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Abstract 

What is a latent variable? Simply defined, a latent variable is a variable that cannot 

be directly measured or observed. A latent variable model or latent structure model is 

a model whose structure contains one or many latent variables. The subject of this 

thesis is the study of various topics that arise during the analysis and/or use of latent 

structure models. Two classical models, namely the factor analysis (FA) model and the 

finite mixture (FM) model, are first considered and examined extensively, after which 

the mixture of factor analysers (MFA) model, constructed using ingredients from both 

FA and FM is introduced and studied at length. Several extensions of the MFA model 

are also presented, one of which consists of the incorporation of fixed observed covariates 

into the model. Common to all the models considered are such topics as: (a) model 

selection which consists of the determination or estimation of the dimensionality of 

the latent space; (b) parameter estimation which consists of estimating the parame

ters of the postulated model in order to interpret and characterise the mechanism that 

produced the observed data; (c) prediction which consists of estimating responses for 

future unseen observations. Other important topics such as identifiability (for unique 

solution, interpretability and parameter meaningfulness), density estimation, and to 



a certain extent aspects of unsupervised learning and exploration of group struc

ture (through clustering, data visualisation in 2D) are also covered. We approach such 

topics as parameter estimation and model selection from both the likelihood-based and 

Bayesian perspectives, with a concentration on Maximum Likelihood Estimation via the 

EM algorithm, and Bayesian Analysis via Stochastic S~mulation (derivation of efficient 

Markov Chain Monte Carlo algorithms). The main emphasis of our work is on the 

derivation and construction of computationally efficient algorithms that perform well on 

both synthetic tasks and real-life problems, and that can be used as alternatives to other 

existing methods wherever appropriate. 

This thesis is organised as follows: Chapter 1 presents a general introduction to latent 

variable models, together with a brief overview of the statistical and computational 

methods and tools used to study them. In chapter 2, we present a review of the factor 

analysis model. We propose a new approach to model selection based on stochastic 

simulation, and we suggest new ideas on a Bayesian sampling alternative to varimax 

factor rotation. Chapter 3 starts with a brief review of finite mixture models, along 

with a survey of some recent research in the field. However, the major part of this 

chapter introduces and extensively studies the mixture of factor analysers model. More 

specifically, we present a thorough analysis of the stochastic simulation treatment of 

mixtures of factor analysers, with applications to both real and synthetic data, and 

we offer a comparison between our approach and the existing results in the literature. 

Chapter 4 extends the mixtures of factor analysers model by incorporating fixed observed 

covariates into the model via the latent variables. An EM algorithm is then constructed 

for parameter estimation and prediction, and the resulting scheme is tested on artificial 

data. In Chapter 5, we use the assumption of conditional independence to allow our 

manifest vector to be made up of variables having different distributions, and we use a 

generalised linear models formulation to ease the analysis of the resulting model, and 

to construct the corresponding algorithms for parameter estimation. Chapter 6 presents 

our conclusion, a discussion and elements of our future research. 
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Notation 

Variables, Parameters and Sets 

Notation 

X 
1'-
(3 

x,Y,Z 
X T = (Xl, •.• ,Xp) 
x,y,z 
X,Y,Z 
X,Y,Z 
X· 
lR 
Ik 
diag(ml,' .. ,mk) 
lk 
() 

(J 

AT 
A.c 
Ar . 

Arc 
(J(t) 

Description 

Generic name for the input (sample) space. 
Generic name for latent space. 
Generic name for parameter space. 
Bold letters used for random variables. 
p-dimensional random variable (in column vector form). 
Bold small letters used for random variates. 
Bold capital letters used for sample, ie X = {Xl, ... ,xn}' 
Also used as data matrices, X = [xI!" 'lxnF is an n x p matrix. 
Complete-data matrix (contains both observed and latent data). 
Set of real numbers -
k-dimensional identity matrix 
k-dimensional diagonal matrix 
k-dimensional vector of ones. 
Generic name for one parameter. 
Complete collection of model parameters. 
Transpose of matrix A. 
c-th column of matrix A. 
r-th row of matrix A. 
rc-th entry of matrix A. 
Parameter set at the t-th iteration. 

Functions, Densities and Distributions 

Notation 

Pr(x = a) 
p(x) 
Pr(x = alY = b) 
p(xIO) 
E [x] 
V[x] 
llE(X) 
Np(p" L:) 
N(p" (72) 

Description 

Probability that x equals a. 
Probability density of the variate x. 
Conditional probability that x equals a given y = b. 
Conditional density of x given (J. 

Expectation of a Random Variable. 
Variance of a Random Variable x 
Indicator function value of X in the set E. 
p-dimensional normal (Gaussian) distribution. 
Univariate normal (Gaussian) distribution. 



Ga(a, (3) 
Di(al' ... ,ak) 
Mn(n; 7rl, ... ,7rk) 
PO(1J) 
Bi(n,p) 
Be(a, (3) 
Ber(7r) 
Exp(O) 
Wk(p, E) 
L(O;X) 
£(0; X) 
cov(x, z) 
[xl"'] IV 1'(0) 
x IV 1'(0) 

Gamma distribution. 
Dirichlet distribution. 
Multinomial distribution. 
Poisson distribution. 
Binomial distribution. 
Beta distribution. 
Bernoulli distribution. 
Exponential distribution. 
Wishart distribution. 
Likelihood function. 
Log-likelihood function. 
Covariance of x and z. 
The full conditional distribution of x is V with parameters (J. 

x follows distribution V with parameters O. 
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Chapter 1 

Introduction 

Without a measureless and perpetual uncertainty, 
the drama of human life would be destroyed. 

Sir Winston Churchill 

1.1 What is a latent variable model? 

In recent years, the analysis of latent variable models has widened its scope, extending its 

ramifications from its original social sciences community to many other scientific commu-

nities such as mainstream statistics, neural networks and machine learning communities. 

This intensification of interest, partly encouraged and fuelled by the availability of power

ful computational facilities and the development of a variety of sophisticated statistical 

methods, has allowed the use of latent variable models in many real-life applications 

in various different fields ranging from engineering to physical and biological sciences. 

The increasingly significant contribution brought in by the development of the Bayesian 

paradigm has also added to the established frequentist maximum likelihood estimation 

techniques, allowing the development of a great variety of methods and tools for latent 

structures analysis. In order to set the ground for an introduction to the building blocks 

of this vast topic, we begin this section by giving very general definitions of both a latent 

variable and a latent variable model. 

Definition 1: A latent variable is a variable that cannot be directly measured or ob

served. The idea here is that such a variable has not yet manifested itself, and is therefore 
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qualified as latent as opposed to the manifest ones. 

Definition 2: A latent variable model or latent structure model is a model whose 

structure contains a set of latent variables, a set of manifest variables and a mechanism 

linking the two sets of variables. 

Note: It is worth pointing out here that the above definition of a latent variable model 

does not make any probabilistic assumption. This rather general definition is deliberate. 

In fact, it allows us to touch on deterministic models that have turned out to be latent 

variable models in their own right, because of the existence of non-directly observable 

variables in their structure. Very broadly speaking, we can essentially distinguish two 

different classes of latent variable models. 

• Probabilistic latent variable models 

- Latent variable models for data reduction. 

- Latent variable models for density modelling. 

• Deterministic latent variable models. 

1.2 Probabilistic latent variable models 

Probabilistic latent variable models are the ones generally referred to in the majority of 

texts on the topic. They all have in common the fact that they make probabilistic as

sumptions. We distinguish two subclasses of such models: (a) models for data reduction 

and (b) models for density modelling. 

1.2.1 Latent variable models for data reduction 

Latent variable models for data reduction are the subclass of models generally treated 

in the mainstream texts on the topic. Latent variable modelling was originally essen

tially a subclass of multivariate statistical analysis born from the need to condense many 

variables from large-scale statistical enquiries into a much smaller number of latent con-



CHAPTER 1. INTRODUCTION 

structs with as little loss of information as possible. 

Data reduction for interpretation: Historically, the need for latent variable mod

elling arose from the fields of social and behavioural sciences where investigators wanted 
, 

to quantify information on non-directly measurable concepts such as intelligence, social 
\ ' 

class, personality and ambition. This social science perspective of latent variable mod

elling hypothesises a set of latent constructs (concepts) and then accordingly designs 
, 

an experiment consisting of manifest variables which', can be measured and which are 

related in some ways to the latent quantities of interest.< From this perspective, the ex-
",I :,':1' 

perimenter seeks to condense many observed variables itito the fewer hypothesised latent 
,.;,"/;i. ".,' \ 

constructs so as to provide an interpretation (meaning);o~ Jatent scores. In this case, 
. ':"', 

he/she is generally also interested in the characterisation of the mechanism linking the 

latent and manifest variables. The observed quantities can therefore be thought of as 
, , 

the effects, while the latent scores are their causes, or vice-ve~sa. According to this view, 
I" ' .. , , , 

manifest quantities such as high grades in Mathe~atics,' ,Physics, IQ tests and other 
) ,\ ',I , 

intellectual disciplines would therefore be interpreted as the effects of high intelligence 

reflected by high scores on this latent variable named intelligence. It is important to note 

that, in this case, the starting point of the modelling exercise is the set of hypothetical 

latent constructs (with possibly some a priori meanings and labels attached to them), 

and the observed variables are just a means to this end. The source (cause) of what 

we see is in reality something latent that we do not see. This cause-effect interpreta

tion generally raises a lot of controversies, and, for that reason, we do not address it here. 

Pure data reduction: Another view of latent variable modelling common to social 

sciences, physical sciences and engineering uses latent scores as a convenient parsimo-

nious description (representation) of complex high-dimensional observations. In fact, in 

applications where observed variables are high-dimensional and assumed to be highly 

correlated, it is tempting and often desirable to seek just a few uncorrelated latent vari

ables that explain in some way all the associations existing among the initial manifest 
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variables. In pattern recognition for instance, a digit only occupies a small portion of 

the rectangular grid, and the essential information about a high-dimensional vector of 

a handwritten digit can therefore be represented in a much lower-dimensional subspace 

without much loss of information. From this perspective, the starting point of the mod

elling exercise is the manifest variable for which we simply seek an internal parsimonious 

representation. Here, no interpretation of latent scores is a priori sought l . 

Note: This first class of latent variable models explain the associations among the 

observed variables by making use of a concept known as the assumption or axiom of 

conditional independence that we will discuss later. 

Examples: Generically, there are four main types of latent variable models for data 

reduction defined according to the types (continuous or categorical) of manifest and 

latent variables that they model. The general classification taken from Bartholomew 

(1987) is given in Table 1.1. Modern texts in multivariate statistical analysis provide a 

comprehensive coverage of the above models, and we refer the reader to such references 

as Lawley and Maxwell (1971), Everitt and Hand (1981), Bartholomew (1987), Anderson 

(1984), Press (1972), Johnson and Wichern (1998) and Krzanowski and Marriott (1995). 

There are many extensions of the above models, some of which consist of combinations 

of ingredients from the generic models. von Eye and Clogg (1994) provide a collection 

of articles on some relatively recent advances in the analysis of these probabilistic latent 

variable models. 

Link to classical statistical techniques: As we shall see later, there exist close 

connections between the above data reduction latent variable models and some classical 

statistical techniques. Latent variable models are similar to measurement error models 

in the sense that manifest variables are modelled by a combination of latent variables 

plus an error term. In fact, as we shall see later, holding the latent variables fixed in 

the normal factor analysis model allows us to treat the resulting model as a multivariate 

1 From this perspective, no label or meaning is attached a priori to the latent constructs, but the 
experimenter can always carry out an a posteriori interpretation of the latent variables once the reduction 
is achieved. 
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Manifest variables 

Continuous Categorical 

Latent Continuous Factor Analysis Latent Trait Analysis 

Variable 
Categorical Latent Profile Analysis Latent Class Analysis 

Table 1.1: Classification of latent variable models 

regression model. On the other hand, as established by Everitt and Hand (1981) and 

Titterington, Smith, and Makov (1985), there is a close connection between latent class 

models and finite mixture models. With an ever-increasing number of real-life problems 

giving rise to complex multivariate observations that can be adequately summarised by 

fewer latent variables, the analysis of latent structure models has now become an integral 

part of multivariate statistical analysis. 

1.2.2 Latent variable models for density modelling 

The concept of latent variable is also used as a convenient way to model the probabil

ity density function of random observations assumed to be related in some way to some 

other variables that are hidden (latent) and cannot therefore be directly observed. While 

latent variable models for data reduction are exclusively based on multivariate observa-

tions, latent variable models aimed at density modelling can be used for both univariate 

and multivariate random variables. In this case, the axiom of conditional independence 

is not needed, since there is no interest in data reduction2
• 

Examples: Finite mixture models and Hidden Markov models fall into this category. 

Gaussian Process Classifiers, as studied in Fokoue (1998) and Csata, Fokoue, Opper, 

Schottky, and Winther (2000), are also latent variable models from this subclass. 

2The Mixture of Factor Analysers model that we will be studying later is a combination of both data 
reduction and density modelling. 
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1.3 Deterministic latent variable models 

For many purists, it might seem inadequate to call these models latent variable models, 

but, as we said earlier, they comply with our general definition. Deterministic models like 

feed forward neural networks are now presented in some texts as latent variable models. 

In fact, the hidden layer of a multilayer perceptron (MLP)3 constitutes a latent space in 

its own right, and the differences with the traditional latent variable models lie in the 

fact that MLP's are essentially nonlinear models and they do not have any probabilistic 

assumptions attached to them. 

Note: In this thesis, we restrict our focus to probabilistic latent variable models, and 

especially to various aspects of factor analysis and finite mixture distributions. From 

now on, all the latent variable models mentioned will be probabilistic latent variable 

models. 

1.4 Notation and terminology 

Both manifest and latent variables are represented mathematically by random variables, 

since they vary from one subject (entity) to another in a random manner. The relation

ships between them are therefore expressed in terms of probability distributions. For 

notational economy, we use x T = (Xl,'" ,Xp) to denote both our p-dimensional ran

dom manifest variable in column vector form, and its corresponding random variate or 

sampled value. Similarly, z T = (Zl,'" ,Zq) denotes both the q-dimensional continuous 

random latent variable and its corresponding random variate or sampled value. Our 

categorical latent variable is denoted by y. With a slight abuse of notation, we also use 

y as a vector of indicators or categories. With k categories, we have y T = (YI, ... , Yk), 

where Yj = 1 if y = j and Yj = 0 otherwise. We use X as a generic name for our sample 

space. We use x· to denote a vector that contains the complete collection (all manifest 

and all latent variables) of the variables of the models. The corresponding sample is 

3It is worth pointing out here that the Neural Networks literature now has a good number of articles 
treating probabilistic versions of multilayer perceptrons 
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denoted by X*. For the majority of this thesis, we consider a continuous sample space, 

namely X ~ IRP. Our latent space is either categorical or continuous, or a product of 

both, and is denoted by 1l, while e denotes our parameter space. We use 0 as a generic 

name for a parameter, and () denotes a collection of model parameters. Our samples are 

denoted by bold capital letters, and, according to that, X = {Xl"" ,xn } is a sample of 

n observations, while Z = {Zl,'" ,zn} is the corresponding sample of continuous latent 

variables. We also use our samples as data matrices, which means that X T = [xII, . ·Ixn ] 

is an n x p matrix. For simplicity, we use the same P to denote the probability density 

function whatever the variable. Thus, p(x) is the density of the random variate x, while 

p(z) is the density of the random variate z. We adopt a similar simplification for Pr, 

the probability distribution function. 

1.5 Marginal density of manifest variables 

By definition, a latent variable model contains both manifest and latent variables, and 

we can write an expression of the joint distribution of both variables as follows: 

p(X, z) = p(z)p(xlz) = p(x)p(zlx). (1.1) 

The joint density in equation (1.1) will also be referred to as the complete-data density 

for reasons that will become clear when we consider the statistical analysis of our models. 

Since we only observe x, our inferences will be based on the marginal distribution of x. 

For a continuous latent space 1l ~ IRq, the marginal density of X (also referred to as the 

observed-data density) is given by 

p(x) = L p(x, z)dz = L p(z)p(xlz)dz. 

For a categorical latent space 1l = {I, ... ,k}, this marginal density of x becomes 

k 

p(x) = L Pr(y = j)p(xly = j). 
j=l 

(1.2) 

(1.3) 

For the rest of this chapter, and without loss of generality, we base our developments 

on models with a continuous latent space. In many cases, the results apply mutatis 

mutandis to cases where the latent space is discrete. 
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1.6 Axiom of conditional independence 

Given a random observation x T = (Xl,'" ,ap) on p manifest variables assumed to be 

correlated, our aim in latent variable modelling is to determine a set of q < p uncorrelated 

latent variables z T = (Zl,'" ,Zq) that explain all4 the associations (dependencies) among 

the manifest variables. This means that, once all the q values of the z/s are known and 

held fixed, then the Xi'S will be uncorrelated, since the correlations among the Xi'S are 

induced by the z/s. In probabilistic terms, this means that the Xi'S are conditionally 

independent given the values of the Zj 's. This statement is often referred to as the 

assumption (or axiom) of conditional (or local) independence5 • It is a fundamental 

assumption of latent variable modelling when data reduction is the aim, and, as we shall 

see in the following chapters, it will appear in many of our models in various different 

ways. According to the conditional independence axiom, the number of latent variables 

q must therefore be chosen in such a way that the conditional density of x given z has 

the form 
p 

p(xlz) = II Pi(Xilz). (1.4) 
i=l 

With that, the aim of data reduction can be expressed as follows: 

Given a sample X of multivariate observations, latent variable modelling es

sentially seeks the smallest q, the adequate p(z) and all the Pi(Xilz) such that 

the marginal distribution p(x) of x has the structure 

p(x) = 1 p(z) ITpi(Xilz)dZ. 
1£ i=l 

(1.5) 

Note: As stated by Bartholomew (1987), it can be misleading from a pure statistical 

point of view to think of the axiom of conditional independence as an assumption of the 

4This is an important part of the assumption in the sense that we want the z;'s to be complete, 
meaning that no extra latent variable apart from the q chosen is needed to account for the assumed 
correlations among the Xi'S. In other words, once the q latent variables are determined, any other latent 
variable should be redundant. 

5 As we said earlier this axiom is not needed when we simply want a convenient representation of the 
density of x. All we need in such a case is either equation (1.2) or equation (1.3). 
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kind that could be tested empirically, because there is no way in which z can be fixer!', 

and therefore no way in which the independence can be, tested. It is better regarded as a 
" . 

definition of what we mean when we say that the set of la:tent variables z is complete7 • 

1.7 Difficulties and Problems 
. I; / > " 

, '\. 

I 1." 

'/ ./ 
:',( ,,. .' 
.; ',I , 

,'1 \ 

1. 7.1 Indeterminacy and non-identifiability,' 
; :, I ~ •• " 

I,' , . 
From a given sample of observations, all that we can truly model is the marginal density 

';,",11,\'1,'/ / , ' 

p{x) of the manifest variable, and it is obvious that,' for a given value of q, there exist 
,\ . ',',(,'11 " 

various choices p{z) and p{x/z) such that p(x) can ~~:'d~composed as in equation (1.2). 
/:'/11/,',:;):";\:.<;" ',\'" \: . 

In other words, such a decomposition of p( x) is not unique. '.This phenomenon, known as 
, , 

indeterminacy or non-identifiability, is one of the bottlenecks of latent variable modelling. 
r • :,.(, 

We shall address this issue in each model considered subsequently. . /. 
:, I' ( ,\ . 

" • I" . 

: !:,:!i;,:\ ",:' . 
1.7.2 Multimodality and computational ~difficulties 

f I'l' : I 

, :. I, 

In high-dimensional spaces, the surface of the likelihood function is often likely to ex-
, '. 

hibit genuine multi modality, leading to the existence of ~any local maxima as its natural 

consequence. Besides this genuine multimodality, there is another type of potential mul

timodality that could arise from situations where the prior distribution p( z) is symmetric 

thereby causing p(x) to be invariant to permutations of the indices of z. This is the 

case for instance with finite mixtures. This phenomenon constitutes a serious bottleneck 

for both maximum likelihood estimation and Bayesian inference. In practice, estimation 

and inference in such situations require more sophisticated algorithms. We shall return 

to this aspect in subsequent chapters. 

6This statement is only partially true, since the use of the complete-data methods mentioned earlier 
allow the imputation of hypothetical values to the latent variables throughout the iterative estimation 
procedures. 

7This completeness of the set of q latent variables, by avoiding a more complex model with more 
latent variables, can be thought of as an application of Ockham's razor principle (Law of parsimony) 
which states that unnecessarily complex models should not be preferred to simpler ones. 
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1. 7.3 Efficiency and interpretability 

Since latent structure models may involve very high-dimensional data, the number of 

parameters that characterise these models can also be very large. First of all, it is clear 

that models with too many parameters are in general difficult to interpret, and are com

putationally very intensive. Unless the number of observations is large enough to contain 

sufficient items of information about the large number of parameters, the estimation of 

those parameters is often inefficient and prone to over-fitting. For many models consid

ered in our work, this complexity is often dealt with by imposing some constraints on 

the parameters in order to have reduced models that are therefore easier to understand 

and interpret, computationally more realistic, and also more useful in prediction. As far 

as interpretability is concerned, I totally espouse Marriott (1974)'s view expressed in the 

following statement: 

If the results disagree with informed opinion, do not admit a simple logical interpretation, 

and do not show up clearly in a graphical presentation, they are probably wrong. There 

is no magic about numerical methods, and many ways in which they can break down. 

They are a valuable aid to the interpretation of data, not sausage machines automati

cally transforming bodies of numbers into packets of scientific facts. 

In other words, the analysis of models should produce meaningful results that can be 

easily interpreted. 

1.8 Goals, Issues and Applications 

Fundamental to any latent structure analysis is the crucial choice of the prior distribution 

of the latent variables and the conditional distribution of the manifest variables given 

the latent variables. The choice of these two distributions is essentially arbitrary and 

does not form part of the systematic analysis process. It consists of mere assumptions 

made on the basis of expertise or sometimes for convenience, but also on the basis of 
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the appropriateness of the distribution to the modelling task at hand. In practice, there 

are standard established distributions that have stood the test of time and that almost 

always produce satisfactory results. 

If we assume that the above choice of distributions has been made, the analysis of latent 

structure models involves one or many of the following issues: 

• Data reduction. Essentially, data reduction is achieved through the estimation 

of latent scores. Broadly speaking, we distinguish two main aspects here: 

- Characterisation. The interest in this case is in estimating the latent scores 

for the sample of observations used to analyse the model. It is often hoped 

that the set of estimated latent scores will provide a much simpler structure, 

and thereby allow an easier interpretation of the interdependence amongst 

the original variables. 

- Prediction. The aim in prediction is the estimation of latent scores for fu

ture unseen observations. This often presupposes that the model has been 

analysed and validated, and is being used as a device (tool) to provide intrin

sic representation of new observations. This is particularly useful in pattern 

recognition where data reduction is used as a preprocessing tool. 

There are many applications of data reduction in real life, among which are the 

following: 

- Exploration of group structure. It is a common practice whenever that is 

reasonable, to project a high-dimensional dataset onto the plane. In general, 

a scatter plot of the resulting latent scores is a data visualisation device that 

can be used to explore the existence of a group structure in the population 

under study. It is however fair to point out that this is not always guaranteed 

to reveal the group structure, especially if a 2-dimensionallatent space is not 

an adequate intrinsic representation of the original manifest variables. 

- Data compression. Data compression is used to reduce the amount of space 

required for storing huge amounts of data. It is particularly useful in scientific 
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imaging where image compression allows huge databases of images to be stored 

in minimum amounts of space. Obviously, the original data are later retrieved 

and recovered through a process known as reconstruction. 

- Feature extraction. Data reduction is also extensively used in pattern recog

nition as a preprocessing tool for feature extraction. In fact, as explained by 

Bishop (1995), although a certain amount of information is always lost during 

the data reduction process, many classification and regression systems gener

ally produce a better performance when the input is first projected onto its 

intrinsic lower-dimensional space before actually being processed. This is par

ticularly true if the input variables are highly correlated, since the sparseness 

induced by strong correlation leads to an inefficient use of the input space . 

• Density estimation. There are two main aspects of density estimation to be 

considered here: sample density estimation and predictive density estimation. By 

predictive density estimation in this context we have in mind the estimation of 

density for unseen observations. Sample density estimation on the other hand 

concerns itself with the estimation of density for the observations contained in the 

sample. 

• Parameter estimation. Since latent structure models are essentially parametric, 

the estimation of model parameters constitutes one of the main issues of interest. 

In fact, some approaches to both data reduction and density estimation require 

the parameters of the model to have been estimated. There are two main ways in 

which parameters are used: 

- Characterisation. In many applications of latent structure modelling, the 

experimenter is interested in interpreting the way in which manifest variables 

affect latent variables or vice-versa, or the way in which groups of manifest 

variables combine to form latent constructs. Model parameters are often used 

as a way to achieve such characterisations. Such cases are frequent in social 

sciences, and the analysis of the model places an emphasis on the ability 
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to provide useful and meaningful parameter estimates that are as easy to 

interpret as possible. 

- Instrumental. There are also many applications in which parameters are sim

ply instrumental in that they are only needed as a way to compute either 

estimated latent scores or predictive density estimates. In such instances, 

the experimenter simply needs a valid set of model parameters and is not 

interested in interpreting them . 

• Model selection. Essentially the aim here is to determine the dimension of min

imallatent subspace. In other words model selection consists of the determination 

or estimation of the smallest number of latent variables that can be used to rep

resent the original manifest variables without much loss of information and model 

the density of the manifest variables as adequately as possible. 

Note: For simplicity, we have so far written the expressions of our probability density 

functions without explicitly showing their dependence on a set of parameters 6. However, 

since the models we are dealing with are essentially parametric and one of the main goals 

in the analysis of such models is the estimation of parameters, we now include parameters 

in our expressions whenever necessary. 

1.9 Parameter estimation 

Rigorously speaking, our complete collection of model parameters 6 can be divided into 

a subset of parameters for the observed part of the model, ()x, say, and a subset for the 

missing part, denoted by (}z. Thus, 6 = {Ox, (}z}. For simplicity, we only insist on this 

difference if the need arises. The complete-data density is therefore given by 

p(x*/6) = p(x, z/6) = p(z/6)p(x/z, 6) = p(x/6)p(z/x, 6), 

and the corresponding observed-data density has the following form: 

p(x/6) = 1 p{x, zl6)dz = 1 p(zI6)p{xlz, 6)dz. 

(1.6) 

(1.7) 



CHAPTER 1. INTRODUCTION 

We approach all our parameter estimation tasks from both the likelihood-based and 

Bayesian perspectives. 

1.9.1 Observed-data likelihood and posterior 

Given a sample X of independent and identically distributed observations, the observed

data likelihood function can be written as 

n 

L(8j X) ex p(XI8) = II p(xd8), (1.8) 
i=l 

and, for a given prior density p((J), the observed-data posterior can be expressed as 

p(8IX) ex L(8j X)p(8). (1.9) 

However, in this particular setting where part of the model is latent, the marginal den

sity over the latent variables generally leads to observed-data likelihood functions such 

as (1.8) that are generally not mathematically tractable. From a likelihood-based per

spective for instance, such likelihood functions do not allow the derivation of closed form 

expressions for parameter estimates, and gradient methods like Newton-Raphson type 

iterative algorithms have been used for many decades to find maximum likelihood esti

mates. However, the main drawbacks of this class of algorithms is that they are generally 

very complicated and awkward, and their convergence is often not guaranteed. From a 

Bayesian perspective, posterior densities like (1.9) generally lead to intractable integrals 

in high-dimensional spaces which makes it impossible to obtain closed form expressions 

for the posterior averages of interest. In practice, asymptotic approximations are used 

to tackle such intractabilities, but they suffer from the crucial drawback of not allowing 

a systematic and objective assessment of how close approximating distributions get to 

the true posterior distribution of interest. 

An alternative to the use of the marginal density of the manifest variable is based on 

the formulation of latent variable modelling as an incomplete-data problem where the 

latent variables are treated as missing data. In this thesis, all our algorithms, from both 

the likelihood-based and Bayesian perspectives, make use of this idea. 
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1.9.2 Latent variable models as missing data models 

Since latent variables are not observed, they can be tr~~ted as missing variables8• Latent 

structure models can therefore be thought of as a subdass of missing data models, also 

referred to as incomplete-data models. As we said earlier,' it turns out that the marginal 
'"l, . 

density of x leads to likelihood functions that are ,computationally not easy to deal 
I, . c 

'. ,(' " 

with. In practice, a vast body of algorithms have now been developed that avoid basing 
" 

inferences and estimations on such complicated marginal likelihood functions, and that 
'.' 

" , 

instead use the complete-data density of equation (l.l)a~d th'e corresponding complete-
./ " " ~ ... ,~ . 

data likelihood functions. The EM algorithm Dempster,'Laird,'and Rubin (1977) and the 
;;; l :, : / 

Data Augmentation algorithm Tanner and Wong (1987) are respectively the likelihood-
; i { ~ I '\ '.. I ~,'" 
l ,'( i ~ .' \ . " . , : \ i' ! \ '. i 

based and Bayesian applications of this complete-datci'approach> ,These two very popular 
\ ~ \, ~.' , . f! " 

algorithms perform parameter estimation through iterativ~ processes, the former being 

deterministic while the latter is stochastic. The key ideas behind those two algorithms are 
" , \ \ ., 

essentially very simple and intuitive, and can be sum~~ri~ed in,' the following statement: 
I I i ~', ~ :' I, I,. j i 

, ! 

Solve a difficult incomplete-data problem by'}:"ep~atedly solving a tractable 
J /t • 

complete-data version of it until some converge~ce criterion is satisfied. 

Despite the fact that these algorithms are generally slower than the ones based on 

marginal densities, they have two main advantages that certainly justify their ever in

creasing popularity: (a) They are simple and easy to write, especially for the very fre

quently encountered exponential family of distributions; (b) Proven theorems exist that 

establish their convergence. 

1.9.3 Distribution of latent variables; 

In practice, once x is observed, one of our main interests is to gather information about 

z given x. Since the distribution of x depends on fJ, information on z is obtained by 

8The missingness here is systematic, unlike in other cases where the missingness arises when data 
are simply not available for a given observation. 
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specifying the posterior conditional density p(zlx, 6) of z given x and 6 given by 

p(zlx, 6) ex p(zI6)p(xlz, 6). (1.10) 

p(zlx, 6) is also called the predictive density of the missing data given 6, and plays a 

central role in our complete-data algorithms since it captures one of the main ingredients 

of those algorithms, namely the interdependence between the parameters 6 and the 

missing data z. Schafer (1997) explains the central role of p(zlx, 6) as follows: when 

viewed as a probability distribution it summarises knowledge about z for any assumed 

value of 6, and when viewed as a function of 6 it conveys the evidence about 6 contained 

in z beyond that already provided by x. 

Estimation of latent scores: Once p(zlx, 0) is completely specified, it can be used 

the compute the conditional expectation of the latent variable given x and 0 as follows: 

E [zlx, 0] = L zp(zlx, 6)dz. (1.11) 

For many models like those with an assumption of normality, the integral calculation 

of equation (1.11) is not necessary, and the conditional expectation lE [zlx, 0] is easily 

obtained by direct application qf the properties of expectations. In general, an expression 

for the conditional variance-covariance matrix of z given x is also easily derived. In the 

following sections, we give details of both the EM algorithm and the Data Augmentation 

algorithm, and we also touch on some of their beautiful properties that justify their 

appropriateness for our context. The complete-data likelihood that they both use is 

denoted by L(O; X*), and the corresponding complete-data log-likelihood is denoted by 

£(0; X*). 

1.10 The EM Algorithm 

As we anticipated earlier, the building blocks of the EM algorithm rest on the interde

pendence between the missing data z and the parameters 0 expressed by the central 

role of the predictive density p(zlx, 6) of the missing data given 6. On the one hand, z 

contains information relevant to the estimation of 6, and, on the other hand, 6 contains 
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information that allows us to find likely values of z. When only x is observed, this 

interdependence between z and 0 can be exploited to estimate 0 as follows: Choose an 

initial estimate for O. (i) Fill in the missing z based on the current estimate of O. (ii) 

Re-estimate 0 based on both x and the filled-in z. Iterate the two-stage scheme defined 

by (i) and (ii) until the estimates converge. A pseudo-code form is as follows: 

The EM Algorithm 

• Choose a tolerance f and initial (t = 0) values 0(0) for the parameters. 

• Repeat 

• t=t+1 

• - E-step - This Expectation step compensates for the missingness by 

averaging the complete-data log-likelihood of the parameters over 

the probability distribution p(zlx, o(t») of the latent variables z. 

Q( 0lo(t») = lE [i( 0; X*) IX, o(t)] with 

1E [l(O;X*)IX,o(t)] = kl(O,X*)p(zlx,O(t»)dZ 

- M-step - This Maximisation step then performs the traditional 

Maximum Likelihood principle on the above expected log-likelihood 

Q(OIO(t»), which means determining O(tH) that maximises Q(OIO(t»). 

O(t+l) = argmax Q(OIO(t») 
o 

• Until lIi( O(tH); X) - i( O(t); X)" < f or "O(tH) - o(t) II < fIlO(Hl)" 

As we can see, the algorithm is so intuitively appealing that it is no surprise that appli

cations of it (not known as the EM algorithm) seem to have appeared as far back as in 

1926. The generic EM algorithm, as we know it today, was made popular by Dempster, 

Laird, and Rubin (1977). It is an iterative two-stage algorithm that uses its Expectation 

step (E-step) to average the log-likelihood function over the distribution of the latent 

variables, then uses its Maximisation step (M-step) to find current maximum likelihood 

estimates of the expected log-likelihood. The EM algorithm starts from some arbitrary 
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guess of parameter estimates, and then keeps repeating the E-step and the M-step until 

convergence is attained. 

1.10.1 Aspects and properties of the EM algorithm 

Convergence and stationary values: One of the most appealing and central results 

of the EM algorithm is that the sequence {O(t), t = 0, 1, 2, ... } converges, at least to a 

local maximum. 

Theorem 1.1 (Convergence and stability) Since O(t+l) is chosen so as to maximise 

Q(OIO(t»), O(t+l) is therefore a better estimate than O(t) in the sense that its observed-data 

log-likelihood is at least as high as that of O(t). Successive iterations of the EM algorithm 

are therefore guaranteed never to decrease £(0; X). In other words, for t = 0,1,2,···, 

we always have 

(1.12) 

Elements of Proof: More details on the convergence properties of the EM sequence can 

be found in such references as Dempster, Laird, and Rubin (1977) and Wu (1983). For 

now, we simply present very general ideas used in the more detailed proof. In fact, 

Q(OIO(t») can be expressed as 

Q(OIO(t») = £(0; X) + H(OIO(t») + constant, (1.13) 

where 

H(OIO(t») = J logp(zlx, O)p(zlx, O(t»)dz. (1.14) 

The difference £(O(t+l); X) - l(O(t); X) can therefore be expressed as 

Q(o(t+l)IO(t») _ Q(O(t)IO(t») 

+ H(O(t)IO(t») - H(O(t+l)IO(t»). (1.15) 

In equation (1.15), the quantity Q(O(t+1)IO(t»)_Q(O(t)IO(t») is non-negative because O(t+l) 

is by construction chosen such that 

(1.16) 
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As for the remainder of (1.15), it can be written as 

(1.17) 

which turns out to be the Kullback-Leibler divergence of p(zlx, O(t») from p(zlx, O(t+l»). 

It therefore follows that H(O(t)IO(t») - H(O(t+1)IO(t») ~ 0, by virtue of the non-negativity 

ofthe Kullback-Leibler divergence, and as a result we have l(O(t+1); X)-l(O(t); X) ~ O. 0 

The stability9 of the EM algorithm is one of its most attractive features and constitutes 

its greatest advantage over gradient methods like Newton-Raphson for which stability is 

not guaranteed. 

Characteristics of estimates: For well-behaved problems, especially in cases where 

the observed-data likelihood function L(O; X) is smooth, bounded from above, unimodal 

and log-concave over the entire parameter space 8, the stationary (fixed) point yielded by 

the algorithm is a global maximum, and the EM therefore produces the unique maximum

likelihood estimate of 0 which is the maximiser of l(O; X). However there are many 

cases in practice, such as the analysis of finite mixtures, where the likelihood function 

is unbounded and has many local maxima. In such ill-behaved problems, the EM does 

not necessarily converge to a unique global maximum, and in fact easily gets trapped 

into local maxima. There have been many extensions and variants of the EM algorithm 

aimed at circumventing this crucial issue. Veda, Nakano, Ghahramani, and Hinton 

(2000)'s Split-and-Merge EM (SMEM) algorithm provides an alternative to the generic 

EM in the context of the analysis of finite mixture models. 

Rate of convergence: The EM algorithm is often criticised for its slow convergence. 

This is due to the fact that its rate of convergence is only linear. Many variants of the 

EM exist that use various schemes to accelerate the convergence of the sequence to at 

least super-linear or even quadratic in some special cases. It must however be said that 

in some cases this apparent slow convergence is caused by the shape of the likelihood 

surface. In fact, if the likelihood surface is very fiat, then successive values of ott) will 

9By stability in this setting, we have in mind the monotonic convergence of the EM algorithm. 
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not appreciably increase the observed likelihood, even if the values (J(t) are significantly 

different. It is therefore good practice to monitor both successive values of (J(t) and the 

corresponding values of l( (J(t) j X) to detect this type of problem. 

Starting points: One of the main drawbacks of the EM algorithm is that its limiting 

position is often sensitive to initial guesses. In practice,- an empirical heuristic solution 

to this problem is the use of many different starting values and to keep on trying until 

something" reasonable" appears. 

1.10.2 Further aspects of the EM algorithm 

Restricted EM: As we mentioned earlier, many of our models involve a large number 

of parameters. For such models efficient and meaningful parameters estimates can only 

be obtained if we restrict the model by imposing some constraints on the parameters. 

There has recently been some research on the use of the EM algorithm under restrictions 

Dong and Taylor (1995) on the parameter space. 

Maximum A Posteriori via the EM: While the EM algorithm is most often used as 

a tool for computing maximum likelihood estimates, it can also be used as a Maximum 

A Posteriori (MAP) technique for the computation of posterior modes. In other words, 

instead of using the EM algorithm to find values of (J that maximise the observed-data 

log-likelihood l((Jj X), the EM algorithm can be used to find values of (J for which the 

observed-data posterior p(6IX) is the highest. This is easily done by replacing the 

complete-data log-likelihood l((Jj X*) by the the complete-data posterior p((JIX*) = 

L((Jj X*)p(6) at the E-step. Since log [P((JIX*)] = l((Jj X*) + 10g(p((J)) , it can be shown 

easily that the objective function to maximise at the M-step now becomes 

(1.18) 

Aspects of the steps of the algorithm: While the Expectation and Maximisation 

steps of the EM algorithm generally allow the derivation of closed form expressions for the 

well-behaved regular exponential families of distributions, there are many applications 

in practice where this is not possible. In many settings, for instance, the E-step involves 
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the computation of high-dimensional integrals which m~y be intractable. The Stochastic 

EM algorithm is one of the variants that provides an attractive solution to this problem. 

In some cases, Monte Carlo EM is a good alternativ~ to the generic EM. McLachlan 
I' 

and Krishnan (1997) provide a comprehensive coverage of ,the EM algorithm and its 

extensions. 
';i 
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1.11 Inference by Stochastic Simulation 
f, 1,(, \ ' 

1,/;',':1 " 
f Ii'! '" 

While the EM algorithm is aimed at finding maximum lik~lihood estimates of the param-
! \. \ I, 

'; , ' I \ \! ~ 1,' .., 

eters by deterministic iterations, Data Augmentation.',~which is its probabilistic analogue, 
: ,i ,1..'. \ \. :',': ' 

is used in the Bayesian framework to draw sample~:i~binthe posterior distribution of 
\,,."~'I}I~;(\I 'i'/I' ... ,;.'-: '.' 

parameters by stochastic simulation. Before presen'tirig D~ta' Augmentation in greater 
. /.' \ , 

details, we first briefly introduce some general elements of Bayesian inference via Markov 
"" ":>"\ ' .. ', 

Chain Monte Carlo. : ;':.>;::;,- ,": ' 
: t' I /1 I"..' 1 I \ ' ;~.~ , 
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1.11.1 Bayesian inference via MeMO i'::'>' '" ,:" 
::' \!.,' 

1,'1, \ ' 
,I , 

The main ingredient for Bayesian inference is the posterior distribution p(8IX) of the 
i 'I:: 

parameters. Unlike its deterministic likelihood-based counterparts like MLE that pro-
I ' 

, 
duce a single point estimate of the parameter of interest, the Bayesian approach yields 

the posterior density p(8IX), and inference is made by computing summary statistics of 

the form 
I 

lE [g(8)] = Ie g(8)p(OIX?dO, (1.19) 
, I 

for some function 9 having its domain in e, and integrable with respect to p(OIX). 
" .(. 

