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Su}1MARY. 

The study of Bitopological Spaces as a distinct branch of General 

Topology began with the 1963 paper of J. C. Kelly, and contribut­

ions have been made by several authors since that time. Three 

'aspects of the theory of bitopological spaces are considered in 

this thesis, and several new concepts introduced which seem 

appropriate for the future developtment of the subject. 

Chapter One is devoted to the devolopement of a covering 

theory for the bitopological space (X, u, v) based on the notion 

of a dual cover, which is defined to be a binary relation on the 

non-empty subsets of X satisfying certain natural conditions. 

Firstly consideration is given to the relationships existing 

between the shrinkability of certain classes of dual covers and 

various normality conditions on X, and then using natural definit­

ions of star refinement and locally finite refinement for dual 

covers such notions as full binormality, biparacompactness and 

strong biscreenability are defined and studied. In particular it 

is shown that under a suitable separation axiom a biparacompact 

space is fully binormal, but that the converse is false in general. 

Weakening the local finiteness condition also leads to the 

consideration of quasi-biparacompactness, etc. Following a short 

section on countably quasi-biparacompact spaces the notion of 

sequential normality is introduced as a weakening of full bi­

normality. The class of sequentially normal spaces is important 

in that it contains all (pseudo-quasi) metrizable bitopological 

spaces, and yet is restrictive enough for its members to have 

such desirable properties as pairwise normality. This section 

contains a dual covering analogue of the Alexandroff-Urysohn 

Metrization Theorem, from which Salbany's Metrization Theorem is 

deduced, showing incidentally that the explicit assumption of 

pairwise normality is redundant. The treatment of dual covering 

properties concludes with a consideration of some weakened forms 

of full binormality based on such concepts as the pseudo-star 

refinement of a dual cover, together with weakend forms of bi­

paracompactness and quasi-biparacompactness which are based on 



the idea of a compartmental dual cover refinement. The relation 

between the above mentioned concepts is further clarified by 

the consideration of several appropriate counterexamples. The 

chapter ends with a brief discussion of quasi-uniform and other 

related structures from the point of view of dual covers, and 

the notion of para-quasi-uniformity is introduced and is shown 

to stand in the same relation to bitopological spaces as does 

the para-uniformity of C. I. Votaw to topological spaces. 

An extension (X', u', v') of (X, u t v) which can be obtained 

as a (bitopological) completion of a quasi-uniform (or similar) 

structure on X will contain X as a u'v v'-dense subset. On the 
S 

other hand there are important intances of extensions which do 

" not satisfy this strong density condition, and the aim of Chapter 

Two is the developtment IJ/'" theory, of what may be appropriatly 

called Confluence Structures, designed specifically to remove 

this restriction in so far as is possible. Confluence quasi­

uniformities (cqu) are obtained by making appropriate changes 

to the dual covering definition of a quasi-uniformity given in 

Chapter One. Their theory is more complicated than that of quasi­

uniformities, but can be developed along broadly the same lines. 

In particular it is shown that, with respect to the appropriate 

definitions, every separated cqu has a completion, unique up to 

isomorphism, which is a separated strict extension of the 

corresponding bitopological space. Related to the notion of a 

confluence relation, which is basic to the definition of a cqu, 

and which is a generalisation of the relation of meeting between 

sets, there are defined several forms of bitopological compactness, 

and these are discussed in connexion with the completeness of 

Cqu. The final section of this chapter contains an extension of 

the work on cqu to the case of para-quasi-uniformities. This is 

restricted mainly to a discussion of those bitopological ex­

tensions which can be obtained as completions of confluence 

para-quasi-uniformities, and partial generalisations are obtained 

to some of the results of Votaw on para-uniform completions. 

The third chapter investigates the lattice P(X) of bicontinuous 

functions on (X, u, v) to the real bitopological space (R, 6, t). 



(iii) 

Here it is convenient to consider the notion of a bi-ideal eL, M), 

where L is a lattice ideal and M a lattice dual ideal in p(X), 

each containing o. The elementary theory of bi-ideals is first 

developed in the more eeneral setting of a distributive lattice 

P with a real translation (T-lattice). Working in terms of a 

concept of ( -regularity for bi-ideals a theory is obtained 

which in some respects resembles that of ring ideals. In part­

icular the quotient P/(L, M) is defined, its order structure 

studied, and the notion of real bi-ideal defined. eeveral other 

aspects of the theory are also considered with a view to sub­

sequent applications. The notion of real bi-ideal in P(X) leads 

to a natural definition of bireal compactness for bitopological 

spaces, and this is also characterized by an embedding property. 

The bireal compact extensions HA are defined and studied in 

some detail. In particular the lattices P(HA) are considered 

in relation to the bi-ideal structure of P(X). It is also verif­

ied that the spaces IIA may be regarded as completions of suitable 

quasi-uniformities on X. The final section-deals with the pair 

real compact spaces of Saegrove. A bi-ideal characterization is 

given, and the pair real compact extensions RS defined and 

compaired with H ,s ,>' where ~ S,. is the smallest sub-T-la t tice 

of P(X) containing the subset S. Finally it is shown that Rs 
is a strictbitopological extension if and only if it is a 

relatively TO extension, and that under this same condition RS 

may be regarded as a completion of a suitable confluence quasi­

uniformity on X. 

For the benefit of those unfamiliar with basic definitions the 

following definitions are given here: 

(a) A bitopological space (X, u, v) consists of a set X on 

which are defined two topologies u and v. 

(b) If (X, u, v), (X', u', v') are bitopological spaces and 

f: X ~ X' is a function then f is said to be bicontinuous 

if it is continuous for the topologies u, u' and also for 

the topologies v, v'. 



(iv) 

PREFACE 

This thesis coasists of three chapters, each prefaced by a 

few remarks coaceraiag it. coateat •• Briefly, the first chapter 

details a coveriag theory for bitopological spaces based oa the 

aotioa of dual cover, the secoAd iatroduces coafluence structures 

aad their completioas, while the third deals with the bi-ideal 

structure of the lattice of bicoatiauous real-valued fuactio •• 

and its relatioR to bitopological real compactness. These 

particular coacepts have aot, to the beat of my knowledge, beea 

co •• idered before, aad they coastitute aa origi.al contributioa 

to the theory or bitopological spaces. I have aaturally drawa 

oa several braachee of ge.eral topology for motivatio. and 

i.epiratioa, but the _itopological ca.e preseats many unique 

features, and ,oses questions AOt met with i. the single topology 

case. Oaly i •• limited aumber or .reas does the theory 

prese.ted here parallel, or provide aa alter •• tive approach t., 

k.owa result. ia the theory or bitopological spaces, .ad I have 

a.ted i. the text such iaataacee ot this .a are know. to me. 

Apart from. few defiaitioa., for which refereace. ar. givea, 

the thesis ia self-coatai.ed. I have .ad. a. effort to maiataia 

• c •• si.t •• t scheme ot aotatioR throughout, •• d .n iadex or 

special symbols, aad ••• ot special terms, is iacluded for the 

co.veai.ace of the reader. 

L. M. BROWN. 
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C~P~R O~ 

DUAL COVERING PROPERTIES OF BITOPOLOGICAL SPACES. 

The theory of covers of topological spaces has undergone a 

rapid developement over the past few years, following the pioneer­

ing work of A.H. STONE (33) and others. The establishment of a 

similar theory for bitopological spaces faces at the outset the 

question of deciding on a suitable counterpart to the notion of 

cover. Indeed it would appear that no one analogue of this notion 

is entirely satisfactory for all purposes. Pairwise open and weak­

ly pairwise open covers have been the analogue most extensively 

considered in the literature to date, as witness for instance the 

papers of FLETCHER, HOYLE and PATTY [13J t RICHARDSONt~lJ ,CIVIC 

t'J and DATTA lto). In this chapter we pursue a different line 

of enquiry in which our counterpart to the notion of cover is 

that of dual cover defined below. Dual covers correspond essential­

ly to strong conjugate pairs of covers which were defined by 

GANTh~R and STEINLAGE [151 , and used by them in a covering 

characterization of quasi-uniformities. Since this characterization 

generali&es the covering description of a uniformity. this serves 

at least in part to motivate our choice of dual cover as a natural 

counterpart to the notion of cover. As we shall see in what follows 

such notions as full normality, paracompactness, etc., have various 

natural expressions in terms of dual covers, and our aim here is ~~ 

investigate the relation between the concepts so defined. While 

some of the known topological results remain valid in this more 

general setting, this is not the case for the majority of the 

results of covering theory, and consequently our enquiry follows 

a largely independent course. 

Since the basic object of study in this chapter 1s that of dual 
~ 

cover it will be convenient at this poit to give some basic definit­
~ 

10ns and notation concerning these, other definitions being post-

poned until the appropriate point in the text. 
o~ 

By a dual family on the eat X (assumed non-empty through~) we 

shall mean any Dinary relation on the non-empty subsets of X. If d 

is a dual family on X we shall usually write UdV in preference to 



2 

(U, V) (: d. 

For the dual family d let us set 

uc(d) = l)(UnV I UdV 1 , 
lc(d) = V t U I 3 V with UdV 1 = U dom d, 

rc(d) = U {V I -3 U with UdV 1 = u ran d 

and call these respectively the uniform coverinr;, the left 

coverin~ and the right covering of d. 

The dual family d is an 1-dual family if U" V 'I ¢ whenever 

UdV. An 1-dual family whose uniform covering is X will be called 

a dual cover of X. 

When we are free to choose, any indexing of a du~l family will 

be assumed to be faithful. If d is an indexed dual cover t~en 

(dom d, ran d) is a strong conjugate pair of covers in the sense 

of GANTNER and STEINLAGE [1SJ, and indeed these two notions are 

essentially equivalent. However, working in terms of dual covers 

gives a certain notational economy. 

If d and e are dual families we write e ~ d, and say that 

e re fines Ii, if given ReS there exis ts UdV with R fr U and S ~ V. 

Unless the context makes the contrary clear, when we speak of a 

refinement of a dual cover we shall always mean a dual cover 

re finemen t. 

If d and e are 1-dual families we set 

dAe = 1 (UI\ R, v" s) I UdV, ReS, Uf\VI\ RIlS 'I ¢ 1. 
Then d f\ e is an 1-dual family which re fines d and e. Indeed d 1\ e 

is the greatest lower bound of d and e in the set of all 1-dual 

families partially ordered by refinement. In particular if d and 

e are dual covers then d" e is the greatest lower bound of d and 

e in the eet of all dual covers on X. 

The results of Section 1.1 were announced by the author at 

the 6th Balkan Mathematicians Congress held in Varna in 1977, 

under the title "A theory of dual covers for bitopological spaces". 

Throughout this thesis a regular (normal, fully normal, 

compact, paracompact) topological space is not assumed to be Tl • 

1.1 BINORMALITY. 

The notion of pairwise normality for bitopo1ogical spaces was 



3 
introduced by KELLY in l1q). A bitopological space (X, u, v) is 

called pairwise normal if given a v-closed set A and au-closed 

set B with AnB = ¢ there exist U E: u, V Go v with A ~ U, B f:: V 

and UnV = ¢. This is a natural counterpart for bitopological 

spaces of the notion of normality for topological spaces, and a 

good many of the properties of normality carryover to pairwise 

normality. In particular an exact analogue of Urysohn's Lemma may 

be established for pairwise normality, as was shown in the above 

mentioned paper. In this section we are going to consider the 

situation with regard to the covering characterizations of norm­

ality, and dual covers. We begin by recalling the following two 

well known results: 

A) A topological space is normal if and only if given any point 

fini te open cover 'U. = ~ U GPo. \ 0( E: A 1 there is an open cover 

V- = t V ca. \ ~ €: A I 1 where A I ~ A and V II( =. U C( for all « c; A I • 

(See, for example «(1tl , Theorem 6.1). Of course if we permit 

our open covers to contain empty sets, or if the space is RO' 

then we may take A = A' in this result) 

B) A topological space is normal if and only if every finite 

open cover has an open star refinement [~~] • 

In order to determine if the corresponding results hold for dual 

covers of bitopological spaces (with "normal" replaced by "pair­

wise normal") we need first to give suitable counterparts for 

dual covers of the above mentioned properties of covers of a top­

ological space. Let (X, u, v) be a bitopological space, and d a 

dual cover of X. We shall say d is open if dom d =u and ran d 

~ v. The property of the cover ~ described in (A) is often 

called shrinkability. Its analogue for dual covers is given in: 

De fini tion 1.1.1. A dual cover d = 1. (U .. , V~) I "" e. A 1 t fai th­

fully indexed by A, is called shrinkable if there is an open 

dual cover e = I (RIIo(' SQ\,) I II\, Eo A'l with A' S: A, v-cl[R.] S:- UII( 

and u-clls .. l S: V .. for each ell Ci:r A I. 

The counterpart of "point finite" for dual families is given 

in: 

Definition 1.1.2. The dual family d is point finite if for each 

x '" X the set 
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1 (u, v) , UdV, x € U" v 1 

is finite. 

It will transpire that if every point finite open dual cover 

of (X, u, v) is shrinkable then (X, u, v) is pairwise normal. 

However the pairwise normal space of Example 1.6.1 contains a 

finite open dual cover which is not shrinkable and so the converse 

result is false. This shows that the analogue of the condition 

in (A) does not characterise the pairwise normal bitopological 

spaces. 

Now let us turn to (B). As we shall see later, the notion of 

"star refinement" for dual covers may be defined in several ways. 

However the following is by far the most useful and natural. 

Definition 1.1.3 Let d be a dual family on X, and A ~ X. We set: 

St(d, A) = u tu I ~ V, UdV and Vn A I ¢ 1, and 

St(A, d) = U tv, ~ U, UdV and U f' A I ¢ 1 . 

If e is a second dual family on X we say d is a star refinement 

of e, and write d -«tel e, if given UdV ::1 ReS with St(d, U) ~ R 

and st(V, d) ~ s. 

Unless something is said to the contrary a star refinement 

of a dual cover will always mean a dual cover star refinement. 

If d is a dual cover then we have A = St(d, A) and A = St(A, d) 

for all subsets A of X. In particular a dual cover star refine­

ment is also a refinement. 

With this definition of star refinement we may now ask if it 

is true that a bitopological space is pairwise normal if and only 

if every finite open dual cover has an open star refinement. 

First let us note the following: 

Proposition 101.1. Every dual cover d with an open star refine­

ment is shrinkable. 

Proof. Let d = 1 (UD'-' v«) \ oc. E A 1 , and let f be an open dual 

cover with f .<. 'tIf, d. For 0( E:- A de fine 

Rot = U {L I L €: dom f, St(f, L) !:: Uell , and 

S 00. = u tTl T' ran f, S t ( T , f) = Vo( 1 • 
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Then if we set At = t ~ , 0. E- A, Ral nSo, -! ¢! it is easy to verify 

that 

e = t (R~, Sell) I ~ E: A' l 
has the properties required in Definition 1.1.1. 

We have already mentioned that the pairwise normal space of 

Example 1.6.1 has a non-shrinkable finite open dual cover, and 

this dual cover cannot have an open star refinement by the above 

proposition. This shows that the above mentioned analogue of (B) 

for bitopological spaces is also false. 

In view of these negative results two possible lines of 

inquiry suggest themselves. One is to determine a "reasonably 

large" class of dual covers of a (pairwise normal) bitopological 

space which do have open star refinements, and the second is to 

investigate the "normality" conditions imposed on a bitopo1ogi­

cal space by the requirement that certain families of dual covers 

should be shrinkable. Before giving one possible answer to the 

first question we shall need the following definition. 

Definition 1.1.4. We say the dual family d is star finite if 

for each UdV the set 

[. (U', V') , U ' d V " U' 1'\ V F ~ or U f\ V' F ¢ ~ 

is finite. 

Note that a star finite dual cover is certainly point finite. 

Theorem 1.1.1. (i) Every shrinkable star finite open dual 

cover of a bitopological space has a star finite open star 

refinement. 

(ii) If (X, u, v) is pairwise normal, every 

shrinkable star finite open dual cover has a shrinkable star 

finite open star refinement. 

Proof. (1) Let d = L (Ual , V~) I cc. E: A 1 be an open shrinkable 

star finite dual cover, and e = l. (R .. , S~) I ell E: A r 1 as in 

Definition 1.1.1. For each x & X define 

U = n t. R 'x Eo R ~ 1 f\ n l Uoc I x e U CIt 1 () x CIC. 

n t X - (u-c1ls.]) , x <I u-cl(S.J and :3 ~ E: A, x E U jl and 

u~nv"'F¢l, 



v = n ts~\ x€:s«!n ntvO(, x E:v«ln 
x 

n tx - (v-cl[R.) I x q. v-cl[RGI.) and -3 ~ E: A, x e-Vfl and 

V~ (\ U oc. ! ¢ ! , 

and f = I (u , V ) I x ~ xl. x x 

6 

Since d is star finite, e~ch of the intersections involved in the 

definition of U and V ~ essentially finite and so f is an x x 

open dual cover of X. Let us show that f is star finite. Take 

x E X and let 

t ~ 'xe uO(l = [0(,1' •• "CXn~' 

t (J I VfS (\ U c:(. ! ¢ 'V al = 0(1' ••• , at n 1 = I fl l , ••• , (lm !, 

and for each i = 1, 2, ••• , m let 

{ IS I U l$ (\ Vf3i ! ¢! = l 1f il' ••• , 

Suppose U n V ! ¢, then: x y 

If ik. j . 
J. 

(a) (y 6 S jJ !:: V P or y e ~) =9 (~n U DC. I ¢ \;;/ ell. = 0(.1' ••• 

• ·.,Ol.n) =7 (t1=,6tfOrsomel.=.t~m), 

(b) (y 1- v-cllR 2I J and -) f E: A, y" Vp and VI' (\ U ~ I ¢) ::::;:» 

(~= ~r for some 1 ~ r s m, and then ~ = ~ rs for some 

l~s~k) 
r 

It follows that each V with U nV I ¢ may be defined using only y x y 
S ~ . VA V and R , ••• , Rv • Hence U meets 
~l' ••• , /3ll)' rl' •• ', ~m lSll umkm x 

only a finite number of distinct V , and likewise V meets only 
y x 

a finite number of distinct U • This verifies that f is star finite. 
y 

l'inally if we take x 6- X and 0( E; A' wi th x Eo Roc. (\ S Q. it is 

easy to verify that 

St (f, U ) ~ U CK and St (V , r) s V ~ x x 

so f -< (, .. , d, and (1) is proved. 

(i1) Take d and e as in (i). For ex E:- A' we have v-cl [ROll ,So 

U 0(' and u-cl [S lit) ~ V CIl , so by the pairwise normali ty 0 f (X, u, v) 

we have u-open sets p~, MOl. and HO\.; and v-open sets QA' NO( and Ko.. 
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so that: 

v-c1(Rot l == POI S: v-c11pcxl'= MOl. ~ v-c1[Mocl 5:: H/lC, S: v-c1lH., 1 s u CII. , 

u-c1ls4I.)s Q-.= u-c1lQ".lS: N .. = u-c1lN.a.s: Ko.5: u-c1lK .. ]s Vf1C.. 

Now define: 

U~ = n { Pot , x t Ret! f) n t Uo.' x E: v-cl{MQL11 (\ () tx -(u-cl{QQL]) 

\ x 1- u-cllNCIf.) and 3 f1 E: A' with x E:; v-cl(Mft 1 and Uf! (\ Va.! ¢ j , 

and 

V~ = (\ f. QOl \ x E: Sot! f\ n (VOl. \ x E. u-c1[N .. ltf\ () [X -(v-clLp .. ) 

, x 4- v-c1lMO( '1 and -3 j1 Eo A' with Xc u-c11Nf11 and V~ f\ Uo.! ¢}. 

Arguing as abdve f' = t (U', V') , x ~ X ! is an open dual cover 
x x 

of X, and with the notation used in (i) each V' with U' A V' ~ 
Y x Y 

¢ can be formed using at most ~l'···' ~mj V~l' ••• , Vflm and 

P ... , P so U' meets only a finite number of distinct 
"IS1l' Ymk x m 

V' • In the same way V' meets only a finite number of distinct 
y x 

U' so f' is star finite. y 

It is easy to verify that f' ~(*) d, so it remains only to 

show that f' is shrinkable. For x G X define: 

u: = (\ t Ro( I x ~ R~i" (\ l H(IL' x E:: v-cllM.J3f\ ntx -(u-c1IN .. ) 

I x ¥u-clLN .. J and:3(1 c A' with x t v-cllMl\l and Uft {\VQ.f. ¢J, 

and 

V;= (\{.s ... ' xE:SOI.\n nlK«1 x&u-c1lN.1II\{)EX-(v-c1LM .. ) 

t xcl: v - cl lM .. l and-a(l E: A' with x ~u-c1lN~1 and v~{\Uci..f. ¢i. 

Again U'" c; u, V· E v and x C:. U· n V*. Next set: x x x x 

R = U f.. u.,. I (U' vI) = (U' V') 1 and 
x y x' x y' y , 

S = V ! v I (U' V' ) = (U' V') 1. 
x y x' x y' y 

Then g = { (R , S ) 
x x \ x E: X ! is an open dual cover of X, and 

(U' V' ) = (U', V' ) implies (R , S ) = (R , S ) so it remains to 
x' x y y x x y y 
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show that 

v-clrR 1 ~ U' and u-cILS 1 ~ v' L x - x x x '" x E- X. 

Now it is easily seen, repeating an argument used above, that the 

unions defining Rand S are essentially finite, so it will 
x x 

suffice to show that 

v-clLU
4

\ S U' and u-cl\v'l!: V' 'V x ~ X. x x x x 

However this is immediate from the definitions, and f' is shrink­

able as required. 

This completes the proof of the theorem. 

We may say that a dual cover d = dO is normal if there is a 

sequence dn , n = 1, 2, ••• , of open dual covers with dn+l ~C~) dn , 

n = 0, 1, 2, ••• • This corresponds to the terminology used for 

covers of topological spaces. We then have: 

Corollary. In a pairwise normal bitopological space every open 

star finite shrinkable dual cover is normal. 

Before going on to discuss the second question mentioned 

above we make the following convention of terminology which will 

be useful here and later. If "P" is a topological property then 

the term "uniformly P" applied to the bitopological space (X, u, 

v) will mean that P holds for the least upper bound topology 

u v v (which itself will be called the uniform topology of (X, 

u, v». 

If E = X is uniformly closed then there is an open dual 

family t. (U"'-, VtA,) \ ol. 6- A \ so that 

E = X - U {. U~ " V ~ 'CI... & A j . 

If this family may be chosen to be finite (respectively, star 

finite~ point finite) we will say that E is finitely (respectively, 

~ finitely, point finitely) uniformly closed. 

These considerations lead us to several new forms of normality 

for bitopological spaces, as given below. 

Definition 1.1.5. We say that (X, u, v) is binormal if given 

any uniformly closed set E, and any u-closed (respectively, v­

closed) set F with E f\ F = ¢ there exist U E; u, V E:o v with U (\ V = 

¢ and E = U, F ~ V (respectively, E SV, F S:: U). 
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If this condition holds whenever E is finitely (respectively, 

star finitely, point finitely) uniformly clooed, we will say that 

(X, u, v) is finitely (respectively, ~ finitely, point finltely) 

blnormal. 

Clearly we have: 

Binormal => point finitely binormal 9 star finitely binormal 

~ finitely binormal ~ pairwise normal. 

If d is a dual cover of X we say that (U, V) € d is 

essential if d - {(U, V)! is not a dual cover of X. We may now 

state: 

?roposition 1.1.2. (X, u, v) is (finitely, star finitely, point 

finitely) binormal if and only if eiven any (finite, star finite, 

point finite) open dual cover d and any UdV there exist sets Ul , 

VI with v-cllull f: u, u-cl[Vl ] ~ V, U1 E:. u, VI E:. v and so that 

Proof. => . If d is an open dual cover of the appropriate kind, 

and UdV is essential we need only apply the corresponding 

binormality property to the disjoint pain of sets E, (X - U) 

and E, eX - V), where 

E:: X - uc(d - l(u, v)1). 

On the other hand if UdV is not essential we may take Ul = VI = ¢. 

¢: • If E = X - U {Uo(f\ VfI( I ex. E:. A 1 is a non-empty 

uniformly closed set of the appropriate kind, and F is (say) a 

u-closed set with E" F :: ¢ then (X - l!', X) is essential for 

and by the appropriate hypothesis there exist Ul ~ u, Vl £ v with 

v-cl{Ul ] ~ X - F and ucl(d -lex - F, X)i)u I (Ul ' V1H] = X. 

But then E ~ Ul and F !: X - (v-cl {Ul) ), which eives the required 

result. A similar argument may be used when F is v-closed. 

Corollary. If every (finite, star finite, point finite) open 

dual cover is shrinkable then (X, u, v) is (finitely, star finite-



ly, point finitely) binormal. 

The validity or otherwise of the converse result for the 

binormal case is an open question, but this converse result is 

true for the other cases, as we now show. 

10 

Theorem 1.1.2. If (X, u, v) is finitely binormal (respectively, 

star finitely, point finitely binormal) then every finite open 

dual cover (respectively, every star finite, point finite open 

dual cover) is shrinkable. 

Proof. Let d = {(Ug(' VQ.) 10(& A! be an open dual cover of 

whichever kind is being considered, faithfully indexed over A. 

Let ~ be the class of all functions f satisfying the following 

conditions: 

(i) dom f = B(f)!:: A, 

(ii) For (3 E. B(f), !Cf» = (%, Sft) where Rfl~ u, S~E; v, 

v-cllRfS) 5:: U ~ and u-cli.s/11!: V~, 

(iii) uci (RIl , SIl) I ~ E':- B(f) lv {(Ua(t V~) 'Ol E:- A - B(f)] 1= x. 

For 01.. E: A we may define an element ! of =! with B( f) = (at i using 

Proposition 1.1.2. This shows that ~ I ¢. We may define a part­

ial order ~ on =i by setting f ~ g if and only if B(f) ~ B(g) 

and t~) = g~} whenever ~ e B(t}. Let us verify that in all 

cases ( !:l t ~ ) is inductive. Let t f zs I ~ E:; 0 ! be a· chain 

in ~ t and define a function f by dom f = B(f) = V t B(flS") , ~ €:- oj 

and fIB(f~) = f~. f is clearly well defined, and if we can show 

that f ~ ~ it will certainly be an upper bound of ( f~j • Now 

(i) and (ii) are clear. To see (iii) take x ~ X with x ~ U~ n V« 

for all cl E:-- A - B(t). Since d is point finite in all cases there 

is a finite set L 0(.1' ()(.2' ••• , o<.n J 80 that x E:; UOI. n V Ol if and 

only if o{c [0. 1 ' •.• , cC.ni. By the choice ot x we have t c(l' ••• 

'o{n 1 S: BCf), and {fJ is a chain so [d. l , ••• '~n~ S: B(f~) 

tor some ~ E':- O. It tollows that for some fi e B(fzs} s::. B(t) we 

have fCft) = flJ(~} = (RIl' Sp) with x ~ RIl n S/1' This verifies (iii) 

and t E::: ~ as required. Applying Zorn '8 Lemma to (~ ,~ ) 

allows us to deduce that there is a maximal element f ~ ~ • It 
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will suffice now to show that ucLl(Rp, Sf'S) I f1 e B(f) J 1 = X, 

for if we set At = l «. , c( e B(f) and Rg( n S<J4.1 ¢ ! and e = 

{(Re.., Sell) I c{ E:: A'! then this is an open dual cover having the 

properties required in Definition 1.1.1. However we must in fact 

have B( f) = A (from which the required result follows from (iii», 

for if 0(, ~ A - B( f) we could extend r to a larger function g E:. 

~ with p(. ~ B(g) using Proposition 1.1.2, and this would cont­

radict the maximality of f. 

This completes the proof of the theorem. 

Corollary 1. The following are equivalent for the bitopo1ogica1 

space (X, u, v) : 

(a) (X, u, v) is star finitely binormal. 

(b) Every star finite open dual cover is shrinkable. 

(c) Every star finite open dual cover is normal. 

Since the results of Theorem 1.1.1 are clearly also true if 

we replace "star finite" by "finite" we may state: 

Corollary 2. The following are equivalent for the bitopo1ogical 

space (X, u, v) : 

(a) (X, u, v) is finitely binormal. 

(b) Every finite open dual cover is shrinkable. 
(c) Every finite open dual cover is normal. 

It will be noted that, by what we have said earlier, the 

bitopological space of Example 1.6.1 is pairwise normal but not 

finitely binormal. 

We end this section with the following definition and comments. 

Definition 1.1.6. A bitopoloeical space will be called: 

1) Fully binormal if every open dual cover has an open star 

refinement, and 

2) Strongly biparacompact if every open dual cover has a star 

finite open refinement. 

These properties correspond to full normality and strong para­

compactness respectively for topological spaces t 2.S 1 • Note that 

it is equivalent to say (X, u, v) is fully binormal if and only 
oS 

if every open dual cover ip normal. By what has been shown above 

it is clear that a fully binormal space is binormal, and that a 
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star finitely binormal strongly biparacompact space is fully 

binormal. This latter result will be considerably improved in the 

next section. 

1.2. LOCAL FINITENESS PROPERTIES. 

In the following definition d is a dual family, and for each 

xc X, H(x) is a nhd. of x for the topology u, and K(x) a nhd. of 

x for the topology v. 

Definition 1.2.1. d is locally finite if we may choose H(x), 

K(x) in such a way that 

d = 1. (U, V) IUd V an dUn K (x) -I ¢ or V n H (x) -I ¢ 1 
x 

is finite for each x e x. 
d is Z -fini te if we may choose H(x), K(x) in 

such a way tha t 

U[d 
x 

(U, V) E: d 1 
x 

is finite for each UdV. 

If the above choice can be made 80 that the sets in question 

contain at most one element we speak of d as being discrete and 

£ -discrete respectively. 

Finally if d = LJ (d I n = 1, 2, ••• 1 , and each d has one 
n n 

of the properties "L" above we say d is " f1 -L". 

The bitopologica1 space (X, u, v) will be called biparacompact 

(respectively, strongly biecreenable) if every open dual cover 

has a locally finite (respectively, ~ -discrete) open refinement. 

The notion of a ~ -finite collection on a topological space 

was introduced by McCANDLESS intl1) • Biparacompact and strongly 

biscreenab1e correspond respectively to paracompact and strong­

ly screenable for topological spaces L1SJ • 

Cleary every strongly biparacompact space is biparacompact 

since a star finite open dual cover is locally finite. 

It is easy to see that a bitopological space is uniformly 

Lindel~f' if and only if every open dual cover has a countable 

sub-cover. Hence a uniformly Lindelof space (and more particular-
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ly a uniformly compact space) is strongly biscreenable. 

It is known (llS) , Corollary 2 to Theorem V.2) that for regular 

topological spaces the notions of paracompactness and strong 

screenability coincide. However the bitopological space of Example 

1.6.3 is pairwise regular [1'1] and strongly biscreenable but not 

biparacompact, so the analogue of this result for bitopological 

spaces is false. I do not know if a (pairwise regular) bipara-
SPQ.t~ 

compact/is necessarily strongly biscreenable, but we can prove 

this result if we replace "biparacompact" by "strongly bipara­

compact". To this end we will first develop+ some results about 

£. -fini te dual families. 

It is clear from the definitions that a ~ -finite dual family 

is both locally finite and star finite. For an open dual cover, 

however, we have the following improved result: 

Lemma 1.2.1. An open dual cover d is ~ -finite if and only if 

it is star finite. 

Proof. Let d be an open star finite dual cover of X, and for 

x E:: X define: 

Hex) = (\ { U 

K(x) = f\ l v 
:3 V, UdV and x E:. U (\ vI, 
3 U, UdV and x E; Un v}. 

Since d is star finite it is also point finite so x ~ H(x) ~ u 

and x t K(x) ~ v, and it is easy to verify that with this choice 

of H(x), K(x) the set 

U l d I (U, V) E:. d 3 x X 

is finite for each UdV. 

The above mentioned result will now follow if we can show 

tha t every l:.. -finite dual family is ~ -Jisdd·(., and this is the 

subject of the next theorem. This corresponds to «(2Ll, Theorem 2), 

and there is only a notational difference between the proofs for 

the topological and bitopological cases. However the proof given 

in t1~1 contains a technical error (for the given induction 

hypothesis it would be quite possible for two disjoint members 

of 1..t (1) to be given the same index) and so we give the proof 
x 

of the bitopological version of this theorem in full. We base 

the proof on the method of transfinite construction (till, ~ 5.2) 
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since a rigorously stated proof based on transfinite induction is 

somewhat cumbersome. 

Theorem 1.2.1. Every ~ -finite dual family is C -d.i~H.#e. 

Proof. Let d be a ~ -finite dual family on (X, u, v), andlupfost. 

that H(x), K(x), x ~ X, have been chosen so that 

U ! d l (U, V) E:. d j 
x x 

is finite for each UdV. In particular each d
x 

is finite. For each 

x let F faithfully index d , and suppose the F are pairwise x x x 

disjoint and also disjoint from X. If (;J.. E W = U l F I x E:. X ! x 

we denote by x(oc.) the unique x E::. X with "" E:: F • x 

Give X and each F a well ordering. There can be no confusion in 
x 

denoting each of these orderings by ~ • and ~ 

and I. We may then well order W by 

denotes ~ 

01.. ~ fl (in W) ¢:!> x(o() ~ x(P) or x( ~) = x(p) and 

0< S f? (in Fx(~»· 

We are going to show that there is a function f : W -> l'l which 

for each DC. E. W satisfies the conditions: 

(a) f3" 01. and (U~. Vp ) = (UIX.' VV\) 9 fCp) = f(ol), and 

(b) ;1 .:. 0(.. (U,.c' V;.J) I (Uol' V"-) and:l w E:. X with X(ol) ~ w 

and (t;a , VI1 ) , (UII(.' Vee.) cd ~ fCp) I f(ol). 
w 

For ctE:. W we let W(er.) = [~ '(3<.oC~ , and we denote by 

=\ (d.) the set of all functions tP : Wee() -> m satisfying the 

condition : 

(c) jl , ~ €:: W(~), (Up, ~) = (U
V

' V~) ==? cf(fJ) = .p(~). 

For X L X let F (1) • ~,.J , cl & F..:l ith (U V) = xl,.."" x' ~ y < x W til.. , ~ 

E d 1 an d F (2) I: F _ F (1 ). 
y' x x x 

For '2r E. F (2) let 
x 

S~=t~ l x~) ~ x and (Up, ~), (UzS" VJ)E d
w 

for some 

w e X wi th x ~ w.}. 

Since d is :£. -finite S'lf is finite, and hence so too is the set 

T(x) = U f S-r I 1f E:. F
x

(2) ~. 



Also for ~E-W, T(x(c(»~W(oe.) so if cP : Wee() -'"> W is any 

function, cP tT(x(o(»] is a finite set of natural numbers. Let 

{ 

0 if T(x(o.» = ¢ 
n(cf'.cx.) = 

max(.plT(x(ol»J) otherwise. 

For each function f: w( ol) --":> IN let us define ROI [ cf 1 as 

follows. 

(i) If eX 4 !:!(~ let RCI(lcf) = 0 
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(ii) If «. E:- ~(o() and 0( E- F (1) 
x (Dt) then ~ ~ t:: W with x (In c::. 

x(oc.) and (UIl(.' V~) = (Ufo' V,&); and we let RQ(iCP] = cf ys). 
This value is unique since ~ satisfies (c). 

(iii) If oc. e ~(O() and «. E Fx(C() (2) we let RG(LCPJ = n(e? ,0( ) + 

IK(~)' where t K(~)I is the number of elements in the set 

K(O<) = l fl \ xCp) = x(o() and j3 ~ at 1 · 
By the principle of transfinite construction we have a function 

f : W-t> IN such that f(c() = RDtrfIVl(ot») for each eX E: W. Note 

that if 0<0 is the least element of W then we may regard the uniq-

ue function cf : ¢ ~ IN as belonging to -:t (0£0)' and since 

n(~,~o) = 0 this means that we are giving f(~O) the unique value 1. 

It remains to show that f satisfies (a) and (b) for all d. E: VI. 

Clearly these are true for 0( = 01.. 0 ' so it will suffice to show 

that if they are true for each 0( <. O{, they are true for 0( = oc.'. 

First, under this hypothesis, rlw(d.'} G 1 (CI.,'). For if fi, ~ E 

W(d-') with /1.::. ~ we may apply (a) with of. = " to give f(p) = 
f(l), so (c) is satisfied. 

(a) Takej\LoA..' with (UIl , VJ3) = (Ud.," VO'-'). To show that f«()I..') 

= fV1). Since /'> lot' we cannot have ~ E:. F x (pC,,' } since the index­

ing is, faithful, so x0) c:::. x(o<.'). This shows that 01..' E. Fx(O('} (1) 

and hence that f(or.') :I Rll(.,f rtw(Dt')] = lflW(OI.')l(/3} = f«(3} as 

required. 

(b) Take I' <. 01.' with (U". Vtt) I (U
Ol

" Vet')' and suppose that 

for some x(ol') ~ w we have (U~, ~), (Uoe " Vrx ') €:- dw• We wish to 
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show that f(/\) ! f( q..') • 

First suppose that ~' E: Fx(Cl') (1), then -3 l5 E- W with x(~) 
<:. x(ce.') and (U

If
, Vir):: CU"". V~,). Hence r(~.') = Rcc.,lrlW(CI.,')] 

= [f Iw( CII.' >J ('{) = f('(). Now fl> ! ~ so suppose lS 4. ~. (b) is true 

forDl = (1, and we may deduce that fOO I f(,1), ie. f(el')! f(~). 

The same argument applies when rs ' 1$ • 

Finally suppose tJ...' E- Fx(oc.'> (2). Then f(cl') = R"" lfl'll( ca.') 1 
= n(fIW(~), or..') + IK(<<')l. There are three cases to consider. 

(i) x«(1):: x(~') and ~ E:- F x(,1) (2). In this case we also have 

f(fS) = n( rtWC{3), ~ ) + I K(/l)\. Now T(x(Ql'» = T(x(/3» ~ 

V {.F I y c:. x(o('>1 ~ W(~,) (\ W(fj) , and so n(fIW(I\), f> ) = 
y 

nC f IW( ell.'), at.'). However since ~ c:. ~, and ~, 0.' 6 F x(~t) we 

have I K «(J) I <. I K (ol') \ and so f«(3) .c:.. f( ",' ) • 

(ii) x<{.3).::. x(CI..'). In this case ~ ~ S(ll.' ~ T(x(o!», andj1 E: 

W ( rJ...') so n ( f I w (d.' ), 0.') ~ f(p). Also I K (CI.') I ~ 1 so again 

f0) -" f( 0(') • 

(iii) xC/l) = x(c<.') and ~ e. FxCp) (1). Here we have ~ E:. W with 

x(lS) <.. x({!» = x(~') and (U'I)' V~) ='(l1;J, Vp ). Then as before fCfJ) 

= f(~), and we may apply case (ii) to ~ in place of j.J and 

deduce that fCj3) = f(~) <. f( 00.' ) • 

This verifies (b) for ~ = cA.' in all eases, and so f has 

the properties (a) and (b) for all d. e:,W as stated. In particular 

it follows at once from (b) that fty is an injective function 
x 

for each x e. x. 
Now for each n = 1, 2, ••• let: 

dn = 1 (U-., VD'..) , t:/... e W, f("") = n 1 . 
Clearly U t.d ,= d, 80 our proof will be complete if we can show 

n 

each d is discrete, and this will follow if no d can contain 
n n 

more than one element from any d , x ~ X. Suppose, therefore, 
x 



that we have (U~, V~), (U~, V~) E dx and f(~) = fY1) = n. Then 

-3 ci',f\' E:.Fx so that (Uct.' Voc,) = (U~" Vet..') and (Up, V(l) = 
(U/J" V~,); f(/1.) = f(o..') and f(P) = f(fl') by (a). But then 

f(OI.') = f(/1') and so 01.' = (l' since flFx is injective. This 

shows (U~, V~) = (U~, Vp ) and we have shown dn is discrete as 

required. This completes the proof of the theorem. 
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Corollary. Every strongly biparacompact bitopological space is 

strongly biscreenable. 

The other properties of ~ -finite dual families are similar 

to those of ~ -finite collections. If we call a dual family d 

closed if dom d consits of v-closed sets and ran d consists of 

u-closed sets then we may note in particular that a closed dual 

family is £.. -finite if and only if it is star finite and point 

finite. 

We shall follow the terminoloBY of (~J] in respect to separ­

ation properties of bitopological spaces. We recall in particular 

that the bitopological space (X, u,' v) is' weakly pairwise Hausdorff 

if and only if given x, y E; X with x 'I y there exist H €.u, 

K c v with HnK = ¢ and x E:. H, Y E: K or x E:.. K, Y E:. H. A.H. STONE 

(33) has shown that for Hausdorff topological spaces the notions 

of paracompactness antfull normality coincide, but the bitopolog­

ical space of Example 1.6.3 is weakly pairwise Hausdorff and 

fully binormal but not biparacompact, so this form of the coinci­

dence theorem does not hold for weakly pairwise Hausdorff 

bitopologica1 spaces. On the other hand, however, we are now going 

to show that under a suitable separation hypothesis a biparacom­

pact bitopological space is indeed fully binormal. The required 

separation property is given in: 

Definition 1.2.2. (X, u, v) is preseparated if given x 4 u-cl~y\ 
(respectively, x ~ v-cltyl) in X there exist U E:. u, V ~ v with 

UnV = ¢ and x E:. U, Y E:: V (respectively, y E:. U, x G::: V). 

Clearly a preseparated bitopological space is pairwise Ro 

(13) , while a weakly pairwise To [31) preseparated bitopological 

space is weakly pairwise Hausdorff. 
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The following definition and lemma will be useful in the proof of 

the above mentioned result. 

Definition 1.2.3. Let d and e be dual covers of X. We say d is 

a delta refinement of e, and write d"('(6Je, if given x E:-X 

there exists ReS with St(d, {xl) ~ R, St(lx\, d) = S. 

Lemma 1.2.2. If d, e, f are dual covers and d ,,(,(6) e ..(.(A) f then 

d ...(. (.) f. 

Corollary. (X, u, v) is fully binormal if and only if avery open 

dual cover has an open delta refinement. 

We omit the proof which is straightforward. See ([2S) , (B), p 50) 
for the corresponding statement for topological spaces. 

We may now give: 

Theorem 1.2.2. A preseparated biparacompact bitopological space 

(X, u, v) is fully binormal. 

Proof. (1) (X, u, v) is pairwise regular. 

Let F be u-closed and p ~ F. For x 6 F we have p1 u-cl{xl 

and so we have p € U E u, x E: V E:. v with U "V = ¢. The open x x x x 

dual cover d = t (X, Vx ) I .x ~ Flu t (X - F, X) 1 has a locally 

finite open refinement e = {(Rd.' SM) l ~ E: AJ. Now F.S: St(F, e) 

~ v, so it will suffice to show p 4 u-c1[St(F, e)]. Now let 

H(p) c=- u, K(p) E: v be nhds. of p so that 

t c( , H (p) n S ct.! ¢ or K (p) (\ R ~ -I ¢ 1 

is finite, and let 

to(, H(p)" SCII.-I ¢ and Fn R -I ¢ 1 = lO(l' ••• , ~ml. 

For i = 1, 2, ••• , m; R4Il
i 

cj X - F so :3 xCi) rc F with Sot
i 
~ V

x
(!) 

and it follows that M = H(p) n (\ t Ux (!) , i = 1, 2, ••• , m 1 is a 

u-nhd. of p with M"St(F, e) = fl. The case when F is v-closed is 

similar, and so (X, u, v) is pairwise regular. 

(2) (X, u, v) is binormal. 

Let F be u-closed, and T a uniformly closed set with FnT = rl p. 



We have an open dual family! (U ... , V~) l tA E. A 1 so that 

T :: X - U 1 (UCjP. n V,.) I r:A €: A ~ , 

and we may assume without loss of generality that U .. " V III. /. ¢ 
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for each Ol E: A. By the pairwise regularity we have for x c- T, 

x e U E:: u and F E:. V E v with U "V :z ¢, and by hypothesis the 
x x x x 

open dual cover 

d:: I (UOI.' VIII.) I ~ E:- Ai u { (Ux ' X) I x E: T 1 
will have an open locally finite refinement e = ! (R,.., Sfl) , fi E: B t. 
Let us define: 

w = U ( Rp I ~ n Sfo n T /. ¢ 1; 
then T ~ W E:;. u. 

For z ~ F let Hez) ~ u, K(z) ~ v be nhds. of z so that 

t ($ I H ( z ) f\ S (S !- ¢ or K ( z) 1\ R (1 ;l ¢ j 

is finite, and set 

(t1 I K(z) 1\ RJlI ¢ and RfJ n SfJ n T I ¢ 1 = { fi l , ••• , fln 1 · 

For i = 1, 2, ••• , n we cannot have R~. S U do. and Sf1:. S: V~ 
]. ]. 

for any at ~ A since U", nVQ. "T :: ¢, so there exists xCi) l:T 

RJ1. c. 
Ux(i) • Then z ~ F Co Vx(i) and N(z) = K(z)1\ A[Vx(i) 

]. 

1, 2, ••• , n 3 is a v-nhd. of z with N(z) 1\ W = ¢. This shows 

for 

with 

I i = 

tha t F 1\ v-cllw 1 = ¢. The case when F is v-closed is dealt with in 

the same way, and we deduce that (X, u, v) is binormal. 

(3) (x, u, v) is fully binormal. 

Let d be an open dual cover, and e :: t (Rat' Sd) I c( €- A I an 

open locally finite refinement of d. In particular e is point 

finite, and (X, u~ v) is (point finitely) binormal, so by Theorem 

1.1.2 we know e is shrinkable. Hence there is an open dual cover 

f = {(TlII.t Z",) • 0(. E. A' 1 with A' c. At v-cllT ... \ f. R ~and u-cllzlIll 

S S do. for each Ol €; A'. Note that f 1s clearly locally finite 

also. For p e X define: 



M(p) = ru Ro( 'do. E:- A', p E: v-clIT~11n (\[X - (u-cllzc,J) I 

(1. e A', P 4 u-cl [z -.11 • 
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The first intersection is finite since e is locally finite. Also, 

since f is locally finite and hence "closure preserving" we have: 

nix - (u-c1lz" 1) I ol E: A', P f. u-c1lz CIt] 1 

= X - utu-c1[z~11 d..E:-A', p4u-c1[Z~11 

= X - u-c1 l U l z CI\ , 0.. Eo A', P 4 u-cl[Z I() 11 E:. u. 

Hence p ~ M(p) 6 u, and likewise if we set 

N(p) = n {Sd., I d. E: A', P <; u-cllz cx ) 11\ (H X - (v-cl[T,,1) I 

c( E:: At, P E/. v-cl (T .. J J 

then p €: N(p) eV. 

Consider the open dual cover g:c t (M(p), N(p» I p E: X l. 
If we take x e: X and (l(. E:: A' with x E:. T~t\Z~then it is easy to 

verify that 

St(g, t xl> S R 01. and St(lxS. g) .£ SOl.' 

Hence g ""- (4\ e ..<.. d, and (X, u, v) is fully binormal by Lemma 

1.2.2. This completes the proof of the theorem. 

Among other properties of paracompact spaces which carry 

over in a natural way to bitopological spaces we may note [3] , 

Proposition 17, p 95 and [lS] , (A), p 150. Their counterparts 

for bitopo1ogica1 spaces are the subject of the next two theorems. 

Theorem 1.2.3. The product (X x Y, u J(. S, v x t) of a biparacompact 

space (X, u, v) and a uniformly compact space (Y, St t) is 

biparacompact. 

Proof. Let D be an open dual cover of X)(. Y, then for x €; X, 

Y ~ Y we may choose nhds. U (x) c u, V (x) ~ v of x and nhds. y y 

S (y) ~ s, T (y) ~ t of Y so that for some PDQ we have x x 

U (x) 1-.S (y) S: P, V (x) l<-T (y) ~ Q. 
y . x y x 

Now for each x~ X, f • 1.(S (y). T (y» I yE;,Yl is an open x x x 

dual cover of Y, so it has a finite refinement 



Let U(x) = (\ 1 u x (x) , 1 = 1, 2, ••• , n(x) J and 
y i 

V (x) = n t V x ( x) I 1 = 1, 2, ••• , n (x) 1 , sot ha t 
y i 

d = l (U(x), V(x» I x E. X 1 
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is an open dual cover of X. Let e = { (ReIl , Sell) , 0( E:- A 1 be a 

locally finite open refinement of d, and for (I. E= A choose x(dJ 

E: X satisfying R .... S: U(x(""», S ... f: V(X(ol». Then it is easy to 

is an open locally finite refinement of D. 

With only minor changes the same proof also shows that the 

product of a strongly biscreenable space and a uniformly compact 

space is strongly biscreenable. 

Theorem 1.2.4. The pairwise regular bitopological space (X, u, 

v) is biparacompact if and only if every open dual cover has a 

locally finite (not necessarily open) refinement. 

Proof. Necessesity is clear. To show sufficiency let d be an 

open dual cover, and b a locally finite (not necessarily open) 

refinement of d. For each x e X we have nhds. H(x) E: u, K(x) E.. v 

of x so that 

t (p, Q) I PbQ, Pf\K(x) F ¢ or QI\H(x) F ¢ } 

is finite. Let g = t (H(x), K(x» I x (: xl. Because (X, u, v) is 

pairwise regular we may take H'(x) e u, K'(x) & v with x ~ H'(x) 

== v-cl(H'(x») ~H(x), x E:. K'(x) !::u-cl[K'(x») f:K(x). Let g' = 
[CH'Cx), K'Cx» I x e: X ~ • This is an open dual cover so there is 

a locally finite (not necessarily open) dual cover c with c ~ b'. 

Let 

k - f C v-cl [A 1, u-cl [B 1) I AcE j = c = 
be the closure of c. Then k is locally finite, and k ~ g. 

For PbQ let 

P' = X - V{ N N"P = ¢, N e ran k \ , 

Q' = X _U{ M M (\ Q = ¢, M E::- dom k 1 . 



Because k is locally finite, P :. P' c u and Q S Q I C v. Also 

b ~ d so given PbQ we may choose U(p, Q), V(p, Q) with 
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U(P, Q)dV(P, Q), P ~ U(p, Q) and Q ~ V(p, Q). It is then easily 

verified that 

e = t (P'nU(P, Q), Q'nV(P, Q» I PbQ 1 

is an open locally finite refinement of d, so proving the theorem. 

For the strongly biscreenable case we have the following 

limited result. 

Proposition 1.2.1. Let (X, u, v) be a pairwise regular bitopo1-

ogica1 space, and suppose that each open dual cover has a 

0' -discrete (not necessarily open) refinement U [ dn ' n = 1, 2, ••• J 

satisfying U l (u-int{uc(d »)) f'\ (v-intLuc(d »)) , n = 1, 2, ••• 1 = X. n n 

Then (X, u, v) is strongly biscreenable. 

We omit the proof which follows the same lines as the proof 

of Theorem 1.2.4. 

Bitopological spaces in which one topology is paracompact 

with respect to the other have been considered by several 

authors (see, for example, l.t&l t l2.73 ). If (X, u, v) is bipara­

compact then certainly each topology is paracompact with respect 

to the other. For if U = l u (II. ,(J.. 6 A J is (say) au-open 

cover of X, and e = t (R/l' S~) I f. E:. B! an open locally finite 

refinement of the open dual cover d = t (U fl' X) \ 0'.. E:- A 1 then 

~ = l R~ \ ~ c B! is a u-open v-locally finite refinement of 

~. However the converse is false. Indeed the bitopo1ogical 

space of Example l.6.~ has each topology compact, but it is not 

biparacompact. 

These considerations, together with Theorem 1.2.2, show that 

biparacompactness is quite a powerful] property. One way in 

which it may be weakened is to modify the notion of local finite­

ness. If in Definition 1.2.1 we may choose H(x), K(x) so that 

d' = {(U, V), UdV, U"K(x) I¢and V"H(x) 1¢1 
x 

is finite for each x ~ X we shall say that d is quasi-locally 
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finite, and replacing d by d' in the rest of this definition 

x x 

gives us the terms guasi- £. -finite, 9.uasi-discrete, and so on. 

Likewise a corresponding change in Definition 1.1.4 defines the 

notion of quasi-star finite. The terms guasi-biparacompact, 

strongly guasi-biscreenable, stronely guasi-biparacompact, etc., 

will then have their obvious meaning. 

The class of quasi-biparacompact spaces is much larger than 

the class of biparacompact spaces, but even so it is still not 

true that a bitopological space in which each topology is para­

compact with respect to the other is necessarily quasi-bipara­

compact - as witness Example 1.6.5 again. However we can obtain 

this result for bitopological spaces satisfying the condition 

given below: 

Definition 1.2.4. We shall say the dual family d is full if UdV 

whenever U E:: dom d, V E: ran d and Un V f. ¢. ex, u, v) is full 

(respectively, cI -full) if every open dual cover has a full 

(respectively, CY -full) open refinement. 

Clearly every uniformly Lindel~f:· bitopological space is 

~-full, but Example 1.6.3 exhibits a uniformly Lindelof~ space 

which is not full. 

Proposition 1.2.2. Let eX, u, v) be full, and suppose that each 

topology is paracompact with respect to the other. Then eX, u, v) 

is quasi-biparacompact. 

Proof. Let d be an open dual cover, e a full open refinement, 

~ a u-open v-locally finite refinement of the u-open cover 

dom e, and n a v-open u-locally finite refinement of the v­

open cover ran e. Then 

f = I (H, N) \ M ~ tt\. , N Eo: V\. , 11 t\ N f. ¢ 1 

is clearly an open quasi-locally finite refinement of d. 

Only notational changes are needed in the proofs of Lemma 

1.2.1 and Theorem 1.2.1 to show that an open dual cover d is 

quasi- ~ -finite if and only if it is quasi-star finite, and that 

every quasi- i- -fini te dual family is quasi- 0" -disc",.de. Hence we 

may state at once: 
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Theorem 1.2.5. Every strongly quasi-biparacompact bitopo10gica1 

space is strongly quasi-bisreenab1e. 

In the same way the proof of Theorem 1.2.3 may be modified 

to give: 

Theorem 1.2.6. The product (X)( Y, u](. s, v x t) of a quasi­

biparacompact (respectively, strongly quasi-biscreenab1e) space 

(X, u, v), and a uniformly compact space (Y, s, t) is quasi­

biparacompact (respectively, strongly quasi-biscreenab1e). 

On the other hand, however, the proofs of Theorems 1.2.2 and 

1.2.4 do not carryover to the quasi-biparacompact case, basic­

ally because a quasi-locally finite dual family may not have the 

"closure preserving" property. Indeed with regard to Theorem 

1.2.2 we have a negative answer, for the space of Example 1.6.1 

is preseparated and quasi-biparacompact but not fully binormal. 

I suspect that Theorem 1.2.4 may be generally false in the quasi­

biparacompact case also, but we do have the following positive 

result: 

Proposition 1.2.3. Let (X, u v) be fully binormal, and suppose 

that every open dual cover has a quasi-locally finite (not 

necessarily open) refinement. Then (X, u, v) is qussi-bipara­

compact. 

Proof. Let d be an open dual cover, and let d' be an open dual 

cover with d'~t*) d. By hypothesis d' has a quasi-locally finite 

(not necessarily open) refinement e' = {(R
fS

, S,,)' ~ e B~, 60 

there are nhds. H(x) E:. u, K(x) E::. v of x E::- X with the property 

that 1 I'> I R~ t\ K(x). 'I ¢ 'I Sf\ t\ H(x) \ is finite for each x. 

Let f = l (H(x), K(x» , x ~ X] , and take open dual covers h 

and g so that g .LtA \ h ~C.II) f and g "'- d'. Consider the open dual 

cover 

e = t (S t ( g, Rfo ), s t (SJ\ ' g» I fi E: B i . 

Given ~ E:: B we have U'd'V' with R~ S U', s" == V'; and UdV with 

St(d', U') 5:.U and St(V', d') C.V. But then St(g, lh,)c.. U and 

St(S~, g) ~ V so e ~ d. It remains to show that e is quasi­

locally finite. Let us associate with x G X the nhds. St(g,lxi) 
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and St(txJ, g). Note that for some PhQ we have St(g,ix\) ~ P and 

StUxl, g) ~ Q, while for some y ~ X we have St(h, p) ~ H(y) and 

St(Q, h) f:. K(y). However if st(g, tx t) (\ St(S~, g) I- ¢ and 

StOxl, g) C' St(g, Rp} I- ¢ then H(y) (\ S 1'1- ¢ and K(y) (\ R pI- ¢ 

and this is possible only for a finite number of (l €;. B, so e is 

quasi-locally finite, as required. 

I do not know if a fully binormal space is necessarily quasi­

biparacompact, but I would conjecture that the answer is no. 

Further results in this area may be found in the later sections, 

particularly in 1.4 and 1.5. 

103 COUNTABLY QUASI-BIPARACOl-1PACT SPACES. 

Countably paracompact topological spaces were introduced by 

C. OO'j'iKER in U 11. In this section we consider some properties 

of the corresponding class of countably quasi-biparacompact 

bitopologica1 spaces. We begin with: 

Definition 1.3.1. (X, u, v) is countably guasi-biparacompact 

if every coun~ab1e open dual cover has a quasi-locally finite 

refinement. 
4l. 

Our princip~ result is based on the following: 

Lemma 1.3.1. Let (X, u, v) be a pairwise normal bitopo10gical 

'space, and d = { (U , V ) \ n G ~ ~ an open dual cover satis­
n n 

fying Un S:. Un+l and V n .s Vn+l for all n E:: (N. Suppose there is a 

closed dual cover c = [ (A , B ) \ n G:. ~ ! with A S U and 
n n n n 

B ~ V for each n. Then d has a quasi-locally finite countable 
n n 

open refinement. 

Proof. Since (X, u, v) is pairwise normal we have for n ~ ~, 

s = 1, 2, 
• • • t 

sets R <= u and S E: v with ns ns 

A ~R S. v-cIlR 1 ~R n(s+l) 
S; U , and n ns ns n 

B Co S S u-c1 [s 1 c..s c. V n - ns ns - n(s+l) n 

Moreover we may suppose without loss of generality that R ~ ne 

R(n+1)s and Sns S S(n+1)s' for if this is not so we may replace 
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Rna and Sns for n> 0 byU{Rka , k = 0,1, ••• , n j and 

lJ f Ska I k = 0, 1, 
• • • t 

n } respectively. Let us set: 

VI = R Os Os 
, a = 1, 2, ••• ; 

VI = R - (u-c1 tS(n_l)sl) n = 1, 2, ••• , s = 1, 2, ••• 
ns ns 

, 

and TOa = SOs , a = 1, 2, ••• 

T = S - (v-cl [R(n-l)s) , n = 1, 2, 
• • • t 

S = 1, 2, ••• ns ns 

Let us also set R = U tR n ns 
I s = 1, 2, • • .} t S = U {S n ns 

, 
s = 1, 2, ••• j ,'Ii = U l w 's = n, n + 1, ••• j and T = U tTl n ns n ns 

s = n, n+l, ••• 1 . Then 

e = l (w , S ) I n e IN \ \J t (R , T ) , n f: ti ! 
n n n n 

is a countable open quasi-locally finite refinement of d. That 

e is countable and open is clear; and e ""'- d since W S: R ~ Un n n 

and T f:. S c: V for each n. To aee tha tit is a dual cover take 
n n n 

x E:. X and de fine 

m (x) = min { n I -3 s, x ~ R 1, 
ns 

n (x) = min f n l ~ t, x E:; Sn t J • 

Then it is clear that if m(x) ; n(x) we have x ~ W (\ S for n = 
n n 

n(x), while if n(x) = m(x) then x E. R "T for n = m(x). Finally 
n n 

to show e is quasi-locally finite take x e X and suppose that, 

say, m(x) ~ n(x). Then x e Rm(x)s S Rn(x)s for some s; while 

Xc Sn(x)t for some t so we may define: 

sex) = min {s X€:R() } n x s 

t(x) = min t t x ~ Sn(x)t i 

and associate with x the u-nhd. Rn(x)a(x) and the v-nhd. S n(x)t(x)· 

It is easy to verify that if Rn(~)s(x) n Tn I ¢ and Sn(x)t(x) n Rn 



27 

n =- max(n(x), s(x» or n S max(n(x), t(x» respectively. A 

similar appropriate assignment of nhds. to x may me made when 

n(x) , m(x). Hence e is quasi-locally finite, and the proof is 

complete. 

