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(1)
SUMMARY .

The study of Bitopological Spaces as a distinct branch of General
Topology began with the 1963 paper of J. C. Kelly, and contribut-
ions have been made by several authors since that time. Three
‘aspects of the theory of bitopological spaces are considered in
this thesis, and several new concepts introduced which seem

appropriate for the future developd{ment of the subject.

Chapter One is devoted to the developement of a covering
theory for the bitopological space (x, u, v) based on the notion
of a dual cover, which is defined to be a binary relation on the

non-empty subsets of X satisfying certain natural conditions.
Firstly consideration is given to the relationships existing
between the shrinkability of certain classes of dual covers and
various normality conditions on X, and then using natural definit-
ions of star refinement and locally finite refinement for dual
covers such notions as full binormality, biparacompactness and
strong biscreenability are defined and studied. In particular it
is shown that under a suitable separation axiom a biparacompact
space is fully binormal, but that the converse is false in general.
Wéakening the local finiteness condition also leads to the
consideration of quasi-biparacompactness, etc. Following a short
section on countably quasi-biparacompact spaces the notion of
sequential normality is introduced as a weakening of full bi-
normality. The class of sequentially normal spaces is important
in that it contains all (pseudo-quasi) metrizable bitopological
spaces, and yet is restrictive enough fo: jits members to have
such desirable properties as pairwise normality. This section
contains a dual covering analogue of the Alexandroff-Urysohn
Metrization Theorem, from which Salbany's Metrization Theorem is
deduced, showing incidentally that the explicit assumption of
pairwise normality is redundant. The treatment of dual covering
properties concludes with a consideration of some weakened forms
of full binormality based on such concepts as the pseudo-star
refinement of a dual cover, together with weakend forms of bi=-

paracompactness and quasi-biparacompactness which are based on
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the idea of a compartmental dual cover refinement. The relation
between the above mentioned concepts is further clarified by
the consideration of several appropriate counterexamples. The
chapter ends with a brief discussion of quasi-uniform and other
related structures from the point of view of dual covers, and
the notion of para-quasi-uniformity is introduced and is shown
to stand in the same relation to bitopological spaces as does

the para-uniformity of C. I. Votaw to topological spaces.

An extension (X', u', v') of (X, u, v) which can be obtained
as a (bitopological) completion of a quasi-uniform (or similar)
structure on X will contain X as a u'v v'-dense subset. On the
other hand there are important ié}ances of extensions which do
not satisfy this strong density condition, and the aim of Chapter
Two is the develop}mentc#atheory;of what may be appropriatly
called Confluence Structures, designed specifically to remove
this restriction in so far as is possible. Confluence quasi-
uniformities (cqu) are obtained by making appropriate changes
to the dual covering definition of a quasi-uniformity given in
Chapter One. Their theory is more complicated than that of quasi-
uniformities, but can be developed along broadly the same lines.
In particular it is shown that, with respect to the appropriate
definitions, every separated cqu has a completion, unique up to
isomorphism, which is a separated strict extension of the
corresponding bitopological space. Related to the notion of a
confluence relation, which is basic to the definition of a cqu,
and which is a generalisation of the relation of meeting between
sets, there are defined several forms of bitopological compactness,
and these are discussed in connexion with the completeness of
cqu. The final section of this chapter contains an extension of
the work on cqu to the case of para-quasi-uniformities. This is
restricted mainly to a discussion of those bitopological ex-
tensions which can be obtained as completions of confluence
para-quasi~uniformities, and partial generalisations are obtained

to some of the results of Votaw on para-uniform completions.

The third chapter investigates the lattice P(X) of bicontinuous

functions on (X, u, v) to the real bitopological space (R, &, t).
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Here it is convenient to consider the notion of a bi-ideal (L, M),
where L is a lattice ideal and M a lattice dual ideal in P(X),
each containing O. The elementary theory of bi-ideals is first
developed in the more general setting of a distributive lattice
P with a real translation (T-lattice). Working in terms of a
concept of f ~regularity for bi-ideals a theory is obtained
which in some respects resembles that of-ring ideals. In part-
icular the quotient P/(L, M) is defined, its order structure
studied, and the notion of real bi-ideal defined. feveral other
aspects of the theory are also considered with a view to sub-
sequent applications. The notion of real bi-ideal in P(X) leads
to a natural definition of bireal compactness for bitopological
spaces, and this is also characterized by an embedding property.
The bireal compact extensions HA are defined and studied in
some detail. In particular the lattices P(HA) are considered
in relation to the bi-ideal structure of P(X). It is also verif-
ied that the spaces HA may be regarded as completions of suitable
quasi-uniformities on X. The final section .deals with the pair
real compact spaces of Saegrove. A bi-ideal characterization is
given, and the pair real compact extensions RS defined and
<S> where <S> is the smallest sub-T-lattice
of P(X) containing the subset S. Finally it is shown that Rq
is a strictbitopological extension if and only if it is a

relatively T

compaired with H

0 extension, and that under this same condition Rs

may be regarded as a completion of a suitable confluence quasi-

uniformity on X.

For the benefit of those unfamiliar with basic definitions the
following definitions are given here:
(a) A bitopological space (X, u, v) consists of a set X on
which are defined two topologies u and v.
(b) If (X, u, v), (X', u', v') are bitopological spaces and
f: X » X' is a function then f is said to be bicontinuous
if it is continuous for the topologies u, u' and also for

the topologies v, v'.
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PREFACE

This thesis comsists of three chapters, each prefaced by a
few remarks comcerring its contents. Briefly, the first chapter
details a covering theory for bitopological spaces based on the
notion of dual cover, the second introduces coanfluence structures
and their completioms, while the third deals with the bi-ideal
structure of the lattice of bicomtinuous real-valued fumctions
and its relation to bitopological real compactness. These
particular comcepts have mot, to the best of my knowledge, been
considered before, and they comstitute am origimal contribution
to the theory ef bitopological spaces. I have naturally drawn
on several bramnches of gemeral topology for motivation and
irgpiration, but the hitopological case preseats many unique
features, arnd poses questions mot met with im the single topolegy
case, Only im a limited mumber of areas dees the theory
presented here parallel, or provide an altermative appreach te,
known results im the theory of bitopeological spaces, and I have

roted in the text such imastances of this as are known to me.

Apart from a few definitions, for which referemces are given,
the thesis is self-contaimed. I have made an effort to maintain
a comsisteat scheme of notition throughout, ard an index of
special -ymboli, and ene of special terms, is imcluded for the
convenience of the reader.

L. M. BROWN.



CHAPTER ONE

DUAL COVERING PROPERTIES OF BITOPOLOGICAL SPACES.

The theory of covers of topological spaces has undergone a
rapid developement over the past few years, following the pioneer-
ing work of A.H. STONE {33] and others. The establishment of a
similar theory for bitopological spaces faces at the outset the
question of deciding on a suitable counterpart to the notion of
cover. Indeed it would appear that no one analogue of this notion
is ehtirely satisfactory for all purposes. Pairwise open and weak-
ly pairwise open covers have been the analogue most extensively
considered in the literature to date, as witness for instance the
papers of FLETCHER, HOYLE and PATTY [13] , RICHARDSON{29] ,CIVIC
L&) and DATTA [10). In this chapter we pursue a different line
of enquiry in which our counterpart to the notion of cover is
that of dual cover defined below. Dual covers correspond essential-
ly to strong conjugate pairs of covers which were defined by
GANTNER and STEINLAGE (15) , and used by them in a covering
characterization of quasi-uniformities. Since this characterization
generaliges the covering description of a uniformity, this serves
at least in part to motivate our choice of dual cover as a natural
counterpart to the notion of cover. As we shall see in what follows
such notions as full normality, paracompactness, etc., have various
natural expressions in terms of dual covers, and our aim here is bo
investigate the relation between the concepts so defined. While
gsome of the known topological results remain valid in this more
general setting, this is not the case for the majority of the
results of covering theory, and consequently our enquiry follows

a largely independent course.

Since the basic object of study in this chapter is that of dual
n
cover it will be convenient at this po%& to give some basic definit-
ions and notation ceoncerning these, other definitions being post-

poned until the appropriate point in the text.

ow
By a dual family on the set X (assumed non-empty throught) we
shall mean any binary relation on the non-empty subsets of X. If 4
is a dual family on X we shall usually write UdV in preference to



(u, V) ¢ 4.

For the dual family d let us set

uc(d) = Utuav| uavy},
lc(d) = Utul 3 Vv withuav} = U dom g,
re(@) =U{v |3 UwithUav] = U rand

and call these respectively the uniform covering, the left

covering and the right covering of d.
The dual family d is an 1-dual family if UNV # ¢ whenever
UdV. An 1-dual family whose uniform covering is X will be called

a dual cover of X,

When we are free to choose, any indexing of a dual family will
be assumed to be faithful. If d is an indexed dual cover then
(dom d, ran d) is a strong conjugate pair of covers in the sense
of GANTNER and STEINLAGE [15], and indeed these two notions are
essentially equivalent. However, working in terms of dual covers
gives a certain notational economy.

If d and e are dual families we write e < d, and say that
e refines &, if given ReS there exists UdV with R & U and S & V.
Unless the context makes the contrary clear, when we speak of a
refingment of a dual cover we shall always mean a dual cover
refinement.

If 4 and e are 1-dual families we set
dane = § (UAR, Vva S) | U4V, ReS, UAVARNS £ 81} .

Then dAe is an 1-dual family which refines d and e. Indeed dAe
is the greatest lower bound of d and e in the set of all 1-dual

families partially ordered by refinement. In particular if 4 and
e are dual covers then dA e is the greatest lower bound of 4 and

e in the set of all dual covers on X.

The results of Section 1.1 were announced by the author at
the 6th Balkan Mathematicians Congress held in Varna in 1977,

under the title "A theory of dual covers for bitopological spaces".
Throughout this thesis a regular (normal, fully normal,
compact, paracompact) topological space is not assumed to be Tl'

1.1 BINORMALITY,

The notion of pairwise normality for bitopological spaces was




3
introduced by KELLY in [19). A bitopological space (X, u, v) is
called pairwise normal if given a v-closed set A and a u-closed
set B with AnB = # there exist U€ u, V€ v with AS U, B&V
and UnV = g, This is a natural counterpart for bitopological

spaces of the notion of normality for topological spaces, and a
good many of the properties of normality carry over to pairwise
normality. In particular an exact analogue of Urysohn's Lemma may
be established for pairwise normality, as was shown in the above
mentioned paper. In this section we are going to consider the
situation with regard to the covering characterizations of norm-
ality, and dual covers. We begin by recalling the following two

well known results:

A) A topological space is normal if and only if given any point
finite open cover WU = Y U, | « € Al there is an open cover
’U’=iva\aeA'l whereA'.C_-Aand—\'i“S-_UqforallaeA'.

(See, for example ({12) , Theorem 6.1). Of course if we permit
our open covers to contain empty sets, or if the space is Ro,
then we may take A = A' in this result)

B) A topological space is normal if and only if every finite

open cover has an open star refinement [24] .

In order to determine if the corresponding results hold for dual
covers of bitopological spaces (with "normal" replaced by "pair-
wise normal'") we need first to give suitable counterparts for
dual covers of the above mentioned properties of covers of a top-
ological space. Let (X, u, v) be a bitopological space, and d a
dual cover of X. We shall say d is open if dom d < u and ran d

= v. The property of the cover 2 described in (A) is often
called shrinkability. Its analogue for dual covers is given in:

Definition 1.1.1. A dual cover d = § (U,,V,) 1 ae A}, faith-
fully indexed by A, is called shrinkable if there is an open
dual cover e = { (R,, Sz) | @€ A' 1l with A' & A, v-cl[R ) E Uqy

and u-cl{S,]1 & V, for eachx &« A'.

The counterpart of "point finite" for dual families is given

in:

Definition 1.1.2. The dual family d is point finite if for each
x & X the set




f(u, V) | Uav, xe UAV }
is finite.

It will transpire that if every point finite open dual cover
of (X, u, v) is shrinkable then (X, u, v) is pairwise normal.
However the pairwise normal space of Example l.6.1 contains a
finite open dual cover which is not shrinkable and so the converse
result is false. This shows that the analogue of the condition
in (A) does not characterise the pairwise normal bitopological

spaces.

Now let us turn to (B). As we shall see later, the notion of
"star refinement" for dual covers may be defined in several ways.

However the following is by far the most useful and natural.

Definition 1.1.3 Let d be a dual family on X, and A < X. We set:

St(d, A) = UtU | 3 V, UdV and VhA # @3, and

St(A4, &) =V {v13 U, UdV and UnA # 21,

If e is a second dual family on X we say d is a star refinement
of e, and write d <tx) e, if given UdV 3 ReS with St(d, U) € R
and St(v, d) = s.

Unless something is said to the contrary a star refinement
of a dual cover will always mean a dual cover star refinement.
If 4 is a dual cover then we have A < St(d, A) and A < St(a, d)
for all subsets A of X. In particular a dual cover star refine-

ment is also a refinement.

With this definition of star refinement we may now ask if it
is true that a bitopological space is pairwise normal if and only
if every finite open dual cover has an open star refinement.
First let us note the following:

Proposition 1.1.1. Every dual cover d with an open star refine-
ment is shrinkable.

Proof. Let d = § (U,, Vo) \ # € A3, and let f be an open dual
cover with f <t#) d, For oo & A define

R

«=UlL !l L&dom £, St(f, L) €U}, and

S vlrl Téran ¢, st(r, £) V1 .

8
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Then if we set A' = §a laeh, R,nS,# #1 it is easy to verify
that
e =1 (R,, Sou) lae€ar}
has the properties required in Definition 1l.l.1l.

We have already mentioned that the pairwise normal space of
Example 1.6.1 has a non-shrinkable finite open dual cover, and
this dual cover cannot have an open star refinement by the above
proposition. This shows that the above mentioned analogue of (B)

for bitopological spaces is also false.

In view of these negative results two possible lines of
inquiry suggest themselves. One is to determine a ''reasonably
large'" class of dual covers of a (pairwise normal) bitopological
space which do have open star refinements, and the second is to
investigate the '"normality" conditions imposed on a bitopologi-
cal space by the requirement that certain families of dual covers
should be shrinkable. Before giving one possible answer to the
first question we shall need the following definition.

Definition 1.1.4. We say the dual family d is star finite if
for each U4V the set

L(ur, v) | Uuav', U'nv £ g or UnV' #¢ 3
is finite.
Note that a star finite dual cover is certainly point finite.

Theorem 1l.l.1. (i) Every shrinkable star finite open dual
cover of a bitopological space has a star finite open star
refinement.

(ii) If (X, u, v) is pairwise normal, every
shrinkable star finite open dual cover has a shrinkable star

finite open star refinement.

Proof. (i) Let d =L (U,, V,) ! & €A 3 be an open shrinkable
star finite dual cover, and e = £ (R,, S,) | « € A' 3 as in
Definition l.l.1l. For each x € X define

U =NiRIxeRIN/ LUt xeUaln
N LX - (u-cllis | xq!u-cl[sdj and 3 R €A, x € Upg and
UsnVa#g gl



Nis,Vxes3n Nivgl xev,In

<
]

Nix

(v-c1{R,1) | x ¢ v-c1[R,] anda 3 R € A, x € Vpa and
V/3 n UO& # ¢3y

and £=§ (U, V)l xexl.

Since d is star finite, each of the intersections involved in the

definition of Ux and Vx agg essentially finite and so f is an

open dual cover of X. Let us show that f is star finite. Take
x € X and let

id‘XEUq}=£°‘ oonqn}’

l’
f—/l,V/;an %g‘d‘*:o(l, 000’0(n1=zﬂ1’ ""ﬂmlﬁ
and for each i =1, 2, +.., m let

{75 ‘U§(\V/3i#¢;=z Kil’ toey Kikii.

Suppose er\Vy # @, then:
(a) (yé€8p & Vp orye V) => (un Uy #F V & =8, ..o

ceny k) = (/3=/$t for some 1 £ t = m),

(b)  (y ¢ v-cliRy ] and A€ A, yé& Va and Vg n Uy P =
(/3=/5r for some 1 =r = m, and then 3 = ¥ _ for some

ls s =k )
r

It follows that each Vy with er\Vy # ¢ may be defined using only

S esey &, . 3 V esey V, and R eey R . Hence U meets
Pt Py Py 0 P 1t T Pk, *

only a finite number of distinct Vy, and likewise Vx meets only
a finite number of distinct Uy. This verifies that f is star finite.

Finally if we take x € X and X € A' with x € R, n So it is
easy to verify that
st(f, Ux) < U, and St(Vx, ) = Vv,
so f <) 4, and (i) is proved.
(1i) Take d and e as in (i). For « & A' we have v-cl[R, ) &
U, and u-cl[S.] & Vg, 80 by the pairwise normality of (X, u, v)

we have u-open sets [ , M_and H_ ; and v-open sets Q,, N, and K,



s0 that:
v-cl[Ruls P, & v-cl[P‘,] s My&s v-cl[M,} € H, & v-cl [H,] & Us

u-cl[S,) & Qu e u-cl{Q,1 € N.& u-cl{N 1= Ko u-cl{K,1 & Va.

Now define: ,

Ul = N EPt xe&Rin N Lu,t xe v-c1{M, 13 n N{X ~(u-c1{Q, 1)
| x € u-cl[N,3 and 3 2 € A' with x & v-cl{M;] and Up n Va # g3,
and

Vi= N EQut xe s in NVl x€u-clfN)in N L X ~(v-cllP,])
| x ¢ v—cl{M, ) and A e A' with x € u-cl{Nal and V4 n Uy # 73.
Arguing as abdve f' = § (Ui, Vi) | x € X1 is an open dual cover

of X, and with the notation used in (i) each v}', with U' N V;r #

¢ can be formed using at most %Ol,..., %am; %«1, ceny Yam and

PB s seey PY so U' meets only a finite number of distinct
11 mk X

V;. In the same way V; meets only a finite number of distinct

U& so f' is star finite.

It is easy to verify that f' <) d, so it remains only to
show that f' is shrinkable. For x € X define:

U;= N f_R“| x € Re3n N €H¢| x & v-c1fM 13n NEX =(u-c1{N,))

| x (fu-cl{_N“] and A/L € A' with x ¢ v-clLMﬂl and Up NVg # QI},

and

<4
v, = Nis,v xes3inNEKLT x e u-clWN11n NEX ~(v-c1lM,])
| x¢ vecllM,1 and I p € A' with x ¢ u-cllNs1 and vy nU4# 23
Again U; & u, V; evand x & U; n V;. Next set:

R
X

* 1 ] ] ]
Ut Uy I (ut, V1) (Uy, vy) 1, and

S
X

il
n

U g vyl (u!, V1) (U}", V:;') i.

Then g = §£ (R Sx) \ x€ X} is an open dual cover of X, and

x’

(us, v;) = (U;, v;) implies (Rx, sx) = (Ry, sy) so it remains to



show that
- ' - ' .
v cl[Rx] c U’ and u cl[le eV: W x€X

Now it is easily seen, repeating an argument used above, that the
unions defining Rx and Sx are essentially finite, so it will
suffice to show that

v-cl{U'} £ U! and u-elfvilev: V¥V xe&X.
However this is immediate from the definitions, and f' is shrink-
able as required.

This completes the proof of the theorenm.
Ve may say that a dual cover d = do is normal if there is a
sequence dn’ n=11 2, «.., of open dual covers with dn+l-4<¢) dn’

n=0,1, 2, «o. . This corresponds to the terminology used for

covers of topological spaces. We then have:

Corollary. In a pairwise normal bitopological space every open

star finite shrinkable dual cover is normal.

Before going on to discuss the second question mentioned
above we make the following convention of terminology which will
be useful here and later. If "P" is a topological property then
the term "uniformly P" applied to the bitopological space (X, u,
v) will mean that P holds for the least upper bound topology
uwv v (which itself will be called the uniform topology of (X,

u, v)).

If E< X is uniformly closed then there is an open dual
family § (U,, V,) \ & € A | so that
E=X-UVEUu nVy lxe A},

If this family may be chosen to be finite (respectively, star
finite, point finite) we will say that E is finitely (respectively,
star finitely, point finitely) uniformly closed.

These considerations lead us to several new forms of normality

for bitopological spaces, as given below.

Definition 1,1.5. We say that (X, u, v) is binormal if given
any uniformly closed set E, and any u-closed (respectively, v~
closed) set F with ENF = @ there exist U€ u, V&€ v with UAV =
@ and E €U, F &V (respectively, E &V, F £ U).
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If this condition holds whenever E is finitely (respectively,

star finitely, point finitely) uniformly closed, we will say that
(X, u, v) is finitely (respectively, star finitely, point finitely)

binormal.
Clearly we have:

Binormal =» point finitely binormal =3 star finitely binormal
=> finitely binormal =p pairwise normal.

If d is a dual cover of X we say that (U, V) € d is
essential if @ - {(U, V)] 1is not a dual cover of X. We may now

state:

Proposition 1.1.2. (X, u, v) is (finitely, star finitely, point
finitely) binormal if and only if given any (finite, star finite,

point finite) open dual cover d and any UdV there exist sets Ul‘

v, with v-cl[_Ul] &€ v, u-c1[v1] & V, U €& u, V. € v and so that

1 1

el - tew, W v, vIIT = x

Proof. => . If d is an open dual cover of the appropriate kind,
and UdV is essential we need only apply the corresponding
binormality property to the disjoint pairs of sets E, (X - U)

and E, (X - V), where

E =X -ucd - §(u, ).

On the other hand if UdV is not essential we may take U1 = Vl = .

&~ JIfE=X -~ U{U“nvql o« €& Al is a non-empty

uniformly closed set of the appropriate kind, and F is (say) a
u-closed set with ENF = J then (X -~ I, X) is essential for

a= {,v)ltee aly tx-r 0f

and by the appropriate hypothesis there exist U, € u, V. € v with

1l 1
v-c1{U;] € X - F and uel@a - f(x - 7, )P o f, vl =x
But then E & Ul and F & X =~ (V-clfUi)), which gives the required

result. A similar argument may be used when F is v-closed.

Corollary. If every (finite, star finite, point finite) open
dual cover is shrinkable then (X, u, v) is (finitely, star finite-
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ly, point finitely) binormal.

The validity or otherwise of the converse result for the
binormal case is an open question, but this converse result is

true for the other cases, as we now show.

Theorem 1l.1.2. If (X, u, v) is finitely binormal (respectively,
star finitely, point finitely binormal) then every finite open
dual cover (respectively, every star finite, point finite open

dual cover) is shrinkable.

Proof. Let d = { (U,, V,) | & &€ A3 be an open dual cover of
whichever kind is being considered, faithfully indexed over A.
Let X be the class of all functions f satisfying the following
conditions:

(1) dom f = B(f) = A,

(11) For 3 € B(f), £(3) = (R, S/;) where Ry € u, Sz e v,

v-cliRs) € Uy and u-clis,) € Vg,
(111) uef{(Ry, S3) 1 e B(E) U § (U, Vo) V2 € A4 - B(£)}]= x.

For & € A we may define an element f of =} with B(f) = {al using
Proposition 1.1.2. This shows that X # @. We may define a part-
ial order < on % by setting f <« g if and only if B(f) < B(g)
and f{3) = g(/3) whenever /4 € B(f). Let us verify that in all
cases (&t , < ) is inductive. Let § f5x1 ¥& C3 be a- chain

in % , and define a function f by dom f = B(f) =U § B(f,) V¥ €& C}
and f|B(fy) = fy. f is clearly well defined, and if we can show
that fe€ X it will certainly be an upper bound of { f,3 . Now
(1) and (ii) are clear. To see (iii) take x € X with x ¢ Uy nVa

for all & € A - B(f). Since d is point finite in all cases there
is a finite setf,p(l,mz, ...,o(n} so that x € U, nV o if and

only ifuwe § 0\1, ...,a(ni. By the choice of x we have § X gy one
v 1 = B(f), and {1} 1s a chain so {d~1, ...,o&n1 S B(ry)
for some ¥ € C. It follows that for some ,3 € B(fy) < B(f) we
have £() = f,(z) = (Rg, Sp) with x € R,y n Sp. This verifies (iii)

and f € X as required. Applying Zorn's Lemma to (% y <)
allows us to deduce that there is a maximal element f €& % , It
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will suffice now to show that uc[{(R/,, S¢) | 4 € B(D}] = x,

for if we set A' = { A | X & B(f) and Ry nSa# 73 and e =

[(Ry, Sq) | o € A'3} then this is an open dual cover having the
properties required in Definition 1.l.1. However we must in fact
have B(f) = A (from which the required result follows from (iii)),
for if 4 € A - B(f) we could extend f to a larger function g &
% with oL € B(g) using Proposition 1.1.2, and this would cont-
radict the maximality of f.

This completes the proof of the theorem.

Corollary 1. The following are equivalent for the bitopological
space (X, u, v) :

(a) (X, u, v) is star finitely binormal.

(b) Every star finite open dual cover is shrinkable.

(¢c) Every star finite open dual cover is normal.

Since the results of Theorem 1l.1l.1 are clearly also true if

we replace "star finite'" by "finite" we may state:

Corollary 2. The following are equivalent for the bitopological
space (X, u, v) :

(a) (X, u, v) is finitely binormal.

(b) Every finite open dual cover is shrinkable.

(¢) Every finite open dual cover is normal.

It will be noted that, by what we have said earlier, the.
bitopological space of Example 1.6.1 is pairwise normal but not
finitely binormal.

We end this section with the following definition and comments.

Definition 1.1.6. A bitopological space will be called:

1) Fully binormal if every open dual cover has an open star

refinement, and

2) Strongly biparacompact if every open dual cover has a star

finite open refinement.

These properties correspond to full normality and strong para-

compactness respectively for topological spaces (25] . Note that
it is equivalent to say (¥§ u, v) is fully binormal if and only
if every open dual cover if normal. By what has been shown above

it is clear that a fully binormal space is binormal, and that a



12
star finitely binormal strongly biparacompact space is fully
binormal. This latter result will be considerably improved in the

next section.

l.,2. LOCAL FINITENESS PROPERTIES.

In the following definition d is a dual family, and for each
x € X, H(x) is a nhd. of x for the topology u, and K(x) a nhd. of
x for the topology v.

Definition 1.2.1. d is locally finite if we may choose H(x),
K(x) in such a way that

a = L (U, V) | U4V and UnK(x) # @ or VaH(x) # ¢ ]
is finite for each x € X.

d is 2. -finite if we may choose H(x), K(x) in

such a way that
: (=
Ufa I (o, V)eal
is finite for each Ud4dV.

If the above choice can be made so that the sets in question
contain at most one element we speak of d as being discrete and

£ -discrete respectively.

Finally if d = U { d. !l n=1, 2, .e.1, and each d has one
of the properties "L" above we say 4 is " & -L".

The bitopological space (X, u, v) will be called biparacompact

(respectively, strongly biscreenable) if every open dual cover

has a locally finite (respectively, &’ =-discrete) open refinement.

The notion of a £ ~-finite collection on a topological space
was introduced by McCANDLESS in{22) . Biparacompact and strongly
biscreenable correspond respectively to paracompact and strong-

ly screenable for topological spaces [25] .

Cleary every strongly biparacompact space is biparacompact

since a star finite open dual cover is locally finite.

It is easy to see that a bitopological space is uniformly
Lindeldf if and only if every open dual cover has a countable

sub-cover. Hence a uniformly Lindelsf space (and more particular-
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ly a uniformly compact space) is strongly biscreenable.

It is known (L25), Corollary 2 to Theorem V.2) that for regular
topological spaces the notions of paracompactness and strong
screenability coincide. However the bitopological space of Example
1.6.3 is pairwise regular {19] and strongly biscreenable but not
biparacompact, so the analogue of this result for bitopological
spaces is false. I do not know if a (pairwise regular) bipara-
compact/fzqgécessarily strongly biscreenable, but we can prove
this result if we replace "biparacompact” by "strongly bipara-
compact'". To this end we will first develop* some results about
£ -finite dual families.

It is clear from the definitions that a £ =~finite dual family
is both locally finite and star finite. For an open dual cover,

however, we have the following improved result:

Lemma 1.2.1. An open dual cover d is & ~finite if and only if
it is star finite.

Proof. Let d be an open star finite dual cover of X, and for
x € X define:

Hx) = N {UI1 3 V, UdVand x e UnVi,
K(x) =N§fVI3 U, UaVv and x € Ua V3.

Since 4 is star finite it is also point finite so x € H(x) € u
and x € K(x) € v, and it is easy to verify that with this choice
of H(x), K(x) the set

Z x 1 (U, V) dx 3
is finite for each UA4V.

The above mentioned result will now follow if we can show
that every Z -finite dual family is ¢ =discfete, and this is the
subject of the next theorem. This corresponds to ({223, Theorem 2),
and there is only a notational difference between the proofs for
the topological and bitopological cases. However the proof given
in (22) contains a technical error (for the given induction
hypothesis it would be quite possible for two disjoint members
of qu(l) to be given the same index) and so we give the proof
of the bitopological version of this theorem in full. We base
the proof on the method of transfinite construction (112}, £ 5.2)
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since a rigorously stated proof based on transfinite induction is

somewhat cumbersome.
Theorem 1.2.1. Every < -finite dual family is & -~-discrese

Proof. Let d be a £ ~finite dual family on (X, u, v), and svppos
that H(x), K(x), x & X, have been chosen so that

Via t (v, )ead }
is finite for each UdV. In particular each dx is finite. For each
x let Fx faithfully index dx’ and suppose the Fx are pairwise
disjoint and also disjoint from X. If v€ W=U{F | xeXl
we denote by x(A) the unique x € X with & € F_.
Give X and each Fx a well ordering. There can be no confusion in

denoting each of these orderings by < , and < denotes <

—

and #. We may then well order W by
A< 13 (in W) &= x(ao) < x(B) or x(k) = x(2) and
We are going to show that there is a function f : W —> N which

for each A € W satisfies the conditions:
(a) 3« on and (Ugy Vp) = (U, V) = £(p) = £(a), and

(b) 3 <oty (U, V/J) # (Uyy Vo) and 3 w e X with x(o) = w
and (Ug, Vj), (U,, Vi) € d = £(a) # £().
For oL € W we let W(a) ={ 2 | B < o} , and we denote by

= (&) the set of all functions ¢ : W(«) —> IN satisfying the

condition :
(¢) g5 € ud), (U, VA) = (U, V,) =2 4(p) = P0s).

For x & X let Fx(l) = LI E€E F_, A y < x with (U, V)

(2)

(2) _ F,_ - Fx(1) let

edy3,ande . For ¥ €F_

= S

Sy {/3 { x96) <. x and (qe, gg), (U‘, VB) d_ for some
we& X with x = w3,

Since d is Z£ -finite S is finite, and hence so toeis the set

mx) = Ufs,tver Py,
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Also for & & W, T(x(a)) & W(A) s0 if f : w(a) —> W is any
function, 4‘0 (T(x(a«)) ) is a finite set of natural numbers. Let

0 if T(x(a)) = &
n(fy’ﬁ) = {
max(f L T(x())]) otherwise.

For each function ¢ : W(&) —> [N let us define Rd[“P]aS

follows.

(1) If o d RA(N 1let R‘([ﬁ”]: 0

(i1) If € & 3(oA) and & & Fx(uo(l)

then 3 A € W with x(8) <
x(o) and (Uy, Vy) = (Ug, Vg); and we let RIS = & (o).
This value is unique since ¢ satisfies (c).

(1ii) If «w € %X(%k) and X € Fx(u)(Z) we let R [P =n(f,a) +

[K(x){ where | K(a)| is the number of elements in the set
K(x) = ¢ B\ x(8) = x(«) and g = ot § -

By the principle of transfinite construction we have a function
f : W—p IN such that £(&) = R {flw(a)] for each & & W. Note
that ifo(o is the least element of W then we may regard the uniq-

ue function ¢ : @ —> IN as belonging to e (a(o), and since
n(¢f,&t,) = O this means that we are giving f(ej) the unique value 1.

It remains to show that f satisfies (a) and (b) for alld & V.
Clearly these are true for o = cko y 80 it will suffice to show

that if they are true for each { < ' they are true for & = a'.

First, under this hypothesis, flu(a') € ¥ (a'). For if 2, ¥ €
W(a') with ,2< ¥ we may apply (a) with A = ¥ to give f£(B) =
£(¥), so (¢) is satisfied.

(a) Take s5 < oA' with (Ug, Vg) = (U_,, V,,). To show that f(a')

= i ' 3 3 -

= f(B). Since ;3 # ol' we cannot have € Fx(ok') since the 1nde:(c |
. . 1l

ing is faithful, so x(A) < x(a&'). This shows that A '€ Fo(a)

and hence that f(d') = R“.{f‘W(a(')] =f_f|W(¢X')](/3) = f(3) as
required. :

(b) Take s < o' with (U/,, Va) # (U_,, V), and suppose that

for some x(ot') < w we have (U, \;}), (Ua,, Vyi) € d « Ve wish to
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show that f(A) # f(a').
(1)

First suppose that o' e FX(&') , then 3 y € W with x(¥)
< x(a') and (Uy, Vy) = (U_,, V_,). Hence f(&') = Ru,lfIW(oL')]
=[£lw(a')](¥) = £(X). Now 3 # ¥ so suppose ¥ «}f3 . (b) is true
for & = 4, and we may deduce that f(¥) # £(8), ie. f(a') # £(B).
The same argument applies when 3 < 3.

(2) = (
Finally suppose a' € F (¢ .y - Then (') = RA,[fl\N(oL')l

= n(fiv(a&), &') + |K(x')|. There are three cases to consider.

(2)
A)

£(A) = a(£(W(B), 8 ) + | K(MI. Now T(x(at')) = T(x(p)) &

(1) x(a) = x(a') and p € F . In this case we also have
U{Fy | ¥ < x(a")} < W(a') aW(A), and so n(£jW(p), B ) =

n( flW(a'), a'). However since A< a' and A, a' € F ( ) ve
have | K(B)| < | K(a') | and s0 £(B) < f(«').

(1i) x(8) < x(a'). In this case 2 € S,, & T(x(a')), and B €
Wlat) so n( flw(a'), &') = £(B). Also |K(a') | = 1 so again
£(B) < f(e).

(111) x(3) = x(a') and f3 € px(/})(l)

. Here we have ¥ € W with
x(3) < x(B) = x(«) and (U, V) ="(U/,, Vg). Then as before f(8)
= £(¥), and we may apply case (ii) to ¥ 4in place of g3 and
deduce that £(3) = f(¥) < f(a').

This verifies (b) for & = &' in all cases, and so f has

the properties (a) and (b) for all & eéW as stated. In particular
it follows at once from (b) that lex is an injective function

for each x € X,
Now for each n = 1, 2, «.. let:
d = § (U, V)1l «€e W, £(a) =n}i.
Clearly thdn1= 4, so our proof will be complete if we can show
each dn is discrete, and this will follow if no dn can contain

more than one element from any dx, x € X. Suppose, therefore,
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that we have (U, V,), (Uﬂ, v/,) € 4 and f(a) = £(3) = n. Then

3 d.l’/;' e_}"x so that (U“, Vu) = (UO‘” V“.) and (Uﬂ’ Vﬂ) =
(Ugis Vp,)5 £(a) = f(a') and £(8) = £(p') by (a). But then
f(a') = £(4') and so o' = ' since lex is injective. This

shows (q&, Wu) = (U, V.) and we have shown d, is discrete as

AN
required. This completes the proof of the theorem.

Corollary. Every strongly biparacompact bitopological space is

strongly biscreenable.

The other properties of 3. -finite dual families are similar
to those of £ -finite collections. If we call a dual family d
closed if dom d consits of v-closed sets and ran d consists of
u-closed sets then we may note in particular that a closed dual
family is £ ~finite if and only if it is star finite and point
finite.

We shall follow the terminology of {3{] in respect to separ-
ation properties of bitopological spaces. We recall in particular
that the bitopological space (X, u, v) is'weakly pairwise Hausdorff
if and only if given x, y € X with x # y there exist H € u,
K€ v with HEnK = fand x € H, y€ K or x €K, y € H. A.H. STONE
(33) has shown that for Hausdorff topological spaces the notions
of paracompactness and full normality coincide, but the bitopolog-
ical space of Example 1.6.3 is weakly pairwise Hausdorff and
fully binormal but not biparacompact, so this form of the coinci-
dence theorem does not hold for weakly pairwise Hausdorff
bitopological spaces. On the other hand, however, we are now going
to show that under a guitable separation hypothesis a biparacom-
pact bitopological space is indeed fully binormal. The required

separation property is given in:

Definition 1.2.2. (X, u, v) is preseparated if given x 4 u-clyy}
(respectively, x ¢ v-cli{y}) in X there exist Ue u, V& v with
UV =@ and x € U, y & V (respectively, y € U, x & V).

Clearly a preseparated bitopological space is pairwise RO
{231 , while a weakly pairwise To[31] preseparated bitopological

space is weakly pairwise Hausdorff.
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The following definition and lemma will be useful in the proof of

the above mentioned result.

Definition l.2.3. Let 4 and e be dual covers of X. We say d is
a delta refinement of e, and write d <¢&)e, if given x &€ X

there exists ReS with St(d4, {x31) & R, St(ix}, 4) = s.

Lemma l.2.2. If d, e, f are dual covers and 4@ <¢8) e <(8) f then

a <t=) f,

Corollary. (X, u, v) is fully binormal if and only if avery open

dual cover has an open delta refinement.

We omit the proof which is straightforward. See ({25), (B), p 50)

for the corresponding statement for topological spaces.
We may now give:

Theorem 1.2.2. A preseparated biparacompact bitopological space
(X, u, v) is fully binormal.

Proof. (1) (X, u, v) is pairwise regular.

Let F be u-closed and p ¢ F. For x € F we have p ¢ u-clix}
and so we have p € Uxe u, x € Vx € v with anvx = @. The open

dual cover d = { (X, vyl xe Flui{(x -F, Xx)} has a locally
finite open refinement e = { (R s)lae A}J. NowF & St(F, e)

oL?

€ v, so it will suffice to show p ¢ u-cl[st(F, e)]. Now let
H(p) € u, K(p) € v be nhds. of p so that

t |H®)nsq#¢orK®)an#¢}
is finite, and let

{ o« | H(p)n Sq# ¢ and FaR £g3 = {ctl, ...,c&m}.

For 1 =1, 2, ..oy mj Ry ¢ X~ Fso 3 x(i) € F with Sy S Vie(s)

and it follows that M = H(p)a (\iux(i) | £ =21, 2, eee, m3 is &
u-nhd. of p with Mo St(F, e) = . The case when F is v-closed is
similar, and so (X, u, v) is pairwise regular.

(2) (X, u, v) is binormal.

Let F be u-closed, and T a uniformly closed set with FA T = (.
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We have an open dual family i (U_, Vo)l a &€ A so that

T=X=-Ulav)l e al,
and we may assume without loss of generality that UnVa# &
for each & € A. By the pairwise regularity we have for x € T,
xeU, € uand Fe Vx € v with le\vx = ¢, and by hypothesis the
open dual cover
d={(u, v)laead b, )lxeT}
will have an open locally finite refinement e = { (R,, S,) 13 e B
Let us define:
W=U{RyI R/,ns/mT;!sH;
then TS W € u.
For z € F let H(z) € u, K(z) € v be nhds. of z so that
§ A 1V E2InSa#é @ or K(z2)aRpA P
is finite, and set
(A 1V K(2)aRg# P and RynSpal # 93 =0y, ey

For i =1, 2, «eey, n we cannot have R/;. & U, and S/;. & V, for
. 1 1

for any & € A since U, aVaaT = &, so there exists x(i) & T with

Rﬂi < Ux(i)' Then z& F < vx(i) and N(z) = K(z)q I\[Vx(i) li=

1, 2, esey n 3 is a v-nhd. of z with N(z2)q W = @. This shows

that Fnv-cliw) = ¢. The case when F is v-closed is dealt with in

the same way, and we deduce that (X, u, v) is binormal.
(3) (X, u, v) is fully binormal.

Let d be an open dual cover, and e = §{ (R, S,) | & € A 3 an

open locally finite refinement of d. In particular e is point
finite, and (X, u, v) is (point finitely) binormal, so by Theorem
1.1.2 we know e is shrinkable. Hence there is an open dual cover
£=§(T,,2)1a € A'] with A' < A, v-c1T,} £ R, and u-clfz,]

€ S, for each «a € A'. Note that f is élearly locally finite
also. For p € X define:
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M(p) =N¥ R, V€A, pev-cl[T,]]nNIX - (u-c1{z,D) |

ae A', p¢u-clfz,)].

The first intersection is finite since e is locally finite. Aleo,

since f is locally finite and hence "closure preserving' we have:
Nix - (ucllz, VI o & a', p u-c1[2,]}]

X - Ufu-c1[z,} | a€a', pd u-cr[z,1]

X=u-cilUtz, | aear, pdu-—cllz,Jieu.

Hence p &€ M(p) € u, and likewise if we set

N(p) =N {s, lxe A’y pegu-cl)za)iaNix = (v-cilT,)) |
o e A', péd v-c1(T, ]}

then p € N(p) e v.

Consider the open dual cover g = § (M(p), N(p)) | p € X 3.
If we take x € X and & € A' with x € T, 2 4 then it is easy to

verify that
St(g, {x1) S R, and St(ix}, g) € S«

Hence g <(8ye < d, and (X, u, v) is fully binormal by Lemma
1.2.2. This completes the proof of the theorem.

Among other properties of paracompact spaces which carry
over in a natural way to bitopological spaces we may note [3] ,
Proposition 17, p 95 and [2S) , (A), p 150. Their counterparts

for bitopological spaces are the subject of the next two theorems.

Theorem 1.2.3. The product (XxY, uxs, vxt) of a biparacompact
space (X, u, v) and a uniformly compact space (Y, s, t) is

biparacompact.

Proof. Let D be an open dual cover of X XY, then for x € X,
y € Y we may choose nhds., Uy(x) € u, Vy(x) € v of x and nhds.

Sx(y) € s, Tx(y) € t of y so that for some PDQ we have
C.
Uy(x)‘xsx(y) &P, vy(x);urx(y) < Q.
Now for each x e X, f = i.(Sx(y), Tx(y)) | ye Y3 is an open

dual cover of Y, so it has a finite refinement

x x
t (Sx(yxl)’ Tx(yxl))’ ety (Sx(y n(x))’ Tx(y n(x

)))l
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Let U(x) 1, 2, eee, n{x) 3} and

1
L

v(x) 1, 2, eesy n(x)}, so that

t}
]

n i Vyxi(X) I |

d= ¢ (U(x), V(x)) | xex3
is an open dual cover of X. Let ¢ = § (R, S,) | & €A} be a

locally finite open refinement of d, and for & & A choose x(o)
€ X satisfying R & U(x(x)), S_ & V(x(a)). Then it is easy to

verify that

_ x(x) x(a) A & < k <
E =1 (R XS oy (0 ) S XT (7)) | A, 1 £k = n(x(x))]
is an open locally finite refinement of D.

With only minor changes the same proof also shows that the
product of a strongly biscreenable space and a uniformly compact

space 1is strongly biscreenable.

Theorem 1l.2.4. The pairwise regular bitopological space (X, u,
v) is biparacompact if and only if every open dual cover has a

locally finite (not necessarily open) refinement.

Proof. Necessesity is clear. To show sufficiency let d be an
open dual cover, and b a locally finite (not necessarily open)
refinement of d. For each x € X we have nhds. H(x) &€ u, K(x) € v
of x so that

f (P, Q| PbQ, PAK(x) # # or QnH(x) # ¢}

is finite. Let g = f (H(x), K(x)) | x € X3} . Because (X, u, v) is
pairwise regular we may take H'(x) € u, K'(x) & v with x € H'(x)
< v-cl{H'(x)] € H(x), x € K'(x) S u-cl[K'(x)] S K(x). Let g' =
F(H'(x), K'(x)) | xe X3 . This is an open dual cover so there is
a locally finite (not necessarily open) dual cover ¢ with ¢ < b'.
Let

k=¢= £ (v-c1[A], u-c1[B)) | 4AcB }
be the closure of c¢. Then k 1s locally finite, and k < g.

For PbQ let
PO

X-Uf§ NI NqP =g, Neran k},

X-UIM MaQ=g, M&Edomki}.

Q'
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Because k is locally finite, P SP'& u and Q £Q' € v. Also
b < d so given PbQ we may choose U(P, Q), V(P, Q) with
u(p, Q)av(p, Q), P £ U(P, Q) and @ & V(P, Q). It is then easily

verified that
e=§8 (P'AUCP, Q), Q'nV(P, Q) | PbQ }

is an open locally finite refinement of d, so proving the theorem.

For the strongly biscreenable case we have the following

limited result.

Proposition 1.2.1. Let (X, u, v) be a pairwise regular bitopol-

ogical space, and suppose that each open dual cover has a

¢ -discrete (not necessarily open) refinement U { dn l n=1, 2,¢e.3
satisfying ()‘.(u-int[uc(an)])r\(v-intLuc(an)])l n=1, 2,.0.3= X,
Then (X, u, v) is strongly biscreenable.

We omit the proof which follows the same lines as the proof
of Theorem l.2.4.

Bitopological spaces in which one topology is paracompact
with respect to the other have been considered by several
authors (see, for example,{26],(273). If (X, u, v) is bipara-
compact then certainly each topology is paracompact with respect
to the other, For if Y = L U, la € A3 is (say) a u-open

cover of X, and e = £ (Ry, Sg) | s € B} an open locally finite
refinement of the open dual cover d = £ (U,, X) 1 &€ A I then
R =1 RalpRreB { is a u-open v-locally finite refinement of

U . However the converse is false. Indeed the bitopological
space of Example 1.6.5 has each topology compact, but it is not

biparacompact.

These considerations, together with Theorem l.2.2, show that
biparacompactness is quite a powerfull property. One way in
which it may be weakened is to modify the notion of local finite-
ness. If in Definition 1.2.1 we may choose H(x), K(x) so that

a> = §£(u, V)| UaV, UnK(x) # ¢ and VaH(x) # g1

is finite for each x & X we shall say that d is guasi-locally
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finite, and replacing dx by d; in the rest of this definition

gives us the terms quasi- £ -finite, gquasi-discrete, and so on.
Likewise a corresponding change in Definition 1l.l.4 defines the

notion of guasi~-star finite. The terms quasi-biparacompact,

strongly quasi-biscreenable, strongly quasi-biparacompact, etc.,

will then have their obvious meaning.

The class of quasi~biparacompact spaces is much larger than
the class of biparacompact spaces, but even so 1t is still not
true that a bitopological space in which each topology is para-
compact with respect to the other is necessarily quasi-bipara-
compact - as witness Example 1,6.5 again. However we can obtain
this result for bitopological spaces satisfying the condition

given below:

Definition 1.2.4. We shall say the dual family d is full if UQV
whenever U€ dom d, V& ran d and UnV £ g. (X, u, v) is full
(respectively, o -full) if every open dual cover has a full

(respectively, © =-full) open refinement.

Clearly every uniformly Lindelof: bitopological space is
¢ ~full, but Example 1.6.3 exhibits a uniformly Lindeldf space
which is not full.

Proposition 1.2.2. Let (X, u, v) be full, and suppose that each

topology is paracompact with respect to the other. Then (X, u, v)

is quasi-biparacompact.

Proof. Let d be an open dual cover, e a full open refinement,
. a u-open v-locally finite refinement of the u-open cover
dom e, and T a v-open u-locally finite refinement of the v-

open cover ran e. Then
f=% (M, )| MeMm , Nen , MaN # ¢ 3}

is clearly an open quasi-locally finite refinement of d.

Only notational changes are needed in the proofs of Lemma
l.2.1 and Theorem 1.2.1 to show that an open dual cover 4 is
quasi~ € ~finite if and only if it is quasi-star finite, and that
every quasi- 2 -finite dual family is quasi-O -discrele. Hence we

may state at once:
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Theorem 1.2.5. Every strongly quasi-biparacompact bitopological

space is strongly quasi-bisreenable.

In the same way the proof of Theorem 1.2.3 may be modified

to give:

Theorem 1.2.,6. The product (XXY, uxs, vxt) of a quasi~
biparacompact (respectively, strongly quasi-biscreenable) space
(X, u, v), and a uniformly compact space (Y, s, t) is quasi-

biparacompact (respectively, strongly quasi-biscreenable).

On the other hand, however, the proofs of Theorems l.2.2 and
1.2.4 do not carry over to the quasi-biparacompact case, basic-
ally because a quasi-locally finite dual family may not have the
"closure preserving" property. Indeed with regard to Theorem
1.2.2 we have a negative answer, for the space of Example 1l.6.1
is preseparated and quasi-biparacompact but not fully binormal.

I suspect that Theorem 1.2.4 may be generally false in the quasi-
biparacompact case also, but we do have the following positive

result:

Proposition 1.2.3. Let (X, u v) be fully binormal, and suppose

that every open dual cover has a quasi~locally finite (not
necessarily open) refinement. Then (X, u, v) is quasi-bipara-

compact.

Proof. Let d be an open dual cover, and let d' be an open dual
cover with d'<¥) d. By hypothesis d' has a quasi-locally finite
(not necessarily open) refinement e' = { (R., Sﬁ) \ peBi, so

there are nhds., B(x) & u, K(x) € v of x &€ X with the property
that { A | RynK(x) # & # SanH(x) 3 1is finite for each x.

Let £ = { (H(x), K(x)) | x € X}, and take open dual covers h
and g 50 that g.«cayh <¢») £ and g < d'. Consider the open dual
cover

e = { (st(g, Rg), St(S,, g)) | p & Bi.
Given A € B we have U'd'V' with Rﬂg_ ue, SA & V'; and UdV with
St(d', U') < U and St(V', d') « V. But then St(g, 13,_)& U and

St(S5, g) € V s0 e < d. It remains to show that e is quasi-
locally finite. Let us associate with x € X the nhds. St(g, {x})
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and St(ix3}, g). Note that for some PhQ we have St{g,${x}) € P and
Stl&x3, g) & Q, while for some y & X we have St(h, P) & H(y) and
st(Q, h) € K(y). However if St(g,1x1) nSt(Sg, g) # ¥ and
st(ixl, g)n Stlg, Ra) # # then H(y)nSp# & and K(Y)nRp# ¢
and this is possible only for a finite number of s € B, so e is

quasi-locally finite, as required.

I do not know if a fully binormal space is necessarily quasi-
biparacompact, but I would conjecture that the answer is no.
Further results in this area may be found in the later sections,

particularly in 1.4 and 1.5.

1.3 COUNTABLY QUASI-BIPARACOMPACT SPACES.

Countably paracompact topological spaces were introduced by
C. DOWKER in [11]. In this section we consider some properties
of the corresponding class of countably quasi~biparacompact
bitopological spaces. We begin with:

Definition 1.3.1. (X, u, v) is countably guasi-biparacompact

if every countable open dual cover has a quasi-locally finite

refinement.

al
Our principke result is based on the following:

Lemma 1,3.1. Let (X, u, v) be a pairwise normal bitopological

space, and d = £ (U , V)| n & N } an open dual cover satis-

fying Un < Un+1 and Vn < Vn+1 for all n € (N. Suppose there is a

= - <
closed dual cover ¢ $ (An, Bn) | ne W | with An _.Un and
Bn < Vn for each n. Then d has a quasi-locally finite countable

open refinement.

Proof. Since (X, u, v) is pairwise normal we have for n € W,

S=l’ 2, seey sets Rnse u and Snseij.th

U , and

< . - c
A ERe ST cl‘-Rns‘ S Rns+1) & Un

n ns

v .

c u- c
B &S < u cl[sns] <5 (5e1) & Vn

n ns
Moreover we may suppose without loss of generality that Rns <

c
R(n+1)s and Sns = S(n+1)s’ for if this is not so we may replace
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R o and S _ for n> 0 byU{Rksl k =0, 1, seey n } and

U iSkSI kK =0, 1, sesy n 3 respectively. Let us set:

WOs = ROs sy 8 =1, 24 eee 3
Wi = Rpg = Cu=ells 1y D yn=1,2 00y s=1,2 ...

and Tos = Sos ¢+ 6 = 1o 20 eee
Tps = Sps = (veellRe 09 3) v =1, 2, ceey s =1, 20 een

Let us also set R =U{Rns | 8 =1, 2, eee}y S, =U{Sns |

5=1, 2, Q'.I’Wn=uiwns‘ 8 = n, n+l’ oooj and Tn=U2TnSl

= n’ n*l’ PR 3 . Then

[0}
|

@®©
"

fys)lanenmiglR, 1)l nen]

is a countable open quasi-locally finite refinement of d. That

e is countable and open is clear; and e < d since Wn & RnE: Un

and Tné Sn& Vn for each n. To see that it is a dual cover take

x € X and define

»
o
o)

m(x) =min{nl 3 s,

n(x) =minfnl|3d t, x €S

Then it is clear that if m(x) € n(x) we have x €¥ nS forn =
n(x), while if n(x) < m(x) then x & R AT forn = m(x). Finally

to show e is quasi~locally finite take x &€ X and suppose that,

say, m(x) < n(x). Then x € R < Ri(x)s for some s; while

m(x)s

X € Sn(x)t for some t so we may define:

]

s(x) =min{s | x €R_( v },

t(x)

minft! x& Sn(x)ti
and associate with x the u-nhd. Rn(x)s(x) and the v-nhd. Sn(x)t(x)'

It is easy to verify that if Rn(ic)s(x) r\Tn # ¢ and Sn(x)t(x)an
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#¢; or if Rn(x)s(x)r\sn # @ and Sn(x)t(x)0 Vn # ¢ then

n < max(n(x), s{x)) or n < max{(n(x), t(x)) respectively. A
similar appropriate assignment of nhds. to x may he made when
n(x) < m(x). Hence e is quasi-locally finite, and the proof is

complete.

In order to state our next theorem we shall need some more
terminology. We shall say the dual family d is quasi-strongly
point finite 4if given x & X either fU| xeUedomdl is
finite or £ V| x €V € ran 4 § is finite.

The dual cover d is called countably medial if it can be

indexed over IN in such a way that for each x & X we have k(x)

= max(m(x), n(x)), where m(x) = min{n | x G‘Un! , n(x) =
min§n | xevni and k(x) = min {n | xéUnnVni .

We may now state:

Theorem 1.3,1. Let (X, u, v) be a point finitely binormal space
satisfying:

(a) Every countable open dual cover has a quasi-strongly point
finite open refinement, and

(b) Every countable open dual cover has a countably medial open

refinement.

