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Abstract 

The environment in which cells find themselves is a complex, three dimensional 

one which provides a variety of inputs and cues capable of controlling and guiding cell 

behaviour. These environmental signals take a fertilised egg through development to 

become an adult human being made up of trillions of cells.  As such, the power of 

environmental cues to provide context and guidance to cell behaviour cannot be 

understated. Without attempting to directly mimic the in vivo environment, it has been 

shown that micro- and nanostructured surfaces can influence cell behaviour when we try 

and engineer biology in vitro. Identification and optimisation of powerful topographies is, 

however, tedious, and so this thesis provides techniques to expedite the discovery of new 

and potent surfaces to drive cell behaviour. 
 

A new fabrication technique has been developed which allows for the fabrication of 

gradients of feature height at both the micro- and nanoscale. This involves the use of 

plasma polymer gradients as novel etch masks alongside existing lithographic techniques. 

After fabrication and mass replication by injection moulding, use of these surfaces as 

platforms for the high-content screening of cell response is demonstrated. These can be 

considered high-content due to both the range of surface structures on a single sample, and 

also the microscopy techniques used to investigate cell response. Distinct cell types were 

found to respond differently to topographical cues, exhibiting varying degrees of 

alignment, proliferation, and organisation in both mono- and co-culture systems.  
 

A new cell culture device has also been developed and patented which ensures that 

screening experiments begin with an accurate and repeatable distribution of cells across the 

high content array. The impact of uneven cell seeding on studies involving stem cell 

differentiation was also investigated – showing the importance of improved control. 
 

Finally, the interaction of cells with such nanostructured surfaces is investigated 

using new super-resolution microscopy techniques. New methods are presented for the 

correlation of multiple nanoscale imaging techniques to view cell-nanostructure 

interactions with unprecedented resolution. This reveals insights into the way in which the 

cellular substructure is being modulated by underlying nanotopography. Indeed, it paints a 

picture which is remarkably different to the structure observed under a standard widefield 

microscope over the past 10 years. 
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Glossary of Abbreviations 

AFM   atomic force microscope 

ASM  angular second moment 

BME  β-mercaptoethanol 

CP   CellProfiler 

CPA  CellProfiler analyst 

DNA  Deoxyrybose Nucleic Acid 

EBL   electron beam lithography 

FACS  fluorescence activated cell sorting 

FA   focal adhesion 

ICP   inductively coupled plasma 

JWNC   James Watt Nanofabrication Centre 

ML  Machine Learning 

NiCr  Nickel-Chromium (60%-40% alloy) 

PCA  Principal Component Analysis 

Phold   holding pressure 

PMMA   poly(methyl methacrylate) 

RIE  Reactive Ion Etching 

SEM  Standard Error of the Mean 

SEM   scanning electron microscope 

TPFS   Trichloro(1H,1H,2H,2H-perfluorooctyl)silane 

UCS  Uniform Cell Seeder   
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1 Introduction   

1.1 Biomaterials & biomedical engineering 

Our understanding of materials and their interactions with biological systems has 

developed rapidly over the past few decades. In the modern era of healthcare, the first 

biomaterials were simply inert upon implantation – often with a rudimentary structural 

role. These were followed by second generation biomaterials which were not only inert, 

but also biodegradable to alleviate the requirement for revision surgeries for removal. 

Current developments in the third generation of biomaterials are focused on biologically 

active materials, which elicit a specific response from the host[1]–[3]. The inherent 

complexity of biological systems, which operate through diverse pathways with multiple 

redundancies built in, means that it is extremely challenging to develop an interface which 

behaves in a specified manner – or rather, drives the biological system to an optimal 

response. This is complicated still further by variation from person to person – our bodies 

can be as diverse as our personalities in how they react to medical intervention. From the 

early implant devices which were crudely designed and implemented, tissue engineering 

has grown since the 1960s into a diverse field, pushing forward our understanding of how 

the biology and engineering must intersect and work in synergy together. In step with 

developments in the field itself, micro- and nanofabrication techniques developed initially 

for the semiconductor industry have found near ubiquitous use in biomedical engineering 

laboratories[4][5]. We now find ourselves in a dynamic research landscape where new 

fabrication techniques are being developed and old ones re-appropriated to answer both 

practical and fundamental questions in biology. 

1.2 Background 

Biological systems interact with artificial polymeric materials in a complex, multi-

stage and iterative process of sensing and response[6]. The biological response at the 

cellular level to polymeric substrates has been studied at great length. However, this is 

often done on individual samples with a uniform coating of a given chemistry/topography. 

This results in experiments which are limited only to samples that the investigator can 

imagine – leaving potentially interesting samples or sample combinations hidden from use. 
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Subtle variations in surface properties can have a drastic impact on cell response, and 

therefore a considered and careful approach must be employed in surface design and 

fabrication. Following the example set by combinatorial chemistry and high-throughput 

screening applied to drug discovery by the pharmaceutical industry in the 1990s,[7] 

researchers are increasingly turning to similar methodologies in biomaterial design [8]–

[15]. This involves creating high-content samples for exploring the full sample space, 

usually taking the form of a highly multiplexed array platform, or a continuous variation of 

a single material property as a gradient. Creating such dense sample formats presents a 

series of unique challenges in both their fabrication and implementation. In the case of 

surface modification for biomedical applications, platforms must be created which offer 

broad variations in surface properties, and they must also be designed in such a way as to 

allow meaningful interpretation of often complex responses. 

Gradients seem to offer the ideal solution in terms of manufacture and sample 

variation. Gradients may be fabricated in 2D or 3D, however whilst 3D studies are 

generally considered to be more representative of the in vivo architecture of most 

biological systems, they present problems in terms of fabrication, data acquisition, and data 

analysis. For this reason, studies investigating cellular response to engineered surface cues 

are predominantly carried out in 2D in vitro systems. The use of semiconductor fabrication 

techniques, which have consistently increased in resolution since their inception[5] has 

allowed 2D surface patterning at length scales which now approach that of single 

molecules, and surpassed that of the single cell many years ago[16]. Chemical, mechanical 

and topographical features of a polymeric surface have all been shown to be capable of 

independently affecting cell behaviour and response to an engineered surface[6]. Gradients 

of each surface property can be fabricated independently or orthogonally to one another to 

create multiplexed parameter variations on a single substrate, Figure 1.1. Chemical 

gradients may range from a simple change in surface energy, to surface modification with 

proteins, functional molecules or peptides. Mechanical gradients are a modulation of a 

mechanical property such as the Young’s modulus of a substrate but may also encompass a 

change in the mechanical link between cell and surface – such as the tethering strength of 

adhesive ligands[17]. Topographical gradients present a variation of surface structure, 

which have been shown to be a powerful manipulator of biological response. Figure 1.1 

D-F depicts how gradients of surface properties may be combined into linear (D) 
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orthogonal (E) or radial gradients (F) which provide a means of comparing the interplay 

between two material factors in a biological response. 

 

Figure 1.1 Cells sense their environment through three main ‘columns’ of sensing: 

chemical, mechanical and topographical.  

Ease of fabrication, data analysis and interpretation makes the use of linear 

gradients most favourable. Single properties may be varied in a single direction, Figure 1.1 

A-C, or multiple may be varied in opposite directions to create a bi-directional linear 

gradient, Figure 1.1 D. Orthogonal variation of two parameters serves to create as many 

possible combinations of two surface parameters as possible. Radial gradients have surface 

properties which change continuously from a central point outwards, and are most often 

used when fabrication makes use of diffusion based processes from a single point 

source[9], [18]. These gradients are least favourable due to the difficulties associated with 

mapping cell response to corresponding surface properties. 

1.3 Gradient and array platforms 

The distinction between gradient and array formats as high-content screening 

(HCS) methods is an important one. A gradient is a continuous variation of a feature, such 

as structural dimension or surface chemistry. This feature changes ‗continuously‘ from one 

value to another, however its resolution is essentially defined by its nature – a gradient of 

chemistry may only change spatially in so much as its molecular structure allows. Arrays, 

however, are discrete variations in a surface parameter, separated or congruent on a single 

sample. These areas may be completely isolated from one another, or may exist on a single 

substrate and used in an open environment. Essentially, then, based on the property in 
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question, an array might have a fine enough resolution so as to offer a working resolution 

which is comparable with a continuous gradient. 

 

Figure 1.2 A graphical understanding of the literature. Collated data from 25 papers with at 

least 50 citations which use structured polymer microtopographies[19]–[29] or 

nanotopographies[30]–[43] to drive cellular response. Plotted alongside these are green and 

purple crosses, representing the range of topographical features single gradient samples 

used in this thesis. 

The  graphical comparisson of the literature presented in Figure 1.2 focuses only on 

structures produced by common semiconductor fabrication techniques, so as to simplify 

data comparisson – as each study was conducted with certain feature dimensions in terms 

of feature height and lateral dimensions. Similar means of comparissons may prove useful 

in the comparisson of, for example, biomaterial polymer chain length, surface energy, or 

mechanical properties. In this case, each paper is generally represented by one or two 

single points due to the limitations of fabricating individual, homegeneous samples. 

