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SUMMARY 

Lymphatic filariasis is a long term chronic infection characterised by a Th2 dominated 

immune response and suppressed Ag-specific proliferation. This immunological 

hyporesponsiveness is most profound amongst individuals with circulating microfilariae 

(mf) suggesting an important role for mf in generating proliferative suppression. The use of 

single life cycle stage infections in murine models of filariasis has facilitated the study of 

stage specific mechanisms of immunomodulation. Intravenous infection of BALB/C mice 

with B. pahangi mf or L3 (the third stage larvae) leads to development of differentially 

polarised immune responses. At 12 d.p.i. splenocytes from L3 infected animals produce 

Ag-specific IL-4, IL-5 and IL-lO and show strong Ag-driven proliferative responses. In 

contrast splenocytes from mf-infected animals show a cytokine profile dominated by IFN-y 

and suppression of Ag-specific proliferation. After 96 hrs of Ag-stimulated culture 

splenocytes from mf-infected animals proliferate at levels below background indicating 

that an active form of suppression is operable in vitro. 

A lack of IL-2 does not account for the defective proliferative response as addition 

of recombinant IL-2 failed to restore Ag-specific proliferation. Splenocytes from mf

infected animals produce high levels of NO in Ag-stimulated culture which correlates 

inversely with their proliferative responses. No such accumulation of nitrite is seen in 

cultures of cells from L3 infected animals. The proliferative defect is dependent upon 

inducible nitric oxide synthase (iNOS) activity as inhibition of iNOS activity with either L

NMMA or AMG restored Ag-specific proliferation. Experiments in IFN-yR-I- mice 

demonstrated that signalling via the IFN-y receptor is essential to the induction of NO 

production and subsequent proliferative suppression. Significantly elevated levels of IFN-y 

were produced upon iNOS inhibition suggesting an NO mediated negative feedback 

mechanism limits IFN-y production and proliferation in Ag-stimulated culture. 

Restimulation of splenocytes from mf-infected animals with an extract of A. viteae, a 

related filarial worm which lacks endosymbiotic bacteria, also resulted in NO production 

and proliferative suppression, demonstrating that lipopolysaccharide of bacterial origin is 

not essential to the induction of iN OS activity in vitro. 

To assess the ability of mf to modulate a pre-established Th2 response, L3 infected 

mice were subsequently infected with mf at 7 days post infection and in vitro responses 

assessed 12 days later. At 19 days post initial infection splenocytes from L3 infected 

x 



animals displayed a mixed response with production of Ag-specific IFN-y as well as IL-4, 

IL-S. Intriguingly secondary infection with mf significantly reduced in vitro IFN-y 

production whilst production of IL-4 and IL-S remained unaltered. A similar pattern of 

responsiveness was seen following secondary infection with L3. Although the mechanisms 

underlying this phenomenon remain undefined such results suggest that in vivo 

restimulation selectively down-regulates IFN-y production. 

CFSE staining allowed identification of the cellular population subject to NO 

mediated proliferative suppression. The majority of the proliferation in Ag-stimulated 

culture occurred within the CD4+ population. However, CD4+ T cells from mf-infected 

animals only display evidence of proliferation upon iNOS inhibition. In the absence of high 

levels of NO, expansion of a subpopulation of brightly staining CD4hi lymphocytes could 

clearly be identified. The majority of these cells had divided in Ag-stimulated culture and 

their division accounted almost entirely for the proliferative response within the CD4+ 

population. 

Significantly elevated levels of apoptosis were observed amongst CD4+ cells from 

mf-infected animals in Ag-stimulated culture associated with decreased numbers of CD4+ 

cells in the GO/G 1 phase of the cell cycle. Inhibition of iNOS activity significantly reduced 

levels of apoptosis and led to a corresponding increase in the number of cells in GO/G 1 

suggesting that the IFN-y induced NO mediated apoptosis of Ag-reactive T cells limits 

proliferation. Depletion experiments identified CD4+ T cells from mf-infected animals as 

the major source of IFN-y production in Ag-stimulated culture. These results suggest that 

IFN-y producing CD4+ T cells from mf-infected animals indirectly induce their own NO 

mediated apoptosis upon in vitro restimulation. Such a mechanism may serve to limit the 

development of potentially damaging pro-inflammatory responses by down-regulating both 

IFN-yproduction and proliferative responses. 
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CHAPTERl. 

Introduction 

Lymphatic filariasis (L.F.) is a major tropical disease affecting an estimated 128 

million individuals world-wide (Micheals, 1997). With approximately 751 million people 

living in endemic areas, this major cause of clinical morbidity continues to present a 

serious impediment to socio-economic development. The causative agents of lymphatic 

filariasis are long-lived nematode worms of the genera Wuchereria and Brugia. Infection 

with Wuchereria bancrofti is responsible for around 91 % of cases, occurring throughout 

the tropics and sUbtropics, with the exceptions of the Middle East (where infection is 

restricted to Egypt) and the western parts of South America. The remaining 9% of 

infections are caused by Brugia malayi and Brugia timori (W.H.O., 1992). Brugian 

filariasis is restricted to South and South East Asia, including Southern China. Infection 

with B. timori occurs in only around 40,000 people in several islands in Eastern Indonesia 

(Scott, 2000). 

1.1. The parasite life cycle 

Filarial worms were first identified as the cause of lymphatic filariasis in the latter 

half of the nineteenth century. The Scottish physician Sir Patrick Manson, whilst stationed 

in China, first attributed the profound deforming swelling of the limbs (elephantiasis - a 

characteristic pathology of L.F.) to infestation with filarial parasites. All filarial worms 

require a period of larval development (LI to L3) in a blood feeding insect (Scott, 2000) 

and Manson's observation that parasites were ingested by mosquitoes along with the blood 

meal represents the first evidence that arthropods act as vectors of parasitic organisms 

(Raj an, 2000). 



In the human host the adult male and female worms inhabit the lumen of dilated 

lymphatics. Following insemination, the female releases many thousands of fully formed, 

sheathed microfilariae (mf, the first larval stage) into the lymphatic circulation. From the 

lymph the microfilariae find their way into the peripheral circulation. The numbers of mf 

circulating in the peripheral blood can fluctuate dramatically over a 24 hr period. In most 

W bancrofti endemic areas mf are nocturnally periodic, disappearing from the circulation 

during the day and being at maximum numbers in the bloodstream between 10 pm and 2 

am. During the day the mf are concentrated in the microvasculature of the deep tissues 

predominantly in the lungs (Spencer, 1973). It appears that physiological signals such as 

O2 tension in the blood and body temperature provide the cues for this periodicity. These 

fluctuations occur in such a way as to ensure that mf are available in the peripheral blood 

in maximum numbers during the time that the major vector species are actively feeding. 

Microfilariae are ingested along with the blood meal when a mosquito feeds upon an 

infected individual. 

The principal mosquito species responsible for transmitting lymphatic filariasis of 

humans are found within the genera Anopheles (W bancrofti, B. malayi) , Aedes (W 

bancrofti, B. lnalayi) , Culex (W bancrofti), and Mansonia (W bancrofti, B. malayi) (Scott, 

2000). While over seventy different species and subspecies of mosquito have now been 

identified as vectors of disease, differences in vector / parasite compatibility and vector 

distribution partly account for the wider distribution of W bancrofti. Within hours of 

ingestion the mf penetrate the midgut wall and migrate to the flight muscles. 

Exsheathment occurs at some stage on this migration. Once within the thoracic muscles 

the mf begin the first in a series of moults. The L l-L2 moult takes place between 3 and 4 
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days post infection (d.pj.), and the L2-L3 moult some 8-9 d.p.i. (Schacher, 1962). The L3, 

the infective third stage larvae, migrate to the head and become associated with the feeding 

structures. When an infected insect takes a subsequent blood meal L3 are deposited onto 

the surface of the skin from where they actively penetrate the feeding wound and enter the 

lymphatic system. The L3 to L4 moult takes place early post infection (varying between 7 

- 12 d.p.i. dependent upon species) and the newly formed L4 undergo a period of dramatic 

growth to become sexually mature adults over the following 6 - 12 months (Ash, 1970). 

1.2. Clinical manifestations of lymphatic filariasis 

In endemic areas the vast majority of infected individuals have few overt clinical 

manifestations of filariasis despite the presence of large numbers of circulating mf 

(Kumaraswami, 2000). However, increasing evidence suggests that although they may be 

clinically asymptomatic, virtually all persons with W bancrofti or B. malayi 

microfilaremia have some degree of sub-clinical pathology. Many microfilareamic 

individuals (-40%) have some degree of heamaturia and / or proteinuria reflecting low 

grade renal damage. These pathologies appear to be related to the presence of mf in the 

blood as clearing mf from the circulation results in complete reversal of renal 

abnormalities (Dreyer, 1994). Lymphoscintography in asymptomatic microfilaraemic 

(MF+) individuals has demonstrated that they have markedly dilated lymphatics and 

abnormal patterns of lymphatic flow (Suresh, 1997). The asymptomatic MF+ state is, 

therefore, not as clinically benign as was once thought, though many individuals may 

remain in this state for years without developing either acute or chronic pathologies. 

Indeed some infected individuals have been described as remaining asymptomatic for 

decades without "progressing" to other forms of clinical expression (Kumaraswami, 

2000). 
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1.2.1. Acute manifestations of L.F. 

The acute clinical manifestations of filariasis are characterised by repeated bouts of 

fever associated with inflammation of the lymph nodes (adenitis) and / or lymph vessels 

(lymphangitis) termed adenolymphangitis (ADL). Recurrent attacks of fever associated 

with lymphadenitis are more commonly seen in brugian than bancroftian filariasis 

(Partono, 1987). In brugian filariasis the affected lymph nodes are mostly found in the 

inguinal and axillary regions and acute attacks of ADL may involve the limb, breast or 

male external genitalia. An acute attack may last from several days to 4 - 6 weeks and can 

result in a prolonged inability to work (Sabesan, 1992). Microfilaremia is generally absent 

in patients with ADL (Ottesen, 1992). 

1.2.2. Chronic manifestations of L.F. 

Chronic signs of filariasis rarely develop before 15 years of age and after that are 

only seen in small proportion of the infected population. The chronic pathologies of L.F. 

resulting from abnormal lymphatic function may be manifest as hydrocoele, chyluria or 

lymphoedema. Not all the chronic pathological consequences of filarial infection can be 

directly attributed to filarial worms. Indeed it is now considered that bacterial infections 

are the most common cause of elephantiasis in native residents of endemic areas (Dreyer, 

2000). Lymphoscintography has shown that adult filarial worms functionally damage 

parasitised lymphatics in virtually all infected individuals to a greater or lesser extent 

(Dreyer, 1994; Witte, 1993). Impaired lymphatic drainage greatly predisposes infected 

individuals to secondary bacterial infections (Jamal, 1990). However, some residents of 

endemic areas develop lymphoedema over a period of years without any evidence of 

bacterial infections, and in these cases it is most likely that lymphatic dysfunction caused 
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by filarial worms themselves is the primary trigger for lymphoedema (Dreyer, 2000). 

Lymphoedema may be initially transient and reversible but later becomes permanent 

(elephantiasis). In brugian filariasis the leg below the knee is characteristically affected 

and sometimes the arm below the elbow. Microfilariae are usually absent in patients with 

chronic pathology and the condition persists even in the absence of active infection with 

adult worms (Ottesen, 1992). 

1.2.3. Tropical Pulmonary Eosinophilia 

This clinical manifestation is much less common than those previously mentioned 

and appears completely unrelated to lymphatic damage (Ottesen, 1992). TPE presents 

itself as a nocturnal cough, nodular or diffuse pulmonary lesions, peripheral blood 

eosinophilia (>3000/mm\ high levels of IgE and very high levels of filarial specific 

antibodies (Ottesen, 1992). Mf are very rarely found in the blood of patients displaying 

TPE. Dramatic clinical improvement can be expected upon anti-filarial therapy. 

1.2.4. The endemic normal (E.N.) 

The term "endemic normal" in lymphatic filariasis refers to residents of endemic 

areas who, whilst being continually exposed to infective larvae, display no clinical signs or 

symptoms of infection. These individuals have been postulated to be putatively immune 

(King, 1991) but other authors have proposed that immunity displayed by these individuals 

is more likely concomitant than "perfect" in nature and, in areas of intense transmission, 

100% of the population may be infected (Day, 1991). The difficulties of detecting adult 

worms in human filariasis have complicated the definition of an individual's infection 

status. In the advent of ever-more sensitive methods of detection however, the criteria 

determining whether an individual can truly be classed as infection-free have become 
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increasingly stringent. Tests for circulating filarial Ag (CFA) for example, can provide 

evidence of active W bancrofti infection in the absence of detectable circulating mf (Weil, 

1996). Elevated levels of anti-filarial IgG4 have also been shown to indicate the presence 

of an active infection in Mf- individuals (Kwan-Lim, 1990). Microfilaremia alone is 

clearly not satisfactory as the sole indicator of infection status as many individuals may be 

Mf- but infected with adult worms. E.N. are more likely to represent a heterologous 

population ranging from those who are truly infection-free to those who harbour single sex 

infections, few adult worms or occult infection (Day, 1991; Ottesen, 1992). 

1.3. Immunology of human lymphatic filariasis. 

Lymphatic filariasis may be considered a spectral disease in accordance with the 

variety of its clinical manifestations (Ottesen, 1992). Taking this into account most studies 

have sought to separate study populations into three major groups: microfilaremics, 

chronic pathology patients and E.N. Whilst differences in responsiveness have been 

reported amongst clinical groups, certain features dominate the immune response in 

lymphatic filariasis: high level IL-4 production (King, 1992; Mahanty, 1991; Mahanty, 

1993; Yazdanbaksh, 1993), Ag-specific proliferative suppression (Ottesen, 1992; Piessens, 

1980b; Sartono, 1995a; Yazdanbaksh, 1993) and down-regulation of IFN-y production 

(King, 1992; Ravichandran, 1997). 

1.3.1. IL-4 producing cells are expanded in human L. F. 

Th2 responses, of which IL-4 is the signature cytokine, are classically associated 

with helminth infections and filariasis is no exception. Infected individuals have a much 

greater frequency of T cells capable of producing IL-4 and IL-5 than uninfected 

individuals (King, 1992; King, 1993) and these cells are preferentially stimulated by 

parasite Ag (Mahanty, 1993). In vitro restimulation with parasite Ag invokes a strong IL-4 
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response by PBMC from infected individuals (King, 1992; Mahanty, 1993; Yazdanbaksh, 

1993) and similarly elevated levels of IL-4 have been observed when measured as protein 

(Mahanty, 1996) or at the level of mRNA expression (Dimock, 1996). It is interesting to 

note that whilst the frequency of IL-4 producing T cells is similar across clinical groups, 

the frequency of IFN-y secreting cells is significantly lower amongst microfilaremics 

(King, 1992). In accordance with these findings no relationship has yet been demonstrated 

between IL-4 production and microfilaremia (Maizels, 1995) or fluctuations in mf density 

(Sartono, 1999). It is of note that PBMC from Mf+, Mf- CFA+ or CFA- individuals did 

not differ in their levels of IL-4 mRNA expression upon in vitro restimulation with Ag 

(Dimock, 1996). Individuals who are CFA- may be considered putatively immune and it 

has been suggested that incoming L3 are the target of this immunity (Day, 1991). In the 

absence of active infection it is possible that continued exposure to incoming L3 (known 

to be a potent stimulus for IL-4 production in laboratory mice (Lawrence, 1994; Osborne, 

1997b) may contribute to the maintenance of an Ag-specific population of IL-4 producing 

cells. Interestingly it has recently been reported that production of IL-4 and IL-5 are 

differentially regulated in human filariasis. Sartono et al (1997) studied Ag-specific 

cytokine production as a function of age in an area endemic for B. malayi infection. While 

both asymptomatic Mf- and Mf+ subjects produced equivalent amounts of IL-4, 

asymptomatic Mf- subjects produced significantly higher levels of IL-5. Furthermore when 

considered as a function of age, IL-5 expression was found to segregate distinctly from 

that of IL-4. Although Mf+ individuals showed increased production of IL-4 over time no 

such changes were observed in the levels of Ag-driven IL-5 or IFN-y. Such findings 

suggest that responses to filarial infection may not fall neatly into line with the Th IITh2 

paradigm. 
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1.3.2. Proliferative suppression in human L.F. 

Ag-specific proliferative suppression is a well documented feature of lymphatic 

filariasis (Ottesen, 1977 ;Piessens, 1980b;Ravichandran, 1997 ;Sartono, 1995a; Yazdanbaksh, 

1993). Early studies reported the inability of PBMC from infected individuals to 

proliferate in response to parasite Ag whilst polyclonal, mitogen driven responses remain 

intact (Ottesen, 1977; Piessens, 1980b). The most profound proliferative suppression was 

seen amongst asymptomatic microfilaremics leading them to be classified as 

"hyporesponsive" with regard to filarial Ag (Ottesen, 1977; Piessens, 1980b; 

Ravichandran, 1997; Yazdanbaksh, 1993). More recently, observations from a larger study 

population demonstrated that a percentage of individuals in all clinical groups have 

suppressed Ag-specific proliferative responses (Yazdanbaksh, 1993). Suppression was 

most profound amongst microfilaremics but was also observed in amicrofilaremics and 

elephantiasis patients. This study had the great advantage of being able to compare both T 

and B cell responses within the same individuals and proliferative responses were shown 

to correlate inversely with IgG4 production. As IgG4 production has been shown to 

indicate the presence of active infection (Kwan-Lim, 1990), these results suggest that all 

infected individuals are subject to some form of suppression, the degree of which may 

vary in line with worm burden (Yazdanbaksh, 1993). It is of interest to note, however, that 

filarial-specific IgG4 is most highly elevated in microfilaremics compared to other clinical 

groups (Hussain, 1987; Ottesen, 1992). These findings infer an association between the 

presence of circulating mf, high level IgG4 production and the down-regulation of Ag

specific proliferative responses. 

1.3.3. Mechanisms of proliferative suppression in the infected human 

Cells from Mf+ individuals are sensitised by in vivo exposure to filarial Ag (as 

demonstrated by their capacity for Ag-specific cytokine production), but are unable to 
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proliferate in response to Ag in vitro. Although the nature of this hyporesponsiveness is 

incompletely characterised a number of mechanisms maybe involved, including clonal 

deletion, induction of parasite-specific anergy, an imbalance in cytokine production, clonal 

exhaustion, or the development of regulatory cell populations (for review see Maizels, 

1995). Various studies have attempted to elucidate the cause of proliferative suppression 

and whilst there has been some success in partially restoring responsiveness, no single 

factor has been universally effective (King, 1992; Mahanty, 1997; Piessens, 1980a; 

Sartono, 1995a). Similar findings have been reported in the mouse model (see below), 

wherein it appears that proliferative suppression is likely to be the net result of various 

and diverse mechanisms. 

Sartono et al (l995a) attempted to restore Ag-specific proliferation in vitro using a 

battery of immunomodulatory reagents. Some restorative effect was seen using 

recombinant IL-2 but this was inconsistent reversing unresponsiveness in only 12-28% of 

patients and no factor consistently improved proliferation. TCR ligation in the absence of 

efficient co-stimulation can result in T cells undergoing apoptosis (Liu, 1990) or entering 

an unresponsive state (Scwartz, 1990). To address the possibility that inefficient co

stimulation may be involved in generating hyporesponsiveness, Ag stimulated cultures 

were supplemented with antibodies capable of enhancing co-stimulation via cross-linking 

of CD2, CD26,CD27 or CD28 (Sartono, 1995a). None of these treatments were able to 

restore proliferative responses, suggesting that defective co-stimulation alone does not 

account for impaired T cell responses. 

1.3.4. IL-IO and proliferative suppression 

There is conflicting evidence surrounding a role for IL-10 in down-regulating 

proliferative responses in filariasis (King, 1992; Mahanty, 1996; Ravichandran, 1997; 
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Sartono, 1995a). IL-I0 down-regulates production of IL-2 and IFN-y by Th 1 clones (Sher, 

1992), and following murine infection with Nippostrongylus braziliensis and Schistosoma 

mansoni (Sher, 1992). IL-I0 also mediates proliferative suppression in a murine model of 

trypanosomiasis (Uzonna, 1998). 

Cells from microfilaremic individuals produce IL-I0 both spontaneously (King, 

1992) and in response to Ag (Ravichandran, 1997). At the level of mRNA expression Mf+ 

indi viduals produce higher levels of IL-l 0 than patients in other clinical groups and IL-I0 

production correlates inversely with proliferation (Ravichandran, 1997). Whilst in vitro 

neutralisation of IL-lO or TGF-~ enhanced Ag-specific proliferation of PBMC from W 

bancrofti infected individuals (King, 1992), neutralisation of IL-I0 did not restore 

proliferative responses of PBMC from individuals with brugian filariasis (Sartono, 1995a). 

These differences, however, may relate to the treatment of cells prior to in vitro assay as 

Sartono et al used cryopreserved cells. 

There is good circumstantial evidence to suggest that the increased IL-I0 

production seen amongst microfilaraemics is APC derived. In an early study by Piessens et 

al it was found that removal of adherent cells significantly improved proliferative 

responses from "non-reactors" (Piessens, 1980b). Analysis of the adherent cell population 

led to speculation that monocytes were responsible for suppression, and, as human 

monocytes have been identified as a major source of IL-lO (de waal Malefyt, 1991), it is 

tempting to speculate that monocyte derived IL-I0 may be a contributory factor. 

Furthermore serum from "non-reactors" was shown to suppress proliferative responses of 

PBMC from "reactors" and, whilst the serum factor responsible for suppression was not 

identified, IL-I0 is a potential candidate. It is interesting to note that conditions which 

improved responses of "non-reactors" also enhanced responses of "reactors" (Piessens, 
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1980b), again suggesting that all infected individuals are subject to some form of 

suppression. 

1.3.5. T regulatory cells 

Several lines of evidence suggest a role for regulatory T cells in modulating 

responses in lymphatic filariasis. King et al (1992) found that that cultures with fewer 

lymphocytes often showed higher levels of Ag-specific proliferation, suggesting 

interacting populations of CD4+ cells may modulate this response. As proliferative and 

pro-inflammatory responses are selectively suppressed, regulatory cytokine production 

again seems a likely mechanism. 

Recently new T cell subsets (termed Th 3 / Tr 1) which differ from Th 0, Th1 or 

Th2, have been described and characterised at the level of T cell clones (O'Garra, 1998). A 

common feature of these subsets is their production of high levels of TGF-~ and / or IL-1 0 

and only low to undetectable levels of IL-2. It has been suggested that Tr 1 cells may also 

drive APC to produce IL-lO leading to suppression of responses to third party Ag 

(Cobbold, 1998). In a recent study on Ag-specific hypo-responsiveness in humans infected 

with Onchocerca volvulus (a related filarial worm and the causative agent of river 

blindness), IL-10 and TGF-~ were shown to effect suppression of proliferative responses 

(Doetze, 2000). Parasite-specific T cells were cloned from hyporesponsive individuals and 

shown to have a cytokine production profile similar to that of Th 3/Tr 1 cells (no IL-2, 

high IL-lO and / or TGF-~). This led to the proposal that hypo-responsiveness in O. 

volvulus infection is mediated by Th 3 / Tr 1 type cytokines rather than a Th 1 to Th2 shift. 

It is not known whether a similar population of regulatory T cells is expanded in hypo

responsive individuals in lymphatic filariasis but the early studies of King and Nutman 
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(1993) which showed that neutralisation of IL-IO or TGF-~ restored proliferative 

responses suggest that this may indeed be the case. 

1.3.6. In utero exposure to filarial-Ag 

Suppression of proliferative responses in L.F. may be considered as a form of 

parasite-specific tolerance and it has been proposed that in utero exposure to filarial Ag 

may contribute to its development. Several studies have shown that children born to Mf+ 

mothers are more likely to become microfilaremic themselves (Hightower, 1993; Lammie, 

1991). The findings of Steel et al (1994) that the offspring of Mf+ mothers remain 

unresponsive to Mf Ag throughout their lives suggested clonal deletion of Ag-reactive 

lymphocytes may occur as a result of in utero exposure to parasite Ag. However several 

findings argue against clonal deletion being the sole mechanism of down-regulation, most 

notably the widely reported reversal of hyporesponsiveness seen post-chemotherapy 

(Lammie, 1992; Piessens, 1980b; Sartono, 1995b; Yazdanbaksh, 1993). Treatment with 

diethyl carbamazine (DEC), a filaricidal drug leads to improved proliferative responses 

amongst microfilaremics and elephantiasis patients (Lammie, 1992). Treatment with 

ivermectin, which clears mf without affecting the adult worms, has also been shown to 

enhance T cell reactivity, suggesting a direct role for mf in generating suppression 

(Lammie, 1992). 

1.3.7. IFN-y responses are down-regulated, particularly amongst microfilaremic 

individuals 

Down-regulation of IFN-y production is another prominent feature of filarial 

infection which is most pronounced amongst Mf+ individuals (King, 1992; Mahanty, 

1996; Ravichandran, 1997). While the precursor frequency of Ag-specific IL-4 secreting 
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cells is comparable across clinical groups, Mf+ individuals have significantly fewer IFN-y 

producing cells than CP individuals indicating a more profound suppression of Th1 

responses (King, 1992; 1993). In several ways suppression of IFN-y production parallels 

proliferative suppression as in vitro both Ag-specific proliferation and IFN-y responses are 

lowest amongst Mf+ individuals (Ottesen, 1977; Piessens, 1980b; Ravichandran, 1997). 

Furthermore factors which restored proliferation, such as neutralisation of IL-1 0 or TGF-~ 

(King, 1992; Mahanty, 1997), or drug treatment (Piessens, 1980a; Sartono, 1995b), also 

enhanced IFN-y production. Several lines of evidence, (including reversal post

chemotherapy), suggest that down-regulation of IFN-y production is dependant upon 

active infection. Putatively immune individuals (Mf-, CFA-) in an area endemic for 

bancroftian filariasis have higher proliferative and IFN-y responses than infected (CFA+ 

Mf- and Mf+) individuals (Dimock, 1996). Similar results have been reported in infection 

with Onchocerca volvulus, where both proliferative and IFN-y responses are significantly 

greater amongst putatively immune individuals than those with active infections (Elson, 

1995). 

That worm burden may influence the degree of suppression is suggested by 

evidence that there is an inverse relationship between the presence of circulating 

microfilariae and IFN-y production by PBMC (Sartono, 1999). Over the course of this 

study a small number of individuals (6 of 39) had detectable mf at one or two time points 

and were negative at others. These individuals were termed "converters". IFN-yproduction 

was most affected by changes in mf density in a manner generally consistent with the 

presence of mf being associated with low IFN-y release, and the absence of mf with high 

IFN-y production. These results, demonstrating lower IFN-y production amongst Mf+, 

complement those of Dimock et al (96) which demonstrated that anti-filarial IgG2 
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production was associated with the absence of mf but not the absence of circulating Ag. 

This suggests a direct role for mf, as distinct to infection with adult worms, in suppressing 

IgG2 production, most probably via suppression of IFN-y production. Whilst not 

recognised as a switching factor for human IgG2 production, IFN-y can, itself, enhance 

IgG2 and acts synergistically in this respect with IL-6 (Kawano, 1994). 

1.3.8. A role for mf Ag in eliciting proliferative suppression 

The origin of the Ag used for in vitro restimulation was also demonstrated to 

affect both the proliferative and cytokine responses of PBMC from infected individuals 

(Mahanty, 1996). Proliferative responses to both mf Ag and mixed sex adult Ag were 

markedly impaired amongst Mf+ as compared to CPo In contrast to this, proliferative 

responses to adult male Ag were not significantly different between groups (being greater 

in Mf+ individuals than those elicited by mixed sex or female Ag). This was reflected in 

the observed pattern of cytokine secretion as lower levels of IL-2 and IFN-y were produced 

by cells from Mf+ in response to mf Ag and mixed adult Ag than to adult male Ag 

(Mahanty, 1996). These results indirectly suggest a role for microfilarial Ag in down

regulating proliferation as unlike male Ag, a proportion of mixed sex and female Ag will 

be composed of mf Ag due to the presence of mf within female worms. 

1.3.9. Hyporesponsiveness and microfilaremia 

Whilst hyporesponsiveness is not solely restricted to microfilaremic individuals 

there IS a clear association between the presence of circulating mf and 

immunosuppression. Ag-specific proliferative responses are lowest amongst 

microfilaremics (Ottesen, 1977; Ravichandran, 1997) and most difficult to restore both in 

vitro and post-chemotherapy in this group (Sartono, 1995b). Mf+ individuals have a lower 

frequency of Ag-specific lymphocytes and significantly lower numbers of IFN-y producing 
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cells (King, 1992; 1993). IFN-y production has been reported to correlate inversely with mf 

density (Sartono, 1999). PBMC from Mf+ individuals produce the lowest levels of Ag

specific IFN-y and IL-2 and high levels of both spontaneous and Ag-driven IL-lO upon in 

vitro restimulation (Mahanty, 1996). IL-lO production is highest whilst IL-2 / IFN-y 

production and proliferative responses are lowest upon restimulation with Ag preparations 

containing mf Ag, suggesting a role for mf Ag in generating suppression (Mahanty, 1996). 

Work in the mouse model of filariasis has revealed that different life cycle stages 

of the parasite elicit differentially polarised immune responses, and possess distinct 

mechanisms for modulating host responses (see below). During the course of long term 

human infection, individuals are exposed to all life cycle stages, adult worms, circulating 

mf, incoming L3 and developing larvae, and are subject to their combined 

immunomodulatory effects. This builds a complex picture of infection, wherein the 

observed responses are likely to be the net result of multi-factorial interactions between 

host and parasite. Whilst active infection, or continued exposure to incoming L3, may 

elicit and maintain the development of an expanded population of IL-4 producing cells, the 

presence of circulating mf is more particularly associated with distinct suppressive effects. 

In this sense it maybe considered that circulating mf contribute to the stability of Th2 

polarisation by actively down-regulating Ag-specific proliferative and IFN-y responses, 

leading to a more profound suppression of pro-inflammatory responses. 

1.4. The mouse model of lymphatic filariasis 

The study of immune responses in human lymphatic filariasis is complicated by 

several factors, including levels of worm burden and infection status, prior and current 

exposure to infective larvae and the presence of concomitant infections. The use of animal 
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models allows many of these variables to be controlled, such that it is possible to assess 

responses to infection of known dose, at specific sites, over a given period of time. 

Unfortunately no suitable animal model has been found to support the development of W. 

bancrofti so most laboratory studies have used models of infection with Brugia spp. 

Brugia pahangi, a cat filarid closely related to B. malayi, will develop in several species 

of laboratory rodents, producing patent infections in the Lewis rat (Fox, 1976; Vickery, 

1983), the golden hamster (Malone, 1975) and the mongolian jird, Meriones unguiculatus 

(Ash, 1970). The jird is the most susceptible of these hosts and is used successfully to 

maintain the life cycle of both B. malayi and B. pahangi for laboratory studies. In the jird 

model, suppression of both Ag-specific and mitogen driven proliferative responses occurs 

during infection (Lammie, 1983a/b; Lammie, 1984b; Pmtaro, 1976; Prier, 1988). Most 

interestingly, the onset of proliferative suppression has been shown to correlate with the 

appearance of microfilariae in the blood (Lammie, 1983a/b; 1984a). However, the lack of a 

well characterised immune system, inbred strains or immunological reagents have limited 

the usefulness of this model. 

To overcome these problems much work has been done using infection of inbred 

laboratory mice. While immunocompetent mice will not support the complete 

development of the parasite (Ahmed, 1967; Laing, 1961; Vickery, 1983), they have 

allowed study of the mechanisms of resistance to primary infection and of protective 

immunity to challenge infections. A great deal of information on the immunomodulatory 

capacity of filarial worms has also been obtained from studies using single life cycle stage 

infections. The advent of genetically manipulated mice, lacking highly specific 

components of the immune response has also allowed the importance of precise 

parameters to be assessed in terms of protective immunity, parasite survival and host 

pathology (Rev Lawrence, 1996). Cumulatively these studies build a picture of an 
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immunologicaly complex infection, with a parasite able to modulate the host response by 

an array of mechanisms, associated with distinct life cycle stages and cellular interactions. 

1.4.1. Resistance and protective immunity in mouse models of filariasis 

(i) Immunity to L3 

That T cells are necessary for the development of resistance to B. pahangi was 

suggested by the observation that congenitally athymic "nude" mice (lacking functional T 

lymphocytes) are susceptible to infection, whilst normal mice are resistant (Suswillo, 

1980; Vincent, 1980). The importance of T cells was shown by the demonstration that 

resistance, comparable to that seen in normal mice, could be achieved in nudes by 

reconstituting T cell function either by thymus grafting or adoptive transfer of splenocytes 

from infection primed heterozygotes (which are phenotypically normal) (Vickery, 1984). 

In the absence of transferred cells transferred serum containing anti-parasite antibodies 

was shown to be non-protective (Vickery, 1983). These results demonstrated that 

resistance to B. pahangi in mice is achieved by a thymus dependant mechanism of which 

cells are an essential component. 

Further evidence of the importance of specific immunity in resistance came from 

studies using SCID mice. Severely compromised immunodeficient (SCID) mice, are 

homozygous for a recessive mutation at the locus that influences assembly of intact Ig and 

TCR genes, and therefore cannot generate functional B or T lymphocytes. Nelson et al 

(1991) demonstrated that subcutaneous injection of B. malayi L3 led to the development of 

patent infections in SCIDs. As SCID mice have normal NK cell and macrophage activity 

these results further suggested that immunity is dependant upon specific TIE cell activity. 

Whilst being refractory to full infection, the potential of the well characterised 

BALB/c mouse in allowing the dissection of responses to individual life cycle stages was 
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first utilised by Hayashi et al (1984). Having determined that vaccination with irradiated 

L3 led to a dramatic reduction of survival upon challenge infection they sought to define 

the mechanisms of this immunity. Using passive transfer of spleen cells from immunised 

animals they were able to confer resistance upon naIve recipients. As previously described 

elsewhere (Vickery 83) transfer of serum in the absence of cells did not confer resistance. 

Subsequent studies sought to determine the specific components of adaptive 

immunity involved in generating resistance to primary infections with L3. Having 

established that cells of the specific adaptive immune system are necessary to achieve 

resistance (Nelson, 1991), Rajan et al failed to demonstrate a role for CD4+ T cells, CD8+ 

T cells or B cells in generating resistance to L3 of B. malayi. CD4 null mice (lacking CD4+ 

T cells), ~2-microglobulin knock-out mice (deficient in CD8+ T cells and NK cells), and 

/-lMT -//-lMT - mice (lacking functional B cells) were all found to be resistant to infection 

(Raj an, 1992; 1994; 1995). The authors concluded that B cells were unnecessary to 

resistance, and that in the absence of CD4+ or CD8+ T cells, double negative, (CD4-ICD8-) 

T cells, or the interactions of either CD4+ or CD8+ T cells with cells of the innate immune 

system may be sufficient to mediate resistance. It is of note, however, that in the above 

mentioned experiments with ~2m-l- and CD4 null mice no comparison was made to worm 

recoveries in the equivalent "wild type" counterparts and in those using /-lMT -//-lMT - mice, 

a total of three wild type C57B/6 mice were used in two experiments. However, recent 

results from the same laboratory have led them to re-evaluate the importance of B cells in 

generating resistance to B. malayi L3. Comparing responsiveness of mice lacking T cells, 

B cells or both cell types (on a uniform genetic background, C57BLl6) suggested that B 

cell activity may contribute to resistance at early stages post infection (Babu, 1999). 
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In contrast to the findings of Raj an et al evidence for an important role for CD4+ T 

cells has been reported in protective immunity to challenge infection of immunised 

BALB/C mice. Mice immunised with irradiated B. pahangi L3 become strongly immune to 

challenge infection (Bancroft, 1993). Upon in vitro restimulation with Ag / ConA, 

splenocytes from immunised animals produce large amounts of ll.,-5/ll.,-9, moderate levels 

of ll.,-4 and negligible IFN-y, consistent with a preferential expansion of Th2 cells. The 

effects of in vivo antibody-mediated depletion of CD4+ or CD8+ T cells upon immunity in 

immunised mice were assessed. Anti-CD4 treatment resulted in a significant increase in 

worm recovery and a much reduced capacity for ll.,-4, ll.,-5 and ll.,-9 production in vitro 

and lower levels of parasite-specific IgG and IgE in vivo. In contrast depletion of CD8+ T 

cells had negligible effects on immunity to challenge infection (Bancroft, 1994). This 

study supports a critical role for CD4+ T cells in protective immunity to B. pahangi in 

BALB/c mice and suggests some component of the Th2 response plays an important role. 

There is strong evidence supporting a role for Th2 responses in murine resistance 

to filarial infection from several closely related model systems. In particular those studies 

using Onchocerca sp., which have also suggested that distinct mechanisms effect 

immunity to different life cycle stages (Hogarth, 1998). Litmosoides sigmondontis is a 

member of the Onchocercidae family which displays fundamental biological similarities to 

human filariae (Allen, 2000; Martin, 2000) and is the only filarial worm to undergo full 

development in inbred laboratory mice. The potential of this important model of filarial 

infection is now being realised in terms of identifying effector mechanisms of immunity 

(Le Goff, 1999; Martin, 2000; Petit, 1992; Pfaff, 2000alb) and providing a model for 

vaccine development (Allen, 2000). During murine infection, development of L. 

sigmondontis is controlled by CD4+ T cells, and worm loads correlate negatively with Th2 

cyokine production, eosinophilia and levels of parasite-specific serum IgE (Al-Qaoud, 
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1997). Mice with impaired development of Th2 responses display enhanced susceptibility 

to L. sigmon don tis (AI-Quoad, 1998), while those with enhanced Th2 responses are highly 

resistant (Martin, 2000). The B 1 cell deficiency of BALB/C Xid mice led to increased 

susceptibility to infection, which was associated with a lower level of B cell derived ll..,-1 0 

and parasite driven Th2 cytokines (AI-Quoad, 1998). While these results suggest that B 

cell derived IL-lO is important in driving the development of Th2 responses during filarial 

infection, it is important to acknowledge that btk deficiency in Xid mice also affects other 

cell types in addition to B 1 cells. 

(ii) The role of IL-5 and eosinophils in protective immunity 

A range of gene-knock-out mice and in vivo antibody depletion studies have helped 

identify effector mechanisms, operable post-immunisation, against challenge infection 

with L3 and mf of Onchocerca sp. Following immunisation with irradiated L3 of O. 

volvulus and challenge with L3 contained within diffusion chambers, both IFN-y-/- and 

wild type C57BLl6 mice display high levels of larval killing (Johnson, 1998). Immunity 

was associated with elevated levels of IL-4 and eosinophil recruitment. Unimpaired 

resistance in IFN-y-/- mice argues against a role for Th 1 responses in the killing of L3. In 

contrast, immunised IL-4-/- mice were unable to kill challenge larvae showing an absolute 

requirement for IL-4 in protective immunity to L3 (Johnson, 1998). Interestingly while 

levels of IL-5 were elevated in all three groups of immunised mice, IL-4-/- mice had 

significantly fewer eosinophils in their diffusion chambers suggesting IL-4 may play an 

important role in enabling the transmigration of eosinophils through the vasculature and to 

the target site. 