In order to state our next theorem we shall need some more 

terminology. We shall say the dual family d is quasi-strongly 

point finite if given x G X either t U I x ~ U ~ dom d I is 

fini te or (. V \ x ~ V c: ran d ~ is fini te • 

The dual cover d is called countably medial if it can be 

indexed over IN in such a way that for each x ~ X we have k(x) 

= max(m(x), n(x», where m(x) = min {n I x ~ U 1 , n(x) = 
n 

min 1 n , x ~ V i and k(x) ::: min tn' x E:- U 1'\ V J • 
n n n 

We may now state: 

Theorem 1.3.1. Let (X, u, v) be a point finitely binormal space 

satisfying: 

(a) Every countable open dual cover has a quasi-strongly point 

finite open refinement, and 

(b) Every countable open dual cover has a countably medial open 

refinement. 

Then (X, u, v) is countably quasi-biparacompact. 

Proof. Let d' be a countable open cover of X. By (b) there will 

be no loss of generality if we assume that d' is countably medial, 

that is d' = t (U'n' V'n) , n c= IN ~t where k'(x) = max(m'(x), 

n'(x» for all x ~ X, using an obvious notation. Let us set 

Un = U { U' k' k = 0, 1, ••• , n 1 and V n = U lv' k' k = 0, 1, ••• n 1 

so that d = l (U , V ) , n "= fl ~ is an open dual cover satisfying n n 

Un ~ Un+l and Vn S:. Vn+l • Let e = { (R"" SoC.) \ 01.. E:-A 'l be a faith-

fully indexed quasi-strongly point finite open refinement of d. 

For s (; Vl let 

A(s) = lac. , ol IS A, R .. S::. Us and S.,c 5: Vs 1 • 

Clearly A(s) G A(s+l) for all s. 



Let r = min!.s , A(s) ! ¢ 1, RolL = U {R~ 10( E::- A(k)J and 
r 

S* = U {SO( I ~ ~ A(k) 1 . Generally for s = 1, 2, ••• , let 
r 

RoM = { r+s 

R~ if A(r+s-l) = A(r+s) 
r+s-l 

U { ROI I 0( €; A(r+s) - A(r+s-l) J otherwise, 

~ 

= { S r+s 

S~ if A(r+s-l) = A(r+s) 
r+s-l 

U [ s'" I (j.. E: A(r+s) - A(r+s-l)! otherwise. 

For x E:. X let sex) = min 1s '-30(. E: A(r+s) with x IS- RD(l\Sot!. 

Then clearly·x e R~ S· and so r+s (x) () r+s (x) 
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is an open dual cover refinement of d. Let us show it is point 

finite. For x f:: X let [01. 1 , ••• ,o(.m ~ denote the set to( , x t R4IC.J 

whenever this set is finite, and otherwise let it denote the set 

t ct , x E:. Sa( j • Define 

p(x) = { 
o if t 0(1' ••• , d.ml s;. A(r), and otherwise, 

max {p I -3 i, 1 ~ i !::- m with o(i E:: A(r+p) - A(r+p-1) J • 

If, from some point onwards, the sets A(s) are equal then f is 

finite and hence point finite. In the contrary case, for each 

x E::. X, 

q(x) = maxI q' A(r+p(x» = A(r+q)! 

is a well defined natural number, and it is clear from the 

defini tions that x E. R "+ (\ S -4+ implies s ~ q (x). Thus f is point r s r s 

finite as stated. Since (X, U t v) is point finitely binormal it 

follows from Theorem 1.1.2 that f is shrinkable. Hence there is 

an open dual cover g = i (M , N ) I s E: tl' ~ where ¥,P ~ U, s s 

v-cll~1 ) ~ R..\ S U and u-clfN ) ~ s.. £:: V for all s E; tP. s r+s r+s l s r+s r+s 

Let r' = min 1 s \ s E: N'! t and t = r + r'. Put At = V-C1[Hr , 1, 

Bt = U-C1[Nr ,1,and generally for s = 1, 2, ••• t 



Bt +s = 

{ 

v-cllMr '+s 1 if r' + s E: IN', 

At 1 otherwise, +s-

{ 

u-cl[N, ] if r' r +s 

Bt +s _l otherwise. 

-+- s E:. I'l', 
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Then c = 1 (A , B ) I n = t, t+l, ••• 1 is a closed dual cover, 
n n 

A ~ U and B ~ V • It follows that the conditions of Lemma 
n n n n 

1.3.1 are satisfied for the open dual cover dt = t (Un' Vn ) I 

n = t, t-+-l, ••• j , and so we have an open quasi-locally finite 

refinement 

e t = t (Wn , S ) , n = t, t+l, ••• iv t(R , T ) \ ·n = t, t+l, ••• \. 
n n n 

For n E: tl set W' n • ( U f Wk l k ::I n v t, n v t + L, ••• !) n U' n ' 

S 'n = (u t Sk ' k = n "t, n v t + 1, ••• J ) n V ' n R' = n 

(u 1 Rk ' k = n v t, n" t + 1, ••• j ) {\ U' nand T' n = (tJ l Tk l k = 

nvt, n",t + 1, ••• ! )()V' • n 

If x ~ W n S or x E:; R nT then n ~ k'(x) = max(m'(x), n'(x», n n n n 

and so x E: W'k'(x) n S'k'(x) or x E: R'k'(x)" T'k'(x) respectively. 

This shows that 

e' = t ('N' S') I w' "S' f. ¢ 1 (.) ! (R' T')' R' (\ T' I ¢ J n' n n" n n' n n n 

is an open dual cover refiniment of d'. Finally the argument 

used in the proof of Lemma 1.3.1 to show e t is quasi-locally 

finite will also show that e' is quasi-locally finite, and the 

proof is complete. 

The next result is also a consequence of Lemma 1.3.1. 

Proposition 1.3.1. Let (X, u, v) be a pairwise perfectly normal 

spacel!Ol , and suppose that each countable open dual cover has 

a countably medial open refinement. Then (X, u, v) is countably 

quasi-biparacompact. 
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Proof. Let d' = t (U'n' V'n) \ n €. f~ ~ be a countably medial 

open dual cover, and form d :: 1 (u , V ) I n t m ~ with U G U l' n n n - n+ 

V G V as in the proof of Theorem 1.3.1. Now we have v-closed n - n+l 

sets P ,s E: N, and u-closed sets Q ,s E,. f~, so that ns ns 

Pns S Pn(s+l) , Qns G Qn(s+l) , Un :: U t Pns I s E:.. IN 1, and 

V =Ut Q \ s '"=tN~. n"ns 

For n E:. W de fine An = U { P tn I t = 1, ••• , n \ 

• • • t 
n ] ~ V • Then 

n 

c:: l (A , B ) I n E-.. IN ! 
n n 

c. U and 
- n 

is a closed dual cover, and the conditions of Lemma 1.3.1 are 

satisfied. The remainder of the proof is similar to the last 

part of the proof of Theorem 1.3.1, and is ommited. 

The final lemma of this section deals with a situation at 

the opposite extreme from that of Lemma 1.3.1. This result can 

also be useful in establishing (countable) quasi-biparacompact­

ness in some cases (See, for instance, Example 1.6.3). 

Lemma 1.3.2. Let (X, u, v) be a pairwise normal bitopological 

space. If d = t (Uk' Vk ) \ k ~ Z ! 1s a countable open dual cover 

satisfying () l Uk\ = () i vkt:: ¢, Uk c.. Uk +l and Vk +l ~ Vk for all 

k t. a, and if there exists a closed dual cover c = t (~, Bk ) I 

k €. 2 \ with ~ S Ak +1 , Bk+l S Bk , \: S Uk and Bk S. Vk for 

all k ~a, then d has a quasi-locally finite countable open 

refinement. 

Proof. Since (X, u, v) is pairwise normal we have u-open sets 

Rk with ~ ~ Rk = v-cl[Rk 1 6: Uk. Without 106s of generality we 

may also suppose that ~ G ~+1 for each k e ~, for if this is 

not so we may replace ~ by U t Ri I 1 = 0, ••• , k} for k > 0, 

and by n t R;i' i = k, ... , o 1 for k '- o. In just the same way 
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may suppose Sk+1 s: Sk for each k €; :i. 

Clearly e = t (~, Sk) I k € a i is an open refinement of d. 

We show it is quasi-locally finite. For x ~ X the numbers 

n(x) = max {k 

both exist in Z. Also, for some k', x ~ Rk , n Sk' and so 

m(x) ~ k' & n(x) for each x ~ X. Now 

is a u-nhd of x, and 

is a v-nhd of x. Also if M(x)" Sk # f1 and N(x)" ~ I ~ then 

m(x) ~ k ~ n(x). Hence e is quasi-locally finite, and the proof 

is complete. 

1.4 METRtZABLE AND SEQu~NTIALLY NORMAL BITOPOLOGICAL SPACES. 

One of the important properties of the class of paracompact 

topological spacese and of the class of fully normal topological 

spaces is that they include the class of metrizab1e spaces. Let 

us recall that a non-negative real-valued function p(x~ y) 'on X x X 

satisfying the triangle inequality is called a pseudo-guasi­

metric if p(x,x) = 0 for all x"" X. Corresponding to the p-q­

metric p is the p-q-metric p * defined by 

x, y E. X 

and called the conjugate of p. Each p-q-metric p defines a topol­

ogy t(p) on X in the same way that a metric does (see[l'] ), 

and the bitopo1ogica1 space (X, u, v) is metrizab1e (or, more 

correctly, p-q-metrizab1e) if there is a p-q-metric p on X 

satisfying t(p) = u and t(p·) = v. It is known [1') that a 

metrizab1e bitopologica1 space is pairwise regular and pairwise 

normal, and it is also clearly pairwise RO and preseparated. In 
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particular if p is a quasi-metric (that is p(x,y) = O~ x = y) 

then (X, t(p), t(p~» is weakly pairwise Hausdorff. It is natural 

to ask if all metrizable bitopological spaces are biparacompact 

or fully binormal, and the answer in no. For the spaces of 

Examples 1.6.1, 1.6.2 and 1.6.3 are all metrizab1e while the 

first of these spaces is neither biparacompact nor fully binormal, 

and the second two are not biparacompact. We may also note in 

passing that the first two of these spaces are' nbt:piirwise 

paracompact in the sense of DATTA UO) either. It is true that 

all these spaces are quasi-biparacompact, but I strongly suspect 

that this will not be true of all metrizable bitopological 

spaces. This poses the problem of defining a suitable class of 

bitopological spaces which does include all metrizable spaces. 

The class of sequentially normal spaces defined in this section 

is obtained by weakening the condition of full binormality. I 

do not have a "local finiteness" characterization of these spaces, 

although if such a description could be obtained it would 

undoubtably be invaluable. 

If d and e are dual families let us set 

e*d = 1 (St(e, U), St(V, e» \ UdV 1. 

We may now give: 

Definition 1.4.1. The dual cover d is sequentially normal 

if thene exist open dual families d , and open normal dual covers 
n 

e so that 
n 

(i) en'*" dn "t:.... d, n = 1, 2, 3, ••• , 

(ii) U 1 d 'is a dual cover of X. 
n 

(X, u, v) will be called sequentially normal if every open dual 

cover of X is sequentially normal. 

Clearly every fully binormal space is sequentially normal. 

Proposition 1.4.1. Every sequentially normal bitopological 

space is pairwise normal. 

Proof. Let P be a u-closed set t Q a v-closed set and P (\ Q = ¢. 
Consider the open dual cover d = l (X - P, X), (X, X - Q) !, and 
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let d ,e have the properties (i) and (ii) above. Let U = 

n n n 

st(d , Q) and V = Step, d ), and set 
n n n 

Vln = Un - lJ ~ u-cl [Vk ) 

Tn = Vn - U! v-clluk \ 

k = 1, 

k = 1, 

• •• t n i , 

• • • t 
n ! 

for n = It 2t •••• Then if \'1 = Ul Wn I n = 1, 2, ••• } and 

T =UtT I n = 1,2, ••• 1 then W eu, T t.v, and it is clear 
n 

tha t W" T = ¢. 

Let us show that for each n we have 

P" (v-cl[U ) = Q n (u-cllv 1) = ¢. n n 

If p €:: P n (v-cl tu 1) then -3 Re S with P E:: R" S, and then S" U n n n 

rl ¢ so 3 Ud V with S" U rl ¢ and V"Q rl ¢. Hence peR ~ St(e , U). n n 

But since e '* d ""'- d we have 
n n 

S t (e , U) s X - P or S t (V, e ) S:: X - Q, 
n n 

and p ~ St(e , U)nP contradicts the first possibility, while 
n 

v" Q I ¢ contradicts the second. 

It follows that P (\ (v-cl tu 1) = ¢, and the second result is 
n 

proved likewise. 

From these results we deduce at once that P c.. T and Q ~W, 
so (X, u, v) is pairwise normal as r~quired. 

As promised above we are going to show that every metrizable 

bitopological space is sequentially normal. To this end we are 

going to need some terminology and results concerning p-q-metrics 

and equibicontinuous families of real valued functions. 

Let p be a p-q-metric on X. For x ~ X and e ~ 0 we set 

H(x, e.. ) = 1 y \ p(x,y) c:. 'i..j, 

K(x t t.. ) = ~ y p(y,x) <.. '\:. i. 

In this context H (x) and K (x) will denote H(x, 2-n ) and K(x, 2-n ) 
n n 

respectively, unless stated otherwise. 



34 

We denote by 0 the open dual cover t (H (x), K (x» , x E: xl. n n n 

It will be noted that { H (x) , n E:.. IN ! (respectively, 
n 

tK (x) , n ~ H J) is a base of nhds. of x for the topoloGY t(p) 
n 

(respectively, for the conjugate topology t (p"'». Vie will say that 

the p-q-metric p is admissible for the bitopological space 

(X, u, v) if t(p) ~ u and t(p") £: v. 

If d is a dual cover of X we will say that the p-q-metric p 

is subordinate to d if given x ~ X -3 UdV and n ~ N with Hn (x) S 

U and K (x) SV. We will say that p is evenly subordinate to d 
n 

if we have 0 ....(. d for some n E:. t1. n 

Clearly (X, u, v) is metrizable if and only if there is an 

admissible p-q-metric p subordinate to every open dual cover of 

X. 

Let us recall that a function f : X ~ X' is bicontinuous 

with respect to the bitopological spaces (X, u, v) and (X', u', v') 

if it is continuous for the topologies u, u'; and for the topologies 

v, v'. We will always consider ~ with the topologies 

s = It x 

t = t Lx 

x c::. a j \ a E:. Ii J v t ~, ¢ J, and 

a .c:. X \ , a €: a} u U~, ¢ J , 

and if (X, u, v) is a bitopological space then to say that a real 

valued function on X is bicontinuous will mean that it is 

bicontinuous with respect to (X, u, v) and ( R, s, t). Hence 

f : X ~ ~ is bicontinuous if given x E: X and f- '> 0 there is 

a u-nhd. M(x) of x and a v-nhd. N(x) of x so that 

Y E- M(x) -'/ f(y) " rex) + t. ,and 

y E: N(x) "=9 f(x) , fey) + €.. 

If F is a family of real valued functions, and if for each x ~X 

and ~ ~ 0 we may find M(x), N(x) satisfying the above conditions 

for all f G F then we shall say that F is eguibicontinuous. 

For each ~ E: A let h 
DC. 

and k oc. be real valued functions on X. 

Then we shall say that 

E = t (hal. t k .. ) 10\ E:-Aj 

is an eguibinormal famill for the bitopological space (X, u, v) if: 



(a) 0 ~ h ~ s 1 and 0 := k "" ~ 1, and 

(b) The families 1. hoe. , 0<. EO A.3 and { - k fA l oe. & A ! are 

equibicontinuous. 

If 0 ~ f ~ 1 we set s( f) = (x I f(x) = 0 ! and e (r) = 

t x I f(x) ~ 1 j • 
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The support of the equibinormal family E is the dual family 

seE) = t. (s(h
lll

) , s(kCII.» , ~ c A, s(h~) ns(k",) -I ¢ 1, 

and the enveloue of E is the dual family 

e(E) = ! (e(hA), e(k~» , ~ E:; A, s(hGl) 1\ s(k~) -I ¢ 1. 

The equibinormal family E will be called an equibinormal cover 

if seE) is a dual cover of X. 

The following lemma will play an essential role in what 

follows. 

Lemma 1.4.1. Let d , n = 1, 2, ••• , be a sequence of open dual 
n 

covers of X satisfying d 1 "",,-c.'iI) d for each n. The:J.: n+ n 

(1) There exists an admissible p-q-metric p so that d ~(.) 0 n+2 n 

and 0 1 ~ d
A = t (St(d ,\xJ), St(lx), d ) , x & X I for each n. n+ n n n 

(2) If dn = l (U"" VA) , d.. E:- An} t and the index sets An are 

pairwise disjoint, then for each n there is an equibinormal cover 

E = t (h t k ) I d... E;o A' 1 with A' c.. A and satisfying d 
n ""... n n - n n+5 

Proof. (1) This is essentially a variant of ([Ig], Lemma 6.12). 

For a verification directly in terms of dual covers we may use 

the method of the proof of (t2Sl, Theorem VII). Thus, let us set 

d(1/2n ) == d t n = 1, 2, ••• , n 

and inductively for 1 ' k ~ 2n+1 
t 
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If finally we set del) = lex, X) 1 we have open dual covers d(v) 

for each diadic number '\J = ),<:/2n , 1 ~ k ~ 2n. Now let us define 

cP (x, y) = inf t '\J l y ~ St(d(v), tx I> 1, and 

p(x,y) = sup { (cP(x, z) - t!(y, z» v 0' z €. x! 

for x, y ~ X. Then it may be verified that p is an admissible 

p-q-metric with the required properties. 

(2) Let p be an admissible p-q-metric with the properties 

given in (1). For Y ~ X we will set 

L (y) = 1 x I H (x) Co y J, and 
n n 

M (y) = {x K (x) Co Y 1 • 
n n 

Now let A'n = t ~ I c:A. E:: An ' Ln +3 (Ua..) I rJ I Nn+
3

(V",) 1, and for 

C4 E:- A' and x E: X let: n 

z E: Ln+
3

(U_) 1 J ,... 2-n- 3), 

kO'\(x) = 2n
+3(finf[p(x,z) I z eM

n
+

3
(v",)lJ I\. 2-n - 3) , 

That e(hll ) SU~and e(k.,.,) S:: V""is clear. To see that th
Il

C(7.E:-A'n i 
is equibicontinuous, given t: :> 0 take m ~ IN with 2-m 

4::. 

e./2n+4 , and y E:. H (x). 
m 

If hd.(x) = 1 then certainly hcr..{Y) J!. hd.(x) + e. • 

If hDl,(x) 11, then har.(x) = 2n+3 (inf t p(z,x) , z (S- L
n

+
3

(U
Gf
,> ) ) 

so .::l z Eo Ln+
3

(Uc:t.) with h .. {x) ~ 2n +3p(z,x) - £'/2. Hence 

hill (y) !:: 2n +3 p (z , y) c:::. 2n + 3 p ( z , x) + 2n + 3 p (x , y) .:. h do. (x) + E.. 

since p(x,y) <. 2-m .:. £/2n+4. 

This proves the stated result, and {- k A ' d. E.A'n 1 can be 

shown to be equibicontinuous in the same way and we have establish­

ed that En is an equibinormal family. Finally dn+5 -'l~Jon+3 so 
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it will suffice to show that ~ s (E ). Now 0 2 ~ d A1 °n+3 n n+ n+ 

and d 1..(. (-) d so 0 +2 ..l... n+ n n 
d • Hence if q 6. X we have 0(. E:. At 

n n 

wi th Hn+2 (q) S:- U oe. and Kn+2 (q) ~ V ..... But then x E:: Hn+3 (q) -9 

Hn +3 (X) c:.. H
n

+
2

(q) S: U.,. ~/ x C Ln +3 (Uoe.) s: S(heJ -=-'/ 

Hn+3(q) S::- s(h
ell
). In the same way Kn+3 (q) c. s(koe.). Hence 0n+3 

~ seEn)' and the proof is complete. 

Corollary 1. The fo110wine are equivalent for the dual cover d. 

(a) d is normal. 

(b) There is an admissible p-q-metric evenly subordinate to d. 

(c) There is an equibinorma1 cover whose envelope refines d. 

Proof. (a) - ~ (b) and (a) ~ (c) follow directly from the 

lemma, and (b) ~ (a) is obvious. It remains, therefore, to 

prove (e) -=7 (a). Let E::: {(h t k ) l d.. E; A~ and set 
.. 0(. } 

u (x) = u-int[ nny h~(y) c:::. h~(x) + 3-mjln n!1 y I 
g( 

m 
at 

ko(x) 4 kClC,(Y) + 3-mn J t 
Vm(X) = v-intlnUy l hQl(x) c:. h",(y) + 3-m.lln n t!y I 

~ ~ 

kO«Y) 4 koe.(x) + 3-m B 1. 
Under the given hypothesis x E;, Um(x) €: u and xE:. Vm(x) E. v. Hence 

dm = { (Um(x), Vm(x» I x ~ X 1 is an open dual cover for m = 1, 

2, ••• • It is easy to verify that d 1"" (JI) d ; and that d
l

..::. d, m+ m 

so d is normal as required. 

Corollary 2. (X, u, v) is metrizable if and only if there is a 

sequence d of open dual covers such that 
n 

(1) dn+l -"'-(t') dn n = 1, 2, ••• 

(2) t St(d t txl) , n n = 1, 2, ••• 1 1s a base of u-nhds. of x, 

(3) 1 st(~X't d) n In = 1,2, ••• ] 1s a base of v-nhds. of x, 

for each x <= x. 
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The above corollary is the exact couterpart for bitopological 

" spaces of the Alexandroff-Urysoh., metrization theorem (See, for 

example, [151 , Theorem VII). 

Sufficient conditions for the metrizability of bitopoloeical 

spaces have been given by J.C.KELLY [11) , E.P.LANE UO] and 

S.SALBANY [321. Let us indicate how the metrization theorem of 

Salbany, which includes the results of Kelly and Lane as special 

cases, may be deduced from Corollary 2. 

Salbany defines, in effect, an open pair base for the bitop-

ological space (X, u, v) to be an open dual family b = 1 (R
al

, SOl) I 
oJ.. E: A \ satisfying: 

(a) RoI. lJ SCI. = X for all QC, E:. A, 

(b) x E: U t: u ~] C1. E:- A with x E:. X - S Cf.. ~ R ~ !: U, and 

(c) X E:: V <S v !] ~ ~ G:- A wi th x & X - R j\ S S fl £:: V. 

With our terminology Salbany's theorem <[311 • Theorem 2 0 4) now 

states that a pairwise normal bitopological space (X, u, v) is 

metrizable if there is a sequence l b 1 of quasi-locally finite 
n 

dual families so that U 1 b I is an open pair base. Actually we n 

can show that the explicit assumption of pairwise normality is 

unnecessary, and so we have: 

Theorem 1.4.1. 

a sequence t b 1 
n 

Let (X, u, v) be a bitopological space which has 

of quasi-locally finite dual families so that 

LJlb \is an open pair base. Then (X, u, v) is metrizable. 
n 

Proof. Let us first verify that (X, u, v) is pairwise normal. 

To this end let d be an open dual cover of X. For n = 1, 2, 

we may set b = l (R ... , S ) , C(. 6:- A 1 where the sets A are n ~ ~ n n 

pairwise disjoint. Given x E:. X and n we have H (x) eu and 
n 

K (x) ~ v so that 
n 

\ eX. I ~ E:: A , H (x) n S,., 1 ¢ 1 K ex) (\ R oc j n n ~ n 

is finite. Note that 

... , 

Un(x) = Hn(x)f\ II! Rot I fA E:- An' Hn(x) (\So.l ¢ f. Kn(x)" Roc 1 "= u, 

V (x) = Kn(x) " rt 1 s .... I "'-E- A , H (x)" So.F ¢ 1 K (x)" RQ. \ ~ Vi n ~ n n n 
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and that, 

Un(x) S ntRc;( I d.E; An' x E: Rc(lf:: ntRot lot. E. An' x¢ 80(j , 

Vn(x) S () {See.' QL E An' x E: SQI.! S () iSQt I C( E: An' x f- RcJ· 

Let us define: 

d = I (u (x), V (x»1 3 UdV, oC ,Il EAn with xE:: X - S"'~ Rill. 
n n n 

f::. U and x €;. X - R,I1.f:. S;1 ~ V 1 , and 

e =! (u (x), V (x» I x E:. X J • n n n 

Then for each n, d is an open dual family, e is an open dual n n 

cover of X, and it is easy to verify that 

e * d .-L d, n = 1. 2. n n ···t 

(ii) U f d f is a dual cover of X. n 

and 

Now the proof of Proposition 1.4.1 depends only on the properties 

(i) and (ii) of e and d , and not on the normality of the e , n n n 

and so we may deduce that (X. u, v) is pairwise normal as stated. 

Now let b = ~ (Rill t SI#,)' ".. E: A J be a quasi-locally finite 

open dual family sa tis fying Rc( U S ~:z X for all (1 E:. A. By the 

pairwise normality we have u-open sets M~(v) for each diadic 

number \J = k/2n , 1 ~ k <. 2n. satisfying 

If we set N (~) = X - (v-cl(M (~)') for v = k/2n. 1 ~ k ~ 2n , 
(I/.. ol 

we have 

Finally we set M (1) = Rand N (0) = S_ 
el. -. "- ... 

Now define: 



40 

Since b is quasi-locally finite it is clear that Rn(x) is a u-

nhd. of x, and S (x) is a v-nhd. of x. Hence 
n 

f = 1 (u-d.nt R (x). t. v-int S (x) ) \ x €. X j 
n ·n n 

is an open dual cover of X, and it is a straightforward matter 

to verify that 

fn+2 ""'" (of() fn' n = 1, 2, •• 0 • 

Moreover we have 

It follows that if we construct for each of the dual families 

bm, m = 1, 2, ••• , given in the statement of the theorem, then 

the sequence 

1 1 2 1 2~ 
f l , f 3 "f l , f.5l\ f 31\r-l' ••••• 

of open dual covers has all the properties required by Corollary 

2 to Lemma 1.4.1. Hence (X, u, v) is metrizable, and the proof' 
is complete. 

Let us now return to our consideration of sequential normality. 

Theorem 1.4 0 2. The following are equivalent for the open dual 

cover d of (X, u, v). 

(a) d is sequentially normal. 

(b) There is an admissible p-q-metric subordinate to d. 

(c) There is a sequence tEn} of equibinormal families so that 

(ii) 

Proof. 

e (E ) ..L. d, n = 1, 2, ••• , and 
n 

U 1 s(E ) I n = 1, 2, ••• 1 is a dual cover of X. n 

Let d and e be as in Definition 1.4.1. 
n n 

Since each e is normal there is, by Lemma 1.4.1, an admissible 
n 

p-q-metric p n (evenly) subordinate to e • 
n 

generali ty we may assume 0 ~ p = 1 so n 

Without loss of 



ro 
p(x,y) = £ 2-npn(x,y) 

n = 1 

is an admissible p-q-metric on X. Take x t X, then for some n 

and U d V we have x c U n V • Also, since e * d ~ d there 
n n n n n n n 

exists UdV with St(e , U ) ~ U and St(V , e ) ~ V. Finally 
n n. n n 
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p is subordinate to e so for some Re S with x t R" S and some n n n 

m we have If! (x) £: Rand Kn (x) c.. V. But then m m 

Hm+n (x) s= U and 

so P is subordinate to d. 

K + (x) ~ V m n 

(b) =?> (c) Let p be an admissible p-q-metric subordinate 

to d = { (U .... ' V .. ) \ d.. E:- AI. With the notation as in the proof 

of Lemma 1.4.1 define 

Arguing as in the proof of Lemma 1.4.1 we see that 

En = I (h~ , k~ ) , 01. E: An 1, where An = {CI(. \ Ln (U~) I ¢ I 

M (V ... ) 1 , 
n 

is an equibinormal family. Moreover it is clear that e(h~ ) ~ U~ 

and e(k~ ) ~ V.,. so 

e (E ) """" d t n = 1 t 2, ••• • n 

Finally p is subordinate to d, so given x ~ X there exist ~ ~ A 

and n with 

x E: H (x) ~ U and x E: K (x) ~ V • n n 

Hence (J.. '= An and x (Z L (U )" M (V ) ~ s(hr:)" s(kz:, ) which n ~ no...... ~ 

shows lJ t seE ) I n = 1, 2, ••• } is a dual cover of X and so 
n 

verifies (c). 

(c) =;> (a). Let En = { (hp ' ~) , ~ (:- Bn 1 be a sequence 
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of equibinormal families as specified under (c). Without loss of 

generality we are supposing that the index sets B are pairwise n 

disjoint.Fot~ the sets Rn (x) and Sn (x) from the E in the same m m n 

way that we defined the sets R (x) and S (x) from E in the proof 
m m 

of Lemma 1.4.1, Corollary 1. It follows that for each nand mt 

is an open dual cover of X. Also it is easy to verify that 

m e n 

m 
so e is a normal dual cover for each m, n. n 

:"or ~ f::: Bn let Uf3 = t x I h/J(x) " 1/3 J and VI' = [x I 

k,IJ(X) , 1/3 J , and put 

dn = 1 (Ujl' ~) '~6 Bn \ 

Then each d is an open dual family, and their union is a dual n 

cover of X by property (i) in (c). Finally let e 
n 

for ~ c Bn we have 

Steen' u;\) ~ e(hp )' and 

St(~, en) ~ e(~) 

1 = e • Then n 

from which en'" dn ""- d follows using property (i) in (c). 

Hence d is sequentially normal. 

Corollary. 

normal. 

Every metrizable bitopological space is sequentially 

If one makes a corresponding definition of "sequentially 

normal" for covers of a topological space it is not difficult 

to verify that a topological space is fully normal if and only 

if every open cover is sequentially normal. Hence for topological 

spaces the notions of full normality and "sequential normality" 

coincide. However this is very far from being the case with 

bitopological spaces, for indeed the space of Example 1.6.1 is 
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metriza~e and therefore sequentially normal, but it is not even ,. 
finitely binormal. In order to obtain a positive result here we 

need to weaken the condition of "full binormality", and this is 

the subject of the next definition. 

Definition 1.4.2. Let d be a dual family, F and Q subsets of X. 

By the Eseudo-stars of (F, Q) with respect to d we mean the sets 

FSt(d, (p, Q» = U'Ul-=l V with UdV, u"Q;I ¢;I v"p1 , and 

PSt{(p, Q), d) = U 1 V r -1 U with UdV, uoQ;I¢/Vnpl. 

If e is a second dual family we shall say that d is a pseudo­

star refinement of e, and write d -< lp*) e, if given UdV there 

exists ReS with PS't(d, (U, V» S:: Rand PSt«U, V), d) s: s. 

(x, u, v) will be called fully Eseudonormal if every open 

dual cover has an open pseudo-star refinement. 

Theorem 1.4.3. Every sequentially normal bitopologica1 space 

is fully pseudonormal. 

Froof. Let d be an open dual cover of X. By theorem 1.4.2 there 

is an admissible p-q-metric p subordinate to d. Hence for each 

x E:; X we have r(x), 0 ..::. rex) c:.. 1, so that 

H(x, rex»~ c- U and K(x, rex»~ ~ V 

for some UdV. If we put 

d' = t (H(x, rex»~, K(x, rex»~) \ x ~ X ! 
then d' is an open dual cover refinement of d. 

Let r'(x) • r(x)/6, and consider the open dual cover 

e = { (H(x, r' (x», K(x, r' (x») , x E:. X I. 

We will show that e ~ tp*) d'. 

Let r = sup {rex') ( H(x', r'(x'»"K(x, r'(x» ;I ¢;I 

K(x', r'(x'»"H(x, r'(x»1. 

Note in particular that rex) ~ r. Now take Xo ~ X such that 

H ( Xo ' r' (xO) ) () K (x, r' (x» ;I ¢ ;I K (xO' r' (xo ) ) n H (x, r' (x) ) 

and r(xO) ~ 4r/5. 

If now H(y, r'(y»"K(x, r'(x» ;I ¢ ;I K(y, r'(y»n H(x, r'(x» 



then r(y) 6; r, and so for z ~ H(y, r' (y) we have: 

p(xO,z) ~ p(xo,x) + p(x,y) + p(y,z) 

~ r' (xo) + r' (x) + r'(x) + r'(y) + r'(y) 

~ (r(xo ) + 4r)/6 

This shows that H(y, r'(y» ~ H(xO' r(xO»' and in the same 

way we have K(y, r'(y»!S: K(xO' r(xo». Hence e ..::. (p.' d', 

and the proof is complete. 

44 

The converse of this result is false. Indeed the bitopo1ogi­

cal space of Example 1.6.5 is fully pseudonormal, but it is not 

even pairwise normal and so by Proposition 1.4.1 it cannot be 

sequentially normal. 

This example shows that full pseudonorma1ity is a relatively 

weak condition. Nontthe less we do have: 

Proposition 1.4.2. A fully pseudonormal bitopological space is 

uniformly fully normal. 

Proof. Let U = 1 Gool I 0( GAl be a uniform open cover of X. 

Then for x E: GoO we have U E: u, V E:- v with x E: U (\ V c. G_. 
... xac. Xci. x OJ. XCI. -

The open dual cover 

d = t (U ,V > I c( E: A, x E: G .. ! 
X~ x 0(, .,.. 

has an open pseudo-star refinement e = i (R
ft

, Sfo>' fa G B} , and 

if we put V- = t R" n Sf\ \ fo c: B 1 it is easy to verify that t> 

is a uniform open cover of X and that V· ~ X . Hence (X, u, v) 

is uniformly fully normal. 

One can easily show that a "sequentially normal" open cover 

of a topological space has a ~ -discrete open refinement. 

However a corresponding result in the bitopological case would 

seem to require some additional restrictions, and these are 

detailed in the next definition. 

Definition 1.4.3. The dual family d is medial if it can be index­

ed by a well ordered index set (A, ~ ) in such a way that for all 



x E. uc(d) we have ~(x) = max(~(x), vex»~, where 

)\...(x) = min \ ~ Ql E: A, XE:;U~f\VDt~' 

rex) = min ~ r:J.. fA E: A, xe.UQl!' and 

v (x) = min i <1\. 0.. €:- A, XE::VQl.L 

We shall say that (X, u, v) is medial (respectively, ~ -medial) 

if every open dual cover has a medial (respectively, d -medial) 

open refinement. 

We may now state: 

Theorem 1.4.4. Every cr -medial sequentially normal open dual 

cover of a bitopological space has a ~ -quasi-discrete open re­

finement. 

Proof. Let the open duaL'cover d be the union of the medial dual 

families d • Let (A , ~ ) be a faithful indexing of d with the 
n n n 

properties mentioned in Definition 1.4.3, where without loss of 

generality we may take the sets A to be pairwise disjoint. 
n 

By Theorem 1.4.2 there is an admissible p-q-metric p subordinate 

to d, and for B S: X let us set 

H (B) = U {H (x) , x E. B \ , m m 
K (B) = U t K (x) I x E:-. B J , m m 

and define Lm(B), Mm(B) as in the proof of Lemma 1.4.1. 

For ol. e: A , m, n = 1, 2, n ... , define: 

Finally let e
nm 

1 = { (U: , s! ) I 0(. E: An' u~ (\ SmOl f. ¢ 1, and 

e nm 2 = [( R~ , v: ) I r:A. E:- An' R~ {\ ~.,. f. ¢ 1 , 

for n, m = 1, 2, 3, •••• 

:r h d enml and .nm
2 

d 1 f 'I' f' or eac n an .m; are open ua am~ ~es re ~n-



ing d. 

Take x G X. Since p is subordinate to d we have n, « ~ A 
n 

and m so that H (x) ~ U Q and K (x) .s V ... In particular x E-m m 

uc(dn ) and 60, using an obvious notation, we have ~n(x) = 
max( v. (x), v (x». But then it is easy to see that 

/ n n 

x E: umO( (\ S: if d.. • )<.n (x) = /' n (x), while 

x C R~ Il vm(l, if "" = K (x) = \J (x). 
n n 

It follows that 
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t e
nm 

1 In, m = 1, 2, ••• ! V t e nm 2 ' n, m = 1, 2, ••• J 

is an open dual cover of X. 

nm nm It remains only to show that eland e 2 are quasi-discrete 

for each nand m. To each x E X associate the nhds. H 3(x) and 
n+ 

Km+3 (X). To show that enml is quasi-discrete suppose that for 

some GIl ,;1 e An we have Hm+3 (x) (\ S'!. ,l ¢ f. Km+3 (x)" Umc;r. and 

Hm+3 (X)" Sft f. ¢ f. Km+3 (x)(\ u~ • Suppose, without loss of 

generali ty tha t ~ ~ ole Then if f1 f. Ol we have from Hm+ 3 (x) f\ S:. 

f. ¢ the existance of z E: H 3(x) and t E: M (V ) - u 1 L (U) 
m+ m III m+ 1 15 

~ ~ An' ~~ ~ \ with z ~ Km+3 (t), and so in particular, 

t 4:- Lm+l (~ ) • • •• • ••• (lL 

On the other hand from Km+3 (x) 1\ ufi f. ¢ we have a c K
m

+
3

(x) 

and b ~ Lm(~) with a E: Hm+
3

(b). But then 

p(t,b) .:.. p(t,z) + p(z,x) + p(x,a) + pCa,b) 

~ 4/2m+3 

= 1/2m+l 

and 60 Hm+1Ct) c::. H (b) c:. ~ which gives t t Lm+l (t;& ), so m -
contradicting (1). 

This proves e nm is quasi-discrete. In the same way nm 
1 e 2 1s 



quasi-discrete, and the proof is complete. 

Corollary. Every ~ -medial sequentially normal bitopological 

space is strongly quasi-biscreenable. 

In particular every ~ -medial metrizable, and everya'­

medial fully binormal bitopological space is strongly quasi­

biscreenable. 

We may improve this result in the fully binormal case by 

strengthening the " cr -medial" condition. VJe make the followinc 

definitions. 

Definition 1.4.4. We say the dual cover d = U t d I is a n 

conservative cr -medial dual cover if there exist disjoint sub­

sets Xl' X2 of X (one of which could be empty) with Xll) X2 = X 

and so that 

(a) x6 >s. f1 uc (dn ) 9 ~ (x) = ~ (x) n n 
xE. X2 () uc (dn ) =7> ~ (x) 101 "V (x), and n n 

Xl/) uc(dn ) = Xl ('\ lc(d
n

) 

X
2 

('\ uc(dn ) = X2 
() rc (d

n 
) , 

for all n = 1, 2, • •• • 

If d = U i dnf is U -medial and sequentially normal, and p is 

an admissible p-q-metric subordinate to d we set 

n(x) = min!n I x E:uC(d)}, EL.'1d 
n 

m(x) =mintm I xcLm(U-.)(lMm(V/jI,) for oC. = )-..n(x)(x)j. 

With this notation we may state: 

Defip.it!.<?n 1.4.5. The 0' -medial sequentially normal dual cover 

d = Vi d J is of finite type if there is an admissible p-q-metric n 

p subordinate to d such that, for each n = 1, 2, ••• , and each 

d.. €: A the set n 

is finite. 

We may now give: 

i m(z) l K (z) ~ 0( i 
n 
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Theorem 1 0 4.5. Let (X, u, v) be fully binormal, and suppose that 

every open dual cover-has a conservative ~ -medial open refine­

ment of finite type. Then (X, u, v) is quasi-biparacompact. 

Proof. Let d be an open dual cover which, without loss of 

generality we may assume to be a conservative cr -medial dual 

cover d = U t dn' of finite type. Let Xl' X2 be subsets of X as in 

Definition 1.4.4, and p a p-q-metric as in Definition 1.4.5. 

For n, m = 1, 2, ••• t let us set 

Pl(n, m) = I z , z E- Xl' n(z) = n and m(z) = m j , and 

p 2(n, m) = ! z , z €: X
2

, n(z) = nand m(z) = m] • 

As in the proof of Theorem 1.4.4 we have quasi-discrete 

dual families 

nm r 
e 1 = l 

open 

which refine d t and which together form a dual cover of X. Consid­

er the (not necessarily open) dual family 

e = 1 (U: t smcl () PI (n, m» , n, m = 1, 2, ···,exEA, n 

U~ (\ Smor. n P1 (n, m) I- ¢ !v ~ (Rma( n P
2

(n, m), Vm ) In, m = 1, 

2, ••• t <X E; An' R~" VmO( n P
2

(n, m) I- ¢!. 

e is a dual cover of X. For if x C Xl then 

x E:. um~x) t1 sm~x) () P1 (n(x), m(x» for 0( = ~(x) (x) = 

~n(x)(x) ~ An(x)' while if x E X2 then 

x L Rm ( x ) (\ Vm ( x ) '" «) () ) ~ () 
I::" Of, ot I I P 2 n x , m x for cI... = .In (x) x = 

Now let us show that e is quasi-locally finite. For x ~ X 

the set 1. m(z) \ )<.n(x) (z) ~ )<.n(x) (x) ! is fini te, so we may 

set M(x) = max l m(z) I ){. ( ) (z) Go Kn(x)(x) ~ , and associate n x -
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with x the nhds. Ry1(X)+3(X), KM(x)+3(x). Suppose that l)-1(x)+3(x) 

n P
l 

(n, m) I- ¢ . Now 

~1(x)+3(x) ~ Hm(x) (x) C. U~(x) (x) 

so we may take z € U)c. (x) n Pl (n, m). Then z f. Xl' n(z) = n 
n(x) 

Definition 1.4.4. It follows that 

n = n(z) ~ n(x) .......... 
Also z ~ ~n u~(dn(x» implies )tn(x)(z) = ~n(x)(z) by (a) 

of Definition 1.4.4, so )<.n(x) (z) ::: .J'ln(x) (z) ~ )<.n(x) (x) 

which eives 

m = m(z) ~ M(x) •••••••••• 

(1) and (2) also follow if 111(x)+3(x)n P 2 (n, m) I- ¢, and we 

deduce at once that e is quasi-locally finite. 

We have thus shown that every open dual cover has a quasi­

locally finite refinement, and so (X, u, v) is quasi-biparacom­

pact by Proposition 1.2.3. 

The above results illustrate some of the difficulties 

involved in establishing even quasi-local finiteness properties 

of bitopologica1 spaces. The notion of "mediality" :bItroduced 

here, .. while providing a partial solution to some of these 

problems, is less than satisfactory in its present form because 

of its somewhat abstract nature. In particular it seems quite 

difficult to determine just how restrictive the conditions 

imposed in Theorems 1.4.4 and 1.4.5 really are. 

1.5 COMPARTMENTAL DUAL COVER REFINEMENTS. 

As we have noted in the previous sections, the local finite­

ness conditions we have imposed so far on a bitopological space 

are, with the possible but unlikely exception of strong quasi-
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biscreenabi1ity and quasi-biparacompactness, relatively stronger 

than the notion of paracompactness for topological spaces. In 

this section we discuss a much weaker form of local finiteness 

condition. This is based on the notion of a "compartmental 

dual cover", defined below. 

De fini tion 1.5.1. If, for each ¥ E: e, d If is a dual family 

we say 

die = t d 2r I '6' E: e \ 

is a compartmental dual family. die is a compartmental dual 

cover if 

U 1 uc (dr-) I ~ E: e j = x. 

If e is a dual cover we say die refines e, and write die .or!.. e, 

if given If €: e there exists ReS with d.....c.. t (R, S)! • 

Such terms as point finite, locally finite, quasi-locally 

finite, etc., may be defined for compartmental dual families in 

the obvious way. Thus, for example, die will be called quasi­

locally finite if for each x e X there are nhds. H(x) e u and 

K(x) €:. v of x so that 

t " I .:::\ Ud~ V with U ('\ K(x) ~ ¢ ~ V (\ H(x) ! 
is finite. 

A statement such as "(X, u, v) is compartmentally quasi­

biparacompact" will mean that every open dual cover has a 

quasi-locally finite open compartmental dual cover refinement, 

and corresponding meanings may be given to such terms as 

"strongly compartmenta11y quasi-biscreenable", etc. 

The notion of compartmental dual covers may be used to 

characterise uniformly paracompact bitopo10gica1 spaces, as 

follows'.' 

Proposition 1.5.1. Let (X, u, v) be uniformly regular. Then the 

following are equivalent: 

(a) (X, u, v) is uniformly paracompact. 

(b) Every open dual cover of X has a quasi-local~y finite (not 

necessarily open) compartmental refinement. 
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Proof. (a) 9 (b). If d is an open dual cover then ~ = 
tu (\ V , UdV! is a uniform open cover of X. If V = t P ~ I cl i=- A j 

is a uniformly locally finite refinement of 'U., and if for ct. e-

A we set e
Ol 

= 1. (J~l,lzn I z E:- Poe. 1 then e/A = {e fA , (j.. Co A ! 

is the required quasi-locally finite compartmental refinement 

of d. 
(b) ~ (a). Let 1{ be a uniform open cover of X, and 

for each x t X take U(x) ~ u, Vex) E; v with x € U(x) n vex) <:.. P 

for some PE: 2{ • If elL is a quasi-locally finite compartmental 

refinement of d = l (U(x), V(x» I x f. xl, and we set Q" = 

uc (eA ), ]I. E. L, then f Q ~ I A E: L J is a uniformly locally 

finite (not necessarily uniformly open) refinement of 2{ t and 

the required result now follows from a standard theorem on 

paracompactness (see, for example,l~SJ ). 

Corollary. A uniformly regular compartmentally quasi-biparacom­

pact space is uniformly paracompact. 

It would be tempting to conjecture from the above proposition 

that a uniformly regular uniformly paracompact bitopological 

space is necessarily compartmentally quasi-biparacompact. That 

such a conjecture would be false is shown by Example 1.6.8. 

We may improve the above corollary with the aid of the next 

proposi tion'. 

Proposition 1.5.2. Let (X, u, v) be strongly compartmentally 

quasi-biscreenable. Then every open dual cover of X has a quasi­

locally finite (not necessarily open) compartmental refinement. 

Proof. Let d be an open dual cover, and let d /L = { d }. \ A E:. n n n 

Ln! , n = 1, 2, ••• , be quasi-discrete with respect to the nhds. 

H (x) cu, K (x) t v of x, and such that U~ d). I n = 1,2, ••• , n n n 

~ E::- L \ is an open dual cover refinement of d. Without loss 
n 

of generality we may suppose that the index sets L are pairwise n 

disjoint. For x ~ X let 

rex) = min f n I -:3 ~ E: L with x E:- uc (d >. ) ! , n n 



and denote by ~(x) the unique A 
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~ 
for which x c uc(dr(x». 

Choose a fixed U(X)dr(x)~(x)V(x) with x c U(x) ~ Vex), and 

define: 

H(x) = U(x) () ()! Hi ex) I 1 ~ i ~ rex) 1 , and 

K(x) = Vex) () () t Ki (x) , 1 ..: i ~ rex) 1 · 

[AI~E:: 
A = n 1 , and Let L' = L , :.3 x 6 uc(d ) with rex) 

n n n 

for ~ E; L'n let d' ". t (tzl,\z}) I z E:.UC(dn"'> and r(z) = n!. 

Finally let L' = UIL'n\ and d'/L' =td~ , A E::. L'!. Let us 

show that d'/L' has the required properties. 

IfxcXthenxE:.U(x)(\V(x)C- (d A(X» t \d' lx} - uc rex) so x "(x) 

and ~(x) e L'. Hence d'/L' is a compartmental dual cover, and it 

is clearly a re finemen t of d. Finally suppose z E:. uc (d ") with 
n 

r(z) = n, and that z E: H(x) f\ K(x). Then 

( A(X» z E. U(x) 1\ Vex) c. uc dr(x) , 

and so n = r(z) ~ rex). Also if we take Ud~ V with z c U nV 
n 

then z E::: U "K (x) ;i ¢ and z E:: V" Hex) ;i ¢ so" is unique for n n 

this n. Hence d'/L' is quasi-locally finite as required. 

Corollary. A uniformly regular strongly compartmentally quasi­

biscreenable bitopological space is uniformly paracompact. 

This last result may also be obtained by showing first that 

a strongly compartmentally quasi-biscreenable space is uniformly 

strongly biscreenable, and then using a standard theorem (LS] • 

We are now going to show that every fully pseudonormal 

bitopological space is strongly compartmentally quasi-biscreen­

able. An apparently stronger result may be proved just as easily, 

however, and to state this we shall need some more notation. 

Let d be a dual family, and A C- X. By the weak stars of A 

with respect to d we shall mean the sets: 
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wSt(d, A) = UI u , 3 V, UdV and UnV('\A .;i¢!, 

wSt(A, d) = U! v \ ? U, UdV and UnVnA .;i¢j. 

By the uniform star of A with respect to d we shall mean the set: 

USt(d, A) = USt(A, d) = U I U r\ V \ UdV and un V n A .;i ¢ 1. 
The statement e(w.)d ~ f between dual families will mean 

that given UdV there exists LfT so that wst{e, Un V) ~ Land 

WSt(Uf\V, e) ~ T. 

We shall say that the dual cover d = dO is pseudonorma.l if 

there is a sequence d , n = 1, 2, ••• , of open dual covers so 
n 

d , n E ~. We will then say that the dual 
n 

cover d is sequentially pseudonormal it there is a sequence dn of 

open dual families, and a sequence e of pseudonormal dual covers 
n 

so that 

(1) 

(ii) 

e (Wit) d L d, n = 0, 1, ••• , and 
n n 

U I dn' is a dual cover of X. 

Clearly a sequentially normal dual cover is sequentially pseuo­

normal. We may now give: 

Theorem 1.5.1. Every sequentially pseudonormal open dual cover ofa 

bitopological space (X, u, v) has a ~ -quasi-discrete open 

compartmental refinement. 

Proof. Let d = t (U ... , V-.) , do E:. A } be a sequentially pseudo-

normal open dual cover, and d , e , n E:. IN, as above. Define: n n 

Since e = eO is pseudonormal t there are open dual covers em 
n n n 

that em+l ~ (pil) 
n 

m e ,n, m € IN. n 

Now define by induction on m, 

for each ~ t At n ~ m and m = 1, 2, •••• 

so 
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Let ~ be a well ordering of the index set A, and for each cJ.. c A, 

n, m e IN, let 

nm Let us show that the sets C ~ cover X. Now if Xc X we have 

Ud V with x E Un V for some n E. IN, and hence we have at. E A with 
n 

wst(e n' U () V) ~ U 0& and WSt(U" V, e ) c.. 
n Vc( • Thus x E. AnO 

Q( 
• Let 

15" = min ~ ot , -3 m, x E:. A~m 1 , 

and take nm • Then for jl4!.. ~ , we have x 4- A
nk 

an m with x c A ~ /l 
nm for all k, and so x E C~ from which the required result follows. 

Now set~: - i (R, S) \ Hem+2
nS, R" S ("\ Cn~m I ¢ 1, and 

fnm = 1 ~: \ ~ E: A!. This is a countable collection of open 

compartmental dual families, and their union is a compartmental 

dual cover of X by the above result. 

It remains to show that each f is quasi-discrete and refines nm 
d. First, it is easy to show by induction on m that the propos-

ition 

P(m) : If HemnS and R f"l S" An: I ¢ then R S- U
ot 

and S ~ Vat 

is true for all m E IN. Hence if R~~ S we have R ~ U 01. and 

S .=. Vat (since e
m

+2 n...(.. em n)' and so ~m -<. 1 (Uae. t Vee.) , which 

means that f -( d. Now for each x ~X choose R em+2 S with nm x n x 

x ~ Rx " Sx' and suppose that for oJ.. 'fl c; A we have Rjlm Sand 

R I jlm S I with R f\ S I ¢ f. S (\ Rand R 1'\ S I I ¢ f. S (\ R I. Now x x x x 

Rem+2 S, R l em+2 S' and em+2 
j (p") m+l m+l n n n ~ ~ e n so we have ROe nSO 

with PSt(em+2 
t (R , S » c- Ro and PSt«R , S ), em+2 ) c So' 

n x x x x n 

S th R I S I en',!...L rl ~ R S Anm 
uppose ~ "CIt , en f'\ " ,01 r 'P -r 0 (\ 0 (\ /1 !¢ 



= ¢ which contradicts Rf~ s. In the same way ~ ~j3 leads to a 

contradiction so ~ = A and f is quasi-discrete. This 
/4 nm 

completes the proof of the theorem. 

It follows, in particular, that every fully pseudonormal 

bitopological space is strongly compartmentally quasi-biscreen­

able. However a better result may be obtained, as follows. 

Theorem 1.5.2. A fully pseudonormal bitopoloeica1 space is 

compartmenta11y quasi-biparacompact. 

Proof. Let d be an open dual cover of X, and let d' be an open 

dual cover with d' ~ (p.) d. By Theorem 1.5.1 and Proposition 

1.5.2 there is a quasi-locally finite (not necessarily open) 

compartmental refinement e '/L = t e 'A I ~ E; L ~ of d'. Let 

H(x) ~u and K(x) ~ v be nhds. of x so that the set 

lA' A E: L, :1 R'e'AS' with H(x)f\ S' I ¢ I K(x)f\ R'! 

is finite, and let f:o 1 (H(x), K(x» I x E:X ~. Finally let g 

and h be open dual covers with g ...<.. (p") h ..,£. (p") f and 

g .J.... d'. For ).. E:- L define: 

e}\ = t (M, N) \ HgN, :3 R 'e ~ S' with R' f\ N I ¢ Is' f\ M l , 

and set elL = 1 e 11' .\ E: L j • Clearly elL is an open compartmen­

tal dual cover, and elL ~ d. To see that elL is quasi-locally 

finite associate with x ~ X the nhds. M(x) = PSt(S, (lxl,lxj» 

= WSt(g,(xJ) € u and N(x) = PSt«\xJ,lxl), g) = WSt(lxl, g) E v. 

Now we have PhQ with M(x) Co P, N(x) c. Q; and y E:. X with 

PSt(h, (p, Q» S H(y), PSt«p, Q), h) s. K(y). Hence, if for 

some A €;. L we have l1e~N with M(x) () N I ¢ N(x) () M, then for 

some R'e' S' we have R' () N I ¢ I- s' f\ M and it follows that 

R'f' K(y) I ¢ Is'" H(y). This is possible for only a finite 

number of ~ , and the result follows. 

The above theorems establish the essentially reasonable 

nature of the notions of compartmental strong quasi-biscreen-
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ability and compartmental quasi-biparacompactness. While these 

properties are somewhat on the weak side, it seems likely that 

they will play an important role in future develop~ments, 

possibly in combination with other restrictions on the space. 

Our final result of this section gives an interesting 

compartmental refinement property of stronsly biscreenable 

bitopological spaces. To describe this we shall need the 

following terminology. We will say that the compartmental 

dual family elL = 1 e)l \ ~ E: L j is a compartmental pre-dual 

cover ifa/L = t e) , ~ G L! is a compartmental dual cover. 

Also we shall say that elL is point sineular if for each x e X 

the set 

t 1\ x E: Rf\ S for some Re~S! 

contains at most one element. 

We may now state: 

Theorem 1.5.3. Let (X, u, v) be strongly biscreenable. Then 

every open dual cover d has a point singular open compartmental 

pre-dual cover refinement e/L. 

Proof. Let U i d 1 be a 0' -discrete open refinement of d. 
n 

For x E: X de fine 

k (x) = min 1 n I x f.. uc (d )} . 
n 

Let us set 

R(x) = X - Ulu-cl[ U{V' I V' E ran di , xfj. U-Cl\V'J!) \ 

1 == i ~ k(x) - 1 J, 
s (x) = X - ul v-cll u 1 U' , U' E:. dom di , x ¢ v-cl (U '1]) I 

1 ~ i ~ k(x) - 1 1 . 
Then, since di is discrete for each i, we have R(x) ~ u, Sex) ~ v; 

and of course x <:. R(x) f\ S(x). 

Let L = 1 (U, V) \ -3 n with UdnV, and:3 z ~ v-cl!ul n u-cl[V] 

wi th k (z) = n ~. 

For (U, V) ~ L let e(U,V) = 1 (u f\ R(z), V n S(z» I u~(z)V 
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andzE. v-cl{U]0 u-cl[V]. 

e(u,v) I ¢ by hypothesis. Also, given xE X we have U~(x)V with 

x E: v-clIU) () u-cllvJ, and by definition (U, 'V) ELand 

x~ v-clLun R(x)] (\ u-cl[VI) S(x» so 

elL = t e (U, V), (U, V) E L J 
is an open compartmental pre-dual cover. To show it is point 

singular take x E- U () R(z) () V () S(z), where Udk(z)V and 

z E. v-cl(U) f) u-ol[VJ. We know k(x) ~ k(z), so suppose k(x) ~ 

k(z). Now we have U'dk(x)V' with x E v-cl[u'l () u-cllv'~, and 

z ¢ v-clfu'l or z <I- u-cllv'j. Hen~e (v-cll U'])" S(z) = ¢ or 

(u-ol[V') f) R(z) = ¢. However this means x ¢ S(z) or x ¥ R(z), 

which is a contradiction. Hence k(z) = k(x), and since ~(x) is 

discrete this means that Udk(x)V is determined uniquely by x. 

Hence elL is point singular, and the proof is complete. 

1.6 SOME--::;OUNTER-EXAMPLES. 

In this section we describe the examples mentioned in the 

previous sections. 

Examule 1.6.1. Let X be the closed first quadr~nt of the Euclid-
* 

ean plane, that is X = ! (x, y)' x ~ 0, y~ 0 ~. Let u consist of 

~ and all subsets G of X satisfying: 

(i) (x, y) E. G, 04!. x' ~ X ~ (x', y) E:: G, 

(ii) (x, y) ~ G, 0 ~ Y ~ y' =9 (x, y') ~ G, and 

(iii) -3 y> 0 with (0, y) E G. 
< G-l \ }' Clearly u is a topology on X, and so is v = l G t u • We 

consider the bitopological space (X, u, v). 

(A) (X, u, v) is metrizable. 

We use Corollary 2 to Lemma 1.4.1. For (a, b) ~ X we define sets 

R(a, b) as follows. 
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1 (x, y) \ oG x!!::a and ° ~ b ~ Y j if a -I ° -I b, 

I (x, 0) I 0<- x~a 1 if a I 0, b == 0, 
R(a, b) = 

1 (0, y) \ O<-b~yj if a = 0, b I- 0, 

1 (0, O)} if a = b II: 0. 

Then, for n = 1, 2, 3, ••• , let R (a, b) = R(a, b) V R(O, n). 
n 

( ) ( a)-l R (a, b) is au-open nhd. of (a, b). Finally if S a, b = R b, 
n 

. 1 
and S (a, b) = Sea, b) U sen, 0) = R (b, a)- then S (a, b) is a 

n n n 

v-open nhd. of (a, b). 

We now define the open dual covers 

d = { (U (a, b), V (a, b» I (a, b) E. X ! 
n n n 

as follows: 

{ X if b = ° and a ~ n, 
U (a, b) = n R (a, b) otherwise, and n 

t X if a = ° and b ~ n, 
V (a, b) = n 

S (a t b) otherwise. n 

It is clear from the definitions that d n+l 
...( d for each n. n 

Hence if we can show that d .L. 0.) d it will follow that d 1 ~ lJI} n n n+ 

dn for each n. Suppose that U (a, b) 1'\ V (c, d) -I ¢; we wiah to n n 

show that U (c, n d) ~ U (a, n b). Consider the following cases: 

(a) U (a, n b) = X. The result is then trivial for any (e, d) ~ X. 

(b) V (c, n d) = X. In this case c = ° and d ~ n so U (c, d) = n 
Rn(O, d) = R(O, n) ~ U (a, b) n for any (a, b) <C X. 

(c) U (a, b) -I X -I V (c, d). In these circumstances it is easy n n 

to verify that U (a, b) " V (c, d) -I ¢ ~ R (a, b)" S (e, d) -I ¢ n n n n 
-=> R (e, d) ~ R (a, b). 

n n 

This shows that St(d , U (a, b» = U (a, b); and in the same way n n n 

we have St(V (a, b), d ) = V (a, b) so d ~(.) d as required. This n n n n n 
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verifies condition (1) of Lemma 1.4.1, Corollary 2. To establish 

conditions (2) and (3) it will suffice to show that if G e u, 

H e v and (a, b) E.. G 1\ H then for some n we have U (a, b) ~ G n 

and V (a, b) ~ H. However we know that we have (0, y) ~ G for 
n 

some y ~ 0, and (x, 0) ~ H for some x ~ 0; and clearly any n 

wi th n > max ~ x, y 1 will have the required properties. 

This shows (X, u, v) is metrizable. In particular (X, u, v) 

is pairwise normal and preseparated. 

(B) (X, u, v) is uniformly discrete. 

This is trivial since R (a, b)" S (a, b) = { (a, b)!. for each 
n n 

n and (a, b) t X. 

(e) (x, u, v) is not finitely binormal. 

