation is only valid when the gravitational field within the system
is not strong [4]. Fortunately, even in situations where the internal gravity is strong, there
exists an alternative method to compute the quadrupole [4]. The observed gravitational wave
can be characterised by the strain that it produces – i.e. the fractional change in the separation
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between two points initially separated by proper distance l – which is defined by [3]

h =
δl

l
. (1.2)

For a system with changing quadrupole, it will produce a GW signal hjk at a distance r given
by [4, 2]

hjk =
2

r

G

c4
Q̈jk ∼

G

c4

Enonsp
kin

r
. (1.3)

as an order of magnitude estimation, and Enonsp
kin is the non-spherical part of the system’s

kinetic energy. For a far zone approximation where the distance to the source is much larger
than the GW wavelength, the observer’s metric can be expressed as gµν = ηµν + hµν .

In GR, there are more equations than conditions, so there exist redundant degrees of free-
dom in the Lagrangian [18]. Usually in terms of GR it’s convenient to adopt the transverse

traceless gauge, or TT gauge [3, 18, 2]. Under the TT gauge, we can write

hµν =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0


or, if we define e+ = ex⊗ex−ey⊗ey and e× = ex⊗ey+ey⊗ex, then we can simplify to
h = h+e+ + h×e×. Here ex = (0 1 0 0)T and ey = (0 0 1 0)T [2, 4, 3]. This illustrates
that there are two polarisation modes for a gravitational wave, namely the plus-polarisation
and cross-polarisation, as illustrated in figure 1.2.

It was not trivial for people to finally agree that GWs do contain energy, instead of simply
a coordinate transforming effect, and furthermore, like all other forms of energy, GWs can
themselves induce GWs. The power passing per unit area carried by a GW is determined by
[3, 4]

dE

dt dA
= TGW03 = − c3

16πG
〈ḣ+

2
+ ḣ×

2〉 = − G

8πc5r2
〈
...
I
TT
ij

...
I
ij
TT 〉 (1.4)

where I is the symmetric reduced quadrupole moment, which differs from the definition of
Q by the trace, and the angle bracket means average over several wavelengths [4]. One can
obtain the GW luminosity LGW of a GW system by integrating the equation 1.4 [1, 4, 3]

LGW = −dE

dt
=

G

5c5
〈
...
I ij

...
I
ij〉. (1.5)

The pre-factor G
c5

indicates that the luminosity for a GW system tends to be very small, unless
for extreme scenarios where 〈

...
I
TT
ij

...
I
ij
TT 〉 is very large.
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Figure 1.2: Illustration of the two gravitational wave polarisations. When a GW passes by,
the space would be squeezed in one direction while stretched in the other direction, there are
two polarisation modes, known as the plus mode denoted as h+, and cross mode denoted as
h×. Reproduced from [19]

1.2 Gravitational Wave from Compact Binary Coales-

cence

The GW signal emitted from compact binary coalescence (CBC) systems, which consist of
two components of either Neutron Stars or Black Holes, are among the most promising signal
sources. Binary neutron star systems have been observed, and astronomical phenomena like
sGRB are believed to originate from such CBC events (see for example [20, 21, 15, 22, 23]
and the references within).

In order to achieve detection in noisy data, one needs to compute the waveform of CBC
events. For inspiral signals, the waveform is relatively easy to calculate, since the two com-
pact objects are still relatively well separated. Thus it is still valid to approximate them as
point masses, and the Post Newtonian (PN) approximation could be applied to so that analyt-
ical expression could be achieved [17, 24]. The higher order PN approximation is used, the
more time-consuming to generate the waveform, and more factors included [25]. However,
in the merger stage when the compact objects get close enough, say, around the Innermost
Stable Circular Orbit (ISCO) beyond which the system plunge in and quickly coalesce,then
the PN can no longer track the waveform evolution, and more accurate simulation is required
[26]. This could be achieved by adopting the results of Numerical Relativity (NR) [27]. It
took researchers decades of effort to successfully simulate a binary black hole rotation with-
out crashing the code with NR. However, in recent years, the huge advantage of NR has
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been achieved, and we can expect to simulate the merger period accurately [26]. When the
compact binary merges into one body, it will either form an unstable HyperMassive Neutron
Star (HMNS), which will last for ∼ 100ms before it collapses into a Black Hole (BH); or
it will directly collapse into a BH, depending on the EoS of the Neutron Star (NS) [28, 14].
After the two compact objects have merged into one black hole, the asymmetric part will
emit the ringdown signal, and eventually fade away [29, 30]. When the BH is formed, things
are getting simpler again, since the Effective One Body (EOB) formalism could be applied
to obtain the ringdown waveform [31, 32, 33, 26]. Still, such waveform generation would
consume large amounts of computational time, so the current strategy is to generate a set
of waveforms that covers the possible range of the parameter space. Later, the interpolation
with such waveforms could be applied to obtain waveforms with a specific parameter set
[34, 35, 36].

In the following section, we estimate the GW strength from a CBC inspiral with a simple
heuristic order-of-magnitude estimation [3, 4]. For a binary with two components of mass
m1 and m2, the potential energy of the system is

U = −
∫ R

∞
dr F (r) ∼ −Gm1m2

R
, (1.6)

if we define the reduced mass µ ≡ m1m2

m1+m2
and the total mass M ≡ m1 + m2, then equation

1.6 can be rewritten as U ∼ −GµM
R

. On the other hand, a CBC would be stable due to the
orbit circularisation as we will discuss in detail later. Applying the virial theorem, one can
obtain

〈T 〉 ∼ 〈Enonsp
kin 〉 ∼ −〈U〉 (1.7)

where T is the kinetic energy and the 〈·〉 represents average over time. Introducing M =

µ3/5M2/5, and combining with the fact that the frequency of the system is f ∼
√
M/R3, we

can rewrite equation 1.3 into [2, 3, 17]

h ∼ G2

c4

M5/3f 2/3

r
. (1.8)

Assuming that the orbits are already circularised, we can approximate the orbit as circular.
Further we can assume that the phase evolution is much faster than the amplitude evolution,
or using the stationary phase approximation , namely the time evolution of the h(t) is simply
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sin and cos functions to first order [2, 37, 38]. Then the luminosity of the GW will be

LCBCGW ∼ c3

32πG
4πr2h2f 2

∼ G3

c8

µ2M3

R5

∼ G3

c8
M10/3f 10/3 (1.9)

We can observe that the GW luminosity is strongly dependent on the distance between the
binaries, so the impact of gravitational radiation could be approximated by an impulse at
the periapsis, which would shrink the semi-major axis while keeping the pericentre distance
intact, effectively decreasing the orbit eccentricity. This explains the effect of orbit circular-
isation [39].

We can also deduce

dR

dt
=

dR

dE

dE

dt

∼ − R2

GµM

G3

c8

µ2M3

R5

∼ −G
2

c8

µM2

R3
, (1.10)

which points to the frequency evolution

ḟ = −f Ṙ
R

∼ G2

c8
f
M2

R4
µ

∼ G2

c8
M5/3f 11/3. (1.11)

This implies that, for CBC systems, the evolution of frequency accelerates as the binaries
approach each other more closely. Under such stationary phase approximation, the Fourier
transform of the waveform h̃(f) ∝ f−7/6 [38, 17, 2].

1.3 Detecting Gravitational Wave with Ground-Based

Detectors

Currently the most sensitive observation of GW comes from ground based laser interferom-
eter Gravitational Wave Detectors (GWDs), which essentially use laser interferometers to
detect tiny strain of the space [3, 2]. As shown in figure 1.3, when a GW signal comes from
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the zenith with proper polarisation, one arm will be shrunk and the other one will be stretched
very slightly. The difference between the two armlengths will vary, and would contain the
trace of GW signal, which can be detected using sophisticated innovations in technology.
In the long wavelength limit where the wavelength is much longer than the detector length

Figure 1.3: Illustration of the principle of laser interferometer gravitational wave observatory,
the passing gravitational wave signal will induce difference between armlengths, and the
laser interferometer will detect such tiny variation. Reproduced from [40]

scale, the coupling between the detector and the passing GW signal could be written as [4, 3]

δL(t) =
1

2
d : h ≡ 1

2
dijhij. (1.12)

We apply the Einstein summation notation where repeated indices are summed over [1, 18].
The expression of the detector tensor d differs for different configurations of detectors. For
a laser interferometer with two arms perpendicular to each other, it can be written as

d ≡ L(ex ⊗ ex − ey ⊗ ey).

We can express the strain amplitude from equation 1.2 as

δL(t)

L
= F+(θ, φ, ψ)h+(t) + F×(θ, φ, ψ)h×(t) (1.13)
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where the antenna pattern of the detector F+ and F× for a source from sky location θ, φ and
polarisation angle ψ [4, 3, 17]

F+ ≡ d : e+ =
1

2
(1 + cos2 θ) cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ

and
F× ≡ d : e× =

1

2
(1 + cos2 θ) cos 2φ sin 2ψ + cos θ sin 2φ cos 2ψ,

where : is the double dot product, meanwhile

h+(t) ≡ 2Mz

DL

[πMzf(t)]2/3(1 + cos2 ι) cos[Φ(t)]

and
h×(t) ≡ 4Mz

DL

[πMzf(t)]2/3 cos ι cos[Φ(t)].

while
Φ(t) = φ0 + 2π

∫
tc

f(t′)dt′ = φ0 + 2π

∫
tc

f

df/dt
df

with

df

dt
= 96

5
π8/5M5/3

z f 11/3[1−
(

743
336

+ 11
4
η(πMzf)2/3

)
+ 4π(πMzf)

+
(

34103
18144

+ 13661
2016

η + 59
18
η2
)

(πMzf)4/3]

according to [24, 37]. Here Mz = M(1 + z) is the redshifted chirp mass, DL is the lu-
minosity distance, ι is the inclination angle. We can thus conclude that the CBC signal is
controlled by nine parameters, including the intrinsic parameters chirp massM, mass ratio
η, inclination angle ι which depends only on the source configuration, and extrinsic param-
eters θ, φ, DL, ψ, an arbitrary reference time tc and related reference phase φ0, which also
relate to the observer [41, 2, 3]. The relationship between the three angles θ, φ and ψ is
demonstrated in figure 1.4

1.4 A brief history of Gravitational Wave experiment

The first attempt to detect GWs was carried out in the 1960s. Weber built the first functioning
gravitational wave detector (GWD), known as the “Weber bar”, which uses the whole bar to
resonate with the passing GW signal [42, 43, 44]. As shown in figure 1.5, the passing GW
will induce a slight deformation of the bar, with the change in the length ∆l divided by the
original length of the bar l defining the amplitude of the GW, h = ∆l

l
. If the frequency of the

passing GW lies near the resonance frequency of the detector, the detector would be excited
and resonance of the bar amplifies the signal. Similar configurations of GWDs were built
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Figure 1.4: Illustration of the definition and relationship between the two directional angles
θ, φ and the polarisation angle ψ. Reproduced from [2]

throughout the world, including the Glasgow resonant detector [46].

The first direct detection was claimed by Weber [42, 43, 44]. However, following ex-
periments failed to repeat such a detection [46, 45].The current laser interferometers have
reached a much higher sensitivity, while no single detection has been made yet [47]. Thus
it’s generally believed the events detected by Weber were more likely to be noise than astro-
nomical events.

The first successful evidence of GW has been achieved by studying the binary Neutron Star
discovered by Hulse and Taylor [7, 5, 6], who were awarded the 1993 nobel prize “for the
discovery of a new type of pulsar, a discovery that has opened up new possibilities for the
study of gravitation”. [48]As shown in figure 1.1, the measured orbital evolution of this
system match extraordinarily well with the theoretical prediction of gravitational radiation
[5][6],

Ṗb,GR = −192πG5/3

5c5

(
Pb
2π

)−5/3

(1− e2)−7/2 ×
(

1 +
73

24
e2 +

37

96
e4

)
mpmc(mp +mc)

−1/3

(1.14)
where Ṗb,GR is the theoretical decay rate for the orbit period according to GR, Pb is the
orbit period, e is the eccentricity, mp and mc are the mass of the pulsar and the component
separately and could be accurately determined via independent observation. The observation
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Figure 1.5: Bar detector in Munich together with H. Billing. Reproduced from [45]
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of such BNS thus assures the existence of GW, and huge interest was triggered to search for
the GW signal directly.

Bar detectors are naturally limited to detect GW signals with h > 10−21 [2], while the
existing interferometers have reached sensitivity higher than such a limit. As shown in figure
1.6, for bar detectors like Auriga the sensitive frequency region is very narrow, and can
only reach a sensitivity around 10−21 [49]. So in recent decades, the interests of detecting

Figure 1.6: The power spectral density for the bar detector Auriga. One can notice that the
most sensitive part can only reach around around 10−21, and the sensitive frequency band is
very narrow. Reproduced from [50]

gravitational waves have shifted from bar detectors towards laser interferometers. In 1992,
the building of the Laser Interferometer Gravitational-Wave Observatory (LIGO) was started,
and the initial generation of LIGO started operation in 2002 [51]. A European counterpart
with a similar design of laser interferometer, known as Virgo, started operating in 2007, and
this global network of LIGO-Virgo has existed since then [52].

No confident detections of any kind of astronomical signal were detected during the opera-
tion of these initial generation detectors so far [47]. However, even the non-detection could
lead to scientific conclusions. For example, no GW signals were discovered for the Vela
pulsar [53] nor Crab pulsar [54], which puts a solid upper limit of the GW strength of such
young pulsars. This itself already put some constraints on the NS ellipticity [55].

Since the end of observation by initial LIGO, the upgrading of this initial generation into sec-
ond generation GWDs, known as Advanced LIGO (aLIGO) [56] and Advanced Virgo (AdV)
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[57] respectively, has been under construction. These next generation GWDs are expected
to gain an increase of sensitivity by about 10 fold in all frequencies. Since the detection
volume is proportional to the third power of the detectable distance, such an improvement
translates into an increase of detection efficiency of approximately three orders of magnitude
[58], as illustrated in figure 1.7, A new set of advanced GWD will be built in India, known

Figure 1.7: Sensitive volume for initial LIGO (central sphere) and advanced LIGO (outer
sphere). A factor of 10 improvement of sensitivity in h will lead to an increase of a factor
of 10 in distance. As sensitive volume would be proportional to the cube of the sensitive
distance, advanced LIGO is expected to enhance the detection probability by ∼ 1, 000 from
the initial LIGO level. Reproduced from [59]

as the Indian Initiative in Gravitational-wave Observations (IndIGO) [60]. Huge progresses
has been made towards the full upgrade of LIGO detectors, which is expected to be finished
in near future.

In the mean time, the Japanese Large-scale Cryogenic Gravitational Wave Telescope Project,
or KAGRA, is under construction [61]. Combined with the UK-Germany prototype detector
GEO, a global detector network would provide a robust hardware facility to detect GW [62].
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There are various noise sources for a GWD, among them the most outstanding ones are grav-
ity gradient noise at very low frequency, quantum effects of light pressure at low frequency,
thermal noise in the middle, and shot noise at high frequency [2, 3]. Figure 1.8 demon-
strates the anticipated noise budget for aLIGO, indicating the frequency dependence of these
different effects.

Figure 1.8: Expected noise budget of the advanced LIGO, with different components labeled
individually. In the low frequency range (f < 10Hz), seismic noise, gravity gradient noise
and suspension thermal noise dominate, in the higher frequency the quantum noise would
contribute mostly to the noise budget. Figure reproduced from [63]

The future generation of GWD is already in discussion, and the proposed Einstein Tele-
scope (ET) detector, which has an underground equilateral triangle configuration, will have
further increase of sensitivity by about another factor of ten [58, 64]. Meanwhile, the exten-
sion of the undergoing aLIGO to the A+ (or Quantum LIGO) has also been under serious
consideration as a near term upgrade [65].

Meanwhile, longer armlengths will shift the ‘sensitivity bucket’, namely the most sensitive
range of the detector, towards lower frequency, which corresponds to ∼ 100 − 1000Hz

in figure 1.8. Plans were also proposed to build detector in space. The proposed Laser
Interferometer Space Antenna (LISA) project aimed to launch three satellites into space to
form a equilateral triangle interferometer. The proposed armlength of LISA will be 5 million
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kilometres long, this enables the accurate observation of GW signal within 0.03 − 0.1Hz
range [66].

Unfortunately, the funding for research of LISA was cut down, thus there is no definite
launch plan for it in near future. The current proposal is to build a down-scaled spaced-
borne GWD, Evolved Laser Interferometer Space Antenna (eLISA) [67]. However, the LISA
pathfinder, which is a single satellite aimed to test the technology applied on LISA, has
already been integrated and is scheduled to be launched in 2015 [68]. If it succeeds in
demonstrating the safeness and reliability of the technology, there’s still hope to continue
and extend the study of eLISA.

Other proposed future projects include the DECI-Hertz Interferometer Gravitational wave
Observatory (DECIGO) [69], which focuses on the frequency range between LISA and
aLIGO, and Big Bang Observer (BBO) [70], which is proposed to be the successor of LISA,
equipped with enough sensitivity to observe the GW emitted from shortly after the big bang.

Other methods of GW detection includes the Pulsar Timing Array (PTA), which takes ad-
vantage of the accurate timing of pulsars to capture small fluctuations in the Time Of Ar-
rival (TOA) of steady pulsars; and B-mode polarisation of CMB, which could trace back to
the end of inflation [71]. As noted earlier, the BICEP2 team originally claimed that they
detected such B-mode polarisation in CMB signal; however, this signal turns out to be very
likely coming from Galactic dust, which was not adequately considered by the BICEP2 team
[10]. GWs with frequency 100MHz to 100GHz and even higher could be detected with nov-
elly designed experiment, the potential source being relic GWs [72]. Interesting upper limits
on GW strength could also be given by monitoring the timing of the Global Positioning
System (GPS) system [73]. Progress has been made to use the whole Earth as a resonant
detector, and upper limits on GW signals could be achieved by checking seismic monitoring
data [74].

1.5 Astronomical Sources for Ground-based Gravita-

tional Wave Detectors

In addition to the tremendous efforts over recent decades to build ever more sensitive de-
tectors, the equally large amount of effort on the data analysis side is also vital in order
to create a robust analysis frame in which potential detections can be identified, and also
to make sure that we can properly understand the physics that such detections can reveal
[41, 75, 76, 77, 78].

The first question that theoretical researcher should answer is how likely is it that we could
detect a GW event, provided we could reach a certain sensitivity. This involves understanding
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the possible mechanisms that could emit large amounts of GW radiation [4, 2].

Currently, we believe that the CBC process of binaries comprising binary NS, binary BH,
or a mixture of both, would be the most promising physical mechanism to generate large
amounts of GW radiation in the most sensitive frequency range of the ground based GWD
[79]. The binary system will rotate around the centre of mass, while the GW radiation will
carry the angular momentum and kinetic energy away, shrinking the binary orbit closer. The
binary will rotate faster and the GW radiation will become stronger, until they reach the
ISCO, where the binary will plunge in and eventually merge into a BH, causing a ‘chirp’
signal. The peak frequency is directly related to the ‘chirp mass’, roughly speaking, the
heavier such binary system is, the lower the chirp frequency would be [2, 3]. BNS systems
are expected to be the best candidate, while binary Black Hole (BBH) systems are generally
heavier, thus only the merger and ringdown part of the waveform would be resolved for these
systems [80].

CBC signals, especially BNSs, are expected to be responsible for triggering the sGRBs, thus
we can have rough estimation on the astronomical event rate of such events [81, 82]. How-
ever, the beaming angles of such events are highly uncertain [83, 84, 85], which causes the
large variance in the estimation [86]. The other independent method to estimate such event
rate would be using population synthesis methods to predict the expected fraction of com-
pact binaries that could lead to a CBC. Since there are large uncertainties in both methods,
the estimation of the rate is very vague so far, and the “optimistic” and “pessimistic” estima-
tions differ by three orders of magnitude. In terms of the advanced LIGO-Virgo network, the
“realistic” estimation of the rate of BNS signals would be around 40 events per year [79].
Studies suggest that apart from sGRBs, kilonovae are also excellent electromagnetic (EM)
counterparts of the BNS events [20, 87]. Once a BNS event is detected together with an EM
signature, we can assure the detection is indisputable, and also the information combined
from both GW and EM channel would make the GW cosmology possible [88, 15, 22, 89].

The Intermediate-Mass Black Hole (IMBH) has been proposed to explain the growth of
supermassive black hole and is also predicted by the correlation of the BH mass and the
stellar environment. The GW observation of an Intermediate-Mass Ratio Inspiral (IMRI),
or the inspiral of a binary system with one IMBH and a stellar mass NS or BH, and the
merger of two IMBHs can lead to deeper understanding of the growth of supermassive Black
Hole (SMBH) and the interaction of the central black hole and the surrounding stars’ activity,
as well as putting solid constraints on the gravitational physics [90, 91, 92].

The existence of BNS is confirmed from both observation [7, 5, 93] (and reference therein)
and population synthesis [94, 95]. There’s still lacking convincing evidence for the existence
of Neutron Star-Black Hole (NSBH) or BBH systems, mostly because lacking of traditional
observing channels. For IMBH, there is evidence favouring their existence, but the evidence
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IFO Source Ṅlow Ṅre Ṅhigh Ṅmax

yr−1 yr−1 yr−1 yr−1

NS-NS 2× 10−4 0.02 0.2 0.6
NS-BH 7× 10−5 0.004 0.1

Initial BH-BH 2× 10−4 0.007 0.5
IMRI into IMBH < 0.001 0.01

IMBH-IMBH 10−4 0.001
NS-NS 0.4 40 400 1000
NS-BH 0.2 10 300

Advanced BH-BH 0.4 20 1000
IMRI into IMBH 10 300

IMBH-IMBH 0.1 1

Table 1.1: Estimated detection rates for the initial LIGO and the advanced LIGO detector era
for different sources. Notice the huge uncertainty in the estimation, with the most realistic
estimation for the binary neutron star merger event rate estimated around 40 per year. Table
adapted from [79].

is not decisive. In table 1.1, the detection rates for these different types of events are shown.
The most optimistic and most pessimistic estimation for the rate differs by several orders of
magnitude. We can also notice that the non-detection of CBC events during the initial LIGO
can be well explained by the theoretical prediction, and there’s promising event rate for the
advanced detector era [79].

CBC events are expected to be rare, but relatively bright in GW emission. However, another
potential detectable source for GW radiation would be the continuous wave (CW), which
is more quiet and more nearby [96]. For NSs with a mountain on the surface, there would
be an quadrupole radiation from the bump [2]. Although the GW strength of such source
is expected to be much lower than the CBC signal, since there are large amount of NSs
inside the Galaxy, such sources are expected to be much closer to the Earth [3]. The CW
signals are also expected to last for a long time, making it possible to accumulate very long
signal and thus accumulate the Signal-to-Noise Ratio (SNR) [97]. The strength of of the
GW is related to the size of the bump on the surface of NS. If we ever detect any loud signal
from CW sources, it would imply that the EoS of NS must be stiff enough to support a high
enough mountain [55]. The 5th and 6th scientific data S5 and S6, being the most sensitive
data recorded by initial LIGO, showed no conclusive evidence of the existence of CW signal,
putting a solid upper limit on the strength of the corresponding GWs [53, 54]. Notice that
both magnetic brake and CW radiation could lead to the observed long term spin-down of
pulsars, while young pulsars show very rapid spin-down. Prior to the non-detection of CW
from initial LIGO , no solid evidence could reveal the corresponding mechanism for such
observed spin-down. And now the conclusion can be made that at least for pulsars like Vela
and Crab pulsar, the spin-down corresponding to CW contributes no larger than 45% [53].
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One could also detect the stochastic noise by correlating multiple detectors [98]. When there
is more than one source in a given frequency bin, one can’t distinguish them from noise, and
this would happen if the detector is in low enough frequency and/or sensitive enough, like
we expected in eLISA and ET [2, 99]. This source of signal behave just like noise in one
detector, changing the noise behaviour, and Parameter Estimation (PE) can not be accurately
performed for each individual source [100]. However, this source is astronomical and thus
could distinguished from local background noise. With data from multiple detectors, one can
possibly construct the so-called null stream, which by design contains no signal at all. This
is effectively “turning off” all astronomical sources. And by comparing the Power Spectrum
Density (PSD) of the null stream with individual detectors’ PSD, the contribution of a so-
called stochastic background could emerge and one can study the property as a population.
For eLISA, the population of Galactic binary White Dwarf (WD) and inspiral of binary
SMBHs would become a stochastic source, while for ET, thanks to its sensitivity, the remote
inspiral signals are expected to become stochastic noise [99].

The remaining sources are classified as burst signals, which refers to all short duration signals
that are either not well-modelled or the corresponding mechanism is badly understood [101,
2].

Bad modelling leads to an inefficient usage of the data, thus the burst signal must be loud
enough to be detectable. This requires the source to be either very close to the GWD, or
being intrinsically loud, or a combination of both.

One such known candidate is core-collapse supernova (CC-SN). In order to produce a
CC-SN, the mass distribution can not be isotropic, thus making it a promising GW source.
However, the modelling of the process of CC-SN is a puzzling problem, and we are far from
fully understanding it [102, 12]. The other issue relating to CC-SN is that it’s intrinsically
dimmer than a CBC signal in the GW channel [102]. So we only expect to detect very local
signals. This leads to us a benefit that the detection of the EM counterpart is almost certain
[75, 103].

The other potential burst sources includes r-mode instability of NS [104], Type Ia supernova
[12], cosmic string cusp [3] and other unknown mechanisms. Just as the operation of radio
telescopes led to the discovery of pulsars and quasars, we can’t predict what new phenomena
the GW window can bring us. For these unknown sources, it’s simply impossible to predict
the waveform, and we can only deal them as burst signals where no model is used as an
auxiliary.
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1.6 The Role of Data Analysis towards Detecting Grav-

itational Waves

The lowest order of gravitational emission is generated from a quadrupole formalism [24].
Compared with dipole radiation like EM radiation, this is much weaker. The gravitational
constant G itself is also many orders of magnitude smaller than the fine structure constant α,
making the GWs only very weakly couple with matter, which further explains the extreme
difficulty of their detection [3, 4].

The current laser interferometers are already very sensitive so that even clouds passing by
or wind blowing could induce a detectable signature as the gravity gradient noise [105].
However, they are still not yet sensitive enough make a direct detection [53, 47, 106]. Even
with the advanced detectors like aLIGO and AdV, the first detections are expected to have
relatively low SNR [75]. How to pick signals up from the noisy background is the challenge
left to be tackled for the data analyst [77, 78, 107, 108].

For well modelled signals like inspiralling CBC and CW, the GW waveform can be deter-
mined by the corresponding parameters like the chirp mass of binary system, or the frequency
for a pulsar. By coherently integrating the data over a long enough time, the signal can stand
out from the noise, thus increasing the SNR.

As illustrated in chapter 1.1, the CBC signal could be decomposed into three distinct regions,
i.e. the inspiral, merger and ringdown [2, 4]. The inspiral stage is the longest, and any
misalignment between the template and the actual data would lead to cancellation, so it puts
best constraints on the phase parameters like chirp mass. The merger stage, although short
in time, is the most violent stage, and thus contributes significantly to the SNR [4, 26]. The
ringdown stage is also important as the perturbation of the geometry of spacetime around
the BH would be an ideal test field for gravity theories like GR [31, 32]. However, since
they are generated by three different methods, these stages need to be carefully spliced into
one waveform, to avoid a potential shift of phase for the waveform [26]. As for physicists
in general, what’s most interesting is what physics we can learn from analysing the GW
data. So given the detected data, one wants to know what the corresponding physical system
should be, and how likely such a parameter combination is. This question relies upon the
application of statistics to the data, especially Bayesian Inference (c.f. chapter 2) [47].

The important role that data analysis plays here is two-fold, namely the detection and mea-
surement [16]. Both aims could be fulfilled by performing Bayesian Inference, but the aim
of detection places a much stronger constraint on the speed of data processing, thus limiting
us to applying Frequentist methods (c.f. chapter 6).

The current pipelines first generate a sparse template of waveforms, and then cross-correlate
on the data with each waveform [108, 109]. Astronomical CBC signals will trigger a large
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enough response of the data, such triggers with SNR larger than a certain threshold would
be recorded as potential candidates for astronomical signals. However, since the data was
matched with a large number of templates, thus even though the SNR threshold is supposed
to shield a large fraction of noise-mocked signal, there are still a large number of false alarms.
The current strategy of picking up the more plausible candidates is by looking at time and
mass coincidence between multiple detectors [108, 109]. According to GR, GW signals
are supposed to travel at the speed of light, and the different detectors should record the
time of the CBC event trigger time differing by the time of flight that the GW takes to
travel across multiple detector [106]. The underlining philosophy is that the noise among
different detectors should be independent, so it is very rare for random noise to coincide in
time and in parameter space, while the astronomical signal should pass such threshold easily
[78, 107, 77]. However, at this stage, some amount of noise could still pass the threshold and
mimic the signal. So there is a final threshold on the combined SNR: coincidences that pass
such a threshold would be regarded as significant enough to make a confident announcement
about the detection. However, the understanding of the real meaning of significance is still
not solid enough, motivating us to learn more about the significance of the GW coincidence
events (c.f. chapter 6).

Once a coincidence is significant enough, the corresponding data will be further passed to the
PE pipelines for detailed analysis [17, 76, 47, 41]. The current bottleneck is the expensive
computational consumption during such a process: the full PE of the inspiral signal could
take as long as one week[17, 110]. The process of PE calculates the source parameters (or
their posterior distribution to be precise) for some selection of points. Efforts have been
made to both decrease the number of points to be computed [41, 111],and the time spent to
calculate the statistic for each point [110, 35]. However, we should note that for advanced
detectors, when the low frequency sensitivity largely increased, the low frequency inspiral
signal could be observed for much longer time, thus making the process of PE even more
challenging [110].

1.7 Physics and Astronomy with Gravitational Waves

What can GW provide to physics and astronomy?

First of all, our understanding of gravity is still not mature, as currently the most successful
physics in large scale and heavy mass, GR, and the most successful physics in small scale,
Quantum Mechanics (QM), are not consistent with each other [11]. And the gravity as a
fundamental interaction, can hardly be unified with the remaining three interactions. The
precise value of the gravitational constant is even under debate for the fourth significant
figure, as shown in figure 1.9 [112].



1.7. Physics and Astronomy with Gravitational Waves 21

Figure 1.9: Measured value of the gravitational constant G from different research groups.
Notice the values differs at the fourth significant figure. Picture modified based on lecture
from Jim Faller

Meanwhile, GR deviates from Newtonian gravity in strong fields and at high speed [1, 18].
Up until now, no direct measurement for GR effect had been made in a strong field environ-
ment [113]. The strength of field of WD is only ∼ 10−4, for NS it’s about ∼ 0.1 [2]. For
EM astronomy, the detection strongly relies on photon radiation, which either happens in the
outer region, or the environment has too thick optical depth that the photon from inner region
would lose the information related to the strong field [14, 103]. GW radiation, on the other
hand, only weakly couple with normal matter, so the ‘optical depth’ of the environment is
very thin, allowing the GW signal easily to carry the inner information towards the detector
[3]. This optical depth argument could also be applied to the big bang. Prior to the emission
of CMB, the optical depth is too thick for EM signal to travel [114]. However, GW signal
can be traced back until the end of inflation, leading to the potential direct study of the big
bang and inflation [115, 115, 116].

With the detection of GW, we can also solve various astronomical puzzles. The actual mech-
anism of galaxy formation is under heated debate, while SMBH certainly play an important
role, but the detailed process, especially when two galaxies merge, and the question of how
the two SMBHs lose their angular momentum and merge into one single SMBH, is still un-
known [117]. The Gamma Ray Burst (GRB) phenomenon, especially the sGRB, is also not
fully understood [118, 119]. Although some knowledge about them has been gathered, and
the link between GRBs and corresponding celestial objects were established, the central en-
gine of the GRB still remains unclear [86, 120, 37, 21, 87]. The binary evolution of stars, and
especially the end of such evolution, also remains a puzzle, causing the huge uncertainty in
the estimation of CBC event rates [95, 79]. With a large enough number of GW detections,
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especially CBC signals, the CBC event rate could be determined accurately, thus shedding
some light on the binary evolution problem [121, 117, 39]. Also, a more detailed study of
the waveform, especially the merger and ringdown waveform could distinguish the EoS of
NSs [32, 31].

The combination of multiple channels, including EM, GWs and neutrinos, opens a field
of multi-messenger astronomy [14, 122, 123, 124]. If a nearby massive star undergoes a
supernova (SN) explosion, we can study the physical process of the outer region by collecting
the EM signal, while the GW and neutrino can carry detailed information about the inner
region, enabling a much more comprehensive understanding of the SNe [12]. However, it’s
very likely that the EM counterpart of a CBC event is weak, so that the EM telescopes need
to know where to point to in order to find them [75]. This requires the data analysis of GWDs
to perform rapid sky localisation. Normally this is achieved by using the difference in TOA
for the data, assuming the signal to have a flat wavefront and that the difference is caused
by the fact that wavefront reaches different GWD sites at different times. Taking the factor
that GWs travel at the speed of light, one can reconstruct the sky location of the source with
trigonometry. Such strategy relies on a widely separated GWD network, with more than two
detectors in operation [75, 125].