Alongside these data points, publications resulting from this thesis (nanopillar array[44] 

and dual microgradient array[45]) which seeks to more fully explore the sample space by 

using gradients of topographical features. Continuous variation of nanopillar height was 

used to investigate the differential response of fibroblast and endothelial cells to the 

surface, blue[44]. This is described in Chapter 4 of this thesis. Furthermore, the use of 
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dual topographical gradients – variation of microgroove depth, with orthogonally varied 

microgroove pitch – was demonstrated, green[45]. This is described in Chapter 3 of this 

thesis. This demonstrates the ability of gradient platforms to more fully cover the sample 

space, rather than limiting results to a small subset of individually fabricated samples. 

The key difference in understanding their use and implementation is that cells or 

molecules are free to move along or adsorb across a gradient platform, with cell motility 

yielding further information about how they interact with the surface. In an array platform, 

this is not possible – as cells or biomolecules interact with sample conditions which are 

isolated from each other, or at least separated spatially. There are benefits to each of these 

methods, and the impact of gradient or array formats should be carefully considered. 

Whether a continuous gradient or a microarray platform should be used must be taken into 

consideration, with Hook et al suggesting that gradients are most useful in optimisation of 

surface properties, whereas microarray platforms are preferable in the discovery of new 

cell-material interactions[10]. Nonetheless, gradients represent a significant improvement 

on discrete material tests for screening the relative change in properties such as adsorption 

of nanoparticles or proteins, and cell behaviour itself. 

The continuous nature of gradients can present a problem in experimental design, 

in that artefacts such as cell migration along the gradient and cell-cell communication 

across it are a unique part of the biological response. Some groups choose to instead 

prioritise the use of microarray platforms as these provide distinct variations in material 

properties and are therefore produce data which is easier to interpret. These difficulties are 

offset by advantages such as a lower cell number and culture media usage, reduced 

biological variation between conditions and reduced sample material usage – these are 

significant advantages when working with rare or problematic biological 

specimens/materials. 

1.4 Cell-surface interactions 

Polymer surfaces can broadly be divided into three groups, in based on their mode 

of action, Figure 1.1. They may provide topographical cues via their micro- and nanoscale 

architecture. Surfaces may also provide chemical cues which may comprise biomolecules 

directly tethered to the surface, or a tuned wettability which modulates protein adsorption. 
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Finally, their mechanical properties such as stiffness and rigidity can direct biological 

activity. This section will present a series of emerging fabrication techniques which allow 

the creation of high-content gradient platforms for all three classifications, including 

combinations of the three. 

Preparing and characterising individual samples with different properties is a time 

consuming and costly approach to finding polymer materials which are fit for purpose. 

Including multiple conditions on a single sample, in the form of either arrays or continuous 

gradients, can greatly expedite the characterisation of biological response to it. High-

content libraries of topographical motifs have  been demonstrated as powerful tools for the 

discovery of optimal surface topographies, with a single 2 cm × 2 cm chip containing 2176 

distinct geometric patterns generated algorithmically by combining three primitive shapes, 

fabricated by photolithography, and applied to the analysis of human mesenchymal stromal 

cells to these geometric combinations[46].  Simon and Gibson compiled an excellent 

review on combinatorial approaches to biomaterial design including both array and 

gradient formats[8]. Numerous other review articles are available for further reading[9]–

[15]. Genzer et all present a compilation of 24 innovative gradient fabrication 

methodologies, covering a broad range of functionalization methods for both polymeric 

and inorganic substrates.[9] Inorganic substrates such as silicon are often used as a 

substrate, which is functionalised with bioactive molecules. Whilst incompatible with 

direct applications in biological systems, the use of such substrates enables the screening of 

biological response to a variation in functionalization, which may then be translated onto 

compatible bulk materials[47]. In fact, the use of thin film polymer coatings alleviates the 

need for bulk materials to be fully compatible with prospective applications. 

Besides discussing the three cues listed above, one must also address how such 

gradient substrates are evaluated. Commonly they are simply discretised and analysed in a 

similar fashion to arrayed samples or platforms. In this respect, the use of gradients may 

seem counterproductive, if high resolution variations in surface parameters are simply 

reduced to single instances of a parameter, Figure 1.3. The strength of parameter gradients 

lies in the fact that a spatially discretised gradient may include surface parameters which 

may not have been included in a spatially discretised array. In addition, fabrication of a 

wide range of surface parameters in a single process may be faster and more reliable than 

fabrication of individual samples. 
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Figure 1.3 Continuously varied surface parameters must be discretised for analysis, both 

for linear gradients (A) or multidimensional/orthogonal gradients (B). This yields extensive 

multivariate datasets which can reveal the subtle changes in cell response to variation in 

feature properties. The sheer complexity of the datasets can also be a hindrance, as users 

must choose the correct way to interpret the full dataset. 

Cell culture studies have a theoretical maximum resolution of the spread of a single 

cell along the gradient axis. Whilst modern scanning stage microscopes and automated 

image analysis software makes this possible, the most common approach in the literature is 

to divide linear or two dimensional gradients into subunits of size L/n, where L is the total 

gradient length and n is the number of subunits[23]. This yields an inherent variation in a 

single subunit, which is often presented as a uniform value in the literature, masking 

underlying variation in surface properties and therefore cell response. A square imaging 

array, captured with a camera which has a rectangular field of view will also be 

disproportionately loaded in each datapoint with variation in one axis versus the other. 

Both linear gradients, Figure 1.3 A, and multi-dimensional gradients, Figure 1.3 B, must be 

divided into subunits for image analysis. 
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Despite increasing resolution of surface characterisation techniques allowing a finer 

determination of the variation of a given property along a gradient, the literature does little 

to address the methodologies used to segment biological results on gradients. The default 

spatial unit of measurement is frequently found to simply be the width of an image frame, 

for example images captured at 10x magnification are commonly 800 µm – 1000 µm in 

width. These images become individual datapoints, when in reality they contain an 

intrinsic variation across them, depending on the spatial rate of change of the underlying 

gradient. This results in a quantisation of the gradient in a semi-arbitrary fashion, and is 

particularly inflexible to tolerances in the imaging method. For example, using a motorised 

stage to capture congruent images across a linear or two dimensional gradient relies 

strongly on accurately aligning the substrate and ensuring uniformity in imaging locations 

across samples.  

The location of controls in investigations making use of gradient surfaces also 

merits some consideration. A surface gradient may occupy a given sample space, with 

blank control regions surrounding it. Our work on gradients of nanopillar height has shown 

differences in cell phenotype on flat regions which are adjacent to tall nanopillars versus 

short nanopillars[44]. Local migratory behaviours and cell-cell interactions influence cell 

response at these adjacent regions, as can be seen in Chapter 4 as an increase in cell 

number adjacent to one end of a linear gradient. Such effects, most prominent when 

comparing flat regions to a section of the gradient, must be considered as also having an 

influence on the patterned regions themselves. This can lead to situations whereupon scale 

up of a region of the gradient, after identifying it as driving a positive cellular response, a 

homogeneous sample covered in the same pattern does not elicit the same response. This 

inherent tendency for cross talk between cells on gradient platforms must be considered 

when interpreting results. Expansion of individual gradient points into larger homogeneous 

areas may not produce the same biological response, perhaps indicating that the complex 

gradient environment has a strong effect on the experiment. 

1.5 Gradient fabrication  

Fabrication of micro- and nanoscale topographies for biomedical engineering 

borrows a host of techniques from the semiconductor industry; however the materials used 

differ starkly. Patterns are often realised in silicon, making use of these semiconductor 
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processes, before transfer into biocompatible or biodegradable polymers. This has two 

benefits – cell interactions with engineered surfaces are analysed in materials which are 

more likely to be used in the body, and also many samples can be fabricated from a single 

high value master. Micro- and nanofabrication is an expensive pursuit, and so creating a 

single master from which many more substrates can be imprinted or thermoformed is 

vitally important. Not only has biomedical engineering made keen use of sub millimetre 

fabrication techniques, but biomedical engineering has also driven the development of new 

fabrication methods to answer biological questions, offering new insights for micro- and 

nanofabrication as a whole. 

In most cases, uniformity and homogeneity represent the gold standard in sample 

fabrication. Variability between experimental materials is recognised as a source of 

irreproducible results, slowing and distorting studies of cell-material interactions. As a 

result, there has been a vast deal of effort invested in ensuring that sample fabrication 

schemes are consistent and reproducible. This has meant that until relatively recently, there 

was little work available on the controlled fabrication of non-uniform gradient substrates. 

There has, however, been a recent increase in the reporting of new methods for the 

fabrication of gradient surfaces – encompassing chemical, topographical and mechanical 

modifications of a range of materials[10], [48], [49]. Such samples are viable alternative to 

groups of individual samples as they can provide a more complete variation in a property, 

such as hydrophobicity. Conducting a full experiment on a single sample also reduces 

problems associated with biological variability between large numbers of samples. 