Consider the sets 

G = 1 
f (x, y) I y :> o ~ , and G2 

IE { (x, 0) I x~ o \ u { (0, y) \ 

Both these sets are u-open, and Gl V G2 = X, so 

d = { (G
l

, X), (G2, X) J 

y>-OJ 

is an open dual cover of X. If (X, u, v) were finitely binormal 

there would be u-open sets Rl , R2 .with Rl U R2 = X, v-cl[Rll ~ G
l 

and V-Cl[R2] ~ G2 • However if H is any non-empty v-open set there 

exists x ? 0 with (x, 0) €:; H, and (x, 0) 1=- Gl ~ (x, 0) 4- Rl ~> 

(x, 0) G R2 so that v-cl[R2 ) = X which contradicts G
2 

I X. 

Note that we have not even had to use the fact that Rl and R2 are 

u-open in order to obtain this contradiction. 

In particular it follows that (X, u, v) is a metrizable bitop­

ological space which is neither fully binormal nor biparacompact. 

However: 

(D) (X, u, v) has an open quasi-discrete dual cover. In partic­

(X, u, v) is guasi-biparacompact. 

For (a, b) <S X 1 e t H ( a, b) = R (a, b) U R ( 0 , a v b + 1), an d K (a, b ) 

-1 = H(a, b) • Consider: 
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g = l (HCa, b), K(a, b» I (a, b) E. X 1. 

This is an open dual cover of X, let us show it is quasi-discrete. 

Suppose that H(a, b)11 K(e, d) f ¢ f K(a, b)1) H(c, d). Then 

H(a, b)11 K(c, d) = (R(O, a",b + l)n S(c"d + 1, O)]U 

[R(O, avb + 1)('\ S(c, d)]UlR(a, b)n S(cvd + 1, O)]U 
[RCa, b)11 sCc, d)] , 

and under the above hypothesis the first three terms of this 

union are empty so we deduce R(a, b)11 SCe, d) f ¢. In just the 

same way Vie have RCe, d)n Sea, b) f r,t, and it follows easily 

from this that (a, b) = (c, d). Hence g is quasi-discrete as 

stated. 

Now let d = { (Uoe.' VQI.) , C( E. A 1 be an open dual cover of X, 

and for (a, b) E X choose 0( (a, b) with (a, b) E. Uc«a,b) n VO«a,b). 

Then 

e = I (UQ( (a , b ) () H (a , b ), V IX C a , b ) () K (a, b» I (a t b) EX! 

is clearly a quasi-discrete open refinement of d. Hence (X, u, v) 

is quasi-biparacompact and strongly quasi-biscreenable. 

(E) (X, u, v) is not pairwise paracompact (In the sense of (10J ) 

For 0 S r c:::; 1 let U(r) = {(x, y) I y > 0 } U 1 (x, 0) , 0 ~ x ~ r ! 
~ u, and consider the pairwise open cover 

,t = is(l, 0) !ul U(r) \ 0::- r J!.11. 
If this had a pairwise locally finite open refinement then there 

would be a v-open nhd N of (1/2, 0) meeting only finitely many 

u-open sets U~(l)' ••• , Uo(,(n) in this refinement. We shall have 

U~(i) ~ U(ri ), i = 1, ••• , n; and if max Irl, ••• , rn l c::. r <.. 1, 

then there must be a u-open set U~ in the refinement with Cr, 0) 

E:. UD\. However (r, 0) €::- UO( (\ N, and ex f ~(a, 1 ~ i ~ n, 

which is a contradiction. 

Example 1.6.2. Consider the space (X, u, v) defined as in Example 

1.6.1 with the exception that condition (iii) is removed. 

(A) (X, u, v) is metrizable and fully binorm~l. 
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Note that in this space R(a, b) (respectively, Sea, b» is the 

smallest u-open (respectively, v-open) set containins (a, b) 

for each (a, b) € X. Hence the open dual cover 

dO = f (R(a, b), Sea, b» I (a, b) € xl 
refines all open dual covers of X. Moreover, argueins as in the 

last example, we see that dO ~(~J do and the above mentioned 

properties are now immediate. 

(B) (X, u, v) is neither biparacompact nor stron~ly biscreenable. 

~e show that there is no sequence d , n = 1, 2, 
n 

... , of locally 

finite open dual families each of which refines d , and whose 
o 

union is a dual cover of X. Suppose that such dn 
do exist. 

Since d 
"'""" 

d we must have d = 1 (R(a, b), Sea; b» I (a, b) E X ~ n n n 

where X c. X. Also since R(a, b)n Seal b) = 1 (a, b)J we see n 

that U 1 X 1 = X. The set R(l, 1) is uncountable, so X n R(l, 1) n n 

is infinite for at least one n, and (c, d) E X n Rel, 1) implies 
n 

S(c, d)E:. ran d and S(c, d)n R(l, 1) I ¢. Finally (c, d) I (c', d') 
n 

implies S(c, d) I S(c', d') so R(l, 1) meets infinitely many 

different sets in ran d for this n. Since R(l, 1) is the smallest 
n 

u-nhd. of (1, 1) this contradicts the locall finiteness of d • 
n 

(e) (x, u, v) is quasi-biparacompact and strongly qU8si-biscreen­

able. 

dO is easily seen to be an open quasi-discrete dual cover of X. 

(D) (X, u, v) is not pairwise paracompact. 

The proof is just as in Example 1.6.1, (E). 

Example 1.6.3. Let X = R, u = I { x I x <. aj I a G IR 1 U 1 H, ¢ J 
and v = l I x , x > a 1 , a E IR J lJ 1 R, ¢ \ • 

(In the remainins sections of this thesis this space will be 

invariably denoted by ( U~, s, t» 

(A) (X, u, v) is rnetrizable. 
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The required p-q-metric is p(x,y) = (y - x) \I O. 

(B) (X, u, v) is fully binormal. 

Let d = { (UoI.' Vd ) I oc.. €. A j be an open dual cover of X. Since 

(X, u, v) is uniformly fully normal (the uniform topology beinG 

the usual topology of R) there is an open covering of X by 

bounded open intervals which is a star refinement of I Ud n v~ I 

01 €. A J • Hence we have an open dual cover e = l (R,&' '7s) I t1 € B j 

so that I I}s" 8;11 fl E: BJ ...(.(4) [Uol (\ V", , 0( E. A 1 . However it 

is easy to deduce from this that e ~~) d, and the result follows. 

(c) (X, u, v) is stronr,ly biscreenable. 

This is an immediate consequence of the fact that (X, u, v) is 

uniformly Lindelof. 

(D) (X, u, v) is not biparacompact. 

Indeed neither topology is paracompact with respect to the other. 

For if we consider, for example, the u-open cover t U(k) IkE. I.. j , 

where U(k) = I x I x '"' k 1 it is clear that this cannot have a 

v-locally finite u-open refinement. 

(E) (X, u, v) is pairwise paracompact but not stron~ly pairwise 

paracompact. 

Any pairwise open cover ~ will contain at least one v-open set 

VCr) = 1 x I x"> r j t and at least one u-open set U(s) = {x I 

x '<:' s 1 • Indeed there must be such sets in .t with r '"' 5, for 

otherwise q € X sa tis fying 

5 up i s I U ( s) E I, I :: q ~ in fIr I V (r) E. ./, 1 

is contained in no set of ,{, , and in this event 1 U(s), V(r) 1 
is a finite sub-cover of ~ • (This expresses, of course, the 

well known pairwise compactness property of this space). 

That (X, u, v) is not strongly pairwise paracompact follows 

as in (D). 

(F) (X, u, v) is guasi-biparacompact. 

Let d' = 1 (Ud.' Vel-) I 0( e A 1 be an open dual cover of X, and 
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consider the uniform open cover I Uct f\ Vc( 'CI. €. A! = ~ • 
Using well known properties of the real numbers we may show the 

existance of real numbers ak , bk , Pk' qk' k € E, satisfying 

bk <:. ak , qk <:. Pk' (bk , akJ S (qk' Pk)' ak ~ ak +l , bk ~ bk+l 

Pk ~ Pk+l and qk ~ qk+l for each k ~ Z, and so that the closed 

in tervals [ bk , ak J c over ~,and the open in tervals (ql~' P
k

) 

re fine ~ • If now we set 

'\ ;:; t x I x<. -
Uk = lx' x <:. Pk I, V k at t x , x > qk I 

then we see that d = 1 (uk' Vk ) IkE:. 2 j and c = 1 (~, Bk )' 

k £ 2 t satisfy the conditions of Lemma 1.3.2. Hence d has a 

quasi-locally finite open refinement, and since d ~ d' the result 

is proved. 

Example 1.6.4. Let X = IN U 1 wS, U 11:1 l 0, 1, 2, 
n • • • t 

U = U lUI n E:: IN I and V .. 1 n, n+l, ••• f u {wl. 
00 n n 

Consider the bitopological space (X, u, v) where 

n j • 

u = l UO' Ul , ••• ; Uoo ' X, yf j and v = 1 vO' vl ' ••• ; ¢ 1. 

(A) (X, u, v) is metrizable and uniformly compact. In particular 

it is biparacompact and fully binormal. 

For m E ~ consider the finite open dual cover 

If d is any open dual cover then d ~ d for a suitable m
t 

so m 
(X, u, v) is uniformly compact. Also d ~ d, and d ~l.) d 

m+l m m m 

for each m so (X, u, v) is metrizable. 

Example 1.6.5. Let (X', "l ) be any non-paracompact topological 

space, and take'p, q (. X'. On X = X'U {plu {qJ let u be the 

topology with base ~ U {[pI \ V Ixl , and v the topology with 
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base ~\J 1 l q J i u 1 xl ~ .:Rag, II the tQp Q1Qgy wita 'Sase 

J U 1 { q 3 \ u 1 Xl. Consider the bi topological space (X, u, v). 

(A) (X, u) and (X, v) are compact. In particular each topology 

is paracompact with respect to the other. 

X is the only u-open set containing q, and the only v-open set 

containing p. 

(B) (X, u, v) is not quasi-biparacompact. 

Let 1 1:1 ~ G DC I ol E: A 1 be a :1 -open . covering of X' with 

no ~ -open ~ -locally finite refinement, and consider the open 

dual cover 

d = 1 ({p\ t X) jut (X, 1q n I u t (G t Gdo,) I fA. €; A 3 
~ 

of X. If this had an open quasi-locally finite refinement 

e = { (~, ~) I fi E. B J then 

l R~ n S (i \ fi €. B, R jl /"\ S/1 () X' I ¢ J 
would be a 1 -open J -locally finite re finemen t of ~ in X', 
which is impossible. 

Example 1.6.6. Let X be the open upper half plane, that is 

X = 1 (x, y) J y> 0 J • For P = (Pl' P2) E:. X let 

U(p) = 1 C[ Y(Pl + 1) - P~/P2' y) \ 0 c::. y ~ P2 j t 

v(p) = { (lY(Pl - 1) + P2)/P2 , y) , 0 L. Y 6- P2 J • 

Let u be the topology on X with base ~ U(p) I p E xl, and v the 

topology wi th base t V (p) , P e X \. Consider the bi topological 

space (X, u, v). 

T' 

(A) (X, u, v) is fully pseudono!mal, quasi-biparacompact and 

strongly 9uasi-biscreenable. 

Note that U(p) is the smallest u-open set containing P, and V(p) 

is the smallest v-open set containing P. Hence 

dO = 1 (u(p), V(P» I P E::X ~ 

refines every open dual cover d. It is also clear that if 

U(P) " V(Q) I ¢ and V(p) () U(Q) I ¢ then P = Q. Hence dO ...:::.. (p .. ) d 
o 



and do is quasi-discrete, from which the above stated properties 

follow at once. 

(B) (X, u, v) is not pairwise R
O 

(and hence, in particular, 

not pairwise regular) 

For PE X we have v-clIp] = 1 Q' Q = (ql' q2),ql = 

[q/P1 - 1) + P2VP 2' q2 ~ P2 1 !j,z u(p). 

(c) (x, u, v) is not pairwise normal. 

Let P = (1,1) and Q = (-1, 1). Then v-cllp) = tel, y) , 

y ~ 11 and u-cl tQ) = [(-1, y) \ y ? 1 1 so these sets are 

disjoint. However (0, 1/2) ~ U(p) n V(Q) ! ¢. 

Example 1.6.7. With the set X and the notation as in Example 

1.6.6, this time let u have base 

P. ! p L 
l. 

and make a corresponding change to the base of v. 

(A) (X, u, v) is fully pseudonormal, guasi-biparacompact and 

stron~ly quasi-biscreenable. 

We need only make rather obvious modifications to the argument 

used in Example 1.6.1 (A). 

(B) (X, u, v) is pairwise completely reGular. 

For Q€.X define the sets 

R( Q) = U t U(T) I T = (tl , t 2 ) E:; X, t1 
t 2(ql - 1) + q2 

t2 ~ = 
q2 

- q 

q2 I , 

U f VeT) , T 
t 2(ql + 1) 

seQ) = = (tl , t 2) E:. X, t1 
2 

t2 ~ q2 1 • = 
q2 

Clearly R(Q) E:. u and seQ) E. v. Now let P be a fixed point of X, 

and let H ~u, K~ v be nhds. of P. Then for some finite set P
l 

' 

P 2 , ••• , P of X with P. ! P, 1 ~ i ~ n, we have 
n l. 

U'(p) = U(p) - lPl , ••• , Pn 1 S H, V'(P) = yep) - l P
l

, ••• , Pn\ 
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~ K. 

Note that R(Q) - V'(p) ~ u for each Q EX since it is the union 

of sets of the form U(T) - U(T) n V t (p); and U(T) n V t (p) contains 

at most one element of X. Likewise seQ) - Ut(p) ~ v. Now consider 

the open dual cover: 

d = {(U'(P), V'(p»} u 1 (R(Q) - vt(p), seQ) - II'(P» , Q 6 X, 

Q f. u·(p) u V'(p) lu l (R(Q), V(Q) n Vt(p» I Q E: V'(p), P f. Q 1 
u t (u(Q)n u'(p), seQ»~ I Q E.. U'(p), P f. Q}. 

Clearly St(d, P ) = U'(p) SHand St( P , d) = V'(p) c. K. 

110reover d is normal, for indeed we may show by direct computat­

ion that d ~(~) d. It follows by Proposition 1.7.1 that (X, u, v) 

is pairwise completely regular. 

(C) (X, u, v) is pairwise Hausdorff. 

If P ;. Q in X then U(P) - V(Q) is a u-nhd. of P, and it is dis­

joint from the v-nhd. V(Q) of Q. 

(D) . (X, u, ~) is not pairwise normal. 

Consider the u-c10sed set F = ! (-1, y) I Y > 0 i, and the 

v-closed set T = t (1, y) J y > 0 l • Clearly F t) T = ¢. 
Let K ~ v contain F and H ~ u contain T. Without loss of gener­

ality we may suppose Hand K lie in the set 

y = 1 (x, y) \ - 1 ~ x ~ 1, y ~ 0 i . 

Let us show that the set 

E = t A \ A E:- F t \ VeAl f\ H , ~ (Xl 1 
is at most finite. Suppose E contains an infinite sequence of 

distinct elements A ; then the set ut V(A ) () H , n E:. t~ J is a n n 

countable subset of Y, and since T is uncountable there exists a 

point B E:: T so that U(B) contains non of the points of U 1 VeA ) (\ H , 
n 

n E:. ~I \. However, for some P1 , ••• , Pm €. X, U'(B) = U(B) - lP1 , • 

•• , Pm'S II and so for some n E:- IN, VeAn) f"\ U'(B) ;. ¢, which 

is a contradiction. Hence E is finite and we may choose A E F - E. 

But then for some Ql' ••• , ~ ~ X the set yeA) - { Ql' ••• , ~j 

is contained in K and meets H, so HA K f. ¢ and (X, u, v) cannot 

be pairwise normal. 
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Example 106.8. Let A = (-1, 0), B = (1, 0) and X = lA, B] U 

l (x, y) I y> 0 L For PE: X ... IA, Bj let U(p), yep) be as 

in Example 1.6.6, and let u have base 

t U(p) , P <= x-I A, B 1 1 u t tAl, xl, 
and v have base 

t V (p), p c: X - i A, B 11 u 1 { B}, xl. 
Then: 

(A) (X, u) and (X, v) are compact. 

The proof is trivial. 

(B) (X, u, v) is fully pseudonormal, quasi-biparacornpact and 

strongly quasi-biscreenable. 

We need only consider the open dual cover 

dO = { (U (p), V(p» I P E: X - I At B J } u 1 Ci A}, X), (X, tB D } 

(c) (X, u, v) is not pairwise RO or pairwise normal. 

This may be proved as in Example 1.6.6 (B) and (C). 

Example 106.9. With X, U(p), yep) as in Example 1.G.8, let u 

have base 

[ U (p) u 1 Al - 1 P l' ••• t P n' I P t Pi €: X - 1 A, B i, p -I Pi J 
VilAl, xl, 

and let v have base 

V(P)ulB} - lP l , 

ullBl, xl. 

Then: 

... , P J n 

(A) (X, u) and (X, v) are compact. 

The proof is trivial. 

(B) (X, u, v) is fully pseudonormal, quasi-biparacompact and 

strongly quasi-biscreenable. 

We need only modify the proof of Example 1.6.8 (B) in the obvious 

way. 

(c) (X, u, v) is pairwise completely reGular. 

If the given point P lies in X - {A, B j it is easy to see how 
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we should modify the open dual cover d of Example 1.6.7 (B). 

On the other hand for P = A or P = B we may consider in its place 

the dual cover 

d = I ({AI, X), (X,lB])] u i (R(Q)U lAf, S(Q)U LBI) \ Q E: X­

lA,Bll. 

(D) (X, u, v) is not pairwise Rl • 

u-cl r A) = X I 1 P, A j :a v-cl t p) for P E. X - {A, B!, but 

X is the only v-open set containing A and this meets every u­

open set containing P. 

(E) (X, u, v) is not pairwise normal. 

We may use essentially the same proof as in Example 1.6.7 (D). 

Note that this example disproves ([23), Theorem 4.20). 

Example 1.6.10. Let X = l (x, y) I y > oj, and for P ~ X let 

M(P) = [ ([y(Pl + 1) P2J/P2' y) I y > o 1 , and 

N(P) = { «(y(Pl - 1) + P2J/ P2' y) \ y > 01 • 

Let u have base t M(P) f P E:: X J and v have base l N(P) I P E xl. 
Then: 

(A) (X, u, v) is uniformly discrete (and hence, in particular, 

uniformly paracompact. 

Trivial since N(P) n N(P) = 1. pl. 

(B) (X, u, v) is not fully pseudonormal. 

dO = t (H(P), N(P», P E. X J refines all open dual covers, but 

clearly dO ~ (~) dO· 

(0) (X, u, v) is neither compartmentally quasi-biparacompact 

nor compartmentally guasi-biscreenable. 

Suppose there is a sequence of quasi-locally finite open compart­

mental dual families 

d /L = 1 dn.. I ZS E:. L 1 
n n • n 

wi th d /L ....c:.. dO and U 1 d /L \ n E:. IN i a compartmental dual n n n n 

cover of X. 



Then it is clear that for P E X we must have n(P) E N and 

(S(p) E. Ln(p) satisfying 

dn(P) = S (H(P), N(P» J l.(p) l. • • • •• (1). 

Let Xn = I P I n(P) = n 1 and L = t (x, 1) I -2 L x ~ 2 j . 

L is an uncountable set, and lJ I X , n E. II J = X, so for 
n 

some m E. n the set L () X is infinite. It follows from (1) 
m 

that the subset 

L 'm = ! ~ (p) I P E: L" Xm 1 

of L is infinite also. However 
m 

L' C! ~ I ~ E. L :J Mdm",N with M" N((O, 1» -I ¢ -I NI'\ M«O, 1»] m - m' u 

and this contradicts the quasi-1oca1l finiteness of d /L • m m 

Hence no such sequence of compartmental dual families exists, 

and the stated properties follow at once. 

Note that we could clearly modify Example 1.6.10 in the same 

way that we modified Example 1.6.6 to produce Examples 1.6.7 -

1.6.9, and with very much the same result. 

1.7. QUASI-UNIFORH BITOPOLOGICAL SPACES AND GENERALIZATIONS. 

In this section we are going to discuss, very briefly, some 

structures on a set which can be defined using dual covers, and 

which give rise to a bitopo1ogical space in a natural way. The 

first, and by far the most important, of these is the quasi­

uniform structure introduced by A CSASZAR [81 in 1960. There 

is quite an extensive literature on this subject (see, for 

example, the book of MURDESHWAR and NAIMPALLY L1a) for a survey 

of some of the earlier work in the field), and our aim here is 

limited to the consideration of one or two aspects of the theory 

where our notion of dual cover seems particularly relevant. 

In terms of dual covers the definition of a quasi-uniformity 

maybe expressed as follows: 

Definition 1.7.1. Let b be a non-empty collection of dual 
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covers of the set X. Then S is a (dual covering) quasi-uniformity 

if: 

(i) Given d IE: b there exists e E: b with e ...c..(AJ d. 

(ii) d, e E:.s, =9 dl\e E: ~. 

(iii) If d ~ ~ and e is a dual cover with d """ e then e _ ~ 

Note 1. The notions of ~ and subbase may be defined in the 

obvious way. 

Note 2. To obtain the corresponding quasi-uniformity in diagonal 

form we need only consider the sets Vied) = U l V1. U I UdV} for 

d ~ ~ • 

Note 3. Since, as we have noted, a dual cover corresponds to a 

strong conjugate pair of covers, a dual covering quasi-uniformity 

as defined above actually corresponds to a base of a covering 

quasi-uniformity in the sense of GANTNER and STEI~LAGE [JS] • How­

ever these notions are essentially equivalent. 

A quasi-uniformity ~ 

(X, tti( ~), t ( ~», where 
. v 

gives rise to the bitopo1ogical space 

t St(d, x ) , d (i, s:. 1 is a base of 

nhds. of x for the topology t (~), and 1 St( x , d) , dE: h 1 is 
u 

a base of nhds. of x for the topology t (~). 
v 

These topologies may also be described in terms of closure, 

as follows: 

x ~ t u (Cb)-C1[Al ~ given d E: ~ ~ UdV with x E:: V, U" A I ¢, 

x G t (~)-cl[AJ ~ given d ~ ~ ~ UdV with xc U, V" A I ¢. v 

The following results are easily verified (see also tlSl ) 

Lemma 1.7.1. For d '- ~ and A £:. X we have 

t (~)-c1LAl S: St(d, A), v t (b)-ellA} f: St(A, d), 
u 

A S: t C ~ )-intlstCA, d)J. 
v 

Corollary. A quasi-uniformity ~ has a base of open dual covers, 

and a base of closed dual covers. 

Example 1.7.1. If p is a p-q-metric compatible with (X, u, v) 

then d t. = \. (H(x, L ), K(x, f. » , x E:. X 1 is an open dual cover, 
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for each t '> o. Hence {de. l € ~ 0 ! is a 

base for a quasi-uniformity on X which is clearly compatible 

with (X, u, v). This corresponds, of course, to the usual diagonal 

quasi-uniformity defined by a p-q-metric. 

As mentioned we will denote the space of Example 1.6.3 by 

( m, s, t). For this space we shall write H(x, e ) in place of 

Hex, f ) and N(x, £. ) in place of K(x, E. ), so Hex, £. ) = 

l y I y <.. x + Eland Nex, c. ) = t y' Y '> x - l.. J • Vie shall 

also set me:. = L (M(x, f. ), Nex, f. » , x E. IR i , and denote by JA-

the quasi-uniformity of which these dual covers are a base. 

If for n = 1, 2, ••• , we set m(cc , n) = t (M(k/n, OC/H) , 

N(k/n, ~/n» , k E: Z I and ,r(ol) = {m( f., n) \ n = 1, 2, ••• .1 
then for each fixed 0( with 1/2 "01. ~ 1 it is clear tha t ~ (<<) 

is a countable base of~ consisting of countable open dual 

covers. 

If S is a quasi-uniformity compatible with (X, u, v), and ~' 

a quasi-uniformity compatible with (X', u', v') then a function 

f:X ~ X' is quasi-uniformly continuous if for each d' 6 b' 

we have f-1 (d') ~ b , where 

f-1 (d') = I (f-1 eU'), f-1 eV'» , U'dV', f(X) () U' ('\ v' I ¢ f. 
This clearly aqrees with the usual definition of quasi-uniform 

continuity {1.3]. 

Example 1.7.2. Let (X, u, v) be a bitopo1ogica1 space, and S a 

set of real-valued pairwise continuous functions on X. By the 

initial quasi-uniformity generated by S we shall mean the quasi­

uniformity queS) with subbase 

1 f-l(m!) I f E: S, t. > 0 J. 

This is the smallest quasi-uniformity on X for which the functions 

in S are quasi-un~formly continuous with respect to ~ • Clearly 

qu(S) will be compatible with ex, u, v) if and only if the funct­

ions in S define the topoloGies u and v, and such an S exists if 

and only if (X, u, v) is pairwise completely regular. 

It will be clear from the corollary to Lemma 1.7.1 that all 

the dual Covers belonging to a quasi-uniformity ~ are normal 
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dual covers for the bi topological space (X, t ( S ), t (&». u v 

Conversely for the bi topological space (X, u, v) let ~ denote 
n 

the set of all normal dual covers of X. It is trivial to verify 

that ~ is a quasi-uniformity, and that t (~) ~ u, t (~) Co v. nun v n 

With regard to equality we have: 

Proposition 1.7.1. The following are equivalent for the bitop­

ological space (X, u, v). 

(i) (X, u, v) is pairwise completely regular. 

(ii) 

(iii) 

(iv) 

(X, u, v) has a compatible quasi-uniformity. 

Given H c;;. u, K E: v and x E: H f\ K there exists an open 

normal dual cover d with St(d,lxt) ~ H, St(lxt, d) ~ K. 

~ is compatible with (X, u, v). 
n 

Using Lemma 1.4.1 the proof is straight-forward, and will be 

omatted. The equivalence of (i) and (ii) is well known, see for 

example (2.0) • 

It is clear that ~ is the largest quasi-uniformity compat-
n 

ible with a pairwise completely regular bitopological space 

(X, u, v). It will contain all the open dual covers on X if and 

only if (X, u, v) is fully binormal. 

The following definition is useful in discussing 5> • n 

Definition 1.7.2. The dual cover d of X is divisible if there 

is a v xu-open nhd. VI of the diagonal in X x. X so that 

Wo'il s: W(d). 

If we are given a v x u-nhd. of the diagonal in X ~ X we may 

form open dual covers deW), e(W) as follows: 

d (vI) = t ( \'I ( x), w ( x ) \ x <= xl, 
u v 

where W (x) = 1 y , (x, y) E: W 1 and VI (x) = l y I (y, x) E: W} u v 

and 

e(W) = 1 (R, s) I R ~ u, S E:.v, R/,\S f. ¢ and S)C.R ~ VI 1. 

We then call the dual cover d ~ if there is a v'" u-nhd. W of 

the diagonal in X X X so that 

deW) """- d. 
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These terms are the natural counterparts for dual covers of the 

corresponding terms as applied to covers of a topoloeical space 

(see, for example, (4] or (1~) ). 

Since 

deW) ..L.. d ~> Wo'.v ~ Wed) 

we see that every even dual cover is divisible. In general the 

converse is false, however, for consider the open dual cover 

d = (G
l

, X), (G
2

, X) 1 of Example 1.6.1 (e). d is divisible 

since Wed) = X)C. X. However, for any nhd. VI of the diagonal we 

have, say, «1,1), (1, l»€. W so we have U t:: u, V€ v Vlith 

«1, 1), (1, 1» E: V 1.. U Co W. Now 3 a :> 0 with (a, 0) € V and 

so (1, 1)6 Viu((a, 0». It follows that wu«a, 0» 1:. Gl and 

Wu«a, 0» ~ G
2

, that is deW) tt d so d is not even. 

It is a trivial matter to verify that 

e "'::'(,A) d ~ d(W(e» L... d 

and that \'lee (W» ~ Vi for any v.,.. u-nhd. W of the diagonal, and 

we deduce that (X, u, v) is fully binormal if and only if every 

open dual cover is even. with regard to divisibility we have: 

Theorem 1.7.1. Let (X, u, v) be pairwise completely regular. 

Then the following are equivalent. 

(a) The largest compatible (diagonal) quasi-uniformity contains 

all the v X u-nhds. of the diagonal in X X X. 

(b) Every open dual cover is divisible. 

(c) If d is an open dual cover there exists an open dual cover 
A 

e wi th Vi ( e ) s.. W ( d) • 

Proof. (a) '9 (b). Let d be an open dual cover. Then V/(d) is 

a vx u-nhd. of the diagonal so there is a normal open dual cover 

e with Wee) & W(d). If then f is an open dual cover with 

r.c::..t ... ) e then w(r) is a vX u-nhd. of the diagonal, and '.'1(f)oW(r) 

~ Wed), so d is divisible. 

(b) ~ (c). Let d be an open dual cover. Since d is 

di visi ble there is a v JC u-nhd. W 0 f the diagonal wi th \,1 oW ~ ~~ (d) • 

If we set e = e(W) it is easy to verify that Wee A) == \~(d). 



(e) =7> (a). Let VI be a v ~ u-nhd. of the diagonal. 
I,) 

Using (c) we have open dual covers d, f with Wed ) S:.. W(e(\'J) 

6 * and W(f ) ~ Wed). But then V/(f ) S W(e(',N», and so 

W(f)oi'J(f) ~ W(e(W» ~ w. 

Hence the largest compatible (diagonal) quasi-uniformity 

contains all the v If.. u-nhds. of the diagonal. 

By what we have said above, any pairwise RO fully binormal 

space will satisfy the conditions of Theorem 1.7.1. However we 

may considerably improve this result as follows. 

Theorem 1.7.2. Let (X, u, v) be a pairwise RO sequentially 

normal bitopological space. Then every open dual cover of X is 

divisible. 

Proof. Since (X, u, v) is pairwise completely regular we need 

only verify (c) of Theorem 1.7.1. Let d be an open dual cover. 

By Theorem 1.402 there is an admissible p-q-metric p subordinate 

to d. Hence, given x ~ X, there exists rex) with 0 <. rex) ""- 1 

and so that H(x, rex»~ ~ U, K(x, r(x» ~ V for some UdV. 

Let r'(x) = r(x)/4, 

d' = 1. (HCx, rex»~, K(x, r(x») I x Eo X J ~ d, and 

e = 1 (H(x, r' (x», K(x, r' (x») I x Eo X J • 
6 A 

Let us show that Wee ):: W(d). Take (x, y) '" Wee ), then 3 

z 6 X with x ~ St({Z$, e) and y ~ St(e,lzl). Hence we have a, b 

E: X with x E K(a, r'(a», Z E:. H(a, r'(a» and y E: HCb, r'(b», 

Z & K(b, r'(b». Let 

s = sup tr(x') I H(a, r'(a»,..,K(x', r'(x'» f. ¢ f. K(b, r'(b»" 

H(x', r'ex'»} • 

Note that rea) ~ 6 and reb) ~ 6. Now choose x E:. X so that 
o 

H(a, r'(a»"K(x , r'(x » f. ~ f. K(b, r'(b»"H(x , r'{x » and o 0 0 0 

rex ) ~ 2s/3. Then o 

p ex, x ) :::: 2r' (a ) + r' (x ) <. r ( x ), an d 
000 

2r'(b) +r'(x) <. 
o rex ). lIenee 

o 
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(x, y) € K(x , rex »X H(x , rex » S Wed') ~ Wed) 

o 0 0 0 

as required. 

Bitopological spaces having the properties of Theorem 1.7.1 

satisfy a condition which corresponds to the property of 

collective normality for topological spaces (cf (4) , IX s 4 
Exercise 18). Let us make the followine definition. 

Definition 1.7.3. (X, u, v) is collectively binormal if when­

ever c = I (Po(' Qoe) , oC. e. A 1 is a discrete closed dual family 

there is an open dual family d = 1 (u~, V~) , ~ € A J with 

po( S;;;; U~, Qo( ~ Vol for all ol E: A, and Ucc (\ ~ = ¢ for all 0( f. jJ • 

It is clear that a collectively binormal space is pairwise 

normal. 

Theorem 1.7.3. Let (X, u, v) be a bitopo1ogical space satisfy-

ing the conditions of Theorem 1.7.1. Then (X, u, v) is collectively 

binormal. 

Proof. For c = 1 (Pa(.' Qol) , 0( E A 1 as in Definition 1.7.3 let 

us set Ro( = X - U { QI1' /l ~ 0( 1 and So( :: X - lJ 1 ~ I f3 f. 0/ 1 • 
Since c is discrete, R c u and S ~ v. Also 

III. ... 

e = 1 (R , S ) , 0( & A 1 
at II\. 

1s clearly an open dual cover of X. Now applying Theorem 1.7.1 
. . 

(c) twice we have an open dual cover f with W( f ) ~ W(d). 

Let us set 

Uo( = S t ( f, Po()' V (II. :: S t ( Qat ' f). 

Then it is easy to verify that d = 1 (UII(' VII() \ 01. E- A 1 has all 

the properties required by Definition 1.7.3. 

In particular we see that every pairwise RO sequentially normal, 

and hence every metrizable bitopo1ogica1 space is collectively 

binormal. Example 1.6.1 therefore shows that a collectively binor­

mal bitopological space need not be finitely binormal. 

To discuss some further properties of b we shall need: 
n 



Definition 1.7.4. By a bifi1ter on the set X we will mean a 

product 

~ = 'G u )( 'B v 

of two filters '0 and 'G on X. Vu v 
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The bi fi1 ter ~ is 1-re gular ifF" G I- )1 whenever (F, G) ~ -S • 

If (X. u, v) is a bitopological apace, and x € X, then 

~(x) == 1 (Hex), K(x» I H(x) is a u-nhd. and K(x) a v-ned. of x j 

is an 1-regular bifi1ter which we shall call the nhd. bifi1ter 

of x. 

The bi fi1 ter ~ will be said to converp;e to x if '63 ex) c- ~ 

I f ~ is a (dual covering) quasi-uni formi ty compa ti ble wi th 

(X, u, v) then the bi iiI ter "6?> will be calle d b -Cauchy if 

d n 'C F ¢ for all d ~ b 0 (X, u, v) is ~ -complete if every 

~ -Cauchy 1-regu1ar bifi1ter on X is convergent. 

• 

Since with each 1-regular bifilter ~ we may associate the 

filter t F(\G , (F, G) E 'Ea 3 t we may of course express the above 

definition of completeness in terms of filters, as is usual in 

the literature. However bifi1ters will be involved in an essen­

tial way in the next chapter, and are introduced here to maintain 

consist~ncy of termino1oeY. 

Proposition 1.7.2. 

RO. Then (X, u, v) is 

Let (X, u, v) be fully binormal and pairwise 

~ -complete. 
n 

Proof. ~ is compatible since (X, u, v) is pairwise completely 
n 

regular. Suppose that there exists a ~ -Cauchy 1-regular bifilter n 

~ which does not converge in X. Then for each x ~ X we have 

nhds. M(x) €: u and K(x) tC v of x so that (M(x), N(x» ~ g • 
However the open dual cover d = t (M(x), N(x» , x c:: X 3 
belongs to ~ since (X, u, v) is fully binormal, and hence 

n 

d(\ ~ f)1, which is a contradiction. This proves the proposition. 

e 
We note for future refer4nce the following characterisations 

of uniform compactness. This notion has been considered by 

various authors under a variety of different names (see, for 

example, l'11 and (3J,.) ) • 
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Lemma 107.2. The following are equivalent for the bitopological 

space (X, u, v). 

(a) (X, u, v) is uniformly compact. 

(b) Every open dual cover has a finite subcover. 

(6) The diagonal is a compact set in (X J(. X, v xu). 

(d) Every maximal 1-regular bifilter on X is converGent. 

We omit the proof which is straightforward. 

In terms of a dual covering quasi-uniformity the notion of 

total boundedness ([2..3], De fini tion 4.8(2» takes the followinG 

form: 

The dual covering quasi-uniformity ~ is totally bounded 

if and only if it has a base consisting of finite dual covers. 

Proposition 1.7.3. Let (X, u, v) be a preseparated pairwise RO 

bitopological space. Then (X, u, v) is uniformly compact if and 

only if ~ is compatible, complete and totally bounded. 
n 

Proof. If (X, u, v) is uniformly compact then (X, u, v) is fully 

binormal by Theorem 1.2.2. In particular it is pairwise normal 

and pairwise RO' and hence pairwise completely regular by the 

counterpart of Urysohn's Lemma for bitopological spaces l\~l. 

It follows that ~ is compatible by Proposition 1.7.1, and 
n 

complete by Proposition 1.7.2. Finally if d E: ~ there is an 
n 

open dual cover d' ~ ~ with d' ..4. d, and d' has a finite sub­
n 

cover d". d" E:. S!. since (X, u, v) is fully binormal, and so <i> 
n n 

is totally bounded. 

Conversely suppose b is compatible, complete and totally n 

bounded. If ~ is a maximal l.-regular bifilter and d <:: b we 
n 

have d' {;. ~ wi th d t fini te and d t "'"' 
n 

6? n d' -I ¢ so l2, n d -I ¢. Hence "'3 is 

d, and it is clear that 

~ -Cauchy, and so 
n 

converges in X. Hence (X, u, v) is uniformly compact by Lemma 

1.7.2. 

It is well known that a quasi-uniformity compatible with a 

uniformly compact bitopological space must contain all the nhds. 
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of the diagonal in (X X X, v X. u) in its diagonal form, and so we 

"n,~orl'l\l'1 (o~pAd .. 
may conclude that aLpreseparated pairwise RO bitopological space 

is uniquely quasi-uniformizable. 

Now let us denote by j3 in the set of all finite open dual 

covers d = dl for which there exists a sequence \dn, of finite 

open dual covers with d 1~~) d • Clearly /1 f is a base for n+ n /~ n 

a quasi-uniformity ~f' and we have t ( ~f ) ~ u, t ( ~f ) f: v. nun v n 

It is immediate from the definition that if ~ fn is compatible 

with (X, u, v) it must be the largest compatible totally bounded 

quasi-uniformity. To establish compatibility when (X, u, v) is 

pairwise completely regular, let p·(X) denote the set of all 

bounded real valued pairwise continuous functions on (X, u, v), 

and note that for f€. p·(X) and n = 1, 2, ••• , f-l(m(l, n» 

is a finite open dual cover of X, and 

r-l(m(l, 6n» """-L*l r-lemel, n» 

-1 c so that r (m(l, n» E. 0fn. This shows that ~ fn is finer than 

the initial quasi-uniformity generated by the set p~eX), and 

therefore is compatible with (X, u, v) if (X, u, v) is pairwise 

completely regular. Now let d = dl be a finite open dual cover 

of (X, u, v), and suppose there are open dual covers d (not 
n 

necessarily finite) so that dn+l""-ttt) dn , n = 1, 2, •••• By 

Lemma 1.4.1 (2) we have a finite equibinormal cover E = 
1 

!Chi' k i ) \ 1 $:: i ~ m 1 so that d6 .L.. s(E
1

) and e(E
1

) ~ d
1

• 

From this we may deduce at once that 

m m 
e 1\ h. -1(m ) ) 1\ ( " (1 - ki)-l(m

o
) ) ~ d 

i=l ~ 0 i=l 

where moE/I[O, 1) is given by mo = l(p, (0, 1]), (lo, 1), Q)j, 

p = (x \ ° ~ x <:.. 2/3 1 and Q = l x I 1/3 c::: x ~ 1 J • 

On the one hand this result shows that C contains all finite 
c:) in 

normal dual covers, and on the other hand it proves that every 
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totally bounded quasi-uniformity is the initial qua~i-uniformity 

generated by a set of bounded pairwise continuous real valued 

functions, and in particular that ~fn is the initial quasi-

uni formi ty genera ted by p. (X). ','/e summarize these properties 0 f 

~ fn in the next proposition. 

Proposition 1.7.2. Let (X, u, v) be pairwise completely regular. 

Then: 

(a) 

(b) 

(c) 

~ fn is the largest compatible totally bounded quasi-uniformity. 

~ is the initial quasi-uniformity generated by p·(X). fn 

~ fn is generated by all the finite normal (open) dual covers 

of X. 

In case (X, u, v) is pairwise normal and pairwise RO we may 

present some alternatives to (e). 

PropoSition 1.7.3. Let (X, u, v) be pairwise normal and pairwise 

RO. Then: 

(a) The set of all finite open shrinkable dual covers is a base 

of ~ fn· 

(b) The open dual covers ! (X, K), (H, X)! , where H ~ u, K ~ v 

and H u K = X, form a subbase of b f • n 

Proof. (a). On the one hand every (finite) normal open dual 

cover is shrinkable by Proposition 1.1.1, while by the corollary 

to Theorem 1.1.1 every finite shrinkable open dual cover is normal. 

lience (a) is proved. 

(b). Firstly, since (X, u, v) is pairwise normal, it is 

clear that the finite open dual cover t (H, X), (X, K) 3 is 

shrinkable, and hence belongs to ~fn by (a). To show these sets 

form a subbase take f E:. p .... (X) and n E. lit n .::::. 1. Since f(X) is 

a bounded subset of ~ we may choose itegers p, q so that 

reX) S (p/2n, (q-l)/2n] • 

For p ~ k ~ q let 
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so that 11c G u, Kk t v and I\t U ~ = X. Then it is ea.sy to see 

that 

1\1 {(~, X), (X, ~)ll p~ k~ q i L. f-l(m(l, 2n)) 

from which the required result follows by Proposition 1.7.2 (b). 

Note that if (X, u, v) is pairwise normal and pairwise RO the 

set of all star finite shrinkable open dual covers will form a 

base for a quasi-uniformity ~ sfs (Corollary to Theorem 1.1.1). 

Since b fn ~ ~ sfs ~ S n we see that 

(X, u, v). Of course ~ fn (respectively, 

~ f is compatible with s s 

( ) will contain 
b sfs 

all finite open (respectively, all star finite open) dual covers 

if and only if (X, u, v) is finitely binormal (respectively, star 

finitely binormal). 

Let us call the dual family d = t (Uot ' Va() '0(, Eo A ~ tra.nsi t­
ive if 

St(d, U~) = U~ and st(V~, d) = V~ 
for each~ E. A. If d is transitive then in particular d ~t.) d. 

Several examples of trasitive dual covers have been seen in 1.6. 

The quasi-uniformity) may be called transitive if it has a base 

of tr~itive dual covers. This corresponds to the usual definition 

of transitivity for diagonal quasi-uniformities. See, for example, 

1141 where the discussion is based on the notion of Q-covers. 

If d E. ~ is a transitive dual cover then it is cle,,. tha tit is 

both open and closed. Indeed for any d' ~ d and x ~ X the set 

U(d', x) = U l U , U €: dom d', x f/.. U I 

is tu (b ) -open and tv (~)-closed, while the set 

V ( d " x) = u 1 V , V E.. ran d', x ¢ V j 

is t (~ )-open and t ( ~)-closed. Now suppose ~ is transitive v u 

and compatible with (X, u, v), and let 

u' = {U(d', x) \ xE:.X, d'S: dE: ~ and d is transitivej. 

Then u' is a base of open sets of u, and a base of closed sets 

for v. In the same way, 
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v' = {V(d', x) , xE.. X, d' S; d E. ~ and d is tranGitivel 

is a base of open sets of v, and a base of closed sets for~. 

Conversely if u ' is an open base of u and a closed base for 

v and we set 

d eU) = I eU, X) I (X, X - U) ! 
then d(U) is transitive and 1 deU) I U E. u I J is a subbase for a 

compatible totally bounded quasi-uniformity. ~e may also obtain 

such a quasi-uniformity begining with an open base of v which is 

a closed base for u, and we have established, 'cf t 17] ) 

Proposition 1.7.4. The following are equivalent for the bitopo­

logical space (X, u, v). 

(1) There is a compatible transitive quasi-uniformity. 

(2) There is a base u t of open sets of u which is a base of 

closed sets for v. 

(3) There is a base v' of open sets of v which is a base of 

closed sets for u. 

(4) There is a compatible totally bounded transitive quasi­

uni formi ty. 

I.L. REILLY [2&] has called bitopological spaces satisfying the 

equivalent conditions (2) and (3) zero dimensional. 

One extrern( case is where u is a base of closed sets for v, 

and v is a base of closed sets for u. In this case u (respectively, 

v) is the largest (quasi-uniform) conjugate of v (respectively, 

of u), and so we might call such bitopological spaces pairwise 

reflexive. A pairwise reflexive bitopological space is clearly 

binormal, and so ~ fn coincides with the transitive quasi-uni-

formity constructed as above from u or v. On the other hand, a 

bitopological space in which ~fn is transitive is not necessari-

ly pairwise reflexive. For consider the space of Example 1.6.4. 

Here Sfn is clearly transitive, and u is the largest (indeed, 

only) conjugate of v, but v is not the largest conjuGate of u. 

For if it were we should have v = (v-l)-l (where v-l denotes the 

largest conjugate of v), and it follows easily from this that v 

would have to be a Q-space, which it is not since n! V , w E: V E::: v 1 
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= {w1 1- v. 

~e end this section by defining two new forms of structure 

which may be obtained by weakening Definition 1.7.1. 

If in Definition 1.7.1 we replace "~(Jf) " by" ~ (pJlt) " 

we obtain the definition of a structure to which it would be 

appropriate to give the name pseudo-quasi-uniformity. Certainly 

any quasi-uniformity is a pseudo-quasi-uniformity, but the 

converse is false as we shall see in a moment. 

If (X, u, v) is fully pseudonormal then the set of all open 

dual covers of X will form a base for a pseudo-quasi-uniformity, 

and a consideration of the relation between this structure and 

the topologies for the space of Example 1.6.6 will indicate that 

in place of the sets St(d,lxj) and St(lxi, d) we should use the 

sets PSt(d, (lxl,txi» = wSt(d,{x\) and PSt«lxl,lxS), d) = 
WSt(lx\, d) in the definition of the topologies of a pseudo-quasi­

uniformity. Consequently if $ is a pseudo-quasi-uniformity, 

t u(') will be the topology generated by the filter bases 

twSt(d, lxl)' d E: Cb I for x Eo X, and t (~) will be the topology v 
generated by the filter bases l wst(1xJ, d)' d Eo b~ for xE; X. 

It will be clear that in general the sets ~st(d,txJ) and WSt(lx1, 

d) will not necessarily be nhds~ of x for the appropriate topology, 

and that a pseudo-quasi-uniformity need not have an open base. 

As mentioned above, if (X, u, v) is fully pseudonormal the 

set of all open dual covers is a base for a pseudo-quasi-uniform­

ity on X. This clearly is compatible with (X, u, v), and has an 

open base so the above sets are all nhds. in this instance. This 

pseudo-quasi-uniformity for the space of Example 1.6.1 cannot be 

a quasi-uniformity since (X, u, v) is not pairwise completely 

regular. (Note that if a pseudo-quasi-uniformity is in fact a 

quasi-uniformity then the bitopological space it generates as a 

quasi-uniformity is indeed the same as it generates as a pseudo­

quasi-uniformi ty, since if e :..:. t*j d we clearly have 

S t (e , (x S) ~ \'/ s t ( d , [x n .s:; s t ( d , (x 1 ), and 

S t ( l xl, e) ~ \'l S t (l x ~. d) ~ s t ( Lx '. d) 

for each x Eo X. Hence the topologies t (b) and t (~) are d.din~J. 
u v 



unambiguously). Hence not every pseudo-quasi-uniformity is a 

quasi-uniformity. 

Example 1.6.6 shows that a pseudo-quasi-uniformizable bitop­

ological space is not necessarily pairwise RO. However not every 

bitopological space is pseudo-quasi-uniformizable, as the next 

proposition shows. 

Proposition 1.7.5. A pseudo-quasi-uniformisable bitopological 

space is uniformly completely regular. 

Proof. Let S be a compatible pseudo-quasi-uniformity, and for 

d E h set 

C(d) = \ U (\ V I UdV). 

Then e ~ (p ... ) d -=7 C(e)* ~ C(d) and so tC(d) , d €. ~3 

is a base for a uniformity compatible with the uniform topology 

of (X, u, v), from which the result follows. 

The converstseems to be an open question. Certainly the uniform­

ly completely regular space of Example 1.6.10 has no compatible 

pseudo-quasi-uniformity with an open base, but I do not know if 

it is, no~the less, pseudo-quBsi-uniformizable. 

A second generalisation of the notion of qUClsi-uniformity may 

be obtained by replacing "e"",,-'-tI' d" in Definition 1.7.1 (i) by 

the requirement 

\"JSt(e, WSt(e,lx\}) c. wSt(d,[xl), and 

WSt(~St(txJ. e), e) C WSt(lx), d) 

for each x e X. We call such a structure a weak local quasi­

uniformitZ. We may justify this name by noting that if in place 

of "Wst" we were to specify "St" above we should obtain the dual 

covering equivalent of the notion of local quasi-uniformity Ltn . 
In particular every local quasi-uniformity, and hence every qussi­

uniformity, is a weak local quasi-uniformity. If & is a weak 

local quasi-uniformity a base of t (S )- (respectively, t ( ~ )-) 
u v 

nhds. of x E: X is taken to be l. WSt (d, 1 x\) , d E:::. ~ j (respectively, 

twSt(t.x\, d)' dE. ~1 ). Note that a weak local quasi-uniformity 

always has an open base, just like a quasi-uniformity. Also if ~ 

is a local quasi-uniformity then the bitopolocical space generat­

ed by ~ as a local quasi-uniformity will be the same as that 
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which it generates as a weak local quasi-uniformity. 

Not every pseudo-quasi-uniformity, and indeed not every pseudo­

quasi-uniformity with an open base, is a weak local quasi-uniform­

ity, as the next example shows. 

Example 1.7.3. In the fully pseudonormal space of Exa~ple 1.6.1 
the set of all open dual covers is not a base of a weak local 

quasi-uniformity. 

Proof. With the notation as in Example 1.6.1 let us set 

U(a, b) = J R(a, b) lJ R(O, l/b) if a ~ ° and b ~ 0, 

R(a, 0) V R(O, 1) if a ~ ° and b = 0, 

L R(O, b) if a = ° and b ~ 0; 

Sea, b) U S ( 1/ a, 0) i f a > ° and b ~ 0, 

V(a, b) = SCa, 0) if a ~ ° and b = 0, { 
S(O, b) \.J S(l, 0) if a = ° and b:::? 0. 

and consider the open dual cover 

d = ! CU(a, b), V(a, b» I (a, b) €. X j. 

Suppose that e = l (R ... , SII() , 0( E:. A I is an open dual cover of X 

satisfying WSt(e, WSt(e,lxJ» £ WSt(d,lxJ) -for all x €. X, and 

take 0( E-. A with (1, 1) E. Roe n SOl. Since Roe 6 u 3 b > ° with 

(0, b) E:. R , and consider the point x = (1, l/(b+l» E X. Then 
at 

WSt(d,lxl) = U(l, l/(b+l» and so 

(0, b) t- R ~ U(l, l/(b+l» :: R(l, l/(b+l» u R(O, b+l) 
Ol 

which is impossible since it implies b + 1 ~ b. This contradict­

ion completes the proof • 

. On the other hand there are weak local quasi-uniformities 

which are not pseudo-quasi-uniformities. Thus, for example, we 

have seen that the set b of all open dual covers of the space of 

Example 1.6.10 is not a pseudo-quasi-uniformity, whereas 

WSt(dO' VJSt(do' {pI) = M(P) and WSt(WSt«PJ, dO)' do) = N(P) 

for all P e X, and so ~ is a, clearly compatible, weak local 

quasi-uniformity. 



This shows that in general the notions of pseudo-quasi-uniform­

ity and weak local quasi-uniformity are independent of one another. 

1 0 8. PARA-QUASI-UNIFORNITIES. 

In this section we present a rather different generalisation 

of the notion of quasi-uniformity. Here we are motivated by the 

definition of a para-uniformity given by C.I. VOTAW [~~l. A para­

uniformity maintains the symmetry of a uniformity, and so gives 

rise to a single topological space. Moreover any topology may be 

defined by a suitable para-uniformity. A para-quasi-uniformity as 

defined below gives rise to a bitopological space, just as a quasi­

uniformity does, and moreover any bitopological space may be defined 

by a suitable para-quasi-uniformity. Hence para-quasi-uniformities 

stand in the same relation to bitopological spaces as para-uniform­

ities stand in relation to topolOGical spaces. 

In accordance with our ceneral approach in this chapter we 

will define a para-quasi-uniformity in terms of dual families. In 

addition to the notation and terminology used so far we shall need 

the following. If d is a dual family we define: 

uc1 (d) = lx I x€.uc(d) and St(d"x.)~ uc(d) I ,and 

uc 2(d) = lx' x E uc(d) and St(lx\, d) Co uc(d)j • 

We then set If = t did f= 1 and uCl (d)\,) ue 2 (d) -/. ¢ j . Note that 

~ contains all dual covers of X, and more generally all non-empty 

1-dual families satisfying lc(d) ~ uc(d) or reed) ~ ue(d). 

For convenience we shall take e ~ d (respectively, e ~1~Jd) 

to mean e -'. d (respectively, e ~( .. ) d) and uc(e) = uc(d). 

We note without proof the following elementary facts. 

Lemma 1.8.1. Let d and e be dual families on X. Then: 

(a) uc(dl\e) = uc(d)f'\uc(e) 

(b) uc j (d) f\ uc / e) .s ue j (d " e) , j = 1, 2. 

(c) If e ~ d then uc.(d) ~ uc.(e), j = 1, 2. 
J J 

(d) If i 
6-

, 
::6 t? E:- ~. e e, d d and e" d (; then e'"d' 

We may now give: 



Definition 1.8.1. The non-empty subset ~ of« is a para­

quasi-uniformity (pqu) on X if it satisfies: 

PQ.l dEb :P -3 e f:. h with e ~ CA) d 

PQ.2 

PQ.3 

d. E. b , i = 1 t ••• , n t 1\ d. E:. ~ ::;:. "di E:b • 
1 1 

d E: ~ , e E:. ~ wi th d ~ e :=:::;> e E. b • 

PQ.4 t (X, X) I f:. ~ • 
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It will be noted that in particular any (dual covering) quasi­

uniformity is a pqu. 

We may define a pqu base as follows. 

Definition 1.8.2. f3 ~ 8 is a pqu base if it satisfies: 

B.l d E f-> =!? =3 e E.~ , e:6 eM) d. 

B.2 di ~ (3 , i = 1, ••• , n, "di €.. ~ =:::;> ~ f e (J , f 6.. "di • 

We then have 

Proposition 1.8.1. If f-3 is a pqu base then 

~ = 1 d , d e -e , -3 e t ~ U 1 (X, X)! with e 6 d J 
is a pqu. 

We omit the proof which is straightforward. 

If we insist that all the elements d of j3 should satisfy 

the condition rc(d) s: uc(d), and add a symmetry condition, we 

may consider pqu bases j1 6atisfyin~ 

P.l d t: j! ~ rc(d) ~ uc(d) 

P.2 d E: ~ 9 3 ee~ with e ~ t4l) d. 

P.3 d,eE:fi'¢ld .... e ~ ~ fGft with f ~ d "e. 
p.4 d €. ~ :::;> ~ eE(!> with e ~ d,..d-l • 

For such a /J it is easy to see that t Wed) \ d E:. ~ 3 is a base 

for a para-uniformity on X. This verifies that the notion of para­

quasi-uniformity generalises the notion of para-uniformity as 

well as that of quasi-uniformity. 

Definition 1.8.3. The subset cY of ~ is a para-quasi-uniform 

subbase if it satisfies: 

S.l d E cr =:;> 3 e € <T with e ~ hl) d. 
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Proposition 1.8.1. If ~ is a pqu subbase then 

is a pqu base. 

~e omit the proof which is straightforward. 

Let us now show that a pqu defines a bitopological space. 

Theorem 1.8.1. For A IS: X we de fine 

(x E AU) ¢::> (Given dE: b with x E: uC
l 

(d) -3 UdV with x (: V, 

U(\ A 'I ¢). 

Then -u is a closure operation for a topology t (s,) on X. 
u 

u 
Proof. Of the four closure axioms which must be verified, ~ = ¢ 

i6 clear from PQ.4, A f: AU follows from uC
l 

(d) ~ uc(d) and 

-u -u u 
A U B = AU B follows from PQ.2 and Lemma 1.8.1 (b). ]'inally 

_u 

AU S xU is clear, so it remains to prove the reverse inclusion. 

-u 
Take x E XU and d E ~ with x E:. uC

l 
(d). By PQ.l we have e ~ ~ 

with e~l*) d, and xE:: ucl(e) by Lemma 1.8.1 (c). Hence -3 ReS 

_u -u 
with x t. s and RnA 'I ¢. Take y € Rf\ A ,and let us show 

y €. uC
l 
(e). First y €. R ~ St(e, lx~) c. uc(e) since x E. uC

l 
(e), 

and if UdV has St(e, R) c. U, St(S, e) ~ V then x G V and 

St(e"y') ~ St(e, R) S U ~ St(d,lxS) ~ uc(d) = uc(e) since 

x E UC1(d). This verifies yf:. ucl(e) so -3 R'eS' with y € S' 

and R'()A '1)/. With UdV as above, x E:. V and R' ~ St(e, R) S: U 

-u 
since seA R # )/, and so UnA # )/. Hence x t A and the proof is 

complete. 

In just the same way 

-v , 
(x € A ) <=;;> (Caven d E ~ with x Eo uc

2
(c:t) :l UdV with x €. u, 

Vf) A # ¢) 

defines a topology t (S) on X. In this way a pqu ~ gives rise v 

to the bi topological space (X, t (& ) t t (&», Note that if b 
u v 

is a quasi-uniformity, then the bitopological space generated by 

~ as a quasi-uniformity is the same as that generated by b as 
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a para-quasi-uniformity. 

Proposition 1.8.3. (a) I St(d, lx\)' d E. ~ , X E:: uC1 (d) j 

is a base of t (~)-nhds. of x E: X. u 

(b) If d G ~ and A S ucl(d) then St(d, A) 

is a t (~)-nhd. of A c;, X. u 

(c) If d E. b and A £:. X then 

We omit the proof, which is straightforward. Of course correspon­

ding results hold for the other topology. 

In general a pqu need not have an open (or closed) base. 

However many important examples (including all quasi-uniformities 

and para-uniformities) do have an open base. Let us now verify 

that every bitopological space has a compatible pqu with an open 

base. 

Theorem 1.8.2. Let ~ and ~ be sets of non-empty subsets of X. 

Then 

cr = l I (A, X) J , 1 (x, B)} , A t J- , B f, ~ 1 

is a subbase for a pqu 5 on X. If u and v are topoloGies on X, 
8b- s;,. u and ~ ~ v then t (~) S: u and t (b ) S: v. Horeover u v 

we have equality if and only if ~ u ~ X 1 is a subbase of u and 

~ u 1 X ~ is a subbase of v. 

We omit the proof which is quite trivial. Note that if we construct 

~ as above for the bitopological space (X, u, v), say by 

taking CUt = u - t¢ land (1 = v - t¢ ~, then <b will be a com­

patible pqu with an open transitive base. 

A second way of constructing a compatible pqu with an open 

base for a given bitopo1ogical space is described in the next 

lemma. 

Lemma 1.8.2. Let r ~ (u - {¢ 1 ) and s S (v - t ¢ ~ ) be such 

that rut X 1 is a subbase of u, and s u t X 1 a subbase of v. 

For R e r let d(R) ~ 1 (R, X), (x, X - (v-c1[R))] if v-cllR] I X, 

and d(R) = !(R, X)} otherwise, and for S E s let e(S) = 
lex, S), (X - (u-cllS), x)l if u-clls) IXand e(S) = lex, s)l 



otherwise. Then the Bet 

! d(R), e(S) IRE: r, S E B j 

is a subbase for a compatible pqu ~ with an open transitive base. 

Again the proof is immediate, and is omitted. 

~e now give for pqu with an open base an exact analogue of 

([35], Proposition 2.11). 

Theorem 1.8.3. The bitopological space (X, u, v) has a unique 

compatible pqu with an open base if and only if it satisfies the 

two conditions below. 

(a) u is the only base of u, and v is the only base of v, which 

is closed under finite intersections and contains X and ¢. 
(b) Every non-empty u-open set is dense in (X, v), and every 

non-empty v-open set is dense in (X, u). 

Proof. First suppose that (X, u, v) satisfies (a) and (b), and 

that the compatible pqu ~ has an open base. Define 

u' = t U I U E- u, t (U, X) \ E;; ~ i u t ¢ ~ . 

Then u' contains X and ¢, and is closed under finite intersections. 

We show it is a base of u. Take x E. G €. u, and d €: Cb so that 

x G: uC1 (d) and St(d,{x1) £: G. Take e E. ~ t open, with e ~(4fJ d. 

Then x E uC
l 

(d) So: uc(d) = uc(e) so we have ReS with x E. R OS. 