The other significant potential application of GW and multi-messenger astronomy is to study
cosmology with GW [15, 126, 127]. One of the usual methods to study the cosmology is to
measure the distance and redshift of a group of standard candles, which leads to the accurate
description of the redshift evolution history, and thus to decipher the cosmology [128, 129].
However, this process may require closer objects to calibrate the farther object, and step by
step towards very distant cosmological objects. In this process, the calibration error will
propagate all the way down to the distance of standard candle [130].

On the other hand, CBC signals, containing both strength information and the chirp mass
information by themselves, represent a self-calibrated source, so one can determine the dis-
tance of a CBC source without the error propagation of multiple levels of calibration [15].
If the EM counterpart of such events were discovered in the mean time, one can accurately
measure the redshift of such event, thus fulfilling all essential elements to perform GW cos-
mology [15, 131, 132].

To achieve that, the ability of detecting much more and much further events is needed,
echoing the request to build future generation GWDs like ET [58, 64, 99]. For such de-
tectors, thanks to the excellent performance of low frequency, a CBC signal could stay in
band for a very long time, and the huge amount of signals makes it even possible that for
every moment, the data contains detectable signals [99]. With such a rich collection of
sources, one can perform a more robust statistical study, and a large number of phenomena
could be studied, like gravitational lensing and star formation history across different periods
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[116, 133, 134, 95, 135].

These scientific objectives all rely on a careful choice of the sites for the GWDs [136, 137].
Current detectors are actually all located in sub-optimal regions, as they are too close to
the seashore, and the micro-seismic noise could constraint the limit of noise background
(c.f. chapter 5). The future generation GWD are still in the early design stage and the site
selection is under serious consideration. In this process, one should always bear in mind
that since GWD has an all-sky response, so a global GWD network is more than a simple
summation of multiple components [136]. Also, one should consider the factor that the real
world is full of uncertain factors, so the detectors’ site should be as flexible as possible.
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Chapter 2

Applying Bayesian Inference to
Gravitational Wave Data

As we described before, subject to numerous limits, we expect GW signals to be quite weak
(e.g. [4, 3, 2, 97, 98]). With the first detected signal expected to have an SNR of merely
around 10, data analysis techniques are required to obtain useful physical knowledge from
the weak raw data [3, 2]. Among the various potential GW sources, CBCs , especially BNS
inspiral signals are expected to be best understood [26, 109, 138]. Given a set of physical
parameters to describe the CBC systems, the phase and amplitude evolution of the GW
waveform in the inspiral stage can be predicted with high precision, under the PN scheme
(see for example [139, 24, 140, 141, 142] and the references within). With the knowledge
of the noise, one can calculate the probability to obtain such an observed data stream from a
certain parameter set [41, 76, 143].

For a CBC system, especially for the inspiral stage where the physics is best understood, the
evolution of the system can be efficiently computed with high accuracy, thanks to the for-
malism of PN [17, 144, 25, 145, 146]. By filtering the data with such predicted waveforms,
a high response would be initiated if a signal of this form is embedded within the data. This
method is known as matched filtering [29, 147, 148, 138].

The matched filtering strategy is applied to the problem of detecting and estimating the pa-
rameters of a CBC signal, while Bayesian Inference also plays an important role in the
parameter estimation of CBC signals [99, 149, 47, 150, 16]. In other words, matched filter-
ing is applied within a Bayesian context. We discuss these methods more thoroughly in the
following sections.



2.1. Matched Filtering 25

2.1 Matched Filtering

In order to make the detection of gravitational waves, matched filtering, or cross-correlating
the expected waveform to the observed data, is adopted. The basic logic of matched filtering
is to check whether the data is consistent with an astrophysical waveform embedded in the
noise with expected characteristics.

For a stationary random process n(t), the Power Spectral Density, or PSD, describes the
variance of the random process at different frequencies. The truncated Fourier Transform of
a random process is defined as

ñT (ω) =
1√
T

∫ T

0

dt e−iωtn(t), (2.1)

and the long term average of the square of truncated Fourier Transform

Sh(ω) = lim
T→∞

E
[
|ñ(ω)|2

]
(2.2)

is defined as the PSD [17, 151, 16].

Furthermore, we can define the autocorrelation function Cn(τ) = E[x(t)x∗(t−τ)]. Accord-
ing to Wiener-Khinchin theorem, the one-sided PSD is just the Fourier transform of Cn(τ)

Sh(f) =

∫ ∞
−∞

Cn(τ)e2πift dτ, (2.3)

where f > 0 [2, 3, 16, 151].

For the recorded data d(t), we expected it contain both background noise n(t) and the fore-
ground gravitational wave signal h(t),

d(t) = h(t) + n(t)

although for most cases the signal is much too weak to be detectable, the data could be
treated as noise.

If we have discrete samples at ti = i × δt, i ∈ N, then it’s straightforward to show that the
probability of getting data d(t) sampling from the random process represented by Sh(f) is
[16]

P (d|Sh(f)) =
exp(−1

2
dTC−1d)

[2π det(Cn)]1/2
, (2.4)

where Cn,ij ≡ Cn[(i− j)δt], and C−1 is just the inverse matrix of Cn. In the limit δt→ 0,
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observing time T →∞, we can express [16]

dTC−1d =

∫ ∞
−∞

df
d̃∗(f)d̃(f) + d̃(f)d̃∗(f)

Sh(f)

= 4<
∫ ∞

0

df
d̃∗(f)d̃(f)

Sh(f)
. (2.5)

Where d̃(f) represents the Fourier Transform of d(t) [16]. We can thus define the scalar
product of (g|h) as [2, 17, 3, 16]

(g|h) = 2

∫ ∞
0

df
g̃∗(f)h̃(f) + g̃(f)h̃∗(f)

Sh(f)

= 4<
∫ ∞

0

df
g̃∗(f)h̃(f)

Sh(f)
. (2.6)

We can further construct the SNR of a signal as

SNR =
(h|d)√
(h|h)

where h is the GW signal, and n is the noise [2, 17, 3, 16]. Since expected value for (h|n)

is zero, so the expected value of the SNR can be re-expressed as
√

(h|h). By applying the
Cauchy-Schwarz inequality, one can prove that when the actual signal is h, the SNR value
will be maximised and it constructs an optimal filter such that ρopt =

√
(h|h) is then defined

as the optimal SNR [152, 38, 17].

On the other hand, if we want to perform PE on the GW data, we need to first construct
the likelihood function P (d|µ), namely, the probability of obtaining data d, given the fact
that the GW signal is determined by a set of parameters µ [41]. This is equivalent to the
probability that the residual after removing the expected signal with µ from observed data,
or [16, 3, 17]

P (d− h(µ)|Noise) = exp[−1

2
(d− h|d− h)]. (2.7)

With the linearity of the Fourier Transform, one can expand equation 2.7

P (d− h(µ)|Noise) = exp{−1

2
[(d|d) + (h|h)− 2(h|d)]}

∝ exp{−1

2
[(h|h)− 2(h|d)]} (2.8)

The maximum of likelihood happens when the partial derivative of the likelihood over any
parameter is zero, or [16]

∂ log(L)

∂µ
= 0. (2.9)
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It’s not hard to rewrite this condition as [16](
∂h

∂µ

∣∣∣∣d− h) = 0. (2.10)

2.2 Bayesian Inference

In the field of statistics, there are two main branches known as frequentist and Bayesian
[153, 154, 155]. They differ fundamentally in the definition of probability. For example,
it is meaningless to discuss the probability for a single event in frequentist language, with-
out introducing a hypothetical identical independent distribution [156]. Frequentists can of
course predict the probability of obtaining one value before throwing the dice, but the cor-
rect expression would be “if the dice would be thrown for infinite times under identical and
independent circumstances, what’s the probability of getting one, or, what’s the fraction of
circumstances getting one out of all experiments”[156, 155]. Frequentist analysis agrees with
common sense, but the meaning is not straightforward, and needs appropriate interpretation
[156, 157].

Bayesian Inference, on the other hand, gives a straightforward definition of the probability,
and it is meaningful to ask what is the probability of a single event in a Bayesian context
(readers are encouraged to read this very interesting blog [158]). The benefits from adopting
a Bayesian Inference approach also apply to the fact that the previous knowledge could be
taken into consideration as the prior. In cases where the background knowledge is well
understood while the data are of bad quality, then the final estimation, or the posterior, will
be dominated by the prior. In cases where data are of excellent quality, the prior would be
updated by this observation. So today’s posterior could be tomorrow’s prior [156, 157].

There are cases where one is more interested in certain subset of parameters than others,
such uninteresting parameters are called nuisance parameters, like phase in the CBC sig-
nal. Bayesian Inference can also provide a convenient method to marginalise over nuisance
parameters, which produce conclusions independent of any specific choice of nuisance pa-
rameter. Under the Bayesian framework, the definition of Bayes Factor (BF) (see chapter
2.3) can also quantitatively compare the goodness of fitting for two models with different
numbers of parameters, which is applied to a wide range of problems [159, 160, 161]. So in
the field of GW data analysis, especially for CBC signals, Bayesian Inference methods are
heavily used to perform the parameter estimation [41, 76, 75].

We quantify the probability as the belief of certain conclusion to be valid. Such belief should
be a real measure between 0 and 1, with 0 meaning definitely false and 1 implying definite
truth [156, 157].



2.2. Bayesian Inference 28

We define that the probability of an event A will happen to be P (A). If the event A does not
happen, then we denote that as Ā, and it is natural in simple situations to expect that event A
either happens or does not happen, which translates to

P (A) + P (Ā) = 1. (2.11)

This is recognised as the sum rule. We further define the conditional probability as follows:
under the condition when the event B is valid, the probability for event A to happen is
P (A|B). It is easy to prove that if A and B are independent, then P (A|B) = P (A) [156,
157].

The joint probability of event A and B is written as P (A,B), which represents the probabil-
ity of event A and B both being valid. It can be re-written as product of the probability of
event A, and the conditional probability of event B under the condition that A valid, namely

P (A,B) = P (A)P (B|A). (2.12)

This expression is called the product rule [156].

One can notice that in such a factorisation, events A and B are equivalent, and so this joint
probability could equally be rewritten as

P (A,B) = P (B)P (A|B). (2.13)

By linking equations 2.12 and 2.13 together, we can obtain an equation

P (B|A) =
P (B)P (A|B)

P (A)
. (2.14)

Equation 2.14 is recognised as Bayes’ theorem named after Thomas Bayes, and it relies on
two simple assertions, namely the sum rule (equation 2.11) and product rule (equation 2.12).
The proof of these rules are non-trivial, one can find an example from appendix B of [157].
However, the derivation based on them is relatively straightforward.

What makes the Bayesian Inference approach different from the frequentist is not the for-
mulation of equation 2.14, but rather the interpretation of the equation. In both cases, we
construct models to explain the data, for example, if we know the mean µ and standard
deviation σ of a distribution, we can guess it to be Gaussian distributed N (µ, σ).

For practical purposes, we can replace the symbol A by the data D, while B is replaced by
the parameter values θ, like µ and σ in the case of a Gaussian distribution. Such relevant
information is represented by I , which includes but is not limited to the model one chooses
[156, 157].
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P (θ|D, I) =
P (θ|I)P (D|θ, I)

P (D|I)
. (2.15)

1. The posterior P (θ|D, I) is the degree of belief for θ, given the observation of data D
and the underlying information I .

2. The prior P (θ|I) is the degree of belief for θ under the given prior information I ,
before the actual observation.

3. The likelihood P (D|θ, I) is the probability to obtain the observed data D if the actual
parameter is θ, under the information I .

4. The evidence or marginal likelihood P (D|I) is the degree of belief that the observed
data are consistent with the underlying information I . This expression is independent
of the θ and plays the role of a normalisation constant.

Bayes’ Theorem can be interpreted as follows: the degree of belief for θ, or the posterior, is
updated by the observation D through the likelihood, from the original prior. The likelihood
is not guaranteed to be normalised over θ (although by definition it’s guaranteed to be nor-
malised over D). So the evidence is needed to make sure the posterior would be normalised
over θ.

Notice that for frequentists, it’s meaningless to ask what is the probability of θ, because in
the physical world, there is only one (unknown) true value of θ.

Bayesian Inference is sometimes criticised for the subjectiveness in the choice of the prior.
Although one can try to adopt an uninformative prior, it is not a trivial problem to make the
prior truly uninformative and such a prior might even not exist [155]. However, as long as
the data is of high enough quality, the importance of the prior will be diluted.[156, 157].
The updating property of Bayesian Inference makes it possible to combine information from
different sources (for example [103]); meanwhile the definition of probability is more intu-
itive, makes the result more straightforward, while one should interpret frequentist’s results
properly before drawing any solid conclusion [153, 154].

2.3 The Bayes Factor and Model Selection

In practice, there are frequently situations when different models are to be compared, so it
is interesting to know which model is better supported by the model (for example [162]).
However, it is not an easy task to compare models quantitatively if the two models have
different numbers of parameters. For example, independent and identically distributed (i.i.d.)
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Gaussian noise, can be fitted with only a small number of parameters. However, a polynomial
fit with a large enough number of terms could always give a nearly perfect result. One can
find more scientifically interesting examples from [156] and [157]. It’s easy to discard the
perfect fitting scheme, since it makes a very strong assumption about the model. As the
philosopher William of Occam proposed, one should not add more assumptions if the data
could be explained by simpler theory, this spirit of “shaving” complicating components is
concluded as the Occam’s razor which prefers the simpler model when two models can
explain the data equally well [156, 157]. What’s tricky is the intermediate situation, where a
slightly more complicated model could explain the observed data better than the pure noise.

Suppose there are two different models MA and MB. The dilemma can be expressed as the
degree of belief for each model, given the fact that we observed the data D. This can be
formulated as the posterior P (MA|D, I)

P (MA|D, I) =
P (MA|I)P (D|MA, I)

P (D|I)
. (2.16)

The odds ratio OAB is defined as the ratio of two posteriors of model MA and MB, namely

OAB =
P (MA|D, I)

P (MB|D, I)
=
P (MA|I)

P (MB|I)
× P (D|MA, I)

P (D|MB, I)
(2.17)

Here the ratioBAB ≡ P (D|MA,I)
P (D|MB ,I)

is recognised as the Bayes factor, which is the ratio between
the evidences of two models [156, 157].

If a model M has a parameter θ, one needs to marginalise over all possible values of θ to
compute the evidence

P (D|M, I) =

∫
dθ P (D, θ|M, I)

=

∫
dθ P (D|θ,M, I)P (θ|M, I). (2.18)

If we have no knowledge beforehand, we can assume total ignorance of these two models,
thus no preference for either, so the ratio P (MA|I)

P (MB |I)
can be set to unity. In such case the odds

ratio is completely determined by the Bayes factor [156, 157].

To understand why the Bayes factor naturally disfavours a complicated model, a heuristic
proof is given in [157] and [156]. Let us consider a modelMA, which contains one parameter
θ, with a flat prior between θmin and θmax, the prior for any θ between the allowable region
would be (∆θ)−1 where ∆θ ≡ θmax − θmin [156]. Meanwhile the model MB contains no
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free parameter at all. Thus we can re-express equation 2.18 as

P (D|MA, I) =
1

∆θ

∫
dθ P (D|θ,MA, I).

We can replace the integral with an approximation given by the product of the maximum
likelihood P (D|θ̂,MA, I) and the effective width δθ under the definition that

δθ ≡
∫

dθ P (D|θ,MA, I)

P (D|θ̂,MA, I)
(2.19)

so that δθ represents the characteristic scale, and further simplify equation 2.18 to

P (D|MA, I) =
1

∆θ
P (D|θ̂,MA, I)× δθ

=
δθ

∆θ
P (D|θ̂,MA, I). (2.20)

Notice that the integral over θ won’t be normalised in equation 2.18, as θ appears as a con-
dition in the equation. Recall that the normalisation requirement of likelihood applies to the
data, rather than the parameter, so it does not generally normalise over θ (c.f. chapter 2.2).

Normally, with more parameters, one can fit the data better, thus the maximum likelihood
P (D|θ̂,MA, I) should get bigger than the maximum likelihood of the simpler model MB, or
P (D|MB, I). However, the inclusion of every extra parameter will introduce another factor
of δθ

∆θ
. So unless the likelihood function has a wide spread over the additional θ (namely,

a not-so-small δθ value) or a much higher likelihood value, or a combination of both, the
simpler MB will be preferred. We can easily see that this formalism will punish the fine-
tuned model, while supporting the robust model which can fit data well with less sensitivity
to the change of parameter.

The odds ratio, or practically, the Bayes factor tells how much the data favours one model
against another. In practice, we use the table 2.1 as a guide line to interpret the Bayes factor
into strength of evidence [163].

The odds ratio provides a quantitative Occam’s razor, which can compare models with dif-
ferent dimensionality, provides a practical rule to execute Occam’s principle “entities must
not be multiplied beyond necessity” [156, 157, 164]. Thus it is of primary concern to de-
velop techniques to compute the odds ratio (for example [165, 166, 167, 168, 160, 169] and
reference within), in order to apply this method to astrophysical problems [161, 113, 12, 170,
101, 171].
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OAB strength of evidence
< 1 Negative (support MB)

1 < OAB < 101/2 Negligible support of MA

101/2 < OAB < 10 Substantial support of MA

10 < OAB < 103/2 Strong support of MA

103/2 < OAB < 100 Very strong support of MA

100 < OAB Decisive support of MA

Table 2.1: odds ratio value and their corresponding strength of evidence. This table serves
just as a reference purpose. Table adapted from [163].

2.4 Stochastic Samplers

The methodology of frequentist statistics once dominated the field of probability for a good
reason [156]. In order to perform the Bayesian Inference, the posterior distribution over the
parameter space needs to be computed. If this can not be achieved analytically, we have
to compute numerically, which may involve a large amount of computing resources. On
the other hand, the frequentist probability seems to provide a natural tool for distinguishing
the two models, namely the p-value, defined as the estimated probability of obtaining the
observed result, under the assumption that the null hypothesis H0 is true. [172]. However,
one need to notice that the definition of the p-value is complicated and a large portion of
users misuse it in this context [172]. This is not saying that frequentist method is wrong
[154, 153], but simply implies the fact that the correct interpretation of the result requires
non-trivial effort.

A naive way of performing Bayesian inference is by placing grid points uniformly over the
parameter space [173, 174, 175, 176]. Placing only 10 points in each dimension means
10N points in total for N dimensions. In such cases, the computational burden will grow
exponentially with the dimensionality of the underlying information, which shortly makes
the strategy unaffordable. There are cleverly developed methods to bypass such a curse of
dimensionality, among them, the two most recognised and widely applied methods in the
field of gravitational wave astronomy are Markov Chain Monte Carlo (MCMC) (see for
example [156, 177, 178, 179, 180] and the references within) and nested sampling (see for
example [157, 181, 182] and the references within).

2.4.1 Markov Chain Monte Carlo (MCMC)

A Markov Chain is a process where the next point’s position depends only on the previous
point’s position, while Monte Carlo is a general methodology which adopts random numbers
to perform computations [156].

The most common and simple MCMC algorithm is the Metropolis-Hastings algorithm [156,
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183, 184]. To start with, a random location is selected in the parameter space. For the
i + 1th step, the location θi+1 is determined by the previous ith step θi by the transition

probability or transition kernel P (θi+1|θi) [156]. A convenient setup includes a proposal

density q(θ∗|θi) and a corresponding acceptance probability. A proposal is randomly drawn
from the probability distribution function (PDF) q(θ∗|θi), and it would be accepted with the
acceptance probability, or otherwise, rejected, in which case θi+1 = θi. One can prove that
the sampler’s density will be representative of the posterior PDF [156].

To be explicit, the new point’s posterior is calculated and then compared with the previous
posterior, forming a Metropolis ratio r,

r =
P (θ∗|D, I)

P (θi|D, I)

q(θi|θ∗)
q(θ∗|θi)

. (2.21)

The new point is accepted with an acceptance probability α defined as [156]

α(θi, θ
∗) ≡ min(1, r) = min

(
1,
P (θ∗|D, I)

P (θi|D, I)

q(θi|θ∗)
q(θ∗|θi)

)
(2.22)

Under such a design, an MCMC sampler can start from anywhere in the parameter space that
is allowed by the prior. Since the starting point is more likely to be located in regions with
relatively low posterior, the following points will generally be going uphill in the posterior,
but sometimes it is also possible for the sampler to jump downwards. After a period of burn-

in which could take as much as half of the samples, the memory of the start point would
be washed out. In order to prevent the influence of the choice of starting point, the burn-in
stage would generally be discarded, so that the remaining samples will be representative of
the posterior [185, 156, 177].

The algorithm of MCMC is sampling towards the target distribution P (θ|D, I), which is
call the stationary distribution of the Markov chain [156]. An MCMC chain should keep
sampling until convergence to a stationary distribution is achieved [185]. In order to achieve
convergence, the sampler must satisfy three properties [186, 156]:

1. Irreducible

The sampler must have positive probability of sampling in points with non-zero pos-
terior, instead of becoming stuck in one specific region.

2. Aperiodic

The sampler should NOT oscillate between finite states.

3. Positive recurrent

There exists a stationary distribution, otherwise it is meaningless to discuss the con-
vergence problem.
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As the Metropolis-Hastings sampler satisfies all requirements for regular posteriors, it is
guaranteed to converge to a stationary distribution.

The criterion of detailed balance is a sufficient but not necessary condition for the conver-
gence of MCMC, illustrated as follows

P (θi)q(θi−1|θt) = P (θi−1)q(θi|θi−1) (2.23)

The concept of detailed balance in thermodynamics could help to understand this require-
ment. In thermodynamics, if we define the probability of a particle to be in state θi as P (θi),
and the probability of it to jump from state θi to state θi−1 as q(θi−1|θi), detailed balance
requires that during a certain period, the probability for a particle to jump from state θi to
state θi−1 should be exactly the same probability as for it to jump from state θi−1 to state θi
[187].

Since detailed balance is a stronger requirement than convergence, some Markovian Chain
that does not meet the requirement of detailed balance can still be able to converge to the
target distribution (for example, [188]). However, it is much easier to check and to implement
if one has chosen the criterion to be detailed balance. We can prove that detailed balance can
lead to the convergence on the target distribution as follows [156],

Joint probability(θi, θi+1) = P (θi)P (θi+1|θi)

= P (θi)q(θi+1|θi)α(θi, θi+1)

= P (θi)q(θi+1|θi) min

(
1,
P (θi+1)q(θi|θi+1)

P (θi)q(θi+1|θi)

)
= min (P (θi)q(θi+1|θi) , P (θi+1)q(θi|θi+1))

= α(θi+1, θi)P (θi+1)q(θi|θi+1)

= P (θi+1)P (θi|θi+1) (2.24)

If we marginalise over all possible θi values, then∫
dθi P (θi+1|θi)P (θi) =

∫
dθi P (θi|θi+1)P (θi+1)

= P (θi+1)

∫
dθi P (θi|θi+1) (2.25)

= P (θi+1)

where in the second line, the integral is naturally normalised to unity [156].

Equation 2.25 guarantees that the probability of sampling any parameter θ is just the posterior
of that parameter. This property makes it very easy to infer any numerical integral concerning
the probability density. For any function f(θ), the integral over parameter space can be
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approximated by numerical summation

∫
dθ f(θ)P (θ) ≈ 1

N

N∑
i=1

f(θi) (2.26)

2.4.2 Nested Sampling

Although MCMC is very versatile and is able to perform Bayesian Inference in a large vari-
ety of problems, especially problems with high dimensionality, it has its own shortcoming.
For example, most of the MCMC samples will concentrate on the high posterior regions, and
are unable to explore the vast majority of the parameter space. This is helpful to keep the
MCMC focused in interesting regions, thus alleviating the so-called curse of dimensionality,
which is the outstanding problem that the computational requirements scale faster than the
dimensionality. However, this also means that the part of parameter space with low posterior
will be mostly ignored, and it’ll become a big problem for normal MCMC samplers to esti-
mate the evidence accurately (although notably there have been some effort to alleviate this
problem, see for examples [189, 165]). The Nested Sampling method, on the other hand,
is designed to estimate the evidence, in addition having the ability to perform parameter
estimation [157, 166, 167].

To start with, let’s look at the calculation of the canonical partition function in statistical
mechanics. The partition function Z(β) is defined as

Z(β) =

∫
dθ exp(−βE(θ)). (2.27)

If one has the knowledge of the Density of States (DOS)

g(E) =

∫
dθ δ(E − E(θ)), (2.28)

where δ is the Dirac delta function, one can transform equation 2.27 into

Z(β) =

∫
dE g(E) exp(−βE). (2.29)

Now let us step back to the Bayesian point of view, and we regardE(θ) as the− logP (D|θ,M, I),
and

g(E) =

∫
dθ P (θ|M, I)δ(E − E(θ)).

We can regard this as assigning a measure according to the prior. In this form, the evidence
value is simply the partition function when β = 1 [190].
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The philosophy of Nested Sampling is to achieve the integral Z =
∫∞
−∞ dE g(E) exp(−E)

numerically.

We define prior mass as

X(L) =

∫
P (D|θ,M,I)>L

dθP (θ|M, I) (2.30)

which is integrated over the parameter space that contains a likelihood value larger than set
L. The X value is constrained between 0 and 1 [157, 167].

The evidence integral can be translated as

Z =

∫ ∞
−∞

dE g(E) exp(−E)

=

∫ 1

0

dX L(X) (2.31)

≈
N∑
i=2

Li (Xi −Xi−1).

The algorithm of Nested Sampling will sample a number of points θi from the prior, and
calculate the corresponding likelihood Li, which is later sorted as L1 < L2 < . . . < LN .
Naturally, one can conclude X1 > X2 > . . . > XN , as illustrated in figure 2.1 [157].

(a) Likelihood contour. (b) Corresponding X(L).

Figure 2.1: An illustration of likelihood contours and corresponding X(L). Since the def-
inition of X(L) is the prior mass that’s integrated over the parameter space with likelihood
larger than L, the larger the likelihood value, the smaller the X value is. Picture reproduced
from [191].

To set up the Nested Sampling algorithm, one needs to spread a number n of (for example
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n ∼ 1, 000) live points uniformly in the prior. The point with the smallest likelihood value
will be recorded as the first sampled point θ1. That live point would be updated by a randomly
drawn point, which will have a likelihood value bigger than it. In this way, the sampler will
go upwards to higher likelihood regions, just like stripping off layers of an onion. For each
update at step k, the mass Xk is defined as the mass X(L) with the lowest likelihood among
all live points. For a random update, the shrink rate t = Xk+1/Xk follows a distribution

P (t) = ntn−1

thus gives
〈log t〉 = (−1± 1)/n

Since X0 = 1, while Xk =
∏k

j=1 = tj , one can prove that

〈logXk〉 = (−k ±
√
k)/n (2.32)

Combined with equation 2.31, one can explicitly calculate the estimation of evidence. One
can also compute the informationH defined as

H =

∫
dX P (X) log [P (X)] ≈

∑
k

Lk (Xk −Xk−1)

Z
log

[
Lk
Z

]
. (2.33)

From the information H, one can estimate the uncertainty in the estimation of evidence, so
that

logZ ≈ log

(∑
k

Lk (Xk −Xk−1)

)
±
√
H
n
. (2.34)

The algorithm is designed to have sparse sampling in low likelihood regions, where the
contribution to the evidence is negligible, while high likelihood regions would be densely
sampled so that the uncertainty in the final estimation can be minimised [157, 166, 167].

The algorithms of MCMC and Nested Sampling listed in chapter 2.4 are just the rules of
thumb. In order to deal with specific problems, there are lots of different variants to im-
plement the idea of both MCMC and Nested Sampling, so that the methods are tailored to
different requirements. In the remainder of this chapter, the main variants of MCMC and
Nested Sampling will be discussed.

2.4.3 Parallel Tempering MCMC

One of the key problems for MCMC is the multi-modal problem, where there exist multiple
modes in the posterior distribution, or multiple distinct regions within the parameter space
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that can explain the data with high confidence. For a simple Metropolis-Hastings algorithm,
if the sampler wants to jump from one mode to another, it has to go through a ‘valley’ in the
posterior, which usually takes a sequence of low probability downwards jumps, which the
sampler will take an extremely long time to achieve, so although theoretically it is possible,
it is practically exceedingly unwise.

The philosophy of parallel tempering MCMC is to implement multiple chains, with some
chains sampling a flatter posterior, and the others sampling the target distribution [192, 193,
194]. With the communication between the chains enabled, it can guide the samplers to
achieve jumps between distinct regions of the parameter space.

The flattened distribution has a posterior

PT (θ|D, I) ∝ P (θ|I)P (D|θ, I)β

where the parameter T ≡ 1
β

is defined as the “temperature” of a chain. In the scheme of
parallel tempering, a temperature ladder is constructed, so a series of (say, n) chains are
configured with different temperatures, T0 < T1 < . . . < Tn, where the lowest temperature
T0 = 1. It is not hard to see that higher temperature chains are more similar to the prior, and
the posterior with temperature of∞ degenerates to the prior [192, 193, 194, 165, 156, 195,
177].

Neighbouring chains have a constant ratio in temperature. For a chain with higher tempera-
ture, the posterior is flatter, and it is more likely for the sampler to jump from one mode to
the other. Occasionally, a swap between two neighbouring chains labelled as j and j + 1 is
proposed, the acceptance of such a swap being given by the probability

r = min

{
1,
PTj(θi+1|D, I)PTj+1

(θi|D, I)

PTj(θi|D, I)PTj+1
(θi+1|D, I)

}
. (2.35)

From this scheme, one can keep the low temperature chains sampling according to the target
distribution, while the high temperature chains will be auxiliary in the sense of guiding swaps
between modes [177, 195].

2.4.4 Delayed Rejection MCMC

For most cases, the bottleneck of computation for an MCMC algorithm lies in the numerical
calculation of the posterior. So it is somehow a waste of computational ability when the
proposed point θ∗(1) is finally rejected, according to the acceptance ratio. We slightly modify
equation 2.22 into

α1(θi, θ
∗
(1)) = min

(
1,
P (θ∗(1))

P (θi)

q1(θi|θ∗(1))

q1(θ∗(1)|θi)

)
.
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Although some rejection is necessary to give us information about the posterior, it would
be efficient to not discard the calculated information immediately, but reuse it by proposing
candidates incorporating the information, with q2(θ∗(2)|θ∗(1), θi)

The acceptance ratio for the newly proposed point θ∗(2) is

α1(θi, θ
∗
(1), θ

∗
(2)) = min

(
1,
P (θ∗(2))

P (θi)

q1(θ∗(1)|θ∗(2))

q1(θ∗(1)|θi)
q2(θi|θ∗(1), θ

∗
(2))

q2(θ∗(2)|θ∗(1), θi)

1− α1(θ∗(2), θ
∗
(1))

1− α1(θi, θ∗(1))

)
(2.36)

The final term is to account for the fact that the proposed θ∗(1) was not accepted. This scheme
can be extended to higher order [196, 197, 198].

2.4.5 Reversible Jump MCMC

Normal MCMC is relatively powerless in dealing with model selection due to the inaccu-
rate estimation of the evidence (see for example [165, 159] for efforts of computing evi-
dence with MCMC). However, the reversible jump MCMC can propose jumps between two
different models. Assume two models with different dimensions, in addition to the usual
Metropolis-Hasting algorithm, one should also design a trans-dimensional proposal density,
which would be in equilibrium under movements between the models [160, 197].

The central problem of reversible jump MCMC is the construction of the jump proposal
between different models. A badly constructed jump proposal between models might lead to
an inefficient swap between models, and might lead to biased results, so attempts have been
made to construct robust jump proposals between models [169].

2.4.6 Automated MCMC

For a Markov chain, the points are expected to be correlated with the adjacent points; the
closer the points are, the more correlated they are. The correlation between a point and
another point separated by τ is represented as autocorrelation function

R(τ) =
E[(θ(i)− µ)(θ(i+ τ)− µ)]

σ2
, (2.37)

where µ and σ are the mean and standard deviation for the distribution, and the average is
taken over index i. We also identify the characteristic length of the autocorrelation function
as the autocorrelation length.

When optimising the MCMC algorithm, it is not trivial to make sure the proposal density
is well designed. If the proposed jump is too large, the acceptance ratio could be too low
to be efficient; on the other hand, if the proposal jump is too small, then the sampled points
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will have a very high autocorrelation length, so the MCMC will take a long time until it
explores a large enough portion of the parameter space [199, 156]. An optimal proposal will
lie in somewhere in the middle, enabling a high enough acceptance probability, while the
autocorrelation length is low enough so that the sampling process will be more efficient.

Efforts have been made to make this process automatic and robust. For example, Gregory
proposed a method [156, 200] that before running the MCMC algorithm, a target acceptance

rate is set. From time to time, the actual acceptance rate will be compared with the reference
[177]. The similar idea is implemented in the MCMC version of LALInference within the
LSC Algorithm Library (LAL), however, by proposing new candidates from the covariance
matrix of sampled points, which makes the automation process more versatile [41, 76].

2.4.7 Affine Invariant MCMC

Recently, a specific implementation of MCMC has attracted huge attention[201]. By design-
ing an sampling algorithm invariant to affine transformation, the sampler should be equally
effcient over all convex bodies for given dimensionality [201].