In contrast to the situation with L3, IL-4-/- mice are able to clear a pnmary 

infection with O. lienalis mf, and display unimpaired resistance to secondary infection 

(Hogarth, 1995). However in vivo neutralisation of IL-5 in IL-4-/- mice enhanced survival 
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of primary infections, and ablated infection induced eosinophilia and resistance to 

challenge infections (Hogarth, 1998). Furthermore infection of /lMT mice demonstrated 

IL-5 does not mediate its protective effects via Ig isotype switching. These results suggest 

that unlike immunity to L3, IL-5 dependant immunity to mf is mediated by eosinophils 

independently of IL-4. Indeed the cytokine response during the expression of protective 

immunity to Onchcerca mf is dominated by IL-5 production which correlates with blood 

and tissue eosinopihlia (Hogarth, 1999). In an interesting parallel to observations in human 

filariasis (Mahanty, 1996), splenocytes from mf-infected animals showed vigorous 

proliferative responses to restimulation with adult worm Ag yet failed to proliferate in 

response to mf Ag (Hogarth, 1999). 

The studies of Hogarth and Johnson show a dissociation of IL-4 and IL-5 

production, and it has been proposed that IL-5 production may be regulated independently 

of IL-4 during filarial infection. Indeed the work of Sartono et al (1997) demonstrated that 

levels of IL-5 fluctuate independently of IL-4 in human, infection with B. malayi. Most 

interestingly the studies reviewed above demonstrate that IL-5 dependant protective 

immunity to mf of Onchocerca sp. is IL-4 independent and as such is distinct to that 

against L3, which requires both IL-4 and IL-5 (Johnson, 1998; Lange, 1994). However, 

protective immunity to L. sigmodontis L3 has been shown to be IL-5 dependent whilst 

resistance to primary infection is not, illustrating differences in the mechanism of 

resistance to primary infection and immunity to challenge (Le Goff, 2000). 

Elimination of both B. malayi mf and L3 is enhanced by prior sensitisation with 

parasite lysates (Kazura, 1982) and following immunisation, resistance to mf correlates 

with the development of local Th2 responses (Pearlman, 1993a). Elimination of B. malayi 

mf in multiply immunised BALB/c mice is associated with local eosinophilia and elevated 

levels of serum IgE. CD4+ T cells from the site of inoculation (the peritoneal cavity) 
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produce IL-4 and IL-5 but not IFN-y. Following multiple immunisation, and subsequent 

infection, differences in cytokine responses were observed between cells from the site of 

infection and other secondary lymphoid organs. While peritoneal exudate cells (PEC) 

produce exclusively Th2 cytokines, splenocytes and lymph node cells give a more mixed 

response producing Ag-specific IL-5 and IFN-y but no IL-4 (Pearlman, 1993b). These 

results led to the suggestion that Ag-specific Thl cells may enter the peritoneal cavity but 

IFN-y production maybe down-regulated under the influence of IL-lO. Neutralisation of 

IL-lO in Ag-stimulated culture of cells from multiply immunised, or chronically infected, 

mice enhanced IFN-yproduction further supporting this theory (Pearlman, 1993b). 

Collectively these studies are suggestive of an important role for IL-5 and 

eosinophils in murine resistance to filarial infections. Recently the development of IL-5 

transgenic (IL-5 Tg) mice, which have life long eosinophilia, has allowed further analysis 

of the role of IL-5 in various models of infection. IL-5 Tg mice display enhanced 

resistance to Nippostrongylous brasiliensis (Dent, 1999) and L. sigmondontis (Martin, 

2000). Infection with N. brasiliensis is so short lived that any contribution from the 

humoral arm of the adaptive response to enhanced resistance was considered unlikely 

(Dent, 1999). Following infection with L3 of L. signwndonis, IL-5 Tg mice displayed 

resistance equivalent to that seen in immunised BALB/c mice which also show high levels 

of IL-5 production and eosinophilia (Martin, 2000). Developing larvae recovered from IL-

5 Tg mice were found to be surrounded by an aggregate of eosinophils and macrophages, 

further suggesting an important role for eosinophils in effecting resistance. 

L. sigmondontis infection, of resistant and susceptible strains of inbred mice, has 

also been used as an approach to highlight potentially important effector mechanisms. 

Following infection with mf, resistant C57BLl6 mice show enhanced production of nitric 
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oxide (NO) compared to susceptible BALB/C mice (Pfaff, 2000b). NO, produced by 

activated macrophages, has been shown to act as an effector molecule in immunity to a 

diverse array of pathogens (James, 1995). In vitro studies have also demonstrated 

cytostatic and cytotoxic effects of NO upon filarial worms (Taylor, 1995; Thomas, 1997). 

However, although L. sigmondontis mf are susceptible to NO in vitro, iNOS-/- mice 

(lacking the gene for inducible nitric oxide synthase, the enzyme responsible for high level 

NO production) on the C57BLl6 background, were found to be as resistant as their wild 

type counterparts (Pfaff, 2000b). Such results suggest NO is not an important factor in the 

elimination of L. sigmondontis mf in vivo. 

These studies, in several different host / parasite systems, serve to illustrate 

features of importance in resistance to primary and challenge infection with filariae. 

Unlike observations in human endemic normals (Dimock, 1996) there is little support 

from murine models for a role of Th 1 responses in resistance to L3. In contrast Th2 

responses often correlate with the development of protective immunity to both mf and L3 

(AI-Quoad, 1998; Bancroft, 1993; Hogarth, 1998/1999; Johnson, 1998; Lange, 1994; 

Pearlman, 1993a). Furthermore rather than falling neatly in line with the classic Thl / Th2 

paradigm, production of IL-5 is dissociated from that of IL-4 and maybe produced even in 

the absence of IL-4 or along with IFN-y (Hogarth, 1998; Pearlman, 1993b). It is also of 

note that IFN-y, IL-4, IL-5 and IL-lO are not uniquely produced by T helper cells and 

cytokine production by non-T cells such as eosinophils, mast cells and activated MO may 

also influence the immune response. Protective immunity to different life cycle stages may 

also be dependant upon different cytokines (Hogarth, 1998; Lange, 1994), may be site 

specific, and dependant upon route of infection (Pearlman, 1993a). Most mouse models of 

filariasis are limited in terms of assessing protective adaptive immunity over the course of 

infection, due to incomplete parasite development in murine hosts. In spite of this, such 
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studies provide information of obvious importance for vaccine design, in terms of the type 

of responses that are most effective against the desired target stage of the parasite at a 

specific site. 

1.4.2. Immunomodulation in mouse models of filariasis 

(i) Different life cycle stages elicit development of differentially polarised responses 

While Brugia spp. will not complete their developmental cycle In 

immunocompetent mice, short term, single life cycle stage infections have been used to 

great effect in assessing stage-specific responses. Lawrence et al (94) made the intriguing 

discovery that infection with different life cycle stages leads to the development of 

contrasting cytokine and Ig isotype response in BALB/C mice (Lawrence, 1994). 

Intraperitoneal infection with adult worms led to the production of IgG 1 and IgE in vivo. 

High levels of Ag-specific IL-4 and negligible levels of IFN-y were produced upon in 

vitro restimulation of splenocytes, indicative of a Th2 type response. L3 given i.p. or s.c. 

(Lawrence, 1994; Osborne, 1996)also induce strong Th2 responses. In contrast, infection 

with mf leads to development of a Th I-like response: splenocytes from mf-implanted 

animals release large amounts of IFN-y upon in vitro restimulation, generate Ag-specific 

serum antibodies of all IgG subclasses and produce little serum IgE (Lawrence, 1994). 

This stage-specific skewing of the immune responses is consistent across a variety of 

mouse strains tested including BALB/c, 129SvxC57B/6 and CBAlCa mice (Lawrence, 

1996). 

Although adult female worms continue to produce mf following implantation, 

splenocytes from these animals still give Th2 recall responses in vitro, suggesting that 

females exert a sufficiently strong influence to override mf-induced IFN-y production. It is 

interesting to note that infection with adult females provided a much more potent stimulus 
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for IL-4 production than infection with adult males (Lawrence, 1994). It is not known 

whether this is a reflection of the significantly greater biomass of female worms, or if the 

response is directed towards antigens, possibly of uterine origin, associated solely with 

female worms. 

The importance of IL-4 in down-regulating mf-induced IFN-y production was 

further demonstrated following infection of IL-4 KO (IL-4-/-) mice. A dramatic change in 

polarisation of the response to adult worms was observed in KO mice with a significant 

reduction in IgG 1 and a corresponding increase in IgG2a, IgG2b, IgG3 and IFN-y release. 

This "switch" was most marked in recipients of adult female worms which continually 

produce mf, demonstrating that in the absence of IL-4, down-regulation of mf-induced 

IFN-y production does not occur (Lawrence, 1995). Alternatively the absence of IL-4 

during priming may allow development of a female induced IFN-y response. These in vitro 

cytokine responses suggest that under the influence of IL-4, IFN-y secreting cells may not 

be primed during infection with life cycle stages driving Th2 responses. However, it has 

now been shown that Ag-specific IFN-y producing cells are primed by infection with L3 

but their activity in vitro is down-regulated by IL-lO, whilst polyclonal IFN-y production is 

down-regulated under the influence of both IL-4 and IL-lO (Osborne, 1996/1999). The 

existence of "primed but silenced" Th 1 responses provides an interesting parallel to human 

infection with W bancrofti where Ag-specific IFN-y production is down-regulated by IL-

10 and TGF-~ (see above, King, 1992). 

(ii) Mf-induced responses in murine infection 

At early time-points (12-14 days) following intra-peritoneal infection with mf 

recall responses in vitro are Thl-like, with Ag-specific cytokine responses dominated by 

IFN-y (Lawrence, 1994; Pearlman, 1993b). Following chronic infection or repeated 
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immunisations with mf-extract however, IFN-y responses are suppressed and a more Th2 

like response is seen in vitro (Lawrence, 1994; Pearlman, 1993b). Subcutaneous infection 

with mf also induces development of a Th1 like cytokine profile and the suppression of 

Ag-specific proliferative responses (Osborne, 1996). 

Pearlman et al (l993b) investigated the ability of B. malayi mf and soluble mf 

extract to elicit and maintain T cell responses in BALB/c mice. At 14 days post-infection 

with mf, or following immunisation with mf extract, splenic lymphoid cells produce IFN-y 

but little or no IL-S. At later time points, however, Ag-specific IL-S production was shown 

to increase coincident with a decrease in IFN-y production. CD 4+ T cells were shown to 

be the major source of Ag-specific cytokine production upon in vitro restimulation. 

Injection with soluble mf extract also induced production of IFN-y in the absence of IL-S, 

while repeated immunisation (x3), led to development of a more Th2 polarised response 

with increased IL-S and decreased IFN-y. 

As prolonged infection (Lawrence, 1994) or repeated immunisation (Pearlman, 

1993b) are required for the generation of mf-induced Th2 responses it may be that 

increased levels of restimulation are necessary for Th2 development. In this way Th2 

responses may be related to the chronicity of infection. Alternatively the development of 

Th2 responses following mf infection may be due to exposure to somatic antigens only 

released upon death of the parasite. 

Following intravenous infection of BALB/c mice with B. malayi mf, high levels of 

19B production have been reported even in the presence of IFN-y and it has been shown 

that high numbers of mf (2.Sx 1 05
) or repeated immunisations with mf extract increases 

mf-induced 19B production (Lawrence, 2000). After infection with high doses of mf, IFN-y 
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production was also shown to decrease over extended periods of time (up to 80 days) 

supporting the theory that chronicity of exposure to Ag is related to the development of 

mf-induced Th2 responses. In an interesting parallel to studies on human L.F. (Mahanty, 

1996), development of mf-induced Th2 responses was accompanied by the onset of IL-

10-mediated down-regulation of IFN-y production. In vitro treatment with an anti-IL-IO 

MAb led to increased IFN-y production by splenocytes from chronically infected (35 dpi), 

or multiply immunised mice but did not affect IFN-y production at 14 d.p.i. or following a 

single immunisation. As seen in studies on brugian filariasis in humans however (Sartono, 

1995a), anti-IL-IO treatment failed to enhance proliferative responses (Pearlman, 1993b). 

Mf-induced suppression of Ag-specific proliferative responses was recently 

reported following s.c. infection of BALB/c mice with B. pahangi (Osborne, 1996). While 

splenocytes from L3 infected mice gave strong Ag-specific proliferative responses, cells 

from mf-infected animals were unable to proliferate under identical conditions. At 12 d.p.i. 

after 72 hI's of Ag-stimulated culture, cells from mf-infected animals proliferated at only 

background levels equivalent to those of cells from uninfected control mice. Cells from 

mf-infected animals were clearly activated, as demonstrated by their production of high 

levels of Ag-specific IFN-y. In a situation analogous to that seen in human infection, 

proliferative suppression was Ag-specific in nature as polyclonal, mitogen driven 

responses were intact in mf-infected animals. It is of note that proliferative suppression in 

the B. pahangi IBALB!c mouse model occurs at an early time-point post mf-infection, 

when the response is Th 1 like in nature, and precedes the previously reported down

regulation of IFN-y responses (Pearlman, 1993b) suggesting it is mediated by distinct 

mechanisms. That suppression is mf-specific is also particularly intriguing considering the 

close association between the presence of circulating mf and hyporesponsiveness in human 
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infection (see above 1.3.7-9). The observation of mf-induced Ag-specific proliferative 

suppression forms the basis of this study which is aimed at identification of the 

immunomodulatory effector mechanisms involved. 

(iii) Mechanisms of immunomodulation in the mouse model of filariasis 

Studies in murine models have revealed a multitude of ways in which filarial 

parasites may regulate host responses. These range from interactions of filarial products 

with the innate system (Whelan, 2000), via the generation of a suppressive APC 

population (Allen, 1996; MacDonald, 1998) which may favour Th2 development (Loke, 

2000), by production of cytokines such as IL-4, IL-10 and TGF-p capable of down

regulating Th1 responses (Loke, 2000; Osborne, 1999) or via direct effects of parasite 

products in suppressing proliferation of T and B cells (Harnett, 1998/1993). It is also 

apparent that different life cycle stages possess different means of effecting suppression 

(Allen, 1996), clearly illustrating the complex and multi-factorial nature of responses to 

filarial infection. 

The role of Th2 cytokines in the generation of a suppressive APC population 

following filarial infection has been extensively studied by Allen et al. Intra-peritoneal 

infection with adult B. malayi leads to the IL-4 dependant development of a population of 

alternatively activated F480+ macrophages, which suppress proliferation of the conalbumin 

specific T-cell clone D 1O.G4 whilst cytokine production remains intact (Allen, 1996; 

Loke, 2000). The fact that Ag-specific cytokine responses are not suppressed demonstrates 

that reduced proliferation is not a result of ineffective Ag-processing or presentation. The 

observation that DIO.G4 T cells are unable to divide even in the presence of excess control 

APC, further suggests suppression is an active process, which cannot be accounted for by 

an absence of, or defect in, co-stimulation. Infection with adult worms or L3 leads to the 

development of a profound suppression suggesting some component of the Th2 response 
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is important in driving development of suppression. Indeed, studies using gene-knock-out 

mice have demonstrated an essential role for IL-4 but not IL-IO in development of a 

suppressive APe population (MacDonald, 1998). In vitro neutralisation of IL-4 or IL-lO 

demonstrated neither cytokine had direct suppressive effects, but rather act via the APe 

(MacDonald, 1998). While the mechanism whereby infection-derived PEe suppress 

proliferative responses has not been identified, there are qualitative differences in the 

suppressive effects generated by infection with different life cycle stages. Proliferative 

suppression following infection with adult worms, L3 or mf, is independent of H20 2 or 

prostaglandin production. Neutralisation of IFN-y or TGF-~, both of which have been 

shown to have cytostatic properties (Gajewski, 1988), also failed to restore proliferative 

responses. Interestingly, whilst suppression following infection with adults or L3 was not 

mediated by nitric oxide (NO) (which has been identified as a key mediator of proliferative 

suppression in several models of infectious disease), inhibition of NO partially reversed 

the suppression by PEe from mf-implanted mice. However even following mf-infection 

only background levels of proliferation could be achieved following NO inhibition and 

Ag-specific proliferation was not restored. These results further demonstrate different life 

cycle stages possess distinct mechanisms to modulate the host immune response. 

Infection with live worms is necessary for the development of suppression which 

may be in part due to the immunomodulatory properties of filarial excretory/secretory 

(E/S) products. Besides implantation of live adults or L3, daily injection of adult worm 

E/S products has been shown to be sufficient to drive development of the suppressive cell 

population (Allen, 1998). Furthermore injection of E/S from two other nematodes 

Nippostrongylous braziliensis and Toxocara canis also leads to reduced T cell 

proliferation, suggesting that, as a mechanism of down-regulating host responses, this may 

be a feature common to parasitic nematodes. In light of this, it is interesting that N. 
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brasiliensis E/S products have recently been shown to be capable of stimulating Th2 

responses to a soluble bystander Ag, co-administered at the same site, which may have 

implications regarding responses to concomitant infection (Holland, 2000). 

A common feature of E/S of filarial parasites is that they contain phosphoryl 

choline (PC) (Lal, 1990). ES-62 is a major PC containing E/S product of the rodent filarial 

parasite Acanthoceilonema viteae (Harnett, 1993) and has been shown to have various 

immunomodulatory properties. It has recently been demonstrated that ES 62 interacts 

directly with APC, signalling dendritic cells to acquire a phenotype which drives 

development of Th2 responses (Whelan, 2000). Dendritic cells are specialised APCs 

required for the priming and activation of CD4+ T cells, and as such can potentially direct 

the subsequent differentiation of T cell function (Banchereau, 1998). Whelan et al 

(Whelan, 2000) demonstrated that culture of GM-CSF matured bone marrow derived 

dendritic cells with LPS or ES62 leads to development of DC phenotypes promoting the 

differentiation of na'ive CD4+ T cells (OVA specific D011.1O T cells) towards either a 

Th 1 or Th2 phenotype respectively. These results, and those previously discussed (Allen, 

1998; Holland, 2000), suggest that signals dictating the phenotype of the resultant adaptive 

immune response may be intrinsic to nematode products and mediated via interactions 

with the innate immune system. The ability of E/S products to drive dendritic cells to 

promote Th2 responses following infection may be an important factor in driving ll..,-4 

production, inducing development of alternatively activated macrophages, further 

cementing Th2 polarisation whilst down-regulating proliferative responses. ES62 can also 

mediate direct suppressive effects on both T and B cells and can inhibit murine B cell 

proliferative responses (Harnett, 1993). Pre-exposure of Jurkat T cells to ES62 renders 

them anergic to intracellular signalling via the TCR (Harnett, 1998). PC containing 
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somatic extract of B. malayi has also been shown to suppress phytohaemagglutinin 

induced T-cell proliferation in vitro (Lal, 1990). 

(iv) Down-regulation of IFN-y production in the mouse model 

Ag-specific cytokine responses in murine models of filariasis, like those in human 

infection, are generally characterised by production of IL-4 with low or absent IFN-y 

responses. As reported in human bancroftian filariasis (King, 1993; Mahanty, 1996) there 

is evidence that cytokines such as IL-I0 may play an important role in down-regulating 

IFN-y responses following murine infection. 

Mitogen driven IFN-y production is significantly reduced in vitro following s.c. 

infection of BALB/C mice with L3 of B. pahangi and splenocytes from these animals do 

not produce Ag-specific IFN-y. While anti-IL-4 treatment restored mitogen driven IFN-y 

responses, only anti-IL-lO treatment allowed production of Ag-specific IFN-y (Osborne, 

1996; 1999). Anti-IL-10 treatment also enhances Ag-specific IFN-y production following 

chronic infection with mf or repeated immunisation with mf-extract (Pearlman, 1993b). As 

seen in human filariasis there is also evidence of a role for TGF-~ in suppressing IFN-y 

production. Alternatively activated macrophages, derived from i.p. infection with B. 

malayi, preferentially induce Th2 differentiation of naiVe CD4+ T cells from pigeon 

cytochrome-c-specific TCR transgenic mice. In contrast, stimulation with control PEC 

leads to development of Thl cells, producing high levels of IFN-y and little IL-4 (Loke, 

2000). Infection derived PEC down-regulate IFN-yproduction via TGF-~ independently of 

IL-10, anti-TGF-~ but not anti-IL-lO treatment enhancing IFN-y production to levels 

equivalent to those in control PEC primed cultures. In contrast to previous reports in 

human infection, however (King, 1993), anti-TGF-~ was unable to restore proliferative 

responses. The fact that anti-TGF-~ treatment reversed inhibition of IFN-y production but 
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not defective proliferation could suggest that there is no direct relationship between these 

two phenomenon in this form of suppression. Alternatively it may be that proliferative 

responses are more profoundly suppressed than IFN-y production. In this respect it is of 

note that splenocytes from mf-infected BALB/c mice fail to show Ag-specific proliferative 

responses whilst retaining the ability to produce Ag-specific IFN-y (see above, Osborne, 

1996). These results clearly demonstrate that, dependant upon the life cycle stage, and 

route of infection, the same end (down-regulation of IFN-y production), may be achieved 

by a variety of means. 

Whilst some down-regulatory effects may be more profound than others, it is 

conceivable that during the course of human infection, some, or all of these mechanisms 

may be operable. Furthermore distinct mechanisms, acting independently, or in concert, 

may assume greater or lesser significance at different times and even locations over the 

course of infection. In this way, rather than employing a single "shell" as defence against 

the elements of the immune system, it seems likely that the parasite has developed 

multiple mechanisms which may contribute to suppression, effectively forming a "layering 

system". While no single factor has been shown to account for proliferative suppression, 

or down-regulation of IFN-y responses, in human or murine infection, several contributory 

factors have been identified. The development of various mechanisms to achieve 

apparently similar goals is indicative of their importance to the parasite. This is further 

supported by the observations that proliferative and IFN-y responses are strongest amongst 

putatively immune E.N. (Dimock, 1996), and may be recovered post-drug-treatment of 

infected individuals (Lammie, 1992; Piessens, 1980b; Sartono, 1995b). The induction of 

hyporesponsiveness may then, represent a parasite survival strategy, allowing continued 

survival and maximising chances of transmission. In this sense it becomes important to 
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assess the contribution of various mechanisms, and the life cycle stages driving them, to 

the security of this system. The close association between the presence of circulating mf 

and the most profound suppression of proliferative responses and IFN-y production, 

suggest that mf-specific responses make an important contribution to hyporesponsiveness 

in human filariasis. The recent observations of mf-induced Ag-specific proliferative 

suppression (Osborne, 1996), and down-regulation of IFN-y responses during chronic mf

infection (Pearlman, 1993b), suggest the mouse model provides a powerful system in 

which to analyse the nature of mf-specific mechanisms of immune modulation. 

1.5. Nitric Oxide 

Nitric oxide (NO), one of the smallest known biologically active metabolites, 

displays a fascinating diversity of biological functions. Over the last 15 years renewed 

interest in the biology of NO has revealed its involvement in a number of fundamental 

processes, including important roles in both innate and acquired immunity. NO is now 

known to affect a range of biological functions, including, vascular and muscle relaxation, 

platelet aggregation, neuronal cell function, apoptosis and host defence, as well as being 

implicated in various immuno-pathologies (reviewed Liew, 1995). Research in immuno

parasitology has provided a considerable amount of information regarding the role of NO, 

both as an effector mechanism in host defence and in immunomodulation (James, 1995; 

Liew, 1995; MacMicking, 1997). The wealth of information gained from these systems 

probably reflects the intimate and delicate nature of the host parasite relationship. Such 

studies have also illustrated the immunologically diverse effects of NO, which, besides 

direct anti-microbial effects, can suppress potentially harmful or beneficial immune 

responses and may also contribute to pathology. It seems clear then, that production of 
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such an important bio-active molecule must be under stringent control, and, with NO, this 

is indeed the case. 

NO is derived from L-arginine and molecular oxygen in a reaction catalysed by 

nitric oxide synthase (NOS). To date three major mammalian isoforms of NOS have been 

identified, and all are thought to catalyse production of NO via the same pathway, 

involving two sequential mono-oxygenase reactions (Michel, 1996). One molecule of L

arginine is oxidised at its terminal guadino nitrogen to produce Nw-OH-L-arginine which 

is further oxidised to yield one molecule each of NO and L-citrulline (reviewed -

MacMicking, 1997). The three isoforms of mammalian NOS are named after the cell type 

from which they were first isolated and the main characteristic of their regulation (Bredt, 

1991; Lyons, 1992). The two constitutive forms (cNOS) were first identified in neuronal 

(NOS 1/ncNOS) and endothelial cells (NOS3/ecNOS). These constitutively expressed 

isoforms are dependant upon elevated levels of intracellular Ca2
+ for activity (cNOS) 

(Bredt, 1990). NOS 2 or macrophage NOS (Lyons, 1992) however, is inducibly expressed 

and functions independently of elevated levels of Ca2
+ leading it to be termed iNOS. All 

three isoforms require calmodulin binding for activity (Bredt, 1990; Dawson, 1992). NOS 

1/3 can only bind calmodulin (CaM) when intracellular Ca2
+ is elevated, while iNOS 

contains tightly bound CaM and therefore has a much reduced requirement for intracellular 

Ca2
+ (Cho, 1992). The differential requirement for intracellular Ca2

+ is thought to form the 

biochemical basis for NO production by NOS 1/3 being relatively "low output" while that 

of NOS 2 is considered "high output". It has generally been considered that high output 

NO production is involved in cell mediated cytotoxicity and host immunity, while low 

output constitutively expressed NOS are concerned with homeostatic "housekeeping" 

functions. However the discovery that cNOS may have roles in leukocyte adhesion 

(Kubes, 1991) and the induction of apoptosis during thymic maturation (Aiello, 2000; 

34 



Williams, 1998) suggest they may also be of relevance in immunology. However, it is 

clearly the high output NO pathway, under the direction of iNOS, that has central 

importance with regard to models of parasitic disease and which is reviewed below. 

1.5.1. Induction of NO 

iNOS is absent in strictly resting cells but is strongly induced by cytokines and 

other immunological stimuli. Expression is both transcriptionaly and post-transcriptionaly 

regulated, and involves a number of signal transduction pathways and molecules, 

including: Jak1/Stat1a/IRF-1; IKBINFKB; MAPK; PKC and others (reviewed Bogdan, 

2000a). The induction of iNOS expression has received considerable attention over recent 

years. It is clear that expression can be up or down-regulated by a multitude of factors, and 

that the outcome depends upon the net effect of all factors present, as well as the sequence 

of their encounter. Generally, pro-inflammatory cytokines such as IFN-y, TNF-a and IL

l~, associated with Thl responses, and microbial products such as LPS, promote iNOS 

induction whilst cytokines such as IL-4, IL-l 0 and TGF-~ inhibit NO synthesis. 

Ding et al (1988) investigated the induction of NO production in murine peritoneal 

macrophages (MO), using a battery of recombinant cytokines. When tested as a sole agent 

only IFN-y could independently induce NO production, while LPS acted in synergy with 

IFN-y to augment NO production. Although TNF-a/~ or IFN-al~ could not independently 

induce iNOS activity, either IFN-y and TNF-al~ or IFN-al~/y and LPS can interact 

synergistically to enhance NO production. These results reflect the findings of a study on 

NO production during BCG infection. Splenic and peritoneal macrophages from BCG 

infected mice produce NO in vitro, and rIFN-y which enhanced NO production also acted 

synergistically in this respect with either LPS or heat killed BCG (Kamijo, 1994). The 

iNOS promoter region confers inducibility by IFN-y and synergistic inducibility by LPS 
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and IFN-y, and contains multiple interferon regulatory factor response elements (Xei, 

1993). Interferon regulatory factor-l (IRF-l) is essential to the induction of iNOS 

activation in murine macrophages, and infection with Mycobacteria bovis (BeG) is more 

severe in IRF-1-/- mice than their wild type counterparts (Kamijo, 1994). These findings 

demonstrate that whilst IFN-y appears of primary importance in priming MO, with LPS 

acting as a "triggering" factor, other cytokines can also enhance NO production. 

The sequence of exposure to these signals is, however, essential in determining the 

outcome. Simultaneous or sequential exposure to IFN-y and LPS being required to induce 

NO synthesis, while pre-exposure to LPS has an antagonistic effect upon NO production 

(Lorsbach, 1992; Severn, 1993). TNF-a production is induced endogenously in 

macrophages by LPS and is thought to provide the major physiological secondary signal 

for IFN-y primed macrophages to produce NO (Drapier, 1988; Oswald, 1992b). The 

demonstration that Leishmania major amastigotes initiate NO production in IFN-y primed 

macrophages via the induction of TNF-a suggests that products of parasite origin may also 

directly induce TNFa production (Green, 1990c). The glycosylphosphatidylinositol toxin 

of P. jalciparUl11 has also been shown to promote MO activation and NO production 

providing further evidence of the ability of parasite products to interact directly with MO 

(Tochado, 1996). 

Like LPS, IFN-al~ can have dual effects upon iNOS expression dependent upon 

the sequence of exposure. While unable to act alone to induce iNOS expression in murine 

MO, IFN-al~ can act in synergy with LPS or L. nwjor for iNOS induction. Indeed IFN

aI~ have been identified as principal inducers of iNOS activity at very early time points 

following infection with L. major (1 day) in a study which demonstrated the importance of 

iNOS in the innate immune response (Diefenbach, 1998). However, IFN-al~ have an 
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inhibitory effect when added to MO prior to receipt of the primary stimulus (IFN-y/LPS or 

L. major) whereupon IFN-cxJ~ inhibit the activation of NFld3 a critical transcription factor 

for iNOS activation (Lopez, 1998). 

1.5.2. Factors down-regulating NO production 

A variety of factors have been identified which can down-regulate NO production, 

most notably cytokines associated with Th2 responses, IL-4, IL-I0 and TGF-~. As the 

induction of NO production is initiated by IFN-y, the prototypic Th I-type cytokine, 

regulation of an essentially Th 1 function by Th2 cytokines represents another level upon 

which these oppositely polarised subsets, of great importance in parasitic disease, can 

interact. 

IFNy up-regulates PKC activity in munne MO (Hamilton, 1985) and IFN-y 

induced up-regulation of PKC is essential to the induction of iNOS activity (Severn, 

1992). Conversely IL-4 inhibits PKC activity and reduces iNOS expression, suggesting 

that blocking the PKC activation pathway may represent one mechanism whereby IL-4 can 

inhibit NO production. Exposure to IL-4 prior to activation by IFN-y is necessary for IL-4 

to display such inhibitory effects (Liew, 1991). Intriguingly treatment of pre-activated MO 

with IL-4 has also been shown to enhance NO production (Stenger, 1991). Such findings 

indicate further levels of complexity in the interactions of IL-4 and IFN-y in influencing 

NO synthesis, and suggest that factors besides PKC activation are probably involved. 

IL-IO has been shown to inhibit the IFN-y induced NO dependant killing of both 

intra-cellular and extra-cellular parasites in a dose dependant fashion (Gazzinelli, 1992). 

Unlike IL-4 or TGF-~, IL-IO inhibits IFN-y induced NO production via the inhibition of 

endogenous TNF-a production by MO. Recombinant IL-l 0 potently suppresses both LPS 
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and IFN-y induced TNF-a production in murine MO, demonstrating that IL-lO can 

suppress MO microbicidal function by a pathway distinct from that of other down

regulatory cytokines (Bogdan, 1991; Oswald, 1992b). 

TGF-~ 1, ~2 and ~3 have also been shown to inhibit NO production when present 

during the induction phase or prior to activation with IFN-y (Ding, 1990). Using both anti

sense oligonucleotides, complementary to TGF-~ mRNA, and anti-TGF-~ antibodies, it 

has been shown that inhibition of endogenously produced TGF-~ during MO activation, 

significantly enhances NO production (Jun, 1995). Such results suggest that TGF-~ 

production may provide an initial self-regulatory mechanism controlling NO production. 

As seen amongst factors promoting NO production, IL-4, IL-I0 and TGF-~ display 

synergy in down-regulating NO production, suggesting that, for NO susceptible organisms, 

induction of these regulatory cytokines may represent a parasite survival strategy (Oswald, 

1992a). IL-4, IL-IO and TGF-~ are also only able to inhibit IFN-y induced NO production 

when present prior to, or simultaneously with, exposure to IFN-y (Ding, 1990; Liew, 

1990b). These results further demonstrate the importance of the sequence of exposure to 

NO production and emphasise the importance of early events in the immune response. 

Asseury et al demonstrated that exposure to NO generated by chemical donors 

inhibited NO synthase activity in both the murine MO cell line J774 and in a cell free 

system. These findings demonstrate that, in a manner characteristic of important biological 

systems, NO can down-regulate its own production via a negative feedback loop (Assreuy, 

1993). Besides this direct effect, in certain circumstances IFN-y may also act indirectly to 

down-regulate NO production. IFN-y up-regulates expression of the A2B adenosine 

receptor on the surface of MO (Xaus, 1999). Adenosine modulates different functional 
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activities in activated MO, including NO production and stimulation of the A2B receptor by 

adenosine inhibits IFN-y induced iNOS expression (Hon, 1997), thus representing another 

potential mechanism of MO deactivation. 

The multiple factors inducing and suppressing NO production, the sequential 

nature of their effects and the presence of feed-back mechanisms to limit over-production, 

illustrate the delicate balance, and highly context-dependent control, involved in the 

regulation of NO production. 

1.5.3. Microbicidal activity of NO 

NO has now been shown to play an important effector function in a great variety of 

infectious diseases including bacterial, viral, and parasitic infections (Bogdan, 2000b; 

James, 1995; Liew, 1993). While the study of such infections has provided much 

information regarding factors affecting NO production during infection, they are only now 

beginning to precisely identify the anti-microbial targets of NO. 

The biochemical basis of the cytostatic action of NO is thought to be primarily due 

to the inactivation of enzymes involved in critical metabolic pathways (Woods, 1994). NO 

can inactivate several key metabolic enzymes with [4Fe-4S] prosthetic groups at their 

catalytic sites, via the formation of iron-dinitrosyl-dithiolate complexes (Woods, 1994). 

Nitrosylation of Fe-S centres is associated with inactivation of the aconitase enzyme of the 

Krebs cycle (Drapier, 1986; Stamler, 1992), several enzymes involved in the electron 

transport chain (Drapier, 1986; Granger, 1982; Stamler, 1992), and ribonucleotide 

reductase, which is involved in DNA synthesis and cellular proliferation (Kwon, 1991). In 

addition to reactions with metals, thiols and amines, NO can also react with superoxide 
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anions to form peroxynitrite anions which decay rapidly to form highly reactive hydroxyl 

radicals (Beckman, 1990). 

Studies on schistosomes have suggested that the principal targets of NO are 

enzymes containing a catalytically active Fe-S group at their active site (James, 1995). MO 

derived NO is effective in killing larval schistosomes (schistosomula) in vitro (James, 

1989). Ultra-structural studies on skin stage schistosomula co-cultured with activated MO 

recorded progressive disintegration of parasite internal structures (McLaren, 1985). 

Subsequent studies demonstrated that inhibition of the schistosome achonitase enzyme or 

of electron transport is similarly toxic to schistosomula, in terms of pathology, suggesting 

that inhibition of larval metabolism is involved in NO mediated toxicity (Fouad, 1994). 

Recently the first direct evidence of the ability of NO to display effector function 

via S-nitrosylation of a critical enzyme has been provided in a model of viral infection. 

Coxackie virus B3 (CVB3) induces iNOS expression in MO which in turn limits viral 

replication. NO inactivates the coxsackie virus protease 3C via S-nitrosylation of the 

cysteine residue at the active site, inhibiting protease activity and viral replication (Saura, 

1999). As cysteine proteases are critical for virulence or replication in many viruses, 

bacteria and parasites, it was proposed that S-nitrosylation of pathogen cysteine proteases 

may represent a general anti-microbial mechanism. This is supported by the recent 

demonstration that NO also inhibits cruzipain the major papain-like cysteine protease of T. 

cruzi. Cruzipain is expressed on all life cycle stages of the parasite and has important roles 

in parasite nutrition, penetration of host cells and immune evasion. NO mediated S

nitrosylation inhibits the activity of both cruzipain and falcipain (the cruzipain 

homologous cysteine protease of P. Jalciparum), further suggesting inhibition of cysteine 

proteases maybe a widespread mechanism of anti-microbial activity (Venturini, 2000). 
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1.5.5. NO in mouse models of leishmaniasis 

As a model of disease wherein resistance or susceptibility correlates with the 

development of differentially polarised immune responses, Leishmania provides a prime 

example of the Th1/Th2 paradigm. Protective responses in L. major infection are 

characterised by the induction of IFN-y producing CD4+ T cells while susceptibility is 

associated with the development of a Th2 response (Heinzel, 1989). The availability of 

genetically resistant (C57BL/6) and susceptible (BALB/C) mice, which develop Th1 and 

Th2 responses respectively, provides an ideal experimental situation in which to address 

factors influencing the polarisation of responses, and their associated effector mechanisms 

(Scott, 1989). 

As NO is an effector mechanism associated with Th 1 responses and resistance to 

Leishmania, it is perhaps unsurprising that this model system has provided some of the 

most illuminating results regarding the induction of iNOS activity and its anti-parasitic 

effects. Green et al (1990a) first demonstrated that IFN-y activated MO destroyed 

intracellular L. major by an L-arginine dependant mechanism. Killing of L. major, in 

vitro, could be inhibited by either, NG-NMMA (a competitive inhibitor of iNOS activity) 

or by addition of arginase (an enzyme which converts L-arginine to L-ornithine and urea, 

thus depleting available substrate (Green, 1990b)). Liew et al further demonstrated that 

NO dependant killing is operative in vivo. Injection of the iNOS inhibitor L-NMMA into 

the lesions of resistant CBA mice, infected with L. major, led to an exacerbation of disease 

and a 1Q4-fold increase in the number of parasites recoverable from lesions (Liew, 1990a). 

More recently the observation that iNOS-/- mice on a genetically resistant background are 

susceptible to L. major infection clearly demonstrates the importance of NO in controlling 

infection (Wei, 1995). This study also recorded no significant difference in lesion size 
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between iNOS-i- mice and their wild type counterparts up to 5 weeks post-infection, 

leading to speculation that innate responses are unlikely to be associated with NO

mediated effector mechanisms (Wei, 1995). However, more recently, it has been shown 

that genetic deletion or functional inactivation of iNOS also abolishes IFN-y and NK 

responses at very early time-points (l dpi.). This effect is associated with increased 

expression of TGF-~ and enhanced parasite dissemination. The induction of iNOS activity 

at this early stage of infection is dependant upon IFN-aJ~. Neutralisation of IFN-aJ~ 

mimics the phenotype of iNOS-i-mice, demonstrating that IFN-aJ~ can act as critical 

regulators of the innate response to L. major (Diefenbach, 1998). 