Take UdV with St(e, R) c.. U, St(S, e) ~ V. Then using (b) and 

the fact that x ~ V and x 6 ucl(d) we have 

uc(e) c;;:;" 1e(e) = St(e, R) £. U ~ St(d,{x\) ~ uc(d) = uc(e) 

and so all these sets are equal. Hence if we set f = 1 (rr, xH 
we see that fE.. "f and e 6 :r BO :r ~ \ and UE:: u' • However 

Xc U f:- a, and so u' is a base of u, and hence u' = u by (a). 

This shows ~ contains all dual families of the form \ eU, X)! 

with U 6 u - l¢! , and likewise it contains all dual families of 

the form l (X, V) 1 with V ~ v - t.¢ ~ • Hence S is finer than 

the pqu I with subbase 

{ H u, X)\, t( X , V)\ \ U £:- u - l ¢ ~ • V €: v - 1 ¢ n • 

On the other hand take any d ~ ~ , and take e open with e ~ Sand 

e ~~~ d. If ucl(d) I ¢ we may take x ~ uc
1

(d), ReS and UdV as 
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above. If, in addition to the above equalities, we note that by 

(b) we have rc(e) = st(S, e) ~ V then it is clear that g = 

leu, rc(e»l ~ d. However g = 1 (u, x>1J\ {(X, rc(e»l E:; f 
and so d ~ f . A similar argument shows d E t also if uc 2 (d) I ¢, 

and so ~ is coarser than t . Hence f' is the only compatible 

pqu with an open base. 

Conversely suppose ~ is the only compatible pqu with an open 

base. To verify (a) suppose that ~ is a base of u containing X 

and ¢, and closed under finite intersections. By Theorem 1.8.2 

is' = t teA, x)J , lex, B>I I A t.<ti4 - I¢~ BE:. v - l¢l 1 is a 

subbase for a compatible pqu with an open base, and this must 

therefore be -I . Hence if G E:: u - tx, ¢\ -3 A E: ~ -t¢J, 
BE. v - {¢l with t (A, B) f ~ l(G, X)} , since Jb- is closed 

under finite in tersec tions. Hence A s: G and A () B = G which 6i ves 

G = A E. ~ t and therefore Jb = u. The second part of (a) is 

proved likewise. 

:E'ina11y let us verify (b). Suppose that, for instance, we 

have G E: u - t¢ t with v-c1lG11 X, and construct the compatible 

pqu with an open base as in Lemma 1.8.2 taking r = u - [¢j and 

s = v - l ¢ \ • This pqu is equal to I , and contains the dual 

family t (G, X), (X, X - (v-cl(a1» \ so we have U E: u - {¢~ , 

V E: v - ~ ¢ i wi th 

1 (u, V)} ~ 1 (a, X), (x, x - (v-c1tGl»! • 

However this is clearly impossible, and the proof is complete. 

Other aspects of the theory of para-uniformities may be 

generalized to include para-quasi-uniformities in the obvious 

way. Some of these will be considered in a more general setting 

in the next chapter. 



CHAPTER TWO 

BITOPOLOGICAL EXTENSIONS WHicH ARE COMPI,ETIONS OF 

CONFLUENCE STRUCTURES 

Let (X, u, v) be a bitopological space and (X', u', v,) a 

bitopological subspace for which X' is bidense in X, that is 

dense for each of the topologies u and v. We may express this 

by saying that (X, u, v) is a bitopological extension of 
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(X', u', v'). Suppose t is a (dual covering) quasi-uniformity 

compatible with (X, u, v), and that d is an element of the 

open base of ~ • Then if UdV we certainly have Un X' ~ ¢ I VI"I X', 

but there will be no guarantee that Un VA X' I ¢, unless of course 

X' is actually uniformly dense in X. It follows that L (UnX', 

Vn X" UdV 1 will not be an element of the induced structure on 

X' in general; and while we may obtain from it an element of this 

induced struc ture by removing all pairs (Un X', VA X') with 

UnVA X' = ¢, it is possible that in so doinC we may, in certain 

circumstances, be lolsing information which could enable us to 

characterize (X, u, v). This suggests that in order to widen the 

class of bitopological extensions which can be obtained with the 

aid of quasi-uniform-like structures it would be an advantage to 

consider the enlargement of such structures to include elements 

which are not 1-dual families. Of course this must be done in an 

organised and well defined way in order to produce a workable 

theory, and this is the object of the present chapter. Brie~ly 

the idea is to consider more general "confluence relations" (see 

Definition 2.1.1) in place of the relation l. of "meetine" between 

sets. Clearly any quasi-uniform-like structure is amenable to 

such a generalization; however to keep our discussion as concrete 

as possible we will confine ourselves to the cases of quasi­

uniformities and para-quasi-uniformities. 
4t 

The principle results of Sections 2.1 - 2.7 were presented by 

the author at the Bo1yai Janos Colloquium on Topology, held in 

Budapest in August 1978, and these are to be published in the 

Proceedings under the title "On Extensions of Bitopo1ogica1 Spaces". 
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2.1 CONFLUENCE QUASI-UNIFORH STRUCTURES. 

Definition 2.1.1. The binary relation c on the non-empty subsets 

of X will be called a confluence relation on X if it satisfies: 

(a) P n Q I ¢ ~ Pc Q, an d 

(b) PcQ, P S P' ~ X, Q ~ Q' s= X =;:0 P'cQ'. 

Denoting by ]. the relation P].Q ~ P n Q I ¢ of hnvinG a non­

empty intersection, we see that]. 1s a confluence relation, and 

indeed it is the smallest conflunce relation on X. Clearly a 

confluence relation has some of the basic properties of the 

relation 1. 

Definition 2.1.2. Let c be a confluence relation on X. The dual 

family d on X is a c-dual family if c ~ d. If in addition uc(d) 

= X we say d is a c-dual cover. 

This agrees with our earlier use of the term 1-dual family. 

Note that an 1-dual cover is a dual cover. 

Now let b, c be confluence relations, d a c-dual cover and 

e a b-dual cover. Consider the pairs (d, c) and (e, b). ~e shall 

say that (d, c) refines (e, b), and write (d, c) .,.(,. (e, b). if 

d ~ e and c ~ b. 

For A!:: X let us set 

St (d, A) = c U t U 3 V, UdV and AcV 1. 
= U t V 1 ~ U, U d V an d U cAl • st (A, d) 

c 

Then we shall say that Cd, c) is a star refinement of (e, b), and 

write (d, c) ..L(.) (e, b), if c S b and given UdV there exists 

ReS with St (d, U) ~ Rand St (V, d) S S. 
c c 

Since A =- St (d, A) and A ~ St (A, d) we see that a star c c 

refinement is also a refinement. 

With this notation we may now define a confluence quasi-unif­

ormity as follows: 

Definition 2.1.3. Let ~ be a non-empty collection of pairs 

(d, c). Then > is a confluence quasi-uniforrnit~ (cqu) if it 
satisfies. 

(i) If (d t c) G ~ then c is a confluence relation on X and d is 



a c-dual cover. 

(ii) If (d, c), (e, b) t::- ~ there exists (f, a) " ~ so that 

( f, a) .4 (.} (d, c ) and (f, a) ....(,.(..,q ( e, b). 
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(iii) If (d, c) C: ~ , b is a confluence relation and e a b-dual 

cover of X with (d, c) "'- (e, b) then (e, b) E:: ~. 

The notion of a ~ for a confluence quasi-uniformity may 

be defined in the obvious way. 

Example 2.1.1. Let ~ be a dual covering quasi-uniforcity on 

X. Then 1. (d, 1) \ d Eo ~ \ is a base for a confluence quasi-

uni formi ty ~'on X. 

Note that dom~' corresponds to the covering quasi-uniformity 

of which ~ is the base, and in this way we have made exact the 

relation between these two definitions. 

Just as for a quasi-uniformity, a confluence quasi-uniformity 

gives rise to a bitopological space. 

ProEosition 2.1.1. t St(d,lx\) I d E:- dom ~ 1 is a base of nhds. 

of x G X for a topoloGY t (S», and 1 St(lx\ t d) \ d E: dom ~ ! u 

is a base of nhds. of x E::X for a topology t (~). v 

We omit the proof which is straightforward. Note that for the 

dual covering quasi-uniformi ty ~ we have t (C) = t (~') and 
u u 

t (S) = t (~'), so no confusion can arise here. Let us note also v v 

the following elementary results which we present without proof. 

In each ~ is a cqu. 

Proposition 2.1.2. If A S X and (d, c) E::. ~ then 

A ~ t ( S )-int lSt (d, A») and A S t ( ~ )-int \.St (A, d) 1 . u c v c 

Proposition 2.1.3. If A ~ X and (d, c) E: ~ then 

t (~)-c1tA) S St (A, d) and t (~)-cl \A) S St (d, A). u c v c 

For convenience we shall call (d, c) E:. ~ open (respectively, 

closed) if d is open (respectively, closed) for (X, t ( ~ ), t (~». 
u v 

We may deduce at once from the above results that a cqu has a 

base of open and a base of closed elements. In particular the 

bi topological space (X, t (~), t (~» is pairwise regular. 
u v 
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~e shall find the following notion of extreme importance later. 

Definition 2.1.4. The confluence relation c is interior for the 

bi topological space (X, u, v) if whenever PcQ and P(\" = ¢ we 

have (u-intlP])c(v-intiQ). We shall say that (d, c) € ~ is 

interior if c is interior for (X, t (~), t (~». '::e denote the 
u v 

set of interior elements of ~ by ~ i' and say b is an interior 

cqu if ~. is a base of S . 
~ 

In particular ~ is interior for any bitopo1ogica1 space, and if 

~ is a dual covering quasi-uniformity then the cqu b f of 

Example 2.1.1 is interior. 

It is easily verified that an interior cqu has a base of open 

interior elements, and a base of closed interior elementa. 

In all that follows all cgu considered will be assumed to be 

interior. ~e will denote the base of open interior elements of ~ 

by ~ • o 

Example 2.1.2. For the space ( ffi, 5, t) considered earlier, let 

K be the relation 

PKQ ~ P1Q or (t-c1(s-intlP)1(s-cl(t-intlQ))). 

Clearly K is an interior confluence relation. For any cA ? 0 let 

k(~) = 1 (M(x, f. ), N(x, (.» \ x €::.X, 0 ~ l ~ 0( 1 , so that 

k(~) is a K-dual cover of m. Since 

(k (01./3), K) ""'- (.) (k (d..), K) 

for all d.. ~ 0 we see that i (k(ot), K) \ ol"> 0 1 is a base for 

an interior cqu compatible with ( ~, s, t). Note that this cqu 

contains no dual covers. 

2.2 SEPARATION PROPERTIES. 

We begin by generalizing the notion of preseparated given in 

Definition 1.2.2. 

Definition 2.2.1. Let c be a confluence relation on X. The 

bitopologica1 space (X, u, v) will be called c-preseparated 

if given x, y ~ X with x4 u-c1Lyl (respectively, x ¢ v-c1lyl) 

there exist a & u, H ~ v with aiH and x ~ a, y t H (respectively, 
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Y E: G, x Eo. H). 

A c-preseparated weakly pairwise T bltopolocrical space will 
o 

be called c-separated. Note that a c-preseparated space is 

preseparated, and that a c-separated space is weakly pairwise Haus~ 
dorff. 

For the cqu ~ (assumed interior as mentioned I'lbove) VIe 

denote by D the interior confluence relation 

n i c l c 6 ran ~ J = n tel c E:. ran b \ . 
o 

Proposition 2.2.1. 

is D-preseparated. 

The bi topological space (X, t (~), t (~» 
u v 

The proof is trivial and is omitted. Note that if (X, t (~), 
u 

tv(~ » is weakly pairwise To it will, therefore, be D-separ~ted. 

We shall indicate this more shortly by sayine that (X, ~ ) is 

separ!'lted. 

Definition 2.2.2. Let 1!. be a bifil ter, ~ a cqu on X and j\ =-
~ 0 a base of ~ • 

(a) 'G is fi- -rePjular if whenever (d, 0) C'::::. f\ and (U, V) E.. 

~ " «dam d) 1< (ran d» we have UcV. 

(b) '0 is D-regular if ~ =- D. 

In the absence of a cq~, Definition 2.2.2 (b) may be applied to 

any (interior) confluence relation on X. This notation aerees 

with our use of the term "1-rezular bifilter" in the last chapter. 

Note that aD-regular bifilter is f} -regular for all bases ,13 • 

'8 (x) will denote, as usual, the nhd. bifilter or x in 

(X, t (~), t (),». The following proposition gives, without u v 

proof, some elementary facts relating bifilters and the 

separatedness of (X, b ). 

Proposition 2.2.2. The followine are equivalent for the cqu ~ 

wi th base ft c. ~ o 

(a) (X, ~ ) is separated. 

(b) The map x ~ ~ (x) is one to one. 

(c) Given x I y in X -3 (d, c) e~ and !'ld'l', U'd'l so that 
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St (d, U),iSt (V, d) and x € Un V', y E.. U'f' V, or x€. U'f) V, c c 

(d) Every converGent j'3 -regular bifil tor has a unique limit. 

(e) Every converGent D-regular bifilter has a unique limit. 

If ~ is a cqu on X let us define the relation ,v on X by 

(x /'V y) ¢::-") (St(d, txj)cSt({yl, d) and St(d, {y~ )cSt(lx}, d) 

for all (d, c) E:. ~ ). Then: 

Lem~a 2.2.1. rv is an equivalence relation on X. 

The proof is a matter of straichtforward verification. ~e denote 
• • 

by x the equivalence class containing x, by X the quotient set 
• 

X/,v , and by cP the canonical mapping of X onto X. For A ~ X 

we shall often write A in place of ~ (A). 

If c is a confluence relation on X we define a confluence 
• relation c on X by: 

P~Q ~ Pl.Q or (t (~)-int ['fl(p)] )cCt (S,)-int icp-l(Q)]). 
u v 

• • 
Also for d € dom ~ we define d on X by 

o 

• •• 
PdQ ~:J UdV with P = U and Q = V. 

Then: 

Lemma 2.2.2. 
•• • 
d is a c-dual cover of X for each (d, c) c ~ • 

o 
• • • • 

Proof. For UdV it is clear that UcV, and so d f: c. Also if . . . . '. .. 
UdV and x ~ U" V then UdV and x E:. un V 60 ucCd) = X, which 

completes the proof. 

Lemma 2.2.3. 
• then x Co ,... 

- u. 

If G & X is t (b) or t (~) - open and x E:. G 
u v 

Proof. Take x E; G E::. t (Sa.); then we have (d, c) ~ ~. with St(d,\x\) 
u 

Co G. Take (e, b), (f, a) E:: <0 .. with (f, a) ~ ( .. ) (e, b) ..t...<_) (d, c), 

and yE:i:. Since y,v x we have St(f,txOaSt(tyl, f). Take LfT 

wi th x E:. L nT, L' fT' wi th Y E:. L' f\ T " and take ReS, R' eS' with 

Sta(f, L) S R, st (T, f) S S, St (f, L') c. R' and St (T', f) 
a a a 

~ S'. Then St(f,LxI> ~ St (f, L) S:. Rand St({y\,f) s st (T', f) 
a a 

so RaS'. Hence RbS' since a S b. Now take UdV wi th St
b 

(e, R) S U 



and Stb(S, e) ~ V. Then x E:. T ~ Sta(T, f) !: S £ Stb(S, e) 

c. V and so y €. L' Go Staef, L') ~ R' S Stb(e, R) ~ u ~ 

St(d,lx~) ~ G as required. The proof of the other case is 

similar. 
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Corollary 1. 

= G 

If G is t (b) or t (~) - open then cP -l( ~ (G» 
u v 

Corollary 2. 
... 

If G ~ t (~ ) and H E. t (b ) then GcH <:.=? Gclf 
v v 

for all c € ran ~ • o 

Corollary 3. For (d, c) € b 0 and x ~ X we have 

c?-l(St(d,lxJ» = St(d,{xJ) and ,,-l(St(1xl, d» .. st({xJ, d). 

':: e may now ei ve : 

Theorem 2.2.1. 1 (d, ~) I (d, c) E:. ~ ! is a.n open interior 
o 

• 
base for a separated cqu on X. The canonical mappinG ~ is 

bi-open and bicontinuous. 

Proof. If (e, b) € <t, and (e, b) -,cill (d, c) it follows easily 
o 

from Lemma 2.2.3, Corollary 2, that (~, b) ~(*) (d, ~). lience 

ted, ~) \ (d, c) E: <b .1 is a base for a cqu i on X. That 
o 

~ is bi-open follows at once from Lemma 2.2.3, and in partic-
• 

ular this means that d is open for each d ~ dom ~ • To see that o 

c is interior for each c ~ ran ~ take P~Q with P n Q = ¢. o 
• • 

To show (t (~)-intlP)c(t (~)-int\Q) it will suffice to show 
u v 

that tu ( b )-int [q1-1(p)J f: tu ( ~ )-int [cp-l(t
u 

( ~ )-intlp])") , 

and a corresponding result for Q. liowever these results follow 

easily from Lemma 2.2.3, and the fact that 4' is bi-open. Hence 

led, c) I (d, c) G; & .1 is an open interior base for ~ as 
o 

stated. 

Tha t <? is bicontinuous is an immediate consequence of 

Lemma 2.2.3, Corollary 3. 
. . . .. . 

Finally to show (X, ~ ) is separated take x, y~ X with x 
• -I y. Then for some (d, c) E:: ~ we have, say, St(d,txi)/St(tYi, d), 

o 
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• •• 

from which we deduce St(d,lxl)iSt(!yl, d). This completes the 

proof of the theorem. 
• • 

Definition 2.2.3. We call (X, ~ ) the associated separated cgu 

for (X, S ). 

Vie have noted above that if ~ is a cqu then (X, t (&), 
u 

t (~ )) is pairwise regular. With an additional assumption on v 

the confluence relation D we may give a stronger result. First 

we shall need the following definitions. 

Definition 202.4. Let (X, u, v) be a bitopological space, c a 

confluence relation on X and A ~ X. I/e set 

cA = 1 x I xE: X and xE=. HE. v ;:;:. AcH j t and 

AC = lxl Xt X and x E- G E. u ~ GcA J • 

ide say that c is bi.comratible with (X, u, v) if cA = v-cl[A] and 

AC = u-cl[A) for all A ~ X. 

Definition 2.2.5. Let (X, u, v) be a bitopolocical space and c a 

confluence relation on X. Then (X, u, v) is c-recular if for 

x€. X and A £: X we have 

(a) x4- cA =93 GE::u and HE-v with xE H, A c. G and Gill' , and 

(b) x ¢ AC =;> -3 G6.u and HE:. v with xE. G, A s:. H and GiH. 

Note that the confluence relation 1 is hicompatible with any 

bitopological space, and that 1-regular means the same as pairwise 

regular. 

Definition 2.2.6. Let (X, u, v) be a bitopological space and c 

a confluence relation on X. We say c has the open union property 

(oup) if whenever GIIi E. u, H..a E. v and (~\ G~l )c(y 1 ~J) then 

Go( cH,8 for some ol ,jl . 

1, of course, has the oup for any hi topological space. 

Proposition 2.2.3. Let (X, S ) be a cqu for which D has the oup. 

Then Dis bicompatible with (X, t (~), t (S», and this bitop-
u v 

ological space is D-regular. 

Proof. Take x 1- u-cltAl; then for some (d, c) E ~o we have 

St(d,tx~)() A = ¢. Take (e, b) c: & with (e, h) ~(.j (d, c), and 
o 
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consider xES a = St(e,lxl) E. u and A S. H = vI st(ly\, e) I yE:.. A! 

€ v. Suppose aDll, then, since D haa the oup and e is open, we 

have ReS with x ~ Sand R'eS' with R't) A I- ¢ satisfying RDS'. 

Hence RbS', and for some UdV we have xE:. Sf; stb(S, e)f; V and 

hence R' ~ Stb(e, R) S: U ~ St(d,{x~) and this gives the 

contradiction St(d,lX\)t) A f. ¢. 'l'hus a~H. Since clearly x rt. AD 

implies x ¢ u-cl[A) this establishes Definition 2.2.5 (b). (a) 

may be proved likewise, so (X, t (~ ), t (h» is D-re.:;ular. On u v 

the other hand a~II above implies G~A, so. x f/. u-cllA 1 implies 

x,. AD. Hence AD = u-cl!A). In the same way D A = v-cleA), and 

so D is bicompatible. 
• • 

Note that if D has the oup for h 
and so in this event the conclusions 

apply to the bitopolocical space (X, 

then D has the oup for & 
of Proposition 2.2.3 will . . 
t (~), t (~». 

u v 

2.3 INDUCED STRUCTURES. 

Let (X, u, v) be a bitopoloeical space, c a confluence relat­

ion on X and A ~ X. We define the induced confluence relation 

c A on A by 

PcAQ ~ Pl.Q or oJ P' €: u, Q' E:.. v with P'cQ', ¢ I- P'I\ A ~ P 

and ¢ f. Q' fl A £: Q. 

We may express this definition in another way. ~~or B ~ A let us 

define 

B'" = u Ul a a E. u, ¢f. at' A ~ B J , and 

B* = v U1 H H t v, ¢I HI\A ~ B J • 

Then it is immediate that Pc Q ~ P1Q or (P:)c(~). 
A 

Note that cA is necessarily an interior confluence relation 

for the induced bitopological space on At even if c is not 

interior on X. This is one of the main reaSons why we have found 

it convenient to restrict ourselves to the study of interior cqu. 

If ~ is a cqu on X consider the bi topolOGical space (X, 

tu(~ ), tv( b», and tak~ (d, c) e: ~ o. ';/e define the relation 
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dA on the non-empty subsets of A by 

PdAQ¢:;> -:l UdV with P = UnA -I rP, Q = Vf'\A I- ¢. 

Because (d, c) E. ~ is open for (X, t (~), t (~», we £>ee that 
o u v 

dA is an open cA-dua1 cover of A relative to the induced bitopolog-

ieal space. ~e are therefore le+d to the followinG definition. 

Definition 2.3.1. ~ A = t (d, c) , d is a c-du:ll cover of A 

and there exists (e, b) ~ ~o with (eA, bA) ~ (d, c) i is 

called the induced structure of ~ on A. 

In general ~A need not be a cqu on A. In order to enGure 

that it is we need to iopose some additional embeddin~ condition~ 

on A. The following seem to be appropriate. 

D~finition 2.3.2. Let (X, ~ ) be a cqu and A ~ X. 

(a) \::e say A is ~ -embedded in X if for some base ,t3 S b 0 of & 

we have UcV whenever (d, c) E. J3 t U E:. do:n d, V e ran d and 

(Un A)c
A 

(vn A). 

(b) We say A is strictly ~ -embedded i~ X if for some ba.~o /.J 
Go ~O we have 

(i) (U 1\ Ar* c;;. U and (V f\ A)'" S; V vihenever 
u v 

dE. dor.! ~ t t1 E. dom d and V t:. ran d; and 

(ii) Given c E. ran j3 ,PcQ and PA Q :; ¢ \'/0 have 

P'E: t (~), Q'E. t (b) withP'cQ', (P'nAr* ~ P and (Q'n A)4 ~ Q. 
u v u v 

If A is strictly ~ -embedded in X it is clearly also h­
embedded. 

Lem~a 2.3.1. Let A be strictly ~ -embedded and bidensc in X, 

and let fo c: ~ be a base of ~ as in De fini tion 2.3.2 (b). o 

Then if c E:. ran (?:a and b is a confluence relation on X with 

cAS b A' we have c ~ b. 

Proof. Take PcQ with P /) Q = ¢. Then :l P' €.. t (~) t Q' E.. t (h) 
u v 

with P'cQ' and (p'n A): ~ P, (Q'n A); '"= Q. Now p't) AcA"'n A so 

P't) AbAQ'1)A, and hence -3 pI! E. tu( b), ~"E::. tv( ~) with 
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¢ I- P"" A So: p'n A, ¢ I- Q"A A ~ Q'n A and P"bQ". But then P" ~ 

(p'n AY* f:. P and Q" ~ (Q'f\ A)* ~ Q, and so PbQ as required. u v 

Proposition 2.3.1. Let (X, ~) be a cqu and A ~ X. If A is b­
embedded in X then (A, ~A) is an interior cqu compatible ~ith 

the induced bitopological space on A. 

Proof. For (d, c), (e, b) belonginc to the base j) S b
o 

havinc 

the properties mentioned in Definition 2.3.2 (a) it is ensy to 

verify that (d, c) """,-''''J (e, b) implies (dA, cA' ""-t,,t) (cA' bA) 

so ~ A is a cqu. Also St(dA,lx\) = St(d,lx\)n A and Bt(lx\. dA) 

= St({x', d)nA for all xcA, so b
A 

defines the induced topo1-

oeies , and the fact that I (d
A

, C
A

) I (d, c) E: b a! is an open 

in terior base 0 f b. A follows at once from this. 

It will be noted that if A is a bidense and strictly ~­

embedded subset of X then (X, t (b), t (~» is a strict 
u v 

bitopological extension of (A, tu( bA), tv( ~A» in the conse that 

(X, tu ( h » is a strict topological extension of (A, tu ( hA», 
and (X, tv(b» is a strict topological extension of (A, tv( ~A». 

The reader is refered to L~] for a general discussion of strict 

topological extensions. 

Definition 2.303. Let (X, u, v) be a bitopolo2ical space, x ~ X 

and A G. X. \:e set 

'BA(x) = ~ (PA A, QoA) \ (p, Q) E:. ~(x), (u-intLP1)n A I- ¢ I­
(v-intlQl) n A 1 . 

Note that if A is bidense in X then ~A(x) will be a bifilter 

on A. Also B- = 1 x \ B E:. Q uA(x) J • and B"" = 1 x \ I3 E: 'fa A(x) 1 
u v v 

for all B c:: A. 

Definition 2.2.4. Let (X, i ) be a cqu. ~e say the bifilter a 
on X is s;, -Cauchy if d (l 'S ! ¢ for all d € dam b • 

Clearly it is sufficient for this condition to hold for any base 

of b. 



Proposition 2.3.2. Let (X, S. ) be a cqu, A ~ X bidense for 

(X, tu(~)' tv(~ », and x€: X. Then 'l6 A(x) is a DA-rcGular 

~A-Cauchy bifilter on A. 

~e omit the proof which is straightforward. 
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Corollary 1. If A is bidense and <b -embedded in X then 'G A(x) 

is a minimal DA-reeular ~A-cauchy bifilter on A. 

Proof. It remains only to show the minim ali ty. Let ~ be a ~~('.~",~ 

(necessarily D A -regular) bifil ter on A wi th ~ ~ ~ A(x). Take 

(p, Q) E. -C A(x), and lat f!. ~ ~o be a base of ~ as in Defin­

ition 2.3.2 (a). Then we hava (d, c) E:. ~ with St(d,ix\)n A ~ P, 

St(ix\, d)" A c;.. Q and (a, b) t ~ with (e, b) "'£~J (d, c). 

Since 'E3 is ~ A-Cauchy :l ReS with (n" A, s" A) E. 'G ~ '\\ A(x) • 

Take R'eS' with x ~ R'n S'. Since a is open we also have (H'n A, 

S'A A) €: ~ A(x). It follows by Proposition 2.3.2 that R'~ AbABA A 

and R"AbAS'nA so that R'bS and RbS'. Now take UdV with stb(e, R') 

~ U and StbCs', e) f: V. Then R S U c;;. St(d,\x\) and S S: V ~ 

St({x', d) so Rn A ~ P and S" A c: Q which proves (p, Q) E:.. ~ • 

Hence ~ = -e A(x), and ~ Aex ) is minimal. 

Since X is bidansa and <b -embedded in 1 tself we have 

Corollar;y: 2. The nhd. bifilters 1O(x) of (X, tu(<i», tv(~» 

are minimal D-regular ~ -Cauchy bifilters on X. 
t. 

With regard to the exist~nce of minimal ~ -Cauchy bifilters 

in Seneral we have: 

Proposition 2.3.3. Let (X, b ) be a cqu with base fi ~ Sao and ~ 

a bifilter on X. Denote by ~. the bifilter with subbase 

1(Stc (d, U), Stc(V, d» I (d, c) Ej3 (,' U~ dom d, VE: ran d and 

(U, V) E;. -e ! . 
.. 

Then if ~ is f.> -regular and ~-Cauchy, ~ is minimal D-regular 

~ -Cauchy and is contained in 'B • 
A 

That ~ is a bifilter with ~. ~ ~ is clear. Also if 
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~ is ~ -Cauchy it is easy to see that ~... is also. Now let ~ 

be /3 -reGular and ~ -Cauchy, and let ..(, be a b -Cauchy bi fil ter 

with h c.. ~ ... If (p, Q) €. -£ .. -3 Cd
i

, c
i

)€:.(3 ,i = 1,2, •• 

., n, U.€. dom d. and ViE:: 
J. J. 

ran d
i 

wi th (U., V.) €. '£ , 
1. J. 

n l St
ci 

(di , UiH G: P and n 1 s t (Vi' d H ~ Q. T ak e 
c1 1 

any 

(e, b) t <b , and take (d, c) ~ <b wi th (d, c) .-{.. (d., c.), 
1. 1. 

1 ~ 1 -= n, and (d, c) ...:::.. (e, b). Since J, is b -Cauchy 

we have UdV with (U, V) E -& ~ -e.'" Co ~ • If we take U'idiVli 

with U ~ Uli' V c. V'i we have (U't, Vi) E:.. ~ and (l]i' V'i) E. 9 

and so U'iciV1 and UiciV'i since 'Q, is f3 -reeular. Hence 

U'. C St (d., U
i

) and VIi ~ St (V., d
i

) 
J. ci J. ci 1. 

and so U c; P and V ~ Q. It follov/s tha t (p, C\.) E. t and so 

~ = ~& which proves that -g& is minimal ~ -Cauchy. Also 

UdV =;::. UcV ~ UbV ~ PbQ 9 PDQ since b €:- ran b wac 3rbi t­

rary. Hence '6a+ is D-recular, and the proof is complete. 

This result enables us to work almost exclusively in terms 

of D-regular bifilters. 

2.4 Cor~FLUENCZ 0JASI-UNIFORH CONTINUITY. 
y 

In this section we define the notion of confluence quaci­

uniform continuity. As with the induced structure this involves 

in an essential way our assumption that the cqu under considerat­

ion should be interior. 

Definition 2.4.1. Let X and Y be non-empty sets, f : X ~ Y a 

function and .p- a cqu on Y. Let c be a confluence relation on 

Y, and P, Q ~ X. We define the confluence relation rl(c) on X 

by: 

Pf-l(c)Q ~ 1'1. Q or ~ P 'E:. t (Sa ), Q' ES. t (~) wi th P' c Q 1 , 
U V 

¢ I f-l(pl) So P and ¢ I f-l(QI) '=. Q. 

If d is a c-dual cover of Y then f-l(d) is defined by 

Pf-l(d)Q ~ :I UdV with ¢ ;I f-l(U) = P, ¢ ;I f-l(V) = Q. 



Note that if d is an open c-dual cover of Y then f-l(d) is a 

f-l(c)-dua1 cover of X. 
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If ~ is a cqu on X we shall say that f is U -.IL) c~­
uence quasi-uniformly continuous (cquc) if for each open (d, c) 

I!:./ we have (f-l(d), f-l(c» E:.. ~. 

Note that it will be sufficient for this condition to hold for 

all (d, c) ~ Y t where y is a base of ~ with "'I s roo 

~e may note the following examples of cquc functiono. The 

verification is trivial and is omitted. 

(i) The identity mapping i: (X, ~) --"> (X, ~). 

(ii) The injection mapping j : (A, ~ A) ~ (X, b ), where A =- X 

is S, -embedded. 
• • 

(iii) The canonical mapping ~ : (X, ~ ) -.:;> (X, b ), where 
• • 

(X, ~ ) is the associated separated cqu of (X, b ). 

Indeed in (i) and (ii) the cqu on the left is the coarsest for 

which the corresponding function is cquc. (Initial cqu). 

The following result is a trivial consequence of the definit­
ions. 

Proposition 2.4.1. If f : X -...,. Y is ( b -/ ) cquc it is 

(X, tu (s. ), tv ( ~ » - (Y, tu (j"" ), tv Y. » bicon tinuous. 

Definition 2.4.2. Let (X, ~ ) and (y,~ ) be cqu. (X, b ) and 

(Y, r ) are isomorphiC if there is a bijective map f : X ~ Y 

so that f is (~ -~) cquc and f- l is <.r - ~ ) cquc. 

Definition 2.+.3. Let (X, ~ ) and (y,~ ) be cqu, and G : X -> y 

a mapping. We shall say that (Y,r- ) is an extension of (X, ~ ) 

under g if 

(a) (X, ~ ) and (g(X), ~g(X» are isomorphic under g, and 

(b) g(X) is bidense and r -embedded in (Y, r ). 
If g(X) is in fact strictly r -embedded in Y we shall sa)' (Y, r ) 
is a strict extension of (X, ~ ). Note that if (Y,,fA-) is a 

(strict) extension of (X, ~ ), then certainly (1, tu(JA) , tv(~» 

will be a(strictlbitopological extension of (X, t (~), t (b». 
u v 
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":;e note the following for future use. 

Lemma 2.4.1. Let f:X ~ Y be a function and.JA- a cqu on Y. 

(a) If f(X) is.JA.. -embedded in Y and "I E:: /0 is a base of / 

as in Definition 2.3.2 (a) then (d, c) E:. y , U E:: dom d, V€.. 

ran d and f- l (U)f-1 (c)f-l (V) imply UcV. 

(b) If f(X) is strictly r -embedded in Y and Y £. JA-o is a 

base of,rt as in Definition 2.3.2 (b) then c E:: ran y and 

f- l «PI1 f(X»· )f-l(c)f-l«Qfl r(X»"') imply (PI) r(x»'" c(Q", f(X»4. 
u v u v 

We omit the proof which is straightforward. 

If we have an extension of a separated cqu we may for~ a 

separated extension by forming the associated separated cqu. The 

details are given below. 

Proposition 2.'+.2. Let (X, ~ ) be a separated cqu, and (Y,/- ) 

an extension (respectively, strict extension) of (X, ~ ) for the 

mapping g. If (Y,jA ) is the associated separated cqu of (Y,~ ), 
• • • 

and cP : Y ->P Y is the canonical mapping then (Y, /"' ) is a. 

separated extension (respectively, separated strict extension) 

of (X, ~ ) for the mapping g = 4' og. 

Proof. Since (g(X), r- g(X» is isomorphic to the separa ted sl):-)ce 

(X, ~ ) it follows that the relation I"J on Y reduces to the 
• 

identity on g(X), that is g(x) :; g(x) = t g(xH for all x c X. 

lienee ~ is a set isomorphism of X and i(X). Also ~, beine the 

composition of the cquc maps g and ~ is also cquc. Let us verify 

·-1 • • r 1 
g : g(X) ~ X is (rg(X) - b ) cquc. Now since [t : g(X) ~ X 

is (/g(X) - b ) cquc, given (d, c) E:: b 0 -3 (e, b) Eo /-" 0 with 

(eg(X)' bg(;O) ~ «g-l)-l(d), (e-1 )-1(c». ;Ve may deduce from 

this that (~e(x)' bg(X» ..L «e-l)-l(d), (g-l)-l(c», and the 

result follows at once. Hence e is an isomorphism of X and ~(X). 

That ~(X) is bidense in Y is clear. 

Now suppose g(X) is /'-" -embedded in Y, and let "'I £: /0 be a 

base of /"" • as in Definition 2.3.2 (a). Consider the base y = 



• 1<d, ~) I (d, c) E:- Y \ £. f o. Take 

ran d with • • • •• (un g(X»ce(X)(V{) g(X». 
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(d. c) E Y , u e. dOr.l d, V E. ., .. 
Then either Un gCX)11 V" L(X) 

I ¢, in which event UcV follows at once, or we have P c tu~)' 

Q ~ tv(,r) with PcQ, ¢ ;. Pfl g(X) ~ Un g(X) and ¢ ;. QI\ gCX) ~ 

V" g(X). Then certainly cf -1 (p) c tP-l (Q). while ~ -1 (p) Eo tu y.c. ) 
and cP-l(Q) E: tv(r), and so (cf-l(p)f) g(X»cg(X)( ",-lCQ)n C(X». 

However ..f -l(p)f\ g(X) f: cp-l(U)1l g(X) = Un g(X) by Lemma 2.2.3. 

Corollary 1, since U E:. tu~); and likewise c.f -l(Q)1l c<x) s;., 

V" gel). Thus (Ul1g(X»C
g

(X)(Vfl g(X», which imp1ie::. UcV since 

'.- . 
C(X) is ,)A -embedded in Y. lIence we aGain have UcV, and so g(X) 

• • 
is ~ -embedded in Y as required. 

Finally suppose gCX) is strictly r -embedded in Y. For I. ~ 

tu ()-") and B E: t Cr) it is easy to veri fy tha t 
v 

• • of (An g(X» = 
u 

of <f ((Af\g(X»), and 

(B f\ g(X»-- = 
v 

cP ((BIl g(X»" ) • 
v 

It follows easily from these results that if y '=.",u 0 is a base 

of /'L as in Definition 203.2 (b), then the base y defined as 

above for this 'Y also satisfies the conditions of De fini tion 
• • 

2.3.2 (b). Hence g(X) is strict1Y)J- -embedded in Y, and the 

proof is complete. 

2.5 CONPLETENESS AND CmIPLETIONS OF COI'l'FLUENCE Q'JASI-tJNIFOF.H­

ITIES. 

Definition 2.5.1. Let (X, ~ ) be a cqu. ~e shall say that (X, ~ ) 

is complete if each D-regular ~ -Cauchy bifilter on X is con­

vergent in (X, t (~), t (&». 
u v 

Proposition 2.5.1. Let (X, ~ ) be a complete cqu, and fi ~ ~ 0 

a base of ~ • Then every fl -regular ~ -Cauchy bifilter on X 

is convereent. 

Proof. If ~ is j3 -regular and <b -Cauchy, and we con::.truct ~ ... .. 
as in Proposition 2.3.3, then ia is (minimal) D-regular and 
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~ -Cauchy, and honce convergent. However ~ ~ c.. ~ so 'G is 

converGent also. 

Let ~ be an interior separated cqu on X, and let r CO be 

any set of ~ -regular ~ -Cauchy bifilters on X which includes 
o 

the set t 'S ex) \ x E:. X ~ of nhd. bi fil tars on X. :';e denote by j 

the one to one map j (x) = 'G ex) of X in to rex). \;e ure Goin3 

to show how we may give r eX) an interior confluence quasi-uni­

formity ~ with the property that e rex), '\ ) is a strict 

extension of (X, ~ ) for the map j. For A ~ X define 

A = ~ ~ \ ~E:.r(X), A t ~ l t and 
u u 

A
O 

= u i 'Q. \ (\ e r (X) and ~ (d, c) €: ~o such that Udll und 

VE:.'e ~ u ~ A \ • 
v 

E'or B ~ X we de fine Band BO in a similar way. Some important 
v v 

properties of these sets are set out in the next lemma. 

Lemma 2.5.1- ]'or each A, B ~ X: 

(a) AO 
~ A a 

~ B and B u u v v 

eb) .-l eA a ) 
J u = .-l eA ) 

J u = tu (~ ) -in t t A), and 

.-lCBo ) = .-lCB ) = t ('b) -in t t131. J v J v v 

We omit the proof, which is straightforward. 

If c is a confluence relation on X we may define the confluence 

rela tion c on r (X) by 
,.., 

P c Q ~ P1Q or ::1 AE: t (~), 
u 

BE:-t(~) with AcE, 

° ~ Q. and B 
v 

If d is a c-dual cover of X we define 

-.. 
PdQ ~ 3 UdV with P = UO 

u 

v 

-d on r (X) by 

o and Q :: V • 
V 

AO c... 
u 

-If (d, c) " ~ is open then d is a ~-dual cover of r (X). That 

P 

d ~ -;; is clear. To show the uniform covering of d is r (~~) take 

'G E:' ('(X) and (e, b) E::: ~ with (e, b) 4,('., (d, c) • .since e is . a 

~-Cauchy we have ReS with (R, S) E. 'Q,. Also we have UdV with 
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Stb(e, R) S U and StbCS, e) ~ V, and it is easy to verify that 

~ ~ U
O 

nV
o 

; while by definition UO d VO 
• u v u v 

We may now give: 
_ H 

Theorem 2.5.1. With the notation as above, ~ ( d , c ) l Cd, c) 

€; ~ 0 l is an open interior base for a confluence quasi-uniform-

- -i ty ~ on r (X) • (r (X), ~ ) is a strict extension of 0:, b ) 

under the map j. 

Proof. For (d, c), (e, b) E. ~ with (e, b) ~ (11\ (d, c) ta1-;:e 
o 

ReS and UdV with Stb(e, R) ~ U and Stb(S, e) '" V. If 16 E. 
,.., 

,., 0 0 0 
St'b ( e , R u) we have R'eS' with q E: R' u and Rub c. ,0 

oJ • 
V 

There are two cases: 

(i) R
O 

nS'o -I ¢. Then -3 A, t R nS' by Lemma 2.5.1 (a.), and u v u v 

CR, S') ~ -(, implies RbS' since , is b 0 -regular. 

R
O n S'O I: ¢. Then-3 

u v 
A Go t (~ ), B E;. t (~) with AbE, 

u v 

~ S ,0 • But 
v 

then A 1:1 t (~)-inttAl = j-1CAO 
) 

u u 

t (~)-intlR) = R by Lem:na 2.5.1 (b). In the same 
u 

way B ~ S', and so we again have RbS'. 

In either case we therefore have R' ~ StbCe, R) ~ U, and hence 

St - (~ , R
O 

) ~ UO 
• In just the same way .st r>J

b 
C,s°v' ~ ) '=-

b u u 
o 

V • Finally we v - ,., 
Cd, c ). This 

base for a cqu 

clearly have b ~ ~, and hence C e , b ) ...c..C*) 
,., ,., 

proves that t ( d , c ) \ (d, c) '=- s.. I is a 
o ,., 

~ on r (X). 

Now let us verify that for A, B S: X we have: 
,., 

= t (~)-int lA 1 , u u and -= t (5.) -in t \B 1 v v 

where the sets on the left are formed for the subset j(X) of the 

bitopo10gical space (rCX), t (~), t (~». 
u v . -First take ~E:-lj(A)], then ~E; GE:: t (b) with Gt\j(X) ~ j(A). u u 
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Take (d, c) E: ~ with St( d ,hH) ~ Gt and (e, b) E:: ~ with 
o 0 

(e, b) .L.~) (d, c). Since 'Q, is ~ -Cauchy we have ReS with CR, S) 

€:. ~, and we have UdV with Stb(e, R) ~ U and Stb(S, e) S V. 

Then 'G E:: VO and so UO ~ St( d t{61) f:. G. lIence U .s A since 
v u 

j is one to one. To show that 'G E:: A 0 take R I eS I with S I E:. '(3 • 
u v 

Then (R, S I) E:. ~ so RbS I since 'G is ~ -reGular. I~ence H' Cf:: o 

St
b 

(e, R) ~ U 

lj(A:»)4- ~ AO • 

c:.. A, and ~ '=- A 0 as required. This veri fies 
u 

u u 

If now ~ E:- AO and (d, c) E::- ~ satisfies UdV, V E:. ~ =7 
U 0 v 

U ~ A, then it is easy to verify St( d t\'~\) f:: A , and so 
u 

t(~)-intlA).lIenceAo ~ t(~)-indA). 
u u u u u -Finally it is trivial to verify t (b )-int[A ) c::.. 

u u 

and so the firt set of equalities is proved. The proof of the 

other equalities is similar. 

It follows at once that ) I (d, c) E: <b ! 
o 

is an 

open interior base for ~ • 

It is trivial to verify that j eX) is bidense in r (X). Also t 

using the above equalities together with Lemma 2.5.1 we may 

easily show that the conditions of Definition 2.3.2 (b) are 
,... ,.., -

satisfied for the base t ( d • c ) \ (d, c) E::. ~ \ of ~ , and o ,.., 
so j(X) is strictly ~ -embedded in ~(X). 

It remains to show that j is an isomorphism of (X, ~ ) and 

(j(X), ~j(X». However this follows at once from the relations 

( -1 ( ,.. -1 f'I ) 

(d t c) ~ j d j ( X), j (c j (X) t an d 

(dj(X)' ";j(X» ~ «j-l)-l(d), (j-l)-l(c» 

which are easily verified for any (d, c) 6 , • This completes 
o 

the proof of the theorem. 
,.., 

The strict extension (r (X), b ) constructed above will not in 

general be separated. As mentioned above (Proposition 2.4.2) we 
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may obtain a separated strict extension by taking the associated 

separated cqu. A second way in which we may obtain a separated 

extension is to require that r (X) contain only minimal ~­

Cauchy bifilters. We know in any eveYlt by the corollary 2 to 

Proposition 2.3.2 that the elements of j(X) do have this pro~erty. 

~e use this second method in the following theorem. 

TheoreM 2.5.2. Let r (X) denote the set of all D-reGular minimal 
o ... 

~ -Cauchy bifilters on the separated cqu (X, ~ ). Then (r 0 CO, ~ ) 

is a complete separated strict extension of (X, ~ ). 

Proof. By Theorem 2.5.1 we know that (r (X), ~ ) is a strict o 

extension of (X, ~ ), so it remains only to show it is complete 

and separated. Let B be a D-regu1ar ~. -Cauchy bifiltcr Oll r (;~), o 

and set 

~ = t (p, Q) \ P, Q ~ X, (po u' QO v) E:. B ! . 
It is easy to see that '(3 is a D-regular ~ -Cauchy bifilter on 

X. Construct ~ It as in Proposition 2.3.3 (for the base ~ 0' say); 

then '('l.," E: r (X). Let us show B converees to '(6" in r (;0. 
o 0 

Take (d, c) E:. b . Since 
o 

UdV with '3* E: UO n VO 
• 

u v 

d is a ~-dual cover of r (X) we 
o 

lienee U
O == st( d ,\i'l) and VO 

u v 

have 

St(1R'}, d ). On the other hand ~. E: U 1\ V implies (U, V) E. n* 
u v 

~ ~ and so (Uo Vo ) E: B. Hence (St( d ,te'l), Stct~'l, d)Eo 
u' v .. 

B for all (d, c) E: ~ ,and B -"!I 13 as required. This proves 
o 

that ( r (X), ~ ) is complete. o 

To show (r (X), ~ ) is separa ted take 't3,), t f\ (X) with 
o 0 

'G .;.t . Say, for example, that 'Q, u $ ..{, u. Since ~ is minimal 

~ -Cauchy and ll· ~ '(\ we have 'G =~ ... Hence -3 (d, c) E:. c 
b 0 

and U ~ dom d with U E:. ~ and St Cd, U) 1- {, • Since ~ io 
u c U 

D-reGular we may deduce from this that .(, 4 st( d ,l~~). The 

other cases may be dealt with in the same way. and we deduce that 

C p o(X), t u (\). tv( ~» is weakly pairwise TO. Hence ( r o(X), S, ) 
is separated, and the proof is complete. 
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We now give a theorem on the extension of cquc functions. This 

is a basic step in proving that separated strict completions of 

separated cqu are unique up to isomorphism. 

Theorem 2.5.3. Let (X,r ) be a cqu, (Y, ~ ) a complete separated 

cqu and A a bidense and strictly ~ -embedded subset of X. If 

the function r : A ~ Y is (r
A 

- ~ ) cquc, and f(A) is ~-

embedded in Y, then f has a unique (~ - ~ ) cquc extension 

r : X ~ Y. 

Proof. Take x ~ X. Since A is bidense in X, the nhd. bifi1ter 

trace ~ A(x) is a bifi1ter on A. lIence 

)" (x) = 1 (p, Q) , (f-1 (P), f-1(Q» E: ~ A(x) 1 

is a bifi1 ter on Y. Let ~ = ~ 0 be a base of ~ with the prop­

erties of Definition 2.3.2 (a) for the ~ -embedded subset rCA) 

or Y. We will show that ,(, (x) is ft -regular and ~ -Cauchy. 

Take any (d, c) f::, jl • Then (r-l(d), f-l(c» E: rAe Hence if U E: 

dom d, V E:. ran d and (U t V) Eo- /, (x) then (f-1 (U), r-l(v» E:- 'Q,A(X) , 

and so r-l(U)f-l(c)f-l(V) since ~ A(x) is DA-recular by Prop-

osi tion 2.3.2. Hence UcV by Lemma 2.4.1, and so ..(, (x) is j3 -

regular. Next take (e, b) G:./"o with (e
A

, b
A

) ..t.. (i-l(d), f-1 (c», 

and ReS with x CE:. RoS. Since A is bidense (RI\A)eA(S"A) so we 

1 ' -1 ' _ have U' dV' with R f'I A ~ r- (U) and S n A E::. f (V). lio',vever we 

also have (RnA, SI\A) ~ ~A(x) and so (ll', V') Eo .(, ex). Thus 

..(, (x) is ~ -Cauchy. 

It follows by Proposition 2.5.1 that ~ (x) converces in Y, 

and the limit is unique since Y is separated. ~e denote this limit 

by r(x), and in this way we have de fined a runc tion f: X ~ Y. 

It is clear that if x E:. A then .(, ex) -"> rex) 50 in this 

case rex) = rex). Hence f is an extension of f. 

We now show that f : X -"> Y is (..r - ~ ) cquc. Take (d, c) 

& ~o' and ee, b) E: /l with (e, b) 4("'~ (d, c). Since A is 

strictly r -embedded in X we also have a base y :. /0 with the 
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properties of Definition 2.3.2 (b), and since (f-l(e), r-leb» e 

JAA we have (g, a) e:.. "I with (gA' a
A

) ~ (r-1Ce), f-l(b». Let 

us verify (g, a) ~ (r-l(d), i-l(e», from which the required 

result follows. 

First take LeK. Since g is open we have (L (\ A) c, (Ie" A) BO VIC 
.Ii. 

have heS 'Ili th L" A ~ r-1CR) and K n A ~ r-l(s). Take UdV wi th 

A 
StbCe, R) S U and Stb(S, e) ~ V. If x € L then L" A E: ~u(x) 

and 50 r(L" A) E: (, (x). But r(Ln A) ~ R, 50 we also have R E::. 
u 

~u(x). On the other hand there exists, R'eS' with rex) t B'n st. 

In particular S' ~ .t (x) since .(, ex) -'" r(x). Hence (n, S') ~ 
v 

...(, (x), and so RbS' since 1, (x) is f1 -reGular. Hence 'f(x) C; R' S 

C ) --l( ) Stb e, R ~ U, and we have shown L = f U. In just the so.me 

- 1 --1 way we have K S f- (V) t 60 it remains only to show a ~ f (c). 

By Ler.1ma 2.3.1 it will suffice for us to verify that a
A 
~ t 'f-1CC»)A. 

-l( ) -1 To this end take PaAQ. with Fn Q = ¢. Then Pf b Q as a
A 

S f (b) 

50:3 pI ~ tu(~)t QI ~ tv(~) with P'bQ', ¢ I f-l(pt) ~ r 

and ¢ I r-1CQ') S Q. Since f is the same as r on A we deduce that 

'f-l(pt)nA c:. P and 'f-l(l~')n A ~ Q. On the other hand P'e;;' as 

b = c, and so r-l(p,)'f-1Cc)"f'-1(Qt). Hence if we can show Tlcp,) 

E:.. tu(r) and 'fl(Q') E:. tv(r-) we shall have 

C1-l (p , ) " A) (l-l (c) ) A (f-l (Q I )" A) , 

that is P('f-l(c»AQ as required. To show 1-1 (pt) ~ tu(~) take 

Z EO: 'f-l(pt), that is r(z) ~ P'. Now take (h, q) t ~ with 

St(h, rex) ) So pI, (k, p) ~ fi with (k, p) ..L.('" (h, q), and 

(m, s) E:. Y with (rnA' SA) J- (f-l(k), f-l(p»). Then repeatinc 

the argument used above we see that St(m,{z\) s r-l(pr), and 

hence r-l(p,) ~ tu(jA). Likewise r-l(QI) ~ tv(~)' and we have 

--1 -completed the proof that a S f (c). Hence f is (r - ~ ) cquc. 
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Let us prove finally that the extension f is unique. Suppose 
v v 

tha t f : X -"'.1 Y is also cquc, and that f(x) = i(x) :.; f(x) for 

.., -
all x ~ A. Suppose that for some x ~ X we have f(x) I f(x). Since 

(y, ~ ) is separa ted we see from Proposi tion 2.2.2 (c) that there 

exists (d, c) G:;l , U €:: dom d, V ~ ran d with ulv and, Gay, "J 

€; 'la (r(x», V E: ~ (r(x». Since cquc functions are bicontin-u v 

uous we have (i-l(U)" A, f-l(V)" A) €; ~A(x). It follo'""s at once 

tha t (lJ, V) ~ .(, (x), and so UcV since "(x) is f3 -re:;u1ar. This 

- .., 
contradiction shows f :.; f, and completes the proof of the theorem. 

We may now state our uniqueness theorem. 

Theorem 2.5.4. Let (X, ~ ) be a separated cqu. Let (Y, ~) and 

(Z, T ) be separated strict completions of (X, ~ ) with respect 

to the maps j and k respectively. Then (y,~) and (Z, ~ ) are 

cqu isomorphic. 

Proof. Let h : j (X) -? Z be the map h 
-1 = koj ,and t : k CO -, y 

the map t = jok-l • Since the conditions of Theorem 2.5.3 are 

satisfied for these maps we have cquc extensions h : Y -+ Z 

and t : Z ~ Y. :':9 complete the proof by sho..,JinC that t = 'h- l • 

Take y , Y, and let ~(y) = z ~ Z. Then with the notation as 

in the proof of Theorem 2.5.3 we have .(, (y) --"7 z, and so 'G (z) 

== "(y). If we set t(z):.; y', then ...l,(z) ~ y' and GO 'G(y') 

c.. '" (z). ',','e wish to show that y = y'. 

Suppose that y I y', and suppose j(X) = t(k(X» is (strictly) 

.r -embedded in Y relative to the base {!> S ro' Since (Y, r- ) 
is separated we have by Proposition 2.2.2 (c) that there exists 

(d, c) {:.fS t U <= dom d and VfC. ran d with st (d, u)ISt (V, d) 
c c 

and, say, TJ <:. ~ (y') and V'= -Q, (y). In particular we have G E:: u v 

t «(;) with 
u 

z (:. G and t(a"k(X») S U ••••••• (1). 

Now suppose k(X) = h(j(X») is (strictly) 'l" -embedded in Z 

relative to the base 'I '= 1:" • r:e have (j-l(d), j-l(c» ~ ~ so 
o 

there exists (e, a) ~ -y with 
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· ..... . 
ancl St(e,(zl) So G ••••••• (3). 

Finally (k-l(e), k-1 (a» E:: ~ 60 there exists (g, b) & j3 with 

(j-1(e), j-l(b» .L (k-l(e), k-1Ca» ••••••• (4), 

an d S t ( t y I t g ) ~ V · ..... . 
Take ReS and LgK with z ~ R n Sand y E: L" K. FroJl (1) we have 

t (R" k CO) ~ U 

and from (5) we have 

K ~ V 

Also K" j(X) €; ~ j(X) (y) 60 
v 

· ..... . (6), 

· ..... . 

h(K" jCx» <£:- 4v(Y) ....... (8). 

Now j-1(L)j-l(g)j-l(K) so by (4) we have R'eS' with 

j-1(L) ~ k-1 (RI) and j-l(K) S k-l(S') •••• (9). 

From (9) we have h(Kn j(X» == 5'(\ kCX) and 60 5' '" -&v(Y) from 

(8). On the other hand R~ -t (y) and so (R, S') '" .(,(y). However 
u 

.-t, (y) is -y -regular and 60 

RaS' • • • • • •• (10). 

Now k-l (R')k-1 (e)k-l (S') so by (2) we have U'dV' with 

k-l(R') ~ j-1(U') and k-l(S') ~ j-l(V') ••• (11). 

Since R ~ t ("'t') and S' E:: t ('1") we have k-l (R)k-1 (a)k-1 CS') by 
u v 

(10), 60 using (11), (6) and the fact (from (2» tha.t k-l(a) c. 

j-1(c), we deduce that j-1(U)j-1 Cc)j-1(V'). However j(X) is, in 

particular, r -embedded in Y 60 from Lemma 2.4.1 (a) Vie see: 

UcV' ...... 
On the other hand from (9), (11) and (7) we have L n j (X) ~ 

U'f'jCX) and Kf\j(X) ~ V"j(X). We deduce that j-l(U')j-1(b)j-1(V) 

and hence from (2) and (4) we have j-1(U')j-l(c)j-l(v). UsinC 

Lemma 2.4.1 (a) again cives U'cV, and so V' ~ St (V, d). But 
c 

also U ~ St (d, U) and we have the contradiction St (d, U)e St( 
c c 

V, d). Hence y = y' and ~l = t, which completes the proof. 
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Corollary. The complete separated strict extension of a separated 

cqu is unique up to isomorphis~. 

2.6 C0!1PACTHESC. 

The notion of compactness for a bitopological sp~ce can be 

defined in very many different ways. ~e have already mentioned 

some properties of uniform compactness, and the reader may 

consul t (7) for a discussion of several forms of bi topoloGical 

co~pactne6s. In this section we define compactness, modulo a 

confluence relation, by using bifilters. and relate this to the 

completeness of cqu. 

Throughout this section D will denote r\ l c t c ~ ran ~ I if o 

we are discussing the bi topological space (X, t (~ ), t (~» 
u v 

defined by a cqu , , but in the absence of a cqu, D may be 

regarded as denoting any fixed confluence relation on X which is 

interior for the bitopological space under consideration. 

We will say the bifilter 'ta on (X, u, v) is open if "00 (UJl, v) 

is a base of 'G . i:e will say that x E;. X is a D-clu.c;t~r point 

(or just cluster point if there can be no confusion) of the 

bifilter 'Q, if x t DPn (l for all (p, ~) E: ~ • 

We may now Give: 

Definition 2.6.1. The bitopologica1 space (X, u, v) will be called 

D-compact (respectively, almost D-compact) if every D-reg~lar 

(respectively, every open D-regular) bifilter on X has a 

D-cluster point. 

Clearly a uniformly compact bitopolo~ical space is 1-compact. 

With regard to the properties of a D-compact space when D is 

bicompatible we have: 

Proposition 2.6.1. If D is bicompatible and (X, u, v) is 

D-compact, then every u-closed subset of X is v-compact, and 

every v-closed subset of X is u-cornpact. 

Proof. Let F be a u-closed subset of X, and )(, a filter of v -
F 

closed subsets of l.~. Let "1... be tl rOIt X t d b \.t'. ~ -;:s 1e l. er on • genera e Y r- , 
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and put ~ = ~)( i: . Then ~ is an 1-bifil ter and hence a D-

b i f · 1 t· 1 t . t II ,- DK !' D ~ er so ~t has a D-c us er po~n x. ence x~ n ~ = 
(v-c11K) n (u-c1lK1) for all K ~ K since D is bic Or.1pa ti ble. Now 

Xc u-cllK\ ~ x 6 F so xc (v-c1lK1)nF = K, and F is v-compact 

as required. The proof of the other result is similar. 

Definition 2.6.2. The bitopological space (X, u, v) is D-normal 

. f 1 DA D rl tl • t G ' - rr . tJ A G: G , ]. Vllenever () B = 'P lere ex].s = u, -... E:. V va 1 

B £: Hand Gj5II. 

~;e now have: 

Proposition 2.6.2. Let (X, u, v) be D-cornpact and D-prescpnrated, 

and suppose that D is bicompatible and has the oup. Then (~, u, 

v) is D-reeular and D-normal. 

Proof. Let F be u-closed and x f Ii'. For y E:.. F we have x ¢ u-clly} 

and so there exist x E:. U(y) t u, y E::. V(y) E:. v with U(y)~V(y). 

Now by Proposition 2.6.1 we know F is v-compact so for some Yl , 

••• Yn E:. Ii' we have F = V = u t V (y i) \ 1 ~ i ~ n! • Also x E:;. U 

= () 1 U(yi ) , 1 ~ i~ nl and U €:: u, VE: v, utv since D has the 

oup. The case when F is v-closed is dealt with in the same way, 

and we see (X, u, v) is D-recu1ar since D is bicompatible. 

Now take A, B with DAtl BD = ¢, and suppose that A c: UE.. u, 

BS V ~ v implies UDV. Then t (U, V) , A ~ U E= u, B ~ V f:; v 1 
is a base for an (open) D-regular bifilter '\S on X. Let x be a 

cluster paint of ~ • If x 1- DA we have x ~ H E:. v, A .f: G E:. u 

wi th Gtn since (X, u, v) is D-regular. However G E:.. 'S implies 
u 

x e DG which contradicts G~H. Hence x t DA, and in just the same 

way we can show x €:: BD and we have aeon tradiction to D A f'\ nD :: 

¢. This proves that (X, u, v) is D-norma1. 

Note that this last argument has actually established the followinG. 