Note: In the majority of cases, it turns out that there is no closed-form analytical ex

pression for the integral of equation (1.19). Approximations are therefore needed. There 

are many ways in practice of tackling the intractability of such integrals encountered in 

the Bayesian analysis of complex models. One that has been applied for many years is 

the use of asymptotic approximations. However, because such approximations are not 
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guaranteed to provide an accurate representation of the posterior distribution of interest, 

an alternative is to construct algorithms that can simulate the posterior distribution. In 

this thesis, we shall more precisely resort to Monte Carlo methods and Markov Chain 

Monte Carlo algorithms to make our stochastic simulation based inferences. 

1.11.2 Monte Carlo approximation 

In some very few simple applications, while the integral of (1.19) remains intractable, it 

is possible to fully specify p( 0IX) in closed-form, and therefore to directly sample from 

it, which allows one to produce a Monte Carlo estimate of (1.19), namely 

T 

nf(g(O)] = ~ L g(O(t)), 
t=1 

(1.20) 

where 0(1)"" ,O(T) are LLd samples drawn from the distribution with density p(OIX). 

The most interesting (and important) result in the theory of Monte Carlo simulation is 

that ~ Ei=l g(O(t)) is an unbiased estimate, and by the strong law of large numbers, it 

converges almost surely (with prob~bility 1) to Ie g(O)p(OIX)dO. In other words, 

Pr ()~'! ~ t 9(8('») = Ie 9(8)P(8IX)d8) = 1 (1.21) 

1.11.3 Markov Chain Monte Carlo (MCMC) 

In the analysis of latent structures, it is often the case that a closed-form expression for 

p(OIX) does not exist, so that it is not possible to simulate it directly as in the above 

simple Monte Carlo case. This further complication constitutes one of the bottlenecks of 

the analysis of complex latent structures. Markov Chain Monte Carlo (MCMC) methods 

offer a vast body of algorithms that approach posterior intractability by a stochastic 

simulation of the posterior. Essentially, there are two main classes of MCMC algorithms: 

the Metropolis-Hastings algorithms and the Gibbs sampler. 

Definition 1.1 A Markov Chain Monte Carlo (MCMC) method for the simulation of a 

distribution 1 is any method producing an ergodic Markov chain (O(t)) whose stationary 

(equilibrium) distribution is I. 
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1.11.4 General properties of MCMC algorithms 

For economy of notational space, let us assume that the distribution we want to sample 

from has density p(6). The key idea behind the MeMe body of algorithms can be 

described as follows: since we cannot sample directly from p(6), we iteratively construct 

a sequence of probability distributions having p(6) as its limit, so that draws from the 

converged sequence can be assumed to be draws from p(6). The Markovian property 

of the sequence is essential here, since we require the chain not to depend on its initial 

state, in such a way that the state of the chain at time t + 1 only depends on the state 

of the chain at the previous time point t. The construction of such a stochastic sequence 

relies heavily on the specification of a transition kernel, T, say, that allows the chain to 

have the following two key properties: 

• Irreducibility: The chain should be such that there is a positive probability of 

visiting all other states from any given state . 

• Aperiodicity: The chain should be guaranteed not to get trapped in cycles. 

A chain that is both irreducible and aperiodic is said to be ergodic. In practice, a 

sufficient, but not necessary condition that guarantees that p( 6) is the desired invariant 

distribution is the so-called detailed balance or reversibility condition. 

p(6')T(8/8') = T(6'/6)p(6) (1.22) 

Intuitively, the reversibility (detailed balance) condition of (1.22) means that under the 

target distribution p( 6), the probability to go from state 6 to 6', is exactly equal to the 

probability to go from state 6' to 6. All the MeMe samplers that we consider in our 

work throughout this thesis produce ergodic chains. 

1.11.5 The Metropolis-Hastings algorithm 

The Metropolis-Hastings (MH) algorithm is arguably the easiest to implement of all 

the MeMC algorithms. In fact, given an "appropriately" specified proposal distribution 

T(8'/6) and the target distribution with density p(6), the MH sampler moves the chain 
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from state O(t) to state 0' with acceptance probability o(O(t) 0') '= min (1 P(O')T(O(t)IO')) 
,. , P(O(t»)T(O'IO(t») , 

otherwise it remains in state O(t). A very general description of the MH sampler is given 

below. 

The Metropolis-Hastings Algorithm 

Set 0(0) := 0
0

, 

For t = 0 to T - 1 

Simulate u '" U[O,I) 

Simulate 0' '" T( 0' 10(t)) 

Compute o(O(t) 0') := min 1 --=-P....:....,.7-~--:......,...:-
( 

(O')T(O(t) 10') ) 
, , p(O(t))T(O'IO(t)) 

If u < o( O(t), 0') then 
O(t+1) := 0' 

Else 
0(t+1) := O(t) 

End. 

While the MH sampler is easy and straightforward to implement, the choice of T(O'IO) 

can have a strong bearing on the performance of the sampler. For instance, if the proposal 

distribution T(O'IO) is too different from p(O), then the chain of interest might converge 

extremely slowly. More generally, it is important to find a proposal distribution such 

that transitions are not of very small size and occur relatively often. 

1.11.6 The Gibbs sampler 

The Gibbs sampler is the second most commonly used MCMC algorithm. It is partic-

ularly adapted to situations where it is possible to derive full conditional distributions 

p(OjIO_j), where O_j is defined as O_j = (01 , ••• ,OJ, OJ +1 , ••• ,Op). A very general 

description of the Gibbs sampler is given below. 

There are well established and proven theorems Robert and Casella (2000) that show that 

the stationary distribution reached by the Gibbs sampler is indeed the target distribution 

p( 0) of interest. In other words, if the chain has converged after To iterations, then 

O(t) '" p(O), 'Vt=T. ... T 0, , 
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The Gibbs sampler 

Set 8(0) := (O~O), ... ,O~O». 

For t = 0 to T - 1 

Simulate oit+1) IV p(Ollo~t), o~t), . •• ,o~t» 
Simulate o~t+1) IV p( 0210it+1) , o~t), ••• ,o~t» 

Simulate O~t+l) IV p(O-IO(t+1) ••• O~t+1) o~t) .•• O(t» 
) ) 1 , ')-1' )+1' ,p 

Simulate 0(t+1) IV p(O 10(t+1) O(t+l) •.. 0(t+1» 
p PI' 2 , 'p-1 

End. 

1.11. 7 Simulation by completion 

Definition: Given a probability density I, a density 9 that satisfies 

L g(x, z)dz = I(x) (1.23) 

is called a completion of I. The density 9 is chosen so that its full conditionals are easy 

to sample from, and the Gibbs sampler is then applied on 9 instead of the original I. 

1.11.8 The Data Augmentation algorithm 

The Data Augmentation algorithm Tanner and Wong (1987) that we present in this 

section is also known as the Two-stage Gibbs sampler. It is essentially a special case 

of the Gibbs sampler. This idea of completion is the fundamental ingredient of the 

Data Augmentation algorithm. Since p(8IX) is intractable and not easy to simulate, we 

instead use a completion of it that is more tractable in the sense that its conditionals 

are easy to simulate. We first remark that the observed-data posterior density p(8IX) 

can be expressed as the marginal of p(8, ZIX) as follows: 

p(8IX) = Lp(8,ZIX)dZ ex L L(8;X,Z)p(8)dZ (1.24) 

In other words, p(B, ZIX) is a completion of p(BIX). The good news here is that 

the full conditional densities of p(8, ZIX), namely the predictive density of the latent 
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variables p(ZIX, 0) and the complete-data posterior p(OIX, Z), are easy to simulate for 

the majority of our latent structure models. Given the availability of these tractable 

conditionals, Data Augmentation is essentially the application of Gibbs sampling to 

p(O, ZIX). To put this in the more general context of missing data problems, let Vobs ~ z 

be our observed variable and let Vmis def Z be our missing variable. Data Augmentation, 

also known as the Imputation-Posterior algorithm, is a two-step iterative process with 

each iteration alternating between (i) Imputation: drawing samples from p(Vmis I Vobs, 0) 

to "augment" (fill-in or complete) the data, and then (ii) Posterior: drawing new 

samples of parameters values from P(OIVobs, Vmis ) given the observed-data and filled-in 

values of the missing data. Below is a pseudo-code for the algorithm. 

The Data Augmentation Algorithm 

• Choose a value for 0(0), then choose a number of iterations T and a 

burn-in number To . 

• For t = 1,··· , T 

- I-step - Draw a value of the missing data from the conditional 

predictive distribution of Vmis . (Augmentation) 

V (t+!) (V. I (t») mis rv P mis Vobs, 0 (1.25) 

- P-step - Then, conditioning on V~i!l), draw a new set of parameters 

o from its complete-data posterior. 

(1.26) 

• Extract O(t), t = To + 1,· .. ,T from the final Markov chain. 

As we can see from the above algorithm, the basic idea behind the Data Augmentation 

algorithm is just as intuitively appealing as the one central to the EM algorithm. In fact, 

the I-step of equation (1.25) corresponds to imputing a value of the missing data Vmis , 

hence the term Imputation, and the P-step of equation (1.26) corresponds to drawing 
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a value of (J from a complete-data posterior, and hence the term Posterior. 

In fact, repeating steps (1.25)-(1.26) iteratively from a starting value (J(O) yields a stochas

tic sequence {((J(t) , V';::s) : t = 1,2"" } which is a Ma~kov chain that, under mild reg

ularity conditions, has a stationary distribution with ~ensity p«(J, Vmis/Vobs)' Such an 

iterative algorithm clearly describes the steps of a typical Gibbs sampler where the 

joint distribution p«(J, Vmis/Vobs) of the pair «(), Vmis ) ,i~,' ,'simulated' iteratively through 

its conditionals p(Vmis /(), Vobs) and p«()/Vmis , Vobs) until the successive draws converge to 
,"'I; , 

draws from p«(), Vmis/Vobs)' The very good news is that.'t'he sequence {(J(t) : t = 1,2, ... } 
, 

\ ;'J' 

has p«()/Vobs) as its stationary distribution, which is e~B:ct1y what we want. By the same 
I , " I ' 

token, the sequence {V~ls : t = 1,2,' .. } has P(VmislV;:b~)' a~ its stationary distribution. 
; :':I:t·\·/ ;1 " ! " 

It is pretty straightforward to realise that the IP algo~ith~ bears a striking resemblance 
, I !,' , . 
". : ( ,', . 

to the EM algorithm, and it would be right to say that' The Data Augmentation algorithm 
, 

is to the Bayesian what the EM algorithm is to the frequentist when it comes to the study 
I I,:' " 

of incomplete-data problems. '.1 , 
" ' " ", , , , 

" ;" , .. / :' ~ ',1: .' t 

" , '. ~, . 
, ~ I , \ I I 

\ :;1
1
: " , 

1.11.9 Aspects and properties of Data "Augmentation 

A convergence theorem: One of the stimulating features of this approach is the fact 

that it is proven theoretically Robert and Casella (2000) that, if we assume the chain 

((()(t), V';::s) : t = 1,2,···} produced by the Data Augmentation algorithm (Two-stage 

Gibbs sampler) to be ergodic, then {()(t) : t = 1,2,···} has p( ()IVobs) as its stationary 

distribution. 

General advantages of stochastic simulations: As a stochastic simulation method, 

Data Augmentation, unlike methods based on asymptotic approximations, offers many 

advantages: (a) for the types of complex model that we consider, it is often conceptually 

and computationally easier to implement than other methods; (b) instead of exploring 

only an approximation, in theory it explores the entire posterior distribution, and it 

converges stochastically to the true (exact) posterior distribution of interest, regardless 

of the sample size and the complexity of the problem; (c) samples drawn from the 

posterior distribution are available and can be used for various inferential tasks. 
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Convergence: This is one of the most difficult aspects of many, if not all, MCMC 

algorithms. Unlike deterministic schemes where an objective function to be optimised 

offers a way to assess the convergence, the assessment of the convergence of MCMC 

sequences still remains an open and difficult problem. There are many ad hoc ways in 

practice to tackle this crucial issue, but many still remain mostly empirical. Besides the 

difficulty to monitor and assess the convergence of MCMC sequences, there is the crucial 

issue of rate of convergence. In fact, one of the main drawbacks of MCMC schemes is that 

to date they are in most cases slower than their competitors, and Data Augmentation, as 

a special case of Gibbs sampling, is even worse than Metropolis-Hastings type algorithms 

in this context. Throughout this thesis, we have used various ways to address these two 

aspects of convergence. 

Mixing: While the majority of our sampling schemes are theoretically irreducible and 

aperiodic and therefore ergodic, it is very common in practice to notice very poor mixing 

of the chains, especially with variants of the Gibbs sampler like the Data Augmentation 

algorithm. Whereas this poor mixing can be harmless in some cases, it is a serious issue 

when the interest is in density estimation, since one would like in such cases to explore 

the posterior surface as exhallstively as possible. In some of our analyses, we have 

addressed this important issue using methods available in the literature, and adapting 

them accordingly. 

Storage of sample paths: Whereas the availability of sample paths offers the advan

tage of allowing a variety of inferential tasks to be performed without extra computation, 

it is fair to point out that this also constitutes one of the serious problems of MCMC 

methods. In fact, as the size of the problem grows, having to store these sample paths 

can quickly become a serious bottleneck. In many of our high-dimensional latent variable 

models, we had to resort to a variety of methods to deal with this. In some cases, we 

had to resort to on-line methods consisting of computing all our desired summaries each 

time a new sample is drawn and therefore avoiding storage. In some cases, we simply 

had to store only sample paths of the parameters and use the latent variable draws just 

as instruments. In such cases, our random draws of latent variables are simply used to 
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complete the data so as to draw new values of parameters. Only parameters are stored 

for future inferential tasks, and we use closed-form expressions such as (1.11) to estimate 

latent scores once parameter estimates are obtained. 

1.12 Variational Approximation 

In the Bayesian paradigm, the intractability of p(OIX) is also tackled through the use of 

variational approximations. Although we do not use such an approach in our work, it is 

useful to give a brief description of what it is. 

The key idea behind variational inference can be expressed as follows: to obtain the true 

posterior density p(O/X), we need to normalise p(X/O)p(O). When the computation of 

the normalising constant is intractable, one can construct q(XIO, T) such that the bound 

p(X/O)p(O) ~ q(XIO, T)p(O), (1.27) 

is as tight as possible, and then normalise the variational approximation q(X/O, T)p(O) 

to form a proper posterior density function q(OIX, T) that makes the computation of 

averages tractable. With a Gaussian prior p( 0) and the choice of a Gaussian variational 

form for q(XIO, T), the normalised variational distribution is also Gaussian. 

Another important aspect of this method is that the normalised variational posterior 

approximation q(OIX, T) depends on the variational parameter T. For the method to 

be complete, one therefore has to specify or determine T. This is generally done via 

an optimisation procedure that finds a value of T that yields that tightest lower bound 

in equation (1.27). Amongst the different approaches to finding the best variational 

parameter T, there is the use of the Kullback-Leibler divergence as the objective function 

for the optimisation procedure. The objective is to find a tractable approximation to 

p(O/X), say q(O/X, T), such that the divergence (1.28) of q(OIX, T) from p(OIX) is as 

small as possible. 

! [q(OIX, T)] 
KL(qllp) = log p(OIX) q(OIX, T)dO (1.28) 
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As we can see, the idea is very intuitively appealing, and has been successfully applied 

to many problems in Statistical Physics, Neural Networks Fokoue (1998),Ghahramani 

and Beal (2000), Machine Learning and Information Theory, just to name a few. 

Once the approximating distribution is fully specified, approximate estimates of the 

summary statistics of interest are then easily obtained using q( 81X, T) in place of p( 8IX). 

More specifically, the integral of (1.19) is approximated by 

E(g(O)] = Ie g(9)q(9IX, T(opt))d9, (1.29) 

where the form of q(9IX, T) is chosen so as to allow an analytical expression for (1.29). 

As we said earlier, approximations often produce results faster than stochastic simula

tions, but they suffer from three main drawbacks: (a) finding a suitable approximating 

distribution often requires a lot of mathematical sophistication, and many commonly 

used approximating schemes like mean field approximations make assumptions that can 

be mathematically very convenient, but that could well be unrealistic and unreasonable; 

(b) unlike MCMC methods that explore the true posterior, these methods rely on the 

exploration of some approximation of it, with no guarantee of covering the posterior of 

interest itself; (c) while many objective functions exist to assess the divergence of the 

approximating distribution from the true distribution, only lower bounds are usually 

computable, and it is therefore hard to measure how close the approximation gets to the 

truth. 

1.13 Model selection 

Determining the dimension of the minimal latent space is one of the most fundamental 

issues in latent structures analysis. In fact, it is the very starting point of the analysis, 

and nothing else can be done until this dimension is either estimated or obtained from 

experience or exploratory methods. It must however be stressed that model selection in 

latent structures analysis is an extremely difficult problem, made even more difficult by 

the weak identifiability of the models, the arbitrary nature of the probability densities 

used to represent the marginal density of the manifest variables, and the subjective 
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definition of what a latent dimension should be. In data reduction, for instance, it 

is not always easy to find a clear-cut and objective way of deciding on what makes 

a latent factor distinct. The same type of problem arises in finite mixture modelling 

where deciding on what is a distinct component can become a very subjective decision. 

However, despite these considerations that can sometimes turn rather philosophical, 

there are many approaches to model selection that have yielded satisfactory results. 

Again, we distinguish the frequentist approach from the Bayesian treatment. In this 

thesis, our approach to model selection is essentially Bayesian, and more specifically 

based on stochastic simulation. 

The Reversible Jump MCMC (RJMCMC) algorithm Green (1995), which is a generali

sation of the Metropolis-Hastings algorithm to parameter spaces of varying dimensions, 

is a model selection algorithm based on posterior simulation. RJMCMC has been exten

sively applied to some of the models of interest to us. It turns out that, for the models 

considered in our work, the dimensions of the latent spaces can be treated as points in 

a point process, thereby allowing us to approach our posterior simulation as the simula

tion of a point process. That is why many of the ideas that we will use in this context 

are borrowed from stochastic geometry and spatial statistics Barndorff-Nielsen, Kendall, 

and van Lieshout (1999), Stoyan, Kendall, and Mecke (1995), where they have been 

applied successfully to a wide range of problems. To be more specific, we will adopt an 

approach based on the simulation of a continuous-time birth-and-death process with the 

distribution of all the parameters (including the dimension) as its limiting distribution, 

in the spirit of Stephens (2000) who constructed a Birth-and-Death MCMC algorithm 

for model selection for finite mixtures. 



Chapter 2 

Elements of Factor Analysis 

Science is the attempt to make the chaotic diversity of our sense-experience correspond 
to a logically uniform system of thought 

Albert Einstein 

The factor analysis model is arguably the oldest of all the latent variable models that we will be 

considering throughout this thesis. To the best of our knowledge, the first development of factor 

analysis was due to Charles Spearman who, while studying the correlations between test scores, 

noted that many observed correlations could be accounted for by a simple model Spearman 

(1904). In this chapter, we study the factor analysis model from both the likelihood-based 

and Bayesian perspectives. We review the EM algorithm for factor analysis, and we explore 

the possibility of a restricted EM extension for interpretability and efficiency of parameter 

estimation. We also present a detailed Bayesian treatment of the model from a stochastic 

simulation perspective. A new stochastic simulation method for model selection is derived 

and applied to both synthetic and real-life data. The chapter also touches on ideas for a new 

Bayesian sampling alternative to varimax factor rotation for interpretability and derivation of 

simple structures. 

2 .1 Introduction 

The main goal of factor analysis (FA) is to describe the covariance relationships among 

many variables in terms of fewer underlying latent (unobservable) constructs represented 
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by random quantities known as factors. Factor analysis is therefore a data reduction 

or dimensionality reduction technique, since the number of factors is always assumed 

to be far less than the number of originally observed variables. FA is one of the most 
',' 

popular techniques for dimensionality reduction, and can be considered as an extension of 

principal component analysis l (PCA) Jolliffe (1986).\~hile FA and PCA both attempt 

to approximate the structured covariance matrix, "the 'approximation based on FA is 
:.':, \' \ 

clearly more elaborate. Besides data reduction, FA is 'also used as a way of providing an 
" , 

interpretation of the covariation among the observed variables, although it must be said 

that such interpretations can be very subjective as they, depend on each experimenter. 
;: I',,:, ,', 

FA was originally developed by psychometricians whose' aim was to quantify and possi-
I \ I I,' , '. ( \! J ' I \ j ,~! • • .' 

bly explain unobservable (not directly measurable) concepts' like intelligence and physical 
,', '1.,\\ ,',.,1 " ,I, 

fitness by modelling their relationship with such observable (and therefore measurable) 

quantities as test scores in various disciplines. While data reduction still remains impor-, , , 

tant in such a context, the ability to produce a simple ~nd ~asy to interpret structure is 
. !: ~ ;) /' \ 

obviously far more important here. In general, social scientists and psychologists need 
"i . :. \' \, \ . I ,I 

to come up with an interpretation of their factor analysis' results. 

FA has been extensively used in the Neural Networks,Machine Learning and Artificial 

Intelligence communities as a probabilistic model for unsupervised learning in the context 

of statistical pattern recognition. In such a context, FA is a feature extraction technique 

essentially used to preprocess the data in order to obtain features or special character

istics of observed quantities. If we consider the handwritten digits recognition task for 
, 

instance, we can easily conceive that a 54-dimensional (digitised 8 x 8 picture) vector 

representing one single observed character can be reduced to a far lower-dimensional in

ternal vector since the character itself occupies only a tiny portion of the space allocated 

for writing. In contexts like pattern recognition, FA is just a means to an end, not the 

end itself, since its results (estimated factor scores) are then used for other tasks such as 

classification, clustering, density estimation or even regression, to name just a few. It is 

worth mentioning that FA is not used for interpretation in pattern recognition, since no 

IThis method is sometimes preferred over FA because of its simplicity and the fact that it does not 
assume any model. 
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particular meaning needs to be attached to the estimated factor scores in such a context. 

We see from the above that FA is motivated by problems of great interest to both social 

scientists and physical scientists. The former carefully and purposefully design the study 

and therefore select a set of variables that have a particular meaning to them. For such 

scientists, it would be natural to also think of assigning meaning to the common factors. 

However, for a modeller in pattern recognition solely interested in the reduced dimension 

of an image, for instance, the high-dimensional observed vector of image characteristics 

does not have any particular meaning, and therefore such an experimenter will not seek 

any interpretation whatsoever of the estimated factor scores or factor loadings. 

Whatever the objective, assuming that there are fewer factors than there are observed 

variables implies that the fundamental structure of the data is no more complicated than 

that of the observed variables, and the primary question in factor analysis is whether 

the data are consistent with the postulated structure. 

Many issues of interest in FA modelling have been extensively studied over the years 

from a purely frequentist perspective. There has been a reasonable amount of research 

from a Bayesian perspective recently. It must however be said that, apart from Lopes 

and West (1999) and a couple of other authors, Bayesian analysis of the FA model from 

a stochastic simulation perspective has not benefited from enough attention. In this 

chapter, we aim at providing a coverage of that alternative perspective of Bayesian FA. 

Section 2 of the current chapter provides an introduction to the orthogonal factor model, 

together with the main issues of interest in factor analysis, the inferential difficulties 

inherent to the structure of the FA model. Elements of solution to the most impor

tant difficulties are also presented. The section concludes with some ingredients for 

parameter estimation. Section 3 re-examines the EM algorithm for FA, while section 

4 mainly deals with Bayesian parameter estimation from a stochastic simulation per

spective. The appropriateness of Bayesian sampling is clearly presented, and efficient 

Markov Chain Monte Carlo (MCMC) algorithms are derived for both the identified and 

the non-identified versions of the model, with the use of suitably chosen loss functions 

as a way to deal with rotation invariance. Elements of model goodness-of-fit are pre-
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sented in the Bayesian framework. Section 5 is dedicated to model selection. A brief 

summary of the most popular methods used to determine (estimate) the number of com

mon factors is given, but the main concentration is on the construction of an ergodic 

Markov chain used to simulate a continuous time birth-and-death point process having 

the posterior distribution of the number of common factors and the other parameters as 

its equilibrium distribution. Section 6 presents examples and applications. 

2.2 The Orthogonal Factor model 

The factor analysis (FA) model assumes that ap-dimensional manifest random vector x E 

IRP is made up of highly correlated variables that can be grouped by their correlations, 

with variables within a particular group being highly correlated among themselves, but 

having relatively small correlations with variables belonging to a different group. With 

such an assumption, each group of variables can be thought of as the representation of 

a single underlying construct also known as a factor or more precisely a common factor, 

that is responsible for the observed correlations. The factor analysis model postulates 

that x is a linear combination of q < p latent random variables Zl, Z2, ••• ,Zq, called 

common factors, plus p additional sources of variation el, e2, ... , ep referred to as errors 

or disturbances or even noise. These additional sources of variation are sometimes called 

specific factors as opposed to the above common factors, since each t; is specifically 

associated only with its corresponding observed variable Xi, We recognise here all the 

ingredients of a typical latent variable model for data reduction as defined in the previous 

chapter. 

2.2.1 Probabilistic construction of the FA model 

In a typical setting, all we have is a sample of Li.d. observations, and the starting point of 

the statistical analysis is to assume a probability distribution for each of the observations. 

The FA model traditionally assumes that our p-dimensional manifest random vector x 

has a Normal distribution with mean Jl and covariance matrix n. Our interest being in 
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data reduction, the next fundamental step in our analysis is to find q, p(z) and p(xlz) 

such that the distribution of x can admit a representation of the form (1.5). One such 

representation is derived using results from distribution theory. In fact, if we assume 

(2.1) 

then it is straightforward to show that the marginal density p(x) of x is Gaussian with 

mean p, and covariance matrix n = AA T + ~, which is what we required. From now 

on, we use p(x) = Np(x;p"AAT + E) and x f'V Np(p"AAT + E) interchangeably. In 

(2.1), ~ is assumed to be a diagonal matrix. This assumption is a very crucial and 

fundamental one, since it satisfies the axiom of conditional independence stated in the 

previous chapter. The conditional mean E [xlz] = p, + Az of x given z conveys the fact 

that the manifest variable x is a linear function of the latent variable z. With all the 

above developments, the generative equation of the model can therefore be expressed as: 

x - p, = Az + e or x = Az + 1-£ + e, 

which can be written in a more detailed form as 

AllZl + A12Z2 + 

A21 Z1 + A22Z2 + 

Xp - p,p = AplZl + AP2Z2 + 

In matrix-vector form, equation (2.3) becomes 

+ AlqZq + el 

+ A2qZq + e2 

el 
Zl 

e2 

Z2 
+ 

Zq 

Cp 

(2.2) 

(2.3) 

(2.4) 

The coefficient Aij is called the loading of the ith variable on the jth factor, and the matrix 

A E lRpxq is referred to as the matrix of factor loadings. p, E lRP is the marginal mean 

of x, and e E lRP is the independent disturbance vector. The FA model further assumes 
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that e and z are independent, so that with e ""Np(O,E), where E = diag(a~, ... ,a~), 
it is easy to see that cov(x,z) = A, and that cov(e,z) = lE [ezT ] = O. With x "" 

Np(J-l, AAT + E), the orthogonal factor model implies that x can be simply seen as 

multivariate Gaussian random vector with a structured covariance matrix. This structure 

of the covariance matrix of x allows us to write, 

(2.5) 

where h~ = >'~1 + >'~2 + ... + >'~q represents the portion of the variance of Xi contributed 

by the q common factors, while a; is contributed by the specific factor. h~ is called the 

ith communality, and a? is known as the uniqueness or specific variance. 

Note: In some real life applications of factor analysis, especially in such fields as sociol

ogy, psychology, marketing research, psychometrics and education, many problems give 

rise to common factors that are correlated. In such cases, cov(z) is no longer diagonal, 

and the corresponding model is known as an oblique factor model. Press (1972) gives the 

following example to illustrate the idea: suppose the observable vectors represent the so

cioeconomic characteristics of buyers of a certain type of automobile. The latent factors, 

though different from one another, probably all depend in some complicated way upon 

the utility function of the buyer. Therefore, it is quite likely that the factor structure is 

composed of mutually correlated factors. One could rightly argue that the complexity 

of the oblique factor model fails to achieve the aim of factor analysis which is to derive 

an elemental or simplest structure, and the argument could go as far as imagining a 

further factor analytic step on the results of oblique FA aimed at reaching the simplest 

possible structure. Throughout this thesis, we shall assume an orthogonal factor model. 

The reader is referred to Manly (1986) and Johnson and Wichern (1998) for a simple 

introduction to the orthogonal factor model. Press (1972), Everitt (1984), Anderson 

(1984) and Bartholomew (1987) present a more general coverage of the topic. 
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2.2.2 Issues of interest in factor analysis 

Essentially, there are three mains goals in FA. Model selection consists of the determi

nation or estimation of the adequate number of factors that can be used to represent the 

original manifest variables with as little loss of information as possible; mathematically 

speaking, this means finding the intrinsic dimensionality q of the data or the dimension 

of the minimal latent subspace, such that the distribution of x can have the form (1.5). 

Parameter estimation consists of estimating the parameters (especially the factor 

loadings) of the postulated model in order to interpret and characterise the covariance 

(association) structure of the manifest variables. Prediction has to do with estimat

ing factor scores for future unseen observations for such purposes as data-reduction. 

Estimated factor scores can be used in image compression to store high-dimensional 

images that are later reconstructed. Estimated factor scores can also be used for data 

visualisation in the plane (2-factor model) to explore group structures in the observed 

population of interest. Psychometricians, sociologists and educationalists are generally 

interested in factor loadings as a way to explain or at least interpret the associations 

(correlations) amongst some designed variables (tests grades, monthly expenses, etc.) 

and their relationships to some hypothesised latent (not directly measurable) concepts 

like intelligence, social class or aptitude. 

However, the estimation of factor scores requires a set of model parameters, which in turn 

requires some knowledge (estimate) of the number of factors. Estimating the number of 

factors is therefore central, and we address it later. For now, we assume the number of 

factors to be known and fixed, and we focus our attention on the other issues. 

2.2.3 Identifiability, Unique Solution 

Parameter estimation presupposes the existence of a unique set of parameters that char

acterise the proposed model, so that the objective of the estimation task is to determine 

that unique set of parameters 2. Unfortunately, as we shall see, our model as specified 

2In some applications, the meanings of parameters are not relevant. In such cases, FA is just a means 
to an end, so that all that is needed is any set of factor scores providing a valid reduced representation 
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by equation (2.2) is indeterminate (unidentifiable), and does not provide a unique set 

of parameters, but a multiplicity of parameter sets, ',each related to the other by an 
,\ \ 

orthogonal transformation. 
, I,' 
'\ 

" " 

, ' 

In fact, A has pq free parameters (factor loadings). Th~ diagonal matrix E has p free pa-
l' .' . 

rameters (specific variances). We therefore have p( q +:'~) variance-covariance parameters 
',t. , I 

to be estimated. Now, given a sample of observatio~~'.x '={ 2:1, ••• ,2:n }, our objective 
! ,\(.',., 

is to use the ~p(p + 1) items of information provided by the sample covariance matrix 
'f ,II' \' 

to estimate our p( q + 1) unknown free parameters. \ As we see, in most cases, we will 
I ,,' . .1, " lIt 

have p( q + 1) > ~p(p + 1), and the sample will theref~~~ not p~ovide enough information 
I, I \ I' " " " , ' 

to allow the estimation of a unique set of A and E.;,"Iri\f~ct,\ ,the FA model is inherently 
, /' ,\, I . 
1(, ,I i ,':/', i i ',( , 

a non-identified model: for a given set of data, thereie~i~ts!'an infinity of orthogonal 
I'; , '~:,! l.~ !',' / '.' \ I I . ' 

transformations of the matrix of factor loadings that wo~ld produce the same covariance 

structure. To see this more clearly, let us assume q >J/and let r be any q x q orthogonal 
I' ':,1',. t,'" 
). I,' ,\' " 

matrix, so that rrT = rTr = I q • Then the expressio~ in equ~tion (2.2) can be written 
, ,I i . " \ 1 ~ " {I '.,' '!', , 
I' ' " " 

" : 1 ~ ~ " j I ;. ~ \ :: / " , 

2: - P, = Az + e = ArrT z + ~ "·.~A *,z*, ~ e, (2.6) 
I,t;l,:,';, "", t ' 

I ; I • 

J, ',/ ' 

where A* = Ar and z* = r T z. It is easy to see that E [z*] = rTE [z] = 0, and that 
I: :, 

COY [z*] = rT COY [z] r = rTr = Iq• In other words, the .~actors z and z* = r T z have the 

same statistical properties. Looking at equations (2.2) and (2.6), it is therefore impos

sible, on the basis of observations on 2:, to distinguish the matrices of factor loadings A 

and A*. Moreover, n = AAT + E = ArrT AT + ~ = (A*) (A*) T +~, which means, that 

although different in general, A and A * both generate the same covariance matrix n, 

and therefore the same representation of the data. ( 
\ , , 

Geometrically speaking, the columns of A can be viewed as defining the axes of the 

lower-dimensional latent space (coordinate system) of factors. Since a rotation is a non

singular orthogonal transformation, and a permutation of columns is particular type of 

rotation, we say that a factor solution is invariant to permutations of axes. This feature 

will be useful later when we address the estimation of the number of factors. In practice, 

a unique solution is guaranteed by imposing some constraints on A so that the only valid 

of the manifest vector. In such situations, one need not worry about identifiability. 
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solution is the one that satisfies the constraints. 

In order to achieve efficient estimation of parameters, constraints are imposed in such 

a way that the number of parameters to be estimated is at most equal to the number 

of items of information provided by the sample. Traditionally, there are two types of 

constraint that are equivalent: 

1. Constrain A to be such that A T~-1 A is diagonal. Since A T~-1 A E lRqxq is symmet

ric and diagonal, ~q(q -1) of its elements are all zeros. This means that ~q(q - 1) 

elements do not need to be estimated by the parameter estimation procedure. 

This approach is used when estimation is done via a deterministic optimisation 

algorithm. 

2. A second approach equivalent to the above consists of preassigning values to some 

entries of A as in equation (2.7). This particular lower diagonal form3 of A reduces 

the number of parameters to be estimated by ~q( q -1) as above. This is the form of 

constraints that we use in the Bayesian sampling framework, since its application 

is straightforward. 

).u 0 0 0 0 

).21 ).22 0 0 0 

).31 ).32 ).33 0 0 

A= (2.7) 
).q-l,1 ).q-l,2 ).q-l,3 ).q-l,q-l 0 

).q,1 ).q,2 ).q,3 ).q,q-l Aq,q 

In fact, to guarantee a unique solution under our constraints, all we need is to determine 

q such that p{q + 1) - ~q(q - 1) ~ ~p{p + 1), which means 

(2.8) 

3We assume A to be full rank, so we constrain its "diagonal" elements to be nonzero. 
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From equation (2.8) an upper bound on the number of factors that can be included in a 

model is given by 

1 
q 5: 2(2p+ 1- y'8p+ 1). (2.9) 

Note: It must be said that there are situations where solutions satisfying constraint (2.8) 

might not provide an adequate fit for the data. In fact, given a data set, a fundamental 

question (without an obvious answer) is whether there exists a matrix of factor loadings 

A such that the model in equation (2.2) adequately fits the data. An exploration of this 

issue and many other related topics of FA can be found in such references as Bartholomew 

(1987), Everitt (1984) and Press (1972) amongst others. 

2.2.4 Rotation and Interpretability 

We saw earlier that applying any orthogonal transformation to the matrix of factor 

loadings would yield a new matrix that would provide exactly the same representation 

of the data as the non-transformed matrix. When interpretation is one of the main aims 

of FA, deriving a simple structure therefore becomes very important. In such cases, 

it is desirable, although not always possible, to derive a structure that would form the 

grouping of observed variables into factors in a way that is as straightforward as possible. 

This can be achieved for instance if the entries of the estimated matrix of factor loadings 

differ appreciably (Kaiser's varimax) amongst themselves, thereby making it easy and 

straightforward to allocate a given variable to the particular group (factor) for which its 

loading is very high. In this thesis, we do not use rotation to find simpler structure. 

2.3 Elements of parameter estimation 

If we assume that identifiability is dealt with and that the intrinsic dimensionality q 

is known and fixed, then parameter estimation can be carried out. For the FA model, 

there are many ways to approach the topic of parameter estimation, but we will focus 

on Maximum Likelihood via the EM algorithm and Bayesian Estimation by stochastic 
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simulation. The complete collection 6 of parameters for the FA model is 6 = fiL, A, ~}. 

In reality, the parameter that is of great importance here is A, the matrix of factor 

loadings, since the main interest is the characterisation of the covariance structure. 

2.3.1 Effect of scale in estimation 

It is a well known fact that, in the analysis of the relationship between two variables, 

correlation is often easier and more straightforward to interpret than covariance, since 

correlation is scale-invariant, and easily conveys the strength of the relationship as a 

proportion. This fact explains in part the widespread use of the sample correlation 

matrix instead of the sample covariance matrix as the main ingredient for fitting the 

FA model. Before we embark on estimation, we first explore some aspects of this scale

invariant estimation issue in this section. The need for scale-invariant estimation is 

often justified by the fact that the units of measurement of the manifest variables can 

be arbitrary. Two approaches are generally used to tackle this problem. 

Preprocessing approach. The first approach consists of basing the analysis on the 

correlation matrix instead of the covariance matrix. This is equivalent to standardising 

the manifest variables to ensure that changes in scale have no effect on the analysis. In 

practice, this means that the data actually used for the analysis are x = Cx, where 

C = [diag(S)]-!, and diag(S) is a diagonal matrix made up of the diagonal elements 

of S, the sample covariance matrix. Theoretically, such a preprocessing of the data, 

while intuitively appealing, leads to inconsistencies, especially when methods based on 

the likelihood are used; in fact, the distribution of the correlation matrix is not the 

same as that of the covariance matrix, which means that the results obtained after the 

transformation might well not reflect the truth about the data. Fortunately, Krane 

and McDonald (1978) have shown that estimates obtained this way are the maximum 

likelihood estimates of the scale-invariant parameters. 

Post-processing. A second approach with a more convincing theoretical foundation 

consists of first estimating scale-dependent parameters A and t using the sample covari-
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ance matrix, then transforming them into scale-invariant estimates A * and E* as 

(2.10) 

where diag(O) is a diagonal matrix made up of the diagonal elements of 0 = AAT + E. 

The obvious advantage here is that one is guaranteed not to be dealing with distributions 

that are inconsistent with the original assumptions. 

2.3.2 A principal component analysis approach to FA 

This is one of the oldest methods for obtaining rough estimates of both the number of 

factors q and the corresponding matrix of factor loadings A. 

Estimating factor loadings. As far as A is concerned, the method basically exploits 

the properties of the covariance matrix n to find an expression for A such that the 

representation (decomposition) n = AAT +E holds. In fact, since n is a real symmetric 

positive definite matrix, it is diagonalisable by virtue of a well known theorem of linear 

algebra. This means that {l can be decomposed and expressed as n = PDpT, where D is 

a diagonal matrix whose elements are the eigenvalues of {l, and P is an orthogonal matrix 

whose columns are the corresponding eigenvectors of n. Consequently, if we assume that 

E = 0 and choose A = PDl, we achieve the desired structure (representation) of n. 

The link with principal component analysis (PCA) comes from the fact, that by setting 

E = 0, we do not assume a noise model as is the case in peA, and, with A = PD l, it is 

easy to see from equation (2.2) that z = p T (x - J.t) = D ~ z defines principal components. 