In the design of such algorithm, there exist a group of copies of the system each with a
sampelr, or an ensemble of walkers, and for step t every walker Xk is evolved with

Xk(t)→ Y = Xj + Z(Xk(t)−Xj) (2.38)

where Xj with j 6= k is another walker in the ensemble, and Z is a scaling variable that
makes sure the detailed balance is satisfied.

The most beneficial aspect of this proposal is that it could achieve a low autocorrelation
length with a relatively high acceptance rate [201]. So in principle this method could be very
efficient. Also, normal implementation of MCMC usually requires a tuning of the running
parameters to make it work as expected. In this affine invariant MCMC, since the proposal
is independent of the covariance matrix, such tuning is not necessary any longer, making it
versatile and convenient to use. The EMCEE python implementation of it has become one
of the most popular MCMC tools recently [202]. And in the field of GW data analysis, the
idea is customised to perform efficient PE [111].

2.4.8 MultiNest

There are also different variants for the implementation of Nested Sampling. As the update
of the live points should be in principle randomised according to prior mass, which means
the live points will become more and more concentrated, until they shrink into a small region
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in the parameter space [157, 166, 167], some proposal methods of the probability could be
computationally expensive [203].

The MultiNest algorithm use ellipsoids to approximate the distribution, so that it can effi-
ciently propose new points from within the ellipsoidal approximation. So this method is
especially efficient for multi-modal scenarios [168, 181, 191].

2.4.9 Combinations

The methods mentioned in this section can be combined together to construct new methods
[186]. For example one can combine the delayed rejection and reversible jump [197], com-
bine MCMC and Nested Sampling [203] or combine importance sampling with MultiNest
[191]. Importance sampling is a strategy to propose independent samples from a simpler
form of distribution than the target distribution, thus one can perform numerical integral ef-
ficiently. Notice also that [111] implemented an affine-invariant ensemble sampler together
with parallel tempering to tailor for the multi-modal feature, and efforts are being taken to
implement this method in LAL to achieve fast analysis.
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Chapter 3

Bayesian Model Selection on
Anti-Glitch Models

The application of Bayesian Inference is vital to problems which involve model selection.
There are situations where multiple models can explain the observed data comparably well,
and with similar complexity, or cases where more complex models explain the data better,
then the general Occam’s razor will not be practical. As we’ve discussed in chapter 2.3,
Bayesian Inference methods naturally provide a quantitative Occam’s razor. In this chapter,
an actual application of Bayesian Model Selection is perform on such a problem from the
observation of an anti-glitch event [162].

Neutron stars generally have strong magnetic fields and rotate with a very steady period.
A phenomenon known as a glitch has been observed in multiple pulsars, where the pulsar
undergoes a sudden frequency change, and usually an increase of frequency is observed. It
has been suggested that glitches are caused by internal processes of the pulsar [204]. With
the interior of the neutron star being in a superfluid state, the magnetic fields within the core
are concentrated into quantised vortex lines, and the vortex can be pinned to the crust, which
causes the surface crust rotate slightly slower than the inner core. A sudden twist would lead
to the spin up of the crust, which leads to the observed glitch [205].

However, there’s a small group of neutron stars with exceedingly high magnetic field (∼
1014G). Such strong magnetic fields can support some interesting phenomena, like soft
gamma repeaters [206]. In previous work, an unusual spin-down glitch, or anti-glitch is also
observed in a magnetar [162].

In the year 2013, Archibald et al. [162] discovered an unexpected anti-glitch phenomenon
in magnetar 1E 2259+586. Unlike a normal glitch, which undergoes a sudden spin up, this
magnetar experienced a sudden spin-down. The mechanism which caused this phenomenon
is still under discussion (e.g. [207, 208, 209, 210, 211]), but to our knowledge no model



3.1. Timing Model 43

explicitly predicted an anti-glitch prior to this discovery, although [205] predict a similar
potential phenomenon in SGR 1900+14 [162].

The data analysis performed by [162] shows that during the observation, 1E 2259+586 un-
dergoes two timing events separated by 50–90 days. The first event is a certain anti-glitch,
while the nature of the second event is less certain. If it is also an anti-glitch this might
require a qualitatively different physical model to explain its origin. Importantly, however,
the analysis performed in [162] was unable to distinguish between these two types of glitch
for the second event.

Since we know very little about the mechanism behind such a rare phenomenon, any infor-
mation about it could be helpful to understand its physical cause. In this work we seek to
use the data themselves, employing the methods of Bayesian model selection, to distinguish
between two competing models, wherein the second event is a glitch, or anti-glitch, respec-
tively. More specifically, we compute the ratio of the evidence for each model (as defined in
Section 2.3) and investigate whether this ratio favours one model over the other.

The structure of this chapter is as follows. In Section 3.1 we briefly review relevant details
of the model for the time of arrival of pulses from the progenitor. Section 3.2 presents the
results of our analysis, including a careful check on their robustness. Finally Section 3.3
summarises our conclusions.

3.1 Timing Model

The magnetar 1E 2259+586 was routinely observed by the X-ray Telescope (XRT) onboard
Swift every 2-3 weeks, with more frequent observations being made shortly after discovering
the first anti-glitch event reported in [162]. The observations give the time of arrival (TOA) of
each X-ray pulse (which can be corrected to the solar system barycenter), which in turn gives
the pulse phase of the magnetar. Together with each TOA, the X-ray flux is also recorded.
An increase in the X-ray flux helps to pinpoint the epoch of the first glitch event, while for
the second event, no obvious flux change was detected – thus contributing to the confusion
about the second event’s type. The observational data of the magnetar is shown as in figure
3.1 (reproduced from [162]).

We model the magnetar’s phase evolution, φ(t), with the standard Taylor expansion of fre-
quency and frequency derivatives [212] using terms up to second order, when no (anti-)glitch
happens, it will follow that

φ(t) =
∫ t
t0
ν(t′)dt′

=
∫ t
t0
dt′[ν0 + ν̇t′ +O(ν̈t′2)]

= ν0(t− t0) + 1
2
ν̇(t− t0)2 −∆φ(t).

(3.1)
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Figure 3.1: Upper panel: 1E2259+586s spin frequency as a function of time, determined
by short-term fitting of (typically) five TOAs. The grey horizontal error bars indicate the
ranges of dates used to fit the frequency, and the vertical error bars (generally smaller than the
points) are standard 1σ uncertainties. The red and blue solid lines in a represent the fits to the
pulse TOAs, with red represents an anti-/normal glitch pair model, and the blue represents
a successive anti-glitch model. Middle panel: Timing residuals (differences between the
initial model and observed data) of 1E2259+586 after fitting only for the pre-anti-glitch
timing solution. The inset shows the same timing residuals, zooming in on the anti-glitch
epoch. Lower panel: The absorbed 2 − 10keV X-ray flux. The error bars indicate the
1σ uncertainties, and the green line is the best-fit power-law decay curve with an index of
−0.38±0.04. The dashed vertical lines running through all panels indicate the glitch epochs,
the black line being the anti-glitch, and blue and red lines the second event in the models of
the best fit. The timing residuals for these fits can be seen in the Supplementary Information.
Figure reproduced from [162]
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Notice that the period of a pulsar’s phase is unity instead of 2π, so for each TOA ti, there is
a integer Ni so that the pulsar has been through Ni cycles since t0. If we define φ(t0) = 0,
then φ(ti) = Ni, and we can write

∆φ(ti) = ν0(ti − t0) +
1

2
ν̇(ti − t0)2 −Ni. (3.2)

The effect of a (anti-)glitch on the phase timing model will be a sudden change in the fre-
quency and frequency evolution after the event [213]. Suppose that the epoch of the glitch is
Tg, then the accumulated phase at Tg is

φg = ν0(Tg − t0) +
1

2
ν̇(Tg − t0)2 (3.3)

meanwhile the instantaneous frequency νg is

νg = ν0 + ν̇(Tg − t0)

The glitch will cause a sudden change in all high order terms. We take the sudden change
of frequency and its derivative as ∆ν and ∆ν̇ separately. The frequency evolution after the
glitch is then written as

ν(t) = (νg + ∆ν) + (ν̇ + ∆ν̇)(t− Tg) +Oν̈(t− Tg)2

for t > Tg. And then we can write the time evolution of phase by

φ(t) =

∫ t

Tg

ν(t′)dt′ + φg + ∆φg t > Tg. (3.4)

Therefore the difference between the phase model with and without the (anti-)glitch under
the assumption that no decaying frequency increment is required due to none being fitted by
[162] is

∆φ(t) = ∆ν(t− Tg) +
1

2
∆ν̇(t− Tg)2 + ∆φg (3.5)

where ∆φg captures the residual change of phase not well modeled by the frequency change.

We further define
Ri =

φi −Ni

ν

as the time residual after subtracting the model predictions from the data. Here φi is the
predicted pulse phase at the ith observation time ti (i.e. φ(ti)), Ni is the exact phase at
the TOA, which by definition is an integer, and ν is the frequency according to the model.



3.2. Results 46

Together with the observed timing uncertainty, σi, we can form

χ2 =
N∑
i=1

(
Ri

σi

)2

. (3.6)

For the purpose of performing Bayesian Inference, we define the likelihood as proportional
to exp(−χ2/2), and use it to evaluate the evidence for each model. We apply the Nested
Sampling algorithm [203] (c.f. chapter 2.4.2) to compute the evidence of both models, and
further the Bayes factor is calculated to determine which model is more supported by the
data.

3.2 Results

In our analysis, the two models under consideration only differ in the sign of the frequency
change for the second event. In order to avoid undue influence of the prior range on the
Bayes Factor, we assign identical prior ranges to all common parameters in both models.

3.2.1 Setting the Priors

From table 1 of [162], the parameters are given to be ν0 = 0.143285110 ± (4 × 10−9)Hz,
ν̇ = −9.80± 0.09× 10−15Hz s−1. The Epoch (MJD) is the time t0 when ν(t0) = ν0. Since
the magnetar has been observed for a long time (e.g. [214, 215]), and the spin before the
anti-glitch is not of interest, we fix those parameters to be constants.

In table 3.1, the estimated value and corresponding uncertainties for glitch parameters are
given from the analysis of TEMPO2 fitting, adapting from [162]. Notice that the phase
parameter ∆φg is not given in [162]. It is a usually a small value, so we set the mean of
∆φg = 0 while the uncertainty σ∆φg = 0.05. Later we will find out that this σ choice
encapsulates the parameter with the highest posterior value.

In both models, there are two independent (anti-)glitch events and for each event there are 4
parameters required to describe it: its epoch t and the changes in the frequency ∆ν, its first
derivative ∆ν̇ and the phase ∆φg caused by the event. Thus, in total there are eight param-
eters for each model. In order that the two models should have a common parametrisation
we suppose that in the second model, after the second event (which is a normal glitch in this
model), the frequency becomes νg = ν −∆ν while in the first model, after the second event
(which is an anti-glitch) the frequency becomes νg = ν + ∆ν. In this way ∆ν is a positive
parameter for the second event in both models. With this design, the two models can have
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Pararmeter Value θ Uncertainty σθ
Epoch(MJD) 55, 380.000 −

ν(s−1) 0.143, 285, 110 4× 10−9

ν̇(s−2) −9.80× 10−15 9× 10−17

Anti-/normal glitch pair
Epoch1(MJD) 56, 035 2

∆ν1(s−1) −4.5× 10−8 6× 10−9

∆ν̇1(s−2) −2.7× 10−14 2× 10−15

Epoch2(MJD) 56, 125 2
∆ν2(s−1) 3.6× 10−8 7× 10−9

∆ν̇2(s−2) 2.6× 10−14 2× 10−15

Successive Anti-glitch
Epoch1(MJD) 56, 039 2

∆ν1(s−1) −9× 10−8 1× 10−8

∆ν̇1(s−2) −1.3× 10−14 4× 10−15

Epoch2(MJD) 56, 090 3
∆ν2(s−1) −6.8× 10−8 8× 10−9

∆ν̇2(s−2) 1.1× 10−14 4× 10−15

Table 3.1: Parameter estimation for the timing model from TEMPO2 fitting, including epoch,
frequency and first derivative of frequency before glitch and after the two glitch events for
both models. Table modified from [162]. Note this is being used to inform the choice of
prior.

exactly the same priors, thus minimising the influence of the choice of prior on the final value
of the Bayes Factor.

For the epoch of the first anti-glitch event there is an obvious change in flux between the 19th

and 20th observation; hence we set the prior for the epoch to be flat between these two data
points. For the priors on other parameters we make use of their estimated values θ, together
with their uncertainties σθ, as reported in [162]. Specifically we adopt a conservative, uni-
form prior of width equal to 2n times the uncertainty for each parameter – where we will
adopt different values of n in order to explore the robustness of our results to the choice of
prior, i.e. to check that our prior boundaries contain the vast bulk of the likelihood.

Thus for each parameter (and where Mi refers to model i) the lower boundary of the uniform
prior is set to be min(θM1 − nσθ;M1 , θM2 − nσθ;M2), while the upper boundary is set to be
max(θM1 + nσθ;M1 , θM2 + nσθ;M2). Note however, that since ∆ν for the second event is
always positive, its lower limit is set to be min(0,∆νM1 − nσ∆ν;M1 ,∆νM2 − nσ∆ν;M2).

We tested cases for n equals to 3, 5 and 10, to make sure our conclusion would be indepen-
dent from any specific choice of prior range. In tables 3.2, 3.3 and 3.4, we show the upper
and lower boundaries for cases with n equals to 3, 5 and 10.
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Parameter Lower Boundary Upper Boundary
Epoch1(MJD) 56031.484167333 56045.4437822243

∆ν1(s−1) −1.2× 10−7 −2.7× 10−08

∆ν̇1(s−2) −3.3× 10−14 −1× 10−15

∆φg,1 −0.15 0.15
Epoch2(MJD) 56081 56131

∆ν2(s−1) 0 9.2× 10−08

∆ν̇2(s−2) −1× 10−15 3.2× 10−14

∆φg,2 −0.15 0.15

Table 3.2: Upper and lower boundaries of timing parameters in the case where n = 3.

Parameter Lower Boundary Upper Boundary
Epoch1(MJD) 56031.484167333 56045.4437822243

∆ν1(s−1) −1.4× 10−7 −1.5× 10−08

∆ν̇1(s−2) −3.7× 10−14 7× 10−15

∆φg,1 −0.25 0.25
Epoch2(MJD) 56075 56135

∆ν2(s−1) 0 1.08× 10−07

∆ν̇2(s−2) −9× 10−15 3.6× 10−14

∆φg,2 −0.25 0.25

Table 3.3: Upper and lower boundaries of timing parameters in the case where n = 5.

Parameter Lower Boundary Upper Boundary
Epoch1(MJD) 56031.484167333 56045.4437822243

∆ν1(s−1) −1.9× 10−7 1.5× 10−08

∆ν̇1(s−2) −5.3× 10−14 2.7× 10−14

∆φg,1 −0.5 0.5
Epoch2(MJD) 56060 56145

∆ν2(s−1) 0 1.48× 10−07

∆ν̇2(s−2) −2.9× 10−14 5.1× 10−14

∆φg,2 −0.5 0.5

Table 3.4: Upper and lower boundaries of timing parameters in the case where n = 10.
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3.2.2 Comparing the Models

To calculate the evidence, a nested sampling code was applied with a stopping criterion set
to equal e−5 – i.e. when new live points made an additional contribution to the evidence that
was smaller than a fraction e−5 of the total, the nested sampling code was stopped. The value
of n used for setting our priors was initially taken to be 10 – i.e. far beyond the 5σ region.
The two models were found to have evidence values of ∼ e−33 and ∼ e−29 respectively,
which yields a Bayes Factor of 42.5± 3.4 in favour of the successive anti-glitch model over
the anti/normal glitch pair model. The uncertainty on the Bayes Factor was calculated using
equation 2.34. According to the definition of [163], a Bayes Factor larger than 40 is already
very strong evidence in favour of the successive anti-glitch model (c.f. table 2.1).

For each model the posterior distribution of the model parameters was resampled appro-
priately from our nested sampling results. In figure 3.2 we show posteriors for the param-
eters of the second event in the double anti-glitch model. The contour lines correspond
to 68.3%, 95.5% and 99.7% credible intervals. The maximum posterior corresponds to the
following best-fitting parameter values: epoch = MJD 56088.4; ∆ν = −8.2 × 10−8 Hz;
∆ν̇ = 5.2× 10−15 Hz/s; phase change = −0.012 cycles.

3.2.3 Robustness Check

We tested the robustness of our results by changing the width of our uniform priors and re-
running the nested sampling analysis. Table 3.5 shows the mean Bayes Factor obtained as
n is changed from 10 to 5 to 3. We see that the Bayes Factor fluctuates around a value of
∼ 45, but in all cases our conclusions are consistent. Such a value is also consistent with the
estimation from multiple runs as illustrated in table 3.6. The uncertainty values estimated
between table 3.5 and table 3.6 are slight different, but at most they differ by a factor of two.
The interpretation of the value is displayed in table 2.1 [163]. A Bayes Factor value of∼ 45,
as it’s located in the region of

(
103/2, 100

)
, demonstrates a “very strong support” of the first

model, here being the successive anti-glitches model.

The parameter space has been changed to check the influence on the conclusion. Since the
∆φg for both timing events in both models were not estimated in [162], we set these phase
change parameter to zero and the Bayes Factor increases to around 375, which shows an
even stronger support for the successive anti-glitches model.

The timing residuals, after subtracting the best fitting double anti-glitch model, are shown
in the upper panel of figure 3.3. This consistency confirms that two anti-glitch events can
explain the observed data well.

So far, there have been some physical models proposed in order to explain the putative anti-
glitch event (see 3.3 for detailed discussion). Some authors (e.g. [207, 208]) have suggested
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Figure 3.2: Parameter posterior contours for the second anti-glitch event with the successive
anti-glitch model, showing 68.3% (solid), 95.5% (dash-dotted) and 99.7% (dotted) credible
intervals, based on ∼ 500 points resampled from the nested sampling samples.
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Figure 3.3: Upper panel: Timing residuals of the observed data for two successive anti-
glitch events, with best fit parameters as determined by our analysis. Lower panel: Timing
residuals of the observed data for only one anti-glitch event. Clearly, two anti-glitch events
better explain the data than having a single anti-glitch.
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Table 3.5: Estimated Bayes Factors and evidences with uncertainties, obtained from different
prior ranges on the model parameters, represented by different n values (for the definition of
n see main text). A Bayes Factor of around 45 is obtained in each case, indicating consis-
tently strong evidence favouring a successive anti-glitch scenario over an anti/normal glitch
pair. The natural logarithm of evidence were consistently estiamted with an uncertainty of
around 0.05.

n value 10 5 3
Bayes Factor 42.4± 3.4 43.5± 3.1 48.6± 3.4

Successive Anti-glitch Evidence exp(−28.53) exp(−27.77) exp(−27.58)
Anti-/normal glitch Evidence exp(−32.28) exp(−31.54) exp(−31.46)

that the second timing event is not consistent with these physical models, and moreover have
questioned whether the observational evidence for the second event is strong enough in the
first place. However, as shown in the lower panel of figure 3.3, if we consider only the
first event the timing residual will quickly diverge away from zero thereafter, thus showing
strong support for the existence of a second timing event. Note that the timing residuals
for an anti/normal glitch pair model are also similar to the upper panel in figure 3.3, further
supporting the case for a second timing event (but emphasising that to distinguish between
an anti/normal glitch pair and an anti-glitch pair is less straightforward).

We also applied model selection to the case of two timing events versus 1 anti-glitch, and
the Bayes Factor was found to be e208 – i.e. overwhelmingly favouring the 2 events sce-
nario. This result demonstrates how the Bayes Factor can favour a more complicated model,
notwithstanding that it may require additional parameters, when the data are of sufficient
quality and a simpler model cannot give a satisfactory fit.

Finally a batch of simulated glitch-free residual data was also generated, with each point
drawn from a Gaussian distribution using means and standard deviations from TEMPO2
fits and TOA errors. Nested sampling was applied to this simulated data, and the Bayes
factor was computed for the comparison of a successive anti-glitch model and an anti/normal
glitch pair model. We calculated 15 Bayes Factor ratios based on 15 realisations of fake
anti/normal glitch-free data. We found that the Bayes Factors fluctuated around unity, i.e.
exp(0.17 ± 0.33), showing that intrinsic randomness in glitch-free data will not cause a
preference of one model over the other.

Notice that in table 3.5 the uncertainty is estimated from the Nested Sampling algorithm, and
might be not representative. We therefore carried out different nested sampling runs with
different random seeds, and list the corresponding results in table 3.6. Notice that although
the uncertainties are slightly different between estimation from nested sampling and from
standard deviation calculation, the mean values are consistent, and the values are generally
independent of the choice of n value.
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Table 3.6: Bayes Factors of different realisations with mean and standard deviation. All
realisations demonstrate a strong support for the successive anti-glitch events model, the
estimated Bayes Factor fluctuate around 45 with standard deviation ∼ 4. The standard de-
viation is slightly different from the estimation from equation 2.34, while the mean value is
consistent. The standard deviations of both models’ evidence are also provided.

n value 10 5 3
Realisation 1 41.3 43.5 46.1
Realisation 2 42.4 43.5 46.1
Realisation 3 53.0 44.4 50.1
Realisation 4 42.5 47.9 53.3
Realisation 5 41.1 41.1 51.8
Realisation 6 38.2 40.5 49.2
Realisation 7 45.3 42.6 49.2
Realisation 8 51.5 44.5 47.3
Realisation 9 38.6 39.0 47.8

Realisation 10 46.4 39.5 49.5
Realisation 11 54.4 41.6 49.5
Realisation 12 46.2 43.6 46.8
Realisation l3 44.2 42.3 45.9

mean 45.0 42.6 48.7
standard deviation 5.2 2.4 2.3

successive anti-glitch evidence stdev 0.04 0.05 0.04
anti-/normal glitch evidence stdev 0.08 0.03 0.02

3.3 Discussion and Conclusions

We have shown that a model with two successive anti-glitches better explains the observed
pulsar data presented in [162] when compared with an anti/normal glitch pair model. Our
analysis was robust against variations in the prior ranges, with a Bayes Factor consistently
larger than 40 in favour of two anti-glitches. Meanwhile, the Bayes Factor between two
events and one event is very large (e208), showing conclusively that the two events scenario
is favoured over one event.

Prior to the discovery of an anti-glitch there were already several published papers presenting
mechanisms that could cause enhanced spin-down, while after its discovery a number of
further mechanisms have been proposed seeking to explain its physical origin. Roughly
speaking, we can divide the proposed mechanisms into three groups: internal , accretion

and magnetospherical.

The internal mechanism is related to that causing glitches in normal pulsars, which can
often be satisfactorily explained by the coupling of the crust with the inner faster-rotating
superfluid [216], where for a normal pulsar the superfluid interior could not spin slower than
the crust. However, as the observed object 1E 2259+586 is a magnetar, where the dominant
source of free energy is magnetism instead of rotation, the spin evolution could be vastly
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different from that of normal pulsars. [217] suggested that a magnetar could drive differential
rotation, which allows a lag in the rotation of the superfluid interior. A sudden rearrangement
of the inner structure could induce the interior and crust to corotate again, which would be
observed as a sudden spin-down, or anti-glitch [162]. Another possible explanation for the
faster-rotating crust might be the twist of a crust patch. As the superfluid vortex is pinned
to the crust, a plastic deformation for such a patch will lead to a slower rotating superfluid.
A rapid twist would correspond to a conventional spin-up glitch, similar to a normal pulsar
counter-part. However, while a gradual twist would have little effect on the secular spin
evolution, a rapid unpinning of the associated vortices would give a sudden spin-down, or
anti-glitch [218, 205]

Accretion mechanisms suggest that the anti-glitch is caused by the accretion of retrograde
material from either a Keplerian ring [211] or from an asteroid [210]. Besides retrograde
accretion [209], also proposes an enhanced propeller effect to explain the anti-glitch. Al-
though most accretion models are able to explain both events during the observation, either
with or without being accompanied by radiation, this mechanism does not fit the model of
magnetars, which has already been supported by many observations. (e.g. [215]).

Magnetospheric models (e.g. [207, 208, 205]) explain the observed anti-glitch with either an
enhanced particle wind or a twisting of the magnetic field lines. Although these models fit the
observational data for magnetars, most magnetospherical explanations are accompanied with
strong radiation and/or a change in pulse profile – neither of which were observed during the
second timing event for 1E 2259+586. The magnetospheric mechanism is not favoured since
figure 3.3 shows that our analysis strongly favours the existence of the second event.

Among these three mechanisms, our analysis shows that the internal mechanism is most
favoured. We note that a satisfactory model should be able to explain the two successive
anti-glitches that happened within a relatively short period. If the sudden unpinning of the
quantum vortex due to the twist of crust patch is responsible for the anti-glitch, for example,
then the gradual plastic deformation of the crust patch should be able to accumulate enough
angular momentum within a timescale of several months. If the two anti-glitches are caused
by the same mechanism, then the observations may put some constraints on that mechanism.
Enhanced radiation, pulse profile changes and enhanced spin-down were observed for the
first event while none of these phenomena was observed for the second. Future observations
of similar phenomena with higher timing accuracy and sampling frequency will be helpful
in order to more fully understand the mechanism responsible.

In this work we’ve demonstrated how applying Bayesian Inference methods to astrophysical
problems can help to distinguish between multiple competing models. The prior is made fair
to all models so that the conclusion is not influenced by subjective choice of prior.1

1This work is published in the ApJ. Let., and I am the first author as well as the corresponding author.

http://iopscience.iop.org/2041-8205/784/2/L41/
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Chapter 4

Mixed MCMC

One of the main targets of Bayesian inference is to estimate the posterior distribution of
desired parameters. To estimate posterior distributions, one naive solution is to use an ex-
haustive algorithm to calculate the posterior over a dense grid of points in the parameter
space. Such brute-force methods will have little or no practical value when dealing with
medium-to-high dimensional problems since the computational burden will be prohibitively
high. For such problems the ability to concentrate sampling in regions where the posterior
probability is high is very important if we are to implement Bayesian inference methods
efficiently.

Recall from chapter 2.4, we’ve discussed methods such as Markov Chain Monte Carlo

(MCMC) and Nested Sampling and the several variants. These methods are well tailored to
explore the posterior distribution over high dimensional parameter spaces. While the com-
putational cost of brute-force methods increases exponentially with the dimension, MCMC
usually only grows slowly with dimension [176, 203].

Generally, the method of MCMC works well so long as the posterior surface is sufficiently
smooth. However, when the posterior distribution has a complicated structure, MCMC will
become inefficient. For example, MCMC samplers are known to get “caught” in a local
mode of the posterior, and unable to jump out and explore any other isolated modes in the
parameter space [219, 193]. So a lot of methods have been proposed to make the MCMC
sampling more efficient (e.g. [180, 198, 196])

In this chapter, we discuss a novel method, mixed MCMC, to deal with such issues. The
conventional MCMC algorithm is robust for exploring the detailed structure of the posterior
surface, and we want to retain that property while enabling some global “communication”
between different regions of the parameter space so that the sampler can make jumps between
those regions without requiring a very long exploration time.

Readers are reminded that we design the algorithm of mixed MCMC so that it’s tailored for
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multi-modal posteriors with some limited knowledge of the posterior. As discussed in chap-
ter 4.2, the implementation of mixed MCMC would require some rough information about
the posterior, which naturally limit the application of the method. However, time-consuming
algorithms could be used to assist obtaining such information, and there are situations where
these information is already available.

4.1 Method

As we recall from chapter 2, the algorithm of MCMC sets out to sample a chain of points in
the parameter space and at the ith iteration (i.e. after i−1 points have already been sampled)
a candidate point θ∗ is randomly sampled from some specified proposal distribution, based
solely on the position of the previous point in the chain θ(i−1). The corresponding poste-
rior for this candidate point is calculated, and compared with the posterior at θ(i−1). The
candidate is accepted only with a certain acceptance probability (see chapter 2.4). One can
observe that the sampling will generally proceed “uphill” – i.e. to regions of the parameter
space where the value of the posterior is larger – while sometimes it can also go “downhill”
to regions where the posterior takes on lower values [156, 157, 177, 154].

4.1.1 Markov Chain Monte Carlo

Hereafter, we define the posterior f(θ) = p(θ|D, I), the prior π(θ) = p(θ, I) and likelihood
`(θ) = p(D|θ, I), where θ is the parameter set, D is the data and I is the information.

The simplest form of Markov Chain Monte Carlo (MCMC) is known as the Metropolis
algorithm, which can be achieved by the following steps [156, 157, 177, 220].

1. Arbitrarily choose a starting point θ(0) that satisfies f(θ(0)) > 0, and a symmetric
proposal distribution J(θa|θb). Set step index i=0.

2. Increment i by 1.

3. Randomly propose a new parameter set θ∗ by sampling from J(·|θ(i−1)).

4. Calculate the Metropolis ratio given by

r =
f(θ∗)

f(θ(i−1))
(4.1)

5. Accept the proposed parameter set θ∗ with acceptance probability

α(θ(i−1),θ∗) , min(1, r) (4.2)
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If r ≥ 1, then the candidate is accepted, so the new point is θ(i) = θ∗.

If r < 1, draw a random number rand from a uniform distribution U [0, 1], and if
rand < r, then set θ(i) = θ∗; otherwise set θ(i) = θ(i−1).

Steps 2-5 are repeated until a large enough number of points have been sampled. This ter-
mination could be controlled by a preset number, or by monitoring the samples’ distribution
and check if it’s sufficiently stable [185]. The beginning period, which is generally called as
the “burn-in” stage, is discarded to prevent the influence of the arbitrary choice of starting
point θ(0).

The Metropolis-Hastings (M-H) algorithm is a more general form of the Metropolis algo-
rithm. In the Metropolis algorithm, the proposal distribution is symmetric, that is J(θa|θb) =

J(θb|θa), but this condition is not necessary. In the M-H algorithm we relax this symmetric
condition, so that equation (4.1) should be modified as follows

r =
f(θ∗)J(θ(i−1)|θ∗)

f(θ(i−1))J(θ∗|θ(i−1))
. (4.3)

It is clear that when the proposal distribution is symmetric, equation (4.3) is identical to
equation (4.1).

It can be shown that the number density of the sampled points will represent a sample from
the posterior distribution [156]. Thus estimation of the parameter(s) that characterise the
posterior distribution becomes possible with a sufficiently large number of sampling points.

4.2 mixed MCMC

If the starting point and/or the proposal density is not properly chosen, the MCMC sampler
might become stuck in a local mode, and will not be able to appropriately explore the whole
parameter space. This might introduce a statistical bias in the parameter estimation carried
out by MCMC, particularly when the target distribution is multi-modal. Thus motivates the
realisation of mixed MCMC as a really Markovian realisation of MCMC that can sample the
posterior efficiently [193, 185, 202].

Here we propose a novel method which we term mixed MCMC to perform Bayesian infer-
ence on multi-modal posterior distributions. This method can allow the sampler to commu-
nicate between different local maxima, so that the sampler will be able to represent local
peaks, as well as to explore the global structure. As noted previously, our method requires
some limited information about the location of the multiple modes before sampling. In many
cases, however, we will have at least some rough prior knowledge about the posterior, and
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we can use this information to guide the sampler. Even in the absence of such prior knowl-
edge, other existing global sampling methods can be tailored for this purpose to speed up
this process [193, 181, 221].

4.2.1 Algorithm

The main difference between the algorithm for mixed MCMC and the conventional MCMC
algorithms simply roots in the use of a novel form of proposal density. The sampler should
be able to generate candidates from different sub-regions, while a proper choice of Metropo-
lis ratio will ensure that the sampling between those different sub-regions satisfies detailed
balance.

Suppose, as a result of existing prior knowledge, or with the help of some other global
sampling method, we have some information about the posterior distribution that is sufficient
to identify the existence and the rough location of the several modes in posterior distribution,
where the location of the tth mode is labelled as θ0t . We can then divide the parameter space
into several distinct sub-regions each of which we assume contains a single mode of the
posterior [156, 200].

We should bear in mind that this method is designed for multi-modal posteriors, thus the pro-
posal density should be designed in a way that it can propose new candidates in all posterior
modes. Thus we assign to the tth sub-region what we term a picking up probability, pt, which
determines the probability to get a new candidate in the tth sub-region. Ideally, this proba-
bility should be proportional to the marginal likelihood (also known as the evidence) within
the sub-region – i.e. the probability that the candidate point lies within that sub-region. Note
also that the picking up probability should satisfy the normalisation requirement

∑
t

pt = 1.

At the same time it will maximise the efficiency of our approach if pt ∝
∫
Vt
f(θ)dθ, where

Vt is the volume of the tth sub-region of the parameter space.

Suppose we decide to generate a candidate point in the tth sub-region, while the current
(i.e. most recently updated) point θ(i−1) is located in the sth sub-region. Then a normalised
multivariate distribution (most conveniently taken to be a Gaussian) centering around the
point θ0t − θ0s + θ(i−1) is used as proposal density, and a candidate is drawn from this
distribution. After calculating the value of the posterior at this candidate point, and then
computing the Metropolis ratio, r, in the usual way, we can decide to accept the candidate
point with the acceptance probability α as before.