1.6 High-content screening formats 

Fabrication of samples with a single surface structure or chemistry makes 

optimisation of these features a laborious process. Borrowing from techniques used in the 

pharmaceutical industry in high-throughput screening of drug compounds, there is a 

growing interest in creating surfaces with a high number of different parameters on a single 

sample, either through arraying or the use of continuous gradients. This section will 

describe the current state of the art, and the new fabrication methods which have been 

developed to address these questions. 
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Figure 1.4 Polymer gradient fabrication techniques.  

Figure 1.4 shows a range of gradient fabrication methodologies. A: sample 

immersion and removal from a solution of monomer, solvent or etchant – creating a 

gradient based on retraction rate. B: plasma polymerisation excited by RF glow discharge 

under a diffusion mask, yielding a decrease in monomer concentration into the channel 

which translates into a variation in deposited film thickness or chemical composition. 

Plasma polymer gradients may be used in their deposited state, B, as wettability 

gradients[50], [51], or they may be used as sacrificial masks in a dry etching process to 

transfer a gradient of etch depth into a substrate, C[44], [45]. Monomers with reactive 

groups such as carboxyl[52] or amine groups may be functionalised after deposition with 

biomolecules such as proteins or short chain peptides[53], D. E: polymer microspheres 

annealed on a temperature gradient have a continuously varying crystallinity across the 

sample[54]–[56]. F: greyscale lithography or localised UV irradiation can be used to 

deliver a gradient of light across a photoactive substrate[47], [57]. G: microfluidic mixing 

devices allow precise mixing of monomer solutions or suspensions of biomolecules into 

gradients on a surface[58]–[62]. 
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Polymer gradients may be classified in terms of properties such as their mode of 

interaction with a biological system, their dimensionality, and their range (either steep or 

shallow). An overview of fabrication methods are presented below in Table 1.1. 

 Fabrication Method Gradient Type Length Scale Speed Ref 

C
h

em
ic

a
l 

Plasma polymerisation 

under a diffusion mask 

Wettability / surface 

functionalisation 
Up to 20 mm Moderate 

[52], [63]–

[66] 

Microfluidic mixing of 

component solutions 

Surface 

functionalization 
10 µm to 1 mm Slow [58]–[62] 

Substrate movement 

through a vessel 

Wettability / surface 

functionalisation 
Up to 10 mm Fast [67]–[69] 

T
o

p
o

g
ra

p
h

ic
a

l 

Direct write lithography Micro- or nano Up to 10 mm Slow [23] 

Grey scale lithography Micropatterning Up to 10 mm Fast [47], [57] 

Annealing on a 

temperature gradient 

Surface roughness / 

feature depth 
Up to 10 mm Moderate [55], [70] 

Plasma polymer thickness 

gradient, used as 

sacrificial etch masks 

Feature depth Up to 10 mm Moderate [44], [45]
 

M
ec

h
a

n
ic

a
l Curing under UV or 

thermal gradients, multi-

layer lithography 

Elastic Modulus Up to 10 mm Moderate [71], [72] 

Microfluidic mixing Elastic Modulus 10 µm to 1 mm Slow [58] 

Table 1.1 An overview of fabrication methods for gradients of surface chemistry, 

topography and mechanical properties. This thesis focuses on the fabrication and 

implementation of topographical surface gradients, but various aspects of experimental 

procedure and data acquisition/analysis are applicable to all gradient formats. 

1.7 Aims and outcomes of the thesis 

The concept of investigating biological response to engineered surfaces has been 

reviewed in this chapter. Considerations of experimental design, substrate fabrication, cell 

culture, data acquisition and data analysis/processing will be explored throughout the 

remainder of this thesis. This body of work offers new approaches for biomedical 

engineering going forward, in fabrication, microscopy and data analysis/interpretation. 
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The aims of this thesis are as follows: 

 Develop new fabrication methodologies to open up the dimension of feature 

height/depth for analysis by gradient screening on gradient platforms. New 

semiconductor fabrication processes are required, which are characterised and 

repeatably demonstrated. 

 In the application of surface gradients as screening platforms, experimental procedures 

will be standardised to ensure repeatability across experiments, users and labs. 

Development of new cell seeding apparatus will allow reproducibly uniform seeding 

across gradient/array platforms as well as for seeding of cell populations which are 

sensitive to local density variations. 

 Use high-content imaging to develop new ways to interpret biological datasets 

acquired on surface gradients. Making use of modern scanning stage microscopes and 

open source image analysis suites this thesis will demonstrate new avenues in 

analysing biological response to topographical cues. These methods will have 

potential application in numerous other cell based studies. Furthermore, this thesis will 

move towards single cell resolution in gradient screening studies, with discussion on 

the practicalities and feasibility of such an aim. 

 Finally, emerging super-resolution microscopy techniques such are used to delve 

deeper into the relationship between the cell and topographical cues. 

1.8 Structure of the thesis 

This thesis is arranged as a series of experimental chapters, detailing four key 

pieces of work conducted over the past three years, not necessarily presented in 

chronological order. It was common to develop new understanding and analysis skills as 

time passed, allowing me to re-visit old datasets and find new insight. This is particularly 

so in the case of Chapter 4, in which I returned to a published dataset to apply new 

multivariate analysis methods. 
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Each experimental chapter begins with a grey factsheet, detailing the key findings, 

scope of the experimental work and contributions which made it possible. This is followed 

by an overview/introduction to the problem at hand, and a discussion of specific methods 

employed in solving it. Results are then presented, and are finally followed by discussion 

of their meaning and prospective relevance to the field as a whole. 

Chapter 2 describes the materials and methods which were used over the course of 

the project, including theoretical explanations where appropriate and considerable process 

development has been done as part of the project. Chapters 3 & 4 describe work which 

was published over the course of the project in Small[45] and Nano Letters[44] 

respectively. These chapters describe two key results which were not previously reported – 

firstly the fabrication of continuous gradients of feature depth/height on injection moulded 

polymer samples. Secondly, the use of machine learning for label free segmentation of co-

cultured cells is shown. Both of these chapters demonstrate an increase in the potential 

yield of a single experiment – allowing multiple cell types and a range of surface 

properties to be investigated on a single sample, including enhanced information such as 

the interplay between two cell types as well as their individual response. 

Chapter 5 details the invention of a new device for use in cell culture studies, 

addressing a fundamental problem which stems from variability between users. The 

concept of the device is described, along with design considerations for usability and 

experimental proof of efficacy. Subsequently, the effect of improved seeding density on 

the differentiation of stem cells is investigated. The final experimental Chapter utilises 

emerging microscopy techniques to further investigate the behaviour of cells on engineered 

substrates. 

Finally, Chapter 7 draws conclusions and outlook, assessing the work completed 

and its likely impact on the wider research community – along with a critical appraisal of 

any omissions or shortcomings in the work including suggestions for future work.  
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2 Materials & methods 

This chapter describes the core methodologies which have been used throughout 

the thesis. Further methods developed for, or specific to, the experimental work will be 

included in Chapters 3-6. 

2.1 Micro- and nanofabrication 

Micro- and nanofabrication techniques employed by the semiconductor industry 

have found prolific use in biomedical engineering, and are now near ubiquitous in some 

form or another in labs across the world[5], [16]. The ability to fabricate structures on the 

same length scale as biological systems allows us to directly interface with and manipulate 

them. There are, however, specific challenges to be addressed in the way fabrication 

techniques are deployed. As compared to semiconductor research, i.e. fabricating a small 

number of novel transistor designs followed by testing of electrical characteristics, 

fabrication for biomedical studies requires large sample areas and sample volumes. 

Furthermore, biocompatible polymeric materials are preferred over silicon, meaning that 

micro- and nanopatterns must be transferred from silicon to polymer for application.  

The basic fabrication paradigm employed in this thesis was: 

 

Figure 2.1 The fabrication flow begins with the lithographic definition of a pattern on a 

silicon/quartz substrate. Pattern transfer by reactive ion etching is carried out with soft 

(PMMA), hard (NiCr) and novel (ppHex) etch masks. An inlay for injection moulding is 

created by imprinting the patterned master substrate into an SU8 layer on a polymeric 

substrate (Cirlex™). This is used as a die for mass replication by injection moulding. 

Pattern fabrication 
on silicon/quartz 

•Photolithography 

•E-beam lithography 

•Metal lift-off 

•Etching into substrate 

Inlay fabrication for 
injection moulding 

•UV / thermal 
nanoimprint 

•Cure 

•Hard Bake 

•Anti-stiction coating 

Mass replication 

•Injection moulding 

•various polymers 

•1,000+ samples per 
day 
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All substrates were initially prepared by the same process, with the standard size 

used being a 25 mm x 25 mm piece. Silicon substrates (PI-KEM, UK) were cleaved from 

4-inch wafers using a wafer scribe tool. Quartz substrates (Newcastle Optical, UK) were 

purchased pre-cut. Substrates were thoroughly cleaned by 5 min stepwise sonication in 

Opticlear, acetone, methanol and isopropanol before blow drying with nitrogen. A 

dehydration bake at 180°C for 2 h minimum ensured the surface was free from moisture 

before further processing. 