Then (X, u, v) is countably quasi-biparacompact.

Proof. Let d' be a countable open cover of X. By (b) there will
be no loss of generality if we assume that d' is countably medial,
that 4s ' = L (U' , V' ) | n &€ W], where k'(x) = max(m'(x),

n'(x)) for all x € X, using an obvious notation. Let us set
Un=U{U'kI k =0, 1, ¢sey n} and vn=U{v'k| k=0,1, «o. n}

so that d = { (Un’ Vn) Il ne N3 is an open dual cover satisfying
U sU,jendV &V ..Lete=1{(R, S)|*&A3 bea faith-
fully indexed quasi-strongly point finite open refinement of d.
For s € W let

A(s) = {2l & &4, R, =U_ and Sa-‘="53-

Clearly A(s) < A(s+l) for all s.
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Let r =minis | A(s) #9131, R:= UfR, | & & A(k)] and

s¥ = Ufs,t &€ A(k)3. Generally for s = 1, 2, ..., let
r

*

R if A(r+s-1) = A(r+s)
- r+s-1
Rr+s =
U {Ru| A & A(r+s) =~ A(r+s-1) § otherwise,
s if A(r+s-1) = A(r+s)
v r+s-1
sr+s -

U§ S, | a€ Alr+s) - A(r+s-1) 3 otherwise.

For x € X let s(x) = min{s | 3 & € A(r+s) with x € R_nS, 1.

*x

r+s(x) and so

. F3
Then clearly x E'Rr+s(x)r‘s

r={@®,.,85,)se 0}

B

is an open dual cover refinement of d. Let us show it is point
finite. For x ¢ X let {cxl, ...,o(m} denote the set {a | x € R,

whenever this set is finite, and otherwise let it denote the set
fot | x€& S, 3. Define

0 if io(l, ...,okmi < A(r), and otherwise,
p(x) =

max§pl3 i, 1=4i<muwith «, € A(r+p) - A(r+p-1) 3.

i

If, from some point onwards, the sets A(s) are equal then f is
finite and hence point finite. In the contrary case, for each
x & X,

q{x) = max§q | A(r+p(x)) = Alr+q) 3}

is a well defined natural number, and it is clear from the

definitions that x € R;;SI\SQZS implies s = q(x). Thus f is point

finite as stated. Since (X, u, v) is point finitely binormal it
follows from Theorem l.1.2 that f is shrinkable. Hence there is

N) | s & W3 where W' < I,

an open dual cover g = § (M_,

*
- < < - <. . e ',
v cl[Ms] =R, SU  andu-cliNles <V,  foralls b

let r' =minis | s € W'} g and t = r + r'. Put At = v-clLMr,],

B, = u-cl[Nr,],'and generally for s 1, 2y eee

t
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v-cl[Mr,+s] ifr'+s8 € N,
At+s =

At+s-l otherwise,

u-cl[Nr,+B]if r'+s € N,
Bt+s =

Bt+s-1 otherwise.

Then ¢ = (An, Bn) | n=t, t+1, «.. 3 is a closed dual cover,
An < Un and Bn < Vn. It follows that the conditions of Lemma
1.3.1 are satisfied for the open dual cover d = 3 (Un, Vn) |

n=t, t+l, ...}, and so we have an open quasi-locally finite

refinement

e, =31 (0,501 n=t,tsd, ... iui(Rn, T ) \n=t, t+l, o..3.
Forn € N set W' = (Ufw t k =nvt, nvt + L, «..3)nv'
s' = (Utskl K=nyt, nuot +1, eoo3 YaV', s R' =

(VIR | k=nvt, nyt +1, ..} )au' ana ' = (UiT | k=
nvt, nut + 1, ...1)nv-n. |

If x€EW nS or x€R nT then n= k'(x) = max(m'(x), n'(x)),

and s0 X € w'k'(x)(\ S'k'(x) or x € R'k'(x)’\ T'k'(x) respectively.

This shows that

et=f G, )b w as Aplol®R,, )R AT £p]
is an open dual cover refiniment of d'. Finally the argument
used in the proof of Lemma 1l.3.1 to show e, is quasi-locally
finite will also show that e' is quasi-locally finite, and the
proof is complete.

The next result is also a consequence of Lemma 1.3.1.

Proposition 1.3.1. Let (X, u, v) be a pairwise perfectly normal

space {20l , and suppose that each countable open dual cover has
a countably medial open refinement. Then (X, u, v) is countably

quasi-biparacompact.
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Proof. Let d' = 2_(U'n, V'n) | n € W3 be a countably medial

open dual cover, and form d = § (U, V)l nenw Jwith U < U .,

vng;\QH_ as in the proof of Theorem 1.3.1. Now we have v-closed

1

sets Pns, s € N, and u-closed sets Qns’ s & f, so that

L= d
P u, = U{Pnsl [ N3, an

ns = Pn(s+1) v Qs & Qn(s+1) '
Vn=U{Qnsl s € N3,

i = = C
For n € W define A_ U{Ptnl t =1, eee, 0} €U and

B, =U{Qtnl t =1, seey n} &V . Then
c = l(An, Bn)l n € N3}

is a closed dual cover, and the conditions of Lemma l.3.l are
satisfied. The remainder of the proof is similar to the last
part of the proof of Theorem 1,3.1, and is ommited.

The final lemma of this section deals with a situation at
the opposite extreme from that of Lemma 1.3.1l. This result can
also be useful in establishing (countable) quasi-biparacompact-

ness in some cases (See, for instance, Example 1l.6.3).

Lemma 1.3.2. Let (X, u, v) be a pairwise normal bitopological

space. If d = { (U, Vk) | ke 2 { is a countable open dual cover

satisfying (\iUk§= (\ini= g, Uk < Uk+1 and Vk+l <. Vk for all

k € 3, and if there exists a closed dual cover ¢ = I (A, B ) |

kezkwithAkg c U and B, & V, for

Aee1r Bl S B Ao = Ty e S %

all k € 2, then 4 has a quasi-locally finite countable open
refinement.

Proof. Since (X, u, v) is pairwise normal we have u-open sets
R, with Ak < Rk < v-clka} < Uk' Without loss of generality we
may also suppose that Rk < Rk+1 for each k € Z, for if this is
not so we may replace R_ by L){Ri |l £ =0, vesy k) for k> 0,
and by N {Ri | 4 =k, eaey 01 for k « 0. In just the same way

we have v-open sets S, with B, & §

y w u-cllskl <V, and we

L=
k
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may suppose S < Sk for each k € 2.

k+1
Clearly e = {_(Rk, Sk) | k € 23 is an open refinement of 4.
We show it is quasi-locally finite. For x € X the numbers

m(x)

minfk!| x € v-cllel 3,

n(x)

max {k | x eu-cllSk\i

both exist in 2. Also, for some k', x € Rk' n Sk, and so
m(x) £ k' = n(x) for each x &€ X, Now

M(X) = Rn(x) - (u-011sn(x)+l])
is a u-nhd of x, and

N(x) = S (yy = (V-CI[Rm(x)-lj )

is a v-nhd of x. Also if M(x)n S, # ¢ and N(x)r\Rk Z @ then

m(x) £ k < n(x). Hence e is quasi-locally finite, and the proof

is complete.

1.4 METRIZABLE AND SEQUENTIALLY NCRMAL BITOPOLOGICAL SPACES.

One of the important properties of the class of paracompact
topological spacese and of the class of fully normal topological
spaces is that they include the class of metrizable spaces. Let
us recall that a non-negative real-valued function p(x,y):on Xx X

satisfying the triangle inequality is called a pseudo-quasi-

metric if p(x,x) = O for all x& X. Corresponding to the p-q-
metric p is the p-q-metric p™ defined by

p (x,y) = ply,x), x,yeX

and called the conjugate of p. Each p-q-metric p defines a topol-
ozy t(p) on X in the same way that a metric does (see[1131 ),

and the bitopological space (X, u, v) is metrizable (or, more
correctly, p-g-metrizable) if there is a p-g-metric p on X
satisfying t(p) = u and t(p") = v. It is known [11) that a
metrizable bitopological space is pairwise regular and pairwise

normal, and it is also clearly pairwise Ro and preseparated. In
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particular if p is a quasi-metric (that is p(x,y) = 0 x = y)
then (X, t(p), t(p*)) is weakly pairwise Hausdorff. It is natural
to ask if all metrizable bitopological spaces are biparacompact
or fully binormal, and the answer in no. For the spaces of
Examples l.6.1, 1.6.2 and 1.,6.3 are all metrizable while the
first of these spaces is neither biparacompact nor fully binormal,
and the second two are not biparacompact. Ve may also note in
passing that the first two of these spaces are not-pairwise
paracompact in the sense of DATTA [0} either. It is true that
all these spaces are quasi-biparacompact, but I strongly suspect
that this will not be true of all metrizable bitopological
spaces. This poses the problem of defining a suitable class of
bitopological spaces which does include all metrizable spaces.
The class of sequentially normal spaces defined in this section
is obtained by weakening the condition of full binormality. I
do not have a "local finiteness'" characterization of these spaces,
although if such a description could be obtained it would
undoubtably be invaluable.

If @ and e are dual families let us set
exd = & (stle, U), St(V, e)) | Uvavi}.
We may now give:

Definition 1.,4.1. The dual cover d is sequentially normal

if thene exist open dual families dn' and open normal dual covers

e 80 that
n

(i) en* dn A d’ n = 1’ 2’ 3’ LA L)

(i1) UV ldnlis a dual cover of X.

(X, u, v) will be called sequentially normal if every open dual

cover of X is sequentially normal.
Clearly every fully binormal space is sequentially normal.

Proposition 1.4,1. Every sequentially normal bitopological

space is pairwise normal.

Proof. Let P be a u-closed set, Q a v-closed set and PnQ = 4.
Consider the open dual cover d = L (X - P, X), (X, X - Q) 3}, ana
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let d , e have the properties (i) and (ii) above. Let U =

St(dn, Q) and v o= st(p, dn)’ and set

{]
i

W o=U - U ¢ u-cl[Vk} | k=1, eeey n},

T 1, ooy, n}

n

il

Vo= U!v-cl[UkS | k
for n =1, 2, «se » Then if ¥ = L)iwn l n=1, 2, «es } and
T =U2.Tn| n=1,2, eeo} then W &€u, T €v, and it is clear

that WAT = .
Let us show that for each n we have
P(\(v-cliUn)) = Qf\(u—cllan) = g.
If p& Pnp (v-cliun}) then 3 Re S with p &€ Rn S, and then SnlUy
£ & s0 A U4 V with S U # % and VnQ # @#. Hence p e R = Stle_, u).

But since e *d < 4 we have
n n
St(en, U)& X -P or St(v, en) < X - Q,

and p ErSt(en, U)n P contradicts the first possibility, while
VA Q # @ contradicts the second.

It follows that Pr\(v-cl[Un]) = ¢, and the second result is
proved likewise.

From these results we deduce at once that P & T and Q & W,

so (X, u, v) is pairwise normal as required.

As promised above we are going to show that every metrizable
bitopological space is sequentially normal. To this end we are
going to need some terminology and results concerning p-q-metrics

and equibicontinuous families of real valued functions.
Let p be a p-q-metric on X. For x € X and &€ 7 O we set
H(x, & ) = § y \ plx,y) < €1,
K(x, € ) =% y | ply,x) «<T}.
In this context Hn(x) and Kn(x) will denote H(x, 2™®) and K(x, 277)

respectively, unless stated otherwise.
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We denote by o_ the open dual cover 1 (Hn(x), Kn(x)) l xexl.

It will be noted that { Hn(x) \ n € W} (respectively,
iKn(x) | n € 1) is a base of nhds. of x for the topology t(p)

(respectively, for the conjugate topology t(p*)). We will say that
the p-g-metric p is admissible for the bitopological space
(X, u, v) if t(p) € u and t(p') &v.

If 4 is a dual cover of X we will say that the p-g-metric p
is gubordinate to d if given x € X 3 UdV and n € W with H (x)

in

U and Kn(x) < V. We will say that p is evenly subordinate to d

if we have °n - d for some n € W,

Clearly (X, u, v) is metrizable if and only if there is an
admissible p-q-metric p subordinate to every open dual cover of
X.

Let us recall that a function f : X —» X' is bicontinuous

with respect to the bitopological spaces (X, u, v) and (X', u', v')
if it is continuous for the topologies u, u'; and for the topologies

vy v'. We will always consider R with the topologies

f{x1 x<a3tae RIuviR, g1, and

s

t=¢fxla<xila€ RIVIR, 2},

and if (X, u, v) is a bitopological space then to say that a real
valued function on X is bicontinuous will mean that it is
bicontinuous with respect to (X, u, v) and ( R, s, t). Hence

f : X —> R is bicontinuous if given x €@ X and €& » O there is

a u-nhd. M(x) of x and a v-nhd. N(x) of x so that

ye M(x) = £(y) < f(x) + € , and
y € N(x) =» £f(x) <« f(y) + & .

If F is a family of real valued functions, and if for each x & X
and € ¥ O we may find M(x), N(x) satisfying the above conditions
for all £f & F then we shall say that F is equibicontinuous.

For each &4 &€ A let h-( and k“be real valued functions on X.
Then we shall say that '

E=%f(h, k) !aae€al

o ?

is an equibinormal family for the bitopological space (X, u, v) if:
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(a) 0 =h,=1land 0=k, =1, and

(b) The families Eh, | «€A3 and § - k, { & A} are

equibicontinuous.

If0 = f = 1 we set s(f) = £ x 1 £(x) =013 and e(f) =
Ex | £f(x) <« 13. '
The support of the equibinormal family E is the dual family
s(B) = L (s(ny), s(k,)) | & &4, s(hy)nslk,) # ¢ 3,
and the envelove of E is the dual family

e(E) = { (e(n,), el(k,)) | # €4, s(h)nslky) #73.

The equibinormal family E will be called an equibinormal cover

if s(E) is a dual cover of X.

The following lemma will play an essential role in what

follows.
Lemna l.4.1. Let d,n= 1, 2, ...y be a sequence of open dual
covers of X satisfying dn+1_‘=C*) dn for each n. Thexn:

(1) There exists an admissible p-q~metric p so that d o, <)o,

and o < d:'= H (St(dn,{x]), st(ix}, dn))l x &€ X {1 for each n.

n+l
(2) It d = LU, V)la e An} , and the index sets An are
pairwise disjoint, then for each n there is an equibinormal cover

= ' s
E = t (h_, k)| a€eA n i with A' & A and satisfying d

-—

5

Aco)s(En) for each n, and e(h, ) € U, je(k, ) & V_ for each & .

Proof. (1) This is essentially a variant of ([18), lemma 6.12).
For a verification directly in terms of dual covers we may use
the method of the proof of ({251, Theorem VII). Thus, let us set

a(/2") = dyn =1, 2, een,

and inductively for 1 <« k < 2n+1’

alk/2 1) = a(ek'/2™1) = a(k'/2™) if k = 2k', and

alk/2™ 1y = a((ax+1)/2%Y) = d % a(k/2") it k = 2k' + 1.
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If finally we set d(1) = §{ (X, X) } we have open dual covers d(V)

for each diadic number V = _k/2n, ls k < 2", Now let us define
d(x, y) =inf§v | y e st(d(v),ix}) 3, and
p(x,y) = sup § (fx, z) - f(y, z))vOo | z¢€ X}

for x, y € X. Then it may be verified that p is an admissible

p-g-metric with the required properties.

(2) Let p be an admissible p-q-metric with the properties
given in (1). For Y & X we will set

Ln(Y) § x| Hn(x) < Y}, and

]

Mn(Y) t x| Kn(x) < Yi.

Now let A' = tadlae A s Ln+3(Ua) P 4 Mn+3(V¢) Y, and for

A & A'n and x € X let:

h (x)

2n+3((inri plz,x) | z € Ln+3(Qa)} 1 A.Z-n-3),

k,‘(x) 2n+3([inf §p(x,2) | z €M (V) i ] A 2-n-3)’

n+3

and E_ = 1 (h, k)| & e Ay

That e(h,) < U and e(k,) < V, i6 clear. To see that Lh,(aear i

is equibicontinuous, given € > O take m € @ with 2" <
n+l
€/27"", and y € H (x).

If h“(x) = 1 then certainly h,(y) < h_(x) + & .
If h,(x) #1, then h (x) = 23 (ine fp(z,x) | 2 eLn+3(UA) 1)

so 3 zelL ,(U,) with h (x) = 2n+3p(z,x) - &/2. Hence

n+3
h“(y) < 2n+3p(z,y) = 2n+3p(z.x) + 2n+3p(x,y) < h,(x) + &

since p(x,y) < 2" < E/2m"+.

This proves the stated result, and -k, | d € A'n3 can be

shown to be equibicontinuous in the same way and we have establish-~

eﬂd that En is an equibinormal family. Finally dn+5 —cujon so0

+3
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a
+3 2% 4

< dn' Hence if q € X we have o & A'n

it will suffice to show that 0,3 < s(En). Now o,

and d L(u) d so o
n n n+

+1 2

with B (q) €U and K ,(q) £ V,. But then x & Hn+3(q) =

H,s(x) = H () U, = xel (0)< shy) =

(9) & s(ha). In the same way Kn+3(q) < s(x,). Hence %43

Hn+3
. s(En), and the proof is complete.
Corollary 1. The following are equivalent for the dual cover d.

(a) d is normal.
(b) There is an admissible p-g-metric evenly subordinate to d.

(¢) There is an equibinormal cover whose envelope refines d.

Proof. (a) => (b) and (a) =2 (c) follow directly from the
lemma, and (b) == (a) is obvious. It remains, therefore, to
prove (c) =% (a). Let E = { (n, k,) | & & A} and set

U (x) = u-int[ Oi{y | Byy) < Balx) + 33N Qéi ¥
k(X)) < k() + 371 ],
v (x) = v—intiOi{y [ hy(x) < hy(y) + 33} Nty |
ko (¥) < ko (x) + 3™} ].
Under the given hypothesis x € Um(x) € u and x & Vm(x) € v. Hence

a, = f (Um(x), Vm(x)) | x€ X3 is an open dual cover for m = 1,

2y ees o It 15 easy to verify that dm < () dm; and that dl < d,

+1
so d is normal as required.

Corollary 2. (X, u, v) is metrizable if and only if there is a
sequence dn of open dual covers such that

(L dpyg <w)yd ,n=1,2 ..,

(2) § St(dn,lx}) | n=1, 2, «.. } 1s a base of u-nhds. of x,
(3) § st(§x}, dn) |l n=1, 2, .o.] 1s a base of v-nhds. of x,

for each x & X.
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The above corollary is the exact co%&erpart for bitopological

spaces of the Alexandroff-Urysoha metrization theorem (See, for
example, [25)1, Theorem VII).

Sufficient conditions for the metrizability of bitopological
spaces have been given by J.C.KELLY [19] , E.P.LANE [20] and
S.SALBANY [32). Let us indicate how the metrization theorem of
Salbany, which includes the results of Kelly and Lane as special

cases, may be deduced from Corollary 2.

Salbany defines, in effect, an open pair base for the bitop-
s, |

ological space (X, u, v) to be an open dual family b = H (R¢’

& & A3 satisfying:
(a) R, US4 = X for all & & A,

(b)) xcUeu = 3 aelAwithxeX-S,& Ry €U, and
(c)xevev==73/;c_ Awith x&e X =R, & 84 & V.
With our terminology Salbany's theorem ({32), Theorem 2.4) now

states that a pairwise normal bitopological space (X, u, v) is
metrizable if there is a sequence lbni of quasi~locally finite

dual families so that U lbniis an open pair base. Actually we

can show that the explicit assumption of pairwise normality is

unnecessary, and so we have:

Theorem lo.4.1. Let (X, u, v) be a bitopological space which has
a sequence {bn} of quasi-locally finite dual families so that

LJlbniis an open pair base. Then (X, u, v) is metrizable.

Proof. Let us first verify that (X, u, v) is pairwise normal.
To this end let d be an open dual cover of X. For n = 1, 2, eee,

we may set b = { (R“. S,) | o € A 1 where the sets A are
pairwise disjoint. Given x € X and n we have Hn(x) € u and
Kn(x) € v so that

foloe s, BE(x)nSq#F#AK (x0)aRy

is finite. Note that

i

U (x) =B (xnNIR 1A€A, B()nS,#F K (x)n R} € u,

V() =K )InNis,laea, Bx)nSa#F# K (X)aRa) € v;
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and that,

U(x) S N{R, Il e 4, x€ RIS NiRg1 € A, x¢ 5.1,
V(x) & (is It € A, xe€ sJeNis,lae &, x¢RE.

Let us define:

a = {(Un(x), v.(x))1 3 Uav, o 3 €AY with x& X - §, € R,
SUand x€ X =R, & s,,sv}, and
e, = i (Un(x), Vn(x)) | xexi.

Then for each n, dn is an open dual family, e, is an open dual

cover of X, and it is easy to verify that

(1) e ®d <« d, n=1,2, o0, and

(i1) U fdn{ is a dual cover of X.

Now the proof of Proposition l.4.1 depends only on the properties

(i) and (ii) of e, and d , and not on the normality of the e ,

and so we may deduce that (X, u, v) is pairwise normal as stated.
Now let b = § (R, S,)| * € A} be a quasi-locally finite

open dual family satisfying R, U Sy = X for alla € A. By the

pairwise normality we have u-open sets M, (V) for each diadic

number V = k/2%, 1 = k < 2", satisfying

X-5 < M,V = v-cl{M (V)] & M (u") = R  whenever v < v'.

If we set N (v) = X = (v-cl[Md(v)\) for v =k/2%, 1 = k o 2%,

we have
X - Rd < N & u-cl[Nd(V)] < Nd(q') < 8§ whenever v'< v .

Finally we set M (1) = R_and N (0) = S
"y o« [

oA
Now define:

R (x) =(1iM ((s1)/2) | e 2, 12k <27, x€ v-cl{M _(k/2")}},

s (x) =NIN ((k-1)/2") Lot €4, 12k <2, x €u=cllN (k/2M]].
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Since b is quasi-~locally finite it is clear that Rn(x) is a u-

nhd. of x, and Sn(x) is a v-nhd. of x. Hence
= - . . - G_
£ § (u-int R (x)., v-int S (x) ) | x€ x3
is an open dual cover of X, and it is a straightforward matter

to verify that

fn+2‘<(*) fn, n = 1, 2, eso o

Moreover we have

x€X=-5, &R, =p St(fl,{x)) S Rg,and
x€X - R,& S« = Stlixg, £;) & Sy -

It follows that if we construct fmn for each of the dual families
bm’ m=1l, 2, esey given in the statement of the theorem, then

the sequence

1l

b 1 fl

1l 2
S ST

2
/\f3/\f31, LI

of open dual covers has all the properties required by Corollary
2 to Lemma 1.4.1. Hence (X, u, v) is metrizable, and the proof-
is complete.

Let us now return to our consideration of sequential normality.

Theorem 1.,4.2. The following are equivalent for the open dual
cover d of (X, u, v).

(a) 4 is sequentially normal.

(b) There is an admissible p-g-metric subordinate to d.

(c) There is a sequence {En'}of equibinormal families so that

(i) e(En) ~<4 d,n=1, 2, ... , and
(i1) U} S(En) l n=1, 2, ...} is a dual cover of X.

Proof. (a) => (b) Let d and e be as in Definition 1.4.1.
— n n

Since each el is normal there is, by Lemma l.4.1, an admissible
p-q-metric p_ (evenly) subordinate to e . Without loss of

generality we may assume 0 = P, = 1l s0
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a
p(x,y) = = 2-npn(x,y)
n =1
is an admissible p-q-metric on X. Take x € X, then for some n
and U d V we have x € U nV_. Also, since e # d_ << d there
nnn n ' n n n
exists UdV with St(en. Un) < U and St(Vn, en) < V. Finally

P, is subordinate to e, 80 for some RenS with x € Rn S and some

m we have Hnm(x) < R and Knm(x) & V. But then

[
Hm+n(x) c U and K n(x) < Vv

+
so p is subordinate to 4.

(b) => (c¢) Let p be an admissible p-q-metric subordinate
tod={(U, V)l & A]. With the notation as in the proof

of Lemma 1,4,1 define

h" (x)

]

27( ’_ inf{ p(z,x) | z € Ln(U“)i Ta2™), and

k' () = %[ anrlpx,a) | z e (v)1] 2™,

Arguing as in the proof of Lemma l.4,1 we see that
n n n
En=2(hd,kd)\ o € A" 1, where An={°t\Ln(U“);-‘¢;4

Mn(v‘) i,

is an equibinormal family. Moreover it is clear that e(n® ) ¢ U.(
R
and e(kl ) & V, so0
e(En) < d’ n = l’ 2, see o
Finally p is subordinate to d, so given x & X there exist « € A

and n with

ern(x) <« U andxeKn(x)(_- V.

Hence o € A" and x € Ln(U“)n Mn(Va) < s(hl‘:k )n 8(k2 ) which
shows U Zs(En) l n=1, 2, oo} is a dual cover of X and so
verifies (c).

(c) =>(a). Let E = { (hp. l;,) lpe Bn} be a sequence
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of equibinormal families as specified under (c). Without loss of

generality we are supposing that the index sets Bn are pairwise

disjoint. Fork the sets an(x) and Snm(x) from the E_ in the same

way that we defined the sets Rm(x) and Sm(x) from E in the proof

of Lemma 1.4.,1, Corollary 1. It follows that for each n and m,
e" = { (R (x), s" (x)) | xex]

is an open dual cover of X, Also it is easy to verify that

em+1 L. (‘) em
n

m
8o e is a normal dual cover for each m, n.

Forpp €B let Ug= L x | hy(x) < 1/3 3 and Vo= {x |
%ﬂ(x) < 1/3%, and put
4 = {(U,%)\pe Bn{.
Then each dn is an open dual family, and their union is a dual
cover of X by property (i) in (c¢). Finally 1let e = eln. Then
for/‘seBn we have
(o
St(en, Uﬂ) < e(h/-,), and

St(v/,, en) < e(l;,)

from which e wd < d follows using property (i) in (c).
Hence d is sequentially normal.

Corollary. Every metrizable bitopological space is sequentially

normal.

If one makes a corresponding definition of "sequentially
normal" for covers of a topological space it is not difficult
to verify that a topological space is fully normal if and only
if every open cover is sequentially normal. Hence for topological
spaces the notions of full normality and "sequential normality"
coincide. However this is very far from being the case with
bitopological spaces, for indeed the space of Example 1,6.1 is
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metriza%@ and therefore sequentially normal, but it is not even
finitely binormal. In order to obtain a positive result here we
need to weaken the condition of "full binormality'", and this is
the subject of the next definition.

Definition 1.4.2. Let d be a dual family, P and Q subsets of X.
By the pseudo-stars of (P, Q) with respect to d we mean the sets

pst(da, (P, Q)) Uiuta vwithuav, UnQ# & # VAPl , and

PSt((P, Q), a) = UEVI 3 Uwith UaV, UnQ # % # VAaP}.

If e is a second dual family we shall say that d is a pseudo-
star refinement of e, and write d < (p+) e, if given UdV there
exists ReS with Pst(d, (U, V)) < R and PSt((U, V), d) & S.

(X, u, v) will be called fully pseudonormal if every open

dual cover has an open pseudo-star refinement.
Theorem l.4,3. Every sequentially normal bitopological space
is fully pseudonormal.

Proof. Let d be an open dual cover of X. By theorem 1l.4.2 there
is an admissible p-q-metric p subordinate to d. Hence for each

x € X we have r(x), 0 = r(x) < 1, so that
H(x, r(x)) & U and K(x, r(x)) < Vv
for some UdV. If we put
S ar = §(H(x, r(x)), K(x, r(x))) | x € X}
then d' is an open dual cover refinement of d.
Let r'(x) = r(x)/6, and consider the open dual cover
e = § (H(x, r'(x)), K(x, r*"(x))) | xe& X 3.
We will show that e << (p#) 4°'.
Let r = sup {r(x') [ H(x', r'(x"))nK(x, r'(x)) £ g #
K(x'y r'(x"))nE(x, 2N Y.
Note in particular that r(x) = r. Now take x, € X such that
H(x,, r'(xo))r\K(x, r'(x)) #4 # K(xys r'(xy))n Hix, r*'(x))
and r(xy) > b4r/5.

If now H(y, r'(y))nKix, r'(x)) # ¢ # K(y, v'(y))n H(x, r'(x))



Ly

then r(y) < r, and so for z € H(y, r'(y) we have:
p(xy,2) = p(xo,x) + plx,y) + p(y,2)
< r'(xy) + r'(x) +r'(x) +r'(y) + r'(y)
= (rlxy) + 4r)/6

< r(xo).

This shows that H(y, r'(y)) < H(xo, r(xo)), and in the same
way we have K(y, r'(y)) & K(x,, r(x,)). Hence e < (p+) ar,
and the proof is complete.
The converse of this result is false. Indeed the bitopologi-
cal space of Example 1l.6.5 is fully pseudonormal, but it is not

even pairwise normal and so by Proposition l.4.1 it cannot be

sequentially normal.

This example shows that full pseudonormality is a relatively

weak condition. Nont the less we do have:

Proposition 1.4,2. A fully pseudonormal bitopological space is

uniformly fully normal.
Proof. Let WL = §G, 1 ® € AJ be a uniform open cover of X.
Then for x & G, we have Ux“& u, qu € v with x € Ux“n de € G,.
The open dual cover

a = Z(Um, vl dE A xe G, 3
has an open pseudo-star refinement e = § (%3, 8401 € B3}, and
if we put V¥ =1 Ryn Sp 1 A€ B} it is easy to verify that V

is a uniform open cover of X and that V'* < W . Hence (X, u, v)

is uniformly fully normal.

One can easily show that a "éequentially normal"™ open cover
of a topological space has a ¢ «discrete open refinement.
However a corresponding result in the bitopological case would
seem to require some additional restrictions, and these are
detailed in the next definition.

Definition 1.4.3. The dual family d is medial if it can be index-
ed by a well ordered index set (A, < ) in such a way that for all
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x € uc(d) we have W (x) = max(m(x), V(x)), where

Y(x) =min} Al A €A, xe U, nV,},

M (x)

V(x) =min { A a4, x eV, ).

min{ & | a €A, xeU, 3, and

We shall say that (X, u, v) is medial (respectively, ¢ -medial)
if every open dual cover has a medial (respectively, O -medial)

open refinement.
Ve may now state:

Theorem l.4,4. Every ¢ -medial sequentially normal open dual
cover of a bitopological space has a 0’ -quasi-discrete open re-

finement.

Proof. Let the open dual.cover d be the union of the medial dual
fanilies d . Let (An, < ) be a faithful indexing of d with the

properties mentioned in Definition 1.4.3, where without loss of

generality we may take the sets An to be pairwise disjoint.

By Theorem 1l.4.2 there is an admissible p-q-metric p subordinate
to d, and for B & X let us set

L

B (B) U{Hm(x) | xeBt,

U{Km(x)l x €B}Y,

Km(B)
and define Lm(B), Mm(B) as in the proof of Lemma 1.4.1.

For o E:An, my, n =1, 2, eesy define:

m
Ua = B,z (0, (0)), Vg = Knes (M (00D,

Ry = e (T (U0 - Usz+1(V/3) b A& Ay p<ai), and

[42]
1

2 = Epes0L L) - UL W) 1 Ae s, peai).

Finally let ") = § (U , 85 ) 1 < e A, Uan 8y #93, ana

enmz- {(Rn;,Vﬂ)lcxe—An, Rn;anu 81,

forny, m =1, 2, 3, eees &

For each n and m; enm1 and enmz are open dual families refin-
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ing d.

Take x € X. Since p is subordinate to d we have n, ot € A

and m so that Hm(x) S U_ and Km(x) & V.. In particular x €

uc(dn) and so, using an obvious notation, we have )tn(x)

max(/un(x), Vn(x)). But then it is easy to see that

m m
x€Ug NS, ifl d = \«n(x) =/~n(x), while

X €Ro NV if & = W (x) = V_(x).

It follows that

2enm1ln'm‘:l,z,oooiuzenma‘n'm':l,a,ooo}

is an open dual cover of X.

. nm nm .
It remains only to show that e 1 and e > are quasi-discrete
for each n and m. To each x € X associate the nhds. Hn+3(X) and

Kn+3(x). To show that ™™

1 is quasi~discrete suppose that for
m m
some oty A € A we have Hm+3(x)(\ S, A8 # Km+3(x),\ U, and
m

Hm+3(x)n Sp 2B # Km+3(x)r\ U?, « Suppose, without loss of

erality that «o. Then if "
gener y /A en 3 # o we have from Hm+3(x)n S o

h ist € -

# @ the existance of z Hm+3(X) and t & M (V,) (Ji'Lm+1(US) |

X € An' ¥ < o 1 with z € Km+3(t)' and so in particular,
t¢ Lm+1(%) ® © 00 000 (l).

On the other hand from Km+3(x)/\ U% # @ we have a & K. (x)

+3
and be L (U;) with a& H ,(b). But then
p(t,b) = p(t,2z) + p(z,x) + p(x,a) + p(a,b)
pa h/2m+3
- 1/Zm-'»l
and so Hmﬂ(t) < Hm(b) < U/3 which gives t€ L (U ), so

contradicting (1).
nm

> is

This proves e is quasi-diecrete, In the same way e

1
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quasi-discrete, and the proof is complete.

Corollary. Every O° ~-medial sequentially normal bitopological

space is strongly quasi-biscreenable.

In particular every J° -medial metrizable, and every o’ -
medial fully binormal bitopological space is strongly quasi-

biscreenable.

We may improve this result in the fully binormal case by
strengthening the " ¢” -medial" condition. Ve make the following

definitions,
Definition 1l.4.4. We say the dual cover d = L)idn?is a

conservative O -medial dual cover if there exist disjoint sub-

sets X, X2 of X (one of which could be empty) with XU X, =X

and so that

(a) xe XN uc(dn) = \*n(x) =/"‘n(x)
x€e inuc(dn) = )«n(x) = \)n(x), and

)

(v) XN uc(dn) X r\lc(dn)

1
X2 N rc(dn),

X, nuc(d )
for alln=1, 2’ eoe o

Ifd = L)fdniis o’ -medial and sequentially normal, and p is
an admissible p-q-metric subordinate to d we set
n(x) =minfn | x e uc(d ) 1, and
n(x) = min{m | x eLm(U“) N Mm(V,,‘) for & = )‘\n(x)(x)} .
With this notation we may state:

Definition 1.4,5. The ¢ -medial sequentially normal dual cover
d = L)Idniis of finite type if there is an admissible p-q-metric

p subordinate to 4 such that, for eachn =1, 2, ... , and each

A e':An the set
fmz)l R () = o 3
is finite.

We may now give:
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Theorem lo.4.5. Let (X, u, v) be fully binormal, and suppose that
every open dual cover has a conservative ¢’ -medial open refine-

ment of finite type. Then (X, u, v) is quasi-biparacompact.,

Proof. Let d be an open dual cover which, without loss of
generality we may assume to be a conservative ¢’ -medial dual
cover 4 = L){dniof finite type. Let Xl’ XZ be subsets of X as in
Definition 1.4.4, and p a p-q-metric as in Definition 1.4.5.

Forn,m=1, 2, ... , let us set

m} , and

mi.

As in the proof of Theorem l.4.4 we have quasi-discrete open

dual families

Pl(n, m) = §z| 2 € X, n(z) = n and m(z)

n and m(z)

Pz(n, m) =§z]| z€ X5 n(z)

nm
e

= f O, SNy Jaea, s £83, an

nm
e

i}

5 Z(RZ.Vﬂ)IdeAn,R";nv’& 491

which refine d, and which together form a dual cover of X. Consid-

er the (not necessarily open) dual family
m m
e= §W 8" AP(n, m) In,m=1, 2, ..., €A,
m
Va N sy nBynym) 83Ut Ry apytny m)y, V) [ n, m=1,
2, ) ,C(&An, Rmunvn; an(n, m)#ﬂi.

e is a dual cover of X, For if x € Xl then

x e.UEfX) N Sm£X) N Pl(n(x), m(x)) for o = Y;(x)(x)

Pty (¥ e A (x)r ¥hile if x € X, then

[
1]

x e-RﬁSX) N VﬂiX) N Pz(n(x), m(x)) for ot = X )(x)

n\x

Vn(x)(x) & An(x) .

Now let us show that e is quasi-locally finite. For x € X
the set § m(z) | )(n(x)(z) < y(n(x)(x) { is finite, so we may

set M(x) = max } m(2) | X

n(x)(Z) < )(n(x)(x) { , and associate
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with x the nhds. Hy( y,s(x), Ky oy, 5(x). Suppose that Ry, ;(x)

f\Pl(n, m) # 74 . Now
HM(x)+3(X) < Hm(x)(x)g. an(x)(x)

so we may take z € an(x)(x)n Pl(n, m). Then z€ X, n(z) = n

and m(z) = m so z e-xlr\ lc(dn(x)) =X N uc(dn(x)) by (b) of

Definition l.4.4. It follows that
nzn(Z)é n(x) sessensnse (1)

Also z € X, N ug(dn(x)) implies )£n(x)(z) = //An(x)(z) by (a)
of Definition 1.4.4, so YCn(x)(z) = //&n(x)(z) < \Qn(x)(X)

which gives

m=m(Z)é M(x) soeescenase (2).
(1) and (2) also follow if KM(x)+3(x)(1 Pa(n, m) # %, and we
deduce at once that e is quasi-locally finite.

We have thus shown that every open dual cover has a quasi-
locally finite refinement, and so (X, u, v) is quasi-biparacom-

pact by Proposition 1l.2.3.

The above results illustrate some of the difficulties
involved in establishing even quasi~local finiteness properties
of bitopological spaces. The notion of "mediality" imtroduced
here,:.while providing a partial solution to some of these
problems, is less than satisfactory in its present form because
of its somewhat abstract nature. In particular it seems quite
difficult to determine just how restrictive the conditions
imposed in Theorems l.4.4 and 1.4,.5 really are.

1.5 COMPARTMENTAL DUAL COVER REFINEMENTS,

As we have noted in the previous sections, the local finite-
ness conditions we have imposed so far on a bitopological space

are, with the possible but unlikely exception of strong quasi-
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biscreenability and quasi-biparacompactness, relatively stronger
than the notion of paracompactness for topological spaces. In
this section we discuss a much weaker form of local finiteness
condition. This is based on the notion of a "compartmental

dual cover'", defined below.
Definition 1.5.1. If, for each ¥ & C, dx is a dual family

we say ; :
a/c=fa,lve c}

is a compartmental dual family. d4/C is a compartmental dual

cover if

Ufulag)l 3 € cl =x.

If e is a dual cover we say d4/C refines e, and write a/C < e,
if given ¥ € C there exists ReS with d < L (R, 8)}.

Such terms as point finite, locally finite, quasi-locally
finite, etc., may be defined for compartmental dual families in
the obvious way. Thus, for example, d/C will be called quasi-
locally finite if for each x € X there are nhds. H(x) € u and
K(x) € v of x so that

1¥ 13 vV with UoK(x) # 8 # Vo HGx) |
is finite.

A statement such as "(X, u, v) is compartmentally quasi~
biparacompact'" will mean that every open dual cover has a
quasi~-locally finite open compartmental dual cover refinement,
and corresponding meanings may be given to such terms as

"strongly compartmentally quasi-biscreenable', etc.

The notion of compartmental dual covers may be used to

characterise uniformly paracompact bitopological spaces, as
follows?

Proposition 1.5,1. Let (X, u, v) be uniformly regular. Then the
following are equivalent:

(a) (X, u, v) is uniformly paracompact.
(b) Every open dual cover of X has a quasi-locally finite (not

necessarily open) compartmental refinement.
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Proof. (a) = (b). If d is an open dual cover then W =
{UaV | Uav ] is a uniform open cover of X. If Y =1 P, 1€l 3

is a uniformly locally finite refinement of U, and if for & €
A we set e = t (fz1,iz8) | zeP_ 3 thene/A= {e lae A}

is the required quasi-locally finite compartmental refinement
of d.

(b) => (a). Let % be a uniform open cover of X, and
for each x € X take U(x) € u, V(x)€& v with x € U(x)aV(x) & P
for some P& U .« If e/L is a quasi-locally finite compartmental
refinement of 4 = { (U(x), V(x)) ] x €& X}, and we set g, =

uc(eA), A € L, then § Qp l A el $ is a uniformly locally

finite (not necessarily uniformly open) refinement of ¢{ , and
the required result now follows from a standard theorem on

paracompactness (see, for example, [25] ).

Corollary. A uniformly regular compartmentally quasi-biparacom-

pact space is uniformly paracompact.

It would be tempting to conjecture from the above proposition
that a uniformly regular uniformly paracompact bitopological
space 1s necessarily compartmentally quasi-biparacompact. That

such a conjecture would be false is shown by Example 1l.6.8.

We may improve the above corollary with the aid of the next

proposition.

Proposition 1.,5.2. Let (X, u, v) be strongly compartmentally

quasi-biscreenable. Then every open dual cover of X has a quasi-

locally finite (not necessarily open) compartmental refinement.
Proof. Let d be an open dual cover, and let d /L = {<E:\ AE
Ln.i' n=1, 2, essy be quasi-discrete with respect to the nhds.
Hn(x) € u, Kn(x) € v of x, and such that (J$ Q: | n =1, 2, ces,
A 6:1511 is an open dual cover refinement of d. Without loss

of generality we may suppose that the index sets Ln are pairwise

disjoint. TFor x &€ X let

r(x) =min{n | J Ae L with xe¢ uc(dnx)l,
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A
and denote by A(x) the unique A for which x e;uc(dr(x)).

A(x)

Choose a fixed U(x)dr(x) V(x) with x € U(x) N V(x), and

define:

I

H(x) = U(x) n N§ HG)l1<s4ds= r(x) 3, and

K(x)

vex)Nn N ik )L L =21 = r(x)3.
Let L' = RN L, 3 x euc(d:) with r(x) = n}, and
for N € L' let d' = § (121,82)) | = e—,uc(dnh) and r(z) = n}.

Finally let L' = U{L' ] and a'/L' ={d} | X € L'}, Let us
show that d4'/L' has the required properties.

If x € X then x € U({x)n V(x) & uc(dr(x)}‘(x)) 50 (xld'A(x)(xl
and A(x) € L'. Hence d'/L' is a compartmental dual cover, and it
is clearly a refinement of d. Finally suppose z € uc(d:\) with
r(z) = n, and that z € H(x)n K(x). Then

2 e Tx)a V) & uela, ),

and so n = r(z) < r(x). Also if we take Ud;‘V with z € UV
then z & U,-,Kn(x) # @ and z € Vi Hn(x) # @ so A is unique for
this n. Hence 4'/L' is quasi-~locally finite as required.

Corollary. A uniformly regular strongly compartmentally quasi-
biscreenable bitopological space is uniformly paracompact.

This last result may also be obtained by showing first that
a strongly compartmentally quasi~biscreenable space is uniformly

strongly biscreenable, and then using a standard theorem{2S5].

Ve are now going to show that every fully pseudonormal
bitopological space is strongly compartmentally quasi-biscreen-
able. An apparently stronger result may be proved just as easily,

however, and to state this we shall need some more notation.

Let d be a dual family, and A & X. By the weak stars of A

with respect to 4 we shall mean the sets:



53

Uful 3 v, Uavand UNVNAZ£P],
Ufvid u,vavanaunvNazgl.

wst(a, A)

wst(A, a)

By the uniform star of A with respect to d we shall mean the set:

Ust(d, A) = Ust(a, d) =Uf UA V| Tav and UNVNAZ g 3.

The statement e(wa)d < £ between dual families will mean
that given UdV there exists LfT so that WSt(e, UnV) & L and
wst(unv, e) < T.

We shall say that the dual cover d = d, is pseudonormal if

0

there is a sequence dn’ n=1, 2, +esy of open dual covers so
that 4, < (p#) d y n € K. We will then say that the dual

cover d is sequentially pseudonormal if there is a sequence dn of

open dual families, and a sequence e, of pseudonormal dual covers
so that

(1) en(w*)dn <. d, n=0,1, «sey and

(i1) Y {d]is a dual cover of X.

Clearly a sequentially normal dual cover is sequentially pseuno-

normal. We may now give:

Theorem 1,5.1. Every sequentially pseudonormal open dual cover of a
bitopological space (X, u, v) has a ¢’ —quasi~discrete open

compartmental refinement.
Proof. Let d = {(ql, V)lodea } be a sequentially pseudo-
normal open dual cover, and dn’ e s n € (N, as above. Define:

n0O

ay = Utuavl uay, ustle , TnV) & U, and wSt(UnV, e ) = V],

0
Since e, = e is pseudonormal, there are open dual covers emn s0

that emﬂ‘xl < (p#) emn, n, m €& N,

Now define by induction on m,

nm n{m-1) m
Ay e )

= USt(A' ve

for eachaa € A, n& Wandm=1, 2, o0 »
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Let =< Ve a well ordering of the index set A, and for each ol €A,
n, m&€ W, let

LV B R

ot o

Let us show that the sets Cmi cover X. Now if x € X we have

Ung with x € UnV for some n € IN, and hence we have oo € A with

0

wSte , UnV) & U, and WSt(UnV, e ) & V,. Thus x € AL . Let

¥ =minfu| 3 m, xe A 3,

and take an m with x & An;sn + Then for A<y, we have x¢ A%k

for all k, and so x € CI:" from which the required result follows.
Now set £ = { (R, S) | Rem+2nS, RNSNCy #¢}, and

fnm = { fnf lae A i. This is a countable collection of open

compartmental dual families, and their union is a compartmental

dual cover of X by the above result.

It remains to show that each fnm is quasi-discrete and refines
d. First, it is easy to show by induction on m that the propos-
ition

P(m) : If Re" S and RN SN A" # J then RS U and S < V
n o ol ol

—

is true for all m € [N. Hence if anz S we have R & U_ and

m+2

e v :
5 &V, (since e n

< "), and so £ 2 § (U, V.01 which

means that f £ 4. Now for each x € X choose R em+2 S with
nm X nx

x € Rx fa Sx, and suppose that for o , f$N e A we have Rf™™ S and

R'£ §' with ReNS#APF#S NRandR NS #F £S5 _n R'. Now

m+2 (42
Re vnS,Re n

< (px) em+1n so we have R em+1 S

R m+2
S' and e n 0 S0

. m+2 c. mn+2 c
with PSt(e 0 (Rx, sx)) S R, and PSt((Rx, sx), e n) < s,

Suppose 5 <k, then R'NAS'NC' # g => Ryn sonA'}i," A
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n(m+1) nm nm
:_7Ronso.C_A/, = RynS;NnC, =8 =DRnSnCy

= @ which contradicts Rfﬁ? S. In the same way X <2 leads to a

contradiction so a = 3 and fnm is quasi~discrete. This

completes the proof of the theorem.

It follows, in particular, that every fully pseudonormal
bitopological space is strongly compartmentally quasi-biscreen-

able. However a better result may be obtained, as follows.

Theorem 1.5.2. A fully pseudonormal bitopological space is

compartmentally quasi-biparacompact.

Proof. Let d be an open dual cover of X, and let d' be an open
dual cover with d4' < (ps) d. By Theorem 1.5.1 and Proposition
l.5.2 there is a quasi-locally finite (not necessarily open)

compartmental refinement e'/L = {e! | ) e L { of a'. Let

H(x) € u and K(x) & v be nhds. of x so that the set
{ Al aer, 3 Rens with HX)N S' £ ¢ £ K(x)n R' Y

is finite, and let f = § (H(x), K(x)) | x € X} . Finally let g
and h be open dual covers with g < (p») h < (p%) f and

g <4 d'. For A € L define:

e, = L (M, M) | MgN, 3 R'e) S' with R'ANZA B #s' AN,

and set ¢/L = § e, | A& L} . Clearly e/L is an open compartmen-

tal dual cover, and e¢/L < d. To see that e/L is quasi-locally
finite associate with x € X the nhds. M(x) = PSt(g, (1x§,}x})) |
= WSt(g,tx3) € u and N(x) = PSt(({x},ix3}), g) = Wst(§xi, g) € v.
Now we have PhQ with M(x) € P, N(x) € Q; and y € X with
pst(n, (P, Q)) & H(y), PSt((P, Q), h) = K(y). Hence, if for
some )\ & L we have Me,N with M(x) \ N # § N(x) 4 M, then for

some R'e' S' we have R"N\ N £ g £ S*' A M and it follows that
R'N K(y) #8 # s'Nn E(y). This is possible for only a finite

number of ) , and the result follows.

The above theorems establish the essentially reasonable

nature of the notions of compartmental strong quasi-biscreen-
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ability and compartmental quasi-biparacompactness. While these
properties are somewhat on the weak side, it seems likely that
they will play an important role in future develop¢ments,
possibly in combination with other restrictions on the space.

Our final result of this section gives an interesting
compartmental refinement property of strongly biscreenable
bitopological spaces. To describe this we shall need the
following terminology. We will say that the compartmental
dual family e/L = 1} e,V A€eL } is a compartmental pre-dual

cover if o/L = } 3) | A €L} is a compartmental dual cover.
Also we shall say that e/L is point singular if for each x € X
the set

§ A| xe€ RN S for some Re,S 3

contains at most one element.
We may now state:

Theorem 1.5.3. Let (X, u, v) be strongly biscreenable. Then
every open dual cover d has a point singular open compartmental

pre-dual cover refinement e/L.
Proof. Let k){dn}be a o -discrete open refinement of d.
For x€ X define

k(x) = min§n | x e.uc(a;)} .

Let us set

R(x) = X = Uzu—cl[U{V' | v'e ran q,, x ¢ u-cl[V']il \
1= 1 = k(x)-131,
s(x) = X - U} v-cllUi U'| U'e dom dys X ¢ v-c1[U']}] |

1242 k(x)-13.

Then, since d, is discrete for each i, we have R(x) € u, S(x) € v;

i
and of course x € R(x) n S(x).

Let L =1 (U, V)| 3 n with U4 V, and 3 z € v-c1[U] q u-c1[v]
with k(z) = n §.

Fw(mV)GLlﬁewN)=i(UnMﬂ,VnS&n‘U%hﬂ
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and z€ v-c1[U}n u-cifVv] .

e(U,V) # & by hypothesis. Also, given x € X we have Udk(x)V with
x € v-c1f{U) n u-c1lv], and by definition (U, V) € L and
x& v-c1[UN R(x)] n u—cl[V/\ S(x)] so

e/L=Lleq oyl (U, Ve L]

is an open compartmental pre-dual cover. To show it is point
singular take x € UNn R(z) N VN S(z), where Udk(z)v and

z € v-c1{U} A u-c1{v]. We know k(x) = k(z), so suppose k(x) <
k(z). Now we have U'd, V' with x € v-c1{U'} A u-c1{v'}, and
z g v-cl{U'} or z ¢ u-c1{V'. Hence (v-cilU'])n S(z) = ¢ or
(u-c1{V')) N R(z) = @. However this means x¢ 5(z) or x ¢ R(z),
which is a contradiction. Hence k(z) = k(x), and since dk(x) is
discrete this means that Udk(x)V.is determined uniquely by Xe.

Hence e/L is point singular, and the proof is complete.

1.6 SOME--COUNTER-EXAMPLES.

In this section we describe the examples mentioned in the

previous sections.

Example 1.6.1. Let X be the closed first quadraeant of the Euclid-
ean plane, that is X = § (x, ¥)1 x>0, y= 0}. Let u consist of
@ and all subsets G of X satisfying:

(i) (x, y)e g, 0<x'=x = (x', y) € G,

(11) (x, y) €6, 0<«y=y' = (x, y') €6, and

(iii) 13 y > 0 with (0, y) € G,

Clearly u is a topology on X, and so is v = i G-l lcen }. We

consider the bitopological space (X, u, v).

(A) (X, u, v) is metrizable.

We use Corollary 2 to Lemma 1l.4,1. For (a, b) € X we define sets
R(a, b) as follows.
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{(x,y)) Ocx2zaand0<b=yd ifa #0#hb,

f(x,0)l 0<x<zailifafo0,b=0,
R(a, b) =

(O, y)l o<b=ey} ifa=0,b 70,

{0, 00} ifa=1b=o0.
Then, for n = 1, 2, 3, «.., let Rn(a, b) = R(a, b) y R(0, n).
Rn(a, b) is a u-open nhd. of (a, b). Finally if S(a, b) = R(b, a)™t
and Sn(a, b) = S(a, b) U S(n, 0) = Rn(b,‘a)-l then Sn(a, b) is a
v-open nhd. of (a, b).

We now define the open dual covers
a = § (U (a, b), V (a, b)) | (a, b) € X }

as follows:

Xif b =0 and a 2 n,
Un(a, b) =

Rn(a, b) otherwise, and

Vn(a, b)

{Xifa=0andb>,n,

Sn(a, b) otherwise.

It is clear from the definitions that dn P dn for each n.

+1
Hence if we can show that dn«4(#)dn it will follow that dn+l‘4(’)
dn for each n. Suppose that Un(a, b) N Vn(c, d) # &; we wish to
show that Un(c, d) < Un(a, b). Consider the following cases:

X. The result is then trivial for any (c, d4) € X.

(a) U (a, b)
(b) Vn(c,'d) = X. In this case ¢ = 0 and d 2 n so Un(c’ d) =

R, (0, ) = R(0, n) € U (a, b) for any (a, b) € X.

(c) Un(a, b) £ X # Vn(c, d). In these circumstances it is easy
to verify that Un(a, b) N Vn(c, d) # ¢ :-:;Rn(a, b) N Sn(c, a) £ ¢

— Rn(c, d) & Rn(a, b).

This shows that St(dn, Un(a, b)) = Un(a. b); and in the same way

we have St(Vn(a, b), dn) =V (a, b) so d <) 4 as required. This
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verifies condition (1) of Lemma 1.4.,1, Corollary 2. To establish

conditions (2) and (3) it will suffice to show that if G € u,
HE€ v and (a, b) € GN H then for some n we have Un(a, b) & G

and Vn(a, b) & H. However we know that we have (0, y) € G for
some y > O, and (x, 0) € H for some x » 0; and clearly any n
with n > max{ x, y 1 will have the required properties.

This shows (X, u, v) is metrizable. In particular (X, u, v)

is pairwise normal and preseparated.

(B) (X, u, v) is uniformly discrete.

This is trivial since Rn(a, b)n Sn(a, b) = § (a, b) { for each

n and (a, b) € X.

(c) (X, u, v) is not finitely binormal.