Estimating the number of factors. The above choice of A still contains all the 

p original dimensions. Since our aim is to reduce the dimensionality of the data, we 

will only retain the q < p eigenvectors corresponding to the q dominant eigenvalues 

(that is, those eigenvalues that are" appreciably" larger in magnitude). We first remark 

that, if the above diagonalisation is done using the sample correlation matrix R, then, 

if iT = (Xb··· ,ip)T is the standardised manifest variable and D = diag(d b ··· ,dp ), a 

well known theorem of linear algebra allows us to write 
p p 

p = LV(Xj) = tr(R) = tr(PDpT
) = tr(D) = L dj . (2.11) 

j=l j=l 
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(a) According to Kaiser's criterion, we retain only factors with eigenvalues greater than 

1. This criterion uses the identity of equation (2.11) and the fact that V(Xj) = 1, and 

essentially means that, unless a factor extracts at least as much variability as the equiv

alent of one original variable, we ignore it. (b) Another criterion, which is less clear-cut, 

consists of retaining only the q-factor model that explains a sufficiently high percentage 

of variability. If we use the above eigenvalues, then the proportion of variability can be 

measured by 

(2.12) 

The above proportion of variability explained by the q-factor model can also be assessed 

using the communalities. In fact, if Xi is standardised, then the communality h; now 

represents a percentage, since V[~l = h~ + a? = 1. Computing 

(2.13) 

therefore provides a measure of the total proportion of variability explained by the q

factor model. By this criterion, if adding a new factor does not "substantially" increase 

the proportion of variability explained, then that factor is deemed "unimportant". (c) 

Finally, a graphical assessment can be carried out on the screeplot of the eigenvalues. 

The number of factors is then chosen as the point where the "elbow" occurs on the 

screeplot. 

Example 1: We illustrate this method of parameter estimation using a sample of 

n = 200 artificial observations generated from a factor model with p = 9, q = 2, 

( 

0.99 0.00 0.00 0.99 0.99 0.00 0.00 0.90 0.90) AT _ 
0.00 0.95 0.90 0.00 0.00 0.95 0.95 0.00 0.00 

E - diag(0.02, 0.19, 0.36, 0.02, 0.02, 0.19, 0.19, 0.36,0.36) 

JL T - (4.5,6.5,7.5,9.5,11.5, -11.5, -9.5, -7.5, -6.5) 

For our example, D = diag( 4.62,3.25,0.32,0.25,0.21,0.17,0.14,0.02, 0.02}, where eigen

values are ranked in decreasing order of magnitude. Figure (2.1) provides the corre

sponding screeplot. For our toy problem, it is therefore obvious from the values of the 
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Scree plot for FA model with p-9 and m-2 ' 
6r---'---,-~-:--~--~~~~--~~ 

°1~--~2--~3==~4;===t5===;6='==~7~~8~--J9 
Oecr __ Jng order of .Igenvalu.. , 

, ' 

Figure 2.1: Scree plot for an artificial FA model with p = 9 and q = 2 
~ i ;' . 
'.':)' Ii! 

eigenvalues and the shape of the screeplot, that q , ',:2," ,which is teh correct value. We 
t. " ',' . . \. 

therefore simply retain the corresponding first 2 eig~nvect~rs t'o form our Apc. Setting 
/ "I' "" ; i ",' i . .: .. ~ ~ .,' '( • ',!,', 'I • 

to zero all those entries of the estimate of the matrix 'o~ fador loadings that are less than 

0.2 for ease of interpretation, we obtain 

~ T (0.978 0.000 
Apc = 

0.000 -0.921 

0.000 0.976 0.975 0.000 0.000 
" \ 

-0.866 0.000 0.000 -0.929 I -.:0.911 
;' ; ,: ( " : {: :' ~ . \ \; ~ 

0.881 0.885) 

0.000 0.000 

If we ignore the signs, the above rough estimate of IA ''is' indeed a very good one, and 
'/ ;, 

I I' 

conveys the structure of the matrix of factor loadings accurately. Although this is a toy 
,I 

problem for which everything was known in advance,' it is fair to say that this ad hoc 

method provides rough estimates that in some cases can be satisfactorily accurate. 

Our aim in mentioning the principal component approach to the determination of the 

number of factors was simply to indicate the existence of methods other than the one 

we will be mainly focusing on in this chapter. 

In the new edition of his book, Jolliffe (1986) dedicates the entirety of the first section 

of the sixth chapter to an extensive review of methods used to determine the number of 

principal components. From subsections 6.1.1 to 6.1.3, 'the book essentially presents the 

above (a), (b) and (c) criteria in more details. The remainder of the section introduces 

and describes the choice of the number of principal components using a computationally 

intensive cross-validation method along the lines of Krzanowski and Marriott (1994), 

and concludes with a method based on partial correlation. These last two methods are 

particularly of interest to us as they are reported to work better for the determination of 
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the number of factors than the estimation of the number of principal components. For 

that reason, we provide a brief description of these two methods. 

Cross-validatory methods: Before giving a brief description of the key ideas behind 

these cross-validatory methods, it is worth mentioning that they are computationally 

very intensive, like any other method based on cross-validation. Unlike all the methods 

described earlier that are based of the eigenvalue decomposition of the sample correlation 

matrix, these cross-validatory methods are based of the data matrix X and used proce

dures similar to the Singular Value Decomposition (SVD) of the data matrix X. The 

key idea is to predict each element Xij of X from an equation like the SVD, but based on 

a submatrix of X that does not include Xij. Wold (1978) and Eastment and Krzanowski 

(1982) developed two of these cross-validatory approaches to the determination of the 

number of PCs. The number of terms in the estimate of X corresponding to the number 

of PCs is successively taken as 1,2,3,··· , and so on, until the overall prediction of the 

Xi/S is no longer significantly improved by the addition of extra PCs. Both Wold (1978) 

and Eastment and Krzanowski (1982) suggest that the number of pes to be retained, 

q, can be taken to be the minimum number necessary for adequate prediction. In this 

regard, they both use the PREdiction Sum of Squares (PRESS), which is the sum of 

squared differences between predicted and observed Xij, namely, 

n p 

PRESS(q) = L L (x~J) - Xij)2. (2.14) 
i=l j=l 

Partial correlation: The method of partial correlation that we briefly present here 

was first proposed by Velicer (1976). The criterion suggested is the average of the squared 

partial correlations, 

(2.15) 

where rij is the partial correlation between the ith and jth variables, given the first q 

principal components(PCs). The statistic r;j is defined as the correlation between the 

residuals from the linear regression of the ith variable on the first q PCs. It therefore 

measures the strength of the linear relationship between the ith and jth variables, after 
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removing the common effect of the first q PCs. Velicer (1976) suggests that the optimal 

value of q corresponds to the minimum value of the criterion. What makes this method 

even more relevant to our context is the fact that it is reported to perform reasonably 

well on deciding the number of factors in factor analysis. Another method based on 

partial correlation is proposed by Beltrando (1990) who, instead of choosing q such that 

V is minimised, rather selects q for which the number of statistically significant elements 

in the matrix of partial correlations is minimised. 

Readers inclined to know more about the above mentioned methods are referred to the 

corresponding references for a more detailed coverage of the topic. 

2.3.3 Expression of the likelihood function 

In both the frequentist and the Bayesian frameworks, we will need the likelihood function 

in order to perform our parameter estimation. Depending on the method of estimation 

that we intend to use, there are two ways of dealing with the likelihood function: 

• Observed-data likelihood: if we choose to integrate the latent variables out, 

then we can deal with the marginal distribution of the manifest variable x f'V 

N(Il, AAT + E), and form the likelihood from the corresponding marginal density. 

Given the LLd. sample X = {Xl,'" ,xn }, the observed-data likelihood in this 

case is therefore given by 

n [1 n ] L(8; X) ex: IAAT + EI-2 exp -2 tt (Xi - J.l)T (AAT + E)-l(Xi -Il) . (2.16) 

As we said earlier, the observed-data likelihood is often not easy to deal with math

ematically, and, for that reason, we will not use it in our estimation procedures . 

• Complete-data likelihood: As we anticipated in the previous chapter, most 

of our methods are based on the incomplete-data formulation of latent variable 

modelling, and the complete-data is therefore our main ingredient. Given the 

complete-data sample X·, the complete-data likelihood is given by 

L( 11; X') ex IEI- ~ exp [ -~ t. (x, - Az, - jJ) T E-1 (x, - Az, - jJ)], (2.17) 
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and the corresponding complete-data log-likelihood £(8; X*) is given by 

£(8; X*) = 
1 n n n 

-~IOgl~l- 2" Ltr [~-lXiXn + L [Xl~-lAzi] + L [Xl~-lJ1] 
i=1 i=1 i=1 

n 1 n 1 n 

- ~ [J1T~-lAzi] - 2" ~tr [AT~-lAziZl] - 2" LJ1T~-lJ1. (2.18) 
,=1 ,=1 i=1 

Note: It turns out that the use of the complete-data likelihood allows the derivation 

(construction) of efficient and easy-to-implement estimating procedures in both the fre

quentist and Bayesian frameworks. 

2.3.4 Multivariate Linear Regression Formulation 

The complete-data formulation of the FA model, by providing the conditional distribu

tion of x given z, allows its analysis to be tackled as a multivariate linear regression 

problem. In fact, if we define x = x - J1 = Az + e, then for a given complete-data 

sample X*, equation (2.2) is equivalent to 

(2.19) 

where E = (el,··· ,en) T is the n x p data matrix of errors. Since we assume that 

ei tv N"p(o,~) for i = 1,··· ,n, we now have cov [vec(E)] = ~ ® In, where ® denotes the 

Kronecker or direct matrix multiplication operator. In the above formulation 2.19, the 

transpose AT of the matrix of factor loadings plays the role of regression parameters. It 

is therefore easy to show that AT, the least squares estimate of AT, is given by 

(2.20) 

Note: Equation (2.20) is actually saying that each time we provide a set of imputed 

("filled-in") values for the latent (missing) variables, we can easily compute the corre

sponding least squares estimate of A as 

(2.21) 
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2.4 The EM Algorithm for Factor Analysis 

2.4.1 Construction of the generic algorithm 

In their seminal paper, Dempster, Laird, and Rubin (1977) suggested the use of the 

EM algorithm for FA, but the first paper to derive the algorithm explicitly was written 

by Rubin and Thayer (1982), who later added some extra developments in Rubin and 

Thayer (1983). The EM for FA is essentially very simple, and we will only touch on 

the major aspects. The expression of the complete-data log-likelihood in equation (2.18) 

suggests that, for the E-step, expressions for E[zlx] and E [zzTlx] must be derived. It 

turns out that this is easily done using some linear algebra results, and a closed form 

expression is then obtained for Q(OIO(t)). In this setting, we have 

(2.22) 

From properties of the Gaussian distribution Graybill (1969), Press (1972), the condi

tional distribution of z given x is also Gaussian, with 

Another approach is to use the identity p{xlz)p(z) = p(zlx)p(x), and it is easy to show 

that the conditional distribution of z given x is also Gaussian with 

Note: Computationally, equation (2.23) involves the inversion of a p x p matrix for 

which the computational complexity is O(p3), while equation (2.24) only inverts a q x q 

matrix for which the computational complexity is O(q3) and a diagonal matrix which 

is computationally easier (only O{p)). Since we assume that q < p, it is therefore 

computationally more efficient to use equation (2.24), and from now on we use 
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Algorithm 1: The EM Algorithm for Factor Analysis 

• E-step - Compute lE [zilxi] and IE [zizllxi] for X = {Xi: i = 1,'" ,n} . 

• M-step-

j.L(t+1) = 
1 n -L (Xi - A (t)lE [zilxi]) (2.26) 
n i=I 

A (HI) [ t (x, - 1'( t+1») (IE [ z, Ix,]) T] [t. IE [z,. z;'1 x,. 1 ] -1 

~(t+I) ~diag [t (x, - I'(HI) - A (t+1) IE [z, Ix,]) (x, _ I'(H I») T] . 

Proposition 2.1 The new estimate A (t+I) of A at each iteration of the EM algorithm 

(2.26) has exactly the same form as the least squares estimate of (2.21). 

Proof: In fact, since E~I ZiZ"[ = ZTZ and E~=I ZiZ"[ = XTZ, equation (2.26) can be 

rewritten as A (t+1) = XTlEzlx [Z] [lEzlx [ZTZ]] -1. If we drop expectations, then A (t+1) 

and A will be identical. 0 

Note: While A(t+I) is used in the EM algorithm, its least squares look-alike A will be 

frequently used when we consider the construction of sampling schemes for the FA model. 

2.4.2 Numerical results 

As we said earlier, principal component estimates can at least be used as initial values 

for more sophisticated estimating procedures like the EM algorithm. For the specific 

variances al, we use initial estimates suggested by Joreskog (1975), namely 

(2.27) 

where sit l is the i-th diagonal element of the sample covariance matrix 8-1. We use 

f = 10-5 as our tolerance. 

Example 1 revisited. We reconsider the example used for principal component factor 

analysis where we had p = 9 and q = 2. For this example, T = 2000 iterations take 
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approximately 3 minutes and produce the following estimates. 

AT ( 0.989 0.000 0.000 0.985 0.986 , 0.000 0.000 0.832 0.829 ) 
AEM 

0.000 -0.897 -0.807 0.000 0.000 I -0.922' -0.889 0.000 0.000 

EEM diag(0.015, 0.189, 0.342, 0.022, 0.021, 0.144, 0.204, 0.302, 0.305) 

Below is a plot of the log-likelihood throughout the iterations of the EM algorithm. 

Plot of the Iogllkellhood for Example l' I 
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,. 

Figure 2.2: Plot of the log-likelihood for Example 1 ,.:. "," : . ..... . , 

:;'\' t j I> ,/', i.' 
Figure (2.2) shows that the maximum is reached after'just t ',' 100 iterations. This cor-

I '1"{ ):' " {\' 

responds to less than 9 seconds, meaning that the EM i~ ~eas~n~ble fast. Moreover, with 
,4,1., 
.1 : 

principal components initial values, the final EM estimates are satisfactorily accurate. 

Example 2: Exploration of Group Structure . . For this example, we generate 

data from a population with three groups, each group being adequately modelled by 

its own factor model, but all groups having the same matrix of specific variances ~ = 
diag(0.02, 0.19, 0.36, 0.02, 0.02, 0.19, 0.19, 0.36, 0.36). ',Below are the 3 matrices of factor 

loadings for the model. 

_ 
(

0.80 AT 
0.00 

AI _ (0.69 

0.00 

AI _ (0.59 

0.00 

0.65 0.00 0.50 0.00 0.00 0.95 0.00 

0.35 0.90 0.00 0.50 0.90 0.00 0.90 

0.15 0.00 0.19 0.99 0.80 0.00 0.00 

0.90 0.90 0.00 0.00 0.00 0.60 0.90 

0.95 0.00 0.19 0.29 0.00 0.00 0.00 

0.35 0.60 0.90 0.90 0.75 0.80 0.50 

0.00 ) 

0.90 

0.99 ) 

0.10 

0.99 ) 

0.00 
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Using the same initialisation procedure as before, T = 2000 iterations of the EM algo

rithm allow us to get a 2-D scatter plot (Fig. 2.3) of the estimated factor scores for the 

sample of n = 300 observations. The parameter estimates obtained in this case are not 

Visualisation of the toy data In the plane 
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factor 1 

Figure 2.3: Visualisation of Example 2 in the plane 

the true parameters of the model, since we are using a single factor model to tackle a 

problem requiring 3 distinct sub-models. However, this single factor model is still able to 

provide estimated factor scores that allow us to discover the existence of three different 

subgroups in the population of interest. Here, the single factor model has served as a 

useful exploratory tool, and has revealed the grouping structure very well. 

2.4.3 Some aspects of the EM algorithm 

Multiplicity of solutions: As reported by McLachlan and Krishnan (1997) and Rubin 

and Thayer (1982) and confirmed by our simulations, one of the main weaknesses of 

this generic version of the EM for FA is the fact that it produces a multiplicity of 

solutions that ar not rotated images of each other. In the above Example 2 for 

instance, using different random initial values systematically leads to different solutions. 

Mathematically, this multiplicity is easily explained as a consequence of the fact that 

the unrestricted factor model is indeterminate (unidentifiable). Restricting the factor 

model to guarantee a unique solution is therefore a natural candidate solution to this 
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problem, and this essentially boils down to modifying the M-Step of the EM algorithm in 

such a way that the maximisation with respect to A becomes a constrained optimisation 

problem, with constraints being the ones presented in Section 2.2.3. Liu and Rubin 

(1994) developed a variant of the EM algorithm known as the ECME that deals with 

this problem. Dong and Taylor (1995)'s restricted EM is a much more general setting 

that should provide a good way of tackling this application of the EM under restrictions. 

Because these restricted versions of the EM algorithm require extra computational effort 

through the implementation of constrained optimisation algorithms at the M-Step, we 

do not use them in our work. Finally, it is worth pointing out that the Stochastic 

EM algorithm could be another alternative to this multiplicity of solutions, since it is 

theoretically insensitive to initial values and does converge to the same fixed point. 

Relative convergence rate: The relatively slow convergence of the EM algorithm 

can be attributed to the amount of missing data, which is directly and systematically 

proportional to the amount of observed data in this context of latent variable models. 

We noticed in our simulations that as q grows, convergence gets even slower, and, for 

the same q, a larger sample would require more iterations to convergence, since more 

missing data in such situations need to be "filled-in" or accounted for. 

Post Analysis of Estimates: The EM algorithm only provides a point estimate of 

O. This is one of the major drawbacks of the algorithm, since it is desirable to also 

provide estimated standard errors, in order to give an indication of confidence intervals 

or confidence regions for the population parameters of interest. It turns out that such 

error estimates can be obtained thanks to some properties of maximum likelihood esti

mators, but at the expense of extra computational efforts. In fact, from the properties 

of the algorithm, the estimate obtained is a maximum likelihood estimate and is there

fore asymptotically unbiased. Since OEM is a maximum likelihood estimate of 0, it is 

asymptotically normally distributed. More specifically 

OEM ~ N(O, J-1(0)) with jik(O) = -E [:;:~:~l ' (2.28) 

where J(O) = -E [H(O)] is minus the expected Hessian matrix (the matrix of second 

derivatives). In practice however, what is generally used is the observed Fisher Informa-
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tion matrix IF(iJ) = -H(iJ). For a more detailed explanation see Morgan (2000). Since 

the EM does not deliver IF, extra computational effort is needed to find it. 

2.4.4 Goodness-of-fit test for Factor Analysis 

With the normality assumption for the manifest variable x, we performed maximum 

likelihood via the EM algorithm. On the other hand, the goodness-of-fit of the resulting 

q-factor model can be judged using a classical likelihood ratio test, with the null hypothe

sis stating the covariance matrix of x has the structure n = AA T +~, and the alternative 

saying the covariance matrix is unconstrained. Under the normal assumption, it is easy 

to see that the test statistic for the test is 

A -1 A-I 
W = n(tr(n 8) -login 81- p), (2.29) 

where n = AAT + E is the estimate of 0, and 8 is the sample covariance matrix defined 

and encountered earlier. A standard result in the literature shows that if ~ > 0, then 

w is asymptotically X2 distributed with v = ~ [(p - q)2 - (p + q)] degrees of freedom 

under the null hypothesis. An alternative setting proposed by Bartlett (1954) suggests 

to replace n in (2.29) by n - 1 - H2p + 5) - ~q. It must be said that the value of 

v used above presupposes that we have efficiently fitted the model, and therefore that 

instead of the p(q+ 1) parameters of the unrestricted FA model, only p(q+ 1) - ~q(q-1) 

parameters have to be estimated. 

2.5 Data Augmentation for Factor Analysis 

In the Bayesian framework, we would ideally like to use the posterior density p(9IX) of 

9 to make various inferences. Unfortunately, as we said earlier, closed-form expressions 

of the desired moments and marginals are not obtainable. Data Augmentation provides 

an elegant way to tackle this problem. Our main ingredient for the derivation of the 

Data Augmentation algorithm for FA is the completion of p(9IX) given by the following 
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equation: 

p(9, ZIX) ex L(9; X, Z)p(9) (2.30) 

The I-step in this case is straightforward, and simply consists of drawing samples from 

the conditional predictive distribution of z given z and the current set of parameter 

values 9(t) as given by equation (2.25). For the P-step, we combine the prior den

sity p(9) with the expression for the complete-data likelihood L(8; X, Z) to derive the 

corresponding full conditional posteriors p(9IX, Z). 

2.5.1 Aspects of prior specification 

We shall use only natural conjugate priors in this context. In fact, the complete-data 

likelihood (2.17) belongs to the regular exponential family of distributions, and therefore 

allows a straightforward derivation of conjugate priors. While this choice is made for 

mathematical convenience, it also turns out to be the only computationally viable choice 

in this context. Martin and McDonald (1981) and Ihara and Kano (1995) have shown 

that the use of standard improper reference priors leads to the Bayesian analogue of 

what is known in factor analysis as Heywood cases4
• Treated as a function of the variance 

parameter, the negative likelihood of the FA model is bounded below away from zero as 

a1 tends to zero. Throughout our work, we exclusively use conjugate priors. 

2.5.2 From likelihood to natural conjugate priors 

We now express the complete-data likelihood as a function of each parameter in turn, and 

we derive the corresponding natural conjugate prior. A more comprehensive coverage of 

prior specification for this normal model can be found in Box and Tiao (1973), Bernardo 

and Smith (1994), Zellner (1971) or Gelman, Carlin, Stern, and Rubin (1995), Press 

(1972). 

4In the classical maximum likelihood estimation of the FA model, it is often convenient to minimise 
the negative log-likelihood or some extensions of it. It often happens that the objective function used 
has a relative minimum corresponding to negative values for some variances. Such solutions are clearly 
inadmissible and are referred to as improper solutions or Heywood cases. 
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Prior distribution for E: Treating equation (2.17) as a function of E, we can write 

(2.31) 

n 

where S = L (Xi - AZi - /l)(Xi - AZi - /l)T = (X - ZAT)T(X - ZAT). The form of 
i=1 -

(2.31) suggests that a natural conjugate prior for E-l would be a Wishart distribution. 

However, since E- l is diagonal, (2.31) can be rewritten as 

(2.32) 

which has the form of a product of Gamma densities, suggesting that we use a product 

of Gamma prior densities p(a;2) for each a;2. 

Prior distribution for A: To write the likelihood as a function of A, we remark that 

Since (X - ZAT) T (X - ZAT) does not depend on A, we can then write 

(2.33) 

Let {} = [{}I,' .. ,(}J]T = vec(A T) = [AI., ... ,AJ]T. Each (}j is a qx 1 column vector made 

up of the elements of the j-th row Aj . of A. Clearly, {} is a qp x 1 column vector. Since 

tr{E-1 (AT _AT)T(ZTZ)(AT _AT)} = ({}-J)T[E-1®(ZTZ)]({}-J) and [E-10(ZTZ)t1 = 

E 0 (ZTZ)-l, the likelihood as a function of () then has the form 

which suggests that a Gaussian distribution would be a natural conjugate prior for (). 

Prior distribution for /l: As a function of /l, (2.17) has the form 

which suggests that a Gaussian distribution would be a natural conjugate prior for /l. 
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2.5.3 Derivation of full conditional distributions 

Using all the elements of prior specification from the' previous section, we now derive , 

the full conditional posteriors to be used in our sampling ~cheme. We assume that 

our parameters are a priori independent, and this allows us to write the joint prior 
I !'i';; ',. 

density as p(lJ) = p(A, Jl, E) = p(Jlle, K)p(Elo:, 7)p'(~I7], n), ·.where e, K, 0:, 7, 7], n are 

hyperparameters. 
'i ! 

Full conditional distribution of E. As we said earlier,' the Wishart distribution for 
, " :. 

E-1 reduces to a product of Gamma distributions b~c~use of the diagonality of E. In 
I····,'!· 

other words, if we assume 0';2 rv Ga(0:/2, 7/2), then 'the p~ior density for E-l becomes 

p(E-lln, T) = IT p( u,'ln, T) oc IT [u,~h~ff:~d f}u" J. (2.36) 
1=1 1=1 .\'\.1;1\,'1 ;·'.!"I., 

, , \", t i . 

If we combine equations (2.36) and (2.32), we easily derive a Gamma full conditional 

distribution of each 0';2, that is, [O"i- 21' .. ] rv Ga((n + 0:)/2, (Sii + 7)/2), for i = 1,' .. ,p. . " , 
,,1 I " t 

I I," :' 

" I,., 

\., \ :~.".' 1 I . ',': :: f' ( 

Full conditional distribution of Jl. Let Jl rv N(~:'~) ,where e is a p x 1 column 
',', I.': ',, J, " I," 

vector and K is a p x p symmetric positive definite matrix/be the natural conjugate 
, .. 
, 

prior for Jl. If we combine this prior with the complete-data likelihood as expressed in 

equation (2.35), standard results from Gaussian theory allow us to derive a Gaussian full 

conditional distribution of /-l, that is [/-ll· .. ] rv .Np(m~,·C/J, where 6; = L~=1 (Xi - Azi ), 

(2.37) 

Full conditional distribution of unrestricted A. We assume that the rows of A are 

independent, and therefore p(AI7], 0) = nf=1 p(Ai./7], 0). The natural conjugate prior 

for 'IJ = vec(A T) being Gaussian as we derived earlier, 'we also have Gaussian conjugate 

priors for the rows of A. More specifically, we take Ai. rv Nq(7], n), where f2 E IRqx
q

, and 

7] E IRq. To derive the full conditional posterior for A, we write the prior for tJ as 

p(tJ) ex exp [-~('a - '!9o)TB-l('!9 - 'lJo)] , (2.38) 

where '!9
0 
= [1JT, ••. ,1JT]T and B = Iq 0f2. Note that '!90 E IRpqxl and B E IRpqxpq. Ifwe 

combine equations (2.34) and (2.38), properties of the Gaussian distribution allow us to 
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derive the full conditional posterior [191" .] '" Npq(miJ' CiJ), where 

Recall that [~-l 0 (ZTZ)t1 = ~ 0 (ZTZ)-l. By definition of the Kronecker product, 

and by virtue of the diagonality of E, E 0 (ZTZ)-l is block-diagonal, and we can write 

o o 

o o (2.40) 

o o 

Using (2.21), we write J = vec(A), and it is easy to verify that the full conditional for 

each row of A is given by [Ai.I···] '" Nq(mAi., CAJ, where 

(2.41) 

and X.i is the i-th column of the data matrix X. 

Full conditional distribution of restricted A. For interpretability and estimation 

efficiency, A needs to be restricted as in equation (2.7). Such a restriction leads to a slight 

modification in the specification of the full conditional distribution of A. For simplicity, 

we now assume a univariate Gaussian5 prior for each of the non-preassigned Aij, that is, 

Aij '" N(mo, Co). We define Z(i) E lRnxi to be the n x i matrix containing the first i 

columns of Z. The mean vector and covariance matrix of the full conditional distribution 

of Ai. for the first q rows (i = 1, . . . ,q) are determined as follows: 

(2.42) 

For i = (q + 1), ... ,p, the hyperparameters become 

(2.43) 

5When factor loadings are viewed as correlations instead of covariances, Press (1972) suggests an 
alternative assumption which consists of using a transformed Dirichlet prior whose elements are trans
formed beta variates defined on the range (-1,1). We do not use this approach in our work. 
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With all the posterior distributions specified above, the two steps of the Data Augmen

tation for Factor Analysis have the following form: 

Algorithm 2: Data Augmentation for Factor Analysis 

• I-step-

[zlxJ rv Nq((Iq + ATI:-1A)-lATI:-1(x - /l), (Iq + ATI:-1A)-1) 

• P-step-

[a;21'" J rv Ga((n + Q)/2, (Sii + 7)/2) i = 1"" ,p 

[J.LI· •• J rv Np (mp. , Gp.) 

[Ai.I··· J rv Nq(ml\.;., GI\.;.), i = 1"" ,p 

2.5.4 Some advantages of Bayesian sampling 

Computational efficiency. One of the most striking features of the sampling scheme 

we have just derived is that all the full conditional posterior distributions are familiar 

distributions that are easy to simulate. Hence, Data Augmentation is efficient here. 

Initial conditions. Unlike the EM for which different initial values tend to lead to 

different limiting values, Data Augmentation overcomes the multiplicity of solutions 

as the algorithm always converges to the same limiting distribution regardless of the 

initialisation of the chain. 

Adaptability. On the other hand, the scheme is also elegant and adaptable as we can 

see from the ease in deriving the conditional posteriors for the restricted FA model. 

Post analysis. One of the main strengths of the Bayesian sampling approach is its 

ability to allow a post-analysis of the derived model. In fact, the sample generated from 

the Markov Chain Monte Carlo iterations can be used to make further inferences about 

the model. For instance, the MCMC sample path can be readily used to assess the fitness 

of the proposed model, and also derive standard error estimates of the parameters for 

the construction of confidence intervals or confidence regions. One of the key advantages 
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here is that these additional inferential tasks are all by-products of the same process and 

do not require any further heavy computations, unlike with the EM algorithm where 

such inferences could mean resorting to computationally intensive methods. 

Note: While the Bayesian paradigm offers all the above advantages, it is fair to point 

out that it requires the specification of the prior distribution. In any real application, 

care should be taken to assess how sensitive the results are to prior specification. 

2.5.5 Elements of MCMC convergence 

The crucial issues of convergence of MCMC iterations are twofold. First of all, MCMC 

algorithms are relatively slower than their deterministic counterparts. As we shall see 

in our numerical section, the Data Augmentation algorithm requires considerably more 

computation time than the EM algorithm on the same tasks. Secondly, as we said 

earlier, one of the most difficult areas in MCMC methods is the assessment of conver

gence. While deterministic methods like the EM have objective functions that provide a 

straightforward way to assess the convergence of the iterative process, MCMC methods, 

especially in the multivariate setting are still far from offering clear-cut and computation

ally realistic and efficient tools to monitor the convergence of chains. In a multivariate 

setting, like the one of interest to us, there are methods that consist of assessing the 

convergence of each scalar quantity separately. One of the easiest ways to assess the 

convergence of scalar quantities is the use of time-series plots over iterations. This is 

obviously not a practical solution if one has a model with many parameters. Gelman 

and Rubin (1992)'s method based on the analysis of variance of multiple chains provides 

satisfactory results, but again it focuses on individual scalar parameters, and the need 

to have many chains run simultaneously makes the implementation of the method both 

complicated and computationally intensive. In general, all such methods based on scalar 

quantities can quickly become impractical when the number of parameters is large, since 

some parameters would converge while others have not yet reached their equilibrium 

regime. There is a crucial need for methods of convergence assessment that can be both 

easy to implement and easy to interpret. The topic is currently very active, and both 
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theoretical and empirical methods are being devised to address this important issue. The 

reader is referred to such references as Cowles and Carlin (1996), Gelman and Rubin 

(1992), Gelman (1995), Geyer (1992) for a more detailed account and review of conver-

gence monitoring and assessment for MCMC. As far as our work is concerned, whenever 

possible, we use some of the tested methods to monitor the convergence of our chains, 

and, in some cases, we rely on large numbers of iterations to achieve convergence if our 

theoretically ergodic chains tends to be slow to converge. 

2.5.6 Point estimates and standard errors 

It is a well known fact in statistical estimation and inference that uncertainty about the 

point estimate of a parameter should be summarised by computing estimated standard 

errors and constructing the corresponding confidence intervals or regions. However, while 

the construction of such confidence intervals or regions often requires extra computational 

burden in likelihood-based methods in our context, it is easily done in the Bayesian 

sampling framework as follows. Suppose that we have discarded the To draws of the 

burn-in step of the process once convergence is judged to have been reached. In the 

event of very slow convergence, successive draws from the equilibrium distribution tend 

to be correlated, and, as explained by Schafer (1997), dependent samples can make 

the inferential task extremely difficult. In practice, subsampling the chain is a solution 

that works. Hence, we use subsampling to overcome the dependency of our MCMC 

samples: instead of summarising our posterior by O(To+l) , O(To+2), ••• ,O(To+M), we rather 

use O(To+c), O(To+2c), ••• ,O(To+Mc), where c is chosen large enough to make the sample 

values approximately independent. Let {O(t) : t = 1"" ,M} be our resulting chain of 

parameters. As we said in Chapter 1, this can be regarded as a genuine sample from the 

observed-data posterior p(OIX). Our point estimates for both the parameters and the 

factor scores are 

and 
M 

A 1 ~ (t). 1 
Zi = M L...J Zi ,Z = ,"', n, 

t=l 

(2.44) 
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and the corresponding estimates of variances are given by 

-V[OIX] -
M 

1 ~ (O(t) _ 8)( o(t) _ 8) T 
M-1L.J 

t=l 

M 
1 ~ (t) A) (t) A)T. M _ 1 L.J Zi - Zi Zi - Zi , Z = 1, ... , n. 

t=l 

(2.45) 

Remark: Even without subsampling, the above estimate of 0 can still be appropriate6• 

In fact, a law of large numbers for MCMC Tierney (1994) states that under quite general 

conditions, if Z(l), Z(2), . .. , Z(M) is a realisation of an MCMC run with target distribu

tion I, then M-l E~l g(Z(t») converges to IEI [g(Z)] almost surely, for any real-valued 

function g(Z) as M -+ 00, provided that rEI [g(Z)] exists. 

2.6 Bayesian assessment of model fitness 

Fitting a model to a given set of data is one thing, but whether or not the fitted model 

is the most plausible mechanism that generated the data is another issue altogether, an 

issue of paramount importance in statistical modelling. Every serious statistical analysis 

should therefore include at least a check to see if the posited model should be excluded, 

based on whether or not it does provide a reasonable summary of the data at hand. A 

standard classical approach for this kind of model-checking is to perform a goodness-of

fit test, which consists of calculating a tail-area probability under the posited model to 

quantify the extremeness of the observed value of some selected discrepancy (used as test 

statistic), one of the natural candidates used to measure discrepancy being some measure 

of the difference between the observations and the predictions. Essentially, in the classical 

approach the tail-area probability, or p-value, is used as a computationally convenient 

way to locate the observed value of the discrepancy in the reference distribution under 

the proposed model. The bad news with this classical approach is that, for many complex 

problems like the ones we are interested in, it is not always possible (or at least it is not 

easy) to specify a reference distribution for the test statistic, and even the test statistic 

itself is not always easy to define and specify. The good news is that, in the Bayesian 

6It is important to note that this does not hold true for the variance estimates. 
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paradigm, this is both feasible and requires almost no extra computational burden in 

the framework of Bayesian sampling. 

',' 

2.6.1 Posterior predictive assessment I,of,model fitness 
, ' , 

,','i ,I, (; i I:; ", \ ' 

The method we will now describe and use provides a sat~sfactory Bayesian alternative 
'(I '" , I, 

f ,.,'," " 

to the classical approach. It was introduced in the I Bayesian framework by Gelman, 
"'." \ 
! I"J;'/ ", 

Meng, and Stern (1996) to perform posterior predictive assessment of model fitness, 
" ,:;1\ \ ,'I 

following earlier work by Rubin and Thayer (1983)\":Whiie the classical approach to 
!iii,I.I.;!' ,'.;;' 

model-checking overemphasises the need to check and test the correctness or trueness of 
I )' ,', \' ", ' 

, .' I,:; I ,':,',: " , ' 

the proposed model, this new Bayesian counterpart I ~??~~~~}~~ ~ssessing the discrepancies 
, I\<'!' / \ J 1 .. "0' • I' l I 

between a model and the data. The emphasis in this'new',method is therefore placed on 
i,t, :; '.': '~.! .\\i f ;,i : : 

the usefulness rather than correctness. The starting poi~t' i~' obviously the statement of 
" . ,! ' .- " 
. ,', ,":, ' 

the null hypothesis, which in this case is simply Ho';'; 'The proposed model is correct. 
, :' ;>'~ :/ ':::; '~,: .", ;'1,; ':, 
,It 1111 I,. ,',t ,I • 

1 \ \ I. \ ,',,'. " ,\ I: ' ", 
~ I \. ('. t, \ ~ / ,', 1,' .: I, I 

2.6.2 Details of the method II: ,,1,:\'> ,,:.' ' 
F ~ ( ,I .~ ; : : .' ' I f I,; . 1 

'J \, I '~ . \ I ,I .. , , ' • , ' 

It I:} \ , 

The method provides a new way of assessing the pla~'sibility of the proposed model via 
.".' \ 

, '\ 

the use of replicates and realised discrepancies. For O'Uf FA model with x I'V .Np(J-l, AA T + 

E), we use a X2 type discrepancy measure, namelY,the sum of squares of standardised 

residuals 

n 

D(X, 8) = ~ (Xi - J-l? [AAT + E] ~~ (Xi - J-l). (2.46) 
i=l 

, " 

i 

For the above discrepancy, D(X,8), we derive a reference distribution for the joint 
, , 

posterior distribution of x rep and 8 given the proposed model H and the data X. 

Pr(xreP, 81H, X) = Pr(xrepIH, 8)p(8IH, X) (2.47) 

where Pr(xrep IH,8) is the posterior predictive distribution of x rep under the proposed 

model, while p(8/H, X) is the posterior density of the corresponding model parameters. 

The tail-area probability of D(X, 6) under the derived posterior reference distribution 
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is then defined as follows: 

p-value = Pr(D(XreP, (J) > D(X, (J)IH, X). (2.48) 

For each of the iterates in the set {(J(t) : t = 1, ... ,M}, it is easy to simulate a replicate 

data set xrep(t) = {x~ep(t), .•. ,x~ep(t)} by drawing samples x;ep(t) from the posterior 

predictive distribution Pr(xrepl(J(t) , H) of x rep , given the proposed model H and its cor

responding parameters, after which realised discrepancies D(X, (J(t)) and D(xrep(t) , (J(t)) 

are computed for both the original sample and the replicate respectively. Given the 

sample path {(J(t) : t = 1, ... , M}, an empirical version of the above p-value is given by 

M 

p-value = ! L I(t : D(xrep(t) , O(t)) > D(X, OCt})) 
t=l 

(2.49) 

!#{t: D(xrep(t),(J(t)) > D(X,(J(t))} (2.50) 

which intuitively is the proportion of subsequent experiments that support the null hy

pothesis, and therefore serves to numerically assess the fitness of the proposed model. 

A graphical assessment is also obtained through a scatterplot of D(xrep(t), (J(t)) against 

D(X, (J(t)), and the p-value is in fact the proportion of points above the 45° line. 

Remark: It is worth stressing the point that the above test does not indicate whether a 

model is correct or not, but rather aims at finding out whether there is evidence of lack 

of fitness. 

2.6.3 What makes Bayesian sampling appropriate? 

It is worth pointing out that this assessment of model fitness is made easier because 

of the availability of MCMC samples: in fact, at each iteration of the MCMC process, 

each draw of the complete collection of model parameters actually defines a possible 

model. This can therefore be thought of as a realisation of a subsequent experiment 

that can generate other datasets (replicates in this case) from the posterior predictive 

distribution and then compute the corresponding test statistic (measure of discrepancy). 

On the other hand, while the theoretical specification of the reference distribution of the 
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test statistic can be very complicated if not impossible, the availability of MCMC sample 

paths makes it possible to specify an empirical approximation to this distribution as we 

shall see later. In other words, with the availability of MCMC sample paths, one can 

readily implement the idea (concept) of comparing subsequent experiments to the one 

that generated the data at hand, and therefore (at least empirically) decide whether the 

data at hand support the null hypothesis more than any other subsequently generated 

data. It is therefore fair to say that Bayesian sampling offers a complete platform to 

perform this posterior predictive assessment of model fitness via realised discrepancies. 

2.6.4 Numerical results 

Example 1 revisited: For this first example, we run To = 6500 burn-in iterations, 

after which we use subsampling with c = 5, and we finally retain a sample path of 

M = 300 draws. As expected, the restricted version of the algorithm produces sat

isfactorily accurate estimates, and does so regardless of the initial values7 • However, 

the algorithm takes considerably longer than the EM algorithm, but has the following 

additional advantages: (a) it allows the easy computation of estimates of precision in 

the form of estimates of posterior standard deviations, and (b) provides a satisfactory 

assessment of the fitness of the proposed model. For economy of space, we only provide 

estimates of uniquenesses and their standard errors. In this case, the estimate is I:DA = 

diag(0.017, 0.184, 0.340, 0.022, 0.022, 0.166, 0.199, 0.401, 0.378), and its standard error es

timates are Error(EDA ) = diag(0.002, 0.028, 0.039, 0.003, 0.003, 0.023, 0.028, 0.030, 0.032). 