More detailed information on the micro- and nanofabrication processes used to 

create high-content screening surfaces is presented in Chapters 3 &4 respectively. 

2.2 Injection moulding 

 

Figure 2.2 Illustration of an injection moulding machine configuration and standard 

operation process. Polymer beads are melted (1) and the polymer injected to fill a cavity (2) 

which is packed at high pressure and allowed to cool (3) before being opened and the part 

ejected (4). Image adapted from[73]. 

High volume fabrication of plastic parts by injection moulding has transformed the 

design and manufacture of plastic commodity parts. Its ability to replicate surface structure 

down to the nanometre level in biocompatible polymers makes it an ideal process for 

biomedical engineering. Micro- and nanopatterned substrates described in this thesis were 

fabricated in polycarbonate by injection moulding. Whilst the injection moulding process 

is most commonly associated with mass replication of identical parts, i.e. optical media, 

methods have been developed to allow for prototyping of a multitude of patterned 

surfaces[74]. Optical media are produced using a nickel shim insert, allowing a single tool 
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to produce a variety of parts with a similar shape but differing surface structure. Nickel 

shims can be readily created from semiconductor substrate materials such as silicon, for 

both injection moulding and nanoimprint applications.  

Whilst there are numerous types of injection moulding machines, Figure 2.2, their 

operation follows a broadly similar process as follows. Plastic pellets are placed in the 

hopper, falling through a cooled feed throat into a heated barrel. A linearly actuated screw 

turns, pushing the pellets along the screw. These pellets melt from a combination of barrel 

heating and shear heating of the material as the screw tapers towards the nozzle. The 

injection chamber at the head of the screw then fills with molten polymer which is well 

above its glass transition temperature and therefore readily flowable. The tool is clamped 

shut, sealing the cavity, and the screw is pushed forward by either by hydraulic or 

electrical actuation.  The cavity is filled, and the screw is drawn back to fill the injection 

chamber with another polymer shot. After a period of cooling, the mould is opened, and 

ejector pins move forward to release the part. These are retracted, and the process is 

repeated until the production target is met. 

Material Melt (°C) 

Nozzle/z1/z2/z3 

Tool  

(°C) 

Injection 

speed (cm
3
s

-1
) 

Holding 

pressure (bar) 

Cooling 

time (s) 

Polycarbonate 

OD2015 

280/270/260/250 80 50 1000 5 

Polystyrene 

Total 1810 

260/250/240/230 40-60 50 1000 5 

Table 2.1 Standard parameters for injection moulding two materials used in this thesis 

2.2.1 Mass replication of polymeric substrates 

Micro- and nanopatterned samples were replicated in polycarbonate (Makrolon 

OD2015) by injection moulding (Victory 28, Engel GmbH). The polymer pellets were 

dried for three hours under vacuum at 110°C prior to use, and processed with a melt temp 

of 280°C and a tool temp of 80°C. To date over 1,000 samples of both the micro- and 

nanopattern gradients, discussed in Chapters 3 & 4 of this thesis respectively, have been 

moulded with no visible evidence of inlay degradation. It should be noted that in the work 

of Dr John Stormonth-Darling creating more challenging nanostructures there was a build-

up of polymer in the inlay which was removed periodically in acetone.[75] 
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2.3 Cell culture 

Multiple cell culture systems were used over the course of this PhD, including 6 

cell types in monoculture on patterned surfaces, as well as co-cultures. Immortalised cell 

lines were preferred to primary cultures due to their availability and relative ease of use in 

preliminary screening studies. 

Cell Type Description Media Studies/usage 

hTERT-BJ1 Human fibroblast cell 

line 

DMEM Response to nanopillar gradient 

Response to microgroove gradient 

Uniform cell seeding 

LE2 Murine lung capillary 

endothelial cell line 

HAMS Nanopillar gradient 

Microgroove gradient 

Uniform cell seeding 

MDCK Canine epithelial cell 

line 

DMEM Response to microgroove gradient 

MG63 Human 

Osteosarcoma cell 

line 

DMEM Machine learning control 

MEF Mouse embryonic 

fibroblast cell line 

DMEM Super-resolution microscopy 

 

SA121* Human embryonic 

stem cells (hES) 

DEF-CS™ 

500 

Uniform cell seeding 

Table 2.2 Cell types used throughout this thesis. *Work using SA121 cells was conducted by 

a collaborator in Denmark (cell culture & imaging), with data analysis and presentation 

forming part of this thesis. 

Cell lines were obtained from existing low passage stocks within the Centre for 

Cell Engineering, University of Glasgow, and from the Sheetz Lab, Columbia University. 

Cell lines were cultured up to passage 25 before being discarded and fresh aliquots 

revived. Studies carried out in collaboration with Camilla Rasmussen, a PhD student and 

collaborator from Denmark, were done with commercially acquired human embryonic 

stem cells which were differentiated towards the pancreatic endoderm by a proprietary 

protocol (Novo Nordisk & DTU, Denmark). 
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Cells were seeded onto injection moulded parts using uniform cell seeder (UCS) 

devices and allowed to settle in the flow hood for 10 min to prevent fluid movement 

redistributing cells over the topography. The UCS device and its operation is described in 

detail in Chapter 5. Culture vessels were then moved to the incubator to allow full 

attachment of cells to the surface. After 1 hour, 4 ml of fresh media was added to each well 

and the UCS removed. Substrates were incubated at 37°C in 5% CO2 atmosphere. Media 

was changed after 24 h, and every 48 h thereafter until the termination of experiments. 

Media formulations are included in the appendices.  

2.4 Microscopy 

A variety of microscopy techniques ranging in resolution and complexity were used 

in this thesis to screen cellular response to micro- and nanostructured surfaces. Over the 

course of the project, the resolution at which cell-surface interactions were investigated 

was improved from initial experiments using flatbed scanners which were crudely capable 

of detecting a single cell, to emerging super-resolution microscopy techniques with 

resolution approaching the single molecule level.  

 

Figure 2.3 Cell response to nanostructured surfaces was interrogated over a range of length 

scales – revealing not only the behaviour of whole cell populations, but also changes in cell 

morphology within such populations, and also the structure of subcellular components 

such as focal adhesions. 

To interrogate the cellular response to micro- and nanotopographies produced in 

this PhD, advanced microscopy techniques were used rather than biochemical analysis. 

Microscopy is the method of choice as it allows correlation of individual cell phenotype 
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with the underlying micro- or nanotopography. In the case of surface gradients, a 

motorised stage was used to capture large areas of the samples. Emerging super-resolution 

microscopy techniques were also employed to image cellular interactions with 

nanotopographies – with resolution approaching the single molecular level and showing a 

heterogeneity of cell response to nanostructured surfaces at the sub-micron level. 

2.4.1 Immunohistochemistry 

After culture, samples were washed twice in 1x PBS followed by fixation in 4% 

paraformaldehyde at 37°C for 10 min. After fixation they were rinsed once more in 

1x PBS. Cells were permeabilized with a 0.1% Triton-X 100™ solution for 10 min at 4°C 

and blocked in 1% bovine serum for a further 1 h at 4°C to reduce non-specific binding. 

Substrates were then incubated with primary antibodies (i.e. goat anti paxillin diluted 

1:500) overnight at 4°C. Substrates were washed three times with 1% Tween-20 on shaker 

set to slow swirl for 5 min, followed by incubation at 4°C with a secondary antibody (i.e. 

Alexa-488 anti-goat diluted 1:500) and a cytoskeletal marker (i.e. rhodamine-phalloidin 

diluted 1:1000). Substrates were washed three more times, and mounted by inverting onto 

suitably sized #0 coverslips using a mounting media containing DAPI to further stain 

nuclear DNA. 

The full staining protocol is included as an appendix. All immunohistochemistry 

was carried out using the ‗staining buffer‘ described in the appendix, with special thanks to 

Dr Thomas Iskratch (Columbia University, New York) for the formulation. Reagents were 

obtained from Sigma Aldrich, primary antibodies obtained from Abcam, and fluorescent 

probes from Life Technologies. 

This immunostaining protocol was found to be effective for the majority of 

labelling experiments conducted over the course of this PhD. The actin cytoskeleton was 

labelled using both rhodamine-phalloidin and also alexa-488 conjugated phalloidin. 

Antibodies for focal adhesion component proteins such as vinculin (Invitrogen: 700062) 

and paxillin (Invitrogen: 44-1022G) were also used successfully with this protocol. 