Corollary. A D-regular almost D-compact bltopoloCic3l space i6 

D-normal. 

It will be noted that if D is bicompatlble then aD-normal 

bitopological space is necessarily pairwise normal. 
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A D-compact space is certainly almost D-compact, but the 

converse is not true in general. However we do have the following 
result. 

Proposition 2.6.3. A D-reeular almost D-compact bitopolocical 
space is D-compact. 

Proof. Let 'G be aD-regular bifilter, a.ond define 

~' = 1. (p', Q') \ =l (p, Q) ~ ~ , p ~ u-in t lp'], Q ~ v-in t {,;, I l ! . 

Then ~'is an open D-regular bifilter, and so has aD-cluster 

point x. However, because (X, u, v) is D-reSular, it is easy to 

see that x is a cluster point of 13 also, and so (X, u, v) is 
D-compact. 

Corollaril' If (X, b ) is a equ for which D ho.s the oup, and if 

(X, tu ( ~ ), tv ( b» is almost D-compact then (X, tu (b ), tv ( ~ » 

is D-compact. 

The assumption that a bitopoloeical space be almost D-compact 

imposes a restriction on D, as described below. 

Definition 2.6.3. The confluence relation D on (X, u, v) 1s 

conjunctive if PDQ 9 Dpl.,l. 

Note that, as we are assuming D to be interior, it will be 

sufficient for the above to hold for P ~ u and Q ~ v. Verificat­

ion of the following result is trivial and is omitted. 

Proposition 2.6.4. If (X, u, v) is almost D-compact then D is 
conjunctive. 

Let us now note: 

Proposition 2.6.5. Let (X, ~ ) be a cqu for which D is conjunct­

ive. Then if (X, t (b), t (~» is almost l.-compact it is D-
u v 

compact. 

Proof. Let ~ be aD-regular bifilter, and (p, Q) ~ ~ • For 

(d, c) E: ~ it is easy to verify Dp = St (d, p) and (l ~ 
o c 

Stc(Q. d) and so, since D is conjunctive, '0" with baDe 

1 (Ste(d. P), ste(Q, d» \ (p. Q) ~ ~, Cd. c) E:- ~o 3 15 an 
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open 1-reiular bifilter on X, and so has an 1-cluster point x. 
Take c E: ran ~ , x£.HE::v and d E. dom Ii. with St(tx\, d) ~ II. 0 0 
Then we have (e, b) <: ~ with (e, b) ~ ("'1 (d, c), and St(txl, e) 0 

is a v-nhd. of x so St(lx\, e)nstb(e, p) -I ¢. lience we have 

ReS and R'eS' with x Eo H, PbS' and SnR' -I)t. If now we tal:c UdV 

with Stbee, R) = U and Stb(S, e) t; V then x (C R , stb(e, R) 

~ U and so S' S:: 5tb(S, e) t; V ~ 5t(d,lx\) S H. Hence PbH. 

However b Co c, and c E: ran ~ was arbitrary, so PDH and we have 
o 

shown x E: Dp. In 

point of 'G and 

D • just the same way x ~ Q ; hence x is aD-cluster 

(X, t (~), t e ~ » 1s D-compac t as required. 
u v 

~ith regard to the converse, we have noted above that if 

(X, tue~), tve~» is D-compact then D 15 conjunctive. If D 1s 

bicompatible, and in particular, therefore, if D has the oup, 

then it is clear that the D-compactness of eX, tueb), tv( ~» 

will imply that this space is also 1-compact. 

Basic to the relation between these compactness notions and 

completeness is the following. 

Lemma 2.6.1. A D-cluster point of a D-regular ~ -Cauchy bifilter 
is a limit point. 

~e omit the proof which is straightforward. 

Proposition 2.6.6. If (X, tu( ~), tv( ~» is almost D-compact 

then (X, ~) is complete. 

Proof. Let '<?, be a D-regular ~ -Cauchy bifil ter on X, and form 

'G" as in Proposition 203.3 for the base <.. • Then "(1. is an 
o 

open D-regular bifilter so it has a cluster point x, and this 

point is a limit point of ~. by Lemma 2.6.1 since ~. 10 ~_ 

Cauchy. But then x 1s also a limit p01nt of ~ , and so (X, ~ ) 
1s complete. 

With regard to the definition of a suitable "total bounded­
ness" property we consider the following. 

TE.l. For each D-regular bifilter ~ there ex1sts aD-regular 

hi fil ter 1.J such tha t given (p, Q) E: 'n and d c: dom ~ 
o 



119 

there exists UdV with (U, V) ~ {, , PDV and UDQ. 

TB.2. For every open D-regular bifilter ~ there exists ~ as 

above. 

TB.3. For every D-regular bifilter 'G t (p, Q) ~ '<\ and d '=- dom 

~ 0 there exists UdV with PDV and UDQ. 

!lh!!:. For every open D-regular bi fil ter 'G t (p, Q) (:- ~ and 

d ~ dom ~ there exists UdV with PDV and UDQ. 
o 

TB.5. Every maximal D-regular bifilter is ~-Cauchy. 

~. Every maximal open D-regu1ar bifilter is ~-Cauchy. 

We have: 

Proposition 2.6.7. (x, t (~), t (~» is D-compact (respectively, 
u v 

almost D-compact) if and only if (X, ~ ) satisfies TE.l (respect­

ively, TB.2) and is complete. 

We omit the proof which is straiGhtforward. 

The following relations between the above properties follow 

at once from the definitions. 

TB.6 ~ TB.2 ~ TB.4 

In order to obtain conditions under which these properties are 

equivalent we make the following definition. 

Definition 2.6.4. Let (X, ~ ) be a cqu. We say D is ~ -compatible 

if for G ~ t (~), H ~ t (\t) with (lOU, and d E:. dorn ~ , we have 
u v 0 

e & dom ~ with e ..L d and ReS wi th RDS, R ~ G and S = H. o 

Note in particular that if for ~ we have D = 1 then certain­

ly D is ~ -compatible. 

Proposition 2.6.8. Let (X. ~ ) be a cqu for which D is ~­

compatible and has the oup. Then all the conditions TE.i, i = 1, 
•.• , 6, are equivalent. 

Proof. It will suffice to show TB.4 ~ TB.G ~ TB.5. 

TB.4 ~ TBoG. Let'S be a maximal open D-rezular bifilter. Take 
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(d, c) E:- <b o and (e, h) "" ~o with (e, h) ,,(A,'(d, c). For (G, Il) 

~~(\(u"v)let 

UeG, H) = U 1 L \ L <;: G and -3 T S. H with LDT and Lf'l' for 

some f ~ dom ~ with f J. e 1, 
o 

veG, H) = U 1 TIT SHand ::l L ~ a with LDT and Li'T for 

some f" dom ~ wi th f ..t.. e 1. 
o 

Because D is ~ -compatible it is easy to verify that 

1 (U(a, H), V(G, H» \ (G, II) G- ~n (UA.v) 1 
is a base for an open D-regular refinement of ~ • Hence 

(U(G, H), v(a, Ii» E::. -e for· all (G, H) E: 'G n (u Jov) since "G is 

a maximal open D-reSular hifilter. By TB.4 we have ReS with 

uCa, n)DS and RDV(a, H). Take UdV with stb(e, R) ~ U and Sth(S, e) 

~ V. Since D has the oup .a L = a, T t:: H with LDT, LDS 

and LfT for some f 6: dom ~ wi th f ..c.. e. Take R I eS I with L 'S:. R I 
o 

and T S S'. Then R'DS and so R'bS. Hence T ~ S' s. stb(S, e) 

c:.. V, and it follows tha t OD(H" V) for all (G, H) Eo "'? (\ (u JC. v) • 

This means that 

1 (a, Hn V) I (G, H) (Co 'Q f\ (U ~v) ! 

is a base for an open D-regular refinement of ~ , and 60 V C ~v 

hy the maximality of ~ • In the same way RDV(G, H) leads to 

U E:o ~u' and sO (U, V) <=- 'G which proves that ~ is ~ -Cauchy. 

TBo6 ~ TB.,z_ Let 'G be a maximal D-rezular bifilter, and set 

'Gu (1) :; l p \ p ~ 'G
u
'.3 (pi, Q') E:: ~ with P"P' "'i' :; ¢ 1, 

'Q" (2) = ~ _ ~ (1). and make a corresponding de fini tion of 
U u u' 

~ (1) and 
v ~ (2). Eecause of the maximality of ~ , and the 

v 

fact that D is interior, it is easy to verify that P ~ ~ (1) 
U 

9> tu( ~ )-int\P\ <=- 'Q. u (1), with a correspondinc result for 'G
v 

(1). 

It follows that 

(It (~)-intiP) \ p <='C (1) \vt St(d, p) \ p (;'6 (2) dE; dom~ \)x 
u u u' 0 
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(tt (~)-intiQ ') \ Q ~ 'G (1) \ 01 St(Q, d) \ Q G; 'G (2) d E: dorn ~ 1) 
v v v' 0 

is a base of an open D-regular bifilter ~'contained in ~ • 

Let ~ be a maximal open D-regular refinement of ~'. By TB.6 

h is ~ -Cauchy. Hence for (d, c), (e, b) ~ ~o with (e, b) "("(., 

(d, c) we have ReS with (R, S) "" '" • Take UdV with stb(e, R) S:: U 

and Stb(S, e) c::. V, and (p, Q) ~ ~. If P ~ ~ (1) or Q E:: 'G (1) 
u v 

we see at once that (p f\ U)D( Q f\ V), so suppose P E: 'G (2) and 
u 

. Q t::. 'G
v 

(2). Then we have P" Q €: 'G
u 

(2) n 'G v (2) becau3e of the 

maximality of ~ , and hence 

(R"St(e, PnQ»D(St\st(pnQ, e). 

Since D has the oup we then have R' eS' with R' DS and S' 1'\ P n Q 
-! ¢. In particular R.'bS and 60 S' ~ Stb(S, e) ~ V which eives 

V"P/'\Q/ ¢, that is (P)D(QI\V). Likewise (PnU)D(Q), and we deduce 

from the maximali ty of '8 that (rr, V) C:- q. Hence '<?> is s.­
Cauchy, and the proof is complete. 

Corollary. A pairwise completely regular 1-compact spnce is 

uniformly compact. 

Proof. By Proposition 1.7.1 we have a compatible quasi-uniform­

ity ~ , and we may form the compatible cqu ~'with D' = 1 as 

in Example 2.1.1. By Proposition 2.6.7, (X, ~,) is complete 

and satisfies TB.l; hence it satisfies TB.5 by the above result. 

Hence every maximal 1-regular bifilter is converGent, and so X 

is uniformly compact by Lemma 1.7.2. 

It is a well known, and entirely trivial fact, that in a 

topological space a cluster point of a maximal filter is a limit 

point. The next proposition gives a partial seneralisation of 

this result for bifilters. 

Proposition 2.6 0 9. Let (X, ~ ) be a cqu for which D is ~­

compatible and has the oup. Then a D-cluster point of a maximal 

D-regular bifilter, or of a maximal open D-regular bifilter, is 
a limit point. 
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Proof. The proof of the case where 13 is a maximal open D-rezu1ar 

bifilter follows exactly the same steps as the proof of the 

implication TB o 4 :::;> TB.6 above. Moreover if ~ is a maximal 

D-regular bifi1ter we may consider ~'and.l, as in the proof 

of TB.6 =9 TB.5. Because of the maximali ty of 'G it is not 

difficult to verify that the bifilter with base 

t (StD(d, G), StD(H, d» \ (a, H) G: "n(uxv), d E:dom~o J 

is contained in 'G • We may deduce from this that if x is a D­

cluster point of 'Q. it is a D-c1uster point of ,(, also. However 

~ is a maximal open D-regular bifi1ter so by what we have 

noted above x is a limit point of ~ • However it is not difficult 

to deduce from this that x is a limit of "3 , and the proof is 
complete. 

It is clearly of vital interest to know when a total bound­

edness condition will carryover to a extension. Let us make 

the following definition. 

Definition 2.6.5. Let (X, u, v) be a bitopo103ica1 space, D an 

interior confluence relation and A ~ X. Then A i\ D-embedded \n. 
:""/.. ,f GDH whenever G E: u, II <2 v and (Gn A)DA (U" A). 

Verification of the following result is trivial, and is 
omitted. 

Proposition 2.6.10. Let A ~ X be bidense and D-embedded in the 

bi topological space (X, t (<i,), t (c::,». Then if (A, ~ ~) is a. 
u v .~ 

cqu which satisfies TB.2, TB.4 or TB.6 so does (X, ~ ). 

In general strictly ~ -embedded would not seem to imply 

D-embedded, but we do have the following result. 

Proposition 2.6.11. Let A c: X be bidense and strictly ~­

embedded in X for the bi topological space (X, t (~), t (~», 
u v 

and Suppose that DA has the oup. Then A is D-embedded in X, 

and D has the oup. 

We omit the proof, which is straightforward. We may state the 

following as an immediate corollary to the above results. 

Theorem 2.6.1. Let (X, ~ ) be a separated cqu which satisfies 



TB.2, and for which D has the oup. Then the separated strict 

extension (ro(X), ~ ) is D-compact. 

2.7. D-HYPERFILTERS. 
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In this section we examine bitopologica1 compactness from 

a different viewpoint, by introducing the notion of D-hyperfilter. 

Definition 2.7.1. Let D be an interior confluence relation on 

the bitopological space (X, u, v), regarded as a subset of 

f (X) x 'E? (X). By a D-hyper fil ter on X we shall mean any filter 

on D. \Ie say the D-hyperfilter ~ is open if it has a base 

whose elements F satisfy F ~ u 14 v. 

Clearly any D-hyperfilter finer than an open D-hyperfilter 

is open, so the terms "maximal open" and "open maximal" have 

the same meaning when applied to D-hyperfilters. 

We shall find the following notation and terminol03Y useful. 

If ~ is a D-hypertilter, F E:. ~ and P, " = X, we say that 

(p, Q) dominates F, and write F 4 CP, Q), if (L, IO E- F => 
L == P and K c:. Q. We will say that (p, ") weakly dominates F, 

and write F <l'> (p, Q), if (L, K) E: F ~ LDQ and PDIC. 

There is a natural link between D-hyperfilters and D-recular 

bifilters, as follows. Let ~ be aD-regular bifilter on X, and 

for (p, Q) E:-. '(3, let I<~(p, Q) = t (p n P', Q" Q') \ (p', Q') G: 'G \. 
Then t F(P, Q), (p, Q) f: 'C\ \ is a base for a D-hyper til ter 

h(~) on X. Conversely, if ~ is a D-hyperfilter on X, then 

b (~) = t (p, Q) I ~ F (::; ,\, F 4 (p, ,,) 1 is a D-re Gular 

bifilter on X. To describe the set of D-hyperfilters which have 

the form h(~) we make the following definition. 

Definition 2.7.2. The D-hyperfilter ~ is dominated if it has 

a base '=1 'satisfying 

(a) (L, K) G; F E: ~' ~ ~ F' E: ':\, with F' .a (L, K), 

(b) F Go ~, -'> ~ (L, K) t }"' with F 4 (L, K). 

(c) (L, K) E; F cc 1..' and (L r, K') ~ F' ~ =!.' ~(L n L', K 1\ K' ) 

e. Fn F' 

Cd) F Eo. '=l', F" CU, V) -~ :1 F' ~~, with CU, V) "-:i'. 
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Now we may state: 

Propo.~Jj;"i'<>!l 2.7.1. (i) h(~) is dominated for all D-recular 

bifil ters ~ , and ~ = b(h("G». 

(ii) Let ~ be a D-hyperfilter. Then 

h(b(~» = ~ if and only if -=l is dominated. 

Corollar~. h is a one to one mapping of the set of D-recular 

bifilters onto the set of all dominated D-hyperfilters, and the 

restriction of b to this set is the inverse of h. 

We omit the proof of the above statements, since they are a 

matter of straichtforward verification. 

Note also that the maps h and"b preserve the property of 

being open, which we have defined for bifilters and D-hyperfilters. 

~le may define the notions of "limit" and "cluster point" 

for a D-hyperfil ter in several ways, as detailed belo"ll. 

Definition 2.7.3. Let ~ be a D-hyperfilter on (X, u, v). r:e 

say that x '=:. X is 

(a) A weak cluster point of ~ if x & Dp (\ r;l whenever ]' c::. ~ 
and F 4 (p, Q). 

(b) A cluster point of ~ if whenever (M, N) t:- '(\ (x) and F E:- ~ 

we have (p. Q) E:. F with PDU and HDQ. 

(c) A weak limit point of '=\- if for (M, N) E:- 'G (x) there exists 

F E: 1i with F 4:1> (M, N). 

(d) A limit point of ~ if for W, N) ~ ~ (x) there exists 

F c:.. ~ with F 4 (M, N). 

If ~ is a D-hyperfilter for the cqu (X, ~ ) we say ~ is 

~ -Cauch;r (respectively t weakl;r ~ -Cauch:l) if given d ~ Sa 0 

there exists UdV and F E:: ~ with F .:.& eU t V) (respectively, 

F <t> (U, V». 
We list below some easy consequences of these definitions. 

Lemma 2.7.1. Let ~ be a D-hyperfilter on X. Then: 

(i) x is a weak cluster point of ~ if and only if x is a 

cluster point of b(~). 

(ii) x is a limit point of ~ if and only if x is a limit 

point of b(~). 



(iii) ~ is ~ -Cauchy if and only if b(::fs) is ~ -Cauchy. 

Corresponding results may, of course, be stated for the 

mapping h. It is immediate from the above that: 
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Propositi~n 2.7.2 The bitopoloeical space (X, u, v) is D-compact 

(respectively, almost D-compact) if and only if every D-hyper­

filter (respectively, every open D-hyperfilter) on X has a weak 

cluster point. 

Before going on to characterize completeness in terms of 

D-hyperfilters we shall find it convenient to make the following 

de fini tion. 

Definition 2.7.4. Let ~ be a D-hyperfilter on the cqu (X, b). 
We will say ~ is ~ -refined if given d e:. dom S.O there exists 

F <S ~ wi th F J... d and F c:. u JC. V. 

In particular it will be noted tha t a <b -re fine d D-hyper fil ter 

is open. We now have: 

Proposition 2.7.3. The followine conditions on the cqu (X, b ) 
are equivalent. 

(i) (X, ~ ) is complete. 

(ii) Every ~ -Cauchy D-hyperfilter on X is converGent. 

(iii) Every ~ -refined ~ -Cauchy D-hyperfilter on X io conver~­
ent. 

Proof. (i) =9 (ii) =?> (iii) are trivial, so it remoins to 

prove (iii) =t> (1). Let ~ be a ~ -Cauchy D-regular bifil ter 

on X, and consider the D-hyperfil ter \<.. with base t K(d) \ d & 

dom \ 1 • where o 

K(d) = \.. (R, S) \ RDS, F 4 (R, S) for some F ~ h(~) and ReS 

for some e E:- dom ~ wi th e ...t.. d}. o 

It is clear from the definition that ~ is ~ -refined, let us 

show that it is also ~ -Cauchy. Take (d, c) E:: band (e, b) <S 
o 

~ 0 with (e, b) ..c.. u\ (d, c). Since ~ is \. -Cauchy so too is 

h(~), and hence we have ReS and F & h(~ ) with F '\ CR, S). 
Take UdV with St (e, R) 

b =. U and Stb(S, e) c::. V, and take (L, K) 

~ K(e). Then we have f ~ dom ~ 
0 

with r .,£ e and LfK, and also 
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F'E:h(~) with F'<l (L, K). Take R'eS' with L S R' and K f:. S', 

then we have F' d (R', S'). Now FI\ F' E; h(oQ) so we have (3, II) 

€:. ft) F', and GDH since h(~) is a D-hyperfil ter. ~'!e have G = 
RI)R' and H !::. S"S', so RbS' and R'bS. lIence L'= R' ~ Stb(e, R) 

~ U, and likewise K ~ V. This shows K(e) <J CU, V), and so 

'~is ~ -Cauchy as stated. Let x be a limit point of '" , and 

take (H, N) €:. ~ (x). Then for some d E:. \ we have KCd) 4 (11, N). 
o 

Take (R, s) ~ K(d), and F E: h(~) with Ii' <J (R, S). Then x" <l 

(H, N) so x is a limit point of h(~), and hence of i?, , which 

completes the proof. 

Below we give without proof some useful relationships which 

exist between the concepts introduced in Definition 2.7.3. 

Lemma 2.7.2. (a) A weak limit point of a ~ -refined 

D-hyperfilter is a limit point. 

(b) A cluster point (and, in particular, a weak 

limit point) of a ~ -Cauchy D-hyperfilter is a limit point. 

(c) A cluster point of a maximal D-hyperfilter 

is a weak limit point. 

(d) Every weakly ~ -Cauchy ~ -refined D-hyper­
filter is b -Cauchy. 

(e) A convergent (respectively, weakly convercent) 

D-hyperfilter is ~ -Cauchy (respectively, weakly ~ -Cauchy). 

The following bitopolozical compactness and completeness 

properties may be defined quite naturally in terms of D-hyper- , 

filters. We will see later to what extent they coincide ~ith 

previously discussed properties. 

Definition 207.5. The bitopological space (X, u, v) will be 

called D-hYpercompact (respectively, almost D-hypercompact) 

if every D-hyperfilter (respectively, every open D-hyperfilter) 

on X has a cluster point. 

The cqu (X, ~ ) will be called ',hy}?ercomplete 

if every weakly ~ -Cauchy D-hyper til ter on X is weakly convere­
ent. 

It is clear from the results mentioned above that an (almost) 
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D-hypercompact bitopolosical space is (almost) D-compact t while 

a hypercomplete cqu is complete. To examine the relation between 

these concepts in more detail we consider the following 

condi tions of "hyper-total boundedness". 

HTB.l. Every maximal D-hyperfilter is weakly ~ -Cauchy. 

HTB.2. Every maximal open D-hyperfilter is weakly S -Caucby. 

Every maximal ~ -refined D-hyperfilter is S, -Caucby. 

HTB.4. Given d ~ dom ~o there exists UidiVi , i = 1, 2, ••• , n, 

wi th X = U t U i " Vi \ 1 ~ i ~ n 1 . 

First let us note the following: 

Lemma 2.7.3. Each of the following conditions on the cqu (X, ~ ) 

are equivalent. 

(i) HTB.3. 

Gi ven any base f':. c:. ~ 0 of ~ and any (d, c) '" b there o 

exists Uid.Yi' i = 1, ••• , n with UiDVi , and so that for some 

(e, b) IE;. f\ with (e, b) A (d. c) we have ReS and RDS imply 

UkbS and RbVk for some k, 1 ~ k ~ n. 

(iii) Given any .cd, c) c:. ~o there exist UidVi , i = 1, ••• , n, 

with UiDVi and so that for some (e, b) Go ~ 0 with (a, b) ..::. (d, c) 

we have ReS and RDS imply UkbS and RbVk for some k, 1 ~ k ~ n. 

Proof. (i) =r (ii). Suppose (ii) is false, then we have (d, c) 

e.. C) 0 and a base /'> = ')0 of ~ so that, if a is any finite 

subset of d and (e, b) ~ ft satisfies (e, b) "' (d, c), then 

there exists ReS with RDS so that U~S or R~V for all (U, V) ~ a. 

It follows that, if for each (d', c ' ) E:. ~ we set 
o 

Fa(d', c') = l (R, S) \ RDS and ~ (e, b) E;. ft with (a, b) ""-

(d'. c') so that ReS and RtV or U~S for all (U, V) ~ a 1, 
then { Fa(d'. c') \ (d', c') E:. ~ot a is a finite subset of d } 

is a base for a D-hyperfilter ~ on X. It is clear from the 

definition that ~ is ~ -refined, and so by (1) it bas a b-
Cauchy re finemen t c:)\- • Take U dV and H ~ ~ wi th II d (U • V ), 

o 0 0 0 
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and let a = \ Cu , v ) J • Then F Cd, c) t =! =- ~ • Take (R, S) 
o 0 0 ao 

~ H"E' Cd, c). Then RDS, and for some (e, b) ~ A , (e, b) ~ ao / J 

(d, c) we have ReS and R)5V or U )5S. But R c; U , S S V so 
o 0 0 0 

R)5S which contradicts RDS. Hence (ii) is satisfied. 

(ii) ~ (iii). Trivial. 

(iii) => (1). Let ~ be a maximal ~ -refined D-hyper­

filter, and take (d, c) c;:. <0 o. Take (e, b) "" <b 0 with (e, b) ~ 

Cd, c). By (iii) we have RieS
i

, i = 1, 2, ••• , n, with RiDSi , and 

(f, a) <So <0 with (f, a) ~ (e, b), so that LfK with LDK implies 
o 

LaSk and SkaK for some k, 1 ~ k ~ n. For G E: ~ and k, 1 .= k 

~ n, let us set 

Gk_-S()I ..:'] l. L " K t (L " K') E: G and :l LfK, L' ~ L, K' S:. K, so 

that LaSk and ~aK 1 • 

Now it is not difficult to show that for some k, 1 ~ k ~ n, 

1 Gk 
\ G G:. ~ 1 is a base for aD-hyper fil tar \ • More over, 

since G
k 

c:.. G and ~ is maximal we see that =\ = ~ , and so 

G
k 

E:: ~ for this value of k and all G E; ~ • However if we take 

UdV with Stb(e, ~) ~U and Stb(Sk' e) ~ v it is easy to see 

tha t G
k 

4 (U, V) for any G, and so ~ is ~ -Cauchy as required. 

Corollar~. HTB.i ~ HTB.(i + 1), i = 1, 2, 3. 

Under certain conditions on the interior confluence relation 

D some of these properties are equivalent. We may note the 

following: 

Proposition 2.7.4. (a) If D is conjunctive then liTB.4 ~ liTE.l 

(b) If D is ~ -compatible then HTI3.3 ~ lITE.l 

(c) If D has the oup then liTD.2 9 liTB.l. 

Proof. (a) Let ~ be a maximal D-hyperfilter, and take (d, c) 

E: ~ o· By HTE.4 we have UidVi , i = 1,2, ••• , n, with VI U
i

" Vi' 

1 ~ i ~ n 1 = X, and without loss of generality we may suppose 
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~ = 1 (G, H) \ (G, H) E:: F, GDVk and UkDH J, 
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where f E:.;' • Using the fact that D is conjunctive we may easily "to( 

that for some k, 1 ~ k ~ n, the set t}..k \ F c= =t l is a base 

of a D-hyperfilter refinement of ~ • Hence, by the maximality 

of ~ , for this k and any F E: ~ we have }.k E:. ~ • However ~ 4> 

(Uk' Vk ), and so ;. is weakly ~ -Cauchy. 

(b) 

Take (e, 

Let ~ be a maximal D-hyperfilter, and take (d, c) E: \0' 

b) E: ~ with (e, b) ~(.A) (d. c). By Lemllla 2.7.3 (iii) 
o 

we have R. eS . , 
1. 1. 

i = 
with (f, a)...(. (e, b), so that LfK with LDK ~ ~ k, 1 £:: k ~ n, 

with LaSk and ~aK. If we take UidV
i 

with stb(e, Ri ) ~ Ui and 

Stb(Si' e) ~ Vi' then the remaining steps are as in (a) above, 

except that we use the ~ -compatibility of D in place of the 

conjunctivity. 

(c) Let ~ be a maximal D-hyperfilter, take F '=- \ and 

d G:.. dom ~ot and let Fd :: {(StD(d', L), StD(K, d'» \ (L, K) €::. :r, 

d t '=- dom ~ , d' L d 1. It is clear that 
o 

is a base for an open D-hyperfil tar. Let ~ be a weakly ~­

Cauchy D-hyperfilter refinement. For (d, c) ~ ~ and (e, b) E: o 

~o with (e, b) "" (.JI) (d, c) take R eS and)( C::- '" with J( ~ o 0 

(Ro ' So), and take UodVo with Stb(e, Ro) ~ Uo and Stb(So' e) 

~ Vo' Then using the fact that D has the oup it is easy to 

see that each F E:: '=!s contains some (a, H) with aDV and U DH, 
o 0 

and the proof may then be completed as in (a) and (b). 

The next proposition tells us something about the relation 

between completeness and hypercompleteness under rather restrict-
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ive conditions. 

Proposition 2.7.5. 1£ (X, ~ ) is complete and satisfies HTB.3 

then it is hypercomplete. 

Proof. Let -; be a weakly ~ -Cauchy D-hyperfil ter. lI'or d E­

dom ~ define o 

H(d) = t (R, S) RDS, -3 F e: t with F 4> CR, S) and 3. e ~ 

dom ~ with e ~ d and ReS 1 . 
o 

Then it is easy to verify that 

t II ( d) IdE: dom \. 0 ! 

is a base for a S:> -refined D-hyperfilter <#- on X. Let C}:\-' be 

a maximal refinement of ct\ ; then ~' is ~ -Cauchy by HTB." 

and so has a limit point x ~ X. However it is easy to verify 

that x is in fact a weak limit point of ~ , and the result is 
proved. 

We may now give: 

Theorem 2.7.1. The following are equivalent for the cqu (X, b ). 
(i) (x, tu(~)' tv(~» is almost D-hypercompact. 

(ii) (X, ~ ) is complete and satisfies HTB.2. 

(iii) (X, ~ ) is hypercomplete and satisfies HTB.2. 

(iv) (X, t (~), t (h» is D-hypercompact. 
u v 

Proof. (i) ~ (ii). By Proposition 2.7.3, completeness will 

follow if we can show that every ~ -refined b -Cauchy D-hyper­

filter ~ is convergent. However such an ~ is open and so has 

a cluster point x, while ~ converges to x by Lemma 2.7.2 (b). 

To verify HTB.2 let 4t be a maximal open D-hyperfilter. ~ has 

a cluster point x, x is a weak limit point by Lemma 2.7.2 (c), 

and hence ~ is weakly ~ -Cauchy by Lemma 2.7.2 (e). 

(ii) ~ (iii). This follows from Proposition 2.7.5 and 

the Corollary to Lemma 2.7.3. 

(iii) =7> (iv). Let '=1 be a D-hyperfilter on X. l!'or 
each F E:. ~ and e E:. dom ~ de fine 

o 

(p, Q) e F wi th P f'\ Q = ¢ t p t = t (~ )-int[p] 
u 



and Q' = t (S )-int!Ql t or :3 (p t Q) e. F with PA Q -I ¢ and 
v 
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e' E:. dom ~ with e'....t!. e so that P' e 'Q' . and P'" Q' (\ P n Q F ¢ J. o 

Since D is an interior confluence relation on (X, t (~ ), t (&» u v 

it is immediate that 

i F( e) I F E:. ::s , e E: dom ~ 0 ! 

is a base for an open D-hyperfilter ~'on X. Then if ~ is a 

maximal open refinement of ~', * is weakly ~ -Cauchy by 

HTB.2 t and hence ~ has a weak limit point x. Let us show that 

x is a cluster point of =1-. To this end take (M, N) E 'Q. (x) 

and (d, c) €. ~ with st(d,1 x\) ~ M and st(tx\, d) ~ N. Now 
o 

take (e, b) c ~ with (e, b) ~(,oIt) (d, c), and ReS with x ~ Rn S. 
o 

Then (R,. S) E:. ~ (x) so -3 H E:."1'6 with H.:$ (R, S). Now for 

Fe '=1 we have l!"'(e) ES ~' !::. q+ 60 -:3 (p', Q') E.. F'(e)f\ lI. If 

P' = t (b )-int[P], Q' = t (b )-int[Q) for some (p, ~) E F then 
u v 

clearly PDN and MDQ. On the other hand if P'e'Q' for some e'~ 

dom b with e' -£ e and P'" Q'nPnQ F ¢ for some (p, Q)E. F o 

then it is easily verified that Mn Nn Pn Q F ¢, and so aGllin 

PDN and MDQ. lience x is a cluster point of ~ as required. 

(iv) =?' (i). Immediate. 

Corollar..l. For a pairwise completely regular space (X, t (~), 
u 

tv (~ », where (X, b ) is a cqu for which D has the oup, the 

notions of D-compact, almost D-compact, D-hypercompact and almost 

D-hypercompact are all eqUivalent to the requirement that 

(X, tu (~ ), tv (~ » should be uniformly compact and D conjunctive. 

Proof. In view of previously established results it remains 

only to verify that under the given conditions D-compactness 

implies D-hypercompactness. Suppose that (X, t (~ ), t (~» is 
u v 

D-compact, then in particular (X, ~ ) is complete and D is 

conjunctive. Also, for the conditions stated, (X, t (5:,), t (~» 
u v 

is uniformly compact (see the comment after Proposition 2.6.5 

and the corollary to Proposition 2.6.8), and so (X, ~ ) clearly 

satisfies IlTB.4. But then it satisfies HTB.2 by Proposition 2.7.4 



and the corollary to Lemma 2.7.3, and the result now follows 

from the above theorem. 
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~. Since the conditions of the above theorem imply that D 

is conjunctive we could of course replace HTB.2 by IITE.l in (ii) 

and (iii). However HTB.2 is the weakest form of this axiom for 

which I have been able to establish (iii) ~ (iv) in general. 

In the absence of completeness the relation between the 

"TB" and "lITB" conditions does not seem very clear in general. 

However we may note the following results. 

Proposition 2.7.6. (a) If (X, ~ ) satisfies llTB.4 and D is 

conjunctive then (X, ~) satisfies TE.l. 

(b) If (X, ~ ) satisfies HTB.3 and D is 

b-compatible then (X, ~ ) satisfies TB.5. 

Proof. (a) Let \3. be aD-regular bifilter on X, and consider 

the D-hyperfilter h(~). For d ~ dom ~ define 
o 

T(d) = t (R, S) , RDS, ReS for some e ~ dom ~o with e ..(. d. and 

F E. h(~) --:.) .::l (a, H) E;- }' with aDS and RDU J • 

Using the conjunctiveness of D and the fact that (X, & ) satis­

fies HTB.4 it is not difficult to verify that 

t T(d) , d E: dom ~ I o 

is a base for a ~ -refined D-hyperfilter ~ • Let ~ be a 

maximal, necessarily b -refined, D-hyperfilter with ~ So i' . 
~ is h -Cauchy since HTB.3 is satisfied (Proposition 2.7.4 

(a) and the corollary to Lemma 2.7.3). Let At :; b{*"). Now take 

(p, Q) <: ~ and d c:.. dom ~ , then T (d) E:. '=!s s: q:a and F (p, ,,) E:. 
< 0 

./} " , 
h(u). Also take UdVand HE:.* with H <1 (U, V). Then H"T(d) E.. 

~ so -3 (R. S) E. lI'o T(d). Hence R E: u. S ~ V, and :J (a. H) 

• F(P, Q) with GDS and RDll. However F(P, ~) 4 (p, Q) and so 

PDV and so PDV and UDQ. :finally (U. V) E:. b (en-) :. ,(, • and TB.l 
is verified. 

(b) Let ~ be a maximal D-reeular bifilter and consider 

the D-hyperfil ter h(~). For FE:: h{ ~) and d 6 dom s:, define 
o 

Fd = t (R, S) I RDS, ReS for some e E: dom ~ with e ..c: d, and 
o 
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3 (p, Q) e. F so that either R:: P, S ~ ~ or R"S"P nQ -I ¢ L 

Since D is b -compatible it is clear that 

{ :.,d I F E. h ("(\ ), d C5:. dom S. J 
o 

is a base of a ~ -refined D-hyperfil ter ~ • Let c:» be a 

maximal refinement of ~ , so that ~ is ~ -Cauchy by lITB.3. 

Hence we have UdV and H ~ 1=6 wi th H c:::l (U, V). However it is 

trivial to verify that if (p, Q) E:- 'G then (p(\ U)D( Q" V), and 

so ~ v t (U, V) 1 is a base for a D-regular refinement of t?, • 

Since "6 is maximal this implies (U, V) IS- 'G , and we have shown 

that '(> is ~ -Cauchy as required. 

Let us also note the following result: 

Proposition 2.7.7. If (X, b ) satisfies HTB.l (respectively, 

HTB.2) then every maximal (respectively, maximal open) dominated 

D-hyperfilter is weakly ~ -Cauchy. Moreover, under these latter 

condi tions, if (X, ~ ) is hypercomplete then (X, t (~), t (~» 
u v 

is D-compact (respectively, almost D-compact). 

Proof. Let (X, ~ ) satisfy HTB.l, and let ~ be a dominated 

D-hyperfilter with base ~ I satisfyin~ (a) - (d) of Definition 

2.7.2. If tb is a (not necessarily dominated) maximal refinement 

of ~ then ~ is weakly ~ -Cauchy. Take d E. dom lbo' UdV and 

H E:; ~ with H <=a> (U, V). If F' e 1. ' and F' ~ (L, K) then 

F'" H -I ¢ so LDV and UDK. Now take F 4C. ~ " then by (a) if (L, K) 

E:. l:' we have F'E.. '=1 ' with F I 4 (L, K), and so LDV t UDK by the 

above. Hence F <t> (U, V), that is ~ is weakly ~ -Cauchy. 

Now assume that all the maximal dominated D-hyperfilters 

are weakly ~ -Cauchy, and let ~ be a maximal D-regular bifil ter. 

Using Proposition 2.7.1 it is easy to verify that h(~) is a 

maximal dominated D-hyperfilter, and hence weakly ~ -Cauchy. 

Thus, if (X, ~ ) is hypercomplete, h(~) has a weak limit point 

x. In particular x is a weak cluster point of h( 'C), so ~ has 

a cluster point by Lemma 2.7.1. It follows at once that (X, t (~), 
u 

tv (5 » is D-compact. 

The remaining cases are dealt with in just the same way. 
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We now examine some conditions under which the "HTB" axioms 

carryover to an extension. 

Proposition 2.7.8. Let (X, ~) be a cqu, A ~ X bidense and 

D-embedded. Then, if (A, ~A) satisfies HTB.2 so does (X, ~ ). 

Proof. Let ~ be a maximal open D-hyperfilter on X, and =:1' 
an open base of =\ • For F ~~' let 

FA = 1 (LnA, KnA) , (L, K) E: Fl. 

Then 1 FA F E; a' ~ is a base for an open D A -hyper fil ter ~ A 

on A. Let ~ be a maximal open DA-hyperfi1ter refinement of 

:s A on A. Then ~ is weakly ~ A-Cauchy so given d ~ dom ~o 

we have UdV and G E:, ~ 60 that G ~> (U" At V n A). Now let 

'" G = 1 (p', Q') , P'DQ', P' E t (~), Q' E; t (~) and P So:. P'" A, u v 
Q S: Q' (\ A for some (p, Q) E: G J • 

It is easy to verify that Fn O· F ¢ for each l' E:- ~ '. and SO 

G" t:. ~as ~ is maximal. However since A is D-embedded in X 

we see that G" 4> (U, V), and so ::i 1s weakly & -Cauchy as 

required. 

Corollar~. Let (X, b ) be a separated cqu satisfying HTD.2, 

and suppose that D has the oup. Then the separated strict - ,.. 
extension (f1 (X), ~ ) is D-hypercompac t. 

o 

Proposition 2.7.9. Let (X, ~ ) be a cqu, A ~ X bidense and 

strictly ~ -embedded. Then if (A, ~ A) satisfies llTB.3 so does 

(X, ~ ). 

Proof. This result follows trivially from the characterizations 

of HTB.3 given in Lemma 2.7.3. 

Corollar~. If (X, b ) 1s a separated cqu which satisfies HTB.3 ,... 
then the separated strict extension (r eX), ~ ) is hypercomplete. 

o 

Finally in this connection let us note: 

Proposition 2.7.10. 

dense in (X, t (~), 
u 

so does (X, ~). 

Let (X, ~ ) be a cqu and A ~ X uniformly 

tv(~»· Then if (A, ~ A) satisfies liTB.4 



135 
We omit the proof, which is straightforward. 

D-hypercompactness and almost D-hypercompactness may also 

be described in terms of dual covering properties. In particular 

this gives us a simple characterization of all non-pathological 

D-hypercompact spaces. 

Theorem 2.7.2. Let D be an internal confluence relation on the 

bitopological space (X, u, v). Then (X, u, v) is D-hypercompact 

(respectively, almost D-hypercompact) if and only if given any 

open D-dual cover d of X there is a finite subfamily d of d o 

so that given any PDQ (respectively, given any PD~ with P £ u 

and Q~ v) there exists Ud V with PDV and UDQ. 
o 

Proof. First suppose that (X, u, v) is D-hypercompact, but 

that there exists an open D-dual cover d not satisfying the 

conditions mentioned in the theore~. Then for any finite subset 

d of d the set o 

l!~( d ) = t (p, Q) I PDQ and Ud V :!) pJjV or UJj~ j 
o 0 

is non-empty. and so 1 F( d ) \ d S d 1s fini te ~ is a base 
o "0 

for a D-hyperfil ter ~ on X. Let x be a cluster poin t of ~ , 

and take U d V wi th x <= U (\ V • We may take d = {( U tV) ~ , o 0 0 0 000 

which means F(d ) c. =1, while (U tV) E.. ~ (x) implies that 
"000 

there exists (p, Q) e F(d ) with PDV and U D~ • which contradicts 
" 0 0 0 

the definition of F(d ). 
o 

Conversely suppose the condition is satisfied, and let ~ be 

a D-hyperfilter. If ~ has no cluster point then for each x E 

X we have x cs U(x) Eo u, x E;. Vex) Eo. v and F E; ~ 60 that (p, Q) E:. 
x 

F x -:.~ P~V(x) or U(x)~Q. Then 

d = 1 (U(x). V(x» l x c X j 

is an open dual cover (and hence an open D-dual cover) of X, and 

hence we have Xl' ••• , xn ~ X so that given PDQ there exists i, 

1 ~ i ~ n, with PDV(xi ) and U(xi)DQ. However"if we take (p, Q) 

E: () 1 F I 1 !: i ~ n 1 E: ~ we obtain an immediate contradic­Xi 
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ion, and so 1 has a cluster point as required. Note that this 

argument actually shows that the stated condition need only be 

assumed to apply to all open dual covers of X. 

The necessary changes to be made for the almost D-hypercompact 

case are obvious, and so the proof is complete. 

Corollarl 1. Let d be an open dual cover of the almost D-hyper­

compact space (X, u, v). Then there is a finite subfamily do of 

d so tha t U 1 Du (\ vD \ (u, V) ~ d 1 :: x. 
o 

Corollar~ 2. Let D be an interior confluence relation on (X, u, 

v), and if D ~ 1 suppose that no single point set is open in 

either topology. Then (X, u, v) is D-hypercompact if and only if 

it is uniformly compact and D is conjunctive. 

In particular it follows from Corollary 2 that 1-hypercompact 

and uniformly compact are identical for all bitopological spaces. 

We end this section with a generalisation of the result, 

established in Chapter One, that every preseparated uniformly 

compact space is fully binormal. We assume that D satisfies the 

condition of Corollary 2 above 80 that we may say that D-hyper­

compactness implies uniform compactness. 

Theorem 2.7.3. Let D be an interior confluence relation on 

(X, u, v), and suppose that (X, u, v) is D-separated and D­

hypercompact. Then if d is any open D-dual cover of X there is 

an open D-dual cover e of X with (e, D) ~(.) (d, D). 

Proof. Suppose that there is an open D-dual cover d which does 

not have this property. Then for every open D-dual cover e, 

F(e) = t (L, K) , LDK, -3 ReS with L ~ R, K = S, and for each 

UdV we have StD(e, R) ~ U or StD(S, e) 1= V } 

is non-empty. It follows at once that 1 F(e) leis an open 

D-dual Cover of X 1 is a base for a D-hyperfilter ~ on X. '=1 
has a cluster point x, and we may take UdV with x E:. U (\ V. 

Let Y = X - \ x ~ • We divide Y into three mutually disjoint 
subsets as follows: 
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Yl = 1 YI yf{. u-cllxj and y £/. v-cl{xll , 

Y2 = f y , y(/. u-cllxj and y E. v-cllxl J , 

Y3 = { yl yf:. u-cllx I and y f/.. v-cllxi 1 . 

For y E:.. Y
l 3 R(y)~V(y) with y~ R(y) e- u, x ~ V(y) 6 v, and 

.3 U(y)}l5S(y) with yE: S(y) E:. v, x E. U(y) E- 14. 

For y E! Y
2 3 R(y)}l5V(y) with yE. R(y) € u, x €. V(y) E: v, H(y) ~ U. 

l'or y € Y3 =:1 U(y)~S(y) with Y E. S(y) E v, x E.. U(y) E.. u, S(y) ~ V. 

Consider e = { (R(y), S(y», (U(y), V(y» I y t 11 ! u t (R(y), X), 

(U, V(y» I y E:. Y
2 
jut (X, S(y», (U(y), V) I y E: 13 } • 

e is an open dual cover of X, and (X, u, v) is uniformly compact, 

so there is a finite sub-dual cover e which we may take in the 
a 

form; 

eo = 1 (R(Yi)' S(Yi»' (U(Yi)' V(Yi» I 1 ~ i s n Jut (H(Yi)' X), 

(U, V(Yi» I n+l ~ i ~ m Iv {(X, S(y
i
», (U(Yi)' V) I m+l:: i ~ kIt 

Now let U' = un n 1 u(y i) I 1 ~ i ~ n or m+l ~ i ~ k J • and 

Then U' E: u tV' E:.. v and x E: U' fl V'. De fine: 

z = X - (1 xiu U t R(Yi)f'\ S(Yi' I 1 So i iii. n luUl R(Yi' I 

n+l~i~mIUUlS(Yi)1 m+l~i~kl] f: unV. 

We suppose Z I ¢, omitting the case Z = ¢ which is somewhat 

simpler. We divide Z into two mutually disjoint subsets as follows. 

Zl = l z \ z E: Z and z 4 .u-cllxl 1 • 

z2 = l z I z e z, z € u-cl{xJ and z 4 v-cllxS J • 

For z e Zl 3 R' (z) ~V ' (z) wi th z E. R' (z) ~ u. x E; V' (z, E. v 

an d V' (z) ~ V'. 



For z E:' Z2 3 U'(z),tS'(z) with z Eo S'(z) 6 V, x E: ij'(z) (!;: 1(., 

S ' ( z) ~ V an d U' ( z) '= U'. 

Consider the following open dual cover of X: 
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f::: 1 (R(yi ), S(Yi » I 1 ~ i~ n ! U ~ (R(yi ), X) I n+l ~ i:= m lu 

{(X, S(Yi » I m+l ~ i ~ k 1 u t (R'(z), v), (11', V'(z» I z E; zllu 

L (11, S'(z», (U'(z), v,) I z ~ z2 1 . 

Again f will have a finite sub-dual cover f which we may take o 
in the form: 

f = 1 (R(y
i

), 
0 

t (x, S (Y i» , 

1 ~ i ~ s 

where z 
l' 

1 V 

S(Yi» \ 1 ~ i<!..n lul R(yi ), X) I 

n+l ~ i ~ k 1 V t (R' (zi)' V), (U' , 

1 (U, B'(zi»' (U'(zi)' v' ) I s+l !::. 

Let M = U' () n l u' ( Z i)' s + 1 ~ i 6: t j • an d 

n+l ~ i ~ mlu 

V'(zi» 

i ~ t 1 , 

N = v'nntv'(Zi)1 l~ i~ 51. Note that (M, N)E. 'e(x). 

Finally let us define: 

g = 1 (R(yi ), B(y
i
» , l~ i!: n Iv {(R(yi ), x) I n+l!!: i6: mlu 

t(x, B(Yi»' m+l ~ i ~ k 1 \.J l(R'(zi)' v)' 16 i~ elU 

teu, B'(zi»' e+l~ i:;, t I u t(U', V')\. 

g is an open dual cover of X, and so in particular an open D­

dual Cover. Hence F(g) c:. ~ , and so we have (L, K) E:: It(g) with 

LDN and MDK. Also there exists GgH with L G a, K = Hand 

StD(g, G) 4 U or stn(H, g) ~ V. However by considering all 

the possible choices of (G, H) it is not difficult to verify 

that we must have G ::: U' and H = V'. On the other hand we may 

easily show that Stn(g, U') ~ U and StD(V', g) ~ V, and this 

contradiction proves the theorem. 

Corollar~. If (X, u, v) is D-separated and D-hypercompact 

then 1 (d, D) , d is an open D-dual cover of X } is a base 

for a cqu ~ on X which is compatible with (X, u, v). 
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If we call a cqu b basic if it has a base /! with ran jl = 

IDl then this corollary says that a (non-patholoGical) D­

separated D-hypercompact space always has a compatible basic 

cqu. Moreover this cqu is unique, for it is easy to verify that 

a basic cqu compatible with a D-hypercompact space must contain 

(d, D) for every open D-dual cover d. 

2.8. CONl!"LU:I:;NCE PARA-~UASI-UNIFORHtTIES. 

In this section we extend our work on confluence quasi­

uniformities to para-Quasi-uniformities. 

If c is a confluence relation on X, and d i6 a dual family 

wi th d ~ c, we shall say tha t d is a c-dual family. If d is 

a c-dual family and e is a b-dual family, then the meaning of 

such expressions as 

(e, b) '" (d, c), (e, b) ..c.ltl) (d, e) 

is clear. We will write 

(e, b) ~ (d, e), (e, b) ~ tfo) Cd, e) 

respectively if in addition we have uc(d) = uc(e). 

For ci-dual families d
i

, i = 1, ••• , n, we define 

where c = "teil and PdQ ~ PcQ and :l UidiVi , I!: i ~ n, so 

tha t P = n 1 U i \ and Q = (\ t Vi 1 . 

(Note that, for ease of writing, we shall omit the ranGe 1 ~ i ~ n 

of i for the operations /\ , (\ etc. where no confusion can 

arise) • 

Note that 1\ t (d., e
i

) 1 is a (possibly empty) ('\ lc.\ -dual family. 
~ ~ 

It is worthwhile noting that if (ei , bi) ~ (d
i

, c
i

) for each i 

then" t(el , b
i

>l ~ J\{(d
i

, C
i
)\ • 

Finally let us denote by ~ c (or, more precisely, ~ cX) 

the set of pairs (e, b) where b is a confluence relation on X 

and e is a b-dual family belongine to ~ • 
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On analogy with a pqu we may now give: 

Definition 2.8.1. The subset \ of ~c is a confluence para­

quasi-uniformity (cpqu) if it satisfies. 

CPQ.l. (d, c) E: ~ =.> 3 (e, b) I:. ~ with (e, b) ~l") Cd, c). 

CPQ.2. (di , ci)E:.~, i = 1, ••• , n, with I\lCdi , ci)\~-ec 

~ 1\ I (di , c
1

) } ~ ~ • 

CPQ.3. (d, c) (:; ~ , (e, b) E: ~c with (d, c) ~ (e, b) 

=9 Ce, b) ~ ~ • 

CPQ.4. 1 (x, X) i E:: dom ~ • 

Note that every cqu is also a cpqu. 

cpqu bases and subbases may be defined in the obvious wuy, 

and we omit the details. Exactly as for a pqu, a cpqu defines 

a bi topological space (X, tu ( ~ ), tv ( ~ », and we note in 

particular that a base of tu( ~)- (respectively, tv( ~)- ) nhds. 

of x E; X is given by t St(d, l x~)' d E: dom ~ , x ~ uCl (d) 1 

(respectively, l St(lx}, d) , d E: dom S, , x E:. UC
2

( J.) \ ). 

We denote by ~. the base of ~ given by 

( oft < ( , ( ) '=- C wi th b = \ d t c) , (d, c) ~ 'b and ':l d' t C' 2) 

(d, c) ~ (.,) (d', c') \ • 

Lemma 2.8.1. For d (i: dom ~ 
.. 

we have 

We omit the proof, which is straightforward. 

In general a cpqu need not have an open base; however for 

convenience in all that follows we will assume that all cpqu 

under consideration are such that 

• ~o = 1 (d, c), (d, c) E: ~ , c is interior, and UdV =.-> 
(t (~)-int \u1)c(t (~)-int lvl) } 

u v 

is a base of ~ • Of course this is automatically true for a 

cqu, and S> 0 then has the same meaning as it did in the earlier 
sections. 
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For a dual family d on (X, t (1), t (b» we shall denote 

u v • 
by d the dual family t (t (~)-intlUl, t (~)-intIV)' UdV and 

u v 

(tu(~)-inttU\) "¢:f.(tv(~ )-intlV\)\ • Note that for dE. dem ~o 

we have d = 1 (t (b)-int[U), t (~)-intlvl) I udvl, and dis 
u v 

a c-dual family. However (d, c) need not belons to ~ in 

• general, and we may well have uc(d) I uc(d). 

Some of the results given earlier for cqu will carryover 

baSicly unchanged to the cpqu case, but the majority will need 

at least some modifications to the definitions involved, while 

others will not hold at all for general cpqu. Our aim in this 

section is to concentrate mainly on those results which have a 

direct bearine on the question of induced cpqu structures and 

of extensions. 

Let (X. <b ) be a cpqu, and A ~ X. If c is a confluence 

relation on X and d a dual family we may define cA and dA as 

previously_ Note that if (d, c) E:. ~o then dA is a cA-dual fDJilily. 

The induced structure ~ A on A may be defined by 

~A = t (d, c) , (d, c) E:.. ~ C A and :l (e, b) e <b with 
0 

(eA, b
A

) ~ (d, c)1 • 

The conditions (a) or (b) of Definition 2.3.2 will no lonGer 

suffice, in general, to ensure that (A, & A) is a cpqu, and in 

order to describe the additional conditions required we shall 

need some more definitions and notation. Let d be a c-dual 

family on X and define 

where U'd'V' <o:=i> U'cAV' and U' = UnA, V' = VnA for some UdV. 

Clearly if (d, c).E: s'o Vie shall have (d, c)A:: (d
A

, c
A

), but 

this equality need not hold in general. Now for (dl , c1 ) E:: ~, 
i = 1, ••• , n, let us define 

A 
J\l(di , c

i )\ = (d, c) 
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where c = n 1. c

i 1 and PdQ ~ PcQ, (p n A) C A (Q "A) and "3 i 
Uid Vi 

with P = () 1 U
i 

\ and Q = () \ Vi \ • 

A 
1\ \ (d\ 

A 
c i

) \ Clearly 1\ 1 (di , c i ) 1 .t. ci ) 1 , and if "t(d
i

, -

We will now say that A -= X is ~ -embedded (respectively, 

strictly <c:. -embedded) in X if there is a base fi S ~ 0 of ~ 

satisfying condition (a) (respectively, condition (b» of Definit­

ion 2.3.2, and in addition the condition 

(0) l:'or (e, b) = ~ 1.(e\ bi )} where (e i , bi) f::.j3 , i = 1, •• ', 

n we have: 

(cl ) 

(ft ) 
( e t b) ~ 'f c X =* . (e, b) ~ ~ • an d 

uc.(e
A

) ~ uc.(e), j :.: 1, 2. 
J J 

Note that this extra condition is trivially satisfied for a cqu 
e 

and so our terminology remains consist#nt. 

We may now give: 

Proposi tion 2.8.1. Let (X, ~ ) be a cpqu, and A ~ X bidense 

and ~ -embedded. Then (A, ~A) is a cpqu, tu( ~A) = tu( ~)A 

and t (~A) = t (~) . v v A 

Proof. Letf\ S: ~o be a base of ~ satisfying (a) and (c). 

First let us note that for a dual family d on X we have uc(d)nA 

= UC(dA) and uCj(d)" A ~ UCj(d
A
), j = 1, 2. lienee, since A is 

bidense in X, we see that (d
A

, cA' Go ~ c A for each (d, c) E:. \ 0 

and so it will suffice to show that t (e
A

, b
A

) \ (e, b) <C: fl I is 

cpqu base on A. Now it is easy to verify that if (d, c), (e, b) E.. 

/'-' and (e, b) ~ c..\ (d, c) then (eA, b
A

) ~ <..,\ (d.r.' CA', so let 

( iii i us take e, b ) ~ f$ , i = 1, ••• , n, wi th '" (e A' b A) ! ~ 
c A i i 

'f A· As noted above, if we set 1\ \ (e t b ) \ :.: (e, b), then 

(eAt bA) ~ f\ t (e
i

A• b
i

A) 1 and so we also have (eA' b
A

) E:: ~cA 
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by Lemma 1.8.1 (c). But then (e, b) ~ ~ Cx by (c) (;1). and so 

(e, b) E;. ~ by (c) (ce.). Hence we have (g, a) E; fi with C.z. a) 
. i 

~ (e, b), and then (CA' aA) ~ "'l(e
1

A, b A)l which 

completes the proof that { (e
A

, b
A

) \ (e, b) ~ fi t is a base 

for a cpqu on A. Finally, usinS (c) (~) we may verify that 

for (e, b) E:. fi we have uc/e
A

) = uc/e)nA, j = 1, 2, and the 

topOlogical identities follow from this. 

For the cpqu ~ we define the interior confluence relation 
D by 

D = n 1 c, C E: ran ~ } = n t c IcE:- ran ~ 1 
o 

as before. If /l is a base of ~ and "1 is a bifilter on X 

then the notions of f3 -regularity and D-regularity for ~ will 

be as given in Definition 2.2.2. On the other hand we shall 

say that "G is ~ -Cauchy if it satisfies 

(di , ci ) E:: ~o' i = 1, ••• , n, 1\ tCdi • ci ) J = (d, c) ~ 
• 
d(\'G I~. 

For a cqu this condition is, of course, equivalent to that 

given in Definition 2.2.4, and so no confusion can arise here. 

As previously (X, ~ ) will.be called complete if every D­

regular b -Cauchy bifi1 ter on X is convergent on (X, tu ( ~ ), 

tv( ~». 

Conversence of a bifilter is, of course, a purely bitopolog­

ical notion. For the cpqu ~ let us say tha t ~ is ~ -converG­

ent to X E: X if (St(d,lx\), St({x\, d» E::. ~ for all d c: dOI:!~. 
~-convengence certainly implies convergence, and these notions 

are equivalent for a cqu, but they will not be equivalent in 

general since some of the sets St(d,\x\), StCtxl, d) need not 
be nhds. of x. 

eo 
Note that the exist~nce of a ~ -Cauchy bifilter implies, 

in particular, that "1 Cdi , ci ) \ ;I ¢ for any Cdi , C
i

) E:: ~o' 

i = 1, •••• n. and so any cpqu not satisfying this condition 
must, of necess .. ity, be complete. 

If ~ E:. S. a is a base of ~ and ~ is a ~ -Cauchy fl -re~ular 
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bifilter, then arguing as in the proof of Proposition 2.3.3 it 

is easy to verify that the bifi1ter ~~ with subbase 

t CSt (d, U), st (V t d»' (d, c) C':- /\ , U e dom d t V E:: ran d c c ,-

and (t (~ ) -in t 1 u1, t (Cb) -in t tv l) l::: ~ ! 
u v 

is a minimal D-regu1ar ~ -Cauchy bifilter contained in -Q, • It 

is also clearly open. In particular it follows ~, as for cqu t 

that a cpqu (X, ~ ) is complete if and only if every ~ -reSular 

~ -Cauchy bifilter is convergent. 

Nhd. bifilters -e, (x) and nhd. bifilter traces 'G A ( x) 

maintain their reeularity properties, but they need not be 

Cauchy when we are dealing with a cpqu. This represents an 

important difference between cpqu and cqu. If in constructing a 

bifilter extension of a cpqu space we were to include the elements 

of X in the form 1 ~(x), x ~X i we should, in any case, have 

to apply different argu~ments to the elements ~(x) from those 

used for the remaining ~ -Cauchy elements of the extension, 

and this sucgests that we misht just as well include X in the 

form \. x, x to Xl. This, of course, also has the added advantage 

tha t we can then deal equally well with the case when (X, t (~), 
u 

tv(~» is not weakly pairwise To' Bearing these comments in 

mind let us now show how we may construct a strict completion 

of a (non-complete) cpqu (X, ~ ). 

Denote by Jl. (X) the set of all non-convergent D -reGular 
o 

minimal ~ -Cauchy bifilters on X, and s,~t 

In place of the sets AO of g 2.5 we consider the followine: 
u 

with UdV. V <=- -B v ~ U ~ 

Al = Aul'G' 'G e VL (X) and ~ u 0 

V E:. ~ ~ U =. 
v 

Note that if ~ is a then AO 
cqu u 

A 1"\ uc (d) 1, and 

d E: dom ~ with 
0 

A \ • 

d ~ dom b 
o 

UdV, 
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in general we can only claim that A

O CS Al . 
u u 

We may define BO and Bl in an analogous way. 
v v 

Note that for any subsets A
l

, ••• , An; Bl , ••• , Bm or A with 

(At (Ai)lu\)(l( (\ \(Bj)lv))1 ~ we clearly have (ntAi\>D(f'\ tB
j
\). 

If c is a confluence relation on X we may define the 

confluence relation c on III (X) by 

PcQ ~ Pl.Q or 3 A G t (~), B ~ t (~) with AcB, A 
0 ~ P 

U v U 
o 

and B v s:: Q. 