These results of the studies outlined above have allowed the relevance of factors 

implicated in the induction or inhibition of iNOS activity to be assessed in a model of 

parasitic infection. IFN-y and TNF-a have been shown to promote iNOS activity while 

down-regulatory effects of IL-4, IL-10 and TGF-~ have all been reported in the leishmania 

model. Using recombinant cytokines, Liew et al demonstrated that IFN-y and TNF-a were 

active in vivo in promoting NO production and parasite killing, and did so in a synergistic 

fashion when administered at individually sub-optimal levels (Liew, 1990b). It was further 

shown that a combination of IFN-y and L. major amastigotes induced high levels of NO 

production when administered together but were individually ineffective. The "triggering" 

effect of amastigotes was shown to be mediated via the induction of endogenous TNF-a 

production which was further enhanced by IFN-y (Green, 1990c). 

1.5.6. Factors inhibiting iNOS induction: TGF-~, IL-4 and IL-IO 

The inhibitory effects of TGF-~ upon NO production are well documented in 

models of leishmaniasis wherein early production of TGF-~ is a factor associated with 
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susceptibility. Using immunocytochemistry, Stenger et al demonstrated that iNOS IS 

produced earlier and in significantly greater amounts in resistant as compared to 

susceptible strains of mice (Stenger, 1994). Conversely cells staining positively for TGF-~ 

were more abundant in susceptible (BALB/C) than resistant (C57BL/6) mice. Such 

findings suggest that the relative lack of iNOS expression in susceptible mice may be a 

result of MO deactivation by TGF-~ and reduced responsiveness to IFN-y. This has been 

supported by work showing that TGF-~ treatment prior to IFN-yactivation abolished the 

intracellular killing activity of infected MO (Nelson, 1990). Barral netto et al also 

demonstrated TGF-~ production in the footpads of infected BALB/c mice (Barral-Netto, 

1992). Furthermore it was shown that anti-TGF-~ treatment of BALBI mice led to 

development of a healer phenotype, associated with enhanced Th 1 responses. 

Both IL-4 and IL-IO have also been shown to be effective in inhibiting the 

lieshmanicidal activities of MO when present prior to IFN-y activation (Liew, 1991; Vieth, 

1994). Down-regulation of NO production by IL-4 may represent one way in which 

disease promoting Th2 cells counteract the host protective effects of Thl cells in murine 

models of leishmaniasis. Neutralisation of endogenously produced IL-I0, using either 

neutralising antibody or an anti-sense approach, also led to an enhancement of IFN-y 

induced leishmanicidal activity, suggesting that, like TGF-~, IL-lO may act as an 

autocrine regulatory factor in MO activation (Vieth, 1994). 

1.5.7. The role of IL-12 in promoting and maintaining Th1 responses and NO 

mediated effector function 

That development of Th 1 responses is necessary for the induction of NO dependant 

killing has been further illustrated by studies of factors affecting the polarisation of 
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responses. ll..,-12 and ll..,-4 are known to be involved in the generation of Th1 and Th2 

responses respectively (Hsieh, 1993; Mattner, 1997; Schmitt, 1994; Swain, 1990). The ll..,-

12 p70 heterodimer is a potent inducer of IFN-y production by T cells and NK cells and 

promotes differentiation of na'ive T cells towards the Th1 phenotype (Trinchieri, 1995). 

Mice susceptible to infection with L. major can be cured by administration of rll..,-12 or 

anti-ll..,-4 antibody early in infection (Corraliza, 1995; Heinzel, 1993; Heinzel, 1995; 

Mattner, 1997; Sypeck, 1993). Furthermore genetically resistant C57BLl6x129Sv mice 

with homologous disruption of the gene encoding the p35 or p40 subunit of ll..,-12 are 

rendered susceptible to infection (Mattner, 1996). These results convincingly demonstrate 

the importance of ll..,-12 in generating an appropriate immune response that allows the 

resolution of infection. 

Interestingly it has recently been shown that dendritic cells, professional APC of 

primary importance in the induction of immune responses, contain membrane bound stores 

of bio-active ll..,-12. This novel source of ll..,-12 is mobilised and released within minutes of 

contact with L. donovani (Quinones, 2000). Intriguingly it has also been shown that L. 

major infected Langerhans cells (skin dendritic cells) from BALB!c mice are not impaired 

in their production of ll..,-12, and can be used successfully to vaccinate syngeneic mice 

(von Stebut, 2000). These results suggest that defective Th1 development in BALB/c mice 

may result from enhanced production of Th2 cytokines, or failure to maintain 

responsiveness to ll..,-12, rather than an initial deficiency in ll..,-12 production. In support of 

this it has recently been shown that continued production of endogenous ll..,-12 is necessary 

for the maintenance of IFN-y dependant resistance to Toxoplasma gondii (Yap, 2000). 

Following anti-ll..,-12 treatment, L. major infected, genetically resistant, CH3 mice, 

develop a Th2 response similar to that of susceptible BALB!c mice. However upon 
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withdrawal of anti-IL-12 treatment CH3 mice spontaneously switch to a Th1 response and 

resolve their lesions (Hondowitz, 1997). Furthermore the differential ability of CD4+ cells 

from BALB/C or CH3 mice to maintain responsiveness to IL-12 is of central importance in 

the switch to a Th 1 response (Hondowitz, 2000). The findings reported in these studies 

suggest that the beneficial effects of IL-12 may be more far-reaching than previously 

supposed, and are not confined to polarisation at the initial stages of the immune response. 

1.5.8. LPS and molecules of parasite origin can inhibit development of leishmanicidal 

activity 

Studies using Leishmania have also demonstrated that exposure of MO to factors 

of bacterial and parasitic origin can affect subsequent NO production. Pre-exposure of the 

murine macrophage cell line 1774 to LPS inhibits development of IFN-yILPS induced NO 

production and leishmanicidal activity (Severn, 1993). Inhibition of iNOS induction by 

prior exposure to LPS is considered to be a manifestation of endotoxin tolerance and a 

means of regulating NO production which may represent a survival mechanism for intra

cellular parasites. 

Leishmania may also affect MO activation directly via the interaction of parasite 

surface molecules with MO. Glycoinositolphospholipids (GIPL) are the predominant 

surface glycolipids in both developmental stages of Leishmania sp. Purified GIPL can 

inhibit the IFN-yILPS induced production of NO by 1774 MO in a dose-dependant fashion. 

Consequently prior exposure of MO to GIPL enhances survival of L. major in activated 

MO. The inhibitory activity of GIPL is contained within the lipid fraction and functions 

independently if TNF-a production (Proudfoot, 1995). Such findings demonstrate one way 

in which molecules of parasite origin may regulate MO function. 
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1.5.9. NO in models of schistosomiasis 

The observation of James and Glaven, that activated MO killed schistosomula of S. 

mansoni by an NO dependant mechanism, represents one of the earliest demonstrations of 

the microbicidal effector functions of NO (James, 1989). As a model of helminth infection 

wherein NO clearly displays effector function, studies in mouse models of schistosomiasis 

have further indicated the diversity of roles NO may play at different stages of infection. 

In a munne vaccination model, immunisation with irradiated cercariae of S. 

mansoni, leads to a 60 - 80% reduction in worm survival following challenge infection 

(Minard, 1978). Resistance to challenge infection is dependant upon CD4+ T cells and the 

development of Th 1 type responses (Sher, 1990; Vignali, 1989). The majority of challenge 

larvae are thought to be killed traversing the lungs of immunised mice. IFN-y and iNOS 

mRNA expression have been found in the pulmonary inflammatory foci surrounding 

migrating larvae, suggesting iNOS is involved in generating resistance in vivo (Wynn, 

1994). In vivo treatment of mice with aminoguanidine (AMG, a selective inhibitor of 

iNOS activity), or genetic deletion of the iNOS gene, leads to a significant reduction of 

resistance to challenge infection (James, 1998; Wynn, 1994). MO taken from iNOS-/

mice also fail to develop larvicidal activity when activated with IFN-y / LPS in vitro 

(J ames, 1998). These findings are consistent with a role for NO as an effector mechanism 

of the protective immune response induced by vaccination with radiation attenuated 

cercariae. 

Studies using iNOS-/- mice, or in vivo inhibition of iNOS activity, have shown that 

NO may affect various parameters of immune responsiveness, including cytokine 

production and subsequent regulation of isotype switching, as well as an involvement in 
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inflammatory responses. James et al (98) demonstrated that besides acting as an effector 

molecule, NO plays important roles in regulating the Th1 vs Th2-type cytokine balance 

following vaccination with irradiated cercariae. Expression of Th1-type cytokines (IFN-y 

and TNF-a) was found to be significantly enhanced, and levels of Th2 cytokines (IL-4 and 

IL-5) lower, in iNOS-/- mice than their wild type counterparts. Th1 associated humoral 

responses were enhanced in iNOS-/- mice, seen as elevated levels of IgG2a, and decreased 

levels of IgE production. Vaccinated iNOS-/- mice also developed smaller inflammatory 

foci around schistosomula in the lungs. Changes in the size and eosinophil content of 

inflammatory foci correlated well with reduced IL-5 production in iNOS-/- mice (James, 

1998). These studies demonstrate that NO can affect the production of both Th 1 and Th2 

type cytokines, and that the altered cytokine production profiles may be responsible for 

phenotypic changes observed upon iNOS inhibition. 

The immune response to schistosome eggs that become lodged in host tissues is 

responsible for the pathology of schistosomiasis (Boros, 1989). Several studies have now 

implicated NO in modulating the development of pathology during infection. It has 

recently been demonstrated that PBMC from infected humans can produce NO in vitro, 

and that inhibition of NO exacerbates in vitro granuloma formation (Oliveira, 1998). 

These results suggest that NO production may be relevant to the course of human 

infection, and its influence may go beyond its role as a direct effector mechanism. 

Furthermore it has been demonstrated that immune complexes from the serum of patients 

with chronic schistosomiasis are able to reduce the granulomatous reaction developed in 

an in vitro model system. The reduction in granuloma size could be reversed by the 

inhibition of NO production which resulted in decreased production of prostaglandin E2 
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(Neves, 1999). These results suggest that NO may regulate the bio-synthesis of PGE2, 

which may further modulate granulomatous hypersensitivity against S. mansoni eggs. 

Recent studies have also demonstrated that the functions of NO are not static, and 

that at different stages of infection NO may mediate dramatically different effects. 

Following the onset of egg deposition in the liver, in murine infection with S. mansoni, 

NO is required to limit the development of pathology. Prolonged production of NO 

however (as seen in susceptible IL-4-/- mice), is highly deleterious and associated with 

severe hepatotoxicity. IL-4-/- mice fail to reduce production of NO as infection progresses, 

suggesting that egg-induced Th2 responses are required to regulate NO production, and 

limit NO mediated tissue damage. Brunet et al (99) reported that the development of 

hepatosplenomegaly was severely reduced upon iNOS inhibition. Similar observations 

have recently been reported following iNOS inhibition in vivo during murine infection 

with a highly attenuated strain of salmonella (SL3235). iNOS inhibition by AMG reduced 

splenomegaly, associated with a decrease in the influx of neutrophils and MO to the spleen 

(Shearer MacFarlane, 1999). These findings suggest that either NO is directly chemotactic, 

or that it may regulate expression of chemokines involved in cell trafficking towards sites 

of inflammation. 

An intriguing feature of these studies is that iNOS-/- mice and in vivo inhibition of 

iNOS activity have provided somewhat contrary results regarding the involvement of 

iNOS in inflammatory responses in murine schistosomiasis. Studies using iNOS-/- mice 

and in vivo inhibition both reported quantitative reductions in inflammatory responses in 

the absence of NO production, smaller inflammatory foci in the lungs, and hepatic 

granuloma formation respectively (Brunet, 1999; James, 1998). However only in iNOS-/

mice were qualitative differences in responsiveness reported. James et al reported that in 
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iNOS-/- mice enhanced Th1 responsiveness was associated with formation of smaller 

inflammatory foci in the lungs which contained significantly fewer eosinophils (James, 

1998). In contrast, while Brunet et al found iNOS inhibition in vivo led to development of 

smaller hepatic granulomas, they displayed no alteration in cellular make up. Most 

interestingly Hesse et al (2000) found that schistosome egg/IL-12 sensitized iNOS-/- mice, 

which, like AMG treated IL-4-/- mice are reported to display enhanced Th1 responsiveness 

in the absence of NO production, did not display many of the pathological changes 

reported by Brunet et al. Furthermore while iNOS inhibition led to development of smaller 

hepatic granulomas iNOS-/- mice developed significantly larger granulomas than their 

wild type counterparts. Such differences are difficult to explain, it is possible that AMG 

incompletely inhibited iNOS activity or alternatively that AMG treatment during infection 

may generate undesirable toxic side effects. 

1.5.10. NO in filariasis 

Several studies have presented evidence suggestive of an anti-parasitic role for NO 

III filarial infection. However while inferring potential effector function, there are 

conflicting results from studies using iNOS inhibition and those using iNOS-/- mice. 

Taylor et al (1995) investigated the susceptibility of microfilariae of O. lienalis and B. 

malayi to H20 2 and NO in vitro. Whilst B. malayi mf proved to be relatively resistant to 

H20 2, exposure to NO reduced microfilarial motility, and prolonged exposure proved 

toxic. Exposure of mf to NO generated by a chemical donor (SNAP, 32.7+/-0.8 11M N02-) 

caused a permanent reduction in microfilarial viability. IFN-y activated MO produced 

lower levels of NO (7-10 11M N02-) which also significantly reduced mobility. The 

toxicity of IFN-y activated MO to mf could be inhibited by L-NMMA, or anti-TNF-a 

antibodies. Thomas et al (1997) obtained similar results and further demonstrated that B. 
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malayi mf are more susceptible than adult worms to the NO mediated anti-parasitic effects 

of activated MO. The toxic effects of activated MO could be mimicked by exposure to 

chemical donors of NO, but far higher levels of NO exceeding physiological levels 

(130/-lM vs 27/-lM N02-) were required, suggesting that peroxynitrite or its by products 

may be more potently damaging to mf than NO itself. Ultrastructural examination of NO 

damaged worms revealed that hypodermal mitochondria were highly vacuolated, 

reminiscent of morphological changes observed during the NO mediated killing of 

schistosomula (James, 1989). 

There is also evidence that B. malayi L3 are susceptible to NO mediated killing. 

Treatment of immunocompetent, non-permissive BALB/c mice with AMG was shown to 

abrogate resistance to L3. AMG treated mice displayed significantly higher worm burdens 

than their untreated counterparts when examined five weeks post i.p. infection with L3. In 

complementary experiments it was shown that treatment of susceptible C.B-17 scid mice 

with the NO releasing compound DEAlNO led to a significant reduction in worm burden 

at the same time-point post infection. It is of note however, that contrary to these findings, 

more recent studies from this same laboratory found iNOS-/- mice no more susceptible to 

B. malayi infection than their wild type counterparts (L. Schultz Pers. comm.). 

The results of the in vitro studies outlined above demonstrate clearly that B. malayi 

mf are susceptible to NO mediated killing by activated MO. However, results of a recent 

study on the role of NO in innate resistance to L. sigmodontis mf, urge caution in 

extrapolating such results to the in vivo situation. L. sign1Odontis mf were shown to be 

similarly sensitive to NO, produced by activated MO (9.7+/-0.75 /-lM N02-), or chemical 

donors (SNAP, producing ~30-130/-lM N02-). Ag stimulated splenocytes from infected 

animals also produced significantly higher levels of NO in vitro as compared to uninfected 

controls. While such circumstantial evidence appears suggestive of a role for NO in 
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generating resistance, neither in vivo inhibition of NO nor genetic deletion of iNOS 

abrogated resistance to circulating mf (Pfaff, 2000b). 

There is some evidence to suggest that NO maybe involved in the clearance of mf 

post-drug treatment in human filarial infection. In animals models the in vitro cytotoxic 

effects of ivermectin upon mf of A. viteae and L. carinii have been shown to require the 

presence of cells, indicating that killing probably results from the action of host defence 

mechanisms (Zahner, 1994). Furthermore it has been demonstrated that the ivermectin

induced killing of L. carinii mf by neutrophils in vitro is mediated by NO and may be 

inhibited by L-NMMA (Zahner, 1997). This is of particular interest in light of a recent 

clinical study which demonstrated highly elevated levels of serum nitrite and nitrate during 

drug-induced mf clearance in human filariasis. Drug treatment of Loa loa or 0. volvulus 

infected individuals led to increased levels of serum NO derivatives which peaked sharply 

at two to five days post-treatment and remained elevated for up to six months (Winkler, 

1998). It should be noted however, that this was a very small study group of only four 

individuals and there is no evidence to demonstrate a cause and effect relationship. 

Although cytokine production profiles were not analysed in this study, it is possible that 

increased production of NO may reflect a restoration of Thl responsiveness post-drug 

treatment rather than an effector mechanism. Studies carried out in an area endemic for B. 

malayi infection have demonstrated that adverse reactions to DEC treatment are most 

severe amongst Mf+ individuals (Ham'brink, 1999a) and are associated with increased 

production of pro-inflammatory molecules such as IL-6 and LPS binding protein (LBP) an 

acute phase protein (Haarbrink, 1999b). Such studies have suggested that adverse reactions 

post DEC treatment may be the result of an exaggerated host inflammatory response 

stimulated by the high antigenic load released from killed or degenerating mf or possibly 

by LPS released by the endosymbiotic Wolbachia (Taylor, 1998). 
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The studies outlined above demonstrate the extent of the influence of NO, affecting 

a range of dynamic factors during the course of an immune response. They also illustrate 

the need for caution in attributing any phenotypic results from studies in iNOS-/- mice, or 

using iNOS inhibition, to a direct action of NO as multiple factors are likely to be altered 

down-stream of iNOS induction, the effects of which may be seen in both in vivo and in 

vitro studies. 

Besides its well documented role as an anti-microbial effector mechanism NO has 

emerged as a dynamic modulator of immune responses. Whilst low level NO production 

may promote the expansion of IFN-y producing T cells, high levels of NO can suppress 

both mitogen-driven and Ag-specific proliferative responses and down-regulate production 

of cytokines such as IFN-yand IL-2. Thus NO, a molecule potentially effecting immunity, 

may also limit the development of protective immune responses. In this way NO 

production may be of benefit to either host or parasite dependant upon the prevailing 

circumstances. 

1.5.11. NO as a mediator of proliferative suppression 

Albina et al (1991) first demonstrated that MO derived NO could suppress T cell 

proliferative responses. It was shown that the addition of excess macrophages inhibited the 

mitogen-driven proliferation of murine T cells. This effect correlated with an accumulation 

of N02- in the culture medium and could be reversed by the addition of an iNOS inhibitor. 

Furthermore neutralisation of IFN-y in splenocyte / MO co-cultures prevented production 

of NO and ablated the anti-proliferative effects of MO. These results demonstrate the 

importance of IFN-y in inducing NO production by macrophages ultimately leading to 

proliferative suppression. 
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The role of NO in the development of immunosuppression has been investigated in 

various models of infection, and it has been shown to exert suppressive effects both in 

vitro and in vivo. Gregory et al (1993) reported that levels of serum nitrite and nitrate 

(indicative of NO production) were elevated during primary infection with Listeria 

monocytogenes in C57BLl6 mice. Hepatocytes from infected mice also produced 

significantly greater levels of N02- upon in vitro stimulation with LPS/TNF-a/IFN-y than 

did cells from uninfected animals. However in vitro inhibition experiments showed that 

the anti-listerial activity of hepatocytes was independent of NO production. Stimulation of 

splenocytes from infected mice with Listeria Ag led to the production of high levels of NO 

and significantly reduced proliferative responses. Inhibition of iNOS activity in these 

cultures led to reversal of proliferative suppression, demonstrating the role of NO and 

suggesting that this may be of relevance in vivo. Indeed mice treated with L-NMMA in 

vivo exhibited a 10 to 100 fold reduction in the numbers of Listeria in their livers on day 3 

and 7 pi. respectively. These findings suggest that elevated production of NO during 

primary infection with Listeria limits the effectiveness of host defence mechanisms by 

suppressing proliferative responses. 

NO has also been shown to mediate proliferative suppression in various models of 

parasitic infection including trypanosomiasis, toxoplasmosis and infection with 

Echinococcus multilocularis (Candolfi, 1994; Dai, 1999; Mabbot, 1995; Sch1eiffer, 1993). 

Candolfi et al demonstrated that both mitogen driven and Ag-specific proliferative 

responses are suppressed during the acute phase of murine infection with Toxoplasma 

gonelii. Suppression was again associated with elevated levels of nitrite in splenocyte 

cultures and was reversible upon iNOS inhibition. Furthermore replacement of the resident 

adherent cell population with adherent cells prepared from uninfected animals reduced 

levels of NO production and restored proliferative responses. Transfer of adherent cells 
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from infected mice also suppressed the mitogen driven proliferative responses of 

splenocytes from uninfected animals in an NO dependant fashion. These results suggest 

that proliferative suppression is mediated by NO produced by MO activated during acute 

infection with T. gondii. Interestingly it has recently been shown that the NO mediated 

suppression of proliferative responses during acute infection is not systemic. While 

responses in the spleen are suppressed, cells from the mesenteric lymph nodes (MLN) 

maintain proliferative responsiveness. MLN cells and splenocytes produced equivalent 

amounts of IFN-y in response to Con-A, but levels of N02- were significantly lower in 

cultures of MLN cells. Differences in NO production were thought to reflect the presence 

of significantly greater numbers of MO amongst spleen cells as compared to MLN cells 

(Neyer, 1998). Such results demonstrate that NO may mediate a localised, organ specific, 

suppression of proliferative responses. 

Further evidence of the anti-proliferative effects of NO, has been found in murine 

models of trypanosomiasis. Human and murine infection with African trypanosomes (T. 

brucei spp.) is associated with a severe immunosuppression. Peritoneal and splenic MO 

from infected mice suppress mitogen and Ag-driven proliferative responses in an NO 

dependant fashion (Sternberg, 1992). Mabbott et al (1995) demonstrated that adoptive 

transfer of suppressive MO to syngeneic recipients inhibited the Con A driven 

proliferative responses of splenocytes 3 - 4 days post transfer. Inhibition of NO production 

either in vivo or in vitro abrogated this suppressive effect, demonstrating that NO 

produced by donor MO mediates proliferative suppression. Furthermore drug cure of 

infected animals led to recovery of proliferative responses which was associated with 

reduced production of NO, both in vivo and in vitro. More recently studies in both IFN-yR

/- mice (which are unable to respond to infection with MO activation and NO production) 

and iNOS-/- mice, have further defined the anti-proliferative effect of NO in T. brucei 
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infection. Following infection of IFN-yR-/- mIce suppreSSIOn of T cell proliferative 

responses was reduced, whilst levels of parasitaemia were elevated and survival time 

reduced, compared to wild type mice (Mabbot, 1998). Infection of iNOS-/- mice also 

linked NO production to a depression of cell function. Splenocytes from infected iNOS-/

mice displayed increased proliferative and IFN-y responses in vitro compared to wild type 

mice. Furthermore spleens from infected iNOS-/- mice contained higher numbers of total 

CD4+ T cells and activated (ll.,-2R expressing) CD4+ T cells. Such results suggest that NO 

affects T cell activation and proliferation in vivo as well as in vitro (Millar, 1999). 

Murine models of malaria have also provided evidence of how NO can impair T 

cell function. It has been shown that malaria-specific Th 1 but not Th2 T cell clones can 

produce NO upon in vitro restimulation at levels which affects their biological function. 

Thl cells stimulated with a lysate of parasite-infected RBC expressed iNOS mRNA and 

produced NO which suppressed both their proliferative response and their ability to 

produce IFN-y and ll.,-2 (Taylor-Robinson, 1994). Both cytokine production and 

proliferation could be restored upon inhibition of iNOS activity. Furthermore, splenocytes 

from mice treated with L-NMMA in vivo, and infected with P. chabaudi, produced 

elevated levels of IFN-y and ll.,-2 in vitro, suggesting that NO also modifies cytokine 

production in vivo. NO is known to be involved in resistance against malaria infection and 

in vivo treatment of mice with L-NMMA (but not the inactive D isomer D-NMMA) 

significantly increased the primary peak of parasitaemia (Taylor-Robinson, 1994). The 

results outlined above demonstrate that, unlike infection with Listeria, during infection 

with malaria NO may be active in both anti-microbial and immunomodulatory capacities. 

Whilst being active as an effector mechanism of primary importance, NO may also down

regulate the proliferative and cytokine responses of Th 1 cells in a specific fashion. In this 
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way inhibiting the biological activity of cells responsible for its production may represent 

one means whereby NO can limit the development of potentially pathological pro

inflammatory responses. 

The dual biological roles of NO, on the one hand mediating host defence, whilst 

also having the potentially adverse effect of immunosuppression, may appear paradoxical, 

and at times incompatible. However, it has recently been shown that NO may function 

simultaneously in both capacities. Infection with SL3235, a highly attenuated strain of 

Salmonella typhimurium profoundly suppresses the ability of splenocytes from infected 

mice to mount an in vitro plaque forming response to sheep RBC, and to proliferate in 

response to Con-A. Inhibition of iNOS activity in vitro using L-NMMA alleviates 

suppression of both these responses, indicating suppression is NO mediated. Interestingly 

then, in light of this, in vivo treatment with AMG prior to infection leads to development 

of more severe disease. AMG treatment ablated the splenomegaly associated with SL3235 

infection, blocking the influx of neutrophils and macrophages into the spleen, further 

suggesting that NO may be directly chemotactic or may influence production of 

chemokines involved in cell trafficking. Most unexpectedly AMG treatment of mice 

infected with this highly attenuated vaccine strain led to a 90% mortality rate, associated 

with an inability to clear organisms from the spleen and persistent bacteremia (Shearer 

MacFarlane, 1999). These results suggest that NO may be directly microbicidal in this 

system or may act via the recruitment of inflammatory cells essential to limit the spread of 

infection. It appears then, that following murine infection with SL3235, NO is responsible 

for the development of immunosuppression, whilst at the same time being of vital 

importance in host defence. 

As it has been shown that NO can exert anti-proliferative effects and down

regulate production of IFN-y and IL-2, it is perhaps unsurprising, that in the absence of 
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iNOS activity Thl responsiveness may be enhanced (Wei, 1995). The mechanisms 

whereby NO affects development of Thl responses are now being elucidated and 

modulation of IL-12 production has emerged as an important factor. Huang et al (Huang, 

1998b) have shown that peritoneal MO from iNOS-/- mice produce significantly higher 

levels of IL-12 than their wild type counterparts when infected with L. major in vivo or 

stimulated with IFN-yor LPS in vitro. IL-12 production by J774 cells upon stimulation 

with LPS, or LPS and IFN-y was also enhanced upon iNOS inhibition, and was inhibited 

in the presence of the NO generating compound SNAP (Huang, 1998b). IL-12 is a major 

inducer of Th 1 cells, promoting development of IFN -y producing T cells which can further 

enhance IL-12 production. In light of the results described above, it was proposed that NO 

can inhibit this feedback loop via inhibition of IL-12 synthesis, preventing excessive 

amplification of Thl responses. 

The capacity of IL-12 to promote IFN-y production leading to NO production and 

consequent proliferative suppression has been revealed in studies upon the adjuvant effects 

of recombinant murine IL-12 (rIL-12). As a potent inducer of Thl CD4+ T cell 

differentiation, CD8+ T cell cytotoxicity and NK cell activation, IL-12 may appear an 

attractive means of promoting development of a selectively polarised immune response. 

However it has been demonstrated that use of rIL-12, during vaccination with genetically 

modified tumor cells, is associated with a dose dependant suppression of the immune 

response which was accompanied by suppressed in vitro responses to Con-A (Kurzawa 

Koblish, 1998). Suppression in vitro could be reversed by the addition of L-NMMA, and 

failed to develop in iNOS-/- and IFN-y-/- mice. Such findings support the theory that high 

levels of IFN-y, induced by rmIL-12, result in production of NO, which in turn mediates 

proliferative suppression (Kurzawa Koblish, 1998). These results further illustrate the 
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complex regulation involved in the generation of immune responses, and demonstrate how 

the inadvertent induction of negative feedback mechanisms may override potentially 

beneficial effects. 

In contrast to the majority of data demonstrating the suppressive effects of NO, it 

has recently been demonstrated that low levels of NO may selectively enhance the 

development of Th 1 cells. Stimulation of naIve, transgenic, OVA specific (DO 11.1 0) T 

cells, in the presence of low doses of NO and IL-12 significantly enhanced production of 

IFN-yas compared to Ag and IL-12 alone. Low level NO did not affect Th2 differentiation 

when DO 11.1 0 cells were similarly stimulated in the presence of IL-4. NO acted 

synergistically with IL-12 in enhancing Th 1 development and mediated its effects directly 

upon T cells. This was shown by enhanced IFN-y production, in the presence of low levels 

of NO, upon direct stimulation with immobilised anti-CD3 MAb in the absence of APC. 

Interestingly the presence of low level NO had little, or no effect upon IFN-y production 

by established cloned Th 1 cell lines, and in all cases, exposure to high levels of NO 

resulted in suppression of IFN-y production (Niedbala, 1999). These results show that low 

levels of NO present during initial T cell activation may selectively enhance the induction 

of Th 1 differentiation in synergy with IL-12. 

The studies outlined above illustrate the diversity of regulatory effects mediated by 

NO during the development of an immune response. Low level NO present during the 

induction phase may enhance Th 1 development, at higher levels however, NO can limit 

Th1 expansion via suppression of IL-12 production by MO, and IFN-y and IL-2 

production by T cells. Furthermore while NO may act as an anti-microbial effector 

mechanism, it may also suppress the development of host protective immune responses. 

As a consequence of this apparent dichotomy of function NO is often referred to as a 
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"double-edged sword." In the immunological arsenal it is clearly a weapon which must be 

deployed with care, and yet its effects can be felt from the induction of Thl responses 

through to their ultimate down-regulation. 

1.6. Apoptosis 

Programmed cell death (PCD) or apoptosis is a genetically determined process 

whereby organisms can safely dispose of unwanted cells. The death program is 

implemented by proteins encoded in the host genome via mechanisms which are highly 

evolutionarily conserved. PCD plays important roles in development, homeostasis, 

defence and ageing (reviewed Vaux, 1996). Apoptosis is involved in various fundamental 

immunological processes including negative selection in the thymus (Surh, 1994) clonal 

downsizing and the development of peripheral tolerance (Singer, 1994; Janssen ,2000). 

Apoptosis refers to the morphological changes characteristically exhibited by 

actively dying cells. Such changes include cell shrinkage, cleavage of nuclear DNA 

chromatin condensation and membrane blebbing (Cohen, 1993). Apoptotic cell death can 

result from the developmentally controlled activation of endogenous execution 

programmes or the transduction of death signals triggered by a wide variety of external 

stimuli. Homeostasis in the immune system is maintained by a balance between the 

generation of new lymphocytes, Ag-induced proliferation and differentiation and apoptotic 

cell death. In terms of maintaining this balance and regulation of T cell responses, 

apoptosis induced via death receptors is thought to be of primary importance. 

Whilst stimulation of mature peripheral T cells via the TCR generally results in T 

cell activation and proliferation, repeated TCR triggering or TCR stimulation in the 

absence of co-stimulatory signals can lead to T cell apoptosis. Apoptosis induced in this 

manner is termed activation induced cell death (AICD) (Liu, 1990; Wesselborg, 1993) and 
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represents a mechanism for controlling development of T cell responses (Alderson, 1995). 

Studies on the kinetics of responses to superantigens first indicated the importance of 

apoptosis in regulating responses. Injection of staphylococcal enterotoxin B (SEB, a 

bacterial super-Ag which reacts predominantly with Vp8+ T cells) results in an initial 

increase in the percentage of Vp8+ T cells, followed by a dramatic decline in their number. 

This decrease occurs as a result of massive peripheral deletion, achieved via the apoptosis 

of responding cells (Scott, 1993). Such findings suggest an important regulatory role for 

apoptosis in T cell responses. 

AICD is triggered by signalling via "death receptors" upon TCR engagement 

(Alderson, 1995; Renno, 1996). Death receptors are members of a growing subfamily of 

the TNF-R superfamily, which can induce apoptosis upon receptor triggering: Of these the 

signalling pathway initiated by ligation of the cell surface receptor Fas (CD95 / APO-l) by 

its ligand Fas-L is the best characterised (reviewed Peter, 1998). Upon triggering of CD95, 

the adapter molecule FADD CEas ~ssociated geath gomain containing protein/Mort-I) and 

pro-caspase 8 are recruited to the receptor forming the geath inducing .§.ignalling .£omplex 

(DISC). Cysteine proteases of the IL-l p converting enzyme (ICE) family (caspases), are 

critical executioners of apoptosis in mammalian cells. Caspases are synthesised as inactive 

precursors requiring proteolytic conversion to become active proteases. The association of 

pro-caspase 8 into the DISC results in its auto-proteolytic activation, upon which the 

active enzyme is released into the cytosol. The resultant protease cascade results in the 

activation of caspase 3 which leads eventually to apoptosis (Nagata, 1997). Activation of 

caspases results in the cleavage of various cellular proteins resulting in apoptosis. Targets 

of caspase activity include structural proteins, proteins involved in DNA repair and cell 

cycle regulation (reviewed Denis, 1998) 
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Many studies have now confirmed the importance of Fas mediated apoptosis in 

AICD and regulation of T cell responses. It has been shown that T cell apoptosis initiated 

by repeated TCR stimulation is mediated via Fas / Fas-L interactions (Brunner, 1995; 

Dhein, 1995; Ju, 1995). Peripheral deletion of expanded Vp8+ T cells following SEB 

injection was also shown to be impaired in both lpr and gld mice (deficient in expression 

of Fas and Fas-L respectively), (Renno, 1996; Scott, 1993). Renno et al also demonstrated 

that dying SEB reactive T cells expressed enhanced levels of Fas and Fas-L. It has also 

been shown that stimulation of previously activated human T cells results in the 

expression of Fas-L mRNA and sensitivity to Fas mediated apoptosis, and that the AICD 

of T cell clones and lines can be inhibited by the action of Fas-L antagonists (Alderson, 

1995). 

1.6.1. The role of co-stimulation in AICD 

Many factors have now been implicated in determining sensitivity of T cells to Fas 

mediated apoptosis, including, the activation status of the cell (Wesselborg, 1993) and the 

presence or absence of co-stimulation (Liu, 1990) as well as the action of certain cytokines 

including IL-2 and IFN-y (Leonardo, 1991; Liu, 1990). Harding et al (1992) demonstrated 

that while TCR stimulation in the absence of co-stimulation leads to development of 

clonal anergy, provision of co-stimulation via cross-linking of CD28 blocked anergy 

induction and resulted in vigorous proliferation. Apoptosis of murine splenic T cells 

induced by re-cross-linking the TCR during a primary immune response could also be 

prevented by cross-linking CD28 (Radvanyi, 1996). Inhibition of apoptosis by CD28 

stimulation was found to be associated with increased expression of IL-2 (Boise, 1995) 

and bcl-XL, an anti-apoptotic member of the bcl-2 gene family (Radvanyi, 1996). 

Furthermore, using transfection Boise et al demonstrated that expression of bcl-XL was 

sufficient to prevent T cell apoptosis in response to Fas ligation and IL-2 withdrawal as 
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well as via TCR stimulation. These results suggest that an important role of co-stimulation 

is to augment T cell survival during the process of activation. 

Van Paljis et al (1996.) showed that na'ive T cells cultured in the absence of 

antigen or co-stimulation, or in the presence of Ag without co-stimulation, undergo Fas 

independent apoptosis. Apoptosis of naIve T cells induced under these conditions was 

termed programmed cell death in order to differentiate it from the Fas dependent AICD 

seen upon restimulation of activated T cells. It was further shown that the AICD of 

previously activated T cells could not be prevented by co-stimulation via CD 28. As co

stimulation has been shown to prevent the apoptosis of naIve T cells upon TCR 

engagement, differences in responsiveness may reflect the differential activation status of 

responding cells. The pathways of apoptosis induction also differ, as in this study, TCR 

induced apoptosis of naIve T cells was shown to be Fas independent whilst AICD of 

activated T cells was Fas mediated (Van Parijs, 1996). 

Differences in the sensitivity of resting and activated T cells to AICD have also 

been reported. Wesselborg et al (1993.) demonstrated that while freshly isolated human 

peripheral blood T cells are largely resistant to AICD, sensitivity to apoptosis induced by 

TCR cross-linking increased upon activation and during in vitro culture. These results 

suggest that stimuli which activate T cells may also render them susceptible to AICD. 

More recently it has been shown that naIve and memory T cells differ in their response to 

Fas cross-linking. While naiVe T cells stimulated with anti-CD3 Ab undergo apoptosis 

upon Fas ligation, memory T cells, under the same conditions, are co-stimulated to 

proliferate by Fas ligation. Most interestingly, besides provision of co-stimulation via 

CD28, the presence of Th 1 or Th2 differentiation inducing cytokines (IL-12 and IL-4 

respectively) also rescued naIve T cells from AICD and rendered them receptive to Fas 

mediated co-stimulation (Desbarats, 1999). These results illustrate two important points, 
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firstly, that the outcome of Fas engagement in CD4+ T cells may be determined by the 

antigenic history of the cell, and secondly, that the cytokines present during T cell priming 

may influence not only the subsequent polarisation of responses but also cell survival. 

1.6.2. Thl Vs Th2 : Sensitivity to AICD 

While there is considerable evidence that Th 1 cells are more susceptible to 

apoptosis than Th2 cells, the mechanisms underlying this differential sensitivity have been 

a controversial issue. Liu and Janeway (1990) investigated the propensity of T cell clones 

to undergo AICD and demonstrated high levels of AICD in all five Thl, but none of the 

Th2 clones tested. Most importantly they demonstrated that apoptosis induced by TCR 

ligation in the absence of co-stimulation had a critical requirement for IFN-y. Novelli et al 

(1997) also demonstrated an important role for IFN-y in the AICD of human Thl clones. 

Once again Th 1 but not Th2 clones underwent rapid AICD in the absence of co

stimulation, and the apoptotic response could be blocked by neutralisation of IFN-y. Most 

interestingly the addition of IFN-y to Th2 clones triggered their apoptosis under the same 

circumstances. It was also shown that IFN-y increased susceptibility to AICD via the 

upregulation of Fas-L expression, further illustrating the role of IFN-y in AICD. Ramsdell 

et al (1994) also found that AICD was readily observed amongst Thl but not Th2 clones 

and this was reported to reflect the expression of functional Fas-L, which was found only 

on Th 1 clones (possibly under the direction of IFN-y?). However Zhang et al (1997) found 

that while Th 1 but not Th2 effector cells underwent rapid Fas mediated AICD, Th 1 and 

Th2 clones expressed equivalent levels of Fas and Fas-L. Such results suggested that 

differences in sensitivity to AICD were unlikely to be accounted for by differential 

expression of Fas or Fas-L. Th2 effectors however, also expressed high levels of FAP-l, a 
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Eas-~ssociated Qhosphatase which inhibits Fas signalling and which may increase 

resistance to Fas mediated AICD. 

That differential sensitivity to AICD may have functional significance has been 

suggested by studies on the development of peripheral tolerance. Following the induction 

of peripheral tolerance a small population of Ag-specific T cells, apparently resistant to 

apoptosis, persists. On investigation the critical difference between apoptosis resistant and 

sensitive cells was found to lie in the ability of resistant cells to secrete high levels of the 

Th2 cytokines IL-4 and IL-lO (Zhang, 1996). It may be that increased expression of FAP-l 

or lower expression of Fas-L facilitates the preferential survival of Th2 cells, providing a 

mechanism which may, under certain circumstances, favour the outgrowth of Th2 

responses. 