In more detail our mixed MCMC algorithm can be illustrated with the following pseudo-
code.

1. Obtain some rough approximation to the posterior distribution using other methods.
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Identify m modes in the parameter space, and estimate their central locations given by
θ0t .

2. pt to be the picking up probability, defined as proportional to the volume of the tth

sub-region, with
∑

t pt = 1. Set step label i = 0

3. Randomly pick a starting point, θ(i).

4. while(not converged)

(a) Set i=i+1

(b) Randomly pick a sub-region number t with probability pt and assign s to be the
current sub-region index. s, t ∈ {1, ...,m} where m is the number of all sub-
regions.

(c) Generate the candidate point θ∗ = θ(i−1)+θ0t−θ0s+δθ drawn from the proposal
density ∼ J(·|θ(i−1))

(d) Calculate the Metropolis ratio r based on the candidate and the previous point,
r = f(θ∗)pt

f(θ(i−1))ps
.

(e) Generate a random number rand ∼ U [0, 1].

(f) Accept the proposed parameter set θ∗ with acceptance probability α = min(1, r)

as follows:

if (r > rand), update, θ(i) = θ∗

else θ(i) = θ(i−1)

The mixed MCMC algorithm set out above is strictly Markovian, and detailed balance is
achieved by construction. Thus the number of points sampled in given sub-region should
provide an estimate of ratio between local evidences. As noted above, in order to maximise
the efficiency of the algorithm the picking up probability pt should better be proportional to
the local evidence.

Also, we can notice that when the proposed point and the previous point are located in
the same sub-region, then the algorithm reduces to the conventional M-H algorithm, which
further verifies its validity.

One needs to take care to allow certain burn-in stage before allowing the mixed MCMC
sampling, if the θ0t apart too far away from the peak, the sampler might stop sampling at all
in the corresponding mode.
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4.3 Toy Model

We demonstrate our mixed MCMC algorithm using a simple toy model. On a two dimen-
sional x − y parameter space, we considered a posterior distribution as the sum of a pair of
well-separated bivariate normal distributions. Where the parameters are x and y, and the two
artificial posterior modes locate in (µx1 , µ

y
1) and (µx2 , µ

y
2), each mode can be described by a

bivariate normal distribution with a diagonal covariance matrix, where the standard deviation
in each direction is σx1 , σ

y
1 for the first mode and σx2 , σ

y
2 for the second mode. The form of

this posterior is, therefore:

f(x, y) = C1 exp[−(x− µx1)2

2(σx1 )2
− (y − µy1)2

2(σy1)2
]

+C2 exp[−(x− µx2)2

2(σx2 )2
− (y − µy2)2

2(σy2)2
].

(4.4)

The coefficients C1 and C2 allow the two modes to differ in height, and when integrated over
the entire parameter space the normalisation condition implies that∫

x,y

dx dy f(x, y) = 1. (4.5)

For simplicity, we chose µx1 = −µx2 = −3, σx1 = σx2 = 0.1, µy1 = µy2 = 0, σy1 = σy2 = 0.1

and the ratio of two coefficients C1 : C2 is kept as 1 : 3.

In this toy model test, we only concentrate on the validity of the mixed MCMC method, and
do not consider in detail other factors such as its efficiency or generality. Thus, we assume
prior knowledge of the separated structure of the posterior distribution. Given this assump-
tion, it is possible to analytically calculate the ∆χ2 value that corresponds to the contour
within which a certain fraction of the entire volume of the posterior is located, thus providing
us with an exact theoretical reference result with which to compare. For a one-dimensional
Gaussian distribution, the 1σ, 2σ and 3σ credible regions correspond to 68.27%, 95.45% and
99.73% of the cumulative probability function (CDF) respectively. Thus, it is convenient to
consider for our toy model posterior the ∆χ2 values that correspond to the 68.27%, 95.45%

and 99.73% of the CDF, and compare it with the sample estimates obtained from application
of our mixed MCMC algorithm.

Under the Gaussian assumption, ∆χ2 = −∆2 log(L), so in the general case we will compare
the value of 2∆ log(L) with its theoretical evaluation. The posterior of the toy model can be
taken as two independent bivariant Gaussians, each with a diagonal covariance matrix.
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4.3.1 Analytical Evaluation of 2∆ log(L)

In this section we present the calculation of 2∆ log(L), which is defined as

2∆ log(L) = 2 log(Lmax)− 2 log(L),

for our toy model posterior.

In the toy model, there are two well separated modes. The two modes have an evidence ratio
of w1 : w2, where w1 + w2 = 1 is the normalisation requirement.

We define the two independent parts of the posterior as

P1(x, y) =
1

2πσx1σ
y
1

exp[−(x− µx1)2

2(σx1 )2
− (y − µy1)2

2(σy1)2
]

P2(x, y) =
1

2πσx2σ
y
2

exp[−(x− µx2)2

2(σx2 )2
− (y − µy2)2

2(σy2)2
]

and the posterior can be written as

f(x, y) = w1P1(x, y) + w2P2(x, y) (4.6)

The peak values of the posterior for its two modes are C1 , w1

2πσx1σ
y
1

and C2 , w2

2πσx2σ
y
2

respectively.

For simplicity, we replace (x−µx1 )2

(σx1 )2 +
(y−µy1)2

(σy1 )2 = r2
1 and (x−µx2 )2

(σx2 )2 +
(y−µy2)2

(σy2 )2 = r2
2 and rewrite the

posterior as
f(x, y) = C1 exp(−r2

1/2) + C2 exp(−r2
2/2) (4.7)

Without losing generality, we assume C1 > C2, and so the highest posterior value fmax =

C1, and highest posterior value for the secondary peak isC2. We define r0 asC1 exp(−r2
0/2) =

C2, equivalently, exp(−r2
0/2) = C2

C1
.

Our aim is to find the expression for ∆χ2(C), so that given C, we have∫
f>exp(−∆χ2

2
)

f(x, y) dx dy = C

When f > exp(−r2
0/2),
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C =

∫
f>exp(−∆χ2/2)

C1 exp(−r
2

2
)dx dy

= 2πC1σ
x
1σ

y
1

∫ ∆χ2

0

exp(−r
2

2
)dr2/2

= w1[1− exp(−∆χ2/2)]. (4.8)

This expression is valid so long as C < C0 , w1(1− C2

C1
) = w1 − w2

σx1σ
y
1

σx2σ
y
2
; if, however, C is

bigger, than we have to include the contribution from the secondary mode.

C = C0 +

∫ r1

r0

w1 exp(−r
2

2
)rdr +

∫ r2

0

w2 exp(−r
2

2
)rdr

C − C0 = w1[
C2

C1

− exp(−r2
1/2)] + w2[1− exp(−r2

2/2)]

C − w1 + w2
σx1σ

y
1

σx2σ
y
2

= w2
σx1σ

y
1

σx2σ
y
2

− w1 exp(−r2
1/2)

+ w2 − w1
σx2σ

y
2

σx1σ
y
1

exp(−r2
1/2)

C = 1− w1(1 +
σx2σ

y
2

σx1σ
y
1

) exp(−r2
1/2)

(4.9)

In the third line we used the relation that w1P (r1) = w2P (r2).

Furthermore, we have

exp(−r
2
1

2
) =

1− C
w1(1 +

σx2σ
y
2

σx1σ
y
1
)

−r2
1/2 = log(1− C)− log(w1)− log(1 +

σx2σ
y
2

σx1σ
y
1

)

∆χ2 = r2
1 = −2[log(1− C)− log(w1)

− log(1 +
σx2σ

y
2

σx1σ
y
1

)]

(4.10)

We determined w1 = 3
4

and w2 = 1
4
, while keeping σx1 = σx2 and σy1 = σy2 , and choosing the

C value as 68.27%, 95.45% and 99.73%. This yields the corresponding ∆χ2 values as 3.11,
6.99 and 12.64.
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Table 4.1: Likelihoods corresponding to 68.27%, 95.45% and 99.73% credible regions and
the portion of points from the primary mode. σx1 = σy1 = σx2 = σy2 = 0.1.

likelihood portion
credible region 68.27% 95.45% 99.73%
Realisation 1 3.19 6.87 11.30 74.2%
Realisation 2 3.02 6.99 13.01 74.6%
Realisation 3 3.15 7.00 12.79 74.8%
Realisation 4 3.19 6.84 12.40 74.2%
Realisation 5 3.00 6.89 12.43 77.3%
Realisation 6 3.08 7.14 13.32 75.6%
Realisation 7 3.21 7.30 13.77 73.2%
Realisation 8 3.28 7.29 13.96 73.2%
Realisation 9 3.01 6.98 12.63 77.0%

Realisation 10 3.03 7.02 12.22 74.7%
Realisation 11 3.12 6.99 12.63 76.2%
Realisation 12 3.16 7.20 13.11 74.4%
Realisation l3 3.13 6.89 12.60 72.0%
Realisation l4 3.05 6.95 11.97 74.4%
Realisation l5 3.18 6.99 12.78 74.5%

mean 3.12 7.02 12.72 74.7%
standard deviation 0.08 0.14 0.67 1.4%

theoretical 3.11 6.99 12.64 75.0%

4.3.2 Application of the mixed MCMC

We generated a chain with 105 points. The proposal density was set to be a bivariate Gaussian
distribution in addition to the shift between sub-regions, with covariance matrix equal to the
identity matrix multiplied by σ = 0.1.

For this particular toy model, theoretically the corresponding 68.27%, 95.45% and 99.73%

credible regions should have values of 2∆ log(L) equal to 3.11, 6.99 and 12.64. A typical
realisation gives result as 3.14, 7.04 and 12.24, and the numbers of points sampled in the
two sub-regions are 2559 and 7441, which is consistent with the 1 : 3 ratio assumed for
the coefficients C1 and C2. In table 4.1 we listed the 2∆ log(L) values for 15 different
realisations, the mean value of these realisations shows good consistency with the theoretical
prediction, and the standard deviation is relatively small. We can also notice that the standard
deviation tends to increase with 2∆ log(L), which is expected as this corresponds to larger
credible regions, and it subject to larger random fluctuation.

If we modify the standard deviation of one parameter to 0.2 in the primary mode, the theoret-
ical 2∆ log(L) corresponds to 68.27%, 95.45% and 99.73% credible regions would change
to 2.53, 6.42 and 12.06. 2∆ log(L) values for 15 realisations of such modified toy model
were presented in table 4.2, again, the mean value shows good consistency, with satisfactory
standard deviation which increase with 2∆ log(L).
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Table 4.2: Likelihoods corresponding to 68.27%, 95.45% and 99.73% credible regions and
the portion of points from the primary mode. σx1 = σx2 = σy2 = 0.1, σy1 = 0.2.

likelihood portion
credible region 68.27% 95.45% 99.73%
Realisation 1 2.54 6.30 12.06 76.9%
Realisation 2 2.63 6.52 12.22 72.8%
Realisation 3 2.51 6.50 11.24 76.8%
Realisation 4 2.59 6.57 11.58 75.2%
Realisation 5 2.50 6.18 11.13 76.6%
Realisation 6 2.56 6.32 11.49 74.8%
Realisation 7 2.52 6.11 12.44 72.0%
Realisation 8 2.50 6.03 11.42 75.8%
Realisation 9 2.44 6.41 11.74 74.2%

Realisation 10 2.48 6.37 11.42 74.8%
Realisation 11 2.52 6.45 11.85 74.7%
Realisation 12 2.58 6.55 12.03 74.5%
Realisation l3 2.55 6.45 12.18 73.7%
Realisation l4 2.55 6.42 12.42 73.2%
Realisation l5 2.44 6.42 12.08 75.4%

mean 2.53 6.37 11.88 74.8%
standard deviation 0.05 0.16 0.47 1.4%

theoretical 2.53 6.42 12.06 75.0%

In figure 4.1 an example of the sampling results is shown, with blue, green and red colour
points representing the highest (i.e. largest value of the posterior) 68.27%, 95.45% and 99.73%

fraction of the samples, after sorting the posterior values in descending order.

4.4 Discussion

A novel method, which we call mixed MCMC, has been proposed. In the situations when
the multi-modal characteristics of the posterior distribution are already roughly known, the
parameter space can be split into several sub-regions, each of which hosts a single mode,
and our mixed MCMC method can be applied. The proposal density can generate candidates
in different sub-regions by adding a shift from the current sub-region to the proposed new
sub-region. In this way, a comparison between different sub-regions can be done globally,
which improves efficiency. This algorithm is strictly Markovian, so the detailed balance
requirement is fulfilled. The concept of mixed MCMC is realised by enabling proposed
candidate points to be generated from different modes of the posterior. Admittedly, the
mixed MCMC approach must rely on other methods to first identify the multiple modes of
the posterior distribution. However, since that identification will generally require only rough
information, we can expect this initial stage to be rapid. Moreover, other existing methods
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Figure 4.1: Example realisation of mixed MCMC applied to the toy model posterior distri-
bution described in the text. Here blue, green and red colour points represent subsets of the
sampled points with the highest 68.27%, 95.45% and 99.73% fractions respectively of the
posterior value among all samples. The different areas of the two different modes reflect the
fact that the two modes have different weights. Like all MCMC results, the density of the
sampling points reflect the posterior.
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already provide some solutions to the problem of identifying multiple modes [168, 181].

From another perspective, if we view separate parameter subspaces as different models, this
mixed MCMC algorithm can be viewed as an special form of reversible jump MCMC [160,
197], which can sample from different models even when they have different dimensionality,
and thus provides the Bayesian odds ratio of two models.

This method is a novel realisation of MCMC which can achieve high efficiency in analysing
multi-modal posterior distributions by virtue of its unique form of proposal density. It relies
not only on local information, but also on the global structure through swapping between
different modes. In particular the candidate point is accepted with an acceptance proba-

bility a = min(1, r), where r is the Metropolis ratio, which takes into account the global
information about the multiple modes of the posterior.

So far, we have not discussed in detail how to obtain rough information about the posterior
modes. We note that methods such as MultiNest [168, 181] aim to solve similar problems,
so their approach could be directly applied here. Some other methods like parallel tempering
MCMC [193] or k-means [222] can also be modified and applied here.

We leave the detailed comparison with other methods, like parallel tempering MCMC to
future work. However, by not throwing away points in parallel chains, and the design of
the proposal density to have a relatively short autocorrelation length we expect the mixed
MCMC algorithm to be quite efficient [199].

We also notice that the efficiency of simple random walk MCMC scales O(d2) with the
dimensionality d, while for the Hamiltonian MCMC methods the efficiency scales with
O(d5/4) [223]. We anticipate in future work to modify the algorithm of mixed MCMC to the
Hamiltonian MCMC to gain more efficiency in higher dimensional models.

In this work, we also applied our method to a simple toy model, with two distinct well-
separated modes, to demonstrate its efficacy. With 105 samples, our mixed MCMC was able
to both find the picking up probability, which represents the bulk distribution of the posterior
(i.e. the probability of belonging to each mode) and also the Bayesian credible regions for the
posterior as a whole – each of which show excellent agreement with the exact, theoretically
computed values for our toy model.

We should notice, however, that in more general cases, the posterior won’t necessarily have
modes with similar size and shape in the parameter space, which could hinder the application
of mixed MCMC. However, for such cases, we can transform the parameter space locally
around the maxima, to reshape the multiple modes into similar shapes and sizes.1

1This work was initiated and mainly developed by myself, under the supervision of Prof. Martin Hendry
and Dr. Ik Siong Heng.
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Chapter 5

Global Optimisation for Future
Gravitational Wave Detectors Sites

In this chapter, we applied the mixed MCMC methodology (chapter 4) to a problem of
optimising the sites of future generation gravitational wave detectors. Mixed MCMC is
designed to accelerate the sampling speed for a multi-modal posterior, which would rely on
some rough information of the locations of multiple modes. As we will explain in details
later, the task of optimising GWD sites should view the GWD network as a whole, so that
the scientific output of a GWD network can be quantified as a single Figure of Merit. Such
a map from multiple parameters (geographical coordinates) to a real number reminds us
of the problem of sampling high dimensional posteriors. We notice that the problem is
naturally multi-modal, as the Figure of Merit of such a network would remain constant upon
a simultaneous shift of the entire network in the same direction. Also geological information
could be used to guide the positions of the multiple modes. We thus conclude that mixed
MCMC would be an ideal sampling strategy for such a problem.

Recent advances in technology should enable us in the near future to open a new gravitational-
wave (GW) window for astronomy. Although no signals have been detected yet, there are ex-
cellent prospects for the first detections to take place before the end of the current decade, as
the ‘first generation’ GW detectors LIGO [51] and Virgo [52] are upgraded to their ‘second
generation’ counterparts Advanced LIGO (aLIGO) [56] and Advanced Virgo (AdV) [57],
with an increase of more than a factor of ten in sensitivity, which translates to an increase
in detection rate of a thousand [224, 225]. At the same time, detailed design studies for
proposed future generation GW detectors such as the Einstein Telescope (ET) have recently
been completed [226], and the prospects for multi-messenger astrophysics and cosmology
with such instruments have been investigated [227, 2]. It seems clear that the first success-
ful detection of GW signals with aLIGO and AdV will provide tremendous impetus for the
nascent field of GW astronomy, and thus generate renewed enthusiasm for the building of
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new and even more advanced detectors in the future.

However, the costs of building GW observatories, particularly future generation detectors,
are very high [226]. Even in the most optimistic scenarios, therefore, it seems unrealistic to
expect that more than (say) half a dozen future generation GW detectors will be built in the
coming decades. Consequently, the optimal identification of sites for future GW detectors is
an important issue that needs to be carefully considered.

The site selection must take into account many factors such as seismic stability and other
sources of gravitational noise [228]. For future generation detectors, in order to achieve
a further order-of-magnitude improvement in sensitivity there is a scientific motivation for
constructing them underground. This adds considerably to the cost, however, and may in-
volve e.g. the building of extensive tunnels which may in turn place significant constraints on
transport infrastructure – all of which will contribute to the overall construction budget. Thus
choosing reliable sites for future GW detectors needs to consider a wide range of factors in
addition to purely scientific constraints [136].

However, the optimal choice of site will be significantly different when we are planning to
optimising multiple detectors instead of a single instrument [137]. Unlike electromagnetic
(EM) telescopes, which generally observe only a very small patch of sky at any time, GW
detectors have an all-sky response [137, 103]. This property enables multiple GW detec-
tors, when combined as a network, to gain improved information on the source – including
its position in the sky [17]. In particular, while it is nearly impossible to localise the sky
position of a GW source with only one detector in operation when no additional informa-
tion (e.g. an EM counterpart) is available, for multiple detectors the difference in arrival
time of the GW signal at each detector can be used to localise the source direction. For a
given GW event, different configurations of such a network of detectors would provide dif-
ferent information on its sky position [229]. For example, multiple GW detectors that are
concentrated in a small geographical area would result in very poor limits on the source’s
sky location, while a network of well-separated detectors would provide much tighter con-
straints. These basic considerations provided a strong original motivation for the decision
to build two LIGO detectors in geographically well-separated locations in the US, and more
recently have informed the proposal to locate an aLIGO detector in India [60].

Previously Raffai et al. [136] investigated constraints on optimal GW detector networks.
In that work the optimisation was based on three “Figures of Merit” – discussed in Section
5.1 – and was mainly focused on a 2-detector network. The generalisation to networks with
more detectors was carried out by adding one detector at a time, keeping the locations of all
previously-sited detectors fixed. After considering ∼ 1500 possible sites for the additional
detector, covering all allowable regions, the best site was chosen. This method fitted well
to the aims of the Raffai et al. [136] study, but a simultaneous optimisation of all sites in



69

a N > 2 detector network requires a different approach. Nevertheless, the method already
proved to be very useful: for example, considering a five detector network with the first four
sites to be aLIGO Livingston, aLIGO Hanford, AdV and KAGRA [61], the optimal location
and orientation of a possible fifth advanced detector in India could be determined via the
exhaustive exploration of allowable five-detector configurations and the calculation of the
appropriate figures of merit for the resulting network corresponding to each configuration.
This approach therefore gave indications of the relative merits of different candidate sites
and orientations in the planning of aLIGO India [230].

Throughout this chapter, we specify the term future generation GW detectors to be ET-like
detectors, i.e., with triangular configuration, 10km armlength, expected to be built under-
ground etc., while the term advanced GW detectors refers to the detectors like aLIGO or
AdV which are being under construction or planned. Our primary interest lies in the optimi-
sation for future generation GW detectors specifically.

In this work, we extend the method of Raffai et al. [136] to the case where the optimisation
for multiple detectors is carried out simultaneously. This allowed us, for example, to find the
optimal sites for a 3-detector or a 5-detector network, treating the locations of all detectors in
the network as free parameters. Also, we are interested to know if an ideal site for a detector
network comprising 3 detectors could still be considered a good location when being part
of a network with 5 detectors. Moreover, we want to be able to discuss what the range of
possible tolerable configurations might be. Should the optimal configuration not be available
because of any unexpected reason, such information would be priceless, and this can only be
achieved by a simultaneous optimisation process for the detector sites.

In practice the spatial distribution of GW sources is not isotropic as the nearby galaxies are
strongly clustered, and the seismic environment varies greatly with location; however, for
simplicity we ignore any such directional dependence here. Hence the comparison of differ-
ent networks is purely determined by their relative geometric shape, and not by the physical
characteristics of the sites’ actual geographical locations. Consequently shifting (rotating
on Earth) the whole detector network by a small amount while keeping fixed the angles be-
tween the individual detectors would not, in our analysis, affect the overall performance of
the network. Thus, we acknowledge that to ask in complete generality “what is the optimal
network?” is too ill-defined a question. Instead, therefore, we ask a slightly different and
more specific question: assuming that we will build 3 (or 5) future generation GW detectors,
where are the ideal sites for those detectors that maximise their flexibility – i.e. such that
they can belong to a large number of different “good” detector networks?

We acknowledge, however, that at least on nearby cosmological scales the expected distri-
bution of sources will be neither isotropic nor homogeneous – although the impact of these
effects on a given GW detector network will be mitigated by the rotation of the Earth: a net-
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work which might be optimised e.g. to the distribution of galaxies in the Local Supercluster
at one time will not in general be optimised a few hours later. Similarly, seismic stability will
also depend in detail on geographical location; this will make some network configurations
in practice more favourable than others. However, in the following analysis, we ignore such
effects for the case of simplicity. We should clarify here that we do not take explicitly into
consideration the current or planned future sites of ground based detectors. Although these
advanced detectors are expected themselves to make ground-breaking discoveries, their sen-
sitivities are still expected to be an order of magnitude or more lower than that of proposed
future generation GW detectors. Thus, in the context of the future generation GW detector
network that we are investigating in this study, such advanced detectors would make only
a limited contribution. Also, most of the current advanced detector sites are not considered
ideal according to our exclusion criteria, as discussed in chapter 5.2.4. As the future genera-
tion detectors are expected to be constructed underground, there is no compelling motivation
to locate them at the sites of the current detectors. Hence in this study we simply ignore the
locations of current or planned advanced detectors.

5.1 Figures of Merit for GW Detector Networks

In Raffai et al [136] the authors comprehensively investigated different GW detector network
configurations, characterising their relative performance using some reasonable Figures of
Merit (FoMs). So that we can conveniently compare our results with that previous work, we
mostly adopt the same definitions as [136] and consistently construct our FoMs as

• I , which measures the network’s capability of reconstructing the source polarisation,

I =
( 1

4π

∫ ∣∣F network
+ (Φ, λ)− F network

× (Φ, λ)
∣∣2dΩ

)− 1
2

(5.1)

where F network =

√
F 2

1 +F 2
2 +···+F 2

3N

3N
is the antenna factor, either for the plus polarisation

or for the cross polarisation. Since each single detector can be decomposed into 3

interferometers for the future generation GWD (see for example figure 1 of [136]),
a N-detector-network consist 3N interferometers. A larger value of I represents a
network that has a response being more equal in both polarisations.

• D, which measures the accuracy with which the network can localise the sky position
of the source.

D =
1

4π

∫
H
(
S − A90(Φ, λ)

)
dΩ, (5.2)

where H(x) is the Heaviside function, S is the preset threshold that we will discuss
later, and A90(Φ, λ) is the 90% confidence localisation region for a source located at
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sky position (Φ, λ). A large value of D means it’s possible to perform good quality
sky localisation for larger fraction of the sources.

• R, which measures the accuracy with which the network can reconstruct the parame-
ters of a standard compact binary source.

R =
( 1

4π

∫
σM(Φ, λ)2dΩ

)− 1
2
, (5.3)

we use the parameter of chirp mass M as a standard (c.f. chapter 1.2), since it is
expected to be the best determined parameter. σM is the uncertainty derived from
Fisher Information Matrix [17]. A larger R value represents a network with the ability
to perform more accurate parameter estimation.

In the case of the D metric introduced in [136], we have used a slightly different expres-
sion for characterising the accuracy of a GW detector network in source localisation. Our
new D metric is based on the method introduced in Fairhurst 2010 [231], since it gives the
localisation error, which is more interesting and has a more direct physical meaning than
the previous definition of D. Here the localisation accuracy for sources at various sky posi-
tions is expressed as the angular areas of the 90% confidence localisation regions (ellipses)
obtained by triangulation of the source after successful individual detections with N GW
detectors (N > 2). For a given N -detector configuration, we first calculate the localisation
ellipses’ angular areas, for every given direction, then the D metric value is computed as the
percentage of the sky for which the area of these ellipses falls below a specified threshold,
S. Using the simplification that all detectors in the network register the incoming GW sig-
nal with the same timing accuracy, we can directly express S in deg2. The actual choice of
thresholds for S that we adopted will be explained in detail in 5.2.5. Notice that the calcula-
tion of D should include the timing uncertainty and, according to [231], that value is related
to SNR. Here we assume all signals have a timing accuracy that corresponds to an SNR of 8.
The influence of this value on D is degenerate with S and the actual choice of value could
be somewhat arbitrary.

In practice we find out that the new definition of D is more realistic. However, it is worth
mentioning that although the definition ofD has been changed, when considering the optimal
configurations, both new and old definitions of D give very similar results, suggesting an
intrinsic consistency between both definitions. So in particular for configurations with high
D, the new definition makes negligible change to the conclusion.

Note also that in what follows we apply equal weights to each of the three individual FoMs.
This approach is a gross simplification, and ignores the possibility that the different FoMs
may have different scientific purposes and their actual relative importance would depend on
the context in which the detector network was operating. For example, in many proposed
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applications of GW astronomy a key consideration is to identify an EM counterpart of the
GW source in order, e.g., to determine its redshift or some other astrophysical characteristic
of the source that is crucial for its exploitation. In this scenario it might be that optimising
the sky localisation is the most important of the three FoMs, while in other circumstances it
might be that optimising the measurement of the source polarisation (which is important, for
example, to break degeneracies in the sky position, or to help detecting un-modelled Burst
waveforms) would be preferred. One could straightforwardly adapt our method to such a
case simply by adjusting the relative weighting of the FoMs. Furthermore, there may be
some intrinsic correlation between the FoMs, which would again call for a more generalised
combined statistic that directly takes this into account. We defer such extensions until future
work, however, and address here only the case of equally weighted, fully independent, FoMs.
However, we recognise that an inappropriate choice of weights could lead to a selection
criterion that was not physically motivated.

For each FoM I , D and R, we find the maximum values Imax, Dmax and Rmax from the ideal
Earth(see chapter 5.2.5), and normalise the FoM to these maxima. The squared sum of these
normalised values will then give the total FoM, C, as defined in [136]

C =

√( I

Imax

)2

+
( D

Dmax

)2

+
( R

Rmax

)2

. (5.4)

With such a definition, the total FoM is not biased towards any metric as different scientific
goal motiviates different figures of merit. For example, the search for burst signal would
place more emphasis on good performance of I , and R is more important for the search of
CBC signals, while D is equally important for both busrt and acCBC.

5.2 Description of Method

As briefly discussed in the previous sections, in Raffai et al. [136] the network optimisation
is achieved by first fixing the other detectors’ locations and then finding (using the FoM)
the optimal site for an additional detector. Moreover the number of detectors considered
in [136] was limited to 3 in a few example cases of a global optimisation. Readers are
reminded that the primary motivation for the current work was to extend the earlier results
to the case where all detectors could be optimised simultaneously. This would, of course, as
a consistency check allow us to compare our results with those of [136], as well as possibly
to identify new, optimal sites.

One cannot reliably predict the actual number of GW detectors that will operate in the future
since there are so many uncertainties. Once again, we note that we restrict our considerations
to only those of future generation detectors. Optimistically, if an unexpected and exciting
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new discovery were to occur with the nascent advanced detector network, then – combined
with a healthy global economic environment – it seems reasonable that this would boost the
case for building several more detectors and pushing their design envelope to the future gen-
eration. On the other hand if the actual rate of astronomical events observed by the advanced
network is at the pessimistic end of current predictions, then – if it were combined with dif-
ficult economic circumstances – this might strongly limit the number of future generation
GW detectors that would actually be built. Ideally, therefore, we would want the optimally-
chosen sites for proposed future detectors to be as flexible as possible, so that in particular
their scientific performance could be high in both optimistic and pessimistic scenarios. Con-
sequently, in this work we also extend our analysis to consider a 5-detector-network, in order
to answer the specific question of whether a “good” site for a 3-detector-network is still at-
tractive when a 5-detector-network is considered. Thus we want to determine the optimal
location for the first site so that it leaves the future the most flexibility. Of course it is still
natural to expect that the optimal sites for a 3-detector-network, supplemented by two ad-
ditional, optimally-chosen sites, would be at least slightly different from the optimal sites
determined simultaneously for a 5-detector-network. However, in the event that not all new
detectors would be funded and built at the same time, it may be very likely that a 3- or 4-
detector network would be built first and then extended by one or more additional detectors
(exactly analogous to the current proposal for LIGO India). Our question about assessing the
performance of different detector sites as the size of the network changes would, therefore,
seem to be both timely and appropriate.

5.2.1 Methodology

It is clear that, in order to optimise all detectors simultaneously while exploring the situation
for a network of up to 5 detectors, the method adopted by [136] would not be appropri-
ate. In [136], the geographical regions that are suitable as detector sites were reduced to
∼ 1, 500 discrete candidate locations and the optimisation was achieved by an exhaustive
search over all of these candidates. The computing overhead for this approach is tolerable if
one optimises for only one site at a time. However, if we allow even 3 detectors’ locations
all to be free parameters over which to be searched, then we have ∼ 1, 5003 ≈ 3.4 × 109

different combinations to explore. Extending to a 5-detector-network would increase this to
∼ 7.5×1015 combinations – which is far beyond what is currently realistic. However, equally
clearly, there will be a significant fraction of these combinations that correspond to networks
with a relatively low FoM in which we are not really interested. The question then becomes:
how can we efficiently explore only those regions with high FoM, even for networks with
a large number of detectors? Bayesian inference methods like Markov Chain Monte Carlo
(MCMC) [183, 184, 156] or Nested Sampling [166, 167, 157] are designed to deal with such
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problems (c.f. chapter 2), and they perform especially well when the parameter space has a
high dimensionality. We therefore adopt a Bayesian inference approach here, and assign as
the posterior some monotonic function of the total FoM.

For an equilateral triangular shaped interferometer, as is being proposed for the future gen-
eration GW detector [58], the local antenna response for a given signal is nearly independent
of azimuth. Consequently we do not consider the orientation of the detectors in our net-
work, only their geographical location, i.e. longitude and latitude. Thus, if the detector
network consists of N detectors, then the dimensionality of the problem will be 2N . For
even a 3-detector network, then, which corresponds to a 6-dimensional parameter space, we
can expect that our Bayesian method will significantly outperform the brute force grid-based
search.

However, one should realise that the problem we are studying is strictly not a Bayesian pa-
rameter estimation problem. We are merely taking advantage of some of the technology that
has been developed to carry out efficient sampling of high-dimensional Bayesian posterior
distributions, and adapting our problem so that this technology may be directly applied to
it. Essentially we are only interested in efficiently identifying and sampling from regions
with high FoMs. Consequently constraints like detailed balance, which in general are re-
quired in MCMC applications in order to ensure that the samples are indeed drawn from the
appropriate posterior distribution [156], will be of less concern to us here.

There is a vast literature on MCMC methods, including a growing list of example applica-
tions in the field of GW astronomy [232, 233, 111]. A simple collection of MCMC methods
is illustrated in chapter 2, and the interested reader is referred to the references in that chapter.

As noted earlier, one interesting feature of our approach is that we can shift the entire detector
network while keeping fixed the angles between the individual detectors without altering the
FoMs that are computed, provided all sites remain within allowable regions. As also noted
earlier, including extra information about the actual anisotropic distribution of cosmological
sources would break this degeneracy, but such an extension is beyond the scope of the current
study.