If (d, c) <= ~o we define a on Jt
l 

(X) by 

UdV with P = Ul 
and Q = Vl 

• 
U v 

Since C is interior it is clear that a is a e-dual family. Note 

also that 

Ucca) = uc(d)u Jlo(X) and ucj(a)f\X = UC/d), j = 1,2, 

so that for (d, c) (: ~ 0 we have (a, c) Eo 'C ~ 1 (X) • 

Now let us verify that i (a, c) , Cd, c) '= \ 0 1 is a base 
"-

for a cpqu ~ on Jll(X). Firstly for (d, c), (e, b)E: \.0 

with (e, b) 6~) (d, c), the verification that (~, S) ~u) (a, a) 
is essentially the same as for the corresponding result for cqu. 

Secondly let us take (d
i

, c
i

) G ~o with 1\ i (ai' a
i

) 1 = 

(F, n 1 eil) ~ ~ Cll1.
1 

(x) , and suppose, for example, that uC
l 

(F) 

I ¢. Now take (e
i

, b
i

) E: ~ 0 with (e
i

, bi) ~ (.) (d
i

, c
i

), and 

let f\t (ei , b
i

) 1 = (e, n1bi\). Now if x E: ucl(F)nX I ~ 

then it is immediate that x ~ ucl(e), so let us consider the 

case 'G c=- uC l (F)n Jl 0 (X). Since ~ is ~ -Cauchy ~ Ri e
i 

S i 

with (f'\lRi ,,(\lSi\) '" -a • But if we then take z c;.. f\ lRi l 
it may easily be verified that z ~ ucl(e), and so in eitherevent 

ucl(e) I ¢. In the same way UC
2

(F) I ¢ ~ uc
2

(e) I ¢, so e ~ ~ X 



146 
and (e,ntbilh=.~ • Hence if we take (g, a) '- ~o with (g, a) 

(e, nlb.\) it is immediate that 
l. 

(g, a) ~ 1\ t (ai' c i) \ 

which completes the proof that 1 (a, c) \ (d, c) ~ ~ 0 1 is a 
A. 

base for a cpqu ~ on Jl. 1 (X) • 

It is not difficult to verify that for all A = X we have 

... I\. ( 1 
A = A 

0 = t (~) -in t LA ] u u u u 
• • • • • • • • • • •• (1) 

where A·
u 

is formed with respect to the subset X of (J1 l (X), 
" ... 

tu ( ~ ), tv ( ~ ». Also these sets are clearly unchanged if we 

replace A by t (~)-intlAl. Similar statements hold for the other 
u 

topologies, and we deduce in particular that for (d, c) ~ \ 0 

and UdV we have tt (~)-intlull]alt (~)-inttvll]. Hence 
u u v V 

A. ~ I\. 

( ~ ) 0 is a base for \ , that is (A
l 

(X), ~ ) satisfies our 

general hypothesis. 

"-
Next let us note that X is strictly ~ -embedded in Jt 1 (X) 

with respect to the base j1 = t (a, c) \ (d, c) ~ ~o and 3 
,.. 

(e, b) t:. ~ with (d, c) -&: t.1t) (e, b) \ S: (~) • Certainly (b) 
o 0 

(i) and (ii) of Definition 2.3.2 follow at once from the equalit-

ies (1) above. Finally for (c) (d..) and (ft) take (e i , Si) '=(1 

X 
and set 1\ l(e i , Si) \ = (E, fllSi ). That (E, (\{ Si\) E: ~CJ'l. (X) 

. 1 

=.> (E, (\ t Sil ) '" ~ follows exactly as in the proof of the 

X 
corresponding result with" 1\ " replaced by " " If, outlined above, 

and so (cL ) is proved. (f1) follows from the evident fac t that 

Jl 0 (X) S uc (E) • 

It is not difficult to verify that for (d, c) ~ ~ we have 
o 

(ax' ex) = (d, c), and so 

in Jt 1 (X) and so we have 

,.. 
h X = ~ • Moreover X is clearly bidense 

"-
verified that (ll

l
(X), ~ ) is a strict 



extension of (X, ~ ). 
,.. 

Now let B be a ~-regular ~ -Cauchy bifilter on Jl leX), and 

let 

~ = t (p, Q) \ (P" , Q. ) Eo B 1 
u v 

It is clear that -e is a D-regular ~ -Cauchy bifilter on X, so 

there are two possibilities. Either '6 converges in X to an 

element x ~ X, or it is non-convergent. In the first case we 

may easily see that B converges to x in Jt 1 (X), while in the 

second, if we form "C!. for the base ~ 0 then ~1IE: Jl
l 

(X) and 
I\, 

B is then S. -convergent (and hence convergent) to '(\. in /\..1 (X). 
I\, 

This completes the proof that (JL1(X), ~ ) is a strict 

completion of (X, b ). 

It is of some interest to try to characterize the cpqu 
1\ 

(Jtl{X), ~ ), and this is the aim of the next theorem. For this 

purpose it is first i.h'Q~55Clry to make definite the notion .r 
cpqu isomorphism. If (X, <b ) and (Y, r ) are cpqu, and f : X ~ 

Y is a function we may define (f-l(d), f-l{c» for (d, c) ~./'" 0 

as in ~ 204. In general there will be no guarantee that (f-l(d), 

f-l(c» should belong to ~ cx' and so w; shall say that f is 

( ~ -r ) cpqu continuous if (f-l{d), r-l(c» Eo ~ whenever 

() 1 -1) .n c d, c E::.~o and (f- (d), r (c) E: I) X. t will then be a 

cpqu isomorphism if it is bijective, f is ( ~ -~ ) cpquc and 

-1 
f is (.r- - ~ ) cpquc. 

We may now state: 

Theorem 2.8.1. Let (X, ~ ) and (Y, /'-) be cpqu with X ~ Y 

bidense for (Y, tu'r), tv~» and having c,. = rX. Then 

(Y, r) and (A l (X), t ) are cpqu isomorphic if and only if 

there is a subbase tr =r of ~ so that 
0 

1) For d Eo. dam ~ we have Ucj(<iX) ~ ucj(d)"X, j = 1, 2. 

2) For d £: dam (J' , U ~·dom d, V ~ ran d and y ~ y - X we have 



(a) yE- U~::l e E: dom/",,-o with St(e,tyt)"X ~ U"X, 

(b) yE: V~.:J e ~ dom,,#o with St(tyl, e)"X ~ VnX. 

3) For c E: ranr 0 and PcQ with Pn Q = ¢ ::l P' E: tu~)' 

Q' E: tv(r-) with P'cQ', (p'n X)"u ~ P, (Q'" X)·v S; Q. 
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4) Given y ~ y - X and (di , ci ) ~~ , 1 = 1, ••• , n, 3 UidiVi 

wi th y E:. (n 1 U i i) " ( fl 1 Vi \) and 

(tu c.r )-int [ n t Ui \])( () 1 ci 1)( tv (r-)-int [ (l t Vi \ ] ). 

5) For y E: Y - X and Z E: Y '3 (d, c) E: (S' so that 

(a) St(d,{z\)tSt(lyl, d), or (b) St(d, ly\)tSt(tz\, d) 

where if z c X we can take Z ~ ucl(d) in case (a), and 

z ~'uc2(d) in case (b) 

6) Each M-regular ~-Cauchy bifilter on Y either converges 

in Y to x c X, or ~ -converges in Y to y E: Y - x. 
~ 

Proof. We have already noted above that (Jl 1(X), ~ ) satisfies 

various of the properties listed above, and the remainder are 
~ 

easily verified,again for the base ft =- (~) 0' so we will 

concentrate on the proof of the sufficiency of (1) - (6). 

First let us note from (1) that t (b) = t (r)X and t (s.) 
u u v 

= tv(~)X' facts that will be used below without specific mention. 

Secondly from (2) we have in particular that 

7) Given (di , ci)'=:O' ,Ui & dom di and Vi EO. ran di , i = 1, •• 

• , n then (n t (Uil'\ x)l)( n 1 c11 )xC t\ \ (Vi" X) 1 ) implies 

( n t Ui \ )( " 1 c
i 1 )( f\ 1 V 11 ) • 

Finally, from (4), we see that for each d t dom~o we have 

Y - X =- uc(d). 

Now take y~ y - X, and consider the bifi1ter ~(y) with 
subbase 
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It follows easily from (4) that )\. (y) is a M-regular ~ -Cauchy 

bifilter on Y, and in particular it contains (St(d,fyl), St(l yJ,d») 

for all d t do~o. Hence by (7), 

)t.X(y) == [(poX, Q"Y) I (p, Q)~ )<...(y)l 

is a MX = D-regular minimal/", X = ~ -Cauchy bifilter on X. It 

follows from (4) and (5) that x.. X(y) is not convergent in Xt 

and so )toXey) E. ell.. (X). In this way we have a map 4 (y) = )Vx(y) 
o 

of Y - X to JL (X), which can be extended to a map cP : Y ~ o 

Jl (X) by setting c{J (x) == x for x E::. X. Moreover cP is injective, 

8S follows easily from (4), (5), and the fact that ~X(y) is 

D-regular. To see that <f is surjective take nE:: tlto(X) and 

set 

B ,. t (p, Q) I P, Q ~ I, «tuY'")-intlP)1\ X, (t
v
0- )-int[Ql)f\ X) 

E: '2 1 
Then if Y is the base of)A defined by the subbase 0' it is 

clear that B is a 'Y -regular /"- -Cauchy bifilter on Y by (7), 

and it follows from (6) that either B converges to some x E X 

or is r -convergent to some y Eo Y - X. However in the first 

instance we could then deduce from (1) and (4) that ~ must 

also converge to x in X, and this is oontrary to the choice of 

~ so B is~-convergent to y & Y - X. It follows at once from 

(4) that ~ X(y) ~ 'G , and so 't\, X(y) = 'C since "S is minimal 

b -Cauchy. This verifies that ~ is surjective, and so 4 is 

a bijection of Y with Jtl(X). Note that this result has not 

used (3) or the full force of (2); that is, loosely speaking, it 

depends on the" )A. -embedding" of X in I, and not on the "strict 

~ -embedding". 
"-

Now let us verify that ~ : I -t JL
l 

(X) is (r - ~) cpquc. 

Corresponding to the subbase oJ of r we have the subbase 

(;J X ,. t (d'x' c'x) \ (d', 0') E: r:' 1 , 

and clearly ~ X So. ~ o. Take (d', 0') <S qI and (e', b') '- G' wi th 

(e', b l
) ~ \.II.) (d ' , c'). Then it will suffice to show that 
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where, for convenience, we have written d = d'X' c = c'X. Take 

R'e'S'; U'd'V' with Stb,(e'. R') ~ U'. Stb,(S'. e') ~ V'; and 

set U'O X = u. v'n X = V so that we have UdV. Let us verify 

Now within X this is clear, so take y ~ R' with y~ Y - X. Then 

by 2(a) we have (f. alE:. -y with St(f.tyn~ R'. Take (S, k)e. 

Y with (g, k) ~~) (f, a); then as noted above Y - X ~ uc(g) 

a~ so we have MgN with y E. Mn N. Take LfT with St(g.ly1) '" 

Stk(g, M) ~ L, Stk(N, g) t;: T; and take L'fT' with T'(\ X E:. 

)<.. Xv(Y). By the comment after the definition of )C... (y) we have 

vX X 
L/\ X E; 1'- u(Y)' and so (LI\ X)aX(T'n X) since )It (y) is D-ret;ular. 

Hence LaT' by (7), and so we have ReS with L' ~ Sta(f. L) ~ R, 

y E: N ~ T f:. St (T. f) ~ S. Hence L' S R S:. St(e',ly\) G 
a 

Stb,Ce', R') ~ U', and so L'n X ~ U'n X = U. Since fX E: ~o 

this shows that cP (y) = K XCy) E:. Ul
u ' and completes the proof 

that R' Co cf' -\Ul ). Likewise S' 6. <p-l(Vl ), and so e' J.. 
u v 

cf'-lca). In fact we also have uc(e') == uc(c:P-l(a», as is easily 

'fi ./J -l(c'"'). ver~ ed, so it remains to show that b' ~ y Take Pb'Q 

with Pn Q = ¢. By (3) we have P' E. tu~)' Q' ~ t v0) with 

P'b'Q' (p'" X)· ~ P and (Q'I\ X)· ~ Q. If A = P'n X, B = Q'n X , u v 

then ¢ F AE:. tu(~)' ¢ F BE"; tv(b) and Ab'XB. Hence AcB since 

b'x ~ c'x = c, and so AO a BO 
• ClearlY' ¢ F <p -l(Ao ) and 

u v u 

¢ F CP-1CB
o

v
) so p crlCC;)Q will follow if we can show CP-lCAo

u
) 

~ P and 4' -leBo ) ~ Q. This is clear within X, so take y E: 
v 

y - X with Y E:. 4-l (AO
), that is ""X(y)E:. AO 

• Now we have 
U u 

(f. alE:. ~ 0 satisfying LfT, TE j(.;(y) ~ L S: Al1uc(f), and 

we may take (f', a') E."y with Ct'x' a'x) ~ (f, a). Take 

(g', k') t Y wi th (g', k') ~ (.a J C f " a') t and M' g' N' with 
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y C: M'n N'. Then we have L'f'T' with y E H' = St(g' ,1.y') ~ 

Stb,(g', M') ~ L' and ye:. N' = St(ly\,g') ~ Stb,(N', g') S:: T'j 

and LfT with L'I\ X ~ L, T'o X S: T. Then St(g, f',,", X c )( ;(y) 

:::;> T c: KX(y) => L ~ Anuc(f). Hence St(g',\yl)n X ~ uc(f) v 

= uc(g')n X, while on the other hand Y - X s:: uc(g') by (4), so 

y E St(g',lyt) ~ uc(g'). This shows y6 ucl(g'), and so St(g',tyl) 

is a tu~)-nhd. of y in Y. However we also have st(g',lyS)n X 

~ A = P'n X, and so y E. (p'o X)4 f:. P. This verifies that 
u 

.IJ -1 0 ,0 1 0 

.,. (A u) ~ P, and likewise we have i - (B v) G: Q. Hence 

b' S;; 4'-1(0), and we have shown that c:{J is (r - ~ ) cpquc. 

Finally consider cr :.:: tP -1 : Jt, 1 (X) .-:, Y. If we take 

(d', c') Eo (1' and set (d, c) = (d'X' e'X)' then an argument 

exactly·., similar to that used above enables us to show that 

1\ 

and 60 'I' is ( ~ -r) cpquc. This completes the proof' of the 

theorem. 

We may make the following definitions for bitopologica1 

extensions in general. 

Definition 2.8.2. Let M be an interior confluence relation on 

the bitopological space (Y, u, v), and let X ~ Y be bidense. 

Then the extension (Y, u, v) of (X, ux' vX) will be said to: 

(i) be M-separated except for X if given y € Y - X and z c Y 
there exists G E u, H E:. v with GY.H and either y6. G t z E:. H 

or z E:. G t Y E. H. 

(ii) have pairwise relatively zero-dimensional outerowth if 

u has a base u» and v has a base v" so tha t 

G E.. u" ~ v-cl[G) - G 

H E v· ~ u-c1{Hl - H 

it 
So X and (Gn X) = a, 

u 

= X and (RI\ X)* = H. v 

Note that in (ii) it is sufficient for the stated conditions to 

hold for subbases u· , v~ of u t v respectively. Also the 
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condi tions (GI\ xi' = G and (HI" X)" = H are redundant if X is 
u v 

uniformly dense in Y. 

Clearly if (Y, u, v) has pairwise relatively zero-dimensional 

outgrowth then it is, in particular, a strict extension of 

(X, uX' v X). 

The following theorem eives sufficient conditions for 
" " (Jll(X), t (~), t (~» to be ~-separated except for X, and 

u v 

to have pairwise ralatively zero-dimensional outbrowth. 

Theorem 2.8.2. Let (X, & ) be a cpqu, and suppose there ia a 

iiubbase ~ 6:. 'b of b satisfying 
o 

(a) Given ~ E. JL (X) 2:lnd \(1, c) E <Y Wtt h.wtt utt" with 
o 

St (d, U) ;. 'C (respectively, St (V, d) ;. 'B ) implies c u c v 

St (d, U) ~ uc(d) (respectively, st (V, d) ~ uc(d» and c c 

there exists U'dV' with (U', V') -= e and St (V', d) S; 
c 

uc(d) (respectively, Stc(d, U') {" uc(d». 

,.. I\, 

Then (Jl.l(X), t (~), t (<b» is .o-separated except for X. 
u v 

If in addition & satisfies 

(b) Each (d, c) E. <r is transitive 
,.. ,.. 

then (Jll(X), tu\~)' tv(~ » has pairwise relatively zero-

dimenSional outgrowth. 

Proof. First take "G ,), 

minimal ~ -Cauchy we have 

E- cJt (X) with ~ l.t . Since 'G is 
o 

,(, u <j, ~ u or t. v t;J. "G v. Suppose 

'" u t;f:. 13 u' then since A, is minimal ~ -Cauchy we have (f, a) 

b G' and LfT with (L, T) 6; '" and st (f, L) q. 'ij • Take (e, b), a u 
(d, c) e. 0' with 

(d, c) ~ (jt) (e. b) ~ lW \ ( f, a). 

Since " is ~ -Cauchy -3 UdV wi th err. V) E. ~ • Take ReS 

and L'fT' with St (d, U) ~ R, St (V. d) ~ S, and Stb(e, R) 
c c 

= L', Stb(S. e) S: T'. Now (L', T') <c..t so LaT' and so 
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St (d, U) ~ L' E= St (f, L) which gives St (d, U)¢. 'B • Hence 

c a c u 

by (a) we have St (d, U) S uc(d) and -:3 U'dV' with (U', V')€: 
o 

~ and St (V', d) C uo(d). If now we take R'eS' with St (d, U') c c 

~ R' and St (V', d) <:. 
c S' it is easy to verify that 

,,/, E: R
O 

E. t (~ ), ~ E:. 
u u 

A similar result may be obtained if 'v ~ ~v' Secondly if we 

take -q E:. Jl (X) and x ~ X then ~ ~ x, and a similar argument 
o 

to that used above may be employed to complete the proof that 

" " (A1 CX), t (~), t (~ » is n-separated except for X. 
u v 

Now suppose that in addition ~ is transitive. Then it is 

clear that 

l U
O 

, U E:.. dom d e. dom G' t U ~ uc (d) 1 u 

" is a subbase of t (~ ). Also if (d. c) e. tY and Ue. dom d has 
u 

U ~ uc(d) then (Uo n X)~ • UO , so let us verify that 
u u u 

" t (~) -01 r Uo 1 - UO Co. x. v L u u -

Suppose on the contrary that for some 'G ~ Jl. (X) we have 
o 

'" \\ E t (~ )-clLuO ] but ~ d. Uo. Then :1 U'dV' with V l; -e v v u ~ u 

and U'!/=- U f\ uc (d) -= U. There are two cases to consider: 

(i) U ~ 'G • In this event UcV' and we have the immediate 
u 

contradiction U' ~ St (d. U) = u. 
c 

(ii) U £/. -ca • Then, since U = St (d, U). we have by (a) that u c 

'3 U"dV" with (U", VII) E.. ~ and V" s.. uo(d). But now '0 ~ 
" (VII)OV 6 tv( ~) and so UOul\ (VIt)ov .,l ¢, which implies UcV". 

Hence U" c: St (d, U) = U, which gives the contradiction U E 13 
c u 

In just the same way 

t VO 

v ' 
Vf. ran d E. dom G" , V "" uc (d) j 

is a subbase of " 0· ° t (~ ) satisfying (V " X) = V and v v v v 
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X, and the proof is complete. 

Clearly condition (a) of this theorem is satisfied for any 

cqu, and it is also satisfied in the symmetric situation 

afforded by a cpu. The following example gives another case 

in which both (a) and (b) are satisfied. 

Example 2.8.1. Let (X, u, v) be a bitopological space, and D an 

interior confluence relation satisfying a~(x - v-cllal) and 

(X - u-cltH)~H for all G ~u and H ~ v (this is true, in 

particular, if D = 1). Define d(a) and e(H) as in Lemma 1.8.2. 
Then 

~ = 1 (d(a), D), (e (H), D) \ a E: u - t ¢ i , H 6 v - l ¢ \ 1 

is a transitive open subbase for a basic cpqu ~ on X which 

is compatible with (X, u, v). 

That conditions (a) and (b) of Theorem 2.8.2 are satisfied 
... " 

for this subbase is clear, and so (JL 1 (X), tu ( ~ ), tv ( ~» is a 

strict completion of (X, ~ ) which is ~-separated except for X 

and has pairwise relatively zero-dimensional outgrowth. 

We will now give a result in the opposite direction to 

Theorem 2.8.2. First let us make the following definition: 

Definition 2.8.3. Let (X, u, v) be a bitopologica1 space, and 

D an interior confluence relation. We will say that the cpqu ~ 

is compatible with (X, u, v, D) if tu(~) = u, tv(~) = v and 

D = n t c ICE: ran ~ I . 

We will say that (X, u, v) is guasi-D-bic10sed if every 

cpqu ~ whiCh is compatible with (X, u, v, D) is complete. 

We may now give: 

Theorem 2.8.3. Let (X', u', v'l be a quasi-D'-biclosed bitopolog­

ica1 space, and (X, u, v) a bidense subspace. Suppose that D' 

has the oup, and that D = D'X satisfies a$(x - v-ella) and 

(X - u-cllHl)~H for all a & u, H ~ v. Finally suppose that 

(X', u', v') is D'-separated except for X, and that it has 

pairwise relatively zero-dimensional outgrowth. Then there 



exists a cpqu ~ on X with an open transitive base which is 

compatible with (X, u, v, D), and such that (X', u', v') is ... "-
bi topologically homeomorphic with (.Ill (X) , t (~), t (\». 

u v 
Proof. Let 
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u· = t G' I G' (b u' - t ¢ \ , (G'" X) -I u = 0' and v' -cl to') - G' 5: xl 

* and make a corresponding definition for v • Under the given 

conditions, u~ is a base of u' and y~ is a base of v,. For 

G' 6. u4# let us set 

{ 

1 (G', X), (.x: l(x'- Y'-cl[G')n xl:) 
d'(G') = , 

l(G', ')1 otherwise, 

and for H' E: ylf let us make an analogous definition of e'(H'). 

We may note that ('1'- Y'-cllG')1\ X ~ X - v-cl[G'n xl , and that 

(G'" X);0(X - y-ellG'n xl), so that G';0'ES'- Y'-clIG'])1\ xl-v. 

Hence (d'(G'), D') ~~) (d'(G'), D'), and a similar result holds 

for (e'(H'), D'). It follows that 

G' ' = t (d'(G'), D'), (e'(H'), D') I G' E:-. 
.. 

u , H' & v· j 

is an open transitive subbase for a cpqu ~'compatible with 

(X', u', y', D'). Moreover it is clear that <;. = ~ 'X is a 

cpqu on X with an open transitive base, which is compatible ... 
with (X, u, v, D). To show that (X', u', v') and (Al(X), tu(~)' 

... 
tv(~» are bitopo1ogica1ly homeomorphic it will suffice to 

verify the conditions (1) - (6) of Theorem 2.8.1 for the subbase 

r7 '. Condition (1) is clear from the definition,' To show (4) 
t k '· , a eye.. X - X and G' E;. u • If yE;. G' then of course yE:. G'n 1. 

On the other hand if y tEl G' then y 4- v'-cl(G' 1 and so y E: 

[( 
, • I .. 

'X - v'-cllG')nx) "X. A similar result holds for H' E: v , 
v 

and (4) now follows since the elements of (y , are open. For 

(2) take d' E: dome", U' ~ dom d' and y E:. X'- X. As the elements 

of (? , are transitive we have 



On the other hand let '/ ' be the base generated bY' 0' I, and 

suppose ::3 e' E: dom '(' with St(e',t,.\) oX ~ U'n X. Now e' is 

open and by (4) we have y' uc(e') so St(e',t,.\) is a t (~I)-
U .. open nhd. ot y. Hence y ~ (u'n X) m U' by the definition ot 

u 

the elements of ~ '. A similar result holds for V' E:. ran d'. 

To establish (3) take PD'Q with Pn Q ~ ¢. Since D' is 

interior and U~t v~ are bases we have 

(ut G" G' &.. u&, G' c;;. Pi)D'(lJ tH" H' ~ v·, H' <::.. Q» 
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and since D' has the oup -3 G' E:. u -4, G I '=- P and H'E:: v·, H' 6 Q 

with G'D'H'. But then (G'I\ X) .. = G' !: P and (H'" X) .. II: H' ~ Q u v 

as required. 
I , 

For (5) take y~ X - Xt Z ~ X - X and xc X. Suppose, for 

example, that we have y ~ G I E: u" wi th z tf G I, and x E: Ii I e. v· 

with,. tif.. H'. Then St(dl(G')tly\) ::r G' and St({z\,d'(G'» == 

«X.'- vl-cltG'l) ClX)4 t while G'I1'((X'- v'-cl[Gll)l"\x)~. On v v 
the other hand St(tx~.e'(H'» • H', x ~ uc 2(e'(H'», St(e'(H'),lY'\) 

== «X'- u'-clU!')" X)· and «X'- u'-clLH'l)f\X)' I1'H'. The 
u u 

other cases are similar. 

Finally for (6) we note that bY' hY'pothesis (Y, ~I) is 

complete, while by (4) and the fact that '/ I is an open base, 

we see that It b'-convergent to y E: X'- XIt is the same as It 

I convergent to y E: X - XII. 

This completes the proof ot the theorem. 

The above theorem is a natural generalisation of the 

characterization, given by VOTAW [35l ,of those quasi H-closed 

topological extensions which are Hausdorff except for X and 

which have relativelY' zero-dimensional outgrowth. This would 

encourage one to be~ve that it might be possible to character­

ize those quasi-D~biclosed extensions of a bitopological space 

which are D~separated except for X, and which are bitopologicallY' 
A. " homeomorphio to some (AI (X) , t ($), t (~», in terms ot a 

u v 

notion of "relatively pairwise completely regular outgrowth". 

Now it is certainly true that, under some fairly mild restriotions 
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'" 1\ 

on ~ ,the extension (AI(X), tu(~)' tv(~» does indeed satisfy 

a natural "pairwise" analogue of the notion of relatively 

completely regular outgrowth, but this seems insufficient, in 

general, to ensure the converse result. In principle a 

characterization in terms of the ex1st~nce of certain "normal 

sequences" of dual families would be quite feasible, however 

this would amount to a virtual restatement of a special case of 

Theorem 2.8.1, and we omit the details. 

We end this section by considering the relation between 
~ 

quasi-D-biclosedl and almost D-compactness, each of which is 

an analogue of a characteristic property of quasi H-closed(3S). 

If (X, u, v) is almost D-compact and ~ is a cpqu compatible 

wi th (X, u, v, D) then <b is complete, the argument being the 

same as in the case of 

quasi-D-biclosed. Let 

(X, ~ ) we may define 

place of II (U, V) fC. -6 

cqu. Hence an almost D-compact space is 

us consider the converse. For the cpqu 

TB.l and TB.2 as in § 2.6, except that in 

" we require "(t (~)-inttul, t (~)-inttvl) u v t' ". Of course this is the same if ~ is an open base. We 
o 

may verify at once that if (X, ~ ) is complete and satisfies 

TB.2 then (X, t (~), t (~» is almost D-compact. Hence a 
u v 

quasi-D-biclosed space which has a compatible cpqu satisfying 

TB.2 must be almost D-compact. However it is conceivable that 

there might be bitopological spaces for which no compatible 

cpqu has a Cauchy bifilter, and such a bitopolocrical space 

would be quasi D-biclosed for any D but no compatible cpqu 

could satisfy TB.2 and consequently it might not be almost D­

compact. Below we give sufficient conditions for a quasi D­

biclosed space to be almost D-compact. First let us make one or 

two comments about D-hyperfilters on a cpqu space. If ~ i8 a 

D-hyperfilter we make the same ehanges to the definition of 

"~ -Cauchy" and "weakly ~ -Cauchy" as we made in the caee of 

bifilters. Note in particular that a ~ -refined D-hyperfilter 

~ will be ~ -Cauchy, exactly as before, if for a subbase a' 

of ~ and any d ~ dom ~ we have UdV and F E; ~ with l' 4 (U, V). 

The conditions of hyper-total boundedness have the same definit­

ions as before, but the relations which hold between them for 
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a cqu will not hold, in general, for a cpqu. 

We may now give: 

Proposition 2.8.1. (a) Suppose the cpqu (X, ~ ) has a subbase 

G' so that d is finite for each d G dom G' • Then (X, ~ ) 

satisfies HTB.3. 

(b) Suppose that (X, ~ ) has a subbase 

satisfying the condition above, and in addition: 

Given dl , ••• , d
n 

e.. dom G' , and G & tu (~ ), H E; tv ( ~) with GDll 

there exists UidiV
i

, l~ i~ n, with GD«(\ t Vi})' (n lUil)DH, 

and (tu(~ )-intlf11 Ui')D(tv(~ )-intlnl V~]). Then (X, ~ ) 

satisfies TB.2. 

Proof. (a) Let!fs be a maximal ~ -refined D-hyperfilter, 

and take d = 1 (U
l

, V
l
), ••• , (Un' V

n
) 1 €: dom d • Take F' E:.:tr 

with F' c: Ux.v and F' ...t!.. d. Now if for each l!:- i ~ n we had 

FiE. ':\ sa tis fying 

(G, H) E:. F1 =? G 1= U1 or H 4- Vi 

we should obtain an immediate contradiction from F' ('\ n l Fi \ 

~¢; hence for Bome k, 1 ~ k ~ n, we have 

for each F f;.; . Since ~ is maximal we deduce that F" E;. ~ , 

while clearly F ~ (Uk' Vk)~which completes the proof. 

(b) Let '& be an open D-regular bif1lter, and set '\ = 
h ("1 ). Take d

l
, ••• , d

n 
E:. dom rY t and suppose that for each 

selection S(o(.) = t(U
i

, Vi) \ l~i ~nl, where UidiV
i 

and 

(tu( ~ )-inti n t Uin)D(tv(~ )-int t" t viI 1 ), there exists F(cI. ) 

E; '; so that G~(" t Vi l) or (n t U
i 
"~H for all (a, H) t:. 

F(C4)I\(uxv). Now each d
i 

is finite, so there are only a finite 

number of possible selections S(o(l)' ••• , S(e(m)' and if we 

take (a, H) E:. (n \'F(ol.. i)))I\(uJC. v), then GDH and so by hypothesis 

we have a selection S(o(.j)' l~ j ~ m, with GD(t"\tvi\) and 
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«(\IUi})DH which contradicts (G, H)£ F(otj)n (UXv). Rence 

T(d1.···.d),.. {(p, Q)\ P~ t (~>. Q€t (~), PD~t n u v 

wi th P ~ () { U i I and Q ~ n 1 Vi I ; and F E.:l ~ 3 

FI'\ (ux v) with GDQ and PDH J 

is non-empty, and so t T(d
l

, ••• ,dn > \ d
l

, ••• , dn ~ dom G'! is 

a base for a D-hyperfilter 'l • which is clearly ~ -refined. 

Let il be a maximal D-hyper fil ter re finemen t 0 f ";1 • Then q6- is 

~ -refined and hence ~ -Cauchy by (a). lIenee if we set /, = 

b ~) then it is clear tha this a D-re gular bi fil ter wi th the 

properties required in the definition of TB.2. and the proof is 
complete. 

Corollarl 1. Suppose that the bitopological space (X, u, v) 

satisfies the following conditions for the interior confluence 
relation D: 

(i) G~(X - v-cllG) and (X .. u-cllH])%H V G Eo u and R E; v, 

(ii) Given Gl , ••• , Gn , G E' u and H
l

, "', Hm' HE:. v with GDIi 

there exist (possibly improper) partitions (PI' P2) and 

(ql' q2) of the sets t 1, ••• , n} and t 1, ••• , mj 

respectively, so that if U =()lGi I iE. PllA (\l (X-

and V = ru (X - v-clLG~) I i ~ P21n u-cllH}) 'j E: q2 J 

n { Hj ' j E:: ql j then UDV, GDV and UDH. 

Then (X, u, v) is almost D-compact if and only if it i8 quasi­
D-biclosed. 

Proof. We need only consider the cpqu of Example 2.8.1. 

Corollarl 2. Let (X, u, v, D) have the properties (i) and (ii) 

of Corollary 1, and suppose in addition that D has the oup. 
" ~ Then if ~ is the cpqu of Example 2.8.1, (Al(X), t (~), t (~ » 

u v 

is almost ~ -compact, and hence, in particular, quaSi-~-biclosed. 

We now give a simple example which serves to illustrate 
this last result. 

Example 2.8.2. Consider the bitopol03ical space ( R, s, t) mentioned 
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earler, and take D = 1. If for rem we set H(r) = (x I x ~ rl 

and K(r) = { x I x ~ r J then the subbase tr of the cpqu ~ of 

Example 2.8.1 takes the form 

1 (dr' 1) J r e. ~ i lJ 1 ( { (m, 1R)J • 1) 1 

where d = 1 (H(r), R), (~, K(r»)J r 

Clearly (m, s, t, 1) satisfies the conditions of Corollary 2 above, 
A " and so (Jl l (IR), tu(~)' tv(~» is almost 1-compact. Let us 

identify this space. If '6 is an 1-regu1ar bifi1 ter which 

contains both (H(r), ~) and (m, K(s» for some r, e e ffi, then 

clearly 'G converges to r 0 where 

sup f s I (~, K(s» t 'i 1 = r = in f t r J (H (r), ~) Eo C j • 
o 

Hence the only non-convergent 1-regular minimal ~ -Cauchy bifi1ters 

are 1'1 and)<. , where ~ has base 1 (H(r), ~) Ire In I , and 

)<. has base 1 (~, K(s», s E: ~ j . Then 

.Il
1

(1R) = ~u1~, K.J , 

and clearly H(r)l = H(r)o = H(r) u l~t ,K(s)l = K(s)o = 
u u v v 

K(s)ul'r<.j ; these sets, together with Jl.1(R) and ¢, being the 
... "-

open sets of tu(~)' tv(~) respectively. Note that (.Il
l

(R), 
~ A . 

tu (& ), tv ( ~ » is actually uniformly compact t and n is uni form1y 
" ,. 

dense. Indeed (Jl
l

(IR), tu(~ )\ltv(~» is the usual two-point 

compactification of the real line. 

" If in our construction of the completion (It 1 (X), ~ ) we are 

prepared to forgo the separation properties (5) of Theorem 2.8.1 

we may include in JI. (X), D-regular ~ -Cauchy bifil ters 
o 

which are convergent in X, or which are not minimal ~ -Cauchy. 

Our final example of this section is an illustration of this. 

Example 2.8.3. Let us again consider the space (n, s, t), but 

this time let D be the relation 

PDQ ~ P1Q or s-intl.PJI!6-1t-int[QJ • 

Clearly D is the largest interior confluence relation on R. Also 
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if '(3 is any open D-regular bifil ter then every point of r. is 

a D-cluster point, and so (n, s, t) is almost D-compact. In 

fact this space is almost D-hypercompact, but it is not D-compact 

as consideration of the bifilter with base 

l (m, 1 n, n + 1, ••• \ )' n E. IN 1 
will show. 

Now consider the cpqu ~ with subbase cr = I (e , D), (f , D)I 
r r 

r~ IR 1 , where e = 1 (H(r), m» and f = 1 (m, K(r» J • r r 

Clearly S is compatible with en, s, t, D), and haa an open 

transitive base. There is just one minimal D-reeular S -Cauchy 

bifilter, and that is the bifilter ~ with base 

1 (H(r), K(s» I r, s ~ mJ . 
Of course e. converges to all the points of LR, but no~ the less 

" we may consider the completion (Jtl(R) , ~ ), where 

Al (IR) = nul E. 1 • 
" .. 

By the above general discussion (.Ill (R), t (~), t (~» will be 
u v 

almost ~-compact, and have pairwise relatively zero-dimensional 
outgrowth. 

Now for rEo n we have H(r)l = H(r)o = H(r)ulE.} and 
u u 

K(r)lv = K(r)Ov = K(r)vlE.j ; and these are the non-trivial 

.. " 
open sets for t (~ ) and t (~ ) respectively. It follows at once 

u v 

that peQ G9 PIl Q -I $d, that is e = 1 on Jl
l 
(n). This illustrates 

the extreme difference which can exist between a confluence 

relation and its restriction or extension. 

'" "" Note that (!tl(R), t (S», t ( ~» is not 1-compllct or 
u v 

uniformly compact, and ~ is not uniformly dense in this space 

since E.. is an isolated point for the uniform topoloeY. 
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CHAPTER THREE 

THE LATTICE 01i' BICONTINUOUS REAL-VALUED FUNCTIONS. 

In this chapter we consider the relation between certain 

bitopoloeical properties and properties of the lattice of 

bicontinuous real-valued functions. The set of bicontinuous real­

valued functions is a lattice, and it is closed under addition 

and multiplication by functions taking only non-ne~ative values, 

but in eeneral it is not a ring. In place of the notion of ring 

ideal, which plays such a central role in the study of the ring 

of continuous functions on 8 topoloGical space (see, for example, 

UG1), we shall consider the notion of bi-ideal to be defined • 
below. The elementary theory of bi-ideals resembles 80mewhat that 

of ring ideals, and can be developed in a more eeneral setting 

than that of the lattice of bicontinuous real-valued functions 

on a bitopological space. These considerations occupy the first 

two sections of this chapter. Following this we relste the theory 

so developed to the study of bitopoloeical real compactness, and 

consider the connection with completeness. 

For established terminology and notation concerninZ lattices 

the reader is refered to any standard text, for example «11. 
(30]). Throughout the first two sections P denotes a distributive 

lattice with a distinguished element o. 

3.1 ELEMENTARY THEORY OF BI-IDEAIJS. 

Let us first recall that L =. P is a (lattice) ideal in P if 
it satisfies: 
(i) a, b Eo L ~ a.., b E:. L, and 
(ii) a E:. L. b e;- P wi th b ~ a ~ b E; L. 

An ideal L is called prime if it satisfies 

a " b E: L ~ a G L or b E: L. 

Likewise M = P is a (lattice) dual ideal in P if it sa tis fies: 

(i) a, b Ci; M ~ al\b eN, and 



(ii) a ~ M, b € P wi th a ~ b =;> b E: M; 

while M is prime if it satisfies 

a v b 6 M ~ a ~ M or b E:. M. 

We may now give: 

Definition 3.1.1. The pair (L, M) is a bi-ideal in P if L is an 

ideal, M is a dual ideal and 0 E: Ln ~~. 

The bi-ideal (L, M) will be called prime if Land M are prime, 

and it will be called total if LU M = P. 

In order to obtain useful properties of bi-ideals we need to 

impose suitable "regularity" conditions. Accordingly we make the 

!ollowing definition. 

Definition 3.1.2. The binary relation l' on P 1s a disEersion 

if it satisfies: 

(1) a/b, a ... a' E:. P and b ~ b' E;. P 9 al/b'. and 

(ii) a-(b, atb', a'tb and a'/b' ~ (aAa')(bvb'). 

For convenience of writing we denote the necation of al'b by a7b. 

If (L, X) is a bi-ideal we shall now say that (L, M) is 

f -re~ular if it satisfies 

a 6. Land b EM=? a f b . 

We may partially order the bi-ideals by 

(L, M) -<. (L t, M') ~ L '= L' and M _ }1'. 

If (L, 11) is a " -reeular bi-ideal then the set of all .f -recular 

bi-ideals greater that (L, M) is clearly inductive, Bnd so by 

Zorn's Lemma each ~ -regular bi-ideal has a maximal ~ -recular 
bi-ideal refinement. 

Definition 3.1.3. Let f be a dispersion on P. We say the 

bi-ideal (L. t·n is "-outer prime if it satisfies: 

Cavb)-/Ca'l..b'> =;> 3 pt Land qE: M with (avp){q or (b"p)tq 

or pICa',.. q) or p-/(b'A.. q). 

We now have: 

Proposi tion 3.1.1. The I' -regular bi-ideal (L, M) has a unique 

maximal I -regular refinement if and only if it is I' -outer prime. 

Proof. Suppose (L, 1-1) has a unique maximal I' -resular refinement. 
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Then if (L, M) is not I -outer prime 3 a, b, a', b' ~ P with 

(avb)/(a'l\ b') and (avp)jq, (b'lP)lCI, pj(a'"q) and pl(b',...q) 

for all p E. Land q E. H. If for u €, P we define 

L U 
:: 

MU 
::: 

then 

~ V V E; P, 

l v v IS P, 

(La, 1-1); (Lb , 

"3 p ~ L wi th v ~ P val. and 

-3 q Eo M wi th u '" q ~ v 1 
a' b' M), (L. M ) and (L, M ) are f -re~ular 

refinements of (L, M), and so have a common' -rezular refinement 

(L', M'). However we now have a" b E. L' and a 'A b' E: M', which 

eives the immediate contradiction (a y b) I (a'" b'). 

To prove the converse, let (L, M) be a -I' -reiIular bi-ideal 

and define: 

L(/) = 1 a I a ~ P, -3 pIS. L, q €: 11 with (avp)fqJ. and 

M( f) = I b b E P, :3 peL, q E: M wi th P f (b 1\ q) J . 
Clearly L(i') ia a dual ideal. and M(I') is an ideal. Horeover, 

if (L, M) is ...f -outer prime, then L(/) and M( f) are prime, 

and so P - L( f) is an ideal and P - MC f) is a dual ideal. Also 

L !:. P - L ( 1') an d M ~ P - M C 1') so (p - L ( ..f) t P - r-1(.f» 1 s n 

bi-ideal refinement of (L, X), and it is clearly .( -regular. 

Finally let (L', M') be any I-regular refinement of (L, M), 

and suppose -:3 a t L'/l L(f) -I ¢~ Then for some p E:. L, q £. 1-1 we 

have (a 'I p) I q. However this is impossible sinc e a, p E.. L' and 

q ~ M'; and we deduce that L' s;;. P - L( -1'). Likewise M' ~ P -

M(-/), and we have shown that (p - L(/), P - M(-f» i8 the unique 

maximal .f -reZular refinement of (L, M). 

Corollary 1. A maximal l' -regular bi-ideal is prime and t­
outer prime. 

Corollar~ 2. (1. M) is maximal t -regular if and only 1f it 1s 

-I -regular and L U L(t) = M u M(.f) = P. 

Corollary 3. If (L. M) is -I -regular and total then L(t)" }!( /') 

= ¢. If (t, M) is maximal .( -regular and L( I )" Me f) = ¢ then 

(L, M) is total. 

We now introduce some additional structure into P. Let 

T : It X P --> P be a mapping, and for r Eo IR and a €. P let us set 

Tr(a) = T(r. a). We make the following definition: 



Definition 3.1.4. We say P is a T-lattice if T satisfies: 

(i) Tr P ~ P is a lattice homomorphism for each r t: IlL 

(ii) T oT = T oT = T for all r, s E ~. r s s r r+s 

(iii) Tr (a) = a <:==:> r = 0, for all a Eo P. 

(iv) T (a) ~ a for all aE. P and r :> O. r 

Note in particular that the map r ~ T (0) is an injection 
-r 

of R into P, and it takes 0 E IR to the distinguished element 

° ~ P. In general we shall denote the element T (0) 01 P by r. 
-r 

Clearly we have T (r) = r - s for all rand s. 
s 

This added structure on P enables us to define various 

special dispersions. Initially let us note the following: 

Definition 3.1.5. On the T-lattice P the dispersions 

-( b are given by 

d and Te 

-f e = l (a, b) I a, b f. P, :3 r E. R wi th b s r ..::. 0 or 0 < r iii ai, 

fb= l(a,b)la,b~p, -3 r>OwithTr(a"O)>; b"Oj 

Note that, since l' e ~ I' b' a -I b-regular bi-ideal is alao 

./ ~ -re gular. 

Lemma 3.1.1. If (L, M) is I -regular and r E: m, then e 

r E:. L ~ r ~ 0 and r f. M ~ r ~ 0. 

Lemma 3.1.2. If (L, M) is f b-regular it satisfies 

(a) at; L '=P T (a) (j. M \fI r > 0, and r 
(b) b ~ M =S> T (b) ¢ L V r ~ O. -r 

Conversely if the bi-ideal (L, M) satisfies (a) or (b) it is 

-f b -regular. 

We omit the proofs, which are straightforward. Note in particular 

that if (L, M) is I b-regular and Tr(a)E:, L, Te(a) E- M then 

we must have a ~ r. Hence we can have T (a)E:. LflM for at most 
r 

onerE: ~. 

The following is a further corollary to Proposition 3.1.1. 



Proposition ,.1.2. If (L, M) is I
b
-regu1ar and prime then 

L(.f' b)(\ M(.f b) = ¢. In particular every maximal f' b-regu1ar 

bi-ideal is total. 
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Proof. Suppose we had some a c L(/ b)" M( I' b). Since a f:. L( I'b) 

we have p t L, q E.. M with (a"pH/b)q. Also at/- M since 

M(I b)" M = ¢. Now ~ t ~ 0 with Tr(a vP" 0) >..: qt\ 0, and 

ql\ 0 €: M, so Tt(a" p" 0) = Tt(a)v Tt(p" 0) E: M. But M is prime, 

ao Tt(a) €. M or Tt(p" 0) E:. M. However the first is impossible 

aince Tt(a) ~ a, and the aecond is impossible since p(fb)Tt(p"0). 

This contradiction shows that L( I b)n M( (b) = ¢. Rote that we 

have only used the fact that M is prime, and likewise it would be 

sufficient to assume only that L is prime. 

Finally, if (L, M) is maximal I' b -regular then (L, H) is 

prime by Corollary 1 to Proposition 3.1.1. lIenee LC/b)I\M(t'b) 

= ¢, and so (L, M) is total by Corollary 3 to Proposition 3.1.1. 

Definition 3.1.6. Let (L, M) be a bi-idea1 in the T-lattice P. 

The bi-ideal refinement (L+, M+) of (L, M) is defined by 

L+:: 1 a' aE:.P, T (a)E:: L 'r/ r'" oj, and 
r 

M+ :: {a \ a E:. P, T -r (a) E. M \J r ':;.- 01. 
( L M ) i (i 1 1 i) i f (L+ , M + ) , s nearly total respect ve y, near y pr me 

is total (respectively, prime). 

~. (1) (L, M) is fe-regular or I' b-regular if and only 

if the same is true of (L+, M+). 

(2) (L, M) is nearly total if and only if it satisfies 

either of the equivalent conditions: 

(a) LVM+ = P, or (b) L+vM:: P. 

(3) (L, M) is nearly prime if and only if it satisfies: 

(a) a" b E:- L -:;> a E: L + or b E:. L +; and 

(b) a"b E: M ~ a E:-M+ or bE- M+. 



In particular a primebi-ideal is nearly prime. 

We omit the proofs of the above results since they are all 

elementary. 

Proposi tion 3.1.3. Let (L, H) be a -I b -regular bi-ideal. Then 

(L, M) is nearly total if and only if it is f b -outer prime 

and nearly prime. 

Proof. First let us suppose that (L, M) is nearly total. Suppose 

that for some aA b E: L we have a 4- L+ and 

also have some t:> 0 with T
t 

(a) ¢ L + and 

Then we clearly 

+ L • However 

+ 
L lJ M = P, and so Tt(a" b) = Tt(a) ATt(b) E. M which contradicts 

the fact that (L, M) is I b-regular (Lemma 3.1.2). In the Game 

way we cannot have a v b E:. M wi th a rt M + and b f M+, and it follows 

by Note (3) above that (L, M) is ne~~~y prime. To show that 

(L, M) is ~ b-outer prime, let us assume the contrary. Then we 

shall have a, b, a', b ' E:. P so that (avb)( Ib)(a'" b') and 

- - -
(a v p)(..fb)q, (bvp)(.fb)q, p(.fb)(a'l\ q) and p(/b)(b'l\q) for 

all p E:. Land q E M. Now for any t> 0 we have (a" 0)( '\)Tt(a), 

and since 0 c L this implies Tt(a) ¢ M. Since (L, H) is nearly 

total this shows that a~ L+. In just the same way we can show 

that bE L +, a' ~ M+ and b' E. M+. Now for some 8 > 0 wo have 

Ts(a" bV 0) >,:: a' 1\ b' '" 0, and we may deduce that for all r 

with'O <. 2r ~ s we have T (av b" 0) ~ LIl M. This, by the 
r 

remark made after Lemma 3.1.2, contradicts the fact that (L, M) 

is f b -re gular. 

For the converse, suppose that (L, M) is f b-regular, .f -b 

outer prime and nearly prime; and that for some a € P and t > 0 

we have a € Land T_t (a) 9- H. Now T_ t (a) (I b)a, so :l p t L, 

q ~ M with (T_ t (a) v p)( I b)q or pC f b)(q '" a). In the first case 
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there exists s > ° with T2s (T -t (a)" p v 0) ~ q" 0, and so 

T2s _t (a)v ~2s(PV 0) ~ M. Since (L, M) is n~arly prime we deduce 

that either T tea) E: M or T (PV' 0) E:. M. Now T (p" 0) E: M is s- s s 

impossible since (L, M) is -f b-rel)ular, and so Ts_t(a) t= M. 

However T tea) ~ T (a) and so T_t(a) E:::: H, which contradicts s- -t 

the above hypothesis. The second case leads to a contradiction 

in the same way, and the proof is complete. 

For a fixed bi-ideal (L, M) let us consider the following 

binary relation ~ on P. 

a ,v b ~ (Tr(a) 6 L ~ T (b) eLand T Ca) E. M ~ T (b) E. M) 
r r r 

Clearly rV is an equivalence relation on P. We denote the equi­

valence classes by {a 1, the quotient set by p/(L, ~1) = t l a 1 , 
a e pl. t; will denote the canonical map If (a) = I a 1 of P 
onto P/(L, H). 

We may partially order p/CL, M) by setting: 

( a '1 ~ l b 1 4:::) (T (b) E:. L :7 T (a) E:: L an d T (a) E. H C) T (b) ~ M) 
r r r r 

It is clear tha t 't is order preserving, and so l a \I b 1 is an 

upper bound and i a 1\ b l a lower bound of the set \ [a), lbll , 

for all a, b e P. Moreover if (L, X) is prime then it is easy to 
see that 

La) vlb\ = l a vb) and { a 1" t bJ = l a" b 1 

so that P/(t, M) is then a lattice, and ~ a lattice homomorphism. 

Also T (ta J) = [T (a») is well defined, and so when (L, M) is r r 

prime we may make p/(L, M) into a T-lattice in such a way that 

Y is a T-lattice homomorphism. Finally let us note that if 

(L, 11) is -f -regular then 
e 

r-?trl 

is an order preserving injection of minto P/(L, H). 

The proofs of the following lemmas are elementary, and are 
omitted. 

Lemma 3.1.3. Let (L, r1) be I b-regular. Then: 



(a) L = {a, l a):6. L 0) j 

(b) M = I bl lo)~ (b]} 

(c) L",M = [0] 

Lemma 3.1.4. Let (L, M) be .f b -regular. Then p/(L, 1-1) is 

totally ordered if and only if each element of P/CL, M) is 

compatible with CO). 

We may now give: 

Proposition 3.1.4. Let (L, H) be a fe-regular bi-ideal. 

Then P/(L, M) is totally ordered if and only if (L, M) is 

Af b-regular and total. 

Proof. Sufficiency follows at once from Lemma 3.1.3 and 

Lemma 3.1.4. To prove necess~ity suppose p/(L, M) is totally 

ordered. If (L, M) were not -I b-regular we should have p E:- L, . 

q~ M with P(!b)q, and hence some t> 0 with T2t (p"O)'>': q"O. 

In that case Tt(Tt(pv 0» £. ~1 but Tt(O) ¢ }1 so [Tt(p"O») 1- (0); 

while T_tCTt(pv O» = pv O t L but T.t(O) f/.. L and so 

[0)4-[ Tt(p" 0». This would contradict the total orderedness of 

P/(L, H), and we deduce that (L, M) is -f b-regu1ar. The fact 

that (L, M) is total now follows at once from Lem~a 3.1.,. 
Definition 3.1.7. He say [al E:. pleL, H) is infin'tesim<il if 

)I 

[-t) , La) ~ It) for all t '> 0, and in tha t case we say that 

a is infin'tesimal at (L, M). ~'!e denote by 1(L H) (0) (or just 
K , • 

by 1(0) ) the set of all elements of P which are infir~tesimal 
at (L, M). 

First let us note the following elementary consequences of our 

definition. 

Lemma 3.1.5. If (L, H) is -I -regular then 
e 

l. (0) = { a , T t (a) €. L - M and T _ t (a) E. M - L 'd t '> 0 1 . 

Corol1ar~ 1. If (L, M) is ~e-regu1ar and nearly prime then 

1(0) is a sub-lattice of P. 
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Corollar;x: 2. If (L, 11) is -(' b-regular then 1(0) = L+(\ H+. 

We may now give: 

Proposition 3.1.5. The,f b-regular bi-ideal (L, H) is maximal 

-( b -regular if and only if it is nearly total and p/eL, H) 

contains no non-zero infintesimal elements. 

Proof. If (L, 11) is maximal -f b -regular then it is total by 

Proposition 3.1.1, and hence nearly total. Also, since (L+, 14+) 

is a ~ b-reeular refinement of (L, M) we have 

1(0) = L+" M+:: LI"tH = Lo] 

by Lemma 3.1.3 and Lemma 3.1.5, Corollary 2. 

Conversely suppose (L, M) is .( b-ree;ular and nearly total, 

and that P/(L, M) has no non-zero infintesimals. By Proposition 

3.1.1, Corollary 2, it will suffice to show that L u L( -f b) = 
Hu M( f b ) = P. Take a E:: P - L. Since L U 11+ :: P we have a E:: M+. 

On the other hand a 1- L t\ M = , 01 = L + (\ H+ and so a 4- L +. Hence 

+ for some s ~ 0 we have T2s (a) " L, and so T
2s

(a) E:r 11, which 

implies that T (a) E:. H. Hence 0 ~ L and (a" O)(..fb)T (a) which 
s. s 

gives us a ~ L(..f
b

) as required. H v M( f b) = P may be shown in 

the same way, and the proof is complete. 

On P /(L) H) let us define the relation "'-~ by 

La) ~ lb) ~ (lT
t
(a)l:!:: IT_t(b)1 V t '> 0). 

We have at once: 

Lemma 3.1.6. The following are equivalent. 

(a) Lal ~ Lbl, 

(b) lTt(a)J~ lb) \tI t?O, 

(c) La) ~ t T_
t 

(b) J V t? O. 

Corollar~ 1. ""'.&.. is a pseudo-order on P /(L, 11). (That is, it 

is reflexive and transitive) 
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Corollar:! 2. The sets I([a) = t lb) \ ia) ~ [bl and 

[b].t.,(. raj J = i [bll [Tt(a)]~ [b) ~ iT_tea)] \I t~O), 

a e P, form a partition of p/(L, M). 

':/e may reeard the elements of I ([aJ) as being "infinitely 

close" to [al. Note in particular that I(Lo) = ty(l.(O». 

Definition 3.1.8. We say P/(L, M) 1s nearly totally ordered 

if ~ is a total pseudo-order. 

Now consider the set I(P) = [ I([a]) , a ~ P j . We may 

partially order I(P) by setting 

I(fa1) ~ I([b) ~ (a) ...v.. lb). 

On the other hand let us denote the elements of P/(L+, }1+) by 

{ a)+ d th . b U. +. If we note that ,an e cannonical mappl.ng y 1 

then it is immediate that + )((I({a)) = Lal is an order preservinG 

isomorphism of I(P) with P/(L+, M+). In particular if (L, M) is 

nearly prime then P/(L+, M+) is a lattice, and hence 60 toois 

I(P). Moreover, since I([al) = ~-l( ~+(a» is a composition 

of lattice homomorphisms we have 

I«a)vI([b) = I([avb]), and 

I([a)AI([b) = I([a~b]) 

for all a, b ~ P. We summarize these results in the next theorem. 

Theorem 3.1.1. Let (L, M) be nearly prime. Then I(P) is a 

lattice and a ~ I«(a) is a lattice homomorphism. Uoreover 

I(P) is lattice isomorphic with P/(L+, M+) under the mapping 

K.(I([a)) = ta)+, a €;- P. 

Next let us note: 

Theorem 3.1.2. Let (L, M) be f b-regular. Then the followina 

are equivalent. 

(1) P/(L, M) is nearly totally ordered. 



(ii) 

(iii) 

Proof. 
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(L, M) is nearly total. 

(L+, u+) 8 1 ~, is maximal ~ b-regu ar. 

(i) ~ (ii). If p/(L, M) is nearly totally ordered 

then I(p) ~ p/(L+, M+) is totally ordered, and hence (L+, M+) 

is total by Proposition 3.1.4. This shows that (L, M) is 
nearly total. 

(ii) ~ (iii). Note fi1!st that P/(L+, 1-1+) can contain 

no non-zero infintesima1s, for by Lemma 3.1.5, Corollary 2, 

and Lemma 3.1.3, we have 

( ) = (L+)+ ..... (M+)+ = L+ ..... M+ = (0)+ 1(L\ M+) 0 '1 '1 

Hence if + + (L, M) is nearly total then (L , M ) is total and 

hence maximal I' b-regu1ar by Proposition 3.1.5. 

(iii) ~ (i) If (L+, M+) is maximal I' b-reeu1ar then 

it is total by Proposition 3.1.2, and hence p/(L +, 11+) - I (}» 

is totally ordered by Proposition 3.1.4. Hence p/(L, M) is 

nearly totally ordered. 

We are now going to consider the situation with rezard to e. 
the exist#nce of infinite elements of p/(L, M). 

Definition 3.1.9. The element CaJ 6 p/(L, M) is finite if 

[e1 ~ lal ~ ttl for some s, t '= IR, and it is infinite if 

tel ~ tal -V s Eo ft or [a] ~ Ltl ~ t E: t1. a E:. P is finite 

or infinite at (L, M) if tal has the corresponding property 1n 

P/(L t M). Finally (L, M) ie finite if all the elements of P 
are finite at (L, M). 

Lemma 3.1.7. If (L, M) is I -regular then: e 
(a) le) ~ (a) V eE:1R ~ T (a) E- M - L V rEn. r 
(b) [a) ~ (tJ 'V t E':- R ~ T (a) E: L r - 11 'V r E:. IR. 

Moreover, if (L, M) is -I b -regular we may replace M - L by ~1 

and L - M by L in (a) and (b) above. 

Coro11ar;r. If (L, M) is 11 -re'~ular then the only inrin! te ""fe ... 

e1ementa of P/(L, M) are the greatest and least elements, when 
these exist. 
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We omit the proof, which is trivial. 

Proposition 3.1.6. 

(i) If (L', M') 

Let (L, M) be a finite -f b -regular bi-ideal. 

is -I b -reeular and (L, M) """" (L', H') then 

(L " H') is fini te • 

(ii) If (L', M') is nearly total and (L', M') .<. (L, 1-1) then 

(L', M') is finite. 

Proof. (i) is trivial, and (ii) follows from Lemma 3.1.7 if 

we note that when (L', 11') is a nearly total ~ b-ret;ular bi-

ideal each element of p/(L', H') is either finite or infinite. 

We have already noted that when (L, H) is -f -regular e 

r --71> L r 1 is an order preserving injection of l'J into F/eL, H). 

If P/(L, M) has a greatest and/or least element this mappine mny 

be extended in the obvious way to a mapring defined on nul ooj , 

It u { -00 j or 11 U 1 Cl\ -00 J , as the case may be. 

Definition 3.1.10. The -I -regular bi-ideal (L, 1'1) is ~ if 
e 

P/(L, M) is the image of ~ under the mapping r ~ rrl. (L, M) is 

extended real if it is the image of anyone of the sets 11, IR u [cd. 

n u { -00 \ or lIt u t <X\ -00 J • 

Lemma 3.1.8. Let (L, M) be ~ -regular. Then (L, M) is real if 
e 

and only if given a ~ P 

Tr(a) Eo M ~ r ~ 0( • 

-3 c(, E: lIt with T (a) E L ¢:::;) 
r r ~ cae. and 

Coro11ar:! 1. Let (L, 11) be -f -regular. Then (L, N) is real if 
e 

and only if eiven a E:. P -3! r:A e. R with Tol.(a) E. Lilli. 

Corollary 2. Let (L, ti) be ./ -ree;ular. Then (L, M) is real if 
e 

and only if it is .( b-regu1ar and eiven a f P 3 ott f1 with 

Td-(a) E.. LI\M. 

We omit the proof, which is straightforward. Correspondine 

characterizations of extended real may be obtained by replacinG 

"a E: P" by "a E: P which is finite at (L, ~1)". In particular we 

note the t an extended real bi-ideal is always ..f b -regular. 

Corollary 1 of the next proposition gives a considerably improved 
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result. 