Figure (2.4) shows a reasonably large number of points above the 450 line, and the 

p-value is 0.485. With a cut-off at 0.05 in the spirit of the significance level used in 

classical tests, 0.485 > 0.05 is very supportive of the null hypothesis, suggesting that 

there is no evidence of lack of fitness. As expected, we can therefore conclude that the 

proposed model is a plausible fit of the data. 

7Despite the fact that algorithm is insensitive to starting values, we make it a point to always use 
the same initial values as in the previous sections 
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Figure 2.4: Scatterplot of realised discrepancies for Example 1. 

Example 2 revisited: For this example, we used exactly the same To, c and M as 

before, and our aim in this case was simply to assess the fitness of the proposed model. 

Figure (2.5) shows a rather very small number of points above the 45° line, and the 

corresponding p-value in this case is 0.03. If we use the same cut-off of 0.05 as earlier, 

the small p-value of 0.03 < 0.05 can serve as a evidence to reject the null hypothesis, 

therefore suggesting lack of fitness of the proposed model. As expected, the single factor 

model is NOT a plausible candidate model to handle our data generated from a three

component population. 

3100l f """"!-"""!-"'''''''''''''''''''''''''''''''''''''''''''''''''''''''':J¥ 

300011""·",·,",,·,,''',·,,'''''''''''',,·,,''',,·,,,,·; .... ·,,'''' 

Figure 2.5: Scatterplot of realised discrepancies for Example 2. 
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2.7 Stochastic model selection for FA 

While there are many cases in practice where the number of factors q is known and/or 

fixed, as we assumed earlier, it must be said that this value is very often unknown 

in real-life applications, and the study of the FA model therefore needs to address its 

uncertainty. At the root of model determination in Factor Analysis lies the difficult issue 

of finding and/or defining principled methods to decide what makes a particular factor 

important. In fact, for FA, this difficult problem of model determination has been one of 

the burning issues over the years, captivating the interests of researchers from both the 

likelihood-based and Bayesian perspectives. The reader is referred to such references as 

Krzanowski and Marriott (1994), Krzanowski and Marriott (1995) and Press (1972) for 

detailed coverage of these approaches. 

2.7.1 A review of a classical empirical approach 

The most widely used method is entirely based on the eigenvalues of the sample correla

tion matrix. While this very often produces satisfactory results as we saw in the previous 

sections, the fact of focusing only on the eigenvalues could lead to the neglect of vital 

information: almost all the criteria used to decide on the number of factors to retain are 

essentially ad hoc (eigenvalues less than 1) and often subjective (elbow of the screeplot) 

criteria that in some special cases would either overestimate or underestimate the ade

quate number of factors. For instance, if one variable is virtually independent of all the 

rest, it will appear as a separate component with variance slightly less than 1, but there 

is no reason to suppose that such a variable is uninformative. Thus, while this method 

may provide rough estimates of the number of factors, there is a clear need for more 

principled and objective model selection methods in this context. In the new edition of 

his book, Jolliffe (1986) offers a comprehensive coverage of this classical approach, along 

with recent developments of more principled methods. 
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2.7.2 Likelihood-based approach 

From a classical likelihood-based standpoint, model selection in factor analysis simply 

consists of sequentially applying a series of likelihood ratio tests as described in section 

(2.4.4). In practice, one starts with q = 1 (single factor model), then fits successive values 
.-

and tests the goodness-of-fit as in section (2.4.4), until the test produces a non-significant 

result indicating in a sense that the fit of the model is adequate. However, while this 

method appears as an objective procedure for estimating q, it is not strictly valid as a 

hypothesis test as argued by Krzanowski and Marriott (1995), since no adjustment is 

made to the significance level to allow for its sequential nature. On the other hand, the 

fact of having a non-significant p-value cannot be taken to indicate that the optimum 

value of q has been found, since large values of q correspond to more parameters and 

therefore better fits, obviously at the expense of more complex models and risks of 

overfitting. For the "best" model to be determined, there needs to be a trade-off between 

the number of parameters and the goodness-of-fit. In this likelihood-based framework, 

one way to determine the" best" model is to use Akaike's Information Criterion, which 

consists of selecting the model that minimises AIC as defined in (2.51). 

AIC = -2Iog(maximised likelihood) + 2(number of parameters fitted). (2.51) 

In the factor analysis context, the above criterion (2.51) is equivalent to choosing q that 

minimises w - 2v, as suggested by Akaike (1987), where wand v are respectively the 

test statistic and the number of degrees of freedom as defined in section (2.4.4). It has 

been noticed in practice that AIC tends to overfit models. In the analysis of mixtures for 

instance, AIC tends to overestimate the correct number of components. The Bayesian 

Information Criterion (BIC)of equation (2.52) is often used as an alternative to Ale. 

BIC = -2Iog(maximised likelihood) + log n(number of parameters fitted) (2.52) 

The reason why BIC performs better than AIC can be explained simply as follows: the 

penalty term of BIC penalises complex models more heavily than AIC, whose penalty 

term does not depend on the sample size. BIC therefore reduces the tendency of the AIC 

criterion to overfit models. 
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2.7.3 Elements of stochastic model selection for FA 

In this thesis, we adopt a stochastic simulation approach to model selection. This ap

proach is based on the construction of an ergodic Ma~kov chain having the posterior 

distribution of the complete collection of all the unk~owns (parameters and q) as its 

equilibrium distribution. • ,j I 

,.: , 

When the dimension of the parameter space is kn~~J' "and fixed as we assumed ear-
" , 
. I' 

lier, traditional MCMC algorithms like the Gibbs sampler or the Metropolis-Hastings 
.. : " : / ; 

and their hybrid versions are used to construct the' ergodic Markov chains of interest. 

However, if this dimension is allowed to vary throUg~6~t the MCMC iterative proce-
, \' ,'I 

dure, the classical algorithms mentioned earlier are'~'~'l~~ger valid, and they have to 
i,i'I'I'" ",' 
l\\\,"I\,~~H"i" ~I~ 

be replaced by birth-and-death type algorithms capable. of jumping between spaces of 

different dimensions. 

In the Bayesian framework, Green (1995)'s Reversible Jump Markov Chain Monte Carlo 
I' , 

. " 

(RJMCMC) algorithm is one such algorithm. These algorithms make transitions based 
~, ',\ i l ,'. \ \ t ':" ' , \ 

on extended versions of the classical MCMC detailed balanced requirement that take into 
, '/' 
. I, 

account the varying dimensionality of the support of the parameters. Richardson and 

Green (1997) offer a detailed and comprehensive presentation of the application of RJM

CMC to the Bayesian analysis of mixtures of univariate distributions with an unknown 

number of components. Lopes and West (1999) applied an adaptation of RJMCMC to 

the factor analysis model with an unknown number of common factors, and obtained 

good results on both synthetic and real-life problems. More recently, Stephens (2000), 

using ideas from stochastic geometry and spatial statistics, developed an alternative to 

RJMCMC, based on the simulation of a continuous-time birth-and-death Markov marked 

point process. He applied the derived Birth-and-Death MCMC (BDMCMC) method to 

mixtures of univariate and bivariate Gaussians with unknown numbers of components, 

and obtained promising results. Despite the fact that RJMCMC is based on a discrete

time Markov process while BDMCMC is based on a continuous time Markov process, the 

two methods are essentially equivalent in that they both successfully construct ergodic 

Markov chains in spaces of varying dimensions. In fact, BDMCMC can be thought of 
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as a limit of RJMCMC. However, for practical reasons and to a certain extent for com

putational convenience, we adopt an approach closer to BDMCMC. To the best of our 

knowledge, no one before us has treated model selection in factor analysis using an adap

tation of Stephens (2000)'s BDMCMC as we do in this thesis. Our contribution in this 

context therefore offers an alternative to Lopes and West (1999)'s treatment and other 

existing methods of model selection in factor analysis. The first reason is the modularity 

and portability of the BDMCMC scheme: we note that, unlike with RJMCMC, ideas de

veloped in BDMCMC and applied to mixtures can be readily adapted to model selection 

in FA. The fact that RJMCMC makes use of the latent variables is not appealing in our 

context in that it would be very complicated to apply it to a scheme with a mix of both 

continuous and categorical latent variables as we shall see in the subsequent chapters. 

From a computational point of view, we find death rates calculated on the basis of the 

"importance" (as measured by functions of the likelihood) of the component easier to 

interpret than RJMCMC's birth-and-death moves occurring uniformly. Finally, while 

RJMCMC has been extensively used in the analysis of mixtures of univariate distribu

tions, its extension to mixtures of multivariate distributions still poses many difficulties, 

such as the complexity of the Jacobian calculations, and this prevents it from being a 

good candidate method for an essentially multivariate model like ours where we intend 

to analyse mixtures of multivariate distributions. Since the BDMCMC scheme treats 

parameters as points (no ordering) in a point process, it does not make use of such iden

tifiability constraints as ordering, and its extension to multivariate distributions such 

as the ones of interest to us is therefore straightforward. Moreover, in contrast to the 

RJMCMC, the method requires very little mathematical sophistication and is easy to 

implement and interpret. 

2.7.4 A point process view of Bayesian sampling 

The central idea behind this approach is to view and treat each parameter that directly 

affects the dimensionality of the model as a point in the parameter space, and adapt 

the methodology of point process simulation to help construct a Markov chain with the 
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posterior distribution of the parameters as its equilibrium distribution. The method 

developed is therefore general and applicable to every context where parameters can be 

treated as point processes. Ideas used in the BDMCMC scheme are similar to those de

veloped by Grenander and Miller (1994) and Phillips and Smith (1995) who approached 

this same problem of Bayesian model comparison via jump diffusions. However, it is 

fair to point out that the implementation of the schemes developed by Grenander and 

Miller (1994) and Phillips and Smith (1995) is more complicated than Stephens (2000)'s 

BDMCMC. 

Definition: The mathematical definition of a point process 8 on IRd is as a random vari

able9 taking values in a measurable space of families of all sequences cp = {Vi, V2, ••• , Vd} 

of points in IRd satisfying two regularity conditions: 

1. the sequence cp is locally finite (each bounded subset of IRd must contain only a 

finite number of points of cp), 

2. the sequence is simple (with elements such that Vi # Vj if i # j). 

As we discussed earlier, FA has a posterior distribution that is invariant to permutations 

of the order of their parameters. From a stochastic simulation perspective, the collection 

of parameters can therefore be viewed as a random configuration or point process. This 

complete collection of our model parameters is now given by 0 = {q, p" A, ~}. If we 

assume that q is unknown a priori, our aim in parameter estimation from a stochastic 

simulation perspective now extends to the construction of an ergodic Markov chain with 

the joint posterior distribution p(q, p" A, ~IX) as its equilibrium distribution. In the 

previous section, we constructed a Markov chain with p(p" A, Elq, X) as its equilibrium 

distribution using Data Augmentation. Now, we must accommodate the new counting 

random variable q. Intuitively, our overall sampling scheme takes a Gibbs sampler-like 

form, with each iteration consisting of the following two steps: 

8See Stoyan, Kendall, and Mecke (1995) for a detailed version. 
9Grenander and Miller (1994) used the term random configurations to refer to point processes. 
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In the above scheme, Step 1 allows us to draw a new value of q = q(t+1) by simulating 

a birth-and-death Markov point process, the main difference with a classical algorithm 

of this type being that the dimension of the parameter vector is allowed to vary at each 

iteration. Step 2 draws a new set of model parameters via Data Augmentation (as 

described in Algorithm 2), using the value of q obtained from the run of the birth-and

death process. 

The simulation of the type of birth-and-death process that we use in our work has been 

extensively studied and applied in recent years, and the reader is referred to references 

like Stoyan, Kendall, and Mecke (1995) and Barndorff-Nielsen, Kendall, and van Lieshout 

(1999) for comprehensive coverage of applications of such sampling schemes in stochastic 

geometry and spatial statistics. Baddeley (1994) and van Lieshout (1994) also provide 

very useful insights into other aspects of such sampling schemes. Stephens (2000) pro

vides a detailed account of his application of BDMCMC to mixtures. Here we focus on 

our adaptation of BDMCMC to factor analysis. 

2.7.5 Birth-and-death point process for Factor Analysis 

From our previous arguments, the number of common factors is nothing but the number 

of columns of A. We showed earlier that AA T + ~ is invariant to permutations of axes 

in A. From a probabilistic perspective, the invariance to permutations allows us to treat 

A as a "random configuration" or point process as defined earlier. For simplicity, we 

adopt a vector notation for A by defining the configuration variable c = {A.1,A.2,··· } 

10. Our aim being to construct a Markov chain with p{q, A, j.L, ~IX) as its stationary 

distribution, we also simplify further and use h(c) in place of the posterior p(·IX), since 

our emphasis in this context is on the configuration c. Assuming fixed hyperparameters 

lOBy configuration here, we have in mind the complete collection of distinct parameters (j.t, A, E) for 
a given value of q. However, since only A plays a role in the determination of the complexity of the 
factor model, we explicitly only show A for simplicity. 
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g and I, for the densities of q and c respectively, we can write 

h{c) ex L{c)p{qlg)p{cll,) (2.53) 

It turns out that we can efficiently construct our ergodic Markov chain by simulating a 

sampling scheme comprising a birth-and-death point process step and a Data Augmenta

tion step, both jointly converging to p{q, A, /-L, EIX) as the stationary distribution. The 

key idea behind the simulation of the birth-and-death process is that each birth increases 

the number of points in the configuration by one, while each death decreases this number 

by one. Furthermore, both the birth and the death processes are constructed in such a 

way that they are inverse operations to each other in the equilibrium state of the chain. 

One way to construct such a process is to define births and deathsll as follows: 

Births: We define a birth density b( c; v) according to which new points are added to 

the current configuration of the point process. For simplicity, we restrict ourselves 

to cases where births are assumed to be occurring at an overall constant rate 

f3( c) = {J. However, as we shall see in our simulations, such a simplification has 

the disadvantage that many different birth rates have to be tried empirically before 

the" appropriate" one is found. 

Deaths: When the current configuration of the chain is c = {A.1' A.2 , ••• }, each point 

A.i dies independently of the others as a Poisson process with rate 8i (c) = d{ Cj A.i ), 

where d{ Cj v) is the death density function, so that the overall death rate is given 

by 8(c) = L 8i {c). 

Remark: In their simulations of similar birth-and-death point processes, Ripley (1977) 

and van Lieshout (1994) have found it more convenient to define births and deaths in 

an alternative way, namely: use an overall constant death rate and instead compute the 

birth rate using information from the data. In her application of the similar scheme to 

image analysis, van Lieshout (1994) provides a more general definition where both the 

birth rate and the death rate are computed from the data. 

llThe general practice consists of imposing suitable constraints on the birth and death functions b 
and d to ensure that the process does not jump to an area with zero density. 
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With (3(c) and 8(c) defined, we use the following general theorem (stated without proof) 

on Poisson processes to obtain the distribution of the time to the next event in the 

simulation of the birth-and-death process. 

Theorem 2.1 The birth and the death being independent Poisson processes, the time to 

the next event (birth or death) is exponentially distributed with mean l/((3(c) + 8(c)). 

Property 2.1 Since the overall rate of the birth-and-death process is equal to (3(c)+8(c), 

the next event will be a birth with probability (3(c)/((3(c) + 8(c)), while the death of A.i 

will occur with probability 8i (c) / ((3 (c) + 8 ( c)). 

We are therefore in the presence of a continuous-time process since the time to the next 

event is a continuous random variable, and, by virtue of the memorylessness property 

of the exponential distribution, we have a continuous time Markov process. In order to 

simulate such a continuous time process, we define a fixed unit of time, p, say, and we 

construct a discrete-time Markov chain {c(p), C(2p) , C(3p), ••• } that we use as an approx

imation of the continuous-time chain {c(p+s) : s > o}. This simply means that, at each 

discrete iteration (t = 1" .. ,T), we run the birth-and-death process for a duration of p. 

Preston (1976) stated sufficient conditions that the above densities band d must satisfy 

for the above birth-and-death process to define an ergodic Markov chain with the desired 

equilibrium distribution. Preston (1976)'s work was later extended and applied by Ripley 

(1977), and recently adapted to the analysis of finite mixtures by Stephens (2000). The 

following theorem, which states the sufficient conditions that band d must satisfy, is 

from Preston (1976) and Ripley (1977). A proof of its extended version as applied to 

finite mixtures can be found in Stephens (2000). 

Theorem 2.2 If the birth density b and the death density d satisfy 

(q + l)d(c U {v}; v)h(c U {v}) = (3(c)b(c; v)h{c) (2.54) 

for all configurations c and all points v, then the birth-and-death process defined above 

has p(q, A, /1, EIX) as its stationary distribution. 
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Remark: In the above theorem, h( c U {v}) represents' ,the posterior density of a config

uration with q + 1 points. Intuitively, equation (2.54) means that, under the equilibrium 

distribution p(·IX), transitions from c into c U {v} are exactly matched by transitions 

from c U {v} into c. From equation (2.54), it is easy to see that 
\ , 

, . , \ 

j' ; 

d(c'v) = b(c'v) [(3(c)] [h(C\{iJ})] I , 
, , q h,( c)) :' I (2.55) 

, ; ~ ) 

where c\ {v} represents the current configuration c less the element v. If we choose our 
, ,\' , 

birth density to be the prior density of a candidate element v to be added to the current 
: !, 'I 

configuration, then we can write b(cj v) = p(vlt} If w~ use (2.53) and (2.55), it is easy 
;! .. 1\ ,~'i; :,' ~ , " . , 

to see that the appropriate death rate for element A.i (i, " :l,' ~ .. ,q) is given by 
" ",' 
I',-'{,'I, ( ',i , r ',' 

, I ~ \ : \ i',',',., I , ' ' , I.' ' 

6i ( c) = [%] [Li~~·i)] [p~(~II,~~~)] \: ": (2.56) 

As far as the prior distribution of q is concerned, a good candidate is a Poisson distri-
, '\, 

',' ,,', f, ',' . 

but ion truncated at the right end by a predetermined value qmax' Thus, we have 

q ('<:\\,':::,,:",: :,:, ': 
( I) {l -(} £ 1 \ ,. I', '" p q {] ex ,e or q = ,', ~ " " qmax I' 

q. ': ,,': , 
(2.57) 

" I ' " 

Based on all the above ingredients, a pseudocode of the birth-and-death process is. 

Algorithm 3: Birth-and-death MCMC for FA. 

Use (3(c) := (3, set t/a = 0 and q := q(t-l) from C(t-l) " 

Repeat 
L(c\A'){3 . 

Compute 6j (c):= L(c)'J (j for J = 1, .. · ,q 

Compute 6(c) := 2:J=1 6j (c) , 
Simulate 8 tv Exp(I/(({3(c) + 6(c))) and Set t/a := t/a + S 

If (8er({3(c)/({3(c) + 6(c)) = 1) 1* It is a birth */ 
Set q:= q+ 1 
Simulate A.q tv p(vlt) 
Set c := c U {A.q} 

Else /* It is a death * / 
Simulate j' = Mn(61(c)/6(c), ... ,6q(c)/6(c)) 
Set c:= c\{A.j'} 
Set q:= q - 1 

Until (t/a ~ p) 
Return c and q12. 

12In reality, the knowledge of c implies the knowledge of q, but we indi~ate both for the sake of clarity 
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Ber, Exp and Mn represent the Bernoulli, the exponential and the multinomial distribu

tions respectively. The full stochastic simulation scheme for FA is therefore as follows: 

Algorithm 4: Stochastic simulation for FA. 

Initialise q and c, and choose f3( c) = f3. 
For t = 1",' ,T 

Run Algorithm 3 using q(t) and c(t), and return q(t+1) and C(t+l) 

Run Algorithm 2 to update the complete collection of model parameters. 
End 

2.7.6 Bayesian inference for q 

Once the Markov chain {(q(t) , c(t») : t = 1", . ,T} has converged to the desired equilib

rium distribution, the sequence {q(t) : t = 1",' ,T} is essentially a sequence of draws 

from the marginal distribution p(qIX). Inference for q can be based on an estimate of 

this marginal posterior distribution obtained from the MCMC sample path as follows: 

Pr [q = ilX] = lim Ml #{t: q(t) = i} ~ Ml #{t: q(t) = i} 
M-too 

(2.58) 

Intuitively, (2.58) simply means that the appropriate estimate for q is obtained by choos

ing the value of q having the highest frequency in the sample path of the Markov chain. 

2.8 Implementation and Results 

In this section, we present two simulations, one based on the real-life and moderately 

high-dimensional (p = 13) wine dataset 13 , and the other based on a synthetic dataset that 

we generated to illustrate our methods. All our simulations are written in Matlab 6.0 for 

Unix. By personal preference, we use the golden section 14 or its multiples wherever we 

need an arbitrary real constant. From time to time, we also use multiples of the inverse 

of the golden section as our" arbitrary" constants. 

13This data set is available at the Machine Learning repository of the University of California, Irvine 
Blake and Merz (1998) 

H(v'5 -1)/2 = 0.61803 .... The golden section is also known as the golden ratio, the golden mean and 
sometimes the divine proportion. It is closely connected with the Fibonacci series. The inverse of the 
golden section is 2/( v'5-1), and has the property 2/( v'5-1) = 1 + (v'5-1)/2 = (v'5+1)/2 = 1.61803 .... 
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2.8.1 Example 3: Analysis of the wine data set 

For the wine dataset, it is believed that there are k = 3 distinct varieties of wine. Our 

first aim here is therefore to use a single factor model to explore the group structure in 

the data, so as to (subjectively at least) find out whether there are actually 3 groups in 

the provided dataset. Our second aim is to use our BDMCMC for FA to estimate the 

intrinsic dimensionality of the data, assuming that q is the same in all the groups. As far 
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Figure 2.6: 2D Visualisation and histogram for the wine data. 

as group structure is concerned, we run Algorithm 2 assuming q = 2 to project the data 

on to the plane and therefore explore its group structure. We plot the estimated factor 

scores as shown in (Figure 2.6-left). At least in the plane, the figure seems to agree with 

the hypothesis that there could be 3 classes of wines. We shall be reconsidering this 

example in the next chapter when we study mixtures of factor analysers. To estimate q, 

we run Algorithm 4, using To = 9500 burn-in iterations, f3 = 0.618 as our overall constant 

birth-rate, and M = 2500 useful final MCMC samples. (Figure 2.6-right) shows the 

histogram of the relative frequencies of values of q as produced by the sample path 

of the Markov chain obtained from the BDMCMC. This strongly suggests that q = 6 

would be the intrinsic dimensionality of the wine data. The good news is that the result 

obtained h re by stochastic simulation is consistent with the one obtained by McLachlan 

and Peel (2000) through the use of sequential likelihood ratio tests. 
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2.8.2 Example 2 revisited: Analysis of Simulated data 

This second example is purely illustrative, and is based on simulated data. We generate 

a synthetic data set from a Mixture of Factor Analysers with k = 3, p = 9 and q = 2. 

Our sole aim in this example was to test Algorithm 4 on a toy problem. With To = 12000 
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Figure 2.7: Histogram and scatterplot for the data with k = 3, p = 9 and q = 2. 

burn-in iterations and M = 2000 useful MCMC final samples, the algorithm easily infers 

q = 2 as shown in (Figure 2.7-left). The visualisation of estimated factor scores in 

(Figure 2.7-right) clearly reveals that there are indeed 3 groups. 

2.8.3 Simulation remarks 

Our simulations reveal that the BDMCMC algorithm is insensitive to initial conditions 

and always infers the right number of common factors regardless of whether we start the 

chain with one factor (q = 1) or with many factors (q = qmax) 15. However, since we 

are in a setting where we wish to determine the smallest number of factors consistent 

with the data, we prefer to start the chain with q = 1 and let it create more as becomes 

necessary. 

15 Although convergence to the right number of factors is still achieved from this starting value, it 
must be said that it results in more iterations and therefore a computationally less efficient procedure. 
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2.9 Discussion and future work 

2.9.1 General comments 

The performance of the stochastic simulation scheme for model selection is satisfactory 

when applied to the single factor analysis model. However, it is fair to point out that 

the choice of the overall constant birth rate is crucial, and does have a strong bearing 

on the mixing properties of the Markov chain. In practice, some birth rates do allow 

the chain to mix very well, making it possible to visit as many potential models as 

possible. Unfortunately, some other choices of birth rates cause the chain to remain only 

in some areas of the entire parameter space. One of the solutions to this problem consists 

of adding a small uniform perturbation to the birth rate at every iteration. We have 

implemented this empirical solution, and it generally leads to remarkable improvement. 

On the other hand, in the stochastic geometry literature, there are many variants of the 

basic algorithm that we have used here. We consider exploring some of those variants in 

our future research. Our results suggest that the stochastic simulation method we have 

proposed for model selection is a good alternative to existing methods. We believe that 

a careful study of the limitations noticed so far would lead to remarkable improvements. 

Besides, the Bayesian sampling approach to factor analysis, despite being slower that 

its counterparts, offers many advantages that would justify resorting to it as a valid 

competitor to existing approaches. Lopes and West (1999) amongst others have used 

Bayesian sampling to tackle factor analytic model uncertainty, with applications to such 

fields as analysis of exchange rates and portfolio management, and we believe 

that our overall scheme has the potential to address such real applications. 

We have explored aspects of the Factor Analysis model from both the frequentist and 

Bayesian perspectives. Both approaches have their strengths and weaknesses16 , and the 

decision to adopt either one heavily depends on the context, and can in many cases 

become a simple matter of taste. However, it is fair to say that our Bayesian approach 

I6It is my opinion from practical experimentation that the alleged slowness of the EM algorithm 
is very often overstated. In fact, in many practical settings, the EM algorithm can be very quick at 
providing satisfactory parameter estimates. 
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based on stochastic simulation offers a flexible alternative to existing methods, unifying 

parameter estimation, assessment of model fitness and model selection in a single efficient 

scheme. The good performance of the scheme on both artificial and real data strongly 

encourages an exploration of improvements and extensions of the scheme. 

2.9.2 Beyond the single linear factor model 

As we saw with Example 2, a single factor model is inherently linear, and therefore 

fails to capture the generative mechanism underlying the data when there is structural 

nonlinearity in it. It is therefore more reasonable and more realistic to use models 

capable of handling nonlinearity. In the Neural Computation community, the particular 

task of dimensionality reduction that FA performs is sometimes done by MultiLayer 

Perceptrons, which are essentially nonlinear tools. In the next chapter, we introduce 

and explore an alternative solution based on the Mixture of Factor Analysers model 

which is an extension of the basic FA model constructed in such a way that it can handle 

nonlincari ty. 



Chapter 3 

" i 

" i' 

. ',i 

, , ' 
, " 

,\, t' 
, 'j' ,'\ 

,;i,l\, :. 
" , 

'f' ,(;',', ! 

,I>:, ,: 

Mixtures of Factor An~lysers 
,'\ ' 

I ,i,'; ; , ~;' : 
} ,1,./,1", . 
! , ; :' ! I /: ~ ,t, 1 

!, I 'j ~ \ '~ : ~.' ,,' I ' " I 

The most importan~ thing in science is n~t s~,~;iu;~ ~tp o'btain new facts as 
to dzscover new ways of thznkzng 'about them. 

Sir William Bragg ~'\:' ",'; 
, If I I 

A shortened version of the content of this chapter has been accepted for publication 
Fokoue and Titterington (2001) in the special issue or'~ach,ine Learning on MCMC. 

," ': ,{j ... , /1 '/1 

.l ~ j \ ,I I ',; " : \ ' I ; , ,I 

\' I •. I I f 

In the previous chapter, we studied various aspects of t~e 'Classical Factor Analysis (FA) 
"" • t ' 

model, and we noted that besides the mainstream statistics and the psychometrics com-
" , 

munities, FA has over the years been recognised by the Machine Learning and Neural 

Computation communities as a well established probabilistic approach to unsupervised 

learning for complex systems involving correlated variables in high-dimensional spaces. 

As we saw earlier, FA aims principally to reduce the dimensionality of the data by pro

jecting high-dimensional vectors on to lower-dimensional spaces. However, because of its 

inherent linearity, the generic FA model is unable to capture data complexity when the 

input space is nonhomogeneous. One way to overcome the limitation due to the inherent 

linearity of the FA model would be to resort to a nonlinear version of it by constructing 

an extended model in which the manifest variable would be a nonlinear combination of 

factors. Another way would be to construct an extended model that would allow the data 

in each cluster of the nonhomogeneous input space to be modelled by a local FA model, 

thus creating a finite Mixture of Factor Analysers (MFA). A finite Mixture of Factor 

Analysers (MFA) is a globally nonlinear and therefore more flexible extension of the ba-
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sic FA model that overcomes the above limitation by combining the local factor analysers 

of each cluster of the heterogeneous input space. The structure of the MFA model offers 

the potential to model the density of high-dimensional observations adequately while also 

allowing both clustering and local dimensionality reduction. Many aspects of the MFA 

model have recently come under close scrutiny, from both the likelihood-based and the 

Bayesian perspectives. In this chapter, we will touch on elements of recent developments 

concerning the MFA model, but we shall mainly focus our attention on the Bayesian 

approach, and more specifically on a treatment that bases estimation and inference on 

the stochastic simulation of the posterior distributions of interest. We first treat the case 

where the number of mixture components and the number of common factors are known 

and fixed, and we derive an efficient Markov Chain Monte Carlo (MCMC) algorithm 

based on Data Augmentation to perform inference and estimation. We also consider the 

more general setting where there is uncertainty about the dimensionalities of the latent 

spaces (number of mixture components and number of common factors unknown), and 

we estimate the complexity of the model by using the sample paths of an ergodic Markov 

chain obtained through the simulation of a continuous-time stochastic birth-and-death 

point process. As we noted in the previous chapter, the main strengths of our algorithms 

are that they are both efficient (our algorithms are all based on familiar and standard 

distributions that are easy to sample from, and many characteristics of interest are by

products of the same process) and easy to interpret. Moreover, they are straightforward 

to implement and offer the possibility of assessing the fitness of the model via the use 

of realised discrepancies. Experimental results on both artificial and real data reveal 

that our approach performs well, and can therefore be envisaged as an alternative to the 

other approaches used for this model. Before studying Mixtures of Factor Analysers, it 

makes sense to present a brief review of finite mixture models. 
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3.1 Introduction to finite mixtures of distributions 

Finite mixture models provide another rich class of latent variable models that are heav

ily used in statistical modelling, and that have been extensively studied in recent years 

by many scientific communities for a variety of practical applications. The use of finite 

mixture models is particularly relevant to applications where the input space is assumed 

to be nonhomogeneous (heteregeneous), so that it would be unrealistic to use a single 

density function to model the distribution of the data. Mixture models allow the rep

resentation of the density function as a weighted sum of component densities, thereby 

making it possible to take into account the heterogeneity of the input space. Mixture 

models can therefore be used for density estimation as an alternative to traditional non

parametric kernel density estimators. The analysis of finite mixtures is a vast topic. In 

this section, we only review some of the key issues related to mixtures, and the reader is 

referred to such references as Titterington, Smith, and Makov (1985), Everitt and Hand 

(1981) and McLachlan and Peel (2000) for more detailed presentations. Chapter 9 of 

Robert and Casella (2000) provides a recent account of the analysis of finite mixtures by 

MCMC methods. 

3.1.1 Definitions, concepts and notations 

Our basic definition of finite mixtures is taken from Titterington, Smith, and Makov 

(1985). Suppose that a random variable or random vector, x, takes values in a sample 

space X, and that its distribution can be represented by a probability density function 

of the form 

where 

and 

k 

p(x) = 'TrIll (x) + ... + 'Trklk(x) = L'Trjlj(x) (x E X) 

'Trj > 0, 

j=l 

k 

j = 1"" ,kj 'Trl + ... + 'Trk = L'Trj = 1, 
j=l 

(3.1) 
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Ix Ij(x)dx = 1, j = 1"" ,k. 

In such a case, we shall say that x has a finite mixture distribution and that p(.), defined 

by (3.1), is a finite mixture density function. The parameters 7l"1,'" , 7l"k will be called 

the mixing weights or mixing proportions, and 11(,)"" ,Ik(') will be referred to as the 

component densities of the mixture. It is straightforward to verify that (3.1) does indeed 

define a valid p.d.f. In many situations, 11 (.), ... ,I k (-) will have specified parametric 

forms and the right-hand side of (3.1) will have the more explicit representation 

k 

7l"l/l(X/<Pl) + ... + 7l"klk(x/<Pk) = L 7l"jlj(x/<pj), (3.2) 
i=1 

where <Pi denotes the parameters occurring in li(')' The complete collection of model 

parameters 8 will therefore be 8 = (7l"1,' •• , 7l"k, <PI,'" , <Pk). With a slight abuse of no

tation, we shall write ifJ = (<PI,'" , <Pk), 1r = (7l"t,'" ,7l"k) and then write 8 = (1r,¢). 

Example: If the probability density function of a univariate random variable x can 

be represented by a two-component mixture of Normal densities with common variance, 

then we can write 

(3.3) 

In this case, IT! = IT, 7l"2 = 1 - 7l", <PI = (f.1,I, a), <P2 = (f.1,2, a), ifJ = (f.1,I, f.1,2, a), and 

the complete collection of model parameters is therefore (J = (IT, f.1,b f.1,2, a). 

Note: In both univariate and multivariate settings, mixtures of normal densities, also 

known as mixtures of Gaussians or Gaussian mixtures have been extensively studied over 

the years, since they have a wide range of applications. Finite mixtures of Gaussians are 

indeed the most frequently encountered form of finite mixture distributions. 

While there is no requirement that the component densities appearing in (3.2) should 

all belong to the same parametric family, it must be said that in most applications, this 

will be the case, and the finite mixture density function will then have the form 
k 

p(x/8) = L 7l"i!(x/<Pi), (3.4) 
;=1 

where !(x/<Pi) denotes a generic member of the parametric family under consideration. 
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3.1.2 General mixture densities 

In the case of a finite mixture model defined by (3.4), each of <PI,'" , <Pk is an element 

of the same parameter space e. It follows that 7r = (7rt,' •• ,7rk) may be thought of as 

defining a probability distribution over e, with 7rj = Pr(4) = <pj), for j = 1,··· , k. If 

G1t'(') denotes the probability measure over e defined by 7r, then (3.4) may be formally 

rewritten as 

p(xI8) = [ J(xl4»dG1t'(cjJ). 1e (3.5) 

Throughout our work, we only deal with finite mixtures, which correspond to cases 

where G1t'(') defines a finite, discrete measure over e. It is however worth mentioning 

that equation (3.5) suggests a generalisation to general mixture densities by allowing 

G1t'(') to be a more general form of measure over e. 

3.1.3 Latent structure formulation 

Another formulation of finite mixture models, which we shall make extensive use of 

throughout our work is the latent structure formulation. In fact, given an observation x, 

a finite mixture model assumes that x was generated from one of k subpopulations, each 

containing a proportion 7rj of elements of the wider population. Each subpopulation 

is also known as a component of the mixture, and can be viewed as a cluster in the 

input space. Since the component from which the observation originated is not directly 

observable, it is usually convenient to define a discrete random latent variable y that 

identifies such a component or cluster, and its distribution is given by Pr(y = j) = 7rj 

for j = 1,··· , k. If we use the indicator variable version of y (i.e y T = (Yl,'" , Yk) 

as defined in chapter 1) it is easy to see that y has a multinomial distribution, y '" 

Mn(l; 7rl, ••• ,7rk). Here, 7rj represent the probability that the observation x comes from 

source j, and play the same role as the mixing proportions or weights that we encountered 

earlier. We obviously have 7rj > 0 for j = 1, ... ,k, and E 7rj = 1. In each subpopulation, 

x has a specific class conditional density (the component density defined earlier) given 

by p(xly = j). With p(x, y) = p(xly)p(y) and dF(y) = p(y)dy, the marginal density 
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" , , 

of x is therefore 

p(z) i p(z, y)dy = i p(Zly)p(y)dy' /,; f(zly)dP(y) 

k k , " 

- Epr(y = j)p(xIY = j) = E ~j'p(xIY = j). (3.6) 
j=l j=ll, ( , 

" , , 

As we shall see later, it will be more convenient in most,cases to use the complete-data 
l I.':) , 

density instead of the above marginal density of the obse~ved-data x. The complete-data 

density for our k-component finite mixture can be writt~n as , 

k k " , 

p(x*) = p(x, y) = II [7rjp(xly = j)]Yi = II frIi, [P(xly = j)]Yi (3.7) 
j=l j=l I ,'i ,,';' 

; ': .. ;:;,;,: '. .. " .... :, .' 

3.1.4 Aspects, aims and issues in finit~'{ini~t~res 
. :4,',' ;'.:;'1 .. ," ,;' ':." 

Clustering: Statistical methods used to analyse finite mixtures generally deliver the 
',' 1 

clustering of the data in the form of estimates of the exp~cted latent scores lE [Ylx]. 
".'. . , 

Discriminant analysis and classification: 

have some physical meaning (interpretation), 

recognition as a classification tool. 

, (. .. I 

When" ',the components of a mixture 
,: " '~\ l,' \ I, ' ',\ ,', ',' \ . I ~ 

finite mixtures can be used in pattern 
,', • I 

!i !;.' I 

Parameter estimation: The estimation of parameters in a finite mixture has to 

overcome the identifiability hurdle that we will be explaining later. 

Density estimation: Traditionally, non parametric methods tend to be preferred when 

it comes to density estimation. However, finite mixtures can, in some settings, serve as 

an alternative to these classical non parametric approaches. 

Model selection: To date, determining or estimating the number of components is 

one of the most complex topics in the analysis of finite mixtures. From a likelihood

based perspective, the task is very similar to the one we encountered with the FA model. 

Essentially, it consists of a test of significance similar to the one used for goodness-of

fit. The bad news is that such a test is not easy to construct, and to date, the field 

remains virtually unexplored because of extreme mathematical difficulties in deriving 

appropriate test statistics and their corresponding reference distributions. Because of 

these limitations, we adopt a Bayesian approach similar to the one used in Chapter 2. 
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3.2 Difficulties with finite mixtures 

The statistical analysis of finite mixtures generally encounters structural, inferential and 

computational difficulties, especially when parameter estimation is the main aim of the 

analysis. In this section, we briefly review some of the most common difficulties. 

3.2.1 Identifiability 

In this section, we simply give an intuitive definition of identifiability. A more formal 

and more mathematically grounded definition is provided by Titterington, Smith, and 

Makov (1985), pages 35-37. In fact, identifiability is inherently linked with parameter 

estimation, which has to do with the characterisation of the proposed model. In Chapter 

1, we presented the general issue of identifiability, and we encountered it again in Chapter 

2. When one thinks of parameter estimation, there is an underlying assumption that 

there exists a unique set of parameters that characterise the model, and the aim of 

parameter estimation is therefore the determination of that unique set of parameters. 

This uniqueness is an aspect of identifiability, and when such a unique set does not 

exist, the model under consideration is said to be non-identifiable. Finite mixtures are 

essentially non-identifiable, because the value of the density p(x/O) remains unchanged 

for all the k! permutations of the component labels Yj. Thus, if 0' = ,(0) is a new set 

of parameters obtained by a permutation of labels, then p(x/O') = p(x/O). In other 

words, given a sample X assumed to have arisen from a k-component mixture, there are 

potentially k! different collections of parameters that would equally "characterise" the 

model. This is obviously not a desirable situation, since one would like to unambiguously 

determine a unique set of model parameters. As we shall see later, this difficulty, which is 

structural, also leads to another difficulty which is computational in nature, namely the 

label switching problem that constitutes one of the bottlenecks of Bayesian sampling for 

finite mixtures. Many approaches have been used so far to tackle this difficult issue, and 

we shall touch on some recent solutions later. However, it seems that no fully satisfactory 

solution exists as yet. 
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Remark. It is worth stressing that identifiability is such a crucial issue only when 

parameter estimation (model characterisation) is the aim of the analysis. When finite 

mixtures are used as alternatives to traditional non parametric density estimators, the 

labelling of components is not a critical issue. 

Note: Without loss of generality, we shall from now on base all our developments on 

finite mixtures of Gaussians. In many cases, general aspects apply mutatis mutandis to 

other forms of mixtures. 