Consider the sets

6 ={(x, ) ly>0},anaa, = {(x,0 I xz0}ul,»N1y=o0]}

Both these sets are u-open, and Gltl G2 = X, 80

a={(, 0, (@, 3}

is an open dual cover of X. If (X, u, v) were finitely binormal

5 = X, v-cl[Rl] < Gl

and v-cl[Rz] < G2. However if H is any non-empty v-open set there

exists x > O with (x, 0) € H, and (x, 0) ¢ Gl = (x, 0) ¢ Rl =

there would be u-open sets Rl’ R2 with R1|J R

(x, 0) € R, so that v-cl[Rz'} = X which contradicts G, # X.

Note that we have not even had to use the fact that Rl and R2 are

u-open in order to obtain this contradiction.

In particular it follows that (X, u, v) is a metrizable bitop-
ological space which is neither fully binormal nor biparacompact.

However:

(D) (X, u, v) has an open quasi-discrete dual cover. In partic-

(X, uy, v) is quasi-biparacompact.

For (a, b) € X let H(a, b) = R(a, b) v R(O, ay b + 1), and K(a, b)

= H(a, b)-l. Consider:
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g = { (&(a, b), K(a, b)) | (a, b) € x}.

This is an open dual cover of X, let us show it is quasi-discrete.
Suppose that H(a, b)Y K(c, d) # & # K(a, b)N H(c, d). Then

H(a, b)) N K(c, 4) =[R(0, avb + 1) N Slevd +1, 0)JU

[R(O, avb + 1)N S(e, AYJU[R(a, B)N S(cyd +1, 0)]U

[rR(a, B)N S(c, O],

and under the above hypothesis the first three terms of this
union are empty so we deduce R(a, b}/ S(c, d) # &. In just the
same way we have R(c, d)MN S(a, b) ¥ @, and it follows easily

from this that (a, b) = (¢, d). Hence g is quasi-discrete as
stated.

Now let d = § (U,y V)l ¢ € A} be an open dual cover of X,
and for (a, b) € X choose o (a, b) with (a, b) € Ud(a,b)n V“(a’b).

Then

e = } (Uy(a,pyN Blay ), Vy(, )N KGa, ) | (a, D)E x 1

,b)

is clearly a quasi~discrete open refinement of d. Eence (X, u, v)

is quasi~biparacompact and strongly quasi-biscreenable,

(E) (X, u, v) is not pairwise paracompact (In the sense of {10] )

For 0=r <1 let U(r) = {(x, ) y>O}U§.(x, o)l o= xs.ri

€ u, and consider the pairwlse open cover
4 =1sa, nduvivwml o=renl.

If this had a pairwise locally finite open refinement then there
would be a v-open nhd N of (1/2, O) meeting only finitely many
u-open sets Q*(l), coey qd(n) in this refinement. We shall have

Ud(i) S U(ri)’ i = 1’ evey n; and if maXirl, ooy rn‘< r 4‘1’
then there must be a u-open set U  in the refinement with (r, 0)
(=3 U“. However (r, 0) € U, a N, and & # o\(‘t\.ﬁ, l<=ign,

which is a contradiction.

Example 1.6.2. Consider the space (X, u, v) defined as in Example

1,641 with the exception that condition (iii) is removed.

(4) (X, u, v) is metrizable and fully binormal.




61
Note that in this space R(a, b) (respectively, S(a, b)) is the
smallest u-open (respectively, v-~open) set containing (a, b)

for each (a, b) € X. Hence the open dual cover
dy = { (R(a, b), S(a, b)) | (a, B) € XJ

refines all open dual covers of X, Moreover, argueing as in the

last example, we see that d. <(¥) do and the above mentioned

0

properties are now immediate.

(B) (X, u, v) is neither biparacompact nor stroncly biscreenable.

"e show that there is no sequence dn’ n =1, 2, eeey of locally
finite open dual families each of which refines do, and whose

union is a dual cover of X. Suppose that such dn do exist,

Since d - d we must have & = § (R(a, b), S(a; b)) I (a, B)E X %
where X_ < X. Also since R(a, b)N S(a, b) = I (a, 1)} we see

that L)IXD;= X. The set R(1, 1) is uncountable, so an1 R(1, 1)

is infinite for at least one n, and (¢, d)€ XN R(1, 1) implies
s(c, d) & ran d  and s(c, dA)N R(1, 1) # Z. Finally (c, d) # (c', a")
implies S(¢, @) # S(c', d') so R(1, 1) meets infinitely many
different sets in ran 4 for this n. Since R(1, 1) is the smallest

u-nhd. of (1, 1) this contradicts the locall finiteness of dn.

(c) (X, u, v) is quasi-biparacompact and stronsly quasi-biscreen-

able.

dO is easily seen to be an open quasi~discrete dual cover of X.

(D) (X, u, v) is not pairwise paracompact.

The proof is just as in Zxample 1.6.1, (E).

Example 1.6.3. Let X= Ry,u= § x| x< ajlaée IR }L)i R, ﬁj
and v={f{x| x>allaer}yir, gi.

(In the remaining sections of this thesis this space will be
invariably denoted by ( R, s, t))
(4) (X, u, v) is metrizable.
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The required p-q-metric is p(x,y) = (y - x) v O.

(B) (X, u, v) is fully binormal.

Let d = { (U, V)l € A} be an open dual cover of X. Since

(X, u, v) is uniformly fully normal (the uniform topology being
the usual topology of R) there is an open covering of X by

bounded open intervals which is a star refinement of § Uy n V&l
oo € A} . Hence we have an open dual cover e = { (R/g, S/,)Iﬁ € B}
so that } Ben Splp € B <) [U, NV, )l €A. Hovever it
is easy to deduce from this that e <) 4, and the result follows.

(c) (X, u, v) is stronely biscreenable.

This is an immediate consequence of the fact that (X, u, v) is

uniformly Lindelsf.

(D) (X, u, v) is not biparacompact.

Indeed neither topology is paracompact with respect to the other.
For if we consider, for example, the u-open cover §U(k)| k& X},
where U(k) = § x| x <« k] 4t is clear that this cannot have a

v-locally finite u-open refinement.

(E) (X, u, v) is pairwise paracompact but not strongly pairwise

paracompact.

Any pairwise open cover A4 will contain at least one v~-open set
V(ir) = § x| x>r}, and at least one u-open set U(s) = { x |
x < 53 . Indeed there must be such sets in ¢ with r < s, for

otherwise q € X satisfying
supis | Us)ed} < q< inffr| V(r)e.gx

is contained in no set of 4 , and in this event $ U(s), V(r)3
is a finite sub-cover of 4 . (This expresses, of course, the

well known pairwise compactness property of this space).

That (X, u, v) is not strongly pairwise paracompact follows
as in (D).

(F) (X, u, v) is quasi-biparacompact.

Let Q' = E(Ud, Vd) ot € A} be an open dual cover of X, and
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consider the uniform open cover { U, n Vg lot € A} = 4 .

Using well known properties of the real numbers we may show the

existance of real numbers s b k € £, satisfying

k’ Pk' qk’
<

be < o G < Pps [y 3T S (qp, p )y 8y < 345 b & by,

Pp € Ppyq and qk < %Y1 for each k € Z, and so that the closed

intervals [b kJ cover R, and the open intervals (qk, pk)

k* 2

refine /6 « If now we set

A

U

{xlx&aki’ Bk={x|x>/bk}i

k=ixVt x<pi, Ve = tx 1 x>q{
then we see that d = § (U , vy
k € 4 i satisfy the conditions of Lemma l.3.2. Hence d has a

quasi~locally finite open refinement, and since @ < d' the result

is proved.

) ke 2z} andc=§ (Ak’ Bk)l

Example 1.6.4. Let X = Ny {w}, U o= § 0,1, 2, eee, n},
UOO=U{UII' n&ml anantin, n+1, XX iu{w‘o
Consider the bitopological space (X, u, v) where

y X, 21} andv={vo, Vs eee 3 1.

u = iUoi U1! oo Um

(A) (X, u, v) is metrizable and uniformly compact. In particular

it is biparacompact and fully binormal,

For mé& I consider the finite open dual cover

) 3

= <
d {(Un,vn)\ os.n_.miui(x,vm1

If d is any open dual cover then dm < 4 for a suitable m, so

(X, u, v) is uniformly compact. Also d £ d , and d <¢*)d
m+ m m m

1l

for each m so (X, u, v) is metrizable.

Example 1.6.5. Let (X', 1 ) be any non~-paracompact topological
space, and take p, q € X'. On X = X'y {plu £q} 1let u be the
topology with base 3 y {i{pj}u §X]1, and v the topology with
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vase dy i 933U 1 X] ,andw the topologywithbase
Au-tta3 o363 . Consider the bitopological space (X, u, v).

(A) (X, u) and (X, v) are compact. In particular each topology

is paracompact with respect to the other.

X is the only u-open set containing q, and the only v-open set

containing p.

(B) (X, u, v) is not quasi-biparacompact.

Let '& = §Gylot€A} bea I -open covering of X' with

no "3 -open ") -locally finite refinement, and consider the open

dual cover

d= 1, Div ixEPIvic,a)lae 4]

of X, If this had an open quasi-locally finite refinement

e=1(R, )1 2€ BJ then
iR/;nSn\ﬂeB, Rﬂns,gr\x'i‘fdi

would be a 7} -open :1 ~locally finite refinement of 1& in X',
which is impossible.

Example 1.6.6. Let X be the open upper half plane, that is
X=§(xy39)] y>0}.Forp = (pqs pa)C-;Xlet

u(p)

i (Qylpy +1) =p0/p,s IV 0 <y £0,3,

v(P) § (ly(pl -1) + p2]/p2, ioc«cye P, 3.

{]

Let u be the topology on X with base § U(P) | P e X }, and v the
topology with base {1 V(P) | P € X3, Consider the bitopological
space (X, u, v).

-
(a) (X, u, v) is fully pseudonofmal, quasi-biparacompact and

strongly gquasi-biscreenable.

Note that U(P) is the smallest u-open set containing P, and V(P)

is the smallest v-open set containing P. Hence
dy = L(u@), V(P)) 1 P ex 3
refines every open dual cover d. It is also clear that if

U(P)N V(Q) # & and V(P)N U(Q) # @ then P = Q. Hence dy < (ps)
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and dO is quasi-discrete, from which the above stated properties

follow at once.

(B) (X, u, v) is not pairwise R, (and hence, in particular,
\J

not pairwise regular)

For P€ X we have v-c1[P] = $Q 1l Q= (ays 9,09, =

[qz(Pl - 1) + p2]/p2, a2 P, 1 & u(p).

(c) (X, u, v) is not pairwise normal.

Let P = (1, 1) and Q = (-1, l).’Then v-cL[P) = §(1, )|
y> 1} andu-c1{Q) = £(-1, yJ\ y = 1 3} so these sets are
disjoint. However (0, 1/2) € U(P) N V(Q) # &.

Example 1.6.7. With the set X and the notation as in Example
1.6.6, this time let u have base

§u®) - §P, «oe, B3| PEX, P, oo, P_€X P, AP ],

l’

and make a corresponding change to the base of v.

() (X, u, v) is fully pseudonormal, quasi-biparacompact and

strongly quasi-biscreenable.

Wwe need only make rather obvious modifications to the argument

used in Example 1.6.1 (A).

(B) (X, u, v) is pairwise completely regular.

For @ € X define the sets

tz(ql - 1) + qa
,

R =i T

1}

(tl, ta)e X, t, =

1 t, Z

qy 2

t.qy +1) - q,

s = Ufvm 1 7= (¢t

H
n

10 tz)e.x, £ % vt 2 qzi.

Clearly R(Q) € u and S(Q) € v. Now let P be a fixed point of X,
and let H € u, K€ v be nhds., of P. Then for some finite set P1 ’

Py ooy Pn of X with P, #P, 1 £ 4 £ n, we have

2’
ur(p) = Uu(p) - {Pl, cees Pl H, VI(P) = V() - {Pl. coes Pni
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< K.

Note that R(Q) -~ V'(P) € u for each Q € X since it is the union
of sets of the form U(T) - U(T) N V'(P); and U(T) N V'(P) contains
at most one element of X. Likewise 5(Q) = U'(P) € v. Now consider

the open dual cover:

d= §W@E), vVeENIVIWRQ - v (P), s() -u'(®PN | e X,
QET' P U VP IULREQ, V(QN V(@I Qe Vv (p), PFQ]
UL U@, sl Qe u'(P), P#Q}.

Clearly St(d, P ) = U'(P) & H and St( P, d) = V' (P) & K.
Moreover 4 is normal, for indeed we may show by direct computat-
ion that d <) d. It follows by Proposition 1.7.1 that (X, u, v)

is pairwise completely regular.

(c) (X, u, v) is pairwise Hausdorff.

If P # Q in X then U(P) - V(Q) is a u-nhd. of P, and it is dis-
joint from the v-nhd. V(Q) of Q.

(D) (X, u, v) is not pairwise normal.

Consider the u-closed set F = ! (-1, y)t y > 01, and the
v-closed set T = { (1, y)) y> O!. Clearly FN T = ¢.
Let K € v contain F and H € u contain T. Without loss of gener-

ality we may suprose H and K lie in the set

Y=, V-1« x<1,y>013.
Let us show that the set

E=§{Aa\Aaer \VANEl < o 3

is at most finite. Suppose E contains an infinite sequence of
distinct elements An; then the set ()iV(An) NHE|ne W} is a

countable subset of Y, and since T is uncountable there exists a
point B € T so that U(B) contains non of the points of Ui V(A )nH |

ne Wi, However, for some Pl' ceey Pme X, U'(B) = U(B) =~ [Pl, .
cey Pm 1 < H and so for some n &€ N, V(An) N U'(B) # g, which

is a contradiction. Hence E is finite and we may choose A€ F - E.
But then for some Qs ++=r Q€ X the set v(a) - § Qo eoer 9 3

is contained in K and meets H, so Hn K # # and (X, u, v) cannot

be pairwise normal.
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Example 1.,6.8. Let A = (-1, 0), B = (1, 0) and X = {4, B}y
{(x, yJ)I y>013.ForpPe x - {4, B} 1et U(P), V(P) be as
in Example 1.6.6, and let u have base
ju@)! Pex -~ fa, B}Yu i tal, x3,
and v have base
fvie)! pe x - fa, B3YU fi8}, x}.
Then:

(4) (X, u) and (X, v) are compact.

The proof is trivial.

(B) (X, u, v) is fully pseudonormal, quasi-biparacompact and

strongly quasi-biscreenable.

Vle need only consider the open dual cover

= { W@, ven | pex - {a, Bijuidial, 0, &ishi.

(c) (X, u, v) is not pairwise R. or pairwise normal.

This may be proved as in Example l.6.6 (B) and (C).

Example 1.6.9. With X, U(P), V(P) as in Example 1.6.8, let u
have base
[u(®)UEAl - P, ..., P} L Py P e X - B4, BY,P #p.1

Ui tal, xi,

and let v have base N
v(p)uiB} - [Py, «ee, P ]I PP € X~ (4, B},P;!Pi}

vtisl, x1.
Then:

(4) (X, u) and (X, v) are compact.

The proof is trivial.

(B) (X, u, v) is fully pseudonormal, quasi~-biparacompact and

strongly quasi-biscreenable.

We need only modify the proof of Example 1.6.8 (B) in the obvious

way.

(c) (X, u, v) is pairwise completely regular.

If the given point P lies in X -~ {A, B} it is easy to see how
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we should modify the open dual cover d of Example 1.6.7 (B).
On the other hand for P = A or P = B we may consider in its place

the dual cover

d=§ (a3, X), (X, BHIVEI REQU AL, s(QUiBD I qgex -
ia, BYY .

(D) (X, u, v) is not pairwise Rl.
u-clfA) =X# P, A} = v-cllP) forP€ X~ {A, B, but

X is the only v-open set containing A and this meets every u-

open set containing P.

(E) (X, u, v) is not pairwise normal.

We may use essentially the same proof as in Lxample 1.6.7 (D).

Note that this example disproves ([23), Theorem 4.20).

Example 1.6.10. Let X = { (x, y) 1 y > 0}, and for P € X let

M(P)

§ ([y(pl + 1) - pzl/bz, y)V y> ol, and

N(P)

{ (Ly(p; = 1) + p2]/ P, \ y> od.

Let u have base $M(P)I| P €& X3} and v have base § N(P) | P € x3.
Then:

(1) (X, u, v) is uniformly discrete (and hence, in particular,

uniformly paracompact.

Trivial since M(P) N N(P) = ipl.

(B) (X, u, v) is not fully pseudonormal.

d, = t (M(P), N(P)) ) P € X} refines all open dual covers, but

clearly dO-JL (px) dj.

(c) (X, u, v) is neither compartmentally quasi-biparacompact

nor compartmentally quasi-biscreenable.

 Suppose there is a sequence of quasi-locally finite open compart-

mental dual families
n
dn/x.n-fdar l 5e 1 }

with d /L < d, and U { d/L \ néew { a compartmental dual

cover of X.
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Then it is clear that for P € X we must have n(P) € N and
J(P) € L, (p) satisfying

dn(P)K(P) = § (M(P), N(P))Y .ee.. (D).

Let X = §PI n(P) =n} and L = f(x, )| 22 x < 21].
L is an uncountable set, and U} X\ ne i} = X, so for
some m € N the set LN X is infinite. It follows from (1
that the subset

L' =3 ¥(® I PeLnXx ]
of Lm is infinite also. However

3

and this contradicts the quasi-locall finiteness of dm/Lm'

L,osi¥l setr ,3 Ma% N with Ma N((O, 1)) # @ # NaM((0, 1))}

Hence no such sequence of compartmental dual families exists,

and the stated properties follow at once.

Note that we could clearly modify Example 1.6.,10 in the same
way that we modified Example l.6.6 to produce Examples 1.6.7 ~

1.6.9, and with very much the same result.

1.7. QUASI-UNIFORM BITOPOLOGICAL SPACES AND GENERALIZATIOKS.

In this section we are going to discuss, very briefly, some
structures on a set which can be defined using dual covers, and
which give rise to a bitopological space in a natural way. The
first, and by far the most important, of these is the quasi-
uniform structure introduced by A CSASZAR [8) in 1960. There
is quite an extensive literature on this subject (see, for
example, the book of MURDESHWAR and NAIMPALLY (23] for a survey
of some of the earlier work in the field), and our aim here is
limited to the consideration of one or two aspects of the theory

where our notion of dual cover seems particularly relevant.

In terms of dual covers the definition of a quasi-uniformity
may be expressed as follows:

Definition 1.7.1. Let § be a non-empty collection of dual




70
covers of the set X. Then § is a (dual covering) quasi-uniformity
ir:

(1) Given d € & there exists e € § with e <ca)d.

(ii) d, e e § = dae e § .
(iii) Ifd e & and e is a dual cover with d = e thene @ § .

Note 1. The notions of base and subbase may be defined in the

obvious way.

Note 2. To obtain the corresponding quasi-uniformity in diagonal
form we need only consider the sets W(d) = Ui vxU I Uav}] for
d e $ .

Note 3. Since, as we have noted, a dual cover corresponds to a
strong conjugate pair of covers, a dual covering quasi-uniformity
as defined above actually corresponds to a base of a covering
quasi-uniformity in the sense of GANTNER and STEINL ¢t (15 . How-

ever these notions are essentially equivalent.

A quasi-uniformity § gives rise to the bitopological space
(x, tu.(k), tv( $)), where { St(d, x )\ de % 3is a base of

nhds. of x for the topology tu( ©), and §St(x, d) | deslis
a base of nhds. of x for the topology tv(5>).

These topologies may also be described in terms of closure,

as follows:

xc-_tu(S)-cl[Al > givend e § 3 UdV with x €V, Un A £ ¢,
x &t ($)-clf[A) &> given de § J UdV with x € U, VN A £ 4.

The following results are easily verified (see also [15] )

Lemma l.7.1. For d ¢ § and A = X we have

t (9)-c1(A) < st(4, A), t (6)-c1lal & st(a, ),
A<t ( $)-int[st(d, 4)], A S tv(S )-intfst(a, a)).

Corollary. A quasi-uniformity § has a base of open dual covers,

and a base of closed dual covers.

Example 1.7.1. If p is a p-g-metric compatible with (X, u, v)
then d, = L (H(x,e), K(x, € )) | x € X } is an open dual cover,
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and de/3 <(#) 4 for each € > 0. Hence { d, e > 0} is a

base for a quasi-uniformity on X which is clearly compatible
with (X, u, v). This corresponds, of course, to the usual diagonal
quasi-uniformity defined by a p-q-metric.

As mentioned we will denote the space of Example 1l.6.3 by
(R, s, t). For this space we shall write M(x, € ) in place of
H(x, € ) and N(x, € ) in place of K(x, € ), so M(x, € ) =
{y)ly< x+€} and N(x, £ )=¢yl y> x~-¢£}3. Ve shall
also set my = { (M(x, € ), N(x, & )) | x € R}, and denote by m

the quasi-uniformity of which these dual covers are a base.

If forn =1, 2, eesy we set m(« , n) ={ (M(k/n, &/i),
N(k/n, #/n)) | k € 23 and m(a) = {m(%, n) \ n =1, 2, ¢es}
then for each fixed o with 1/2 <« < 1 it is clear that/A(u)
is a countable base of//L consisting of countable open dual

coverse.

If & is a quasi-uniformity compatible with (X, u, v), and §'
a quasi-uniformity compatible with (X', u', v') then a function

£f:X = X' is quasi-uniformly continuous if for each d' e {'
we have f—l(d') € § , where
£71(a") = H (f“l(u'), v ) owrave, £(x) N u'nvr £gi.

This clearly aqrees with the usual definition of quasi-uniform

continuity [93].

Example 1.7.2. Let (X, u, v) be a bitopological space, and S a
set of real-valued pairwise continuous functions on X. By the
initial quasi-uniformity generated by S we shall mean the quasi-

uniformity qu(S) with subbase
{elm) | tes,e>03.

This is the smallest quasi-uniformity on X for which the functions
in S are quasi-uniformly continuous with respect to o Clearly
qu(S) will be compatible with (X, u, v) if and only if the funct-
ions in S define the topologies u and v, and such an S exists if

and only if (X, u, v) is pairwise completely regular.

It will be clear from the corollary to Lemma 1.7.1 that all

the dual covers belonging to a quasi-uniformity S are normal
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dual covers for the bitopological space (X, tu( $), tv( £).

Conversely for the bitopological space (X, u, v) let § denote

the set of all normal dual covers of X. It is trivial to verify

. . . e
that $  is a quasi-uniformity, and that t_( Sn) < u, tv(Sn) < v.
With regard to equality we have:

Proposition 1.7.1. The following are equivalent for the bitop-

ological space (X, u, v).

(i) (X, u, v) is pairwise completely regular.

(ii) (X, u, v) has a compatible quasi-uniformity.

(iii) Given H& u, K & v and x € Hn K there exists an open
normal dual cover d with St(d,tx}) < H, St(ix{, d) & K.

(iv) gn is compatible with (X, u, v).

Using Lemma l.4.1 the proof is straight-forward, and will be
omitted. The equivalence of (i) and (ii) is well known, see for

example [20] .

It is clear that § n is the largest quasi-uniformity compat-

ible with a pairwise completely regular bitopological space
(X, u, v). It will contain all the open dual covers on X if and

only if (X, u, v) is fully binormal.

The following definition is useful in discussing 511.

Definition 1.,7.2. The dual cover d of X is divisible if there

is a vx u-open nhd. W of the diagonal in XX X so that
wolW <« w(d).

If we are given a vx u-nhd. of the diagonal in XXX we may

form open dual covers d(W), e(W) as follows:
a(w) = § (wu(x), wv(x) \ xe x1,
where Wu(x) =3yl (x, yJ€ w3 and Wv(x) =iyl (y, x)€ W};

and
e(W) = §(r, S)| Reu, Sev, RnS #F and SAR & W ].

We then call the dual cover d even if there is a v »u-nhd. W of
the diagonal in XX X so that
aw) < 4q.
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These terms are the natural counterparts for dual covers of the
corresponding terms as applied to covers of a topological space
(see, for example, (4] or (1%1).

Since
a(w) < d => woll £ w(d)
we see that every even dual cover is divisible. In general the
converse is false, however, for consider the open dual cover
d = {(Gl, X), (Ga, X) } of Example 1.6.1 (C). d is divisible
since W(d) = XX X. However, for any nhd., W of the diagonal we
have, say, ((1, 1), (1, 1)) &€ W s0 we have U € u, V& v with-
((1, 1), (1, 1)) e VXU & W. Now 3 a > O with (a, 0) € V and

so (1, 1)& w ((a, 0)). It follows that W ((a, 0)) ¢ G and
W ((a, 0)) & G,, that is d(W) 4 a s0 4 is not even.
It is a trivial matter to verify that
e <(a) d &> d(u(e)) = 4

and that W(e(W)) € W for any vX u-nhd. W of the diagonal, and
we deduce that (X, u, v) is fully binormal if and only if every
open dual cover is even. With regard to divisibility we have:

Theorem 1.7.1. Let (X, u, v) be pairwise completely regular.
Then the following are equivalent.

(a) The largest compatible (diagonal) quasi-uniformity contains
all the vX u-nhds. of the diagonal in XX X.

(b) Every open dual cover is divisible.

(¢c) If d is an open dual cover there exists an open dual cover
s

e with W(e ) & w(d).

Proof. (a) = (b). Let d be an open dual cover. Then W(d) is
a vx u-nhd. of the diagonal so there is a normal open dual cover
e with W(e) & W(d). If then f is an open dual cover with

f<() e then W(f) is a vX u-nhd., of the diagonal, and W(f)oW(f)
< W(d), so d is divisible,

(b) => (c). Let d be an open dual cover. Since d is
divisible there is a vx u-nhd. W of the diagonal with VoW < u(d).
If we set e = e(W) it is easy to verify that W(e®) & wu(d).
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(¢) = (a). Let W be a vxu-nhd. of the diagonal.
. n
Using (c) we have open dual covers d, f with W(a ) = w(e(\W))
s
and W(f ) & u(d). But then uW(f") & w(e(¥)), and so
W(H)ow(f) & w(e(W)) « w.
Hence the largest compatible (diagonal) quasi-uniformity
contains all the v xu-nhds. of the diagonal.
By what we have said above, any pairwise Ro fully binormal

space will satisfy the conditions of Theorem l.7.1l. However we

may considerably improve this result as follows.

Theorem 1.7.2. Let (X, u, v) be a pairwise RO sequentially
normal bitopological space. Then every open dual cover of X is
divisible.,

Proof. Since (X, u, v) is pairwise completely regular we need
only verify (c) of Theorem l.7.l. Let d be an open dual cover.
By Theorem 1,4.2 there is an admissible p-q-metric p subordinate
to d. Hence, given x & X, there exists r(x) with 0 < r(x) <« 1
and so that H(x, r(x)) « U, K(x, r(x)) & V for some UdV.,

Let r'(x) = r(x)/4,

d' = § (H(x, r(x)), K(x, r(x))) t xe X} <« 4, and
e = ¢ (H(x, r'(x)), K(x, r'(x))) V' x eX}.

Let us show that W(e® ) = w(d). Take (x, y) & w(e® ), then 13
z € X with x € St(tzf, e) and y € St(e,tz}). Hence we have a, b
e X with x e K(a, r'(a)), z € H(a, r'(a)) and y € H(b, r'(b)),
z &€ K(b, r*(b)). Let

s = sup § r(x") | H(a, r'(a))ak(x', r'(x")) # & # K(b, r'(b))n
H(x', r'(x'))} .

Note that r(a) = s and r(b) £ s. Now choose X, & X so that
H(a, r'(a))r\K(xo, r'(x ) # ¢ # K(b, r'(b))/\H(xov r'(x)) and
r(xo)'7 28/3. Then

P(xoxo) < 2r'(a) + r'(xo) < r(xo), and

P(xo’y) = 2r'(b) +r'(x°) < r(xo). Hence
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(x, ¥) € K(x, r(x )X E(x , r(x )) & ¥(d") S w(d)

as required.

Bitopological spaces having the properties of Theorem 1l.7.1
satisfy a condition which corresponds to the property of
collective normality for topological spaces (cf 41 , IX 8 &

Exercise 18). Let us make the following definition.

Definition 1.7.3. (X, u, v) is collectively binormal if when-
ever ¢ = £ (P, @) |« € A} is a discrete closed dual family

there is an open dual family d = § (qi' Yk) | «x € A } with

Py & Uy Q& V, foralld &4, and Uun%=¢for allot #43 .

It is clear that a collectively binormal space is pairwise

normal.,

Theorem 1.7.3. Let (X, u, v) be a bitopological space satisfy-
ing the conditions of Theorem 1.7.l. Then (X, u, v) is collectively

binormal,
Proof. For c = { (B Q*) lot € A} as in Definition 1.7.3 let
us set R, = X - U{Qﬂ| e Ao}l and S, =x-ugpﬂ| p Fol.
Since ¢ is discrete, R“ & u and S*e v. Also
e={(R,5) weal

is clearly an open dual cover of X. Now applying Theorem le.7.1
(¢) twice we have an open dual cover f with W(f ) & w(ad).
Let us set

Ub( = St(f' Pd)’ Vd = St(Qd’ f)-

Then it is easy to verify that d = § (Uys V)V ot € A] has all

the properties required by Definition 1.7.3.

In particular we see that every pairwise RO sequentially normal,

and hence every metrizable bitopological space is collectively
binormal. Example 1.6.1 therefore shows that a collectively binor-

mal bitopological space need not be finitely binormal.

To discuss some further properties of E’n we shall need:
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Definition 1,7.4. By a bifilter on the set X we will mean a
product

8 = 8, x8,
of two filters @ and 63v on X.
The bifilter @ 1is 1-regular if Fn G # @ whenever (F, G)e 8 .
If (X, uy, v) is a bitopological space, and x € X, then

B(x) = § (H(x), K(x)) | H(x) is a u-nhd. and K(x) a v-nkd. of x }

is an l-regulér bifilter which we shall call the nhd. bifilter

of x.

The bifilter @ will be said to converge to x if Q(x)& @ .

If § is a (dual covering) quasi-uniformity compatible with
(X, u, v) then the bifilter ¢ will be called § -Cauchy if
dnQ® #Z& for all de § » (X, u, v) is $ ~-complete if every
$ ~Cauchy 1-regular bifilter on X is convergent.

Since with each ai-regular bifilter 3 we may associate the
filter §{ FnG | (F, G) e 8 } , we may of course express the above
definition of completeness in terms of filters, as is usual in
the literature. However bifilters will be involved in an essen-

tial way in the next chapter, and are introduced here to maintain

consisténcy of terminology.

Proposition 1.7.2. Let (X, u, v) be fully binormal and pairwise
Rye Then (X, u, v) is Sn-—complete.

Proof. S,n is compatible since (X, u, v) is pairwise completely
regular. Suppose that there exists a § q~Cauchy 1-regular bifilter

¥ which does not converge in X. Then for each x & X we have
nhds. M(x) € u and K(x) & v of x so that (M(x), N(x)) & & .
However the open dual cover d = { (M(x), N(x)) |\ xe& X }

belongs to § , since (X, u, v) is fully binormal, and hence

dn Q@ # &, which is a contradiction. This proves the proposition.

e
We note for future refergdnce the following characterisations

of uniform compactness. This notion has been considered by
various authors under a variety of different names (see, for
example, [91 and [34)).
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Lemma 1l.7.2. The following are equivalent for the bitopological
space (X, u, v).
(a) (X, u, v) is uniformly compact.
(b) Every open dual cover has a finite subcover.
(¢) The diagonal is a compact set in (XXX, vxu).

(d) Every maximal 1-regular bifilter on X is convergent.
We omit the proof which is straightforward.

In terms of a dual covering quasi-uniformity the notion of
total boundedness ([23), Definition 4.8(2)) takes the following
form:

The dual covering quasi-uniformity § 1is totally bounded

if and only if it has a base consisting of finite dual covers.

Proposition 1.7.3. Let (X, u, v) be a preseparated pairwise R,

bitopological space. Then (X, u, v) is uniformly compact if and
only if § n is compatible, complete and totally bounded.

Proof. If (X, u, v) is uniformly compact then (X, u, v) is fully
binormal by Theorem 1.,2.2. In particular it is pairwise normal

and pairwise R., and hence pairwise completely regular by the

¢
counterpart of Urysohn's Lemma for bitopological spaces L1491,
It follows that gln is compatible by Proposition 1l.7.l, and

complete by Proposition 1.7.2. Finally if d &€ Sn there is an
open dual cover d4d' e Sn with d' 4 d, and d' has a finite sub-
cover d". d" e § since (X, u, v) is fully binormal, and so S:n

is totally bounded.

Conversely suppose Sn'is compatible, complete and totally
bounded. If Q@ is a maximal 1-regular bifilter and 4 & &n we
have d' e gn with d' finite and d' <4 d, and it is clear that
Bnd'ZFso@n d#¢@. Hence Q is Sn-Cauchy, and so

converges in X. Hence (X, u, v) is uniformly compact by Lemma
l.7.2.

It is well known that a quasi~uniformity compatible with a

uniformly compact bitopological space must contain all the nhds.
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of the diagonal in (XXX, vXu) in its diagonal form, and so we
uniformiyq compact .
may conclude that a[presepa ated pairwise RO bitopological space

is uniquely quasi-uniformizable.

Now let us denote by /3 the set of all finite open dual
covers 4 = d; for which there exists a sequence idn} of finite
open dual covers with dn+1‘_ (») dn. Clearly /3 fn is a base for
a quasi-uniformity an, and we have tu( an) < u, tv( an) & v,
It is immediate from the definition that if S’fn is compatible

with (X, u, v) it must be the largest compatible totally bounded
quasi-uniformity. To establish compatibility when (X, u, v) is
pairwise completely regular, let P*(X) denote the set of all
bounded real valued pairwise continuous functions on (X, u, v),
and note that for f€ P*(X) and n =1, 2, «eo , £ 1(m(1, n))

is a finite open dual cover of X, and
f“l(m(l, 6n)) < () r'l(m(l, n))
so that f~l(m(1, n)) € %fn' This shows that § ¢n 15 finer than

the initial quasi-uniformity generated by the set P*(X), and
therefore is compatible with (X, u, v) if (X, u, v) is pairwise
completely regular., Now let d = d; be a finite open dual cover
of (X, u, v), and suppose there are open dual covers d (not
necessarily finite) so that dn+l4ic*) dyn=1, 2, «eo. By
Lemra l.4.1 (2) we have a finite equibinormal cover El =
<

i(hiy k)1 1 £ 1 £ m} so that dg < 8(E)) and e(E)) < d .
From this we may deduce at once that

N n 1
dg <~ (A B, @) IACA Q-k)"@)) = 4

1=1 1=1 °
where m € u|[0, 1] is given by m = }(p, [0, 13), (l0, 1), @)},
P=1Ix\0=x<2/33and Q= {x1|13<x=1]}.
On the one hand this result shows that Sih contains all finite

normal dual covers, and on the other hand it proves that every
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totally bounded quasi-uniformity is the initial quasi-uniformity
generated by a set of bounded pairwise continuous real valued

functions, and in particular that an is the initial quasi-

uniformity generated by P*(X). We summarize these properties of

$ n in the next proposition.

Proposition 1.7.2. Let (X, u, v) be pairwise completely regular.
Then:
(a) S is the largest compatible totally bounded quasi-uniformity.

fn
(b) E’fn is the initial quasi-uniformity generated by F*(X).
(c) s’fn is generated by all the finite normal (open) dual covers
of X.

In case (X, u, v) is pairwise normal and pairwise R, we may

0

present some alternatives to (c).

Proposition 1.7.3. Let (X, u, v) be pairwise normal and pairwise

Ro. Then:
(a) The set of all finite open shrinkable dual covers is a base
of an.

(b) The open dual covers } (X, K), (H, X){ , where He u, K€ v

and HU K = X, form a subbase of %fn'

Proof. (a). On the one hand every (finite) normal open dual
cover is shrinkable by Proposition 1l.l1l.1l, while by the corollary
to Theorem l.l1.1 every finite shrinkable open dual cover is normal.

Hence (a) is proved.

(b). Firstly, since (X, u, v) is pairwise normal, it is
clear that the finite open dual cover § (H, X), (X, K)} is
shrinkable, and hence belongs to an by (a). To show these sets

form a subbase take f & P"(X) and n € W, n > 1, Since £(X) is

a bounded subset of R we may choose itegers p, q so that

£(x) € [p/2n, (gq-1)/2n] .

For p & k = q let

B = £ ¢ (2x-1)/4n, 1/bn )) and K_ = £ (N( (2%-1)/bn, 1/kn )
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so that er u, Kke v and Iiku Kk = X, Then it is easy to see

that

AEE(, 0, (X, 831 pekaal < £(u(1, 20)
from which the required result follows by Proposition 1.7.2 (b).

Note that if (X, u, v) is pairwise normal and pairwise R, the

set of all star finite shrinkable open dual covers will form a

base for a quasi-uniformity § _._ (Corollary to Theorem 1l.1l.1).

Since gfn S Sops & Sn we see that szs is compatible with

(X, u, v). Of course S (respectively, S,st) will contain

fn

all finite open (respectively, all star finite open) dual covers

if and only if (X, u, v) is finitely binormal (respectively, star
finitely binormal).

Let us call the dual family d = {(U,, V,) V& € A3} transit-
ive if
st(d, U ) = U, and 5t(V,, d) = Vg

for each o € A, If d is transitive then in particular 4 <) 4.
Several examples of trasitive dual covers have been seen in 1l.6.
The quasi-uniformity § may be called transitive if it has a base
of trasitive dual covers. This corresponds to the usual definition
of transitivity for diagonal quasi-uniformities. See, for exanmple,
[14] where the discussion is based on the notion of Q-covers.
Ifd€ $ is a transitive dual cover then it is clear that it is
both open and closed. Indeed for any d' & @ and x € X the set

U(d', x) = U{Ult UE domd', x ¢ U}
is - tu(S )-open and tv(5>)-closed, while the set
v(d', x) = iV Verand', x ¢V}
is tv($ )-open and tu( §)-closed. Now suppose § is transitive
and compatible with (X, u, v), and let
u'= {U@d', x) | x€&X, d' & de€ S and d is transitivel .

Then u' is a base of open sets of u, and a base of closecd sets

for v. In the same way,
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vt = {Vv(d', x) | xe X, d' & de § and d is transitive }

is a base of open sets of v, and a base of closed sets for u.

Conversely if u' is an open base of u and a closed base for

v and we set
a) = § (U, x), X, x - ud}

then d(U) is transitive and §d(U) 1 U € u'3 is a subbase for a
compatible totally bounded quasi-uniformity. We may also obtain
such a quasi-uniformity begining with an open base of v which is

a closed base for u, and we have established, Ccf £ 17])

Proposition 1.7.4. The following are equivalent for the bitopo-

logical space (X, u, v).
(1) There is a compatible transitive quasi-uniformity.

(2) There is a base u' of open sets of u which is a base of

closed sets for v.
(3) There is a base v' of open sets of v which is a base of

closed sets for u.
(4) There is a compatible totally bounded transitive quasi-

uniformity.

I.L. REILLY [28] has called bitopological spaces satisfying the

equivalent conditions (2) and (3) zero dimensional.

One extremdt case is where u is a base of closed sets for v,
and v is a base of closed sets for u. In this case u (respectively,
v) is the largest (quasi-uniform) conjugate of v (respectively,
of u), and so we might call such bitopological spaces pairwise
reflexive. A pairwise reflexive bitopological space is clearly

binormal, and so § coincides with the transitive quasi-uni-

fn
formity constructed as above from u or v. On the other hand, a

bitopological space in which gfn is transitive is not necessari-

1y pairwise reflexive. For consider the space of Example 1l.6.k4.

Here Sih.is clearly transitive, and u is the largest (indeed,
only) conjugate of v, but v is not the largest conjugate of u.

For if it were we should have v = (vml)"1 (where v~L denotes the
largest conjugate of v), and it follows easily from this that v
would have to be a Q-space, which it is not since N&V | we Ve vl
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= {wi ¢ v.

We end this section by defining two new forms of structure

which may be obtained by weakening Definition 1.7.1.

If in Definition 1.7.1 we replace " <&(x) " by " < (px) "
we obtain the definition of a structure to which it would be

appropriate to give the name pseudo-quasi-uniformity. Certainly

any quasi-uniformity is a pseudo-quasi-uniformity, but the

converse is false as we shall see in a moment.

If (X, u, v) is fully pseudonormal then the set of all open
dual covers of X will form a base for a pseudo-quasi-uniformity,
and a consideration of the relation between this structure and
the topologies for the space of Example 1.,6.6 will indicate that
in place of the sets St(d,f{x}) and St(i{xj, d) we should use the
sets Pst(d, ({x},ix})) = wst(d,{x}) and PSt((ix{,ix}), d) =
WSt(ix}, d) in the definition of the topologies of a pseudo-quasi-
uniformity. Consequently if S 1is a pseudo-quasi-uniformity,

t (§) will be the topology generated by the filter bases
fvst(d,ix}j) 1 d e §{ for x e X, and tvﬁ $) will be the topology
generated by the filter bases { WSt(ix}, d) | de §3{ for xe€ X,
It will be clear that in general the sets WSt(d,{x}) and WsSt(ix3,
d) will not necessarily be nhds. of x for the appropriate topology,

and that a pseudo-quasi-uniformity need not have an open base.

As mentioned above, if (X, u, v) is fully pseudonormal the
set of all open dual covers is a base for a pseudo-quasi-uniform-
ity on X. This clearly is compatible with (X, u, v), and has an
open base so the above sets are all nhds. in this instance. This
pseudo-quasi-uniformity for the space of Example 1,6,1 cannot be
a quasi-uniformity since (X, u, v) is not pairwise completely
regular. (Note that if a pseudo-quasi-uniformity is in fact a
quasi-uniformity then the bitopological épace it generates as a
quasi-uniformity is indeed the same as it generates as a pseudo-

quasi-uniformity, since if e <« c#) d we clearly have

St(e,t{x3) & Vst(d,ix3) & st(d,tx}), and
st(ixy, e) & wst(txy, d) &« sStlixy, d)

for each x € X, Hence the topologies tu( $) and tv(g ) are dedined



83
unambiguously). Hence not every pseudo-quasi-uniformity is a

quasi-uniformity.

Example 1.6.6 shows that a pseudo-quasi-uniformizable bitop-

ological space is not necessarily pairwise RO. However not every

bitopological space is pseudo-quasi-uniformizable, as the next

proposition shows.

Proposition 1.,7.5. A pseudo-quasi-uniformisgable bitopological

space is uniformly completely regular.

Proof. Let § be a compatible pseudo-quasi-uniformity, and for
d € ¢ set ,
c(d) = UnVv I Uav .

Then e <« (p#) d => C(e)* < C(d) and s0 {C(d) | d € $3
is a base for a uniformity compatible with the uniform topology

of (X, u, v), from which the result follows.

The conversetseems to be an open questioan., Certainly the uniform-
ly completely regular space of Example 1.6.10 has no compatible
pseudo-quasi-uniformity with an open base, but I do not know if

it is, nom the less, pseudo-quasi-uniformizable.

A second generalisation of the notion of quasi-uniforumity may
be obtained by replacing "e ) d" in Definition 1.7.1 (i) by
the requirement

Wst(e, WStle,tx})) & Wst(d,{x}), and
wst(ust(§x3, e), e) € uUSt(ix}, 4)

for each x € X, We call such a structure a weak local quasi-

uniformity. Ve may justify this name by noting that if in place
of "NSt" we were to specify "St" above we should obtain the dual
covering equivalent of the notion of local quasi-uniformity (21) .
In particular every local quasi-uniformity, and hence every quasi-
uniformity, is a weak local quasi-uniformity. If § is a weak
local quasi-uniformity a base of tu(S )~ (respectively, tv( $)-)

nhds. of x € X is taken to be L WSt(d,ix}) } d e $3 (respectively,
fwst(ixy, d) | de $3 ). Note that a weak local quasi-uniformity
always has an open base, just like a quasi-uniformity. Also if §
is a local quasi-uniformity then the bitopological space generat-

ed by & as a local quasi-uniformity will be the same as that



84

which it generates as a weak local quasi~uniformity.

Not every pseudo-quasi-uniformity, and indeed not every pseudo-
quasi-uniformity with an open base, is a weak local quasi-uniform-

ity, as the next example shows.

Example 1.7.3. In the fully pseudonormal space of Example 1l.6.1
the set of all open dual covers is not a base of a weak local

quasi~uniformity.
Proof. With the notation as in Example 1.6.1 let us set

J R(a, b)uU R(0O, 1/b) ifa > 0 and b > O,

U(a, b) = R(a, 0) V R(0, 1) if a = 0 and b = O,
\. R(0, b) if a = 0 and b = O3
s(a, b)U S8(1/a, 0) if a > O and b > O,
V(a, b) = S(a, 0) ifa> 0 and b = 0,

s(o, b)u S(1, 0) if a = 0 and b >» O.
and consider the open dual cover
d = § (0(a, bv), V(a, b)) | (a, B) € X }.
Suppose that e = § (R, S“) lot € A3 is an open dual cover of X
satisfying wuSt(e, WSt(e,{x})) & Wst(d,&x}) for all x € X, and
take « € A with (1, 1) € R, n S, . Since R, € u d b > O with
(0, b) e R s and consider the point x = (1, 1/(b+1)) € X. Then
wst(d,txi) = U(1, 1/(b+1)) and so
(0, b)& R, < U(1, 1/(b+1)) = R(1, 1/(b+1)) U R(O, b+l)

which is impossible since it implies b + 1 < b. This contradict-
ion completes the proof.

.0On the other hand there are weak local quasi-uniformities
which are not pseudo-quasi~uniformities. Thus, for example, we
have seen that the set § of all open dual covers of the space of

Example 1.6.10 is not a pseudo-quasi-uniformity, whereas
wst(d,, wst(d,,{PD) = M(P) and WSt(vstgr), dy)s d4) = N(P)

for all P € X, and so & 1is a, clearly compatible, weak local

quasi-uniformity.
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This shows that in general the notions of pseudo-quasi-uniform-

ity and weak local quasi-uniformity are independent of one another.

1.8, PARA-QUASI~-UNIFORMITIES,

In this section we present a rather different generalisation
of the notion of quasi-uniformity. Here we are motivated by the
definition of a para-uniformity given by C.I. VOTAW [(35). A para-
uniformity maintains the symmetry of a uniformity, and sc gives
rise to a single topological space. Moreover any topology may be
defined by a suitable para-uniformity. A para-quasi-uniformity as
defined below gives rise to a bitopological space, just as a quasi-
uniformity does, and moreover any bitopological space may be defined
by a suitable para-quasi-uniformity. Hence para-quasi-uniformities
stand in the same relation to bitopological spaces as para-uniform-

ities stand in relation to topological spaces.

In accordance with our general approach in this chapter we
will define a para-quasi-uniformity in terms of dual families. In
addition to the notation and terminology used so far we shall need

the following. If d is a dual family we define:

ucl(d) = £x 1| x ¢ uc(d) and St(d,1x3) < uc(d){ , and

uca(d) =§{ x| x e uc(d) and St(fx}, d) & uc(d)] .

We then set ® =§{d)| d &£ 1 and ucl(d)L) ucz(d) £33 . Note that

€ contains all dual covers of X, and more generally all non-empty
1-dual families satisfying le(d) € uc(d) or rc(d) € uc(d).

For convenience we shall take e = d (respectively, e < (*J4)
to mean e <« d (respectively, e <) d) and uc(e) = uc(a).
Ve note without proof the following elementary facts.

Lemma 1.8.1. Let d and e be dual families on X. Then:
(a) uc(dpe) = uc(d)nucle)

(b) ucj(d)p\ucj(e) < uc.(dae), j =1, 2.

b
(¢) 1Ife 4 Q then ucj(d) < ucj(e), j=1, 2.

—

‘ |
(@) Ife' 4 e, a' £ dandend € 8 thene'pd' & G.

We may now give:
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Definition 1.8.1. The non-empty subset $ of & is a para-

quasi-uniformity (pqu) on X if it satisfies:

PRI d € § = 3 ec¢ § withe =) d

PQ.2 d;€ $ ,i=1, «o0p n, N, E€R = /\die*S.
PQ3 de{f,ee 8 withd £ e = e € §.

P4 i(x, x)3 e § .

It will be noted that in particular any (dual covering) quasi-

uniformity is a pqu.
We may define a pqu base as follows.
Definition 1.8.2. 3= € is a pqu base if it satisfies:
B.l dE/s.—_'73 eeﬁ,e:&o«)d.
B,2 diep,i=1, eeey N, /\die@ = 3 fe/g,f < I\di.
We then have
Proposition 1.8.1. If s 1is a pqu base then

S=%d1ae€,3e e/sut(x,x)l with e £ 4 }

is a pqu.
We omit the proof which is straightforward.

If we insist that all the elements d of 22 should satisfy
the condition rc¢(d) < uc(d), and add a symmetry condition, we

may consider pqu bases /3 satisfying

Pd dep = rc(d) & wuc(d)
P.2 de/5 = 3 eeﬁ with e < w) d.
P.3 d,ee/;,ﬂyldkezya fC—,/g with £f = d ae.

P dep = 3 eep withe £ dad™h,

For such a 3 it is easy to see that { W(d)V d € B} is a base
for a para-uniformity on X. This verifies that the notion of para-
quasi~uniformity generalises the notion of para-uniformity as

well as that of quasi-uniformity.

Definition 1,8.3., The subset ¢ of & is a para-quasi-uniform
subbase if it satisfies:

Sl deogr = 3 ee€ o with e < () d.



87
Proposition 1.8.2. If g 1is a pqu subbase then

L= N | d. €0/ yi=1, eoo,n, Ndje@}
is a pqu base.
We omit the proof which is straightforward.
Let us now show that a pqu defines a bitopological space.
Theorem 1.8.1. For A & X we define

_u
(x€ A) &= (Given d €& § with xe ucl(d) 3 vav with xe V,
UInA £ ).

Then -u is a closure operation for a topology tu(S) on X.
u -
Proof. Of the four closure axioms which must be verified, § = ¢

~u
is clear from PQ.4, A & A follows from ucl(d) < uc(d) and

-l -l u

A UB = AUB follows from PQ.2 and Lemma 1.8.1 (b). Finally
~u '

e -u . .

A S A" is clear, so it remains to prove the reverse inclusion.

-l
Take x € A” and d € & with x & uc,(d). By PQ.1 we have e€ §

with e £ () d, and x & ucl(e) by Lemma 1.,8.1 (c). Hence <} ReS
-1 -1

with x€ S and RnA # ¢. Take y € RnA , and let us show

Yy € ucl(e). First y € R & St(e,ix3) & uc(e) since xe ucl(e),
and if U4V has St(e, R) & U, St(S, e) & V then x €& V and
St(e,{yt) < St(e, R) € U < St(d,1x}) & uc(d) = uc(e) since
X € ucl(d). This verifies y e ucl(e) so 3 R'eS' with ye€ S'
and R'n A # ¢, With UdV as above, x € V and R'& St(e, R) € U

-Uu
since S'n R # @, and s0o UnA # #. Hence x € A and the proof is
complete.

In just the same way

(x € 5') ¢=> (Given d € § with x & ucz(dl) 3 U4V with x € U,
VnaA # @)

defines a topology tv( S) on X. In this way a pqu § gives rise
to the bitopological space (X, tu( $), tv(f, )), Note that if §

is a quasi~uniformity, then the bitopological space generated by

S as a quasi-uniformity is the same as that generated by & as
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a para~quasi-uniformity.

Proposition 1.8.3. (a) {st(d, tx3)| d €%, xe ucl(d)l

is a base of tu( $)-nhds. of x e X.
(b) Ifde § and A < ucl(d) then St(d4, A)
is a tu(S Y-nhd. of A & X.

(c) Ifde § and A & X then
uc, ()n (¢ ($)-c1(A)) € st(a, d).

We omit the proof, which is straightforward. Of course correspon-

ding results hold for the other topology.

In general a pqu need not have an open (or closed) base.
However many important examples (including all quasi-uniformities
and para-uniformities) do have an open base. Let us now verify
that every bitopological space has a compatible pqu with an open

base.

Theorem 1.8.2. Let & and B be sets of non-empty subsets of X.
Then
o0 = {8, 0}, ix, )}V aed, Be Y

is a subbase for a pqu § on X. If u and v are topologies on X,

&F<cuand @ ¢ v then tu(S) <€ u and tv(S) < v. Moreover

we have equality if and only if By {X}] is a subbase of u and
Qu $X3 is a subbase of v.

We omit the proof which is quite trivial., Note that if we construct
$ as above for the bitopological space (X, u, v), say by
taking A = u -}@g) and @ =v - {3, then § will be a com-

patible pqu with an open transitive base.

A second way of constructing a compatible pqu with an open
base for a given bitopological space is described in the next

lemma.

Lemma 1.8.2., Letr ¢ (u=~ {@g} )ands & (v - 1@3 ) be such
that ry £€X} is a subbase of u, and s ¢ { X} a subbase of v.

For R€ r let d(R) = {(R, X), (X, X -~ (v-c1[R}))] if v-clIR] # X,
and A(R) = §(R, X)} otherwise, and for S € s let e(S) =

I(x, 8)y (X = (u-cil8)), X)} if u-c1{S) #X and e(s) = £ (X, §)}
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otherwise. Then the set

$ d(R), e(S) | Re€r, S €5}
is a subbase for a compatible pqu $ with an open transitive base.
Again the proof is immediate, and is omitted.

We now give for pqu with an open base an exact analogue of

({35], Proposition 2.11).
Theorem 1.8.3. The bitopological space (X, u, v) has a unique
compatible pqu with an open base if and only if it satisfies the

two conditions below.
(a) u is the only base of u, and v is the only base of v, which

is closed under finite intersections and contains X and ¢.

(b) Every non-empty u-open set is dense in (X, v), and every
non-empty v-open set is dense in (x, u).

Proof. First suppose that (X, u, v) satisfies (a) and (b), and
that the compatible pqu § has an open base. Define

uw'=§U01Ueu, $Cu, x)esdyigl.

Then u' contains X and ¢, and is closed under finite intersections.
We show it is a base of u. Take x € G € u, and d € § so that
X & ucl(d) and St(d,{xl) & G. Take e € §, open, with e < () q,

Then x € ucl(d) < uc(d) = uc(e) so we have ReS with x € RnS.