IL-4 itself has also been shown to protect chronic leukaemic B cells from apoptosis 

via the upregulation of bel-2 expression (Dancescu, 1992), and to maintain expression of 

bel-2 and bel-XL in resting T cells, supporting their in vitro survival (Vella, 1997). 

Somewhat surprisingly then, and in contrast to IL-4, IL-2, a T cell growth factor associated 

with Th 1 responses has been shown to promote T cell apoptosis. Leonardo (1991) first 

reported that prior exposure to IL-2 predisposed T cells to undergo apoptosis upon 

subsequent TCR engagement. More recently exposure to IL-2 has been shown to increase 

transcription and surface expression of Fas-L and to suppress expression of FLIP (ELICE

like inhibitor Qrotein,) which shuts off Fas signalling (Refaeli, 1998). It seems likely that 

this dual action of IL-2 accounts for its ability to potentiate T cell apoptosis. 

1.6.3. Apoptosis during infection 

While inhibition of host cell apoptosis as a viral survival strategy provided the 

first evidence of apoptosis modulation by infectious organisms, there is now increasing 
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evidence of a role for apoptosis in the immune response to various bacterial and parasitic 

infections. 

Blocking apoptosis VIa the inhibition of caspase activity has been shown to 

increase the level of HIV replication (Chinnaniyan, 1997) and a number of viruses have 

now been found to encode proteins capable of directly interfering with the death program. 

CrmA from cowpox virus binds to and inactivates caspase 1 (Ray, 1992) while several 

other viruses encode proteins which resemble bc1-2 (Reviewed Vaux, 1996). There is now 

increasing evidence of a role for apoptosis in the immune response to certain parasitic 

infections. Lopes et al (1995) first reported elevated levels of AICD amongst CD4+ T cells 

from Trypanosoma cruzi infected mice in vitro. Levels of T cell apoptosis were also 

shown to be elevated during infection in vivo. CD4+ but not CD8+ T cells from infected 

mice were susceptible to AICD and the development of proliferative unresponsiveness was 

shown to correlate with the loss of T cell viability (Lopes, 1996). These results suggested 

that the AICD of CD4+ T cells could contribute to the development of the 

immunosuppression associated with infection. More recently it has been shown that the 

Fas mediated AICD of IFN-y producing T cells enhanced parasite replication in vitro 

(Nunes, 1998). The mechanisms of apoptosis during T. cruzi infection have now been 

further characterised. During infection IFN-y has been shown to enhance expression of 

both Fas and Fas-L and to induce production of NO. Cells from infected animals undergo 

both Fas-dependent and Fas-independent, NO mediated apoptosis during in vitro culture 

(Martins, 1999). These findings illustrate that while IFN-y may be of importance in 

mediating resistance to T. cruzi it may also affect the development of the immune response 

via modulation of apoptosis. 
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A link between IFN-y production and host cell apoptosis has also been reported 

during infection with Mycobacterium avium and Toxoplasma gondii. Following infection 

of C57BLllO mice with M. avium T cell apoptosis, measured immediately ex-vivo, was 

shown to increase over the course of infection. A close correlation was found to exist 

between the apoptosis of CD4+ T cells and the level of IFN-y production by splenocytes 

(Gilbertson, 1999). IFN-y has also been shown to increase Fas expression and enhance 

levels of apoptosis amongst CD4+ and CD8+ a/~ T cells in the Peyers patches following 

peroral infection of mice with T. gondii (Liesenfeld, 1997). These studies in murine 

models demonstrate that IFN-y may modulate both FaslFas-L expression and apoptosis 

during the course of infection with a variety of pathogens. 

Evidence of elevated levels of apoptosis during parasitic infection of humans 

however, is comparably scarce. It has been shown that PBMC from P. Jalciparum infected 

individuals undergo higher levels of spontaneous apoptosis in in vitro culture than those of 

uninfected individuals. Furthermore exposure to parasite-Ag was shown to significantly 

increase apoptosis (Toure-Balde, 1996). Evidence of increased lymphocyte apoptosis has 

also been found amongst individuals with chronic helminth infection (Kalinkovich, 1998). 

It is of note that the subjects in this study group were Ethiopian immigrants infected with a 

variety of helminths. Interestingly amongst a group of older immigrants who had been in a 

western environment for over 5 years, levels of lymphocyte apoptosis fell within the 

normal range, further suggesting an association with active infection. Such results suggest 

that apoptosis is also likely to be of importance during human helminth infection. 

1.6.4. NO and apoptosis 

As with many aspects of its biology, the role of NO in regulating apoptosis may 

appear contradictory. Both pro- and anti-apoptotic functions have been attributed to NO. 
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Once again the outcome of exposure appears to depend largely upon both the level of NO 

production and the tissue type involved. While exposure to high levels of NO, as produced 

by iNOS, appears to promote apoptosis, the continuous production of low levels of NO, by 

constitutive NOS, is more often associated with anti-apoptotic effects (reviewed Dimmler, 

1997). 

(i) Pro-apoptotic effects of NO 

It has now been shown that NO can induce apoptosis in a variety of cell types, 

including murine thymocytes, splenocytes, peritoneal MO and tumor cells (Albina, 1993; 

Fehsel, 1995; Okuda, 1996; Sarih, 1993). Sarih et al demonstrated that stimuli leading to 

MO activation and the development of cytotoxicity to tumor cells (LPS and IFN-y) , also 

led to MO death by apoptosis. Addition of L-NMMA inhibited both NO production and 

apoptosis. Albina et al (1993) further demonstrated that besides activation by LPS and 

IFN-yexposure to authentic NO gas induced the apoptosis of murine peritoneal MO. Both 

murine thymocytes and splenic T lymphocytes have also been shown to undergo apoptosis 

upon exposure to chemical donors of NO (Fehsel, 1995; Okuda, 1996). Thymocytes co

cultured with activated endothelial cells also underwent NO mediated apoptosis, 

demonstrating that physiological levels of NO are sufficient for its induction. The ability 

of NO to induce apoptosis of both APe and T cells suggest that this may represent another 

mechanism whereby NO can directly or indirectly modulate T cell responses. 

Although the precise mechanism whereby NO mediates apoptosis is not known, 

several potentially contributing factors have now been identified. During the NO mediated 

apoptosis of thymocytes, Fehsel et al (1995) demonstrated the NO induced expression of 

p53, a tumor suppressor protein which promotes apoptosis. More recently it has been 

shown that there is an accumulation of p53 resulting from an inhibition of proteosome 

activity in RAW 264.7 MO undergoing NO mediated apoptosis (Glockzin, 1999). The 
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pro-apoptotic protein Bax, normally degraded by the proteosome, also accumulates during 

NO mediated apoptosis, which may be a result of either p53 accumulation or proteosome 

inhibition. As the proteosome plays an essential role in Ag presentation, inhibition of 

proteosome activity may represent another mechanism whereby NO can mediate 

proliferative suppression. 

Several lines of evidence suggest that NO can induce apoptosis via modulation of 

Fas or Fas-L expression. NO induces Fas expression on pancreatic ~ cells and in this 

fashion is thought to contribute to ~ cell damage during insulin dependent diabetes 

mellitus (Stassi, 1997). More recently it has been shown that human T cell blasts produce 

NO upon TCR ligation which increases Fas-L expression and sensitivity to Fas mediated 

apoptosis (Williams, 1998). Human leukaemic T cells have also been shown to upregulate 

expression of Fas-L upon exposure to NO. Most interestingly however, some lymphoid 

cells resistant to Fas mediated apoptosis (BL 60, a Burkitt lymphoma cell line) were 

sensitive to NO mediated apoptosis (Chlichlia, 1998). In this respect NO appears unique in 

its ability to induce both Fas dependent and independent apoptosis. Regardless of the 

involvement of the Fas signalling pathway NO mediated apoptosis has been shown to 

require activation of caspases. Using inhibitors of caspase activity it was shown that 

activation of caspase 1 but not caspase 3 was essential to the NO mediated apoptosis of 

thymocytes. Caspase 1 derived from the cytosol of NO treated thymocytes has been shown 

to be capable of cleaving inhibitor of caspase-activated deoxyribonuclease (I-CAD) 

leading to DNA fragmentation and apoptosis (Zhou, 2000). There are clearly several 

mechanisms whereby NO can induce apoptosis which may impact the development of 

immune responses in a variety of ways. It is possible that NO mediated apoptosis can 

affect T cells either directly (during thymic maturation or in the periphery), or indirectly 
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via affecting APC function through induction of apoptosis or inhibition of proteosome 

activity. 

(ii) Anti-apoptotic effects of NO 

Various studies have reported that NO can also show anti-apoptotic activity. The 

protective effects of NO are generally mediated by low levels of NO produced by 

constitutive NOS, and have been demonstrated with regard to both Fas mediated and TNF

a mediated apoptosis. Mannick et al (1997) demonstrated that basal levels of NO 

production inhibited the Fas mediated apoptosis of human leukocytes. Inhibition of NOS 

activity by L-NMMA was shown to significantly increase levels of Fas mediated apoptosis 

in both Band T cell lines. It was also demonstrated that NO inhibited the caspase 

mediated cleavage of Poly-(ADP-ribose) polymerase (PARP) (Mannick, 1997). NO has 

been shown to modulate caspase activity via S-nitrosylation of active site thiols, and it has 

been suggested that this may be the mechanism whereby NO mediates its protective effects 

(Melino, 1997). Kim et al (1997) demonstrated that NO protects hepatocytes from 

apoptosis via effects upon caspase activity. NO was shown to protect hepatocytes from 

apoptosis induced by withdrawal of growth factors, exposure to TNF-a, or Fas ligation. 

Induction of apoptosis via these stimuli results in an increase in caspase 3 like activity. 

Exposure to NO prevented this increase and furthermore, exposure of purified 

recombinant caspase 3 to NO inhibited its proteolytic activity via S-nitrosylation. NO has 

also been shown to mediate S-nitrosylation of cysteine protease (CPP)-32-like cysteine 

protease (CPP-32) and thus inhibit the TNF-a induced apoptosis of human umbilical 

venous cells (Dimmeler, 1997). Constitutive expression of endothelial NOS has also been 

demonstrated to protect human NK cells from AICD via down-regulation of TNF-a 

expression (Furuke, 1999). Exposure to NO can clearly display both pro- and anti-
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apoptotic effects, dependant upon the amount of NO present, and the cell type involved. 

As an important modulator of cell survival, NO can be added to the list of factors such as 

previous experience of Ag, co-stimulation and both prior and current exposure to 

cytokines, which can influence the outcome of specific cellular activation. 
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CHAPTER 2 Materials and Methods 

2.1 The Parasite 

2.1.1. Maintenance of the mosquito life cycle 

Aedes aegypti (Refm) mosquitoes were kept in mesh cages in a purpose built 

insectary maintained at a temperature of 28°C and relative humidity of 75-80%. To 

maintain stocks, mosquitoes were fed twice weekly with heparinized rabbit blood using an 

artificial membrane feeder. Eggs were collected on moist Whatman 3 mm filter papers, 

which were removed and stored dry until required. Eggs were hatched by submerging egg 

papers in plastic trays of tap water containing yeast tablets to feed the developing larvae. 

Pupae were picked daily and transferred to cages. Adult mosquitoes were fed on sucrose 

and starved for 24 hrs prior to receiving a blood-meal. 

2.1.2. Maintenance of the parasite life cycle 

Adult parasites and microfilariae were obtained from the peritoneal cavity of 

infected jirds (Meriones unguiculatus) which had been infected for at least three months 

with 250 L3 of Brugia pahangi. Jirds were killed by CO2 inhalation and exsanguinated by 

cardiac puncture. Worms were obtained by extensive peritoneal lavage with Hanks 

Balanced Salt Solution (HBSS, Gibco) at 37°C. Adult worms were washed in HBSS and 

frozen in liquid nitrogen as a source of material for the preparation of parasite extracts. 

The mf were washed in HBSS and resuspended in heparinized rabbits blood at a 

concentration of approximately 400120 Ill. Mosquitoes were fed infected blood using the 

artificial membrane feeder. 
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2.1.3. Recovery of infective stage larvae and microfilariae 

L3 were harvested from infected mosquitoes at 9 days post infection (pj.) using 

standard methods (Devaney, 1991), washed extensively in sterile HBSS and counted. 

Microfilariae were obtained by extensive peritoneal lavage of infected jirds, adult worms 

were mechanically removed and any erythrocytes present were lysed using sterile ddH20. 

Mf were washed in HBSS (37°C) and separated from host cells by repeated centrifugation 

over Histpaque-1077 (Sigma) at 1200 rpm for 15 mins without brake. Mf were washed 

twice in HBSS and counted. 

2.1.4. Preparation of antigen extracts 

Soluble extracts of B. pahangi adult worms, for use in cell culture were prepared 

by homogenisation of frozen mixed sex or single sex adult worms in RPMI-1640 (Dutch 

Modification, containing 5mM L-giutamine, 100 Ulmi penicillin and 100 ~g/ml 

streptomycin, all Gibco (RPMY» on ice. The homogenate was incubated on ice for 1 hI' 

with occasional agitation. The suspension was then centrifuged at 10,000 g for 30 mins at 

4°C. The supernatant was sterilised by centrifugation through a 0.45 ~m Spin-X filter unit 

(Co-star) and assayed for protein concentration using a BioRad dye reagent based on the 

Bradford method. 50~I aliquots were stored at -70°C until use. Mf Ag was prepared by 

sonicating mf for 3 minutes at 6~m in RPMY on ice and then processing in the same way 

as adult Ag. 

2.2 Animals and infection protocols 

6 week old male BALB/c mice were purchased from Harlan-Olac (Bicester, UK) 

and were maintained in filter topped cages. Groups of 5 mice were injected i.v. via the tail 

vein with either lx105 mf, 50x L3 B. pahangi or an equivalent volume of HBSS. In certain 
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experiments, where stated mice were infected s.c. in "the scruff of the neck". Heat killed 

mf were prepared by plunging into boiling water for 3 mins. At 12 days post infection 

(d.p.i.) mice were killed by CO2 inhalation. Spleens were removed aseptically and serum 

collected by cardiac puncture. In additional experiments NOS-2 deficient mice on the 

129/Sv background (obtained from Professor F. Y. Liew, University of Glasgow), IFN-yR

/- mice also on the 129/Sv background (obtained from Dr. Alan Mowat, University of 

Glasgow) and IL-4 deficient mice on the BALB/C background (from Dr. Eileen Devaney, 

University of Glasgow) were infected using the same protocol. Equivalent strain and age

matched wild type counterparts for all these animals were purchased from Harlan-Olac. 

2.3. Preparation of spleen cells 

Spleens were removed aseptically. Single cell suspensions were prepared in RPMI 

by passage of the spleens through Nytex mesh (Cadisch and Sons, London UK) and debris 

separated by further passage through Nytex. Erythrocytes were lysed in 0.83% NH4CI (pH 

7.2), the remaining cells were washed twice in RPMI and numbers of viable lymphocytes 

assessed by trypan blue exclusion. Cells were resuspended at lx107/ ml (for proliferations) 

or 2x107/ ml for cytokines in RPMY containing 20% heat inactivated FCS (Gibco), to give 

a final concentration of 10% FCS. 

2.3.1. Proliferation assay 

Proliferation was measured by incorporation of 3H thymidine. Triplicate 100 III 

cultures (5x 1 05 cells / well) in 96 well half area plates (Co-star) were incubated in the 

presence or absence of 1 Ilg/ml Con A (Sigma) or 10 Ilg/ml adult Ag. These 

concentrations of Con A and adult Ag were determined to be optimal in previous 
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experiments (Osborne, 1997a). Cells were cultured at 37°C in an atmosphere of 5% CO2 

and pulsed with 0.5 /lCi of 3H thymidine/well (Amersham) during the last 16 hI's of 

culture. The cells were harvested and radioactivity measured in a "Top Count" microplate 

scintillation counter (Canberra Packard Instrument Company). 

2.3.2. In vitro treatments 

In some experiments the IFN-y neutralising MAb XMG 1.2 or isotype matched 

control Ab ((R3-34) both PharMingen) were added to medium only and Ag-stimulated 

culture at a concentration of 100 /lg/ml. After such treatment the proliferation and cytokine 

response of the cells were assessed as previously described. IFN-y was assayed by cytokine 

ELISA which demonstrated that this cytokine had been successfully neutralised. 

In certain experiments the following supplements were added to both antigen

stimulated and medium only cultures. All concentrations given are the final concentration 

active in culture: Recombinant IL-2 (rIL-2, Sigma) at 50 U/mI. The iNOS inhibitor N-g

monomethyl-L-arginine (L-NMMA, Sigma) at 250 /lg/ml; Aminoguanidine (AMG, 

Sigma) a more selective inhibitor of iNOS activity at 500 mM; Polymixin B an inhibitor of 

the pro-inflammatory activity of LPS 2.5 /lg/ml (Sigma); S-nitroso-amino-penacillamine 

(SNAP) an NO donor (Sigma) at various concentrations and times as noted. The 

proliferative responses of these cells were compared to those in unsupplemented cultures. 

74 



2.3.3. Magnetic Separations 

In some experiments splenocytes from mf-infected animals were depleted of either 

CD4+ or CD8+ cells, by magnetic separation, prior to in vitro culture. Splenocytes were 

prepared as described previously and pooled from 3-5 mf-infected animals. Un separated 

cells were plated out prior to depletion. At this point 5x 1 06 cells were removed for staining 

with an isotype control antibody (KLH/G2a-I-1 PharMingen). Remaining cells were 

washed in PBS and then stained with either an anti-CD4 or anti-CD8 FITC conjugated 

MAb (L3T4 or S3-6.7 both PharMingen) in 500 III PBS on ice for 20 mins. Both 

antibodies were used at 2 1l112x106 cells. Stained cells were washed twice in PBS and 

5xl06 cells were removed for FACS analysis. Remaining cells were resuspended in 

degassed separation buffer (90 1111107 cells) containing anti-FITC beads (101111107 cells) on 

ice for 15 mins. Cells were resuspended in 500 III of separation buffer and loaded onto LS 

positive selection columns (Miltenyl Biotec) pre-wet with 3mls of separation buffer. Cells 

were washed through the column with 3x3ml of separation buffer and collected on exit. 

Cells were then washed in PBS and 5x 1 06 cells removed for FACS analysis to allow the 

efficiency of depletion to be assessed. Remaining cells were washed in RPMI+ and plated 

out as normal. 

2.3.4. Analysis of cytokine production by ELISA 

Spleen cells were incubated at 1 x 1 07 cells/ml in 1 ml cultures in 24-well flat 

bottomed plates (Co-star) in medium only or in the presence of Con A (5 Ilg/ml) or Ag at 

IOllg/ml and the supernatants harvested after 48 hrs culture (unless otherwise stated). Cell 

free supernatants were stored at -20ce. Levels of IL-2, IL-4, IL-5, IL-lO and IFN-y were 

determined by two-site ELISA using antibody pairs purchased from PharMingen. The 

optimal concentrations for the capture and detecting antibodies were determined in 

75 



preliminary experiments. Results are expressed as D/ml or pg/ml in reference to 

commercially available standards (IL-2, IL-4 and IL-l 0 from PharMingen, IL-4 and IFN-y 

from Rand D systems). The sensitivity of the assay was determined as the mean + 3 SD of 

16 wells containing medium (RPMI 10% FCS) only. 

The cytokine ELISA was performed as follows. ELISA plates (Corning Easy

Wash) were coated with 50 ~l/well capture antibody in PBS, over night at 4°C and then 

blocked with 150 ~l/well PBS/O.5% Tween 20, 10% FCS, for 45 mins at 37°C. During 

this incubation, samples were defrosted and doubling dilutions of the recombinant 

cytokine standards were prepared in RPMIII0% FCS on a separate plate. Plates were 

washed twice with PBS/O.05% Tween 20 (PBS/T.20) quickly and twice for 3 mins. 

Samples, standards and RPMI 10% FCS were transferred to plates at 50 ~l/well for two 

hours at RT. Plates were washed as before and biotinylated secondary antibody diluted in 

1 % BSA PBS/T.20 was added at 50~1/well for 1 hr at RT. Plates were washed as before. 

Streptavidin peroxidase (Serotec) diluted 111000 in 1 % BSA PBS/T.20 was added at 75 

~l/well for 1 hr at RT. Plates were washed as before and TMB peroxidase substrate (KPL) 

was added at 1 00 ~1/well, for 10 mins. Plates were read at 620nm in a Dynatech MR5000 

automated ELISA reader. 

2.3.5. Measurement of nitrite in culture supernatants 

The Greiss reaction was used to determine levels of nitrite in culture supernatants. 

All samples were tested in duplicate. Equal volumes of sample (cell free supernatants) 

and freshly prepared Griess reagent (0.05% alpha-naphthyl-amine, 0.5% sulfanilamide in 

2.5% phosphoric acid) were mixed in 96 well flat bottomed-plates and allowed to react for 

10 minutes at room temperature before absorbance was determined at 560 nm. N02-
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concentration was calculated from a NaN02 standard curve and sensitivity calculated as 

for cytokine ELlS As. Greiss reagent was prepared freshly every time by mixing equal 

volumes of 0.1 % alpha-naphthyl-amine and 1 % sulfanilamide, S% phosphoric acid. 

2.4. FA CS staining 

2.4.1. CFSE labelling 

Cells were labelled with CFSE ex-vivo, and then cultured, with or without 

stimulation, prior to cell surface staining and FACS analysis. After counting the number of 

viable splenocytes, Sx107 cells / mouse were washed twice in S ml sterile PBS (1000 

rpm/S min). Cells were then incubated in 10 /-lM CFSE (Molecular Probes) at Sxl07 

cells/ml for 8 min at R.T. The reaction was stopped by the addition of S mls RPMI+ 20% 

FCS, and all samples were washed twice in RPMI+ 10% FCS. Stained cells were plated 

out in Iml cultures as previously described, with or without stimulation, for 96 hI' prior to 

cell surface staining and FACS analysis. In certain experiments CFSE labelled cells were 

cultured in the presence or absence of AMG at a final concentration of SOO mM. 

CFSE labelled cells were harvested (around Ix 106 cells per test), and surface 

stained with either an anti-mouse CD4 APC conjugated MAb (L3-T4), or isotype matched 

control ((R3S-9S) both PharMingen), as described below, prior to FACS analysis. Samples 

were gated on both total lymphocytes, as determined by forward and side scatter and CD4+ 

lymphocytes for analysis of CFSE staining profiles. Controls in each experiment 

comprised unstained cells, cells stained with Anti-CD4 or isotype matched control only, 

and cells stained with CFSE only. 
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2.4.1. Cell surface staining 

Cells to be stained were removed from culture, transferred to FACS tubes (Falcon), 

and washed twice in 200 ~l of staining buffer (1000 rpm 15 min). Cells were then stained 

with 2 ~g/test of flourochrome conjugated antibody in staining buffer, or staining buffer 

only (100 ~l/sample) on ice for 20 min. Cells were washed twice in staining buffer as 

before and resuspended in 300 ~l of fixation buffer if not to be analysed immediately. 

Stained samples were stored in the dark at 4°C. Samples were gated on lymphocytes, as 

determined by forward and side scatter. 

2.4.3. Propidium Iodide Staining 

Cells to be stained were removed from culture, transferred to FACS tubes (Falcon), 

and washed twice in 200 ~l staining buffer (1000 rpm 15 min). Cells were then stained 

with 100 ~l/sample of either an APC conjugated anti-mouse CD4 MAb, or isotype 

matched control MAb (both PharMingen) in staining buffer, for 20 min on ice. Cells were 

washed in 200 ~l staining buffer and incubated for 15 min at RT. in 200 ~l fixation 

buffer. Cells were washed as before and incubated for a further 15 min at RT. in 

permeabilisation buffer. Cells were then washed and resuspended in 300 ~l PI/RNase A (5 

~g/ml PI, 200 nglml RNase A, PharMingen), for 30 min in the dark at RT. If not to be 

analysed immediately, cells were washed, resuspended in 300 ~l fixation buffer and stored 

in the dark at 4°C. Samples were analysed on a Becton Dickinson FACScalibur 

(department of Immunology, University of Glasgow). Gates were set around the 

lymphocyte population and subsequently upon CD4+ lymphocytes, the PI staining profile 

of these cells was assessed and those cells with a subdiploid DNA content considered 

apoptotic. All samples were analysed using Becton Dickinsons Cell Quest software. 
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Marker Left, Right Events % Gated % Total Mean Geo Mean 
All 1, 9910 
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30257 38.28 17.83 619.78 
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CV Median Peak Ch 
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Lymphocytes were originally gated by means of their physical properties in 

terms of forward and side scatter (A). The number of positively staining lymphocytes 

were determined using markers set on histograms as in (B), in this case Ml =CD4+ and 

M2=CD4hi
, the corresponding figures are shown in the above table. Dot plots of side 

scatter vs CD4 were used for selection to allow further analysis, as shown in (C) 

wherein CD4+ events appear red and CD4hi blue. 
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2.5. Statistical analysis 

The Mann-Whitney U-test was used to determine the statistical significance of differences 

between groups. p<O.OS was considered to be a significant difference. 

2.6. Buffers / Reagents 

2.6.1. Lysis buffer: Ammonium chloride solution: Mix 9 vols of 0.83% w/v NH4Cl in 

ddH20 with 1 vol. of 2.06% w/v Tris-HCL pH 7.6S. pH adjusted to 7.2. Sterilised by 

autoclaving and stored at 4°C. 

2.6.2. PBS: 137 mM NaCl, 8.1 mM Na2HP04 , 2.7 mM KCL, 1.47 mM KH2P04 in 

ddH20. Adjusted to pH 7.0, sterilised by autoclaving and stored at RT. 

2.6.3. ELISA Buffers 

PBS/O.OS% Tween 20 (Sigma): S00!-ll Tween 20 was added per litre of PBS. 

2.6.4. Separation buffer 

SOml PBS, 200mg BSA, 200!-l1 O.SM EDTA 

2.6.5. FACS Buffers 

(i) Staining Buffer 

PBS/2% PCS, 0.2% sodium azide, pH 7.4-7.6, filter sterilsed and stored at 4°C. 

(ii) Permeabilization Buffer 

PBS12% PCS, 0.2% sodium azide, 0.1 % saponin (Sigma), pH 7.4 - 7.6, filter 

sterilised and stored at 4°C. 

(iii) Fixation Buffer 

4% formaldehyde: 14ml lOx PBS, 10.8 ml 37.S% formaldehyde, 7S.2ml H20, 

filter sterilised and stored at 4°C. 
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CHAPTER 3. NO suppresses the Ag-specific proliferation of splenocytes from mf

infected animals at 12 d.p.i. 

3.1 Introduction 

The immune response in human filariasis is characterised by a Th2 bias and 

defective Ag-specific proliferation (Ottesen, 1977; Piessens, 1980b; Yazdanbaksh, 1993). 

While suppression of proliferative responses was first reported only amongst Mf+ 

individuals it is now known to extend to other clinical groups (Yazdanbaksh, 1993). The 

presence of circulating mf, however, remains associated with the most profound 

manifestations of proliferative suppression. Ag-specific proliferative responses are lowest 

amongst microfilaremics (Ottesen, 1977; Ravichandran, 1997) and most difficult to restore 

post chemotherapy in this grolfP (Sartono, 1995b). In contrast, T cells from patients 

displaying chronic pathology, who are generally Mf-, have relatively strong parasite

specific proliferative responses (Maizels, 1991). Mf+ individuals have also been shown to 

have lower frequencies of Ag-specific lymphocytes and fewer IFN-y producing cells 

(King, 1992). Furthermore, treatment with ivermectin (a microfilaricidal drug) enhances T 

cell reactivity, suggesting a direct role for mf in generating proliferative suppression 

(Lammie, 1992). Studies in the jird/ B. pahangi model of infection, wherein loss of 

proliferative responsiveness accompanies the onset of mf production, also imply a link 

between microfilaremia and proliferative suppression (Leiva, 1989). 

Although a number of mechanisms have been proposed which may account for this 

hyporesponsiveness (see 1.3. and Maizels, 1995), the exact nature of the proliferative 

suppression is still not fully understood. Attempts to reverse defective proliferative 

responses of T cells from B. malayi infected individuals, using a variety of 

immunomodulators or neutralising antibodies, have been largely unsuccessful, although 

some effect was noted with recombinant IL-2 (rIL-2) (Sartono, 1995a). In W. bancrofti 
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infection several reports have provided evidence of a role for regulatory cytokines such as 

IL-I0 (King, 1993; Mahanty, 1997) and TGF-B (King, 1993) in suppressing proliferative 

responses. More recently it has also been shown that the source of the Ag used for in vitro 

restimulation is an important determinant of proliferative unresponsiveness. Restimulation 

of PBMC from W. bancrofti individuals with Ag prepared from mixed sex adult worms, or 

mf, led to down-regulation of proliferative responses whilst adult male-Ag did not 

(Mahanty, 1996). Such results suggest that the presence of Ag of microfilarial origin may 

induce hyporesponsi veness. 

The use of murine models has greatly facilitated the study of the immunology of 

filariasis, and has revealed a number of ways in which filarial worms can modulate host 

responses. It has been shown that infection with different life cycle stages elicits 

development of differentially polarised immune responses, illustrating the potential for 

stage-specific immunomodulation (Lawrence, 1994). Infection with L3 (by either the i.p. 

or s.c. route), leads to development of Th2 responses characterised in vitro by production 

of high levels of IL-4 and negligible levels of IFN-y (Lawrence, 1994; Osborne, 1996). In 

contrast, infection with mf leads to the development of Thl-like responses, characterised 

by high levels of Ag-specific IFN-y (Lawrence, 1994; Pearlman, 1993b). Most 

interestingly splenocytes from mf-infected and L3-infected animals have recently been 

shown to differ in their to ability to mount Ag-specific proliferative responses. Whilst 

splenocytes from BALB/c mice infected subcutaneously with B. pahangi L3 displayed 

strong Ag-driven proliferative responses, cells from mf-infected animals failed to 

proliferate under the same conditions (Osborne, 1996). Suppression of proliferative 

responses was observed after 72 hrs of Ag-stimulated culture, 12 days post-infection. The 

production of high levels of Ag-stimulated IFN-y by cells from mf-infected animals 
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demonstrates that they are activated, yet unable to proliferate, in response to Ag. It is 

interesting to note that while Ag-driven proliferative responses were down-regulated, the 

polyclonal (ConA-driven) responses of cells from mf-infected animals were intact. In this 

respect the Ag-specific nature of suppression parallels that seen in human filariasis, 

wherein mitogen driven responses are generally unaffected (Ottesen, 1977; Piessens, 

1980b). 

Down-regulation of proliferative responses is a hallmark of several different 

parasitic infections (Candolfi, 1994; Dai, 1999; Schleiffer, 1993) and presumably reflects a 

means of promoting parasite survival. The mechanisms underlying suppression vary from 

organism to organism, but various mediators such as iNOS (Dai, 1999; Mabbot, 1995), 

pro- and anti-inflammatory cytokines (Martins, 1999; Osborne, 1999; Uzonna, 1998), and 

T cell apoptosis (Lopes, 1996; Lopes, 1995) have been implicated in mediating 

suppression. The observation of mf-specific proliferative suppression, suggests that the 

BALB/C / B. pahangi model provides a suitable system in which to analyse the 

mechanisms involved in its generation. 

The aim of the experiments presented in this chapter was to identify the 

mechanism(s) underlying the suppression of Ag-specific proliferative responses seen 

following mf-infection. While previous experiments in this laboratory had been carried out 

using s.c. infection, intravenous infections were used throughout, in order to place mf 

directly into the circulatory system. Ag-stimulated proliferative and cytokine responses 

were assessed in response to stimulation in the presence or absence of various 

immunomodulators. 
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3.2. RESULTS 

3.2.1. Polyclonal and antigen stimulated immune responses of splenocytes from mf

infected, L3-infected and uninfected control mice at 12 d.p.i. 

In these experiments groups of five BALB/c mice were injected intravenously via 

the tail-vein with lxl05 mf, 50 L3 B. pahangi or an equal volume of HBSS only. At 12 

d.p.i. spleens were removed for in vitro analysis. 

(i) Ag-specific proliferative responses 

Proliferative responses of splenocytes from mf-infected, L3-infected and 

uninfected control animals were measured over a time-course of in vitro restimulation with 

10 /-lg/ml B. pahangi adult Ag. Figure 3.1 shows Ag-driven proliferative responses after 

(A) 48, (B) 72 and (C) 96 hrs in vitro culture. At 48 hrs splenocytes from both groups of 

infected mice show Ag-specific proliferation Figure 3.1 (A), cells from L3-infected 

animals consistently showing higher levels of Ag-driven proliferation than those from mf

infected animals. After 96 hrs of culture however, Ag-stimulated cells from mf-infected 

animals routinely incorporated fewer cpm than did cells in culture medium only Figure 3.1 

(C). In contrast cells from L3 infected animals displayed strong Ag-specific proliferative 

responses throughout the period observed. Splenocytes from uninfected control animals 

did not proliferate in response to Ag. These results are highly comparable to those 

previously reported following s.c. infection with B. pahangi mf and L3 (Osborne, 1996). 

By virtue of their more robust responsiveness, cells from L3-infected animals were 

included in many subsequent experiments as positive controls for Ag-driven proliferation. 

This experiment has been repeated on multiple occasions with equivalent results. 
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FIGURE 3.1. Proliferative responses of splenocytes from mf-infected, L3-

infected and uninfected control mice to B. pahangi adult antigen at 12 d.p.i. 

Mice were injected intravenously with 105 mf, 50 L3 B. pahangi or an equal volume 

of HBSS only. At 12 d.p.i. proliferative responses of splenocytes (5 x 106 cells/ml) to 

10 Ilg/ml B. pahangi adult antigen were measured by 3H thymidine incorporation at 

(A) 48 hrs, (B) 72 hrs and (C) 96 hrs culture. Results are expressed as mean cpm 

incorporated in triplicate wells. All values represent the mean and standard deviation 

of five animals per group. 
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(ii) Ag-driven cytokine responses at 12 d.p.i. 

Infection with different life cycle stages has previously been reported to lead to the 

development of differentially polarised responses. To confirm that this is also the case 

following i.v. infection cytokine production by splenocytes from mf-infected, L3-infected 

and uninfected control mice was measured after 48 hrs in vitro restimulation with 10 

J..lg/ml B. pahangi adult Ag (Figure 3.2). The cytokine production profiles of i.v. infected 

mice proved very similar to those previously reported following infection by the 

subcutaneous (Osborne, 1999) or the intraperitoneal (Lawrence, 1994) route. The only Ag

specific cytokine produced by splenocytes from mf-infected mice was IFN-y, while cells 

from L3-infected animals produced IL-4, IL-5 and IL-IO but no IFN-y. This experiment 

has been repeated on multiple occasions with equivalent results. 

(iii) Poly clonal proliferative responses 

Proliferative responses of splenocytes from mf-infected, L3-infected and 

uninfected control animals were measured after 48 hrs in vitro stimulation with ConA, 

anti-CD3 MAb, or LPS all at a final concentration of 1 J..lg/ml. The concentrations and 

culture time used were determined to be optimal in preliminary experiments (data not 

shown). As shown in Figure. 3.3, proliferative responses to these stimuli were equivalent 

across all groups. In the case of ConA stimulation these results differ from those 

previously reported following s.c. infection wherein splenocytes from L3-infected mice 

showed significantly reduced proliferation (Osborne, 1996). This experiment has been 

repeated on multiple occasions with equivalent results. 
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FIGURE 3.2. Ag-stimulated cytokine production by splenocytes from mf

infected, L3-infected and uninfected control mice at 12 d.p.i. 

Mice were injected intravenously with 105 mf, 50 L3 B. pahangi or an equal volume 

of HBSS only. At 12 d.p.i. splenocytes (lx107/ml) were restimulated in vitro with 10 

llg/ml B. pahangi adult Ag. Cytokine levels in supernatants from 48 hr cultures were 

measured by 2-site ELISA. All values represent the mean and standard deviation of 

five animals per group. 
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FIGURE 3.3. Poly clonal proliferative responses of splenocytes from mf-infected, 

L3-infected and uninfected control mice at 12d.p.i. 

Mice were injected intravenously with 105 mf, 50 L3 B. pahangi or an equal volume 

of HBSS only. At 12 d.p.i. proliferative responses of splenocytes (5x10
6 

cells/ml) to 

(A) 1 /lg/ml ConA, (B) 1 /lg/ml anti-CD3 MAb and (C) 1 /lg/ml LPS were measured 

by 3H thymidine incorporation after 48 hI'S culture. Results are expressed as mean 

cpm incorporated in triplicate wells. All values represent the mean and standard 

deviation of five animals per group. 
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3.2.2. rIL-2 fails to restore Ag-specific proliferation of splenocytes from mf-infected 

mice 

IL-2 is known to be an important factor supporting the survival of activated T cells 

in in vitro culture (reviewed Marrack P, 1998). Furthermore recombinant IL-2 (rIL-2) has 

been shown reverse the in vitro Ag-specific proliferative unresponsiveness in some, but 

not all, individuals with brugian filariasis (Sartono, 1995a). As Ag-stimulated splenocytes 

from mf-infected BALB/c mice produce only low or undetectable levels of IL-2 in vitro, 

the possibility that a lack of IL-2 may act as a limiting factor upon the in vitro proliferation 

of these cells was investigated. Ag-stimulated cells from infected and uninfected control 

animals were cultured in the presence or absence of 50 U/ml rIL-2. 

Figure 3.4 shows the Ag-stimulated proliferative responses of splenocytes from 

mf-infected, L3-infected and uninfected control mice cultured in the presence or absence 

of rIL-2. Addition of rIL-2 caused a significant increase in the cpm of Ag-stimulated cells 

from mf-infected but not L3-infected animals at 48 hI's (p=0.0l2 and 0.09 respectively). 

However, rIL-2 also significantly increased the cpm incorporated in medium only wells, 

such that when calculated as stimulation indices (SI = cpm of Ag-stimulated wellsl cpm of 

unstimulated wells), rIL-2 caused a significant reduction in the SI of cells from infected 

animals. Ag-stimulated cells from mf-infected animals displayed a mean SI of 10.8 +1-1.7 

at 48 hI's while upon addition of rIL-2 this was reduced to 5.8 +1-0.7 (p=0.0004). This 

demonstrates that while rIL-2 increased proliferation it did not do so in an Ag-specific 

fashion. Furthermore regardless of the presence or absence of rIL-2, the cpm of Ag

stimulated cells from mf-infected animals were not significantly greater than background 

levels (p=>0.05) after 96 hI's culture. Whether considered as cpm or SI, the presence of 

rIL-2 did not significantly alter the Ag-stimulated proliferative responses of cells from mf-

89 



infected or L3-infected animals at 96 hrs. rIL-2 was active as demonstrated by a 

significant increase (p=O.012) in proliferation in rIL-2 supplemented versus medium-only 

wells. This experiment was repeated twice with equivalent results. 
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FIGURE 3.4. Ag-stimulated proliferative responses of splenocytes from mf

infected, L3-infected and uninfected control mice in the presence or absence of 

rIL-2 

Mice were injected intravenously with 105 mf, 50 L3 B. pahangi or an equal volume 

of HBSS only. At 12 d.p.i. proliferative responses of splenocytes (5 x 106 cells/ml) to 

10 flg/ml B. pahangi adult antigen in the presence (BID) or absence (NC) of 50 U/ml 

rll.,-2 were measured by 3H thymidine incorporation. Results are expressed as mean 

cpm incorporated in triplicate wells. All values represent the mean and standard 

deviation of five animals per group. 
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3.2.3. Ag-stimulated splenocytes from mf-infected but not L3-infected animals 

produce NO 

The production of NO by activated macrophages has been identified as a factor 

mediating proliferative suppression in several models of parasitic infection (Candolfi, 

1994; Dai, 1999; Mabbot, 1995; Schleiffer, 1993). In order to assess in vitro production of 

NO, the Greiss reaction was used to determine levels of nitrite, a stable end product of NO 

breakdown, in culture supernatants of Ag-stimulated splenocytes from infected and 

uninfected control animals. 