3.2.2 Unbounded likelihood and singularities 

The likelihood function for a Gaussian mixture is unbounded, and allows the existence 

of singularities when an iterative method like the EM algorithm is used for maximum 

likelihood estimation (MLE). A simple and widely used illustration of this arises in a 

mixture of univariate normal distributions where the likelihood tends to infinity if we 

set J-LI to Xl and allow a~ to tend to zero Everitt and Hand (1981). In other words, 

the first component of such a mixture only contains a single point Xl, whatever the 

number of iterations performed, thereby yielding a partitioning of the population that is 

meaningless and clearly not of any interest. This aspect of the likelihood function affects 

both likelihood-based and Bayesian methods of estimation. In fact, in the Bayesian 

sampling framework, the use of a standard hierarchical prior structure for mixtures of 

Gaussians often leads to situations where a given component is allocated a very small 

number of observations, resulting in an almost zero probability for that component to 

be allocated more observations, or to have some of its few observations allocated to any 

other component. In fact, it turns out that these almost-absorbing states in MCMC are 

the analogues of the singularities encountered in the MLE approach. In other words, if 

a component variance aJ is allowed to become extremely small (i.e term of very small 

magnitude with respect to machine precision) at any given sample point, then that 

component of the mixture will be allocated that single point, with no chance of having 

any other point allocated to it, since the fixed hyperparameter will obviously never 

change the state of the chain. In practice, many devices are used to circumvent this 
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difficult issue, one of them consisting of constraining all the component variances to be 

equal. However, such a constraint is clearly unrealistic in the majority of cases. While 

the likelihood-based approach has to rely on ad hoc methods to tackle this issue, the 

Bayesian framework makes it possible to provide a more principled solution along the 

lines of Richardson and Green (1997), a solution that consists of adding an extra layer to 

the hierarchical prior structure in order to allow the hyperparameters of the variances (or 

covariance matrices) of the components of the mixture to be stochastic quantities. Such 

an extension allows the covariance matrices to be similar without constraining them to 

be equal, and effectively allows the sampling scheme to explore extensively the current 

modal region thereby increasing the chance of escaping from trapping states. 

3.2.3 The label switching problem 

Label switching is a difficulty that arises during the statistical analysis of mixture distri

butions. In the Bayesian framework, when we combine the use of symmetric priors for 

model parameters (mixing weights and component parameters) with a likelihood that 

is invariant to permutations of labels, we end up with a posterior distribution that is 

also invariant to relabelling. This means that, for a k-component mixture, the posterior 

essentially has k! modes of equal importance. During the MCMC iterative sampling 

procedure, samples of parameters drawn from the stationary (equilibrium) distribution 

are therefore likely to have originated from one of those k! modal regions of the posterior 

surface. Ideally, for parameter estimates to be meaningful, the samples that provide 

them have to have been drawn from the same modal region. While label switching is 

desirable in that it is an indication of good mixing and therefore good exploration of the 

posterior surface, a careless treatment of its effect would lead to meaningless parameter 

estimates. 

Many strategies have been used to address the difficult issue of label switching. The most 

natural approach, tested by Diebolt and Robert (1994) ,Richardson and Green (1997), 

Fokoue (2000), Fokoue and Titterington (2000a) and many others, consists of imposing 

an ordering a priori to make sure that all the samples of the Markov chain come from 
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the same modal region of the posterior surface. In practice, one may decide to accept 

only samples satisfying the constraint 11"1 < 11"2 < ... < 1I"k or in the univariate setting to 

impose an ordering on the means of the Gaussians, e.g. 111 < /-l2 < ... < /-lk. Despite 

its intuitive nature, this approach leads to a poor representation of the geometry of the 

posterior surface. Besides, it cannot be easily extended to the multivariate setting and, 

worst of all, it leads to a high rejection rate (especially in multivariate settings) and 

considerably retards the sampler. 

Some other solutions to this problem based on k-means-like clustering algorithms and 

the use of loss functions have been proposed by Celeux (1998), Celeux, Hurn, and Robert 

(2000) and Stephens (2000), and tested by Fokoue and Titterington (2000d) and Hurn, 

Justel, and Robert (2000). In our work, we use an online clustering algorithm Celeux 

(1998), Celeux, Hurn, and Robert (2000) that consists of isolating one of the k! modes 

(the mode of reference). The reader is referred to the cited references for details of the 

methods. 

3.2.4 Estimation efficiency and overfitting 

When used for density estimation, finite mixtures of Gaussians can be prone to overfit

ting in high-dimensional spaces. In fact, as the number of mixture components increases, 

density estimation is greatly improved. However, this increase in the number of compo

nents leads to a significant increase in the number of free model parameters when full 

covariance matrices are used, and this naturally leads to overfitting in the event of small 

samples. An extreme solution to this problem consists of constraining the covariance 

matrices to be isotropic. This is obviously not a very realistic solution in most cases. 

In the next chapter, we will explain how mixtures of factor analysers (MFA) provide a 

better solution through structured covariance matrices. 
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3.2.5 Multimodality, local maxima and poor mixing 

Because of the invariance to permutation mentioned earlier, the likelihood surface of 

a mixture model is inherently multimodal. This multimodality can become a serious 

computational problem with iterative algorithms that may easily get trapped in a local 
-

maximum while the true global maximum (if it exists) is actually located at a different 

modal region. In practice, as we noticed throughout our simulations, label switching does 

not happen very often when the generic Gibbs sampler is used, since the Gibbs sampler 

is not very good at jumping between different modal regions of the posterior surface of 

the parameters. In a sense, this might be good for parameter estimation for reasons 

given above, but can lead to very poor density estimation. The use in this context of 

sampling strategies like simulated tempering Celeux, Hum, and Robert (2000) allows 

better exploration of all the modal regions of the posterior surface, which results in good 

mixing and therefore many occurrences of label switching. 

3.3 Introduction to Mixtures of Factor Analysers 

Unlike the fundamentally linear FA model, the MFA model is more flexible, with its 

inherent ability to partition a heterogeneous input space into clusters while simultane

ously achieving local dimensionality reduction in each of the derived subspaces. Under 

the assumption of orthogonal factor analysis, the MFA is a reduced-dimensional mixture 

of multivariate Gaussians that can be used as an approximate method of density estima

tion in high-dimensional space, especially in cases where samples are of small sizes. In 

fact, while a plain mixture of multivariate Gaussians with full covariance matrices would 

be prone to overfitting when the number of mixture components is increased, the MFA 

model allows one to control or avoid overfitting by varying the dimensionalities of the 

latent subspaces (i.e. the number of common factors), thereby reducing the number of 

free model parameters significantly without imposing such strong constraints as forcing 

the covariance matrices of the local Gaussians to be isotropic. 

The MFA model, by its construction and structure, is a rich and interesting extension of 
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both Factor Analysis and finite mixture models, and therefore has the potential for an 

even broader range of applications. In fact, in recent years, the study of MFA has received 

considerable interest. The psychometrics community.with its traditional interest in FA 

and related multivariate models has produced a good ~umb:er of papers among which 
. ' 

Yung (1997), Dolan and Van der Maas (1998), Arminger,'Stein, and Wittenberg (1999), 
, . . 

all address the fitting of MFAs or closely related models,: by various versions of Maximum 
\ 

Likelihood Estimation (MLE). From the Neural Co~putation community, Ghahramani , . 
,t', 

and Hinton (1997) derived an EM algorithm for parameter estimation within the model. 
I. :,' 

Ghahramani and Beal (2000) later considered a Bayesi~n treatment of MFA via a vari-
\ ;';':,' t \ ; " ~ r 

ational approximation. Veda, Nakano, Ghahramani,\and iHinton (2000) applied their 
• 'li,I',,', \ 
(\ ) ..... ' .,' ".' 

Split-and-Merge-EM (SMEM) algorithm to the MFA \nlodel,l;lnd obtained good results 
·',II.,\" 1

"
;.'':1:'/''':' <;',' 

in such tasks as image compression and handwritten digits r~cognition. From the main-

stream statistics community, McLachlan and Peel (2000) proposed a variant of the EM 
:'" .'.': ",' ':J . \ 

algorithm for a study of the MFA model with application to clustering and density es
I .~' I, ,',:;.< i', 

timation. They applied the resulting algorithm to artificial and real data, and obtained 
,') " " . :< . " \ ~I '.. \ ' 

good results. If we consider the Bayesian framework;' then it emerges that, apart from 
1 

Fokoue and Titterington (2000a) and Fokoue and T~tterington (2000d), only approxi-

mate techniques have been used to address the intractability of the functions of interest. 
I 

While these techniques can be fast in producing reasonably good results, assessing the 

closeness of approximations to the true values of interest still remains a complex prob-

lem. 

To the best of our knowledge, the first attempt to' use an "exact" technique (no ap

proximation of the functions of interest) for the Bayesian analysis of the MFA model 

was presented by Fokoue (2000)1, who constructed an efficient sampling scheme for the 

posterior simulation of the distributions of interests .. The derived Markov Chain Monte 

Carlo (MCMC) algorithm was essentially a straightforward adaptation of Data Aug

mentation (a two-stage Gibbs sampler) to the complete-data formulation of the MFA 

inferential task. There have since then been some other developments along the lines 

1 For the writing and the presentation of this paper, I was awarded a Young Researchers' Prize for 
the best full contribution at the Com pst at 2000 conference in Utrecht (The Netherlands). 
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of stochastic simulation for MFAs, namely in Fokoue and Titterington (2000a). We re

cently discovered that Utsugi and Kumagai (2001) independently worked on a similar 

Bayesian sampling scheme for MFAs with known and fixed k and q. Fokoue and Tit

terington (2000d) presents a more extended treatment where model selection is tackled 

in the Bayesian framework through the simulation of a continuous time birth-and-death 

point process; see Section (3.8) below. 

3.3.1 What is a Mixture of Factor Analysers? 

Definition: Let us once again consider our manifest random variable z E X ~ JRP. 

Suppose that the sample space X can be partitioned into k clusters, so that the proba

bility of z to have originated from cluster j is 'Trj = Pr(y = j) as defined earlier in Section 

(3.1.3). If we also suppose that in each cluster j, all the assumptions of orthogonal factor 

analysis hold, so that p(zly = j) = Np(z; Mj, AjAJ + Ej ), for j = 1,,,, ,k, then it is 

easy to show that the unconditional probability density function of z can be written as 

k 

p(z) = L: 'Trj.Wp(z; Mj, AjAJ + Ej ). (3.8) 
j=1 

The density function p(.) defined by (3.8) is a mixture of factor analysers (MFA). The 

intrinsic dimensionality of the data in cluster j is Qj, so that Aj E IRpxqj for j = 1",' ,k. 

Generative equation: Let Zj E IRqj and ej E IRP respectively denote our random 

vector of factor scores and our random vector of noise in cluster j. The assumptions 

here are Zj rv N qj (0, Iq), ej rv Np(O, Ej ) and lE[zlY = j, Zj] = Ajzj + Mj. Thus, 

conditional on y = j, the generative equation for the MFA model can be expressed as 

J. = 1 ... k , " (3.9) 

Missing data formulation of MFA: As a combination of two latent variable models, 

the MFA model is obviously a latent variable model itself. As before, the missing data 

formulation of the model will prove to be crucial for many inferential tasks. Using 

elements from both FA and finite mixtures, and assuming that y and Z are a priori 

independent, it is easy to see that the complete-data density of all the variables of the 
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model is given by 

k 

p(x, y, z) ex: II 7fJi [Np(x; J-lj + Ajzj, ~j)]Yi. (3.10) 
j=l 

With 1r = {7r1!". , 7rk}, IL = {J-lb··· ,J-ld, A = {AI,··· ,Ak} and I: = {~1'··· '~k}' 

our complete collection of model parameters is now given by (J = {1r, IL, A, I:}. 

Remarks: As the form of (3.8) suggests, a mixture of factor analysers is nothing but a 

finite mixture of multivariate Gaussians with structured component covariance matrices. 

Related work: Closely related to the MFA model are: the Mixture of Probabilistic 

Principal Component Analysers, studied by Tipping and Bishop (1999) who used the 

EM algorithm for parameter estimation; and to some extent (although purely univariate 

at this stage), the Mixture of Regressions studied from a stochastic simulation perspective 

by Hurn, Justel, and Robert (2000). A good understanding of the MFA model should 

form a good starting point for estimating Mixtures of Multivariate Regressions. 

3.3.2 Why use a Mixture of Factor Analysers? 

We have already presented many difficulties underlying the use of both factor analytic 

and finite mixture models, and it stands to reason that combining these two models 

naturally results in even more difficulties. Despite all the modelling challenges inherent 

in it, there are many reasons that make MFAs appealing, two of which can be simply 

explained as follows: 

• Locally linear but globally nonlinear Factor Analysis: Combining a finite number 

of local factor analysers results in a globally nonlinear model that is theoretically 

more flexible and therefore better able to capture the complexity of the data . 

• Improved density estimation via parsimonious Gaussian mixtures: When used for 

density estimation, finite mixtures of Gaussians can be prone to Qverfitting in 

high-dimensional spaces. In fact, as the number of mixture components increases, 

density estimation is greatly improved. However, this increase in the number of 

components leads to a significant increase in the number of free model parameters 
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when full covariance matrices are used, and this naturally leads to overfitting in the 

event of small samples. MFAs control or avoid overfitting by using the intrinsic 

dimensionalities of local factor analysers to control the number of model param

eters. This is a good trade-off between the use of restrictive isotropic covariance 

matrices and the use of full covariance matrices. 

Note: In the majority of applications where factor analytic models are used, the dis

turbance (noise) is generally measurement error. It is therefore reasonable and realistic 

to assume that such a noise has the same distribution across all the components of the 

MFA model. We shall therefore consider the general case where Ej are distinct across 

clusters, but, for practical applications, we shall assume that Ej = E, j = 1"" ,k. 

On the other hand, we will treat a general situation where qj are distinct across clusters, 

and the special case where qj = q, j = 1"" ,k. 

3.4 Likelihood function for MFA 

From the expression for the marginal density of z in equation (3.8), the observed-data 

likelihood for a sample of n LLd observations is given by 

L(8IX) ()( g (t 'll"jN",.(x,; Pj, AjAJ + Ej)) (3.11) 

The first thing to notice is that it would be hard if not impossible to derive closed

form expressions from (3.11), if one were inclined to use maximum likelihood estimation 

for instance. The only way forward would therefore be to resort to Newton-Raphson 

type algorithms, a solution we have so far avoided for reasons given earlier. On the other 

hand, (3.11) involves the evaluation of kn terms corresponding to the different allocations 

of observations Xi to their corresponding components in the mixture model. If such 

an evaluation were to be repeated in an iterative algorithm, it would quickly become 

computationally unrealistic and almost infeasible even for samples of size greater than 

40. For both likelihood based and Bayesian estimation methods, the use of the above 

observed-data likelihood is therefore not attractive, and we shall instead make use of the 
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complete-data likelihood whose expression is given by 

L(9; X, Y, Z) ()( IT (V. "r; [Np(z,; Pj + Aj%,j, Ej)]''') (3.12) 

By "de-mixing" the likelihood function, the complete-data formulation makes it possible 

to derive closed-form expressions for the EM algorithm, and familiar full conditional pos

terior densities for Data Augmentation. Moreover, being a typical incomplete-data prob

lem, the inferential task inherent in the MFA model naturally lends itself to two-stage 

iterative algorithms where the first stage imputes values to the missing (unobserved) 

data while the second stage performs the estimation based on the complete-data. 

3.5 The EM algorithm for the MFA Model 

The EM algorithm for mixtures of factor analysers is essentially a straightforward ex

tension of the EM for Factor Analysis that we encountered earlier. On the other hand, 

since a MFA is a mixture of Gaussians for which the EM is now fairly standard, we avoid 

lengthy details here, and only provide the main results. 

Remarks: (i) At this stage, it is probably fair to point out that, besides its great 

advantage of guaranteed convergence, the EM algorithm would be an even more appeal

ing alternative to its other Maximum Likelihood estimation counterparts (the Newton

Raphson types) if closed-form expressions could be derived for both the E-step and the 

M-step. Fortunately, this turns out to be the case as we show later. 

(ii) So far, we have, for simplicity, systematically omitted the indication of the parameter 

set 0 in our expressions (for example, p(x) in place of p(xIO)). \Vhile such a simplifi

cation is harmless in the likelihood-based framework where parameters are simply fixed 

quantities to be "plugged-in", it could lead to confusion in the Bayesian paradigm where 

parameters are stochastic entities, making an expression such as p(x) a marginal density 

of x over O. 
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3.5.1 Likelihood-based inference for MFA 

The EM algorithm for MFA that we shall be describing in the next section will yield a 

Maximum Likelihood point estimate OEM of 8, and quantities of interest can be estimated 

by simply plugging in the value of OEM in the appropriate expressions. 

Density estimation: According to this, the density p(xI8) would therefore be esti

mated by p{XIOEM), with p{xI8) defined as in equation (3.8). 

Classification and Clustering: In the same way, the classification probabilities defined 

in equation (3.16) could be estimated by Pr(Yj = llx, OEM)' 

Data reduction and factor scores estimation: Finally, expected factor scores 

E [zlx, Yj, 8] could be estimated by E [zlx, Yj, OEM]' In the case where qj = q, the 

marginal expected factor score JE [zlx, 8] is itself a mixture and has the form 

k 

JE [zlx, 8] = lEy [JE [zlx, y, 8]] = ~ Pr(Yj = llx)lE [zlx, Yj = 1,8]. (3.13) 
j=l 

E[zlx,8] of (3.13) can then be estimated by lE [ZIX,OEM]' 

3.5.2 Elements of the E-step 

The expression of the expected log-likelihood for the MFA model is given by 

An expansion of (3.14) reveals that a closed-form expression for Q(818(t)) can be derived 

easily if closed-form expressions for lE [Yjzjlx] and lE [YjzjzJlx] exist (see Appendix B for 

details). It turns out that, if we use y as a vector of indicator variables, y = (Yi," . ,Yk)T, 

then the event {y = j} is the same as {Yj = I}. With P(Yi, zilx) = p(Yilx)p{ziIYi' x), 

lE [zjlx, Yj] and lE [zjzJlx, Yj] are expressions that we derived when studying the EM 

for Factor Analysis. \Ve therefore only need to find a closed-form expression for lE [Yil x], 

which turns out to be quite straightforward as we now show. 
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If we average the complete-data density p(x, Yj, Zj) over Zj, we can write p(x, Yj) = 

p(Yjlx)p(x) = p(Yj)p(xIYj). With Pr(Yj = 1) = 7rj and p(Yjlx) <X p(Yj)p(xIYj), we 

derive Pr(Yj = llx) <X 7rjN(x; /lj, AjAJ + Ej ). Introducing the normalising constant, we 

can therefore express Pr(Yj = llx) as follows: 
• \ •• '(! :: ' 

7rjN p(xj /lj, AjAJ :+Ej) 
Pr(Yj = llx) = . . (3.16) k '.,. , 

L 7rjlNp (Xj /ljl, A{AJ, /+ Ejl) 

"

1=1 '/' ... .' 
I" \ " i':,', 1,,'1' 

Definition: We define aij = lE [Yijlxi] = Pr(Yij ~[llxi)" for each Xi and the corre-
1'.', i" 

sponding Yij, (i = 1"" ,n and j = 1," . ,k), so th~t;\a~;), is the current value of aij at 
i'i., '.' \. . 

the t-th iteration of the EM algorithm. In the same,':.~~Y, "b~~),knd C~~) are respectively 
t l r !\/ { J!', " i,' ".',. ". I 

the values of hij = lE [zijlxi, Yij] and C ij = lE [zijz~l~i\y;j] I~'tlthe t-th iteration of the 
algorithm. . .... .': ... ,:. '(, '.'.' 

,\{ . 
. I' ' .. , 

' .. ' ,.'. 'I·'··.·.' \,'. : " " 
,j.,. 'i,I., .' 

3.5.3 Elements of the M-step updates i: ":'. >('.' 
I
, .', l \ '. ~ i ~ I \ .' " \ , ,.".' '., : 

! '\ I I 1 I , i: ~ : i ' .' 1 . 

It turns out that the analytical expression of Q(OIO(t;):nbtained earlier also allows the 
/J, " ' , , ' 
,( :. "', : 

derivation of closed-form expressions at the M-step. \ The details of the results of this 
:./:, : 
'}:',I, 

section can be found in Appendix B. We define .1 

,',( 

n 

nj = L Yij = #{ Xi : Yi = j, i '- 1 ... n} , , 
;=1 

(3.17) 

as the number of observations currently allocated to component j. A pseudocode for one 

iteration of the corresponding EM algorithm is provided by Algorithm 5. 
I 

Remark: As we discussed in Section 3.2, the application of the EM to mixtures 

generally encounters such problems as: (a) singularities due to the unboundedness of the 

likelihood; (b) existence of many local maxima due to the usually multimodal nature 

of the likelihood surface; and (c) sensitivity to initial parameter values. In fact, our 

simulations reveal (see Section 3.7) that the above EM algorithm, once trapped in a 

local maximum of the likelihood surface, cannot escape it, thereby yielding solutions 

that in some cases are very far from the truth and therefore not of great use. Such 
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limitations stimulate one to resort to an alternative approach. McLachlan and Peel 

(2000) propose an extension of the EM, while we opt for a Bayesian solution via Data 

Augmentation. 

Algorithm 5: The EM Algorithm for Mixtures of Factor Analysers 

• E-step - With current O(t), compute a~;), b;;) and cg) . 

• M-step-

(HI) 
7rj 

(HI) 
Ilj 

n 

- ! ~a~~) 
n L...J ~J 

i=1 

- [t a~J) (z, - Aj')b~j))] [~>~~] r 
[tal? (z. - JljH 1)) (blJ')'] [~ai~] cl:] r 
if ~j =~, Vj E {I,,·· ,k} then 

- ~diag [t t a~? (z. - Jlj'+1) - Al'+1)b~:)) ("'. - Jlj'+l)) T ] 

if ~j = ~j for j =I- j' then 

~. diag [t aW (Xi - Il;HI) - A;Hl)b~;») (Xi _ Il;HI») T] 
J 1=1 

Note: The details of the derivation of the above algorithm are given in Appendix (B). 

3.6 Bayesian inference for MFA 

As we discussed earlier in Section 2.5, our main ingredient for inference in the Bayesian 

framework is the posterior density p(OIX). All quantities of interest in this case are 

obtained by averaging over the parameter space, with averages weighted by p(OIX). 
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Predictive density: For a future (unseen) observation Znew, the predictive density 

p(znewIX) of Znew given X is provided by 

p(znewIX ) = r p(xnewIO)p(OIX)dO. is (3.18) 

Expected factor scores: For observations contained in the sample used for parameter 

estimation, the expected factor score lE [zIX] is given by 

E [zIX] = lEO [lE [zIX, 0]] = r lE [zIX, 0] p(OIX)dO. is 
For a future (unseen) observation X new , the expected factor score is given by 

(3.19) 

lEo [lE [znewlznew, X, 0]] = r lE [znewlznew, 8] p(Olxnew, X)dO is 
( 1 IX) r lE [znewlznew, 0] p(xnewIO)p(OIX)dO. (3.20) 

P Znew is 
Clustering and classification: The classification probabilities for all the observations 

in the sample are provided by 

Pr(Yi = jlX) = r Pr(Yi = jlXi, O)p(OIX)dO, is (3.21) 

where Pr(Yi = jlXi, 0) is defined by (3.16). Finally, for a future observation Znew, the 

classification probability will be 

- r Pr(Ynew = jlznew, O)p(Olxnew' X)dO is 
( 1 IX) r Pr(Ynew = jlznew, 0)P(ZnewI0)p(0IX)(rD.22) 

p Znew is 
Note: All the above averages cannot be obtained in closed-form, because of the in

tractability of the integrals involved. To remedy this, we draw samples from p(OIX) via 

Data Augmentation, and then we compute approximations of the above integrals. 

3.6.1 Elements of Data Augmentation for MFA 

In Chapter 2, we used Data Augmentation for the analysis of the single factor model, 

along the lines of Lopes and West (1999), Martin and McDonald (1981) and Ihara and 

Kano (1995), and we showed that the derived scheme was efficient. Diebolt and Robert 
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(1994), Richardson and Green (1997), Escobar and West (1995), Celeux (1998) and Hurn, 

Justel, and Robert (2000) among others, have applied the method to the analysis of finite 

mixtures. Combining ideas from both these camps, it turns out that Data Augmentation 

(two-stage Gibbs sampler) provides a natural framework for the derivation of an efficient 

sampling scheme for the MFA model. In fact, if we assume a fully specified prior density 

p(O) for 0, we can then use the complete-data likelihood of equation (3.12) to form the 

complete-data posterior density for the MFA model, which is given by 

(3.23) 

The good news here is that our complete-data likelihood function makes it possible to use 

a conjugate prior structure, which in turn allows us to derive full conditional posteriors 

that are standard and easy to simulate. The resulting sampling scheme for p(O, y, Z/X) 

is therefore. an efficient one. Note that this sampling scheme is essentially the same as 

the one derived in Section 2.5, with the main difference that we now need additional 

sampling for y and the corresponding 1r. 

With O(t), y(t), Z(t) as the current values of the chain the algorithm has the form 

Algorithm 6: The Data Augmentation Algorithm for MFA. 

Imputation step: Impute some values for the missing latent variables. 

Simulate y(tH) "oJ p(Y/O(t), X, Z(t») 

Simulate Z(t+l) "oJ p(Z/O(t), X, y(tH») 

Posterior step: Draw new parameter values given the augmented data. 

Simulate O(tH) "oJ p(OIX, y(t+l), Z(tH») 

In the spirit of the Gibbs sampler, the equilibrium distribution reached by Algorithm 6 

should provide samples from posterior marginals p(OIX), p(zIX) and p(y/X) that can 

then be used to obtain estimates of parameters, estimates of expected factor scores and 

estimates of classification probabilities respectively. 
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3.6.2 Bayesian inference via Data Augmentation 

As we said earlier, once the Markov chain constructed by Data Augmentation has con

verged to the equilibrium distribution, it provides ingredients for a variety of inferential 

tasks. The key advantage here is that all these ingredients are obtained simultaneously, 

and many aspects of inference in this case are just by-products of the same process, with 

little extra computation needed. Before giving a detailed description of the sampling 

scheme, we first address some important issues related to inference. First and foremost, 

if we assume that problems like label switching and convergence have been dealt with, 

Bayesian parameters estimates are straightforward. With M useful MCMC samples re

tained after "burn-in", the chain {O(t) : t = 1,··· ,M} provides a sample of draws from 

p(OIX), and, just as before, the estimate BOA of 0 is given by 

(3.24) 

Expected Factor scores: With the sample path {Z(t) : t = 1,··· ,M} produced 

by Algorithm 6, it is natural and straightforward to compute the corresponding ergodic 

averages, and to use them as Bayesian estimates for IE [zIX]. However, for problems of 

even moderate intrinsic dimensionalities, having to store these vectors of common factors 

can quickly become explosive in terms of the storage capacity required. This is indeed a 

major drawback. Two straightforward solutions that avoid such explosive storages can 

be adopted in this case: (a) On-line estimation of expected factor scores, which consists 

of updating averages such it E~l z(t) at each iteration. (b) auxiliary latent variables. 

Instead of storing the z(t) so as to compute averages later, one can simply use the current 

draw to "augment" the data for the sake of parameter estimation. Once convergence is 

achieved, simply use the chain of parameters to compute the corresponding estimates 

of expected factor scores. For instance, this would mean combining the expression for 

IE [zlX, 0] of equation (3.13) with (3.19) to produce an approximation of IE [zlX] given 

by 

(3.25) 
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In this way, the z(t),s appear in the sampling scheme just as auxiliary variables to facil

itate the estimation of parameters. 

Classification probabilities and clustering: Each set y(t) = {y~t) : i = 1,'" ,n} in 

the chain {y(t) : t = 1" .. ,M} provides a possible clustering of the data, corresponding 

to the current set O(t) of model parameters. For the same reasons as before, it is inefficient 

to store the chain {y(t) : t = 1"" ,M}. We simply use each draw y(t) just as an 

instrumental variable for the completion of the data in view of parameter estimation. 

Using the chain {O(t) : t = 1·· . ,M}, compute estimates of our classification probabilities 

M 

Pr(Yi = jlX) ~ ! L Pr(Yi = jlxi' O(t»). 
t=l 

(3.26) 

Estimates provided by (3.26) can then be used for soft or probabilistic clustering of the 

data. More specifically, soft clustering is achieved by drawing the label Yi of Xi from a 

multinomial distribution with parameters k and Pr(Yi = jIX),j = 1",' ,k. A hard or 

outright clustering can also be obtained by assigning each observation to the component 

for which the posterior probability Pr(Yi = jlX) is the highest. 

Density estimation: Last but not least, it is worth pointing out that density estimates 

for future observations in this case are straightforward, and are given by 

M 

p(xnewIX) ~ ! LP(XnewIO(t»), 
t=l 

(3.27) 

which can also be used for all the inferential tasks involving future observations. 

3.6.3 Hierarchical structure specification 

It is worth remarking that the MFA model lends itself to a hierarchical structure speci

fication. The natural approach to prior specification in this context would be to use the 

standard hierarchical prior structure as given by 

p(O) = p(1r18)p(JLI~, l\:)p(~IQ, T)p(AI17, 0), (3.28) 

where 8,~, 1\:, Q, T, 17, 0 are hyperparameters. With the prior defined by (3.28), the hi

erarchical structure of the MFA model is given by Figure (3.1). However, as reported 
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Figure 3.1: Direct Acyclic Graph (DAG) showing the hierarchical structure of the MFA 
model. A circle indicates an unknown random quantity, while a square (or rectangle) 
represents a constant. The double box is dedicated,to ~he observed data. 

I, ,.' 

by Robert and Casella (2000) and also noticed in our S~~ulations, the use of this stan-
,(, ,: /J

1
'· ' .. ',' :,'" 

dard hierarchical prior structure leads to singularities and trapping states in sampling 

as explained in Section (3.2.2). To simplify our description, we first restrict ourselves to 

the case where r:j = r:, and qj = q, Vj E {I, ... ,k }.' Adaptation to the other cases is 

straightforward. In fact, if one of the component covariance matrices AjAJ + r: is al

lowed to become extremely small (i.e have terms of very small magnitude) at any given 

sample point, then that component of the MFA will be allocated that single point, with 

no chance of having any other point allocated to it,'since the fixed hyperparameter will 

obviously never change the state of the chain. Instead of using the standard hierarchical 

prior structure2 of equation (3.28), we use the extended structure of equation (3.29), 

where an extra layer allows the component covariance matrices to be explored at least 

locally through the stochasticity of the hyperparameters of A: 

p(9) = p(1t'16)p(l'le, K)p(r:la, r)p(AITJ, O)p(Olg, h), (3.29) 

2It is fair to point out that, while this is feasible via the use of an extended prior structure, such a 
flexible and principled solution is not available in the deterministic setting of the EM algorithm. 
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where 9 and h are the hyperparameters of the hyperprior n. The extended prior defined 

in (3.29) modifies the hierarchical structure of the MFA model, and the new DAG is 

given by Figure (3.2). As far as prior distributions are concerned, we use conjugate 

Figure 3.2: DAG of the extended hierarchical structure for the MFA model. 

priors as we did before for the FA model. The main difference from the FA model in this 

regard is the discrete categorical latent variable y which has a multinomial unconditional 

distribution, allowing us to use a Dirichlet conjugate prior for the mixing weights 1t'. 

3.6.4 Construction of the sampling scheme 

The sampling scheme for the MFA model is essentially just an extension of the scheme 

that we constructed for the FA model in Chapter 2. 

Imputation step for MFA: This step consists of simulating samples from the condi

tional posterior distributions of the latent variables. It can be easily shown that y has 

a multinomial conditional posterior distribution, denoted here by Mn. With z having a 

Gaussian distribution, imputation here has the following form: 
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[yd· .. J rv Mn(l, 7r;i, •.• , 7rki) with 7rJi ex: 7rjNp(Xi; J-lj + Ajzi , E) 

[Zi:!li=jl···J rv Nq((Iq + AJE-1Aj)-lAJE-1(Xi - J-lj), (Iq + AJE-1Aj)-1). 

For i = 1, ... , nand j = 1, ... , k 

Full Conditional posteriors: The derivation of full conditional posteriors for the MFA 

model follows naturally from the construction of conditional posteriors for the FA model 

as encountered in Chapter 2, with the only exception that we now have to include the 

mixing proportions. Since we gave ample details of the construction in Chapter 2, we 

will just present the key elements of our extended full conditional posteriors. 

Mixing proportions: From the expression of the joint posterior, we have for 11" 

(3.30) 

The expression of the likelihood function allows us to use a symmetric Dirichlet prior 

distribution as the natural conjugate prior distribution for our mixing proportions. More 

speCifically, we have 11" f'V Di(d", •• • , d"), and we write p(7r) ex: 7rt··· 7rf = n;=l 7rJ. Combin

ing the Dirichlet prior with the complete-data likelihood yields a Dirichlet full conditional 

posterior: 

Component means J-lj: Details of this derivation are the same as described in Chapter 

2. For each J-lj, we use the Gaussian prior J-lj f'V N(e, K) and the full conditional posterior 

for J-lj is therefore Gaussian, that is [J-lj I ... J f'V Np ( m JL;, C JLJ, with 

(3.31) 

In the above equation (3.31), ex; = E~1Ii=j (Xi - Ajz i ), for j = 1,··· , k. 

Specific covariance E: Essentially, the only new aspect here is that we now need 

to redefine the matrix S as S = E;=l Ei:1Ii=j (Xi - AjZi - J-lj)(Xi - AjZi - J-lj)T. Since 

E-1 = diag(a12, ••• , a;2), we use independent Gamma conjugate priors for each a;2, 

namely a;2 rv Ga(a, r), for r = 1,·· . ,p. From all that, we easily derive a Gamma full 

conditional conjugate posterior of the following form: 
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[0-;21, .. ] "" Ga(a + n/2, T + Srr/2). 

Factor loading matrices Aj: We define the column vector Ajr. E IRq, made up of the 

r-th row of the j-th matrix of factor loadings. We also define Zj E IRnjxq to be the 

nj x q matrix containing all the factor scores currently allocated to component j. We 

use the zero mean Gaussian prior Ajr. "" N(O, 0) for j = 1" .. ,k and r = 1"" ,po If we 

use the same details of derivation as in Chapter 2, this gives a Gaussian full conditional 

posterior [Ajr.I"·] IV Nq(mAjr., ClI.jrJ, with 

(3.32) 

where X is the data matrix obtained from Xj = :x - J1j, and X. jr is a column vector 

containing the elements of its r-th row in component j. 

Note: A full conditional posterior for an MFA model with constrained underlying factor 

analysers is easily obtained mutatis mutandis as for the factor model of Chapter 2. 

Posterior for 0: We assume 0 to be diagonal. More precisely 0-1 = diag(w12,'" ,W;2). 

We also define B = E;=l E:=l Ajr.AJr.· Since each Ajr. has a Gaussian distribution, we 

use an independent Gamma conjugate prior for each W;2, for c = 1"" ,q. Finally, 

with W;2 "" Ga(g, h), we easily derive a Gamma full conditional conjugate posterior 

distribution for w;2: 

[w;21···J IV Ga(g + kp/2, h + Bcc/2). 

If we combine all the above elements, one step of Data Augmentation for MFA would be 

given by Algorithm 7. In this algorithm, all the full conditional posterior distributions of 

interest are standard and therefore easy to simulate, making the algorithm an efficient 

sampling scheme. However, it must noted that for moderately large values of q (e.g. 

q > 7) and k (e.g. k > 10), the algorithm can become extremely slow to converge, 

for the simple reason that the amount of "missing-data" to be "filled-in" then grows 

accordingly. Another consequence of having to "fill-in" these latent variables in sampling 

is the poor mixing due to the fact the sampler tends to remain for too long in a tiny local 

region of the parameter support. Faced with a similar problem while analysing mixture 
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models similar to MFAs, Celeux, Hurn, and Robert (2000) and Hurn, Justel, and Robert 

(2000) have used versions of Langevin Metropolis and random walk in univariate settings. 

During a personal communication, the above authors revealed to us that they did not 

achieve any significant gain in performance. Besides, it is not easy to extend their 

attempts to multivariate settings such as ours. We have tried in our study to construct 

hybrid schemes along the lines of Nobile (1998) in order to improve both mixing and 

convergence, but it is fair to say that we did not achieve any progress in this regard. 

Algorithm 7: Data Augmentation for Mixtures of Factor Analysers 

• I-step - For i = 1, ... ,n and j = 1, ... ,k 

[Yil···J '" Mn(1, 7r;i"" ,7rki) with 7r;i ex: 7rj.A!p(Xii /lj + AjZi'~) 

[zi:I/;=;I···J '" Nq((Iq + AJ~-l A;)-l AJ~-l(Xi - /l;), (Iq + AJ~-l Aj)-l 

• P-step-

[1rI" .J '" Di(c5+nb'" ,c5+nk) 

[/lil" .J '" .N'p(mp.j' Cp.j) , j = 1,,,, ,k 

[(7;21' .. ] '" Ga(a + n/2, 7" + Srr/2), r = 1,,,, ,p 

[w;21" .] '" Ga(g + kp/2, h + Bcc/2) , c=l,,,,,q 

[Ajr.l· .. J '" Nq(mAjr., CAjr,) , j = 1,'" ,k r = 1,'" ,p 

3.6.5 On-line clustering for label switching 

Although the poor mixing of the two-stage Gibbs sampler drastically reduces the occur

rence of label switching in our essentially multivariate setting, we still have encountered 

it in some of our problems. Since the simple and intuitive ordering constraints often do 

not agree with the geometry of the parameter surface, they often fail to isolate one of 

the k! modes of the posterior. We have opted for Celeux (1998)'s online clustering, and 

we briefly describe it in this section, using the author's notation. The main advantage of 
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,I, 

this algorithm is that it does not require the MCMC sample path to be stored, as all the 

inferential quantities of interest are computed online., Here () is a d-dimensional vector 

containing the complete collection of model paramet~rs, so that if we have a total of b 
, . , 

individual scalar parameters in a k-component mixture/then () would be kb-dimensional. .. 
The procedure is initialised with m MCMC samples, \ ii,'(}2,t~ .. ,(}m, where m is chosen 

, \ 
,,' , 

such that label switching has not yet occurred, which 'in 'practice may require an inspec-
: I," : 

tion of the samples. 3 The method then defines refer~~~ei ~eintres jji together with their 
, . . ; ~ . \. 

( ( ',1,', 

corresponding componentwise variances Si for all the parameters as follows: 
j :, 

It then sets sial = Sj, i = 1"" ,d. 

are deduced by permutation, and one run of the r-th iteration is given by: 

Algorithm 8: On-line clustering for label switching\: '.' :,' 
1. Allocate (}m+r to the cluster j* (where j :'1;·.: . ..., k! that minimises the 

normalised squared distance ,,"<,:;/,:", :,',: 
; 'j :, r \ \:i \ \ ", . [ . .' :. 

d ((}'!I+rJ;"'; jj(~:-I])2 

II (}m+r _ O[,r-I)11 2 = ~ 1\' IJ ' 

J L-" (r-I) I , 

i=1 Si ' 
\ ' 

where jjIj-I] is the i-th coordinate of jjJr~,I].' If j* =f. 1, then permute the 
coordinates of (}m+r to get j* = 1. 

2. Update the k! centres and the d normalising coefficients 

(a) Compute 

err] = m + r - 1 jj[r-I) + 1 (}m+r 
I m+r I m+l 

(b) Derive the (k! - 1) other centres by permutation 

(c) Update the variances for i = 1," . , d 

[r) m + r - 1 s(r-I] + m + r - 1 (e[r-IJ _ e!rJ)2 
Sj m + r' m + r II 11 

+ _1_((}'!I+r _ e(rJ)2. 
m + r' II 

3Typically, m must be large enough (this choice is not very sensitive, generally m = 100 or so works 
well) to ensure that the initial estimates are a reasonable crude approximation of the posterior means. 
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Remark: Because of its k! computational complexity, the above algorithm would not 

be interesting for mixtures with more than k = 6 components, for that would mean a 

huge extra computational burden at each iteration to isolate the good mode. 