Take UdV with St(e, R) & U, St(S, e) & V. Then using (b) and
the fact that x € V and x € ucl(d) we have

uc(e)

uc(e) & 1lc(e) = St(e, R) € U & St(d,{x}) & uc(a)

and so all these sets are equal, Hence if we set f = {(u, XN
we see that fe€ ® ande £ fsof &€ and U € u'., However

x€&€ U & G, and so u' is a base of u, and hence u' = u by (a).
This shows § contains all dual families of the form { (U, X)}
with U€ u - {g} , and likewise it contains all dual families of
the form {(X, V)} with V& v -~ (g} . Hence S 4is finer than
the pqu # with subbase

fUu, OLUX, VWV U eu -tg}, ver -Ligil .

On the other hand take any de€ & , and take e open with ¢ € § and
e < @yd. If ucl(d) # ¥ we may take x ¢ ucl(d), ReS and U4V as
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above., If, in addition to the above équalities, we note that by
(b) we have rc(e) = St(S, e) < V then it is clear that g =
{(U, rce))] < d. However g = § (U, XDIA{ (X, rc(e))]) e £
and so d € £ ., A similar argument shows d € ¢ also if uc,(d) # 4,

and so $ is coarser than f . Hence # 1is the only compatible

rqu with an open base.

Conversely suppose 7 1is the only compatible pqu with an open
base. To verify (a) suppose that & is a base of u containing X
and &, and closed under finite intersections. By Theorem 1.8.2
o = {i, X ,8x, B aeRA -ig, Bev-igl] isa
subbase for a compatible pqu with an open base, and this must
therefore be # . Hence if G&u - {X, gt 3 A e T -ig],

Be v -{gl with (4, B} £ 1(G, X)} , since JF 1is closed
under finite intersections. Hence A & G and AnB = G which gives‘
G=4eW , and therefore S = u. The second part of (a) is

proved likewise.

Finally let us verify (b). Suppose that, for instance, we
have G€& u -~ {@g{ with v-c1{G) # X, and construct the compatible
pqu with an open base as in Lemma 1,8.2 taking r = u = {g} and
s =v -{@#} . This pqu is equal to / , and contains the dual
family { (G, X), (X, X = (v-c1[G)))! so0 we have U€ u - {7} ,
Ve v -1g{ with

b, 3 = e, ), (X, X = (v-cl{c})) } .
However this is clearly impossible, and the proof is complete.
Other aspects of the theory of para-uniformities may be
generalized to include para=-quasi-uniformities in the obvious

way. Some of these will be considered in a more general setting

in the next chapter.
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CHAPTER TWO

BITOPOLOGICAL EXTENSIONS WHICH ARE COMPLETIONS OF
CONFLUENCE STRUCTURES

Let (X, u, v) be a bitopological space and (X', u', v') a
bitopological subspace for which X' is bidense in X, that is
dense for each.of the topologies u and v. We may express this
by saying that (X, u, v) is a bitopological extension of
(X', u', v'). Suppose § is a (dual covering) quasi-uniformity
compatible with (X, u, v), and that d is an element of the
open base of § . Then if UdV we certainly have Un X' # @ # Vn X',
but there will be no guarantee that Un VA X' # &, unless of course
X' is actually uniformly dense in X. It follows that { (Un X',
VA X'} Uav 3y will not be an element of the induced structure on

X' in general; and while we may obtain from it an element of this
induced structure by removing all pairs (Un X', VA X') with
UnVnA X' = g, it is possible that in so doing we may, in certain
circumstances, be logsing information which could enable us to
characterize (X, u, v). This suggests that in order to widen the
class of bitopological extensions which can be obtained with the
aid of quasi-uniform-like structures it would be an advantage to
consider the enlargement of such structures to include elcments
which are not a-dual families. Of course this must be done in an
organised and well defined way in order to produce a workable
theory, and this is the object of the present chapter. Briefly
the idea is to consider more general "confluence relations" (see
Definition 2,1.1) in place of the relation 1 of "meeting" between
sets., Clearly any quasi-uniform-like structure is amenable to
such a generalization; however to keep our discussion as concrete
as possible we will confine ourselves to the cases of quasi-

uniformities and para-quasi-uniformities.

al
The principte results of Sections 2,1 - 2,7 were presented by
the author at the Bolyai Janos Colloquium on Topology, held in
Budapest in August 1978, and these are to be published in the

Proceedings under the title "On Extensions of Bitopological Spaces".
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2.1 CONFLUENCE QUASI-UNIFORM STRUCTURES.

Definition 2.,1.1. The binary relation ¢ on the non-empty subsets

of X will be called a confluence relation on X if it satisfies:

(a) PAQ#Y = Pecq, and

(b) PeQ, P& P'& X, Q & Q' & X =p P'cq'.

Denoting by 1 the relation P1Q & PnQ # ¢ of having a non-
empty intersection, we see that 1 is a confluence relation, and
indeed it is the smallest conflunce relation on X. Clearly a

confluence relation has some of the basic properties of the

relation 1.

Definition 2.,1.2. Let c be a confluence relation on X, The dual

family d on X is a c-dual family if ¢ & d. If in addition uc(d)

= X we say d is a c~-dual cover.

This agrees with our earlier use of the term i1-dual family.
Note that an 1-dual cover is a dual cover.

Now let b, ¢ be confluence relations, d a ¢-dual cover and
e a b~dual cover. Consider the pairs (d, ¢) and (e, b). Ve shall
say that (d, ¢) refines (e, b), and write (4, ¢) <« (e, b), if
d 4 e and ¢ & b.

For A & X let vus set

st (a, A) = Utu !t 3 V, UdV and AcV },

]

st (4, d) = UiV 3 U, UaV and UcA }.

Then we shall say that (d, ¢) is a star refinement of (e, b), and
write (4, ¢) < (») (e, b), if ¢ & b and given UdAV there exists
ReS with Stc(d, U) € R and st _(V, d) € s,

Since A & Stc(d, A) and A & Stc(A, d) we see that a star
refinement is also a refinement.

With this notation we may now define a confluence quasi-unif-

ormity as follows:

Definition 2.,1.3. Let § be a non-empty collection of pairs
(d, c¢). Then § is a confluence quasi-uniformity (cqu) if it

satisfies.

(1) If (4, ¢) € $ then ¢ is a confluence relation on % and 4 is
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a c-dual cover.
(i1) If (4, ¢), (e, b) € S there exists (f, a) & § so that
(£, a) =) (d, ¢) and (f, a) <) (e, b).
(iii) If (d, ¢)& S , b is a confluence relation and e a b-dual
cover of X with (d, ¢) < (e, b) then (e, b) € &,

The notion of a base for a confluence quasi-uniformity may

be defined in the obvious way.
Example 2.1.1. Let S be a dual covering quasi-uniformity on
X. Then £ (4, 1)\ de & 1 is a base for a confluence quasi-
uniformity &' on X.

Note that dom §' corresponds to the covering quasi-uniformity
of which & is the base, and in this way we have made exact the

relation between these two definitions.

Just as for a quasi-uniformity, a confluence quasi-uniformity

gives rise to a bitopological space.

Proposition 2.1.1. f st(d,ix}) ! d € dom $1 is a base of nhds.
of x € X for a topology t (5), and 1 St(ix}, d) | d €dom § 3

is a base of nhds. of x € X for a topology tv( S).

We omit the proof which is straightforward. Note that for the

dual covering quasi-uniformity % we have t (5) =t (') and
tv(5>) = tv( 4'), so no confusion can arise here. Let us note also

the following elementary results which we present without proof.

In each $ 1is a cqu.
Proposition 2.1.2. If A & X and (d, ¢) € § then

A st S)-intLStc(d, A)) and A € t( s)-inthtc(A, )]l .

Proposition 2,1.,3. If A € X and (4, ¢) &€ & then

tu(S)—cm] S st (A, d) and tv(é.)-clul € st_(q, A).

For convenience we shall call (d, c)e S open (respectively,
closed) if d is open (respectively, closed) for (X, tu( $), tv( SNH.

We may deduce at once from the above results that a cqu has a
base of open and a base of closed elements. In particular the

bitopological space (X, tu(S), tv( $)) is pairwise regular.
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we shall find the following notion of extreme importance later.

Definition 2.1.4. The confluence relation ¢ is interior for the
bitopological space (X, u, v) if whenever PcQ and PNE = & we
have (u-int{P])c(v-int{Q)). We shall say that (d, ¢c) € § is

interior if ¢ is interior for (X, ¢t ( $), tv(S)). We denote the
set of interior elements of S by 311, and say $ is an interior
cqu if Si.is a base of § .

In particular 1 is interior for any bitopological space, and if
& is a dual covering quasi-uniformity then the cqu S! of

Example 2.1.1 is interior.

It is easily verified that an interior cqu has a base of open

interior elements, and a base of closed interior elements.

In all that follows all cqu considered will be assumed to be

interior. We will denote the base of open interior elements of §
by %o'

Example 2,1.2. For the space ( R, s, t) considered earlier, let
K be the relation

PKQ & Pi1Q or (t-cl(s-intiP]))a(s-c1(t-int[Q))).

Clearly K is an interior confluence relation. For any & > O let
k(d) = T (M(x, € ), N(x, £)) | x&X, 0 <€ <o}, sothat
k(o) is a K-dual cover of R. Since

(k(a/3), K) <t#) (k(a), K)
for all & > 0O we see that } (k(x), K) l o0 > 03 is a base for
an interior cqu compatible with ( R, s, t). Note that this cqu

contains no dual covers.

242 SEPARATION PROPERTIES.

“e begin by generalizing the notion of preseparated given in
Pefinition 1.2.2.

Definition 2,2.1. Let ¢ be a confluence relation on X. The
bitopological space (X, u, v) will be called c-preseparated

if given x, y & X with x d u-clly} (respectively, x ¢ v-cliy})
there exist G € u, H € v with G/H and x € G, y € H (respectively,




ye G, x € H).

A c-preseparated weakly pairwise To bitopological space will

be called c~separated. Note that a c-preseparated space is

preseparated, and that a c-separated space is weakly pairwise Haus~
dorff.

For the cqu & (assumed interior as mentioned above) we

denote by D the interior confluence relation

Nf{ct ceranS} = Nict ceransoi.

Proposition 2.,2,1. The bitopological space (X, tu(s'). tv( 8))

is D-preseparated.
The proof is trivial and is omitted. Note that if (X, tu(S ),
tv($ )) is weakly pairwise To it will, therefore, be D-separuated.

We shall indicate this more shortly by saying that (X, &) is
separated.

Definition 2.2,2. Let ® be a bifilter, § a cqu on X and A =
’ao a base of § .

(a) | is A ~regular if whenever (d, c) & A and (U, V) €
Q@ N ((dom d) X (ran d)) we have UcV,

(v) @ is D-repular if » & D.

In the absence of a cqu, Definition 2,2.2 (b) may be applied to
any (interior) confluence relation on X. This notation agrees
with our use of the term "i-regular bifilter' in the last chapter.

Note that a D-regular bifilter is /3 -regular for all bases 4 .

¥ (x) will denote, as usual, the nhd. bifilter of x in
(x, tu(S ), tv(ﬁ,)). The following proposition gives, without

proof, some elementary facts relating bifilters and the

separatedness of (X, % ).

Proposition 2.2.2. The following are equivalent for the cqu §
with base g = § 0

(a) (X, $ ) is separated.
(b) The map x —» ¥ (x) is one to one.

(¢) Given x #y in X 3 (a, ¢) €% and UdV', U'dV so that
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Stc(d, U)dStc(V, d) and x€ Un V', y€ U'nV, or x€ U'NnV,
yE UnVvVe,
(d) Every convergent /3 -regular bifilter has a unigue limit.

(e) Every convergent D-regular bifilter has a unique limit.

If § 4is a cqu on X let us define the relation ~ on X by
(x ~v y) & (st(d,tx3)est(fyl, d) and st(d,iyddest(ix], 4)
for all (4, c¢) € & ). Then:

Lemma 2,2.1. ~~ 1is an equivalence relation on X,

The proof is a matter of straightforward verification. e denote

-

by X the equivalence class containing x, by X the quotient set
X/~ , and by ¢ the canonical mapping of X onto X. For A & X
we shall often write A in place of ¢ (A).

If ¢ is a confluence relation on X we define a confluence

relation ¢ on X by:

PeQ &> P1Q or (£ S )-int[cf'l(P)])c(tv( $)-int (4711,

Also for 4 € dom So we define d on X by

PAQ <> 3 UQV with P = U and Q = V.
Then:

Lenma 2.,2,2. d is a c-dual cover of X for each (a, c) € 30.

Proof. For UdV it is clear that UcV, and so d & c. Also if

UdV and x € UnV then UdV and X € UN T so uc(d) = X, which

completes the proof.

Lemma 2.2.3. If G & X is tu(S) or tv(&) - open and x€ G

then x € G.
Proof. Take x € G e-tu(S ); then we have (d, c¢) € §, with 5t(d,{x})

S G. Take (e, b), (f, a) € S, with (f, a) <) (e, b) ~*) (4, c),
and y & x. Since y ~ x we have St(f,{x})asSt(iy3, f). Take LfT
with x € LAT, L'fT' with y €« L'AT', and take ReS, R'eS' with
st (f, L) & R, st (T, f) & s, st,(f, L') € R'" and St (7', f)

S 8'. Then St(f,ix1) & St (f, L) < R and Stltyl,f) < st_(T', 1)

s0 RaS'., Hence RbS' since a < b. Now take UdV with Stb(e, R) U
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and 5t (5, e) < V. Thenxe T £ 5t (T, f) € S & st (5, e)

€ Vand soyelL'<S Sta(f, L') € R' & Stb(e, R)E U <

St(d,ix3) & G as required. The proof of the other case is
similar.

. -1

Corollary 1. If G is tu(S) or tv(s) - open then ¢ (4 (3))
= G
Corollary 2. If GE tv(S) and H€ t (8 ) then Gel <= Gell
for all ¢ € ran § o
Corollary 3. For (d, c) € § o 3nd x € X we have
CV‘I(St(é,xsc;)) = St(d,{x}) and 4”1(St(13cs, d)) = st(ixl, 4).

e may now give:

Theorem 2.2.1. ¢ (d, )l (4, e)e S OS is an open interior

base for a separated cqu on X. The canonical mapping ‘? is

bi~-open and bicontinuous.
Proof. If (e, b) € % and (e, b) <) (d, ¢) it follows easily

from Lemma 2,2.3, Corollary 2, that (e, b) AL(*) (d, ¢). Hence
l(d, c) | (4, c) e S, ] 4is a base for a cqu 8 on X. That

4? is bi-~open follows at once from Lemma 2.2.3, and in partic-

ular this means that 4 is open for each 4 & dom &o. To see that

¢ is interior for each c € ran So take PcQ with PAn Q = ¢.

To show (gl(ﬁ)-inth])é(tv(S)-intlQ]) it will suffice to show
. -1 -1 ¢ .

that t ($)-int[47(P)] & tu(g)-int[cp (t,(§)-int[P])]),

and a corresponding result for Q. However these results follow
easily from Lemma 2.2.3, and the fact that ¢ is bi-open. Hence
ta, ¢) 1 (4, ¢c) e go_\ is an open interior base for § as

stated.

That <f is bicontinuous is an immediate consequence of
Lemma 2.2.3, Corollary 3.

Finally to show (X, § ) is separated take x, ¥ € X with X
# ¥. Then for some (d, c) & S’o we have, say, St(d,fix})fst(tys, 4),
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from which we deduce St(é,lil)fSt(l&!, d). This completes the

proof of the theorem.

Definition 2.2.3. We call (X, § ) the associated separated cqu
for (X, 8 ).

We have noted above that if § is a cqu then (X, tu( £,
tv(s )) is pairwise regular. ith an additional assumption on

the confluence relation D we may give a stronger result. Tirst

we shall need the following definitions.

Definition 2.2.4. Let (X, u, v) be a bitopological space, c a

confluence relation on X and A & X. Ve set
A=1x1! x€ Xandx€eHE v =» AcH], and

AC tx! x€ Xand x € GE u = GeAl.

i

e say that ¢ is bicompatible with (X, u, v) if °A = v-c1[A] and

A° = u-c1{A) for all A & X.

Definition 2.2.5. Let (X, u, v) be a bitopological space and ¢ a
confluence relation on X. Then (X, u, v) is c-regular if for

Xx€ X and A & X we have
(a) x¢°A=>31 Geuand HE v with x € H, A & G and GFH , and
(v) x¢ 2A°=> 3 geuand He v with x€ G, A & I and GZH.

Note that the confluence relation 1 is bicompatible with any
bitopological space, and that i1-regular means the same as pairwise

regular.

Definition 2,2.6. Let (X, u, v) be a bitopological space and ¢
a confluence relation on X. Ye say ¢ has the oven union proverty
(oup) if whenever G,€ u, D € v and (t)tedl )c(/L;){ ,3) then

G“cH/g for some o , 2 .
1, of course, has the oup for any bitopological space.

Proposition 2.2.3. Let (X, § ) be a cqu for which D has the oup.
Then D is bicompatible with (X, t (§), t (§)), and this bitop-

ological space is D-regular.

Proof. Take x ¢ u-cl{A]}; then for some (d, ¢) € &o we have
S5t(d,{x3)NA = g, Take (e, b)e & o with (e, ) <) (4, ¢), and
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consider x € G = Stle,{xl) € uand A & H=U{stliyl, e) | ye Al
€ v. Suppose GDI, then, since D has the oup and e is open, wve
have ReS with x € S and R'eS' with R'n A # & satisfying RDS'.

Hence RbS', and for some UdV we have x € S & Stb(S, e) & V and

hence R' & Stb(e, R) &€ U & st(d,{x§) and this gives the

. D
contradiction St(d,tx})n A # @. Thus GPH. Since clearly x & A
implies x ¢ u-cl[A] this establishes Definition 2.2.5 (b). (a)
may be proved likewise, so (¥, tu(ﬁ ), tv(ﬁ )) is D-regular. On

the other hand GPH above implies GPA, so x @ u-cl{A]) implies

D
x ¢ AD. ence A” = u-clfA). In the same way A = v-cl(A]), and

so D is bicompatible.

Note that if D has the oup for § then D has the oup for §
and so in this event the conclusions of Proposition 2.2,3 will

apply to the bitopological space (X, tu(X )y tv(g )).

2.5 INDUCED STRUCTURES.

Let (X, u, v) be a bitopological space, ¢ a confluence relat-

ion on X and A & X. Ve define the induced confluence relation

C, on A by

Pc,Q &> PiQor 3 P'€ u, Q'€ v with P'cq’, ZAPANAS P
and § £ Q'NA & Q.

Ve may express this definition in another way. For B & A let us

define
BG: Uitcglrgeu, g#4Gna <€ B, and
B;= UVinlugev, g£HAAC B,

Then it is immediate that PcAQ <& PiQ or (P:)C(Q;).

Note that c, is necessarily an interior confluence relation

for the induced bitopological space on A, even if ¢ is not
interior on X. This is one of the main reasons why we have found

it convenient to restrict ourselves to the study of interior cqu.

If 3 1is a cqu on X consider the bitopological space (X,
tu(S ), tv(ﬁ)), and take (4, c) e So. ile define the relation
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dA on the non-empty subsets of A by

Pq,G<&>q UV with P = UnA # §, Q = VA # £.
Because (4, c) € So is open for (X, tu(h), tv(S)). we see that
dA is an open ¢,~dual cover of A relative to the induced bitopolog-
ical space. We are therefore lepd to the following definition.
Definition 2.3.1. SA = §(d, ¢) | d is a c-dual cover of A
and there exists (e, b) € %o with (e,, bA) < (4, )} is

called the induced structure of & on A.

In general §, need not be a cqu on A. In order to ensure

A
that it is we need to impose some additional embedding conditions

on A. The following seem to be appropriate.

Definition 2.3.2. Let (X, § ) be a cqu and A & X.

(a) e say 4 is S ~embedded in X if for some base A3 & 30 of §
we have UcV whenever (4, c)€ /3, Ue& dom d, V € ran d and

(Un A)cA(Vn aA).

(b) We say A is strictly S -embedded im X if for some base /3

< S’O we have
(1) (Un A); < U and (Vn A): < V ywhenever

d€ dom B , UE€ dom 4 and V € ran d; and
(ii) Given ce& ran 2 , PcQ and PAQ = & we have
Pret (8), @e ¢ (8) with Preq’, (P'aA)) & P and (Q'n A)F < q.
If A is strictly & ~embedded in X it is clearly also & -
embedded.,

Lemnma 2,3,1. Let A be strictly § -embedded and bidense in X,
and let 4 ¢ ¢ be a base of § as in Definition 2.3.2 (b).

Then if ¢ e ran/s and b is a confluence relation on X with

cA < bA’ we have ¢ & b.
Proof. Take PcQ with PAQ = &. Then 3 P'e tu(S;). ¢te t (§)
with P'cQ' and (P'n 1‘*.):'1 & P, (Q'n A); < Q. Now P'N Ac,G'N A s0

P'n AbAQ'/\'A, and hence 3 Pv ¢ tu(&), e tv( $) with
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ZEAPNAS PNA F#Z£Q'AnA S Q'n A and P'"Y". But then P" &
(P'n A)-: & P and Q" & (Q'n A); & Q, and so PbQ as required.

Proposition 2.,3.1. Let (X, §) be a equ and A & X. If A is § -~
embedded in X then (A, SA) is an interior cqu compatible with

the induced bitopological space on A,
Proof. For (d, c), (e, b) belonging to the base A < &, having

the properties mentioned in Definition 2.3.2 (a) it is easy to

verify that (d, ¢) <) (e, b) implies (dA’ cA) PNTY) (eA, bA)

so $A is a cqu. Also St(dA.{xi) = St(d,{xy)N A and St(ix}, dA)
= St(Ix}, d)NA for all x € A, s0 %A defines the induced topol-
ogies, and the fact that i(dA, c,) | (4, c)e& S OS is an open
interior base of SA follows at once froa this.

It will be noted that if A is a bidense and strictly & -
embedded subset of X then (X, tu($), t, (8§)) is a strict
bitopological extension of (A, t( S, tv( $,)) in the sense that
(x, tu(S)) is a strict topological extension of (A, tu( SA)),

and (X, tv(i,)) is a strict topological extension of (A, tv( SA)).

The reader is refered to [1] for a general discussion of strict

topological extensions.

Definition 2.3.3. Let (X, u, v) be a bitopological space, x € X

and A & X. \le set

8%x) = {(aa, ana)\ (7, Qe Bx), (u-intA)NA £ g £ .
‘ (v-int{Q¥V)n ald.

Note that if A is bidense in X then @ *(x) will be a bifilter
on A. Also Bl:= {x|lBe Qﬁ(x)S . andB;= txV Be Bﬁ(x)i
for all B & 4.

Definition 2,2.4. Let (X, § ) be a cqu. Ve say the bifilter @
on X is $ ~Cauchy if dn 8 # & for all 4 € dom & .

Clearly it is sufficient for this condition to hold for any base
of § .
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Proposition 2.3.2. Let (X, § ) be a cqu, A & X bidense for
(x, £,(8), t ($)), and x € X. Then QA(x) is a D -regular

%, ~Cauchy bifilter on A.
Ve omit the proof which is straightforward.

. A
Corollary 1. If A is bidense and & -embedded in X then Q@ “(x)

is a minimal DA—regular %A-Cauchy bifilter on A.

Proof. It remains only to show the minimality. Let @ be a dgCauchy
(necessarily DA-regular) bifilter on A with @ & Q A(x). Take

(P, Ve Q,A(x), and let 3 & ¢ be a base of § as in Defin-

ition 2.3.2 (a). Then we have (d, c)e ¢ with St(d,{x3)n A & P,
St(§x}, ddn A & § and (e, b) e /3 with (e, b) <) (d, c).
Since Q is SA-Cauchy 3 ReS with (Rn 4, Snia) € Q £ Q4(x).

Take R'eS' with x € R'n S'. Since e is open we also have (R'n 4,
s'h a) e @™Ax). It follows by Proposition 2.3.2 that R'M Ab,Sn A
and Rr\AbAS'F\A so that R'bS and RbS'. Now take UdV with Stb(e, R')
& Uand St (s'y, e)& V. ThenRE U E St(d,ix}) and s &=V &
St(¢x}, d) so RnA & P and SAA « Q which proves (P, Q) e Q .
Hence @ = QA(x), and gA(x) is minimal.

Since X is bidense and & ~-embedded in itself we have

Corollary 2. The nhd. bifilters (x) of (X, tu(S,), tv(s,))
are minimal D-regular & ~Cauchy bifilters on X,

e
With regard to the existfnce of minimal § -Cauchy bifilters

in general we have:

Proposition 2,3.3. Let (X, & ) be a cqﬁ with base 3 < § and L5

a bifilter on X. Denote by Q' the bifilter with subbase
Z(Stc(d, w), Stc(V, a)) | (a, ede ] .+ UE dom d, VE ran d and
(u, e B 3.

Then if ¥} is /5 -regular and $  ~Cauchy, ‘Q: is minimal D-regular
S ~Cauchy and is contained in QB .

*
Proof. That B is a bifilter with @° < @ 1is clear. Also if
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B is $ -Cauchy it is easy to see that @ is also. Now let Q
be , ~-regular and § -Cauchy, and let .4 be a & -Cauchy bifilter
with 6 < %. If (P, Q) e Q* 3 (44, cjdep ,i=1, 2 ..

s 0, U, € dom di and Vie ran di with (Ui, vi) cR,

Ntst, (a, u)} < Pand ) ise, (v, 41 & Q. Take any

(e, b) e § , and take (d, c)e § with (4, ¢) < (di’ ci),

1< 1i<«n, and (4, ¢) < (e, b). Since 4 is ¢ -Cauchy
we have UdV with (U, V) € 4 =« Q* & @ « If we take U' d, V',

with U < U'i, V< V'i we have (U'i,

and so U'iciVi and UiciV'i since Q 1s /3 -regular. Hence

Vi)e. Q and ('Ji, V'i) eg

LI il LY <A .
LA = StCi(di, Ui) and V', UtCi(vl, di)

and s0 U & P and V & Q. It follows that (P, G) & £ and so

A = Q* which proves that Q* is minimal & -Cauchy. Also
UdV = UcV =p ULV =» PbQ =» PDQ since b &€ ran § was arbit-
rary. Hence Q* is D-regular, and the proof is complete.

This result enables us to work almost exclusively in terms

of D-regular bifilters.

2.4+ CONFLUENCE QUASI-UNIFORM CONTINUITY.

In this section we define the notion of confluence quasi-
uniform continuity. As with the induced structure this involves
in an essential way our assumption that the cqu under considerat-

ion should be interior.

Definition 2,4,1. Let X and Y be non-empty sets, £ : X — Y a

function and ,1* a cqu on Y. Let ¢ be a confluence relation on

Y, and P, Q & X. Ve define the confluence relation f~1(c) on X

by:

P£(e)Q ey PiQord DPle £,(8), Q'e t (§) with Pleq!,
g#£ P < P and g # 1y ¢ q.

If 4 is a c-dual cover of Y then f-l(d) is defined by

pr(a)q &= 3 UaV with # £ £73(U) = P, g £ £H(V) = q.
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Hote that if d is an open c-dual cover of Y then f ~(d) is a

f_l(c)-dual cover of X.

If § is a cqu on X we shall say that £ is (§ j/*—) confl-

uence gquasi-uniformly continuous (cque) if for each open (4, ¢)

& s+ vwe have (f—l(d), f-l(c)) esS.

Note that it will be sufficient for this condition to hold for
all (4, ¢) € ¥V, where Y 1is a base of m with Y & s .

Ve may note the following examples of cguc functions. The

verification is trivial and is omitted.

(1)  The identity mapping i : (X, $ ) — (X, € ).

(ii) The injection mapping j : (4, SA) —> (X, $ ), where A =X
is § -embedded.

(iii) The canonical mapping 4 : (X, S ) —> (X, § ), where
(X, $ ) is the associated separated cqu of (X, § ).

Indeed in (i) and (ii) the cqu on the left is the coarsest for

which the corresponding function is cquc. (Initial cqu).

The following result is a trivial consequence of the definit-

ions.

Proposition 2.4,1. If f: X — Y is ($ -7 ) cquc it is
(x, ¢, (8), £ ($)) - (¥, t (), t,(m)) bicontinuous.

Definition 2.4.2. Let (X, $ ) and (¥, # ) be cqu. (X, & ) and
(Y,/~ ) are isomorphic if there is a bijective map f : X —» Y

so that f is (&% -/M-) cquc and f-l is Q/A - $) cque.

Definition 2.4.3. Let (X, § ) and (Y,/») be cqu, and g : X ~>» Y
a mapping. We shall say that (Y, M ) is an extension of (X, $ )
under g if

(a) (X, & ) ana (g(X), /Ag(x)) are isomorphic unde¥ g, and
(b) g(X) is bidense and M -embedded in (Y, # ).

If g(X) is in fact strictly M -embedded in Y we shall say (Y, ;o)
is a strict extension of (X, & ). Note that if (Y, m) is a
(strict) extension of (X, & ), then certainly (¥, tu(/A), tv(/*))

will be alstrict)bitopological extension of (X, t, (%), t,(8)).



105

ie note the following for future use,

Lemma 2.4.,1. Let f:X — Y be a function and m a cqu on Y.
(a) If £(X) is m -embedded in Y and 7Y s M is a base of/u

as in Definition 2.3.2 (a) then (d, ¢)& Y , U &€ dom d, V&
ran 4 and £ I(U) £ E(c) £7H(V) imply UcV.

(b) If £(X) is strictly s -embedded in Y and Y & m _1is a
base of s as in Definition 2.3,2 (b) then ¢ € rany and

f"l(<Pn f(x))‘;)f'l(c)f'l((Qn f(X)):) imply (Pn f(x))"uc(Qn f(x)):.

We omit the proof which is straightforward.

If we have an extension of a separated cqu we may form a
separated extension by forming the associated separated cqu. The

details are given below.

Froposition 2.,4.,2. Let (X,$ ) be a separated cqu, and (YﬁfL )
an extension (respectively, strict extension) of (X, § ) for the
mapping g. If (Y,/u-) is the associated separated cqu of (Y, M ),
and ¢ : ¥ — Y is the canonical mapping then (Y,/M-) is a
separated extension (respectively, separated strict extension)

of (X, S ) for the mapping g = ¢ og.

Proof. Since (g(X),/u_ (x)) is isomorphic to the separated space
(X, ) it follows that the relation ~ on Y reduces to the
identity on g(X), that is g(x) g{x) = $g(x)} for all x € X.
Hence g is a set isomorphism of X and §(X). Also g, being the
composition of the cquc maps g and ¢ is also cquc, Let us verify

é-l : é(x)-—+ X is Q)lé(x) -9) cquc. Now since 3—1 : g() —» X

is Q/*g(X) - %) cque, given (d, c)e § o 4 (e, b) E’}Ao with

(eg(x), bg(x)) < ((8-1)-1(d). (g-l)_l(c)). Ve may deduce from

this that (e. ((é-l)nl(d), (é-l)-l(C)). and the

STy
result follows at once. Hence é is an isomorphism of X and Z(X).
That $(X) is bidense in Y is clear.

Now suppose g(X) is J“ ~embedded in Y, and let ¥ & Mo be 2

base of s as in Definition 2.3.2 (a). Consider the base Y =
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£d, &1 (a4, eyl € ju_. Take (4, c)e Y , UE don d, Ve

ran d with (Un é(x))éé(x)(\'/n 2(X)). Then either Un £(X)n Vn &(X)
# @, in which event UGV follows at once, or we have P & £ (),
Q€ t () with PeQ, ¢ # PR E(X) & Un §(X) and # # Qn §(X) &

VA #(X). Then certainly l{’-l(P)c d71(Q), while & L(P)e t, ()
and (@) € t (M), and so (£7HRI 5K () (F7HDN o).
However o “2(P)n g(X) & o ~1(T)n g(X) = Ung(X) by Lemma 2.2.3,
Corollary 1, since U€ t (M ); and likewise o LDn ) &

Vn g(X). Thus (Ung(X))ec )(Vf\ g(X)), which implies UcV since

g(X
g(X) is _M -embedded in Y. Hence we again have UcV, and so g(X)

is /:-L -embedded in {' as required.

tu()A) and B & tv(/u.) it is easy to verify that

¢ ((An g(X))‘u), and
4 ((Bng())).

It follows easily from these results that if Y S M is a base

e . -t
(hn g5

(Bn &G0

of M as in Definition 2.3.2 (b), then the base y defined as
above for this Y also satisfies the conditions of Definition
2.3.2 (b). Hence g(X) is strictly /t:t -embedded in ‘.I, and the

proof is complete.

2.5 COMPLETENESS AND COMPLLTIONS OF CONFLUENCE QUVASI-UNIFORM-
ITIES.

Definition 2,5.1. Let (X, § ) be a cqu. ‘e shall say that (X, § )
is complete if each D-regular $ =-Cauchy bifilter on X is con-
vergent in (X, t (&), tv(S)).

Proposition 2,5.1. Let (X, % ) be a complete cqu, and A E S

o
a base of § . Then every B -regular $ -Cauchy bifilter on X

is convergent,

Proof. If ¥ is A -regular and S -Cauchy, and we construct Q°

S 3 3 *
as in Proposition 2.3.3, then Q is (minimal) D-regular and



$ -Cauchy, and hence convergent. However Q" ¢ ® so @ is

convergent also.

Let & be an interior separated cqu on X, and let ' (X) be

'

any set of § o—regular $ ~Cauchy bifilters on X which includes

the set § @(x) | x € X} of nhd. bifilters on X. We denote by j
the one to one map j(x) = @ (x) of X into M (X). Ve are going
to show how we may give ' (X) an interior confluence guasi-uni-

formity § with the property that (('(X), S ) is a strict
extension of (X, § ) for the map j. For 4 & X define

A= 1@\ Re (), A € ‘Qui , and
A% = 18 ) Qe M) and 3 (4, o) € §_ such that UV and
vew = U< i.
For B &€ X we define Bv and Bov in a similar way. Some important
properties of these sets are set out in the next lenma.
Lemma 2.5.1. For each A, B & X:
0

(a) 4° ¢ A ana 8° < B
u u v v

() 37Ha%) = 57Ha)

i

t,(%)-int{A), and

i

.~l,_ 0o ~1
j (B v) = j (Bv)

t ($)-intiB).

We omit the proof, which is straightforward.

If ¢ is a confluence relation on X we may define the confluence
relation ¢ on § (X) by

PTQ &> Pigor 3 Aet ($), Bet (%) with Aen, 4° € P
0
and B v = Qe
If & is a c-dual cover of X we define d on [ (X) by

PdQe 3 UdeithP=U°uandQ=V°v.

If (d, c) & § is open then d is a c-dual cover of " (). That
d &% is clear, To show the uniform covering of d is P () take
Q® € '(X) ana (e, b) € So with (e, b) <\ (d, c). Since @ is

S.-Cauchy we have ReS with (R, S) € @ . Also we have UdV with
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Stb(e, R) ¢ U and Stb(S, e) € V, and it is easy to verify that

R} e Uoun v°v; while by definition U°u Pt v°v.

Wie may now give:
Treorem 2,5,1. With the notation as above, 3 (d R BN (a, ¢)
e S ol is an open interior base for a confluence quasi-uniform-
ity § on " (x). (P(X),E ) is a strict extension of (X, &)
under the map j.
Proof. For (4, c), (e, b) € § _with (e, b) =< @I (d, ¢) take
ReS and UQV with St, (e, R) € U and 8t, (S, e) & V. If Q€
st (%, R°u) we have R'eS' with Q € R'°u and R°u'§ s'°v.
There are two cases:
(1) R°uns.ov #¢. Then 3 4 € R AS' by Lemma 2.5.1 (a), and
(R, 8') ¢ { implies RbS' since § is S o-regular.

(11) B° ns'® =g, Then 3 A€t ($), Be t ($) with AbB,

o
u

= j'l(Rou) = t,($)-int{R) = R by Lemma 2.5.1 (b). In the same

in

A R and B°v < s'°v. But then A = t ($)-intfAl = j"l(A°u)
way B &£ S', and so we again have RbS"'.
In either case we therefore have R' & Stb(e, R} € U, and hence
st~ (%, R° ) & u® . In just the same way St~ (5° ,% ) &
b '’ T T at b v?
Vov. Finally we clearly have b & ';, and hence ( e y b ) &ulx)
(d,7< ). This proves that £ (d , ¢ ) | (4, ¢) € Sof is a
base for a cqu S on M (X).
Now let us verify that for A, B &« X we have:
) * o _ I’
Law)) = 4% = tu(E) intla ] , and
1 0
Li(e)}; = B°, =t _( $)-int{s 1 ,

where the sets on the left are formed for the subset j(X) of the
bitopological space ([I'(X), tu(g). tv(.é)).

First take @ € [j(A)]:, then Q € G & tu(i) with G j(X) & j(A).
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Take (d, ¢) € &  with St( 4 J81) & G, and (e, B) & § o ¥With

(e, b) <) (4, ¢). Since ® is $ ~-Cauchy we have ReS with (R, S)
€ ®, and we have UdV with Stb(e, R) € U and Stb(S, e) & V.
Then Q € VQv and so Uou e st d Ji83) & G. Hence U £ A since
j is one to one. To show that ® € A° take R'eS' with S'e @ _.
Then (R, S') € Q s0 RbS' since Q 1is &o-regular. Ience R' &
St,(e, R) & U & 4, and R €& Aou as required. This verifies
[j(A')]: < 20,
If now @ e A% and (4, ¢) € §  satisfies UdV, V € G =
U & A, then it is easy to verify St( q i8)) < A s and 80

tu(g )-int [Au} . Hence Aou < tu(g )—int{Au] .

-~ L 4
Finally it is trivial to verify t ($)-intfa ) e Liw)] ,
and so the firt set of equalities is proved, The proof of the

other equalities is similar.

~ ~
It follows at once that £ (a , ¢ )| (4, ¢) € %ol is an

open interior base for § .

It is trivial to verify that j(X) is bidense in (' (X). Also,
using the above equalities together with Lemma 2.5.1 we may
easily show that the conditions of Definition 2.3.2 (b) are
satisfied for the base 1§ ( d vy e (g, o)e 20‘ of § , and

so j(X) is strictly Z ~embedded in T'(X).
It remains to show that j is an isomorphism of (X, $ ) and
(;(xy, Sj(X))' However this follows at once from the relations

(d! c) 4 (j-l( EJ(X)D j-l('\éj(x))o and

r~

~ c=1y~-1 ~1.-1
( dj(X)' cj(X)) - ((J ) (d). (J ) (C))

which are easily verified for any (d, ¢) € 30. This completes
the proof of the theorem.

The strict extension (T (X), § ) constructed above will not in

general be separated. As mentioned above (Proposition 2.%,2) we
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may obtain a separated strict extension by taking the associated
separated cqu. A second way in which we may obtain a separated
extension is to require that ['(X) contain only minimal § -
Cauchy bifilters. We know in any event by the corollary 2 to
Proposition 2.3.2 that the elements of j(X) do have this property.

We use this second method in the following theoren.

Theorem 2,5,2. Let PO(X) denote the set of all D-regular minimal
S ~Cauchy bifilters on the separated cqu (X, § ). Then ((1°(X),';

is a complete separated strict extension of (X, $ ).

Proof. By Theorem 2.5.1 we know that ( PO(X),E ) is a strict

extension of (X, $ ), so it remains only to show it is complete

and separated. Let B be a 5-regu1ar '§.-Cauchy bifilter on Po(x),

and set
8 =i, Q)1 PQex (°,)enl.

It is easy to see that @ 1is a D-regular $ ~Cauchy bifilter on
X. Construct W* as in Proposition 2.3.3 (for the base § 0! say);

then QA% e FO(X). Lot us show B converges to @ in I O(X).
Take (d, c) € %, Since d is a o-dual cover of Po(x) we have
Uav with QY e u°, AV° . Hence U7 = st( 3 ,1€3) ana A=
std®’}, q ). On the other hand Q* € U nV, implies (U, V) € @°
& @ and so (U°u, v°v) € B. Hence (S5t( 4 jfa'}), st@€'3, 4 )e
B for all (d, ¢c) e $ o and B —98‘ as required. This proves
that (P _(x), § ) is complete.

To show ( FO(X), § ) is separated take Q@ , A € Fo(x) with
Q£ . Say, for example, that Gu [« /{,u. Since ¥ is minimal
S -Cauchy and @° & Q@ we have @ = @* ., Hence 3 (4, c) & %o
and U € dom 4 with U€ Q and st (4, ) d 4u. Since @ is
D-regular we may deduce from this that f{, ¢ St( 3 A83), The
other cases may be dealt with in the same way, and we deduce that

(T‘O(X), tu(g ), tv(g)) is weakly pairwise T.. Hence ( PO(X), § )

0
is separated, and the proof is complete.
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Ye now give a theorem on the extension of cquec functions. This
is a basic step in proving that separated strict completions of

separated cqu are unigue up to isomorphism.

Theorem 2.5,3. Let (X,/u ) be a equ, (¥, ) a complete separated
cqu and A a bidense and strictly S ~embedded subset of X. If
the function f : A —> Y is (/Mh - %) cquc, and f(A) is S -

embedded in ¥, then f has a unique (/u - S ) cquec extension

f:@X  — ¥,
Proof. Take x € X. Since A is bidense in X, the nhd. bifilter
trace {5A(x) is a bifilter on A. Hence
L(x) =1, @) ), M) e 840 )
is a bifilter on ¥. Let A = So be a base of & with the prop-

erties of Definition 2.3.2 (a) for the & -embedded subset f£(4)

of Y. We will show that 4 (x) is s3 -regular and & -Cauchy.

Take any (d, ¢) e 3 . Then (f"l(d), £ e)) € M. Hence if U &
dom d, V € ran d and (U, V) & $(x) then (f’l(u), 1)) e QA(x),
and so f-l(U)f-l(c)f-l(V) since {3A(x) is D,-regular by Frop-
osition 2,3.2. Hence UcV by Lemma 2,4.1, and so 4 (x) is 13 -
regular. Next take (e, b) & pm  with (eA, bA) < (f-l(d). f_l(C)),
and ReS with x € Rn S, Since A is bidense (Rn.A)eA(Sr\A) S0 we

have U'dV' with RaA & £ 2(U) and Sna & £ 3(V). Hovever we
also have (Rn A, Sni) & *@A(x) and so (U', V') &€ 4 (x). Thus
A (x) is S -Cauchy.

It follows by Proposition 2.,5.1 that - (x) converges in Y,
and the limit is unique since Y is separated. Ve denote this limit

by ?(x), and in this way we have defined a function T: X — Y.

It is clear that if x € A then & (x) —> £(x) so in this

case f(x) = f(x). Hence f is an extension of f.

We now show that £ : X — Y is (4 =8 ) cque. Take (4, ¢)
€ 50, and (e, b) € ».3 with (e, b) <) (d, c). Since A is

strictly/pt—embedded in X we also have a base Y s with the
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properties of Definition 2.3.2 (b), and since (f-l(e), f-l(b)) &

My we have (g, a) e ¥ with (g,, aA) < (f-l(e), £7H(1)). Let

us verify (g, a) < (-f'-l(d), ?-l(c)). from which the required
result follows.

First take LgK. Since g is open we have (LnA)gA(ICn A) s0 we
have LeS with LnA & f—l(R) and KnA & f-l(S). Take UdV with
Sty(e, R) & U and 5t (S, e) &€ V. If x€ L then LnA & W€D
and so f(LnA) & bu(x). But f(Ln A) & R, so we also have R e
-6u(x). On the other hand there exists R'eS' with f(x) € R'nS'.

In particular S'e €v(x) since 4 (x) —> T(x). Hence (R, 8') €

4 (x), and so RbS' since 4 (x) is /3 ~regular. Hence T(x) € R' &
Stb(e, R) &€ U, and we have shown L & -i-"_l(U). In just the same

way we have K < ?_1(V), so it remains only to show a & -f-l(c).

By Lemma 2,3.1 it will suffice for us to verify that a, e['f‘l(c)]A.
To this end take Pa,q with PnQ = §. Then pf‘l(b)Q as a, & £ (b)

so 3 Pret (%), Qe t (8) withProar, F 4 e,y £ P
and @ # f-l(Q') & Q. Since f is the same as f on A we deduce that
TP )AL € P anda THQ)NA & Q. On the other hand P'cl' as
b € ¢, and so -f-l(P')-f"l(c)-f-l(Q'). Hence if we can show T L(P')
=3 tu(}l«) and ?I(Q') e tv(/&) we shall have

(F e (F e (T ),
that is P(-f-l(c))AQ as required. To show iy e tu(/*) take
z € THp'), that is T'2) & P'e Now take (h, a) &€ 3 with
st(nh, ¥(x) ) « P', (k, p) & 3 with (k, p) <) (h, q), and
(my, s) € ¥ with (m,, 5,) 4 (f-l(k), f-l(p)). Then repeating
the argument used above we see that St(m,{z}) & ?I(P'), and
hence ?_1(P') & tu(}*). Likewise ?1(Q') € tv(/*), and we have

completed the proof that a < ?"l(c). Hence T is (/M - %) cquc.
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Let us prove finally that the extension T is unique., Suppose
that ? : X —» Y is also cquc, and that ;(x) = T(x) = £(x) for
all x € A. Suppose that for some x € X we have }(x) # T(x). Since
(¥, $ ) is separated we see from Proposition 2.2.2 (c) that there
exists (d, ¢)e 3, U &don d, V& ran 4 with UZV and, say, U
€ *3u(¥(x)), Ve ‘Bv(f(x)). Since cquc functions are bicontin-
uous we have (-f_l(U)/\ A, f-l(V)r\A) € QA(x). It follows at once
that (U, V) e:-é(x), and so UcV since 4 (x) is /3 -regular. This
contradiction shows f = ;, and completes the proof of the theorem,

Ve may now state our uniqueness theorem.

Theorem 2.5.4. Let (X, $ ) be a separated cqu. Let (Y, a+) and
(Z, T ) be separated strict completions of (X, $ ) with respect
to the maps j and k respectively. Then (Y, #) and (2, T ) are

cqu isomorphic.
Proof. Let h : j(X) — Z be the map h = koj-l, and t : k(X)) = ¥

the map t = jok-l. Since the conditions of Theorem 2.,5.3 are

r7

satisfied for these maps we have cquc extensions h : ¥ — 2

and t : 2 —» Y. e complete the proof by showing that T = nL.

Take y & Y, and let h(y) = z € 2. Then with the notation as

in the proof of Theorem 2.5.3 we have ., (y) —» z, and so Q@ (z)

e £(y). If we set t(z) = y'y, then L (2) = y' and co Q (y')
S 4 (2). e wish to show that y = y'.

Suppose that y # y', and suppose j(X) = t(k(X)) is (sirictly)
M -embedded in Y relative to the base ,3 & v . Since (¥, m)

is separated we have by Proposition 2.2.2 (¢) that there exists
(4, c)e3 , Ue domd and V& ran d with st (d, Dt (v, a)

and, say, U e.S}u(y') and V & <3v(y). In particular we have G €
tu(‘c) with
z € Gand t(Gnk(X)) & U ....... (1),

Now suppose k(X) = h(j(X)) is (strictly) T -embedded in 32
relative to the base ¥ & To. \'e have (j-l(d), j-l(C)) e S so
there exists (e, a) e Y with
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k), xa)) < GTHA), 7R eeveee. (2,

and St(e,f{z}) & G ceeeees (3).

Finally (k'l(e), k" 1(a)) e § so there exists (g, b) €, with
G, 37Hm) 2 e, kMR e (B,
and St(iy}, g) & V ceesess (5).

Take ReS and LgK with z € RnS and y € LnK. Froa (1) we have

t(Rnk(X)) & U ceceses (B),
and from (5) we have
Ke V vesesse (7).

Also Kn j(X) € Q@ ‘J;CX)(y) 50
n(kn 3(x)) € 4 _(y) ceveess (8).

Now 371(L)571(s) 371 (K) so by (&) we have R'eS' with
it & kMR and 7R € kRS el (9
From (9) we have h(Kn j(X)) & S'nk(X) and so S§'& 6v(y) from
(3). On the other hand R & Lu(y) and so (R, S') € 4 (y). Ilowever
4 (y) is Y -regular and so
RaS' ceeesss (10).
Now X H(R")k (e 1(51) so by (2) we have U'dV' with
kIR < 57X(u') ana ks « j"l(v') eoe (11).
Since R & tu(’t) and S' ¢ t (7)) we have kRN s ) by
(10), so using (11), (6) and the fact (from (2)) that k-l(a) c

j-l(c), we deduce that j-l(U)j-l(c)j-l(V'). However j(X) is, in
particular, m -embedded in Y so from Lemma 2.4.1 (a) we see:

UeV'! R ¢ ¥-)
On the other hand from (9), (11) and (7) we have Lnaj(X) &
U'A§(X) and K j(X) & Va j(X). Ve deduce that 3-1(0%)3 1(b)371(V)

and hence from (2) and (4) we have j'l(uv)j'l(c)j'l(v)_ Using

Lemma 2.4.1 (a) again gives U'cV, and so V' & st (v, d). But
also U & Stc(d, U) and we have the contradiction Stc(d, U)c St(

V, d). Hence y = y' and it t, which completes the proof.
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Corollary. The complete separated strict extension of a separated

c¢qu is unique up to isomorphism.

2.6  COMPACTHESG.

The notion of compactness for a bitopological space can be
defined in very many different ways. Ve have already mentioned
some properties of uniform compactness, and the reader may
consult [7] fora discussion of several forms of bitopological
compactness, In this section we define compactness, modulo a
confluence relation, by using bifilters, and relate this to the

completeness of cqu.
Throughout this section D will denote (Y fc | c € ran.&ol if
we are discussing the bitopological space (X, t (3 )y pv(& ))

defined by a cqu S , but in the absence of a cqu, D may be
regarded as denoting any fixed confluence relation on X which is

interior for the bitopological space under consideration.

Ve will say the bifilter 8 on (X, u, v) is open if Qpn (uxv)
is a base of Q . Ve will say that x € X is a D-cluster point
(or just cluster point if there can be no confusion) of the

bifilter Q if x € JPn Q" for all (P, Q) & Q.
e may now give:

Definition 2.6.1. The bitopological space (X, u, v) will be called

D-compact (respectively, almost D-compact) if every D-regular

(respectively, every open D-regular) bifilter on X has a

D-cluster point,

Clearly a uniformly compact bitopological space is 1-compact.
With regard to the properties of a D-compact space when D is

bicompatible we have:

Proposition 2.6.1. If D is bicompatible and (X, u, v) is
D-compact, then every u-closed subset of X is v-compact, and

every v-closed subset of X is u-compact.
Proof. Let F be a u-closed subset of X, and X a filter of Vp-

closed subsets of F. Let ¥ be the filter on X generated by K ,
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and put 8 = Xx % . Then Q is an 1-bifilter and hence a D-

bifilter so it has a D-cluster point x. Illence x & DKn KD =

(v-c1IK]) (u-cilx]) for all X e X since D is bicompatible. Now
x € u-cllXy = x €& F so x € (v-c1llK1)nF = K, and T is v-compact
as required. The proof of the other result is similar.

Definition 2.6.2. The bitopological space (X, u, v) is D-normal

if whenever DAr)BD = J there exist G € u, H & v vith A & G,
B & H and GZI.

We now have:

Proposition 2.6.2. Let (X, u, v) be D-compact and D-prescparated,
and suppose that D is bicompatible and has the oup. Then (X, u,

v) is D-regular and D-normal.

Proof. Let T be u-closed and x¢ F. Tor ye F we have x ¢ u-cliy}
and so there exist x € U(y) € u, y& V(y) & v with U(y)pv(y).

Now by Proposition 2.6.1 we know F is v-compact so for some Yy
eee Y€ Fuwehave T & V=Uiviy)l lcisnl.AlsoxeU
= niU(yi)\ 1<«4i<ni and Ue u, VE€ v, UZV since D has the

oup. The case when F is v-closed is dealt with in the same way,

and we see (X, u, v) is D-regular since D is bicompatible.

Now take A, B with DA(\BD = ¢, and suppose that A & U e u,
Be V€ v implies UDV. Then § (U, V) A & U€& u, B & Ve v}

is a base for an (open) D-regular bifilter @ on X. Let x be a

cluster point of ¥ . If x¢ PAwe have xelHev, A € GE u

with GPII since (X, u, v) is D-regular. However G e.K3u implies

D . .
X € "G which contradicts GPZH. Hence x ¢ DA, and in just the same

vay we can show x € BD and we have a contradiction to DAr\BD =

#. This proves that (X, u, v) is D-normal.
Note that this last argument has actually established the following.

Corollary. A D-regular almost D-compact bitopological space is

D-normal.

It will be noted that if D is bicompatible then a D-normal

bitopological space is necessarily pairwise normal.



117
A D-compact space is certainly almost D-compact, but the
converse i1s not true in general. However we do have the following

result.

Proposition 2.6.3. A D-regular almost D-compact bitopological
* * L

space is D-compact.
Proof. Let @ be a D-regular bifilter, and define
®'= 3", Q)13 (P, PeQ, P < u-intlr'], Q & v-int[3'13.

Then Q' is an open D-regular bifilter, and so has a D-cluster
point x. However, because (X, u, v) is D-regular, it is easy to
see that x is a cluster point of @ also, and so (X, u, v) is

D-compact.

s and if
Corollary. If (X, $ ) is a cqu for which D has the oup, an( ;S
x, tu(S), tv(S)) is almost D-compact then (X, tu(S), t, S

is D-compact.

The assumption that a bitopological space be almost D-compact

imposes a restriction on D, as described below.
Definition 2.6.,3. The confluence relation D on (X, u, v) is
“ﬁ

s D D
conjunctive if PDQ =

PiqQ”.
Note that, as we are assuming D to be interior, it will be
sufficient for the above to hold for P & u and Q € v, Verificat-
ion of the following result is trivial and is omitted.

Proposition 2.6,4., 1If (X, u, v) is almost D-compact then D is
conjunctive,

Let us now note:

Proposition 2.,6.5. Let (X, $ ) be a cqu for which D is conjunct-
ive. Then if (X, t,($)s t ($)) is almost 1-compact it is D-

compact.

Proof. Let X3 be a D-regular bifilter, and (P, Q) ¢ @ . For
D
(4, ¢) & %o it is easy to verify Dy e Stc(d, P) and ¢° <«
P -
St_(Q, d4) and so, since D is conjunctive, Y3~ with base

Q(Stc(d. P)y st (Q, a)) \ (P, @Y &8, (4, c) e 3,03 is an
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open i~-regular bifilter on X, and so has an a-cluster point x.
Take ¢ & ran S,0 Xx€ Hevand d € don %o with St(lx}, d) & H.