Proposition 3.1.7. Let (L, 1-1) be ...f b-regular and nearly prime. 

Then (L, M) is nearly total if and only if U { I([ rl) IrE:. J\ i 

is the set of all finite elements of p/(L, M). 

Proof. Suppose (L, M) is nearly total, and let a c P be finite 

at (L, H). Then s = sup t r' lrl ~ r a 1 ( E. nand t = inf { r , 

ral ~ [rl \ ~ R, and clearly 6 !S: t. If s ~ t take w with 

s c::. w <. t, and 0 <. h ~ max l t - VI, W - s I . By ~roposi tion 

3.1.2, P/(L t M) is nearly totally ordered eo Cal <.<. [w) or 

[Vll ~ lal. In the first case [a) ~ l T_h(w)] = t w + h1 and 

so t ~ w + h, which contradicts the choice of h. Likewise the 

second case leads to a contradiction, and we deduce s = t. It 

then follows easily that [a1 6 I([s). 

The convers~ result is clear. 

Coro1lar~ 1. The bi-ideal (L, M) is extended real if and only 

if it is maximal -f b -regular. 

Proof. First suppose that (L, M) is maximal ~b-regular. Then 

(L, M) is prime and total, so by Proposition 3.1.7 V t l(l r]) I 
r E:. t.i 1 is the set of all finite elements of p/(L, t1). However 

by Proposition 3.1.5 p/(L, M) has no non-zero infintesimal 

elements, so if a E P is finite at (L, M) we have (a) ~ l([ot) 

for some 0{ E. JR, while [al E. I([c(])~ [Toe(a)] E:: le(a]} :: 

Ha)} • Hence TQ/..(a) E:. L" M, and (L, M) is extended real. 

Conversely suppose (L, M) is extended real. Then by definition 

(L, 1-1) is -f e-reeular, and also p/(L t M) is totally ordered 60 

by Proposition 3.1.4 (L, M) is ~ b-regular and total. Finally 

P/(L, M) contains no non-zero infintesimals so (L, M) is 

maximal ~b-regular by Proposition 3.1.5. 

As an immediate consequence of this result and Proposition 

3 .1. 6 we ha v e : 

Corollary 2. Any maximal ~ b-regular refinement of a finite 

bi-ideal is real. 
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Coro11ar~ 3. Let (L, M) be a nearly prime ~b-re$u1ar bi-ideal. 

Then the following are equivalent: 

(a) P/(L, M) = U I I(LrJ) J r ~ mJ. 
(b) (L+, M+) is real. 

(c) (L, M) is ~ b -outer prime and finite. 

Proof. (a) =;> (b). By the proposition (L, M) is nearly total 

so by Theorem 3.1.2, (L+, M+) is maximal l' b-regular. Also 

(L, M) is finite so (L+, M+) is real by Corollary 2. 

(c) =7> (a). This follows at once from the above 

proposition and Proposition 3.1.3. 

(b) =;:» (0). (L +, M+) is maximal I b -regular by 

Corollary 1, and so (L, M) is nearly total by Theorem 3.1.2. 

Hence (L, M) is l' b-outer prime by Proposition 3.1.3, and 

(L, M) is finite sinoe (L+, M+) is, using Proposition 3.l.6(ii). 

Now let A and B be sub-T-lattices of P with A ~ B. A 

dispersion ~ on P induoes a dispersion on A and B which ~e 

oontinue to denote by ,r , and a statement that a bi-ideal in 

A or B is f -regular, {-outer prime, etc., will mean that it 

has the stated property for the induoed dispersion. 

If (L, M) is a I-regular bi-ideal in B then (LO A, M"A) 

is a f -regular bi-ideal in A, and moreover if (L, M) is 

maximal I-regular then the same is true of (LI\ A, H/\ A) in A. 

On the other hand suppose (L, M) is a I -regular bi-ideal 
in A, and assume that -f ~ ( • Let e 

LB = 1 b b E:. B, ::3 a E: L and t >' 0 with bit. t ~ a J , and 

MB :: 1 b I b E:. B, -3 a e M and t ~ 0 wi th a 6- bv(-t)!. 

Then (LB, MB) is a ~ -regular bi-ideal in B which is contained in 

every prime f -regular bi-ideal in B whose restriction to A is 

(L, M). Henoe if (L, M) is maximal f -regular in A we have at least 

one maximal I -regular bi-ideal in B whose restriction to A is 

(L, M). In partioular this maximal ,I -regular extension of (L, M) 
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to B will be unique if and only if (LB, MB) is -I-outer prime. 

This leads us to the following: 

Definition 3.1.11. Let A, B be sub-T-lattices of P with A ~ D. 

Then B is a -{-refinement of A if every maximal ..f -re~ular 
bi-ideal in A has a unique extension to a maximal ~ -reeular 
bi-ideal in B. 

A is I-complete in P if it has no proper ~ -refine:nent 

in P. A ~ -complete I -refinement of A will be called a ~ 

completion of A. 

In the same way if every finite maximal -I -reeular bi-idelll 

in A has a unique finite maximal ~ -regular extension to B we 

may speak of B as a finite ~ -refinement of A, and eive obvious 

meanings to the terms finitely I -complete and finite {­
completion. 

Proposition 3.1.8. Every sub-T-lattice A of P has a -f-co:npletion 
in P. 

Proof. If A 1s ,I -complete there is nothing to prove 60 

assume the contrary. Then by Zorn's Lem~a it will be sufficient 

to show that the set of .,P -refinements of A is inductive when 

ordered by set inclusion. Let t BQ ( be a chain of of -refinements 

of A, and set B = U 1 Ba( I . Clearly B is a sub-T-la ttice of P 

with A ~ B. Let (L, H) be a maximal -I -regular bi-ideal in A, 
and note that 

It may be verified at once that (L£, HB) is -I -outer prime t 60 

(L, M) has a unique maximal l' -regular extension to B. Hence £ 

is an upper bound of the -I -refinements I B. J , and the proof 
is complete. 

For the case -( = ..{ b we are going to show that, more 

particularly, every sub-T-la ttice A has a unique -I b -completion 

and a unique finite I b-completion. To this end we shall need 

the following lemma, which is true for an arbitrary dispersion. 



177 
Lemma 3.1. 9. Let A, B be sub-T-la ttices of P with A S B, and 

(L, M) a msximal !' -regular bi-ideal in A. Define: 

L(B) ::: l b I b E. B and ~ a t L such that V r t:.I1, T (a)E. L' 
r 

~ T (b) IE: L' \I maximal I -regular bi-ideals r 
(L', H') in P wi th L' n A = Land l-1 '1\ A = H ~ , 

t-i(B) :: t b , b E::. Band -3 a € M such that \;f r t:. n, Tr(a) E: H' 

~ T (b) E. H' V maximal -I' -re~ular bi-ideals 
r 

(L', M') in P wi th L'" A = Land N'" A = M 1 • 
Then: 

(i) (L(D), MCB» is a I -regular bi-ideal in B with 

L(B)n A = Land M(B)n A = M, 

(ii) If (L , M ) is any maximal I -regular bi-ideal in n with 
o 0 

L f\ A :: Land M " A = H then L(B) ~ Land H(B) ~ 11 I o 0 0 0 

(iii) If (L, M) has a unique maximal I -reGular extension to B 

then (L(B), M(B» is prime. 

Proof. (i) and (ii) are clear, so let us prove (iii). Take h, b' 

E: B with bAb't L(B), and let (L', H') be a maximal I-recular 

bi-idea1 in P with L'n A = L and M'~ A = M. Then for some a ~ L 
we have T (a) E: L' ~ T (bl\. b') E: L't and, since L' is prime 

r r 

it follows at once that T (a) E L' '.~ Tr(b) E:: L' V r «:. t1 or 
r . 

T (a) e L' ~ T Cb') € L' V r E. m. Since we are assuming r r 

that (L, M) has a unique maximal ~ -regular extension to B 

this is sufficient to prove b E L(B) or b' E:. L(D), that is L(D) 

is prime. N(B) may be shown to be prime in the same way. 

The results of this lemma, together with Propositions 3.1.1, 
3.1.3 and 3.1.6, and Corollories 1 and 2 of Propositiou 3.1.7, 
give us the following result: 

Corollaril· B is a -f b -refinement (respectively, a tinite ., b-

refinement) of A if and only if for each extended real (respect­

iVely, rea1)bi-ideal (L, M) in A the bi-ideal (L(B), Men» 
is nearly total (respectively, nearly total and finite). 

"'e m . II ay now gl. ve : 
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completion and a unique finite ~ b-completion in P. 
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Proof. If A is I b-complete (respectively, finitely f'b-complete) 

there is nothing, to prove, so assume the contrary and let 1 D~ 1 

be the class of all .f b-refinements (respectively, finite -I' b­

refinements) of A in P. Let B = ~ Bo(" denote the smallest 6ub­

T-lattice of P containing all the B~; then the proof will be 

complete if we can show that B is a -f b-rafinement (respectively, 

finite I b-refinement) of A. Let (L, M) be an extended real 

(respectively, real) bi-ideal in A. Now the elemants of B may 

be obtained from the elements of U t B I 
CIt 

by a finite number of 

applications of the operations Y t " t T , r En, an dIe t us r 

denote by B the set of elemenbof B which may be obtaind usinG n 

n such applications. In particular t therefore, BO = U t Ba( J 

and B = U t Bin = 0, 1, 2 t ••• J • n 

Make the following induction hypothesis: 

pen) ; For all b E Bn' r ~ ~, we havo Tr(b) 1- L(B) ::;. Tr(b) E. 

M(B)+. 

p(O) is certainly valid, for L(B)" Bill. = L(nor ), H(B)" B. = M(n",,) t 

and(L(B~), M(B~» is nearly total for each ~ by the corollary 

to Lemma 3.1.9. Hence suppose rem) for all m ~ n t and take 

b e B • There are three cases to consider: n 

(i) b = b'v b", (ii) b = b',. b", (iii) b = T (b'), s 

where b' E; B b" E: B with n'vn" c:. n. and s E. [(. 
n" n" 

Consider (i), and suppose T (b) = T (b'Vb") = T (b')V T (b") J 
r r r r ~ 

L(B). Then T (b') f. L(B) or T (b") d L(E). so by the induction r r ~ 

hypothesis T (b') t: M(B)+ or T (b") E. lHB)+ and in either 
r r • 

event T (b) ::: T (b t)y T (b") € M(B) + • 
r r r 
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Case (ii) is dealt with in the same way, and (iii) is trivial. so 

We have established pen). This shows pen) is true for all n, and 

hence (L(E), M(B» is nearly total. If (L, M) is real and each 

B~ is a finite ~ b-refinement then a similar induction argument 

can be used to show that (L(B), M(B» is also finite, and the 

result now follows from the Corollary to Lemma 3.1.9. 

An element a E P is bounded if s 6 a ~ t for some a, t €-
~ R, and we denote the set of bounded elements of P by P • Of 

course P~ is a sub-T-lattice of P. If a t p4 then a is finite at 

every ~ -regular bi-ideal in P. Hence if we set e 

P' = I a I a e P, a is finite at every extended real bi-ideal 

in P 1 

then P' is a sub-T-lattice of P t and P" ~ P'. Note that every 

extended real bi-ideal in p4 or P' 1s real. 

Proposition 3.1.9. ." 
(i) The .f' b-completion of P is P. 

• (ii) If A is a sub-T-lattice of P then 

its finite I' b -completion in P is a subset of P'. In particular 
./I 

the finite 1f b-completion of P is P'. 

Proof. Let (L, M) be a real bi-ideal in P, and define 

L' = 1 a a E. P, (a A t) v s ~ L \I s 4:. 0 ~ t } t 

M' = {b bEP t (bl\t)"s E.M V s~OLtl. 

It is a straightforward matter to verify that (L', M') is the 

unique maximal -f b-regular extension of (L, M) to P, and so 

P is the -f b -comple tion 0 f poW, and P' is a fini te -I b -re tine men t 

of p ... Finally if A ~ p. is a aub-T-lattice, B a finite ~ b­

refinement of A and (L', M') an extended real bi-ideal in P, 

then (L'A B, M'n B) is' finite and hence real in B, since it 

is the extension to B of the real bi-ideal (L'nA, M'n A) in 

At and so every element of B is finite at (L', M'); that is 

B 6: P'. This completes the proof. 
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~.2. S-RESOLUTIONS AND DERIVATIVES. 

Let S be a subset of the T-lattice P. In general S will not 

be a sub-T-lattice. but it will be oonvenient to assume through­

out that S contains the distinguished element O. We will denote 

by <. S:;:. the smallest sub-T-lattice of P which contains S. The 

elements of <:. S::> are obtained from those of S by a fin1 te 

number of applications of the operations V. 1\ and Tr • 

Let p : S ~ R be a function and define 

LP = t a , a E: <.S> t :3 a 1 • • ••• a E. Sand t ~ 0 wi th 
n 

MP = t a \ a E. ~ S">. -3 aI' ••• , an E. Sand t > 0 wi th 

avC-t) ~ 1\1 TpCai)(ai)\l\oj. 

Clearly LP is an ideal in ~S"> • and MP a dual ideal. Aleo if 

p(O) ~ 0 we have 0 E LPnMP and so (LP. MP) is a bi-idea1. We 

make the following definition: 

Definition 3.2.1. The function p : S ~ ~ is a S-reeolution 

if peo) = 0 and the bi-idea1 (LP. MP) ie ..f -re gular. (LP , MP) 
e 

is then called the S-derivative corresponding to p. 

We denote by RS the set of all S-tes6lutions. 

If (L. M) is a real bi-ideal in ~ S> then for each a E:. <SiI" 

we have a unique real number, which we may denote by pCa). 

satisfying T (a) E: L ~ r:;, pea) and T (a) t M ~ r:!: p(a). 
r r 

p is clearly a < S>-resolution. for p(O) a 0 and (LP, MP) a 

(L, M) is -f b -regular and hence certainly .f -regular. Let e 

us characterize those <. S> -resolutl.ons P whose derivatives 

are real in <.S;>. Noting that IR is a T-lattice for the trans-
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lation T (s) = s - r W~ may stat~: 

r 

Proposition 3.2.1. The ~ S> -resolution p has a real deriyative 

if and only if p is a T-lattioe homomorphism of < 5> into~. 

We omit the proof, which is straightforward. We denote by H<5> 

the set of all T-lattice homomorphisms p of <:'5> into IR such 

that p(O) = O. For p ~ H<5) the derivative is specified more 

Simply by 

LP = t a \ a E:. <.5> • p (a) ~ O!, and 

MP = {a \ a E. <: 5 ~ • p (a) ~ 0 1 • 

Note that H~S> is in one to one correspondence with the set of 

all real bi-ideals in ~ S:> • 

There is a natural relation between RS and H~S> • as follows. 

For p €. H<.S> we hay consider pi S : S ~ lR. Clearly p IS(O) a 0 

and (LP1S , MP\5) L.. (LP , MP) so (LPl5 , MPlS ) is .f' e-regulllr, 

and hence piS ~ Rs. In this way we have a map 8 : H<S> ~ RS 

defined by 9- (p) :: pi S, p Eo H<S> • Moreover: 

Proposition 3.2.2. For each p E. H<5~ we have CLprs , MPI5 ) :: 

(LP , MP). In partioular the mapping g is injective. 

Proof. Here and later let us denote by Sn the set of all elements 

of c: 5 > which may be expressed in terms of the elements of S 
using not more than n applications of the operations v, to. • T • r 
For A S: <: S> let us also set 

T(Al 1:1 I T (a) , 
r aE-

Consider the induction hypothesis 

pen) : LPI\ T[S 1 G LPI5. 
n 

A, r E:;. ~ J • 

Sinoe So • S it is eaS1 to se~ that PCO) is true. On the other 

hand pen) ~ P(n+l) follows easl1y from the fact that p is a 

T-lattice homomorphism, and so pen) is true for each n. However 
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u {S \ = <. S ~, and we have shown that LP = LP IS. Likewise n 

MP ~ MPIS, as required. Since a real bi-ideal clearly has a 

unique <'S>-resolution it follows at once that 9- is injective. 

Corollar~. ~ is a bijection if and only if everY(9-resolutlon 
has a real derivative. 

The following notion is useful in our study of S-derivatives. 

Definition 3.2.2. Let L be an ideal in ~ S"> and F G: <..S> • 

Then L is F-prime if whenever aI' ... , an ~ F, r l , ... , r n E. IR 

and hI T (a >1 E: L then T (a
i

) E: L for some i, 1 ~ i fio n. 
r i i r

i 

The notion of a F-prime dual ideal M is defined in a corresponding 

way, and (L, M) will be called F-prime if Land Mare. 

Proposition 3.2.3. The ideal L in ~ S> is prime if and only if 

it is S-prime. 

Proof. Necessity is clear so let us show sufficiency. Let L be . 

S-prime and make the following induction hypothesis. 

pen) : L is S -prime. 
n 

Since So = S we see that P(O) is valid. Assume pen), and take 

aI' .'., am E:. Sn+l' r l , ••• , rm E.. ~ with I'll Tri (ai ') E:. L. 

We may partition the set I = I 1, 2, ••• , m J into three eets 
II' 12, 13 (one or more of which may be empty) so that 

i e- II ==;> ai D bi v ci b
i

, ci €. S n' 

iE:. 12 :::;. ai = bi 1\ ci bi , ci E: S , and n 

With the understanding below that the term in question is to be 

removed if the index set involved is empty, we may write: 

where 

a= J\tT (bi>"T (ci'l iE:.I 11\f\tT (bi ) \ iE.. I
3 1. 

r i r i 2 ri+si 



Consider a general element of ~ S '> of the form 

where J is fini te, b' l' c' 1 E:. Sn t r' 1 € ~ and a', if it is 

presen t, Is a finl te In flmum 0 f e 1emen ts ofT [S ] • Milke the 
n 

following inductlon hypothesls on the flnite number k of elements 
in J. 

Q(k) : If "1 T , (b'l' V T , (c'l) 
r i, r 1 

1 E:. J 1 1\ a' eLand 

I J' ::I k then a' € L or T , (b' 1) V T , (c' 1) 6 L for 
r i r 1 

some i E: J. 

Q(O) Is clear, so assume Q(k) and take IJI = k + 1. Cho8se j e J, 
then: 

"I Tr , (b'i)V T , (c'l') I 1 E:: J 1 f\ a'. e vt, where 
i r i 

1\ 1 Tr , (b'i) V T , (c'l) I 1 E: J -ljil f\(T , (b'j) Aa') 
i r 1 r j 

e = 

f = 1\ {Tr , (b t

i ) V T , (c'l) I i ~ J - {jl\ A (T , (C'j)A a') 
i r 1 . r j 

• 

Hence, If the above element belongs to L, we have e ~ Land t ~L, 

and so by Q(k) elther T , (b'l) V T , (C'i) c L for some i ~ J -
. r 1, r 1 

UJ, or T , (b'j)" a' E:. L, or T , (C'j)A a' E. L. In the last two 
r j r j 

oases we may apply pen) and deduce that T , (b'j) V T , (O'j) E:. L 
r j r j 

or a' c L, and we have verified Q(k+l). It follows that Q(k) 1s 

true for all k, and applying this result for k ~ 111' to 

f\ iT (bi ) V T (oi) liE; I J " a E:L gives T (bi ) V T (Oi' 
r i , r i 1 r 1 r i 

~ L for some 1 ell ' or a ~ L. In the first case we have 

Tr (a1 ) € L directly, 
1 

that T (ai' e L for r
1 

and in the second we may deduce from pen) 

some i E:. I 2 " I 3 • This verifies P(n+1), 

and so L Is S -prime tor eaoh n. 
n 
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If now we take a, b E: <:S '> with a" b E:. L, then for sufficiently 

large n we have a, b € S and so a ~ L or b cL, since L is S -
n n 

prime. Hence L is prime in <: S > as required. 

A corresponding result holds for dual ideals. In particular 
we have: 

Corollary. If p is a S-resolution then CLP, MP) is prime if and 

only if it is S-prime. 

We now give some properties of S-derivatives. 

Proposition 3.2.4. Every S-derivative is total. 

Proof. Let p be a S-resolution, and make the induction hypothesis 

PCn) : T[Sn1 ~ LPu MP• 

For a = TsCb) 6 TfS
O

] = T[S) , b E;. S, we have a E:. LP if a ::. pCb) 

and a e MP if s ~ pCb). Hence pCO) is valid. 

Now aesume pen) is valid, and take a ~ TfSn+l - Sn] • If a = TsCb) 

and b E:. Sn+l - Sn has the form b II b' v bIt wi th b', b" E:. Sn we 

have by hypothisis that T (b') E LP or T (b t) E. MP and T (b") E:. 
s " s 

LP or T (bit) E: MP Now if T (b') e MP or T (b") e. MP then 
s • s 8 

a == T (b') v T (bit) E:. MP whil~ it' T (b l ) ~ MP and T (bit) d MP 
8 s ' S s..,.. 

then T (1, I) e LP anel T (bit) E. LP so a E LP as required. The other 
8 s 

possible forms of b are dealt with in the same way, and the induct­

ive proot' ot' pen) ia complete. Since U{S S = <'S7 it follows 
n 

at onCe that (LP, MP) ia total. 

Proposition 3.2.5. No element of ~S> is infinite at a S­
derivative. 

Proof. It is a straightforward matter to verify the proposition 

PCn) : a E: Sn ~ 3 s, t E.. ~ with Ta(a) f.. LP and Tt(a) (.. MP 

for each n by induction. The result now follows from U ls 1 = 
n 

" S >, and Lemma 3 .1.7. 

Lemma 3.2.1. Take P ~ RS and let q : S ~ ~ be a function so 

that pCb) p q(b) for some b 6 S, and pCa) = q(a) for all a ~ S -lbl. 
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Then: 

(1) If q(b) ~ pCb) and Tq(b)(b) E:: LP then q e: Rs and LP = Lq. 

(ii) If q(b) > pCb) and Tq(b)(b) c MP then q e RS and MP = Mq. 

We omit the proof, which is straightforward. 

Proposition 3.2.6. (a) The mapa p ~ LP and p ~ MP , P E;. R , 
8 

are both one to one if and only if for each a ~ S we have 

Tr(a) c LP ~ r ~ pea) and Tr(a) 6 MP ~ r ~ pCa). 

(b) The map P ~ (LP , MP), pc Rs' ia one 

to one; that is each S-deriyative is determined by a unique 

S-resolution, if and only if, given a c:: S, we have Tr Ca) ~ LP 

Proof. (a) We show p ~ LP is one to one on RS if and only if 

Tr (8) & LP ~ r ~ pCa),· the remaining case being similar. 

Now tor a E: S we have TpCa) Ca) E: LP so certainly r ~ pCa) 

~ Tr(a) ~ LP. Hence we need only consider the reverse implica­

tion. 

Ci) Suppose that p ~ LP is I - I but that for eome b 6 S we 

have TsCb) E:: LP for eome s '" pCb). Define q: S ~ ~ by 

{ 

pCa) if a F b 

qCa) = 
s if a = b. 

Then by Lemma 3.2.1 Ci) we haveq E:: Rs and LP = Lq • However 

p ! q, and this contradicts our hypothesis. Hence TrCa) ~ LP 

::::!;> r ~ pCa) as required. 

Cii) Suppoee Tr (a) ~ LP ~ r ~ pea) for p E RS and a E:. S, and 

let L
P 

III Lq. Then for a ~ S, TpCa)Ca) € LP ~ TpCa)(a) 6- Lq 

~ pCa).> q(a). Likewise q(.) ~ pea) so p = q, and p ~ LP 

is one to one as required. 

Cb) The proof is similar, and is omitted. 



The property mentioned in (a) above is of importance in 

future applications, and we make it the subject of the next 
de fini ti on • 
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Definition 3.2.3. The S-derivative (LP, MP) is S-real if it 

satisfies Tr(a) 6 LP ~ r ~ pea) and Tr(a) f: MP ~ r ~ pea) 

for each a E; S. 

Lemma 3.2.2. Let L be a nearly prime ideal in ~S > which 

satisfies the condition 

Tr (a) 6 L '" r '> k ~ Tk (a) E: L 

for all a & S. Then L is prime. 

Proof. By Proposition 3.2.3 we need only show that L is S­

prime. But if al , ••• , an C S; r l , ••• , rn E:. ~ and" \ Tri (a
1

) J 

€: L then Tr (a
i

) E: L+ for some i, 1 ~ i Eo n, and so Tr (a
1

) E: 
i 

L for all r > r i' Henee Tr i (ai ) c: L by the above hypothesis, 

and L is S-prime as required. 

A corresponding result holds for dual ideals. In particular 
we have: 

CorollarI· Let the S-derivative (LP , MP) be S-real. Then LP 

(respectively, MP) is prime 1f and only if LP (respectively, 

MP) 1s nearly prime. 

Finally let us note: 

Proposition 3.2.7. Take p ~ RS' Then the following are equivalent. 

(i) 

(ii) 

~ P' b H S wi th P = p" S • 

(LP , MP) ia real. 

(i1i) (LP, MP) 1a S-real and prime. 

(iv) (LP , MP) 1s S-real.and LP is nearly prime or MP 1s nearly 
prime. 



Proof. 
18? 

(i) ~ (ii). By Proposition 3.2.2 we have (LP, MP) = 
p' p' (L ,M ), and hence it is real. 

(ii) ::;:, (ii1). Immediate. 

(iii) ~ (iv). Immediate. 

(iv) ~ (v). Let (LP, MP) be S-rea1 and LP nearly prime. 

Then LP is prime by the Corollary to Lemma 3.2.2. Now if (LP, MP) 

is not .( b -regular we have a b 'S;:.. and s "> 0 with a ~ LP 

and Ts(a) ~ MP, by Lemma 3.1.2. In particular we have b1 , ••• , bm 

~ Sand t '"7 0 so tha t 

Without loss of generality we may assume t ~ s, and so 

t 1\ 1\ 1 Tp(b )_t(bi )' ~ a" o. 
i 

It follows at once that A ~ Tp(b )_t(bi)l ~ LP, and since LP 

. i 

is prime this means Tp(bi)-t(bi ) ~ LP for some i, 1 S i ~ m. 

However this contradicts the fact that (LP , MP) is S-rea1, and 

we deduce that (LP, MP) is ~b-regu1ar. 

(v) ~ (i). Let (LP , MP) be f b-regular. Since 

(LP, MP) is total by Proposition 3.2.4 it follows from Proposit­

ion 3.1.4 that ~S""'/(LP, MP) i8 totally ordered. Hence we may 

deduce from Proposition 3.2.5 that (LP, MP) is finite. It (L, M) 

i8 a maximal -I b -regular refinement of (LP, MP) in <. S > t then 

(L, M) is real by Corollary 2 to Proposition 3.l.?, and hence 

(L, M) = (LP ', MP ') for some p' ~ H<S, • However it is trivial 

to verify that P = p'IS, and the proof is complete. 

'.3 BIREAL COMPACTNESS. 

Throughout this section and the next (X, u, v) will denote 
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a pairwise completely regular weakly pairwise To bitopologi~al 

space, and we will denote by P(X) the set or all bicontinuous 

functions f : (X, u, v) -, (R, s, t). 

Note that the sets 
-1 r (-00, rex) + r), r E- p(x), r ::> 0 

form a base of u-open nhds. of x, while the sets 

f-l(f(x) - r, 00), fE:- P(X), r > 0 

form a base of v-open nhds. of x. Likewise the sets 

Z+(f, r) = Z+(f - r) = f x I f(x) ~ rl, f 6 p(x), r> 0 

form a base of closed sets for the topology v, while the sets 

Z - ( f, r) :I Z - (f + r) I: t x , f (x) ~ -r', f ~ P (X), r ~ 0 

form a base of closed sets for the topology u. 

We note also that the functions in P(X) separate the points ot X. 

We shall say that S ~ P(X) is bieenerating if 0 ~ S and for 

each x e X, 1 t-l(_oo, f(x) + r) , f E: S, r '> 0 I is a Bubbase 

of the u-nhd. filter of x, and 1 r-1(rex) - r, (0) , f E:- S, r"> 0 I 
is a subbase ot the v-nhd. filter of x. 

P(X) is a T-lattice under the translation T (f) = f - r, 
r 

and so we may apply the notation and results of the last two 

sections. Let us first note: 

Proposition 3.3.1. In the notation of Proposition 3.1.9 we 
have P'(X) = p·eX). 

Proof. Take f ~p'eX) and suppose, say, that f is not bounded 
above. Then if we set 

Lilli g , g E; p(X), g ~ 0 i , 

M = \ h \ h E: p(X), -3 r E: lR with Tr (t)" 0 ~ h I 
it is easy to see that (L, M) is a l' b-regu1ar bi-ideal in peX). 

If (L', H') is a maximal l' b-regu1ar refinement ot eL, M) then 

Ts(t) E: Ltl\ Mt for some s E.~. However Ts+l ef) ~ M ~ Ht, and 
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(Ts (f)v 0)( ..f b)(Ts +l (f) 1\ 0), which is a contradiction. Likewise 

each element of P'(X) is bounded below. 

There is a natural link between the fe-regular bi-ideals 

in P(X) and a certain family of bifilters on X,which we now 

describe. If (L, M) is a ~ -regular bi-ideal in P(X) (or, 
e 

more generally, in a bigenerating sub-T-lattice of P(X» we 

denote by Zb(L, M) the bifilter with base 

t (Z+(f, r), Z-(g, r» I f"= L, g 6 M, r ~ 0 ] 

It is clear that Zb(L, M) is 1-regular if and only if (L, M) is 

-f b -re gular. 

In the opposite direction let 

on X and define 

'(\ II: 'C\ X ~ be a bifilter u v 

Zb -1 ( -B u) II: t f \ f E; P (X), Z + ( f, r) E:- ~ u " r > 0 1 , 

Zb-l("G
y

) = t g \ g E: p(X), Z-(g, r) ~ 'G v " r? 0 \. 

It is immediate that (Zb-l('G
u
)' Zb-l('G

y
» is a fe-regular 

bi-ideal in P(X), and we have the relations 

Zb (Zb -l(-G u)' Zb -l( ~v» ~ 'G ••••• 

and (L, M) ~ (Zb-l(Zb(L, M)u)' Zb-l(Zb(L, M») •• (2) 
v 

for all bifilters 'G and ..f -regular bi-ideals (L, M). 
e 

If A is a bigenerating sub-T-lattice of P(X) and the bifilter 
G satisfies 

Zb (Zb -1 ( -au ) " A, Zb -1 ( 'G v) " A) :I ~ 

A A we shall say that ~ is a ~b -bifilter. The Zb -bifilters 

are exactly those which have the form 'G = Zb (L, M) for some 

,fe-regular bi-ideal in A. Note in particular that the relations 

(1) and (2) imply that the maximal 1-regular ZbA -bifilters are 

in one to one correspondence with the maximal f b-regular bi-
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ideals in A. 

On the other hand if the ~ -regular bi-ideal (L, H) in A 
e 

satisfies 

(L, H) = (Zb-l(Zb(L, M)u)n A, Zb-1 (Zb(L, M)v)n A) 

A we say it is a!b -bi-ideal. These are exactly the bi-ideals 

in A which have the form (Zb-l(Gu)~A, ~\-l(~v)"A) for some 

A bifilter ~ • It is not difficult to verify that the Zb - bi-

ideals are characterized among the Ie-regular bi-idea1s by the 

condition 
+ + (L, H) a (L , H ). 

In particular every maximal f b-regular bi-ideal in A is a 

Zb
A 

-bi-ideal. 

For x c X let us set 

L(x) = f f f E: p(X), f(x) ~ 0 \ , 

H(x) == t f f E: p(X), f(x) ~ 0 1 • 

It is clear that (L(x), H(x» is a real bi-ideal in P(X), and 

that Zb(L(x), H(x» is the nhd. bifilter of x. Consequently it 

(L, M) ia a ZbA -bi-ideal in At Zb(L, H) will converge to x e X 

if and only if L(x) n A ~ L and Hex) n A ~ M. We express this by 

saying that (L. H) is fixed by x. Since we shall, in practice, 

usually apply this condition to ~ b-regular bi-ideals the above 

condi tion will then be equivalent to L(x) n A == Land H(x)" A = M. 

For x c X we define the function 

X : p(x) ~ IR 

by x( f) == r(x) 'TI f E: p(X). Clearly i E:: ~(X) for all x E: X. 

We note the following result. 

Lemma 3.3.1. For each x E:; X and S c::. p(X) we have 

(LX'S, MXlS ) = (Lx,.(S~ • MX\"'"S» I: (L(x)f\<S::>, H(x)n<S~). 

Proof. This is immediate from the definitions and Proposition 
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3.2.2. 

We now give a characterization of the bigenerating subsets 
of P(X). 

Proposition 3.3.2. S 5. p(x) is bigenerating if and only if 

o e S and for each x ~ X the bi-ideal 

( l xl S ] + { x, S J +) 
(L )P(X) 'L (M )P(x) 

is fixed by x. 

Proof. Suppose S is bigenerating, take f E L(x) and s > O. 

Since f-l(_oo, f(x) + s) is a u-nhd. of x we have f 1 , ••• , fn ~ 

Sand t > 0 so that 

n!fi-l(-oo, fi(x) + 2tH ~ f-l(_CO, f(x) + a). 

It follows from this that 

and since x'S(fi ) • fi(x) this means that 

Ts(f)"t ~ V}TxIS(fi)(fi)"Ol. 

"IS Hence Ta(f) c (LX )p(x)' and since s ~ ° was arbitrary we have 

established 

The other part of the result is proved likewise. 

r xiS ]+ [(xIS) ]+) Conversely suppose that ( l (L )P(X) t M p(x) 

is fixed by x for each x E X. To show that S generates the 

topology u it will suffice to show that for x c X, f ~ peX) and 

s::> 0 we have f1' ••• , fn l: Sand t'> ° so that 

()' t fi -1(_0), fi (x) + t)\ ~ t-1(_0), rex) + s) ••••• (3). 

Now Tf(x) (t) ~ L(x) s: t (Lxi S)P(x'] +, and 80 Ts/2 T f(x) (r) E 

x\s ~ 
(L )peX)' Hence we have gE LX'S and t''> 0 with 
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Aleo we have f l , ••• , f € S and tit> 0 with . n 

gl\ ttl ~ V 1 TxISCi.i)(fi)V oj. 

It is now easy to verif,. (3) for this fl' •••• fn and t :: t' ,.t" 

A (8/2). and so S generates the topology u. Likewise S generates 

v, and hence if 0 E S it is bigenerating. 

On analogy with the definition of real compactness for 

topological spaces (see, for example, LI~l ) we now give: 

Definition 3.3.1. Let S ~ p(X) be bigenerating. Then (X. u, v) 

is S-bireal compact if every real hi-ideal in ~ S> is fixed. 

A P(X)-bireal compact space will be called biresl compact for 
short. 

Proposition 3.3.2. Let S, W be bigenerating subsets of P(X) 
with ~S>s: <..W>. Then if (X, u, v) is S-bireal compact it 1s 

W-bireal compact. 

Proof. ·Let (L, M) be a real bi-ideal in ~W~. Then (L,,<.S~, 

M I) c:!. S ~) is a real bi-ideal in ~ S ~, and hence fixed by some 

x E: X. Hence 

(L
X1S

, M
X1S ) = (L(x)I)~S>, M(x)n 'S~) = (Lf\~ S-", M"c:..S?) 

by Lemma 3.3.1. Since (L, M) is a maximal -.f b-regular extension 

of the above bi-ideal to ~ W;:o we have (Lx I S) ~ Land 
~ w> 

(M
xIS ) + 

<. W:> ~ M. Finally L = L + and M = M and so 

(l (L
xIS

) )+ l (MxlS ) )+).t. ( M) .( w> ' ~ w> L,. 

However W is bigenerating and hence it follows by Proposition 3.3.2 
that (L, M) is fixed by x. 

In particular a S-bireal compact space is bireal compact. 

In the opposite direction we have: 

Theorem 3.3.1. Let Sand W be bigenerating subsets of P(X) with 

<'S> SloW>, and suppose that (X, u. v) is VI-bireal compact. 
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Then the following are equivalent: 

(i) (X, u, v) is S-bireal compact. 

(ii) (L<.W> , M<..W» is finite for all real bi-ideals (L, M) 

in <. S') • 

(iii) <'W> is a finite -I b-refinement of <.. S'> in P(X). 

Proof. (i) ==?> (ii). Let (L, M) be a real bi-ideal in .(,S~. 

Then (L, M) is fixed by some x ~ X, and so by Lemma 2.3.1 we have 

•••• (4). 

On the other hand S ~ P(X) is bigenera ting, and we may deduce at 

once from Proposition 3.3.2 that 

(r (L
xlS

) ]+ l (M~IS) J+) III (L(x)/) ~YJ'7, M(x)n <'W~). L <.W>.' tt..W~ 

Comparing this with (4) give~ 

d + + an hence (L ~ W:> ' M.L. W '7 ) is real in <. W;', and so, in particular, 

fini te. Hence (L <. W '7 ' M <.. W'7 ) is finite also. 

(ii) =;> (iii). Let (L, M) be a real bi-ideal in <.S>, and 

(L', M') any maximal I b -regular extension of (L, M) to < W> • 

Since (L < w> ' M <. w;. ) L.. (L t, M t) we see that (L', M') is real 

by Corollary 2 to Proposition 3.1.7. However (X, u, v) is W-

bireal compact so (L', M') is fixed by some Xc Xt that is 

(L', M') = (L(x)" ~W~, M(x)n 4I:.W'7). In particular (L, M) = 

(L(X)fl .(.S>, M(x)" c:.S:7). Now since S is bigenerating the 

functions in S separ~te the points of X and it follows at onee 

that (L(x)n <. S~, M(x)1l ~ 87) = (tey)" 41:. S '? t M(y)n ~S~) 9 

x :II y. Hence (L(x)n ~W'7, M(x)" .::.W:» is the unique relll 

extension of (t, M) to ~W.,., and it follows that ~W> is a 

finite I'b-refinement of ~S;:'inP(X). 

(iii) ~ (i) ~ Let (L, M) be a real bi-ideal in ~S> 

and (t t, M') its unique real extension to ~ 'N > • By hypothesis 

(L', M') is fixed by some x ~ X, and clearly (t, M) is fixed by 
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the same x. Hence (X, u, v) is S-bireal compact. 

We shall find it convenient to study the relation between 

(X, u, v) and the bitopological subspace (H(S)' uS' vS) of 

( IT IR, TT s, 1T t ) where for each fl: ~S> , 
f E-~ S ~ t f E: .(, S > f f l: 4S" f 

~f a ~, Sf = sand t
f 

.. t; S being a bigenerating subset of P{X). 

We denote by Ir
f 

the projection 

IT IR ~ Rr .. R 
r~ <.S> f 

derined by trf{g) = g{r), and also the restriction or this 

projection to the subset H<S>. First let us note the following: 

Lemma 3.3.2. (a) The map G" <.S;> : X -? H(,S" defined by 

G"<.S? (x) = ~I <. 5:> is a bitopological homeomorphism of (X, u, v) 

onto a uniformly dense subset of (H<S> , uS' v S). 

(b) H<S> is a uniformly closed subset of TT. IR t • 
fE-<.5:> 

Proof. (a) It is a straightforward matter to verify that ~<5> 

is a bitopological homeomorphism into (H<'5> ' uS' vS), and the 

uniform density of ~<'S> (X) in H~S> is an easy consequence ot 

the fact that the bifilter Zb(LP, MP) is 1-regular for each 

p e H<S> • 

(b) Let g E 

If g(O) = t > 0 then 

IT IRf be in the uniform closure of H<S,> • 
f( (.57 

lTO- 1 ( 1T" O(g) - t, (0) meets H<S", say in 

a pOint p, and we obtain the contradiction g(O) - t = Tfo{g) - t 

~ 11 O(p) = p(O) = O. Likewise g(O) ~ 0 is impossible and so 

g(O) = O. Now let us establish that 

for all f t f' ~ (. S >. Without loss of generality we may suppose 

g(f') ~ get), that is g(f)"g{t') .. get). Suppose that g(t"t') 

"gef), then we may set gef) .'ger"f') + 2t, where t >0. But 



then the uniform nhd~ 

-s ~ 
7f f V f' (-0), 1f f V f' ( g) + t) () 1T f ( 1ff C g ) - t, (Xl) 

of g meets Hc!S"7 ' say in a point p, and we then have the 
oontradiction 

g(f} - t < pet) ~ p(t}vp(t') • pCt'lt') , g(fvt') + t. 
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In the same way we obtain a contradiction if g(fVf') :> get), 

and the result is established. In the same way we may show that 

for all f, f'E. <S>, rE,~. Hence gE H<S~' and H<::S~ is 

uniformly clo~ed as stated. 

If (X, u, v) is S-bireal compact then of couree ~~S~ (X) = 
H~S> ' and we have shown in particular that a bireal compact space 

may always be embedded as a uniformly closed subset of a product 

of copies ot the space (ffi, s, t). In fact this property is 

charaoteristic of the bireal compact spaces, as the next theorem 
shows. 

Theorem 3.3.2. (X, u, v) is bireal compact if and only if it 

is bitopologlcally homeamorphic to a uniformly closed subspace 

of a product of copies of (~, s, t). 

Proof. Necessecity has been established above, so it remains 

only to show the sufficiency. Without loss of generality we may 

suppose X is itself a uniformly closed subspace of (IT R~, 1T sal' 

rr t .... ). If we denote the projections by 1fCll then S = 111".IX J\J J 01 
is a bigenerating subset of P(X). By Proposition 3.3.2 it will 

be sufficient to show that (X, u, v) is S-birea1 compact. Let 

(L, M) be a real bi-ideal in < S?, and let p ~ H<.S" be the 

<S;> -resolution of (L, M). For each 0( let xCI. C p(1T
CIL

, X), and 

consider the element x = (x ) of TT R • We show first that x ~ " ~ 

X. SUppose this is not so, then we have oc. i' I ~ i ~ nand 0( j' 

n + I ~ j ~ m, and t > 0 so that 

Xn f)(~. -1(_00,." (x) + t)}n fH 1T.., -Ie 11 ... (x) - t. O)J:: ¢ •• (4). 
-~ l:II.i ~j ~j 



Now [V1(lf"DC - x )J]"O&L, and (L, M) is -fb-regular BO 
i oC1 

Tt ( t Vl(lJ"c(i - Xa(i>l]vO) f{.. M by Lemma 3.1.2. However 

{ 1\ l rrTol - x ) I ' ,,0 E M and so 
j olj J 

[ 1\ I crr d.
j 

- xot/JJ" ° 1 Tt([V {(1fd.
i 

- x0(1)11" 0). 

Hence we have y E: X so that for all 1, j we have 

(lTd. (y) - x-' )" ° '> (IJo( (y) - x.,( ),,0 - t. 
j"j i i 
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But then y belongs to the set on the left hand side of (4), and 

this contradiction shows X c x. 

For f e S it is immediate from the definition that f(x) = 
p (r) t and the same equali ty may be deduced for all f E <. S,. by 

using a simple induction argument 'on the form of the elements in 
<: S> • Hence 

(L(x),,<.S;>, M(x)O<'S;» • (LP , MP) = (L, M) 

and (L, M) 1s fixed in X as required. 

CorollarZ 1. It (X, u, v) is bireal compact it is uniformly 
real compact. 

CorollarZ 2. Let S £: p(X) be bigenerating and set 7f('S)fia 1 Tr f I 

f E <. S~ j • Then (H ,u t vS) is IT '" ~bireal compact. 
<'s;;' S .. ~ 

Corollar~ 3. Any bireal extension of (X, u, v) in which X is 

uniformly dense is bitopologically homeomorphic to (H~S~ , uS' 

vS) for some bigenerating subset of p(X). 

Proof. Let (X t , u t , v t ) be a bireal compact extension of (X, u, 

v) in which X is uniformly dense. Without loss of generality 

(up to a hi topological homeomorphism) we may assume X Ii. X'. 

By the theorem we know that (X'. u', v') is bitopologically 

homeomorphic to (Hp(X')' up(X')' vp(X'». On the other hand 

S = 1 f" X , t' e: p(X t)! is a b1genera ting subset (actually, 

sub-T-lattice) of P(X), and it is a trivial matter to verify 

that (Hp(X')' up(x')' VP(XI» is bitopologically homeomorphic 



197 
with (HS ' uS' vS ) under the correspondence p' -+ p defined by 

p(f'IX) = p'(f') 'V f'E: P(X'). This establishes the result. 

Definitions of bitopological real compactness have been 

given by SAEGROVE Ian, and by BRUHMER and SALBANY [5J . Saegrove's 

pair real compactness is considered in more detail in the next 

section. At the time of writing only the review of lSl in 

Zbl. fUr Math, 371, is available to the author, but there are 

clear parallels with some of the results obtained here, as tho 

reader will observe. 

An important special case of the above notion of S-bireal 

compactness is covered by the following: 

Proposition 303.3. The following are equivalent for (X, u, v): 

(i) P~(X)-bireal compact. 

(ii) S-bireal compact for all bigenerating S ~ p·(X). 

(iii) Uniformly compact. 

Proof. (i) ~ (ii/) follows from Theorem 3.3.1 since all 1'e­
regular bi-ideals in p~(x) are finite, and (ii) ~ (i) is clear. 

(i) ~ (iii). If (X, u, v) is p1 CX)-bircal compact then 

(X, u, v) is bitopologically homeomorphic to (~(x)' up~(X)' vp.(X» 
by Lemma 3.3.2(a). On the other hand the proof of Lemma 3.3.2 (b) 

makes it clear that Hp*(X) is in fact a uniformly clooed suboet 

of a product o~ bounded closed intervals in ~, and hence is 
uniformly compact. 

(iii) ~ (i). Suppose (X, u, v) is uniformly co~pact, 

and let (L, 1-1) be a real bi-ideal in p-4I (X). Then Zb (L, ~1) is 

an 1-regular bifilter, and if i3 is a maximal 1-regular bifiltor 

refinement of Zb (L, M) we have 'B ~ x for some x E. X by Lemma 

1.7.2 (e). Hence Zb(L(x), M(x» ~ ~ , and it is easy to deduce 

that (L, 1-1) is fixed by x. Thus (X, u, v) is P·(X)-bireal compact. 

For a bigenerating sUb-T-lattice A ~ P(X) define v : PorA) 

-> P(X) by v(g) ="g, gE.P(HA), where g(x) = g(xJA), 'V xE. X. 

Lemma 3.3.3. (i) V is an injective T-lattice homomorphism. 

(ii) "'(P(HA» is a finite 1 b-refinement of A. 

Proof. (1). v is clearly a T-lattice homomorphism, and the fact 
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that it is one to one follows at once from the uniform density of 
~ A (X) in RA• 

(ii) First A 6 V (P(HA» since if f E: A then IT rf: peHAl 

and f = ~ (1f f). Now let (L, M) be a real bi-ideal in Aj then 

(L, M) = (LP, MP) where P ~ HA 1s the A-resolution ot (L, H). 

Corresponding to p we have p ~ HP(H ) defined by peg) = g(p) 
A 

" <II 

for all g E P(HA). (LP, MP) is a real bi-ideal in P(HA), and 

... " 
therefore (~(LP), ~ (MP» is a real bi-ideal in ~(P(HA» by 

(i). However it is easy to verify that 

.. .. 
so (Y(LP), \?(MP» ia a real extension of (L, 101) to V(P(RA». 
On the other hand if (L', H') is any real extension ot (L, M) 

to V (P(RA» then (v-l(L'), V-l(M'» is a real bi-ideal 

in P(HA), and ~(HA) is bire~ compact, so it is fixed by some 
.. .. 

q E: HA• It follows that (L', M') -= (V(Lq), V(Mq», while 

<II ... 

(L
P

, MP) = (L'n A, M'n A) • (V(Lq)n A, V (Mq)" A) = (L\ Mq) 

implies p = q and hence p • q. Thus (L', M') is unique, and 

V(P(HA» is a finite {b-refinement of A as required. 

Corollary. If (X, u, v) is uniformly compact then P(X) = P~(X). 
Proof. By the lemma "(p (~.., ex») is a tini te -( b -re f'inemen t 

of P'" (X) and so "V (P(~ (X») • P~ eX) by Propositions 3.1.9 

-'I 
and 3.3.1. It follows at once that P(Hp~(X» = P (~(X». 

However if (X, u, v) is P~(X)-bireal compact then Hp4(X) and 

X are bitopologica1ly homeomorphic 80 p(X) = p*eX) also. 

or course the above proof of the pseudo compactness ot a 

uniformly compact bitopo10gica1 space is of technical interest 



only, and an elementary topological proof of this result is 
easily given. 
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Note tha t the above results imply in particular that the SttCth .. ,..,L 

uniform compactificationa of (X, u, v) in which X is uniformly 

dense are, up to bitopological homeomorphiam, exactly the spaces 

(HA, uA' vA)' where A is any bigenerating sub-T-lattice of p·{X). 

Proposition 3.3.4. Let A be a bigenerating sub-T-lattice of 

P(X) and A' a finite -I b-refinement of A in P{X). Then the 

following are equivalent: 

(i) A' 6:- ~(P{HA»' 

(ii) (LA" MA,) is almost prime for every real bi-ideal (L, M) 

in A. 

Proof. Suppose A S: A' 5: "(P(HA» and let (L, M) 

a real bi-ideal in A. Let p E HF(H ) be 
A 

defined as in the proof of Lemma 3.3.3. By definition 1rA • 

1. 1T f J f ~ A! is bigenerating for the space HA and so by 

Proposition 3.3.2 we have 

r "llT I "IV ] + .. P 
(L (LP A)P(H)J +, (MP A)P(H) ) = (LP, M ). 

A A 
f' 

It follow6 by Theo~em 3.1.2 that 

«LPIIlA) (MPIIlA) ) 
P(HA)' P(HA) 

" ia nearly total. Take g ~ A' ~ ~. (P(HA»; then g = ~(h) • h 

for some h ~ P{HA). Suppose, for instance, that 

T (h) t (LPf"A) 'v' 8 > o. 
8 P(R

A
) 

Then for each s'> 0 we have t'> 0 and f ~ A with 

so that T (h)A, t ~ II • But then T (g) 1\ t ~ f t and f ~ LP, 
9 fa. 

so Ts(g) E. (LP)A' = LA' for all 8'> O. We deduce that (LA" MA,) 

is nearly total, and hence nearly prime by Proposition 3.1.3. 
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(ii) ~ (i) For i' 6 A' define f : HA ~ ~ by 

f(p'l A) = pt(f') for all p' E HAt. 

It is clear from the definition that if f e. P(HA) then V (0 

• t', so it remains only to show the former property. Take p • 

p'IA E:. HA, p' ~ HAtt and s"> o. Since (LP
A" MP

A,) is nearly 

prime we have by Corollary 3 to Proposition 3.1.7 that 

Tp , (f ' ) +6/2 ( f') E:. LP A'. Hence for some 0 <. t ~ s/2 and g E: LP 

we have 

We deduce at once that 

1T -1(_00 7f (p) + t) (;, r-1 (_00 t f(p) + s) 
g 'g 

so f is continuous for the first topologies. Likewise it is 

continuous for the second topologies, that is fc P(HA) as 
required. 

The above result suggests the following definition. 

Definition 3.3.2. A' is a finite ~b-prime-refinemp.nt of A if 

it is a finite -t b-refinement and (LA" MAt) is nearly prime in 

At for all real bi-idea1s (L, M) in A. 

The relation of being a finite ~ -prime-refinement is 
b 

easily seen to be transitive, and so we may state the following 

corollary to Proposition 3.3.4. 

Coro11arl 1. If A ~ P(X) is a bigenerating sub-T-lattice 

then "(p (HA» is the finite -f b -prime-completion af A. 

We also have: 

CorollBry 2. Properties (i) and (ii) of Proposition 3.3.4 are 
each equivalent to 

(iii) (HA, uA' vA) is bitopological1y homeomorphic to (HAt. 

uA' , vA') under the correspondence p :. p t, A ~ pt. 
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Proof. If p ~ p' is a bitopological homeomorphism then P(H
A

) 

and P(RA,) are isomorphic T-lattices under the correspondence 

f ~ f' defined by f(p) = f'(p'). It follows at once that A'-. 

"'(P(RA,» = v(P(HA», using an obvious notation. To establish 

the converse it will clearly suffice to show (HA, uA' vA) is 

bitopologically homeomorphic to (HA,,, uA'" vAil) for the case 

A" = V(P(HA». Now by Lemma 3.3.3 (ii), and Proposition 3.3.4, 

applied to A" in place of A we know ""(P(HA,,» is a finite 

Ib-prime-refinement of A". However -.J (P(HA» is finitely I b­

prime-complete so V(P(H
A
» = V"(P(HAII», andP(HA) and 

P(RA,,) are isomorphic T-lattices under the correspondence 

f <.~ fIt defined by f(p) .. f"(p"). It follows that p ~ pIt is 

a bitopological homeomorphism as required. 

The above results show that the bireal compactifications of 

(X, u, v) in which X is 'uniformly dense are in one to one 

correspondence with the subsets "(P(HA» of P(X) for A 

bigenerating, and that these are characterized internaly amonest 

the bigenerating sub-T-1atticea of p(X) by the requirement that 

they are finitely ~ b-prime-complete. It will be noted that it 

(X, u, v) is bireal compaot then the bigenerating Bub-T-latticea 

of P(X) may themselves be characterised in terms of the internal 

lattice structure of P(X), one such characterization being 

obtained explicitly by applying Proposition 3.3.2 to the bitopo1-

ogica1ly homeomorphic space (~(X)' Up(X)' vp(X», In this case 

all the bireal compact extensions of (X, u, v) in which X is 

uniformly dense, including the space itself, of course, can be 

obtained exp1ioitly from the lattice structure of P(X). 

In case A is a bigenerating sub-T-lattice of P~(X) we may 

state an alternative form of Corollary 2. First we need the 

following lemma, which is of some interest in itself. 

kemma 3.3.4. Let (X, u, v) be preseparated, (X', u', v,) uniformly 



compact and ~ : X' ~ X a bijective bicontinuous mapping. 

Further suppose that for each x' E:. X' we have 

cf (u'-cl t x' I ) • u-cl t cP(x') j , and 

cf(v'-cllx'} ) • v-cl { f(x') 1 • 
Then ~ is a bitopological homeomorphism. 
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Proof. Let F be a u'-c10sed subset of X'. By hypothesis F is 

(in particular) v'-compact, and hence ,p (F) is v-compact in X. 

Take XE. X - ~(F) and x'~ X' with ,p(xt) = x. Then x'i/. F 

and so if y'E F we havex'tj u'-cl fy't since F is u'-closed. 

Hence, by hypothesis, x IIIcf(x') ((: c/J(u'-cll y', ) = u-c1 {c('(Y')j , 

and since (X, u, v) is preseparated we have x E U(y') ~ u and 

"'(Y') E:. V(y') E:. v with U(y')()V(y') • ¢. The sets V(y'), y' E. F. 

Cover tP (F), and so we have Y'l' ••• , Y'n E F so that cI(F) 

is Covered by V(y\), ••• , V(Y'n). But then f1 t U(Y'i) , i = 1, 

••• , n ! is au-open nhd. of x 'which does not meet tf (F), 

and CP (F) is u-closed. In just the same way rf mapa v' -closed 

sets to v-closed sets, and we have shown that ~ is a bitopo1og­

lcal homeomorphism, as required. 

We may now give at once: 

Corollar;r 3. If A is a bigenerating sub-T-lattice of P·(X) then 

the following conditions are equivalent to each other and to (i) 

and (ii) of Proposition 3.3.4. 

(iv) P 'I A .. q'l A~ p' ~ q' for all p', q' E. HA,. 

(v) q'E: uA ,-cl l p' \ ~ q'IA E; uA-cllp'IAl t and 

q , f:. v A ,-cl \ p' \ ~ q" A E v A -c 1 l p 'I A j 

for all p', q' E. HA, • 

Let us denote by ~ the set of all bigenerating finitely 

-I b -prime-complete sub-T-lattices of P(X), and set V\. = t A I 

A £ ~ , A !:. p" (X) 1 • For each B E m which is finitely of b­

Complete let ~ 6 III t A' A ~ <ttI-, B is a finite .f' b -completion 

of Aj • By Theorem·3.l.3 the sets &4 8 form a partition of Vr. 
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The set ~ is partially ordered by set inclusion, and indeed 

it is an upper semi-lattice, the least upper bound of A, A' ~ 

st being the finite I' b -prime-comple tion of <. Av A' > • 

Likewise 8\'" and each ~ B is a sub upper semi lattice of 11t • 

Take A, A' ~ s+-. As usual we shall say that a mapping 

" : HA, ~ RA preserves X if t{J (cY A' (x» = cY A (x) for all 

x E: X. We may now note: 

Lemma 3.3.5. Take A, A' ~ f7'l. ThenA , A' if and only if 

there exists a bicontinuous mapping ,p: (HA" uA' , VA') ~ 

(HA, uA' VA) which preserves X. 

Proo f • I fA'=' A' the required func tion is clearly c{J (p .) • p' I A. 

Conversely let J: (HA" uA" VA') ~ (HA, uA' VA) be bicont-

inuous and preserve X. For f ~ A define i' 

Since f' is the composition of the bicontinuous mappings 1T f 

and 4' it is bicontinuous, that is fIE: P(H
A

,). On the other 

hand, since " preserves X, it is easy to "erit,. f III v' (t') E; 

v • (p (HA ' » II A'. Hence A ~ A' as requlred. 

When A S: A' the mapping .p: H
A

, ~ HA defined by 4'(p') 

II p'IA need not'be onto, or in other'words the extension (H
A
". 

uA" VA') need not be projectively larger than the extension 

(HA, uA' VA). Let us note, however. the following special cases. 

(a) A, A' E. :t\ 8 • In this case. of course, f is bijective. Note 

that if B s:: p1f (X) and 'i1t g contains more than one element then 

the spaces (RA, u A ' vA)' A ~ 9b- B cannot all be (for instance) 

pairwise Hausdorff because of Corollary 3 to Proposition 3.3.4. 
This ,would lead to a contradiction in the event that u = v, but 

in general it seems quite conceivable that ~ B could contain 

more than one element, even when B ~ P'" (X), and this represents 

a significant difference between the topological and bitopological 
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cases. 

(b) 
{( 

A, A' E. ~. In this case f is onto. For if A ~ A' and 

Pe HA then (LP
A" MPA,) has a (not necessarily unique) maximal 

I b-regular refinement in A'. Since A'f: P~(X) such a refinement 

has the form (LP ', MP') for Bome P' ~ HA" and clearly p"A. p. 

This shows that the ordering in ~+ reflects the projective 

ordering of the corresponding uniform compactifications. In 

particular the largest of these is (H~(X)' ~.(X)' VP~(X»' 

and this is the uniform compactification in which X is F*(X)­

embedded. Despite this, of course, (Hp1I(X)' up'" (X) V vP*(X» 

might not be the Stone:..Cech compactification of (X, uvv). 

(c) AEo 'i1b' and A1I = AnP"(X). Let us first verify that A9 f:. ~". 
Now A = V(P(HA» and so A~ is isomorphic to P+(IIA). Hence 

RA+ is bitopologically homeomorphic with HP.(H )' and so P(HA-' 
A 

is isomorphic with P(Hp.(H », each under the natural correspond­
A 

ence. However P'C(HA) is finitely .f b-complete in P(H
A

), so 

P(~~(H » is isomorphic with P*(HA), and hence with A~ also. 
A 

This shows that A"" = v* (P(HA"lf»' using an obvious notation, 

and so A- ~ et- . The above argu+ment also shows that HA- is 
Sffo\'d(J 

the largest of the/uniform compactificationa of RA in which IIA 
r 

is unif~mly dense. Hence ~: HA ~ HA* 18 a bitopological 
I" 

homeomorphism of HA with a unit~mly dense subset of HA~ which 

preserves X, and this means that the extension (HA1f, uA1I, V A1I ) 

is injectively larger that the extension (HA, uA' VA). 

Note in particular that HP1I(X) is • uniform compactification 

of Hp(X). (Hp(X)' up(X)' vp(X» is the bireal compactification 

of (X, u, v) in which X is P(X)~embedded. For each A6~, 

(HA, uA v VA) is a real compactitication of (X, u"v), but in 
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general Cl1>(X)' up(X) v vp(X» may not be the Hewi 1:1: real compact-

ification of (X, Uv v). 

In the remainder of this section we relate the notion of 

bireal compactness with the completeness of certain quasi­

uniformities. Let us recall that if S ~ p(x) is bigenerating 

then qu(S) denotes the quasi-uniformity with subbase 

{ f-l ('til ) I f € S, s > 0 ~ , 
u 

Csee Chapter 1), and it is clearly compatible with CX, u, v). 

The following result is basic. 