However, another feature of our optimisation problem is that it is naturally multi-modal,
i.e., it contains multiple local maxima. The territory of the Earth is divided into isolated
continents and this naturally leads to significant discontinuities in the computed FoMs, thus
making the distribution of optimal networks intrinsically multi-modal. The simplest MCMC
methods generally become clumsy and less reliable when dealing with posterior distribu-
tions that have multiple modes. Hence we have developed an MCMC-based approach that
still performs well for multi-modal distributions. More specifically we have taken advantage
of MCMC methods’ ability to concentrate sampling in regions of high FoM while simul-
taneously being able to ‘swap’ between multiple, distinct modes. To meet these require-
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ments we have developed a new variant of MCMC, known as mixed MCMC (c.f. chapter
4.2), that can sample independently from different regions simultaneously. Other Bayesian
sampling methods like parallel tempering MCMC [192, 194, 193], affine invariant MCMC
[234, 202, 111] and MultiNest [168, 181] are able to sample from multiple regions, but
mixed MCMC is among the most efficient of such methods, as it is designed to be sampling
efficiently through multi-modal posterior. We describe fully our mixed MCMC method in
chapter 4.2 [235].

5.2.2 The actual realisation

The definition of the FoM for a network of detectors given in the previous section is not
sufficiently discriminatory from the point of view of implementing MCMC. In particular,
from the way in which the equations are set up the FoM for the least optimal network differs
by only a factor of two from the most optimal network. If we define the effective ‘posterior’
to be simply proportional to the FoM, therefore, the MCMC sampler will waste a great
deal of time in uninteresting regions of the parameter space. Consequently, we manually
set the effective ‘posterior’ to be the exponential of the FoM, so that there is much greater
differentiation between the least and most optimal networks. This in turn ensures that the
sampler will spend more time exploring regions with high FoM.

In order to begin sampling, we manually partition the parameter space in a conservative man-
ner so that one region is allowed to host at most one major mode. The details of how this
is done are discussed in 5.2.3. However, we note that the parameter space is not continuous
within each region even after partition. In order to avoid any adverse impact of discontinuity,
we enable the network to contain sites that are located in unfavored regions like oceans so
that the sampler can traverse between discontinuous regions. The exclusion of disfavoured
regions is discussed in more detail in chapter 5.2.4. For every such ‘bad location’ site,
the posterior will be divided by the base of natural logarithms, e, so that the sampler does
not waste too much time exploring undesired regions. Under this formulation disfavoured
regions can therefore be sampled, but are not favoured, and the discontinuity problem dis-
appears. Notice, moreover, that when we present our conclusions about optimal sites, those
configurations that contain bad locations will in any case be automatically discarded.

Multiple CPUs were used to sample several network configurations simultaneously, in order
to further boost the efficiency. All of the samples generated were combined into 4 groups,
and the sample results from these 4 groups were constantly monitored. Once the convergence
criteria were met, i.e. the properties of the 4 groups were sufficiently similar, the sampling
process was stopped.

We apply an automatic stopping criterion for the convergence of mixed MCMC chain. In



5.2. Description of Method 76

each sub-chain, this convergence criterion is checked using the well-established Gelman-
Rubin criterion [185] on every parameter. Interested readers are referred to 5.2.5 for details
about the Gelman-Rubin criterion.

5.2.3 Constructing the partition

In our original application of mixed MCMC in Hu et al. [235], the multiple modes were
assumed to have been identified using methods such as parallel tempering, so that the identi-
fication is achieved objectively. However, in the application considered here we can further
simplify this process by manually partitioning the allowable regions into 6 patches corre-
sponding to the Earth’s continents – i.e. North America, South America, Europe, Africa,
Asia and Australia, as shown in figure 5.1.

Figure 5.1: Division of the world map into 6 distinct sections, roughly speaking coincident
with the 6 populated continents: North America, South America, Europe, Africa, Asia and
Australia. Notice that, although there are some areas that are not covered by any section,
these areas are mostly islands and consequently all will be rejected either by the criterion of
lying in a polar region or the criterion of being less than 100 km inland.

We assume that for n detectors, each of them can be located in one of these 6 continents. If
one continent can only host up to one detector, then the number of different possible com-
binations is just simply Cn

6 . In the case of a 3-detector network, this number is C3
6 = 20.

However, we should also consider that some continents like Asia are very large in area, so
that locations in one continent can be a considerable distance apart. In order to be conser-
vative, therefore, we enable each continent to host more than one detector. Hence we must
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include among the possible configurations those networks for which one continent hosts two
detectors; in total this makes C1

6C
1
5 = 30 cases, together with the C1

6 = 6 cases in which
all detectors are located in one continent. So for the 3-detector network, there are in total 56
different possible combinations of host continents; in each such combination, one mode of
mixed MCMC is assigned to sample and we identify combinations with modes. Analysis of
the 5-detector network situation is identical in principle, although somewhat more compli-
cated: it is straightforward to show that there are in total 252 different combinations in this
case.

Notice the assumption that is implied here, that there will be generally no more than 1 local
posterior peak in one mode. We believe that this assumption is sound and justified since we
expect the figures of merit to be slowly changing, and it can help us vastly to simplify the
process of initialising the chains.

5.2.4 Exclusion of unsuitable regions

In order to filter out regions where it would be unsuitable to build a detector, criteria similar
to those in [136] were used to exclude such sites. First, to build a detector underwater would
be far from realistic due to the huge expense to build and maintain it, so we exclude all
oceans, seas and continental lakes. Furthermore, we exclude all coastlines that are within
∼ 100 km distance from the ocean, so that the micro-seismic noise due to oceanic waves is
mitigated. Similar considerations of transport and the convenience of maintenance lead to
the exclusion of polar regions, regions with slope steeper than 5◦, as well as regions with
an elevation higher than 2000 meters above sea level [236]. Also, routine human activity in
centres of population would induce a gravity gradient noise, so the detectors should be built
far away from densely populated regions, including major roads in North America. This
exclusion is achieved by excluding regions where there is significant artificial illumination
during the night, in addition to populated areas as defined according to the Natural Earth
database [237, 238]. In addition, and differently from [136], we further exclude protected
areas, since undertaking construction in such regions would be generally illegal [239].

This work used the exclusions as mentioned above. For future work, more constraints have
been proposed, such as seismically unstable regions which are not suitable because of their
high level of environmental noise [240]. We show our most up-to-date exclusion figure in
5.2. Beyond that, more factors can be considered, like military regions, which might not
be feasible to access; regions with active mining activity, or which contain rich mines, that
could induce gravity gradient noise to the detector data. Contaminated areas and nuclear test
sites are also not ideal places.
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(a)

(b)

Figure 5.2: The figures show the exclusion of unsuitable regions according to various ex-
clusion criteria, including a coloured version and a monochromatic version. Interested read-
ers are encouraged to check out the full resolution files at: http://elysium.elte.
hu/˜praffai/geomap.html Detailed conditions and corresponding colors (for the
coloured version) are listed below.
5.2a: Dark green: coastlines with ∼ 100 km width. Red: seismically active areas with a
200 km width [240]. White: oceans, seas and fresh waters, according to the Natural Earth
database [237]. Dark brown: roads of North America [237]. Brown: elevated areas, i.e.
areas above 2000 m, according to ASTER GDEM Worldwide Elevation Data map [236].
Claret: high gradient areas, i.e. areas with higher than 5◦ slope [236]. Green: protected areas
like national parks, according to the World Database on Protected Areas [239]. Yellow: pop-
ulated areas, including bright areas on the NASA night lights map [238] and other populated
areas like those in India and China [237]. Black: potentially suitable regions.
5.2b: White: outfiltered regions. Grey: potentially suitable regions. The coastlines are
marked with a solid black contour.

http://elysium.elte.hu/~praffai/geomap.html
http://elysium.elte.hu/~praffai/geomap.html
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5.2.5 Optimising parameters

Originally, the calculation of FoM for one single network configuration would take ∼ 100s
– clearly emphasising the need for optimisation of a conventional MCMC requiring of order
105 samples.

First, the original calculation of the I and R FoM was achieved through numerically inte-
grating over the whole sky with a very high angular resolution. We then tested empirically
the relation between sky resolution and calculation accuracy using a detector network on an
hypothetical idealised Earth with the first detector site fixed to be at the North Pole, the sec-
ond set fixed along the Prime Meridian of longitude and the future site placed uniformly over
the surface of the sphere. Because of the symmetry inherent in our FoM, any actual multi-
detector network can be rendered equivalent to this idealised network through appropriate
choice of coordinate system.

To calculate I orR, we first discretise the whole sky into uniformly distributed representative
points using the healpix algorithm [241], and calculate corresponding individual FoMs for a
source located at each of these points. The input to healpix is a positive integer that deter-
mines the resolution: the higher this input parameter, the more points we discretise and the
more accurate I andR will be – although the calculations will also be more time-consuming.
Since the actual number of calculations is proportional to the square of the resolution, the
gain in computational efficiency from reducing this healpix parameter is huge. We calculated
the individual I and R FoMs for a range of different resolutions, and compared them with
the values obtained using the highest resolution that was feasible – which we defined as that
obtained for a healpix parameter of 8. The relative difference in the FoMs, averaged over all
combinations of networks from the aforementioned hypothetical Earth, was then calculated
for smaller values of the healpix input parameter. As shown in figure 5.3, a much lower res-
olution (with a healpix parameter of 3) will only result in a negligible loss of accuracy in the
average FoMs. When the resolution is increased, variance is expected to increase, causing
the non-monotonic behaviour seen in figure 5.3. We therefore adopted a healpix parameter
of 3 in our subsequent analysis, corresponding to an angular resolution of 0.13 radian, or 7
degrees. We understand this choice as a natural outcome of the fact that 7 degrees is much
smaller than the characteristic angular length for the antenna pattern to vary.

Secondly we explored the optimal number of CPUs to use. It is natural to expect that using
more CPUs should lead to greater computational efficiency, and this was one of the main
motivations for the development of mixed MCMC. However, we can expect that there will
be a limiting behaviour such that, for a sufficiently large number of CPUs, further increasing
this number will not result in any significant further improvement, since every sampler needs
some certain sample time to get some reliable estimation of the total parameter space. We
illustrate this trend in figure 5.4, where we see that the improvement in efficiency reduces
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Figure 5.3: Relative change of the I FoM, averaged over all possible combinations from
the ‘hypothetical Earth’ as described in the text, as a function of healpix input parameter.
As expected, when the resolution is made smaller, the relative difference becomes smaller,
while the uncertainty also becomes smaller, which explains the minimum value in the healpix
parameter 3.

substantially after the number of CPUs exceeds ∼ 40. Thus we determined the optimal
number of CPUs to be 40 when sampling for a 3-detector network. We assumed further that
this optimal number should be proportional to the total number of distinct network config-
urations, as described in 5.2.3. Hence for a 5-detector network we adopted as the optimal
choice of CPU number 40 × 252/56 ∼ 200. Our numerical test runs showed that for a 5-
detector network, using 200 CPUs did indeed sample much faster than using 40 CPUs, while
still yielding satisfactory results.

Also, we investigated the usage of Gelman-Rubin criterion [185]. When multiple realisa-
tions of the same model are running simultaneously, the properties of MCMC guarantee that
different realisations should give a similar distribution after a sufficiently long time. The
variance of each parameter within each MCMC realisation was calculated, and the estima-
tion of the intrinsic variance was constructed with the information of multiple realisations.
The ratio between this estimate of the intrinsic variance and the variance within each reali-
sation is thus calculated; this is defined as the Gelman-Rubin R value. Due to the way it is
constructed, the R value on every parameter always tends to be larger than unity, but when
the MCMC chain has converged it will asymptotically tend towards R = 1.

In this problem, we set a Gelman-Rubin criterion of R = 1.1 – that is, if no parameter in a
given subchain yields a Gelman-RubinR value larger than 1.1, we will label this subchain as
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“converged”. However, the sampling in this sub-chain is continued, otherwise the property
of detailed balance will be totally destroyed and we can’t predict its impact on our sampling
result. In order to compute the Gelman-Rubin R for m different MCMC realisations of n
points xi, one needs to construct

B = n
m∑
i=1

(x̄i − x̄)2/(m− 1) (5.5)

where x̄i and x̄ are the mean of each MCMC and total sample, separately.

W =
m∑
i=1

s2
i /m (5.6)

is the average of the variances defined as s2
i . Based on these values, one can compute

σ̂2 =
n− 1

n
W +

B

n
(5.7)

√
V̂ =

√
σ̂2 +B/mn (5.8)

dof = 2V̂ 2/ ˆvar(V̂ ) (5.9)

for the estimation of the target variance, the estimation of the sampling variance and the
number of degrees of freedom respectively, with

ˆvar(V̂ ) =
(n− 1

n

)2 1

m
ˆvar(s2

i ) +
(m+ 1

mn

)2 2

m− 1
B2 (5.10)

+2
(m+ 1)(n− 1)

mn2

n

m
[ ˆcov(s2

i , x̄
2
i )− 2x̄ ˆcov(s2

i , x̄i)] (5.11)

and the R value is defined as
√
R =

√
(V̄ /W )dof/(dof − 2). As dof tends to infinity, the

term dof/(dof − 2) will cancel out for large n. So R− 1 ∼ m+1
m−1

∑m
i=1(x̄i−x̄)2∑m

i=1 s
2
i

[185].

Note that in Bayesian parameter estimation, a conventional choice for the threshold to be
converged isR−1 ≤ 0.01. However, in our case, in order to accelerate the sampling process
we run in parallel 4×N chains and then sum the N chains up to make up 4 “major chains”.
The Gelman-Rubin R criterion is then applied to these 4 major chains and a relatively large
criterion R − 1 ≤ 0.1 is adopted. So for 3-detector-network, the stop criterion translates
as meaning that the variance of average should not be larger than 0.08 times of the average
variance within groups, and for 5-detector-networks 0.09 times.

The sampling process is then continued until all subchains have converged. We expect that
the results would not be changed significantly if we were to adopt a stronger constraint on
theR criterion. However, smallerR criterion value would largely increase the computational
cost. The choice ofR = 1.1 is an sufficiently tight constraint while resulting in an acceptable
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computational burden.
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Figure 5.4: Average number of samples for a 3-detector network using different numbers of
CPUs. Since the Gelman-Rubin criterion was applied on 4 major chains, the tested numbers
are multiples of 4 (for details see section 5.2.2). We can see that there is a uniform decrease
in the number of samples as more CPUs are used. We apply a moving average filter with
5 points to obtain the smoothed data. The vertical axis is just for illustration, and does
not correspond to the actual number of samples obtained, since we apply different stopping
criteria in this test compared with that used in our actual sampling. However our conclusion
about the optimal number of CPUs suitable for our analysis should remain valid.

Finally consider the choice of value of S, which is required to calculate D. Notice that
according to [231], sky localisation error is strongly related to SNR, which for a detection
criterion is chosen to be 8 in general cases. In previous studies, a typical event’s localisation
error will span an area of 10− 100deg2 with 2-3 GW detectors, and ∼ 5deg2 for a 5 detector
network (e.g [231]). Besides, the rule of thumb for choosing proper S is to make the FoM
is as discriminatory as possible. If we set S too small, then most networks will give a
value barely larger than zero, and the influence of calculation uncertainty will be severe.
If, however, S is too large then in almost all networks the fraction of the sky for which
a source can be localised to a region smaller than S also becomes very large, and once
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again we will lose the ability of the FoM to distinguish effectively between different network
configurations.

For the 3-detector network, we find that S is best set to ≈ 59.5 deg2, in this case, the best
configuration gives a D close to but not equal to 1, thus avoiding the aforementioned degen-
eracy. For the 5-detector network, however, S is set to the much smaller value of S = 2.5

area units, translating to 4.5 deg2. This is not surprising since it is generally expected that
networks with more detectors will perform better with regard to this FoM. Tests on an ideal
Earth, as described in the previous sub-section, show that adopting the value of S = 2 will
lead to a significant degeneracy at D = 0, while a value of S = 3 leads to severe degeneracy
atD = 1. Hence the choice of S = 2.5 area units represents an appropriate trade-off between
these two cases, which is equivalent to 4.5 deg2. These values shows good consistency with
[231].

Notice that the ability of sky localisation is closely related to the EM follow-up. Since the
sky localisation area tends to be much bigger than ordinary telescopes’ fields of view, one
would be much more interested in the value of sky localisation area, but not so interested
in the shape or topology of the localisation. Thus we have good reason to believe that our
definition of D is reasonable and representative.

Based on the result from the ideal Earth, we show the normalised histogram of three figures
of merits individually in figure 5.5a - ??.

5.3 Results

The principal goal of this work is to determine the optimal sites on which to build a network
of future generation GW detectors. However, as noted earlier, the formulation of our FoM
is invariant under translations of the entire network across the Earth’s surface, provided that
the network shape remains unchanged and all sites remain located in allowable regions.

In order to better distinguish good sites and good network configurations from others, we can
define the “flexibility index” of a site – i.e., if that site is included in our network how many
possible distinct network configurations could there be that would each give a high FoM? In
this sense, a “better” site means one that would give more freedom, or flexibility, in choosing
the locations of other detector(s). Our results below, therefore, illustrate on a world map the
flexibility index of different sites for networks containing different numbers of detectors.

We run our optimisation code separately for 3-detector and 5-detector networks. The mixed
MCMC method is used so that the sampler can be concentrated in separate regions of high
FoM. Once the sampling is terminated, when the convergence criteria are met, we assume
that all regions of interest should by then have accumulated sufficient samples to represent
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(a) Normalised histogram for the I on the ideal Earth.

(b) Normalised histogram for the D on the ideal Earth.

(c) Normalised histogram for the R on the ideal Earth.

Figure 5.5: Individual normalised histogram of I , D and R, conclusion drawn from the ideal
Earth simulation.
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adequately the underlying distribution. Although we want the maps to reflect the globally
optimal network configurations, for networks containing different numbers of detectors, we
should bear in mind the other external factors that will determine in reality where future
generations of detectors are constructed. Thus we adopt a threshold on the FoM, 90% of the
highest FoM, and consider all networks that exceed this threshold. We then determine our
flexibility index for each site by counting the number of different networks including that
site which exceed our chosen FoM threshold.

For displaying our results we adopt a standard world map with 1520 × 759 pixels. For
each pixel, we convert the pixel location into geographical coordinates, and identify all the
networks that contain one site within a certain distance (∼ 200 km for the zoom-out figures
like Figure 5.6 and 5.9, and ∼ 64 km for the zoom-in figures like Figure 5.7, 5.8 and 5.10)
of that pixel. This choice leads to a larger fluctuation for the zoom-in maps.

To avoid multiple counting of ‘similar’ configurations, we determine the inner product of the
unit vectors constructed from the coordinates of the sites that comprise two networks that we
wish to compare. For a network that consists of t detectors, we set N = (Φk, λk, . . . ,Φl, λl),
while k, . . . , l is permuted over 1, . . . , t. The normalised vector n = N

|N| , and we define the
inner product of two networks n and m to be s = max(n ·m) that has been maximised over
permutation of component detectors for n and for m. We define the two networks as dupli-
cates if their inner product is larger than 0.95; in this case one of the network configurations
is discarded. The adoption of this approach ensures that our results are not adversely affected
by the somewhat arbitrary partitioning of the world map, while at the same time allowing
our mixed MCMC approach to benefit from the fast identification of regions of interest pre-
cisely through use of this partitioning. Since this inner product criterion of 0.95 is applied
to unit vectors, it is independent of the number of detectors in our network. This is very
useful as it allows us to compare directly and straightforwardly our results for 3-detector and
5-detector-networks.

To sum up, instead of looking at the sample density in a 6 or 10 dimension parameter space,
we convert our result back to a two dimensional Earth surface, by introducing the idea of
“flexibility index”. This is calculated by find the number of good networks which contains
one component around an interesting location. There are redundancy in the samples as there
are some networks which are very similar to each other, and we reduce the networks into
representatives, so that a fair comparison could be drawn.

5.3.1 Network of 3 detectors

As shown in figure 5.6a, after filtering out all configurations that have a FoM smaller than
90% of the highest FoM, the ‘best’ site (as defined by the flexibility index introduced in the
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(a)

(b)

Figure 5.6: World map showing the “flexibility index” – i.e. the number of different, distinct
network configurations associated with a particular site, assuming a 3-detector GW detector
network. The upper panel shows the result after filtering out all configurations with FoM
smaller than 90% of the most optimal configuration, while the lower panel shows the result
with the filtering criteria set to be 80%.
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(a)

(b)

(c)

(d)

Figure 5.7: Zoom in map for regions with high flexibility indices, from figure 5.6a. Subplot
a, b, c and d shows maps of Australia, Europe, India and America respectively. Notice that a
shorter smooth length is applied here compared with figure 5.6, causing a larger fluctuation.

previous section) is located in Australia. This result is consistent with previous conclusions
from [136]. For the best site identified in this way there are in total 10 different possible net-
work configurations. Notice that in some regions of Europe, North America and India there
are also large numbers of alternative network configurations with high FoM, and Australia is
only slightly better than these regions.

Figures 5.7a to 5.7d show zoomed-in detail on those regions around the world which have
highest flexibility index: Australia, Europe, India and North America.

We also applied a brute force search on the ‘ideal Earth’ (see 5.2.5) in order to check the opti-
mal network configuration. This exhaustive method can search for the optimal configuration
of a 3-detector network when not including any terrestrial constraints. We find that such a
network would be optimal when the detectors form an isosceles triangle with two sides of
length of ∼ 130◦ on the Earth surface, and the distinct third side of length ∼ 50◦. This result
further confirms the previous result that when a network consists of only two detectors, the
optimal situation is when they are separated by ∼ 130◦ [136].

We can also notice that Central Africa and East Asia seem not to be ideal sites. The major
reason for this is that the 130◦ circle around these regions mostly falls in the ocean.

In figure 5.6b, the world map is shown for the case of a lower FoM threshold: here we have
filtered out network configurations that have FoM less than 80% of the optimal value. Notice
that some areas in Africa and in East Asia that were blank in the previous figure, with a
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(a)

(b)

(c)

(d)

Figure 5.8: Zoom in map for regions in a 3-detector network with high flexibility indices,
from figure 5.6b. Subplot a, b, c and d shows maps of Australia, Europe, India and America
respectively. Notice that a shorter smoothing length is applied here compared with figure
5.6, causing a larger fluctuation.

90% threshold, are now filled in. This indicates that the blank regions in figure 5.6a were
not the result of insufficient sampling but rather were due to the intrinsic lack of high FoM
configurations in these regions. It seems that these new potential interferometer sites are
either too close to the sea, or are otherwise not ideal for building future generation detectors,
however.

In table 5.1 we list the locations of the other two sites for various “good” 3-detector networks,
in which one site is located near to the global optimal site.

5.3.2 Network of 5 detectors

Figure 5.9 shows a world map of the flexibility index for a 5-detector network. Here we find
that Australia is still the best site, and unlike the situation with a 3-detector network, it is
significantly better than any other regions. In the best site, there are in total 131 different
possible network configurations after filtering out all configurations with FoM smaller than
90% of the optimal FoM. Lowering the threshold to 80% increases this number to 235.
Besides Australia, the next best site locations are in North America and South America,
although the flexibility index for these locations is more than 50% smaller than for Australia.

Another important respect in which our 5-network results differ from those of the 3-detector
network is that the first detector can be built almost anywhere, as long as it is not excluded
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(a)

(b)

Figure 5.9: World map showing the flexibility index, assuming a 5-detector GW detector
network. The upper panel shows the result after filtering out all configurations with FoM
smaller than 90% of the optimal configuration, while the lower panel shows the result with
the filtering criteria to be 80%.
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Site 1 Site 2
long(◦) lat(◦) long(◦) lat(◦)

-84 14 -43 -15
27 51 -99 62

-105 57 -76 1
25 1 -103 37
27 20 17 64
53 62 -69 -16

117 3 -92 47
16 -3 -43 -20
15 -8 21 45

Table 5.1: The locations of the other two detectors, for a series of examples of “good”
3-detector networks, in which the future generation detector is located around the global
optimal site, at longitude 146◦ and latitude −30◦. Each of these networks yields a value of
C that is greater than 90% of Cmax. The order does not have any special meaning, so the site
1 and site 2 are interchangeable.

by the conditions described in chapter 5.2.4. One should not be surprised by this outcome
since the more detectors that a network includes the more flexible it should become.

Figures 5.10a to 5.10c show zoomed-in detail on those regions around the world which have
highest flexibility index for a 5-detector network, and adopting a FoM filtering threshold of
80%.

In table 5.2 we list the locations of the other four sites for various “good” 5-detector net-
works, in which one site is located near to the global optimal site.

5.4 Conclusions and Discussion

In this work we have applied a novel method for identifying optimal sites for future net-
works of Gravitational Wave detectors. Our method adopted a new sampling approach that
is well-suited to dealing with high-dimensional parameter spaces, thus permitting for the first
time the simultaneous optimisation of parameters for multi-detector networks – a significant
extension of the method previously presented in [136]. We presented results for networks
comprising 3 and 5 GW detectors.

We adopted a FoM for each network configuration based on its capability of reconstructing
the signal polarisation, accuracy of source localisation and accuracy of source parameters
estimation for a standard compact binary source. We followed the definition previously
adopted in [136] for the combined FoM, C; however, the actual definition of D in this work
is slightly different, as we calculate the fraction of sky for which the source can be localised
to better than a specified area, S.
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(a)

(b)

(c)

Figure 5.10: Zoom in map for regions in a 5-detector network with high flexibility indices,
from figure 5.9b. Subplot a, b, and c shows maps of South America, Australia and America
respectively. Notice that a shorter smoothing length is applied here compared with figure
5.9, causing a larger fluctuation.

Site 1 Site 2 Site 3 Site 4
long(◦) lat(◦) long(◦) lat(◦) long(◦) lat(◦) long(◦) lat(◦)

18 -4 32 59 -109 30 -71 -49
23 -29 109 61 74 25 -93 44
19 -2 114 61 -131 58 -64 -5
21 -29 42 62 107 61 -73 5
24 -9 117 41 -118 37 -70 -42
32 -7 74 49 -88 38 -69 -15
35 -11 46 24 -119 41 -63 -36
4 32 19 -23 -114 40 -64 -36

20 -8 -122 44 -71 -45 -57 -13
23 -31 19 51 150 61 -95 30

Table 5.2: The locations of the other four detectors, for a series of examples of “good” 5-
detector networks, in which the 5th detector is located around the global optimal site, at
longitude 146◦ and latitude −29◦. These examples are the networks that give the 10 largest
sampled values of C. The order does not have any special meaning, so the four sites in one
line are interchangeable.
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We used a MCMC-based sampling method which meets our requirement to sample effi-
ciently in high-dimensional parameter spaces. However, for a multi-modal posterior dis-
tribution standard MCMC is much less effective. We have, therefore, developed a variant,
known as mixed MCMC, that is ideally suited to handle the multi-modal feature of our prob-
lem. We partition the parameter space manually to facilitate fast initial sampling, dividing
the world into 6 regions, roughly overlapping with the normal definition of the continents.
The multiple modes of our distribution are expected to be located distinctly in combinations
of these 6 regions. Such a partition is somewhat arbitrary, but this is intuitive, and the pur-
pose is to distinguish all modes so that no two modes share one piece of the partition. As
long as the partition is dense enough, we should obtain conclusions that are robust against
changes in the partition.

The sampling results were combined and for each pixel in a 1520×759 pixel world map (cor-
responding to a resolution of approximately 26 km at the equator), we counted the number of
distinct network configurations that have a FoM higher than 90% of the best FoM identified.
We call this number the “flexibility index” of the network: in this sense, a site with a large
flexibility index offers more options for network configurations with a high FoM. In other
words, once a detector is built on such a site, one has greater flexibility for locating other
detectors. This criterion to identify a “good” detector location is, therefore, well suited to the
(likely) case where future detector networks are not built simultaneously but sequentially.

For both 3-detector and 5-detector networks, we consistently found that Australia hosted the
best site – further confirming and generalising the conclusions of previous work in [136],
where only one detector was optimised. However, for the 3-detector network, the best sites
in Australia are only slightly better (in terms of their flexibility index) than optimal sites
in Europe, America and India. For a 5-detector network, on the other hand, Australia is a
considerably better site than any other region. This would suggest that, if the long-term goal
is to create a network of as many as 5 GW detectors, then building one of the first detectors
in Australia is a powerful strategy.

We have included two tables (in table 5.1 and in table 5.2) showing the example locations
of sites – in networks of 3 GW detectors and 5 GW detectors respectively – which, when
combined with a detector located at the global optimal site, yield a combined FoM C that is
more than 90% of Cmax.

Our approach is simplified in several important respects – not least our assumption that the
spatial distribution of GW sources is isotropic, and the seismic environment is homogeneous
within the allowable regions, so that the comparison of different networks is purely deter-
mined by their relative geometric shape and (provided that all sites remain within allowed
regions on the Earth’s surface) is insensitive to translation of the entire network configu-
ration. The definition of the FoM could be improved to include such factors as economic
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stability and scientific policies. Given the difficulty in modelling them accurately, especially
over a timescale of decades, we have not considered such factors in this work. The final
decision of such a site selection would have to account for them. Nonetheless, we worked
out a solid framework that allow future updates and the inclusion of any emerging geopoliti-
cal, military, financial, etc. constraints. We are planning to create a crowdsourced project to
update and refine the constraint map with all available information, so that we can keep the
boundary conditions up-to-date and detailed.

In the future, we can include phase information of GW waveform into consideration; arrange
the weights of individual FoMs to be unbiased as some FoM could be more sensitive to
configurations than others; correlation between FoMs should be investigated, since for future
generation detectors, the ability of distinguish polarisation could be used to help constraining
sky localisation [242, 243]. In future work we will also extend our approach to include
astronomical information about the actual, anisotropic, distribution of potential GW sources
on the sky; this information will break the degeneracy of our FoM to network translation.
Meanwhile, seismic stability for a site can also be considered quantitatively in the FoM of
the network, further providing more realistic optimisation. 1

1This work is accepted by Classical and Quantum Gravity, and I am the first author as well as the corre-
sponding author.
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Chapter 6

The Significance Mock Data
Challenge

In this section I will present my work collabrated with some other researchers. The effort is to
set up a Mock Data Challenge for the estimation of significance, and let participants analyse
and feedback the analysis for the false alarm probabilitites, so that we can understand the
effect of removal of the zero-lag events in the estiamtion of false alarm probaiblity. I was
responsible for the generating of such Mock Data, and I analysed the feedback to summarize
and form the final conclusion.

The ultimate purpose of the work of this thesis, as well as more broadly the work of the entire
LIGO Scientific Collaboration (LSC), is to make the direct detection of gravitational waves,
only after which the detailed study of gravitational-wave physics and astronomy is possible.
In order to claim the first detection confidently, one needs to understand the False Alarm
Probability (FAP) of the events well. Such understanding is vital especially for the first
detections when they are generally believed to have relatively low False Alarm Probability
(FAP), it’s harder to make the decision of whether the detection corresponds to a foreground
signal or a background noise. However, there exist debates over the proper way of estimating
such FAP, which generally diverge from each other in the case of interesting significant
events. Thus, the author of this thesis together with Chris Messenger and Martin Hendry
set up the significance Mock Data Challenge, also known as the “Hamlet test”, aiming to
determine the proper method of estimating FAP. Participants of this MDC include Thomas
Dent, Collin Capano, Chad Hanna and Matt West.

The global network of advanced GW detectors is poised to make its first direct detection
[56, 52, 244]. The most likely astrophysical sources for detectable transient signals are in-
spirals and mergers of compact stellar binaries: binary neutron stars, black holes, or mixed
binaries [79]. Detection of compact binary coalescence (CBC) would open a new window
of gravitational wave astronomy [2]. Upon first, and subsequent detections, the LSC (LIGO
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Scientific Collaboration) and Virgo collaborations (LVC) will be tasked with assigning a
measure of statistical confidence to the events in question [149]. This FAP estimate will
allow GW data analysts to distinguish between sources of astrophysical origin and non-
astrophysical detector noise artefacts. The FAP estimate also encapsulates a wealth of infor-
mation into an easily digestible form for the physics community as a whole. Claims for the
detection of previously undetected physical phenomena are usually held up high statistical
confidence levels of scrutiny, e.g. the Higgs boson [245] and the CMB polarisation [10].
The same will be true for direct detection of GWs: enhanced statistical confidence will be
required as well as a deep understanding of the accuracy of statements made about the FAP
of a candidate event.

6.0.1 Background of the Mock Data Challenge

In order to construct a measure of FAP it is appropriate to consider a null hypothesis. For
gravitational wave detection the null hypothesis is that the data, consisting of one or more
streams (time series) of estimated strain s(t) from interferometric detectors, are caused by
non-astrophysical, non-gravitational-wave processes acting on and within the interferome-
ters. In addition, we must define a test statistic such that every possible result of a given
observation or experiment performed on the data is assigned a statistic value: larger statis-
tic values indicate a higher deviation (and less probable) from expectations under the null
hypothesis. Then the FAP, or P-value, of the result is the probability under the null hypoth-
esis of obtaining a statistic value equal to, or larger than, the one actually obtained in the
experiment.