Then we have (e’ b) < %0 with (e' b) o, (&) (d, C), and St(txxg e)
is a v-nhd., of x so St(ix3}, e)r\Stb(e' P) # #. Hence we have

ReS and R'eS' with x € R, PbS' and SAR' # . If now we take UAV
with St (e, R) < U and 5t,(S, ) & V then x& R & St (e, R)

€ U and so §' ¢ Stb(s’ e) € Vv & st(d,ixt) & H. Hence PbH.
However b & ¢, and ¢ & ran So was arbitrary, so PDH and we have

shown x € “P. In just the same way x e-QD: hence x is a D-cluster
point of W and (X, tu(%), tv(s )) is D-compact as required.

with regard to the converse, we have noted above that if
(X, EJ(%), tv(ﬁ)) is D-compact then D is conjunctive. If D is

bicompatible, and in particular, therefore, if D has the oup,

then it is clear that the D-compactness of (X, tu(%')' tv( L)
will imply that this space is also 1-compact.

Basic to the relation between these compactness notions and

completeness is the following.

Lemma 2,6.,1. A D-cluster point of a D-regular & ~Cauchy bifilter

is a limit point.
We omit the proof which is straightforward.

Proposition 2.6.6. If (X, tu(S;), tv( S)) is almost D-compact
then (X, $) is complete. '

Proof. Let X3 be a D-regular $ -Cauchy bifilter on X, and form
Q* as in Proposition 2.3.3 for the base $.o. Then Q" is an

open D-regular bifilter so it has a cluster point x, and this
point is a limit point of B®* by Lemma 2.6,1 since Q* is § -
Cauchy. But then x is also a limit point of 13 , and so0 (X, S )

is complete.

Uith regard to the definition of a suitable "total bounded-

ness'" property we consider the following.

IB,1. For each D-regular bifilter Y} there exists a D-regular
bifilter A such that given (P, Q) e Y8 and d & dom &
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there exists U4V with (U, V) e 4,. PDV and UDQ.
IB,2. For every open D-regular bifilter X} there exists 4 as

above.

For every D-regular bifilter @ , (P, Q) ¢ \@ and d & dom
%o there exists UdV with PDV and UDQ.

[j
[ws)
D)

TB.4. TFor every open D-regular bifilter & , (P, Q) e Q and
d & donm so there exists UdV with PDV and UDQ.

=]
s
°

Every maximal D-regular bifilter is S-Cauchy.

3
oh

B.6. Every maximal open D-regular bifilter is $ -Cauchy.

|

We have:
Proposition 2.6.7. (x, tu(S>), tv( %)) is D-compact (respectively,

almost D-compact) if and only 1f (X, $ ) satisfies TB.1 (respect-
ively, TB.2) and is complete.

We omit the proof which is straightforward.

The following relations between the above propérties follow

at once from the definitions.
TB.6 => TB.2 = TB.4

In order to obtain conditions under which these properties are

equivalent we make the following definition.

Definition 2,6.4. Let (X, & ) be a cqu. We say D is & -compatible
if for G e tu( $), He tv( %) with GDH, and 4 € dom %,+ we have

e € dom ®, with e <« d and ReS with RDS, R & G and § & H.

Note in particular that if for & we have D = 1 then certain-
ly Dis S -compatible.

Proposition 2.6,8. Let (X, & ) be a equ for which D is & -
compatible and has the oup. Then all the conditions TB.i, i = 1,

e++y 6, are equivalent.
Proof. It will suffice to show TB.4 = TB.,6 => TB.5.

IB.4 => TB,6. Let @ be a maximal open D-regular bifilter. Take
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(4, ¢) e S’o and (e, b) ¢ S,o with (ey b) <2y (4, c). For (G, H)

© Qaluxv) let

U(G, H) = U{L\L & Gand 3 T < H with LDT and LT for
some f & dom 50 with f < e },
VG, H) = UYTI| T <« Hand 3 L G with LDT and Lf¥ for

some f & dom so with £ < e 3.

Because D is © -compatible it is easy to verify that
t (u(g, H), V(G, H)) \ (G, H) € R (uxv) }

is a base for an open D-regular refinement of 3 . Hence

(v(a, nH), v(G, H)) € ® for all (G, H) € B n (urv) since @ is
a maximal open D-regular bifilter. By TB.4 we have ReS with

U(G, H)DS and RDV(G, H). Take UdV with Stb(e. R) € U and 5t (5, e)

< V. Since D has the oup 3 L < G, T & H with LDT, LDS
and LfT for some f & dom So with f <« e. Take R'eS' wvith L &« R'
and T & S', Then R'DS and so R'bS. Hence T & §' & Stb(S, e)

& V, and it follows that GD(HAV) for all (G, H) € B (uxv).
This means that

t (G, HaV) | (G, H) € R (uarv)}
is a base for an open D-regular refinement of X3 , and so V €& ‘QV

by the maximality of Y3 . In the same way RDV(G, H) leads to
Ue B ,» and so (U, V) € Q@ which proves that '@ is % -Cauchy.

IB.6_=> TB.5. Let X3 be a maximal D-regular bifilter, and set

Qu(l) = {P\ P egu’ 3 (P" Q') (- Q with Pr\P'f\Q' ::¢1'

2
Qu( ) = ® Q] (1); and make a corresponding definition of
u u

Q} (1)

v and B V(Z). Because of the maximality of Y , and the

fact that D is interior, it is easy to verify that P € Qu(l)

= tu(g)-int\PX € ‘Gu(l), with a corresponding result for Gv(l),

It follows that

(1, (5)-tntled lr €8 P10l seca, 2y 1 2 ca @ ae dom§ 1) X
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(itv(S)-intim \Q ¢ ev(l)lui st(Q, d) \ Q & Qv(a), d €dom§ 3)

is a base of an open D-regular bifilter ' contained in B ,
Let A be a maximal open D-regular refinement of 3 '. By TB.6
A is $ -Cauchy. Hence for (4, ¢), (e, b) & S, with (e, b) < x)

(d, ¢) we have ReS with (R, S) & 4 . Take UdV with st (e, R) = U

and Stb(s, e) « V, and (p’ Q) e Q. IfP e Gu(l) or Q G:Gv(l)
we see at once that.(P(\U)D(Qf1V), so suppose P & <3u(2) and
Q e ‘Gv(z). Then we have Pn Q € 'Qu(a) N GV(Z) because of the

maximality of ® , and hence
(Rast(e, PAQ))ID(SASL(PNRQ, e).

Since D has the oup we then have R'eS' with R'DS and S'nPNnQ
# 8. In particular R'bS and so S' & st (5, e) = V which gives

VAPnQ # &, that is (P)D(QAV). Likewise (Pn U)D(Q), and we deduce
from the maximality of ¥ that (U, V) € Q. Hence @ is § -

Cauchy, and the proof is complete.

Corollarz. A pairwise completely regular i-compact space is
uniformly compact.

Proof. By Proposition 1.7.1 we have a compatible quasi-uniform-
ity S , and we may form the compatible cqu & ' with D' = 1 asg
in Example 2.1.1. By Proposition 2,6.7, (X, $') is complete

and satisfies TB.1; hence it satisfies TB.5 by the above result.
Hence every maximal 1-regular bifilter is convergent, and so X

is uniformly compact by Lemma 1.7.2.

It is a well known, and entirely trivial fact, that in a
topological space a cluster point of a maximal filter is a limit
point. The next prbposition gives a partial generalisation of
this result for bifilters.

Proposition 2.6.9. Let (X, $ ) be a cqu for which D is & -
compatible and has the oup. Then a D-cluster point of a maximal
D-regular bifilter, or of a maximal open D-regular bifilter, is

a limit point.
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Proof. The proof of the case where X3 is a maximal open D-regular
bifilter follows exactly the same steps as the proof of the
implication TB.4 => TB.6 above., Moreover if Q@ is a maximal
D-regulér bifilter we may consider Q' and Aﬁ as in the proof
of TBs6 =5 TB.5. Because of the maximality of ¥ it is not
difficult to verify that the bifilter with base

t (st,(a, @, stp(E, 4)) | (&, H) € 4 nluxv), d € dom $°§

1s contained in @ . We may deduce from this that if x is a D-
cluster point of Y3 it is a D-cluster point of J, also. However
A is a maximal open D-regular bifilter so by what we have

noted above x is a limit point of A4 . However it is not difficult
to deduce from this that x is a limit of X3 , and the proof is
complete,

It is clearly of vital interest to know when a total bound-
edness condition will carry over to a extension. Let us make

the following definition.

Definition 2.6.5. Let (X, u, v) be a bitopological space, D an
interior confluence relation and A & X. Then A i3 D-embedded in

% it GDH whenever G € u, H € v and (GnA)D,(HnA).

Verification of the following result is trivial, and is
omitted.

Proposition 2,6.10, Let A & X be bidense and D-embedded in the

¢qu which satisfies TB.2, TB.4 or TB.6 so does (X, S ).

In general strictly % -embedded would not seem to imply
D-embedded, but we do have the following result.

Proposition 2,6,11. Let A & X be bidense and strictly S -
embedded in X for the bitopological space (X, £, (%), t (9)),

and suppose that DA has the oup. Then A is D-embedded in X,

and D has the oup.

11

‘e omit the proof,‘which is straightforward. We may state the

following as an immediate corollary to the above results.

Eﬁggggﬂ 2.6.1. Let (X, %) be a separated cqu which satisfies
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TB.2, and for which D has the oup. Then the separated strict

extension (\"O(X), 3) is D-compact.

2.7. D-EYPERFILTERS.

In this section we examine bitopological compactness from

a different viewpoint, by introducing the notion of D-hyperfilter.

2222&1&135 2e7¢l. Let D be an interior confluence relation on
the bitopological space (X, u, v), regarded as a subset of
() x e(x). By a D-hyperfilter on X we shall mean any filter
on D. ie say the D-hyperfilter X is open if it has a base

whose elements I satisfy F & uxv.

Clearly any D-hyperfilter finer than an open D-hyperfilter
is open, so the terms "maximal open" and "open maximal" have

the same meaning when applied to D-hyperfilters.

~%e shall find the following notation and terminologzy useful.
If X is a D-hyperfilter, Fe % and P, Q & X, we say that
(P, Q) dominates F, and write F 4 (P, Q), if (L, K) &€ F =>
L =P and X € Q. We will say that (P, Q) weakly dominates F,
and write F <& (P, Q), if (L, K) € F => LDQ and PDK.

There is a natural link between D-hyperfilters and D-regular
bifilters, as follows. Let ® be a D-regular bifilter on X, and
for (P, Q) € @ let F(P, Q) = 1 (PAP', Qg ' (@', ¢V e g }.
Then L F(P, Q) \ (P, Q) ¢ } } is a base for a D-hyperfilter
h(®) on X, Conversely, if X is a D-hyperfilter on X, then
(%) ={(P, Q) 3 Fex,Fa (P, Q 1 is a D-regular
bifilter on X. To describe the set of D-hyperfilters vhich have
the form h(®) we make the following definition.

Definition 2.7.,2. The D-hyperfilter 3 is dominated if it has

a base ' satisfying

(a) (LyK) eFed' = 3 F'e X' with F' & (L, X),

(b) Fe X1 = a2 (L, K) e F with F 4 (L, k).

(¢) (L,K) e Fe %' and (L', K') ¢F' ¢ L' =» (Lal', Knk")
€ FAF!

() Te X', Fa (y, V) = 3 F're X with (U, V) e 7',
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Now we may state:

Proposition 2,7.1. (1) h(®) is dominated for all D-regular
bifilters 3 , and ® = b(h(Q)).

, (ii) Let X be a D-hyperfilter. Then
h(b(X)) = =X if and only 1f =\ is dominated.

Corollary. h is a one to one mapping of the set of D-regular
bifilters onto the set of all dominated D-hyperfilters, and the

restriction of b to this set is the inverse of h.

We omit the proof of the above‘statements, since they are a

matter of straightforward verification.

Note also that the maps h and b preserve the property of
being open, which we have defined for bifilters and D-hyperfilters.,

We may define the notions of "limit" and "cluster point"

for a D-hyperfilter in several ways, as detailed below.

Definition 2,7.3. Let § be a D-hyperfilter on (X, u, v). le

say that x X is

(a) A weak cluster point of X 1f x e DPnQD whenever F & X
and F @ (P, Q).

(b) A cluster point of X if whenever (M, N) € B(x) anda Fe X
we have (P, Q) € F with PDN and MDQ.

(¢) A weak limit point of ¥ if for (M, N) € @ (x) there exists
Fe X with F «> (M, N).

(d) A limit point of % if for (M, N) ¢ Q (x) there exists
Fe X with F 9 (M, N).

If X is a D-hyperfilter for the cqu (X, $) we say X is
5 ~Cauchy (respectively, weakly & ~Cauchy) if given d € S’o

there exists UdV and F € ¥ with F < (U, V) (respectively,
F <> (u, V).

We list below some easy consequences of these definitions.

Lemma 2,7.1. Let X be a D-hyperfilter on X. Then:

(1) x is a weak cluster point of X if and only if x is a
cluster point of b(7).

(11) x is a limit point of X if and only if x is a limit
point of b(=xX).



(1i1) X is § -Cauchy if and only if b(%) is § -Cauchy.

Corresponding results may, of course, be stated for the

mapping h. It is immediate from the above that:

Provosition 2,7.2 The bitopological space (X, u, v) is D-compact
(respectively, almost D-compact) if and only if every D-hyper-
filter (respectively, every open D-hyperfilter) on X has a weak
cluster point. |

Before going on to characterize completeness in terms of
D-hyperfilters we shall find it convenient to make the following

definition.

Definition 2.7.4. Let % be a D-hyperfilter on the cqu (X, $ ).
We will say { is  -refined if given d & dom go there exists

Fe X withF < dand T & uxv,

In particular it will be noted that a § -refined D-hyperfilter

is open. Ve now have:

Proposition 2.,7,3. The following conditions on the cqu (X, $ )
are equivalent. |

(1) (X, $ ) is complete.

(i1) Every & «Cauchy D-hyperfilter on X is convergent.

(11i) Every ¢ -refined & ~-Cauchy D-hyperfilter on X is converg=

ent,

Proof. (i) =5 (ii) => (4ii) are trivial, so it remains to
prove (iii) =5 (1), Let ® be a § -Cauchy D-regular bifilter
on X, and consider the D-hyperfilter Y with base { K(d) | d &
dom 30 1 , where

K(a) = L(r, s) \ RDS, F 4 (R, S) for some F € h(®) and ReS
for some e € dom § with e < d 3.

It is clear from the definition that Y& is & -refined, let us
show that it is also & -Cauchy. Take (d, c¢) € So and (e, b) &

So with (e, b) <) (d, ¢). Since Q® is $ -Cauchy so toeis

h(¥®), and hence we have ReS and F & h(Q ) with F < (r, 8).
Take UdV with Stb(e, R) € U and Stb(S, e) « V, and take (L, K)

& K(e). Then we have f & dom &o with f <4 e and LfK, and also
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F'en(®Q) with F'a (L, K). Take R'eS' with L < R' and X & §',
then we have F' <« (R', S'). Now Fao F' € h(Q) so we have (G, I)
€ Fn F', and GDH since h(¥}) is a D-hyperfilter. VWe have G &
RnR' and # & Sn S', so RbS' and R'bS. Hence L & R' & Stb(e, R)

& U, and likewise K & V. This shows K(e) <« (U, V), and so
X is § -Cauchy as stated. Let x be a limit point of ¥ , and
take (M, N) € Q (x). Then for some d € & o We have K(a) «a (1, N).

"

Take (R, S) € K(d), and F € h(Q) with F <@ (R, S). Then F &
(M, N) s0 x is & limit point of h(®), and hence of Q¥ , which
completes the proof.

Pelow we give without proof some useful relationships which

exist between the concepts introduced in Definition 2.7.3.

Lemma 2,7.2. (a) A weak limit point of a % -refined
D-hyperfilter is a limit point.

(v) A cluster point (and, in particular, a weak
limit point) of a $ ~Cauchy D-hyperfilter is a limit point.
(¢) A cluster point of a maximal D-hyperfilter

is a weak limit point.

(d) Every weakly & ~Cauchy § -refined D-hyper-
filter is ¢ ~Cauchy.

(e) A convergent (respectively, weakly convergent)

D-hyperfilter is $ -Cauchy (respectively, weakly % -Cauchy).

The following bitopological compactness and completeness
properties may be defined quite naturally in terms of D-hyper-.
filters. We will see later to what extent they coincide with

pPreviously discussed properties.
Definition 2.7.5. The bitopological space (X, u, v) will be

called D-hypercompact (respectively, almost D-hypercompact)
if every D-hyperfilter (respectively, every open D-hyperfilter)

on X has a cluster point.

The cqu (X, & ) will be called ' -hyvercomplete
if every weakly $ ~Cauchy D-hyperfilter on X is weakly converg-
ent.

It is clear from the results mentioned above that an (almost)
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D-hypercompact bitopological space is (almost) D-compact, while
a hypercomplete cqu is complete. To examine the relation between
these concepts in more detail we consider the following

conditions of "hyper-total boundedness".

HTB.1. Every maximal D-hyperfilter is weakly ¢ =-Cauchy.

HTB.2. Every maximal open D-hyperfilter is weakly § =~Cauchy.

HTB.3. Every maximal ¢ ~-refined D-hyperfilter is ¢ =~Cauchy.

HTB.4. Given 4 e dom §, there exists U,d,V,, 1 = 1, 2, essy 1,
withX:U{UinVil l=i<ni.

First let us note the following:

Lemma 2.7.3. Each of the following conditions on the cqu (X, &)

are eguivalent.
(i)  HTB.3.
(ii) Given any base pRE (‘o of § and any (d, c)e $ o there

exists U,d.V., 1 =1, ..., n with U,

(e, b) € A with (e, b) < (d, ¢) we have ReS and RDS imply

DVi, and so that for some

Uka and Rka for some k, 1< k < n.

(i1i) Given any {4, ¢) e,E>o there exist Uidvi, i=1, ...y n,

with U.DV, and so that for some (e, b) « S>° with (e, b) < (4, ¢)

k k
Proof. (1) =» (ii). Suppose (ii) is false, then we have (d, c)
[N o and a base e 50 of § so that, if a is any finite

we have ReS and RDS imply U, bS and RbV, for some k, 1 « k <« n.

subset of d and (e, b) € B satisfies (e, b) < (4, ¢), then
there exists ReS with RDS so that U¥S or RYV for all (U, V) € a.
It follows that, if for each (d', c¢') & so we set

Fa(d', ¢') = f (r, 8) | RDS and 2 (e, b) e A with (e, b) <«
(d', ¢') so that ReS and RYV or UYS for all (U, V) €a },
then § Fa(d', c')V (a', ¢') € $>o, a is a finite subset of d }

is a base for a D-hyperfilter X on X. It is clear from the
definition that % is S -refined, and so by (i) it bas a § =~
Cauchy refinement 4 . Take Uodvo and He 9y with H < (Uo. V°>’
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and let a_ = { (U, V)}. Then F (d, c) € X & d} . Take (R, S)
0 o' ‘o ao

€ HaF_ (4, c). Then RDS, and for some (e, b) €3, (e, b) =
a, ‘

(d, ¢) we have ReS and Rjo'vo or Uob's. But R & U, S & V_ so0

RS which contradicts RDS. Hence (ii) is satisfied.
(ii1) = (iii). Trivial.

(iii) = (i). Let X be a maximal § -refined D-hyper-
filter, and take (d, ¢) € $ . Take (e, b) & §  with (e, b) <

(d, ¢). By (iii) we have R eS., 1 =1, 2y «e0y 1, with R, D5, , and

i
(£, a) € $ _ with (f, a) < (e, b), so that LfK with LDK implies

LaSk and SkaK for some k, 1 € k < n. For G e X and k, 1 & k

£ n, let us set

k
G =§ (L', k") | (L', K') €eGand 4 LfK, L'E L, K' & K, so
that LaS, and R ak 3.

Now it is not difficult to show that for some k, 1 < k = n,

k
it gex { is a base for a D-hyperfilter ‘& . Moreover,

k

since G° & G and X 1is maximal we see that =X = "& , and so

k
‘e X for this value of k and all G € X ., However if we take
UdV with Stb(e, Rk) & U and Stb(Sk, e) & v it is easy to see

that Gk <} (U, V) for any G, and so 3,; is & ~Cauchy as required.

Corollary. HTB.i =% HTB.(i + 1), 1 =1, 2, 3.

Under certain conditions on the interior confluence relation
D some of these properties are equivalent. We may note the

following:

Proposition 2.7.4. (a) If D is conjunctive then HTB.4 = HTB.1
(b) If D 48 $& ~-compatible then HTB.3 =» HTB.l
(¢) If D has the oup then HTB.2 =» UTE.l.

Proof. (a) Let @ be a maximal D-hyperfilter, and take (d, c)
€ S .+ By HTB.A we have UydVi, 1 = 1, 2, vuy n, with UL U n V

(o] iy
1< 1% nld =X, and without loss of generality we may suppose

g}
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UinVi # @ for each i. For 1 < k < n let us set

Fk = {(g, ©) | (G, H) € f‘, GDVk and UkDH i,

where f € X . Using the fact that D is conjunctive we may easily see
that for some k, 1 € k £ n, the set { P | F & X }1s a base
of a D-hyperfilter refinement of = . Hence, by the maximality

of % , for this k and any F &€ & we have I‘k € L . However P

(Uk’ Vk). and so X is weakly O ~Cauchy.

(b) Let X be a maximal D-hyperfilter, and take (d, c) € L,
Take (e, b) € go with (e, b) <) (d, c). By Lemna 2.7.3 (iii)
we have R.eS., 1 = 1, 2, ..., n, with R, DS ; and (fy a) € §
with (f, a) < (e, b), so that LfK with LDK =3 k, 1 £ k < n,
with LaS, and R aK. If we take U, dV, with Stb(e, Ri) & U, and

St. (S., e) & V., then the remaining steps are as in (a) above,
b 1 l' ‘

except that we use the & =-compatibility of D in place of the

conjunctivity.

(¢) Let X be a maximal‘D-hyperfilter, take F « X and
d & dom so, and let Fy = {(stD(d'. L), stD(K. an v (L, x) €r,

d' € dom & , d' < d . It is clear that
t ;Y Fed, d€dom S 3

is a base for an open D-hyperfilter. Let % be a weakly § -
Cauchy D-hyperfilter refinement. For (d, ¢) € & o and (e, b) €&
%, with (e, b) < &) (4, c) take R eS_and K ¢ ¥ with X <
(Rys 8,), and take U dV_ with 5t (e, R)) & U_and St (s , e)
S V, . Then using the fact that D has the oup it is easy to
see that each F € X contains some (G, H) with GDVo and UODH,

and the proof may then be completed as in (a) and (b).

The next proposition tells us something about the relation

between completeness and hypercompleteness under rather restrict-
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ive conditions.

Proposition 2,7.5. If (X, § ) is complete and satisfies HTB,3
then it is hypercomplete.

Proof. Let X be a weakly $ =Cauchy D-hyperfilter. For d €

dom 30 define

H(d) = §(R, S) 1 RDS, 3 F e withF<> (R, S) and 1 e €
dom So with e <« d and Res }.

Then it is easy to verify that

' tE@ | dedomS 3
is a base fof~a S -refined D-hyperfilter <¢b on X. Let %' be
a maximal refinement of ¥ ; then §¥' is S ~-Cauchy by HTB.3,
and so has a limit point x & X. However it is easy to verify

that x is in fact a weak limit point of 3} , and the result is
proved. ‘

We may now éive:
Theorem 2,7.,1. The following are equivalent for the cqu (X, $).
(1) (x, t,( $), tv( $)) is almdst D-hypercompact.
(11) (X, $ ) is complete and satisfies HTB,2.
(111) (X, $ ) is hypercomplete and satisfies HTB.2.
(1v)  (x, tu( $), tv($ )) is D-hypercompact.

Proof. (i) => (ii). By Proposition 2.7.3, completeness will
follow if we can show that every § -refined ¢ =-Cauchy D-hyper-
filter % 4is convergent. However such an >} is open and so has
a cluster point x, while < converges to x by Lemma 2,7.2 (b).
To verify HTB,2 let & be a maximal open D-hyperfilter, < has
a cluster point x, x is a weak limit point by Lemma 2.7.2 (c),
and hence ¥ is weakly $ =Cauchy by Lemma 2,7.2 (e).

(ii) = (iii). This follows from Proposition 2.7.5 and
the Corollary to Lemma 2.7.3.

(1i1) => (iv). Let % be a D-hyperfilter on X. For
each F € ¥ and e e dom S, define

Fle) = § (p, Q)Y 3 (P, VEF withPAg =g, P' = t (8 )-int[p)
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and Q' = tv(S )-intfQl, or 4 (P, Qe F with PNQ # & and

e'e dom So with e' <« e so that P'e'Q'.'and P'AnQ'nPAQ #¢13.

Since D is an interior confluence relation on (X, tu(S )y tv( S
it is immediate that

{ Fle) Fe%,eedomﬁol

is a base for an open D~hyperfilter X' on X. Then if & is a
maximal open refinement of X ', 4 is weakly $ -Cauchy by
ETB.2, and hence 4% has a weak limit point x. Let us show that
x is a cluster point of % . To this end take (M, N) € Q(x)
and (d, c¢) & S, with st(d,Ix}) = M and St(txy, d) & N. Now

take (e, b) € § o Vith (e, b) <w) (d, c), and ReS with x € Rn S.

Then (R, 5)€& R(x) so § He<f with H @ (R, S). Now for
F& <3 we have Fe) e X'= gt so I (P!, Q') € F(e)nH. If
P! = tu(s )-int{P}, Q' = tv(%)-int[Q] for some (P, Q) € F then

clearly PDN and MDQ. On the other hand if P'e'Q' for some e'é€
dom So with e' 2« e and P'n Q'nPnQ # # for some (P, QJE F

then it is easily verified that MANaA PN Q # @, and so azain
PDN and MDQ. Hence x is a cluster point of X\ as required.

(iv) =» (i). Immediate.
Corollary. For a pairwise completely regular space (X, tu(S. ),
tv(% )), where (X, $ ) is a cqu for which D has the oup, the

notions of D-compact, almost D-compact, D-hypercompact and almost
D-hypercompact are all equivalent to the requirement that
(x, tu($ ), tv(S.)) should be uniformly compact and D conjunctive.

Proof. 1In view of previously established results it remains
only to verify that under the given conditions D-compactness

implies D-hypercompactness. Suppose that (X, tu(S ), tv(S)) is

D-compact, then in particular (X, & ) is complete and D is
conjunctive. Also, for the conditions stated, (X, tu(S), tv(& ))

is uniformly compact (see the comment after Proposition 2.6.5
and the corollary to Proposition 2.,6.8), and so (X, & ) clearly
satisfies HTB.4. But then it satisfies HTB.2 by Proposition 2.7.k4
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and the corollary to Lemma 2.,7.3, and the result now follows

from the above theoren.

Note. Since the conditions of the above theorem imply that D
is conjunctive we could of course replace HTB.2 by HTB.1 in (ii)
and (iii). However HTB.2 is the weakest form of this axiom for
which I have been able to establish (iii) =»> (iv) in general.

In the absence of completeness the relation between the
"TB" and "HTB" conditions does not seem very clear in general.

However we may note the following results.

Proposition 2.7.6. (a) If (X, S ) satisfies UTB.4t and D is
conjunctive then (X, $ ) satisfies TB.l.

(b) If (X, &) satisfies HTB.3 and D is
% ~compatible then (X, & ) satisfies TB.5.

Proof. (a) Let @ be a D-regular bifilter on X, and consider
the D-hyperfilter h(¥d). For d € dom S, define

T(d) = §{ (R, S) | RDS, ReS for some e & dom So with e < d, and

F€ n(®) = A (G, H) € F with GDS and RDH } .

Using the conjunctiveness of D and the fact that (X, § ) satis-
fies HTB.4 it is not difficult to verify that

t T(a) ) a€ dom$S 1§

is a base for a $ -refined D-hyperfilter % . Let 4P be a
maximal, necessarily & -refined, D-hyperfilter with X H .
 is $§ ~Cauchy since HTB.3 is satisfied (Proposition 2.7.4
(a) and the corollary to Lemma 2.7.3). Let f = b{(4¥). Now take
(P, Q&€ ® and d e don S+ then T(d) € % & g and F(p, () €

h(B ). Also take UdV and H'e% with H a (u, V). Then H'n T(d) e
<% 50 A (R, S)€ HnT(d). Hence R © U, S & V, and J (G, K)
€ F(P, Q) with GDS and RDH. However F(P, g) 4 (P, Q) and so.
PDV and so PDV and UDQ. Finally (U, V) € b@%) = 4, , and TB.l1
is verified.

(b) Let 3 be a maximal D-regular bifilter and consider
the D-hyperfilter h(®). For Fe h(®) and 4 & dom &o define

. |
F* = § (R, S) | RDS, ReS for some e & dom {, with e < d, and
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3 (P, Q€ F so that either R € P, S = Qor RASAPnQ # ¥ i.

Since D is § -compatible it is clear that
{trd 1 Fen(w), dedoms ]

is a base of a & -refined D-hyperfilter =§ . Let < be a
maximal refinement of =X , so that §% is & ~Cauchy by HTB.3.
Hence we have UdV and H € b with H @ (U, V). However it is
trivial to verify that if (P, Q) ¢ @ then (Pa U)D(QNV), and

so Qv {(u, )} is a base for a D-regular refinement of @ .
Since B is maximal this implies (U, V) & X3, and we have shown

that X34 is § -Cauchy as required.
Let us also note the following result:

Proposition 2.7.7. If (X, $ ) satisfies HTB.1l (respectively,

HTB.2) then every maximal (respectively, maximal open) dominated
D-hyperfilter is weakly & -Cauchy. Moreover, under these latter
conditions, if (X, $& ) is hypercomplete then (X, tu( %) tv( $))

1s D-compact (respectively, almost D-compact).

Proof. Let (X, S ) satisfy HTB.l, and let % be a dominated
D-hyperfilter with base =\ ' satisfying (a) - (d) of Definition
2¢7+.2. If ¥ is a (not necessarily dominated) maximal refinement
of ¥ then 4% is weakly & ~=Cauchy. Take d € dom &, UdV and

He 6 with H <> (U, V). If F'e X ' and F' <« (L, K) then
F'AH # # so LDV and UDK. Now take F & X ', then by (a) if (L, K)
€ ¥ we have F' ¢ X ' with F' 4 (L, K), and so LDV, UDK by the
above. Hence F <> (U, V), that is ={ is weakly & =-Cauchy.

Now assume that all the maximal dominated D-hyperfilters
are weakly 4 -Cauchy, and let ® be a maximal D-regular bifilter.
Using Proposition 2,7.1 it is easy to verify that h(Q@) is a
maximal dominated D-hyperfilter, and hence weakly $ =-Cauchy.
Thus, if (X, $ ) is hypercomplete, h(®) has a weak 1limit point
X. In particular x is a weak cluster point of h(Q®), so ¥ has
a cluster point by Lemma 2.7.1. It follows at once that (X, tu(5>),

tv(S )) is D-compact.

The remaining cases are dealt with in just the same way.
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We now examine some conditions under which the '"HTB" axioms

carry over to an extension.

Proposition 2.7.8. Let (X, ) be a cqu, A € X bidense and
D-embedded. Then if (A, sA) satisfies HTB.2 so does (X, §).

Proof. Let X be a maximal open D-hyperfilter on X, and X'
an open base of X% , For F & 3\ let

F, =1 (LnA, Kna) | (L, K) €F]J.
Then { FFIFe X } is a base for an open D,-hyperfilter :kA
on A. Let /g be a maximal open DA-hyperfilter refinement of
:S‘A on A. Then Ia is weakly SA—Cauchy so given d € dom (‘o

we have UdV and G € iso that G «@> (Un A, VaA). Now let

t ', @)V pDg', Pr e £ (8), @' e t ($) and P = P'n 4,

Q € Q'n A for some (P, Q) € G}.

It is easy to verify that Fn G* # ¢ for each Fe X', and so
G'e X as :L is maximal. However since A is D-embedded in X
we see that G¥ <« (U, V), and so =% is weakly & =-Cauchy as
required. -

.

Corollary. Let (X, $ ) be a separated cqu satisfying HTB.2,
and suppose that D has the _oup. Then the separated strict
extension (I (X), %) is D—hypercompact.

Proposition 2.7.9. Let (X, $ ) be a cqu, A & X bidense and
strictly § -embedded. Then if (A, SA) satisfies HTB.3 so does
(x, S )u

Proof. This result follows trivially from the characterizations
of HTB.3 given in Lemma 2.7.3.

Corollary. If (X, S ) is a separated cqu which satisfies HTB.3
then the separated strict extemsion (WO(X), S ) is hypercomplete.

Finally in this connection let us note:

Froposition 2.7,10. Let (X, $ ) be a cqu and A & X uniformly
dense in (X, t (&) tv(S)). Then if (A, gA) satisfies HIB.4

80 does (X, S).
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We omit the proof, which is straightforward.

D-hypercompactness and almost D-hypercompactness may also
be described in terms of dual covering properties. In particular
this gives us a simple characterization of all non-pathological

D-hypercompact spaces.

Theorem 2,7.2. Let D be an internal confluence relation on the
bitopological space (X, u, v). Then (X, u, v) is D-hypercompact
(reSpeCtively, almost D-hypercompact) if and only if given any

open D-dual cover d of X there is a finite subfamily do of &

80 that given any PDQ (respectively, given any PDq with P € u
and Q € v) there exists Ud V with PDV and UDY.

Proof. First suppose that (X, u, v) is D-hypercompact, but
that there exists an open D-dual cover d not satisfying the
conditions mentioned in the theorem. Then for any finite subset

do of d the set

F(a) = 1 (P, @)1 PDQ and U4 V =» PPV or UFQ }

is non-empty, and so § F(do)\ d, € d is finite } is a base

for a D-hyperfilter X on X. Let x be a cluster point of X% ,
and i . W = U Vv
nd take Uod'Vo with x € U NV . Ve may take d_ i« o O)S )

which means F(a_ ) € %, while (U, V ) € B(x) implies that
there exists (P, Q) € F(d_ ) with PDV_ and U DQ , which contradicts
the definition of F(a ).

Conversely suppose the condition is satisfied, and let X be
a D-hyperfilter. If X has no cluster point then for each x ¢
X we have x € U(x) € u, x €V(x) & v and F e 3 so that (P, Q) e

Px-.==> PEV(x) or U(x)ZQ. Then
d= 1 (Ux), vx)H t x eXx }

is an open dual cover (and hence an open D-dual cover) of X, and
hence we have Xy eeey X € X so that given PDQ there exists i,

1l = i = n, with PDV(xi) and U(xi)DQ. However if we take (P, Q)

€NY{F, 1 1=isnle X weobtain an immediate contradic-
i .
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ion, and so :& has a cluster point as required. Note that this
argument actually shows that the stated condition need only be

assumed to apply to all open dual covers of X,

The necessary changes to be made for the almost D-hypercompact

~case are obvious, and so the proof is complete.

Corollary 1. Let d be an open dual cover of the almost D-hyper-
compact space (X, u, v). Then there is a finite subfamily d, of

d so that U § PynavP (u, V)edol = X,

Corollary 2.v Let D be an interior confluence relation on (X, u,
v), and 1f D £ 1 suppose that no single point set is open in
either topology. Then (X, u, v) is D-hypercompact if and only if

it is uniformly compact and D is conjunctive.

In particular it follows from Corollary 2 that i-hypercompact

and uniformly compact are identical for all bitopological spaces.

Ve end this section with a generalisation of the result,
established in Chapter One, that every preseparated uniformly
compact space is fully binormal. We assume that D satisfies the
condition of Corollary 2 abéve so that we may say that D-hyper-

compactness implies uniform compactness.

Theorem 2,7.3. Let D be an interior confluence relation on
(X, u, v), and suppose that (X, u, v) is D-separated and D-
hypercompact. Then if d is any open D-dual cover of X there is
an open D-dual cover e of X with (e, D) <) (d, D).

Proof. Suppose that there is an open D=dual cover d which does

not have this property. Then for every open D-dual cover e,

F(e) = 1 (L, X) } LDK, 3 ReS withL < R, K & S, and for each
| UdV we have Sty(e, R) & U or Sty(s, e) ¢ Vv ]

is non-empty. It follows at once that § F(e) | e is an open
D-dual cover of X ] is a base for a D-hyperfilter % on X. %
has a cluster point x, and we may take UdV with x € UnV.

Let ¥ = X w{x}. We divide Y into three mutually disjoint
subsets as follows:
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o]
]

1 i Y1 y¢ u-clix} énd vé4 v-clixli ,

(o]
i}

> fy\ y¢ u-clix} and ye v-clixi},

=
|

={yl ye u-clix} and y‘¢ v-cli{xi .

For y e Y 3 R(y)PV(y) with y € R(y) € u, x € Vv(y) € v, and

3 U(y)ﬁS(y) with y e 8(y) € v, x € U(y) € u.

For ye Y, 3 R(y)ﬁv(y) with y € R(y) € u, x € V(y) € v, R(y) & U.

2

For ye ¥, 7 U(y)ps(y) with y€ S(y) € v, x € U(y) &€ u, 5(y) &« V.

3
Consider e = { (R(y), 5(y)), (W(y), V(y | ye v Ul Ry, 1),
(U, V) | yer, 10t (%, s, (U, V1 yerd,

e is an open dual cover of X, and (X, u, v) is uniformly compact,

50 there is a finite sub~dual cover e, which we may take in the

form:
e, = I (R(y,), S(y)), (Uly), vyl 1 15 n Jul (R(y) W 1),

(U, V(y; N |l n+l = 4 = n v {(x, S(ygMy (U(y)y VI mel = 1 s ki,

where Yis eees yne. Yl; Yp+1t °* % yme Ya and Yu+1? *oo Y € YB'

Now let U

Unf\iu(yin l1<i<normle i<k}, and

v

Vnﬂ{v(yi)l lei€n}.

Then U'€ u, V'€ v and x € U'NnV'. Define:

z=X-[ixtu Ui Ry J)ns(y)! 1=ian JuUf R(y,) |
i1signfUUfs)l misie k}) e unv.

We suppose Z # ¢, omitting the case Z = @ which is somewhat
simpler. We divide Z into two mutually disjoint subsets as follows.

Z

1= {2\ z€ 2 and z ¢ u-clixil,

25 {21 2e32, 2€u-—clix} and z ¢ v-clix}].

For z € Zy d R'(2)pV'(z) with z€ R'(z) € u, x€ V'(z) € v
and V'(z) € V'.
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For z & Z, A U'(z)ES'(z) with z ¢ S'(z) e v, x € U'(z) € %,
S'(z) & Vand U'(z)c U'.

Consider the following open dual cover of X:

£= LRy, Syt 1eienl g § Ry, D1 avleienly
{(x, S(3;)) 1 mel :Lékv}Ui(R'(z), V), (U', v'(z)) | z € zllu
LUy 5020, ('(2), v 1 ze 2,}.

Again f will have a finite sub-dual cover fo which we may take

in the form:

fo= LRy, sty NV 12120 fulRy), 01 nalg12niu
L&, sty nnnsie ko LR(z), V), (U, Vi(z)) |

l€ias}y iy, S'(zy)), (U'(z), V') I s+l 1 s t},
where zl, cesy zse Z, and 2z

Let M

u'n n[U'(zi)| s+l £ 1<« t } , and
N

v'nﬂ{vv(zi)l 1< 1% si, Note that (M, N) & B(x).

Finally let us define:

g =1 (R(yi), S(yi)) l 121i<n}vU i(R(yi). X)| nvle i< nly
1(x, S(yi))\ ml<i<ck}y l(R'(zi), Wl l12ie slu

Lo, stz 01 sr1e12t} o L, vY.

g is an open dual cover of X, and so in particular an open D-
dual cover. Hence F(g) ¢ , and so we have (L, K) € F(g) with

LDN and MDK. Also there exists GgH with L € G, K &€ H and
Sty(gy G) ¢ U or St (H, g) ¢ V. However by considering all

the possible choices of (G, H) it is not difficult to verify
that we must have G = U' and H = V'. On the other hand we may
easily show that Sty(g, U') & U and St (V', g) ¢ V, and this

contradiction proves the theoren.

Corollary. If (X, u, v) is D-separated and D-hypercompact
then § (d, D) | 4 is an open D-dual cover of X } is a base
for a cqu § on X which is compatible with (X, u, v).
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If we call a cqu § basic if it has a base B withran A =
{0} then this corollary says that a (non-pathological) D-
separated D-hypercompact space always has a compatible basic
¢qu. Moreover this cqu is unique, for it is easy to verify that
a basic cqu compatible with a D-hypercompact space must contain

(dy D) for every open D-dual cover d.

2.8. CONFLUENCE PARA-GUASI-UNIFORMITIES.

In this section we extend our work on confluence quasi-

uniformities to para-quasi-uniformities.

If ¢ is a confluence relation on X, and d is a dual family
with d € ¢, we shall say that d is a c-dual family. If 4 is
a c~-dual family and e is a b-dual family, then the meaning of

such expressions as

(e, b) < (4, ¢), (e, b) <t*) (4, c)
is clear. We will write

(e, b) % (4, c), (e, b) =t (4, c)
respectively if in addition we have uc(d) = uc(e).

For ci-dual families d i=1, eeey n, we define

i’
/\{(di, ci)} = (4, ¢)
where ¢ = (\{ci} and PdQ &5 PcQ and 3 Uidivi’ l=1i<n, so

that P =N{u.} and @ =1V} .

(Note that, for ease of writing, we shall omit the range 1 €41 € n
of 1 for the operations A , (\ etc. where no confusion can
arise).

Note that N\ l(di, ci)l is a (possibly empty) (\{ci%-dual family.

It is worthwhile noting that if (ei, bi) < (di, ci) for each i

then N (e, b))} < Nida,, e )} .

Finally let us denote by ¥ °© (or, more precisely, ¢ cx)

the set of pairs (e, b) where b is a confluence relation on X
and e is a b-dual family belonging to ¥ .
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On analogy with a pqu we may now give:

Definition 2.8.1. The subset § of ©° is a confluence para-

quasi-uniformity (cpqu) if it satisfies.

CPQ.l. (4, ¢) € $ = 3 (e, b) e § with (e, b) €W (4, c).

CrQ.2. (a,, ci)es y 1 =1, ¢aey, n, with I\{(di. ci)§6 (’c

i
= Ny, c)le s,
CPQ.3. (d, c¢) & &, (e, b) &€ ®C with (d, ¢) < (e, b)
= (e, B) &§.
CPQ.4e (X, X)1 € dom & .
Note that every cqu is also a epqu.

crqu bases and subbases may be defined in the obvious wvay,
and we omit the details. Exactly as for a pqu, a cpqu defines
a bitopological space (X, tu(S), tv(S)), and we note in

particular that a base of tu(S )- (respectively, tv(s )- ) nhds.
of x € X is given by { st(d, tx})| d edom 5, x €& ucl(d)l
(respectively, 1 st(ix), d) | d € dom &, x & uc2(¢1)1 ).

We denote by $' the base of S given by

" = (@ )l (4, e)e S and A (d', ¢') &« S with
(d, ¢) = wy (d', ¢},

Lemma 2.8.1. For d & dom &‘ we have

(£, ($ )—int[ucl(d)}) v (t (%)-int \ucz(d)]) £ 8.

We omit the proof, which is straightforward.

In general a cpqu need not have an open base; however for
convenience in all that follows we will assume that all cpqu

under consideration are such that

&
30 =14, ¢)\ (4, c) &S , ¢ is interior, and UdV =
(¢, ($)-intluVe(t ($)-intiv]) }
is a base of S , Of course this is automatically true for a

¢qu, and E>° then has the same meaning as it did in the earlier
sections.
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For a dual family d on (X, tu( $), tv( $)) we shall denote

by d the dual family { (tu(%)-intlu], t (8 )-intIV)) | vav and
(t (S)-intlu)) # g#(t (8)-intlV})} . Note that for ¢ € dom §_
we have d = } (¢, (5)-intl0d, tv(§>)-inth)) | vav}, and 4 is
a c-dual family. However (d, c) need not belong to & in
general, and we may well have ue(d) £ uc(a).

Some of the results given earlier for cqu will carry over
basicly unchanged to the cpqu case, but the majority will need
at least some modifications to the definitions involved, while

others will not hold at all for general cpqu. Our aim in this
‘section is to concentrate mainly on those results which bave a
direct bearing on the question of induced cpqu structures and

of extensions.

Let (X, § ) be a cpqu, and A & X. If ¢ is a confluence
relation on X and d a dual family we may define Ch and dA as

previously. Note that if (4, ¢) e.‘io then d, is a c,-dual fawily.
The induced structure E’A on A may be defined by
SA =1 (q, ) I (a, c) e EcA and 3 (e,.b) € So with
(eA, bA) < (4, )l .
The conditions (a) or (b)vof Definition 2,3.2 will no longer

suffice, in general, to ensure that (A, S'A) is a ¢pgu, and in

order to describe the additional conditions required we shall
need some more definitions and notation. Let d be a c-dual

family on X and define

(d’ C)A = (d" cA)
where U'd'V' & U'cAV' and U' = UnA, V' = YnA for some U3V,
Clearly if (4, c¢) € So we shall have (4, c)A = (dA’ CA)‘ but

this equality need not hold in general. Now for (di. dre & '
i= 1’ seey >n’ let us define

A
ncat, DY o= <, o
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where ¢ = ﬂ{ci3 and PdQ &» PcQ, (Pn A)cA(QnA) and 3 Uidlvi

with P = (\{U].;S and Q = ﬂivi\.

Clearly f\i(di, el 2 Nt M1, and i A/\i(di, ey

= (d, ¢) then

(A, N, = a, o) = InTcE, D11, « nidld, .
We will now say that A = X is § -embedded (respectively,

strictly © -embedded) in X if there is a base f3 < S, ot %

satisfying condition (a) (respectively, condition (b)) of Definit-
ion 2.3.2, and in addition the condition

Aoi 4 i
(¢) ¥or (e, b) = pfler, b*)} where (e, ®)ep , 1 =1, ...,

n we have:
() (e, b)e€°X=7-(e, b) e $, and
(R) uc,le,) & uc.(e), j=1, 2.
ﬂ J A J’J ]
Note that this extra condition is triv%ally satisfied for a cqu
and so our terminology remains consistdnt.
We may now give:

Proposition 2.8.1. Let (X, ) be a epqu, and A € X bidense
and § -embedded. Then (4, $,) is a epau, t (§,) =t (8),

and tv(%A) = tv(s,)A, |
Proof. Let n & So be a base of § satisfying (a) and (c).

First let us note that for a dual family d on X we have uc(d)n A
= uc(dA) and ucj(d)n A & ucj(dA), j =1, 2. Hence, since A is

bidense in X, we see that (dA’ cA) & S“OA for each (d, c) € %o
and so it will suffice to show that l(eA, bA) t (e, b) <33 is

¢pqu base on A. Now it is easy to verify that if (d, ¢), (e, b) &
/3 and (e, b) % s} (d, ¢) then (eA, bA) % (s) (dp, cA), s0 let

us take (el, bi) €f,1=1, ooy n, with l\‘(eiA; biA)l €

A
c
< A* As noted above, if we set l\i(ei. bi)‘ = (e, b), then

(e b,) % l\i(eiA, biA)] and so we also have (e,, b,) € '@cA
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by Lemma 1,8.1 (c). But then (e, b) e *E'cx by (c¢) (A), and so
(e, )& & by (c) (o). Hence we have (g, a) e/g with (g, a)

= (e, b), and then (ggr 2)) < A A A pt 4) ) vwhich

completes the proof that § (eA, bA) \ (e, b) €nr { is a base

for a cpqu on A. Finally, using (c) (/3) we may verify that
for (e, b) € ,3 we have ucj(eA) = ucj(e)r\A, j =1, 2, and the

topological identities follow from this.

For the cpqu § we define the interior confluence relation
D by
=nlc|ceran$°}=ntclceran$1

as before. If ,3 4is a base of & and Q® is a bifilter on X
then the notions of /3 -regularity and D-regularity for \Q will
be as given in Definition 2.2.2. On the other hand we shall

say that @ is § ~Cauchy if it satisfies

(dit ci)e %0’ i = 1, o0 ey n’ ’\{(di’ ci); = (d| c) %
L4
i, B #4.

For a cqu this condition is, of course, equivalent to that

given in Definition 2.2.4, and so no confusion can arise here.

As previously (X, S ) will.be called cowplete if every D-
regular § -Cauchy bifilter on X is convergent on (X, ty (S),

t (S))

Convergence of a bifilter is, of course, a purely bitopolog-

ical notion. For the cpqu S let us say that 3 is S ~converp-
ent to x € X if (st(d,tx}), st(fxy, d)) € Q for all d & don S.

S-convengence certainly implies convergence, and these notions

are equivalent for a cqu, but they will not be equivalent in
general since some of the sets St(d,tx}), St(ix}, d) need not

be nhds. of x.

e
Note that the existdnce of a $ =-Cauchy bifilter implies,
in particular, that I\{(di, ci)i # ¢ for any (di, ci) c S,o.

i=1, «.., n, and so any cpqu not satisfying this condition

must, of necessesity, be complete.

It e So is a base of & and B is a & =Cauchy /3 -regular
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bifilter, then arguing as in the proof of Proposition 2.3.3 it
is easy to verify that the bifilter \3* with subbase

t (st (a, W), Sté(V, an |t (4, e)eps , Ue dom d, V& ran d

and (t ($)-int0l, ¢ ($)-intlvhP e}

1s a minimal D-regular § ~Cauchy bifilter contained in Q¥ . It
1s also clearly oPen; In particular it follows 4+=$, as for cqu,
that a cpqu (X, § ) is complete if and only if every B -regular
S ~Cauchy bifilter is convergent. '

Nhd. bifilters Y® (x) and nhd., bifilter traces GA( x)

maintain their regularity properties, but they need not be

Cauchy when we are dealing with a cpqu. This represents an
important difference between cpqu and cqu. If in constructing a
bifilter extension of a cpqu space we were to include the elements
of X in the form § 3(x) | x € X } we should, in any case, have

to apply different argudments to the elements 3 (x) from those
used for the remaining ¢ ~Cauchy elements of the extension,

and this suggests that we might just as well include X in the

form { x1 x & X} . This, of course, also has the added advantage
that we can then deal equally well with the case when (X, t,(8),

t,($)) is not weakly pairwise T . Bearing these comments in

mind let us now show how we may construct a strict completion

of a (non-complete) epqu (X, $ ).

Denote by JQ,O(X) the set of all non-convergent D ~regular
minimal & =Cauchy bifilters on X, and sat

JL (1) = Xy Jl.o(X).

In plape of the sets Aou of B 2,5 we consider the following:

A% = L4,()-mt1I Ut B 1 Be VL (x) and 2 d Cdom §
with UdV, ve 8 = U & Aquc(d) }, and
Alu =AuiBI Qe JLO(x) and 3 4 € dom $, with Udv,

ve d = Ue al.

1

Note that if O is a cqu then A° = A y for all A€t ($), but
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in general we can only claim that Aou < al

u

We may define Bov and Blv in an analogous way.
Note that for any subsets Al’ coey An; Bl,..., Bm or X with
(AL AN 1)L IA g we clearly have (NLAVIDINEBY).
If ¢ is a confluence relation on X we may define the
confluence relation ¢ on JLl(X) by
PEQ &> PiQ or I A et ($), Bet (§) with AcB, A° e P

o
and B v < Q.

If (4, ¢) e S, we define d on ./Ll(x) by

1l 1

PdQ & 3 U4V with P = U~ and Q = V _.

Since ¢ is interior it is clear that d is a c-dual family. Note
also that

uc(d) = uc(d) , Jl,o_(x) and uc,(A)A X = uc,(d), § =1, 2,

j J
so that for (d, ¢) S , we have (a, ¢) & (’(:le(X) '

Now let us verify that § (8, &) 1 (4, ¢) e S, 1s a base
~n

for a ¢cpqu & on J1,1(x). Firstly for (4, c), (e, b) & %o

with (e, b) = ) (d, ¢), the verification that (e, B) £ ) (3, &)
is essentially the same as for the corresponding result for cqu.
s | < é )
econdly let-us take (d;, c,) € ¢ with N{(3,, &)}

(F, N1 Eii) e chl(X) , and suppose, for example, that uc, (F)

# . Now take (e, b)e s  with (e, b)) 2 (44, ¢;), and
let /\i(ei, bi) ] = (e, f\lbiS). Now if x € ucl(F)r\X £y

then it is immediate that x & ucl(e). 80 let us consider the
case (3 & ucl(F)n JLO(X). Since ®® is § ~Cauchy 3 Rieisi
with (r\tRix,nlsix) & Q . But if we then take z € N {Ri]

it may easily be verified that z & uci(e), and 50 in eitherevent

ucl(e) # 9. In the same way uca(F) Eg = uca(e) @, Boee €
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and (e, nfbii)e. S . Hence if we take (g, a) € 30 with (g, a)

< (e, nlbi\) it is immediate that

(8, &) = N3, &)
which completes the proof that § (4, ¢) \ (d, ¢) € & ol is a
base for a cpqu g on Jl l(X)-

It is not difficult to verify that for all A & X we have

4+ o _ " 1
AT, =% =t ($)-intfat ] ceeneeneeaes (1)

where A‘u is formed with respect to the subset X of (ﬂ-l(x).
tu(; ), tv( §)). Also these sets are clearly unchange& if we
replace A by tu( $)-int{A). Similar statements hold for the other
topologies, and we deduce in particular that for (4, ¢) & S o
and U4V we have [tu(; )-int‘Ulu]]?:[tv(; )-intlvlv'l]. Hence
('i )o is a base for '{ , that is (Jll(X), ; ) satisfies our
general hypothesis.