Proposition 3.3.5. Let ~ be an 1-regular bifilter on X. Then 

.n -1 -lC ) ~ is qu(S)-Cauchy if and only if (Zb ('Gu)I\~S~, Zb 'C v 

(\ ,£ S:» is real in ~ S ~ • 

Proof. Sufficiency is clear so we will establish the necessity. 

Let -q be qu(S)-Cauchy. Note that since qu(S) = qu(<'S», 'S 

is quC~ S> )-Cauchy, and it follows easily that (Zb -lC'Gu)ra.£. S;?, 
-1 

Zb (~v)f\' S7) is finite. Hence we have p ~ H<S~ with 

CZb-
1

C'QU)('\.£.S'7, Zb-1C-gv)"~S~) .:: CLP, MP). 

Take f E:. LP and suppose f 4- Zb-1C'G u). As we have noted earlier 

Zb-l("G u ) = [ Zb -lC'Su) J +, and so we have s"> 0 with TsCt),. 

-1 
Zb (~u). Hence we have s' > 0 with 

s" = (8 + s')/2, then for some rE: R 
-1 

f (N(r, s"») ES '(£. It follows that 

and hence 

s' + s ~ r + a" 

Z + C T (f), s') rt -G • Le t a u 

we have (f-lCMCr. s"», 

f-l(M(r. s"» $. Z+(TaCf), 

••• • • •• (5). 

8') , 

Also we have T II(f) €; Zb-l(~ ) (\ ~ S? ~ MP and so per) - r + a" 
r-s v 

~ O. Finally f G LP implies p(f) ~ O. and so r ~ a N which 

contradicts (5). Hence LP • Zb -l(~ u) n <l S'7. and MP = Zb -l( Sv) 

" "S ? is proved likewise. 

We may now give: 
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Theorem 3.3.3. (x, u, v) is S-bireal compact if and only if it 

is qu(S)-complete. 

Proof. Let (X, u, v) be S-bireal compact, and le t C be a 

qu(S)-Cauchy 1-regu1ar bifilter on X. By the last proposition 

(Zb-l(~u)n < S~, Zb-l (13 v )n.c S}') is real in ~ S?" and hence 

fixed by some x ~ X. It follows at once that ~ converges to 

x, and so X is qu(S)-comp1ete. 

Conversely suppose X is qu(S),complete, and let (L, M) be 

a real bi-ideal in ~ S 7 with resolution p E: H(.8~. It is clear 

that for f E <.S;- and s ? 0 we have 

(f-l(M(p(f), s», r-l(N(p(f), s») C Zb(L, M), 

and hence Zb(L, M) is a qu(S)-Cauchy 1-regular bifilter on X. 

By hypothesis Zb(L, M) converges to some x E X, and so 

Zb (L(x)" <. S?', M(x) tl < S;» ~ Zb (L, M). However the mapping 

Zb is injective on the maximal I b -regular bi-ideals of 4:. S> 

and we have (L(x)" <'S .. , M(x)n<S;-) = (L, M), that is (L, M) 

is fixed by x as required. 

Corollary 1. Fd~ each bigenerating sub-T-lattice A of P(X), 
(HA, qu(TfA» is a weakly pairwise Hausdorff completion of (X, 

qu(A» • 

Proof. The restriction of qu(TT A) to ~ A (X) is clearly quasi­

uniformly isomorphic with qu(A), and the completeness follow8 

from the theorem and Corollary 2 to Theorem 3.3.2. 

For the quasi-uniformity b on X we shall denote by Q( & ) 
the set of all functions f : X ~ R which are ( b -~) quasi­

uniformly continuous. By applying (essentially) Theorem 2.5.3 
to the completion (HA, qU("A» we have at once: 

Corollary 2. If A is • bigenerating sub-T-lattice of P(X) then 

A & Q(qu(A» ~ v (POIA». 

In particular for A E. 5\ we have A • Q(qu(A». 
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• If A is bigenerating 8ub-T-lattice of P(X) then (HA, uA' VA) 

ia uniformly compact and eo has a unique compatible quasi­

uniformity. It follows in this case that Q(qu(TfA» a P(HA) and 

hence 

Q(qu(A» • V(P(H
A

» E tJt. .... 
Consequently there is a one to one correspondence between ~~ 
and the set of totally bounded quasi-uniformities compatible 

with (X, u, v). On the other hand, however, it is possible to 

have a bigenerating sub-T-lattice A ot p(X) tor which Q(qu(A» 

4 ~, as the next example shows. 

Example 3.3.1. Let (X, u, v) be the space (ll, s, t), and let 

S = t i, 0 1 , where i: ~ ~ IR is the identity function. Cloarly 

S ~ p(X) is bigenerating. Let ua first show that (n, s, t) is 

S-bireal compact. Let (L, M) be a real bi-ideal in tit. S ~. Then 

for some a ~ ~ we have T (i) c Ln H, and we will show that CL, M) 
a 

is fixed by a. To do this it will suffice to ahow f E: L" M ~ 

t(a) = O. Suppose on the contrary that f(a) = 2b > O. Then a ~ 
+ + Z (f, b), which is a closed lower aet in R, and eo k = eupZ (f, b) 

<=. a. Take 0 <:. t <:. a - k; then Z+(t, b)1l Z-(T (i), t) 1:1 ¢, a 
which contradicts the tact that Zb(L, M) ia ~ b-regular. 

Likewise f(a) ~ 0 is impossible, and we have shown that rea) 

a 0 as required. Hence (~, a, t) ie indeed S-bireal compact. 

It follows by Theorem 3.3.1 that peR) ie a finite ~b-refinement 

of <:. S:>, for (~, s, t) is bireal compact by Thoorem 3.3.2. 

Indeed examination of the proof ot Theorem 3.3.1 shows that 

in fact peR) is a finite .f b -prime-refinement of .( S >, and 

hence of Q(qu(S» also. If we can show Q(qu(S» 1 p(~) it will 

then follow that· Q(qu(S» • Q(qu( <. S > » ¢ i7t • Now it is clear 

trom the definition that qu(S) a..)'L ao we have to show QC)A--) 

1 P(R). Take 

rex) = eX t peR) 

and suppose f ~ Q<.J'-). Then given t > 0:1 a? 0 with 

-Ie I'M. s .L. f ~t). 

Hence for k E.. R there exists r t R with 



M(k, s) ~ r-l(M(r, t» and N(k, s) ~ r-l(N(r, t». 

Hence ek+s / 2 c:. r + t and ek- s / 2 "> r - t, and so 
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e 
However this gives a contradiction for lar,.e enough k, so f;' Q~) 

and the result is established. 

.(u nL· We know from the general theory above that Q y-) E:. vr • 
Actually Q~~) • P~(R). To see this take f ~ P·(R) and lot 

a = inf(r(in], b :a sup Lr(IR~. Since the subspace [a, b J of R 

is uniformly compact the restriction to l a, b J of ~ coincides 

with qu(P(R» restricted to [a, b). Hence ~iven t~ 01 s> 0 

with 

Hence for a-sLk4.b+ s we have r eR with 

M(k, a)n[a, b) f:. r-l(M(r, t»l\la, b ) , 

N(k, a )11) \ a, b'l £: f-l(N(r, t»n{a, b 1. 

However, using the ract that r-l(M(r, t» ia an open lower set 

-1 and f (NCr, t» is an open upper set we may deduce that 

M(k, s) G:: r-l(M(r, t» and N(k, s) ~ r-l(N(r, t». 

On the other hand for k ~ a - a (respectively, k ~ b + s) 

we have M(k, s) ~ f-l(M(a, t», N(k. s) E f-l(N(a, t», 

(respectively, M(k, s) ~ f-l(M(b, t», N(k, s) ~ r-l(rHb. t»). 

This shows that 

~ .L f- l ( W\.t) 
s 

and so rE: Q1t CjA.) as required. 
e. 

We now turn our attention to the question of the exist~nce 

of a minimal element of ~ • The situation does not seem to be 

as straightforward as in the case of a cingle topoloCY, and 

in particular there does not seem to be a simple characterizat­

ion in terms of the number of elements in the outcrowth of a 

minimal uniform compactification. Before givine our partial 

solution to this question let us note some terminology. If A is 
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a sub-T-lattice of P(X) and (F, K) an ordered pair of non-empty 

subsets of X we shall say (r, K) is A-completely separated if 

for some h E A with 0 6 h ~ 1 we have her) :: {O! and h(K) :: 

11! . (r, K) will be called closed if F is v-closed and K is 

u-closed. We then have: 

Theorem 3.3.4. (a) Let A be a minimal element of ~ • Then 

for every A-completely separated pair (F, K) either every filter 

::s with F E: ~ haa a u-cluater point in X or every filter X. 
with K E )( has a v-cluster point in X. 

(b) Let A E ff- , and suppose that every closed 

A-completely separated pair (F, K) has the property that either 

F is u-compact or K is v-compact. Then A is the least element of 

~. 

Proof. (a). Suppose that for Bome A-completely separated pair 

(r, K) there is a filter ~ with F £ ~ that has no u-cluster 

pOint in X, and a filter )( with K ~ k which has no v:'cluster 

point in X. We will show that the bifilter j(x ~ 1s qu(A)­

Cauchy. 

Take a e X. Then sin~e ~ has no u-clustcr point there is 

a u-closed 'set FCa} € 1. with a (. F(a), and likewise we have a 

v-closed·aet K(a)E K. with a tf. K(a). Consequently we have e(a) 

E q u (A) wi th S t (e (a), 1 a I ) fl r (a) :: S t ( t a ~ , e (a» 1\ K (a) = ~. 

Take any e E qu(A) and a sequence dn i: qu(A) with d
l 
~ (A) 

e/\ e(a) and d l~U') d , n = 1, 2, ••••• Let pe be the n+ n a 

admissible p-q-metrlc obtained as in Lemma 1.4.1 for the sequence 

d • I'or x E:. X let n 

fe (x) • pe (a, x). 
a a 

-n e -Ie ) Since for 2 .L t we have dn+2 ..c::. on ~ f a Y'\.t we see that 

feac Q(qu(A» • A. Alao 

fea -1(_00, feaCa) + 2-2) ~ St(e, a) 

so the set { fea lee quCA}, a e X 1 generates the topology u. 

In exactly the same way if we set 
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then gea E A and the set! gea ' e € qu(A), a E: X I generates 

the topology v. It follows that 

S = i fe ,,(1/4), ge V (-1/4) 1 a a e e qu(A), a € X 1 

is bigenerating and that Q(qu(S» ~ A. However .:J E- p" (X) so 

Q(qu(S» ~ ~ , and since A is minimal this implies 

A • Q(qu(S» • • • • • • • • • (6) • 

e A 
Now by the definition o! p a we know that O2 ~ ~ ,and so 

in particular O
2 

.c:: .(a). It follows that for all t> 0 we have 

X II: (fe "(1/4»-1(M(1/4, t», 
a 

x ~ {ge V (-1/4»-1(N(-l/4. t» 
a 

and so, using (6), J<.x 1- is qu(A)-Cauchy as required. 1I0wev4a.r 

we have h E. A with h(F) • 10 1 and h(K) :: t 1 ~ • and hence for 

some r E: R, 

(h-l(M(r. 1/4», h-1(N(r, 1/4») ~ x.JC~ • 
h-l(M(r, 1/4»n K~ ¢ and h-l(N(r. l/4»n F ! ¢ now gives an 

immediate contradiction, and (a) is proved. 

(b) Suppose that A E: ~ has the properties stated in the 

theorem, and that A' is any other element of ~ • Take t ~ A 

and set a II: inf[f(X~, b - suplr(x~. Since in any case A' contains 

all constant functions on X we may suppose that r is not constant, 

and hence that a "'- b. Take t > 0, and a natural numb~r n with 

lin .:: t. Let p and q be integers satisfyine 

(p - l)/n ~ a ~ pin and q/n "'- b ~ (q + l)/n. 

Since the pairs 

+ 
(Z (Ti/n(f», Z-(T(i+l)/n(f»), p ~ i ~ q - 1 

are closed and A-completely separated we know by hypothesis taat 

for each pair either the first set is u-compact or the second set 
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is v-compact. It follows by a simple compactness argu4mant that 

in either case each pair is A'-comp1ete1y separated, S1Y by the 

functions hi e A'. Now consider 

f\ { hi - 1 (Wl1/ 2) J p~ i ~ q-1j E: queA'). 

If for r , ••• , r 1 E R we have 
p q-

n { hi -l(M(r
i

, 1/2»1\ hi -l(N(ri • 1/2» I p ~ i:E, q-1 j ,,¢ 

and if we define 

k • 
{ 

q if r i ~ 1/2 V p ~ 1 ~ q-1, 

min {i , r i <. 1/2 ( otherwise, 

then it 1s trivial to verify 

nt hi-leMer
i

, 1/2» I p ~ i~ q-l J S: f-1(M(k/n, t», 

n I hi - 1 eN(r
i 

t 1/2» I p ~ i ~ q-l ! "'- f-l(N(k/n, t», 

and hence 

A { hi-l(~/2) I P ~ i £:. q-l} < f-l('M.t )· 

This shows f-1('f(lt) E. qu(A') for all t;:- 0, and so f E Q(qu(A'» 

I: A', and we have shown A ~ A' as required. 

In the case u = v the conditions (a) and (b) coincide, and 

give a familiar condition for the eXistlnce of a ~inlmal 
t 

compatible uniformity, but in gen~ral th~y are unfortunat}y 

rather far apart. 

The results eiven so far in thia section show v~ry clearly 

that the most natural dispersion to study in relation to the 

notion of bireal compactness is ~b. However to close this 

section we will make a few comments about another dispersion 

which could be studied in this context. This is the dispersion 

.f z de fined by 

f(.f )g ~ Z+(f)f) Z-Cg) I: ~ , f, g~ p(x). z 

It will be noted that the definition of t'z depends explicitly 

on the space X, and it is not in general possible to define it 

using the internal lattice structure of P(X). The renson why 
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~z might be of interest is that corresponding to a ~ z-regular 

bi-ideal (L, M) we have an 1-regular bifilter Z(L, M) with base 

1 (Z+(f). Z-(g»' f E: L, g~ Mj, 

and this might well be considered a more natural analouge of a 

z-filter than is Zb (L, M). (Zb (L, 1-1). where (L. M) is -f b-

regular. is more exactly an anal~~ of an e-filt3r. C.f. £J'] , 
Problem 2.L). It is not our intention here to give a detailed 

treatment of "-regular bi-ideals. and indeed the results 
z 

we do present tend to suggest that this notion might be of leos 

value in the bitopolo~ical case than it is for topologies. 

It is clear from the definition that 1'b ~ t'z. and 80 

every I' z -regular hi-ideal is .f' b -regular, although the converee 

will be false in general. Let us first note: 

Proposition 3.3.6. 

Then every maximal 

Let A be a bigenerating Gub-T-1attico of F(X). 

~ -regular bi-ideal (L. M) in A is total. z 

Proof. Suppose that for some f £. A we have f " Land t ¢ M. 
and let 

L' = { f' If' cAt f' ~ f" h for some h eLl , 

M' :s t g' , g' ~ At g' ~ r" k for some k E: M ! . 
Then by the ~ -maximality the bi-ideals (L'. M) and CL. M') 

z -are not f -regular and so we have h E: L, k' ~ M with (tv h) f k' z z -
and h' & L, k E:. M with h'.f (f" k). Now h"h' 6 L. kl\k' f:: M z 

so we have a c. Z+(h"b')" Z-Ck" k') ::0 Z+(h)fl Z+Ch')I1 Z-Ck)1l Z-Ck'). 

However Z+(f"h)" Z-Ck') IZ Z+(f)f) Z+(h)f) Z-Ckt) :s f1 and 

Z+(h')" Z-( fl\k) :: Z+(h')I) z-Cr)f) Z-Ck) :: ¢ so we obtain the 

contradiction a r/. Z+(f) U z-Cr). This proves the result. 

Corol1ar~. A maximal ~ -regular bi-ideal in A has a unique z 
maximal ,pb-regular refinement. 

Proof. This follows at once from Propositions 3.1.3 and 3.1.1. 

In particular we see th~t every maximal l' -regular bi-ideal z 
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which is finite has a unique real refinement, and this will have 

( + + the form L, M ). Hence if (L, M) is a finite maximal ~ _ 
z 

regular bi-ideal we have p ~ HA so that 

- ( ) (+ +) (p p) , L, H .. L. M • L, M , 

and in this way we have defined a mapping ~ from the set ZA 

of all finite maximal (z -regular bi-ideals on A into the set 

HA• Now for each ! b-regular bi-ideal (L, M) we may define 

L- lIZ tf f <:A, 3 h ~L, s >0 with f ~ Ta(h)"O 1, 
~C = t g g E:. A, 3 k E::: H, s '> 0 with g ~ T (k) ,,0 1. 

-6 

Clearly (L-, M-) is a I -regular bi-ideal, and we have (L, M) 
z 

~ «L-)+, (H-)+). Consequently if (L, M) is maximal f b-

regular.then (L-, M-) is nearly total, and (L, M) is ita unique 

maximal -f b -regular refinement. It is clear that all the 

maximal .f -regular finite bi-ideals (L, M) with "i:'(L. M) III P 
z 

satisfy 

«(LP)-, (MP )-) 4 (L, M) ~ (LP, MP) ••••• 

We may now show that ~ is onto HA• For if P ~ HA then 

«LP)-, (MP)-) has a maximal ,f -regular refinement (L, M), and 
z 

(L, M) is a finite f b-regular bi-ideal 80 it has a real refinem-

ent; and since this is also a refinement of «LP)-, (HP)-) it 

must be (LP , MP). lIenee 7: (L, M). p, and c:- is onto as required. 

For f c A let us set 

(L, M) <C ZA' f E: L I , 

Z-(g) = t (L, H) , (L, M) E:- ZA' g E:; M J • 

Clearly l Z+(f) 1 f ~ A \ may be taken as a base of closed sets 

for a topology v'A on ZA' and 1.. Z-(g) I g E; A \ as a base of 

closed seta for a topology u'A. (ZA' u'A' v'A) is an extension of 
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(X, u, v) with respect to the mapping x -¥ (L(x)f\A, M(x)f\A), 

and X is uniformly dense in ZA' It is easily seen that (ZA' utA' 

v'A) is weakly pairwise TO' but I would conjecture that it need 

be neither pairwise completely regular nor separated in the 

general oase. We may note: 

Proposition 3.3.7. If A ~ P·(X) is a bigenerating sub-T-1attice 

then (ZA' u'A' v'A) is 1-compact. 

Proof. Let ~ be an 1-regu1ar bifilter on ZA' and define 

. L = 1 f I f E: A, Z+ (r) E:: 

Clearly (L,M) is a 1'z-regular bi-ideal in A, and because 

A ~ P~(X) it has a finite maximal f -regular refinement (L', M'). 
z 

(L', M') ~ ZA and is easily seen to be an 1-cluster point of 'G 

so the proof is complete. 

Corollary. If under the conditions of the proposition (ZA' u'A' 

v'A) is pairwise completely regular then it is uniformly compact. 

Proof. This follows at once from the corollary to Proposition 2.6.8. 

Now let us take (L, M) E:, ZA' f E. A and t '> O. Then it is 

easy to verify that 

c: ..,.. -l( 11 -l( (L, M) E: ZA - Z-(Tp(f)+t(f» c.; f -00, TT"r(p) + 2t). 

(L, M) E: ZA - Z+(Tp(f)_t(f» ~ 1:' -lp'f-l(lrf(p) - 2t, 00), 

where p = ~ (L, M). and so 

'7; : (ZA' u'A' v'A) ~ (HA, uA' VA) 

is bicontinuous. Since ~ also preserves X this means that the 

extension ZA is projectively larger than HA, and in particular 

X is A-embedded (in fact, ~ (P(HA»-embedded) in ZA o Recalling 

that HP+(X) is the projectively largest separated uniformly 

compact extension in which X is uniformly dense we see from the 



Corollary to Proposition 3.3.7 that if Zp*CX) is pairwise 

completely regular then 

7:' : Zp" (X) ~ f1,-«CX) 
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is a bitopological homeomorphism. By embedding ZpCX) in ~¥(X)' 

or otherwise, we see that 

't" : Zp(x) ~ l1>(X) 

is a bitopological homeomorphism under the same hypotheois. 

Before examining condi tiona under which 1'" is a bi topological 

homeomorphism in general we note the following result. 

Lemma 3.3.'. Let (L, M) be a maximal I -regular bi-ideal in A. z 

If f E.. Land f' E: A satiefies Z+(f) c;. Z+(f') then f' €. L. 

We omit the proof, which is straightforward. Of course a 

corresponding result holds for M. 

We may now give: 

Theorem 3.3.5. Let A ~ P*(X) be a bigenerating eub-T-lattice, 

and 'l" : ZA ~ HA be defined as above. Then the following are 

equivalent: 

Ca) ~ is a bitopological homeomorphism. 

(b) The setA = ( 'i I !E A\ ~ P(ZA)' where r = -rrfo"'t' , 

is bigenerating. 

(c) The following conditions hold for all f, g, h E..A, 

(i) If the sets Z+(f) and Z+(g)A Z-(h) are non-empty and 

disjoint then the pair (z+(!), z+(g)nZ-(h» 1s 

A-completely separated, and 

(ii) If the sets Z+(f)~ Z-Cg) and Z-(h) are non-empty and 

disjoint then the pair (Z+(f)A Z-(g), Z-(h» 1s 

A-completely separated. 

Proof. (a) =7 (b). This is immediate since -rr A = 1 II
f 

I f E; Aj 

is bigenerating in HA• 

(b) ~ (c). We establish (i), the proof of (ii) being 

similar. By hypothesis ZA is pairwise completely regular, and 

hence uniformly compact by the corollary to Proposition 3.3.7, 80 
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we could use a compactness argu~ment. However the following proof 

is more in keeping with our general approach. Suppose that 

(Z+(f), Z+(g)AZ-(h» is not A-completely separated. Then given 

f' €: A with Z+(f) ~ Z+O·t), and I!S :> 0, we have 

Z+(f', s)n z+(g)n Z-(h) ~ ¢, 

and hence if we define 

L' = t g" g' e. A, Z+(T (f')v g) ~ Z+(g') for some I!S "> 0 and 
s 

f' E: A with Z+(f) ~ Z+(f') J 
H' = t h' , h' E:. At Z-(h) E: Z-(h') I , 
we see that (L', H') is a -f z-regular bi-ideal in A. Let (L, M) 

be a maximal .( -~egular refinement of (L' t M'); then (L, M) t 
z 

ZA since A ~ p"1t (X), and we Bet 7: (L, H) ::2 p. Let us show f Ii: 

-
L. Suppose the contrary, then (L, H) rt Z+(f), and since A is 

bigenerating we have f' e A with Z+(f) £. Z+(;;) and (L, M) ;. 

-
Z+(r;). Now Z+(f) ~ Z+C~) implies Z+(f) ~ Z+(ft) so T (f') € 

s 

L' ~ L V s > 0, that is f' ~ L+ • LP. On the other hand CL, H) 

II +,.... () -( 
't- Z Cf') means pCf') I:: ;r f' p a f L, H) > 0, which is a 

contradiction. Hence f ~ L, and g t L, h c H are immediate from 

the definitions, so we are lead to the contradiction 

Z+(f)n z+(g)nZ-(h) ~ ¢. This establishes (i). 

(0) :::;> (a). Let us first demonstrate that ~ is injective. 

Suppose on the contrary that 7: (L, M) = 7' (L', H') and that, 

say, we have f€ L with f; L'. By the maximality of (L', H') 

we have h' E:. L' and k' E. M' wi th 

Z+(f"h')n Z-(k') • ¢. 

Applying (i) we have gl E: A with 0 6, gl 6. 1, gl(z+(r" h'» = 
tot an.d gl(Z-Ck'» = t1\. By Lemma 3.3.5 we see that Tt(gl) 

E!: H' \:I t £ 1. Hence Z+(h')fl Z-(T
1

/
2

(gl» I ¢, while 

Z+(f"h')n Z-(Tl / 2 (gl» • Z+(f)f\(Z+(h')f\ Z-(T
l

/
2

Cg
l
»] II:: ¢. 



217 

Hence we may again apply (i) to give us g2 e A with 0 6 g2 -' 1, 

g2(Z+(f»:2 {oj and g2(Z+(h')I\Z-(T
l

/
2
(gl») = (II. By Lemma 

3.3.5 we have g2 € L ~ LP , and since Tl (e
l

) €. M' ~ MP we see 

that Z+(Tl / 2 (g2»n Z-(Tl / 2 (gl» # ¢. However Z+(Tl /
2
(g2»n 

(Z+(h')" Z~(Tl/2(gl») • Z+(h')1l (Z+(Tl / 2 (g2»1\ Z-(T1/ 2 (gl») 

• ¢, and a final application of (i) now gives us e
3 

t A, 

o ~ g3 ~ 1, with e;3(Z+(h'» • {oj and g3(Z+(T1/ 2 (g2»I) 

Z-(T
l

/
2
(gl») = [II. On the one hand g3 ~ L' E LP by Lemma 

3.3.5, and on the other we have 

Z+(T
l

/
2
(g3»f\ (Z+(T

1
/

2
(g2»1l Z-(T1/ 2 (gl») = ¢ ••••• (7). 

However Tl (gl) e MP , g2 v g3 E:. LP; and (7) implies 

Z+(g2 Vg3' 1/2)I\Z-(T1 (gl)' 1/2). ¢ 

which contradicts the fact that (LP, MP) is "b-regular. This 

shows that , is injective, as required. 

Now let us show that for each f E A the eat ~ (Z+(t» is 
-

VA-closed in H
A

• Take pf/, ~(Z+{f» in HA, and define 

L' = \. f' I f I 6 f v T (h) v 0, h € LP, s"> 0 3 • 
s 

Clearly L' is an ideal containing (LP)-, and hence the bi-ideal 

{L', (MP)-) cannot be l' -regular, for if it were it would have z 

a (necessarily finite) maximal ~ -regular refinement (L, M) z 

satisfying f ~ Land "t" (L, M) ~ p, and this would contradict 

P f. 't'(Z+(f»' Hence we have h ~ LP, k €: HP, s, t ~ 0, so that 

Z+(fvTs(h»f\Z-(T_t(k» • ¢. 

that is 

Z+(f)" (Z+(Ts(h»f\Z-(T_t(k») :2 ¢. 

We may now apply (i) to give g E; A, 0 ~ g ~ 1, with g(Z+(f» 

• t Oland g(z+ (Ts (h»" Z-(T -t (k») = t 11 . In particular we 
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therefore have 

Z:(Tl / 2(g)Vh, s",(1/4»"Z-(k, t) = ¢ ••••• (8). 

Now suppose that q E: jf-l(Tr(p) -1/2, cx,)(\~(Z+(f». Then 
g g. 

q =: "(L, M) with t E:: L, and Z+(f) ~ Z+(g) implies e E-. L ~ Lq 

by Lemma 3.3.5, so we have q(g) ~ O. On the other hand 11 (q) 
g 

~ 1T g(p) - 1/2 implies g(p) ~ q(g) + 1/2 ~ 1/2, and so Tl /
2

(g) 

G LP. However (8) now contradicts the fact that (LP, MP ) is 

~ b-regular, and we have established that 

-rr -1(1/ (p) - 1/2, CD)" '~(Z+(f» !II ¢. e g 
Hence ~ (Zt(f» is vA-closed, and an exactly similar argument 

shows that (;' (Z-(f» 1s uA-cloeed. Thus ~ is a biclosed mappinr; 

and hence a bitopological homeomorphism, aa required. 

The argument used in proving (c) ~ (a) docs not use the 

fact that A ~ P·(X). Hence we may state 

Corollary 1. It A ~ P(X) is a bigenerating sub-T-lattice which 

satisfies (i) and (ii) then r : ZA -? HA is a bltopological 

homeomorphism. 

Let us also note 

Corollary 2. It (X, u, v) is uniformly compact then overy 

bigenerating eub-T-lattice A ~ P(X) satiefies (1) and (ii). 

It is known (llO) , Proposition 2.8) that if 7,+(r) and Z-(g) 

are non-empty and disjoint then the pair (z+(r), Z-Cg» is 

P(X)-completely separated. This condition is, however. considerably 

weaker than (i) and (ii) of Theorem 3.;.5, and I would conjecture 

that P(X) need not satisfy (i) and (ii) in the general case. 

That not every element of ~ need satisfy even the weaker 

condition mentioned above is demonstrated by the following 

simple example. 

Example 3.3.2. Let X 1:1 (-1, 0) u (0, 1), and consider the induced 

bitopological space (X, sIX, ttX). Clearly the quasi-uniformity 

~\X is compatible with this space, and we mny consider A = 
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Q Y-'IX) E: V'1 • If we set f -l(i,,0)1\11IX and g = lCiI\O)vC-l)l\X 

then f, g €A and Z+(f)"Z-(g) - (-1, 0),,(0, 1) = ¢. Suppose 

we have h <:::- A with h(Z+(f» .. to \ and h(Z-(g»:: llj. Now 

-1 ) -1 h (W\1/2 c.r t X so there exists k "> ° wi th (~~''k)X ~ h (W\i/2) • 

Since (M(O, k) f\ X)" (NCO, k) n X) = (-k, 0) v (0, k) I ¢ we have 

r E:. R with 

M(O, k)" X <.::. h-l(M(r, 1/2», and 

N ( 0, k) (\ X ~ h -1 (N (r, 1/2». 

However k/2 E: M(O, k)" X implies 1 :: h(k/2) , r + 1/2, and 

-k/2 E: N(O, k)" X implies ° - h(-k/2) > r - 1/2, so we have an 

immediate contradiction. Hence the pair (Z+(f), Z-(g» is not 

A-completely separated. «. C 
Note that although Q Y-'-) ::I P (m:) we do not have A = Q y.. I X) 

:: p 4 (X), for of course the above pair is p·(X)-completely 

separated. 

One particular case in which we should have a unique 

maximal { -regular bi-ideal (L, M) with ~ (L, M) :: p would 
z 

be when (L, M) ~ (LP , MP ). Our final result in this section 

investigates this situation. Let us say that the ~ -regular 
z 

bi-ideal (L, M) has the oountable intersection property (C.I.P) 

if the set t Z+ (f) f\ Z-(g) I f E: L, g E:; M ! has the countable 

intersection property. We then have: 

Theorem 3.3.6. Take A ~ ~. Then the maximal l' -regular bi­
z 

ideal (L. M) in A is real if and only if it has the countable 

intersection property. 

Proof. Suppose that the maximal ~ -regular bi-ideal (L, M) in z 
A is real, but that it does not have the C.I.P. Then we have 

f 6 L gn E:M with ()\Z+(f )IlZ-Cg» I n :: 1, 2, ••• \ = ¢, n ' n n 
and without loss of generality we 

and -lin ~ g ~ 0. Let us set n 

f=vtfl n=l 2 J n " ••• 

may assume ° ~ f ~ l/n n 

and g = 1\ l g , n = 1, 2, •• J • n 
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Clearly f and g are well de fined, 0 ~ f.6 1 and -1 ~ e ~ O. 

Take s ~ 0 and choose a na tura1 n urn ber k wi th 1/21<: <. B. I r 

given r
1

, ••• , rkE: IR we set r .. Vtri, l~ i~ k}V(1/2k) 

then it is easy to verify 

n { ii -lCM(r
i

, l/2k» J l!: i ~ k 1 s= r-l cr·1(r, s», and 

n {Ii -l(N(r
i

, l/2k» 1 ~ i 6 k i ~ l-l (N(r, s», 

and so 

Hence fG Q(qu(A», and so 1 E.. A by Corollary 2 to Theorem 3.3.3, 

and likewise g ~ A. Since (L, M) is real we have s, t ~ ~ with 

Ts(f) c LI) M and Tt(g) E. LI\M. Suppose that B ~ 0, and take a 

natural number m with 11m ~ s. Then since (L, M) is f z-regular 

we have x EfHz+(r
i

) I l~ ~~ m3 f'\ Z-(Ts(f». However fi(x) 

= 0, i = 1, ••• , m implies rex) ~ 11m ~ s which contradicts 

x E; Z-(T (f». Hence s :!!: 0; and likewise t ~ 0, which shows 
B 

f ~ Land g =M. Hence there exists 

z E: Z+(f)'l Z-(g) 

. which gives the contradiction z ~ n t Z+(f )0 Z-(g ) I n = 1, 2, 
n n 

...• 1 · Hence (L, M) has the C.l.P. 

To prove the converse let (L, M) be a maximal f -regular z 

bi-idea1 in A with the countable intersection property. Suppose 

first that we have some f ~ A with T (f) E L V r E.~. Then 
r 

by hypothesis we have a E.. n t Z+ (T (f) I n = 1, 2, ••• 1, which -n 
is clearly impossible. Likewise T (r) ~ M V r ~ R is impossible 

r 

so no element of A is infinite at (L, M). Since (L, M) is total 

and -f b-regular this implies (L, M) is finite, and hence to 

show (L, M) is real it will be sufficient to verify L+ ~ L 

and M+ =. M. Suppose, for example, that there exists f ~ L + 

with f tt L. Then since (L, M) is maximal l' -regular ~ h e L, z 
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On the other hand Tl/n(f) € L V n = 1, 2, ••• , and so by 

hypothesis we have b ~ X with 

b E:. f) ~ Z+(Tl/n (f», n I: 1, 2, ••• ! n Z+(h)f\ Z-(k). 

However f(b):!: lIn "d n;a 1, 2, ••• implies feb) :: 0, that 

is be Z+(f), and we have a contradiction to (9). This 

completes the proot of the theorem. 
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Corollary. Every real f -regular bi-ideal in A~ has a real 
z 

~z-regular extension to A. 

Proof. This follows at once from the observation that the 

regular bi-ideal (L, M) in A has the C.I.P if and only if 

(Lt\ l , MI\ A) does. 

.f -z 

In particular it will be noted that there is a one to onp. 

correspondence between the real 1f -reeular bi~ideals in A and z 

in A* • Consequent~ly if (X, u, v) is not pseudo compact there 

will exist real bi-ideals in P~(X) which are not ~ -regular. 
z 

This implies in particular that the conditions (i) and (ii) of 

Theorem 3.3.5 are in general not sufficient to ensure that all 

the real bi~ideals on A should be 1f -regular. Of course it will z 

be apparent that if (X, u, v) is A-bireal compact then certainly 

all the real bi-ideals in A will be l' -regular. It can alco be 
z 

shown quite easily that for the space (X, u, v) with u = v then 

all the real bi-ideals in P(X) are f -regular, but I do not 
z 

know if this is always true when u I v. 

3.4 PAIR REAL COHPACTNESS. 

Throughout this section, as in the last, (X, u, v) will always 

denote a pairwise completely regular weakly pairwise To bitopolog-

ical space. M.J. SAEGROVE (31] has called such a space pa.ir rea.l 

compact if it is bitopologically homeomorphic to an intersection 
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of a 1T s -closed subset and a Tf t -closed subset of a product 
~ ~ 

, 

(TT.R_. lTs ,1ft) of copies of (IR. s. t). If in addition (X. u. v) 
... -t co( 

is pseudo compact he calles it a bicompact space. It follows at 

once from Theorem 3.3.2 and Proposition,3.3.3 that a pair real 

compact space is bireal compact, and hence uniformly real compact. 

while a bicompact space is uniformly compact. However the converse 

is not true in general. 

We shall begin by giving a characterization of pair real 

compactness in terms of the notions of S-resolution and S­

derivative introduced in ~ 3.2. First we 'make the following 

de fini ti on. 

Definition 3.4.1. Let S ~ P(X) be a bigenerating subset. We 

say the S-resolution p is S-fixed by X in X if f(x) = pCf) for 

all f Eo S. 

Lemma 3.4.1. If the S-resolution p is S-fixed by X ~ X then the 

derivative crl. MP) is a real bi-ideal in ,S ~ which is fixed 

by x. 

Proof. By Proposition 3.2.7 it will be sufficient to show that 

(LP, MP) is { b-regular. However if we had fl' •••• f n ; gl' •• 

.. , g ~ Sand t "> ° wi th m 

Tt ( V t Tp(fi,(fiU"O) :;, "i Tp(gj)(gj)}" ° 
we sho~ obtain an immediate contradiction by calculating the 

value of each side at the point x, and we deduce that (LP, MP) 

is real. It follows that p has an extension to an element pi 6 

H<S ~ , and the fact that (LP, MP) = (LP I, MP ') is fixed by x 

now follows bya simple induction argutment. 

We may now give: . 

Theorem 3 0 4.1. (X, u, v) is pair real compact if and only if 

there exists a bigenerating subset S of P(X) so that each S­

resolution is S-fixed in X. 

Proof. First suppose (X, u, v) is pair real compact. Then with­

out loss of generality we may suppose X ; lIR , and that 
G(. 
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x = (Tit -clLX])I) nrs -cl{X1). 
CII. Q. 

Let us set S = { .... IX \u to~ and suppose p : S ~ n is a S­

resolution. Then if we put x .... ::I P(1T .. 1 X) we have x = (x.) E; lfR
at

, 

and using the fact that the S-derivative (LP, MP) is ~-
e 

regular it is not difficult to verify x c X, while by definition 

p is S-fixed by x. 

For the converse let S be a bigenerating subset of P(X), 

and consider the set RS of all S-reso1utions. RS ~ lIlRr IrE sl, 

and we may make RS into a bitopo1ogical space (RS' uS' vS) by 

means of the projections iTr : RS ~ ~f = m, reS, as usual. 

The map f3' S : X ~ RS given by G" S (x) = xl S is a bi topo1ol!ica1 

homeomorphism of (X, u, v) with the bidense subset ~ Sex) of RS' 

and it is trivial to verify that 

in 1T IRr • If every S-resolution p is S-fixed in X then by Lemma 

3.4.1 we have ~ SeX) .. R
S

' and so (X, u, v) is pair real compact 

as required. 

Corollary 1. (RS ' uS' vS) is a pair real compact (respectively, 

bicompact) extension of (X, u, v) for every bigenerating set S 

* in P(X) (respectively, in P (X». 

Corollary 2. Every pair real compact bitopological extension of 

(X, u, v) is bitopologically homeomorphic to (RSt uS' vS) for 

* some bigenerating subset S of P(X). 

Proof. Let (X', u t
, v') be pair real compact, and (X, u, v) a 

bidense subspace. By the theorem we have a bigenerating subset 

S' ~ p(X') so that every s'-reso1ution is S'-fixed in X'. Let 

S= {f'IXI f'tS'l, 

then S C P(X) is clearly bigenerating. Take p ~ RS' and for 
f'E: S' let 

p'Cf') = p(f'lx). 
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Clearly p' is a S'-resolution, sO the nerivative (LP ', MP ') is 

fixed by some x E. X'. x is unique since (X', u', v') is 
P p 

weakly pairwise TO' so we may define ~: RS -. X' by 

oc. (p) = x • 
P 

It is easy to verify that 0( is one to one onto X', and the fact 

that it is a bitopological homeomorphism then follows at once 

from the relations 

lI
f
- l (-oo, r) == ol-l(f,-l(_oo, r», 

"f-l(r, 00) = 0'. -l(f,-l(r, (0» 

which hold for all r £ IR and f €: S, fIE. S' with f = f'lx. 

Corollary 3. If (X, u, v) is pair real compact there exists a 

bigenerating set S & P(X) satisfying 

(a) p(X) is a finite -f b -refinement of < S,. t and 

(b) For any S-resolution p the derivative (LP , MP) is real. 

Conversely if (X, u, v) is a space with a bigenerating set S 

satisfying (a) and (b) then (X, u, v) is pair real compact if 

and only if it is birea1 compact. 

Proof. If (X, u, v) is pair real compact we have a bigenerating 

S so that every S-reso1ution is S-fixed. In particular every 

real bi-ideal in "' S.,. is fixed so (X, u, v) is S-bireal compact 

and (a) follows from Theorem 3.3.1. (b) follows at once from 

Lemma 3.4.1. For the converse we only have to show that a bireal 

compact space (X, u, v) satisfying (a) and (b) is pair real 

compact. However by (a) and Theorem 3.3.1 we know every real 

bi-ideal in < S ~ is fixed, and so by (b) every S-resolution is 

S-fixed. Thus (X, u, v) is pair real compact by the theorem. 

For a given bigenerating S ~ p(x) it is natural to consider 

the relation between the spaces RS and f~S,. • The proof of the 

following result is straightforward, and is om~tted. 

Proposition 3.4.1. (RS ' uS' vS) is a pair real compact 

extension of (H~S) , uS' vS) for the mapping 9 defined by 

9(p) = piS V p ~ H<S~ • 
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" ~ For f Ef: P(RS) we may define 't(f):::r f E:; p(X) by f(x) = f(xIS) 

v x 6 X. The followin~ result is clear. 

Lemm~ 3.4.2. For all bigenerating sets S ~ p(X) we have 

" (p (H ... ~ ». 
-.;» 

1l is, like V , a T-lattice homomorphism, but in general it 

is not injective. Indeed we have the following. 

Theorem 3.4.2. The following ane equivalent for a given 

bigenerating S. 

(a) 't is injective. 

(b) Each bicontinuous real function on H< S:;- has a unique 

extension to a bicontinuous real function on RS' 

(c) 9- is surjective. 

(d) e (H<S) is uniformly dense in RS' 

(e) ~S(X) is uniformly dense in RS' 

Proof. (a) ~ (b). Since RS is bireal compact we know that RS 

and I~(R ) are bitopologically homeomorphic spaces. Also if ~ 
S 

is injective then P(RS) and '1.. (P(RS» are isomorphic T-lattioes, 

and it is easy to deduce that 

"CP(RS» = v (P(Hi(p(R
S
»»' 

It follows from this that 1 (P(Rs » is finitely I b-prime­

complete. However ~ S > ~ 1. (P(RS» by Lemma 3 .4.2, and we know 

that V (P(Hc:S) is the finite I b -prime-completion of -<. S;> 

and so we have 

• • • • • •• (1). 

(b) now follows at once from (1), and the fact that 1[ is one to 
one. 

(b) =7 (a). Immediate from the definitions 

(a) ~ (0). From (1) it is immediate that P(R
S

) and 

P(H~S7) are isomorphic T-latticea. Since these spaces are birea1 
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compact it follows that ~ is a bitopological homeomorphism of 

H<.s> onto Rs' 

(c) ~ (d). Trivial. 

(d) -::::;J (0). Immediate from the fact that ~ ~S>(X) is 

uniformly dense in H.,( S;:. • 

(e) ~ (a). Straightforward. 

It is clear that in general equality (1) may hold without ~ 

being injective. For example if (X, u, v) is a bireal compact 

space which is not pair real compact then f}: Hp{X) ~ Rp(X) 

cannot be onto, and so by the theorem ~: P(Rp(X» ~ p(X) 

is not injective. However 

p(X) ~ "t(P(Rp(X») c. "\J (P(~(X») ~ p(X) 

and 5~ certainly (I) holds in this case. 

Let us now consider in more detail the properties of the 

bitopological extension (RS' uS' vS ) ot (X, u, v). For p ~ RS 

we denote by ~(p), as usual, the nhd. bifilter of p, and we 

shall denote by ~X(p) the trace of ~ (p) on X, that is 

SX(p):: G" S-l«(!(p». 

The proof of the following result is straightforward, and is 

omitted. 

Lemma-3.4.3. ~ X{p) • Zb(LP, MP ) for each p ~ Rs. Moreover 

~X(p) .= ~ X(q) ¢:;) LP ~ (Lq)+ and Lq s;. (LP)+, and with a 
u u 

x X similar result for 'Q. (p) and ~ (q). v v 

X 
Now let us verify that P ~ ~u(p) is one to one on Rs if 

and only if p -> LP is one to one. First suppose p ~ ~ X(p) 
u 

is one to one. Then LP :: L q =:;> LP ~ (L q) + and L q ~ (LP) + 

X X 
=:;> -e. u (p) = 'G u (q) =$ p:: q, 50 P ~ LP is one to one. 

Conversely suppose P ~ LP is one to one, and let 1a~(p). ia~(q), 

that is LP ~ (L
q

)+ and Lq ~ (LP)+. By the proof of Proposition. 
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3.2.6 we know Tr(f) ~ LP (respectively, Lq ) if and only if r~ p(f) 

(respectively, r f: q(f» for each f E:. S. Hence for f E:; S, Tp(f)(f) 

€ LP ~ Tp(fhs(f) E:-L
q 

V' s ~ 0 ~ p(f) + s ~ q(f) \I s '> 0 

~ p(f) ~ q(f); Likewise p(f) ~ q(f) and so p = q. This shows 

p --?' ~ ~(p) is one to one. and in exactly the same way p~ "C !(p) 

is one to one on RS if and only if p ~ MP is one to one. 

Let us say the bitopological extension (X', u', v') is a 

relatively TO extension of (X, u, v) if (X', u') is a relatively 

TO extension of (X, u) and (X', v,) is a relatively To extension 

of (X, v). (See (I) ,). Combining the above results with Proposition 

3.2.6 now gives us: 

Proposition 3.4.2. (RS' uS' vS) is a relatively TO extension of 

(X, u, v) if and only if every S-derivative is S-real. 

It will be noted that if we require only that the mapping 

p ~ 'C X(p) should be on~ to one on Rs we obtain a condition 

which will, in general, be weaker than relatively TO' 

Let us now examine under what conditions (RS' uS' vS) will be 

a strict extension of (X, u, v). 

Proposition 3.4.3. (RS ' uS' vS) is a strict bitopological 

extension of (X, u, v) if and only if every S-derivative is 

S-real. 

Proof. It is a straightforward matter to verify that a strict 

bitopological extension which is weakly pairwise Tl is necessarily 

relatively TO' so necessity follows at once from Proposition 

3 0 4.2. Let us prove the sufficiency. For f E: ~ S '7 and s ~ 0 

we will denote the u-open subset t x , fex) 4!. s I of X by a+(f, s), 

and we will denote the set L~~(G+(f, s»J· by G+(f, s)~ for 
i.) u u 

short. Take p ~ RS and fG S. Then for s ~ 0 we have 

and so 

• • • • • • •• (2). 
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Now take q ~ a+(Tp(f)(f), s)*u' Then clearly a+(Tp(f)(f), s) E 

X ' 
~ (q) • (Zb(Lq, Mq» , so for some gE Lq and t> 0 we have u u 

From this we deduce at once that 

Tp(fhs (f)" t -6 gv 0, 

and because of the definition of L
q 

this implies Tp(f)+s(f) E L
q

• 

Now by hypothesis (Lq, Mq) is S-real and so p(f) + s ~ q(f). 

Hence q ~ 11 f -1(_00 ,lIf(P) + 2s), and we have shown 

a+(Tp(f)(f), s)"*u ~ II f-I(-oo, "f(P) + 2s) ••• 0). 

That (RS ' uS) is a strict extension of (X, u) is now clear from 

(2) and (3). Likewise (Rs ' vS) is a strict extension of (X, v), 

and the proof is complete. 

Let us now note 

Proposition 3.4.4. LP is nearly prime for all p ~ RS if and 

only if for each f, g E:. <. S 7 and s > ° we have 

lO+(f, s)va+(g, s)]*u ~ a+(f, 2S)"*u u a+(g, 2S)~u . . . . . (4) • 

Proof. Suppose LP is nearly prime for all p E:. RS • If P E. 

s)va+(g, s)]*" then a+(f, s)ua+(g, s) = a+(f"g, s) £: 
u 

x l?>u (p), and exactly as in the proof above we deduce Ts (f "g) = 

Ts(f),.. Ts(g) e LP • Hence T3s/ 2(f) E. LP or T3s/ 2 (g) ~ LP, and we 

have p e:. G+(f, 2s)* va+(g, 2s)"' as required. The proof of the 
u u 

converse is similar, and is omitted. 

Corollary. Suppose that (Rs , uS' vS) is a strict bitopological 

extension of (X, u, v), and that the topology Us satisfies (4) 

for all f, g E::. £ S 7 , s "7 0. Then (RS' uS' v s) is bi topologically 

homeomorphic wi th (I~S? ' uS' v S) under the mapping e- . 
Proof. This follows at once from Propositions 3.4.4 and 3.2.7. 
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Note that a result corresponding to Proposition 3.4.4 will -

also hold for MP and the topology vs. In partioular if (Rst uS' 

vs) is a strict bitopological extension then Us will satisfy (4) 

if and only if the corresponding result is satisfied by vs. This 

represents an interesting symmetry between these two topologies 

in this case. 

We have seen earlier that the spaces IIA may be regarded as 

completions of a suitable quasi-uniformity on X, and we are now 

going to show that those spaces RS which form a strict extension 

of X (and these indeed comprise all the strict pair real compact 

extensions of X) may be regarded as the completion of a suitable 

confluence quasi-uniformity on X. Let us denote by cqu(TTS ) the 

basic confluence quasi uniformity on RS with subbase 

t("r-1
(tM.s )' 1)' fE s, s?' 01. 

Then we have: 

Lemma 3.4.4. (Rs ' uS' vs ) is cqu(ITS)-completeo 

PrOof. Let ~ be an 1-regular cqu(lTS)-Cauchy bifilter on Rs • 

For r ~ s it is easy to verify that 

p(f) = in! t r' 1fr- l (u(r» € ~u~ 

exists in R, and that moreover we have 

per) = sup t r , ifr - 1 (KCr» E:. 'G v 1 • 

But then ("Tfr-l(M(p(r), s», 1Tr - 1 (N(p(f), s») 6- ~ for all s> 0, 

and it follows easily that p ~ RS and that ~ converges to p 

as required. Hence RS is complete. 

Lemma 3.4.5. If (RS' uS' vs) is a strict extension of (X, u, v) 

then ~S(X) is strictly cqu(1Is )-embedded in Rs' 

Proor. For r ~ Sand s ~ 0 let us set 
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Since RS is a strict extension of X we may use Proposition 3.4.3, 

and in particular the relation (3) and its equivalent for the 

topoloey vs to show 

11 f-l(~s) "'- dfCs) ~ 1T f -1 (w\'2s) 

for all s ':;. o. Hence 

l (drCs),l)lf E: S, s > 0 1 

is a subbase of cqu(Tfs )' and it is clear from the definition 

that the corresponding base;1 satiefies conditions (b) (i) and 

(ii) of Definition 2.3.2. 

It follows from Proposition 2.3.1 that the induced structure 

on X is an interior confluence quasi-uniformity, which we will 

denote by ~ S. Now let us define on X the interior confluence 

relation DS by 

PDSQ ~ Pl.Q or -3 p E: RS with (P, Q) t::: Zb (LP t MP), 

and for f E: S, e '7 0 let us set 

dS(f, s) = t (f~l(M(rt s», f-l(N(r, e») IrE. R, 

f-l(M(r, S»Dsf-l(N(r, s»j • 

Then it is a straightforward matter to verify that 

t (dS(f, s), Ds> I ! E. S, e.,. 0 j 

is a subbase for the induced structure ~ S. Summarizing theee 

results we have: 

Theorem 3.4.3. Let S ~ P(X) be bigenerating, and suppose that 

every S-derivative in ~ S "7 is S-real. Then 

1. (dS(f, s), DS) I f E: S, s.,. 0 j 

is a subbase for a separated basic interior cqus b S on X, and 

the separated completion of (X, ~S) is the space (RSt cqu(lTS». 
Corollary. Each pair real compact strict extension of (X, u, v) 

may be obtained as the completion of a suitable confluence 

quasi-uniformity on X. 
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INDEX OF SPF.CIAL SYMBOLS 

This list contains, under the appropriate headings, ~he symbols 

and abbreviations used frequently in this thesis, with the number 

of the page on which the definition may be found. Standard symbols 

and abbreviations are not included. 

Bifi1 ters: 

~ , "G u ' 'G v 

~(p), "0 X(p) 

Bi-ideals: 

76; 

226; 

'" 76; 101; "Q 144; 

C.I.P. 219; (L, r-f) (L(f), M(f» 164; 

166; (LB, MB' 175; (L(B), M(B» 

(L(x), M(x» 190; (L-, M-) 213; 
." 1 ." 1 

( Zb - (~u)' Zb - (C v » 189 • 

Confluence Relations: 

92; 

103; 1 

141; oup. 98; ~ c Oc 
, ~ X 

99; 

92; 

,.., 
c 

139; 

177; 

107; 

(LP• MP) 180; 

163; Zb(L, N), 

.. 
c 144; D 95; 

A 
139; {\ 

St (d, A), St (A, d) c c 92; 

(d, c)..t.. (e, b), (d, c) ..(.lilJ (e, b) 92. 

Confluence Structures: 

cpqu 140; cqu 92; aquc 104; cquCTlS) 229; D 95; 

SA 100, 141; ~ i' S 94; 
s,. , SO 140, bS 230; 

0 

HTB.1 - 4 127; TB.1 - 6 118, 119. 

- extensions of: 

A , AO 
107; AO A1 144; 

.. 
B* BO B 99; B , 107; u u u' u u' v v v 

BO B1 " 144; Cb 104; ~ 144; r (X) 107; JL
o 
ex), v' v 
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D-hyperfilters: 

b ('=! ), h ('G ), ~ ,4> 123 

Dispersions: 

Dual covering guasi-uniformities: 

78; 78; 80; ~ 
n 72; ~ 71; qu(S) 71. 

Dual covers and families: 
;w 

d 1, 2; dr:. 71;· d/L 50; deW) 72; d A 100; d 107; 

a 141 ; ( d , c) A 141 ; ~ 144; e (W ) 72; f -1 ( d) 71 , 

103; 1\ 2; 1e (d) 2; "M t.' I'M. ( ~ , n), r (0( ) 71; PSt (d t 

(p t Q», PSt«p, Q), d) 43; 2· , 2; ..,(,<*l 4· , 
'"'(~) 18; ~ C*) 85, 135; St(d, A), 

SteA, d) 4; ~ 

USt(d, A) = USt(A, d) 53; 

52; Wed) 70. 

(WK) 53; WSt(d, A), WSt(A, d) 

Para-quasi-uniformities: 

~ 85; pqu 86. 

p-q-metrizab1e spaces: 

71; H(x, f ), H (x), K(x, t ), K (x) 
n n 

33; L (Y), M (Y) 
n n 

M (x, E. ), N ( X t l ), ~ 71 ; o 37; n 
(n, s, t) 61. 

Real compactness. 

fA- t urB , cut" 202; X 
~(p), ~ (p) 226; equ(-rTS) 229; 

~S 
., ., 

G+ (f • + s)· DS' 230; f 225; g 197; s), G (f, 227; u 

H<S'> t HA 181; p(X) 188; iff 194; Q( ~) 206; qu(rrA) 

206; RS 180; cr~s> 194; crs 223; ~ 181, 224; cI 
203; ~ 197; 1: 213; 't. 225; ... 

190; Z+(f), Z-ef), x 
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z + ( f t s) t Z- (f , Z+ (f), -8) 188; Z-(f) 213. 

T-lattices. 

p 162; • pI p 179; t 180; <:S) S n 181 TCAl 168; 

~otients of-: 
,.., ( l , P/(L, M) , V' , ~ 168; 1(L, M)(O), 1(0») .!I!.~ 

170; I(tal) 171. 

!:!2.!!. The symbols ~ t· ~ and " listed above are also used 

with their standard meaning at various points in the text. It 

will be clear from the context which meaning is intended. 
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INDEX OF SPECIAL TERMS 

The number denotes the page on which the definition may be found. 

Well established terms are not included in the list. 

A-completely separated, 209 

Bi fil ter, 91 

(.3 -re gular 95,' 

convergent, 76 

b-Cauchy, 76, 101, 143 

t -convergent, 143 

D-regular, 95 

1-regular, 76 

minimal ~ -Cauchy, 

neighbourhood, 76 

open, 115 

A 
Zb - • 189 

Bi-ideal, 163 

extended real, 173 

finite, 172 

fixed, 190 

F-prime, 182 

maximum f -re gular, 

nearly prime, 166 

nearly total, 166 

prime, 163 

real, 173 

..f -ou ter prime, 

I-regular, 163 

S-fixed, 222 

S-real, 186 

total, 163 
A 

Zb -, 190 

Binormal space, 8 

collectively, 75 

163 

110 

163 

finitely, 9 

fully, 11 

point finitely, 9 

star finitely, 9 

Biparacompact space, 12 

compartmentally quasi-, 50 

countably quasi-, 25 

quasi-, 23 

strongly, 11 

strongly quasi-, 23 

Bireal compact space, 192 

S-, 192 

Bitopological extension, 91 

M-separated except for X, 151 

with pairwise relatively 

zero dimensional outgrowth, 

151 

relatively T, 227 
o 

strict, 101 

Closure of a dual family, 21 

Cluster point 

of a bifilter, 115 

of a D-hyperfilter, 124 

Confluence para-quasi-uniformity, 

140 

compatible with (X, u, v, D), 

154 

Confluence quasi-uniformity, 92 

basic, 139 

complete, 106 

hypercomp1ete, 126 



hyper-totally bounded, 127 
induced, 100 

interior, 94 

isomorphic, 104 

totally bounded, 118 

Confluence quasi-uniformly 

continuous, 104 

Confluence relation, 92 

bicompatible, 98 
conjunctive, 117 

S-compatible, ·119 

induced, 99 

interior, 94 

with open union property, 98 
c-preseparated space, 94 

c-regular space, 98 
c-separated space, 95 

D-cluster point of a bifilter, 

115 
D-compact space, 115 

almost, 115 

~ -complete space, 76 
Delta refinement, 18 

S -embedded subset, 100, 142 
strictly, 100, 142 

D-embedded, 122 
D-hypercompact space, 126 

almost, 126 

D-hyperfilter, 123 

~ -Cauchy t 124 

dominated, 123 

t. -refined, 125 

weakly convergent, 124 

weakly t -Cauchy, -124 
weakly dominated, 123 

Dispersion, 163 

D-normal space, 116 

238 

Dual cover/family, 2, 1 

c-, 92 

closed, 17 
compartmental, 50 

compartmental pre-, 56 
con&ervative r-medial, 47 
countablymedial, 27 
discrete, 12 
divisible, 72 
even, 72 
full, 23 

of finite type, 47 
l.- t 2 

locally finite, 12 
medial, 44 
normal, 8 
open, 3 

point finite, 3 

point singular compart­

mental, 56 
pseudo-normal, 53 
quasi-discrete, 23 

quasi-locally finite, 22 

quasi- ~ -finite, 23 

quasi-star finite 23 

quasi-strongly point finite, 

27 
G' -locally finite, etc., 12 
£ -discrete, 12 

sequentially normal, 32 

sequentially pseudo-normal, 

53 
a' -full, 23 
shrinkable, 3 
star finite, 5 

transitive, 80 

Dual covering quasi-uniformity, 70 



complete, 76 

initial, 71 
pseudo- t 8'2 

totally bounded, 77 
transitive, 80 

weak local, 83 

Envelope of an equibinormal 

family, 34 

Equibinormal cover, 35 

Equibicontinuous family, 34 

Equibinormal family, 34 
Essential, 9 
Extension of a confluence quasi­

uniformity, 104 

strict, 104 

Finite at (L, M), 172 
Finite element of P/(L, M), 172 

Finiteely I b-prime-complete, 

200 

Finite -f b-prime completion, 

200 

Finite I b-prime-refinement, 

200 

Full apace, 23 

G' -. 23 
Fully pseudonormal space, 43 

Infintesimal element of P/(L, M), 

169 

Infintesimal at (L, M), 169 

Left covering of a dual family, 2 

Limit point 

of a bifilter, 76 

of a D-hyperfilter, 124 

Medial space, 44 

Metric - See under pseudo- quasi-

Nearly totally ordered, 171 

239 

Pairwise reflexive space, 81 

Para-quasi-uniformity, 86 
Preseparated spnce, 17 
Preserving X, 203 

Pseudo-quast-metric 

admissible, 34 
evenly subordinate, 34 

subordinate, 34 
Pseudo-quasi-uniformity, 82 

Pseudo-stars, 43 

Quasi-D-biclosed space, 154 

Quasi-uniformity 

confluence, 92 

confluence para-, 140 

dual covering, 70 

para-, 86 
pseudo-, 82 
weak local, 83 

Refinement of a dual cover/ 

family, 2, 92 

pseudo-star, 43 

star, 4, 92 

weak star, 52 

./ -complete 6ub-T-lattice, 176 

fini tely, 176 

-f -completion, 176 

finite, 176 

I-refinement of a sub-T-lattice, 

176 
finite, 176 

Right covering of a dual family, 

2 

S-derivative, 180 

-resolution, 180 

Sequentially normal space, 32 

Strongly biscreenable space, 12 
Strongly compartmentally quasi-



biscreenable, 50 

Strongly quasi-biscreenable, 23 

Support of an equibinormal 

family, 35 

T-lattice, 165 

Uniformly closed subset, 8 

finitely, 8 
point finitely, 8 

star finitely, 8 
Uniform covering of a dual family, 2 

240 

Uniform properties of a bi­

topological space, 8 
Uniform star, 53 

Weak cluster point of a D­

hyperfilter, 124 

Weak limit point of a D­

~yperfilter, 124 

Weak stars, 52 