Figure 3.5 illustrates levels of nitrite production after 48 hrs. At this time-point 

significant levels of nitrite were detected only in cultures of cells from mf-infected 

animals whilst cells from L3-infected and uninfected control animals produced only 

background levels below the sensitivity of the assay (5~M). Extension of these 

observations over a time course of Ag-stimulated culture showed that splenocytes from 

mf-infected animals continued to produce nitrite and that levels in these cultures increased 

in a manner displaying a strong negative correlation with Ag specific proliferative 

responses (r=-0.866, P=<O.OOl) as shown in Figure 3.6. No such accumulation of nitrite 

was seen in Ag-stimulated cultures of cells from L3-infected mice. 
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FIGURE 3.5. Nitrite production by Ag-stimulated splenocytes from mf-infected, 

L3-infected and uninfected control mice at 12 d.p.i. 

Mice were injected intravenously with l05 mf, 50 L3 B. pahangi or an equal volume 

ofHBSS only. At 12 d.p.i. splenocytes (lx107/ml) were restimulated in vitro with 10 

~g/ml B. pahangi adult Ag. Nitrite levels in supernatants from 48 hr cultures were 

determined using the Greiss reaction. All values represent the mean and standard 

deviation of five animals per group. 
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FIGURE 3.6 Proliferative suppression correlates with NO production by 

splenocytes from mf-infected mice 

Mice were injected intravenously with 105 mf, 50 L3 B. pahangi or an equal volume 

ofHBSS only. At 12 d.p.i. proliferative responses of splenocytes (5 x 106 cells/ml) to 

10 J.!g/ml B. pahangi adult antigen were measured by 3H thymidine incorporation 

over a time course of in vitro culture. Results are expressed as mean cpm incorporated 

in triplicate wells. Nitrite levels in the supernatants of Ag stimulated cultures were 

determined using the Greiss reaction. All values represent the mean and standard 

deviation of five animals per group. Nitrite levels in culture (right hand axis) display 

a strong negative correlation with proliferative responses (left hand axis) (r = - 0.866, 

p = <0.001). 
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3.2.4. Inhibition of NO production restores defective Ag-specific proliferative 

responses of cells from mf-infected animals 

iNOS inhibitors were used to determine whether or not the observed correlation 

between NO production and proliferative suppression represented a cause and effect 

relationship. Ag-stimulated cultures of splenocytes from infected and uninfected animals 

were supplemented with either 250 ~g/ml L-NMMA or 500 ~M aminoguanidine (AMG), 

both inhibitors of iNOS activity (Corbett, 1992). Figure 3.7 shows the Ag-stimulated 

proliferative responses of splenocytes from mf-infected, L3-infected and uninfected 

control animals in the presence or absence of L-NMMA over a time-course of in vitro 

culture. Figure 3.8 shows the equivalent results from an experiment using AMG. 

Inhibition of iNOS activity had no effect upon proliferative responses in any group at 48 

hrs, and caused only a slight and insignificant improvement in the proliferation of cells 

from mf-infected animals after 72 hrs culture. After 96hrs culture, however, the addition of 

either L-NMMA or AMG significantly increased Ag specific proliferation of cells from 

mf-infected animals (p=0.012 and 0.011 respectively). Levels of nitrite in these culture 

supernatants were significantly reduced at this time point, L-NMMA and AMG 

respectively achieving 58% (P=0.012) and 50% (P=0.012) reduction (Figure 3.9). At no 

time did the presence of either inhibitor affect proliferative responses of cells from L3-

infected or un infected control animals in any way. These experiments have been repeated 

on multiple occasions with equivalent results. As AMG is known to be a more specific 

inhibitor of iNOS activity than L-NMMA (Corbett, 1992) it was the inhibitor of choice for 

all further experiments. 
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FIGURE 3.7 Ag-stimulated proliferation of splenocytes from mf-infected, L3-

infected and uninfected control mice in the presence or absence of L-NMMA 

Mice were injected intravenously with 105 mf, 50 L3 B. pahangi or an equal volume 

of HBSS only. At 12 d.p.i. proliferative responses of splenocytes (5 x 106 cells/ml) to 

10 Ilglml B. pahangi adult antigen, in the presence or absence of 250 Ilg Iml L

NMMA, were measured by 3H thymidine incorporation incorporation at (A) 48 hrs, 

(B) 72 hrs and (C) 96 hrs culture. Results are expressed as mean cpm incorporated in 

triplicate wells. All values represent the mean and standard deviation of five animals 

per group. *, significantly different (P = <0.05) from unsupplemented cultures. 
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FIGURE 3.8. Ag-stimulated proliferation of splenocytes from mf-infected, L3-

infected and uninfected control mice in the presence or absence of 

amino guanidine (AMG) 

Mice were injected intravenously with 105 mf, 50 L3 B. pahangi or an equal volume 

of HBSS only. At 12 d.p.i. proliferative responses of splenocytes (5 x 106 cells/ml) to 

10 /-lg/ml B. pahangi adult antigen, in the presence or absence of 500 /-lM AMG, were 

measured by 3H thymidine incorporation incorporation at (A) 48 hI'S, (B) 72 hrs and 

(C) 96 hI'S culture. Results are expressed as mean cpm incorporated in triplicate 

wells. All values represent the mean and standard deviation of five animals per 

group. * significantly different (P = <0.05) from unsupplemented cultures. 
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FIGURE 3.9. Effects of iNOS inhibition upon nitrite production in Ag 

stimulated culture 

Mice were injected intravenously with 105 mf B. pahangi. At 12 d.p.i. splenocytes 

(1 X 107/ml) were restimulated in vitro with 10 Ilglml B. pahangi adult Ag in the 

presence or absence of (A) 500 IlM AMG or (B) 250 Ilglml L-NMMA. Nitrite levels 

in supernatants from 96 hr cultures were determined using the Greiss reaction. All 

values represent the mean and standard deviation of five animals per group. * 

significantly different (P = <0.05) from unsupplemented cultures. 
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3.2.5. Inhibition of iNOS activity significantly enhances production of IFN-y but not 

IL-2 by splenocytes from mf-infected animals after 96 hrs of Ag-stimulated culture 

There is evidence that NO can modulate T cell function in a variety of ways; in 

particular it has been shown to down-regulate production of IFN-y and IL-2 both in vitro 

and in vivo (Taylor-Robinson, 1994). Furthermore it has been suggested that NO 

selectively inhibits production of these Th 1 cytokines as it has been shown to enhance 

production of IL-4 by Th2 clones (Chang, 1997). To assess the effect of NO upon cytokine 

production in Ag-stimulated culture, splenocytes from infected animals were cultured in 

the presence or absence of AMG. 

Figure 3.10 illustrates antigen stimulated IL-2 and IFN -y production by splenocytes 

from mf-infected animals after 48 and 96 hrs culture in the presence or absence of AMG. 

At 48 hrs equivalent levels of Ag-stimulated IFN-y and IL-2 were found regardless of the 

presence of AMG (it may be of note to recall that proliferative responses of cells from mf

infected animals are not affected by iNOS inhibition at this time-point). After 96 hI'S 

culture however while levels of IL-2 were not improved by iNOS inhibition, levels of 

IFN-y were significantly increased compared to those of un supplemented cultures 

(p=O.02). No Ag-specific IL-4 or IL-5 were detected in Ag-stimulated cultures of cells 

from mf-infected animals regardless of iNOS inhibition. This experiment has been 

repeated three times with equivalent results. 
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FIGURE 3.10 Effect of iNOS inhibition upon production of IL-2 and IFN-'Y in 

Ag-stimulated culture 

Mice were injected intravenously with 105 mf B. pahangi or an equal volume of 

HBSS only. At 12 d.p.i. splenocytes (lx107/ml) were restimulated in vitro with 10 f-lg 

Iml B. pahangi adult Ag in the presence or absence of 500 f-lM AMG. Cytokine levels 

in supernatants from 48 hI' (AlC) and 96 hI' (BID) cultures were measured by 2-site 

ELISA. All values represent the mean and standard deviation of five animals per 

group. *, significantly different (P = <0.05) from unsupplemented cultures. 
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3.2.6. Blocking IFN-y activity ill vitro fails to reduce NO production or restore Ag 

specific proliferation. 

IFN-y is a potent inducer of NO production and is the only cytokine capable of 

acting alone in this respect (Ding, 1988). Furthermore neutralisation of IFN-y activity in 

vitro has been shown to prevent NO production and restore suppressed proliferative 

responses in a murine model of toxoplasmosis (Neyer, 1998). To test whether a similar 

pathway is operative in vitro following mf-infection, Ag-stimulated cultures of cells from 

infected and un infected control animals were supplemented with the anti IFN-yantibody 

XMG 1.2 or an isotype matched control Ab. 

Figure 3.11 shows the proliferative response of splenocytes from mf-infected and 

uninfected control animals over a time-course of Ag-stimulated culture, supplemented 

where indicated with either 1 00 ~g/ml XMG 1.2, or isotype matched control MAb. The 

addition of XMG 1.2 or control MAb had no significant effect upon the proliferative 

responses of cells from mf-infected animals. As shown in Figure 3.12.A no Ag-stimulated 

IFN-y could be detected in cultures containing XMG 1.2, indicating that IFN-y was 

effectively neutralised at the concentration of MAb used, within the sensitivity of the assay 

(39 pg/ml). In line with the results of the proliferation assay no significant differences 

were found in Ag-stimulated nitrite production in the presence of either MAb (Figure 

3.12.B). This experiment was repeated three times with equivalent results. 
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FIGURE 3.11. Proliferative responses of splenocytes from mf-infected and 

uninfected control animals to B. pahangi adult Ag in the presence or absence of 

anti-IFN-,,/ MAb 

Mice were injected intravenously with 105 mf B. pahangi or an equal volume of 

HBSS only. At 12 d.p.i. proliferative responses of splenocytes (5 x 106 cells/ml) to 

10 flg/ml B. pahangi adult antigen, alone or in the presence of 100 flg/ml XMG 1.2 or 

an inactive isotype matched control MAb, were measured by 3H thymidine 

incorporation. Results are expressed as mean cpm incorporated in triplicate wells. All 

values represent the mean and standard deviation of five animals per group. * 

significantly different (P = <0.05) from unsupplemented cultures. 
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FIGURE 3.12. Upon addition of XMG1.2 IFN-)' is undetectable in Ag-stimulated 

cultures of splenocytes from mf-infected animals while nitrite production is 

unaltered 

Mice were injected intravenously with 105 mf B. pahangi or an equal volume of 

HBSS only. At 12 d.p.i. splenocytes (l x 107 cells/ml) were restimulated with 10 ~g/ 

ml B. pahangi adult antigen, alone or in the presence of 1 00 ~g/ml XMG 1.2 or an 

inactive isotype matched control MAb. IFN-)' (A) and nitrite (B) production in 

supernatants from 48 hr cultures were measured using 2-site ELISA and the Greiss 

reaction respectively. All values represent the mean and standard deviation of five 

animals per group. *, significantly different (P = <0.05) from unsupplemented 

cultures. 
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3.2.6. Polymixin-B fails to inhibit nitrite production or proliferative suppression in 

Ag-stimulated culture 

The presence of gram negative micro organisms in filarial worms was first reported 

by McLaren et al in (1975) and there is currently a resurgence of scientific interest directed 

toward these intracellular symbionts. The potential of these Wolbachia as targets for 

chemotherapy, mediators of pathology and also in terms of possible immunomodulatory 

effects provides the focus of these studies (recently reviewed Taylor, 1999). Although 

identified as a consideration for future studies by Kozek in (1977) the effect of products of 

bacterial origin present in the crude Ag preparations used in in vitro studies has not been 

addressed until recently. IFN-y and LPS have been shown to display synergism as potent 

stimulators of NO production (Ding, 1988) and it has been demonstrated that sequential 

exposure to IFN-y followed by LPS is efficient at stimulating NO production by murine 

macrophages (Lorsbach, 1992). To investigate the role of bacterial LPS in driving Ag

stimulated NO production in vitro, cells from mf-infected and uninfected control animals 

were cultured in the presence of polymixin B (PxB) an inhibitor of the biological activity 

of LPS. 

Figure 3.13 shows Ag-driven proliferation in the presence or absence of 2.5 J.lg/ml 

PxB at 96 hrs (A) and nitrite production under the same conditions over a time-course of 

in vitro culture (B). The concentration of PxB used was determined to be optimal in 

preliminary experiments. Addition of polymixin B had no effect upon the Ag-stimulated 

production of N02- by cells from mf-infected animals or upon Ag-specific proliferative 

responses, suggesting that LPS is not involved in generating the in vitro proliferative 

suppression seen in this model. This experiment was repeated three times with similar 

results. 
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FIGURE 3.13. Ag-stimulated proliferative responses and nitrite production by 

splenocytes from mf-infected and uninfected control animals in the presence or 

absence of polymixin B 

Mice were injected intravenously with 105 mf B. pahangi or an equal volume of HBSS 

only. At 12 d.p.i. proliferative responses of splenocytes (5 x 106 cells/ml) to 10 /-Lg/ml B. 

pahangi adult antigen, in the presence or absence of 2.5 /-Lg/ml polymixin B (PxB), were 

measured by 3H thymidine incorporation over a time course of in vitro culture. 

Proliferative responses after 96 hrs are shown (A). Results are expressed as mean cpm 

incorporated in triplicate wells. Nitrite levels in the supernatants from 48, 72 and 96 hr 

cultures (lxl07 cells/ml) were determined using the Greiss reaction (B). All values 

represent the mean and standard deviation of five animals per group. *, significantly 

different (P = <0.05) from un supplemented cultures. 
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3.2.8. Splenocytes from infected animals display similar patterns of responsiveness 

when restimulated in vitro with B. pahangi or A. viteae Ag 

To further assess any potential contribution of the Wolbachia bacteria to responses 

seen during in vitro assays, cells from infected and uninfected control animals were 

restimulated with an extract of Acanthocheilonema viteae, a related filarial parasite lacking 

endosymbionts. 

Figure 3.14 shows cytokine responses of cells from mf-infected, L3-infected and 

uninfected control animals restimulated in vitro with 1 0 ~g/ml B. pahangi or A. viteae Ag. 

The same polarisation of responses was observed regardless of the antigen used: lFN-"( 

dominating the cytokine profile of cells from mf-infected animals while splenocytes from 

L3-infected animals produced high levels of IL-4 and IL-S. 

Cells from both mf-infected and L3-infected animals proliferated in response to 

restimulation with A. viteae Ag at 48 hI's (Figure. 3.1SA). After 96 hI's however, 

proliferation of cells from mf-infected animals was significantly lower than background 

(p=O.012) while cells from L3-infected animals continued to proliferate strongly (Figure 

3.1SB). Again these results are highly comparable to those of B. pahangi stimulated 

splenocytes (Figure 3.1). These experiments were repeated three times with similar results. 

To confirm that the proliferative suppression seen following restimulation with A. 

viteae and B. pahangi Ag are mechanistically related, NO production was measured in the 

culture supernatants. As shown in Figure 3.16A, splenocytes from mf-infected but not 

uninfected control animals produced high levels of NO upon restimulation with both 

antigens, confirming NO production in vitro does not require the presence of LPS of 

bacterial origin. Furthermore while not affecting the responses of cells from L3-infected or 

uninfected control animals, addition of AMG significantly improved the proliferation of 
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cells from mf-infected animals after 96 hrs of A. viteae Ag-stimulated culture (p=O.034) 

Figure 3.16 (B). 
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FIGURE 3.14. A. viteae Ag-stimulated cytokine production by splenocytes from 

mf-infected, L3-infected and uninfected control mice at 12 d.p.i. 

Mice were injected intravenously with 105 mf, 50 L3 B. pahangi or an equal of 

volume HBSS only. At 12 d.p.i. splenocytes (lxI07/ml) were restimulated in vitro 

with 10 ~g/ml A. viteae adult Ag. Levels of (A) IFN-'Y, (B) IL-4 and (C) IL-5 in 

supernatants from 48 hr cultures were measured by 2-site ELISA. All values 

represent the mean and standard deviation of five animals per group. 
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FIGURE 3.15. Proliferative responses of splenocytes from mf-infected, L3-

infected and uninfected control mice to A. viteae adult antigen at 12 d.p.i. 

Mice were injected intravenously with 105 mf, 50 L3 B. pahangi or an equal volume 

HBSS only. At 12 d.p.i. proliferative responses of splenocytes (5 x 106 cells/ml) to 

lO /lg/ml A. viteae adult antigen were measured by 3H thymidine incorporation at (A) 

48 hrs and (B) 96 hrs culture. Results are expressed as mean cpm incorporated in 

triplicate wells. All values represent the mean and standard deviation of five animals 

per group. 
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FIGURE 3.16. Nitrite production by A. viteae / B. pahangi Ag stimulated 

splenocytes from mf infected and uninfected control mice at 12 d.p.i. 

Mice were injected intravenously with 105 mf B. pahangi or an equal volume HBSS 

only. At 12 d.p.i. splenocytes (lx107/ml) were restimulated in vitro with 10 Ilg/ml A. 

viteae or B. pahangi adult Ag. Nitrite levels in supernatants from 96 hr cultures were 

determined using the Greiss reaction. All values represent the mean and standard 

deviation of five animals per group. 
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FIGURE 3.17. A. viteae Ag-stimulated proliferation of splenocytes from mf-

infected, L3-infected and un infected control mice in the presence or absence of 

aminoguanidine 

Mice were injected intravenously with 105 mf, 50 L3 B. pahangi or an equal volume 

HBSS only. At 12 d.p.i. proliferative responses of splenocytes (5 x 106 cells/ml) to 

10 J..lg/ml A. viteae adult antigen, in the presence or absence of 500 J..lM 

aminoguanidine (AMG), were measured by 3H thymidine incorporation. Proliferative 

responses at 96 hrs culture are shown. Results are expressed as mean cpm 

incorporated in triplicate wells. All values represent the mean and standard deviation 

of five animals per group. *, significantly different (P = <0.05) from unsupplemented 

cultures. 
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3.2.9. Ag-stimulated proliferative responses of splenocytes from mf-infected, L3-

infected and uninfected control mice in the presence of NO 

It has been suggested that Thl cells are more susceptible to the effects of NO in 

terms of proliferation and cytokine production than Th2 cells (Chang, 1997; Taylor

Robinson, 1994). In the light of this it became of interest to determine whether Ag

stimulated cells from mf-infected and L3-infected animals were equally sensitive to NO. 

To this end Ag-stimulated cultures of splenocytes from infected and uninfected animals 

were supplemented with S-nitroso-N-acetylpenicillamine (SNAP) an NO donor, after 48 

hrs culture to a final concentration of 200 IlM. SNAP was added in a 10 III volume of 

RPMI, and all wells not receiving SNAP had 10 III of RPM I added to compensate for any 

dilution effects. Figure 3.18 shows Ag-specific proliferative responses in the presence or 

absence of NO. The addition of SNAP caused a significant reduction in the Ag-driven 

proliferation of cells from mf-infected animals after 72 hrs culture (p=0.03). Cells from 

L3-infected animals displayed an apparent, yet less marked and statistically insignificant, 

reduction in proliferation in the presence of SNAP at both 72 and 96 hrs. At 96 hrs there 

was no difference in the proliferative responses of cells from mf-infected animals in the 

presence or absence of SNAP. 

The levels of nitrite generated by 200 IlM SNAP were similar to those produced by 

cells from mf-infected animals in Ag-stimulated culture, as shown in Figure. 3.19. These 

results demonstrate that cells from mf-infected animals are more acutely sensitive to the 

anti-proliferative effects of NO derived from chemical donors than are cells from L3-

infected animals. However the marked depression of proliferative responses at 72 and 96 

hrs in the presence of SNAP suggests that cells from L3-infected animals may also be 

sensitive to NO. One factor to consider in this respect is that cells from mf-infected 

animals are continually producing NO in Ag-stimulated culture, which, in the presence of 
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SNAP results in exposure to slightly higher levels of NO than would be derived from 

SNAP alone in other groups. It is likely however that the time-scale of NO production is 

more critical. In preliminary experiments it was determined that the vast majority of SNAP 

derived NO is evolved over the first 24 hrs while NO production by cells from mf-infected 

animals is far more gradual and sustained, so its effects would be felt for longer. This 

experiment has been repeated twice with equivalent results. 
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FIGURE 3.18. Ag-stimulated proliferation of splenocytes from mf-infected, L3-

infected and uninfected control mice in the presence or absence of SNAP 

Mice were injected intravenously with 105 mf, 50 L3 B. pahangi or an equal volume 

HBSS only. At 12 d.p.i. proliferative responses of splenocytes (5 x 106 cells/ml) to 

10 Ilg/ml B. pahangi adult antigen were measured by 3H thymidine incorporation at 

(A) 72 and (B) 96 hrs culture. Where indicated 200 IlM SNAP was added after 48 

hrs. Results are expressed as mean cpm incorporated in triplicate wells. All values 

represent the mean and standard deviation of five animals per group. *, significantly 

different (P = <0.05) from unsupplemented cultures. 
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FIGURE 3.19. Nitrite production by Ag-stimulated splenocytes from mf-

infected, L3-infected and uninfected control mice in the presence of 200 ~M 

SNAP at 12 d.p.i. 

Mice were injected intravenously with 105 mf, 50 L3 B. pahangi or an equal volume 

ofHBSS only. At 12 d.p.i. splenocytes (lx107/ml) were restimulated in vitro with 10 

~g/ml B. pahangi adult Ag. Where indicated 200 ~M SNAP was added after 48 hrs. 

Nitrite levels in supernatants from 96 hr cultures were determined using the Greiss 

reaction. All values represent the mean and standard deviation of five animals per 

group. *, significantly different (P = <0.05) from unsupplemented cultures. 

115 



3.3. Discussion 

The results presented in this chapter demonstrate that i.v. infection of BALB/C 

mice with mf or L3 B. pahangi results in development of differentially polarised immune 

responses. In line with previous studies of infection via the intraperitoneal (Lawrence, 

1994), or subcutaneous route (Osborne, 1996), infection with L3 elicits development of a 

Th2 response, characterised by production of Ag-specific IL-4, IL-5 and IL-I0 in the 

absence of IPN-y. In contrast to this cells from mf-infected animals produce Ag-specific 

IPN-y in the absence of Th2 cytokines. Furthermore while cells from L3-infected animals 

proliferate well in Ag-stimulated culture, splenocytes from mf-infected animals show 

lower levels of proliferation which is down-regulated under the influence of NO, 

independently of IL-2. 

Cells from L3-infected animals proliferated well in response to Ag over a time

course of in vitro culture whereas cells from mf-infected animals proliferated at levels 

equivalent to, or lower than, background after 96 hrs culture. The observation in multiple 

experiments of proliferation significantly below background levels suggests that an active 

form of suppression is induced by re-exposure to Ag in vitro. Although it has previously 

been reported that following s.c. infection splenocytes from mf-infected animals are 

unable to proliferate in response to Ag, this observation was made at a single time-point, 

which may have missed any earlier responses (Osborne, 1996). Following i.v. infection 

cells from mf-infected animals do display Ag-specific proliferation at earlier time-points 

which is subsequently suppressed. The observations of early proliferative responses and 

Ag-specific cytokine production argue against any defects in Ag-processing and 

presentation, or co-stimulation, in cells from mf-infected animals taken ex-vivo. 

Although Ag-specific proliferative responses are impaired the polyclonal responses 

of cells from mf-infected animals (as measured by stimulation with ConA, anti-CD3 MAb 
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or LPS) remain intact. This reflects the situation in human infection wherein suppression 

is Ag-specific (Ottesen, 1977; Piessens, 1980b). Interestingly cells from animals infected 

with L3 via the i.v. route showed normal mitogenic responses, in contrast to observations 

previously made following s.c. infection wherein ConA driven proliferation was down

regulated under the influence of IL-4 (Osborne, 1996). All other factors being equal this 

suggests that L3 induced suppression of polyclonal responses is dependent upon the route 

of infection, as previously suggested by the absence of suppression following i.p. infection 

(Osborne, 1999). 

Ag-stimulated splenocytes from mf-infected animals produce high levels of IFN-y 

and only low to undetectable levels of IL-2. The survival of activated T cells in vitro is 

supported by cytokines such as IL-2 and IL-4 and whilst T cells may be exposed to high 

levels of these growth factors during the initial stages of their response to Ag, their 

concentration decreases as the response progresses. Thus T cells may die as a result of 

reduced levels of such growth factors (Reviewed (Marrack, 1998)). Previous studies in the 

jird/B. pahangi model showed that splenocytes from microfilaremic jirds were unable to 

proliferate or produce significant levels of IL-2 in response to parasite Ag (Leiva, 1989; 

Prier, 1988). The inability of rIL-2 to prolong the proliferative response of cells from mf

infected animals demonstrates that lack of IL-2 is not the underlying cause of proliferative 

suppression. Furthermore the enhanced levels of proliferation seen in medium only wells 

supplemented with rIL-2 illustrates both the activity of rIL-2 in culture, and that the IL-2 

responsiveness of cells from mf-infected animals is intact. 

Splenocytes from mf-infected animals were shown to produce significantly higher 

levels of nitrite in Ag-stimulated culture than cells from L3-infected or uninfected control 

animals. Extension of these observations demonstrated an accumulation of nitrite which 

showed a strong inverse correlation with proliferative responses. No such accumulation of 
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nitrite was seen in cultures of cells from L3-infected animals. Furthermore inhibition of 

iNOS activity by either L-NMMA or AMG reversed proliferative suppression providing 

evidence of a causative relationship. iNOS inhibition had no effect upon proliferative 

responses at 48 or 72 hrs suggesting that either a threshold level of NO production needs 

to be surpassed, or prolonged exposure to NO is necessary for its anti-proliferative effects 

to become apparent. Neither inhibitor had any effect upon the proliferative responses of 

cells from other groups. 

The production of high levels of NO by cells from mf-infected but not L3-infected 

animals is perhaps unsurprising when considering their respective cytokine production. 

Whilst MO activation and NO production are induced by pro-inflammatory stimuli such as 

IFN-y and LPS (Ding, 1988), IL-4 and IL-IO are known to down-regulate NO production. 

Pre-treatment with IL-4 inhibits IFN-y induced NO production and the development of 

leishmanicidal activity in murine peritoneal MO (Liew, 1991). IL-IO has also been shown 

to inhibit the microbicidal activity of activated MO towards both intracellular and extra

cellular parasites (Gazzinelli, 1992). Furthermore IL-4 and IL-lO have been shown to act 

synergistically to promote MO deactivation at individually sub-optimal levels (Oswald, 

1992a). Recently it has been demonstrated that IL-4 and IL-lO promote an alternative 

pathway of arginine metabolism, via arginase rather than iNOS, in murine MO and 

dendritic cells (Corraliza, 1995). There are both constitutive and inducibly expressed 

forms of arginase, both of which convert arginine to L-ornithine and urea. IL-4 and IL-lO 

trigger expresssion of the inducible form of arginase and display a potent synergy in this 

respect (Corraliza, 1995; Munder, 1998). While co-culture of Th1 clones with MO led to 

the exclusive induction of iNOS activity, co-cultures with Th2 cells upregulated arginase 

activity without inducing iNOS (Munder, 1998). As with many factors affecting MO 

activation the sequence of exposure is of importance in determining the subsequent 
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response. Simultaneous exposure of MO to IFN-y and IL-4/IL-1 0 led to a reduction in both 

iNOS and arginase activity. Pretreatment with IFN-y prevented subsequent induction of 

arginase activity by IL-4/IL-10 and likewise prior exposure to IL-4/IL-10 prevented 

subsequent production of NO in response to LPS (Modolell, 1995). It has been proposed 

that arginase may participate in regulation of iNOS activity via substrate competition 

(Modolell, 1995). The demonstration that a specific inhibitor of arginase activity enhanced 

NO production by LPS activated MO suggest that such a regulatory mechanism may be of 

importance when the extracellular supply of L-arginine is limited (Chang, 1998). 

It has also recently been shown than expression of arginase down-regulates NO 

production and prevents NO mediated apoptosis of IFN-yILPS activated RAW264.7 

macrophages. Expression of arginase did not inhibit SNAP induced apoptosis, indicating 

that its effects may be mediated via depletion of intra-cellular arginase (Gotoh, 1999). 

Such results suggest that the iNOS/arginase balance in MO is competitively regulated by 

Th 1/Th2 cytokines and that specific high level induction of arginase maybe one 

mechanism whereby Th2 cells can regulate pro-inflammatory responses. Although there is 

no direct evidence of a role for arginase in suppressing NO production during infection, 

the ability of Th2 cytokines to down-regulate MO activation is known to be associated 

with the susceptibility to L. major infection in murine models. 

Interestingly pre-exposure of J774 MO to crude extract or E/S products of Anisakis 

simplex leads to a dose dependant inhibition of LPS-stimulated NO production (Cuellar, 

1998). Such results suggest that products of parasite origin may interact directly with MO 

to suppress subsequent activation. MO activation is also known to be down-regulated 

during chronic B. pahangi infection in jirds (Nasarre, 1998). Recently it has been shown 

that arginase expression is upregulated in the profoundly anti-proliferative alternatively 

activated MO induced by i.p. infection with B. malayi adults or L3 (1. Allen, pers. comm). 
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Both these life cycle stages drive strong Th2 responses (Lawrence, 1994) and ll..-4 is 

known to be essential to the development of the suppressive cell population (MacDonald, 

1998). In this respect, it is of interest to note that the suppressive MO population induced 

by i.p. infection with L3 or adult worms is distinct to that induced by mf-infection. 

Following i.p. infection PEe from mf-infected animals were unable to support 

proliferation of a conalbumin specific T cell clone. Whilst inhibition of iNOS activity 

allowed restoration of background levels of proliferation, Ag-specific responsiveness was 

not recovered. iNOS inhibition did not affect the suppressive MO induced by infection 

with L3 or adult worms. These results illustrate that following i.p. infection, mechanisms 

besides NO production are involved in generating the suppressive effects of infection 

derived PEe, and further highlight the ability of different life cycle stages to regulate 

proliferative responses via distinct mechanisms. It is of note that following i.p. infection 

development of a suppressive APe population is restricted to the peritoneal cavity, while 

responses in the spleen are not suppressed. Such results illustrate a site specific effect, and 

provide one possible mechanism whereby filarial worms may modulate localised immune 

responses within their immediate environment. 

NO production can modulate T cell function either directly by inducing the 

apoptosis of T cells or APe (Albina, 1993; Fehsel, 1995; Okuda, 1996; Sarih, 1993), or 

indirectly via the modulation of cytokine responses (Taylor-Robinson, 1994; Wei, 1995). 

Measurement of cytokine production by splenocytes from mf-infected animals in the 

presence of high levels of NO revealed that NO caused a significant reduction in Ag

driven IFN-y production, whilst having no effect on ll..-2. It is of note that the NO 

mediated suppression of IFN-y production coincides with the suppression of proliferative 

responses, suggesting that NO may limit the expansion of Ag-specific IFN-y producing T

cells. It has previously been described that NO limits the production of ll..-12 by MO thus 
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indirectly controlling the expansion of Th 1 responses (Huang, 1998b). Several studies 

have now shown that the maintenance of sustained Th1 responsiveness has a requirement 

for ll..,-12 production (Stobie, 2000; Yap, 2000). Although not measured in this study it is 

possible that suppression of ll..,-12 production by NO may also influence T cell 

proliferative responses in Ag-stimulated culture. 

IFN-y is known to be a potent inducer of MO activation and NO production (Ding, 

1988). Neutralisation of IFN-y activity abrogated the iNOS inducing activity of ConA 

stimulated supernatants and relieved subsequent proliferative suppression (Albina, 1991). 

Unexpectedly neutralisation of IFN-y in Ag-stimulated culture failed to restore 

proliferative responsiveness or reduce NO production by cells from mf-infected animals. It 

is possible that in vivo exposure to IFN-y is sufficient to prime MO for NO production in 

Ag-stimulated culture with other proinflammatory cytokines, such as TNF-a, providing a 

secondary stimulus (Ding, 1988; Green, 1990c). It is also possible that any residual IFN-y 

activity, below the sensitivity of the ELISA, was efficient in inducing iNOS activity. 

Bacteria of the Wolbachia sp. family have now been found in many filarial species, 

including B. malayi, W bancrofti and O. volvulus (reviewed Taylor, 1999). Kozek et al 

(77) first identified the potential contribution of products of bacterial origin, present in 

filarial Ag preparations, as a consideration for in vitro studies. It is only recently however, 

that the immunomodulatory potential of Wolbachia has come under scrutiny. As LPS is 

known to act as an important triggering agent for NO production by IFN-y activated MO, 

the presence of bacterial LPS in Ag preparations used for in vitro restimulation may 

assume biological significance. Taylor et al (2000) showed that B. malayi extracts induced 

production of proinflammatory cytokines ll..,-1 p and TNF-a and NO by murine MO in a 

dose-dependent manner. These responses were attributed to the action of LPS of bacterial 
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origin, as they could be inhibited by polymixin B and could not be induced in MO from 

LPS unresponsive C3H/HeN mice. Furthermore extracts of A. viteae, which lacks 

endosymbionts, failed to stimulate any pro-inflammatory responses. However, in this study 

following mf-infection, experiments using polymixin B failed to demonstrate an essential 

role for LPS in stimulating NO production and proliferative suppression. Restimulation 

with A. viteae Ag also led to high levels of NO production which, in the absence of 

Wolbachia, is assumed to be independent of LPS. In interpreting these apparently 

contrasting results it may be of importance to consider that cells from infected animals 

were primed by B. pahangi, which bear Wolbachia in all life cycle stages, and therefore 

may already have been activated by exposure to pro-inflammatory cytokines in vivo. In the 

light of this, observations made following in vitro restimulation cannot discern any effects 

of bacterial products which may be mediated during the initiation of an in vivo response. 

However, the in vitro responses observed following stimulation with A. viteae Ag do 

demonstrate that filarial antigens cross-reactive between species can stimulate proliferation 

and production of either Th 1 or Th2 cytokines, in a fashion determined by the previous 

experience of the responding cells. 

NO has been shown to affect the production of various cytokines including IL-2, 

IFN-y, IL-12 and IL-4 besides regulating proliferative responses (Bauer, 1997; Huang, 

1998b; Taylor-Robinson, 1994). Whether or not NO preferentially affects the responses of 

Th 1 vs Th2 cells remains an area of considerable controversy (rev Bogdan, 2000b). Taylor 

Robinson et al (94), demonstrated that Thl but not Th2 T cell clones may be activated to 

produce NO which in turn limits their proliferation. NO inhibited production of IL-2 and 

IFN-y by Thl clones but not IL-4 production by Th2 clones. More recently it has been 

shown that exposure to SNAP-derived NO increased IL-4 production by Th2 clones. 

Interestingly in EL4 T lymphoma cells, which produce both IL-2 and IL-4, NO inhibited 
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ConA stimulated IL-2 production whilst enhancing production of IL-4 (Chang, 1997). In 

contrast to these results it has been reported that when stimulated by pre-activated MO 

both Th 1 and Th2 T cell clones are subject to similar anti-proliferative effects although no 

down-regulation of cytokine production was observed (van del' Veen, 2000). Furthermore 

NO has been shown to inhibit production of IFN-,¥, IL-2, IL-4 IL-5 and IL-lO by anti-CD3 

stimulated human T cells and no preferential inhibition of Th 1 cytokines was observed 

(Bauer, 1997). As IL-2 and IL-4 are important T cell growth factors, any differential 

effects of NO upon their production may manifest itself at the level of proliferation. In 

order to assess the susceptibility of cells from mf-infected vs L3-infected animals to the 

anti-proliferative effects of NO, Ag-stimulated cultures were supplemented with SNAP. 

Addition of exogenous NO significantly suppressed the proliferation of cells from mf

infected animals at 72 hI's, whilst causing a marked, but statistically insignificant, 

reduction in the response of cells from L3-infected animals. Levels of SNAP-derived NO 

were within the range of that generated in Ag-stimulated cultures of cells from mf

infected animals and after 96 hI's the response of cells from mf-infected animals were 

similarly suppressed in the presence of endogenous or exogenous NO. Cells from L3-

infected animals continued to display an insignificant reduction in proliferation. These 

results suggest that cells from L3-infected animals may-be affected by exogenous NO, but 

are not as acutely sensitive as cells from mf-infected animals. Although not measured in 

this study, it would be of interest to observe the effects of NO upon Ag-stimulated 

cytokine production by cells from L3-infected animals, to further analyse what may be the 

basis of any differential effects. The results presented in this chapter build on observations 

previously made that infection with mf and L3 of B. pahangi leads to development of 

differentially polarised immune responses, and illustrate one way in which these 

differences can exert their effects at the level of proliferation. Subsequent experiments 
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were directed towards further defining the immunomodulatory effects of NO, IFN-yand 

IL-4 using a variety of knock-out mice. 
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CHAPTER 4. Immune responses of iNOS-I-, IFN-yR-I- and IL-4-1- mice 

4.1 Introduction 

The increasing availability of genetically modified gene knock-out (KO) mice has 

facilitated research in many areas of immunology. Deletion of specific genes has allowed 

direct assessment of the contribution of various cytokines and effector molecules to both 

host-protective and immunopathological responses. In situations associated with strongly 

polarized immune responses (such as helminth infection), or where the polarisation of 

responses is critical in determining the outcome of infection (e.g. Leishmaniasis), cytokine 

knock-out mice have been particularly informative. In terms of both anti-microbial activity 

and immunomodulation, the use of iNOS-/- mice has now largely superceded the use of 

iNOS inhibitors in determining the effects of NO in vivo (reviewed Bogdan, 2000). 

While gross phenotypic changes in knock-out animals can reliably indicate a 

critical role for the missing gene product, the absence of effect may not necessarily denote 

a lack of involvement. Several factors may influence the phenotypic outcome of infection 

in cytokine knock-out mice, including compensation by other cytokines, or the ability of 

the targeted cytokine to affect factors other than its own production. The background strain 

on which the knock-out animals have been generated may also influence the observed 

responses. The importance of such considerations was illustrated in a recent study on the 

role of IL-4 in the expulsion of the gastrointestinal nematode Trichuris muris. IL-4 and IL-

13 have overlapping anti-inflammatory functions and the IL-4Ra chain is a critical 

component of both the IL-4 and the IL-13 receptors (Mohrs, 1999). IL-4-/- mice on the 

C57BI/6 background are susceptible to T. muris infection whilst wild type C57B1/6 mice 

are not, suggesting a critical role for IL-4 in generating resistance. However, IL-4-/

BALB/c mice are resistant to infection. IL-4-1- mice on the BALB/c, but not the C57B1/6, 

background produce significant quantities of IL-13 in response to infection. The in vivo 
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neutralisation of IL-13 in IL-4-/- BALB/c mice demonstrated that, in the absence of IL-4, 

it plays a critical role in the expulsion of T. muris (Bancroft, 2000). Such results illustrate 

both the importance of compensatory mechanisms and the influence of strain-specific 

effects in the interpretation of results obtained using knock-out mice. 