Next let us note that X is strictly g -~embedded in J1 l(X)
with respect to the base /3 = 1(3, &)\ (q, ¢) & $° and 3
(e, b) & So with (4, ¢) %£v) (e, b) } = (3.)0. Certainly (b)

(1) and (ii) of Definition 2.3.2 follow at once from the equalit-

ies (1) above. Final‘ly for (¢) (&) and (f3) take (éis &) VE
X ai i i i c
and set Af(e*, 8Ty = (&, niL6Y}). ’I‘hfat (E, {6V e X (%)

3 (.Y
= (B, N1 6%]) e follows exactly as in the proof of the

X
corresponding result with " A " replaced by " A ", outlined above,

and s0 (o ) is proved. (A) follows from the evident fact that
A (X)) = uc(E). |
It is not difficult to verify that for (d, ¢) e & o We have
[,

(ap ax) = (d, ¢), and so S’X = § . Moreover X is clearly bidense

[,
in J\-l(X) and so we have verified that (le(x), % ) is a strict
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extension of (X, $ ).
Now let B be a D-regular ; —C;uchy bifilter on L l(X), and
let ,
% =1 Q) (",Q" e B

It is clear that Q@ 4is a D-regular & =-Cauchy bifilter on X, so
there are two possibilities. Either Y3 converges in X to an
element x & X, or it is non-convergent. In the first case we

may easily see that B converges to x in .ﬂ.l(X), while in the

second if we form Y for the base $ o, then Qe JLl(X) and

B is then g -convergent (and hence convergent) to Q" in ./Ll(x).
This completes the-proqf that (JLl(X)’ ; ) is a strict

completion of (X, & ).

It is of some interest to try to characterize the cpqu
(J\I(X), %), and this is the aim of the next theorem. For this
purpose it is first uccessary to make definite the notion eof
¢pqu isomorphism. If (X, $ ) and (Y, s ) are cpqu, and f : X =>
Y is a function we may define (féi(d). f-l(c)) for (4, c) é,/*

as in § 2.4. In general there will be no guarantee that (£~ (d)
£1e)) should belong to ¥ ° x» and so we shall say that f is
(s = M ) cpqu continuous if (f l(d), f-l(c)) € S whenever
(dy ¢) €pm, and (r=Xa), e e °x. £ will then be a
¢pqu isomorphism if it is bijective, £ is (S - ) cpquc and
£ is (m=-%) ¢pquc.

We may now state: |

Theorem 2.8.1. Let (X, $ ) and (Y,/H-) be cpqu with X <« Y
bi =
idense for (Y, tugjk), tvgp-)) and having § = J* x+ Then

(Y,/A') and (JLl(x), g ) are cpqu isomorphic if and only if
there is
a subbase ¢” s-_/\O of/u- 80 that

1) For d € dom ¢ we have ucj(di) e ucj(d)r\x, j=1, 2.

2) For d e dome , U & domd, V€ rand and y ¢ Y = X we have
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(a) yeUse> 3 e e dom s  with St(e,tyl)nX & UnX,

(k) ye V&> 3 e e dom u  with St(lyl, e)nX & VnX.

3) Forceran/uoand PcQ with PnQ=¢ 3 P'e tu(/k)’

Q' e t (M) with P'eq’, (P'AX) ’u <P, (QaX)% = Q.

k) Given y€ Y ~ X and (di, ci) €eg ,1=1, eeey n, 3 v,d,v,
with ye (N 1o, n(Ntvi) and
(¢, O*)-tnt[NTU AN 1cil)(tv(/w)-int[ nivildy.

5) For ye Y~-~Xandze Y 3 (d, ¢) € ¢ so that
(a) st(a,tzy)éstlty), d), or (b) sStld,tyV)£st{{zy, 4) ;
where if z € X we can take z € ucl(d) in case (a), and
z €’uc,(d) in case (b)
6) Each M-regular _M =Cauchy bifilter on Y either converges
in Y to x & X, or j~ ~converges in YtoyeY - X.
L)
Proof. We have already noted above that (Jll(X), S ) satisfies

various of the properties listed above, and the remainder are
"~
easily verified,again for the base ,3 = (S) , so we will

concentrate on the proof of the sufficiency of (1) - (6).
First let us note from (1) that tu(S) = tu(/w)x and tv( $)

= tVQf*)x, facts that will be used below without specific mention.
Secondly from (2) we have in particular that

7) Given (di’ ci)c-.o' ’ Uie dom di and Vi & ran di’ i=1, ..
s @ then (NL (U AND(N1e ) (N AX1) tmplies

(NLT(N1e3)(NTY,D).

Finally, from (4), we see that for each d & dom s we have

Now take y ¢ Y - X, and consider the bifilter W (y) with
subbase

{(tu(/*)—int[St(d,Lyl)), tv(/-)-intLSt(:yx. ))) i d € domg § .
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It follows easily from (4) that W.(y) is a M-regular . -Cauchy
bifilter on Y, and in particular it contains (St(d,fyl), sSt(ly},a))
for all d € dom m . Hence by (7),

iy = Lax, eaD) 1 (P, e K (3]
is a My = D-regular minimal '/A x = ${ =Cauchy bifilter on X. It
follows from (4) and (5) that ){,x(y) is not convergent in X,
and so \“—x(y) € (/LO(X). In this way we have a map  (y) = va(y)
of Y = X to JLO(X), which can be extended to a map ¢f : Y —>
JU (X) vy setting § (x) = x for x & X. Moreover ¢ 1is injective,
as follows easily from (4), (5), and the fact that }&,x(y) is
D-regular. To see thaf 4 is surjective take Qe t/Lo(X) and
set
B={(P, Il P q <7, ((tu(j“)-inth])l\ X, (t (m )-int{¢l)n X)

e} .

Then if Y 1is the base of M defined by the subbase ¢ it is
clear that B is a ¥ -regular m =-Cauchy bifilter on Y by (7),
and it follows from (6) that either B econverges to some x € X
or is/u. ~convergent to some y € Y ~ X. However in the first
instance we could then deduce from (1) and (4) that @ wmust
also converge to x in X, and this is contrary to the choice of
B so B is/u-convergent to ye Y - X. It follows at once from

(4) that K.x(y)s"— Q , and so K,x(y) = @ since © is minimal
® -Cauchy. This verifies that 4 1s surjective, and so J 1is
a bijection of Y with ./Ll(x). Note that this result has not

used (3) or the full forece of (2); that is, loosely speaking, it
depends on the " M =embedding" of X in Y, and not on the "strict
M -embedding",

. ~
Now let us verify that < : Y —» W, (X) 48 (- %) cpque.
Corresponding to the subbase g’ of/u we have the subbase
@ yx=l@@y, ')V @,ene @,
and clearly ¢, & so.' Take (d', ¢') € ¢’ and (e', b') @ @ with

(e', b') % w) (d', c'). Then it will suffice to show that
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(e', b') < (€71, ¢,

where, for convenience, we have written d = d'x. c = c'x. Take
(s', e') & V'; and

R'e'S'; U'd'V' with Sty,(e'y R') = U', S,

set U'n X = U, V'n X = V so that we have UdV. Let us verify
R' € =P'1(Ulu).'

Now within X this is clear, so take y &€ R' with y€ Y - X, Then
by 2(a) we have (£, a)e y with St(f,iyl) € R'. Take (g, k)&
Y with (g, k) 2wy (f, a); then as noted above Y - X & uc(g)
ard so we have MgN with y € MaN. Take LfT with St(g,iyl) &

st (g, M) < 1, st (N, g) & T; and take L'fT' with T'n X €

va(}'). By the comment after the definition of X (y) we have
InXx e K-Xu(y), and sd (Ln X)aX(T'n X) since Kx(y) is D-regular.
Hence LaT' by (7), and so we have ReS with L' & Sta(f, L) & R,
yeNeTC Sta(T, f) € S. Hence L' € R & St(e',iy{) &
Styile'y R') < U', and 50 L'n X < U'n X = U. Since f, € 5,

this shows that  (y) = K X(y)e vl

a? and completes the proof
that R' « e(?'l(ulu). Likewise S' & eP'l(vlv). and so e' £
£71). In fact we also have uc(e') = uc(cp-l(a)). as is easily
verified, so it remains to show that b' & 49'1(6). Take Pb'Q
vith Pn Q = 4. By (3) we have P'€ t (u), Q'€ t (M) with
P'B'Q', (P'aX)* € Pand (@ X' € Q. IfA=P'aX B=g'nX
then g # A e tu(S ), £ Be€ tv(S) and Ab' B, Hence AcB since
b'y & ¢'y = ¢, and s0 A°u8 Bov. Clearly g # <p-1(A°u) and

g # cF-I(Bov) so P ‘f’—l(a)Q will follow if we can show <{7-1(A°u)
€ Panda f B ) € Q. This ie clear within X, so take y €
Y-Xwithye 475a°), that 16 K*(y) € 4° . Now we have

(f, a)e § o satisfying LT, T € Ki((y) = L & Anuc(f), and

we may take (f', a')e Yy with (' < (f, a). Take

x» &'y
(', k') € Y with (g', k') &) (£', a'), and M'g'N' with
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Y& M'n N', Then we have L'f'T' with ye M' & St(g',iy}) ¢

St,,(g'y M') = L' and ye N' £ Stliyl,g") S Stb,(N', g') & T';

and LfT with L'n X & L, T'n X & T. Then St(g, f')h X € K f(y)

= Te Kf(y) = L & Anuc(f). Hence St(g',tyl)nX & uc(f)

= uc(g')n X, while on the other hand Y - X s uc(g') vy (&), so

y€ St(g',tyt) < uc(g'). This shows y € ucl(g'), and so St(g',tyl)

is a tu£pk)-nhd. of y in Y. However we also have St(g',fyi)n X

€ A=P'nX, and s0 y € (P'a X)* & P. This verifies that

4-1(A°u) € P, and likewise we have tf-l(Bov) & Q. Hence

b! < ‘p-l(é), and we have shown that ¢ is (m -g ) cpque.
Finally consider ¢ = &"1 : uﬂ,l(x) —» Y. If we take

(d'y ¢') € o and set (d, c) = (d' c'x), then an argument

xl
exactly. similar to that used above enables us to show that

A, 8 =< (¢ Lan, ¢ e,

A
and so ¢ is ( S -/pr) cpquc,. This completes the proof of the

theoren.

We may make the following definitions for bitopological

extensions in general.

Definition 2.8.2. Let M be an interior confluence relation on
the bitopological space (Y, u, v), and let X %« Y be bidense.

Then the extension (Y, u, v) of (X, uy, vy) will be said to:

(1)  be M-separated except for X if given y€ Y - X and z € ¥
there exists G € u, H € v with GYH and either y€ G, z € H
or z2€&€ G, y € H.

(ii) have pairwise relatively zero-dimensional outgrowth if

u has a base u* and v has a base v" so that

GE€ U = vcllG) -G & X and (Gn x)"u G,

€ v' = wu-clfH] - H & X and (8aX)* = H.

Note that in (ii) 1t is sufficient for the stated conditions to
hold for subbases u* , v* of u, v respectively. Also the
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conditions (Gn x)"u = G and (Hn x)"v = H are redundant if X is

uniformly dense in Y.

Clearly if (Y, u, v) has pairwise relatively zero-dimensional
outgrowth then it is, in particular, a strict extension of
(x, Uy vx).

The following theorem gives sufficient conditions for
a n
(Jl-l(X), tu(§ ), tv(S )) to be D-separated except for X, and

to have pairwise relatively zero-dimensional outgrowth.

Iheorem 2.8.2. Let (X,$ ) be a cpqu, and suppose there is a
subbase ¢’ < go of & satisfying

(a) Given Qé, dLo(X) and (d, c) € @ We have uu¥ with

St (d, )E @ o (respectively, Stc(v, a) ¢ Gv) implies

Stc(d, U) € uc(d) (respectively, Stc(V, d) & uc(d)) and
there exists U'dV' with (U', V') ¢ @ and Stc(V', d) &

uc(d) (respectively, Stc(d, U') & uc(d)).

Then (Jll(X), t'u(g ), tv(g )) is D-separated except for X.
If in addition ¢ satisfies
(b) Each (d, c)e g’ is transitive
then (Jll(x), tuig ), tv(g )) has pairwise relatively zero-
dimensional outgrowth.
Proof. First take @ ./‘ € ./Lo(x) with @ # 4 . Since 8 1is
minimal $ -Cauchy we have ,(. " 4 Qu or 5 v 4 4 v* Suppose
4 u ¢ 8 4* bthen since A 1s minimal & -Cauchy we have (f, a)
€ ¢’ and LfT with (L, T) € 4 and St_(f, L) ¢ G . Take (e, b),
(dy c) € & with

(dy ¢) <= &) (e, b) LV (£, a).
Since 4 1is S -Cauchy 3 U4V with (U, V) € 6 . Take ReS
and L'fT' with Stc(d, U) € R, scc(v, d) € s, and Stb(e, R)

€ L', Stb(s, e) = T'. Now (L', T*') & A so LaT' and so
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Stc(d, e L' e Sta(f, L) which gives Stc(d, U ﬂu. Hence

by (a) we have 5t (dy U) & wue(d) and I U'dV' with (U', V')e
8 and Stc(V', d) & uc(d). If now we take R'eS' with Stc(d, u')
< R' and Stc(V', d) & S' it is easy to verify that
be et (3),8 € (sN°%e t(5) and (2°)B((5N°,).
A similar result may be obtained if § v e 8 Qv' Secondly if we
take Q e JLO(X) and x € X then @ 4+ x, and a similar argument
to that used above may be employed to complete the proof that
(/LI(X), tu(g ), tv(g )) is D-geparated except for X.

Now suppose that in addition ¢ 1is transitive. Then it is
clear that ‘

t v° | U€domda € domg’ , U & uc(a)}

A
is a subbase of t,(§). Also if (4, c)€ ¢/ and U€& dom d has

o

U < uc(d) then (Uoun x)“"u = U" , 80 let us verify that

"
o °
t ($)-c1fu JJ-00, e X
Suppose on the contrary that for some @ € JIO(X) we have
: N
) o - vau e

®e€ t (£)-c1Ju°] vut @ ¢ U°. Then I U'4V' with Ve B
and U' L& Upuc(d) = U. There are two cases to consider:

(1) ve ‘Gu. In this event UcV' and we have the immediate

contradiction U' < S’cc(d, U) = U.

(i1) vg g ' 'i‘hen, since U = Stc(d, U), we have by (a) that

3 Uav" with (Ur, V)& @ and V' & uc(d). But now @ e
(V")°ve— tv(g) and so Uoun (V")ov # ¢, which implies UcV",

Hence U" < Stc(d, U) = U, which gives the contradiction Ue Q a’
In just the same way

1v°v| Verand € dome¢’ , V& ucld)}

a | ]
is a subbase of tv(S) satisfying (Vov,\ X) v = v
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-—

tu(s-)-c1[v°v1 - Vov ¢ X, and the proof is complete.

Clearly condition (a) of this theorem is satisfied for any
¢qu, and it is also satisfied in the symmetric situation
afforded by a cpu. The following example gives another case
in which both (a) and (b) are satisfied.

Example 2.8.1. Let (X, u, v) be a bitopological space, and D an
interior confluence relation satisfying GP(X = v-c1{G)) and

(X ~ u-c1{E})PH for all G € u and H € v (this is true, in
particular, if D = 1). Define d(G) and e(H) as in Lemma 1.8.2.
Then |

¢ =1((a@), D), (e(H), D)1 Geu- g}, HE v - Lg}}

is a transitive open subbase for a basic cpqu & on X which

is compatible with (X, u, v).

That conditions (a) and (b) of Theorem 2.8.2 are satisfied
for this subbase is clear, and so (\ﬂ-l(X). tu(s), tv(S)) is a

strict completion of (X, $ ) which is D-separated except for X
and has pairwise relatively zero-dimensional outgrowth.

We will now give a result in the opposite direction to
Theorem 2.8.2. First let us make the following definition:

Definition 2.8.3. Let (X, u, v) be a bitopological space, and
D an interior confluence relation. We will say that the cpqu %

is compatible with (X, u, v, D) if t (&) = u, tv($ ) = v and
D=Ntct ceransi.

We will say that (X, u, v) is quasi-D-biclosed if every
¢pqu $ which is compatible with (X, u, v, D) is complete.

We may now give:

Theorem 2.8.3. Let (X', u', v') be a quasi-D'-biclosed bitopolog-
ical space, and (X, u, v) a bidense subspace. Suppose that D'

has the oup, and that D = D'y satisfies GP(X = v-clla@)) and

(X = u-c1lH))PH for all G e u, Hé& v. Finally suppose that
(X', u', v') 15 D'-separated except for X, and that it has
pairvise relatively zero-dimensional outgrowth. Then there
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exists a cpqu $ on X with an open transitive base which is
compatible with (X, u, v, D), and such that (X', u', v') is
bitopologically homeomorphic with (Jll(X), tu(§>). tv(X )).

Proof. Let

L

u =3G6'l ¢'e u' - {4}, (G'n X)"'u = G' and v'-c1{G') - a' =« x1
and make a corresponding definition for v® . Under the given

conditions, u¥ is a base of u' and v' is a base of v'. For

G'e u* let us set

1, x), ) L(x'=vi-cila'))n X]‘v) }if vr-c1ia'd # x’
ar(ar') = .
i(a’, X') ! otherwise,
and for H' & v* let us make an analogous definition of e'(H').
We may note that (X'~ v'-c1[G'})nX € X - v-c1[G'a X], and that
(6'n X)E(X « v=cila'n x1), so that G'B'(X- v'-c1la'))n x]*v.
Hence (a'(G'), D') =) (4'(G'), D'), and a similar result holds

for (e'(H'), D'). It follows that

¢ '=1(a'("), D), (e' ("), D) | G'e u*, H' & v* ]

1s an open transitive subbase for a cpqu 4 ' compatible with
(X', u'y v', D'), Moreover it is clear that § = § 'y 15 a

cpqu on X with an open transitive base, which is compatible .
with (X, u, v, D). To show that (X', u', v') and (ﬂ-l(X), tu(S),

tv(s )) are bitopologically homeomorphic it will suffice to

verify the conditions (1) - (6) of Theorem 2.8.1 for the subbase
¢’ '. Condition (1) is clear from the definition. To show (4)
take y ¢ X'~ X and G' € u®. If y & G' then of course y& G'n X.
On the other hand if y ¢ G' then y ¢ v'-c1(G') and s0 y &
Lx'- v'-cl[G'])nX]‘vr\Xf A similar result holds for H'€ v*,

and (4) now follows since the elements of ¢ ' are open. For
(2) take d' e dome 'y U'e dom d' and y e %'~ X. As the elements

of ¢’ ' are transitive we have

yE€U' = st(d',lyl)a X = St_,(a", U')nX = U'n X.

D'
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On the other hand let < ' be the base generated by o’ ', and
suppose 3 e'ec dom Y' with St(e',{yl)nX & U'nX, Now e' is
open and by (4) we have y & uc(e') so St(e',{y}) is a tu(g')-

open nhd. of y. Hence y € (U'n X)‘u = U' by the definition of
the elements of ¢’ '. A similar result holds for V' € ran d'.

To establish (3) take PD'Q with Pn Q = #. Since D' is

s ]
interior and u', v" are bases we have

(Uig'\ Ggre ut, g' « PI)D'(VU tH' | H'e v H' ¢ Q)

h
o

and since D' has the oup 3 G'e u', G' & P and H' € v", H'
with G'D'H'. But then (G'aX)% =G' < P and (H'n X) "v = H' & Q

as required.

For (5) take y'E-xl- X, z e X'~ X and x € X. Suppose, for
example, that we have y€ G' & u" with z ¢ G', and x€ H' €& v*
with y &€ H'. Then St(d'(G'),ty}) = G' and St(1z},d'(G")) =
((x'- v'-c1{G')) 0 X)* , while G'E (%'~ v'~c1la'Dax)’ . On

the other hand St(ix},e'(H')) = H', x € uca(e'(H')). St(e'(H'),tyl)
= (X' wiee1lunya ) * and ((X'= u'=c1lud)ax)’ Pu. The
other cases are similar.

Finally for (6) we note that by hypothesis (Y, $') is
complete, while by (4) and the fact that < ' is an open base,
we see that " {'-convergent to y € X'~ X" is the same as "

convergent to y € x'- X",
This completes the proof of the theorem.

The above theorem is a natural generalisation of the
characterization, given by VOTAW [35) ,of those quasi H-closed
topological extensions which are Hausdorff except for X and
which have relatively zero-dimensional outgrowth. This would
encourage one to beugﬂve that it might be possible to character-
ize those quasi-D:biclosed extensions of a bitopological space
which are DLseparated'except for X, and which are bitopologically
homeomorphic to some ('Al(X)’ tu(§ )y tv(g)), in terms of a

notion of "relatively pairwise completely regular outgrowth".
Now it is certainly true that, under some fairly mild restrictions
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on § , the extension (Jll(X), tu(S), tv(S)) does indeed satisfy

a natural "pairwise'" analogue of the notion of relatively
completely regular outgrowth, but this seems insufficient, in
general, to ensure the converse result. In principle a
characterization in terms of the exist%nce of certain '"normal
sequences'" of dual families would be quite feasible, however
this would amount to a virtual restatement of a special case of

Theorem 2.8.1, and we omit the details.

We end this section by considering the relation between
quaSi'D-bicloseaf”and almost D-compactness, each of which is
an analogue of a characteristic property of quasi H-closed (35) .
If (X, u, v) is almost D-compact and { 1s a cpqu compatible
with (X, u, v, D) then S 1is complete, the argument being the
same as in the case of cqu. Hence an almost D-compact space is
quasi-D-biclosed. Let us consider the converse. For the cpqu
(X, © ) we may define TB.1 and TB.2 as in 8 2.6, except that in
place of "(U, V) @ 6 " we require "(tu(s )-intiul, t (S )=intiv])

€4 ". Of course this 1s the same if $ , 15 an open base. We

may verify at once that if (X, S ) is complete and satisfies
TB.2 then (X, tu(ﬁ,), tv(S )) is almost D-compact. Hence a

quasi-D-biclosed space which has a compatible cpqu satisfying
TB.2 must be almost D-compact. However it is conceivable that
there might be bitopological spaces for which no compatible

¢pqu has a Cauchy bifilter, and such a bitopological space

would be quasi D-biclosed for any D but no compatible cpqu

could satisfy TB.2 and consequently it might not be almost D-
compact. Below we give sufficient conditions for a quasi D-
biclosed space to be almost D-compact. First let us make one or
two comments about D-hyperfilters on a cpqu space. If X 1is a
D-hyperfilter we make the same changes to the definition of

"$ ~Cauchy" and "weakly § =Cauchy" as we made in the case of
bifilters. Note in particular that a $ -refined D-hyperfilter
X will ve § ~Cauchy, exactly as before, if for a subbase ¢
of & and any d & dom ¢ we have UdV and Fe X with F <4 (u, V).
The conditions of hyper-total boundedness have the same definit-
ions as before, but thé relations which hold between them for
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a cqu will not hold, in general, for a cpqu.
We may now give:

Proposition 2.8.1. (a) Suppose the cpqu (X, § ) has a subbase
G’ 80 that d is finite for each de& dom ¢ . Then (X, S )
satisfies HTB.3. ’

(b) Suppose that (X, $ ) has a subbase
satisfying the condition‘above, and in addition:

Given dyy «v., d € domg’ , and G € t (5), HE ¢t (S) with GDH

l’

there exists U,d,V,, 1= 1= n, with GD(N{v,}), (N¢v1)oH,
1 1

and (t (S )-int[mUiﬂ)o(tv(s)-intlmvil]). Then (X, $ )

satisfies TB,2.

Proof. (a) Let X be a maximal § -refined D-hyperfilter,
and take d = § (Ul' vl), cooy (Un' vn)} € domg . Take F'e %

with F' = uxv and F' < d. Now if for each 1 « 1 &« n we had
F.; e X% satisfying

(G, HeEerF = ¢ U, orEd V-
we should obtain an immediate contradiction from F'n {'\{Fil
# f; hence for some k, 1 € k < n, we have

F*= {(a, B) | (q, H)eF,G&kaandHéVkl g

for each F & X , Since X is maximal we deduce that F'e X,
while clearly F q (U, Vk)’which completes the proof,

(b) Let @ be an open D-regular bifilter, and set I =
h(Q ). Take djs

selection S(a ) = “Ui’ vi) | 1=4 «n}, where U,d,V, and
(t, (S)-int{ Nt Uiﬂ)D(tv(S Y-int { nlviﬂ), there exists F(a )

ceey dn € dom ¢’ , and suppose that for each

e T so that GB(N tv,d) or (NLUVIZH for all (G, H) &

F(*)An(uxv), Now each d, is finite, so there are only a finite

i
number of possible selections S(dl). ceny S(dm), and if we
take (G, H) € (N U’(o\i)’i)n(uxv), then GDH and so by hypothesis

we have a selection S(dj)o l<ej<m, with aD( n{vi‘) and



159
(N lUi} )DH which contradicts (G, H) € Flat j)n (ux v). Hence

T<d1.---.dn) = § (P, QI P‘e t (8), Qe t,(8), PD], J U4,V
with P < N{U! and Q « N{v,} ;andFeX =5 3 (g, B) €
Fn (uxv) with GDR and PDH }

is non-empty, and so {(T(dl,....dn) | d coey dn e domgr § is

1’

a base for a D-hyperfilter X , which is clearly § -refined.

Let 44 be a maximal D-hyperfilter refinement of 1 . Then g} 1is
S -refined and hence S =~Cauchy by (a). Ilence if we set § =
b@¥) then it is elear that Ar  is a D-regular bifilter with the

properties required in the definition of TB.2, and the proof is

complete,

Corollary 1. Suppose that the bitopological space (X, u, v)
satisfies the following conditions for the interior confluence

relation D: ,
(1) GP(X - v-c1[G)) and (X = u-cl[H)PH V G €u and He v,

* G€ uand H seay Hm’ He v with GDH

(i1i) Given Gl’ ceny Gn 1
there exist (possibly improper) partitions (pl, pa) and
(ql’ qz) of the sets {1, eeoy n} and {1, ¢co, m}
respectively, so that if U =ﬂ!Gil ie pllf\ N{x-
u—cl[HJJ) Vi€ q,] and v={f (x=-v-el[GI)I 1€ p,in
Ng Hil j eq] then UDV, GDV and UDH.

Then (X, u, v) is almost D-compact if and only if it is quasi-
D-biclosed.

Proof. We need only consider the c¢pqu of Example 2.8.1.

Corollary 2. Let (X, u, v, D) have the properties (i) and (ii)
of Corollary 1, and suppose in addition that D has the oup. R
A
Then if § is the epqu of Example 2.8.1, (ﬂ.l(X), tu(s ), t (8))

1s almost B -compact, and hence, in particular, quasi-D-biclosed.

We now give a simple example which serves to illustrate
this last result.

Example 2.8.2. Consider the bitopological space ( R, &, t) mentioned
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earler, and take D = 1, If for r € R we set H(r) = { x| x < r}
and K(r) = { x | x> r ] then the subbase g~ of the epqu & of
Example 2.8.1 takes the form

tl, V1 rerividi® B, )]
where d, = ¢ (u(r), R), (R, K(r))} .

Clearly (R, 8, t, 1) satisfiés the conditions of Corollary 2 above,
A A
and so (Jll(R), tu(S ), tv(& )) is almost a-compact. Let us

1dentify this space. If @ 1is an 1-regular bifilter which
contains both (H(r), R) and (R, K(s)) for some r, 8 € R, then

clearly @ converges to r, where
supfs ! (R, K(s))eB}l = r =dinflr| (a(r), R) e @ .

Hence the only non-convergent i-regular minimal § ~Cauchy bifilters
are 9§ and X , where 4b has base {(H(r),R) | r € R}, and
X has base {(R, K(s))! se R} . Then

S ®) = Ryl K,
and clearly H(r)lu = H(r)ou = H(r)y i®) , K(s)lv = K(s)ov =
K(sduik! ; these sets, together with J (R) and @, being the
0pen sets of t (S ), t, (S ) respectively. Note that (/1 (R)
t, (8 )y t (S )) is actually uniformly compact, and R is uniformly
dense. Indeed (Jll(R), tu(g )\ltv(S )) is the usual two-point

compactification of the real line.

[N
If in our construction of the completion (/11(X), S ) we are

prepared to forgo the separation properties (5) of Theorem 2.8.1
we may include in JLO(X), D-regular $ =Cauchy bifilters

which are convergent in X, or which are not minimal $ ~Cauchy.

Our final example of this section is an 1llustration of this.

Example 2.8.3. Let us again consider the space (R, s, t), but
this time let D be the relation

PDQ < P1Q or s-int[P)#@f#t-int(Q) .

Clearly D is the largest interior confluence relation on R. Also
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if @ 1is any open D-regular bifilter then every point of R is

a D-cluster point, and so (R, s, t) is almost D-compact. In
fact this space is almost D-hypercompact, but it is not D-compact
as consideration of the bifilter with base

{ (R, {n, n+l, ...})! n e m}

will show.
Now consider the cpqu § with subbase ¢ = | (e, D), (£, DI

re IRI s where er = i’(H(r), (R)! and fr = ! (IR, K(r))l .

Clearly § 1is compatible with (R, s, t, D), and has an open
transitive base. There is just one minimal D-regular S ~Cauchy

bifilter, and that is the bifilter € with base
{ (H(r), K(s))! r, se R} .

Of course § converges to all the points of R, but nom the less
A
we may consider the completion (Jll(R), § ), where

| A ®) =RytEL .
By the above general discussion (Jll(R). tu(g ), tv(g )) will be

almost D-compact, and have pairwise relatively zero-dimensional
outgrowth.

Now for r € R we have H(r)lu = H(r)ou = H(r)yi€3 and
K(r)lv = K(r)°v = K(r)y €] ; and these are the non-trivial
open sets for tu(§ ) and tv(g ) respectively. It follows at once
that PDQ &> Pngq # #, that 1s D = 1 on .jll(n). This 1llustrates

the extreme difference which can exist between a confluence

relation and it¢s restriction or extension.
A A
Note that (Jll(R), tu( ), tv( $)) is not a-compact or

uniformly compact, and R is not uniformly dense in this space

since € 1is an isolated point for the uniform topology.
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CHAPTER THREE

THE LATTICE OF BICONTINUOUS REAL-VALUED FUNCTIONS.

In this chapter we consider the relation between certain
bitopological properties and properties of the lattice of
bicontinuous real-valued functions. The set of bicontinuous real-
valued functions is a lattice, and it is closad under addition
and multiplication by functions taking only non-negative values,
but in general it is not a ring. In place of the notion of ring
ideal, which plays such a central role in the study of the ring
of continuous functions on a topologlcal space (see, for example,
U61), we sha1a consider the notion of bi-ideal to be defined
below. The elementary theory of bi-ideals resembles somewhat that
of ring ideals, and can be developed in a more general setting
than that of the lattice of bicontinuous real-valued functions
on a bitopological space. These considerations occupy the first
two sections of this chapter. Following this we relate the theory
50 developed to the study of bitopological real compactness, and

consider the connection with completeness.,

For established terminology and notation concerning lattices
the reader is refered to any standard text, for example ([27,
(30). Throughout the first two sections P denotes a distributive
lattice with a distinguished element O.

2.1 ELEMENTARY THEORY OF BI-IDEALS.

Let us first recall that L & P is a (lattice) idesal in P if
it satisfies:
(1) a,bvelL =5 aub €L, and
(1i) a €L, beP withb < a = b €&L.

An ideal L is called prime 1f it satisfies
anab€eLlL = a€lorbé&l.

Likewise M & p is a (lattice) dual 4deal in P 4f it satisfies:
(1) &, bs M = aab &€ M, and
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(i1) a€M, b€ Pwitha<€ b =p bENM;
while M is prime if it satisfies
aybé&é M == a€&€MorbekM.
We may now give: _
Definition 3.l.1. The Pair (L’ M) is a bi-ideal in P if L is an
ldeal, M is a dual ideal and 0O& LnM.

The bi-ideal (L, M) will be called prime if L and M are prime,
and it will be called total if Lu M = P.

In order to obtain useful properties of bi-ideals we need to
impose suitable "regularity" conditions. Accordingly we make the

following definition.

Definition 3.1.2. The binary relation 4 on P is a dispersion
if it satisfies:

(1) afb, a e a'e€é P and b » b'eP=pa'fb',and

(ii) afb, afb', a'/band a'f b’ = (ana')F(byb').

For convenience of writing we denote the negation of a/b by a/b,

If (L, M) is a bi-ideal we shall now say that (L, M) is

£ ~regular if it satisfies

ae Land be M = afb.
We may partially order the bi-ideals by
(L, M) = (L', M) & LS L'andM & M,

If (L, M) is a # -reg;rular bi-ideal then the set of all 4 -regular
bi~ideals greater that (L, M) is clearly inductive, and so by
Zorn's Lemma each / -regular bi-ideal has a maximal + -regular

bi-ideal refinement.

M&E& 3.1.3. Let f be a dispersion on P. We say the
bi-ideal (L, M) is ,/-outer prime if it satisfies:

(avd)/(a'ap') => 3 pé& Land qge M with (ayp)7q or (byp)l g
or pf(a'a q) or p/(b'A q).

Ve now have:

Proposition 3,1.1. The f -regular bi-ideal (L, M) has a unique
maximal f’ ~regular refinement if and‘only 1f 1t is /# -outer prime.

Proof. ‘Suppose (L, M) has a unique maximal g -regular refinement.
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Then if (L, M) is not .# -outer prime 3 a, b, a', b' &€ P with
(avb)f (a'Ab') and (avp)fq, (byp)Za, p/(a'aq) and p A(b'A q)
for all p € L and q € M. If for u & P we define

Lu=EVI vVEP, 99 pelwithve pyai, and

MU

tviver, J Q € M with uaq = v}

a . b a' b
then (L7, M), (L°, M), (L, ¥® ) and (L, ¥ ) are £ -regular
refinements of (L, M), and so have a common £ -regular refinement
(L', M'). However we now have ayb € L' and a'A b'€ M', which

gives the immediate contradiction (ayb)/Z (a*Ab').

To prove the converse, let (L, M) be a - -regular bi-ideal

and define:
L/ )
M(F£)

Clearly L(# ) is a dual ideal, and M(#) is an ideal. Moreover,
if (L, M) 1s # -outer prime, then L({ ) and M(£) are prime,
and s0 P ~ L({) is an ideal and P - X(f) is a dual ideal. Also
LE P~L(+#)and M e P =ML)so (P~-L(F), P=-M(F)) 15 a
bi-ideal refinement of (L, M), and it is clearly - -regular.
Finally let (L', M') be any £ -regular refinement of (L, M),
and suppose 4 a € L'y L(F) £ #. Then for some pe L, q € 1 we
have (ay p){q. However this is impossible since a, p € L' and
Q€ M'; and we deduce that L' € P = L(#). Likewise M' & P -
M(/), and we have shown that (P - L(#), P -~ M(#)) 1s the unique
maximal 4§ -regular refinement of (L, M).

{falaepr,g pel, q& M with (avp)fql, and

foVver,Jpel, qe Mwithpf(baq)d.

Corollary 1. A maximal + -regular bi-ideal is prime and /-

outer prime,

Corollary 2. (L, M) is maximal §# -regular if and only if it is
' ~regular and Lu L({) = My M(¥) = P.

Corollary 3. If (L, M) is 4 -regular and total then L{f )a M({)
= @. If (L, M) is maximal { -regular and L(f )n M(£ ) = ¢ then
(L, M) 1is total.

¥e now introduce some additional structure into P. Let
T :RXP — P be a mapping, and for r € R and a € P let us set
T.(a) = T(r, a). We make the following definition:
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Definition 3.1.4. We say P is a T-lattice if T satisfies:
(1) T.: P —> P is a lattice homomorphism for each r € R.

(i1) T oT =ToT =T for all r, s € R.
rs s r r+s
(1ii) T.(a) =a &> r =0, for all a € P.
(iv) Tr(a) < a for all a€ P and r > O.
Note in particular that the map r —> T_r(o) is an injection
of R into P, and it takes O€ R to the distinguished element
O & P. In general we shall denote the element T_r(O) of P by r.

Clearly we have Ts(r) =r -5 for all r and s.

This added structure on P enables us to define various
special dispersions. Initially let us note the following:

Definition 3.1.5. On the T-lattice P the dispersions {’e and

p 8re given by

_&
I

{(a, )1 a, beP, 3 reRvwithb=r<cOorO<rxaj,

<
i

{(a, )l a,beP, 3 r > 0withT (ay0) > ba0S.

Note that, since fo &y 2 /b-regular bi-ideal is also
+ 4 -regular. ’ |

Lemma 3.1.1., If (L, M) is /e-regular and r € R, then
r€lep r =0 énd reEM & r = 0.

Lemma 3.1.2. If (L, M) is 19b-regular it satisfies

(a) ae L = Tr(a)¢1vx ¥ r > 0, and

() beu 1 (MEL V r>o0.

Conversely if the bi-ideal (L, M) satisfies (a) or (b) it is
ﬁpb-regular. B

We omit the proofs, which are straightforward. Note in particular
that if (L, M) is / p-regular and T (a)€ L, Ts(a) € M then

We must have s &« r. Hence we can have Tr(a) € LaM for at most

one re R.

The following is a further corollary to Proposition 3.1.1.
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Proposition 3.1.2. If (L, M) is /b-regular and prime then

L(/b)f\ M(/b) = #. In particular every maximal ¢ p-Tegular
bi-ideal is total.

Proof. Suppose we had some a & L(/b)r\ M( /b)- Since a€e L( /b)

we have p € L, q € M with (avp)({b)q. Also a § M since

M({b)r\ M=g, Now 3 t2 0 with Tr(a vPv O) > qa0O, and

an0 EM, so Tt(av pvO) = Tt(a)v Tt(pv 0)E& M, But M is prime,

so T, (a) € M or T, (pv 0) € M. However the first is impossible

since Tt(a) < a, and the second is impossible since p(fL)Tt(p,,o).
This contradiction shows that L(-fb)n M( (b) = @#. Rote that we

have only used the fact that M is prime, and likewise it would be

sufficient to assume only that L is prime.

Finally, if (L, M) is maximal /b-regular then (L, M) is
prime by Corollary 1 to Proposition 3.,1.1. Hence L(/b)n M( (b)
= @, and so (L, M) is total by Corollary 3 to Proposition 3.1.1.
Definition 3.1.6. Let (L, M) be a bi-ideal in the T-lattice P.
The bi-ideal refinement (L%, M") of (L, M) is defined by

1"=tal aep, 1(a)e L ¥V r> 0}, and
Mt = fal aecep, T_r(a)é,M VvV r> o}.

(L, M) is nearly total (respectively, nearly prime) if (L+, M%)

1s total (respectively, prime).
Note. (1) (1, M) is {7e—regu1ar or £ p-regular if and only
if the same is true of (L+. n*y.

(2) (L, M) is nearly total if and only if it satisfies
either of the equivalent conditions:

(a) LuM =P, or (b) L'uM =P,
(3) (L, M) is nearly prime if and only if it satisfies:
(a) aanbel =>ael’orbelt; and

(b) avbeM©a6M+orbC—M+.
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In particular a prime bi-ideal is nearly prime.

Ve omit the proofs of the above results since they are all

elementary.

Proposition 3.1.3. Let (L, M) be a # p-regular bi-ideal. Then
(L, M) is nearly total if and only if it is ¥ p-outer prime

and nearly prime.

Proof. First let us suppose that (L, M) is nearly total. Suppose
that for some aab €L we have a 4 LY and b ¢ L+. Then we clearly
also have some t > O with Tt(a) ¢ Lt ana Tt(b) ¢ LY. However
L'U M = P, and so T, (aab) = T, (a) AT,(b) € M which contradicts

the fact that (L, M) is f -regular (Lemma 3.1.2). In the same

b
way we cannot have ay b &€ M with a ¢ %" and b¢ M*, and it follows
by Note (3) above that (L, M) is nearly prime. To show that
(L, M) ig -f p-outer prime, let us assume the contrary. Then we
shall have a, b, a', b' €& P so that (ayb)(7,)(a'Ab') and
(av 2)(£)a, (byp)(F,)a, p(F,)(a'n @) and p(F )(b'pq) for
all p & L and q € M. Now for any t > O we have (av O)(/b)Tt(a),
and since 0 &€ L this implies T, (a) ¢ M. Since (L, M) is nearly
total this shows that a¢ L'. In just the same way we can show
that be L+, a'€ M* and b'€ M'. Now for some 8 > O we have
T,(avby0) > a'Ab'a 0, and we may deduce that for all r
with'0 < 2r = & we have T (avbyv0) € LnM. This, by the
remark made after Lemma 3.1.2, contradicts the fact that (L, M)
is -fb-regular.

For the converse, suppose that (L, M) is ¢/ p-Tegular, /b-
outer prime and nearly prime; and that for some a € Pand t > 0

we have a € L and T_t(a)¢ M. Now T_t(a)(/b)a, so 41 p €L,

q € M with (T-t(a)"p)('/b)q or p( /b)(q,\a). In the first case
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there exists s > O with TZS(T-t(a)" Pv0) > qa0, and so0
Tzs-t(a)v TZs(p' 0) € M. Since (L, M) is nearly prime we deduce
that either T__.(a) e M or T_(pv 0) € M. Now T _(py0) € M is
impossible since (L, M) is —fb-regular, and so Ts_t(a)c M.
However Ts_t(a) < T_t(a) and so T_t(a) & M, which contradicts
the above hypothesis. The second case leads to a contradiction

in the same way, and the proof is complete.

For a fixed bi~ideal (L, M) let us consider the following

binary relation ~ on P.

an~b > (Tr(a) EL & Tr(b) € L and Tr(a) €M & Tr(b) € M)

Clearly ~ 4is an equivalence relation on P. We denote the equi-
valence classes by (al, the quotient set by P/(L, M) = { La} |
a €Pl. (b will denote the canonical map ¢ (a) =la)of P
onto P/(L, M).

We may partially order P/(L, M) by setting:

(aY = [b] (Tr(b) eL = Tr(a) € L and Tr(a) EM = Tr(b) &€ M)
It is clear that Y 1is order preserving, and so{ayb)is an
upper bound and faab) a lower bound of the set | [a),lbl],

for all a, b € P. Moreover if (L, M) is prime then it is easy to
see that

Layvlby=[{avb) and falalv) =faab]

80 that P/(L, M) is then a lattice, and § a lattice homomorphism.
Also Tr((a]) =[_Tr(a)] is well defined, and so when (L, M) 1is

prime we may make P/(L, M) into a T-lattice in such a way that
Y is a T-lattice homomorphism. Finally let us note that if
(L, M) is 1Fe-regular then

r->[lr)
1s an order preserving injection of R into P/(L, M).

The proofs of the following lemmas are elementary, and are
omitted.

Lemma 3.1.3. Let (L, M) be {’b—regular. Then:
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(a) L

]

fal (a}=[01}
ol [0)< (b1}
(C) LnM:[OJ

(b) M

[t}

Lemma 3.1.4. Let (L, M) be -+ ,-regular. Then P/(L, M) is

b
totally ordered if and only if each element of P/(L, M) is
compatible with [0).

Ve may now give:

Proposition 3.1.4. Let (L, M) be a {7e-regu1ar bi-ideal.

Then P/(L, M) is totally ordered if and only if (L, M) is
—/ b-regular and total.

Proof. Sufficiency follows at once from Lemma 3,1,3 and
Lemma 3.1.4. To prove necessssity suppose P/(L, M) is totally
ordered. If (L, M) were not _/b-regular we should have p& L, -

g€ M with p('/b)q, and hence some t > O with Tat(on)é qaO.
In that case T (T, (pv0)) € M but T,(0)¢ M so [T, (pv0)] % L0};
while T_(T,(pv0)) = pyO €L but T_t(0)¢ L and so

(o1« [Tt(p\/O)]. This would contradict the total orderedness of
P/(L, M), and we deduce that (L, M) is o y-regular. The fact
that (L, M) is total now follows at once from Lem.;na 3.1.3.

Definition 3,1.7. We say [a) € P/(L, M) is infin:tesimal if
[-t1< (a)  (t] for all t> 0, and in that case we say thak
ais infin:tesimal at (L, M). ile denote by l(L, M)(O) . (or just

by 1(0) ) the set of all elements of P which are infin:tesimal
at (L, M).

First let us note the following elementary consequences of our

definition.

Lemma 3.1,5. If (L, M) is -fe-regular then
M0 ={falr@er-MandT (AdENMN-L VY t>0]}.

Corollary 1. 1If (L, M) is rfe-regular and nearly prime then

1(0) is a sub-lattice of P.
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Corollary 2. If (L, M) is £ p-regular then 1(0) = 1'n n*.

We may now give:

Proposition 3.1.5. The A b-regular bi-ideal (L, M) is maximal
4’b-regu1ar if and only if it is nearly total and P/(L, M)
contains no non-zero infintesimal elements.

Proof. If (L, M) is maximal 1’b-regular then it is total by

. +
Proposition 3.1.1, and hence nearly total. Also, since (L%, u*)

is a ¢ p-regular refinement of (L, M) we have
1(0) ='AM = LAN =102
by Lemma 3,1.3 and Lemma 3.1.5, Corollary 2.
Conversely suppose (L, M) is 1’b-regular and nearly total,

and that P/(L, M) has no non-zero infintesimals. By Proposition
3.1.1, Corollary 2, it will suffice to show that L y L(-fb) =

My M('Fb) =P, Take a€ P ~ L. Since LU M* = P we have a & ",
On the other hand a dLaM={01= LA 4" and so a ¢ L’. Hence
for some s » 0 we have Tas(a) ¢ L, and so Tzs(a) & M+, which
implies that T (a) € M. Hence O « L and (avo)(—Fb)Ts(a) which
gives us a e L(—Pb) as required. M v M('(b) = P may be shown in
the same way, and the proof is complete.

On P/(Lv,M) let us define the relation <4 by

(al << [b]) = (fr (@)1 = L7_ (1)) v t >0).

We have at once:

Lemma 3.1.6. The follﬁwing are equivalent.
(@) [a) << b},

) [r,(a)) = Lv) ¥ t>o,

(¢) Lal = LT ,(0)3 ¥V t>o0.

Corollary 1. <« 4iga pseudo-order on P/(L, M). (That is, it

is reflexive and transitive)
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Corollary 2. The sets I([a)) = §[bv)| fa) << [b] and
fv] << [a) 3 =fip) [T ()l [b) < (T (a)] V t>01,

a € P, form a partition of P/(L, M).

le may regard the elements of I({a)) as being "infinitely
close" to [a). Note in particular that I([0)) = (p(2(0)).

Definition 3.1.8. We say P/(L, M) is nearly totally ordered

if 44 is a total pseudo-order.

Now consider the set I(P) = { I(fal) | a €PJ. e may
partially order I(P) by setting

I(fal) =< I([bv)) <> (a) <4 [b].
+ +
On the other hand let us denote the elements of P/(L", k') by

+
[a)+, and the cannonical mapping by ({ » If we note that
+ +
[al 4« [v) & [a) < (0]

then it is immediate that X (I(fal)) = la]+ is an order preserving
isomorphism of I(P) with P/(L+, M*y. In particular if (L, M) is
nearly prime then P/(L+, M%) is a lattice, and hence so toeis

I(P). Moreover, since I([al) = )&-1( ?f(a)) is a composition

of lattice homomorphisms we have |

I((al))vI(lvld)
I(Lad)AI([b])

for all a, b € P, We summarize these results in the next theorem.

I(favb]}), and
I(faabdl)

Theorem 3.1.1. Let (L, M) be nearly prime. Then I(P) is a
lattice and a —» I({al)) is a lattice homomorphism. Moreover

I(P) is lattice isomorphic with P/(L+, M') under the mapping

Y (1((a))) = [a]+, a €P.

Next let us note:

Theorem 3.1.2. Let (L, M) be .{ b-regular. Then the following
are equivalent,

(1) P/(L, M) is nearly totally ordered.
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(i1) (@, M) is nearly total.

+

(1i1) (L%, ") is maximal .f'b-regular.

Proof. (i) = (4i). If P/(L, M) is nearly totally ordered

+ +,
then I(P) =2 P/(L+, M) is totally ordered, and hence (L°, M)
is total by Proposition 3.1.4. This shows that (L, M) is
nearly total.

(11) => (i11). Note fimst that P/(L*, M*) can contain
no non-zero infintesimals, for by Lemma 3.1.5, Corollary 2,
and Lemma 3,1.3, we have
NI OIS I R COMER IR o)
Hence if (L, M) is nearly total then (L', M) is total and
hence maximal b-regular by Proposition >.1.5.

(1i1) => (1) 1f (LY, M%) is maximal # p-regular then

+ L+
1t is total by Proposition 3.1.2, and hence P/(L™, M') = I(P)
is totally ordered by Proposition 3.1.%. Hence P/(L, M) is
nearly totally ordered.

We are now going to consider the situation with regard to

e
the existdnce of infinite elements of P/(L, M).

Definition 3.1.9. The element [a] & P/(L, M) is finite if
[s1< (al = {t} for some s, t € R, and it is infinite if

[s1 < (a) v s eRorfal < [t] V t€ R. a€ P is finite
or infinite at (L, M) if (a) has the corresponding property in
P/(L, M). Finally (L, M) is finite if all the elements of P
are finite at (L, M).

Lemma 3.1.7. If (L, M) is { ,-regular then:
(a) Ls) = (a) V seR < T(deM-L ¥V rem,
(b) [a) < (t] v te R & T(a)eL-K V rem.

Moreover, if (L, M) is -f , -regular we may replace M - L by M

b
and L - M by L in (4) and (b) above.
Corollary. If (L,-M) is 4’e-regular then the only infinite

elements of P/(L, M) are the greatest and least elements, when
these exist,



173

Ve omit the proof, which is trivial.
Proposition 3.1.6. Let (L, M) be a finite ,-regular bi-ideal.
(1)  If (L', M') is <\

(L', M') is finite.

-regular and (L, M) < (L', M') then

(i1) If (L', M') is nearly total and (L', M') < (L, H) then
(L', M') is finite.

Proof. (i) is trivial, and (ii) follows from Lemma 3.1.7 if
we note that when (L', M') is a nearly total f’b-regular bi-

ideal each element of P/(L', M') is either finite or infinite.

We have already noted that when (L, M) is 1’e-regular

r—> [r]) is an order preserving injection of R into P/(L, MN).
If P/(L, M) has a greatest and/or least element this mapping may
be extended in the obvious way to a mapping defined on Ry},
Ru { -0} or Ry { o -0} , as the case may be.

Definition 3.1.10. The /e-regular bi-ideal (L, M) is real if

P/(L, M) is the image of R under the mapping r — [r1. (L, M) is
extended real if it is the image of any one of the sets R, R U [ i,

Rui-mﬁormufmn-wh

Lemma 3.1.8. Let (L, M) be 4’ e—regular. Then (L, M) is real if
and only if given a € P Jd e R with Tr(a) €EL< r o and
T(eN e rao. |

Corollary 1. Let (L, 1) be £ e-regular. Then (L, M) is real if
and only if given a € P 3! & € R with T, (a) € Lan.

Corollarx 2. Let (L, M) be 4/e-regular. Then (L, M) is real if
and only if it is 4 p-Tegular and given a € P 3 o € R with
T,(a) € LM,

We omit the proof, which is straightforward. Corresponding
characterizations of extended real may be obtained by replacing
"a € P" by "ae P which is finite at (L, M)". In particular we
note that an extended real bi~ideal is always .( b-regular.

Corollary 1 of the next proposition gives a considerably improved
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result.
Proposition 3.1.7. Let (L, M) be -/ p-regular and nearly prime.
Then (L, M) is nearly toial if and only if U fI([r]) | re R
is the set of all finite elements of P/(L, M).

Proof. Suppose (L, M) is nearly total, and let a € P be finite
at (L, M). Then s = supf{r) [r} < [al{ e Rand t = inf {r \
[a) < {r){eR, and clearly s = t. If s € t take w with

5« w<t, and O« h<« max {t - w, w - s {. Ey Broposition
3.1.2, P/(L, M) is nearly totally ordered so {a) << {w] or

[w) << [a). In the first case {a] s:[.T_h(W)J ={w + h] and

so t =« w + h, which contradicts the choice of h. Likewlse the

second case leads to a contradiction, and we deduce s = t. It

then follows easily that [a] € I([s]).
The converse result is clear.

Corollary 1. The bi-ideal (L, M) is extended real if and only
if it is maximal 47b~regular.

Proof. First suppose that (L, M) is maximal 47b-regular. Then

(L, M) is prime and total, so by Proposition 3.1.7 U { I{{r))|
r€ R{ is the set of all finite elements of P/(L, M). However
by Proposition 3.1.5 P/(L, M) has no non-zero infintesimal
elements, so if a € P is finite at (L, M) we have [a)l € I([a])
for some of € R, while [al € I([a])<> [ T (a)] e I(fo]) =
{101} . Hence Toéa) € LM, and (L, M) is extended real.

Conversely suppose (L, M) is extended real. Then by definition
(L, M) is ﬁ’e-regular, and also P/(L, M) is totally ordered so

by Proposition 3.1.4 (L, M) is -/'b—regular and total. Finally

P/(L, M) contains no non-zero infintesimals so (L, M) is

maximal 4’b—regular by Proposition 3.1.5.

As an immediate consequence of this result and Proposition
3.1.6 we have:

Corollary 2. Any maximal ./ b-regular refinement of a finite

bi~ideal is real.
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Corollary 3. Let (L, M) be a nearly prime £ p-regular bi-ideal.
Then the following are equivalent:
(a) P/(L, M) = UfI(Ir]) ) reR].
(b) (L+, M*) is real.
(¢) (L, M) is Afyb-oﬁter prime and finite.
Proof. (a) => (b). By the proposition (L, M) is nearly total
80 by Theorem 3.1.2, (L*, M*) 1s maximal f’b-regular. Also
(L, M) is finite so (L*, M*) 1s real by Corollary 2.

(¢) => (a). This follows at once from the above

proposition and Proposition 3.1.3.

(b) = (c). (L+, M+) is maximal f’b-regular by

Corollary 1, and so (L, M) is nearly total by Theorem 3.1,2,
Hence (L, M) is f’b-outer prime by Proposition 3.l.3, and

(L, M) is finite since (L*, M) is, using Proposition 3.1.6(ii).

Now let A and B be sub-T-lattices of P with A & B, A
dispersion -/ on P induces a dispersion on A and B which we
continue to denote by f , and a statement that a bi-ideal in
Aor B is f -regular, 7 -outer prime, etc., will mean that it
has the stated property for the induced dispersion.

If (L, M) is a 7 -regnar bi-ideal in B then (LA A, MNA)
is a f -regular bi-ideal in A, and moreover if (L, M) is
maximal -/-regular then the same is true of (LN A, MAA) in A.