In general the detector output data streams are the sum of terms due to non-astrophysical pro-
cesses, known as background noise, and of astrophysical GW signals, called foreground. If
we were able to account for all contributions to the noise using predictive and reliable physi-
cal models (for instance modelling shot noise via photon counting statistics ) we would then
be able to make accurate statements on the FAP of any observation [246]. However, for real
gravitational-wave detectors, in addition to terms from known and well-modelled noise pro-
cesses, the data contains large numbers of non-Gaussian noise transients (“glitches”) whose
sources are either unknown or not accurately modelled, and which have potentially large
effects on any searches for transient GW [101]. Even given all the information available
from environmental and auxiliary monitor channels at the detectors, many such noise tran-
sients cannot be predicted with sufficient accuracy to account for their effects on search algo-
rithms. (Doing so would also require us to model the, in some cases complicated, workings
of the search algorithms.) Thus, for transient searches in real detector noise it is necessary
to determine the effects of noise backgrounds empirically, i.e. directly from the strain data
themselves.
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However, doing so has notable potential drawbacks. It is not possible to operate gravitational
wave detectors so as to “turn off” the astrophysical foreground and simply measure the back-
ground; if the detector is operational then it is always subject to both sources. In addition, our
knowledge of the background noise distribution is limited by random fluctuations over the
finite amount of data available. This limitation applies especially in the interesting region of
low probability under the noise hypothesis, corresponding to low number statistics of noise
events.

Transient gravitational wave signals are expected to be well modelled by the predictions
of Einstein’s general relativity [17]. They will also be observed in multiple detectors with
consistent waveforms, and, crucially, with consistent arrival times. Gravitational waves prop-
agate at the speed of light (see e.g. [2]), hence we expect the arrival times of signals to differ
between detectors by ∼ 4 × 10−2 s or less (the light crossing time of the earth). The exact
differences in arrival times are governed by the location of the source on the sky in relation
to the constantly moving detectors as the Earth spins on its axis. This property acts as a
very powerful test in allowing us to distinguish between true signals and detector noise or
noise artefacts. It would be highly unlikely – but not impossible – that independent detector
noise from 2 or more interferometers thousands of miles apart would coincide or conspire to
appear like a signal within (say) a ±20 ms window. The probability of such an occurrence
reduces with increasing event amplitude, such that above some specific amplitude the proba-
bility of obtaining such a loud event from the noise background is small enough that the null
hypothesis may be rejected in favour of an alternative hypothesis corresponding to detection
of one or more astrophysical signals [149].

The canonical approach using in gravitational wave data analysis for estimating the back-
ground is time-shifted analysis or “time slides” [109, 247, 248]. It is an estimation method
that exploits the coincidence requirement of foreground events by time-shifting the data from
each detector relative to the others. Such a shift, if larger than the coincidence window as
defined by the light travel time between detectors, plus possible statistical errors in the ar-
rival times 1 would rule out the possibility that a foreground signal would be identified as
a coincident event in a time-shifted analysis. Therefore, from a single time-shifted analysis
(“time slide”) the output coincident events would represent one realisation of the background
distribution. Repeated time-slide procedures using the same datasets could then be used to
accumulate instances of background coincidences and thus estimate their rate and distribu-
tion.

An cartoon illustration of such time shift method is demonstrated in figure 6.1.

The time-slides approach has been an invaluable tool in the analysis and classification of
candidate gravitational wave events in the initial gravitational wave detector era. We remind

1As standard, time-shifts are also large enough to allow for extended correlations between signals.
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(a) Original data from two detectors

(b) Time-shifted data

Figure 6.1: Cartoon illustration of time slide method, with the vertical axes showing the
SNR. The original data was observed as in figure 6.1a, if triggers from two detectors coin-
cide within a time window, it’s recognised as a coincidence. The background is esitmated
by shifting the time of one detector’s triggers and find artificial coincidence. The controver-
sial concentrated on the treatment of the artificial coincidence which contains the original
coincidence.
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the reader that there has not yet been a gravitational wave detection and hence the task
of estimating event FAP has been made using data believed to satisfy the null hypothesis,
or at least to contain signals which are so quiet as to be indistinguishable from noise. A
notable exception occurred in 2010, when the LVC performed a self-blinded simulated signal
injection [149]. A signal was injected into the global network interferometer hardware and
analysed by the collaboration knowing only that there was the possibility of such an event.
The impact of the blind injection for the issue of background estimation was illuminating
since it highlighted potential issues with the use of time-shifted analysis in the presence of
astrophysical signals (simulated or not).

Simply time-shifting detector outputs with respect to each other does not eliminate the pos-
sibility of coincident events caused by one or more foreground events in a single detector
passing the coincidence test with random noise outliers in another detector. Thus, the en-
semble of samples generated by time-shifted analysis may be “contaminated” by the pres-
ence of foreground events in single-detector data compared to what would result from the
noise background only. The distribution of events caused by astrophysical signals is gener-
ally quite different from that of noise, in particular having a longer tail towards higher values
of SNR (or other event ranking statistic used in search pipelines). Thus, depending on the
rate of signals and on the realisation of the signal process obtained in any given experiment,
such contamination could considerably bias the estimated background. It is expected that
in this case, the estimated background level will be raised by the presence of signals; hence
the FAP of coincident events seen in the search (in non-time-shifted or “zero-lag” data) may
be underestimated. This leads to a conservative estimate for the FAP; in other words, the
expected number of false detection claims will not increase due to the presence of signals,
however some loud signals may fail to be detected due to an elevated background estimate.2

Besides the standard time-shift approach, other background estimation techniques have been
developed [77, 107]. All are variants on one key concept: events that are not coincident
within the physically allowed coincidence window cannot be from the same foreground
source. The major variations occur in the specific implementation of the procedure. As
opposed to the standard scheme, one can choose to identify all coincident events in zero-lag
and flag them as potentially due to foreground events. These can then be removed before
performing time-slides and hence then reducing the possibility that foreground events con-
taminate the background estimation. One may expect that such an approach then avoids the
issue of background enhancement but it is not clear that in general this leads to any bias in
subsequent FAP estimates, either conservative or otherwise.

2The reader may ask what a “false detection claim” means if signals are present: this refers to a situation
where there are foreground events in the search, but there are also comparable or louder background noise
events (with equal or higher ranking statistic values): in particular the loudest event in the search is due to
background, thus a detection claim would be misleading.
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In this paper we aim to rigorously test the performance of the 3 main approaches to back-
ground estimation currently used in the LVC. In each case we test each approach’s behaviour
in the 2 modes of non-removal and removal of zero-lag events, the name “Hamlet Test” re-
flects such “To remove or not to remove” nature of the problem. The tests are undertaken
in the form of a mock data challenge (MDC) in which simulated realisations of single de-
tector triggers are generated according to analytically modelled background and foreground
distributions, while such analytical expressions are kept unknown to the participants. The
background distributions are chosen to model a range of potential complexity spanning and
including realistic initial detector type distributions. The foreground triggers are chosen to
model one of the most likely first sources, binary neutron stars, and range in their detection
rate from zero up to the maximum expected for the first advanced detector science runs.
Participants are asked to apply background estimation algorithms to these data datasets and
report the estimated FAP of the loudest events found in each case. Since the MDC uses an
analytic description of the background distributions (something we will never have access to
in a realistic scenario) we can compute the “exact” FAP values semi-analytically and hence
use this as our benchmark for comparison amongst other figures of merit.

In the following section give details of the MDC including descriptions of the background
and foreground distributions, the data generating procedures and the details of the exact FAP
calculation. In Sec. 6.2 we then describe the different background methods used in this
analysis. We report the results of the challenge in Sec. 6.3, comparing and contrasting the
properties of the results obtained from each of the algorithms in each of their 2 modes of
operation, and finally give a summary in Sec. 6.4.

6.1 The mock data challenge

Data from the advanced gravitational wave detectors will be analysed using matched-filtering
algorithms [16]. Although the template banks are designed to match the GW emitted during
CBC inspiral stage, detector noise could mimic the signal giving rise to some level of false
alarm. Only time coincident triggers among multiple detectors are considered as potential
astronomical events. In order to make a confident detection claim one needs to estimate the
rarity, or false alarm probability (FAP), of such an event, and only announce detection when
the signal is significant enough that the possibility of it being caused by noise is extremely
low.

One needs to gain knowledge regarding the SNR distribution of the triggers that are due
to background noise. These triggers are the output of an incredibly complex and highly
sensitive measurement instrument and their distribution is not known a priori and must be
estimated empirically. Current or proposed methods described in Sec. 6.2 use a common pro-
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cedure of combining non-coincident triggers from different detectors to represent possible
background coincidences, and then use this distribution as an estimation of the actual distri-
bution. However, there is a major difference among the methods, namely, whether or not to
remove the actual coincident zero-lag events when estimating the background distribution.
We know that the zero-lag events will likely contain background triggers, and by removing
them we might be biasing our background estimate. However, if astrophysical signals are
present in the zero-lag data and they are not removed then they would also act to contaminate
the background estimation.

This importance of this issue was brought into attention by a blind injection signal, when
hardwares are intentionally mimicing astrophysical signal and no single person knew before-
hand whether it’s an artificial or actual signal before the envelope was opened [149]. One
such blind injection was implemented in the sixth scientific run and the two modes of estima-
tion for the false alarm probability disagree with each other, espectially on the fact whether
it passes the 5− σ threshold. We would like to avoid such scenario for the actual detection,
which motivates this work, namely to properly understand the effect of removal of zero-lag
events for the FAP estimate. We have designed a MDC that seeks to resolve, amongst other
issues, the question of to remove or not to remove of the zero-lag events. Simulated single
detector triggers are generated artificially from semi-analytic background (and foreground)
distributions and challenge participants are given lists of trigger arrival times and SNRs for
each detector plus a list of coincident (zero-lag) trigger arrival times and SNRs. The CDFs of
the SNR in each detector are described analytically and known only to me. With this analytic
form, we are able to compute the FAP of any loudest coincidence event.

There were 14 individual simulations each consisting of 105 observational realisations and
each realisation containing, on average,∼104 single detector triggers. Challenge participants
were asked to estimate this FAP of the loudest coincident event in each of the 105 realisations
for each experiment. Between experiments the background distribution was varied as well
as the astrophysical event rate which varied between zero and high values (corresponding to
∼3 detections per realisation). Analysis of the differences in the estimated and exact FAP
values, enables us to quantify the influence of removal of zero-lag triggers as opposed to non-
removal. It also allows us to directly compare implementation methods (since proponents of
each algorithm were asked to submit both removal and non-removal based results). Finally,
it allows us to quantify the expected limiting factors in the accuracy of our FAP estimates
and the corresponding uncertainties.

Our aim was to explore a number of potential detector-background and foreground-level
scenarios. We have therefore divided our simulations into 3 groups according to astrophys-
ical rate, and independently into 3 groups according to background distribution complexity.
Combined together there are 9 possible combinations which we have appended with an ad-
ditional 4 simulations. Three of these were designed to have exactly the same background
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Background property
Foreground rate simple realistic extreme hidden tail

low/none 1,3 10,12 2,14 7
medium 9,13 8 6 -

high 5 11 4 -

Table 6.1: The indices of all 14 experiments showing each experiment’s classification in
terms of background complexity and astrophysical foreground rate. It shows a good coverage
of our designed Mock Data over a variaty of background complexities and foreground rates.

distributions as 3 of the original 9, and 1 simulation was included with background distribu-
tions containing an extended shallow tail. We show this division in Tab. 6.1. A simple back-
ground corresponds to a straight line relationship between single detector SNR and 1−CDF
in log-space. A realistic background is achieved via fitting of our analytic CDF model to dis-
tributions of existing GW trigger data [149], and the extreme backgrounds attempt to model
distributions composed of multiple populations resulting in multiple gradient changes in the
distribution tails. We classify a low foreground rate as <0.01 expected coincidences per re-
alisation, a medium rate corresponds to an expected 0.01–1 coincidence per realisation, and
high rate corresponds to >1 per realisation. We do not use foreground levels that exceed
∼3 coincidences per realisation since we are interested in understanding our FAP estimation
abilities for only the first advanced era detections.

6.1.1 Modelling the detector background

The CDF of the background SNR triggers is modelled as an exponential with argument de-
scribed by a piecewise polynomial function in ρ−ρ0, where ρ is the SNR and ρ0 is a constant.
The polynomial coefficients must satisfy the constraint that the CDF remains monotonic in
ρ. Additionally, a0 is subject to the constraint that the CDF should be constrained between
0–1. The CDF can be written as

CDF(ρ) =


1− exp

[
6∑
i=0

ai (ρ− ρ0)i
]

if ρ ≤ ρSP

1− CSP exp [b (ρ− ρSP )] if ρ > ρSP

(6.1)

where we define the CDF differently in the regions below and above a switching-point ρSP

in order to satisfy the constraints on the CDF model. These 2 functions are matched at the
switching point such that the CDF and its first derivative with respect to ρ is continuous.
Hence, a choice of CSP defines the values of ρSP and b. Details regarding the background dis-
tribution parameters chosen for each simulation can be found in Chapter B; here we describe
the broad properties of the distributions chosen for the MDC.
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A simple background corresponds to a straight line relationship between single-detector SNR
and 1−CDF in log-space. A realistic background is modelled by fitting our analytic CDF
model to distributions of existing GW trigger data [149]; the extreme backgrounds attempt to
model distributions composed of multiple populations resulting in multiple gradient changes
in the distribution tails.

A background with hidden tail is similar to extreme in the sense that its gradient in log CDF

vs. ρ varies substantially, but this variation occurs at much smaller values of 1− CDF, thus
some realisations have no single event in the ‘tail’; then without considering large numbers
of realisations, such a tail could be essentially hidden.

We generate the trigger time independently and randomly. Given an expected number of
triggers in the j’th detector, λj , and given that a coincident event is defined by

|t1 − t2| ≤ δt (6.2)

where t1 and t2 are the times associated with a trigger from the first and second detectors
respectively, we can estimate the expected number of coincident events n as

n =
2λ1λ2δt

T
. (6.3)

Here T is the total time of the observation and we have assumed that λδt/T � 1. In order
to generate a large enough number of background triggers to adequately model a realistic
GW observation, we use λ1∼λ2∼104. This choice is also motivated by the expected FAP
estimation uncertainty’s dependence upon this value and the computational cost to challenge
participants. We set the coincidence window δt = 50 msec to broadly model realistic values
and in order to obtain a desired ∼10 coincidences per realisation the total observation time
is set to T = 106 sec.

6.1.2 Modeling an astrophysical foreground

In the majority of simulations an astrophysical foreground of events is also included in each
realisation. We model our astronomical signal distribution as originating from the inspiral of
equal mass 1.4− 1.4M� binary neutron stars governed by a uniform distribution in volume
and in time. For each source the binary orientation is selected from an isotropic distribution
(uniform in cos ι) and the polarisation angle is uniform on the range [0, 2π). With these
parameters, we can predict the optimal SNR for a single detector ρopt as

ρ2
opt = 4

fisco∫
fmin

|h̃(f)|2

Sn(f)
df (6.4)
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where the integration limits fmin and fisco are the lower cut-off frequency (selected as 10 Hz)
and the upper cut-off frequency (selected as the innermost stable circular orbit frequency
= 1570 Hz). The detector noise spectral density Sn(f) corresponds to the advanced LIGO
design and the frequency domain signal, represented using the stationary phase approxima-
tion, is given by

h̃(f) = Q(θ)

√
5

24
π−2/3M5/6

d
f−7/6eiΨ(f). (6.5)

The function Q(θ) where θ = (α, δ, ψ, cos ι) contains the antenna response of the detector.
The square of the observed SNR ρ is constructed from a 2 degree-of-freedom non-central χ2

distribution with non-centrality parameter given by ρ2
opt.

We generate potential CBC events within a sphere of radius 1350 Mpc such that an optimally
oriented event at the boundary has <0.3% probability of being considered a trigger (SNR
>5.5) (the rate of such events are listed in table B.3). Each event is given a random location
(uniform in volume) and orientation from which we then calculate the corresponding optimal
SNR¸ and relative detector arrival times. The observed SNR is then a random variable drawn
from the non-central chi-squared distribution. For each detector, if the observed SNR is
larger than 5.5, it is recorded as a single detector trigger. The arrival time in H1 is randomly
selected uniformly within the observation time and the corresponding time in L1 is set by the
predetermined arrival time difference (defined by the source sky position). We do not model
any uncertainty in the arrival time measurements and hence, when an event is classified as a
trigger in both detectors it will naturally satisfy the time coincidence criteria and would be
recognised as a coincident event.

6.1.3 The definition of FAP for the MDC

Challenge participants were required to estimate the FAP of the “loudest” coincident event
for each realisation independent of its unknown origin (either background or foreground).
We combine the detection statistics from each detector, the SNRs, into a single statistic
according to

ρ =
√
ρ2

1 + ρ2
2 (6.6)

We then define the FAP of the loudest combined detection statistic as the probability of ob-
taining a value equal to or greater than the loudest from the background distribution within a
single realisation. We recall that a single realisation consists of∼104 single detector triggers
in 2 detectors. The FAP is a measure of how likely it is for random background noise to
have generated the observed data. The louder a coincident event is, the more unlikely and
the smaller the FAP will have.

Since I had access to the analytical description of the backgrounds I was able to compute the
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FAP exactly by computing

1− S(ρ) =

√
ρ2−r2∫
r

dρ1

√
ρ2−ρ2

1∫
r

dρ2p1(ρ1)p2(ρ2) (6.7a)

=

√
ρ2−r2∫
r

dρ1p1(ρ1)C2

(√
ρ2 − ρ2

1

)
(6.7b)

Here, r = 5.5 is the trigger SNR threshold and p1(ρ1), C2 is the CDF of the triggers’ SNR
for the second detector. and p2(ρ2) are the PDFs of the background distributions. We convert
a two-dimensional integral over ρ1 and ρ2 to a one-dimensional integral over

√
ρ2 − ρ2

1.
Challenge participants only had access to the triggers themselves and were not given the
underlying functions from which they were drawn. Subsequent estimates of the FAP S from
all participants were ultimately compared to the exact values computed according to the
Eq. 6.7b.

6.2 Background estimation algorithms

6.2.1 ihope: FAP via inverse false alarm rate (IFAR)

As already mentioned, searches for transient GW signals in ground-based interferometer
data have extensively used time-shifted analysis to provide background noise samples and
thus determine the FAP of the observed coincident events. We now describe the calculation
performed in the all-sky LIGO-Virgo search pipeline for CBC and indicate how the method
has been adapted for the simplified high-statistics study presented in this paper [247, 248,
107, 149, 247].

Each coincident event obtained in the search is characterised by its estimated coalescence
time and binary component masses, and in addition by the values of SNR ρ and the signal-
based chi-squared test χ2 in each detector, which together are intended to achieve separation
of signals from non-Gaussian noise transients [143]. The event ranking statistic used, ρc,
is the quadrature sum of re-weighted SNRs ρ̂A(ρA, χ

2
A) over participating detectors A [247,

109, 149].3 Exactly the same coincidence test is performed in the time-shifted analyses
as in the search, resulting in a set of values {ρc,b} from time-shifted events, considered as
background samples.4

3In real data the search may be divided into event bins determined by the component masses and participat-
ing interferometers; these complications are irrelevant to the present study, which does not attempt to simulate
them [247, 248].

4In real data an additional time clustering step is performed on the search and on each time-shifted analysis
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With the search performed over a duration T of two- or more-detector data, and time-shifted
analyses covering a total duration Tb ≡ sT , defining a background multiplier s, the estimated

false alarm rate (FAR) of a candidate event having ranking statistic ρ∗c is calculated as the
observed rate of louder background events over the time-shifted analyses:

FAR(ρ∗c) ≡
∑
{ρc,b}[ρc,b > ρ∗c ]

Tb
≡ nb(ρ

∗
c)

Tb
, (6.8)

where [x > y] is equal to 1 if true or 0 if false. Note that this may be equal to zero for a high
enough threshold ρ∗c .

The test statistic used to determine FAP is inverse FAR (IFAR) defined as 1/FAR; thus, we
wish to know the probability of obtaining a given value of nb/Tb, or lower, under the null
hypothesis. For small nb(ρ∗c) this can be shown to be

p(nb(ρ
∗
c)) ≡ P0(nb ≤ nb(ρ

∗
c)) ' 1−

(
s

1 + s

)nb(ρ∗c)+1

(6.9)

' 1 + nb(ρ
∗
c)

1 + s
, s� 1, s� nb, (6.10)

where P0(A) denotes the probability of A being true in the absence of signal. This result fol-
lows from taking the search events and time-shifted background events together and arguing
that for each of the nb + 1 loudest such events, the probability of it occurring in the search
rather than the background time is T/(T + Tb) in the absence of signals. This reasoning is
based on the statistical independence of these louder events, which may not hold in general
since the number of background samples obtained in time-shifted analyses may be larger
than the number of single-detector triggers from which they are produced; we expect the
approximation to be increasingly good as nb becomes small [78].

The implementation is simplified considerably by considering the largest possible number
of time-shifted analyses, such that a pair of single-detector triggers that are coincident in
one analysis cannot be so for any other analysis; this implies that the relative time shifts are
multiples of 2δt. The maximum number of time-shifted analyses is then s = T/(2δt) − 1,
thus s/(1 + s) = 1 − 2δt/T . In addition the resulting time-shifted coincidences are simply
the outer product of the single-detector triggers, minus those coincident in the search (“zero-
lag”): so every trigger in detector 1 will be coincident with every trigger in detector 2, either
in zero-lag or for some time shift. Identifying ρ∗c with the loudest coincident search event

in order to reduce the number of strongly-correlated coincident events separated by short intervals (. 1 s)
resulting from the use of large numbers of filter templates with overlaps near unity. In this study, however,
single-detector events are already uncorrelated by construction, thus such clustering is not performed.
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value ρc,max we have

1 + nb(ρc,max) =
2δt

T

∑
i

∑
j

[ρ2
1,i + ρ2

2,j ≥ ρ2
c,max], (6.11)

where the sums run over all single-detector triggers {ρ1i}, {ρ2j}, i = 1 . . . N1, j = 1 . . . N2

and the +1 on the LHS follows by including the loudest search event itself on the RHS via
the ≥ condition: thus the FAP estimate at the threshold ρc,max becomes

p(nb(ρc,max)) ' 1−
(

1− 2δt

T

)1+nb(ρc,max)

. (6.12)

To extend the calculation to larger nb and generalise it to events which are not the loud-
est in the search we pursue a different derivation, considering the probability that a single
coincident event due to background is at least as loud as a threshold ρ∗c . This is estimated as

P0(ρc ≥ ρ∗c |1) '
∑

ij[ρ
2
1,i + ρ2

2,j ≥ ρ∗2c ]

N1N2

≡ 1 + nb(ρ
∗
c)

N1N2

. (6.13)

Here the numer 1 indicates one and only one event lounder than ρ∗c . The probability of
obtaining no such coincident background events is a survival probability given the events
obtained in the analysis; the expected number of coincident background events is 〈Nb〉 =

2N1N2δtT
−1. Taking each coincident event as an independent trial, which will be a good

approximation as long as Nb � N1, N2, the false alarm probability for Nb events is

p(ρ∗c |Nb) ' 1− (1− P0(ρc ≥ ρ∗c |1))Nb . (6.14)

Since we do not know in advance how many coincident events will be present in the search,
we should marginalise over this number, for which a suitable prior is the Poisson distribution

p(Nb|µ) =
µNbe−µ

Nb!
,

with µ = 〈Nb〉. Doing so we find a notable simplification: the dependence on 〈Nb〉 disap-
pears and we are left with

p(ρ∗c) ' 1− exp

(
−2δt

T
(1 + nb(ρ

∗
c))

)
, (6.15)

which is the correct extension of Eq. (6.12) for general nb or ρ∗c values. For 2δt/T � 1

these formulae give essentially identical results at the loudest search event threshold ρ∗c =

ρc,max. Thus, false alarms louder than ρ∗c arising by random coincidence from our sets of
single-detector triggers are approximated by a simple Poisson process with expected number
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(2δt/T )(1 +nb(ρ
∗
c)). We have verified that the p-value of Eq. (6.15) is distributed uniformly

on (0, 1] for MDC data sets containing uncorrelated noise triggers. Note also that all formu-
lae, with or without marginalisation, are consistent in the small-p limit.

So far we have considered the case where all single-detector triggers are kept in constructing
the background values. To implement the case of removing zero-lag coincident triggers,
we simply exclude these from the sums over pairs of triggers in Eqs. (6.12) and (6.13). If
the resulting p-value is equal to zero, as may happen for very loud search events ρc,max, we
regularise it by effectively adding 1 to nb to obtain p = 2δt/T .

6.2.2 The gstlal approach

The method to estimate the FAP of coincident events based on the likelihood ratio ranking
statistic described in [77] was modified for this test to use a single parameter, ρc. The false
alarm probality for a single coincident event can be found as

P0(ρc) =

∫
Σρc

∏
i

p(ρi) dρi, (6.16)

where p(ρi) dρi are the probability densities of getting an event in detector i with SNR ρi,
and Σρc is a surface of constant coincident SNR. The distributions p(ρi) dρi are measured by
histogramming the single detector SNR values either with or without the coincident events
included. To get the cumulative distribution for a single event we have

P0(ρc > ρ∗c |1) = 1−
∫ ρ∗c

0

P0(ρc) dρc. (6.17)

The multiple event false alarm probability is found in the same way as (6.14) where Nb is
estimated from the data.

6.2.3 A new approach

The New Method is described in detail in [107]. Here we provide a brief synopsis.

To estimate the false alarm probability of foreground triggers, we first find the probability of
getting a trigger from the background distribution with combined SNR ≥ ρ̂ in a single draw.
When not removing foreground triggers from the background estimate, this is:

F(ρ̂) =
n(ρ̂)

N1N2 − k
. (6.18)

Here, ρ̂ is the quadrature sum of the single-detector statistics, Ni is the total number of
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triggers in the ith detector, k is the number of foreground triggers, and n(ρ̂) are the number
of background triggers with a combined SNR ≥ ρ̂.

Both background and foreground triggers are constructed by finding every possible combi-
nation of triggers in detector 1 and detector 2. Background triggers are then any coincidence
such that ∆t = |t1 − t2| > w, where w is the coincidence window, while foreground trig-
gers are those with ∆t ≤ w. These can be found by adding the matrices Z = X + Y ,
where Xij = ρ2

1[ti] ∀j and Yij = ρ2
2[tj]∀i. The elements of Z are thus the ρ̂2 of all possible

combination of triggers; those Zij with |t[i]− t[j]| ≤ w are foreground; the rest background.

When removing foreground triggers from the background, the single detector triggers that
form the foreground are removed from theX and Y matrices prior to findingZ. This changes
the denominator in Eq. (6.18) to (N1 − k)(N2 − k). However, if N1, N2 � k, then the de-
nominator is approximately N1N2 in either case; we use this approximation in the following.

Since Eq. (6.18) is a measured quantity, it has some uncertainty δF . This is given by:

± δF
(
ρ̂ =

√
ρ2

1 + ρ2
2

)
= F

√√√√∑
i=1,2

(
±δFi(ρi)
Fi(ρi)

)2

, (6.19)

where Fi(ρi) is the estimated survival function in the ith detector, given by:

Fi(ρi) =
ni(ρi)

Ni

. (6.20)

Here, ni(ρi) is the number of triggers in the ith detector with SNR ≥ ρi. We estimate δFi by
finding the range of Fi for which ni varies by no more than one standard deviation. Using
the Binomial distribution this is:

max
minFi =

Ni(2ni + 1)±
√

4Nini(Ni − ni) +N2
i

2Ni(Ni + 1)
. (6.21)

The error is thus:
± δFi = ∓Fi ± max

minFi. (6.22)

This error estimate can be asymmetric about Fi; to propagate to δF , we use +(−)δF1 and
+(−)δF2 to find +(−)δF .

Equation (6.18) estimates the probability of getting a trigger with combined SNR ρ̂ in a
single draw from the background distribution. If we do k draws, the probability of getting
one or more events from the background with combined SNR ≥ ρ̂ is:

F(ρ̂) = 1− (1−F(ρ̂))k, (6.23)
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with error:
± δF(ρ̂) = k(1−F)k−1(±δF). (6.24)

Thus, if we have two detectors with N1 and N2 triggers, k of which form foreground, or
correlated, coincidences, then we can estimate the probability (and the uncertainty in our
estimate of the probability) that each trigger was drawn from the same distribution as back-
ground, or uncorrelated, coincidences using Eqs. (6.18)–(6.24). The smaller this probability
is for a foreground coincidence, the less likely it is that that coincidence was caused from
uncorrelated sources. Since gravitational waves are expected to be the only correlated source
across detectors, we use this probability as an estimate for the false alarm probability.

As this study is concerned with just the loudest foreground events, it is useful to evaluate the
smallest false alarm probability that can be estimated using this method, and its uncertainty.
From Eq. (6.18), the smallest single-draw F that can be estimated is (N1N2)−1. By defini-
tion, this occurs at the largest combined background SNR, ρ̂†. If the combined SNR of the
loudest foreground event is not > ρ̂†, then ρ̂† must be formed from the largest SNRs in each
detector, so that ni = 1. Assuming N1, N2 � 1, then from Eqs. (6.23) and (6.19) we find:

minF ± δF ≈
N1,2�1

k

N1N2

[
1±

{
2.3

0.87

}]
. (6.25)

If the combined SNR of the loudest foreground is > ρ̂†, then we cannot measure its false
alarm probability. In this case, we use Eq. (6.25) to place an upper limit on F .

Determining the F for every foreground trigger can require storing and counting a large
number of background triggers. To save computational time and storage requirements, we
reduce the number of background triggers that have F > some fiducial F0 by a factor of
F/F0 for each order of magnitude increase in F . We then apply a weight of F/F0 to the
remaining background triggers when finding F for the foreground. For this study, F0 was
chosen to be 10−5. Thus, betweenF = 10−4 and 10−5, 1 out of every 10 background triggers
was kept, with a weight of 10 applied to the remaining. Likewise, between F = 10−3 and
10−2, 1 out of every 100 background triggers was kept, with a weight of 100 applied to the
remaining; etc. This substantially reduces the number of background triggers that need to
be counted and stored; e.g., for N1N2 = 108, only ∼ 5000 background triggers are needed,
a savings of about 5 orders of magnitude. The trade-off is that our accuracy in measuring
the false alarm probability is degraded for triggers with F > F0. This is assumed to be
acceptable in a real analysis, since triggers with larger F are, by definition, less significant.5

5In retrospect, this background degradation was not really necessary for this study, since we were only
interested in the false alarm probability of the loudest foreground event in each realisation. However, we
wished to keep the analysis method as similar as possible to what would be done in a real analysis.
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6.3 Results

In order to achieve our aims it is necessary for us to examine multiple properties of the sub-
mitted challenge results. In the following sections I first investigate the accuracy of the FAP
estimates by direct comparison with the exactly known true values for each realisation in
each simulation. I then examine the self-consistency of each set of results for each simula-
tion. Since the reported quantity is an estimate of a probability of an event in the absence
of signal, it is expected that the rate of occurrence of FAP values below a certain thresh-
old should be equal to their value. I then construct Receiver Operating Characteristic (ROC)
plots for each experiment as a way to compare estimates in terms of their detection efficiency
at fixed false positive rates. Finally I address the general issue of FAP estimate precision and
attempt to extrapolate our findings to predict the likely uncertainties on our confidence in
GW detection.

The challenge was attempted by 3 different teams, each of which used similar but indepen-
dent algorithms (see Sec. 6.2). Each team was asked to operate their algorithms in 2 modes,
one in which zero-lag triggers were included in the background estimation and the other in
which they were removed. For each realisation of each simulation this gives us 6 FAP esti-
mates to compare. In all subsequent results sections we include only plots from simulations
that highlight the main features of our comparative analysis. All other plots can be found in
chapter A.

6.3.1 Direct comparison with exact FAP

In this section, we show the direct comparison of FAP estimation with the exact FAP. Esti-
mation methods aim to have both good accuracy and good precision, i.e., the spread should
be small and the estimation should concentrate around the exact value. The estimated values
could be influenced by a number of factors including random fluctuation from being derived
triggers, themselves derived from actual noisy data. There may also be hidden structures
within the background distribution that were not promised to be sampled by the triggers, and
there may be contamination from a population of foreground triggers. Where possible we
attempt to link the performance of the algorithms with these factors, and to understand and
quantify their influences.

As both gstlal and ihope method used a hard cutoff in the estimation of FAP, there are visible
flat lower boundaries for gstlal and ihope in figure 6.3, 6.5 and 6.6.
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Low foreground rate

For the experiments with low foreground rate or even no foreground signals, the triggers are
only slightly contaminated by foreground signals, so the estimation of the background should
be correspondingly unaffected. In cases where there are no foreground triggers present, even
the extreme backgrounds, e.g., experiment 14, shown in Fig. 6.2, don’t appear to affect
the estimation and the spread is relatively small around the diagonal line. Notice that in
these direct comparison figures, a perfect estimation will give exactly the same FAP as the
true value, so it will lie on the diagonal line. If an algorithm provides an overestimate by
assigning a smaller FAP, it will fall below the diagonal line, and underestimation will lie
above the diagonal line. In Fig. 6.2 we see that estimation from gstlal is very close to result
from ihope. For other experiments, their results do show some small discrepancy of different
lower boundaries to the estimation. For all submitted results from the New Method, the
estimation method used was designed such that only for rare events (those with low FAP
values) were the results computed to the highest accuracy. This is motivated by the fact that
the astrophysical events that we are ultimately interested in will necessarily have small FAP
values and by the computational load of the challenge itself. This would lead to the enhanced
scatter for larger FAP visible in figure 6.2, 6.3, 6.5 and 6.6. Notice that in the removal case
for all algorithms, there is a tendency to underestimate the FAP, This is non-conservative in
the sense that underestimates indicate that events are more rare than in reality.