Immunostaining of another focal ashedion protein of interest, talin proved more difficult, 

with multiple experiments failing despite variation of fixation and staining parameters 

including methanol fixation. Successful staining has been reported in the literature[76], 
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however it is often noted that immunolabelling of talin can be difficult, with even gentle 

fixation cross linking focal adhesion plaques and preventing antibody binding to the target 

epitope. Failure to develop a working protocol within the time available undoubtedly left 

some interesting avenues of investigation unchecked. 

2.4.2 Correlative microscopy 

Registration of fluorescent images and SEM micrographs was carried out by adding 

fiducial markers to the sample after fixation at a density of 5x10
6
 cm

-2
. This gave 

approximately 10-15 fiducial markers within the 20 µm x 20 µm field of view of the 

imaging microscope. TetraSpeck microspheres (Life Technologies: T-7279) with a 

diameter of 0.1 µm were incubated at room temperature on the sample, readily adsorbing 

to both the polymer surface and also the cell membrane. This adsorption appeared to be 

strong enough to withstand sample processing for both immunofluorescent and SEM 

imaging. Some beads were visibly lost between imaging modes, however sufficient beads 

remained to allow for image registration. Other methods are reported in the literature, such 

as the use of gold nanoparticles to register images[77] or fiducial free methods, 

transforming images into sparse representation models for registration[78]. 

2.5 High-content image processing 

Automated image analysis software has been used extensively throughout this PhD 

to measure and quantify cell response and distribution on micro- and nanostructured 

surfaces. New methods have been developed which make use of multivariate datasets 

which describe cell morphology on micro- and nanostructured surfaces. 

Starting with a dataset comprising three channel images of, for example, the 

nucleus, cytoskeleton and a protein/marker of interest, the location and shape of individual 

cells can be determined by stepwise detection. There is a reason this combination of 

images works so well, and it is to do with the levels of contrast available in defining the 

structures of interest which are being measured against the background. With a robust 

method of distinguishing a cell and its components from both the background and 

neighbouring cells, a multitude of characteristics of the cell can be measured. Microscopy 

data contains a wealth of information which is rarely exploited in full by researchers – 
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choosing to collect qualitative data, when in fact a rich multivariate dataset can be 

generated in a relatively similar timeframe. 

The biology of eukaryotic cells fortuitously 

lends itself to the detection of individual cells 

in microscopy data. The various subcellular 

compartments provide distinct objects within 

the cell which stand out clearly from the 

background, i.e. nuclei which can be easily 

labelled by staining of nuclear DNA. These 

compartments can be labelled and then 

detected – essentially providing a coordinate 

within each individual cell. It is then simply a 

case of expanding this starting object outwards 

to detect the edge of the cell by thresholding 

another image, in which a cellular structure which covers the majority of the cell is stained. 

The actin network of the cell cytoskeleton is an ideal candidate, as it extends almost 

completely to the cell edge. After detection of the full cell body measurements can be 

made that describe both the structure of these cellular components and also the presence of 

various protein markers within the cell in terms of fluorescent intensity. 

The CellProfiler software package allows the sequential execution of these steps, 

automatically pairing image sets together, detecting objects, making measurements and 

exporting data. Whilst the CellProfiler development team has created a versatile package 

which can be used to extract meaningful data from even poor quality images, every effort 

should be taken to capture high quality microscopy data. Confocal microscopy and TIRF 

systems provide excellent images with very little background interference – making 

detection of cell and object edges a relatively simple task. If only standard wide field 

immunofluorescence techniques are available, then every care should be taken to correctly 

calibrate and setup the microscope. This means alignment of the light source to provide a 

flat field illumination, minimising parasitic background light and contaminant particles on 

the sample (which often autofluoresce and interfere with measurements), and also 

maintaining consistent exposure and gain levels on the image capture device to limit noise 

in the images. 

Figure 2.4 Structure of eukaryotic cells 
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2.5.1 Image processing example  

In this example, a long term culture of hMSCs on polymer substrates has 

culminated in their fixation and staining for a protein of interest, CD271, which is 

indicative of stem cell phenotype. This data was reported in a journal article[79]. 

 

 

DNA 

Nucleus 

 
This stain brightly illuminates the 

cell nucleus, providing an easy to 

threshold point within each cell. 

 

This image shows a high level of 

background illumination, however 

the nuclei can still be detected 

against this with ease 

 

 

F-Actin  

Cytoskeleton 

 
This stain gives broad definition to 

the cell, whilst also providing useful 

information on the structure of the 

cytoskeleton. 

 

Excellent signal to noise ratio against 

the background makes this image 

simple to threshold. 

 

CD271 

Protein of Interest 

 

Various intercellular proteins 

may be labelled, and their 

prevalence in a sample 

quantified in terms of 

fluorescent intensity.  

 

The low signal strength in this 

image makes standalone 

quantification near impossible. 

Table 2.3 The properties of individual fluorescent channels determine how they are 

processed 

50 µm 
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Figure 2.5 Automated detection of cells in fluorescent micrographs. Cell nucleus and body 

are detected, and outlined in white. This allows for detailed measurement of cell features 

and shape, including the intensity of protein staining within the cell area. Arrows indicate 

inaccurate detection of the cell perimeter. In this case, thin fillopodial protrusions have been 

excluded from detection as part of the cell body due to the processing settings.  

After detection of both nuclei and the cell body, outlines can be drawn to assist 

with calibration and confirmation of appropriate detection. It is evident that this is a 

powerful software tool. Nuclei have been successfully identified despite a challenging 

source image, and the location of the nucleus has subsequently been used as a seed point to 

detect the cell body using the cytoskeletal image. This enables remarkably accurate 

dividing lines to be drawn between objects, if the program modules are properly 

configured to recognise the motifs present when cells meet, and also to cope with the cell 

edge in instances where there is no distinct change in intensity. 

Creating a pipeline which can successfully handle the different types of 

thresholding requirement, even within a single image, is vitally important in maximising 

the data generating potential of CellProfiler. The faint levels of CD271 staining in this 

image set are measured as a function of pixel intensity within the cell. This creates data 

which is immediately more relevant when compared to global image averages, as it can be 

used to define protein expression per cell, and to remove user bias introduced during 

Area: 917 µm2 

Perimeter: 263 µm 

Cell-Cell contact: 8 % 

CD271 Intensity: 140 a.u. 

50 µm 
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microscopy. In terms of the efficacy of automated detection and measurement, the thin 

filopodial protrusions which have not been detected are a missed opportunity (Figure 2.5, 

arrows). The frequency, size and direction of such protrusions may be an integral part of 

the phenotype of a given cell type under a given experimental condition. 

The question of user bias is an important one. It undoubtedly manifests itself in any 

microscopy study where image acquisition is not automated, as the user is faced with the 

choice of how to frame cells within an image. As such, studies based solely on microscopy 

should be viewed with a critical eye, and perhaps considered as ‗studies of the good 

looking cells‘ rather than as being representative of the full picture. 

2.5.2 Common settings, issues & solutions 

Images are segmented by thresholding 

based on pixel intensity values – i.e. a crude 

value is taken, and all pixels with a higher 

intensity are classified as within an object, and 

all pixels below the threshold are classified as 

outside it. 

Figure 2.5 shows an image of a cell 

which has been stained for nuclear DNA, and 

imaged using a fluorescent microscope. We can 

see the higher intensity of the nucleus, along 

with the background intensity of the cell and the 

image background itself. These regions of the 

image have distinct intensity values, as shown 

by computing the average intensity of three 

areas of interest around the cell. When this 

image is thresholded, based on the average 

intensity in the nucleus being 0.195, and the 

surrounding cellular background having an average intensity of 0.103 – a threshold value 

between these two should allow detection of the nuclear structure. 

Figure 2.6 Both subcellular structures 

and the cell body itself can be 

automatically extracted from an image by 

thresholding. 

30 µm 
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Table 2.4 shows the impact of the thresholding value on detection of subcellular 

objects, and gives an indication of how to determine whether the chosen threshold is being 

calculated as too lenient, or too strict. A lenient threshold is characterised by the inclusion 

of excess area around the object in a jagged pattern, as nearby pixels with a high intensity 

are mistakenly included in the object. A strict threshold results in an underestimation of the 

object perimeter, outlining regions of marginally higher intensity within the target object 

itself. 

Very Lenient Lenient Correct Strict Very Strict 

     

Threshold 

0.100 

Threshold 

0.125 

Threshold 

0.150 

Threshold 

0.188 

Threshold 

0.200 

Correction 

Factor 

0.8 

Correction 

Factor 

1 

Correction 

Factor 

1.2 

Correction 

Factor 

1.5 

Correction 

Factor 

1.6 

Table 2.4 Objects are detected by setting an intensity threshold after rescaling images from 

0 to 1. Poor detection can lead to spurious measurements of, for example, nuclear 

size/shape as shown above. 