On the other hand suppose (L, M) is a £ -regular bi-ideal
in A, and assume that -fe & 7 . Let

L;={bl beB, 3 aelLandt> 0O withbat = aj, and

Mg

Then (L, Mp) is a ¢ -regular bi-ideal in B which is contained in

]

fblbeB, 3 a€Mand t> 0O witha £ bu(-t)}.

every prime f'-regular bi-ideal in B whose restriction to A is
(L, M). Hence if (L, M) is maximal f’-regular in A we have at least
one maximal -/ -regular bi-ideal in B whose restriction to A is

(L, M). In particular this maximal / -regular extension of (L, M)
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i - ime,
to B will be unique if and only if (LB’ MB) is o -outer prim

This leads us to the following:

Definition 3.1.11. Let A, B be sub-T-lattices of P with A & B.
i or

Then B is a f -refinement of A if every maximal  -regsular

bi-ideal in A has a unique extension to a maximal + -regular

" bi-ideal in B.

A is _f -complete in P if it has no proper § -refinement
in P. A f -complete 7 -refinement of A will be called a { -

comnletion of A.
——__&_ﬁ—

In the same way if every finite maximal - -regular bli-idensl
in A has a unique finite maximal ¢ -regular extension to B we
may speak of B as a finite - -refinement of A, and give obvious

meanings to the terms finitely / -complete and finite 4 -

comnletion.
‘g__

Proposition 3.1.8. Every sub-T-lattice A of P has a -f -completion
in P,

Proof. If A is o -complete there is nothing to prove so
assume the dontrary. Then by Zorn's Lewua it will be sufficient
to show that the set of # ~-refinements of A is inductive when

ordered by set inclusion. Let {_Ba( be a chain of ¥ -refinements
of A, and set B = U} B, { . Clearly B is a sub-T-lattice of P

with A € B, Let (L, M) be a maximal 7 ~-regular bi-ideal in A,
and note that

Ly = U{ LB} and My = U{ MB“l

- 80
It may be verified at once that (LB. MB) is { -outer prime,

(L, M) has a unique maximal < -regular extension to B. Hence B
is an upper bound of the - -refinements } ij y and the proof
is complete.

For the case o = -, we are going to show that, more
particularly, every sub-T-lattice A has a unique 4’b-comp1etion
and a unique finite b-completion. To this end we shall need

the following lemma, which is true for an arbitrary dispersion.
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Lemma 3.1.9. Let A, B be sub-T-lattices of P with A & B, and
(L, ¥) a maximal £ -regular bi-ideal in A, Define:

L(B) ={ bl beBand 3 a €L such that V¥ rem, T (a)e L'
= T (b) € L' V maximal f -regular bi-ideals
(L', M'") in P with L'n A = L and M'n A = N 3,

M(B) = § bl beBand 4 a €M such that ¥ r € R, Tr(a)eM'
= Tr(b) € M' V maximal . -regular bi-ideals
(L', M') in P with L'nA =L and M'nA =¥},

Then:

(1) (1(B), M(B)) is a # -regular bi-ideal in B with
L(B)Nn A =1 and M(B)Nn A = M,

(11) 1f (Lo’ Mo) is any maximal f -regular bi-ideal in B with
LAA =1L and M N A =M then L(B)< L, and M(B) & M,

(iii) 1f (L, M) has a unique maximal 4 -regular extencion to B
then (L(B), M(B)) is prime.

Proof. (i) and (ii) are clear, so let us prove (iii). Take b, b’
€ B with bab'€ L(B), and let (L', M') be a maximal { -regular
bi-ideal in P with L'n A = L and M'N A = M, Then for some a € L

we have Tr(a)e L' = Tr(b,\b')e L', and since L' is prime

it follows at once that Tr(a) € L= Tr(b) eL' V re®or
T.(a)e L' = T.(b') € L' ¥V r €R. Since we are assuuing

that (L, M) has a unique maximal f -regular extension to B
this is sufficient to prove b € L(B) or b'e€ L(B), that is L(B)

1s prime. M(B) may be shown to be prime in the same way.

The results of this lemma, together with Propositions 3.1.1,
3.1.3 and 3¢1.6, and Corollories 1 and 2 of Propositioa 3.1l.7,
give us the following result: A

Corollary. B is a 1’b-refinement (respectively, a finite o

refinement) of A if and only if for each extended real (respect-
ively, real) bi-ideal (L, M) in A the bi-ideal (L(B), M(B))
is nearly total (respectively, nearly total and finite).

We may now give:
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Theorem 3.1.3. Every sub-T-lattice A of P has a unique b~

completion and a unique finite /b-complefion in P.
Proof. If A is / p-complete ‘(respectively. finitely fb-complete)
there is nothing to prove, so assume the contrary and let § e i
be the class of all # p-refinements (respectively, finite -(b—
refinements) of A in P. Let B = < B, > denote the smallest sub-
T-lattice of P containing all the Bu; then the proof will be
complete if we can show that B is a /b-refinement (respectively,
finite b;refinemént) of A. Let (L, M) be an extended real
(respectively, real)’bi-ideal in A. Now the elements of B may
be obtained from the elements of U{ B“i by a finite number of
applications of the operations VvV, A , Tr’ r € R, and let us
denote by Bn the set of elementsof B which may be obtaind using
D such applications. In particular, therefore, B, = U{B_]
and B = U} B | n=0,1, 2 R

Make the following induction hypothesis:
P(n) : For all b€ B, r € R, we have T_(b) ¢ L(B) => T _(b) €

M)t

P(0) is certainly vélid, for L(B)n B = L(B,), M(B)n B, = M(B),
and (L(By), M(B,)) is nearly total for each & by the corollary
to Lemma 3.1.9. Hence supposé P(m) for all m < n, and take

be Bn' There are three y'cases to consider:

Ts(b'),

(1) b =b'vb", (i) b = b'ab",  (iii) b
where b'e€ B ,, b"e B, with n'va" < n, and 8 € R,

n n ;
C = ' ny - ' "
onsider (i), and suppose Tr(b) Tr(b v b") Tr(b )yTr(b ) ¢
L(B). Then Tr(b') ¢ L(B) or 'I‘r(b")¢ L(B), so by the induction
hypothesis Tr(b') e M)t or Tr(b") '3 }II(B)+, and in either

m — ] " +
event T (b) = Tr(b )V, Tr(b )€ M(B) .
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Case (ii) is dealt with in the same way, and (iii) is trivial. so
We have established P(n). This shows P(n) is true for all n, and
hgnce (L(B), M(B)) is nearly total. If (L, M) is real and each
By is a finite / b-refinement then a similar induction argument

can be used to show that (L(B), M(B)) is also finite, and the

result now follows from the Corollary to Lemma 3.1.9.

An element a € P is bounded if 8 < a < t for some s, t €
R, and we denote the set of bounded elements of P by p*. ot
course P* is a sub-T-lattice of P, If a € P* then a is finite at
every e-regular bi-ideal in P. Hence if we set

P'=1{a) a&P, ais finite at every extended real bi-ideal
inP }

then P' is a sub-T-lattice of P, and P < P', Note that every
extended real bi-ideal in P* or P' is real.

Proposition 3.1.9. (i) The # b;completion of P 1s P.

(11) If A is a sub-T-lattice of P’ then
its finite f’b-completion in P is a subset of P'. In particular

the finite -f p-completion of P” 1s P'.

Proof. Let (L, M) be a real bi-ideal in P, and define
L'={alaep, (ant)vselL V¥V s<0<t},

M'= {b1 bep, (bat)dve EM V s<0 <t].

It is a straightforward matter to verify that (L', M') is the
unique maximal J’b-regular extension of (L, M) to P, and so

P is the ./ s-completion of P¥, and P' is a finite ¥ p-Tefinement
of F. Finally if A < P* is a sub-T-lattice, B a finite /-
refinement of A and (L', M') an extended real bi-ideal in P,

then (L'A B, M'n B) is finite and hence real in B, since it

1s the extension to B of the real bi-ideal (L'n A, M'M A) in

A, and so every element of B is finite at (L', M'); that is

B £ P'. This completes the proof.

s
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3.2, S~-RESOLUTIONS AND DERIVATIVES.

Let S be a subset of the T-lattice P. In general S will not
be a sub-T-lattice, but 1t will be convenient to assume through-
out that S contains the distinguished element O, We will denote
by <S> the smallest sub-T-lattice of P which contains S. The
elements of < S> are obtained from those of S by a fintte

number of applications of the operations V , A and Tr'

Let p : S —> R be a function and define

Lp‘Ialae<S>, 3 a ...,aneSandt>0with

1’
aAt < V*Tp(ai)"“i’zv 0§, and

M ={alae<s>, 3 a

l. XEE) ane Sand t > 0O with

I ESNLORR S T

Clearly 1P is an ideal in <S>, and M® a dual ideal. Also if

P(0) = O we have 0 € LPAMP and so (LP, MP) 1s a bi-ideal. We
make the following definition: \ | |

Definition 3,2.1., The function p : S —> R is a S-resolution
1f p(0) = 0 and the bi-ideal (LP, MP) is 4  ~regular. (LP, MP)

is then called the S-derivative correéponding to p.

Ve denote by R, the set of all S-resolutions.

S

If (L, M) is a real bi-ideal in <S> then for each a & <S>
we have a unique real number, which we may denote by p(a),

satisfying Tr(a) € L& r > pla) and 'I‘r(a) €EM&> r < pla).
p is cléarly a < S> -resolution, for p(0) = 0 and (LP, MP) a
(L, M) is J’b-regular and hence certainly f’e-regular. Let
us characterize those < S> -resolutions p whose derivatives

are real in <S>, Noting that R 18 a T-lattice for the trans-
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lation T (s) = s ~ r we may state:

Proposition 3.2.1. The < S> -resolution p has a real derivative
if and only if p is a T-lattice homomorphism of <« S>» into R.

We omit the proof, which is straightforward. We denote by H<S>
the set of all T-lattice homomorphisms p of <S> into R such
that p(0) = 0. For p e H<S> the derivative is specified more
simply by

I? = {a| ae<s>, pla) = 0], and
MP = fa aé<S>‘, p(a)= o0}.

Note that H<S> is in one to one correspondence with the set of

all real bi-ideals in <S>,
There is a natural relation between Rg and H,o. 4 as follows.

For pe N we hay consider plS : S —>» IR, Clearly plS(0) = O

<S>
S
and (1P'S yP'Sy _ (LP, MP) so (LP!5, WP'5) 45 o o-regular,
an@ hence pisS e Rg. In this way we have a map 0 : Hooy — Rs
defined by & (p) = plS, pe H g, » Moreover:
i S
Proposition 3.2.2. For each p € H<S> we have (Lp S' Mp‘ ) =
(1P, M), In particular the mapping @ is injective.
Proof. Here and later let us denote by S, the set of all elements

of <S> which may be expressed in terms of the elements of S

using not more than n applications of the operations vV, A, Tr'
For A < 8> let us also set

T{A] = {'rr(a)l sac A, reRi.
Consider the induction hypothesis

P(n) : IPA 7(s ) € 1P!S,

Since S, = 8 it is easy to see that P(0) is true. On the other

hand P(n) = P(n+l) follows easily from the fact that p is a
T-lattice homomorphism, and so P(n) is true for each n. However
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Utsl = <s>, and we have shown that LP = 1P'S, Likewise

TL Mpls, as required. Since a real bi~ideal clearly has a
unique <S> -resolution it follows at once that & 1is injective.

Corollary. © 1is a bijection if and only if every({y-resolution
has a real derivative.

The following notion is useful in our study of S-derivatives.
p&ﬁ.’ﬂﬁ_&ﬂ 3e2+.2, Let L be an ideal in <S> and F £ <S>,

Then L is F-prime if whenever 81y eeey ane F, Fiy ooy rné R

and A{T (ai)i € L then T (ai) €1 for some 1, 1% i & n.
i i

The notion of a F-prime dual ideal M is defined in a corresponding
way, and (L, M) will be called F-prime if L and M are.

Proposition 3.2,3. The ideal L in < S> isa prime if and only if
it 1s S-prime. o

Proof. Necessity is clear so let us show asufficiency. Let L be '

S-prime and make the following induction hypothesis.
P(n) : L is S -prime.

Since So = S we see that P(0) is valid. Assume P(n), and take

al' Q.t’ am&, Sn+1’ rl’ seecy rme- R With AI Tri(li)i & L‘

We may partition the set I = {1, 2, see, m] into three sets
Il’ 12’ 13 (one or more of which may be empty) so that

ie I1 = a; = bivci H bi’ cy € Sn,

ie Ia = 8 = biAci ; bi’ ¢y € Sn, and

€ H .
i I} = a; = Tsi(bi)- : bi (3 Sn’ 8, € R
With the understanding below that the term in question is to be

removed if the index set involved is enmpty, we may write:
Mrrri(ai)} = '.\{ Tri(bi) v'rri(ci) l1e LA a,

where

= (b))l 1e1,}.
a= Af{ Tri(bi)"Tri(ci). 1612!'\1\1Tr i 3

4'81

i
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Consider a general element of &S > of the form

A{ Tr.i(b'i)v Tr'i("'i) t 1eJd A a,

where J is finite, b € 8§, r' € Rand a', 1f it is

10 ¢y
present, is a finite‘infimum of elements of T[sn] « Make the

following induction hypothesis on the finite number k of elements
in J. '

Qlk) : I A} 'I‘r,i(b'i)v Tr,i(cfi) 1l ieJ A a'€ L and

IJ\ = k then a'€ L or T,y (b')) VTr.i(c'i) € L for

i
some 1 & J,

Q(0) is clear, so assume Q(k) and take }J! = k + 1. Chosse j € J,
then:

N Tr.i(b'i)v Tr'i(c'i‘) l 1eJ}n ak' = e v f, where
e = A{ Tr,i(b'i) v Tr'i(c'i) l 1eJ-1311 I\(Tr,J(b'J) Aa')
£f= A {Tr,i(b'i) v Tr,i(c-'i) l 1€ J-{3j13 A (Tr,J(C'J)A a') .

Hence, if the above element belongs to L, we have e € L and £ €L,
and so by Q(k) either T., (o' )V T, (c'y) €L for some 4 €J -

. i i

tiJy or T, (b* )pa'€ L, or T_, (c',)a a' € L. In the last two
Ty Ty

cases we may apply P(n) and deduce that T, (b'j) v T, (c'j) €L

j J
or a' € L, and we have verified Q(k+l). It follows that Q(k) is
true for all k, .and applying this result for k = lIll to
A Tri(bi) v Tri(ci) l 1e 113 A & EL gives Tri(bi) v Tri(ci)

€ L for some i € I,yora€lL. In the first case we have

T, (8;) € L directly, and in the second we may deduce from P(n)
i ,

that T (a,) € L for some 1€ I_ v I,. This verifies P(n+l),
r, i 2 3

and so L is Sn-prime for each n.
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If now we take a, b€ <S> with anb € L, then for sufficiently

large n we have a, b € Sn and 8o a € L or b €L, since L is Sn-

prime. Hence L is prime in < S > as required.

A corresponding result holds for dual ideals. In particular

we have:

Corollary. 1If p is a S-resolution then (LP, MP) is prime if and
only if it is S-prime.

We now give some properties of S—deri§atives.
Proposition 3.2,4. Every S-derivative is total.
Proof. Let p be a S-resolution, and make the induction hypothesis
P(a) : Tl 3 < 1Pu WP,
For a = T _(b) € T[s,] = T[S}, b €8, we have a & L if 8 3 p(b)
and a &€ MP 3¢ ¢ < p(b). Hence P(0) is valid.
Now assume P(n) is valid, and take a € T[S 4y = 5,1 - If a =T (b)

and b & § -~ S_ has the form b = b'v b" with b', b" € S we
n+ n n

1
have by hypoth@sis that T_(b') € LP or T (b') € M’ and T_(b") e
P or T (b") € M, Now if T (b') € MP or T (b") € MP then

8 =T, (b)) v T (b") €M, while 4f T (b') £ MP and T_(b") ¢ MP
then TS(E')G:IP and Ts(b")e IP so a € L as required. The other

possible forms of b are dealt with in the same way, and the induct-
1ve proof of P(n) is complete. Since Uts } = <S> it follows

at once that (Lp, MP) 18 total.

Proposition 3.2,5. No element of <S> is infinite at a S-
derivative, ‘

Proof. It is a straightforward matter to verify the proposition
P(n) : a e S, =» 3 s, t &R with T (a) € LP and T, (a) € WP

for each n by induction. The result now follows from U ts 3 =
<S>, and Lemma 3¢1.7.

Lemma 3.2,1. Take o) e.RS and let q ¢ S—> R be a function so

that p(b) # q(b) for eome b & S, and p(a) = q(a) for all a€ S -{b}.
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Then:

(1) 1f q(b) < p(b) and T_(,,(b) & LP then q &Ry and IP = LI,

q(b

(11) If q(b) > p(v) and Tq(b)(b) € MP then q e Rg and MP = M9,

We omit the proof, which is straightforward.
Proposition 3.2.6. (a) The maps p —» L and p > M, pe Rys
are both one to one if and only if for each a € S we have

T(a)e P &5 r > p(a) and T (a) & MP & r = p(a).

(b) The map p —> (LP, MP), p € Ry 15 one
to oné; that is each S-derivative is determined by a unique
S-reéolution, if and only if, given & & S, we have T‘r(a) e 1P
@ r > p(a) 6r"1‘1v‘(a) e M & r < p(a). |
Proof. (a) We show p —> LP is one to one on R if and only 1if
Tr(a) €L &5 r> p(a), the remaining case being similar.
Now for a € S we have Tp(a)(a) e LP so certainly r > p(a)
= Tr(a) € LP. Hence we need only consider the reverse implica-

tion.
(i) Suppose that p —» LP 48 1 -1 but that for some b & S we

have Ts(b) € LP for some s < p(b). Define q t S — R by

p(a) if a # b

q(a) =
s if a = b,

Then by Lemma 3.2.1 (i) we have q e R; and L? = 19, However

P # q, and this contradicts our hypothesis. Hence Tr(a) € 1?

= r = p(a) as required.

(11) Suppqse Tr(a) 6‘Lp &> r > pfa) for p e Rg and ae S, and
let LP = L9, Then for a €85, T ()€ L = To(a) () € L1

=> pa) 3 q(a). Likewise q(a) = p(a) so p=gq, and p — P
is one to one as required.

(b) The proof is similar, and is omitted.
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The property mentioned in (a) above is of importance in
future applications, and we make it the subject of the next

definition.

Definition 3.2.3. The S-derivative (Lp, Mp) is S-real 1if it
satisfies T (a) € LP &5 r > p(a) and T (a) & MP & r = p(a)
for each a € §.

Lemma 3,2,2, Let L be a nearly prime ideal in <S> which
satisfies the condition '

T.(a)eL ¥V r> k = T(a) €L
for all @« € S, Then L is prime.
Proof. By Proposition 3.2.3 we need only show that L is S-

prime, But if Byy eeey 8 & 85Ty eeey T ER and I\lTri(ai)f

€ L then Tr (ai) € L+ for some i, 1 < i € n, and 8o Tr(ai) €
i

L for all »r > r,. Hence Tr (ai) &€ L by the above hypothesis,

i

and L is S-prime as required.

i

A corresponding result holds for dual ideals. In particular

we have: |
QéEEllEEI- Let the S—dérivative (1P, MP) be S-real. Then LP
(respectively, MP) 18 prime if and only if LP (respectively,
MP) ig nearly prime. |
Finélly let us note:
Proposition 3.2.7. Take p € Rg. Then the following are equivalent.
(1) 3 p'€eH g Wwithps= p'is.
(1) (1P, MP) is real. '
(iii) (LP, MP) 1s S-real and prime.

(iv) (P, MP) is S-real and LP is nearly prime or M’ is nearly
prime,

(v) (LP, MP) is { ,-regulsr.
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Proof. (i) = (ii). By Proposition 3.2.2 we have (LP, MP) =

(Lp', Mp'), and hence it is real.

(11) = (iii). Immediate.

(1i1i) =) (iv). Immediate.

(iv) =5 (v). Let (1P, MP) be S-real and LF nearly prime.
Then LP is prime by the Corollary to Lemma 3,2.2. Now if (LP, MP)
is not b-regular we have a €« <S> and 8 > O with a € P
and T _(a) € MP, by Lemma 3.1.2. In particular we have biy eeey b
€ Sand t > O so that

oA Nt Tp(bi)(bi)i = T (a) v (-t).

Without loss of generélity we may assume t < 8, and so

t AN Tp(bi)_t(bi)i < avyO.
P P
It follows a# once that A } Tp(bi)-t(bi)i € LY, and since L

is prime this means Tp (bi) € 1P for some i, 1€41iem.

(by)-t
However this contradicts the fact that (LP, MP) is S-real, and
we deduce that (LP, MP) is -/ p-regular.

(v) = (1). Let (LP, MP) be -fb-regular. Since
(L?, ¥P) 15 total by Proposition 3.2.4 it follows from Proposit-
lon 3.1.4 that «S5>/(1F, MP) is totally ordered. Hence we may
deduce from Proposition 3.2.5 that (L®, MP) is finite. If (L, M)
;s a maximal .»{b-regular refinement of (Lp, MP) in <S>, then
(L, M) is real by Corollary 2 to Proposition 3.1.7, and hence

* L
(Ly M) = (1P, MP') for some p° € H g, « However it is trivial

S
to verify that p = p'1S, and the proof is complete.

3.3 BIREAL COMPACTNESS.

Throughout this section and the next (X, u, v) will denote
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& pairwise completely regular weakly pairwise To bitopologival

space, and we will denote by P(X) the set of all bicontinuous
functions f : (X, u, v) = (R, s, t).

Note that the sets

£ -, £(x) + 1), teP(X), r > 0

form a base of u-open nhds. of x, while the sets

vf-l(f(xj -r, ), re P(X), r> 0

form a base of v-open nhds. of x. Likewise the sets

2t 1) =2 (far) = {x 1 2(x) = ¥}, £ER(X), r> 0
form a base of closed sets for the topology v, while the sets
Z(f, r) a2 (f+r)={x | £(x) = =r{, £&€ P(X)y,r > O

form a base of closed sets for the topology u.
We note also that the functions in P(X) separate the points of X.

We shall say that S & P(X) is bigenerating if O € S and for

each x & x, § f-l(_oo’ f(x) +r) | £ &S, r>0 ] is a subbase
of the u-nhd. filter of x, and { £ 1(£(x) - r, ) | £ €S, r> 0 {
is a subbase of fhe v-nhd, filter of x.

P(X) is a T-lattice under the translation Tr(f) =f -r,

and so we may apply the notation and results of the last two

sections, Let us first note:

Proposition 3.3.1. In the notation of Proposition 3.1.9 we
have P'(X) = P*(X).

Proof. Take £ € P'(X) and suppose, say, that f is not bounded

above. Then if we set
L=1glgeP(X), g=< o0},
M=%{hthneprx), 3 r€R with T (£)n0 = h i
it is easy to see that (L, M) is a 1’b-regu1ar bi-ideal in P(X).
If (L', M') i8 a maximal 1Vb-regu1ar refinement of (L, M) then

Ts(f) € L'AM' for some s € R, However ‘1‘5+1(f) €M & M', and
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(T_(£)v 0)( /b)(Ts‘+1(f)/\0), which is a contradiction. Likewise

each element of P'(X) is bounded below.
There is a natural link between the -f e-regular bi-ideals

in P(X) and a certain family of bifilters on X which we now
describe. If (L, M) is a ,-regular bi-ideal in P(Xx) (or,

more generally, in a bigenerating sub-T-lattice of P(X)) we
denote by Zb(L, M) the bifilter with base

f (2%, r), 27(g, *)) | £€ L, g€M, > 0}
It is clear that Zb(L, M) is 1-regular if and only if (L, M) is
1’b-regular.
In the opposite direction let B = ® u X \Qv be a bifilter
on X and define

Zb'l(Bu) =ifrlfep, 2, )eQ V r>ol,
Zb'l(ﬁv) ={g\geP(Xx), 27(g, r) € ]}, ¥V r>o 3.
-1 -1
It is immediate that (zb (‘Gu), Z, (Gv)) is a -fe-regular
bi-ideal in P(X), and we have the relations

-1 -1
Zb(Z (Gu). Z, (Qv)) e Q seees (1)

b
-1 -1
and (L, M) < (2,77 (2, (L, M) ), 2,77(2, (L, W) ))) .. (2)

for all bifilters 3 and { ,-regular bi-ideals (L, M).
If A is a bigenerating sub-T-lattice of P(X) and the bifilter
@ satisfies

2,(2,7H8 ) n 4, 2,728 ) = B

we shall say that ® is a 2% -bifilter. The 2,* -biftlters
[¢)

are exactly those which have the form 3 = Zb(L, M) for some

1’e-regular bi~jideal in A. Note in particular that the relations

(1) and (2) imply that the maximal 1-regular ZbA ~-bifilters are

in one to one correspondence with the maximal f’b—regular bi-
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ideals in A.
On the other hand if the -/ o-Tegular bi-ideal (L, M) in A
satigfies
-1 -1
(L, M) = (zb (Zb(L, M)u)n A, Z, (zb(L, M)v)n A)

we sa&y it is a gbA

in A which have the form (Zb-l((lu)f\A,'Zs-l({Bv)r\A) for some

~bi-ideal. These are exactly the bi-ideals

bifilter B . It is not difficult to verify that the ZbA - bi-
ldeals are characterized among the  -regular bi-ideals by the

condition
(L, M) = (L, M%).

In particular every maximal f’b-regular bi-ideal in A is a
ZbA ~bi-ideal.
For x € X let us set

L(x) = f £ 1 £ &€P(X), £f(x) =01},

M(x) = ¢ £\ fep(x), f(x)z01.
It is clear that (L(x), M(x)) is a real bi-ideal in P(X), and
that 27, (L(x), M(x)) is the nhd. bifilter of x. Consequently if
(L, M) 18 & ZbA -Si-ideal in A, Zb(L, M) will converge to x € X
1f and onlj if L(x)n A & L and M{(x)nA & M, We express this by

saying that (1L, M) is fixed by x. Since we shall, in practice,
usually apply this condition to 1’b-regu1ar bi-ideals the above

condition will then be equivalent to L(x)Nn A = L and M(x)nA = M,

For x € X we define the function

~

"x: P(X) > R
by X(£) = £(x) VW f € P(X)., Clearly x € Hy(xy for all x & X,
We note the following result.
Lemma 3.3.1. For each x € X and 8 & P(X) we have

~ ) ‘ -~
xlS) - (Lx\ s> x\<sS> )

= (L(x)n<8>, M(x)n<8>).

(LX\S’ M

y M

Proof. This is immediate from the definitions and Proposition
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3.2.2.

We now give a characterization of the bigenerating subsets
of P(X).

Proposition 3.3.2. S < P(X) is bigenerating if and only if
0 &€ S and for each x € X the bi-ideal

([-(Li|s)P(x)] +’I.(M£'S)P(x)] *
is fixed by x.
Proof. Suppose S is bigenerating, take f € L(x) and s > 0.
Since f'1(~oo, £(x) + &) is a u-nhd. of x we have f,, «o.y f €
S and t > 0 so that
N1, 00, £, + 26} € £ M=o, £(x) + &),

It follows from this that
T At < Virfi(x)(fi)vo},
and since i\s(fi) = fi(x) this means that
T (At < \/}Tﬂs(fi)(fi)voi.

Hence Ts(f) e.(LX|S) X and since 8 > O was arbitrary we have

P(X
establighed

L(X) < ‘_(L)NS)P(X)] +'

The other part of the result is proved likewise.

xS + xIs +
e T L0170

is fixed by x for each x € X. To show that S generates the

topology u it will suffice to show that for x € X, f € P(X) and

8 > O we have fl, ceey ﬁié S and t > 0 so that

Conversely suppose that ( [ (L

ﬂ'ifi-l(-oo, fi(x) + t); < f-l(-m, £(x) + 8) ceee. (3).

Now Tf(x)(f) € L(x) & 1<L§’S)P(X)] +, and so Ts/2 Tf(x)(f) €

ol ~
(Lx\S)P(x). Hence we have g € Lx‘S and t'> O with
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Te(x) + S/Z(f)A t' = &

Alsc we have f., ..., fne S and t" > O with

1
"
gat" < Vi T:‘Els(fi)(fi)v o}.
It is noy easy to verify (3) for this £ eeey £ and t = t'at"
A (s8/2), and so S generates the topology u. Likewise S generates
vV, and hence if O € S it is bigenerating.

On analogy with the definition of real compactness for

topological spaces (see, for example, [{6]1 ) we now give:

Definition 3.3.1. Let S € P(X) be bigenerating. Then (X, u, v)
is S-bireal compact if every real bi~ideal in £ S> is fixed.

A P(X)-bireal compact space will be called bireal compact for
short.

Proposition 3.3,.2. Let S, W be bigenerating subsets of P(X)
with <85> < <«<W>, Then if (X, u, v) is S-bireal compact it is

W-bireal compact.

Proof. ‘Let (L, M) be a real bi-ideal in <W>. Then (Lp<S>,
MNn <8 >) is a real bi-ideal in < S >, and hence fixed by some
X € X, Hence
XIS RIS
(L%, ¥'°) = (L(x)h <S>, M(x)a <5>) = (Ln< S», Mn<S>)
by Lemma 3,3,1. Since (L, M) is a maximal -f p-regular extension

of the above bi-ideal to < W3 we have (Lxls) > < L and

:‘cls)

< W

(M ’ + +
cy> S M. FinallyL =L and M =M and so

x1s , a
([(L )<w>]+’i-(Mx‘S)<w> Yy 2 (@ om.

However W is bigenerating and hence it follows by Proposition 3.3,2
that (L, M) is fixed by x.
In particular a S-bireal compact space is bireal compact.

In the opposite direction we have:

Theorem 3,3.1. Let S and W be bigenerating subsets of P(X) with
“8> & 4W>, and suppose that (X, u, v) is W-bireal compact.
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Then the following are equivalent:
(1) (X, u, v) is S-bireal compact.
(i1) _(L<W> , M
in «<s5 .,

<> ) is finite for all real bi-ideals (L, M)

(1i1) <W> 4is a finite -/b-refinement of < §» in P(X).

Proof. (i) = (ii). Let (L, M) be a real bi-ideal in £S>.
Then (L, M) is fixed by some x & X, and s0 by Lemma 2,3.1 we have

(uX!S ) eee (B).

(L

%1S
LWy M<W>) = ((L )<W>’ )<w>

On the other hand S & P(X) is bigenerating, and we may deduce at
once from Proposition 3.3.2 that

( [(L"'S)<w>]*, [(M‘?‘S)4w7 ) e (Lx)n <WZ, Mx)n <W>).

Comparing this with (4) give‘s
+ +
(L¢w> ’ M(W? ) = (Lx)Nn<W>, M(x)new>),

+
<wz

finite. Hence (L

*) is real in < W>, and so, in particular,

and hence (L M

4w 2

cur Mewr ) is finite also.

(i1) = (11i). Let (L, M) be a real bi-ideal in <S>, and
(L', M') any maximal L ,-regular extension of (L, M) to <W>.

Since (L< 0> 9 M<w>) < (L', M') we see that (L', M') is real

by Corollary 2 to Proposition 3.1.7. However (X, u, v) is W-
bireal compact so (L', M') is fixed by some x € X, that is

(L'y M') = (L(x)n <W>, M(x)n <W>). In particular (L, M) =
(Lx)n <s>, M(x)n <52 ). Now since S is bigenerating the
functions in S separate the points of X and it follows at once
that (L(x)n< s>, M(x)n<87) = (L{y)h < S7, Mly)n €8>) =>
X = y. Hence (L(x)Nn <w>, M(x)n <W>) is the unique real
extension of (L, M) to £W>, and it follows that < W> is a
finite -)”b—refinement of €S> in P(X).

(ii1) = (1). Let (L, M) be a real bi-ideal in <S>
and (L', M') its unique real extension to <W>. By hypothesis
(L', M') 18 fixed by some x & X, and clearly (L, M) is fixed by
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the same x, Hence (X, u, v) is S-bireal compact.

We shall find it convenient to study the relation between
(X, u, v) and the bitopological subspace (H<S>’ ug, vs) of

( T R T & TT t_) where for each fe <S>,

1 ]
feesS> ¥ fees> I feesy T

Rf = R, 8, = 8 and tf = t; S being a bigenerating subset of P(X).

We denote by -, the projection

f

W} : TT mf——, RfSEQ
fe ¢5> |

defined by Tf(g) = g(f), and also the restriction of this

projection to the subset H<S>' First let us note the following:

Lemma 3,3,2. (a) The map 6’ ¢g> ¢ X —> Hgg, defined by

G’<s7 (x) = X1<85> is a bitopological homeomorphism of (X, u, v)

onto a
uniformly dense subset of (H<S> v Ugy VS)-

(b) H,q, 1s a uniformly closed subset of TT Ry
Te<S>

Proof. (a) It is a straightforward matter to verify that ®’ ¢s>

is a bitopological homeomorphism into (H<S> » gy vs), and the

uniform density of GJ<S> (X) in H, is an easy consequence of

s>
the fact that the bifilter z, (LP, MP) is 1-regular for each

P € H<S> R

(b) Let g € T (Rf be in the uniform closure of H<S; .
fe &S?2

If g(0) = £t > O then Tro"l( -rro(g) - t, o) meets H<S7 y 8ay in
a point p, and we obtain the contradiction g(0) - t = Mole) - ¢
< T 4(p) = p(0) = 0. Likewise g(0) < O is impossible and so
g{0) = 0. Now let us establish that

glfv£') = g(f)y g(£")

for all f, f'¢ < S>. Without loss of generality we may suppose
g(f') = g(f), that is g(f)vg(t') = g(f). Suppose that g(fy ')
<‘_g(f), then we may set g(f) = g(fvf') + 2t, where t > O. But
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then the uniform nhd.

-1

. 77_-1
-“_fo' (g) + t)N f( 'le(g) - t, o)

(-0, Tffvf,

of g meets H,g-5» say in a point p, and we then have the
contradiction
glf) =t < p(f) = p()yp(e') = plfve') < glfve') + t.

In the same way we obtain a contradiction if g(fvf') > g(r),
and the result is established., In the same way we may show that

g(fA £') = g(£)a g(£f') and g(T (1)) = T _(g(£))

for all f, f'e€ <S>, re R. Hence g€ Hg,, and H o is
uniformly closed as stated.

If (X, u, v) is S-bireal compact then of course G%s> (X) =
H<s> y and we have shown iﬁ particular that a bireal compact aspace

may always be embedded as a uniformly closed subset of a product
of copies of the space (R, s, t). In fact this property is
characteristic of the bireal compact spaces, as the next theorenm

shows.

Theorem 3.3.2. ‘(x, u, v) is bireal compact if and only if 1t
is bitopologically homeamorphic to a uniformly closed subspace
of a product of copies of (R, 8, t).

Proof. Necesseeity has been established above, 8o it remains
only to show the sufficiency. Without loss of generality we may
Suppose X is itself a uniformly closed subspace of (TT R, T s,

TTtd). If we denote the projections by T, then S = $ T\;IX}U $ol

is a bigenerating subset of P(X). By Proposition 3.3.2 it will
be sufficient to show that (X, u, v) is S-bireal compact. Let
(L, M) be a real bi-ideal in <8>, and let p € H o be the
<82 -resolution of (L, M), For each & 1let x, = p(M,1X), and
consider the element x = (x‘) of TT R, + We show first that x €
X. Suppose this is not so, then we have o g4» 1= isnand O(J,

D+l<=j3<m and t >0 so that

X0 N7, " -0, Ty, () + t>}nniﬁdjf1<rdj<x) -t @)= g .. ).
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Now [Vi('IT - xdi)j]vo €L, and (L, M) is o -regular so

T, ( {Vi(ﬂ'di - xdi)UVO) ¢ M by Lemma 3.1.2. However

U\{(ﬁ‘dj - xdj)ﬂl\o € M and so
[Mm"‘j - x“j)}]/\o F nAVHT - x 0lvo.
Hence we have Y& X so that for all i, j we have
(mr j(y) - x j),\o > (T, (y) - x, )VO - t.
But then y belongs to the set on the left hand side of (4), and
this contradiction shows x e X.

For f e S it is immediate from the definition that f£(x) =
p(£), and the same equality may be deduced for all f €<S> by
using a simple inductionVargument.on the form of the elements in
<S> . Hence '

(L(x)h<s>, M{x)n<S>) = (LP, MP) = (L, M)
and (L, M) is fixed in X as required.

Corollary 1. 1If (X, u, v) is bireal compact it is uniformly
real compact.

Corollary 2. Let S & P(X) be bigenerating and set 7T<S = Trfl
tee«syd, Then (H s> * Ygr Vg ) is m, bireal compact.,

Corollary 3. Any bireal extension of (X, u, v) in which X is
uniformly dense is bitopologically homeomorphic to (Heg, v ugs

vg) for some bigenerating subset of P(X).

Proof. Let (X', u', v') be a bireal compact extension of (X, u,
v) in which X is uniformly dense. Without loss of generality
(up to a bitopological homeomorphism) we may assume X & X'.
By the theorem we know that (x', u'y v') is bitopologically
ho ND e

meomorphic to (HP(X')’ Up(xry vP(X')) On the other hand

=1 fUX1| £re p(x')} 1is a bigenerating subset (actually,
sub-T-lattice) of P(X), and it is a trivial matter to verify

that (H
( P(X')* Yp(x')® Vp(x+)) 18 bitopologically homeomorphic
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with (HS' Ugy vS) under the correspondence p' — p defined by

p(£'1X) = p'(f') V f'€ P(X'). This establishes the result.

Definitions of bitbpologiéal real compactness have been
given by SAEGROVE [31] , and by BRUMMER and SALBANY [5] . Saegrove's
pair real compactness is considered in more detail in the next
section. At the time of writing only the review of [§] 1in
Zbl, fir Math, 371, is available to the author, but there are
clear parallels with some of the results obtained here, as the

reader will observe.

An important special case of the above notion of S~bireal

compactness is covered by the following:

Proposition 303.3. The following are equivalent for (X, u, v):
(1) P*(X)-bireal compact.

(i1)  S-bireal compact for all bigenerating 5 &« P(X).

(111) Uniformly compact.

Proof., (1) = (iii) follows from Theorem 3.3.l since all 1’e'
regular bi-ideals in PY(X) are finite, and (ii) => (1) is clear.

(1) = (iii). If (X, u, v) is P'(X)-bircal compact then
(x, u, v) is bitopologically homeomorphic to (Hpq(x), uP‘(X)' VP'(X))
by Lemma 3,3,2(a). On the other hand the proof of Lemma 3¢3.2 (b)
makes 1t clear that HP*(x) is in fact a uniformly closed subget
of a product of bounded closed intervals in R, and hence is

uniformly compact.

(i11) = (1). Suppose (X, u, v) is uniformly compact,
and let (L, M) be a real bi-ideal in P*(X). Then Zb(L, M) is
an i-regular bifilter, and if 3 41s a maximal 1-regular bifilter
refinement of Zb(L, M) we have 3 = x for some x € X by Lemma
1.7.2 (e). Hence Z,(L(x), M(x)) € B , and it is easy to deduce
that (L, M) is fixed by x. Thus (X, u, v) is P¥(X)-bireal compact.

For a bigenerating sub-T-lattice A & P(X) define v : P(HA)
? P(X) by v(g) =g, g€ P(H,), where g(x) = g(%14), V x€ X,

Lemma 3.3.3. (1) v is an injective T-lattice homomorphism.
(ii) V(P(HA)) is a finite 1'b-refinement of A.

Proof. (i). Vv is clearly a T-lattice homomorphism, and the fact
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that it is one to one follows at once from the uniform density of

G‘A(X) in H,.

(11) First A = V (P(HA)) since if f € A then TrfeP(HA)
and f = ‘0(1Tf). Now let (L, M) be a real bi-ideal in A; then

(L, M) = (1P, MP) where p € H, is the A-resolution of (L, M).

A
Corresponding to p we have p & Hy(y ) defined by p(g) = glp)
A

for a1l g € P(H,). (1P, MP) 15 a real bi-ideal in P(H,), and

therefore (\7(Lp), V(MP)) is a real bi-ideal in ’Q(P(HA)) by

(1). However it is easy to verify that
VIP)AnA =L and V(MP)nA =M

so ( V(LP), V(MP)) is a real extension of (L, M) to 'V(P(HA)).
On the other hand if (L', M') is any real extension of (L, M)
to \)(P(HA)) then (V™I(L'), V™1(M')) is a real bi-ideal

in P(HA), and HP(HA) is biresa( compact, so it is fixed by some
q € H,. It follows that (L', M') = (V(LY), V(u?)), while

(P, ¥P) = (L'na, M'aa) = (VDA A, V(M) Aa) = @, uY)
implies p = q and hence p = §. Thus (L', M') is unique, and

\J(P(HA)) is a finite -/b-refinement of A as required.

Corollary. 1If (X, u, v) is uniformly compact then P(X) = PY(X).
Proof. By the lemma \J(P(Hpq(x))) is a finite p-Tefinement
of P¥(x) and so \7(P(HP.(X))) = PX(x) by Propositions 3,1.9
and 3.3.1. It follows at once that P(Hp*(x)) = P‘(Hpu(x)).
However if (X, u, v) is P¥(X)-bireal compact then HP‘(X) and

X are bitopologically homeomorphic so P(X) = P"(X) also.

Of course the above proof of the pseudo compactness of a
uniformly compact bitopological space is of technical interest
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only, and an elementary topological proof of this result is
easily given.

Note that the above results imply in particular that the sepurabed
uniform compactifications of (X, u, v) in which X 1is uniformly
dense are, up to bitopological homeomorphism, exactly the spaces
(HA’ U, vA), where A is any bigenerating sub-T-lattice of P (X).

Proposition 3.3.4. Let A be a bigenerating sub-T-lattice of
P(X) and A' a finite ¢  -refinement of A in P(X). Then the

b
following are equivalent:
(1) ar e v (p(H,)),
(11) (LA" MA') is almost prime for every real bi-ideal (L, M)
in A.
Proof. (1) => (ii). Suppose A & A' & V (P(HA)) and let (L, M)

= (1P, ¥®), p e H,, be a real bi-ideal in A. Let § € HP(HA) be

defined as in the proof of Lemma 3.3.3. By definition 7TA =
LT 1 £ eA}] is bigenerating for the space H, and so by

Proposition 3,3.2 we have
Plor,y 1+ BIT +y o (1P WP
(| @ A)P(HA)] [ o A)P(HA)] ) = (1P, MP),

,
It follows by Theofiem 3.1.2 that

~

pIT, I
((Lp 'A)p(HA). (Mp A)P(HA))

v
is nearly total. Take gEA & \)(P(HA)); then g = V(h) = h

for some h e P(HA)' Suppose, for instance, that

pl T
T (h) € (P ) v s> 0.

| P(HA) )
Then for each s8> 0 wé ha\?e t> 0 and f € A with Tfté Lp”TA

so that T (h)a t £ T ,. But then T (g)at < f, and f€ LP,

. £
so T, (g) € (LP),, = L,, for all & > O. We deduce that (L,,s M)

is nearly total, and hence nearly prime by Proposition 3,1.3.
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(11) =» (i) For £'€ A’ define f : H,—> R by
f(p'la) = p'(£') for all p'€ H,,.
It is clear from the definition that if f € P(H,) then V (f)
= ', 80 it remains only to show the former property., Take p =
j &HA, p'€E HA" and 8 > 0. Since (LPA,, MpA,) is nearly
prime we have by Corollary 3 to Proposition 3.1.7 that
p
P O<te<s/2and g€l
Tp'(f')+s/2(f')e'I‘A" Hence for some

we have
] P .
A Tp'(f')+s/2(f It g
We deduce at once that

Trg-l(-oo, T (p) + ¢) < £ (=00, £(p) + 8)

50 f is continuous for the first topologies. Likewise it is
continuous for the second topologies, that is f'e.P(HA) as
required,

The above result suggests the following definition,

Definition 3.3.2, A' 18 a finite -fb-prime-refinement of A if
‘“’-

it is a finite 1’b-refinement and (L,,y M,,) is nearly prime in
A' for all real bi-ideals (L, M) in A.
~ The relation of being a finite 4”b-prime-refinement is

easily seen to be transitive, and so we may state the following

corollary to Proposition 3.3.k.

Corollary 1. If A & P(X) is a bigenerating sub-T-lattice
then \)(P(HA)) is the finite -, -prime-completion af A.

We also have:

Corollary 2. Properties (i) and (ii) of Proposition 3.3.4 are
each equivalent to

(111) -(HA’ Uy, vA) is bitopologically homeomorphic to (HA"

uAu VA.) under the correspondence p = p'lA &> p'.
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Proof. If p «» p' is a bitopological homeomorphism then P(HA)

and P(HA,) are isomorphic T-lattices under the correspondence

f 4> f' defined by f(p) = £'(p'). It follows at once that A' s
0'(P(HA')) = V(p(H,)), using an obvious notation. To establish
the converse it will clearly suffice to show (HA' Uy, vA) is
bitopologically homeomorphic to (Hyny Upny Vyu) for the case

A" = \)(P(HA)). Now by Lemma 3.3,3 (i1), and Proposition 3.3.k4,
8pplied to A" in place of A we know v"(P(H,,)) is a finite
'/b—prime-refinement of A". However Y (P(H,)) is finitely 7 b
pPrime~complete so ‘O(P(HA)) = ‘0"(P(HA")). and P(HA) and
P(HA") are isomorphic T-lattices under the correspondence

fe— " defined by f(p) = £"(p"). It follows that p «» p" is
a bitopological homeomorphism as required.

The above results show that the bireal compactifications of
(X, u, v) in which X is-uniformly dense are in one to one
correspondence with the subsets V(P(H,)) of P(X) for A

bigenerating, and that these are characterized internaly amongst
the bigenerating sub-T-lattices of P(X) by the requirement that
they are finitely ./ p-Prime-complete. It will be noted that if
Xy u, v) 1s bireal compact then the bigenerating sub-T~lattices
of P(X) may themselves be characterised in terms of the internal
lattice structure of P(X), one such characterization being
obtained explicitly by applying Proposition 3.3.2 to the bitopol-
ogically homeomorphic space (B xyr Bp(x)* ¥p(x))+ In this case
all the bireal compact extensions of (X, u, v) in which X is

uniformly dense, including the space itself, of course, can be
obtained explicitly from the lattice structure of P(X).

In case A is a bigenerating sub-T-lattice of F*(X) we may
state an alternative form of Corollary 2. First we need the
f°11°Wing lemma, which is of some interest in itself.

Lemma 3.3,4, Let (X, u, v) be preseparated, (X', u', v') uniformly
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compact and ¢ : X' —> X a bijective bicontinuous mapping.
Further Ssuppose that for each x'€ X' we have

f (ur-c1i x'} ) = u-cl ¢ '-p(x'b)j , and
f(viacl 1x'} ) = v=cl { $(x"} .
Then ¢ is a bitopological homeomorphism.

Proof. Let F be & u'-closed subset of X'. By hypothesis F is

(in particular) v'-compact, and hence ¢ (F) is v-compact in X.
Take xe X - ¢(F) and x'€ X' with f(x') = x. Then x'¢ F

and so if y'€ F we have x'¢ u'~cl fy'{ since F is u'-closed.
Hence, by hypothesis, x = d(x') ¢ flut=cliy'} ) = u-c1{f(y")§ ,
and since (X, u, v) is preseparated we have x € U(y') € u and
(3" e Viy') € v witn U(y')nV(y') = @. The sets V(y'), y' € F,
cover & (F), and so we have Y'ys eees ¥' € F 50 that 4 (F)

1s covered by V(y'l), cosy V(y"n). But then nlU(y'i) Il 1=1,

*e+3 N } 45 & u-open nhd. of x which does not meet ¢ (F),
and qo (F) is u-closed. In just the same way tf maps v'=-closed
sets to v-closed sets, and we have shown that v-f is a bitopolog-

ical homeomorphism, as required.
We may now give at once:

«
Corollary 3. If A is a bigenerating sub-T-lattice of P (X) then
the following conditions are equivalent to each other and to (1)

and (ii) of Proposition 3.3.4.

(1v) pua 4 q'lA&> p'< q' for all p', q' € H,,.
(") q'e€ u-elip'} &> q'lA€uy~clip'A}, and
e'€ v,,=clip'] & q'lA €v,~cl{p'lA]

for all ', q"e Hyyo | ‘

Let us denote by ¢} the set of all bigenerating finitely
{,~prime-complete sub-T-lattices of P(X), and set 9" = {4 |
Aek v A € P'(X)} . For each Be & which is finitely -(b—
complete let T 8 =¢ AV A e%, B is a finite -pb-completion

of A}, By Theoreh-3.1.,3 the sets 7 g form a partition of o .
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The set FF is partially ordered by set inclusion, and indeed
it is an upper semi-lattice, the least upper bound of A, A'E

A being the finite ¢  -prime-completion of < AuA'>.

b
L 4
Likewise & and each 598 is a sub upper semi lattice of ¥ .

Take A, A' ¢ & . As usual we shall say that a mapping
,'-P: HA' - HA preserves X if cp(o’A,(x)) = aJA(x) for all

X €& X. We may now note:

Lemma 3,3,5. Take A, A' € T, Then A & A' if and only if
there exists a bicontinuous mapping J s (Hy oy 0y vA,)->

(HA, Uy VA) which preserves X.

Proof. If A € A' the required function is clearly {(p') = p'lA.
Conversely let ¢ : (Hyyo uyyy vy ) = (Hy, vy, v,) be bicont-

inuous and preserve X. For f € A define f' : HA' ->» R by
£1(p*) = W (f(p")), p' € Hy,.

Since f' is the composition ;af the‘bicontinuous mappings 'ﬂ'f

and 9 it is bicontinuous, that is f'€ P(HA.). On the other

hand, since ¢ ©preserves X, it is easy to verify £ = V'(f') €

\J'(P(HA,)) = A', Hence A & A' as required. :

When A & A" the mapping »P : HA' - HA defined by qo(p')
= P'lA need not be onto, or in other words the extension (HA"~
Upes VA.) need not be projectively larger than the extension
<HA' Uys v,). Let us note, however, the following special cases.
(a) A, A'e S B8 « In this case, of course, :f is bijective. Note

that 1f B & p*(x) and Pt g contains more than one element then
the spaces (HA. u,, vA), A€ 9&'3 cannot all be (for instance)

pairwise Hausdorff because of Corollary 3 to Proposition 3.3.4.
This'would lead to a contradiction in the event that u = v, but
in general it seems quite conceivable that <4 g could contain
more than one element, even when B & P*(x), and this represents

& significant difference between the topological and bitopological



20k

cases.
¥
(b) A, A'e & . In this case «f is onto. For if A & A' and
Pe HA then (LpA,, MPA,) has a (not necessarily unique) maximal
7 ,-regular refinement in A'. Since A'S P¥(X) such a refinement
] ? .
has the form (LP ’ MP ') for some p'! e.HA,, and clearly p'lA = p.

This shows that the ordering in ﬁﬁ‘ reflects the projective
ordering of the corresponding uniform compactifications. In

particular the largest of these is (Hg(x)’ Up*(x)? vP"'(X))’

and this is the uniform compactification in which X is P*(X)-
embedded. Despite this, of course, (HP‘(X)’ Upk (x) V vp‘(x))

might not be the Stone-Cech compactification of (X, uvv).

[}
(¢) A€ U and A" = AnP™(X). Let us first verify that A*€ B} .
Now A = Q(P(HA)) and so AT is isomorphic to P'(HA). Hence

Hys is bitopologically homeomorphic with HP‘(HA)’ and so P(HAq)
is isomorphic with P(HP‘(H )), each under the natural correspond-
‘ A

ence. However P*(HA) is finitely .f'b-complete in P(HA). so

P(HPQ(HA)) is isomorphic with P¥(H,), and hence with A" also.

This shows that AY = \J*(P(HA,)), using an obvious notation,
and so A* € 9%’ + The above argu#ment also shows that HAq is
sepavated
the largest of the/uniform compactifications of H, in which H,
r
is unifgply dense., Hence ‘f : HA -> HAq is a bitopological

homeomorphism of H with a uniféﬁly dense subset of HA, which

A
Preserves X, and this means that the extension (qu, Uy qu)
is injectively larger that the extension (HA’ Uy, vA).
Note in particular that H?q(x) is a uniform compactification
of .

B x) (HP(X)’ Up(x)r Vp(x)) 18 the bireal compactification
°f (X, u, v) in which X is P(X)~embedded. For each A.é-ﬁ&,

(HA, U, v VA) is a real compactification of (X, uyv), but in
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general (HP(X)’ uP(X)\’vP(x)) may not be the Hewittreal compact-
ification of (X, uy v).

In the remainder of this section we relate the notion of
bireal Ccompactness with the completeness of certain quasi-

uniformities. Let us recall that if S <« P(X) is bigenerating
then qu(S) denotes the quasi-uniformity with subbase

{2 m)1 res, s>04,

(see Chapter 1), and it is clearly compatible with (X, u, v).
The following result is basic.
Proposition 3.3.5. Let ® be an a-regular bifilter on X. Then
B is qu(S)-Cauchy if and only if'(Zb-l(Gu)n <8>, Zb-l(ﬂv)
N<S>) 15 real in <S> .
2222£- Sufficiency is clear so we will establish the necessity.
Let 3 be qu(S)-Cauchy. Note that since qu(S) = qu(<S5>), 8
1s qu(< s'>)-Cauchy,‘and 1t follows easily that (zb‘l(ﬂu)nc s>,
Zb-l(iav)n < 8> ) 1s finite. Hence we have p € Hg, with

(2,7 MR dn<s>, 2,7 H8 Ines>) < (P, WD),
Take f & LP gng suppose f4 Zb'l(ﬂu). As we have noted earlier
Zb-l(‘Gu) = | zb‘l(gu)]*, and so we have 8> O with T_(f) 4
Zb-l(’eu). Hence we have s8'> 0O with Z+(Ts(f), B')¢ G u Let
8" = (s + §')/2, then for some re& R we have (f-l(M(r, s")),

£ 1, 8"))) € R. It follows that £-1(M(r, &")) g 2 (n), o,

and hence

s. + B8 < r+5" sscsesene (5).
Also we have T, e‘,,(f) e zb'l(g )n<S>< MP and g0 p(f) = r + 8"
- , v
2 O. Finally fe& LP implies p(f) 2 0O, and so r < 8" which
contradicts (5). Hence LP = zb-;(gu)n <8S>, and MP = Zb-l(Qv)
N<S 7 is proved likewise.