Medium foreground rate

We class experiments as having a medium foreground rate as those with an average of ∼half
the realisations containing a foreground coincidence. In the cases where foreground triggers
exist it is expected that if the estimation of FAP is biased by this contamination then it would
likely be biased toward overestimation. Foreground triggers are drawn from a relatively
shallow distribution in SNR and are likely to be loud if present. If they are included in the
background estimation it would incorrectly enhance the number of loud background events
leading to an overestimate of FAP. This kind of bias would be considered to be conservative
since it would underestimate the rarity of possible astrophysical events.

We use results from experiment 9 and 6, shown in Figs. 6.5 and 6.6, as examples of a medium
foreground rate. In the first case we see greater variation in the FAP estimates specifically
in the low FAP region in comparison to low foreground rate cases. This is clearly caused by
the presence of foreground events since nearly all points below 10−5 on the x-axis are due to
foreground signals. We again see general agreement between algorithms (with the exception
of the New Method at high FAP) but note that there is now evidence of discrepancies at the
lowest values of estimated FAP. This is mostly due to the different choices of lowest es-
timable value between algorithms and is independent of the MDC dataset. There is now also
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(a) direct comparison with removal

(b) direct comparison with non-removal

Figure 6.2: Direct comparisons of FAP estimates with the true FAP for experiment 14 (con-
taining no foreground signals). Despite the background distribution being classed as extreme
the estimation is concentrated on the diagonal in both removal and non-removal cases . No-
tice though that for removal for all algorithms the points at low true FAP values (<10−3) tend
to be under the diagonal line resulting in non-conservative FAP estimates.In both plots the
majority of blue points are masked by the green points since these methods provide closely
matching results.
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stronger indication that removal shifts estimates to lower values compared to non-removal.
We remind the reader that these plots are plotted in logarithmic scales. Further investigation
of this possible bias is described in Sec. 6.3.4.

The experiment shown in Fig. 6.5 contained a background distribution that featured a shallow
platform (which can be seen in Fig. 6.4a) and was classed an an extreme background. Here
we see similar behaviour as seen for experiment 9 but with greater variation in estimated
values that span ∼4 orders of magnitude for all true FAPs below ∼10−3. In some of the
realisations from this experiment samples are rarely or never drawn from around the platform
feature in the background which appears where the single detector CDF ∼10−1. In these
cases where in a single realisation there is no evidence in the triggers themselves regarding
any shallow features then algorithms can be misled towards large overestimation, while in
others realisations the contamination of foreground would lead to strong underestimation.

High foreground rate

We class high foreground rate experiments as those containing realisations in which there is
likely to be >1 foreground event. Results from experiment 11 are shown in Fig. 6.6 where
as is generally the case, there is good agreement between algorithms but clear variation
between removal and non-removal modes. For removal, the presence of many contaminating
foreground signals shifts estimates to higher values. This shift reaches the point where, in
this experiment, the bulk of the distribution now appears consistent with the expected values
with relatively narrow spread. We remind the reader again that this log-space representation
can be misleading. For the non-removal case the contamination effect is greater and so is
the corresponding shift to higher values of FAP (a conservative shift). In fact, in this case
underestimates of the FAP are extremely rare. For all algorithms and for both removal and
non-removal, as the foreground rate increases, a noticeable horizontal feature appears in
these comparison plots. We discuss this in the next section.

Horizontal bar feature

We notice that in all high foreground rate scenarios there are visible horizontal features
appearing at ∼10−3 in estimated FAP, which is also marginally visible in medium rate situa-
tions. The process of FAP estimation for the loudest coincident event is based on collecting
the fraction of all possible unphysical coincidences which are louder. Consider a single trig-
ger in 1 detector that is extremely loud and not found in coincidence in zero-lag. It is now
highly likely that triggers from the other detector will combine into an artificial coincidence
being louder than the original loudest (the details of this process would be specific to each al-
gorithm). Assuming a method that makes use of all possible unphysical trigger combinations
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(a) direct comparison with removal

(b) direct comparison with non-removal

Figure 6.3: Direct comparisons of FAP for experiment 9. The medium level foreground rate
in this case leads to some realisations being contaminated by foreground signals. Together
with the cases where no foreground signal is present while others are not, thus causing a
larger spread vertical spread.
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(a) Reverse CDF of SNR for experiment 6.
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(b) Reverse CDF of SNR for experiment 9.

Figure 6.4: Reverse CDF of the triggers’ SNR for experiment 6 and 9. The red and green
curves represent the two individual detectors, while the blue curve represents the astronom-
ical signals. The black lines represent the combined distribution of both background and
foreground triggers, with the straight line and the dashed line correpsonding to two detec-
tors.



6.3. Results 116

(a) direct comparison with removal

(b) direct comparison with non-removal

Figure 6.5: Direct comparisons of FAP for experiment 6. The presence of a platform feature
in the tail of the distribution makes the spread in estimation wider than for experiment 9.
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(a) direct comparison with removal

(b) direct comparison with removal

Figure 6.6: Direct comparisons of FAP for experiment 11. The high foreground rate in this
case causes general shifts towards larger estimates for the FAP. The horizontal bar feature
visible in both plots is also most prominent in this high rate case.
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between detectors, this corresponds to ∼104 louder artificial coincidences out of a possible
∼108 in total. Considering an expected ∼10 zero-lag coincidences this gives an estimated
FAP of these asymmetric events as ∼10−3, causing such horizontal bar feature.

In experiment 11 (Fig. 6.6), there are ∼650 such realisations. For ∼500 of them, the cause
is a single astrophysical foreground trigger appearing as an extremely loud event in one
detector, while for the other detector, the combination of antenna pattern and non-central χ2

random fluctuations results in a sub-threshold SNR and is hence not recorded as a trigger.
The remaining ∼150 events also have very loud SNRs in one detector, but in these cases
the counterpart in the second detector appears only as a relatively weak trigger. Therefore,
in performing unphysical coincidences for background estimation, almost all combinations
involving the loud single detector event are louder than the actual loudest recorded zero-
lag coincident event. For those foreground events that do appear asymmetrically in both
detectors, a removal method could mitigate this effect; while for the∼500 events that contain
a single loud foreground event, this effect will always happen even for removal methods.

6.3.2 Self consistency tests: p-p plots

In Fig. 6.7-6.10 we show the relationship between the estimated FAP values and their cumu-
lative frequency of occurrence. When the events are drawn from the background distribution
that the FAP values are estimating then we expect the curves to trace the diagonal. The figure
shows results for the 4 experiments (1,3,12 and 14) for which there were only background
triggers. As we probe lower FAP values (i.e., rarer events) we begin to see measurement
noise due to the finite number of rare events. However, we see a marked difference between
the removal and non-removal approaches and no discernible differences between methods.
In all cases the non-removal scheme stays consistent with the diagonal within the expected
noise fluctuations due to the finite number of samples. The removal results however, always
systematically underestimate the FAP for the rarest events and deviation from the expected
behaviour occurs for all FAP values below ∼10−3.

Experiments 1 and 3 were both designed to have simple background distributions and there-
fore the log of their CDF tails are linear in SNR, each experiment with a different slope and
with each detector having the same distribution. Experiment 14 was designed to have an
extreme background distribution with multiple CDF features. The behaviour of the p–p plots
in all 3 of these cases is very similar with removal methods deviating from the diagonal for
FAPs < 10−3 and in this region being ∼1–2 standard deviations from the diagonal. At true
FAP values of 10−4 the removal methods tend to contain ∼3 times as many events estimated
to be at or below this value. The non-removal methods remain consistent throughout within
their 1–σ uncertainties. For experiment 12, containing a realistic background distribution,
deviation from the diagonal occurs at approximately the same point but the deviation at a
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Figure 6.7: Plots of estimated FAP value versus the fraction of events with that value or
below (known as a p-p plot) for experiment 1. If the estimate of FAP is accurate we would
expect the value to be representative of its frequency of occurrence and hence the diagonal
line indicates a perfect FAP estimate. We show results for the experiments where the triggers
were generated from background only. The solid lines are the results obtained for our 3 algo-
rithms in non-removal mode whilst the dashed lines are for the removal mode of operation.
Vertical dashed lines indicate the FAP associated with integer multiples of Gaussian standard
deviations, i.e., the equivalent of n–σ confidence.
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Figure 6.8: p-p plot for experiment 3. Figure ploted with the same method as figure 6.7.

Figure 6.9: p-p plot for experiment 12. Figure ploted with the same method as figure 6.7.
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Figure 6.10: p-p plot for experiment 14. Figure ploted with the same method as figure 6.7.

true FAP of 10−4 implies that there are ∼7 times the number of estimated values at or below
this level. In addition, the deviation in this case is in terms of statistical uncertainty on the
curves is equivalent to ∼10 standard deviations and in all experiments cannot therefore be
explained by counting fluctuations.

The deviations seen for the removal case do not make any statements on the individual point
estimates of FAP for specific realisations. Hence it does not directly indicate any bias in
those estimates. It does however indicate that for rare events in a background only dataset,
using a removal method gives a greater than S chance of obtaining an event of estimated
FAP S.

6.3.3 Receiver Operating Characteristic (ROC) analyses

The FAP quantity is designed to convey a measure of rarity of observed events but in this
section we treat the FAP as a test statistic. Doing this allows us to use Receiver Operating
Characteristic (ROC) plots to compare the ability of distinguishing signal from noise for
each method. The ROC plot is a method to compare false negative rates given the same false
positive rate criterion. In practice this involves taking one of our experiments containing 105

realisations and as a function of a variable threshold on our test statistic (the FAP) computing
the following. The false positive rate (FPR) is the fraction of loudest events that were due
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to background that were below the threshold. In our case having lower FAP is indicative of
rare events and therefore of signals and therefore background below threshold is classed as a
false positive. The true positive rate (TPR) is computed as the fraction of loudest events that
were due to the foreground that have estimated FAPs below the threshold. For each choice
of threshold a point can be placed in the FPR-TPR plane creating an ROC curve for a given
test-statistic. Better performing statistics produce curves that appear higher in the plot such
that at a given FPR the TPR is greater than for other statistics. A perfect method would
recover 100% of the signals, while incurring no false alarms, corresponding to a ROC curve
that passes through the left-upper corner. A totally ignorant classifier would assign values to
its statistic randomly and the FPR and TPR would be identical giving a diagonal ROC curve.

In general, as can be seen in our ROC plots (figure 6.11-6.13), as the foreground rate goes
up, the more events are available to compute the TPR, thus making the vertical uncertainties
smaller. Conversely, the more background events are available, the smaller the horizontal
uncertainties. Error-bars are computed using a binomial likelihood function in both the hori-
zontal and vertical directions. Also, in the following subsections we focus on the experiments
where there are clear discrepancies. The cases where there is agreement between methods
are shown in chapter A.3 . Finally we stress that ROC curves allow us to assess the ability
of a test-statistic to distinguish between different distributions. It makes no direct statement
on the accuracy or precision of FAP estimation.

Low foreground rate

There are 3 experiments, 2, 7 and 10, that have non-zero low foreground rates. We show
the ROC curve for experiment 2 in Fig. 6.11 which shows a number of interesting features.
Firstly we note that there is general agreement between algorithms and deviations are only
visible between removal and non-removal modes of operation. At a FPR of ∼10−3 and
below, the non-removal schemes appear to achieve higher TPRs when accounting for their
respective uncertainties by ∼10%. This indicates that in this low-rate case where ≈1 in
a 1000 loudest events were actual foreground signals the non-removal approach is more
efficient at detecting signals at low FPRs. We can actually identify all experiments that show
such deviations, and they all have tail feature or obvious asymmetry between two detector’s
background distribution, combined with a low to medium foreground rate. For Experiment
10, shown in Fig. A.27 the foreground rate was an order of magnitude lower and hence
the low number of foreground events results in the uncertainty on the TPR being too great
to infer any differences between approaches. Experiment 7 contained a hidden extended
shallow tail in the background distribution included to mimic a foreground distribution. This
did not prove to be problematic in terms of this ROC curve analysis (shown in Fig. A.25)
and all algorithms and removal and non-removal methods were in good agreement.
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Figure 6.11: ROC plot for experiment 2. The error bars in both horizontal and vertical
direction are calculated with a binomial likelihood under a 68.3% credible interval. For each
point, the outer error-bar of horizontal and vertical will be picked up to be shown. The solid
lines correspond to non-removals while dashed lines removal.
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Figure 6.12: ROC plot for experiment 8. The error bars in both horizontal and vertical
direction are calculated with a binomial likelihood under a 68.3% credible interval. For each
point, the outer error-bar of horizontal and vertical will be picked up to be shown. The solid
lines correspond to non-removals while dashed lines removal.

Medium foreground rate

Experiments 6, 8, 9 and 13 contain medium foreground rates and collectively show 2 types
of behaviour. Experiments 9 and 13 show general agreement between algorithms and re-
moval and non-removal approaches. Plots of these ROC curves are shown in Figs. A.26
and A.29. Experiments 6 and 8 show similar deviations to those seen in the p–p plots in
Section 6.3.2. This similarity is not surprising since the vertical axes of the p-p plots are
identical to horizontal axes of the ROC plots with the distinction that they are computed on
background-only and background-foreground experiments respectively. Here we focus on
Experiment 8 shown in Fig. 6.12 which contained realistic but slightly different background
distributions in each detector. As seen in the low-foreground example there is good agree-
ment between algorithms but differences between removal and non-removal approaches. In
this case, due to the increased number of foreground events, this difference is more clearly
visible and the discrepancies are significant at the multiple-σ level. So for medium fore-
ground rates we conclude that as a detection statistic, those methods that apply non-removal
obtain higher TPRs at fixed FPR for low values of FAP. We remind the reader that detection
claims will be made at low FAP values.
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Figure 6.13: ROC plot for experiment 4. The error bars in both horizontal and vertical
direction are calculated with a binomial likelihood under a 68.3% credible interval. For each
point, the outer error-bar of horizontal and vertical will be picked up to be shown. The solid
lines correspond to non-removals while dashed lines removal.

High foreground rate

The high rate experiments 4, 5 and 11 all show similar behaviour. Here we show Fig. 6.13
as an example where we see general agreement (within our estimated uncertainties) between
algorithms and removal and non-removal. The high rates used result in >90% of realisa-
tions containing a loudest coincident event from the foreground. The 3 experiments were
examples of all 3 levels of background complexity respectively and the results indicate that
in terms of detection efficiency, all algorithms and approaches perform equally well at any
fixed FPR. This high rate scenario is most likely to be relevant in the epochs following the
first direct detection. As the CDF distribution of the foreground signals are much flatter than
the fast dropping background distribution, so that when the foreground rate is high enough,
the SNR corresponding to, say, FPR 10−2 will immediate means that in any realisation, it’ll
be extremely difficult for any background triggers to reach that high SNR
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Detection efficiency

We have taken slices through the ROC plots at selected fixed values of FPR and extracted
the TPR and its associated uncertainty. We have done this for all experiments containing a
non-zero foreground rate and listed in results in Table 6.2. We have highlighted in bold those
methods that achieved the highest detection efficiency for each FPR where results differed
by greater than their estimated uncertainty.

Our MDC contained a limited number of experiment realisations, so the rarest event we
would expect to generate from all of our background distributions would have FAP ∼10−5.
We have therefore set fixed FPRs at the values shown in the table, going no lower then
4σ ≡ 6.3×10−5 and no higher than 10−2, since all methods tend to agree at these values and
higher, and 4σ is still not subject to random fluctuation too much. In total we found there are
34 occurrences that in terms of having higher detection efficiency favour non-removal meth-
ods, while in 20 cases removal is favoured. Notice that there are 6 cases that non-removal
performs as well as removal. We find that with the exception of experiment 13, all experi-
ments in which removal is favoured either have an extreme background distribution, or a high
foreground rate, or a combination of both. Experiment 13 has a very simple background and
a low foreground rate and in this case removal methods give higher detection efficiencies,
however the difference is not large.

6.3.4 Boxplots

In this section we look at decade width slices in true FAP and show the defining features
of the corresponding distributions of estimated values. For a given experiment we first take
each algorithm and removal method we isolate those results corresponding to the chosen
FAP decade and take the ratio of estimated to exact FAP value. The corresponding boxplot
then consists of the central box, median point, whiskers and individual outliers. The central
box contains the central half of all points, which starts from 25% to 75% of the total sorted
values (known as the first and the third quartile), the length of the box is also known as the
inter-quartile range (IQR). The box is divided by a vertical line identifying the 50% (median)
quartile. When the distribution is relatively concentrated, and the most extreme samples lie
within 1.5× the IQR, then the whisker ends at the most extreme point. Otherwise the whisker
is drawn to be 1.5× the IQR, and outliers beyond the whisker are drawn as individual points.
We also indicate on these plots the mean value of (non-log) ratio for each distribution.

Since we are more interested in the region of low FAP values, where detection of foreground
signals will likely occur, we have decided to slice data into the following ranges: (10−5 −
10−4), (10−4 − 10−3), and (10−3 − 10−2). For each data bin, we draw boxplots on the ratio
between the estimated and exact FAP value and use a logarithmic x-axis scale. In this case
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True positive rate (%) False positive rate
Experiment Method 4σ 10−4 10−3 3σ 10−2

10

ihope non-rm 38+14
−11 38+14

−11 38+14
−11 38+14

−11 38+14
−11

ihope rm 38+14
−11 38+14

−11 38+14
−11 38+14

−11 38+14
−11

New Method non-rm 38+14
−11 38+14

−11 38+14
−11 38+14

−11 46+13
−12

New Method rm 15+15
−5.4 23+15

−7.6 38+14
−11 38+14

−11 46+13
−12

gstlal non-rm 38+14
−11 38+14

−11 38+14
−11 38+14

−11 38+14
−11

gstlal rm 38+14
−11 38+14

−11 38+14
−11 38+14

−11 38+14
−11

2

ihope non-rm 39.3+3.5
−3.3 40.3+3.5

−3.3 44.3+3.5
−3.4 53.2+3.5

−3.5 61.2+3.3
−3.5

ihope rm 24.4+3.3
−2.8 27.4+3.4

−2.9 41.8+3.5
−3.4 53.2+3.5

−3.5 61.2+3.3
−3.5

New Method non-rm 39.3+3.5
−3.3 40.3+3.5

−3.3 45.3+3.5
−3.4 53.2+3.5

−3.5 63.2+3.3
−3.5

New Method rm 16.4+2.9
−2.3 22.3+3.2

−2.7 41.8+3.5
−3.4 53.2+3.5

−3.5 61.7+3.3
−3.5

gstlal non-rm 39.3+3.5
−3.3 40.3+3.5

−3.3 44.3+3.5
−3.4 53.7+3.5

−3.5 61.2+3.3
−3.5

gstlal rm 32.8+3.5
−3.1 32.8+3.5

−3.1 41.8+3.5
−3.4 53.2+3.5

−3.5 61.2+3.3
−3.5

7

ihope non-rm 58.5+3.2
−3.4 58.9+3.2

−3.4 74.6+2.7
−3.1 79.0+2.5

−3.0 85.7+2.0
−2.7

ihope rm 62.1+3.1
−3.3 62.1+3.1

−3.3 74.1+2.7
−3.1 79.0+2.5

−3.0 85.7+2.0
−2.7

New Method non-rm 57.6+3.2
−3.4 59.4+3.2

−3.4 73.7+2.7
−3.1 80.4+2.4

−2.9 86.2+2.0
−2.6

New Method rm 62.1+3.1
−3.3 62.5+3.1

−3.3 75.6+2.7
−3.1 80.4+2.4

−2.9 86.2+2.0
−2.6

gstlal non-rm 58.5+3.2
−3.4 59.4+3.2

−3.4 74.6+2.7
−3.1 79.0+2.5

−3.0 85.7+2.0
−2.7

gstlal rm 62.1+3.1
−3.3 62.1+3.1

−3.3 74.1+2.7
−3.1 79.0+2.5

−3.0 85.7+2.0
−2.7

13

ihope non-rm 59.40+0.75
−0.76 61.36+0.75

−0.76 72.20+0.68
−0.70 76.79+0.64

−0.67 82.37+0.57
−0.60

ihope rm 60.35+0.75
−0.76 62.22+0.74

−0.75 72.15+0.68
−0.70 76.55+0.64

−0.67 82.33+0.57
−0.60

New Method non-rm 58.75+0.76
−0.76 60.81+0.75

−0.76 72.01+0.68
−0.70 76.57+0.64

−0.67 82.06+0.58
−0.61

New Method rm 60.33+0.75
−0.76 62.55+0.74

−0.75 72.18+0.68
−0.70 76.45+0.64

−0.67 81.99+0.58
−0.61

gstlal non-rm 59.45+0.75
−0.76 61.43+0.75

−0.76 72.20+0.68
−0.70 76.79+0.64

−0.67 82.37+0.57
−0.60

gstlal rm 60.38+0.75
−0.76 62.22+0.74

−0.75 72.15+0.68
−0.70 76.55+0.64

−0.67 82.30+0.57
−0.61

9

ihope non-rm 59.29+0.36
−0.36 60.15+0.36

−0.36 67.94+0.34
−0.34 72.43+0.32

−0.33 79.01+0.29
−0.30

ihope rm 57.76+0.36
−0.36 58.34+0.36

−0.36 67.26+0.34
−0.34 71.77+0.33

−0.33 78.92+0.29
−0.30

New Method non-rm 58.93+0.36
−0.36 59.47+0.36

−0.36 67.67+0.34
−0.34 71.95+0.32

−0.33 78.76+0.29
−0.30

New Method rm 58.41+0.36
−0.36 58.56+0.36

−0.36 67.07+0.34
−0.34 71.65+0.33

−0.33 78.71+0.29
−0.30

gstlal non-rm 59.32+0.36
−0.36 60.22+0.35

−0.36 67.97+0.34
−0.34 72.44+0.32

−0.33 79.00+0.29
−0.30

gstlal rm 57.76+0.36
−0.36 58.34+0.36

−0.36 67.27+0.34
−0.34 71.76+0.33

−0.33 78.92+0.29
−0.30

8

ihope non-rm 41.42+0.22
−0.22 41.66+0.22

−0.22 46.41+0.22
−0.22 51.44+0.22

−0.22 60.56+0.22
−0.22

ihope rm 30.16+0.21
−0.20 30.16+0.21

−0.20 43.63+0.22
−0.22 49.92+0.22

−0.22 60.35+0.22
−0.22

New Method non-rm 40.88+0.22
−0.22 41.69+0.22

−0.22 46.21+0.22
−0.22 50.92+0.22

−0.22 60.33+0.22
−0.22

New Method rm 14.52+0.16
−0.16 24.45+0.19

−0.19 43.75+0.22
−0.22 49.09+0.22

−0.22 59.97+0.22
−0.22

gstlal non-rm 41.40+0.22
−0.22 41.69+0.22

−0.22 46.42+0.22
−0.22 51.43+0.22

−0.22 60.57+0.22
−0.22

gstlal rm 33.79+0.21
−0.21 33.79+0.21

−0.21 43.65+0.22
−0.22 49.93+0.22

−0.22 60.34+0.22
−0.22

6

ihope non-rm 65.99+0.18
−0.19 66.47+0.18

−0.18 71.91+0.17
−0.18 80.25+0.15

−0.16 87.18+0.13
−0.13

ihope rm 55.03+0.19
−0.19 55.03+0.19

−0.19 69.99+0.18
−0.18 79.36+0.16

−0.16 87.26+0.13
−0.13

New Method non-rm 66.95+0.18
−0.18 67.15+0.18

−0.18 72.87+0.17
−0.17 79.75+0.16

−0.16 86.97+0.13
−0.13

New Method rm 26.35+0.17
−0.17 26.79+0.17

−0.17 69.92+0.18
−0.18 78.41+0.16

−0.16 86.84+0.13
−0.13

gstlal non-rm 66.04+0.18
−0.19 66.48+0.18

−0.18 71.89+0.17
−0.18 80.24+0.15

−0.16 87.23+0.13
−0.13

gstlal rm 60.29+0.19
−0.19 60.29+0.19

−0.19 70.00+0.18
−0.18 79.37+0.16

−0.16 87.27+0.13
−0.13

5

ihope non-rm 94.28+0.07
−0.07 94.28+0.07

−0.07 94.28+0.07
−0.07 95.09+0.07

−0.07 98.08+0.04
−0.05

ihope rm 91.04+0.09
−0.09 91.04+0.09

−0.09 91.04+0.09
−0.09 93.06+0.08

−0.08 98.10+0.04
−0.04

New Method non-rm 94.28+0.07
−0.08 94.28+0.07

−0.08 94.28+0.07
−0.08 95.16+0.07

−0.07 97.16+0.05
−0.05

New Method rm 39.20+0.15
−0.15 39.20+0.15

−0.15 39.20+0.15
−0.15 93.43+0.08

−0.08 97.24+0.05
−0.05

gstlal non-rm 94.30+0.07
−0.07 94.30+0.07

−0.07 94.30+0.07
−0.07 95.09+0.07

−0.07 98.08+0.04
−0.05

gstlal rm 93.07+0.08
−0.08 93.07+0.08

−0.08 93.07+0.08
−0.08 93.07+0.08

−0.08 98.10+0.04
−0.04

4

ihope non-rm 74.25+0.14
−0.14 74.25+0.14

−0.14 74.25+0.14
−0.14 76.31+0.13

−0.14 89.28+0.10
−0.10

ihope rm 78.49+0.13
−0.13 78.49+0.13

−0.13 78.49+0.13
−0.13 79.25+0.13

−0.13 88.32+0.10
−0.10

New Method non-rm 72.87+0.14
−0.14 72.87+0.14

−0.14 72.87+0.14
−0.14 74.07+0.14

−0.14 89.34+0.10
−0.10

New Method rm 15.58+0.12
−0.11 15.58+0.12

−0.11 15.58+0.12
−0.11 43.45+0.16

−0.16 88.32+0.10
−0.10

gstlal non-rm 74.38+0.14
−0.14 74.38+0.14

−0.14 74.38+0.14
−0.14 76.16+0.13

−0.14 89.31+0.10
−0.10

gstlal rm 81.10+0.12
−0.12 81.10+0.12

−0.12 81.10+0.12
−0.12 81.10+0.12

−0.12 88.32+0.10
−0.10

11

ihope non-rm 93.94+0.08
−0.08 93.94+0.08

−0.08 93.94+0.08
−0.08 94.46+0.07

−0.07 95.32+0.07
−0.07

ihope rm 94.64+0.07
−0.07 94.64+0.07

−0.07 94.64+0.07
−0.07 94.71+0.07

−0.07 95.25+0.07
−0.07

New Method non-rm 93.66+0.08
−0.08 93.66+0.08

−0.08 93.66+0.08
−0.08 93.78+0.08

−0.08 96.00+0.06
−0.06

New Method rm 94.13+0.07
−0.08 94.13+0.07

−0.08 94.13+0.07
−0.08 94.49+0.07

−0.07 95.20+0.07
−0.07

gstlal non-rm 93.96+0.08
−0.08 93.96+0.08

−0.08 93.96+0.08
−0.08 94.48+0.07

−0.07 95.34+0.07
−0.07

gstlal rm 94.64+0.07
−0.07 94.64+0.07

−0.07 94.64+0.07
−0.07 94.72+0.07

−0.07 95.25+0.07
−0.07

Table 6.2: Detection efficiency (in percent) at given FPR, together with the uncertainty con-
sidering a binomial likelihood. For each FPR, there are 6 values for detection efficiency,
we identify the biggest of them, and find the corresponding category of either removal or
non-removal. If this value differ the highest detection efficiency in the other category by at
least one error bar, we set such value bold font.
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a factor of 10 overestimation appears as far to the right hand side of the plot as a factor of
10 underestimation does to the left. The vertical purple line corresponds to the log of ratio
is zero, which means the estimation and exact FAP is identical; left hand side means the
estimated FAP value is smaller then the actual value, which translates to an overestimation
of FAP. In all plots the vertical axis gives the experiment index ranging from the lowest
foreground rates to the highest and for each index there are 3 coloured boxes associated with
each algorithm. Figures are divided into 2 plots, one for the removal methods and the other
for non-removal.

So if we have a large number of detections, by applying the removal method we know that
on average the estimation of FAP is unbiased. However, we also know that the individual
estimations are much more likely to be overestimated rather than underestimated.

FAP range 10−3–10−2

In Fig. 6.14 we see relatively tight and symmetric distributions for all algorithms when con-
sidering the IQR with strong agreement specifically between the gstlal and ihope. We remind
the reader that the New Method was not optimised at high FAP values and hence shows very
slightly broader distributions. We note that the extrema of the FAP ratios in most experi-
ments range symmetrically from∼ ±1 order of magnitude. However, for some experiments,
most notably 4, 6, 8, 2, 10, and 12 there are large deviations in the extrema to particularly
sizeable underestimates of FAP. This tendency would be classed as a non-conservative effect
whereby events could be estimated as more rare than they truly are. This effect is partially
reduced in the case of non-removal approaches as is most evident for experiments 2 and 10.
All of these experiments for which there are sizeable underestimates have either realistic or
extreme background distributions. However, such backgrounds do not give underestimates
exclusively since experiment 11 shows no such behaviour. We notice that some experiments
show similarity in the extrema distribution, like experiment 2 and 10, experiment 6 and 8.
They don’t share the same background feature, like experiment 2 have identical background
distributions for the two detectors, which contains a platform inside. While for experiment
10, there’s no platform feature, but the two detectors are quite asymmetric. What they share
for similarity is only the foreground event rates, and the fact that some background triggers,
although they do not form actual coincidence, could generate very loud artificial coinci-
dences and thus fool the estimation.

The points identified with star symbols in Fig. 6.14 show the means of the distribution of ra-
tios (this is not the mean of the log of the ratio). It can be seen that in general, the distribution
means for removal methods provide values slightly more consistent with the expected ver-
tical line. As we will show in the subsequent sections as we investigate lower FAP decades
this effect becomes amplified. For this (10−3–10−2) region we note that for the same reasons
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(a) Boxplot for log of ratio between estimation and exact, drawn on data with FAP between 10−3 and
10−2 based on removal
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(b) Boxplot for log of ratio between estimation and exact, drawn on data with FAP between 10−3 and
10−2 based on non-removal

Figure 6.14: Boxplot for log of ratio between estimation and exact, drawn on data with FAP
between 10−3 and 10−2. Left means optimistic while right is conservative. The upper 3 are
with high rate and the bottom 4 are with zero rate.
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as discussed earlier, the means computed from the New Method tends to overestimate the
expected value.

FAP range 10−4–10−3

As we move to lower FAP ranges, shown in Fig. 6.15, we start to see the effects of having
lower numbers of results. By definition we would expect to see a factor of ≈10 fewer results
in the decade (10−4–10−3) as compared to the previous section. This implies larger statis-
tical fluctuations due the reduced number of samples but also leads to intrinsically broader
distributions. The reason for the latter feature is that the estimation methods themselves are
equally constrained by the infrequency of loud, low-FAP events. As seen in previous figures
of merit, results differ only slightly between algorithms with the largest differences coming
from the issue of removal or non-removal of zero-lag triggers.

Overall, we see ranges in the extrema spanning ±1 order of magnitude for both removal and
non-removal methods. However, for experiments 10, 2, 6, and 8 the lower extrema extend
to ∼4 order of magnitude below the expected ratio for the removal method. This behaviour
is moderately reduced for the non-removal method where we note that for experiment 10
the extrema are entirely reduced to be consistent with the majority of other experiments. In
general it is clear that the IQRs for the removal method are far broader in logarithmic space
than their non-removal equivalents. This increase in width is always to lower values of the
ratio meaning underestimates of the FAP similarly exemplified by the location of the median
values. For removal methods low foreground rates yield medians skewed to lower values by
factors of ∼2–200. For the 3 high foreground rate experiments the IQRs and corresponding
medians appear consistent with the expected values. For the non-removal methods the IQRs
and medians are relatively symmetric about the expected value and the IQRs are in all cases
narrower than for the removal methods.

In this FAP range it becomes clearer that there is a definite difference between the removal
and non-removal methods with regards to the distribution means. Removal methods consis-
tently return mean estimates that are well within factors of 2 for all low and medium fore-
ground rates. For high foreground rates they consistently overestimate the means by up to a
factor of ∼3. For the non-removal cases there is a clear overestimate of the ratio (implying
a conservative overestimate of the FAP) for all experiments irrespective of foreground rate
or background complexity. This overestimate is in general a factor of ∼2. It is interesting to
note that the estimates from both approaches for the 3 high foreground rate experiments are
very similar in their distributions and means.
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(a) Boxplot for log of ratio between estimation and exact, drawn on data with FAP between 10−4 and
10−3 based on removal

−4 −3 −2 −1 0 1 2 3
log_10(estimate/exact)

1

3

12

14

10

2

7

13

9

8

6

5

4

11

E
x
p
e
ri

m
e
n
t 

in
d
e
x

1e-4to1e-3 NONRM

ihope
NewMethod
gstlal
Mean

(b) Boxplot for log of ratio between estimation and exact, drawn on data with FAP between 10−4 and
10−3 based on non-removal

Figure 6.15: Boxplot for log of ratio between estimation and exact, drawn on data with FAP
between 10−4 and 10−3. Left means optimistic while right is conservative. The upper 3 are
with high rate and the bottom 4 are with zero rate.
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FAP range 10−5–10−4

In this FAP range the uncertainties and variation in the results are strongly influenced by
the low number of events present at such low FAP values. Nonetheless, in Fig. 6.16 we
see interesting similarities between algorithms and striking differences between removal and
non-removal approaches. Firstly, in all cases the variation in extrema is comparable, in this
case spanning ∼ ±3 orders of magnitude. The IQRs are broadly scattered and in many
cases do not intersect with the expected values. This is not indicative of poor estimation but
indicative of highly non-symmetric distributions.