As the results presented in Chapter 3 established that NO mediates the Ag-specific 

proliferative suppression of cells from mf-infected animals in vitro, iNOS-/- mice were 

used in attempt to further dissect any immunomodulatory action of NO. Genetic deletion 

of the iNOS gene has been shown to enhance Th1 responsiveness, in terms of both IFN-y 

production and proliferation in response to a variety of infectious agents, including T. 

brucei and L. major (Millar, 1999; Wei, 1995). Although in vitro neutralisation of IFN-y 

activity failed to restore proliferative responsiveness, IFN-yR-/- mice were used to further 

assess the response to infection, free of the influence of IFN-y. The use of IFN-yR-/- mice 

provides a more complete assessment of the role of IFN-y than in vitro neutralisation, as 

the deficiency extends to cover the in vivo development of responses. 

As previously described, infection with L3 led to Th2 cytokine production and 

robust Ag-specific proliferative responses (Lawrence, 1994; Osborne, 1996). The recent 

demonstration that infection of BALB/c mice with B. pahangi L3 induces an early burst of 

IL-4 transcription in the draining lymph node within 24 hrs of infection suggests IL-4 may 

be of importance in skewing the developing response in a Th2 direction (as borne, 1997b). 

Neutralising IL-4 in vitro partially restored defective ConA driven proliferation seen 

following s.c. infection with B. pahangi L3. ConA stimulated production of IL-2 and IFN

y was also enhanced in the absence of IL-4 activity. Although anti-IL-4 treatment failed to 

enhance Ag-driven IFN-yproduction, infection with B. pahangi L3 does prime Ag-specific 

IFN-y producing cells, which are silenced in vitro under the influence of IL-lO (Osborne, 
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1999). Previously it has been show that Ag-driven IFN-y production by splenocytes from 

ll..,-4-/-129/Sv x C57Bl/6 mice, infected with B. malayi L3, was not significantly higher 

than that of their wild type counterparts. Interestingly however, infection of ll..,-4-/- mice 

with adult worms led to a switch to a more Th1-like response, which was most marked in 

recipients of female worms (Lawrence, 1995). As adult female worms continually release 

mf, one possible explanation for these results is that ll..,-4 has the capacity to down-regulate 

mf-induced IFN-y production. In the light of these observations, it was of interest to 

determine the influence of ll..,-4 upon the polarisation of responses following infection and 

how this may affect proliferative responses. To address this question ll..,-4-/- mice (on the 

BALB/c background) were infected with B. pahangi mf or L3 and cytokine production and 

proliferative responses analysed in vitro. 
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4.2 RESULTS 

4.2.1 Immune responses of iNOS-I- and wild type 129/Sv mice at 12 d.p.i. 

i) Proliferative responses 

iNOS-/- and wild type 129/Sv mice were injected with 1x10
5 

mf B. pahangi or 

HBSS only i.v. and at 12 d.p.i. proliferative responses were measured over a time-course 

of in vitro restimulation with 10 Ilg/ml B. pahangi adult Ag. As shown in Figure. 4.1 cells 

from mf-infected iNOS-/- mice showed significantly greater levels of Ag-stimulated 

proliferation at both 48 and 72 hI's culture than their wild type counterparts (p=0.013 and 

0.025 respectively). These results are consistent with those from experiments using iNOS 

inhibitors, being indicative of NO mediated proliferative suppression. After 96 hrs of Ag

stimulated culture however, there was no significant difference between the proliferative 

responses of cells from infected iNOS-/- mice and their wild type counterparts (p=0.093). 

At this time-point Ag-stimulated proliferation of cells from mf-infected iNOS-I- and wild 

type129Sv mice was not significantly greater than that seen in medium only wells. This 

experiment was repeated three times with similar results in each case. 

ii) Cytokine production 

Figure. 4.2 shows Ag-stimulated IFN-,,( production by splenocytes from mf

infected and uninfected iNOS-/- 129S/v mice and their equivalent wild type counterparts. 

At both 48 and 96 hI'S cells from mf-infected iNOS-/- and wild type mice produced 

equivalent levels of IFN-y. This result is contrary to those from experiments using iNOS 

inhibitors which demonstrated that NO suppresses Ag-stimulated IFN-"( production by 

cells from mf-infected animals. As expected no IL-4 or IL-5 was detected in any group. 

However, in one of three experiments 3 of 5 mf-infected iNOS-/- mice produced IL-5 
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(data not shown). These results show that infection of wild type 129/Sv mice with B. 

pahangi mf leads to development of a Th1-like response at 12 d.p.i., as seen in BALB/c 

mice, with production of Ag-stimulated IFN-y and development of proliferative 

suppression. 

iii) Nitrite production 

Nitrite production by splenocytes from mf-infected and un infected mice was 

measured at 48 and 96 hrs culture. As shown in Figure 4.3, mf-infected iNOS-/- mice 

produced significantly lower amounts of nitrite than their wild type counterparts at 48 hrs 

(p=O.039). Unexpectedly however, after 96 hrs of Ag-stimulated culture cells from both 

groups of mf-infected animals produced high levels of nitrite and there was no significant 

difference between these groups. Equivalent results were obtained in each of three repeat 

experiments. The demonstration that cells from mf-infected iNOS-/- mice are capable of 

producing NO at levels sufficient to suppress proliferative responses (53 +/-5.1 ~M), 

clearly illustrates that these animals are unsuitable for functional studies on NO production 

at late time-points. Delayed production of high levels of NO can also explain the 

previously described results, in terms of proliferative suppression and unaltered cytokine 

production in iNOS-/- mice. 
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FIGURE 4.1 iNOS-I- vs wild type 129Sv: Ag-stimulated proliferative responses 

of splenocytes from mf-infected and uninfected control mice at 12 d.p.i. 

Wild type 129Sv and iNOS-I- mice were injected intravenously with 105 mf B. 

pahangi or an equal volume of HBSS only. At 12 d.p.i. proliferative responses of 

splenocytes (5 x 106 cells/ml) to 10 I-1g/ml B. pahangi adult antigen were measured 

by 3H thymidine incorporation at (A) 48, (B) 72 and (C) 96 hrs culture. Results are 

expressed as mean cpm incorporated in triplicate wells. All values represent the mean 

and standard deviation of five animals per group. *, significantly different (P = 

<0.05) from wild type counterparts. 
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FIGURE 4.2. iNOS-I- vs wild type 129/Sv mice: Ag-stimulated IFN-y production 

by splenocytes from mf-infected and uninfected control mice at 12 d.p.i. 

Wild type 129/Sv and iNOS-I- mice were injected intravenously with 105 mf B. 

pahangi or an equal volume of HBSS only. At 12 d.p.i. splenocytes (lx107/ml) were 

restimulated in vitro with 10 Ilg/ml B. pahangi adult Ag. Levels of IFN-'Y in 

supernatants from (A) 48 and (B) 96 hr cultures were measured by 2-site ELISA. All 

values represent the mean and standard deviation of five animals per group. 
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FIGURE 4.3. iNOS-I- vs wild type 1291Sv mice: Nitrite production by Ag-

stimulated splenocytes from mf infected and uninfected control mice at 12 d.p.i. 

Wild type 129/Sv and iNOS-I- mice were injected intravenously with 105 mf B. 

pahangi or an equal volume of HBSS only. At 12 d.p.i. splenocytes (lx107/ml) were 

restimulated in vitro with 10 flg/ml B. pahangi adult Ag. Nitrite levels in 

supernatants from (A) 48 and (B) 96 hr cultures were determined using the Greiss 

reaction. All values represent the mean and standard deviation of five animals per 

group. *, significantly different (P = <0.05) from wild type counterparts. 
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4.2.2 Immune responses of IFN-yR-I- and wild type 129/Sv mice at 12d.p.i. 

i) Proliferative responses 

As IFN-y is essential to the induction of NO production in various murine models 

of infection, proliferative responses of splenocytes from mf-infected and uninfected 

control IFN-yR-I- and wild type129/Sv mice were measured over a time-course of in vitro 

restimulation with 10 f-lg/ml B. pahangi adult Ag. As shown in Figure 4.4, cells from mf

infected animals proliferated in response to Ag at 48 hrs and there was no significant 

difference between groups (p=0.72). At both 72 and 96 hrs, however, cells from mf

infected IFN-yR-I- mice proliferated at significantly higher levels than those of their wild 

type counterparts (p=0.0093 and 0.0027 respectively). At 72 and 96 hrs only cells from 

mf-infected KO animals proliferated at levels significantly higher than background. 

Equivalent results were achieved in three repeat experiments. 

ii) Cytokine responses 

Figure 4.6 shows cytokine production of cells from mf-infected and uninfected 

control IFN-yR-I- and wild type 129/Sv mice in Ag-stimulated culture. Cells from both 

KO and wild type mf-infected animals produced low levels of IL-2 which were not 

significantly higher than those produced by cells from uninfected control animals (data not 

shown). The observation that cells from infected IFN-yR-I- mice do not produce higher 

levels of IL-2 than their wild type counterparts suggests that, as described in previous 

experiments, a lack of IL-2 does not account for the suppression of proliferative responses. 

No production of IL-4 or IL-5 was detected in any group. Cells from both groups of mf

infected animals produced IFN-y and at 48 hrs there was no significant difference between 

these groups. 
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iii) Nitrite production 

Figure 4.6 shows nitrite production by cells from IFN-yR-I- and wild type 129/Sv 

mice after 48 and 96 hrs of Ag-stimulated culture. Splenocytes from mf-infected IFN-yR-I

mice produced significantly less nitrite than their wild type counterparts indicating that, as 

previously reported (Mabbot, 1998), they are unable to respond to IFN-y with MO 

activation and NO production. 
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FIGURE 4.4 IFN-'YR-I- vs wild type 129Sv: Ag-stimulated proliferative 

responses of splenocytes at 12 d.p.i. 

Wild type 129Sv and IFN-'YR-/- mice were injected intravenously with 10
5 

mf B. 

pahangi or an equal volume of HBSS only. At 12 d.p.i. proliferative responses of 

splenocytes (5 x 106 cells/ml) to 10 Ilg/ml B. pahangi adult antigen were measured 

by 3H thymidine incorporation at (A) 48 and (B) 72 and (C) 96 hrs culture. Results 

are expressed as mean cpm incorporated in triplicate wells. All values represent the 

mean and standard deviation of five animals per group. *, significantly different (P = 

<0.05) from wild type counterparts. 
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FIGURE 4.5 IFN-')IR-I- vs wild type 129/Sv mice: Ag-stimulated IFN-')I 

production by splenocytes from mf infected and uninfected control mice at 12 

d.p.i. 

Wild type 129/Sv and IFN-')IR-I- mice were injected intravenously with 105 mf B. 

pahangi or an equal volume of HBSS only. At 12 d.p.i. splenocytes (lx107/ml) were 

restimulated in vitro with 10 Jlg/ml B. pahangi adult Ag. Levels of IFN-')I in 

supernatants from 48 hr cultures were measured by 2-site ELISA. All values 

represent the mean and standard deviation of five animals per group. 
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FIGURE 4.6 IFN-'YR-I- vs wild type 129/Sv mice: Nitrite production by Ag 

stimulated splenocytes from mf-infected and uninfected control mice at 12 d.p.i. 

Mice were injected intravenously with 105 mf B. pahangi or an equal volume of 

HBSS only. At 12 d.p.i. splenocytes (lx107/ml) were restimulated in vitro with 10 Ilg 

Iml B. pahangi adult Ag. Nitrite levels in supernatants from (A) 48 and (B)96 hI' 

cultures were determined using the Greiss reaction. All values represent the mean 

and standard deviation of five animals per group. *, significantly different (P = 

<0.05) from wild type counterparts. 
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4.2.3 Immune responses of IL-4-/- and wild type BALB/c mice at 12d.p.i. 

i) Proliferative responses 

Proliferative responses of splenocytes from mf-infected, L3-infected and 

un infected control IL-4-/- and wild type BALB/c mice were measured over time-course of 

in vitro restimulation with 10 ~g/ml B. pahangi adult Ag (Figure. 4.7). Cells from mf

infected IL-4 KO mice displayed the same pattern of proliferative responses as previously 

described following infection of BALB/C mice, showing early proliferation before the 

response is down-regulated. This may be expected as infection with mf does not lead to 

production of large amounts of IL-4 at 12 d.p.i .. However following infection with L3 

proliferative responses of IL-4-/- mice were lower than those of their wild type 

counterparts after 72 hrs culture (p=O.03). Proliferative responses at 96 hrs culture were 

not measured in this experiment. In one other experiment in IL-4-/- mice after 96 hI'S 

culture, Ag-stimulated splenocytes from 2 of S L3-infected animals proliferated at levels 

below background. 

ii) Cytokine production 

Analysis of cytokine production confirmed that IL-4-/- mice did not produce IL-4 

under any circumstances tested (both Ag-stimulated and ConA-stimulated culture). 

Cytokine production after 72 hrs of Ag-stimulated culture is shown in Figure 4.8. 

Production of IFN-y was greater in both groups of infected IL-4-/- mice than their wild 

type counterparts (p=O.03 for mf-infected and p=O.OI2 for L3-infected animals). L3-

infected BALB/C mice produced only background levels of IFN-y in Ag-stimulated 

culture. Interestingly IL-4-/- and wild type BALB/c mice produced equivalent levels of 

IL-S. 
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iii) Nitrite production 

Figure 4.9 shows nitrite production by cells from IL-4-/- and wild type BALB/c 

mice in Ag-stimulated culture. Consistent with their increased production of IFN-y 

splenocytes from L3-infected IL-4-/- mice produced significantly greater amounts of nitrite 

than their wild type counterparts. Cells from mf-infected KO animals produced similar 

levels of NO to their wild type counterparts. 
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FIGURE 4.7 IL-4-/- vs wild type BALB/c mice: Ag stimulated proliferation of 

splenocytes from mf-infected, L3-infected and uninfected control animals at 12 

d.p.i. 

Wild type BALB/c and ll--4-/- mice were injected intravenously with 105 mf, 50 L3 

B. pahangi or an equal volume of HBSS only. At 12 d.p.i. proliferative responses of 

splenocytes (5 x 106 cells/ml) to 10 ~g/ml B. pahangi adult antigen were measured 

by 3H thymidine incorporation at (A) 48 and (B) 72 hrs culture. Results are expressed 

as mean cpm incorporated in triplicate wells. All values represent the mean and 

standard deviation of five animals per group. *, significantly different (P = <0.05) 

from wild type counterparts. 
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FIGURE 4.8. IL-4-/- vs wild type BALB/c mice: Ag stimulated cytokine 

production by splenocytes from mf infected, L3 infected and uninfected control 

mice at 12 d.p.i. 

Wild type BALBIc and IL-4-/- mice were injected intravenously with 105 mf, 50 L3 

B. pahangi or an equal of volume HBSS only. At 12 d.p.i. splenocytes (lxl07/ml) 

were restimulated in vitro with 10 /-lg/ml B. pahangi adult Ag. Levels of (A) IL-4, (B) 

IL-5 and (C) IFN-)' in supernatants from 72 hI' cultures were measured by 2-site 

ELISA. All values represent the mean and standard deviation of five animals per 

group. *, significantly different (P = <0.05) from wild type counterparts. 
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FIGURE 4.9 IL-4-/- vs wild type BALB/c mice: Nitrite production by Ag-

stimulated splenocytes from mf-infected, L3-infected and uninfected control 

mice at 12 d.p.i. 

Mice were injected intravenously with 105 mf, 50 L3 B. pahangi or an equal volume 

ofHBSS only. At 12 d.p.i. splenocytes (lxI07/ml) were restimulated in vitro with 10 

Ilg/ml B. pahangi adult Ag. Nitrite levels in supernatants from 72 hI' cultures were 

determined using the Greiss reaction. All values represent the mean and standard 

deviation of five animals per group. *, significantly different (P = <0.05) from wild 

type counterparts. 
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4.3 Discussion 

The results presented in this chapter further define the contribution of NO, IFN-y 

and ll..,-4 to in vivo and in vitro responses following infection. Experiments in IFN-yR-/

mice demonstrated an essential role for IFN-y in the induction of NO-mediated 

proliferative suppression. The functional significance of the oppositely polarised responses 

elicited by infection with mf or L3 is illustrated by the results from ll..,-4-/- mice. The 

increased production of IFN-y by both mf and L3-infected mice suggests that ll..,-4 may act 

to down-regulate IFN-yproduction and thereby maintain proliferative responsiveness. 

Previous experiments using iNOS inhibitors clearly demonstrated that the 

suppression of Ag-specific proliferative responses seen in vitro following mf-infection of 

BALB/C mice is NO dependent. In keeping with these observations splenocytes from mf

infected iNOS-/- mice, on the 129/Sv background, showed significantly greater levels of 

Ag-driven proliferation at 48 and 72 hI's culture than did their wild type counterparts. 

Unexpectedly however, proliferation at 96 hI's was not significantly greater than 

background levels in medium only wells. Inhibition of iNOS activity was previously 

shown to enhance IFN-y production (Figure. 3.10) but in contrast to these findings, cells 

from iNOS-/- and wild type mf-infected mice produced equivalent levels of IFN-y at both 

48 and 96 hrs. This was also surprising as in previous studies using the same KO mice, 

infected with L. major or T. brucei, enhanced Th 1 cytokine responses were reported 

(Millar, 1999; Wei, 1995). Analysis of N02- production in Ag-stimulated culture 

demonstrated that cells from iNOS-/- mice produced significantly less NO at 48 hrs than 

wild type mice. However after 96 hrs culture, cells from both groups of infected mice 

produced similarly high levels of NO. It was originally reported that IFN-y/LPS activated 

cells from this strain of iNOS-/- mice produced low levels of N02- which was attributed to 
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the action of constitutive NOS (Wei, 1995). It has now been demonstrated that the 

intended deletion of exon 1 to 5 of the NOS2 gene had not occurred in these mice and that 

an alternative mRNA transcript of NOS2 is expressed, clearly capable of producing 

functional levels of NO (Niedbala, 1999). This urges extreme caution in the interpretation 

of results gained from these mice and necessitates a re-evaluation of results from previous 

studies. Whilst clearly not entirely functional as iNOS-/- mice, it is nevertheless interesting 

to speculate on another unexpected aspect of their in vitro response. Inhibitors of iNOS 

activity only significantly enhance proliferative responses at later time points in culture, 

however cells from iNOS-/- mice showed enhanced responsiveness at 48 hI's when only 

relatively low levels of NO (~1O 11M) are produced by wild type mice. In murine infection 

with Mycobacterium, tuberculosis it has been shown that IFN-y production by CD4+ T 

cells declines after the third or fourth week of infection, (Orme, 1993). Both Ag-specific 

and mitogen-driven proliferative responses are also suppressed, under the influence of NO. 

Most interestingly it has recently been shown that the frequency of mycobacterial purified 

protein derivative (PPD)-specific CD4+ T cells also declines during infection (Nabeshima, 

1999). This led to speculation that the NO-mediated elimination of Ag-specific T cells by 

activated macrophages may reduce the T cell response and the number of PPD-specific 

CD4+ T cells in vivo. Although not quantified in this study, the presence of increased 

numbers of Ag-specific CD4+ T cells in the spleens of iNOS mice (possibly as a result of 

enhanced survival in vivo), could provide a possible explanation for the greater magnitude 

of the proliferative response at 48 hrs when NO mediated suppression does not appear to 

be operative in vitro. 

Infection of IFN-yR-/- demonstrated that signalling via the IFN-yR is essential to 

the induction of high level NO production and subsequent proliferative suppression. This 
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finding appears to contradict the results of previous experiments using anti-IFN-y MAb in 

in vitro culture. One possible explanation for this discrepancy is that in IFN-yR-I- mice the 

influence of IFN-y is effectively removed both in vivo and in vitro whereas neutralisation 

was only effective in vitro. 

There are several mechanisms whereby IFN-y could potentially suppress 

proliferative responses. Besides promoting MO activation and NO production, it has 

previously been shown that IFN-y plays a critical role in AICD of effector T cells (Liu, 

1990). IFN-yalso induces the Fas-dependent apoptosis of both CD4+ and CD8+ T cells 

following peroral infection with T. gonclii (Liesenfeld, 1997). Furthermore, where the 

effects of NO in mediating proliferative suppression have been investigated, it appears that 

the direct effects of NO and those mediated via IFN-y may synergise to promote apoptosis. 

In murine infection with T. end it has been shown that IFN-y may modulate lymphocyte 

apoptosis by both NO-dependent and independent mechanisms. IFN-y promoted NO 

production and expression of both Fas and Fas-L by splenocytes from infected animals. 

Inhibition of iNOS activity partially reduced levels of lymphocyte apoptosis whilst not 

affecting Fas expression. As levels of apoptosis in the absence of NO were still higher than 

those found amongst splenocytes from uninfected mice this suggested that apoptosis may 

be induced by more than one mechanism (Martins, 1999). In this study use of iNOS 

inhibitors and IFN-yR-I- mice made it possible to differentiate between the effects of IFN

y and NO. Upon inhibition of iNOS activity, splenocytes from mf-infected animals 

proliferated well in the presence of very high levels of IFN-y, suggesting that the primary 

role of IFN-y in mediating proliferative suppression is via the induction of iNOS. However 

it remains a possibility that exposure to NO, besides directly inducing apoptosis, may 
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increase the susceptibility of cells to IFN-y mediated apoptosis, as has recently been 

demonstrated using human T cells (Allione, 1999). 

The Ag-stimulated cytokine production profiles of cell from mf-infected IFN-yR-/

and wild type mice were highly comparable. IFN-y production dominated responses in 

both groups at 48 hrs and there was no detectable production of IL-4. This suggests that 

signalling via the IFN-yR does not down-regulate production of Th2 cytokines and 

demonstrates the same polarisation of responses as seen following infection of BALB/c 

mice. Although not measured, it would be of interest to determine levels of IFN-y 

production after 96 hrs culture, when NO-mediated suppression of IFN-y production 

becomes apparent in cells from BALB/c mice (see section 3.2.4.). Levels of IL-2 

production were similarly low in all infected animals, suggesting again, that a lack of IL-2 

does not limit proliferative responsiveness and confirming previous results from 

experiments using rIL-2 (see section 3.2.2.). 

Infection of IL-4-/- BALB/c mice demonstrated the importance of IL-4 in driving 

development of L3 induced Th2 responses and showed that production of IL-5 is regulated 

independently of IL-4. Splenocytes from L3 infected IL-4-/- mice displayed lower levels of 

Ag-stimulated proliferation than did those of wild type mice at 72 hrs whilst producing 

elevated levels of IFN-y and NO. These results are suggestive of a role for IL-4 in down

regulating proinflammatory responses and thus allowing sustained proliferative responses. 

L3 infected IL-4-/- BALB/c mice produced significantly greater levels of IFN-y 

than their wild type counterparts. This result is in contrast to findings previously reported 

following infection of IL-4-/- mice on the C57IBl/6 x 129/Sv background with L3 of B. 

malayi a result which probably reflects the influence of background strain (Lawrence, 

1994). It has been shown that following s.c. infection with L3 Ag-specific IFN-yproducing 
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cells are primed, but silenced under the influence of IL-1 0 (Osborne, 1999). Although anti

IL-4 treatment was unable to restore Ag-specific IFN-y production in vitro in that study, 

the results described above clearly illustrate a role for IL-4 in down-regulating IFN-y 

production in vivo. In a situation comparable to that previously proposed for IFN-y, the in 

vivo action of IL-4 may be critical in driving development of Th2 responses, promoting IL-

10 production, which in turn subsequently suppresses IFN-y production. Early IL-4 

production following infection with L. major has been shown to promote the development 

of Th2 responses and susceptibility in BALB/c mice, demonstrating its functional 

importance (Launois, 1997). It seems likely that the early burst of IL-4 production reported 

following footpad infection with L3 functions in a similar directional capacity (Osborne, 

1997b). The results presented here following i.v. infection clearly indicate that, as may be 

expected, IL-4 is the critical cytokine driving development of Th2 responses. Interestingly 

cells from both groups of L3-infected animals generated large amounts of IL-5 in Ag

stimulated culture demonstrating that IL-5 production is independent of IL-4. This result is 

in accordance with observations from L3 infected IL-4-/- C57Bl/6 x 129/Sv mice, wherein 

IL-5 production was not significantly lower than that of their wild-type counterparts 

(Lawrence, 1995). In BALB/c IL-4-/- mice, however, IL-5, generally considered a Th2 

type cytokine, is produced along with IFN-y. Elevated levels of IL-5 have previously been 

reported in the absence of IL-4 following infection of C57BLl6 mice with O. volvulus L3 

(Johnson, 1998). It has been proposed that in this case IL-5 production may be regulated 

by cytokines other than IL-4 in particular IL-2 (Steel, 1993). While earlier studies on 

human helminth infection reported parallel regulation of IL-4 and IL-5 (Mahanty, 1993), 

more recent studies have shown that production of IL-4 and IL-5 are independently 

regulated in human filariasis (Sartono, 1997). Such findings suggest that responses to 
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filarial infection do not fall strictly in line with the Th lITh2 paradigm and that the rigid 

application of such a scheme may be an over-simplification of events. It is also of note 

however, that IL-5 may be produced by cells other than CD4+ T cells including CD8+ T 

and non-T cells such as mast cells and eosinophils which may allow for continued 

production of IL-5 when Th2 responses are down-regulated. Recent studies showing that 

IL-5 plays an important role in protective responses to infection with Onchocerca sp. 

independently of IL-4 (Hogarth, 1998) and that IL-5-/- deficient mice are less resistant to 

challenge infection with L. sigmodontis L3 than their wild-type counterparts (Le Goff, 

2000) suggest the role of IL-5 may be of greater significance than previously credited. In 

this respect it is of interest to note that IL-5 was recently shown to be required for the 

optimal generation of cytotoxic T lymphocytes (CTL) in response to immunisation with 

the modified tumor Ag oxidised mannan MUCI fusion protein (Apostolopoulos, 2000). 

Ag-stimulated proliferative responses of cells from L3 infected IL-4-/- mice were 

lower than those of wild type animals after 72 hrs culture, this was associated with 

enhanced production of both IFN-y and NO. Whilst responses at 96 hI'S were unfortunately 

not recorded in the experiment shown, in one similar experiment proliferation of cells 

from 2 of 5 L3-infected IL-4-/- mice fell below background levels at 96 hrs. This suggests 

that in the absence of IL-4, a response which is more Th 1 like develops and is associated 

with suppression of proliferative responses. Subsequent experiments performed in this 

laboratory have shown that this is indeed the case (Jenson pers. com.). It would be of 

interest to record the proliferative responses over a fuller time-course in the presence or 

absence of AMG to determine whether reduced proliferative responses were directly 

related to enhanced NO production. It is also possible however that lower levels of 

proliferation are more directly related to a lack of IL-4 in terms of its action as an 

important T cell growth factor. Unexpectedly, Ag-stimulated cells from mf-infected IL-4 
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-/- mice displayed lower levels of proliferation than their wild type counterparts after 72 

hI's culture. This is intriguing as levels of NO production were not significantly different 

between groups at this time-point. Cells from mf-infected IL-4-/- mice were shown to 

produced enhanced levels of IFN-,,/ however, it has been shown previously that cells from 

mf-infected animals can proliferate in the presence of high levels of IFN-y, suggesting that 

reduced proliferation is unlikely to be a direct effect of IFN-y. It is possible that a greater 

proportion of Ag-reactive T cells from mf-infected IL-4-/- mice are IFN-yproducers and as 

such may be more susceptible to the suppressive effects of NO which may manifest itself 

at the level of proliferation. As NO appears to selectively suppress IFN-y production and 

proliferative responses, it is interesting to speculate on the possibility that the increased 

susceptibility of Th 1 cells to NO may lead to a depletion of IFN-,,/ producing cells which 

may in turn allow the outgrowth of relatively resistant Th2 cells. This is a particularly 

intriguing possibility considering the previously reported instability of the mf-induced Th 1 

response (Lawrence, 1994; Pearlman, 1993b). The experiments presented in the following 

chapter were aimed at determining the stability of proliferative suppression and 

polarisation of the immune responses in longer term infections, and whether or not 

suppression is restricted to the spleen or extends to other secondary lymphoid organs. 
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CHAPTER 5. Further characterisation of factors influencing proliferative 

suppression 

5.1 Introduction 

In murine models it is now well established that infection with mf elicits 

development of a Thl polarised response at relatively early time-points (12-14 d.p.i.). This 

has been shown to be independent of the route of infection (whether i.p., s.c., or i.v.), and 

mf numbers (in the range of 102 to 106
) (Lawrence, 1994; Osborne, 1996; Pearlman, 

1993b). However several studies have indicated that the polarisation of mf-induced 

responses is not inherently stable over longer term infections. Lawrence et al (94) showed 

that whilst at 14 d.p.i. splenocytes from mf-infected animals produced high levels of IFN

'Y and little IL-4, a more mixed response was observed at 28 d.p.i. with production of IL-4 

and IL-5 as well as IFN-'Y. Pearlman et al (93) described a similar situation wherein levels 

of Ag-stimulated IL-4 and IL-5 production increased with duration of infection, coincident 

with a decline in IFN-'Y production, suggesting a switch to a more Th2 like response. As 

IFN-'Y production is essentially a Th 1 function, and is central to the induction of NO 

production, any changes in cytokine production over the course of infection which result 

in decreased IFN-'Y production, or enhanced production of Th2 cytokines, may impact 

upon NO production and proliferative responses. In order to assess the stability of the Thl 

response initiated by i.v. infection with B. pahangi mf, and to determine how any changes 

in cytokine/nitrite production may affect Ag-specific proliferation, in vitro responses were 

analysed at 30 d.p.i. 

Several studies have shown that the information gained from in vitro studies can 

differ dependent upon which lymphoid organ is used for analysis. For example, during the 

acute stage of infection with T. gOl1clii the mitogen-driven proliferation of splenic T cells is 
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suppressed under the influence of NO (Candolfi, 1994), while the response of mesenteric 

lymph node T cells remains intact (Neyer, 1998). Thus the suppressive effects of NO may 

be localised rather than systemic and restricted to the major lymphoid organ of the spleen. 

Compartmentalisation of Ag-specific Th 1 and Th2 like responses has been 

observed following infection with Trichinella spiralis, such that splenocytes produce 

predominantly IFN-'Y while MLN cells produce mainly IL-5 (Becky Kelly, 1991). There is 

also evidence of site-specific effects in murine models of filariasis. Following i.p. 

infection of multiply immunised mice with B. malayi mf, CD4+ T cells from the peritoneal 

cavity produced exclusively Th2 cytokines (IL-4 and IL-5), while splenocytes and lymph 

node cells produced both IL-5 and IFN-'Y (Pearlman, 1993a). More recently splenocytes 

and tracheo-broncheal lymph node (TBLN) cells from mf-infected mice were shown to 

display differences in Ag-specific cytokine production. Production of IL-4 by TBLN cells 

increased over time while the IL-4 response of splenocytes varied little over the course of 

infection. Furthermore while splenocytes showed high levels of IFN-'Y production at early 

time-points post-infection TBLN cells only produced IFN-'Y at 80 d.p.i .. Interestingly a 

dose response effect was noted in respect to IFN-'Y production, in that TBLN cells from 

mice given a low dose of mf (2.5 x 104
) produced IFN-'Y at 80 d.p.i. while those from mice 

given a higher dose (2.5 x 105 mf) did not. Splenocytes from animals given a high dose of 

mf also showed a marked decrease in IFN-'Y production over time (Lawrence, 2000). 

As different life cycle stages occupy distinct locations within the mammalian host, 

L3 in the skin, developing larvae and adult worms in the lymphatics and mf in the 

circulatory system, it is possible that any stage-specific mechanisms of immunomodulation 

may also be to some degree site specific. To determine whether the development of mf

induced Th 1 responses and associated proliferative suppression is restricted to the spleen 
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the proliferative and cytokine responses of splenocytes and peripheral lymph node cells 

(LN cells) were assessed in vitro. 

Aside from duration of infection and site specific effects there is also evidence to 

suggest that the origin of the Ag-used for in vitro restimulation can influence both the 

proliferation and cytokine production of Ag-reactive cells. It has been shown that whilst 

the proliferative responses of PBMC from Mf+ individuals to mf-Ag and mixed sex adult 

Ag were lower than those of individuals displaying chronic pathology, responses to adult 

male Ag were comparable across groups (Mahanty, 1996). Such observations are 

suggestive of a role for mf-Ag in suppressing proliferation of PBMC from Mf+ 

individuals. To determine whether the type of Ag-used for in vitro restimulation affects 

proliferative responses, splenocytes from infected animals were restimulated in vitro with 

mixed sex adult, adult female, adult male or mf-Ag. 

L3 and adult Brugia are known to be potent inducers of Th2 responses and the 

ability of both ll.,-4 and ll.,-1 0 to down-regulate IFN-'Y production has been demonstrated in 

murine models of filariasis. Experiments previously described (see section 4.2.3) showed 

that, following infection with B. pahangi L3, IFN-'Y production is enhanced in the absence 

of ll.,-4. Evidence from another study using ll.,-4 KO mice suggested that adult induced ll.,-

4 is capable of suppressing the development of mf-induced IFN-'Y production (Lawrence, 

1995). ll.,-10 has also been shown to suppress IFN-'Y production following chronic 

infection with mf (Pearlman, 1993b) and to "silence" IFN-'Y producing cells primed by s.c. 

infection with L3 (Osborne, 1999). As in human infection exposure to L3, developing 

larvae and adult worms precedes exposure to mf, the ability of mf to modulate a pre

established Th2 response is a subject of considerable interest. In order to further assess the 

immunomodulatory potential of mf, L3 infected animals were super-infected with mf and 

proliferative and cytokine responses assessed in vitro. 
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The experiments presented in this chapter were aimed at addressing some of the 

issues raised above, in particular the stability of mf-induced Th 1 responses, whether the 

responses in the spleen reflect those in other secondary lymphoid organs, how 

restimulation with different Ag-preparations affects proliferative responses, and the effects 

of mf on a pre-existing Th2 response. 
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5.2 RESULTS 

5.2.1 Ag-stimulated immune responses of splenocytes from mf-infected, L3-infected 

and uninfected control mice at 30 d.p.i. 

In these experiments groups of five BALB!c mice were injected intravenously via 

the tail vein with lx105 mf, 50 L3 B. pahangi or an equal volume of HBSS only. At 30 

d.p.i. spleens were removed for in vitro analysis. 

(i) Proliferative responses 

Proliferative responses of splenocytes from mf-infected, L3-infected and 

uninfected control animals were measured over a time-course of in vitro restimulation with 

10 Ilg/ml B. pahangi adult Ag. Figure 5.1 shows Ag-driven proliferative responses after 

(A) 48, (B) 72 and (C) 96 hI'S of in vitro culture. At 48 hI'S splenocytes from both mf

infected and L3-infected mice show Ag specific proliferation (Figure 5.lA). As at 12 d.p.i. 

the proliferative response of cells from mf-infected animals is short lived and falls to 

background levels by 72 hI'S. However, unlike the situation previously described at 12 

d.p.i. splenocytes from L3 infected animals at 30d.p.i. did not show sustained proliferation 

throughout the time-course observed. After 96 hI'S Ag-stimulated cells from both groups of 

infected animals failed to proliferate at levels significantly greater than those of 

unstimulated cultures (Figure. 5.1e). This experiment has been repeated twice with similar 

results. 
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(ii) Cytokine production 

To investigate the stability of the differentially polarised responses observed at 12 

d.p.i. Ag-stimulated cytokine production by splenocytes from mf-infected, L3-infected and 

uninfected control mice was measured at 30 d.p.i .. After 48 hrs of in vitro restimulation, 

cells from mf-infected animals displayed no evidence of switching to a more Th2 like 

response, producing only IL-2 and IFN-I'. Unexpectedly however, cells from L3 infected 

animals displayed a much more mixed response than at 12 d.p.i. producing IL-2 and IFN-I' 

alongside IL-4, IL-S and IL-I0. This experiment has been repeated twice with similar 

results. 

(iii) Nitrite production 

Having established that NO mediates the Ag-specific proliferative suppression of 

splenocytes from mf-infected mice at 12 d.p.i., the Greiss reaction was used to determine 

the levels of N02- in Ag-stimulated culture at 30 d.p.i. At 48 hrs, only cells from mf

infected animals produced significant levels of nitrite whilst cells from L3 -infected and 

uninfected control animals produced only background levels below the sensitivity of the 

assay (2.S ~M). After 96 hrs of culture, however, cells from both mf-infected and L3-

infected animals produced high levels of NO (39+/-7.6 and 42 +/-7.6 ~M respectively 

(Figure. S.3B)). This observation demonstrates that, while the onset of NO production 

may occur later in these cultures, cells from L3-infected animals can produce NO at levels 

sufficient to down-regulate proliferative responses. 
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FIGURE 5.1. Ag stimulated proliferative responses of splenocytes from mf

infected, L3-infected and uninfected control mice at 30 d.p.i. 

Mice were injected intravenously with 105 mf, 50 x L3 B. pahangi or an equal 

volume of HBSS only. At 30 d.p.i. proliferative responses of splenocytes (5 x 106 

cells/ml) to 10 Ilg/ml B. pahangi adult antigen were measured by 3H thymidine 

incorporation at (A) 48, (B) 72 and (C) 96 hrs culture. Results are expressed as mean 

cpm incorporated in triplicate wells. All values represent the mean and standard 

deviation of five animals per group. 



35000 A 
30000 

25000 

E 
20000 

c. ~med 
0 15000 

IIAg 

10000 

5000 

0 
mf L3 HBSS 

35000 

30000 
B 

25000 

E 20000 
c. 

I!iilmed 0 15000 

10000 IIAg 

5000 

0 
mf L3 HBSS 

35000 

30000 C 
25000 

E 20000 
c. 
0 15000 II med 

10000 IIAg 

5000 

0 
mf L3 HBSS 

156 



FIGURE 5.2 Ag-stimulated cytokine production by splenocytes from mf

infected, L3-infected and uninfected control mice at 30 d.p.i. 

Mice were injected intravenously with 105 mf, 50 x L3 B. pahangi or an equal 

volume of HESS only. At 30 d.p.i. splenocytes Ox107/ml) were restimulated in vitro 

with 10 /-lg/ml B. pahangi adult Ag. Levels of IL-2, IFN-,)" IL-4, IL-5 and IL-IO in 

supernatants from 48 hr cultures were measured by 2-site ELISA. All values 

represent the mean and standard deviation of five animals per group. 
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FIGURE 5.3. Nitrite production by Ag-stimulated splenocytes from mf-infected, 

L3-infected and uninfected control mice at 30 d.p.i. 