 

 

  

30 µm 
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3 Fabricating continuous gradients of feature 

depth 

Background: Discovery of new structured surfaces for 

biomedical applications is often constrained by the inability 

to fabricate arrays or gradients of feature depth on a single 

sample. Analysing cell response at a single depth leaves 

potential targets unexplored. There is a need to expand the 

number of topographical motifs on a single sample to speed 

up discovery and characterisation. 

Results: Plasma polymer films are deposited and etched as 

a unique method of fabricating continuous gradients of 

feature depth. Both deposition and etching processes are 

optimised, with continuous gradients from flat up to a 

depth of 5 µm demonstrated with a process capable of 

ranges over 100 µm. A polymeric microgrooved substrate 

with orthogonal variation of pitch and depth is created, 

presenting a wide variation of groove dimensions on a single 

substrate. Groove pitch ranges from 5 µm to 100 µm, whilst 

groove depth progresses from flat to 1 µm. Fibroblast 

alignment increased rapidly for groove depths over 500 nm, and was highest when these grooves 

were closer together. Endothelial cells did not align unless constrained by grooves on either side, 

but appeared to proliferate rapidly in a ‗sweet spot‘ of depth and pitch to form a confluent layer. 

Conclusions: The depth and pitch of microgrooves has a distinct effect on the behaviour of 

different cell types. Combinations of depth and height were identified which could either drive 

fibroblast alignment or increase endothelial/epithelial growth into a confluent monolayer. The 

conditions required for fibroblast alignment were distinct to those required for endothelial cell 

alignment – suggesting different mechanisms are at play. 

Experiments: 
   Length scale:    microtopographies  

   Cell type:          human fibroblast (hTERT-BJ1),  rat endothelial (LE2), canine epithelial (MDCK) 

   Analysis:          flatbed scanner & 10x immunofluorescence images 

 

Output: 
This work was published in Small [45]. 
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3.1 Introduction  

Lithographic techniques developed for the semiconductor industry are the subject 

of painstaking development to minimise non-uniformity across many thousands of wafers. 

This limits the tools which are available for the creation of surfaces to explore the full 

parameter space when investigating cell response to structured surfaces. Creating many 

individual samples, each with a separate topography, simplifies fabrication but complicates 

biological experiments. For example, in the creation of microgrooved substrates to study 

the alignment of fibroblast cells, which depth should be chosen? It is relatively simple to 

create many different lateral groove dimensions on a single sample though direct write 

lithography, but there is no such fabrication route for variation in groove depth whilst 

retaining the lateral resolution.[80]–[82] 

Exploration of the final dimension has been approached by creating a variation in 

feature depth by annealing nanoimprinted structures on a temperature gradient[83], 

however such techniques require a trade-off in spatial resolution as features are rounded 

off due to surface tension. Screening cellular response to a continuous change in a surface 

parameter, i.e. a gradient, allows the full sample space between two values to be explored 

in what is effectively a parametric sweep. Gradients of surface roughness,[84] 

chemistry,[85] ligand density[47] and wettability[66] have all been demonstrated in the 

search for optimal surface parameters, and can often be fabricated in a single deposition 

step.[64], [86] Spatial density can be increased still further by the positioning of two 

gradients of distinct surface features orthogonally to one another, presenting a two 

dimensional variation in surface properties, such as a variation in chemistry across a 

substrate with grooves of varying pitch.[21] Cell adhesion and orientation can then be 

evaluated across the whole sample, creating heat maps which describe the interplay and 

individual influence of two surface parameters on cellular response. 

Despite the documented effect of feature depth on cellular response,[27], [87], [88] 

there have been few reports of the application of a continuous gradient of depth in the 

optimisation of surface parameters.[83] To that end, a new fabrication technique was 

developed which enables the creation of continuous gradients of depth by sacrificial 

etching a plasma polymerised hexane (ppHex) film. This work was done with a great deal 

of help from Dr Rasmus H Pedersen, who was responsible for building the plasma 
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polymerisation apparatus before the beginning on this project. Plasma polymerisation of 

organic monomer species[89] allows the deposition of conformal thin films on pre-

structured topographies by RF excitation of gas phase molecules. A diffusion mask can be 

placed above the substrate, depositing a polymer film with a variation in thickness under 

the mask,[64] providing a simple alternative to previously demonstrated techniques which 

make use of mechanical substrate manipulation to deposit plasma polymer gradients.[47] 

The high level of cross-linking and conformal nature of these films make them ideal for 

use as a sacrificial mask in a reactive ion etching (RIE) process, transferring the film 

thickness gradient into a truly analogue variation in groove depth across a silicon substrate. 

Etching through a plasma polymerised gradient film deposited over a predefined 

hard etch mask sacrifices none of the nanometre scale resolution which is available 

through modern lithography techniques in the generation of a depth/height gradient. 

3.1.1 Microgroove topographies 

Micro- and nanogrooved surfaces have been investigated at great length in the 

literature. Constriction of cell morphology to a single axis drives alignment, which has 

numerous functional applications. Various tissues exhibit in vivo alignment of cells to form 

the tissue superstructure, with such macroscale organisation conferring functional 

properties such as tensile strength to human tissues such as tendons and also playing a vital 

role in muscle movement. As a result, there is a strong focus in the literature on creating 

tissue engineering constructs which confer such structural organisation on cells for in vivo 

use [80], [90]–[92]. The binary nature of previous studies (i.e. screening a single subset of 

discrete topographies at a time), is not the fault of the imagination of researchers, but rather 

the limitations of fabrication methodologies available to them. As structuring surfaces at 

the micro- and nanoscale to create highly ordered grooved substrates depends chiefly on 

semiconductor fabrication processes, there are avenues of exploration which are not yet 

available as industry demands homogeneous fabrication processed rather than the 

development of processes for heterogeneous sample fabrication. 

Chiefly, one must consider that whilst surface structure is limited to a single face of 

a surface, it is by no means simply two dimensional. The depth/height of topographical 

motifs fabricated on a structure must be considered to be equally as important as the first 
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two. However, whilst direct write lithography techniques make it straightforward (if time 

consuming) to fabricate a wide range of surface features on a single sample in the first two 

dimensions, there is no simple means of fabricating a range of dimensions in the third. 

Semiconductor fabrication processes are painstakingly designed with uniformity in height 

of paramount concern across full wafer areas – there has been little development in 

fabricating a range of feature heights alongside one another. 

If we are to fabricate truly inclusive screening platforms to optimise surface 

features for a given application, new methods for the fabrication of gradients/arrays of 

feature depth are required. Some progress has been made in the fabrication of discrete 

arrays encompassing multiple values of feature height by combining a series of lithography 

and etching steps – producing 16 discrete values of feature height in only 5 etch steps [93]. 

This method, however, is still limited in producing discrete height values and eschewing 

the possible feature dimensions in-between. To that end, the fabrication of screening 

platforms in this thesis has made use of plasma polymer gradients to produce truly 

continuous variation in feature height/depth. This ensures that the full parameter space 

between two height values may be explored on a single surface. 
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3.2 Methods 

3.2.1 Photolithography 

A microgroove pattern consisting of 5 µm ridges with increasing pitch across a 

10 mm area was defined by photolithography. A primer (Chestech MS Primer (HMDS)) 

was applied to substrates before spinning photoresist to aid adhesion. Primer was spun for 

30 s at 4000 rpm, followed immediately by spin coating photoresist for 30 s at 4000 rpm 

and a soft bake at 90°C for 30 min. Using S1818 photoresist this gives a 1.8 µm film. A 

chrome mask, defining a grating gradient pattern of 5 µm lines of increasing pitch was 

used to pattern the resist in a Karl Suss MA6 mask aligner for 4.8s. The pattern was 

developed for 75 s in a 50:50 mixture of Microposit developer : water. The hard etch mask 

was deposited by evaporation of 50 nm Nickel:Chromium alloy (NiCr), and subsequent lift 

off in an acetone soak for at least 2 h at 50°C, followed by a brief sonication, IPA rinse and 

blow dry in nitrogen.  

3.2.2 Injection moulding inlay fabrication 

Polymer inlays were created for mass replication of micro- and nanotopographies 

by injection moulding, Figure 3.1. Firstly, fluorination of the silicon stamp to prevent 

sticking is performed by vapour deposition of Trichloro(1H,1H,2H,2H-

perfluorooctyl)silane (TPFS) as described previously by the group[74]. A Cirlex™ piece 

coated with 30 µm of SU8 3050 by a standard spin recipe was placed on top and the two 

sandwiched together at 95°C for 15 min, imprinting the inverse pattern into the SU8. The 

imprinted stack was cooled to 45°C and separated with a razor blade before curing of the 

SU8 by UV flood exposure for 1 min using the MA6 mask aligner and post exposure bake 

at 95°C for 10 min. After imprinting, Cirlex™ inlays were hard baked at 190°C for two 

hours to fully harden the SU-8 layer.[75]  
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Figure 3.1 Thermal imprint process for transfer of micropatterns in silicon to an inlay for 

replication by injection moulding. 