For low foreground rates there is a marked difference between results from removal and
non-removal methods. For removal all distributions are skewed to low values which is also
a characteristic for the medium foreground rate experiments. For example, in experiment 12
there are no estimates in any of the realisations in this range that overestimate the FAP. Re-
moval methods in general in this range of very low FAP for low and medium foreground rates
provide IQRs of width ∼1 order of magnitude with medians shifted by between ∼1–2 or-
ders of magnitude below the expected values. For non-removal methods, all low foreground
experiments (with the exception of experiment 2) provide conservative overestimates of the
FAP ratio with IQRs and extrema ranges spanning <1 and ∼1 order of magnitude respec-
tively. In contrast to experiment 12 with the removal method, we see that for experiment
10 there are no non-removal estimates in any realisation that underestimate the FAP. With
non-removal there is then a marked change as we move to medium level foreground rates and
the distributions become relatively symmetric in log-space with all medians lower than, but
mostly within a factor of 2 of, the expected value. Experiments 6 and 8 both have medium
level foreground rates and give rise to results that are very similar between removal and
non-removal results and that exhibit highly skewed distributions to low values with long dis-
tribution tails extending to high values. This trend of similarity is then continued for high
foreground rates where there is little distinction between either algorithm of removal meth-
ods. In these cases however, the distributions appear relatively symmetric in log-space with
reasonably well constrained IQRs.

If we focus on the estimates of the means of the distributions then we see similar behaviour
but with more variation than in the previous FAP ranges. Starting with non-removal methods
there is a consistent conservative bias in the mean of the ratio of estimated to true FAP. For
low and high foreground rates this bias is ∼1 order of magnitude which reduces to a factor
of∼3 overestimate for medium level foregrounds. For the removal methods, low foreground
rates return distribution means that are scattered symmetrically about the expected value
with a variation of ∼1 order of magnitude. For all medium level foregrounds including
experiments with low, medium and high background complexity, the mean estimates are
very tightly localised around the expected values with variations of 10’s of percent. For high



6.3. Results 133

foreground rates the means obtained from both removal and non-removal methods are all
consistently overestimates of the expected value by up to ∼1 order of magnitude.

By looking at the bulk distribution in the boxplots, it seems that removal will generally
overestimate the FAP, while although non-removal is no better in precision for individual
experiments and even worse in accuracy, systematically the mean value is unbiased over all
14 experiments. However, notice that if we only look at the log of mean, then non-removal
almost always underestimate the FAP, while removal generally being consistent with the ex-
act FAP. This indirectly proves that removal method is an unbiased estimator in linear space.
For significant event, the exact FAP is very close to zero, any difference due to overestima-
tion will be very small in linear space (although not necessarily small in log space), while
underestimation could bias the value relatively hugely. In order to compensate the relatively
large bias caused by underestimation to make the removal method still unbiased, the majority
of the estimation will have to overestimate.

6.3.5 Uncertainty in estimation

From the results presented in the previous sections we can conclude that the relative uncer-
tainty in the estimation of FAP increases as FAP decreases. As shown in Figs. 6.2, 6.3, 6.5,
and 6.6, with the exception of results from the New Method, which are designed to be ac-
curate only at low FAP values, both other estimation methods show less spread as the FAP
value goes higher. Specific features in the background distributions would vary the actual
spread, but the tendency is consistent. When the exact FAP is as small as 10−4, the relative
uncertainty can exceed 100%, in some cases, as seen in Fig. 6.16, estimates can under or
overestimate FAP by many orders of magnitude.

Any claims of GW detection will necessarily be made at low values of FAP and most likely at
medium level foreground rate. Using Fig. 6.16 and focussing on the medium foreground rate
experiments 10, 2, 7, 13, and 9 it is clear from both removal and non-removal methods that a
single loudest event measurement of FAP will be drawn from a very broad distribution. For
non-removal methods, in all but experiment 10 for medium foregrounds, the IQR is roughly
symmetric and of a width resulting in a 50% probability that a single measurement is within
the region described by the true value ±1 order of magnitude. For the equivalent removal
cases the same IQR (accounting for 50% of the probability) is ∼1/2 of the width in log-
space, and hence more precise. The extrema between approaches are comparable but the
bulk of the distribution is more concentrated in the removal case.
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(a) Boxplot for log of ratio between estimation and exact, drawn on data with FAP between 10−5 and
10−4 based on removal
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(b) Boxplot for log of ratio between estimation and exact, drawn on data with FAP between 10−5 and
10−4 based on non-removal

Figure 6.16: Boxplot for log of ratio between estimation and exact, drawn on data with FAP
between 10−5 and 10−4. Left means optimistic while right is conservative. The upper 3 are
with high rate and the bottom 4 are with zero rate.
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6.4 Discussion

I have designed and generated an MDC and compared the results obtained via 3 different
algorithms each operating in 2 different modes: estimating the background distributions us-
ing either removal or non-removal of zero-lag coincidences. These background distribution
estimates were then used to associate a FAP to the loudest coincident event in each reali-
sation of each experiment in the MDC. Our methods for comparison have involved direct
comparison of estimates with the true value of FAP, self-consistency checks via the use of
p-p plots for those experiments not containing any foreground signals, an ROC analysis to
identify detection efficiency at fixed FPR, and finally a box-plot comparison of the result
distributions from each experiment. Based on these comparison analyses we have arrived at
the following key conclusions:

a. Among all three methods of FAP estimation, there is very good agreement given a mode
of operation e.g., removal or non-removal of zero-lag triggers. Major discrepancies occur
only when comparing results between different operation modes. There is however, good
agreement between removal and non-removal approaches for values of FAP.

b. For low and medium foreground rates and low FAP values, removal approaches tend to
underestimate the FAP but there is no evidence to suggest that the mean values of their
results are biased.

c. For low foreground rates and low FAP values, non-removal approaches consistently over-
estimate the FAP with strong evidence to suggest that the mean of their results is also
biased to higher, more conservative values.

d. For medium level foreground rates the non-removal method has a small bias towards un-
derestimating the FAP in terms of the median of the distributions which becomes apparent
at very low FAP values. The mean FAP is always bias to conservative values.

e. Both removal and non-removal methods perform very similarly for high foreground rates.
Median values are spread around the true value and the mean itself is consistently over-
estimated especially for low FAP values.

f. According to our design definition of background complexity we do see that experiments
that return more extremely low underestimates of FAP come from either complex or real-
istic distributions and never from simple background models.

g. In general, either tail or asymmetry between detectors would induce problematic estima-
tion for removal method, as shown in ROC plots, p-p plots and boxplots, especially when
the foreground rate is not high. The estimation for loud events will generally underesti-
mate the FAP, causing a non-conservative estimation.
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h. We have identified the presence of a systematic overestimation of FAP due to the existence
of uncoupled loud triggers, where an astrophysical signal has appeared above threshold
in one detector but not in the other. Similar effects can be obtained when there is a
coincidence in which one astrophysical trigger is very loud while the other barely passes
the threshold to be recorded. This situation is physical and could happen in actual data.

i. The definition of FAP is more self-consistent for non-removal methods. The removal
method would claim a fraction of 10−4 to have FAP 10−5, so the value of FAP doesn’t
follow its literal definition. This deviation becomes significant for values of FAP ≤10−3.

j. In general, FAP estimates computed using non-removal were identified as being better at
distinguishing foreground from background at fixed FPR. This was most notable in exper-
iment 8 which contained medium foreground and realistic background. Removal methods
were better only when either the background complexity was high or the foreground rate
was high.

k. Removal methods have the merit of appearing to be unbiased estimators in terms of the
mean of the FAP estimates. However, the distributions of FAP events are highly asym-
metric, especially for low FAP values. Single realisations from removal methods are
consequently highly likely to have underestimated values of FAP. Non-removal methods
are bias in terms of their mean but, for low FAP events, are highly likely to overestimate
the FAP and hence be conservative.

l. The relative uncertainty in the estimation is larger when the FAP is smaller. The relative
uncertainty reaches 100% when the FAP is about 10−4 for this MDC. This value depends
on the total number of realisations in the experiment and the number of single detector
triggers.

At the time of writing this chapter we eagerly await the advanced detector era and have
therefore yet to detect any GW signals from an astrophysical foreground. While we are
aiming to make concrete detections via the upgraded advanced facilities, we should bear in
mind that the first detection would in general be relatively quiet. In this case, we recommend
a sacrifice in accuracy of FAP estimation in favour of conservatism. We therefore promote
the use of non-removal methods of any of our 3 algorithms thereby anticipating that our
results be conservatively overestimated rather than underestimated.

Notice that in the future we expect to make a lot more detections, the interest would shift
from estimating FAP from one single loudest event into the estimation astronomical event
rate, so we anticipate to set up another Mock Data Challenge for the rate estimation. Such
new MDC would be in principle similar to the FAP MDC in terms of the set up, while more
physical information would need to be taken into account. One should also notice that as the
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detector is getting more sensitive, the recommended approach of FAP estimation can also
possibly evolve.6

6This work was done under the collaboration of multiple researchers, with the set up of the Mock Data and
the analysis done by myself.
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Chapter 7

Conclusion and Future work

Through some examples, the importance of applying state-of-the-art statistical methods to
gravitational wave data, is demonstrated in this thesis. Bayesian Inference is a very powerful
tool that can perform parameter estimation even with a relatively low SNR, and it has the
ability of computing the Bayes Factor, which has the potential to quantify the degree of
support from the data for a given model, and thus to better distinguish between models by
performing Bayesian Model Selection.

One example that demonstrate the power of Bayesian Model Selection is illustrated on the
timing data of pulsar 1E 2259+586. These timing data, and the features contained therein,
can be fitted by two competing models: either the successive anti-glitches model or the
anti-/normal glitch pair model. By applying a Nested Sampling algorithm to both models
and computing the Bayes Factor of each model, we established that the successive anti-
glitches model clearly has better support from the data, with a Bayes Factor around 45.
As new physical models are proposed to explain the intrinsic mechanism of such timing
variations, in the future one can perform Bayesian Parameter Estimation on the physical
parameters instead of on timing parameters, which could help us to understand the pulsar
physics better. This would have profound effect on GW, as neutron stars are expected to be
important sources for CBC and continuous waves as well as detecting channel for PTA.

One drawback of Bayesian Inference methods is their general slow speed, especially for
multi-modal posterior. In this thesis a novel method, mixed MCMC, is developed to accel-
erate the sampling procedure in order to perform efficient parameter estimation on multi-
modal posterior. By enabling the communication between multiple modes, the sampler can
efficiently propose candidates among all modes. This method has the potential to acceler-
ate the parameter estimation time for the CBC data analysis, and we hope to explore the
implementation of such algorithms in LAL as future work.

The sampling method of mixed MCMC can be applied to more general problems than just
Bayesian Inference. An example is the global optimisation of future generation Gravitational
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Wave Detectors. One can convert such an optimisation problem into one of finding the
detector network configuration with a high Figure of Merit. Such a problem is intrinsically
multi-modal and high in dimension, and mixed MCMC becomes an excellent candidate to
solve it efficiently. To do this we introduced a flexibility index to characterise the number
of high Figure of Merit networks that contains one component at a given site. Application
of our mixed MCMC approach allowed us to simultaneously optimise the parameters of
3- and 5-detector networks. Our results demonstrate that Australia hosts the best site in
terms of having highest flexibility index, either for a 3-detector network or for a 5-detector
network. In future work we note that more factors can be introduced into the Figure of Merit,
so that one can make the model more realistic or better tuned to specific scientific goals,
and the exclusion map used in our analysis can be introduced by considering more realistic
constraints – and even allowing our optimisation procedure to be adjusted dynamically.

The slow speed of Bayesian Inference can become the bottleneck of Gravitational Wave data
analysis. The detection pipelines like gstlal and ihope use information on the probability
that one trigger event corresponds to the noise to characterise its significance. The process
of background estimation can only be approximated, and debate exists for whether or not to
remove the foreground for the purpose of estimating background. A Mock Data Challenge
was thus set up to test the estimation of significance from both modes. Generally the non-
removal method was found to be more conservative, while the removal method is an unbiased
estimator for the mean value. However, these methods can only estimate the significance of
the loudest events, but not for multiple events. In the future, a similar Mock Data Challenge
is planned in order to test the pipeline’s ability to determine the astronomical rate for the
CBC events, and to assess the significance of more than one event.
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Appendix A

Additional MDC results

A.1 Cumulative Distribution Function of SNR

In this section, we show the reverse CDF distribution of the triggers’ SNR. For each ex-
periment, two individual detectors could have different background distributions, but the
astronomical foreground distribution is the same. [rephrase that sentence, unclear] In the
following pictures, two detectors’ background SNR distribution is labelled as red and green
colour, while the foreground distribution is labeled blue, and their combination is the black
line.
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Figure A.1: Reverse CDF distribution of the triggers’ SNR for experiment 1. The red and
green curves represent the two individual detectors, while the blue curve represents the as-
tronomical signals. The black lines represent the combined distribution of both background
and foreground triggers.
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Figure A.2: Reverse CDF of the triggers’ SNR for experiment 2: colours assigned as in
Fig. A.1.
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Figure A.3: Reverse CDF of the triggers’ SNR for experiment 3: colours assigned as in
Fig. A.1.
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Figure A.4: Reverse CDF of the triggers’ SNR for experiment 4: colours assigned as in
Fig. A.1.
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Figure A.5: Reverse CDF of the triggers’ SNR for experiment 5: colours assigned as in
Fig. A.1.
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Figure A.6: Reverse CDF of the triggers’ SNR for experiment 7: colours assigned as in
Fig. A.1.
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Figure A.7: Reverse CDF of the triggers’ SNR for experiment 8: colours assigned as in
Fig. A.1.
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Figure A.8: Reverse CDF of the triggers’ SNR for experiment 10: colours assigned as in
Fig. A.1.
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Figure A.9: Reverse CDF of the triggers’ SNR for experiment 11: colours assigned as in
Fig. A.1.
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Figure A.10: Reverse CDF of the triggers’ SNR for experiment 12: colours assigned as in
Fig. A.1.
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Figure A.11: Reverse CDF of the triggers’ SNR for experiment 13: colours assigned as in
Fig. A.1.
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Figure A.12: Reverse CDF of the triggers’ SNR for experiment 14: colours assigned as in
Fig. A.1.
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A.2 Direct comparison

In Figs. A.13, A.14, A.15, A.16, A.17, A.18, A.19, A.20, A.21, and A.22 we present plots of
the direct comparison between actual significance and the significance estimations from all
methods for each of the experiments.
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(a) direct comparison with removal

(b) direct comparison with non-removal

Figure A.13: Direct comparisons on experiment 1. Even its background distribution is quite
extreme, but since it contains no foreground trigger at all, the estimation is quite concentrated
and unbiased. Notice that in remove the points tends to be slightly under the diagonal line,
which is being non-conservative.
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(a) direct comparison with removal

(b) direct comparison with non-removal

Figure A.14: Direct comparisons on experiment 2.



A.2. Direct comparison 150

(a) direct comparison with removal

(b) direct comparison with non-removal

Figure A.15: Direct comparisons on experiment 3.
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(a) direct comparison with removal

(b) direct comparison with non-removal

Figure A.16: Direct comparisons on experiment 4.



A.2. Direct comparison 152

(a) direct comparison with removal

(b) direct comparison with non-removal

Figure A.17: Direct comparisons on experiment 5.
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(a) direct comparison with removal

(b) direct comparison with non-removal

Figure A.18: Direct comparisons on experiment 7.
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(a) direct comparison with removal

(b) direct comparison with non-removal

Figure A.19: Direct comparisons on experiment 8.
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(a) direct comparison with removal

(b) direct comparison with non-removal

Figure A.20: Direct comparisons on experiment 10.



A.2. Direct comparison 156

(a) direct comparison with removal

(b) direct comparison with non-removal

Figure A.21: Direct comparisons on experiment 12.
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(a) direct comparison with removal

(b) direct comparison with non-removal

Figure A.22: Direct comparisons on experiment 13.
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A.3 Receiver Operating Characteristic plots

In this section we include all remaining ROC plots. Note that it is only possible to create
a ROC plot when there are foreground events in the data, so we only show 7 ROC plots,
Figs. A.23, A.24, A.25, A.26, A.27, A.28, and A.29, complementing those already shown in
Sec. 6.3.3.

Figure A.23: ROC plot for experiment 5.
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Figure A.24: ROC plot for experiment 6.

Figure A.25: ROC plot for experiment 7.
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Figure A.26: ROC plot for experiment 9.

Figure A.27: ROC plot for experiment 10.
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Figure A.28: ROC plot for experiment 11.

Figure A.29: ROC plot for experiment 13.
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Appendix B

Parameters for trigger distribution

In this section, we list the parameters used to define the background distributions. Recall that
we adopt the form of the SNR distribution for the background triggers according to Eq. 6.1
which rely on the input polynomial coefficients ai which are listed in Table B.1 for all 14
experiments.

For the tails of the CDFs, the form is changed to a simpler representation as defined in
Eq. 6.1 in order to make sure that the background distribution is well behaved as the SNR
rises. The corresponding parameters b, CTP, and ρTP are listed in Table B.2. Notice that
here the actual control parameter is CTP, while b and ρTP are derived values, which could be
subject to round-off error.

The rate of both background triggers and foreground triggers are controlled by parameters
listed in Table B.3.
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Background parameters
Experiment a0 a1 a2 a3 a4 a5 a6

1
-10.0000 -5 0 0 0 0 0
-10.0000 -5 0 0 0 0 0

2
-7.2240 -0.32 0.53 -0.73 0.12 0.067 -0.018
-7.2240 -0.32 0.53 -0.73 0.12 0.067 -0.018

3
-7.8000 -3.9 0 0 0 0 0
-7.8000 -3.9 0 0 0 0 0

4
-6.2800 -0.3 0.5 -0.7 0.1 0.07 -0.02
-4.8800 -1 0 -0.6 0 -0.04 -0.05

5
-8.4000 -4.2 0 0 0 0 0
-8.0000 -4 0 0 0 0 0

6
-8.0704 -3 0.8 0.01 -0.05 0.007 -0.0004
-8.0704 -3 0.8 0.01 -0.05 0.007 -0.0004

7
-9.1072 -4 0.7 0.09 -0.05 0.005 -0.0002
-9.6200 -5.55 -0.37 0 0 0 0

8
-3.5040 -1.4 0 -0.16 0 -0.034 -0.026
-4.6400 -2 0 -0.2 0 -0.03 -0.03

9
-7.0000 -3.5 0 0 0 0 0
-6.6000 -3.3 0 0 0 0 0

10
-2.4800 -1 0 -0.1 0 -0.03 -0.02
-5.8400 -3 0 -0.1 0 -0.03 -0.03

11
-4.0800 -1 0 -0.3 0 -0.05 -0.03
-8.3200 -4 0 -0.1 0 -0.035 -0.025

12
-3.5040 -1.4 0 -0.16 0 -0.034 -0.026
-4.6400 -2 0 -0.2 0 -0.03 -0.03

13
-7.8000 -3.9 0 0 0 0 0
-7.8000 -3.9 0 0 0 0 0

14
-6.2800 -0.3 0.5 -0.7 0.1 0.07 -0.02
-4.8800 -1 0 -0.6 0 -0.04 -0.05

Table B.1: parameters for background distribution



164

Exprmt IFO CTP b ρTP
1 1 1e-10 -5.0000 10.1052
1 2 1e-10 -5.0000 10.1052
2 1 1e-4 -1.2690 9.9447
2 2 1e-4 -1.2690 9.9447
3 1 1e-10 -3.9000 11.4041
3 2 1e-10 -3.9000 11.4041
4 1 1e-4 -3.0350 10.0791
4 2 5e-4 -5.1906 8.7474
5 1 1e-10 -4.2000 10.9823
5 2 1e-10 -4.0000 11.2565
6 1 1e-9 -6.8668 13.0625
6 2 1e-9 -6.8668 13.0625
7 1 1e-9 -4.3611 12.9193
7 2 1e-9 -6.8728 9.2876
8 1 2e-2 -1.4415 7.7886
8 2 5e-3 -2.0660 7.8256
9 1 1e-9 -3.5000 11.4209
9 2 1e-9 -3.3000 11.7798
10 1 5e-2 -1.0889 8.0018
10 2 1e-3 -3.0410 7.8544
11 1 3e-4 -7.1603 9.1251
11 2 1e-5 -4.2931 8.2823
12 1 2e-2 -1.4415 7.7886
12 2 5e-3 -2.0660 7.8256
13 1 1e-9 -3.9000 10.8137
13 2 1e-9 -3.9000 10.8137
14 1 1e-4 -3.0350 10.0791
14 2 5e-4 -5.1906 8.7474

Table B.2: Parameters for background distribution (tail). Note that onlyCTP is the controlled
parameter and so it’s accurate, while b and ρTP are derived values and subject to numerical
error.
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Exprmt λ1 λ2 n measured n AstroRate (loud) AstroRate (all)
1 10500 10500 11.025 11.0098 0 0

1 withSignal 10500 10500 11.025 11.0154 3.95 8.55
2 11500 11500 13.225 13.2453 0.001 0.0022
3 9900 9900 9.801 9.7874 0 0
4 12000 9000 10.8 10.8023 2.96 6.41
5 9800 10100 9.898 9.8857 2.74 5.94
6 8000 15000 12 12.0195 0.548 1.19
7 10300 9900 10.197 10.2206 0.0011 0.0024
8 10100 11100 11.211 11.2202 0.438 0.95
9 9700 10600 10.282 10.2785 0.11 0.24

10 12000 10800 12.96 12.9552 0.0001 0.0003
11 9800 10700 10.486 10.4938 3.07 6.65
12 10100 11100 11.211 11.2047 0 0
13 9900 9900 9.801 9.7814 0.022 0.048
14 12000 9000 10.8 10.7857 0 0

Table B.3: parameters for rates of both background and foreground signals
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fer, M. A. Scheel, B. Szilágyi, and A. Zenginoglu, “Stability of nonspinning effective-
one-body model in approximating two-body dynamics and gravitational-wave emis-
sion,” Physical Review D - Particles, Fields, Gravitation and Cosmology, vol. 89,
no. 6, p. 061501, 2014.

[34] R. J. E. Smith, K. Cannon, C. Hanna, D. Keppel, and I. Mandel, “Towards rapid
parameter estimation on gravitational waves from compact binaries using interpolated
waveforms,” Physical Review D, vol. 87, no. 12, p. 122002, Jun. 2013. [Online].
Available: http://journals.aps.org/prd/abstract/10.1103/PhysRevD.87.122002

[35] P. Canizares, S. E. Field, J. R. Gair, and M. Tiglio, “Gravitational wave parameter
estimation with compressed likelihood evaluations,” Physical Review D - Particles,

Fields, Gravitation and Cosmology, vol. 87, p. 124005, 2013.

http://arxiv.org/abs/1105.2125 http://link.aps.org/doi/10.1103/PhysRevLett.107.051102
http://arxiv.org/abs/1105.2125 http://link.aps.org/doi/10.1103/PhysRevLett.107.051102
http://arxiv.org/abs/1501.4418
http://prd.aps.org/abstract/PRD/v85/i2/e024046
http://journals.aps.org/prd/abstract/10.1103/PhysRevD.88.044042
http://journals.aps.org/prd/abstract/10.1103/PhysRevD.88.044042
http://link.aps.org/doi/10.1103/PhysRevLett.108.011101
http://link.aps.org/doi/10.1103/PhysRevLett.108.011101
http://journals.aps.org/prd/abstract/10.1103/PhysRevD.87.122002


Bibliography 170

[36] M. Pürrer, “Frequency-domain reduced order models for gravitational waves from
aligned-spin compact binaries,” Classical and Quantum Gravity, vol. 31, no. 19, p.
195010, Oct. 2014. [Online]. Available: http://stacks.iop.org/0264-9381/31/i=19/a=
195010?key=crossref.8a044bd1683c82deba7e1da8cd1e6f36

[37] S. Nissanke, D. E. Holz, S. A. Hughes, N. Dalal, and J. L. Sievers, “EXPLORING
SHORT GAMMA-RAY BURSTS AS GRAVITATIONAL-WAVE STANDARD
SIRENS,” The Astrophysical Journal, vol. 725, no. 1, pp. 496–514, Dec. 2010.
[Online]. Available: http://iopscience.iop.org/0004-637X/725/1/496

[38] C. J. Moore, R. H. Cole, and C. P. L. Berry, “Gravitational-wave sensitivity
curves,” Classical and Quantum Gravity, vol. 32, no. 1, p. 015014, Jan. 2015.
[Online]. Available: http://stacks.iop.org/0264-9381/32/i=1/a=015014?key=crossref.
6d77a04a033873eb201d87a385da7158

[39] K. Postnov and L. Yungelson, “Close Binary White Dwarfs, Neutron Stars, Black
Holes: Formation, Evolution, and Related Phenomena,” arXiv preprint arXiv:

1403.4754, p. 181, Mar. 2014. [Online]. Available: http://arxiv.org/abs/1403.4754

[40] Gravitational wave observatory. http://en.wikipedia.org/wiki/Gravitational-wave
observatory.

[41] J. Veitch, V. Raymond, B. Farr, and W. Farr, “Robust parameter estimation
for compact binaries with ground-based gravitational-wave observations using
LALInference,” Physical Review D, in press. [Online]. Available: http://arxiv.org/
abs/1409.7215

[42] J. Weber, “Gravitational radiation,” Physical Review Letters, vol. 18, no. 13, pp. 498–
501, 1967.

[43] ——, “Physical review letters 16,” Physical Review Letters, vol. 22, no. 24, pp.
1320–1324, 1969. [Online]. Available: http://prl.aps.org/pdf/PRL/v22/i24/p1320 1

[44] ——, “Anisotropy and polarization in the gravitational-radiation experiments,” Phys-

ical Review Letters, vol. 25, no. 3, pp. 180–184, 1970.

[45] J. Hough, “The search for gravitational waves,” in AIP Conference Proceedings, vol.
957, 2007, pp. 93–98.

[46] R. W. P. DREVER, J. HOUGH, R. BLAND, and G. W. LESSNOFF, “Search for Short
Bursts of Gravitational Radiation,” pp. 340–344, 1973.

http://stacks.iop.org/0264-9381/31/i=19/a=195010?key=crossref.8a044bd1683c82deba7e1da8cd1e6f36
http://stacks.iop.org/0264-9381/31/i=19/a=195010?key=crossref.8a044bd1683c82deba7e1da8cd1e6f36
http://iopscience.iop.org/0004-637X/725/1/496
http://stacks.iop.org/0264-9381/32/i=1/a=015014?key=crossref.6d77a04a033873eb201d87a385da7158
http://stacks.iop.org/0264-9381/32/i=1/a=015014?key=crossref.6d77a04a033873eb201d87a385da7158
http://arxiv.org/abs/1403.4754
http://en.wikipedia.org/wiki/Gravitational-wave_observatory
http://en.wikipedia.org/wiki/Gravitational-wave_observatory
http://arxiv.org/abs/1409.7215
http://arxiv.org/abs/1409.7215
http://prl.aps.org/pdf/PRL/v22/i24/p1320_1


Bibliography 171

[47] J. Aasi et al., “Parameter estimation for compact binary coalescence signals with the
first generation gravitational-wave detector network,” Physical Review D, vol. 88,
no. 6, p. 062001, Sep. 2013. [Online]. Available: http://link.aps.org/doi/10.1103/
PhysRevD.88.062001

[48] Nobel prize official web site. www.nobelprize.org/nobel prizes/physics/laureates/
1993/press.html.

[49] O. D. Aguiar, “Past, present and future of the Resonant-Mass gravitational wave
detectors,” Research in Astronomy and Astrophysics, vol. 11, no. 1, pp. 1–42, 2010.
[Online]. Available: http://arxiv.org/abs/1009.1138

[50] Auriga sensitivity. www.auriga.lnl.infn.it/auriga/detector/run1/sensitivity.html.

[51] B. P. Abbott et al., “Ligo: the laser interferometer gravitational-wave observatory,”
Reports on Progress in Physics, vol. 72, no. 7, p. 076901, 2009. [Online]. Available:
http://stacks.iop.org/0034-4885/72/i=7/a=076901

[52] T. Accadia et al., “Virgo: a laser interferometer to detect gravitational waves,”
Journal of Instrumentation, vol. 7, no. 03, p. P03012, 2012. [Online]. Available:
http://stacks.iop.org/1748-0221/7/i=03/a=P03012

[53] The LIGO Scientific Collaboration, “Beating the spin-down limit on gravitational
wave emission from the Vela pulsar,” The Astronomical Journal, vol. 737, no. 2,
p. 93, 2011. [Online]. Available: http://arxiv.org/abs/1104.2712

[54] ——, “Beating the spin-down limit on gravitational wave emission from the Vela
pulsar,” The Astrophysical Journal Letters, vol. 683, no. 1, pp. 45–49, 2008. [Online].
Available: http://dx.doi.org/10.1086/591526http://arxiv.org/abs/1104.2712

[55] J. E. Staff, P. Jaikumar, V. Chan, and R. Ouyed, “SPINDOWN OF ISOLATED
NEUTRON STARS: GRAVITATIONAL WAVES OR MAGNETIC BRAKING?”
The Astrophysical Journal, vol. 751, no. 1, p. 24, May 2012. [Online]. Available:
http://iopscience.iop.org/0004-637X/751/1/24

[56] G. M. Harry and the LIGO Scientific Collaboration, “Advanced ligo: the next
generation of gravitational wave detectors,” Classical and Quantum Gravity, vol. 27,
no. 8, p. 084006, 2010. [Online]. Available: http://stacks.iop.org/0264-9381/27/i=8/
a=084006

[57] F. Acernese et al., “Advanced Virgo: a 2nd generation interferometric gravitational
wave detector,” Classical and Quantum Gravity, vol. 32, p. 024001, 2015.

http://link.aps.org/doi/10.1103/PhysRevD.88.062001
http://link.aps.org/doi/10.1103/PhysRevD.88.062001
www.nobelprize.org/nobel_prizes/physics/laureates/1993/press.html
www.nobelprize.org/nobel_prizes/physics/laureates/1993/press.html
http://arxiv.org/abs/1009.1138
www.auriga.lnl.infn.it/auriga/detector/run1/sensitivity.html
http://stacks.iop.org/0034-4885/72/i=7/a=076901
http://stacks.iop.org/1748-0221/7/i=03/a=P03012
http://arxiv.org/abs/1104.2712
http://dx.doi.org/10.1086/591526 http://arxiv.org/abs/1104.2712
http://iopscience.iop.org/0004-637X/751/1/24
http://stacks.iop.org/0264-9381/27/i=8/a=084006
http://stacks.iop.org/0264-9381/27/i=8/a=084006


Bibliography 172

[58] M. Punturo et al., “The third generation of gravitational wave observatories and their
science reach,” Classical and Quantum Gravity, vol. 27, no. 8, p. 084007, 2010.
[Online]. Available: http://stacks.iop.org/0264-9381/27/i=8/a=084007

[59] Comparison of sensitive volume for initial and advanced ligo. https://dcc.ligo.org/
LIGO-D0901491/public.

[60] B. Iyer, T. Souradeep, C. Unnikrishnan, S. Dhurandhar, S. Raja, and A. Sengupta.
(2011) Ligo-india technical report. [Online]. Available: https://dcc.ligo.org/cgi-bin/
DocDB/ShowDocument?docid=75988

[61] K. Somiya, “Detector configuration of kagrathe japanese cryogenic gravitational-
wave detector,” Classical and Quantum Gravity, vol. 29, no. 12, p. 124007, 2012.
[Online]. Available: http://stacks.iop.org/0264-9381/29/i=12/a=124007

[62] H. Grote, “The GEO 600 status,” p. 084003, 2010.

[63] S. Hild, “Beyond the second generation of laser-interferometric gravitational wave
observatories,” p. 124006, 2012.

[64] S. Hild et al., “Sensitivity studies for third-generation gravitational wave
observatories,” Classical and Quantum Gravity, vol. 28, no. 9, p. 094013, 2011.
[Online]. Available: http://stacks.iop.org/0264-9381/28/i=9/a=094013

[65] The lsc instrument science white paper for 2014-2015. https://dcc.ligo.org/
LIGO-T1400316/public.

[66] Lisa. http://lisa.nasa.gov/.

[67] P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binétruy, E. Berti, A. Bohé, C. Caprini,
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