Mice were injected intravenously with 105 mf, 50 L3 B. pahangi or an equal volume 

ofHBSS only. At 30 d.p.i. splenocytes (lx107/ml) were restimulated in vitro with 10 

/lg/ml B. pahangi adult Ag. Nitrite levels in supernatants from (A) 48 and (B) 96 hr 

cultures were determined using the Greiss reaction. All values represent the mean 

and standard deviation of five animals per group. 
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5.2.2 Ag-stimulated immune responses of splenocytes and lymph node cells from mf

infected, L3-infected and uninfected control mice at 12 d.p.i. 

To determine whether or not the Ag-specific proliferative suppression seen 

following mf infection is restricted to the spleen, the Ag-stimulated responses of 

peripheral lymph node cells were assessed. In these experiments groups of six BALB/c 

mice were injected intravenously via the tail-vein with lx105 mf, 50 L3 B. pahangi or an 

equal volume of HBSS only. At 12 d.p.i. spleens and peripheral lymph nodes (inguinal, 

axillary and brachial) were removed for in vitro analysis. Due to low cellular recoveries 

lymph node cells from individual animals were pooled prior to in vitro culture. 

(i) Proliferative responses 

Proliferative responses of splenocytes and peripheral lymph node cells (LN cells) 

from mf-infected, L3-infected and un infected control animals were measured over a time

course of in vitro restimulation with 10 Ilg/ml B. pahangi adult Ag. Figure 5.4 shows Ag

driven proliferative responses after 48 (AlB), 72 (CID) and 96 (ElF) hI'S of in vitro 

culture. Splenocytes from infected and uninfected animals displayed a typical pattern of 

responsiveness as previously described (Figure. 5.4.AlCIE). The proliferative responses of 

LN cells from infected animals generally reflected that of splenocytes (Figure. 5.4 BIDIF). 

LN cells from mf-infected animals showed low levels of Ag-specific proliferation even at 

48 hrs, while LN cells from L3-infected animals proliferated well in response to Ag 

throughout the period observed. LN cells showed lower levels of both background 

(medium only), and Ag-stimulated proliferation than did splenocytes at all time-points. 

This experiment was repeated twice with equivalent results. 
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(ii) Cytokine production 

LN cells from mf-infected, L3-infected and uninfected animals displayed 

equivalent Ag-stimulated cytokine production profiles to splenocytes from the same 

animals. At 48 hrs LN cells from mf-infected animals produced Ag-specific IFN-/, in the 

absence of Th2 cytokines, while LN cells from L3-infected animals produced IL-4 and IL-

5 in the absence of IFN-/, (Figure. 5.5). LN cells produced lower levels of all cytokines 

tested than did splenocytes (data not shown). 

(iii) Nitrite production 

Whilst only splenocytes from mf-infected animals produced high levels of N02- in 

Ag-stimulated culture (40.5 +/-4.7 ~M at 96 hrs), no nitrite was detected in Ag-stimulated 

cultures of LN cells from any group, at any time-point (data not shown). 
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FIGURE 5.4 Ag-stimulated proliferative responses of splenocytes and LN cells 

from mf-infected, L3-infected and un infected control mice at 12 d.p.i. 

Mice were injected intravenously with 105 mf, 50 x L3 B. pahangi or an equal 

volume of HBSS only. At 12 d.p.i. proliferative responses of splenocytes and 

peripheral LN cells (5 x 106 cells/ml) to 10 f..lg/ml B. pahangi adult antigen were 

measured by 3H thymidine incorporation at 48 (AlB), 72 (C/D) and 96 (ElF) hrs 

culture. LN cells from 6 individual animals per group were pooled prior to in vitro 

restimulation. Results are expressed as mean cpm incorporated in triplicate wells. All 

values for splenocytes represent the mean and standard deviation of six animals per 

group. 
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FIGURE 5.5. Ag-stimulated cytokine production by LN cells rom mf-infected, 

L3-infected and uninfected control mice at 12 d.p.i. 

Mice were injected intravenously with 105 mf, 50 x L3 B. pahangi or an equal 

volume of HESS only. At 12 d.p.i. peripheral lymph node cells (lx107/ml) were 

restimulated in vitro with 10 Ilg/ml B. pahangi adult Ag. Levels of IFN-'Y, IL-4 and 

IL-5 in supernatants from 48 hr cultures were measured by 2-site ELISA. LN cells 

from 6 individual animals per group were pooled prior to in vitro restimulation. 
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5.2.3. Live vs heat-killed mf 

In these experiments groups of five BALB/C mice were injected intravenously via 

the tail-vein with lxl05 mf, 50 L3 B. pahangi or an equal volume of HBSS only. At 12 

d.p.i. spleens were removed for in vitro analysis. 

(i) Proliferative responses 

Proliferative responses of splenocytes from mice given lx105 live or heat-killed mf 

of B. pahangi or an equal volume of HBSS only i.v. were measured over a time-course of 

in vitro restimulation with 10 /-lg/ml B. pahangi adult Ag. Figure 5.6 shows Ag-driven 

proliferative responses after (A) 48, (B) 72 and (C) 96 hrs in vitro culture. Cells from 

animals infected with live mf displayed significantly greater levels of Ag-driven 

proliferation at both 48 and 72 hrs than those given heat-killed mf (p= 0.037 and 0.004 

respectively). Only cells from mice given live mf proliferated at levels significantly below 

background (p=0.013). This experiment has been repeated twice with similar results. 

(ii) Cytokine and nitrite production 

As shown in Figure 5.7 (C), cells from mice given live or heat killed mf produced 

IFN-'Y upon restimulation with Ag. Whilst cells from recipients of live mf produced 

markedly more IFN-'Y, there was no significant difference between these groups. No IL-4 

or IL-5 production was detected in Ag-stimulated culture of cells from any group of mice. 

Although splenocytes from mf-infected animals produced higher levels of nitrite at 48 hrs, 

after 96 hrs culture cells from animals given live or heat-killed mf produced similarly 

elevated levels of N02-. Such results indicate that although injection of heat-killed mf 

leads to lower proliferative responses upon in vitro restimulation than live mf, levels of 

Ag-stimulated IFN-'Y are sufficient to induce NO production at levels capable of 

suppressing proliferative responses. 
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FIGURE 5.6 Ag-stimulated proliferative responses of splenocytes from mice 

given lxl05 live vs heat killed mf B. pa/zangi 

Mice were injected intravenously with 105 live or heat killed mf B. pahangi or an 

equal volume of HBSS only. At 12 d.p.i. proliferative responses of splenocytes (5 x 

106 cells/ml) to 10 Ilg/ml B. pahangi adult antigen were measured by 3H thymidine 

incorporation at (A) 48, (B) 72 and (C) 96 hrs culture. Results are expressed as mean 

cpm incorporated in triplicate wells. All values represent the mean and standard 

deviation of five animals per group. *, significantly different (P = <0.05) response to 

live B. pahangi mf. 
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FIGURE 5.7 Live vs heat-killed mf: IFN-')' and nitrite production in Ag-

stimulated culture 

Mice were injected intravenously with 105 live or heat killed mf B. pahangi or an 

equal volume of HBSS only. At 12 d.p.i. splenocytes (l x 107 cells/ml) were 

restimulated with 10 ~g/ml B. pahangi adult antigen. IFN-')' (A) and Nitrite (B) 

production in supernatants from 48 hr cultures were measured using 2-site ELISA 

and the Greiss reaction respectively. All values represent the mean and standard 

deviation of five animals per group. 
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5.2.4 Restimulation with Ag-derived from distinct life cycle stages at 12 d.p.i. 

(i) Proliferative responses 

To test whether the proliferative suppression seen following mf-infection is 

influenced by the origin of the Ag used for in vitro restimulation, cells from mf-infected, 

L3-infected and uninfected control animals were cultured with 10 Ilg/ml mixed sex adult, 

adult female or adult male Ag. As shown in Figures 5.8 and 5.9 restimulation with mixed 

sex or adult female Ag stimulated highly comparable patterns of proliferative 

responsiveness in both groups of infected animals. Responses to male Ag however were 

inconsistent across these two experiments. In the first experiment (Figure 5.8B) 

splenocytes from mf-infected animals proliferated at significantly higher levels in response 

to male Ag than to mixed sex or female Ag at 72 hrs (P=O.Ol27 and 0.032 respectively). 

The reverse situation was seen with cells from L3 infected animals which proliferated at 

significantly lower levels in response to male Ag than mixed sex or female Ag at the same 

time-point (p=0.0045 and 0.037 respectively). In this same experiment there were no 

significant differences in proliferative responses to different Ag preparations at either 48 

or 96 hrs culture. In one subsequent experiment however no differences were observed in 

the proliferative responses to mixed sex adult female or adult male Ag at any time-point 

(Figure 5.9). It may be of consequence to note that different batches of male Ag were used 

in these experiments. 

Figure 5.9 also illustrates the proliferative responses of cells from infected and 

un infected animals to restimulation with 10 Ilg/ml mf Ag. As shown, mf Ag stimulates a 

similar profile of proliferative responses to that described for adult Ag with cells from mf

infected animals showing suppressed proliferation at 96 hrs while cells from L3 infected 

animals proliferated well at all time-points. Several experiments were performed using mf 

Ag with equivalent results. 
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(ii) Adult vs mf Ag: cytokine production 

Cytokine production by cells from mf-infected, L3-infected and un infected control 

animals in response to restimulation with adult and mf Ag are shown in Figure 5.10, 

(corresponding proliferative responses are shown in Figure 5.9). Both Ag-preparations 

elicited similar responses after 48 hI's of culture. Cells from mf-infected animals produced 

only IFN-y, whilst cells from L3-infected animals produced IL-4 and IL-5 levels of which 

were unaffected by the origin of the Ag used. 
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FIGURE 5.8. Proliferative responses of splenocytes from mf-infected, L3-

infected and uninfected control mice to mixed vs single sex B. pahangi adult Ag 

at 12 d.p.i. 

Mice were injected intravenously with 105 mf, 50 x L3 B. pahangi or an equal 

volume of HBSS only. At 12 d.p.i. proliferative responses of splenocytes (5 x 106 

cells/ml) to 10 Ilg/ml B. pahangi mixed sex adult, adult female or adult male antigen, 

were measured by 3H thymidine incorporation at (A) 48, (B) 72 and (C) 96 hrs 

culture. Results are expressed as mean cpm incorporated in triplicate wells. All 

values represent the mean and standard deviation of five animals per group. * 

significantly different (P = <0.05) response to B. pahangi mixed sex adult Ag. 
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FIGURE 5.9. Proliferative responses of splenocytes from infected and 

uninfected animals to mixed sex, single sex B. pahangi adult Ag and mf Ag at 12 

d.p.i. 

Mice were injected intravenously with 105 mf, 50 x L3 B. pahangi or an equal 

volume of HBSS only. At 12 d.p.i. proliferative responses of splenocytes (5 x 106 

cells/ml) to 10 flg/ml B. pahangi mixed sex adult, adult female, adult male and mf 

Ag, were measured by 3H thymidine incorporation at (A) 48, (B) 72 and (C) 96 hrs 

culture. Results are expressed as mean cpm incorporated in triplicate wells. All 

values represent the mean and standard deviation of five animals per group. 
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FIGURE 5.10. Adult vs mf Ag-stimulated cytokine production by splenocytes 

from mf-infected, L3-infected and uninfected control mice at 12 d.p.i. 

Mice were injected intravenously with 105 mf, 50 x L3 B. pahangi or an equal 

volume of HBSS only. At 12 d.p.i. splenocytes (lx107/ml) were restimulated in vitro 

with 10 llg/ml B. pahangi adult or mf Ag. Levels of IFN-'Y, IL-4 and IL-5 in 

supernatants from 72 hr cultures were measured by 2-site ELISA. All values 

represent the mean and standard deviation of three animals per group. 
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5.2.5 Immune responses of splenocytes from L3-infected animals super-infected with 

mf 

Infection with B. pahangi L3 is known to induce early development of a Th2 

response whilst infection with mf elicits development of a Th1 responses at both 12 and 30 

d.p.i. As the proliferative suppression following mf-infection is mediated by the IFN-'Y 

dependent induction of NO, essentially a Th1 function, it was of interest to assess how 

prior exposure to L3, and initiation of a Th2 polarised response, would influence the 

response to subsequent infection with mf. To address this question groups of 5 BALB/c 

mice were infected s.c. with 50 B. pahangi L3 (this being closer to the natural route of 

infection for L3). Seven days post initial infection one group of 5 L3-infected and 5 naIve 

mice were given 1x105 mf B. pahangi i.v. whilst control animals received an equal volume 

of HBSS only. 12 days post infection with mf (19 days post infection with L3), spleens 

were removed for in vitro analysis. 

(i) Ag-stimulated proliferative responses 

Splenocytes from mice given L3 only, L3 followed by mf (L3/mf), mf or HBSS 

only were restimulated with 10 Ilg/ml B. pahangi adult Ag over a time-course of in vitro 

culture. Figure 5.11 shows Ag-driven proliferative responses at (A) 48, (B) 72 and (C) 96 

hrs culture. At both 48 and 72 hrs sp1enocytes from L3/mf infected animals showed a 

significant increase in Ag-driven proliferation over cells from animals given L3 only. After 

96 hrs culture however there were no significant differences between these two groups, 

cells from both L3/mf and L3-infected animals showing strong Ag-specific responses, 

while cells from mf-infected animals gave only background levels of proliferation. 
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(ii) Ag-stimulated cytokine and nitrite production 

Production of IL-4, IL-5 and IFN-')' was measured in the 48 hr supernatants of Ag

stimulated culture (Figure 5.12). As shown, IL-4 and IL-5 were produced by cells from all 

animals exposed to L3 and their production was not altered following super-infection with 

mf. Interestingly, however, splenocytes from animals infected with L3 for 19 days 

produced equivalent levels of IFN-')' to cells from mf-infected animals (at 12 d.p.i.). L3 

infected animals super-infected with mf actually produced significantly lower amounts of 

IFN-')' than mice given L3 only. This observation was made in two subsequent 

experiments. 

At 48 hrs, only cells from mf-infected animals produced significant levels of nitrite 

in Ag-stimulated culture. After 96 hrs, however, while cells from mf-infected animals 

produced the highest levels of N02-, cells from L3-infected animals produced significantly 

more N02- than super-infected animals (Figure 5.13). This experiment has been carried out 

on two occasions with equivalent results. In one similar experiment wherein an extra 

group of mice was included which had been infected with L3 at both day 0 and day 7 

(L31L3), it appeared that super-infection with either mf or L3 led to significant reductions 

in IFN-')' production at 48 hrs and nitrite production at 96 hrs (Figure 5.14). 
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FIGURE 5.11. Ag-stimulated proliferative responses of splenocytes following 

primary infection or super-infection with mf 

Mice were injected subcutaneously with 50 x L3 B. pahangi. Seven days post initial 

infection one group of L3-infected mice and five na'ive mice were given Ix 105 mf B. 

pahangi i.v .. Uninfected control mice received an equal volume of HBSS only. 19 

days post initial infection with L3, proliferative responses of splenocytes (5 x 106 

cells/ml) to 10 !J,g/ml B. pahangi adult antigen were measured by 3H thymidine 

incorporation at (A) 48, (B) 72 and (C) 96 hI's culture. Results are expressed as mean 

cpm incorporated in triplicate wells. All values represent the mean and standard 

deviation of five animals per group. *, significantly different (P = <0.05) response to 

infection with L3 alone. 
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FIGURE 5.12. Cytokine production by Ag-stimulated splenocytes following 

primary infection and super-infection with mf 

Mice were injected subcutaneously with 50 x L3 B. pahangi. Seven days post initial 

infection one group of L3-infected mice and five naIve mice were given lx105 mf B. 

pahangi i.v. Uninfected control mice received an equal volume of HBSS only. At 19 

days post initial infection with L3, splenocytes (1 x 107 cells/ml) were restimulated 

with 10 Ilg/ml B. pahangi adult antigen. IFN-,,/, IL-4 and IL-5 production in 

supernatants from 48 hr cultures were measured using 2-site ELISA. All values 

represent the mean and standard deviation of five animals per group. *, significantly 

different (P = <0.05) response to infection with L3 alone. 
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FIGURE 5.13 IFN-'Y and nitrite production by Ag-stimulated splenocytes 

following primary infection and super-infection with mf or L3 

Mice were injected subcutaneously with 50 x L3 B. pahangi. Seven days post initial 

infection one group ofL3-infected mice and five naIve mice were given lx105 mf B. 

pahangi i.v. whilst another group of L3 infected mice received 50 x L3 B. pahangi 

i.v. Uninfected control mice received an equal volume of HBSS only. At 19 days post 

initial infection with L3, splenocytes (l x 107 cells/ml) were restimulated with 10 /-lg/ 

ml B. pahangi adult antigen. IFN-'Y and nitrite levels in supernatants from 48 hr and 

96 hrs respectively are shown. All values represent the mean and standard deviation 

of five animals per group. *, significantly different (P = <0.05) response to infection 

with L3 alone. 
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5.3 Discussion 

The results presented in this chapter demonstrate that the Th 1 polarisation induced 

by i.v. infection with B. pahangi mf is stable at least up to 30 d.p.i. Splenocytes from mf

infected animals produced high levels of IFN-'Y and NO in Ag-stimulated culture and 

proliferative responses were down-regulated as at 12 d.p.i. This is in contrast to the 

findings of previous studies using i.p. infection wherein more mixed or Th2 like responses 

were observed at later time-points (Lawrence, 1994; Pearlman, 1993b). Such differences 

may be due to the different routes of infection used, or alternatively they may reflect 

differences in the species of parasite used (B. malayi vs B. pahang i). 

Unexpectedly, cells from L3-infected animals displayed differences in both 

cytokine production and proliferative responses following long term infection. A more 

mixed response was seen at 30 d.p.i. with production of high levels of IFN-'Y alongside Ag

stimulated IL-4, IL-5 and IL-lO. The levels of IFN-'Y produced by cells from L3 infected 

and mf-infected animals were similar (while being slightly higher following mf-infection). 

Interestingly in the light of this, although only cells from mf-infected animals produced 

significant levels of NO at 48 hrs, by 96 hrs splenocytes from both groups of infected 

animals produced NO at levels capable of suppressing proliferative responses. This was 

reflected in the proliferative response of cells from L3-infected animals which was 

considerably weaker at 30 d.p.i. than at 12 d.p.i. such that at 96 hrs Ag-stimulated cells 

proliferated at levels not significantly greater than background. Although not tested in this 

study it would be of interest to determine whether inhibition of iNOS activity in these 

cultures was able to enhance proliferative responses of cells from both groups of infected 

animals. 

While several studies have followed responses to mf-infection over longer time

courses, there is little information in regard to temporal changes in L3 induced responses. 
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While the Th2 response induced by adult worms is known to be stable up to at least 28 

d.p.i. (Lawrence, 1994), production of Ag-stimulated IFN-"{ has previously been observed 

at 19 d.p.i. following s.c. infection with B. pahangi L3 indicative of a more mixed 

response (Osborne, 1997). This change in cytokine production and the mechanisms 

underlying it, whilst outwith the scope of this study, are particularly intriguing given that 

Th2 responses are generally considered more stable than Th 1. Although the fate of L3 

following i.v. infection is not known, the L3 is a dynamic stage within the mammalian 

host, and it is possible that altered cytokine production results from exposure to Ag 

associated with the L3/L4 or L4/adult moults. As male worms moult from the L4/adult at 

around 18 d.p.i. and female worms at around 23 d.p.i. it is likely that any parasites 

surviving up to day 30 are juvenile adults. 

It has been suggested that besides chronicity of exposure, the change in cytokine 

profiles seen following i.p. infection with mf maybe related to mf survival, with 

development of Th2 responses resulting from to exposure to somatic Ag only released by 

dead or dying mf (Lawrence, 2000). Splenocytes from mice given heat-killed mf or live mf 

displayed similar polarisation in vitro. Heat-killed mf induced production of lower levels 

of IFN-"{ than live mf but no IL-4 or IL-5 were detected in either group. Live and heat

killed mf induced production of similar levels of N02- in Ag-stimulated culture at both 48 

and 96 hrs. However dead mf stimulated only minimal proliferative responses in vitro, 

even at 48 hrs. It is possible that any protein Ag against which proliferative responses are 

directed may have been denatured by heat killing. Interestingly only splenocytes from mice 

given live mf proliferated at levels significantly below those in medium only wells at 96 

hrs. As a greater proportion of these cells have proliferated in response to restimulation 

this may suggest that proliferating cells are more acutely susceptible to the suppressive 

effects of NO. 
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The demonstration that dead mf can stimulate production of IFN-'Y indicates that 

this response is not induced by E/S products only produced by live mf. Lawrence et al 

(Lawrence, 2000) reported that freeze killed mf given i.p. failed to elicit Ag-specific 

cytokine production in vitro yet induced a qualitatively similar Ab response to live mf 

(although at much lower levels). The lack of cytokine responses in the spleen following 

i.p. administration of freeze killed mf compared to i.v. injection of heat killed mf may be a 

function of the route of injection, or may reflect the different methods of mf killing used. 

Interestingly while live mf could be readily recovered from the peritoneal cavity at 14 

d.p.i. no dead mf were recovered at this time, suggesting that live and dead mf may be 

processed differently by the immune system with dead mf being cleared more rapidly 

(Lawrence, 2000). Although recovery of mf was not assessed, it is likely that this is also 

the case following i.v. infection. 

Studies in several murine models of infection, including filariasis, have 

demonstrated differences between responses in the spleen and other secondary lymphoid 

organs. Following infection with mf or L3 proliferative and cytokine responses of 

peripheral lymph node cells were shown to reflect those seen in the spleen at 12 d.p.i. 

Whilst LN cells from mf-infected animals produced IFN-'Y upon restimulation, they failed 

to display strong proliferative responses even in the absence of high levels of NO, 

suggesting that an NO independent mechanism maybe operative in these cultures. The 

absence of high levels of NO in Ag-stimulated cultures of LN cells from mf-infected 

animals is likely to reflect both the lower levels of IFN-'Y produced by these cells and the 

fact that MO are more abundant in the spleen than peripheral lymph nodes. Although 

proliferative responses of LN cells were generally lower than those of splenocytes, LN 

cells from L3-infected animals showed strong Ag-driven proliferative responses 

throughout the period observed. In comparison to splenic responses LN cells from L3-
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infected animals produced similar amounts of IL-4, while LN cells from mf-infected 

animals produced much lower levels of IFN-)'. This suggests that there are lower numbers 

of Ag-reactive cells in the peripheral lymph nodes of mf-infected animals. In this respect it 

is likely that the active migratory nature of the L3, and their tropism for the lymphatics, 

facilitates induction of a more widespread response than mf infection. This is further 

supported by the observation that LN from L3 infected animals were considerably larger 

and gave higher cellular recoveries than those from mf-infected or un infected control mice 

(data not shown). 

Splenocytes from infected animals generally displayed highly comparable 

proliferative responses to restimulation with the different Ag preparations tested. In one of 

two experiments, however, cells from mf-infected animals displayed significantly greater 

levels of proliferation in response to male Ag, as compared to female or mixed sex adult 

Ag at 72 hI's. However, responses to all antigens tested were equally suppressed at 96 hrs. 

Unfortunately, due to a paucity of male Ag, the basis of any alteration in the kinetics of 

suppression, in terms of cytokine production and generation of NO, were not assessed. 

This phenomenon was not observed in a repeat experiment, although distinct batches of 

Ag were used and it is possible they differed in purity. The similarity of proliferative 

responses induced by all Ag preparations tested suggest that, as described previously in 

experiments using A. viteae Ag, the in vivo experience of Ag, in terms of the polarisation 

of responses, is of primary importance in determining in vitro responses. It is of note that 

the results presented here regarding Ag-stimulated cytokine production differ from those 

found in human studies. Mahanty et al (1996) reported that PBMC from Mf+ individuals 

produce high levels of both spontaneous and Ag-driven IL-IO which is associated with 

suppression of IFN-y production (Mahanty, 1997; 1997). In contrast to this, splenocytes 

from mf-infected mice do not produce high levels of IL-lO at 12 d.p.i. suggesting that IL-
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10 mediated down-regulation of IFN-y production may be a feature of chronic infection or 

may be induced by life cycle stages other than mf. 

Although super-infection of L3 infected animals did not lead to suppression of 

proliferative responses it had a striking effect upon cytokine production. At 19 days post

L3 infection a mixed response was seen with production of IFN-y, IL-4 and IL-S. 

Intriguingly, rather than enhancing Thl responsiveness, super-infection with mf reduced 

IFN-y production in Ag-stimulated culture. Similar observations were made following 

secondary infection with L3. These findings demonstrate that restimulation in vivo can 

consolidate Th2 polarisation by down-regulating IFN-y production. 

Heavily polarised responses are generally associated with chronic infections and in 

filariasis it is likely that long term exposure to adult worms and high levels of circulating 

Ag serve to strengthen Th2 responses. Whilst T cell lines generated under Thl or Th2 

polarising conditions display great stability in terms of cytokine production, the situation 

during active infection is likely to be less clear cut. 

In a recent study investigating the ability of mf to modulate a pre-existing Th2 

response induced by infection with adult male worms it was shown that while mf induced 

production of IFN-y this was not reflected in the Ab isotypes elicited (Lawrence, 2000). 

The results presented here suggest that the response to L3 is less stable than that induced 

by adult males which may in part account for the different results in terms of IFN-y 

production. It is interesting to speculate on the shared ability of mf and L3 to down

regulate L3-induced IFN-y production. It is possible that, in a situation analogous to that 

previously described in vitro following mf-infection, restimulation of IFN-y producing 

cells in vivo suppresses their proliferation and IFN-y production. This is particularly 

interesting considering the previous reports that repeated immunisations with mf extract 
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leads to a reduction in IFN-y production (Pearlman, 1993b). Furthermore in human 

infection Mf+ individuals have a lower frequency of IFN-y producing Ag specific T cells 

(King, 1992; King, 1993) and in bancroftian filariasis Ag negative, and Mf- individuals 

produce elevated levels of IFN-y (Dimock, 1996). Most recently it has been demonstrated 

that changes in mf density were accompanied by fluctuations in IFN-y production such that 

the presence of mf was associated with reduced IFN-y production (Sartono, 1999). It may 

be that in the presence of high antigen loads, IFN-y producing cells are preferentially 

driven to undergo terminal differentiation or AICD. 

Interestingly levels of IL-4 and IL-5 production in vitro were not affected by 

alterations in IFN-y production. Although enhanced production of Th2 cytokines in vivo 

following secondary infection may have suppressed development of IFN-y producing cells, 

these findings suggest that IL-4 does not down-regulate IFN-y production in vitro. It is of 

interest to note that IL-4 production is much less affected by fluctuations in parasite 

density than is IFN-y (Sartono, 1999) and varies little between clinical groups (King, 1992; 

Maizels, 1995). Recently analysis of cytokine production at the single cell level has shown 

that co-expression of Th 1 and Th2 cytokines is a rare event, even in a response which may 

be characterised as ThO on the population level (Bucy, 1994). In PBMC from infected 

humans, which produce both IFN-y and IL-4 in response to B. malayi Ag, IFN-y 

production is totally segregated from that of IL-4 (De Boer, 1998). Segregation of IFN-y 

and IL-4 production would facilitate their independent regulation as seen following super

infection and in human filariasis. As IL-lO has been shown to down-regulate IFN-y 

production following chronic infection with mf, and s.c. infection with L3, it would be of 

interest to determine levels of IL-lO production following super-infection of L3 infected 

animals. 
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Polarised murine Th 1 and Th2 cells differ in their ability to respond to lL-12 as 

strongly polarised Th2 cells lose expression of the lL-12R~2 subunit of the lL-12 receptor 

(Szabo, 1997 a). lL-12R~2 expression in upregulated following stimulation via the TCR 

and thereafter expression is influenced by cytokines. lL-4 inhibits expression leading to 

loss of lL-12 responsiveness and regulating commitment to the Th2 pathway, in contrast 

IFN-,,/ maintains lL-12R~2 expression (Szabo, 1997b). Th2 cells primed in the absence of 

IFN-,,/ can only subsequently respond to lL-12 with IFN-,,/ production in the absence of lL-

4 (Hu-Li, 1997). These findings demonstrate that lL-4 production by Th2 cells is a 

relatively stable property whilst production of IFN-,,/ is highly regulated by cytokines, 

providing another mechanism whereby IFN-,,/ levels may fluctuate independently of lL-4. 

Interestingly the Th2 response seen following multiple immunisations with mf extract is 

also subject to modulation by lL-12 indicating that at least some of these cells retain lL-12 

responsiveness (Pearlman, 1995). This suggests, as do responses seen following L3 

infection at 30d.p.i., that responses in murine model of filariasis cannot accurately be 

described by strict application of the Th 1 ffh2 paradigm. 

It has recently been shown that continued production of lL-12 is required to 

maintain ongoing Th 1 responses following infection with T. gondii (Yap, 2000). It is 

possible then, that any reduction in lL-12 during the course of chronic infection could lead 

to reduced IFN-,,/ production. It may be that restimulation in vivo results in lL-12 

production promoting expansion of IFN-,,/ producing cells and leading to NO production 

which in turn down-regulates lL-12 via a negative feedback loop. In this fashion 

restimulation of IFN-,,/ producing cells may ultimately result in lower levels of IFN-,,/ 

production. 
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CHAPTER 6. Tracking the fate of Ag-reactive lymphocytes in in vitro culture 

6.1 Introduction 

NO has been shown to mediate proliferative suppression In various model of 

parasitic infection (Candolfi, 1994; Dai, 1999; Mabbot, 1995), but few studies have 

investigated the means by which NO exerts this effect. As IFN-'Y induced NO production is 

critical in down-regulating the responses of cells from mf-infected animals, the mechanism 

whereby this effect is manifested is of particular interest. NO could potentially limit 

proliferation by a variety of means, from effects upon APC function and cytokine 

production to regulation of apoptosis. The ability to selectively inhibit NO production and 

alleviate proliferative suppression in vitro provides a means of analysing the basis of the 

suppressive effects of NO. 

APC function can be affected by NO on several levels; at the extreme it has been 

shown that NO can act in an autocrine fashion to induce MO apoptosis (Albina, 1993), 

effectively reducing APC numbers which may ultimately limit proliferative responses. 

There are however, more subtle ways in which NO can influence APC activity. It has been 

shown in various cell types, including human neutrophils and murine peritoneal MO, that 

phagocytic activity can be negatively regulated by NO (Forslund, 1997; Jun, 1996) which 

may inhibit Ag-uptake. Ag-presentation may also be affected as activated MO have been 

shown to inhibit MHC II expression on the surface of alveolar dendritic cells (Holt, 1993) 

and NO has been shown to down-regulate protein synthesis and MHC II expression in 

peritoneal MO (Sicher, 1994). 

Furthermore, whilst low level NO production can have a direct effect upon T cells, 

enhancing their capacity for IFN-'Y production (Huang, 1998a) high level NO production 

inhibits n..-12 synthesis by MO consequently limiting the expansion of IFN-'Y producing T 
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cells (Niedbala, 1999). These findings illustrate that there are several ways in which NO 

can adversely affect APC function, at least one of which (inhibition of IL-12 production), 

may selectively limit the expansion of Th 1 responses. 

NO may also affect the development of immune responses by directly affecting T 

cells. It has been shown that, besides suppressing cytokine production, NO can directly 

induce the apoptosis of splenic T lymphocytes (Okuda, 1996). Although the high levels of 

NO generated by chemical donors in many in vitro studies exceed physiological levels, it 

is possible that there may be much higher levels of NO in the direct vicinity of MO than in 

the culture medium as a whole. In this sense it is not known to what levels of NO T cells 

may be exposed during their intimate interactions with activated MO. 

NO-mediated proliferative suppression has been described during murine infection 

with Mycobacterium tuberculosis and Trypanosoma cruzi, and in both cases NO has been 

implicated in inducing the apoptosis of Ag-reactive T cells (Martins, 1999; Nabeshima, 

1999). Where the effects of NO have been investigated it appears that the direct effects of 

NO and those mediated via IFN-'Y may synergise to promote apoptosis. During the acute 

phase of T. cruzi infection both IFN-'Y induced upregulation of Fas expression and NO 

production contribute to splenocyte apoptosis (Martins, 1999). IFN-'Y has also been shown 

to induce the Fas dependent apoptosis of Peyer's patches T cells during peroral infection 

with T. gondii (Liesenfeld, 1997). NO itself has also been shown to modulate Fas 

expression in a variety of cell types including murine T lymphocytes, wherein iN OS 

inhibition attenuated TCR induced Fas expression (Williams, 1998). 

The fact that Ag-stimulated cells from mf-infected animals frequently display 

lower levels of proliferation than unstimulated cells after 96 hrs culture suggests that an 

active form of suppression is induced by restimulation which may involve the AICD of 

Ag-reactive cells. Furthermore elevated levels of apoptosis amongst splenocytes taken 
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immediately ex-vivo have previously been observed following infection of BALB/c mice 

with B. pahangi mf but not L3. Intriguingly in situ analysis of splenocyte apoptosis 

revealed clusters of apoptotic nuclei in the spleens of mf-infected animals at 12 d.p.i. 

whilst only single apoptotic nuclei were seen scattered throughout the spleens of L3 

infected and un infected control mice (Osborne, 1997a). Further analysis revealed that the 

apoptotic bodies are associated with T cells within the germinal centres demonstrating that 

B. pahangi mf can induce lymphocyte apoptosis in vivo (Jenson et al submitted). 

The experiments described in this chapter were aimed at further characterising the 

mechanism of NO-mediated suppression operative in vitro following mf-infection, in 

particular to identify the cellular population unable to proliferate in the presence of NO 

and the fate of these cells in Ag-stimulated culture. The tracking dye CFSE was combined 

with surface staining and FACS analysis to identify proliferating cells. Levels of 

lymphocyte apoptosis were assessed using propidium iodide staining and depletion 

experiments allowed identification of the cellular source of IFN-"( which is critical to the 

induction of iNOS activity and proliferative suppression. 
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6.2 RESULTS 

6.2.1. CFSE staining of cells from mf-infected, L3-infected and uninfected control 

animals in Ag-stimulated culture in the presence or absence of AMG 

CFSE is a fluorescent dye which labels cells in a non-specific fashion. Upon 

division the dye is distributed evenly between daughter cells resulting in a decrease in 

fluorescence intensity and a peak shift to the left. Used in combination with cell surface 

staining this technique allows division within a phenotypically distinct subpopulation of 

cells to be tracked. 

In these experiments splenocytes from mf-infected, L3-infected and uninfected 

control mice were labelled with CFSE prior to in vitro restimulation with 10 ~g/ml B. 

pahangi adult Ag in the presence or absence of the iNOS inhibitor AMG. After 96 hI's 

cells were harvested and sUlface stained with an anti-CD4 MAb. Samples were analysed 

using flow cytometry. Lymphocytes were initially gated on their physical parameters, in 

terms of size and granularity using forward and side scatter, and the staining profile of 

CD4+ lymphocytes was analysed using Cell Quest software. As shown in Figure 6.1 CD4+ 

cells from mf-infected animals show little evidence of proliferation in Ag-stimulated 

culture, consistent with results previously reported using 3H thymidine incorporation. 

However, upon inhibition of iNOS activity a secondary peak of CFSE low CD4+ cells 

which have divided in culture is clearly identifiable. The proliferation of cells from L3 

infected animals was unaltered by inhibition of iNOS activity, and cells from uninfected 

control animals displayed only background levels of proliferation under all conditions. 

Addition of AMG significantly increased the percentage of CD4 + cells from mf-infected 

animals showing evidence of Ag-stimulated proliferation (P=0.012 Figure 6.2) whilst not 

significantly affecting responses within other groups. Comparison of the CFSE staining 
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profile of total lymphocytes and CD4+ cells demonstrated that the Ag-stimulated 

proliferative response is contained almost entirely within the CD4+ population (Figure 

6.3). These results clearly demonstrate that IFN-'Y dependent NO production suppresses the 

proliferation of Ag-reactive CD4+ T cells from mf-infected mice. This experiment has 

been carried out on three separate occasions with equivalent results each time. 
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FIGURE 6.1 CFSE labelling of cells from mf-infected, L3-infecetd and uninfected 

control mice in Ag-stimulated culture in the presence or absence of aminoguanidine 

Splenocytes from mice given lx105 mf, 50 L3 B. pahangi or an equal volume of HBSS 

only, were labelled with CFSE and cultured with 10 /-lg/ml B. pahangi adult Ag in the 

presence or absence of 500 /-lM AMG. After 96 hrs cells were harvested, surface stained 

with an anti-CD4 MAb and analysed by flow cytometry. Each panel shows the CFSE 

staining profile of CD4+ splenocytes from an individual mouse in the presence or absence 

of AMG. The numbers in the top left hand corner of each panel indicate the percentage of 

CD4 + cells displaying reduced fluorescence intensity in FL-l, indicating they have 

divided in Ag-stimulated culture. These figures are representative of the responses of five 

animals per group 
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FIGURE 6.2 iNOS inhibition enhances Ag-stimulated proliferation of CD4+ 

cells from mf-infected animals 

Splenocytes from mice given1x105 mf, 50 L3 B. pahangi or an equal volume of 

HBSS only, were labeled with CFSE and cultured with 10 I1g/ml B. pahangi adult Ag 

in the presence or absence of 500 11M AMG. After 96 hrs cells were harvested, 

surface stained with an anti-CD4 MAb and analysed by flow cytometry. The 

percentage of CD4+ cells which have divided (i.e. display reduced fluorescence 

intensity in FL-1 (CFSE low)) are shown. All values represent the mean +/- standard 

deviation of five animals per group. *, significantly different (p=<0.05) from 

unsupplemented cultures. 
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FIGURE 6.3 The majority of dividing cells in Ag-stimulated culture are contained 

within the CD4+ population 

Splenocytes from mice givenlx105 mf, 50 L3 B. pahangi or an equal volume of HBSS only, 

were labelled with CFSE and cultured with 10 /-lg/ml B. pahangi adult Ag in the presence of 

500 /-lM AMG. After 96 hrs cells were harvested, surface stained with an anti-CD4 MAb and 

analysed by flow cytometry. The purple fill represents the CFSE staining profile of total 

lymphocytes and the green overlay shows the staining profile of CD4+ cells. The results 

shown are for individual mice and are representative of five animals per group. 
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6.2.2. Inhibition of iNOS activity allows the expansion of a population of CD4
hi 

Ag 

reactive cells 

Intriguingly the CD4 staining profile of cells from mf-infected animals in Ag-

stimulated culture was clearly altered upon iNOS inhibition. In the presence of high levels 

of NO, cells from mf-infected animals segregated into two discrete peaks of CD4- and 

CD4+ cells. However, upon addition of AMG a tertiary peak of brightly staining CD4
hi 

cells could clearly be identified (Figure 6.4). CD4hi cells were observed in cultures of cells 

from L3-infected animals regardless of the presence or absence of AMG and were not seen 

in cultures from uninfected control animals. iNOS inhibition significantly enhanced the 

number of CD4hi cells in cultures from mf-infected animals (p=O.012) and did not affect 

responses in other groups (Figure 6.5). Furthermore the CD4
hi 

population showed 

increased side scatter, indicative of increased granularity and a characteristic of activated 

lymphocytes (Figure 6.6) 

6.2.3. The CD4hi population contains Ag-reactive cells 

As CD4hi cells are only detected in cultures of cells from mf-infected animals in 

the absence of high levels of NO it was of interest to determine whether this population 

contained dividing cells. Analysis of the CFSE staining profile of CD4
hi 

cells revealed that 

this is indeed the case. As shown in Figure 6.7 the majority of cells within this population 

had divided in Ag-stimulated culture and their division accounted almost entirely for 

division within the CD4+ population. 
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FIGURE 6.4 CD4hi cells are observed in Ag-stimulated cultures of cells from mf-infected 

animals only upon iNOS inhibition 

Splenocytes from mice givenlx105 mf, 50 L3 B. pahangi or an equal volume of HBSS only, were 

labelled with CFSE and cultured with 10 Ilg/ml B. pahangi adult Ag in the presence or absence of 

500llM AMG. After 96 hrs cells were harvested, surface stained with an anti-CD4 MAb and 

analysed by flow cytometry. The purple fill shows the CD4 staining profile of cells in Ag-stimulated 

culture and the green overlay represents the CD4 staining profile in the presence of Ag and AMG. 