3.6.6 A decision-theoretic solution to label switching 

An alternative to the above algorithm is the decision-theoretic solution proposed by 

Celeux, Hurn, and Robert (2000) and used by Hurn, Justel, and Robert (2000). The 

method mainly consists of specifying "suitable" loss functions £(0,0) for the inferential 

tasks at hand4
• These loss functions are chosen so that they do not rely on the labelling 

of the components, and are therefore not affected by the lack of identifiability due to 

invariance to relabelling. This section is purely informative, and we therefore do not give 

ample details here. The reader is referred to either Celeux, Hurn, and Robert (2000) or 

Hurn, Justel, and Robert (2000) for a more complete description of the method. Once a 

"sui table" loss function is chosen according to the inferential issue of interest, the method 

essentially consists of the following: 

Algorithm 9: Decision-theoretic approach to label switching 

1. Compute the expected loss E01x [£(0,0)]. 

2. Find 0* that minimises the above expected loss lE01x [£(0,0)] , ie 

A* 
As reported by Hurn, Justel, and Robert (2000), it is not possible to find 0 explicitly 

for many choices of C. The good news however is that, for a large class of loss functions, 

a computationally feasible two-step procedure due to Rue (1995) helps overcome the 

drawback. Below is a description of the two-step procedure: 

4The authors report that such a choice is not easy, and in many cases can render some calculations 
analytically intractable. 
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Step 1: Use MCMC ergodic averages to approximate lE01x [£(0,0)] for a given O. 

Step 2: Perform the optimisation of the above estimated expected loss over O. 

Note: We did not implement this decision-theoretic approach in our study, mainly 

because of the difficulty encountered in choosing suitable loss functions in our setting. 

3.7 Implementation and Numerical results 

Amongst some of the key issues that arise in the numerical application of our sampling 

scheme are the suitable choice of the fixed values of hyperparameters and the choice of 

initial parameter values that would speed up convergence. As far as hyperparameters are 

concerned, Richardson and Green (1997) used data-dependent hyperpriors for mixtures of 

univariate normals. We simply extend and adapt some of their ideas to our multivariate 

context along the lines of Stephens (2000). For our mixing proportions 11", we use a 

Dirichlet prior with 8 = k. Such a choice tends to favour a model in which all the 

components a priori have equal weights 5. Taking 8 = 1 would cause the weights to 

differ significantly. For E, we use the same initial values as in Chapter 2, and we choose 

our fixed hyperparameters a and r such that a/r = al, where al is Joreskog (1975)'s 

initialisation of Chapter 2. For JL, we use ~ = (6," . ,~p)T where ~i is the midpoint of 

the observed range of Xi, for i = 1"" ,po We also define Ri as the observed range of Xi, 

for i = 1,'" ,p, which allows us to choose K, = diag(Rl"" ,Rp). We use a zero mean 

(TJ = 0) prior for A, and we choose values of g and h that favour draws of Aj that are 

similar (but not equal). Our initial values for Aj are the same as in Chapter 2. 

3.7.1 Artificial data: Example 2 revisited 

It is fair to stress here that this example is purely illustrative. Hence, despite its sim

plicity shown by well separated components in Figure (2.3), we use it to compare the 

liThis choice is sensible in our context because we mainly aimed at analysing datasets for which the 
number of mixture component is assumed to be small. 
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performances of the EM algorithm and Data Augmentation in parameter estimation and 

density estimation. We saw in Chapter 2 that our single factor model was unable to learn 

the underlying structure of this 3-component MFA. Recall that p = 9 and q = 2 in this 

case. The data in this example come from an MFA with 71"1 = 0.3,71"2 = 0.45,71"3 = 0.25. 

With n = 300, this corresponds to nl = 90, n2 = 135, n3 = 75. The matrices of factor 

loadings, the vectors of means and the specific covariance matrix :E are the same as in 

Chapter 2. The observed-data log-likelihood for this toy problem is £(8, X) = -2256.03 

-6000 o 2000 4000 6000 
Iterations 

8000 10000 

Figure 3.3: Observed-data log-likelihood for Example 2 from a 3-component MFA. 

EM solution: Despite the use of many different starting values, the EM algorithm 

consistently ends up getting trapped in a rather meaningless local maximum. As Figure 

(3.3) shows, the algorithm falls into the local maximum after fewer than 500 iterations, 

and despite the 9500 subsequent iterations, it remains trapped and never gets out, lead

ing to a rather poor performance on such a simple task. For instance, as far as density 

estimation is concerned, the observed-data log-likelihood produced by this EM solution 

is i = -3040.00, which is very far from the global maximum £(8, X) = -2256.03. Sim-

ilarly, the clustering produced by such a meaningless local maximum is equally very 

unsatisfactory. In fact, despite the apparently good estimates of mixing proportions 

i l = 0.27, i2 = 0.30, i3 = 0.42, the corresponding factor loading matrices are very in

accurate, and the misclassification rate quite high (more than 25%). One could argue 
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that trying more starting points could lead to a better solution, but it is clear that this 

sensitivity to initialisation and this inability to escape local maxima constitute serious 

weaknesses of this algorithm. 

Data Augmentation: As expected, the performance of Data Augmentation on this 

simple task turns out to be very satisfactory. With To = 9500 burn-in iterations and 

M = 1500 MCMC samples, the algorithm yields very good density estimation, accurate 

and precise parameter estimates and perfect clustering. 

Goodness of fit by Discrepandes Analysis 
1100r----r--..,----r---,----r---, . : 
1050 · .. · .. · .... · .. t· .. · .. · .... ·· .. :--· ........ ·· .. ~··· .... ··•· ........... ( ............ . 

. . 

" . 1900 ............. : .. ~; ...... :. 

a: ~ ' : . : 
850 ........... .. . .:... ........... .. ............ ; ... ............ , .. ........... ... ; ....... .. .... . 

. . . 
800 ........ .. , .. , ....... .. , .. ~ .. , .... , ...... ," .............. ,' .... , .. , .. , ..... : ............ .. 

: : : : : · . . · .. · .. 

75950 800 850 900 950 1000 1050 
Original Data Set 

Figure 3.4: Scatterplot of discrepancies for Example 2 analysed with a 3-component MFA. 

In fact, here the estimated observed-data log-likelihood produced by Data Augmentation 

is " = - 2324.00 which is much closer to the true value £(0, X) = -2256.03 than the 

EM estimate" = - 3040.00 is. On the other hand, the estimated mixing weights exactly 

equal the true values, and the algorithm achieves 100% good clustering rate. As shown 

by Figure (3.4), the posterior predictive assessment of model fitness looks very much 

in favour of the plausibility of our proposed 3-component MFA model. Overall, Data 

Augmentation clearly outperforms the EM algorithm on this task. 
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3.7.2 The noisy shrinking spiral 

This problem was proposed by Veda, Nakano, Ghahramani, and Hinton (2000) whose 

aim was apparently to show how one could extract a ~~e-dimensional manifold from a 

3-dimensional sys em. The MFA model appeared to b~ a good candidate for modelling 

such a task. The authors in their original work used an ' MFA with k = 14 components, 
\ 

and q = 1 (one-dimensional). They compared the perf~rmance of their Split-and-Merge 
, , 

, .' 

EM with the generic EM algorithm. They found that SMEM could easily escape local 
~ . I ' 

, " \ r 

maxima and ex ra t the one-dimensional manifold sat,isfactorily, while the generic EM 
, I:' " 

algori hm produ d a poor extraction as a result of its in'ability to escape local maxima. 
I j t , 

I \ I ~ ! i " I 
In h ir variational approximation approach to MFAs','p'hahramani and Beal (2000) also 

{
'I·' t ' 

• .I it l ;,' 'Ii I " ' I 
U d th am xampl . In this ctlOn, we compare, tN~ perform~nces of the generic EM 

.' !',', I 

algorithm and at Augm ntation on extracting that one-dimensional manifold from 
" 

his v r sam -dim n ional noisy shrinking spiral. '. ' 
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(a) riginal spiral. (b) EM Algorithm. , (c) Data Augmentation. 

i ur .5: xLra Lion of a one-dimensional manifold from a shrinking spiral. 

20 

Comm nt: We u k = 14, and ample size n = 500. The lines in (Figure 3.11-(b) 
\ 

and ( )) that ar u d to plot an timate of the one-dimensional manifold are obtained 

u ing imat s f J.L and A. Mor sp cifically, the centre of each line is Jij (which is the 

ntr r m an of th orr ponding local Gaussian), and the direction of the line is given 

by Aj whi h in Lhi as i 3-dimensional column vector of factor loadings. For the EM 

algori hm, w run T = 10000 it rations. Despite many starting values, the algorithm 
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gets trapped in poor local maxima. (Fig 3.11-(b)) shows the poor extraction produced 

by the local maximum reached by the EM algorithm. A run of Data Augmentation with 

To = 9500 and M = 1500 MCMC samples produces a very satisfactory extraction as 

shown by (Fig 3.11-(c)). As expected, Data Augmentation outperforms the generic EM 

algorithm on this task. 

3.7.3 Wine data set (revisited) 

We encountered the wine dataset in Chapter 2, and we used the BDMCMC algorithm 

to find that an estimate of the intrinsic dimensionality of these data would be q = 6. 

We also established the existence of three groups or classes in the data. In this section, 

we model the data using a 3-component MFA, and we reconsider parameter estimation, 

density estimation and clustering. In fact, with p = 13, the full covariance matrix for 

each component would have 91 free parameters to be estimated, an estimation that 

would be very inefficient and prone to overfitting with the small sample of only n = 178 

observations. The use of the MFA model is therefore justified for this task. We assume 

that all thr e hypothetical classes (components) have the same intrinsic dimension q. 

Using q = 2, Data Augmentation produces the estimated posterior expectations of factor 

, • , i 
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(a) Class 1. (b) Class 2. (c) Class 3. 

Figure 3.6: Estimated posterior means of factor scores 

scores shown in (Fig 3.6). The good news here is that none of the plots in (Fig 3.6) shows 

any group structure, meaning that each class is homogeneous. The assumption of the 

existence of three classes therefore seems reasonable. 
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Data Augmentation: If we use different values of q (Le. q = 1,··· ,6), Data Aug

mentation yields an overall very good performance in clustering, with the percentage of 

correct clustering ranging from 95.00% to 98.31 %. As expected, the highest log-likelihood 

is obtained with the value of q found by the BDMCMC, namely q = 6, suggesting that 

the best density estimates would come from an MFA with q = 6. 

EM algorithm: The performance of the generic EM algorithm on this task is very 

unsatisfactory. For example, T = 10000 iterations of the EM with q = 6 lead to a very 

poor local maximum, yielding a data log-likelihood equal to £ = -6200.00 compared to 

£ = -3190.00 produced by Data Augmentation. The corresponding clustering produced 

by the EM is equally unsatisfactory. Once again, the Data Augmentation algorithm 

clearly outperforms the EM algorithm. 

3.8 Stochastic model selection for MFA 

In our treatment of the MFA model, we have so far assumed the number of mixture 

components k known and fixed. In some cases, we have had to use our BDMCMC for 

FA to determine the intrinsic dimensionality q of the data, especially in cases where we 

assumed q to be the same across all the components. At the root of model complexity 

determination for finite mixtures lie difficult questions such as: (a) what makes a com

ponent a separate and homogeneous entity? (b) Isn't there always the possibility of a 

hierarchy of clusters, with a given cluster being made up of its own inner clusters? In 

Section (2.7), we addressed the stochastic estimation of q. In this section, we concen

trate on learning the number of mixture components k, which is generally unknown in 

practical applications. The problem is very similar to the one treated in Section (2.7), 

and almost all the difficulties explained in Section (2.7) for the FA model apply mutatis 

mutandis to finite mixtures. For example, the application of classical tests in this con

text is made very difficult and almost impossible because of the complexity involved in 

deriving test statistics and their reference distributions. In the Bayesian paradigm, the 

stochastic simulation approach used in Section (2.7), seems to offer an attractive and 
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promising framework where such a complex problem is made tractable, and we present 

elements of such an approach in this section. 

FA and finite mixture models have in common the fact that they both involve poste

rior distributions that are invariant to permutations of the labelling of some of their 

parameters. In both cases, the collection of parameters can be viewed as a random con

figuration or point process. Throughout this section, we also treat the case where the 

number of common factors varies across the clusters. In such a case, each local factor 

analyser has its own intrinsic dimensionality, qj, j = 1"" ,k, and we define the k

dimensional vector q = {ql,'" ,qk}' If we assume that q and k are unknown a priori, 

then the complete collection of our model parameters becomes 6 = {k, q, 1l", IL, A, ~}, 

and our aim in parameter estimation from a stochastic simulation perspective now ex

tends to the construction of an ergodic Markov chain with the joint posterior distribution 

p(k, q, 1l", IL, A, ~IX) as its equilibrium distribution. In a previous section dedicated to 

Data Augmentation for MFA, we constructed a Markov chain with p(1r, IL, A, ~Ik, q, X) 

as its equilibrium distribution. In Chapter 2, we treated FA with unknown q, and we 

used BDMCMC to estimate q. The extension we are considering here must accommo

date our two counting random variables k and q. Intuitively, we are in the presence of a 

two-level nested counting process: 

• Between factor analysers: simulate a birth-death Markov point process to estimate 

the number of components k. 

• Within a factor analyser: simulate a birth-death Markov point process to estimate 

the number of common factors qj in each local factor analyser. 

If we knew k, then at each iteration we would simply simulate a birth-and-death point 

process for each j to estimate qj as described by Algorithm 3. With k unknown, we first 

need to simulate a current value for k through a process similar to the one described in 

Section (2.7). If we have reason to assume that q is the same across all the components 

of the mixture, then the overall process need not be nested. 
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3.8.1 Model selection between factor analysers 

The derivation of the algorithm needed in this section is essentially the same as in 

Section (2.7). The main differences are the form of the detailed balance equation to be 

satisfied, and the elements of the configuration set c. We saw earlier that the likelihood 

L(k, q, 1r, 1', A, ~IX) is invariant under permutations of component labels. It is also easy 

to see that the prior distribution p(k, q, 1r, 1', A,~) does not depend on the ordering of 

component labels. As a result, the posterior 

p(k, q, 1r, 1', A, ~IX) ex L(k, q, 1r, 1', A, ~IX)p(k, q, 1r, 1', A, ~)6 

is invariant under permutations of component labels. We are therefore in the presence of 

a point process. If we assume q known as will be the case at each iteration of our overall 

MCMC sampling scheme, then the key ingredient for the estimation of k would be the 

posterior density p(k, 1r, 1', Alq, X). For simplicity, we use exactly the same notation 

as before in the description of the birth-and-death point process. Typically, each point 

or random configuration in the corresponding point process would therefore be of the 

form Vi = (rri' ILi' Aj ). However, since each Ai presupposes a current value for qj, we use 

points of the form Vi = (qj' 'iri' /1i' Ai) for clarity. We therefore define our configuration 

variable as 

The principle behind the simulation of the birth-and-death process is exactly the same 

as before: a birth increases the number of mixture components by one (k -+ k + 1), 

while a death decreases it by one (k -+ k - 1). In this case, births should occur in such 

a way that the mixing proportions in the new configuration sum up to 1. To satisfy 

this constraint, the birth density is defined as b(c,v) = k(l- 1I")k-lp(V), where p(v) is 

the prior density of one element of the configuration v = (7r, /1, A). The death rate is 

computed in the same way as before. When a new component v = (11", jl, A) is born, the 

process jumps into a configuration characterised by the set of points c U {v} defined by 

6For economy of notation, we ignore ~ in the description of our point process, since we are dealing 
with the case where E is the same for all the components, and is therefore fixed in the point process. 
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When a new component is born, we set the intrinsic dimension q of its corresponding 

factor analyser to q = 1. When a new component Vj = (1I"j, ILj, Aj) is selected to die, the 

new configuration of the process is characterised by the set c\ {Vj} defined by 

With the above birth-and-death process so defined, all we need for its simulation is 

to make sure that its corresponding Markov chain is irreducible and aperiodic. The 

following theorem from Stephens (2000) presents a "detailed balance" equation whose 

satisfaction theoretically guarantees the convergence of the chain to the limiting distri

bution of interest. We use the function h in the same sense as in Section (2.7). 

Theorem 3.1 If the birth density b and the death density d satisfy 

(k + I)d(c U {v}; v)h(c U {v} )k(I - 1I")k-l = ,B(c)b(c; v)h(c) (3.33) 

for all configurations c and all points v, then the birth-and-death process defined above 

has p(k, 1T', 1', Alq, X) as its stationary distribution. 

A description of the algorithm used to simulate the above birth-and-death MCMC scheme 

for mixtures is given by Algorithm 11, and the overall stochastic model selection for MFA 

can be described as follows: 

Algorithm 10: Stochastic model selection for MFA. 

Assuming a current set (k(t>, q(t), 7r(t), I'(t) , A (t») of parameters, 
Simulate k(t+1) through a run of Algorithm 11 . 
For j = 1,,, . ,k(t+1) 

Simulate qY+1) through a run of Algorithm 3. 
End 
5 t (t+1) _ ( (t+1) ••• (t+1) ) e q - q1 , , qk(t+l) 

Simulate (7r(t+l), I'(H1), A (t+1») via Algorithm 7 given (k(t+l) , q(t+l») 

As before, we use a Poisson prior for k, with hyperparameter e. At each iteration t of the 

overall algorithm, the continuous-time birth-and-death process is simulated as follows: 
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Algorithm 11: Birth-and-death MCMC mixtures. 

Set f3(e) = f3, tmm = 0 and k = k(t-l) 

Repeat 

Compute o·(e):= L(e\vj)f3 for j = 1, ... ,k 
J L(e) (! 

, ' 

Compute o(e) := 2:j=1 OJ (e) , 
Simulate s'" Exp(I/(f3(e) + o(e))) and Set tmm := t~~;f- S I 

If (Ber(f3(e)/(f3(e)+ &(e)) = 1) /* It is a birth */ ". 
Set k = k + 1 ; ; j 

Simulate (/1, 7r, A) from p(v/t) and set q = 1 «'.' 
Set e:= eU {(q,7r,/1,A)} :<";" 

Else 1* It is a death * / I :', , 
Simulate j' = Mn(&l (e)/o( e)" .. , ok(e)/&( e)) ; \ '/~: 1< .:. 

;:: ~ ~ ~~(ii"7ri"l'i"Ai')} })):.' .. 
Until (tmm _> p) '.,'11(1',',",'.,;'(',,' I 

, "j."\,, \ • 

The algorithm combines the simulation of birth-death poi,nt processes between and within 
, , 

factor analysers with the basic Bayesian sampling to ~oncurrently perform model selec-
,. ,I,.' . I 

tion and the corresponding parameter estimation. ),i/,:h:') ",',1,::--,,' 
: . ~ ~ : I, l . I "',;' 

'\ \' I I. 

1"1'",(', ,.:. ' . 

II : t • 

3.9 Numerical examples of model selection 
, :i, 

In this section, we have mainly analysed examples where the intrinsic dimensionality q, 

although unknown, is the same across all component~. ',Examples with different intrinsic 

dimensionalities require only minor changes, and will be treated in our future work. 

3.9.1 Artificial problem with 4 components 

This first example is purely illustrative, and is mainly aimed at testing the performance 

of our scheme on a simple task. At each iteration t of the overall process, the birth-and

death process is run for a time period p = 1.618. The overall constant birth rate in this 

case is f3 = 0.618, and we take hyperparameter {! = f3. 'The components of the mixture 

in this case are well separated, and the dimensionalities of both z and z are small (p = 2 

and q = 1). The task at hand is therefore simple enough for the scheme to be able to 
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solve it easily. Since we assume that q is the same across all the components, we first run 

· . . . . . . · . . . . . . 

: ];t1Lj:~j~t 
~: ::... · . . . · . . . 

[ Il,1.,[: 
: : : .: : : 

-2 ........ . .l. ........ ,j ..... ... ~~~.~~ .......... .i ........... !. ........... l ... ~ .~. ~ 
i •• ·i:;- iii i it+ 

- 4 ...... ····i····· .. ·····~· .. · .... ···~· .... · .. ····~ .. ····· .. ··i .... ··· .... : ....... +. + .: . ~ ... .. .. 
: : : : : : + : 

~ ~ ~ j ~ ~ : 
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Factor 1 

(a) 2D Projection of the data 
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k 

(b) Estimation of Pr(k = ilX) 

Figure 3.7: 4-component MFA with histograms approximating Pr(k = ilX) 

Algorithm 4 separately, and it finds no problem determining that q for these data is equal 

to 1. If we use the known value of q, the overall stochastic simulation scheme for MFA 

produces an stimation of Pr(k = ilX) as shown in Figure (3.7) after 30000 iterations. 

Th stimation of the number of components k in this case is satisfactorily. However, it 

is worth pointing out the fact that other values of k do have reasonably high frequency 

in the chain. This could be attributed to a birth-rate allowing a good exploration of all 

possible configurations, in which case a larger number of iterations would be required to 

rea h an quilibrium distribution that peaks on the true value of k. 

3.9.2 Artificial data: Example 2 visited yet again 

We have already encountered this example twice now. In this section, we use the esti

mated value of q, and we test the performance of the birth-and-death process in deter

mining the number of components of our mixture. f3 = 0.618 turns out to be a good 

value for our overall constant birth rate. After 30000 iterations, the algorithm produces 

a very good approximation of Pr(k = ilX) as shown in Figure (3.8), and as expected, 

the estimated value of k, that is k = 3, is correct. 
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(a) 2D Projection of the data (b) Estimation of Pr(k = i lX) 

Figure 3.8: 3-component MFA with histogram approximating Pr(k = i lX) 

3.9.3 Wine data set (revisited) 

As we said earlier, it is believed that there are three (3) types of wines in these data. 

Our aim in this subsection is to estimate k, and to compare this estimated value to the 

hypoth sis d k = 3. With q = 3 and f3 = 0.15 , the approximation of Pr(k = i/X) after 

15000 it rations is given by Figure (3.9). 

0.3 .. 

o,~ ., TOo i 

f 0.2 .. 

10.15 , .. 

1 2 

Figure 3.9: Estimation of Pr(k = i/X) for the wine data. 
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3.9.4 Iris data set 

This is probably one of the most used datasets in statistical analysis. With p = 4, it is 

fair to recognise that this is clearly not a high-dimensional data. However, for the sake 

of illustration, we shall use our scheme to estimate both q and k for this dataset. 

(a) Estimation of Pr(q = iIX). (b) Estimation of Pr(k = iIX). 

Figure 3.10: Plots for the Iris data 

We first assume that all the 3 hypothesised classes of iris have the same intrinsic dimen

sionality q, and we use our BDMCMC for Factor Analysis to estimate q. As seen on 

Figure {3.10)-left, our simulations seem to be suggesting that q = 2 could be the intrinsic 

dimensionality of the iris data. If we use q = 2 and f3 = 0.618, a run of 10000 iterations 

of the BDMCMC scheme for MFA yields an approximate distribution for k as shown 

in Figure (3.10)-right. From these findings, It seems therefore pretty likely that k = 3 

could be the number of types of iris. 

3.9.5 Model selection for the spiral data 

We encountered the spiral data earlier, and we successfully extracted the underlying one

dimensional intrinsic manifold using Data Augmentation on an MFA with k = 14. In 

this last part of our numerical examples, we use the birth-and-death process to estimate 

k. For this example, f3 = 3.3 turns out to be a "good" overall constant birth rate for the 

process. Compared to the much smaller birth rates used so far, this birth rate causes 

the overall scheme to run for much longer before producing the output. With a run 
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of T = 2000 iterations, the corresponding approximation to the posterior distribution 

Pr(kIX) of k is given below 

..... : .. 
"" 

. 0" 

25 ............. , ... :::: ..... . : .... ........ .,.. 

... : .... , 
. ":'" ..... ..... 

.. ': .. ... . 
... ~,. . .. I······,. 

25 
- 20 - 20 

(a) The spiral data. (b) Estimation of Pr(k = iIX). 

Figure 3.11: The spiral data: how many components? 

Figure (3.11)-right clearly suggests that k for the spiral data is likely to be between 12 

and 15, with k = 14 having the highest frequency as expected. 

3.10 Discussion 

We have developed a stochastic simulation based algorithm for the analysis of the Mix

ture of Factor Analysers model. Our experiments show that our approach performs 

well in parameter stimation, clustering, density estimation and model selection. We 

have not yet tested our sampling scheme on very high-dimensional tasks like handwrit-

ten digits r cognition or image reconstruction, but we are actively working on devising 

faster sampling schemes that should handle such tasks in practically acceptable com

puting tim s. The bulk of our computational burden lies in sampling from the Gamma 

and the Multivariate Gaussian distributions. For large values of q, this sampling can 

be computationally very demanding. There is therefore a need to concentrate on this 

important computational issue, maybe by devising more efficient ways to sample from a 

multivariate Gaussian. One of the main drawbacks of Data Augmentation in this very 

high-dimensional context is the fact that the computation of ergodic averages for factor 

scores requires the storage of a large number of high-dimensional variables through-
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out the sampling process. This easily becomes explosive even for problems with latent 

spaces of moderately high dimensions. We showed earlier how this difficulty can be 

circumvented by avoiding the storage of latent variables during the sampling process. 

Our simulations reveal that the use of an extra layer in': the hierarchical prior structure 
\ 

effectively eliminates singularities and therefore achieves an advantage over the EM algo-
, " , ' 

rithm, for which we noticed many occurrences of singularities. However, despite escaping 
. , '. 

\ " 

singularities, we still noticed rather poor mixing of the chains when k and q were known 
,: :.~. 

and fixed. An improvement on this might come from'the use of tempered transitions, 

and we are exploring a simulated tempering version of our algorithm to achieve better 
1 l,:{:l, I' 

exploration of the posterior surface. We only used :Vague conjugate priors throughout 
i> !,,<' '. 

our study. We did this partly for computationally convenience, but also because these 
f •• ,ttl I" 
, I ! . .' I ,'1,1.":1:' ,:," , ;':. 

priors have produced excellent results in similar conte~ts Richardson and Green (1997), 

Diebolt and Robert (1994) and have somehow become, standard. It would be nice to be 

fully Bayesian and consider the use of more informative' priors, but their incorporation 
! ',I 

in the sampling scheme could be very difficult and ,'c6~td destroy some nice properties 
; i ',,'i; I, • 'J . 

of the Markov chains. Our adaptation of BDMCMC to' 'Pactor Analysis is probably the 
,\ " . , ", 

aspect of our proposed method that does not require !lluch extra work, apart from the 

need to use data-dependent birth rates. It works very well so far on both synthetic and 

real-life tasks. The nested scheme, however, require~ some improvements, especially on 

the derivation of an adaptive birth rate that would evolve dynamically as a likelihood

related function, allowing only likely models to be born. We are exploring ideas from 

van Lieshout (1994), Stoyan, Kendall, and Mecke (1995), Barndorff-Nielsen, Kendall, 

and van Lieshout (1999) to find solutions to this problem. Overall, our results suggest 

that the scheme we have proposed is a good alternative to other existing methods such 

as the EM algorithm, the SMEM and Variational approximations. We believe that a 

careful study of the limitations noticed so far would lead to better sampling schemes 

that would then be fully applicable to truly high-dimensional Machine Learning tasks. 



Chapter 4 

Analysis of the Effect of Covariates 

Creativity, as has been said, consists largely of rearranging what we know in order to 
find out what we do not know ... Hence, to think creatively, we must be able to look 

afresh at what we normally take for granted. 
George Kneller 

We present an extension of the Mixture of Factor Analysers model that investigates the 

effect of fixed observed covariates on both the continuous latent variable (common fac

tor) and the discrete categorical latent variable (component label). The extended model 

allows us to study, not just the relationship between the manifest and the latent vari

ables, but also the influence of external fixed observed covariates on the latent variables. 

Such an extension gives more ingredients and greater flexibility in developing a better 

and more realistic model. We assume a linear model with some Gaussian noise relating 

the continuous latent variable to its corresponding covariate, and we use a polytomous 

logistic regression model to link the discrete categorical latent variable to its correspond

ing covariate. We then derive an EM algorithm for estimating the parameters of the new 

model. Application of the algorithm to synthetic tasks yields good performance under 

suitably chosen initial conditions. This chapter is essentially an extension of Fokoue and 

Titterington (2000c). 
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4.1 Introduction 

In the previous chapter, we presented a Bayesian sampling approach to the analysis of 

the generic MFA model, and we reviewed the main ingredients of the EM algorithm used 

for the Maximum Likelihood estimation of parameters. However, the MFA model, as 

we have studied it so far, focuses solely on the relationship between the manifest vari

ables and the latent variables. This can lead to a neglect of useful information when 

the latent and/or manifest variables are related to fixed observable covariates. In this 

chapter, we only model the effect of covariates on the latent variables. An extension that 

allows covariates on the manifest variables is straightforward. Our extension of the MFA 

model is similar to previous work by various authors. Lee and Shi (1999) have studied 

an extension of the Structural Equation Model (SEM) by allowing fixed observed covari

ates on both the manifest and the latent variables, and have used a Bayesian sampling 

approach for inference and estimation. Thompson, Smith, and Boyle (1998) have in

corporated concomitant information into fixed observed covariates on both the manifest 

and the latent variables in their assessment of diagnostic criteria for diabetes using a 

two-component finite mixture model. Muthen and Shedden (1999) use fixed covariates 

in their study of the extension of finite mixture models with mixture outcomes. Finally, 

Sammel, Ryan, and Legler (1997) also found it useful to incorporate fixed covariates in 

their study of latent variable models for mixed discrete and continuous outcomes. The 

use of fixed observed covariates in the MFA model therefore seems to be justified by 

such great practical interest. In the first part of this chapter, we give a brief review of 

some key ingredients of the MFA model needed in this context. We then present the 

mechanisms by which the covariates are incorporated into the model, after which we give 

a description of how the EM algorithm is derived for the extended MFA model together 

with some expressions used in the iterative EM process. The last part is dedicated to 

simulations on artificial tasks. 
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4.2 Modelling the Effect of Covariates 

Since we are studying an extension of the MFA model, we shall refer to our previous 

form of the model as the generic MFA model. To simplify our description, we shall 

restrict ourselves to generic MFA models with qj = q and 'f:j = 'f: for j = 1" .. ,k. The 

generative equation of the corresponding generic MFA model in such cases is therefore 

x = Ajz + J-lj + e, j = 1, ... ,k. (4.1) 

The main motivation for incorporating covariates into the model can be simply stated as 

follows: latent variables are related to manifest variables via the mechanism that we have 

so far modelled with the generic MFA model. However, situations may arise in which 

those same latent variables are also related to other observables via other mechanisms. 

As far as the MFA model is concerned, we shall focus in this section on the introduction 

of two such additional mechanisms: one for the continuous latent variable Z and the 

other for the discrete categorical latent variable y. Throughout this chapter, we shall 

assume that k and q are known and fixed. 

We first assume that each continuous latent variable Zi is related to a fixed observed 

covariate Wi E IRr through the multivariate linear regression model 

Zi = <I>wi + Vi, (4.2) 

where <I> is the q x r matrix of regression parameters, and Vi E IRq is the error or 

disturbance term with, Vi tv N(O, \l1). As earlier, we restrict ourselves to an orthogonal l 

factor structure, and we therefore assume \l1 to be diagonal, that is \l1 = diag("pl," . ,,,pq). 

Moreover, since the estimation equations in factor analysis are invariant with respect to 

scale changes in the factors, as we explained in Chapter 2, we retain only the simplest 

covariance matrix for Zi, that is \l1 = Iq• Thus, each Zi has a multivariate Gaussian 

distribution, Zi tv Nq (<I>wi' Iq). Essentially, the change brought by the covariate is that 

the factor score now has a nonzero mean, as opposed to the zero mean assumption 

used for the generic MFA model. It is possible to imagine a more general extension in 

1 We assume factor scores to be uncorrelated. 
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which there is a different ~j for each component j of the mixture, and where \lI is a full 

variance-covariance matrix reflecting the fact that factors are allowed to be correlated. 

We restrict ourselves to the case of identical ~ and \lI = I q • 

We also assume that the discrete categorical latent variable y is subject to the influence 

of a fixed observed covariate, u, say. Since y takes i!s values from {I,·.· , k}, a good 

candidate for dealing with this is the widely used polytomous logistic regression model. 

Given a vector u E IRs of covariates, the unconditional classification probabilities are 

therefore defined through the logi t model as follows: 

[
pr(y = jlu) 1 -T - T T 

log Pr(y = klu) = ¢>OJ + c/>j u = CPj u = u CPj for j = I, ... ,k - I, (4.3) 

where 4'>; = (¢>Ij,'" ,¢>s-I,j) E IRs- I and cpJ = (¢>OJ,(fi;) = (¢>OJ,¢>lj,''' ,¢>s_I,j)T E IRs, 

for j = 1,,,' ,k - 1. In the same way, u T = (1, iI.T) E IRs, with it E IRs-I. For 

identifiability, we set CPk = O. It is easy to show from (4.3) that the classification 

probabilities are given by 

k-I for j = 1,'" , k 

1 + L exp( u T c/>j') 

Pr(y = jlu) = j'=1 
1 

(4.4) 

k-I 
for j = k. 

1 + L exp ( u T c/> j' ) 
j'=1 

For simplicity and convenience, we define 7rij( Uj, CPj) = Pr(Yi = jlUi) for j = 1"" , k 

and i = 1" .. ,n. As we shall see later, it turns out to be more convenient to reformulate 

our model here as a multivariate Generalised Linear Model (GLM) for multicategorical 

responses. More specifically, we now consider the (k -I)-dimensional vector of indicator 

variables Yi = (Yil,'" , Yi,k_I)T. We define U j E IR(k-l)sx(k-l)s, c/> E IR(k-l)s, and 

7ri E IRk - 1 as follows: 

U! 
I c/>1 7ril 

U! 
I c/>2 

and 
7ri2 

(4.5) c/>= 7ri= 

CPk-l 7ri,k-l 
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, , 

From the above definitions, the systematic component of our GLM for a given covari-

ate Ui is the vector"'i = U i ¢ = ("'il,'" ,"'i,k_I)T, with "'ij = uT 4>j' for j = 1"" ,k-l. 

The response function here is a vector-valued functio~,1 = (11,'" ,Ik-l), with 

exp(." .. ) ;'1"/": :", 
fj("'i) = f j ("'il , ... ,"'i,k-l) = k-l 'J' .. ,; I j:= 1,,,, ,k - 1, (4.6) 

1 + L exp( 7)'ij' fi," i' 

" /. 

j'=1 ':'" ',:"' .. " 

which allows us to express the 1T'i of equation (4.5) ~~ )~;~' !("'i) = !(Ui ¢). Expressed 
,: '.'1 '( , 

in terms of the link function of the logit model, we)~~ve "'i\= g(1T'i) = U i 4>, where 
, i 

g = (gl! ... ,gk-l) is a vector-valued function such that )',." , '< 
I' ,'/,' II,. • 

\","", ,:.,,' ;' 

gj(1T'i) , gi7ril"" , 7ri,k-t} = log [1 ?,,)i:,,;,! l]' (4.7) 
- 1)il r+-,~," +'7ri k-1 

-I,'(\I,','!,' ,I"i' " , 
'\:, _j I,,; .. I} ,;'," ) \ ; ft' / • :\' l / .: ~ " 

The variance-covariance matrix for a given categori~af~~r~abl~'ili = (Yil,'" ,Yi,k_l)T is 

. (4.8) 

( ' 

It is easy to verify that Ci = diag(1T'i) - 1T'i1T'£. With'4> = {4>1"" ,4>k-tl, our complete 

collection of model parameters is now 8 = {¢, A, JL, E, '<1> }. 
~ ,. 

Note: For economy of notational space, we shall omit the explicit mention of covariates 

and parameters in many of our expressions of probability densities and 

expectations, unless a need for clarity requires it. For instance, we shall simply write 

[xilYi = j] instead of[xilYi = j, Wi, 9], and Pr(y = j) instead of Pr(y = jlu, 8). 

4.3 Elements of estimation and inference 

Modelling the effect of covariates on latent variables can only be fully justified if the 

estimation of latent scores plays a central (key) role in the statistical analysis being 

carried out. It is therefore important in this context to concentrate a large amount 

of effort on addressing the estimation of both posterior expectations of factor scores 
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and posterior classification probabilities. Parameter estimation obviously remains the 

prime focus, since the other inferential tasks depend on it. If we use all the basic 

assumptions of the traditional factor model as seen in the previous chapters, it is easy 

to see that [xilYi = j] I'V Np(Xi; J.1j + Aj<I>Wi' AjAJ + }:). Since Z and e are assumed to 

be independent, 

and, as a result, in each component j of the mixture, we have the following distribution: 

[ : ] ~ ",q+p) ([ ~; +~~~W ] • [ A;{Iq _ :~w T ~T) (I
q 

- E~:~:;T)AJ ]) . 

From theorem (A.I), we derive [zlx, Y = j] I'V Nq(mzlx,Y=j, CZlx,Y=j), where 

mZIX,Y=j <I>w + (Iq - <I>wwT<I>T)AJ (AjAJ + }:)-l (x - J.1j - Aj<I>w). 

CZlx,Y=j - Iq - (Iq - <I>ww T <I>T)AJ (AjAJ +}:) -1 Aj(Iq - <I>ww T <I>T). (4.10) 

Thus, given an observation Xi, a covariate Wi, an assumed value Yij of the label of Xi 

and a set of parameters 8, an estimate of the expected factor score is given by 

lE [zilwi, Xi, Yi = j] = <I>Wi + (Iq - <I>WiWJ <I>T)AJ (AjAJ +}:) -1 (Xi - J.1j - Aj<I>wi)' 

(4.11) 

It is also easy to show that the posterior classification probabilities are now given by 

( I) 
- 'lrijN'p(Xi; J.1j + Aj<I>wi, AjAJ +}:) 

Pr Yij = 1 Xi - -:-k ------'-----'----"--'::......---- (4.12) 

L: 'lrij'N'p(Xi; J.1j' + Aj'<I>wi' Aj'Aj, + }:) 
j'=1 

where'lrij = 'lrij(Ui, <Pj) = Pr(Yij = 1). Here, Yij is an indicator variable as defined earlier, 

and it is easy to see that lE[Yijlxi] = Pr(Yij = llxi)' 

4.4 Parameter estimation via the EM algorithm 

The above estimates of posterior expected factor scores (4.11) and posterior classification 

probabilities (4.12) presuppose the existence of a set of parameter estimates. In this 
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chapter, we only tackle parameter estimation from a likelihood-based perspective via 

the EM algorithm. The EM algorithm for this extended MFA model makes extensive 

use of elements from Chapter 3. In fact, the joint density of all the variables is now 

p(X, y, z) = p(xly, z)p(ylu)p(zlw), ( 4.13) 

and the corresponding complete-data log-likelihood of the model is therefore given by 

n k n k n 

£(0; X*) = L LYij logp(xilYij = 1, Zi) + L LYij log 7rij + L logp(zilwi). 
i=1 j=1 i=1 j=1 i=1 

( 4.14) 

4.4.1 Constructing the E-step 

As usual, we need to construct an analytical expression of the expectation of the complete

data log-likelihood Q(OIO(t») with respect to the joint conditional distribution of our 

latent variables Cy, z) given X and O(t), which is defined as 

(4.15) 

Our expectations are taken with respect to the joint distribution of (y, z) conditional on 

X and O(t), and we therefore simply use lE instead of E(y,z). Based on the expression 

of .f(0, X*) in equation (4.14), the formation of an analytical expression for Q(OIO(t») in 

( 4.15) requires analytical expressions for a~? = lE [Yij I Xi, O( t) ] , b~;) = E [Zi I Yij = 1, Xi, O( t) ] , 

C~~) = E [zizllYij = 1, Xi, O(t)] , lE [zilxi' O(t)] and finally lE [ZiZl!Xi, O(t)]. From the 

fact that E(y,z) [zdXi,O(t)] = lEy [lEz [zilxi' Yi' O(t)]] , we easily derive 

k k 

[ I (t)] -" (t)b(t) d 1(;' [ . TI . O(t)] - '"' (t)c(t) lE Zi Xi, 0 - L..J aij ij an Jc. Z,Zi X" - L..J aij ij' 
j=1 j=1 

(4.16) 

With the above expressions clearly defined, the derivation of the expression of Q(O, O(t») 

turns out to be straightforward, making the E-step an easy one in this case. However, 

as we shall see later, some of the parameters do not allow direct analytical updating at 

the M-step. Nevertheless, the good news is that the Newton-Raphson iteration used to 

find new updates turns out to behave well, thanks to the good properties of the function 

of interest. 
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4.4.2 Estimating l/> to obtain the mixing proportions 

With the incorporation of fixed observed covariates into our model, we now have to obtain 

the mixing proportions through their corresponding parameters CPj. As a function of cP, 

our expected log-likelihood function Q can be written as 

(4.17) 

Recall that our aim at the M-Step is to find a new ¢ that maximises Q( cjJ) subject to 

k 

L7rij = 1 and 
j=1 

k 

LaU) = 1. 
j=1 

Estimation of cP for a 2-component mixture 

(4.18) 

We first restrict ourselves to a 2-component mixture in order to gain more insights into 

the estimation of cpo In fact, if we only have two components, then y has a Bernoulli 

distribution Ber(7r), where 7r = 7r(cp, u) is a function of u and cjJ defined as follows: 

(4.19) 

From (4.19) and (4.18), our expected log-likelihood function Q in this binary case is now 

n 

Q(cjJ) = 2: a~t) log(7ri) + (1- a~t») log(l - 7ri). ( 4.20) 
i=1 

It is easy to see that Q( cjJ) is a nonlinear function of cpo On the other hand, it is important 

to note that the form of Q ( cjJ) does not allow the derivation of a closed-form expression 

for its maximiser. We use Newton-Raphson iteration to find the maximiser, which in 

this case is obtained by solving the equation ~~ = o. 