3.2.3 Cell culture 

Cells were seeded on the dual gradient topographies at a density of 4,000 cells cm
-2

 

using the uniform cell seeder device described in Chapter 5 to ensure that the initial 

distribution of cells across the surface was homogeneous. This allowed for samples to 

simply be fixed after 72h and the final distribution of cells analysed. Cells were cultured in 

appropriate media as described in the relevant section of Chapter 2. 

3.2.4 Data acquisition – large area imaging 

Initial analysis of gradient substrates took a global approach, using a flatbed 

scanner to capture images of fixed samples after staining with Coomassie blue. Coomassie 

blue is a triphenylmethane dye which is used extensively in biochemistry to stain proteins. 

When applied to fixed cell cultures it labels intra- and extracellular proteins blue, yielding 

a high contrast with the background. It is most commonly used to study the relative 

distribution of cells on a surface after a period of culture, and is therefore ideal for use in 
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gradient screening experiments.  Cells were fixed in 10% formaldehyde/PBS at 37°C for 

30 min, and stained with 0.5% Coomassie blue for 5 min before thorough washing in ultra-

pure water. After allowing the samples to dry at room temperature, the surface was imaged 

on a flatbed scanner, at a resolution of 6400dpi. Images were imported into ImageJ, and the 

HeatMap from Stack plugin was used to generate heat maps of cellular coverage over 6 

samples. Selected optical images of Coomassie stained cells were also captured using a 

Leica INM20 microscope operating in Nomarski mode using a 50x objective.  

3.2.5 Data acquisition - immunofluorescence  

Immunofluorescence images were captured using an Olympus CX41 upright 

microscope equipped with a Prior motorised stage operated with ImagePro+ (Media 

Cybernetics, Marlow, UK) scanning 96 images across the pattern in an 8x12 grid with a 

10x objective. A process flow was created in CellProfiler image analysis software[94]
 
 

which calculated cell coverage and alignment to the groove axis (+/- 15 degrees) using 

images of DAPI stained nuclei and phalloidin stained actin. Statistical analysis of cellular 

alignment was performed using the Minitab software package, performing a student‘s t test 

on the triplicate data sets for each cell type with significant results having p<0.1. 

3.3 Plasma polymers for micro- and nanofabrication 

3.3.1 Plasma polymer deposition 

Plasma polymerisation, facilitated by radio frequency glow discharge, allows the 

deposition of highly tuneable polymer films onto a variety of substrates[89]. In a seminal 

text on the topic, Yasuda et al described in great detail a host of parameters which can be 

used to control the nature of such depositions. Further work in the literature over the past 

30 years has built upon these findings, exploring new and innovative techniques. Pressure, 

temperature, excitation power, frequency, duty cycle, monomer flow rate, chamber 

geometry, electrode positioning and monomer type all affect the deposition rate and 

composition of films[95]. 

Low molecular weight monomers can be introduced into a low pressure reaction 

chamber, where various electrode configurations can be used to create a glow discharge 
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plasma. The plasma is initiated by the acceleration of free electrons, which are present in 

any gaseous medium, by a high power RF field applied across the chamber. These 

electrodes can be external or internal, and capacitive or inductive in nature. Accelerated 

electrons collide with monomer molecules, donating energy and causing fragmentation or 

chain scission. These molecules become energised, emitting further electrons and protons, 

along with photons which give the plasma its characteristic glow. These electrons go on to 

collide with further molecules, initiating a cascade reaction until the plasma saturates, 

which is a function of monomer availability and the RF excitation. Excited monomer ions 

recombine to form a polymer which is decidedly different in nature to conventional 

polymers, Figure 3.2. Due to the high concentration of excited molecules present during 

the polymerisation process, there is a high degree of cross linking. This leads to polymer 

deposits which are highly stable and pinhole free. The conformal nature of these coatings 

allows complex surface topographies to be reliably coated. 

 

Figure 3.2 Plasma polymers are structurally distinct from conventional polymers. The 

polymerisation process creates a highly cross-linked polymer as monomers are dissociated 

in the plasma, condensing on the surface. Whereas conventional polymers may polymerise 

as a repeatable sequence, with subunits linking at designated sites, plasma polymers are 

cross linked broadly across multiple sites and via dissociated fragments of monomer. 
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3.3.2 Plasma polymer gradients 

 

Figure 3.3 Deposition of plasma polymer films under a diffusion masks creates a gradient of 

film thickness which can be used as a sacrificial etch mask.  Conventional uniform etching 

(left) forms only one depth at a time – meaning many rounds of lithography and etching are 

required to fabricate multiple depths on a single sample. Plasma polymer gradients (right) 

which exhibit a variation in thickness across the sample are sacrificially etched over time – 

resulting in a variation of etch depth. Film thickness is reduced along the mask length as 

diffusion of monomer (red) is constricted.  

Plasma polymerised hexane (ppHex) films were deposited at 0.4 mbar in a custom 

built borosilicate T-shaped chamber, as a secondary (and sacrificial) etch mask on top of 

the primary etch mask. The plasma was ignited by capacitively coupled band electrodes 

driven by a 13.56 MHz RF generator, supplying 100 W peak power pulsed at 50ms on 

time- and 950ms off time[96]–[98]. The excitation waveform was optimised for deposition 

rate, maximising the thickness of ppHex films which could be deposited in a single 

polymerisation run. A gradient of film thickness was achieved by placing a 10 mm high 

polymer mask over the substrate (Figure 3.3), resulting in a diffusion controlled ingress of 

ppHex into the channel, and therefore a variation in film thickness along its length.[97], 

[99]. Modified plasma deposition rates in close proximity to the physical mask (the plasma 

sheath[100]) result in differences in film thickness which are not defined by the channel 

geometry. To mitigate for this, a mask was used which was 20 mm wide, i.e. twice as large 

as the patterned region, with the mask placed offset from the pattern start by 2 mm to 

J. Phys. Chem. B, 2009, 113 (25), 8487

substrate

mask

Hexane - C6H14

plasma

10 mm
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account for the plasma sheath. This yielded a plasma polymer gradient which varied in a 

single direction along the microgradient pattern. 

Instructions detailing the operation of the plasma chamber used during this work 

are included in the appendix. Initially written by Dr Rasmus H Pedersen, and subsequently 

modified by myself to include new instructions & features. Further details of the ppHex 

deposition process have been published elsewhere [45], [64], [101]
 

3.3.3 Dry etch cycles 

The sacrificial ppHex mask was etched in a standard RIE process (SF6/C4F8), 

transferring the gradient of film thickness into the silicon substrate, with a selectivity of 

approximately 1.8:1. As a result, a ppHex film which was 120 nm thick could be used to 

etch approximately 210 nm into the silicon substrate. Care was taken to terminate the etch 

before the secondary ppHex mask was completely removed. Successive cycles of ppHex 

deposition and RIE created a gradient of depth from sub 5 nm to over 1 µm. 

Mask Substrate Etch Gas Etch Rate 

(nm/min) 

Selectivity 

ppHex Si SF6 / C4F8 800 1.8 ± 0.26 

ppHex SiO2 CHF3 / Ar 35 8.42 ± 0.91 

SiO2 Si SF6 / C4F8 800 10.80 ± 0.13 

ppHA Si SF6 / C4F8 800 2.33 ± 0.12 

ppHA SiO2 CHF3 / Ar 35 3.71 ± 0.09 

PMMA Si SF6 / C4F8 800 ~1.5:1 

S1818 Si SF6 / C4F8 800 ~1.7:1 

NiCr Si  SF6 / C4F8 800 >100:1 

NiCr Quartz CHF3 / Ar 35 ~10:1 

Table 3.1 Etch rates and corresponding selectivity values for various etch and material 

combinations used in this thesis. Where sufficient data was available selectivities are 

presented as averages of at least three samples. It should be noted that etch performance is 

intrinsically linked to the equipment used. These values are subject to drift over time using 

equipment in the JWNC, and provide only an indication of potential behaviour on 

comparable systems in other settings. One should always calibrate etch rates and material 

selectivities when developing/implementing a new process. 
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3.4 Continuous gradients of groove depth 

A primary etch mask defining the lateral pitch gradient was created by 

photolithography followed by lift-off of NiCr as a hard etch mask. Deposition of ppHex 

under a 10 mm high diffusion mask created a thin film which was 120 nm thick at the 

mouth of the mask, with thickness decreasing along the length of the channels[100]. 