The results shown are for cells from individual animals and are representative of five animals per 

group. 
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FIGURE 6.5 NO inhibits the expansion of CD4hi cells in Ag-stimulated cultures 

of cells from mf-infected animals 

Splenocytes from mice given 1x105 mf, 50 L3 B. pahangi or an equal volume of 

HBSS only, were cultured with 10 /lg/ml B. pahangi adult Ag in the presence or 

absence of 500 /lM AMG. After 96 hrs cells were harvested, surface stained with an 

anti-CD4 MAb and analyzed by flow cytometry. The number of brightly staining 

CD4hi cells is shown as a percentage of total lymphocytes. All values represent the 

mean +/- standard deviation of five animals per group. *, significantly different 

(p=<0.05) from unsupplemented cultures. 
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FIGURE 6.6. CD4hi cells show increased side scatter 

Splenocytes from mice given lxl05 mf, 50 L3 B. pahangi or an equal volume of 

HBSS only, were cultured with 10 j..lg/ml B. pahangi adult Ag in the presence or 

absence of 500 j..lM AMG. After 96 hrs cells were harvested, surface stained with an 

anti-CD4 MAb and analysed by flow cytometry. The contour plot shows side scatter 

versus CD4 staining and illustrates the staining pattern of splenocytes from a mf-

infected animal cultured in the presence of AMG. CD4-, CD4 + and CD4hi 

populations can be clearly identified. The highest points of the contours have been 

filled, and the peak of the CD4hi population is coloured red. The results shown are 

for cells from an individual animal and are representative of responses seen in five 

mice per group. 
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FIGURE 6.7 The CD4hi population contains dividing cells 

Splenocytes from mice given lx105 mf B. pahangi were labelled with CFSE and 

cultured with 10 Ilg/ml B. pahangi adult Ag in the presence or absence of 500 11M 

AMG. After 96 hI'S cells were harvested, surface stained with an anti-CD4 MAb and 

analysed by flow cytometry. The purple fill shows the CFSE staining profile of CD4+ 

cells after 96 hI'S Ag-stimulated culture. The green overlay represents the CFSE 

staining profile of total CD4+ cells in the presence of AMG and the pink overlay 

shows the CFSE staining profile of the CD4hi popUlation seen only upon iNOS 

inhibition. The results shown are representative of five mice per group. 
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6.2.4. CD4+ cells from mf-infected animals display elevated levels of apoptosis in Ag

stimulated culture which is reduced following inhibition of iNOS activity 

Although cells from mf-infected animals proliferate at early time points, by 96 hrs 

evidence of Ag-stimulated division is only apparent upon iNOS inhibition. Propidium 

iodide staining was performed to determine whether enhanced levels of proliferation were 

associated with reduced levels of apoptosis (as assessed by subdiploid DNA content). As 

shown in Figures 6.8 and 6.9, CD4+ cells from mf-infected animals showed significantly 

greater levels of apoptosis in Ag-stimulated culture than cells from L3-infected or 

uninfected control animals (p=0.03 and 0.03 respectively). The elevated levels of 

apoptosis in Ag-stimulated cultures of cells from mf-infected animals were associated with 

a significantly reduced number of cells in G l/GO compared to cells from L3-infected and 

uninfected control animals (p=0.034 and 0.03 respectively). No significant differences 

were observed in the proportion of cells in other stages of the cell cycle (data not shown). 

Inhibition of iNOS activity significantly reduced apoptosis of CD4+ T cells in cultures 

from mf-infected animals (p=0.0294) but had no significant effect within other groups 

(Figure 6.9). iNOS inhibition also significantly increased the number of cells from mf

infected animals in G l/GO (p=0.034, Figure 6.1 0). These results suggest that NO 

mediates proliferative suppression by inducing the apoptosis of Ag-reactive CD4+ T cells 

from mf-infected animals. This experiment was repeated three times with equivalent 

results each time. In parallel experiments in this laboratory highly comparable results were 

achieved using the TUNEL staining method to demonstrate elevated levels of lymphocyte 

apoptosis in Ag-stimulated cultures from mf-infected animals. Again, apoptosis occured 

within the CD4+ population, and was reduced upon iNOS inhibition (Jenson et al 

submitted). 
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FIGURE 6.8 CD4+ cells from mf-infected animals show elevated levels of 

apoptosis in Ag-stimulated culture which are reduced upon iNOS inhibition 

Splenocytes from mice givenlx105 mf, 50 L3 B. pahangi or an equal volume of 

HBSS only, were labelled with cultured with 10 )lg/ml B. pahangi adult Ag in the 

presence or absence of 500 )lM AMG. After 48 hrs cells were harvested, stained with 

propidium iodide and an anti-CD4 MAb and analysed by flow cytometry. The 

propidium iodide staining profile of CD4+ cells in Ag-stimulated culture in the 

presence or absence of AMG are shown. Cells with a subdiploid DNA content were 

considered apoptotic. The results shown are representative of five mice per group. 
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FIGURE 6.9 iNOS inhibition reduces apoptosis of CD4+ cells from mf-infected 

animals in Ag-stimulated culture 

Splenocytes from mice given 1x105 mf, 50 L3 B. pahangi or an equal volume of 

HBSS only, were cultured with 10 ~g/ml B. pahangi adult Ag in the presence or 

absence of 500 ~M AMG. After 48 hrs cells were harvested, stained with propidium 

iodide and an anti-CD4 MAb and analyzed by flow cytometry. Cells with a 

subdiploid DNA content were considered apoptotic. Levels of apoptosis amongst 

CD4+ cells are shown. All values represent the mean +/- standard deviation of five 

animals per group. *, significantly different (p=<0.05) from unsupplemented 

cultures. 
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FIGURE 6.10 iNOS inhibition increases the percentage of CD4+ cells from mf-

infected animals in GO/G 1 

Splenocytes from mice given 1x105 mf, 50 L3 B. pahangi or an equal volume of 

HBSS only, were cultured with 10 Ilg/ml B. pahangi adult Ag in the presence or 

absence of 500 IlM AMG. After 48 hrs cells were harvested, stained with propidium 

iodide and an anti-CD4 MAb and analysed by flow cytometry. The percentage of 

CD4+ T cells in GO/G 1 (diploid cells) is shown. All values represent the mean +1-

standard deviation of five animals per group. *, significantly different (p=<0.05) 

from other groups, **, significantly different from unsupplemented cultures, . 
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6.2.5. CD4hi cells display enhanced levels of Fas expression independently of IFN-'Y 

and NO production 

Several studies have suggested that Th 1 cells are more susceptible to AICD than 

Th2 clones (Liu, 1990; Novelli, 1997) and both IFN-'Y and NO have been shown to 

upregulate Fas expression (Martins, 1999; Stassi, 1997). Surface staining was used to 

assess levels of Fas expression amongst cells from mf-infected, L3-infected and un infected 

control animals in Ag-stimulated culture. Although staining with anti-Fas MAb did not 

clearly identify Fas+ and Fas- populations amongst total lymphocytes, when the Fas 

staining profiles of CD4+ and CD4hi cells were compared (Figure 6.11) it was apparent that 

CD4hi cells showed higher levels of Fas expression than normal CD4+ cells. This could be 

seen most clearly when comparing the mean fluorescence intensity of Fas staining in the 

two populations (Figure 6.12). Although CD4hi cells in all groups were more brightly 

stained than normal CD4+, cells the number of CD4hi cells in cultures from un infected 

control animals was far lower than seen in other groups (as shown previously in Figures 

6.5 and 6.6). 

In order to assess whether Fas expression on CD4hi cells was influenced by IFN-'Y, 

splenocytes from mf-infected and uninfected control IFN-'YR-I- and wild type 129/Sv mice 

were removed from Ag-stimulated culture after 48 hrs and double stained for Fas and 

CD4. As shown in Figure 6.13 CD4hi cells from both groups of mf-infected mice showed 

elevated levels of Fas expression. Interestingly there were greater numbers of CD4hi cells 

in cultures from infected IFN'YR-I- than wild type mice suggesting, as did the results of PI 

staining, that NO mediated apoptosis of Ag-responsive is acting at this time to limit the 
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expansion of this population. These results demonstrate that Fas expression is upregulated 

in CD4hi cells independently of the influence of IFN-')' or NO. 
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FIGURE 6.11 CD4hi cells show enhanced levels of Fas expression 

Splenocytes from mice given 1 x 105 mf, 50 L3 B. pahangi or an equal volume of 

HBSS only, were cultured with 10 /lg/ mI B. pahangi adult Ag in the presence of 500 

/lM AMG. After 96 hI's cells were harvested, surface stained with an anti-CD4 MAb 

and analysed by flow cytometry. The purple fill represents the Fas staining profile of 

CD4+ cells and the green overlay shows the Fas staining profile of CD4hi cells. The 

results shown are representative of five animals per group. 
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FIGURE 6.12 CD4hi cells display elevated levels of Fas expression 

Splenocytes from mice given lxl05 mf, 50 L3 B. pahangi or an equal volume of 

HBSS only, were cultured with 10 /-lg/ml B. pahangi adult Ag in the presence of 500 

/-lM AMG. After 96 hrs cells were harvested, double stained with anti-Fas and anti-

CD4 MAbs and analyzed by flow cytometry. The geometric mean fluorescence 

intensity of anti-Fas staining on CD4 normal and CD4hi cells is shown. All results 

represent the mean +/- standard deviation of three animals per group. 
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FIGURE 6.13 CD4hi cells from mf-infected IFN-'YR-I- and wild type 1291Sv mice show 

enhanced levels of Fas expression 

Splenocytes from IFN-'YR-I- and wild type 129/Sv mice given lxl05 mf, or an equal volume of 

HBSS only, were cultured with 10 /-lg/ml B. pahangi adult Ag. After 48 hrs cells were 

harvested, surface stained with an anti-Fas and anti-CD4 MAb and analysed by flow cytometry. 

The panels show representative staining profiles of cells from mf-infected and un infected IFN

'YR-I- mice (AlB) and mf-infected and uninfected wild type 129/Sv mice (C/D). The purple fill 

represents the Fas staining profile of CD4+ cells and the green overlay shows the Fas staining 

profile of CD4hi cells. Results shown are representative of three animals per group. 
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6.2.6. CD4+ cells are the major source of IFN-/, in Ag-stimulated culture 

In order to identify the cellular source of IFN-/, in Ag-stimulated culture, 

splenocytes from mf-infected animals were depleted of either CD4+ or CD8+ cells, by 

magnetic cell sorting, prior to in vitro restimulation. As shown in Figure 6.14 depletion of 

CD4+ cells completely abolished IFN-/, production and consequent NO production whilst 

removal of CD8+ cells only partially reduced these responses. These results clearly 

demonstrate that CD4+ cells from mf-infected mice are the major source of IFN-/, 

production in Ag-stimulated culture. This experiment was carried out on three occasions 

with equivalent results. 
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FIGURE 6.14 CD4+ cells are the major source of IFN-'Y production in Ag-

stimulated culture 

Splenocytes from five mf-infected animals were pooled and depleted of either CD4+ 

or CD8+ cells prior to restimulation in vitro with 10 Ilg/ml B. pahangi adult Ag. The 

efficiency of depletion was checked by FACS and in the experiment shown was 96% 

for CD4 and 86% for CD8. IFN-'Y (a) and nitrite (b) production at 96 hI's of Ag-

stimulated culture are shown. 
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6.3 Discussion 

The results presented in this chapter show that NO mediated apoptosis limits the in 

vitro proliferation of Ag-reactive CD4+ T cells from mf-infected animals. Elevated levels 

of apoptosis were observed amongst CD4+ lymphocytes from mf-infected animals in Ag

stimulated culture. Inhibition of iNOS activity rescued these cells from apoptosis and 

allowed the continued expansion of a population of CD4 hi proliferating cells. Such results 

demonstrate that cells from mf-infected animals are not irreversibly committed to undergo 

AICD upon restimulation with Ag and show that these cells can continue to proliferate 

given the right conditions in culture. 

The majority of the proliferative response seen in both groups of infected animals 

was accounted for by division within the CD4+ population. CD4+ cells from L3-infected 

animals showed clear evidence of Ag-driven proliferation, irrespective of iNOS inhibition, 

and cells from uninfected control animals showed only background levels of proliferation. 

In cultures containing proliferating cells a subpopulation of brightly staining CD4hi cells 

could be clearly identified, the majority of which had divided in response to filarial Ag. 

Furthermore the CD4hi population showed increased side scatter a characteristic of 

activated lymphocytes. Levels of Fas expression were found to be elevated within the 

CD4hi population in a fashion independent of IFN-), or NO and likely to reflect their 

activation status. CD4+ T cells from mf-infected animals were also shown to be the major 

source of IFN-)' production in Ag-stimulated culture. Taken together these results suggest 

that IFN-)' production leads to MO activation and production of NO which in turn 

suppresses proliferation by inducing the apoptosis of Ag-reactive T cells. In this way Ag

specific IFN-)' producing T cells may indirectly limit their own expansion. 
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It has recently been reported that T cells upregulate cell surface expression of CD4 

following encounter with their specific antigen both in vitro and in vivo. Following in vitro 

restimulation cells from animals immunised with sperm whale myoglobin were shown to 

upregulate expression of CD4. The resultant CD4hi population also expressed memory and 

activation markers (CD45RB1ow
, CD62L1ow

, CD69high and CD4high
). Separation and 

restimulation of CD4 normal and CD4hi cells revealed that all the Ag-reactive cells were 

contained within the CD4hi population (Ridgway, 1998). Analysis of the CFSE staining 

profile of CD4+ and CD4hi T cells from infected animals revealed a similar pattern of 

responsiveness. Although not tested in this study it would be of interest to determine 

whether the CD4 hi cells which develop in Ag-stimulated culture also display markers of 

memory and activation and whether cells from mf-infected and L3-infected animals do so 

at similar levels. Elevated levels of CD4 expression has also been used to select Ag

reactive cells from samples taken immediately ex-vivo (gating on the brightest 1 % of 

CD4+ cells). This technique has now been successfully used to isolate auto-reactive T 

cells from non-obese diabetic mice (Lejon, 1999). Such findings suggest that using CD4hi 

expression as a marker maybe a useful method of enrichment for Ag-reactive T cells. It 

would be of interest to systemically inhibit NO production during mf-infection, or to use 

infection of IFN-,,/R-I- mice, in attempt to determine whether NO also limits the expansion 

of Ag-reactive CD4hi T cells in vivo. It has been proposed that CD4 itself may act as a co

receptor through association with the TCR leading to enhanced signal amplification 

(Janeway, 1992); CD4 may also act to increase the avidity of T cell:MHCII interactions 

(Konig, 1996). In these ways increased expression of CD4 is likely to promote T cell 

activation. Interestingly it has recently been shown that besides playing an important role 

during Ag-presentation, CD4 may also regulate the susceptibility of T cells to apoptosis. 

Cross-linking of CD4 was shown to render resting T cells susceptible to Fas mediated 
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apoptosis and to induce the expression of Fas-L within the same population (Algeciras, 

1998). CD4hi proliferating cells from both mf-infected and L3-infected animals were 

shown to display enhanced levels of Fas expression. Both IFN-"{ and NO have previously 

been shown to regulate expression of Fas and/or Fas-L in a variety of cell types (Martins, 

1999; Stassi, 1997; Williams, 1998). However Fas expression was equally upregulated in 

CD4hi cells from both mf-infected IFN-"{R-/- mice and their wild type counterparts, 

suggesting expression is not under the influence of either NO or IFN-"{. 

Several studies have reported on the differential sensitivity of Th1 and Th2 cells to 

AICD. Whilst it has been suggested that the increased susceptibility of Th1 cells is due to 

enhanced levels of Fas-L expression (Ramsdell, 1994) other studies have reported 

equivalent levels of Fas and Fas-L expression on Th1 and Th2 cells and suggested that 

enhanced levels of FAP-1 (Fas-Associated-Phosphatase 1) expression in Th 2 cells 

selectively protects them from Fas-induced apoptosis (Zhang, 1997). Following murine 

infection with T. cruzi, IFN-"{ but not NO was shown to upregulate expression of Fas-L. 

Interestingly in vivo treatment of infected mice with AMG decreased levels of apoptosis 

whilst not affecting Fas/Fas-L expression suggesting that IFN-"{ induces NO dependent and 

independent mechanisms of apoptosis in this model of infection. The ability of iNOS 

inhibition to rescue CD4+ T cells from mf-infected animals from apoptosis in the presence 

of high levels of IFN-"{ suggests that NO mediated apoptosis is of primary importance in 

suppressing proliferation in Ag-stimulated culture. 

NO has been shown to induce apoptosis in a variety of cells types, and whilst the 

mechanism by which NO induces activation of the apoptotic pathway remains 

incompletely defined recent studies have identified several possibilities. The NO induced 

apoptosis of murine T cells is associated with an accumulation of the tumor suppressor 
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protein p53 (Fehsel, 1995). Expression of p53 can be induced by DNA damage, which 

may be directly induced by NO (Nguyen, 1992). Furthermore NO mediated inhibition of 

proteosome activity has been shown to result in elevated levels of p53 and induction of 

apoptosis in RAW 264.7 MO (Olockzin, 1999). In this fashion it is possible that NO both 

induces expression of p53 and prevents its degradation by inhibiting proteosome activity. 

Intriguingly it has previously been demonstrated that dividing cells respond to proteosome 

inhibitors by undergoing apoptosis whilst in non-dividing cells the same inhibitors 

displayed anti-apoptotic effects. Such differential effects may form the basis of one means 

whereby NO can selectively induce the apoptosis of activated dividing cells. 

Lissy et al (98) recently demonstrated that AICD occurs from a late 01 phase cell 

cycle checkpoint. Control of cell cycle progression is a highly regulated process involving 

both positive and negative regulatory proteins that function at specific cell cycle 

checkpoints. The late 01 checkpoint is a key regulatory point in determining whether a 

cell will proliferate or undergo apoptosis. Stimulated BrdU-Iabelled Jurkat T cells were 

shown to progress from S phase into 02/M and then into 01 before appearing in the 

apoptotic compartment suggesting that AICD occurs from the late 01 checkpoint (Lissy, 

1998). Positive regulators of cell cycle progression include regulatory cyclin subunits 

which bind and activate cyclin dependent kinase subunits. Cyclins generally display cell 

cycle dependent expression and progression through the late 01 restriction point is thought 

to require inactivation of the retinoblastoma tumor suppressor protein pRB via 

hyperphosphorylation by activated cyclin E:Cdk 2 complexes (Dou, 1993; Ezhevsky, 

1997). Most interestingly NO has recently been shown to prevent activation of cyclin

dependent kinase (Cdk)-2 in smooth muscle cells (Ouo, 1998). As Cdk-2 is a key regulator 

of the transition through the late 01 checkpoint it is interesting to speculate on the 
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possibility that NO may induce apoptosis by preventing the inactivation of pRB. In Ag

stimulated culture a significantly lower percentage of CD4 + T cells from mf-infected mice 

were found in G 1, as compared to cells from L3-infected and uninfected control animals. 

The lack of cells in G 1 was reflected in the increased number of apoptotic cells in these 

cultures, while the percentage in all other stages of the cell cycle were similar across 

groups. Inhibition of iNOS activity reduced elevated levels of apoptosis and caused a 

corresponding increase in the number of cells in G 1. Such results suggest that an inability 

of cells from mf-infected animals to exit G 1 may result in their death by apoptosis. The 

reversibility of this phenomenon demonstrates a critical role for NO which may 

potentially be realised at the level of cell cycle regulation. 

It has recently been demonstrated that NO can suppress the proliferation of human 

T cells by IFN-'Y dependent and IFN-'Y independent induction of apoptosis. Both normal 

and malignant human T cells ceased to proliferate and underwent apoptosis upon exposure 

to NO. T cells which evaded NO induced apoptosis were shown to overexpress both 

chains of the IFN-'YR rendering them susceptible to apoptosis in the presence of IFN-'Y 

(Allione, 1999). Such findings illustrate another mechanism whereby NO and IFN-'Y may 

synergise to promote apoptosis. 

Studies in several murine models of infection have suggested that NO may limit 

the expansion of activated T cells in vivo as well as in vitro (Dalton, 2000; Millar, 1999; 

Nabeshima, 1999). Indeed there is now a growing body of evidence to suggest that NO 

induced apoptosis eliminates activated T cells in both infectious and autoimmune diseases. 

It has recently been shown in murine infection with Mycobacterium bovis Bacille 

Calmette-Geurin (BCG) that IFN-'Y eliminates responding T cells in an NO dependent 

manner. During infection there is a large expansion of activated (CD44hi) cells in the 
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spleen which is followed by a rapid contraction of this population associated with 

increased T cell apoptosis. However, following infection of IFN-"{-I- mice activated 

CD44hi CD4+ T cells failed to undergo apoptosis and accumulated in large numbers. IFN-"{ 

mediated apoptosis could be blocked by removing adherent cells or inhibiting NO 

production (Dalton, 2000). 

Interestingly in two distinct models of autoimmune disease, wherein Thl responses 

were previously thought to be solely pathogenic, it has now been shown that the IFN-"{ 

mediated elimination of activated T cells has protective effects. Both IFN-"{-I- and IFN-"{R-

1- mice develop progressive and fatal experimental autoimmune encephalomyelitis (EAE). 

Exacerbated disease was associated with an enhanced accumulation of activated 

autoreactive T cells. EAE is also exacerbated in iNOS-I- mice and it was proposed that 

IFN-"{ induced NO mediated apoptosis of activated T cells is required to down-regulate 

responses and allow remission of disease (Chu, 2000). Similarly in experimental 

autoimmune uveitis (EAU) while administration of rIL-12 was expected to increase 

susceptibility, it was shown to increase resistance through the hyperinduction of IFN-,,{, 

initiating a negative feedback mechanism resulting in the elimination of pathogenic 

autoreactive T cells (Tarrant, 1999). Interestingly in a study on IFN-"{ dependent 

superantigen induced tolerance it has recently been shown that both NO and reactive 

oxygen intermediates contribute to the death of activated T cells (Cauley, 2000). Such 

findings suggest that the negative feedback mechanism previously described may 

constitute a mechanism of peripheral down-regulation during intense immune responses. 

The results presented here demonstrate that a similar mechanism of down

regulation is induced by filarial infection as CD4+ T cells from mf-infected mice are the 

major source of IFN-"{ and thus indirectly trigger their own NO mediated apoptosis. It 
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would be of interest to determine whether a similar mechanism is operative in vivo. 

Circumstantially, enhanced proliferation of cells from mf-infected iNOS-I- mice at early 

time points in culture (as shown in Figure 4.1) suggests that they may develop or maintain 

higher frequencies of Ag-reactive T cells than their wild type counterparts. Elevated levels 

of apoptosis in the spleens of mf-infected mice also suggest that this may be the case, 

although there is currently no evidence suggest this is linked to NO production (Jenson et 

al submitted). Most intriguing however are the results of super-infection experiments 

which showed that restimulation in vivo decreased the magnitude of the IFN-'Y response 

(S.2.S.ii). It is also interesting to note that repeated immunisation with mf-extract has also 

previously been shown to down-regulate Th1 responses (Pearlman, 1993b). 

NO mediated down-regulation of pro-inflammatory responses may be of particular 

importance in the face of high antigenic loads wherein such responses are more likely to 

be damaging. In this sense mf, which may be present at very high levels in the circulation 

of infected individuals, represent a considerable challenge. It is known that the presence of 

mf is associated with suppression of IFN-'Y production in human filariasis. Treatment with 

drugs which are largely microfilaricidal in nature (DEC/Ivermectin) restores both IFN-'Y 

and proliferative responses in some infected individuals (Lammie, 1992). Furthermore 

IFN-'Y production has been shown to correlate inversely with mf-density (Sartono, 1999). 

Such results suggest that Th 1 responses are enhanced upon reduction of the antigenic load. 

A similar pattern of responsiveness is seen in bancroftian filariasis where Th1 responses 

dominate amongst antigen-negative individuals (Dimock, 1996). It would be of 

considerable interest to determine whether or not NO mediated apoptosis of IFN-'Y 

producing cells occurs during human infection, and how, if at all, this may contribute to 

maintenance of the clinically asymptomatic state seen amongst microfilaraemic 

individuals. 
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CHAPTER 7 

Final discussion 

Lymphatic filariasis is a long term chronic infection characterised by a Th2 

dominated immune response and suppressed Ag-specific proliferation. While helminth 

infections are generally associated with development of Th2 responses it appears 

increasingly unlikely that strict application of the Th1/Th2 paradigm reflects the vagaries 

of natural responses (reviewed Allen, 1997). ll..-4 producing cells are greatly expanded in 

L.F. but IFN-y producing cells are also primed during infection and may be silenced under 

the influence of IL-lO (King, 1992/93) or other as yet unidentified factors. Ag-specific 

proliferative responses and IFN-y production are most profoundly suppressed in 

individuals with circulating microfilariae. This is reflected in the fact that Mf+ individuals 

have a lower precursor frequency of Ag-specific T cells, and in particular IFN-y producing 

cells than patients displaying chronic pathology (King, 1992). Such observations have long 

suggested an important role for mf in generating proliferative suppression and limiting 

development of Th 1 responses. 

Whilst there is a lack of good longitudinal data, the differential responsiveness 

seen amongst clinical groups suggest that the host/parasite relationship is highly dynamic 

and the immune response is likely to reflect this with both qualitative and quantitative 

changes over the course of infection. Murine models of infection have facilitated 

laboratory study and identified a variety of mechanisms by which filarial worms may 

influence the development of host responses. In particular the use of single stage infections 

has allowed the identification of stage-specific immunomodulatory mechanisms and 

revealed that infection with different life cycle stages elicits development of differentially 

polarised responses. Most intriguingly, it has been shown that mf, a life cycle stage 
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associated with the most profound suppression of IFN-y production in human infection, 

uniquely elicit development of a Th1-like response in mice (Lawrence, 1994). The ability 

of mf to elicit IFN-y production may appear counter-intuitive given the association 

between mf and suppression of IFN-y production in infected humans. However the results 

presented in this study demonstrate that the IFN-y response induced by mf is self-limiting 

in vitro, resulting in suppression of both proliferation and IFN-yproduction and suggesting 

one way in which the apparent dichotomy between mf-induced IFN-y responses in man 

and mouse may potentially be resolved. 

Upon in vitro restimulation, CD4+T cells from mf-infected animals produce large 

quantities of IFN-y leading to production of NO which in turn induces the apoptotic death 

of Ag-reactive T cells. There is now a growing body of evidence to suggest that the IFN-y 

induced elimination of activated T cells represents an important self-regulatory mechanism 

in both infectious and autoimmune disease (Cauley, 2000; Dalton, 2000; Gilbertson, 1999; 

Tarrant, 1999). This mechanism of down-regulation is particularly associated with strong 

IFN-y responses and/or high antigenic loads. Following infection with M. avium loss of 

IFN-y production (associated with high levels of T cell apoptosis), does not occur until 

bacterial numbers are greatly expanded suggesting that a threshold of stimulation may 

exist beyond which IFN-y production cannot be sustained (Gilbertson, 1999). While 

circulating mf clearly present a large antigenic challenge, the ability of mf to induce IFN-y 

production within the infected human is questionable. Single stage infection with mf is a 

uniquely experimental situation, as in natural infections exposure to L3, developing larvae 

and adult worms precedes exposure to mf, suggesting that Th2 responses are likely to be 

pre-established. Interestingly however, PBMC from infected humans, and splenocytes 

from infected BALBIc mice with an established Th2 response, retain the ability to respond 

216 



to IL-12 with IFN-y production (Mahanty, 1997; Pearlman, 1995). Following intra

peritoneal implantation of adult female worms which continually produce mf, IFN-y 

production by splenocytes is only observed in IL-4-/- mice (Lawrence, 1995). Interestingly 

however, following implantation of adult male worms, i.v. infection with mf induces an 

IFN-y response (Lawrence, 2000). Whilst the differences in these results may suggest that 

adult females are more suppressive than adult males they are also likely to reflect the 

effects of implantation upon APC in different locations. Following implantation of adult 

females, mf are restricted to the peritoneal cavity wherein it is known that adult worms 

exert profoundly suppressive effects upon APC function (Allen, 1996). Intravenous 

administration of mf more closely resembles the natural situation, wherein adults and mf 

inhabit distinct locations, and these results suggest that mf may induce IFN-yproduction in 

the face of an established anti-filarial Th2 response. 

Unlike murine Th2 cells, human Th2 cells retain expression of the IL-12~2 

receptor and can respond directly to IL-12 with increased production of both IL-4 and IFN

y suggesting that there may be a greater degree of plasticity in human as compared to 

murine responses (Hu, 1999). Although not addressed directly in this study, the IFN-y 

response seen following mf infection of both wild type and IFN-yR-/- mice strongly 

suggest that mf are potent inducers of IL-12. Furthermore using in situ 

immunocytochemistry IL-12 has been detected in the spleen, in the immediate vicinity of 

mf, shortly after infection (R. Lawrence pers. Comm.). Interestingly IL-12 has been shown 

to enhance production of IgG4 by PBMC from infected individuals (De Boer, 1997). IgG4 

is an indicator of active infection (Kwan-Lim, 1990), production of which correlates 

inversely with lymphocyte responsiveness (Yazdanbaksh, 1993) and is seen at highest 

levels amongst Mf+ individuals (Hussain, 1987). Whilst IL-12 is not a recognised 
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switching factor for IgG4 it may act to enhance production initially elicited by adult 

induced IL-4. These results suggest that it may be worthwhile investigating IL-12 

production amongst Mf+ individuals. 

It has recently been shown that high doses of Ag promote development of Th 1 

responses by upregulating expression of CD40 on T cells and its ligand CD40L on 

dendritic cells (Ruedl, 2000). Ligation of CD40 induces high level IL-12 production by 

DC and upregulates their expression of ICAM-1 (Cella, 1996) which further promotes Th 1 

development via its interaction with LFA-l (Ruedl, 2000). Whilst IL-12 promotes Th1 

development, at high levels it displays immunosuppressive effects, mediated via the IFN-y 

induced production of NO (Kurzawa Koblish, 1998; Lasarte, 1999; Tarrant, 1999). It is of 

interest to note that repeated immunisation with mf extract or infection with high doses of 

mf is associated with downregulation of IFN-y production in mouse models (Lawrence, 

1994; Pearlman, 1993b). In this sense it appears that suppression of IFN-y production is 

dependent upon chronic infection or repeated stimulation. In this study the results of 

super-infection experiments demonstrated that in vivo restimulation following secondary 

infection, with either mf or L3, significantly reduced in vitro IFN-y responses, further 

suggesting that repeated stimulation is associated with down-regulation of IFN-y 

production. Although the mechanisms underlying this phenomenon are currently 

unknown, apoptosis of Ag-reactive IFN-y producing T cells maybe one potential 

explanation. Interestingly it has been shown that a faster and greater loss of Ag-reactive T 

cells occurs in vivo following repeated administration of SEB than following a single dose 

(Leonardo 1991). It is known that the decrease in numbers of V~8+ T cells seen following 

injection of SEB is associated with the apoptotic death of Ag-reactive lymphocytes, a 

response which is enhanced by repeated restimulation. In the light of these results it is 
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interesting to note that when mf-infected animals are subsequently re-infected with live mf 

a secondary, more extensive wave of apoptosis is observed in the spleen (J. Jenson pers. 

comm.). It would be of interest to determine the effects of this on in vitro cytokine and 

proliferative responses. The apoptosis observed in the spleen at 12 d.p.i. (Jenson et al 

submitted) is clearly not associated with a complete loss of Ag-reactive IFN-y producing T 

cells as indicated by responses at 30 d.p.i. However as suggested by super-infection 

experiments and the in vitro results it may be that restimulation is necessary to achieve 

downregulation of IFN-y responses. It appears unlikely that downregulation of IFN-y 

production is associated with increased numbers of dead mf as it has been shown here and 

elsewhere (Lawrence, 2000) that dead mf do not inherently induce Th2 responses. 

The results presented in this thesis raise several interesting questions regarding in 

vivo responses during murine infection with mf. Particularly in relation to the CD4hi 

population of proliferating cells, expansion of which is limited in vitro by NO. Does a 

similar population develop following in vivo restimulation? If not, is expansion limited in 

an NO-dependent fashion as seen in vitro? Further experiments in IFN-yR-I- mice which 

are unable to respond to IFN-y with MO activation and NO production would be necessary 

to explore these possibilities. Further definition of the properties of these cells in terms of 

cytokine production and activation status would also help to establish their functional 

significance. In the light of the data assembled here the fate of Ag-reactive CD4+ T cells 

following in vivo restimulation is of considerable interest. Adoptive transfer of CFSE 

labelled CD4hi T cells, derived from in vitro culture, into infected I un infected mice 

potentially offers insight to this intriguing area. It would also be of interest to investigate 

the effect of in vivo restimulation on numbers of activated (CD44hi) T cells and to 
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determine whether NO has any influence upon their expansion (i.e. IFN-yR-I- vs wild 

type). 

Both murine and human studies have shown that in certain circumstances IFN-y 

production maybe suppressed under the influence of IL-10 (Mahanty, 1995; Oswald, 

1992b; Pearlman, 1993b) suggesting that not all IFN-y producing cells are lost during 

infection. Interestingly a study on the induction of peripheral tolerance indicated that 

apoptosis resistant Ag-specific T cells produced high levels of IL-10 (Zhang, 1996). 

Furthermore these cells failed to proliferate in response to subsequent restimulation and 

were capable of suppressing proliferation of other Ag-specific cells, a situation 

reminiscent of that seen in filariasis (King, 1993). Additionally, high level IL-10 

production is a characteristic of the recently described Tr1/Th3 subset of regulatory T cells 

(Groux, 1997). Intriguingly T regulatory cells have recently been isolated and cloned from 

an individual with patent O. volvulus infection demonstrating their potential importance in 

filarial infection (Doetze, 2000). 

A recent study, following lymphocyte responsiveness amongst B. malayi infected 

individuals over time, demonstrated that IFN-y production fluctuates most markedly in 

response to changes in parasite density whilst levels of IL-4 remain relatively stable 

(Sartono, 1999). This situation reflects the previous reports which have indicated that 

while levels of IL-4 production are comparable between clinical groups, IFN-y production 

is lowest amongst microfilaremics (Dimock, 1996; King, 1992). It is now known that 

production of IL-4 by CD4+ T cells requires several rounds of cellular division which act 

in concert with cytokine signalling to relieve epigenetic constraints upon IL-4 expression. 

In contrast IFN-y expression increases in frequency with successive cell divisions (Bird, 

1998). Furthermore whilst IL-4 production by differentiated CD4+ T cells is cytokine 

220 



autonomous, IFN-y production is highly cytokine regulated under the influences of IL-4, 

IFN-y and IL-12 (Hu-Li, 1997). Thus production of IFN-y may be more susceptible to 

modulation by such environmental factors than that of IL-4. This may, in part, account for 

its increased responsiveness to changes in parasite density. An alternative explanation may 

be that adult worms provide the main stimulus for IL-4 production whilst changes in IFN-y 

production are more reflective of the levels of circulating mf and consequently subject to 

more dynamic fluctuations. 

Most data from human infections have been generated using in vitro restimulation 

of PBMC with crude parasite extract and consequently are likely to reflect the influence of 

various mechanisms of immunomodulation. Whilst there has been no assessment of 

whether or not the proliferative defect seen in human infection is associated with elevated 

levels of apoptosis, the data presented here suggest this is an area worthy of investigation. 

As outlined above it is difficult to ascertain whether mf elicit IFN-y production in human 

infection and whether such a response could be down-regulated by elimination of IFN-y 

producing T cells as described here in vitro. It is conceivable however, that such a 

mechanism maybe operable in human infection and may serve to compound the Th2 

response in the periphery and prevent expansion of a potentially damaging pro

inflammatory response. Consequently it would be of interest to assess levels of 

lymphocyte apoptosis during human filarial infection both ex-vivo and following in-vitro 

restimulation. It has recently been shown that PBMC from S. mansoni infected individuals 

are capable of producing NO which displays anti inflammatory effects upon granuloma 

formation (Oliveira, 1998). Such findings suggest that NO may influence development of 

immune responses in human helminth infection. The results presented here also 

demonstrate a regulatory role for NO in limiting T cell responses. Whether or not the NO 
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dependent mechanism of apoptosis described here in the mouse model is relevant to 

human infection, inducing the apoptotic death of Ag-reactive T cells remains an attractive 

means of achieving peripheral tolerance and its potential role in human infection warrants 

investigation. 

Murine models have clearly demonstrated that there are a multitude of ways in 

which filarial worms can modulate host immune responses, several of which may be stage 

and/or site specific. In human infection the immunological situation is far more complex, 

influenced by various life cycle stages, in distinct locations, in varying numbers, at 

different times. The responses observed in in vitro studies are likely to represent the net 

result of various mechanisms of immune modulation operative in vivo. The onset of 

patency is a pivotal point in infection beyond which immune evasion strategies must be 

more widely implemented. Following mf-production the parasite is unlikely to rely on 

suppression in the immediate environment of the lymphatics to protect its assets in the 

periphery. Indeed the establishment of a circulating population of mf is the realisation of 

functional filarial infection and, as may be expected, is associated with the most profound 

form of immunosuppression. It appears likely that stage-specific effects play distinct yet 

complementary roles in immunomodulation, as suggested by studies in murine models. In 

this way L3 may initially induce development of Th2 responses, and adult worms create a 

profoundly suppressive effect in the immediate environment of the lymphatics, whilst mf 

additionally suppress proliferative and IFN-y responses throughout the periphery. 

The results presented in this study add the IFN-y induced elimination of Ag

reactive T cells to the list of immunomodulatory mechanisms which may be employed by 

filarial worms. Whilst "fighting fire with fire" in this way may appear a convoluted means 

of downregulating responses, host defence and parasite immune evasion strategies have 

evolved in intimate association during which any potential weakness may be exploited. 
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Hijacking mechanisms of suppression, which may be more commonly associated with the 

down-regulation of autoimmune responses, in order to induce what effectively resembles a 

state of peripheral tolerance would be an attractive stratagem to facilitate development of 

long term chronic infection. In this sense the potential ability of mf to employ host 

mechanisms to eliminate Ag-reactive T cells may represent the implementation of an 

intimate knowledge of host biology. 
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