DQ a~t) - 7ri 07ri 
- = ( ) and 0'" = 7ri(l - 7ri)Ui 
D7r; 7ri 1 - 7ri 'f' 

(4.21 ) 

h · I DQ DQ D7ri .. . h r d fi d th t If we use the c am ru e DcjJ = 07r; ocjJ' It IS stralg tlorwar to n a 

oQ ~ ( (t) ) ( ) ocjJ = LJ ai - tri Ui = F cjJ . 
i=1 

(4.22) 
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The Jacobian matrix J ( cp) in this case is given by 

8F n 
J(,I..) = - = - '""' 7r o (l - 7r o)uou! '¥ 8c/> L- I I I I' 

i=l 

(4.23) 

With F and J thus defined, the update c/>(t+l) of cp at iteration t + 1 of the EM algorithm 

is obtained by the following Newton-Raphson iteration. 

Algorithm 12: Newton-Raphson Iteration for updating cp(t) 

Set m:= 1 and c/>new(m) := cp(t), and choose Tol 
Repeat 

m:=m+1; 
c/>new(m) := cpnew(m _ 1) - J-l(cpnew(m - l))F(c/>new(m - 1)); 

Until (1Icpnew(m) - cpnew(m - 1)11 < Tol) or (m = mmax) 
cp(t+!) := c/>new(m) 

At each iteration of the EM algorithm, Algorithm 12 is applied to c/>(t). It is important 

to point out that, although simple in its formulation, the behaviour of Algorithm 12, in 

terms of convergence and stability, depends heavily on the accuracy of initial guesses 

and the existence of J-l(cp). 

Property 4.1 According to a standard Newton-Raphson property, Algorithm 12 achieves 

local quadratic convergence if its initial values are accurate enough and J-l(c/>j) exists. 

Proposition 4.1 The Jacobian matrix J ( cp) defined by (4.23) is negative definite. 

Proof: Since UiUJ is a positive definite matrix, and the term 7ri(l - 7ri) is a positive 

number, the sum E?:l 7ri(l - 7ri)UiUJ is therefore a positive definite matrix, and as a 

result, J (cp) is a negative definite matrix. 0 

Remark: Since J( c/» is negative definite, J-1 (cp) exists, and Algorithm 12 should there

fore require very few iterations to yield the desired updates. 

Estimation of c/> for a k-component mixture 

If we use the GLM formulation of Section (4.2), then we can rewrite Q(¢) as 

n 

Q(cp) ex 2: [[a~t)]Tl1i - b(l1i)], (4.24) 
i=l 
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where a;t) = (a;~), ... ,a~~_I)T and b(11i) = log(1 + E;;:: exp(11ij)), so that 8~(11i) = 7ri. 
, 11i 

. 81r i 82b( 11i) 
It IS also easy to show that a-: = 8 2 = Ci(<!»,'where Ci (4)) is as defined in (4.8). 

11l 11i " : 
81r' 87r' 811' 87r' , " ' 

We use the chain rule 8~ = 811; 8~ = 811;Ui = Ci(~),Ui" . From the above definition 

of Q in (4.24), and considering the fact that our logistiC link function is a canonical 
, '. 

t • "1' 

link function, a well established result in GLM theor~~IMcCullagh and NeIder (1989), 
.,1'/,.',,: " 

Fahrmeir and Tutz (1994) allows us to easily derive F'~nd J as follows: 

,; 8F,i n 

and J(4)) i ,:84>:) - ~ ujCi(<!»Ui . (4.25) 
;'{.:,\,I:, :': l' ,1=1 
I' \'" ,,'1' I 

Proposition 4.2 The Jacobian matrix J(4)) defined btl (4.25) is negative definite. 
!.",': 1\' " 
I "i ", " 

. It.l,I/~'/III":\'·:',<:·,~.·"I .. 
The proof of the above proposition is straightforw~~d,\J)in¢e )J( <!» is negative, )-1 (4)) 

\ I ~ : :., I: I " .' . I',' . i 

exists, and a conveniently extended version of Algorithm 12 should have quadratic local 
, , 

convergence to the update <!>(t+1). 
. '" I,. 

'It, ,'., • 

4.4.3 

III ::1.. :.:.:'1, ' 
~ , ' '. . ':' I '" " \ . 

i '~'" , ' , 

Estimating the regression para~e'ie~s ';4, 
, I, \ ~..: I' 'I'" , • \ 'F 

,I, ,,, ,:; ::::, ',' 

'",' I As a function of <I>, Q can be written as 
ii' " , I 

n k n I 

Q(<p) = """"a~~)w!<pTw-lb~~) -! ~w!<I>Tw-l<I>W' 
L..J L..J '1' '1 2 ~ I I I' 

i=1 j=1 i=1 I 
" \ . 

The maximiser of Q( <I» is given by 

~(t+1) = [t,talYbi;lwr] [~'~;,w~r 
The equations for updating the rest of parameters 1', A, E have the same form as the 

ones derived in Chapter 3 for the generic MFA model, 'although it must be noted that 

a~9, b~~) and C~~) are computed differently when covariates are used. The details of the 
11 '1 '1 

derivation are provided in Sections B.2.3, B.2.4 and B.2.5 of Appendix (B). 
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(HI) 
J-lj - [~ a~~) (x. _ A ~t)b(~»)] [~a~t~]-I 

~ tJ ' J tJ ~ " J 
i=I i'=1 

A ~Hl) -J [t alJ) (Xi - lij'+1») (bl;f] [~al:] Cl:f' 

E(HI) - ~diag [t t aW ("'. - 4+1) - AjHI)bly) ("'. - lij'+I») T] 

4.4.4 Identifiability and other estimation difficulties 

To gain insights into the extent of our identifiability problem, recall that we now have 

(4.26) 

the corresponding marginal density of Xi being a mixture with the density 

k 

P(Xi) = L 7rijN'p(Xi; J-lj + A/I> Wi , AjAJ + E). (4.27) 
j=I 

As we discussed extensively earlier, the generic MFA model itself already poses two main 

identifiability problems, one of which is brought about by the factor model, while the 

other is caused by the invariance of the mixture density to relabelling. Our approach has 

so far consisted and will once again consist of restricting the model to allow the determi

nation of a unique set of parameters characterising our model. Besides the inherent lack 

of identifiability of the generic MFA model on which our extension is based, we have to 

contend here with new aspects of identifiability. As remarked by Titterington, Smith, 

and Makov (1985), it is difficult to give general rules for model identification, so that 

this difficult issue is always tackled according to the task at hand. Let us consider an 

unconstrained underlying local FA model, and a q x q orthogonal transformation r such 

that rTr = rrT = Iq• Given our set 8 = {cjJ, A, IL, E, <I>} of parameters, we apply the 

following transformations: <I> = r T <I> and Aj = Ajr. It is easy to see that both the mean 

and the covariance matrix in (4.26) remain unchanged if we substitute Aj and <I> by Aj 
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and <J, respectively. The parameter set iJ = {cp, A, IL,~, <J,} is therefore equivalent to (J, 

and we conclude that the model as defined is not identifiable. However, if we constrain 

each local factor analyser as we did in Section (2.2.3), iJ = {cp, A, I',~, <J,} will define 

an entirely new model, since transformations will lead to a violation of our restrictions 

on the structure with parameters not satisfying our constraints. The identifiability of 

our extended model is therefore achieved by the constraints imposed on the local factor 

analysers. 

4.5 Application to synthetic tasks 

Our examples in this chapter are all based on synthetic datasets. Since our fixed observed 

covariates are all assumed to be continuous variables, we generate datasets of covariates 

from multivariate Gaussians with some chosen mean and variance. Once the two sets 

of covariates are formed, the generation of z follows easily. As the derivation of our 

EM algorithm shows, the estimation equations for IL, A, ~ are very much the same 

as those obtained for the EM for the generic MFA model. On the other hand, the 

estimation equation for <I> is very straightforward. We shall therefore only concentrate 

on the estimates of 4>, since the estimation is done via a new mechanism that we wish 

to explain and interpret. 

4.5.1 Example 1 

We first consider a relatively simple case where the underlying factor model has intrinsic 

dimensionality q = 1. For this toy problem, we choose p = 3, r = 1, and s = 2. Our 

true parameters are the following: 4>I = (-0.3,0.9), 4>J = (0.60, -0040), <I> = 2.7 and 

E = diag(O.01, 0.05, 0.02). We use the above parameters to generate n = 155 observations 

from a k = 3-component mixture of factor analysers. We also generate the corresponding 

covariates for z and y. A 3-D plot of the data is given below in Figure (4.1). In our 

artificial dataset, we have nl = 69, n2 = 52 and n3 = 34, which translates into the 

following mixing proportions: 11"1 = 0.44, 11"2 = 0.35 and 11"3 = 0.21. 
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Figure 4.1: 3D plot of a 3-component MFA, with q = 1. 

The good news. The application of our estimation scheme to this task yields en

couraging results. It is particularly encouraging to point out that the Newton-Raphson 

iteration used to update the ¢j'S had quadratic local convergence. In fact , in many cases, 

fewer than 3 Newton-Raphson iterations are required to produce the update ¢ (t+1) at 

each EM iteration, up to a point where one could think of using a one-step Newton-

Raphson updating instead of full Newton-Raphson described by Algorithm 12. For this 

particular task, we obtain ~i = (-0.42, 0.97)T and ~~ = (0.74, -0.36)T, which are very 

accurate. As far as the estimation of expected latent scores is concerned, it is also en

couraging to note that the scheme achieves 100% correct clustering for the training data, 

with the above estimates of ¢ allowing us to find very accurate estimates of the mixing 

proportions, namely 7r1 = 0.44, 7r2 = 0.34 and 7r3 = 0.22. 

4.5.2 Example 2 

Our second example is also a toy problem, with the only difference that we consider 

more components and more covariates on the component label than earlier. Here, ¢i = 

(- 0.3, 0.5, 0.10), ¢~ = (0.60, -0.40, - 0.20) and ¢J = (- 0.50, 0.40, - 0.30). We use 

s = 3, and k = 4. Our mixing proportions in this case are 7r1 = 0.352, 7r2 = 0.252, 

7r3 = 0.160 and 7r4 = 0.236, which correspond to nl = 88, n2 = 63, n3 = 40 and 
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n4 = 59 for our sample of n = 250 observations. Again, the algorithm achieves good local 

quadratic convergence when initial values are close enough to the true values of interest. 

For instance, using either of ¢iO) = (-0040,0.90, 0.00) T, 4>~O) = (0.60,0.40,0.00) T, and 

4>~O) (0.00, 0.00, o.oof, or ¢~O) = (0.00,0.00, O.OO)T, ¢~O) = (0.00,0.00, O.OO)T, and 

4>~O) (0.00,0.00, O.OO)T as initial estimates yields, q;r = (-0.21,0.41, O.l1)T, i>r = 

(0.65, -0.56, -0.08)T and q;r = (-0.30,0.05, -0.14)T, corresponding to 7ft = 0.345, 

7r2 = 0.258, 7r3 = 0.160 and 7r3 = 0.236, all of which are very good estimates. 

The bad news. However, the scheme still suffers from the weaknesses of both the EM 

and the Newton-Raphson algorithms, namely 

• Dependence on initial conditions. Although we obtain relatively accurate es

timates for this example using two different sets of initial values, we also experience 

total lack of convergence with some sets of initial values, especially those not close 

enough to the neighbourhood of the true values of interest. For instance, 4>~O) = 

(-2.00, 0.00, O.OO)T, ¢~O) = (O.OO,-l.OO,O.OO)T, and ¢~O) = (O.OO,O.OO,-l.OO)T 

fails to produce any meaningful set of estimates. This is typical of Newton-Raphson 

iteration, because of its essentially local behaviour. 

• Inability to escape local maxima. Once a fixed point is found, the scheme tends 

to remain there, no matter how long we iterate. In the event that the fixed point 

is far from the true value sought, the algorithm fails and yields very inaccurate 

estimates. 

4.6 Outline of a Bayesian treatment 

A natural alternative to the EM algorithm that we have just studied is the Bayesian 

treatment of the model. In our analysis of the generic MFA model, we found that 

the model allowed the use of conjugate priors, and we used Bayesian sampling on the 

complete-data posterior to perform estimation and inference. If we consider our set of 

parameters 0 and the form of the likelihood for the extended MFA model, it is easy to 

see that we can still use the same priors for 1-', A and E. As far as the two newcomers 
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tP and cI> are concerned, a Gaussian prior on the columns or rows of cI> should lead to a 

full conditional posterior that is also Gaussian. The only parameter that could demand 

extra concentration of effort in this case is tP. In fact, a good candidate prior for each CPj 

is a Gaussian prior. Let us consider deriving the corresponding full conditional posterior 

p(.pj I ... ) DC [fpp( Xi Iy" Zi)Pr(y, = j lUi) J"'] p(.pj). (4.28) 

In (4.28), p(cpj) is Gaussian, and p(xiIYi, Zi) is also Gaussian, but the logistic distri

bution function Pr(Yi = jlUi) is non-Gaussian, so that the derivation of p(tPjl"') is 

not straightforward. One of the classical solutions to this problem is the use of approx

imations, namely the Laplace approximation. This Laplace approximation consists of 

approximating the logistic function by a Gaussian, which then allows the derivation of 

an approximate Gaussian full conditional posterior p{cpjl"')' We will be exploring this 

Bayesian treatment in our future work. 

4.7 Conclusion and discussion 

In this chapter, we have studied an extension of the MFA model motivated by the possi

bility that latent variables could be affected by fixed observed covariates. The EM algo

rithm for this extended model is found to perform well, despite the need for approximate 

Newton-Raphson updates. Despite some of the weaknesses of the EM algorithm and 

the Newton-Raphson iterations, the scheme allows us to obtain reasonably accurate pa

rameter estimates. Last but not least, it is worth mentioning that the Newton-Raphson 

iteration provides an extra advantage which is an estimate of the variance-covariance 

matrix of the maximum likelihood estimate. 

While it is possible to extend the covariate mechanism on Z by allowing a different cI>j 

for each component, it must be noted that such an extension could run into greater 

identifiability problems, partly because of the invariance to permutations of labels. 

We have so far tested our inference and estimation algorithm only on artificial tasks, but 

we would like to use it on real life applications. In our future investigations, we plan to 

address identifiability by implementing a constrained version of the EM algorithm. 
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MFA models with mixed',outcomes 
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An expert is someone who knows som(oj,the worst mistakes, 
which can be made, in a veryj)iarrow'jield. 

'(I,t' L • 

Niels Bohr :',' 'I,"" 

r ,'" ( 

In all our analyses so far, we have treated the manifest variable x in the pure spirit 
;1,'("1 

of traditional factor analysis which assumes x to be', l~ector 'of continuous attributes. 
! I~ .. "/ ; _~; "., ,:' \' , 

While there are many practical applications for whieh' ,this is the case, fields such as 
~ ~ I : t ; f . 

social science, psychology and psychometrics are full of applications where the manifest 
i ,; 

variable is made up of attributes of various different types (continuous, categorical, 
; , 

counts). Many authors have studied various models allowing the observed quantities 

to be a mix of continuous and non-continuous ran do in variables. Sammel, Ryan, and 

Legler (1997) for instance have studied latent variable models for mixed discrete and 

continuous outcomes, and have used their scheme on medical applications. Along the 

same lines, Shi and Lee (2000) have explored the analysis of latent variable models with 

mixed continuous and polytomous data, with applications to a variety of problems in 

psychology. Finally, in their study of finite mixture modelling with mixture outcomes 

using the EM Algorithm, Muthen and Shedden (1999) touched on some extensions of 

latent variable models that allow the manifest variable to be made up of attributes of 

different types. Extending our MFA model so as to allow it to handle such applications 

is therefore fully justified. 

In this chapter, we introduce and study such an extension of the MFA model, and 
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in particular we examine such issues as parameter estimation and prediction from a 

likelihood-based perspective via the EM algorithm. Thanks to the axiom of conditional 

independence that we introduced in Chapter 1, we are able to treat each manifest at

tribute (variable) separately, and this allows the whole extended model to be treated 

as a collection of Generalised Linear Models (GLM). Although the resulting model does 

not allow the derivation of closed-form expressions for both the E-step and the M-step 

of the corresponding EM algorithm, it turns out that relatively simple Monte Carlo ap

proximations make it possible to compute parameter estimates efficiently. This chapter 

is an extension of Fokoue and Titterington (2000b). 

5.1 Introducing Mixed Outcomes 

As we saw in Chapter 1, one of the pillars of latent variable modelling is the axiom 

of conditional independence introduced and explained in Section (1.6). Intuitively, this 

means that, under the factor analysis assumptions, the variables that constitute the 

observed vector become independent once the common factors are known, since these 

common factors account for the inter-dependence among the observations. In other 

words, in the particular case of the MFA model, the conditional distribution of the 

p-dimensional observed vector x T = (Xl,'" ,Xp) given both the common factors and 

the component labels is the product (5.1) of the conditional distributions of each of its 

individual attributes: 

p 

p(xly,z) = IIp(xhly,z). (5.1) 
h=l 

Thanks to this conditional independence, the conditional distribution of each outcome 

(attribute of the manifest vector) can therefore be modelled separately. 

5.1.1 Model for a single outcome 

Defore we embark on the analysis of mixed outcomes, it makes sense to go back to the 

generic MFA model and see how we can model the conditional distribution p(xhly, z) 
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of each Xh, h = 1"" ,p, separately under the normality assumptions of the traditional 

factor analysis model. In the context of equation (3.9), we will end up with p equations 

of classical linear models for normal responses, namely 

-AT TA Xh - jh. Z + J..ljh + eh = Z jh. + J..ljh + eh, (5.2) 

where eh '" N(O, a~), since the disturbance vector e is distributed as .Np(o,~) with 

E = diag(a~, ... ,a;). In this simple and essentially illustrative case, all the outcomes 

have the same conditional distribution, namely the normal distribution. In the next 

section, we examine a generalisation of this simple case, by allowing the conditional 

distribution of each Xh to be different. 

Note: Given a sample X = {Xi, ... ,xn } of Li.d observations, we shall first concentrate 

on the specification of the distributional aspects of Xih which is the h-th outcome of the i

th observation Xi, with i = 1"" ,n and h = 1"" ,po For economy of notation, we shall 

from now on simply write Pr(Xihl··· ) or IE; [Xihl···J instead of the full Pr(XihlYi = j, Zi, 0) 

or lE [XihlYi = j, Zi, 0] respectively. 

5.1.2 Generalised Linear Model formulation 

In order to fully specify the conditional distribution of the single outcome Xh, we re

formulate the conditional model for Xh as a Generalised Linear Model McCullagh and 

NeIder (1989),Fahrmeir and Tutz (1994). We first consider the simple case of a normally 

distributed Xh, which in a sense is equivalent to simply extracting each attribute of the 

manifest variable from the factor analysis model as we did in the previous section. 

1. The Random Component: this is represented here by the random disturbance 

term eh, and comes from our distributional assumption about the model. For 

some types of outcome (categorical for example), we may not be able to write an 

equation for the outcome as in (5.2), and specifying the random component of the 

GLM would therefore simply mean indicating the assumed probability distribution 

of the outcome, and defining the corresponding mean mjh = IE; [xhl·· .J. 
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2. The Systematic Component: this is represented here by the linear expression in 

the parameters 77jh = z T Ajh. + J..Ljh. If we define iT = (z, 1) and 13Th = (ATh., J..Ljh) 

then we can write 77jh = iT {3jh, where i and {3jh are both (q + I)-dimensional 

column vectors. This is a result of our structural assumption about the model. 

3. The Link between systematic and random components 

mjh = 1(77jh) where 10 is referred to as the response function. We can also write 

77jh = g(mjh) where g(.) is referred to as the link function. 

We further assume that the density of each outcome Xih can be expressed as a regular 

exponential family density with canonical parameterisation as follows: 

(5.3) 

In (5.3), b(·) and c(·) are specific functions defining the type of exponential family under 

consideration, 'Ph is an additional scale or dispersion parameter, and 77jh is referred 

to as the natural parameter. The canonical parameterisation of (5.3) offers the great 

advantage that it is a general formulation, and can therefore be used for the analysis 

of different types of outcomes by simply specifying 'Ph' b(77jh) and Ch(Xih, 'Ph) for the 

outcome of interest. In many of our subsequent developments, we will need expressions 

for the mean mjh = E [Xihl···J and the variance Vjh = V[Xihl···J of Xih' In fact, we have 

(5.4) 

For all the types of outcomes that we shall consider, Fahrmeir and Tutz (1994) provides 

a table that offers all the above ingredients, namely 'Ph, b(77jh), C(77jh) , mjh, Vjh . 

5.2 Exploring different types of outcomes 

Our introduction to GLM in Section (5.1.2) gives an example of continuous outcome 

with Gaussian random noise. We now present a more detailed description of the GLMs 

for the different types of outcome that we intend to analyse. 
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• Categorical outcome: If Xh is categorial, then a good candidate for modelling it 

is the logistic regression model. For a simple binary case, we have Xh E {O, I}, and 

Xh follows a Bernoulli distribution with 

[ 
exp(11 'h) 

mjh = lE Xihl···J = Pr(Xih = 11 ... ) = J, 
__ 1 + exp(11jh) 

(5.5) 

exp(·) . 
so that our response function is the logistic function J ( .) = ( ). ThIS can 

1 + exp . 

also be expressed in terms of the logit link function as 11jh = log [ mjh ], which 
1- mjh 

defines the log odds. For a Bernoulli distributed outcome, <Ph = 1, and b(11jh) = 

• Gaussian outcome: As we saw earlier, the Gaussian outcome is the most natural 

of all. In fact, in the Gaussian case, both the link function and the response function 

are simply identity functions, and we have 

For a normally distributed outcome, <Ph = a~, and b(11jh) = 11]h/2 . 

• Poisson outcome: For an Xh following a Poisson distribution, we need to make 

sure that mjh > 0 since this mjh is both the mean and the variance of the Poisson 

distributed random outcome. A good candidate for the response function is obvi

ously the exponential function, and this leads us to the log-linear Poisson model. 

We can therefore write 11jh = log mjh which is equivalent to 

(5.7) 

For a Poisson distributed outcome, <Ph = 1, and b(11jh) = exp(11jh)· 

5.3 Elements of Estimation and Inference 

Among the variety of interesting issues that could be addressed for this extended model, 

the estimation of latent scores (categorical and continuous) occupies a central place. 
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However, the estimation of the parameters that characterise the relationship between 

each outcome and the latent variables remains the I?ost important issue. We define 

{3j = ({jjl,'" ,{3jp), {3 = ({3l'oo. ,13k) and tp = (tp~~~:~,tpp), so that the complete 
I ( I I 

collection of all the parameters of the model is 6 ,=: {{3, 'tp, 1T'}. In this chapter, we 
, ,I, •. ' 

examine the maximum likelihood estimation of param~t'ers '~ia the EM algorithm. As 
',' ,,1";":'" 

we shall see in the next section, the EM algorithm in this case is not as straightforward 
I (,' . 

\ ' 

as the one constructed in Chapter 3, but the extra computational effort required is 
\': " 

; I " 

not alarming. If we simply consider the extension of t~7' generic MFA model, then our 

complete-data likelihood is 

(5.8) 

L(6;X') = fr fD [({IP(XihIZil Yi j )) pr(~;;,),~I~.)] fJij P(ZiIWi)]. (5.9) 
I-I U-l h-l : ",\',',. ' 

! \.: ,., I (,i ,I) .! :' , ;',1 \ 

For simplicity, we ignore the effects of fixed covariates iIi this analysis of mixed outcomes. 
I i I I " , ' 

Thus, we shall concentrate on the complete-data likelihood of equation (5.8) throughout 
, ' 

I; , 

this chapter. The analysis of an extension that allo~s covariates follows from this one. 

The complete-data loglikelihood corresponding to (5.8) is given by 

n k p n k 

l(6,X*) = LLLyijlogp(XihIYij,zi) + LLyij log7rj. (5.10) 
i=1 j=1 h=1 i=1 j=1 

If we use the GLM general formulation of equation (5.3), l(6, X*) becomes 

n k p n k 

l(6, X*) = L L LYij [(Xihl1jh - b(l1jh))/tph + C(Xih, tph)] + L LYij 10g7rj. 

i=1 j=1 h=1 i=1 j=1 

(5.11) 

We define the scores of the i-th observation and the entire sample respectively as 

(5.12) 
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5.4 An EM Algorithm for the model 

Our main ingredient for the derivation of the EM algorithm is Q(OIO{t)), the expectation 

(5.13) of £(0; X*) with respect to the conditional distribution p(y, zlx, O(t)) of y and z 

given the observed data X and the current set of parameter estimates O(t). 

In our previous analyses, the manifest variable x had a Gaussian distribution, and 

this made the computation of the conditional expectations E [Yijlxi], E [ZiYijlxi] and 

E [zizi Yijlxi] straightforward, allowing us to have a closed-form expression for Q(OIO(t)) 

by direct manipulation of expectations (see Chapters 2, 3, and 4). In this new extended 

model, the manifest variable x is no longer Gaussian. Moreover, the situation is made 

even more complicated by the "mixed" nature of x that does not allow a closed-form 

expression for p(y, zlx, o(t)). As a result, all expectations with respect to p(y, zlx, oct)) 

involve integrals that are intractable. \Ve therefore need to "efficiently" compute (hope

fully) accurate approximations to the expectations of interest. 

-
5.4.1 Notations and remarks 

All our expectations are taken with respect to p(y, zlx, O(t)). We therefore simply write 

lE[g(x;y,z)] instead ofE [g(x;y,z)lx,O(t)], so that we have 

lE [g(x; y, z)) = / /11, g(x; y, z)p(y, zlx, O(t))dydz. (5.14) 

Under the regularity conditions that allow the interchange of differentiation and integra-

tion, we have 

(5.15) 

At the M-step, our aim is to solve :0 Q(OIO(t)) = :olE [£(0, X*)] = O. As we shall see 

later, it will turn out to be more convenient (mathematically) in many cases to use the 

above regularity conditions and instead solve the expected score equation lE [8(0)] = O. 
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5.4.2 Approximating intractable expectations 

As we remarked earlier, the integrals needed for the computation of our expectations are 

all high-dimensional non-Gaussian integrals for which closed-form expressions cannot be 

obtained. The two main approximation methods that are most commonly used to tackle 

this intractability are: (a) the Monte Carlo approximation and (b) the Gauss-Hermite 

quadrature approximation. Sammel, Ryan, and Legler (1997) examined both approxi

mations in their work, and found the Gauss-Hermite quadrature to be faster in reaching 

convergence. Our main focus in this chapter is on the Monte Carlo approximation. We 

give an outline of the Gauss-Hermite quadrature approximation at the end of the chapter. 

5.4.3 Monte Carlo E-Step 

If we could sample directly from p(y, zlx, O(t)), then we would simply draw a sample 

(Yl' Zl),' .. '(YD' ZD), and a straightforward Monte Carlo approximation to:IE [g(x; y, z)] 

would be given by 

(5.16) 

However, since we do not have a closed-form expression for p(y, zlx, O(t)) in our context, 

such a direct sampling is not possible. To solve the problem, we write p(y, zlx, O(t)) as 

Since Y is a discrete categorical random variable with Pr(y = jIO(t)) = 1rY), we can write 
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Equations (5.17) and (5.18) allow us to rewrite JE [g(x; y, z)] as 

JE [g(x; y, z)] 
1 k g(x; y, z)p(x/y, z, (}(t))p(y/(}(t))p(z/(}(t))dydz 

1 11£ p(x/y, z, O(t))p(y/O(t))p(z/(}(t))dydz 

k 

~ l.-j') g( "'; y = j, z )p( '" /y = j, z, O(t»p(z/IJCt) )dz 

k f,; l.-j~)p(",/y = j', z, O(t»p(z/O(t»dz 

for which the Monte Carlo approximation is given by 

D 

L g(x; Yd' Zd)P(X/Yd' Zd, O(t)) 
JE [g(x; y, z)] ~ -=-d=--=:l--

D 
______ _ 

LP(X/Yd' Zd, O(t)) 
d=l 

(5.19) 

(5.20) 

and where the samples (Yd' Zd) with d = 1"" ,D are samples drawn from p(yl0(t)) 

and p(z/(}(t)) respectively. p(y/(}(t)) is the multinomial distribution y "" Mn(k; 71") and 

p(z/O(t)) is the standard multivariate Gaussian distribution, both of which are distribu

tions that can be simulated easily. It is also possible to avoid sampling y, in which case 

the Monte Carlo approximation is given by 

k D 

L L g(x; y = j, zd)7rjt)p(xly = j, Zd, (}(t)) 

j=l d=l 
JE [g(x; y, z)] ~ k D (5.21) 

L L 7rj~)p(x/y = j', Zd, O(t)) 
j'=l d=l 

Remark: The obvious advantage of (5.21) over (5.20) is that with (5.21) we avoid the 

sampling of y. However, it must be said that this is done at the expense of an extra loop 

on k which could become computationally burdensome for large k and large D. 

Note: One of the main drawbacks of this Monte Carlo approach is its slowness to 

converge. In fact, to get accurate approximations, large samples are required, and this 

is very time consuming in multivariate settings such as ours. Sammel, Ryan, and Legler 

(1997) have reported T = 10000 as the number of iterations needed to get accurate 

estimates. 
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In pseudocode form, computing (5.20) can be described as follows: 

Algorithm 13: Computing expectation JE [g(x; y, z)) 

Set N := 0 and D := 0; 
For d:= 1 to D 

Simulate Yd rv Mn(k, 7r(t»); 
Simulate Zd rv Nq(O, Iq); 
Compute g(x; Yd' Zd); 
Compute P(XIYd, Zd); 

1* Choose component *1 
1* Draw a common factor *1 

Set N:= N + g(x; Yd, zd)p(xIYd, Zd); 
Set D:= D + P(XIYd' Zd); 

End· , 
Set lE [g(x; y, z)) ~ N/D; 

5.4.4 Constructing the Maximisation step 

As we said earlier, our M-step consists of solving the expected score equation 

n 

JE [8(0)) = L E [8i (0)) = 0, 
;=1 

where 

(5.22) 

(5.23) 

Clearly, our complete-data loglikelihood function (5.11) has two main parts: (a) one that 

contains the conditional distribution of the manifest variables, and the other (b) that 

contains elements of the distribution of the categorical latent variable y. For the second 

part (b) of £(0, X*), the expression of the update 7ry+1) of 7ry) can be easily written. 

However, because of the nonlinearity of some of the terms involved, we will resort to the 

Fisher scoring method to find updates 0(t+1) of O(t) for part (a) of the loglikelihood. 

5.4.5 Updating the mixing proportions 

To determine the updates 7ry+1) of the mixing proportions at the M-step, we consider 

n k 

£(7r, X*) = L LYij log7rj. (5.24) 
;=1 j=l 
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( i,",; . 

If we use the Lagrange multiplier method to maximise l( 1r ,,X·) subject to the constraint 
,'I ' 

E;=17rj = 1, then it is easy to see that '> 

" 
n " '\ 

(t+1) - .!. '"'" lE [ .1 .J t',:: .. '.' ',. 
7rj - ~ YJ X, . " I ' 

n i=1 ,"", .. ' 
; '\ I ", ~ \ • I. ( 

(5.25) 

Recall that Yj is a indicator variable. Therefore Yj fo1l6Ws a' Bernoulli distribution with 
.,,) I ii' 

parameter 7rY). Hence E [YjlxiJ = Pr(y = jlxi, ott)) :,'1 ,";!if'(y = j, ZIXi, O(t))dz, allowing 

us to write .;;\ , . 
',:··:l'· " 

lE x = L 7rJ'}p(xIY = i, %, 9(t»)p(~19U»d% 
[YJI ,] k ':";l;':\', ~. (5.26) 

L r 7r;~)p(xIY = j', z, ~(?~?(Z,I~(t~)dz 
],-1 J Z ' I' q '"" , 

- I j . J: .,I,f 'I ~ ','I ,',\ I' t 

.1, J ~ "~ l:'i (, 'J.":'\{" < "{ . 
The Monte Carlo approximation to E [Yj Ixd in this' c~~~is' th~refore given by 

(5.27) 

, 
An update of 7rjt+1) via Monte Carlo approximation 'would therefore be 

(t+1) - .! ~ D .. 
7rj - ~ IJ" 

n . 1 s= 

(5.28) 

5.4.6 Updating the GLM parameters, 

Because of the nonlinearity of the functionals of interest, we will use a Newton-Raphson 

type scheme to update our GLM parameters at each step. In general, we need to estimate 

the parameter {3jh that characterises the effect of the h-th outcome in the j-th component 
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of the mixture. If we focus on the part of the loglikelihood function that involves the 

GLM model, it is easy to show that a general expression for the expected score is 

With (5.29) and (5.30), the update of (3jh is given by the following Newton-Raphson 

scheme: 

(5.31) 

It turns out that J({3jh) = -F(fijh) where F({3jh) is the expected Fisher information 

matrix. For this reason, (5.31) can instead be written as 

(5.32) 

Note: It is interesting to note that the above framework for updating the GLM param

eters is very general, and therefore makes it easy to compute updates for any type of 

outcome. 

Algorithm 14: Newton-Raphson Iteration for updating (3;~ 

Set m := 1 and fij~W(m) := (3;~, and choose Tol 
Repeat 

m:= m+ 1; 
fij~W(m) := (3j;:W(m - 1) - J- 1({3j;:W(m - 1))G(fij;:W(m - 1)); 

Until (11{3j;:W(m) - (3j;:W(m - 1)11 < Tol) or (m = mmax) 
(3 (t+1) ,_ (.lnew(m) jh ,- /Jjh 

Note: Because of the quadratic local convergence of the Newton-Raphson scheme, we 

can just use a one-step Newton-Raphson updating. However, in the event of bad guesses 

of initial values for fijh' the full Newton-Raphson updating of Algorithm 14 should be 

preferred. 
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5.4. 7 Updating the scale parameter 'Ph 

For the Bernoulli and the Poisson outcome, the scale parameter <Ph is equal to 1. For 

a Gaussian however, we have <Ph = a~, and it is straightforward to estimate it. Note 

that we consider the error to have the same distribution across of the components of the 

model. That is why we only have <Ph instead of <Pjh' In fact, for a Gaussian outcome, 

our loglikelihood for a single outcome Xih simply becomes 

(5.33) 

If we solve the expected score equation lE [S(a~)] for a~, it is straightforward to find 

that for h = 1,··· ,p, the update (a~)(t+l) is given by 

(5.34) 

5.4.8 Aspects of the derived scheme 

It is important to note that the "mixed" form of the input space has as an immediate 

consequence the complication of the whole computational procedure. The computation of 

densities for instance requires calls to different functions, and this leads to computational 

inefficiency and the need for a case by case treatment. In other words, the generality 

enjoyed when dealing with input spaces with variables of the same type is lost. On the 

other hand, the Monte Carlo approximation that we use here is extremely slow, almost 

rendering the whole scheme impractical for tasks of moderately high dimension (q > 6, 

k > 3, p > 5). For instance, the computation of the observed-data loglikelihood alone is 

a very demanding task in this context. In fact the marginal density p( x) of x is given 

by 
k 

p(z) = f L p(ziy, z)p(y)p(z)dydz = k, "; L p(ziy = j, z)p(z)dz. (5.35) 

Since there is no closed-form expression for the above marginal density, we resort to its 

Monte Carlo approximation which in this case is given by 

1 k DID 

p(x) ~ D L L 1l"jp(xly = j, Zd) ~ D LP(xIYd' Zd). 
~1~1 ~l 

(5.36) 
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If we used the above p(x), then the Monte Carlo approximation for the observed-data 

loglikelihood is given by 

(5.37) 

If we consider the need to draw samples from the distribution of y and % with all the loops 

involved in the expression of £(8; X) plus the fact that the computation of P(XIYd' %d) 

is not straightforward, then it becomes obvious that the computational burden is indeed 

heavy. 

5.5 Implementing MFA with mixed outcomes 

Our main aim in the numerical examples of this chapter is parameter estimation. We 

have exclusively used Monte Carlo approximations to tackle the intractability of integrals, 

and in most cases we have not used large enough Monte Carlo samples, because of 

the slowness of Matlab 6.0 in dealing with this. We like to emphasize the fact that 

our simulations in this chapter are essentially experimental, and that the unsuitability 

of Matlab in this case has prevented us from exploring as many numerical examples 

as desirable. We will concentrate in our future work on improving the computational 

scheme so as to make it ready for use in practical applications. 

5.5.1 Estimating the f3j h 

In this first example, we assume the mixing proportions known, and we focus on the 

estimation of the GLM parameters f3 j h' We consider an artificial problem with a 3-

dimensional input space having three different types of outcome, namely one Bernoulli, 

one Poisson and one Gaussian. Our mixture in this case has 2 components, with 7r1 = 0.60 

and 7r2 = 0040. Our sample size here is n = 200. Al = (0.90,0040, 0.50)T, A2 = 
(0.20,0.90, OAO)T, J-ti = (1.10,1.20, 2AO)T, and J-t2 = (-1.00,2040, 1.40)T. In other words, 

the parameters that we wish to estimate have true values f3n = (0.90,1.10)T, f3I2 = 

(OAO,1.20)T, f313 = (0.50,2.40)T, f3 2I = (0.20, _1.00)T, f322 = (0.90,2AO)T and f3 23 = 
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(OAO,1.40)T. After 17 EM iterations, the estimates obtained are the following: /311 = 

( )T A _ ( )T A _ TAT A 
0.85,0.88 ,{312 - 0.44,1.36 ,(313 - (0.52,2047) , {321 = (0.18, -0.81) , {322 = 

(1.11,2.10)T, and /323 = (0.13,1.62)T. For our Monte Carlo approximations, we used 

D = 200. In principle, one would be expected to use a far larger number of Monte Carlo 

draws in order to hope for an accurate approximation. The small number we used here 

seems satisfactory, probably because of the low dimensionality (p = 3) of the task at 

hand, and the fact that the "random" starting values must have happened to be in the 

region of the parameter space containing the true values of the parameters. The least 

one can say about these estimates after 17 iterations is that they are reasonably good 1. 

5.5.2 Estimating the mixing proportions 7r 

We reconsider the above synthetic task, this time with k = 3, p = 3, q = 1, 71"1 = 0.30, 

71"2 = 0045 and 71"3 = 0.25. We use the same set of parameters {3 with the {3's for component 

3 given by {331 = (0040, -2.00f, {332 = (0.50,2.00)T, and {333 = (0.90,OAOf. In this 

section, we assume (3 known and fixed, and we use the scheme to estimate our mixing 

proportions. We use 71"fO) = 0.30, 7r~O) = 0.35 and 71"~O) = 0.35 as initial guesses, and 

D = 1000 as our Monte Carlo sample size. The first 30 iterations of the EM algorithm 

yield TI-~30) = 0040, TI-~30) = 0.32 and TI-~30) = 0.28, which seem to be converging to a set of 

mixing proportions reasonably close to the true values. 