We may now give:
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Theorem 3,3.,3. (X, u, v) is S-bireal compact if and only if it
is qu(S)~-complete.

Proof. Let (X, u, v) be S-bireal compact, and let @ be a
qu(S)=Cauchy a~regular bifilter on X. By the last proposition

(Zb-l(’Qu)n <S>, Zb-l(ﬁv)n4 S»>) is real in <« S>>, and hence

fixed by some x € X. It follows at once that Y3 converges to
x, and so X is qu(S)-complete.

Conversely suppose X is qu(S),complete, and let (L, M) be
a real bi-ideal in < S 7 with resolution p € HLS?' It i8 clear
th#t for f € <S> and s » O we have

(e~ uep(e), 8)), £HN(p(D), 8))) & 2, (L, M),

and hence Zb(L, M) is a qu(S)-Cauchy 1-regular bifilter on X.
By hypothesis Zb(L’ M) converges to some x € X, and 8o
Zb(L(X)I\‘ s7, M(x)n<«s>) & Zb(l., M). However the mapping
Zb is 1n:jective on the maximal ./ b-regular bi-ideals of <S>
and we have (L(x)n <S>, M(x)h<S>) = (L, M), that is (L, M)
is fixed by x as required.

Corollary 1. For each bigenerating sub-T-lattice A of P(X),
(HA' qu(TTA)) is a weakly pairwise Hausdorff completion of (X,

qu(a)).
Proof. The restriction of qu(TTA) to c’A(X) is clearly quasi-

uniformly isomorphic with qu(A), and the completeness follows
from the theorem and Corollary 2 to Theorem 3.,3.2.

For the quasi-uniformity § on X we shall denote by Q($)
the set of all functions f : X —> R which are ( § - M) quasei-
uniformly continuous. By applying (essentially) Theorem 2,.5.3
to the completion (H,, qu(TTA)) we have at once:

Corollary 2. If A is a bigenerating sub-T-lattice of P(X) then
A < Qqu(a)) & v (R(H,)).

In particular for A€ 5 we have A = Q(qu(A)).



207
If A is bigenerating sub-T-lattice of F(X) then (H,y vy, v,)

is uniformly compact and so has a unique compatible quasi-
uniformity. It follows in this case that Q(qu(7TA)) = P(HA) and

hence

Qqu(a)) = V(p(E )N e A .

Consequently there is a one to one correspondence between 5"
and the set of totally bounded quasi-uniformities compatible

with (X, u, v). On the other hand, however, it is poassible to
have a bigenerating sub-T-lattice A of P(X) for which Q(qu(A))

d ﬁ%, as the next example shows.

Example 3.3.1. Let (X, u, v) be the space (R, s, t), and let
S=¢%41, 0], where 1R — R is the identity function. Clearly

S & P(X) is bigenerating. Let us first show that (R, s, t) is
S-bireal compact. Let (L, M) be a real bi-ideal in <S>, Then
for some a € R we have Ta(i) € LM, and we will show that (L, M)

is fixed by a. To do this it will suffice to show f € Ln Mo

f(a) = 0. Suppose on the contrary that f(a) = 2b > 0. Then a ¢
Z+(f, b), which is a closed lower set in R, and so k = supZ*(f. b)
< a. Take 0< t < a - k; then 2°(f, b)n 27(T (1), t) = &,

which contradicts the fact that Zb(L, M) is -/b-regular.

Likewise f(a) <. O is impossible, and we have shown that f(a)
= 0 as required. Hence (R, 8, t) is indeed S-bireal compact.
It follows by Theorem 3.3.1 that P(R) is a finite 1/b-ref1nement

of < 8>,for (R, 8, t) is bireal compact by Theorem 3.3.2.
Indeed examination of the proof of Theorem 3.3.1 shows thak
in fact P(R) is a finite + y-prime-refinement of <S>, and

hence of Q(qu(S)) also. If we can show Q(qu(8)) # P(R) it will
then follow that Q(qu(S)) = Q(qu( <s5>)) ¢ & . Now it is clear
from the definition that qu(s) = M. so we have to show QQ}k)

# P(R). Take
£(x) = e* & P(R)

and suppoge f ¢ Q(/*-). Then given t > 0 3 8 > 0 with
-1
m, < f (~“t)'

Hence for k € R there exists r € R with
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Mk, 8) € £ 3(M(r, t)) and N(k, s) & £ 1(N(r, t)).

k+s/2 k-8/2

Hence e < r + 4%t and e > r - t, and so

0« 08/2 - e“s/2 < 2t/ek.

8
However this gives a contradiction for lare enough k, 60 f £ Qlu)
and the result is established.

We know from the general theory above that Q*Sﬁk) e ?%‘.
Actually Q’Qﬁb) = P*(R). To see this take f € P*(R) and let
a = inf[f(R)], b = sup[f(R). Since the subspace [ a, b] of R
i1s uniformly compact the restriction to {a, b] of s coincides
with qu(P(R)) restricted to [ a, b). Hence given t> 03 s8> 0
with

-1
(m < (17Hm)) gy

s){a, b]
Hence‘for a-8<«<kaeb+ 8 we have r €R with

Mk, s)nla, bl & £71(M(r, t))pla, b],

N(k, s)nla, b} & £~ X(N(r, t))nfa, b1.
However, using the fact that f'l(M(r. t)) is an open lower set
and f_l(N(r, t)) is an open upper set we may deduce that

M(k, s) & £ 1(M(r, t)) and N(k, 8) & £ (N(r, t)).
On the other hand for k = & ~ 8 (respectively, k = b + 8)
we have M(k, s) & £ 1(M(a, t)), N(k, 8) = £ 1(N(a, t)),
(respectively, M(k, &) & £ 1(M(b, t)), N(k, s) = £ L(N(b, t))).
This shows that

w2 f'l(mt)

and so f e Q*(/u.) as required.

e
We now turn our attention to the question of the existénce

of a minimal element of 5% « The situation does not seem to be
as straightforward as in the case of a egingle topology, and

in particular there does not seem to be a simple characterizat-
ion in terms of the number of elements in the outgrowth of a
minimal uniform compactification. Before giving our partial
solution to this question let us note some terminology. If A is
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a sub-T-lattice of P(X) and (F, K) an ordered pair of non-empty
subsets of X we shall say (F, K) is A-completely separated if
for some h€ A with O < h < 1 we have h(F) = {0} and h(K) =
t13 . (F, K) will be called closed if F is v-closed and K is

u~closed, We then have:

Theorem 3,3.4. (a) Let A be a minimal element of ¥F . Then
for every A-completely separated pair (F, K) either every filter
% with F € X has a u-cluster point in X or every filter K
with K € X has a v-cluster point in X.

(b) Let A€ 4 , and suppose that every closed

A-completely separated pair (F, K) has the property that either
F is u-compact or K is v-compact. Then A i3 the least element of

@ .

Proof. (a). Suppose that for some A-completely separated pair
(F, K) there is a filter “{ with F € % that has no u-cluster
point in X, and a filter K with K € K which has no vcliuster
point in X. We will show that the bifilter Xx X is qu(A)-

Cauchy.

Take a € X. Then singe X has no u-cluster point there is
a u-closed set F(a) € X with a ¢ F(a), and likewise we have a
v-closed set K(a) € K with a ¢ K(a). Consequently we have e(a)
€ qu(A) with St(e(a), }al )nF(a) = st(ial, e(a))nK(a) = g.
Take any e € qu(A) and a sequence d_€ qu(A) with d, < (a)

e
en e(a) and dn+14(x) dys @ =1y 2y eoee o Let p_ be the

admissible p-g-metric obtained as in Lemma 1.4.1 for the sequecnce

dn' For xe X let
e e
f a(x) = p a(a, x).
' -n e ~1
Since for 2" <« t we have dn+2 < o < f_ (ﬂ\t) we see that

feaé Q(qu(A)) = A. Also

fea-l(-oo, fea(a) + 272y & st(e, a)

8o the set { £° | e € qu(A), a € X enerates the topology u.
a ’ g

In exéctly the same way if we set

Sea(X) = -paa(x, a)
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then gea € A and the set § gea | e € qu(A), a € X{ generates

the topology v. It follows that
s=1 5 AC/m), g5 v(-1/4) | e € qula), a € x ]
is bigenerating and that Q(qu(S)) & A. However 3 € P*(X) so
Q(qu(s)) e &F , and since A is minimal this implies
A - Q(qu(S)) eecocssse (6)¢

e A
Now by the definition of p a v know that o, < dl , and so

in particular o, < e(a). It follows that for all t> O we have

X = (22 A8 HM(1/4, ¢)),
R(a) & (£ A (1/4))7H(N(L/4, £)); and
K(a) & (g%, v (-1/80) 7 (uC-178, 1)),

X = (3%, v (=187 (1 sm, 1))

and so, using (6), KX ¥ is qu(A)-Cauchy as required. However
we have h € A with h(F) = {01 and h(K) = {1}, and hence for

some r € R,

(b rM(r, 1/8)), h7YX(N(r, 1/4))) € KxF .

h™L(M(r, 1/4))n K# 2 and W2 (N(r, 1/4))A F # & now gives an
immediate contradiction, and (a) is proved.

(b) Suppose that A € U} has the properties stated in the
theorem, and that A' is any other element of 5# . Take f € A
and set a = inf[f(X)}, b = sup[£(X)). Since in any case A' contains
all constant functions on X we may suppose that f i3 not constant,
and hence that a < b, Take t >0, and a natural number n with

1/n < t. Let p and q be integers satisfying
(p ~1)/n = a <« p/n and q/n <« b < (q + 1)/n.
Since the pairs
+ -
2 -
(27CTy fn )y 27(T 1y (), Petieq-1

are closed and A-completely separated we know by hypothesis that

for each pair either the first set is u-compact or the second set
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is v-compact. It follows by a simple compactness arzudment that
in either case each pair is A'-completely separated, say by the

functions hie A'. Now consider

A § hi‘l(ml/z) | pciga-1fe qulan).

If for rp, ceny € R we have

rq_l
ﬂ{ hi"l(M(ri. 1/2))n hi‘l(N(ri. 1/2)) | psis= q-1§ 2

and if we define

qifr > 1/2 v pei <q-l,

k =

min {1 | r, <« 1/2{ otherwise,

i
then it is trivial to verify

Nin i, 17201 peteal S T NK/A, 1),

N e, 1/2)) p2izallc £ (N(k/a, t)),
and hence
-1 -1
A h, ('Ml/z) | peizq-l] < ¢ (Mt)'
This shows f-l(‘mt) € qu(A') for all t > O, and so £ € Q(qu(A'))

= A', and we have shown A & A' as required.

In the case u = v the conditions (a) and (b) coincide, and
give a familiar condition for the existince of a minlmal‘
compatible uniformity, but in general they are unfortunaggy

rather far apart.

The results given so far in this section show very clearly
that the most natural dispersion to study in relation to the

notion of bireal compactness is f’b. However to close this

section we will make a few comments about another dispersion
which could be studied in this context. This is the dispersion
4”2 defined by

t(£,)g & 2Nz (g) =4, 1, ge P(X).
It will be noted that the definition of €, dcpends explicitly

on the space X, and it is not in general possible to define it
using the internal lattice structure of P(X). The reason why
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1’z might be of interest is that corresponding to a f’z-regular

bi-ideal (L, M) we have an 1-regular bifilter Z(L, M) with baee
L (z%(8), 27(g)) ! teL, geni,

and this might well be considered a more natural analoUge of a
z-filter than is Zb(L, M). (Zb(L, M), where (L, M) is 1’b-

regular, is more exactly an analdygs of an e-filtsr. C.f. [1(] ,
Problem 2.L). It is not our intention here to give a detailed
treatment of f’z-regular bi-ideals, and indeed the results

we do present tend to suggest that this notion might be of lecs
value in the bitopological case than it is for topologies.

It is clear from the definition that /b s £, and 80
every f’z-regular bi-ideal is f’b-regular. although the converse
will be false in general. Let us first note:

Proposition 3,3.6. Let A be a bigenerating sub-T-lattice of P(X).
Then every maximal f’z-regular bi-ideal (L, M) in A is total.

Proof. Suppose that for some f &€ A we have £ ¢ L and f¢ M,
and let

L'={£') f'€ A, £f' = fvh for some h€ L}J,

M' = { g') g' €A, g* > fak for some k€ M.
Then by the 1ﬂz-maximality the bi-ideals (L', M) and (L, M')
are not .fz-regular and so we have h &€ L, k'€ M with (fy h) ;zk'
and h' € L, k € M with h'?z(fA k). Now hvh' € L, kak' & M
50 we have a € z' (hvh')n 2 (ka k') = 2" ()N 2 (WA 2 ()N 27 (k).
However 2'(fvh)n 2z (k') = 27(£)n z¥(h)N 2™ (k") = & and
2" (h")N 27C £aK) = 2 (k)N 2 (£)N 2 (k) = ¢ s0 we obtain the
contradiction a ¢ z'(£) U 27(f). This proves the result.
Corollary. A maximal 1’z-regular bi-ideal in A has a unique
maximal 49b-regular refinement.

Proof. This follows at once from Propositions 3.1.3 and 3.1.1l.

In particular we see that every maximal 1’z-regular bi-ideal
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which is finite has a unique real refinement, and this will have

the form (L*, M*). Hence 1f (L, M) 1s a finite maximal £ -

regular bi-ideal we have p € HA so that

T (L, M) = (LY, M%) = (LP, MP),

and in this way we have defined a mapping ‘¥ from the set ZA
of all finite méximal, {fz-regular bi-ideals on A into the set
Hy. Now for each {’b-regular bi-ideal (L, M) we may define

L= §{f) fcA 3 heL, s >0witht < T (h)vol,

M ={3glgea A k€M, 8>0withg = T_B(k)aox.
Clearly (L™, M") is a { ,-regular bi-ideal, and we have (L, M)
< (LYY, (M)*). Consequently if (L, M) is maximal {Vb-
regular then (L™, M") is nearly total, and (L, M) ia its unique
maximal b-regular refinement. It is clear that all the
maximal ,-regular finite bi-ideals (L, M) with T(L, M) = p

satisfy
(@WP)™, MP)7) = (L, M) < (P, M®)  eeue (7).

We may now show that 7 1is onto HA. For if p ¢c HA then

((t?)~, (MP)") has a maximal 4oz-regu1ar refinement (L, M), and
(L, M) is & finite 1’b-regu1ar bi-ideal so it has a real refinem-
ent; and since this is also a refinement of ((LP)”, (MP)7) 1t

must be (Lp, MP). Hence T (L, M) = p, and o 4s onto as required.

For £ &€ A let us set

z°(e) = L(L, M)\ (L, M) €3z, rerl,
z(g) = L, M| (x,M) ez, gen].

Clearly {2%(£) | f € A } may be taken as a base of closed sets
for a topology v', on Z,+ and £27(g) |l g€ A} as a base of

closed sets for a topology u'A. (ZA’ u'A. v'A) is an extension of
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(X, u, v) with respect to the mapping x —» (L(x)nA, M(x)nA),
and X is uniformly dense in Z,. It is easily seen that (z,, u',,
v'A) is weakly pairwise To, but I would conjecture that it need
be neither pairwise completely regular nor separated in the
general case. Ve may note:
Proposition 3.3.7. If A & PY(X) is a bigenerating sub-T-lattice

[} L} -
then (ZA’ u'lyy v A) is 1-compact.

Proof. Let 3 be an 1-regular bifilter on ZA’ and define

‘L={t2)ren, z() e LI O

M={g|geA,Z'(g)e‘GvI.
Clearly (L, M) is a 4’z-regu1ar bi-ideal in A, and because
A < PY(X) it has a finite maximal f’z-regular refinement (L', M'),

(L'; M) e Z, and is easily seen to be an 1-cluster point of @
so the proof is complete.

Corollary. If under the conditions of the proposition (ZA' u',,
v'A).is pairwise completely regular then it is uniformly compact.

Proof. This follows at once from the corollary to Proposition 2.6,.8.

Now let us take (L, M) ©Z,y f€ A and t> 0. Then it is

easy to verify that

(L, M ez, - Z7(T) (g)4e(D) € T e, Tlp) + 20),

(L, W) €2, = 2°(T () (1) & T 7HT,HTp) - 2¢, 00),

where p = T (L, M), and 8o
. ] ]
T i (2, u'yy v ) (H,, Uy vA)
is bicontinuous., Since 4t also preserves X this means that the
extension Z, is projectively larger than HA, and in particular

X is A-embedded (in fact, V (P(HA))-embedded) in Z,. Recalling
that HP*(X) is the projectively largest separated uniformly

compact extension in which X is uniformly dense we see from the
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Corollary to Proposition 3,3,7 that if ZP*(X) is pairwise

completely regular then

is a bitopological homeomorphism, By embedding ZP(X) in ZP'(X)’

or otherwise, we see that

T ot Zxy > By

is a bitopological homeomorphism under the same hypothesis.
Before examining conditions under which ?2° is a bitopological

homeomorphism in general we note the following result.
Lemma 3,3.5. Let (L, M) be a maximal {’z-regular bi-ideal in A,
If f€ L and £'€ A satisfies 2°(f) & 2*(f') then £' € L.

We omit the prbof, which is straightforward. Of course a

corresponding result holds for M.
We may now give:

Theorem 3.3.5. Let A & PY(X) be a bigenerating sub-T-lattice,

and T : %, —=> H, be defined as above., Then the following are

A A

equivalenf:

(a) 7 is a bitopological homeomorphism.

(b) ThesetA=1{2| tearl € P(ZA), where f = TIOT '
is bigenerating.

(c) The following conditions hold for all f, g, h €A,

(1) If the sets z'(f) and 2*(g)A 2 (h) are non-empty and
disjoint then the pair (z'(f), 2°(g)Nz7(n)) 1e
A-completely separated, and

(11) If the sets 2'(£)n 27 (g) and Z"(h) are non-empty and
disjoint then the pair (2*(£)n 27(g), 27(h)) is
A-completely separated.

Proof. (a) => (b). This is immediate since ‘1TA = | ‘1Tf 1 r e AI
is bigenerating in H,.

(b) => (c). We establish (i), the proof of (ii) being
similar. By hypothesis ZA is pairwise completely regular, and

hence uniformly compact by the corollary to Proposition 3.3.7, s0
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we could use a compactness argu*ment. However the following proof

is more in keeping with our general approach. Suppose that
(Z+(f), 2*(g)N 27(h)) is not A-completely separated. Then given
f'e A with 2'(f) € z'(£'), and s > 0O, we have
z*(t', 8)n z2'(gdn z7(n) # 2,

and hence if we define
L'={g'l g'e A, z*(Ta(f')v g) € 2%(g') for some s8> O and

~ frre A with 27(2) € 2T(en ],
M'= {n'1 n'e A, ZT(0) € 270,
we see that (L', M') is a .1ﬂz-reéu1ar bi-ideal in A. Let (L, M)
be a maximal 1"z-fegu1ar.refinement of (L', M'); then (L, M) €

Z, since A & P¥(X), and we set T (L, M) = p. Let us show fe&

A
L. Suppose the contrary, then (L, M) ¢ Z*(f), and since A 1is

bigenerating we have £' € A with 2°(f) € 2*(£') and (L, M) ¢

z¥(£0). Now 2°(£) € 2¥(T') implies 27(f) & 2'(£') eo T (') €
'S L V s3>0, that is £' € L' = LP, On the other hand (L, M)
¢ z'(£) means p(f') = T, (p) = T(L, M) > O, which is a
contradiction. Hence £ € L, and g€ L, h €M are immediate from
the definitions, so we are lead to the contradiction

z2'(e)n z*(g)n z7(h) # @. This establishes (i).

(¢) => (a). Let us first demonstrate that 72° is injective.
Suppose on the contrary that T (L, M) = 7" (L', M') and that,
say, we have f € L with £ ¢ L'. By the maximality of (L', M')
we have h' € L' and k'€ M' with

z'(evh)Nn 2 (k) = g,
Applying (1) we have g, &€ A with 0 £ g, & 1, g (2'(fvh")) =
10} and g, (27(k")) = {1]. By Lenma 3.3.5 we see that T (g,)
+ 1/2(8,)) # B, while
z'(tvh))p 27(Ty /,(8))) = ZM()nlz*(h)n 271y (e, N ] = 4.

@M!' W t < 1, Hence 2 (h')n 27(T
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Hence we may again apply (i) to give us g, € Awith 0 < g, < 1,

g,(2°(£)) = [0} and g,(z"(h")n27(T) ,,(g,))) = {1{ . By Lemma

1/2

3e3¢5 we have g, € L € 1P, and since Tl(gl) € M € MP we see
+ - +

that 2 (Tl/a(gz))n V/ (Tl/z(gl)) # #. However 2 (Tl/a(gz))/)

(z"(a")n 27Ty 4508000 = 25 (00 (27T 5 (g,00N 27(Ty () )))

1/2

= . and a final application of (i) now gives us g5 € A,
1)) o +

0 = g5 < 1, with 33(2 (h')) {o} and gS(Z (T]_/Z(gz))n

= = ' ' p

Z (Tl/a(gl))) {11 . On the one hand g5 € L' € L7 by Lemma

3¢345, and on the other we have

+ + -
z (Tl/a(gz))ﬂ(z (Tl/z(ga))n Z ('1'1/2(31))) 2@ eeees (7).
However T]_(gl) € Mpo 8> V83 € Lp; and (7) implies

Z+(52v 850 1/2)n27(T, (g))y 1/2) = ¢

which contradicts the fact that (LP, MP) 1s /b-regular. This

shows that 7 is injective, as required.

Now let us show that for each f € A the set T (2'(f)) is

v,-closed in H,. Take p & 2T (zY(£)) in H,, and define
L'= {1 ' & £, T (WvO, hE P, s>0]3.

Clearly L' is an ideal containing (Lp)-, and hence the bi-ideal
(L', (MP)7) cannot be /z-regular, for if it were it would have
a (necessarily finite) maximal -/z-regular refinement (L, M)

satisfying f € L and 7 (L, M) = p, and this would contradict

p¢ T(2'(£)). Hence we have he LP, k € MP, g, t > 0, s0 that
2ty T_(0))N27(T_ (k) = g,

that is
2 (N (2 (T (1))N27(T_ (k) = 2.

We may now apply (1) to give g € A, 0 < g < 1, with g(z* (1))

= {ol ana g(Z+(TB(h))I\ Z-(T_t(k))) = {1{ . In particular we
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therefore have

2'(1, o(edv hy s AQL/WINZT(k, ) = 0 ..el. (B).

Now suppose that q € ‘ﬂé-l(TTé(p) - 1/2, 00)n T(2*(£)), Then

q = T (L, M) with £ € L, and 2°(£) & 2"(g) implies g € L & 17
by Lemma 3.3.5, so we have q(g) < O, On the other hand ng(q)
= 'ng(p) - 1/2 implies g(p) <« ql(g) + 1/2 = 1/2, and so Tl/z(g)
€ 1P, However (8) now contradicts the fact that (LP, MP) 1s

- ,-regular, and we have established that

ﬂ'F-l(ng(p) -1/2, ®)n T (zt¢e)) = g.

Hence T (2 (f)) is vA-closed, and an exactly similar argument

shows that T (27(f)) is uA-closed. Thus T 1is a biclosed mapping
and hence a bitopological homeomorphism, as required.

The argument used in proving (c) => (a) docs not use the
fact that A < P*(X). Hence we may state

Corollary 1. If A & P(X) is a bigenerating sub-T-lattice which
satisfies (i) and (ii) then T : z, =» H, is a bitopological

homeomorphism.
Let us also note

Corollary 2., If (X, u, v) is uniformly compact then every
bigenerating sub-T-lattice A & P(X) satisfies (1) and (ii).

It is known ([20) , Proposition 2.8) that if z'(f) and 2z (g)
are non-empty and disjoint then the pair (z*(f), 27(g)) is

P(X)-completely separated. This condition is, however,considerably
weaker than (1) and (ii) of Theorem 3.,5.5, and I would conjecture
that P(X) need not satisfy (i) and (ii) in the general case,

That not every element of TV need satisfy even the weaker
condition mentioned above is demonstrated by the following

simple example.

Example 3.3.,2, Let X = (-1, 0) v (0, 1), and consider the induced
bitopological space (X, siX, ti1X). Clearly the quasi-uniformity
M\X is compatible with this space, and we may consider A =
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L1 AO)v (-1)]\X

Q7(u1X) € H . If we set £ = L(1y0)ALdIX and g

]

then f, g €A and Z+(f)r\Z-(g) = (-1, 0)n (0, 1) = @. Suppose

13 . Now

1

we have h & A with h(z'(£)) = {0} and h(z (g))
RTHM, ) € pIX 50 there exists k > 0 with (W), < h7i(wy ).
Since (M(0, k)nA X)Nn (N(O, kK)nX) = (-k, 0) u(0, k) # & we have
r €R with

M(O, kK)n X € h~I(M(r, 1/2)), and

N(O, K)n X € h~X(N(r, 1/2)).

However k/2 € M(0, k) n X implies 1 = h(k/2) < r + 1/2, and
-k/2 € N(0, k) n X implies O = h(-k/2) > r - 1/2, 50 we have an
immediate contradiction. Hence the pair (Z+(f), z (g)) is not
A-completely separated.

~ Note that although Q"(m) = P"(R) we do not have A = Q*(u| X)
= P‘(X), for of course the above pair is P‘(X)-completely
separated.

~ One particular case in which we should have a unique
maximal {’z-regular bi-ideal (L, M) with € (L, M) = p would
be when (L, M) = (LP, MP). Our final result in this section
investigates thiés situation. Let us say that the ./ z-regular

bi-ideal (L, M) has the countable intersection property (C.I.P)

1f the set L2 (£)n27(g) | £ €L, g €M } has the countable
intersection property. We then have:
Theorem 3,3.6. Take A & TF. Then the maximal 4”z-regular bi~

ideal (L, M) in A is real if and only if it has the countable

intersection property.

Proof. Suppose that the maximal 1’z-regu1ar bi-ideal (L, M) in
A is real, but that it does not have the C.I.P. Then we have
fneL; gn'c—_- M with ntz”(fn)r\ z(gNIn=1,2 ...} =9,
and without loss of generality we may assume 0 =< £= 1/n

and -l/ﬁ < g, = 0. Let us set

f = V{fnl n=1,2, ...} and g = ANig,\ n=1, 2 3.
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Clearly f and g are well defined, 0 = f &£ land -1 < g < O.
Take s > O and choose a natural number k with 1/2k < s. If
given ry, «.., r € R we set r =V{ri | 1< i< kv (1/2)

then it is easy to verify
Ni fi"l_(M(ri, /%)) ] 1=1iekx} < f"l_(M(r, s)), and
N{e, i, V) L 12 12k3 & £, &),

and so

Aietom o 0)l1ei1ex} < £ (m ).

1/2k

Hence f€& Q(qu(A)), and so f € A by Corollary 2 to Theorem 3.3,3,
and likewise g € A. Since (L, M) is real we have s, t € R with
T (f) € LnM and Tt(g)e LA M. Suppose that 8 > O, and take a

naturai hun"lber m with 1/m =« s. Then since (L, M) is fz-regular

we have x ef\tz“(fi) l121<cm}n Z-(Ts(f)). However fi(x)

i

Oy 1 =1, ¢soey, m implies f(x) < 1/m &« s which contradicts
X € ZT(Ts(f)). Hence s « O; and likewise t = O, which shows
f € L and g & M. Hence there exists
ze 2°(£)n 27 (g)
“which gives the contradiction z € /) § Z+(fn)n Z-(gn) | n=1, 2,
sesey . Hence (L, M) has the C.I.P.

To prove the converse let (L, M) be a maximal fz-regular

bi-ideal in A with the countable intersection property. Suppose
first that we have some f € A with Tr(f) €L V reR., Then

by hypothesis we have a € ﬂtz*(T_n(f) i n=1, 2, «eo §, which
is clearly impossible. Likewise T (f) € M V r & R is impossible

50 no element of A is infinite at (L, M). Since (L, M) is total
and -fb-regular this implies (L, M) is finite, and hence to

show (L, M) is real it will be sufficient to verify L' < L
+
and M° & M, Suppose, for example, that there exists f & Lt

with £ ¢ L. Then since (L, M) is maximal /z-regular d nerl,
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ke M with

2 EGAZR) = 8 eeeeen. (9).
On tﬁe oth;r hand Tl/n(f) €EL VY n=1, 2, ees , and s0 by
hypothesis we have b € X with
b e}ﬂ{z*(Tl'/n(f))l n=1, 2, «..3n 2 (A 27(k).
Howe&er f(b)fs 1/n ¥ n =1, 2, ... implies £(b) = 0, that

isbe Z+(f), and we have a contradiction to (9). This

completes the proof of the theorem.

Corollary. Every real f’z-regular bi-ideal in A" has a real
1¢z-regular extension to A.

Eggéi. This follows at once from the observation that the 4’2-

regular bi~-ideal (L, M) in A has the C,I,P if and only if
(LA A, Mn A ) does.

In ﬁafticular it will be noted that there is a one to one

correspondence between the real 4”z-regular bicideals in A and

in A#. Consequentiskly if (X, u, v) is not pseudo compact there
will exist real bi-ideals in P*(X) which are not { ,-regular.

This implies in particular that the conditions (i) and (ii) of
Theorem 3.3,5 are in general not sufficient to ensure that all

the real bi-ideals on A should be 1ﬂz-regular. Of course it will

be apparent that if (X, u, v) is A-bireal compact then certainly
all the real bi-ideals in A will be 1oz—regu1ar. It can also be

shown quite easily that for the space (X, u, v) with u = v then
all the real bi-ideals in P(X) are ,-Tegular, but I do not

know 1f this is always true when u # v.

3.4 PAIR REAL COMPACTNESS.
Throughout this section, as in the last, (X, u, v) will always
denote a pairwise completely regular weakly pairwise T, bitopolog-

1cal space. M.J. SAEGROVE [31] has called such a space pair real
compact 1f it is bitopologically homeomorphic to an intersection
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of a TJ s, -closed subset and a i t-closed subset of a product
(TR, s, Wt,) of coples of (R, &, t). If in addition (X, u, v)

is pseudo compact he calles it a Bicémnact space. It follows at
once from Theorem 3.3.2 and Proposition 3.3.3 that a pair real
compact space is bireal compact, and hence uniformly real compact,
while a bicompacf space is uniformly compact., However the converse

is not true in general.

We shall begin by giving a characterization of pair real
compactnéss in terms of the notions of S~resolution and S-
derivative introduced in § 3.,2. First we make the following
definition.

Definition 3.4.1. Let S & P(X) be a bigenerating subset. We

say the S-resolution p is S-fixed by x in X if f(x) p(£f) for
all f’e S.

Lemma 3.4.1. If the S-resolution p is S-fixed by x € X then the
derivative (LP, MP) is a real bi-ideal in <3S > which is fixed

by x.
Proof. By Proposition 3.2.,7 it will be sufficient to show that
(Lp, MP) is «{ b-regular. However if we had fl’ ceny fn; Bqr oo

ce v By € Sand t 7 0 with

we shouh obtaln an immediate contradiction by calculating the
value of each side at the point x, and we deduce that (Lp, MP)
is real. It follows that p has an extension to an element p'e
H,g,» and the fact that (LP, MP) = (Lpf, Mpf) i1s fixed by x

now follows by a simple induction argu%ment.
We may now give: -

Theorem 3.4,1. (X, u, v) is pair real compact if and only if
there exists a bigenerating subset S of P(X) so that each S-
resolution is S-fixed in X.

Proof. First suppose (X, u, v) is pair real compact, Then with-
out loss of generality we may suppose X « TT R , and that
o
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X = (Tt ~c1(X)n (Trsq-cl xD.

Let us set S = {'ﬂ;lx lt,iog and suppose p ¢ S ~ R is a S-
resolution. Then if we put X, = p(T 1X) we have x = (x,.) e'TrRm,
and using the fact that the S-derivative (1P, MP) 15 7/ -

regular it is not difficult to verify x € X, while by definition
p is S-fixed by x.

For the converse let S be a bigenerating subset of P(X),
and consider the set Ry of all S-resolutions. Ry & TilR. | f € s},

and we may make Ry into a bitopological space (RS, Ug, vs) by
means of the projections 1Tf : RS e Rf =R, f €& S, as usual.
The map o/ o : X —> Ry given by 67g(x) = X1S is a bitopological
homeomorphism of (X, u, v) with the bidense subset &’ (X) of Rgs
and it 1s trivial to verify that

Rg = (Wt.~c1{R]J)n (Tep-c1iR.T)

in TTIRf. If every S-resolution p is S-fixed in X then by Lemma
3.4.1 we have 6° g(X) = Rg, and so (X, u, v) is pair real compact
as required.

Corollary 1. (RS, Ugs vs) is a pair real compact (respectively,

bicompact) extension of (X, u, v) for every bigenerating set S
in P(X) (respectively, in P (x)).

Corollary 2. Every pair real compact bitopological extension of
(X, u, v) is bitopologically homeomorphic to (RS, Ug, vs) for

¥
some bigenerating subset S of P(X).

Proof. Let (X', u', v') be pair real compact, and (X, u, v) a
bidense subspace. By the theorem we have a bigenerating subset
S' < P(X') so that every S'-resovlution is S'-fixed in X'. Let

S={fUx1 e s},

then S < P(X) is clearly bigenerating. Take p € Rg, and for
ft e S!' let

p'(£') = p(£Ix).
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1 '
Clearly p' is a S'-resolution, so the gerivative (L? s MP') 18

fixed by some x_€ X'. x_ is unique since (X', u', v') is
: Y p
weakly pairwise TO’ so we may define o : Rs —» X' by
o (p) = x_.
P b

It is easy to verify that o« 1is one to one onto X', and the fact
that it is a bitopological homeomorphism then follows at once

from the relations

ﬁf-l(-oo, r) = d-l(f'-l("ooo r)),

T e, w) = o He e, )

which hold for all r€ Rand f€& S, f'€ S' with f = £'[X.

Corollary 3. If (X, u, v) is pair real compact there exists a
bigenerating set S & P(X) satisfying

(a) P(X) is a finite - -refinement of <S>, and

b
(b) For any S-resolution p the derivative (1P, MP) is real.

Conversely if (X, u, v) is a space with a bigenerating set S
satisfying (a) and (b) then (X, u, v) is pair real compact if
and only if it is bireal compact.

Proof. If (X, u, v) is pair real compact we have a bigenerating
S so that every S-resolution is S-fixed. In particular every
real bi~ideal in < 8> is fixed so (X, u, v) is S-bireal compact
and (a) follows from Theorem 3.3.1l. (b) follows at once from
Lemma 3.4,1. For the converse we only have to show that a bireal
compact space (X, u, v) satisfying (a) and (b) ie pair real
compact. However by (a) and Theorem 3.3.1 we know every real
bi~ideal in < S > is fixed, and so by (b) every S-resolution is
S~fixed. Thus (X, u, v) is pair real compact by the theorem,

For a given bigenerating S & P(X) it is natural to consider

o The proof of the

the relation between the spaces R, and H,

S S>

following result is straightforward, and is omitted.

Proposition 3.4.1. (RS, ug, vs) is a pair real compact

extension of (H,q, , ug, vg) for the mapping & defined by

g =
(p?‘ pls :V p & H(S) .
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v v
For f e P(RS) we may define % (f) = £ € P(X) by f(x) = f(x(8S)

¥ x &€ X, The following result is clear.
Lemma 3.4,2. For all bigenerating sets S & P(X) we have
<s> & (RN < v (PMH ).
4 is, like V , a T-lattice homomorphism, but in general it
is not injective. Indeed we have the following.

Theorem 3,4,2. The following ane equivalent for a given
bigenerating S. |
(a) 4 is injective.

(v) Each bicontinuous real function on H<s7_ has a unique
extension to a bicontinuous real function on Rg.

(¢) 9 is surjective.

(a) & (H<S>) is uniformly dense in Rg.

(e} 67(X) is uniformly dense in Rg.

Eiggi. (a) =;‘ (b). Since Ry is bireal compact we know that Rg

and HP(R y are bitopologically homeomorphic spaces. Also if
S

is injective then P(Rg) and 4 (P(Rg)) are isomorphic T-lattices,
and it is easy to deduce that

1 (P(RS)) ’= v (P(HQL(P(RS))))-

It follows from this that % (P(Rg)) is finitely /  -prime-
complete, However < S> < ‘L(P(RS)) by Lemma 3.4,2, and we know
that V (P(H,g )) is the finite /b-prime-completion of <S>
and so we have

MR = Y (P(H o)) eeuenns (D).

(b) now follows at once from (1), and the fact that ¥ is one to

one.
(b) = (a). Immediate from the definitions
(a) = (c¢). From (1) it is immediate that P(Rg) and

P(H<S7) are isomorphic T-lattices. Since these spaces are bireal
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compact it follows that © is a bitopological homeomorphism of

H

3> onto RS.

(¢) = (d). Trivial.

(d) => (e). Immediate from the fact that °J<S>(X) is

uniformly dense in H,

S>"*
(e) => (a). Straightforward.

It is clear that in general equality (1) may hold without r]
being injective. For example if (X, u, v) is a bireal compact
space which is not pair real compact then & : HP(X) —> RP(X)

cannot be onto, and so by the theorem 1 : P(RP(X)) > P(X)
is not injective. However
P(0) & LRy ))& v (P(Hyyy)) & P(X)

and so certainly (1) holds in this case.

Let us now consider in more detail the properties of the

bitopological extension (RS’ ug, vs) of (X, u, v). For p & RS

we denote by Q(p), as usual, the nhd. bifilter of p, and we
shall denote by Bx(p) the trace of WW(p) on X, that is

Bx(p) = G“S-l(G(p)).

The proof of the following result is straightforward, and is
omitted.

Lemma 3.4.3. Q x(p) = Zb(Lp, MP) for each p e R + Moreover

®¥(p) = X e P < )" ana 1t & (1P, and with a
. o X X
similar result for Q v(p) and Qv(q).

‘Now let us verify that p — ‘Gz(p) is one to one on Ry if
and only if p —» LP is one to one. First suppose P — Qi(p)
is one to one. Then L = 1% = P « (LN)* and 12 < (?)*
. ‘X X
= ‘Qu(p) = ‘Qu(q) = p=gq, s0op —> LP 1s one to one.
Conversely suppose p —> LP is one to one, and let *Gl):(p) = Qi(q),

+
that is LP = (LY ana 19 ¢ P)*, By the proof of Proposition .
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3.2.6 we know Tr(f) € LP (respectively, L%) if and only if r = p(f)

(respectively, r = q(f)) for each fe& S. Hence for f & S, Tp(f)(f)

g
el = Tp(f)m(f)e L7 v 8> 0 = pl(f) +8 = q(f) ¥V 8> 0
= p(f) > q(f). Likewise p(f) = q(f) and so p = q. This shows

P—> Q :(p) is one to one. and in exactly the same way p-» ‘Q:(p)

i1s one to one on RS‘if'and only 1f p — MP is one to one.

Let us say the bitopological extension (X', u', v') is a »
relatively T. extension of (X, u, v) if (X', u') is a relatively
T . extension of (X, u) and (X', v') is a relatively T, extension

0]
of (X, v). (See [1].). Combining the above results with Proposition

3.2.6 now gives us:

Proposition 3.#.2; (Ré, gy vs) is a relatively T, extension of

(X, u, v) if and only if every S-derivative is S-real.

It will be noted that if we require only that the mapping
P— (gx(p) should be one to one on Rg we obtain a condition
which will, in general, be weaker than relatively To.

Let us now examine under what conditions (RS, ug, vs) will be

a strict extension of (X, u, v).

Proposition 3.4.3. (Rg, ugy Vvg) is a strict bitopological
extension of (X, u, v) if and only if every S-derivative is
S-real.

Proof. It is a straightforward matter to verify that a strict
bitopological extension which is weakly pairwise 'I'1 is necessarily
relatively TO’ so necessity follows at once from Proposition
3.4.2. Let us prove the sufficiency. For f € <S> and 5 » O

we will denote the u-open subset { x | f(x) < s} of X by G+(f, 8),

and we will denote the set [G’S(G+(f, s))]:1 by G+(f, 8)¥u for

short. Take p € Rs and f € S. Then for s » 0 we have

-1
M, (-00, T (p) + 8) ¢’ (X) = a/S(G+(Tp(f)(f), 8))

and so
péG+(Tp(f)(f), S)¥u 0o (2)0
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Now take q € G+(Tp(f)(f), s)*u. Then clearly G+(Tp(f)(f), B) €

& o ‘
Egu(q) = (Zb(Lq, Mq))u, so for some g€ LY and t > O we have

Z+(g, t) < G'(T )(f), 8).

p(f
From this we deduce at once that

To()+s'fInt < 8O,

and because of the definition of LY this implies Tp(f)+s(f) AN
Now by hypothesis (L%, MY) is S-real and so p(f) + s = q(f).
Hence q ¢ 1Tf-1(-a>,1Tf(p) + 28), and we have shown

— -

6N (T, () (1)) )7, & T, (00, Wylp) + 28) ... (3).

That (Rg, us) is a strict extension of (X, u) is now clear from
(2) and (3). Likewise (Rg, v.) is a strict extension of (X, v),
and the proof is complete.

Let us now note

Proposition 3.4.4%. LP is nearly prime for all p € Rg if and
only if for each f, g€ <S?7 and 8 > O we have

La* (s, s)ua*(g, s)J'; < a'(r, 25)*; v G (g, 25)*u ceeee (W),

Proof. Suppose LP is nearly prime for all p €R; . If p €

<-4
(a*(£, s8)uva*(g, &)] , then G'(t, s)ua*(g, 8) = a*(fag, 8) €
‘Bﬁ(p), and exactly as in the proof above we deduce Ts(ng) =

(£)e P or T (g) € 1P, and we

3s/2 3s/2
have p & Gf(f, Zs)'uL;G+(g, 23)'u as required. The proof of the

Ts(f);\Ts(g) e LP, Hence T

converse is similar, and is omitted.
Corollary. Suppose that (Rs, Ugy vs) is a strict bitopological

extension of (X, u, v), and that the topology u, satisfies (4)

S
for all f, ge <S>, 8 » O. Then (RS, ug, vs) is bitopologically
homeomorphic with (H,o ugy Vo) under the mapping & .

Proof. This follows at once from Propositions 3.4.% and 3.2.7.
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Note that a result corresponding to Proposition 3.4.4 will-
also hold for MP? and the topology vge In particular if (Rg, ug,

ve) is a strict bitopological extension then ug will satisfy (4)
if and‘only if the corresponding result is satisfied by Vge This
represents an interesting symmetry between these two topologies
in this case.

We have seen earlier that the spaces HA may be regarded as
completions of a suitable quasi-uniformity on X, and we are now
going to show that those spaces Rs which form a strict extension
of X (and these indeed comprise all the strict pair real compact
extensions of X) may be regarded as the completion of a suitable
confluence quasi-uniformity on X. Let us denote by cqu(TTs) the
basic confluence quasi uniformity on RS with subbase

(T, )1 re s, 8 > 01
Thén we have:
Lemma 3.4.,4. (Rg, ug, vs) is cqu(TTé)-completef
Proof. Let @ be an 1-regular cqu(jTé)-Cauchy bifilter on R_.
For f € S it is easy to verify that
p(£f) = inf { r | ‘le"l(H(r)) € &ui
exists in R, and that moreover we have

p(£) =sup { o1 T HK(rD e BT

But then (T, "20i(p(£), 8)), T, 2(N(p(£), &))) & § for all & > O,
and it follows easily that p € RS and that Q® converges to p

as requi;ed. Hence Rs is complete.

Lemma ?.#.5. If (Rg, ugy Vo) is a strict extenslion of (X, u, v)
then ¢’ s(X) is strictly cqu(TTS)-embedded in Rg.

Proof. For f € Sand s > 0 let us set

4(8) =L (Lun @015, 1va 01 1 o m v
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Since Rs is a strict extension of X we may use Proposition 3.4,3,

and in particular the relation (3) and its equivalent for the

topology Vg to show
-1 -1
TTT0m) 2 d(s) < T.7(wm,)
for all s > 0. Hence
{ (a (e)0)ig _e's. g > 01
is a subbase of cqu(TTé), and it i8 clear from the definition
that the corresponding base . satisfies conditions (b) (i) and
(1i) of Definition 2.3.2.
It follows from Proposition 2.3.1 that the induced structure

on X is an interior confluence quasi-uniformity, which we will

denote by § g+ Now let us define on X the interior confluence

relation DS by
PD,Q &> PiQor 3 pe Rg with (P, Q)€ z, (1P, MP),
and for f€ S, 8 > 0 let us set
ag(f, s) = L (£7H(u(r, 8)), £71(N(r, 8))) 1 r &R,
£ 0u(r, 8))Dge™ (N(r, 811 .
Then it is a straightforward matter to verify that
’ t (ag(t, 8, D)1 t €S, s> 03
ié a subbase:fqr thg induced structure & s* Summariziﬁg these

results we have:

Theorem 3,4,3., Let S & P(X) be bigenerating, and suppose that

every S-derivative in «S 7 is S-real. Then

i (aq(f, 8), DI 1 £ €S, 8> ol
is a subbase for a separated basic interior cqus $ g on X, and
the separated completion of (X, S.S) is the space (Rs, cqu(TrS)).

Corollary. Each pair real compact strict extension of (X, u, v)
may be obtained as the completion of a suitable confluence

quasi-uniformity on X.
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INDEX OF SPECIAL SYMBOLS

This list contains, under the appropriate headings, the symbols
and abbreviations used frequently in this thesis, with the number
of the page on which the definition may be found. Standard symbols

gnd abbreviations are not included.
Bifilters:
4
e, AT U 76; W(x) 763 8 4(x) 101; W 144;
B, ®¥p) 226 z,.(1, W, (2,7H8 ), 2,78 ) 189.

Bi-ideals:
C.I.P. 219; (L, M) 163; ‘(L(‘{).M(‘F)) 164; (LY, uh)
166; (Lg, My) 175; (L(B), M(B)) 177; (P, MP)  180;
J(L(x).’M(x))’ 190; (L7, M) 213; =< 163; z, (L, M),

- ﬂ.l : _l o -
(z,”heR ), 2,78, 189.

Confluence Relations:

A, A° 98; ¢ 92; c, 99 T 107; & 14 D 955
A

Do 230; f"l_(c) 103; 1 92; /\L(di, ci)l 139; I\
141; oup. 98; € C, 8°x 139; st (a, A), St (A, &) 92

(dy, ¢c) < (e, b), (a, c) <) (e, b) 92.

Cbnfluence Structures:

cpqu  140; cqu 92; cquc  104; cqu(TTg) 229; D 95;

»

?A 100, 1415 S,, S, 9% ST, $° 10, Sg 2305
HTB.1 - 4 127; TB.1 - 6 118, 119.

qe extensions of:

o . o 1 * *
Agp A7y 207 A° a7k B, BT 99; B, B° 107
o 1 ~ ~
By By LBk S a04;  § 0 144y V(X)) 107; A (),
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U (x)  abb,

D=hyperfilters:
b(}%), n(Q), 4 , & 123

Dispersions:

{163 L. £, 1655 o, 21

Dual covering quasi-uniformities:

/gfn 78; an 785 stf ‘80; 311 72, M 71 qu(s) 71.

Dual covers and families:
L ~
d ‘1, 2; d¢ 713 4/L 505  d(w)  72; d, 100; 4 107;

(-
a4 18; (4, ¢), 14; A k4 e(W) 72 @) 7,

103; A 25 1le(d) 25 My, Mm(x, n), #(X) 71; PsSt(q,
(P, Q)), PSt((P, Q), d) 43; rc(d) 2; =< 2; <(%) L
£L(8) 18; <(px) 43; = |, <) 85, 135; St(d, A),
St(a, a) 4; » 32;  ue(d) 2; ue, (d), uca(d) 81;
Ust(d, A) = Ust(A, d) 53; (wx) 53; wst(d, A), wst(a, 4)

52; w(d) 70.

Para-quasi-uniformities:

€ 85; pqu 86.

p-q-metrizable spaces:

dg 71; H(x, € ), H (x), K(x, £), K (x) 33; L (¥), M (Y)

36; M(x, €), N(x,& ), S 715 o 37; (R, s, t) 61.

n

Real compactness.

#, Sq’B, 7 202; Q(p), ’Sx(p) 226; cqu('ﬂs) 229;

Dgy $5 2303 f 225; % 197; G&'(f, 8), G'(s, 8)' 227
Heg> o By 1815 P(X)  188; 'ﬂ} 194;  Q(S)  206; qu(TrA)

1206; Rg 1805 G¥,5, 194; &g 223; T 181, 224;
203; ¥ 197; ¥ 213; M 225; % 190; z(g), 27(8),
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2*(t, &), 27(f, 8) 188; z'(f), 27 (f) 213.

T-lattices.

P 162; P', P 179; <S> 180; S, 181 T 168;

Quotients of-:

~ , 3 Jp/(L, M), ¥ , « 168; 2y, M)(o), 1(0), <<

170;‘ I(la)) 171.

Note. The symbols < , . < and A 1listed above are also used

with their standard meaning at various points in the téxt. It
will be clear from the context which meaning is intended.
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INDEX OF SPECIAL TERMS

The number denotes the page on which the definition may be found,
Well established terms are not included in the list.

A-completely separated,

Bifilter, 91
j3-regular 95,
convergent, 76
S—Cauchy, 76, 101,
S-convergent, 143
D-regular, 95
1-regular, 76
minimal %-Céuchy,
neighbourhood, 76
open, 115

sz- , 189

Bi-ideal, 163
extended real, 173
finite, 172
 fixed, 190
" F-prime, 182
 maximum § -regular,
nearly prime, 166 -
nearly total, 166
prime, 163
real, 173
£ -outer prime, 163
{ -regular, 163
S-fixed, 222
S-real, 186
total, 163
2z~ , 190
Binormal space, 8
collectively, 75

209

143

110

163

finitely, 9
fully, 11

point finitely, 9
star finitely, 9

Biparacompact space, 12
compartmentally quasi-, 50
countably gquasi-, 25
quasi-, 23
strongly, 11
strongly quasi-, 23

Bireal compact space, 192
S-, 192

Bitopological extension, 091
M-geparated except for X, 151
with pairwise relatively
zero'dimensioﬁal outgrowth,
151 1
relatively To’ 227
strict, 101

Closure of a dual family, 21
Cluster point
of a bifilter, 115
of a D-hyperfilter, 124
Confluence para-quasi-uniformity,
140
compatible with (X, u, v, D),
154 o
Confluence quasi-uniformity, 92
basic, 139
complete, 106
hypercomplete, 126



hyper-totally bounded, 127

induced, 100
interior, 94
isomorphic, 104
totally bounded, 118
Confluence quasi-uniformly
continuous, 104
Confluence relation, 92
bicompatible, 98
conjunctive, 117
S -compatible, -119
induced, 99
interior, 94

with open union property, 98

c-preseparated space, 9%
c-regular space, 98

c-separated space, 95

D-cluster point of a bifilter,

115
D-compact space, 115
almost, 115
9 -complete space, 76
Delta refinement, 18
¢ -embedded subset, 100, 142
strictly, 100, 142
D-embedded, 122
D-hypercompact space, 126
almost, 126
D-hyperfilter, 123
$ -Cauchy, 124
dominated, 123
3 -refined, 125
weakly convergent, 124
weakly § -Cauchy, -124
weakly dominated, 123
Dispersion, 163

D-normal space, 116

238

Dual cover/family, 2, 1

c~- 4, 92

closed, 17

compartmental, 50
compartmental pre- , 56
conBervative ¢-medial, 47
countably medial, 27
discrete, 12

divisible, 72

even, 72

full, 23
of finite type, 47
1-, 2

locally finite, 12
medial, 44

normal, 8

open, 3

point finite, 3

point singular compart-
mental, 56

pseudo~normal, 53
quasi-discreie, 23
quasi;locally finite, 22
quasi- £ ~finite, 23
quasi-star finite 23
quasi-strongly point finite,
27

¢’ -locally finite, etec., 12
£ -discrete, 12
sequentially normal, 32
sequentially pseudo-normal,
53

¢~ -full, 23

shrinkable, 3

~star finite, 5

trahsitive, 80

Dual covering quasi-uniformity, 70



76
initial, 71
pseudo- , 82
totally bounded,
80
83

complete,

77
transitive,

weak local,

Envelope of an equibinofmal
family, 34
Equibinormal cover; 35
Equibicontinuous family, 34
Equibinormal family, 34
Essential, 9

Extension of a confluence quasi~
104

104

uniformity,
strict,

Finite at (L, M), 172
Finite element of P/(L, M), 172
Finiteely ,-Prime-complete,
200
Finite b-prime completion,
200
Finite £ b-prime-refinement,
200
Full space, 23

¢ -, 23

Fully pseudonormal space,

43

Infintesimal element of P/(L, M),
169

Infintesimal at (L, M), 169

Left covering of a dual family, 2

Limit point
of a bifilter, 76
of a D-hyperfilter,

by

Metric -~ See under pseudo~ quasi-

124

Medial space,

Nearly totally ordered, 171

 Quasi-D-biclosed space,

239
Pairwise reflexive space, 81
Para-quasi-uniformity, 86
Preseparated space, 17
203
Pseudo-quasi-metric
admissible, 34

evenly subordinate,

Preserving X,

34
subordinate, 34
Pseudo-quasi-uniformity, 82

Pseudo-stars, 43
154
Quasi~uniformity

92
confluence para- ,

70

confluence,

140

dual covering,

para- , 86

82
83

pseudo- ,

weak local,

Refinement of a dual cover/

family, 2, 92
pseudo-star,

4, 92

weak star,

b3

star,

52

{ ~complete sub-T-lattice,
finitely, 176

4 -completion, 176
finite, 176

f-refinement of a sub=~-T=-lattice,

176

176

finite, 176
Right covering of a dual family,
2

180
180

Sequentially normal space,

S-derivative,

-resolution,
32
Strongly biscreenable space, 12
Strongly compartmentally quasi-



50
Strongly quasi-biscreenable,

biscreenable,

Support of an equibinormal
family, 35

T-lattice, 165

Uniformly closed subset, 8
finitely, 8
point finitely, 8
star finitely, 8

Uniform covering of a dual family, 2

23

OW

KARY

Y Ur o RSITYV
|Lssass

2bo
Uniform properties of a bi-
topological space, 8
53

Uniform star,

Weak cluster point of a D-
hyperfilter, 124

Weak 1limit point of a D~
124

52

hyperfilter,

Weak stars,