5.5.3 Estimating both f3jh and 7r 

\Ve reconsider the synthetic task of the previous example, but this time 71"1 = 0.30, 

71"2 = 0045 and 71"3 = 0.25. {311 = (0.90, 1.lO)T, {312 = (0.40, 1.20)T, {313 = (0.50,2.50)T, 

{321 = (0.20, -0.50)T, {322 = (0.90,1.50)T, {323 = (OAO,1.50)T, {331 = (0040, -1.10)T, 

{332 = (0.50, 1.80)T, and {333 = (0.90,0.50)T. Here, we use D = 1000 as our Monte Carlo 

1 In toy (artificial) problems where we know the true values of the parameters, a reasonable solution 
is one that is close enough to the true (known) values. In such cases, if a starting point leads to limiting 
values that are too far from the true values, other starting points are used. In practice (when the 
true values are unknown), we do something similar. Since the properties of the algorithm guarantee 
monotonic convergence to a maximum of l(9, X), we systematically try at least a couple of starting 
points and pick the one that yields the highest crude approximation of l(9, X). 
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sample size. We run our scheme to estimate both f3 j h and 7r. Our sample size in this case 

is n = 200. With random starting values for f3 and 1rio~ = 0.60, 7r~O) = 0.25 and 7r~O) = 

0.15 as our initial values for the mixing proportions, the first 30 EM iterations produce 

*PO) = 0.37, *~30) = 0.45 *~30) = 0.18, and 1311 =,(0'~81,\1.25)T, 1312 = (0.37,1.17)T, 
., ! " \ 

1313 = (0.32,2.50)T, 1321 = (0.12, -0.38)T, 1322 =: (0.'97, l.'45)T, 1323 = (0.32,1.71)T, 
, , ' 

1331 = (0.25, -0.57)T, 1332 = (0.50,1.74)T, and 1333 i,,;,(0.83, 0.88)T. One of the most 
~ ", 

" 

striking features in these simulations is the local behaviour of the estimation scheme. In 

fact, when starting values are not close enough to the tru,e values of the parameters of 
" ,',,', 

interest, the scheme is very slow to converge, and in some cases eventually gets trapped 
I ' . I, 

" \'1. I', 

in local maxima, producing solutions that are in m~st, ~ase.s not satisfactory . 
• I' • J : ~. ',,' I ( ;' I I 

AilOther important point to note here is the fact that ~the: ,Mo~te Carlo approximation 
"~~~",;\~~>,: r,! >",:\, ,I":,,,; 

can cause the overall scheme to become unstable if the number of Monte Carlo samples 

is not large enough (D ;:::: 1000) to allow accurate approximations of the integrals of 
I,i I," " l 

interest at each step of the EM algorithm. " "'!' , ' 
) • t" " 1\ .,' ' 
il,'\\ ',';( I ;r' 

The above reasonable solution is obtained after trying iv~rious starting points. This 
\ ,I (~"', ' ..'; 
,'It" I 

approach which consists of trying different starting yalues is very commonly used when 
!' .",' 

dealing with the EM algorithm for mixture models, because of the tendency of these EM 

algorithms to get trapped in local (and often not very useful) regions of the parameter 

surface. In this particular context, the shape of the parameter surface must be quite 

complex, and it therefore comes as no surprise if the scheme gets trapped in local regions. 

On the other hand, to lessen the overall computational burden, we only used the one-step 

Newton-Raphson in our simulations, but we anticipate that a full Newton-Raphson at 

each EM iteration should improve the speed of convergence. 

It is important to note that convergence problems were less serious when we only es

timated either the mixing proportions or the GLM parameters. An obvious reason for 

that could be the fact that the simultaneous estimation of both 7r and f3 is a much more 

complex task requiring the search of a much larger parameter space. When we studied 

the generic MFA model, the Bayesian treatment allowed us to circumvent some aspects 

of these local maxima, as the sampling scheme was less dependent on initial guesses. We 
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will be addressing these issues in our future work. 

As far as the implementation of our scheme is concerned, it is important to note that 

Matlab 6.0 that we use for our simulations is not particularly suitable when many loops 

are used in the computations, as is the case here. We therefore plan to implement our 

scheme in C++ in our future work, and we anticipate that this is likely to improve the 

computational efficiency. 

5.6 Approximation by Gauss-Hermite quadrature 

5.6.1 Introduction 

Let Z = IRq be our domain of integration. The use of the Gauss-Hermite quadrature 

approximation rests on the ability to express the integrand J(z) : IRq I---t IR as a product 

of a weight function w(z) : IRq I---t IR+ and another function, g(z) : IRq I---t lR, say. More 

precisely, if J(z) is to be integrated, this method first expresses it as J(z) = w(z)g(z), 

where w{z) is referred to as the weight function. The integral is then expressed as 

f J(z)dz = f., .. f W(ZI,"', Zq)g(ZI' ... ,Zq)dzl ••• dzq. 1IRq 11R 11R (5.38) 

In (5.38), w(z) = exp(-zT z) = exp(-zf).· .exp(-z;). With the weight function speci

fied, the Gauss-Hermite approximation to (5.38) is given by 

(5.39) 

where i r
) is the ir-th zero of the Hermite polynomial of degree nr , and w~rr) is the 

lr 

corresponding weight. 

All the integrals that we need to calculate in our analysis involve the standard multivari

ate Gaussian density p(z) = Nq(z; 0, Iq). With Nq(z; 0, Iq) = (27r)-q/2 exp( -~z T z), we 

readily have an appropriate weight function. In fact, by considering a simple transforma

tion z = ./2Z, we easily derive the weight function w(z) = exp(-zTz). As a result, the 

application of the Gauss-Hermite quadrature to our context is relatively straightforward. 
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5.6.2 Limitations of the Gauss-Hermite quadrature 

As clearly explained by Fahrmeir and Tutz (1994), the number of nodes needed for 

the Gauss-Hermite approximation of (5.39) is TI~=l nr • The bad news here is that 

this number increases exponentially with the number of dimensions q of the domain of 

integration. This exponential increase makes this method unappealing for integration 

in higher-dimensional spaces such as those we are interested in. Fahrmeir and Tutz 

(1994) also report that the method works well in practice for q ~ 6. For reasonably 

lower-dimensional integrals (q < 6), the method is found to be computationally far more 

efficient than Monte Carlo approximation as confirmed by Sammel, Ryan, and Legler 

(1997) in their study. 

5.7 Concl usion and discussion 

5.7.1 Modelling strengths 

The extension of the MFA that we have studied in this chapter is justified by similar 

closely related work that we mentioned earlier. Our work in this regard can be seen as 

an extension of Sammel, Ryan, and Legler (1997) who studied the same type of model 

for a homogeneous input space, while we have now extended it to finite mixtures for 

which the input space is heterogeneous. 

The good news here is that the use of the GLM machinery allows the derivation of an 

estimation procedure that is straightforward and easy to interpret. This is a strength, 

since the model at first sight has two sources of heterogeneity, namely the mixed form 

of the input variable and the mixture structure of the input space itself. One would 

imagine a complicated estimating procedure, but it is encouraging to remark that the 

scheme derived here is fairly straightforward. 
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5.7.2 Computational weaknesses 

The bad news here is the computational inefficiency of the candidate methods used to 

tackle the intractability of the integrals of interest. The implementation of the algorithms 

in this case is indeed very inefficient, because it does require many different loops that 

cannot be vectorised (because of functions of different types) to speed up computations. 

Because of the heterogeneous nature of the conditional densities involved, it is difficult if 

not virtually impossible to perform efficient function calls for the computation of densities 

and likelihood values, and this is a heavy drawback in this context since the bulk of the 

computation effort lies in the calculation of these densities. 

The Monte Carlo approximation that we have used in this context is so slow that it 

is very close to being impractical, especially when implemented in Matlab where loops 

cause programs to become inefficient. We anticipate that coding in C or C++ will render 

the scheme more efficient, and that we will then be able to use large Monte Carlo samples 

to guarantee accurate estimates of our integrals. 

Another point worth stressing is the fact that one cannot visualise anything to assess the 

plausibility of the result obtained. With traditional models where the observed vector is 

not" mixed" , one can project the original data onto the plane to have some ideas, albeit 

limited, of the underlying structure of the data. In this case, with different types, it is 

hard if not impossible to think of a visual representation. Moreover, the geometry of 

the parameter space for such a fundamentally heterogeneous model is certainly a very 

complex one, and this is likely to cause major difficulties in estimation procedures. 

5.7.3 Future work 

Despite the fact that its extension to multivariate settings runs into trouble for q > 6, a 

good alternative to the Monte Carlo approximation in this context is the Gauss-Hermite 

quadrature that we outlined earlier. We plan to explore this alternative in our future 

work. 

Another alternative worth considering is the Bayesian treatment. As we have seen 
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throughout our research, the Bayesian approach has proven to be essentially more flex

ible than its counterparts, and it would certainly offer a good platform for addressing 

the analysis of a heterogeneous model like this one. Such a Bayesian treatment can 

be made efficient, especially if we use ingredients encountered in Chapter 3. All our 

conditional densities being from the regular exponential family, it is straightforward to 

find the corresponding conjugate priors for the parameters, and to get the conjugate 

posteriors. It is easy to see that the f3i h would naturally have a Gaussian conjugate 

prior, especially for a normal outcome. This way, it is easy to specify case by case a 

suitable prior distribution for the parameters of interest. Obviously, the 1\"'S in this case 

still have a Dirichlet distribution, since y clearly has multinomial distribution. 
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Conclusion 

If a man will begin with certainties, he shall end in doubts; but if he will be content to 
begin with doubts, he shall end in certainties 

Francis Bacon 

Throughout this thesis, we have provided a conclusion and a discussion at the end of 

each chapter. In this final chapter, we present a brief summary of our work, and we 

outline ideas for future research investigations. 

6.1 Justification and relevance 

As we have seen throughout, latent variable models can be used to tackle practical prob

lems in a great variety of fields, ranging from social sciences to engineering to physical 

and biological sciences. Our contribution in this regard has been to propose relatively 

new models drawing inspiration from existing ones, and motivated by a potential for 

application to practical problems. Some of the models that we have studied have been 

around for quite some time now, but we have in every case relevant and useful extensions 

(or at least alternatives) capable of handling situations not treated by existing models. 

Chapter 4 and Chapter 5 are particularly illustrative in this regard. Although we have 

in some cases not provided applications of our work to real data, some of the references 

cited show that our proposed models can be used for practical applications. 
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6.2 Complexity of latent variable models 

It is important to note that the price to pay for the vast potential of applicability of 

latent variable models is their inherent complexity. 

6.2.1 Structural complexity 

All the latent variable models we have studied in this thesis have in common the fact 

that they are both structurally complex and computationally intensive. In all cases, the 

number of model parameters tends to grow very fast as the dimensions of the observable 

and latent spaces are increased. On the other hand, all the models considered have some 

degree of lack of identifiability, making it difficult to find a unique set of parameters that 

characterise the model. It emerges from our work that there are mainly two ways to 

approach model identification, namely the use of constraints and the use of a decision

theoretic treatment of the quantities of interest. 

6.2.2 Inferential difficulties 

The large number of parameters and the lack of identifiability also make interpretability 

very difficult. In such cases therefore, unless parameters have clear and unambiguous 

physical meanings attached to them, it might well suffice to content oneself with a set 

of reasonably accurate parameter estimates that can then be used for such tasks as the 

estimation of expected latent scores. As we have seen throughout, parameter estimation 

is prone to inefficiency, because of the large number of parameters to be estimated in 

situations where there might not be much data. 

6.2.3 Estimation and Computational difficulties 

Throughout our work, we have addressed statistical estimation and inference from both 

the likelihood-based and Bayesian perspectives. From both perspectives, the structural 

complexity of the model makes it difficult to use traditional estimation techniques. Our 

contribution in this regard has been the construction of variants of the EM algorithm and 
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Data Augmentation, and to some extent the adaptation of recent ideas from stochastic 

geometry. The main strength of our algorithms is the ease of interpretation that they 

allow, and the fact that they are all relatively easy to implement. 

6.3 Future work 

6.3.1 Mixtures of oblique Factor analysers 

Throughout our work, we have assumed an underlying orthogonal factor model. A 

possible future direction would be to consider the assumption of an underlying oblique 

factor model, and to study the corresponding Mixture of Oblique Factor Analysers. Such 

an extension of the generic MFA model should have many applications in social sciences, 

in the light of the example from Press (1972) given in Chapter2. 

6.3.2 A sampling alternative to varimax 

When it comes to achieving better interpretability of a factor analysis solution, rotation, 

and in particular Kaiser's varimax rotation, tends to be the most commonly preferred 

approach. Intuitively expressed, the key idea behind Kaiser's varimax rotation is to find 

a new solution such that, for each row of the matrix of factor loadings, only one entry has 

a large magnitude (close to 1 when the analysis is based on the correlation matrix) while 

all the other entries are as small as possible, so small that they can be set to zero. While 

Kaiser achieves this through a deterministic optimisation procedure with a well-defined 

objective function, it is our belief that the same idea can be incorporated more much 

efficiently in the overall Bayesian sampling scheme. We are currently exploring ways 

to specify an extra layer in the hierarchical structure of the model, so that a carefully 

chosen hyperprior on A can allow its posterior distribution to concentrate its sampling 

of rows on realisations for which the above maximum variation criterion is met. A very 

naive alternative solution to the above extra layer idea would be to perform rejection 

sampling with a systematic rejection of draws not verifying the condition. Unfortunately 
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such an alternative is not attractive in multivariate settings since efficiency would be lost 

due to the fact that rejection slows sampling schemes considerably. 

6.3.3 Efficient sampling 

Despite the flexibility of the stochastic simulation approach used in this thesis, we have 

noted its relative computational inefficiency in terms of slow convergence. Part of our 

future work will be focused on the derivation of more efficient sampling schemes. 

6.3.4 Applications 

Many of the models that we have studied in this thesis have the potential to be used in 

practical applications. We are currently in the process of applying the generic Mixture 

of Factor Analysers model to the analysis of genetic data. 



Bibliography 

Akaike, H. (1987). Factor Analysis and AIC. Psychometrika 52, 317-332. 

Anderson, T. W. (1984). An Introduction Multivariate Statistical Analysis (Second 

ed.). Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons. 

Arminger, G., P. Stein, and J. Wittenberg (1999). Mixtures of conditional mean and 

covariance structure models. Psychometrika 65, 475-494. 

Baddeley, A. (1994). Discussion Representation of Knowledge in Complex Systems by 

Grenander (3 Miller. Journal of the Royal Statistical Society, Series B 56, 584-585. 

Barndorff-Nielsen, 0., W. Kendall, and M. van Lieshout (1999). Stochastic Geometry: 

Likelihood and Computation. Monographs on Statistics and Applied Probability. 

Chapman & Hall. 

Bartholomew, D. J. (1987). Latent Variable Models and Factor Analysis. Griffin's 

Statistical Monographs and Courses. Charles Griffin & Company Limited. 

Bartlett, M. (1954). A note on the multiplying factors for various X2 approximations. 

Journal of the Royal Statistical Society, Series B 16, 296-298. 

Beltrando, G. (1990). Space-time variability of rainfall in april and october-november 

over east africa during the period 1932-1983. Int. J. Climatol. 10,691-702. 

Bernardo, J. M. and A. F. M. Smith (1994). Bayesian Theory. Wiley Series in Prob

ability and Mathematical Statistics. John Wiley & Sons. 

Bishop, C. M. (1995). Neural Networks and Pattern Recognition (First ed.). Oxford 

University Press. 



BIBLIOGRAPHY 

Blake, C. and C. Merz (1998). UCI repository of machine learning databases. 

http://www .ics. ucLedu/ '"'-Imlearn/MLRepository.html. 

Box, G. E. P. and G. C. Tiao (1973). Bayesian Inference in Statistical Analysis. 

Addison-Wesley. 

Celeux, G. (1998). Bayesian Inference for Mixtures: The Label Switching Problem. 

In COMPSTAT 1998 Proceedings in Computational Statistics, Volume of Short 

Communications and Posters. Springer Verlag. 

Celeux, G., M. Hum, and C. Robert (2000). Computational and Inferential difficulties 

with Mixture Posterior Distributions. Journal of the American Statistical Associ

ation 95, 957-970. 

Cowles, M. and B. Carlin (1996). Markov Chain Monte Carlo Convergence Diagnostics: 

A Comparative Review. Journal of the American Statistical Association 91, 883-

904. 

Csato, L., E. Fokoue, M. Opper, B. Schottky, and O. Winther (2000). Efficient Ap

proaches to Gaussian Process Classification. In S. A. Solla, T. K. Leen, and K. R. 

Muller (Eds.), Advances in Neural Information Processing Systems, Number 12. 

MIT Press. 

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum Likelihood from 

Incomplete Data via the EM Algorithm (with discussion). Journal of The Royal 

Statistical Society, Series B 39, 1-38. 

Diebolt, J. and C. P. Robert (1994). Estimation of Finite Mixture Distributions 

through Bayesian Sampling. Journal of the Royal Statistical Society, Series 

B. 56(2),363-375. 

Dolan, C. and H. Van der Maas (1998). Fitting multivariate normal finite mixtures 

subject to structural equation modelling. Psychometrika 63, 227-253. 

Dong, K. and J. M. G. Taylor (1995). The Restricted EM Algorithm for Maximum 

Likelihood Estimation Under Linear Restrictions on the Parameters. Journal of 

the American Statistical Association 90, 707-716. 



BIBLIOGRAPHY 

, " 

Eastment, H. T. and W. J. Krzanowski (1982). Cross-validatory choice of the number 

of components from a principal component analysis. Technometrics 24, 73-77. 

Escobar, M. and M. West (1995). Bayesian Density;Estimation and Inference Using 
. ~ ; 

Mixtures. Journal of the American Statistical As~'ociation 90, 577-588. 
• . '. ~,I I . 

Everitt, B. S. (1984). An Introduction to Latent 'V~riable Models (First cd.). Mono-
, , 

graphs on Statistics and Applied Probability. Chapm~n and Hall. 
'. ' , . , 

'\ 

Everitt, B. S. and D. J. Hand (1981). Finite Mixture Distributions (First ed.). Mono-
, L; ! 

•• ,I 

graphs on Statistics and Applied Probability. Chapman and Hall. 
: t' ,I} ( ,'. : ' 

Fahrmeir, L. and G. Tutz (1994). Multivariate Statisticat'Modelling Based on Gener-
I '. ,', ~" ,l,", " 

alized Linear Models. Springer Series in Statistics.;Springer . 
. ::i ),'<'//1';""::,',,:,: 

Fokoue, E. (1998, September). Mean Field Methods' For'Gaussian Process Classifiers. 
, , , 

Master's thesis, Aston University, Neural Computing Research Group - Depart-
, I 
/' , 

ment of Computer Science and Applied Mathematics, 'Aston University, Birming-

ham, B4 7ET, England, UK. I ", ,I , I" 
; ,:.' : ~;i, ' ; , >::';' i :: 

Fokoue, E. (2000). A Markov Chain Monte Carlo (M,CMC) 'Approach to the Bayesian 
, " 

Analysis of Mixtures of Factor Analysers. In W.'Jansen and J. G. Bethlehem (Eds.), 

Proceedings in Computational Statistics 2000, 'Volume of Short Communications 

and Posters. Statistics Netherlands. 

Fokoue, E. and D. M. Titterington (2000a). Bayesian Sampling for Mixtures of Factor 

Analysers. Technical Report 00-3, University of Glasgow, Department of Statistics, 

University of Glasgow, Glasgow, G12 8QW, Scotland-United Kingdom. 

Fokoue, E. and D. M. Titterington (2000b). Mixtures of Factor Analysers allowing a 

mix of continuous and non continuous manifest variables. Technical Report 00-10, 

University of Glasgow, Department of Statistics, University of Glasgow, Glasgow, 

G12 8QW, Scotland-United Kingdom. 

Fokoue, E. and D. M. Titterington (2000c). Mixtures of Factor Analysers with fixed 

observed covariates. Technical Report 00-4, University of Glasgow, Department of 

Statistics, University of Glasgow, Glasgow, G12 8QW, Scotland-United Kingdom. 



BIBLIOGRAPHY 

Fokoue, E. and D. M. Titterington (2000d). Stochastic Model Selection for Mixtures 

of Factor Analysers. Technical Report 00-5, University of Glasgow, Department of 

Statistics, University of Glasgow, Glasgow, G12 8QW, Scotland-United Kingdom. 

Fokoue, E. and D. M. Titterington (2001). Mixtures of Factor Analysers: Bayesian Es

timation and Inference by Stochastic Simulation. Machine Learning: Special Issue 

on MCMC To appear, To appear. 

Gelman, A. (1995). Inference and Monitoring Convergence. In W. R. Gilks, S. Richard

son, and D. J. Spiegelhalter (Eds.), Markov Chain Monte Carlo in Practice (First 

ed.)., Inderdisciplinary Statistics, Chapter 8, pp. 131-143. Chapman & Hall. 

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin (1995). Bayesian Data Analysis. 

Texts in Statistical Science. Chapman and Hall. 

Gelman, A., S. L. Meng, and H. Stern (1996). Posterior Predictive Assessment of 

model fitness via realised discrepancies. Statistica Sinica 6, 733-759. 

Gelman, A. and D. Rubin (1992). Inference from Iterative Simulation Using Multiple 

Sequences. Statistical Science 7, 457-511. 

Geyer, C. (1992). Practical Markov chain Monte Carlo (with discussion). Statistical 

Science 7, 473-511. 

Ghahramani, Z. and M. Beal (2000). Variational Inference for Bayesian Mixture of 

Factor Analysers. In S. A. Solla, T. K. Leen, and K. R. Muller (Eds.), Advances 

in Neural Information Processing Systems, Number 12. MIT Press. 

Ghahramani, Z. and G. E. Hinton (1997). The EM Algorithm for Mixtures of Fac

tor Analyzers. Technical Report CRG-TR-96-1, Department of Computer Science, 

University of Toronto, 6 King's College Road, Toronto, Canada, M5S 1A4. 

Graybill, F. A. (1969). Introduction to Matrices with Applications in Statistics (First 

ed.). Wadsworth Publishing. 

Green, P. J. (1995). Reversible Jump Markov Chain Monte Carlo computation and 

Bayesian model determination. Biometrika 82, 711-732. 



BIBLIOGRAPHY 

Grenander, U. and M. Miller (1994). Representation of Knowledge in Complex Sys

tems. Journal of the Royal Statistical Society, Series B 56, 549-603. 

Hurn, M., A. Justel, and C. Robert (2000). Estimating Mixtures of Regressions. Tech

nical report, University of Bath, Department of Mathematical Sciences. 

Ihara, M. and Y. Kano (1995). Identifiability of full, marginal and conditional factor 

analysis model. Statistics and Probability Letters 23, 343-350. 

Johnson, R. A. and D. W. Wichern (1998). Applied Multivariate Statistical Analysis 

(fourth ed.). Prentice Hall. 

Jolliffe, I. T. (1986). Principal Component Analysis. Springer. 

Joreskog, K. (1975). Factor Analysis by Least Squares and Maximum Likelihood. 

In K. Enslein, A. Ralston, and H. Wilf (Eds.), Statistical Methods for Digital 

Computers. John "Viley. 

Krane, W. and R. McDonald (1978). Scale invariance and the factor analysis of cor

relation matrices. Br. J. Math. Statist. Psychol. 31, 218-228. 

Krzanowski, W. and F. Marriott (1994). Multivariate Analysis (First ed.). Kendall's 

Library of Statistics 1. Edward Arnold. 

Krzanowski, W. and F. Marriott (1995). Multivariate Analysis (First ed.). Kendall's 

Library of Statistics 2. Arnold. 

Lawley, D. N. and A. E. Maxwell (1971). Factor Analysis as a Statistical Method 

(second ed.). Butterworths. 

Lee, S. and J. Shi (1999). Bayesian Analysis of Structural Equation Model with Fixed 

Covariates. Technical report, Department of Statistics, The Chinese University of 

Hong Kong, Shatin, N.T., Hong Kong. 

Liu, C. and D. Rubin (1994). The ECME Algorithm: A simple extension of EM and 

ECM with fast monotone convergence. Biometrika 81,633-48. 

Lopes, H. F. and M. West (1999). Model uncertainty in factor analysis. Technical 

Report ISDS, Institute of Statistics and Decision Sciences, Duke University. 



BIBLIOGRAPHY 

Manly, B. F. J. (1986). Multivariate Statistical Methods: A Primer. Chapman & Hall. 

Marriott, F. (1974). The Interpretation of Multiple Observations. London:Academic 

Press. 

Martin, J. and R. McDonald (1981). Bayesian estimation in unrestricted factor anal

ysis: A treatment for Heywood cases. Psychometrika 40, 505-517. 

McCullagh, P. and J. A. NeIder (1989). Generalized Linear Models (second ed.). Mono

graphs on Statistics and Applied Probability. Chapman & Hall. 

McLachlan, G. and D. Peel (2000). Finite Mixture Models. Wiley Series in Probability 

and Mathematical Statistics. John Wiley & Sons. 

McLachlan, G. J. and T. Krishnan (1997). The EM Algorithm and Extensions. Wiley 

Series in Probability and Statistics. John Wiley & Sons. 

Morgan, B. (2000). Applied Stochastic Modelling. Arnold. 

Muthen, B. and K. Shedden (1999). Finite Mixture Modelling with Mixture Outcomes 

using the EM Algorithm. Biometrics 55, 463-469. 

Nobile, A. (1998). A hybrid markov chain for the bayesian analysis of multinomial 

probit model. Statistics and Computing 8, 229-242. 

Phillips, D. and A. Smith (1995). Bayesian model comparison via jump diffusions. In 

W. R. Gilks, S. Richardson, and D. J. Spiegelhalter (Eds.), Markov Chain Monte 

Carlo in Practice (First ed.)., Inderdisciplinary Statistics, Chapter 13, pp. 215-240. 

Chapman & Hall. 

Press, S. J. (1972). Applied Multivariate Analysis (First ed.). Holt, Rinehart and 

Winston, Inc. 

Preston, C. (1976). Spatial birth-and-death process. Bull. Inst. Internat. Statist. 46, 

371-391. 

Richardson, S. and P. J. Green (1997). On The Bayesian Analysis of Mixtures with 

an Unknown Number of Components (with discussion). Journal of the Royal Sta

tistical Society, Series B. 59, 731-792. 



BIBLIOGRAPHY 

Ripley, B. (1977). Modelling spatial patterns (with discussion). J. Roy. Statist. Soc. 

Ser. B 39, 172-212. 

Robert, C. P. and G. Casella (2000). Monte Carlo Statistical Methods. Springer Texts 

in Statistics. Springer. 

Rubin, D. and D. Thayer (1982). EM algorithms for ML factor analysis. Psychome

trika 47, 69-76. 

Rubin, D. and D. Thayer (1983). More on EM for ML factor analysis. Psychome

trika 48, 253-257. 

Rue, H. (1995). New loss functions in bayesian imaging. J. Amer. Statist. Assoc. 90, 

900-908. 

Sammel, M. D., L. M. Ryan, and J. M. Legler (1997). Latent variable models for 

mixed discrete and continuous outcomes. Journal of the Royal Statistical Society, 

Series B. 59, 667-678. 

Schafer, J. L. (1997). Analysis of Incomplete Multivariate Data. Monographs on Statis

tics and Applied Probability. Chapman & Hall. 

Shi, J.-Q. and S.-Y. Lee (2000). Latent variable models with mixed continuous and 

polytomous data. Journal of the Royal Statistical Society, Series B 62, 77-87. 

Spearman, C. (1904). General intelligence, objectively determined and measured. 

American Journal of Psychology 19, 201-293. 

Stephens, M. (2000). Bayesian Analysis of Mixtures models with an Unknown Num

ber of Components - An alternative to Reversibe jump methods. Annals of Statis

tics 28, 40-74. 

Stoyan, D., W. Kendall, and J. Mecke (1995). Stochastic Geometry and its Applications 

(second ed.). Wiley Series in Probability and Statistics. John Wiley & Sons. 

Tanner, M. A. and W. H. Wong (1987). The Calculation of posterior distributions by 

Data Augmentation (with discussion). Journal of the American Statistical Associ

ation 82, 528-550. 



:"',; 
I I.' 

, :' 
, , , , , 

(: ~ 

BIBLIOGRAPHY 
: ',' ,( 

Thompson, T. J., P. J. Smith, and J. P. Boyle (19~8). Finite mixture models with 
" 

concomitant information: assessing diagnostic criteria for diabetes. Journal of the 

Royal Statistical Society, Series C (Applied Statistics) 47, 393-404. 
" , 

,: I 

Tierney, L. (1994). Markov chains for exploring posterior distributions (with discus-

sion). Annals of Statistics 22, 1701-1762. 
'1,:,: ,I, ' 

" 
1.'\ ' 

I'; I'i", 
, l'l, 

Tipping, M. E. and C. M. Bishop (1999). Mixtures of Probabilistic Principal Compo-
, ':', , . 

nent Analysers. Neural Computation 11, 443-482:'.::', 
, I \',l! , ,,' " 

1::1 ','i'! ' 

Titterington, D. M., A. F. M. Smith, and V. E.!, Makov ,(1985). Statistical Analy
,.I, lIn:,' 

sis of Finite Mixture Distributions. Wiley Series in Probability and Mathematical 
Ii' ,"'\' , " , ',I,' \ '!, 

I ),1"", 

Statistics. John Wiley & Sons. I' :,'!;'(>\ ' 
; ,~ ~ ',( ;. '\ 1 (' 'I, I" ,I -' '" I I, j , 

, , ,~. tI i!'" i', ,!" , 

Veda, N., R. Nakano, Z. Ghahramani, and E. Hintc?~/.G.' (2000). SMEM Algorithm 

for Mixture Models. Neural Computation 12, 2019-2128. 
" ' 

, \ I :":'i ".\': 

Utsugi, A. and T. Kumagai (2001). Bayesian Analysis'of Mixtures of Factor Analysers. 
" .) , 
.'( ;{f !i'i: ':,' , 

Neural Comptation 13,993-1002. :i'l',,\',;'.:":""':" 
'1' ,',I "'"" .' . 
I, . I' :;.';'.', " 

van Lieshout, M. (1994). Discussion on representation 'of knowledge in complex systems 
, ~ :. " \ I ' 

by grenander fj miller. Journal of the Royal Stati,stical Society, Series B 56, 585. 

Velicer, W. F. (1976). Determining the number of. components from the matrix of 

partial correlations. Psychometrika 41, 321-327.', 

von Eye, A. and C. Clogg (1994). Latent Variables Analysis. Sage Publications. 

Wold, S. (1978). Cross-validatory estimation of the number of components in factor 

and principal components models. Technometrics 20, 397-405. 

Wu, C. (1983). On the Convergence Properties of the EM Algorithm. Annals of Statis

tics 11, 95-103. 

Yung, Y. F. (1997). Finite mixtures in confirmatory factor analysis models. Psychome

trika 62, 297-330. 

Zellner, A. (1971). An Introduction to Bayesian Inference in Econometrics. Wiley 

Series in Probability and Mathematical Statistics. John Wiley & Sons. 



Appendix A 

General Theorems and Formulae 

A.I General definitions 

A.L1 Direct product of matrices 

Let A = (aij) be a p x p matrix, and B = (akl) be an n x n matrix. Then the pn x pn 

matrix C = A ® B is called the direct product (or Kronecker product) of A and B, and 

is given by 

aplB ap2B appB 

Direct products of matrices as can be seen throughout our work are very useful in 

multivariate statistical analysis, escpecially in multivariate regression. 

A.L2 Conditional normal distributions 

Theorem A.I Let V = [ ~] be a normally distributed random vector with a mean 

J-lv = [ J-ll ] and a covariance matrix Ev = [Ell E12]. Then the conditional distri-
J-l2 E21 E22 

bution of Vi given M = V2) is also normal with a mean vector that is a linear function of 
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V2, and a covariance matrix that is independent of V2. More specifically, [Vi 1V2 = V2] IV 

N(JlI12, ~112) where Jll12 = JlI + ~12~2i(V2 - Jl2) and ~112 = ~1l - ~12~2i~21. 

A.2 Matrix and vector operations 

A.2.1 Vector representation of a matrix 

Throughout our work, we use vee (A) to denote a vector representation of matrix A. The 

vector vee (A) stacks in a column vector the columns of the matrix A. 

A.2.2 Important Multivariate Derivatives 

In this section, we provide general formulae for multivariate derivatives that are used at 

the M-step of our EM algorithms. Let x and u be two p-dimensional vectors. Let y and 

v be two q-dimensional vectors. Let A E lRPXP and N E lRpxq be two real matrices. 

(Graybill 1969) and (Press 1972) provide details of the derivation of the following useful 

identities. 

(A.l) 
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Derivation of Estimation Equations 

B.l Elements of estimation for Factor Analysis 

lE [xz T] - lE [( Az + e) z T] = 1E [( Az z T + ez T] 

- AlE [zz T] + lE [ze T] 

- A (B.1) 

V[x] - V[Az + J.L + e] 

- V[Az] + V[e] 

- AV[z]AT + V[e] 

- AAT +~ (B.2) 

At the EM step of the EM algorithm for factor analysis, we form an analytical expression 

for Q(OIO(t)) = E [l(O; X*)IO(t), x] , where l(O;X*), is given by equation (2.18), i.e 

If we use identities from (A.1), we can easily compute the necessary partial derivatives 

needed at the M-step of the EM algorithm for both the FA and the MFA models. 
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B.1.1 Estimating the mean of the Gaussian 

Estimating the mean J], in FA model is straightforward. In fact, as a function of J]" the 

function Q can be written as 

1 n 
Q(J.L) = -2 L [-2xi~-IJ], + 2J.LT~-lAlE [zilxd + J],T~-lJ.L]. 

i=l 

S
· 8p, T~-1 J.L _ 2'("'-1 8xi1;-1 J], _ '("'-1 T d 8J], T~-1 AlE [zilxi] _ ~-IAlE [ .1 .] 
mce 8p, - L..J J.L, 8J.L - L..J Xi an 8p, - ,L..J Z, X, , 

it is easy to show that solving 8~~) = 0 yields the maximiser of Q(p,) that is given by 

B.1.2 Estimating the matrix of factor loading 

If we treat Q as a function of A, we can express it as 

and the corresponding partial derivatives with respect to A are given by 

8(Xi - J.L)T~-IAlE [zilxi] 
8A 

8tr(AT~-1 AlE [zizilxi]) 
8A 

The solution of 8Q(A) = 0 yields the maximiser of Q(A) which is explicitly given by 
8A 

A (1+1) = [t (x, - 1'('+1»)(1': [z,ix,)) T] [t, I': [z.,zJix,. fl 

B.1.3 Estimating the uniquenesses E 

As a function of ~, Q can be written as follows: 
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. ". 

It is easier to derive the partial derivatives of Q(~) with respect to ~-1, and they are 

otr [~-l(Xi - J.L)(Xi - J.L)T] 
a~-l 

__ alogl~-lll=_~ 
O~-;-ll ' 
. ',' \ " 

(xii-p)(E[Zilxi])T AT 

I'. 
given by " ' .'." .' ,': ' 

E(l+l) = ;diag [t. (x; - 1'(1+1) - A (.+I) I! [~;[~;J(,(~'; ~ I'('+I») T] , 
II.!,)! \'/ ., . 

"I', ;'1, i ' .j I , 

! \ " I j ) ; , I .: ~.:: ' 

I ,.', " " I . 

B.2 Analysis of Mixtures of Factor,'Analysers 
I I" 

j ." 

For simplicity, we use aW, bU) and C~~) as defined in' Section (3.5.2), that is aW = 
~. \ , 

lE [Yijlxi], b~~) = lE [ziIYij, Xi] and c~y = lE [ziziIYij, XiP 

B.2.! E-Step for the generic MFA ~odel 

Q(OIIj!t» = E [lt~, X')IX, o(')J = I! [lOg [g'CU "i' [N(x;;A;z;, E)]"') ]] 
n k n k , 

- I: I: lE [YijlXd log(7rj) + I: I: ~ [Yij log [N(Xi; Ajzi' ~)] IXi] (B.3) 
;=1 j=1 i=1 j=1 I , 

B.2.2 Estimating the mixing proportions 

As a function of 1T', Q can be written as 
n k n k 

Q(1r) = I: I: lE [Yijlxi]10g(7rj) = I: I: aW log(7rj). (B.4) 
;=1 j=l i=1 j=l 
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To find estimates for the mixing proportions, all we need to do is find the set of'lrj that 

Maximize Q( 1f') subject to the constraint that E~=l 'lrj = 1. By the Lagrange multiplier 

method, this means maximizing Q( 1f', 1') = Q( 1f') + l' ( 1 - E;=l 'lrj) where l' is the 

Lagrange multiplier, and Q( 1f', 1') the Lagrangian of the original function Q( 1f'). 

To obtain the maximum, we solve aa
Q 

= aa
Q 

= 0, from which we obtain 
'lrj l' 

'lr~t+l) = .!. ~ a~t) 
J l' L..-J fJ 

i=l 

Since the set of 'lry+l) must satisfy the maximization constraint, we therefore have 
k n k 

I: 'lry+l) = .!. I: I: a;J) = n = 1 which in turn leads to l' = n. Thus, we have 
j=1 l' i=1 j=1 l' 

(U.5) 

B.2.3 Estimating the means of the Gaussians 

Estimating the means Jljt+l) of the Gaussians is rather straightforward. In fact, as a 

function of /-L, the function Q can be written as 

n k 

() 1 ~ ~ (t) [ T~-l 2 T~-lA b(t) T~-l] Q P, = -- L..-J L..-J aij -2Xi LJ Jlj + Jlj LJ j ij + Jlj LJ Jlj. 
2 . 1 . 1 .= J= 

a TE-1 . a TE-1 . allTE-l A ·b~~) 
S· JlJ JlJ _ 2~-11l' Xi JlJ = E-1x! and ""'J J fJ = E-1A ·b~~) it is 

mce a - LJ ""'J' a • a J tJ' Jlj Jlj Jlj 

easy to show that solving aQ(J.-L) = ° yields the maximiser of Q(p,) that is given by 
aJlj 

lI(t+l) - [~a~~) (x. - A (t)b~9)1 [~a~t~l-1 ,....j - L..-J fJ I J lJ L..-J "J 
i=1 f=l 

B.2.4 Estimating the Factor Loadings 

If we treat Q as a function of A, we can express it as 
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and the corresponding partial derivatives with respect to Aj are given by 

8(Xi - J.Lj)T~-l Ajb~;) 
8Aj 

8tr(AJ~-1 AjC~y) 
8Aj 

2~-lA ·C~~) 
L.J J ~J' 

The solution of 8~~~) = 0 yields the maximiser of Q(A) which is explicitly given by 
J 

B.2.5 Estimating the uniquenesses E 

As a function of ~, Q can be written as follows: 

n k 

Q(E} = -~logIEI- ~ t;~al;>tr [E-'(z; - I';)(z; - I'j)T] 

n k n k 

~ ~ (t) ( )T't'-lA b(t) 1 ~ ~ ~t) [AT't'-lA C(t)] + L.J L.J aij Xi - J.Lj LJ j ij - 2" L.J L.J aij tr j L.J j ij . 
i=1 j=1 i=1 j=1 

It is easier to derive the partial derivatives of Q(~) with respect to E-l, and they are 

{}tr [~-I(Xi - J.Lj)(Xi - J.Lj)T] 

8~-1 

8logiEI 
8~-1 

8(Xi - J.Lj)T~-l Ajb~;) 
8~-1 

{}tr(AJ~-l AjC~;») 
8E-l 

(Xi - J.Lj)(Xi - J.Lj) T 

__ 8 log IE-II = _~ 
8~-1 

- (Xi - J.Lj) (b~;») T AJ 

The solution of {}Q(E) = 0 yields the maximiser of Q(~) which is given by 
8E-l 

E = ~diag [t t. al)l ((z; - I'j) ((z; - I'j}T - 2 [AjblYr) + AjClN) ] . 

After simplification, the update E(H1) of ~ is now given by 

~(t+l) _ !d' [~~ ~~) ( . _ ~H1) _ A~H1)b(~») ( . _ ~t+l») T] 
L.J - lag L.J L.J a'J X, J.LJ J 'J X, J.LJ • 

n . 1 . 1 
1= J= 

\"-r."~.~'''''4.. o f.!.'l'''~ 