Diffusion of the monomer into the channel results in a decrease in concentration as it is 

depleted by the plasma polymerisation reaction. The measured film thickness along the 

gradient span fits a power law, Figure 3.4, confirming that it is diffusion of monomer 

species into the channel which defines the gradient slope. Sacrificial etching of the ppHex 

film transferred a gradient of depth into the silicon substrate, Figure 3.5. Selectivity of the 

ppHex film was observed to be approximately 1.8:1 against silicon in a non-switched SF6 : 

C4F8 inductively coupled plasma (ICP) process, allowing grooves which were 210 nm deep 

to be etched from a 120 nm ppHex film. Remarkably, this selectivity measures favourably 

in comparison to PMMA (1.5:1) and S1818 resist (1.7:1). In order to create grooves which 

were over 1 µm deep, the process of ppHex deposition, followed by etching, was repeated 

five times as it was not possible to deposit a film with sufficient thickness to withstand the 

etch to that depth. Simply layering multiple ppHex films before etching resulted in a poor 

quality etch. It is assumed that the film composition, in terms of oxygen/carbon, ratio is 

modified by exposure to atmospheric conditions,[102], [103]
 
which may result in spatial 

variations in selectivity and a poor quality etch.  

 

Figure 3.4 The deposition of plasma polymerised hexane (ppHex) under a diffusion mask 

gives a gradient of thickness along the pre-defined channel length.  
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This requirement for repeated cycles of ppHex deposition followed by silicon 

etching introduced some variation in the silicon gradient profile, which was measured by 

making a scratch in films deposited on silicon pieces followed by thickness measurement 

by surface profilometer (Dektak 6M, Veeco, USA). Re-aligning the diffusion mask on the 

sample by hand resulted in sequential gradients which did not fully overlap, giving the 

somewhat erratic profile in silicon as seen in Figure 3.5 despite the repeatably smooth 

ppHex gradients shown in Figure 3.4. 

 

Figure 3.5 Sacrificial etching of this film transfers a gradient of depth into the silicon 

substrate. The silicon master can then be used to fabricate a polymer inlay for replication of 

the pattern by injection moulding of polycarbonate.  

Atomic force microscope (AFM) scans of the replica surface in the etched region 

(in groove) and the masked region (on ridge) showed an RMS roughness of 4.5 nm and 1.3 

nm, respectively, Figure 3.6, indicating that the etching process caused a degree of surface 

roughness. The in groove roughness of 4.5nm was deemed to be acceptable, however one 

should bear in mind that surface roughness can also impact upon cell response and has 

been investigated using gradient platforms in the literature[55]. A gradient of groove depth 

in a polymer substrate spanning two orders of magnitude was successfully fabricated by 

this process, with a shallow groove depth of less than 10 nm confirmed by AFM, 

increasing along the 10 mm length of the grooves to a depth of 1055 nm. The gradient of 
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depth is visible under an optical microscope as a gradual definition of the pattern from left 

to right in Figure 3.7 B. 

 

Figure 3.6 Surface roughness of the polymer replicas was measured by AFM in the groove 

base (A), which actually underwent the dry etching process, and on top of the intermediate 

ridges (B) which were masked throughout fabrication. These regions had a RMS surface 

roughness of 4.5 nm and 1.3 nm respectively. No significant deterioration in either lateral 

definition or depth of the pattern was observed on injection moulded polycarbonate 

replicas. 

 

 

Figure 3.7 A) A graphical representation of the dual topography gradient on an injection 

moulding inlay – ridges increase in height across the sample, whilst pitch increases 

orthogonally. Injection moulding therefore creates samples with the complimentary groove 

gradient. B) Increase in depth along the length of the 5 µm wide grooves can clearly be seen 

in an optical micrograph as the micropattern emerges from the planar surface. 

A B 
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3.5 Gradient amplification 

Deposition of a film thickness gradient, followed by etching into a silicon substrate 

allows for the fabrication of depth gradients up to 1 µm. This process is limited by the 

selectivity of ppHex against the silicon substrate which is approximately 1.8:1 in a non-

switched etch. To etch a gradient reaching 1 µm depth a polymer film of 250 nm is 

therefore required – which is a challenging target thickness using the equipment to 

hand[96]. Specifically, using the plasma polymerisation apparatus available (vacuum 

chamber with copper band electrodes, 13.56 MHz excitation frequency, 50W power) , this 

is considered to be a ‗thick‘ film, and is only achievable by sequential depositions of 

approximately 50 nm in thickness, which results in undesired variations in film thickness 

and composition. 

Rather than etching the silicon substrate directly, transferring the polymer gradient 

into an intermediate layer on the substrate allows for the ‗amplification‘ of ppHex 

gradients into much steeper gradients in the 

silicon substrate. 

Figure 3.8 Tandem etching of polymer 

gradients into the silicon substrate allows 

for gradient amplification to much steeper 

lateral height changes. Here, the selectivity 

of etch A (4.5:1) and etch B (11:1) combine 

to transfer the initial polymer gradient into 

the silicon substrate with a selectivity which 

is effectively 4.5 x 11 = ~50. 

The relative difference in etch selectivity of etch A and etch B as shown in Figure 

3.8 results in a ‗amplification‘ of the total thickness gradient. The relatively poor etch 

performance of ppHex against silicon is circumvented by etching via an intermediate layer 

with more favourable performance against both materials. This results in a 110 nm ppHex 

film masking a 500 nm oxide layer at the thickest section, whilst this is completely etched 
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at the thin end at which there is little or no ppHex. This newly created gradient of oxide 

thickness which spans from 500 nm down to nothing can then be used to mask a silicon 

etch to depths of 5 µm using a non-switched etch with selectivity of approximately 10:1, or 

much deeper using a switched RIE etch, which can etch with selectivities of 100:1 or 

higher. This paves the way for the creation of gradients which span over 100 µm in depth. 

 

Figure 3.9 Overlay of silicon dioxide thickness on an 8 mm x 8 mm array of hexagonal 

features with orthogonally varied diameter. The width of the hexagons increases from 50 µm 

to 250 µm with a constant feature pitch of 300 µm. Insert: SEM micrograph of large hexagon 

pattern, at the deepest point of the gradient  pits are over 5 µm deep. 

This was demonstrated by the fabrication of an orthogonal array of hexagonal 

microstructures. An array with hexagon diameter ranging from 50 µm to 250 µm and 

feature depth ranging from 750 nm to 5 µm. This screening array was used to study the 

response of human osteoprogenitor cells when cultured within angular structures, the 

results of which are not presented here.  1 mm 
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Figure 3.10 Thin polymer films only 110 nm in thickness can be amplified into micron scale 

gradients in silicon substrates. Selectivities far in excess of the 11:1 achieved here are 

possible with switched etches, in which case a log plot would be required to convey the 

scale of amplification. 

It should be noted that over etching into the SiO2 film created a gradient which 

does not start from very shallow or flat features, but rather the final gradient begins at 

approximately 750 nm depth and extends to over 5 µm deep, Figure 3.10. This obscures a 

potentially vital part of the depth range. Continuous gradients such as those fabricated by 

etching of plasma polymer gradient films may not be suitable for discrete topographical 

structure such as these, with individual diameters of, for example, 200 µm. The rate of 

change of feature height of 5 µm over an 8 mm pattern leaves individual features which 

have an internal difference of 200 nm in height. This aspect of the fabrication process 

could be used to create structures with asymmetric height/depth profiles. It does, however, 

mean that fabrication of height gradients in this manner is more suited to either continuous 
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structures such as gratings, or discrete structures whose scale is orders of magnitude 

smaller than the gradient span – i.e. nanopillars with a sub-micrometre pitch. 

 

Figure 3.11 Interferometer trace showing the final etch into silicon through the amplified 

oxide mask. Etch stop is determined by the second apex of the signal trace as the oxide 

mask is depleted. 

3.6 Cellular response to continuous variation in groove depth 

and pitch 

The speed at which implantable biomaterials are incorporated into biological 

systems, and indeed the manner of the biological response in terms of the type and quality 

of tissue produced is of key interest. Three cell types arising from different tissues were 

chosen and cultured on this dual topographical gradient, with the localisation of certain 

responses indicating the combination of groove pitch and depth which is capable of driving 

targeted behaviour from interfacing biological systems. Rapid analysis was performed by 

staining substrates after 72 hours culture with Coomassie blue, and imaging the full 10 mm 

x 10 mm pattern using a high resolution flatbed scanner. 

The manner in which cells are seeded on high-content assays is of paramount 

importance if cellular distribution is to be taken as a true response to topographical motifs, 

chiefly to avoid confusing artefacts of inhomogeneous seeding with areas of enhanced or 

inhibited proliferation, differential adhesion or significant cell motility. An even 
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distribution of the cell suspension across the assay topography ensured that the number of 

cells seeded was consistent across the substrate, using the UCS device described in 

Chapter 5.  Variability in initial cellular attachment and compatibility with polycarbonate 

substrata may also be excluded as all cell types showed a high degree of adhesion after 

1 hour. Other high-content and high-throughput systems presented in the literature have 

alluded to the requirement for seeding uniformity[46]. 

Clear differences were observed in the response of fibroblast type cells when 

compared to epithelial and endothelial. Heat maps were created which show the coverage 

of cells across the full gradient topography after 72h culture, Figure 3.12. Hot spots were 

observed for epithelial and endothelial type cells, whilst no discernible region of enhanced 

coverage could be seen in fibroblast cells. Analysis of cell orientation, however, showed 

that hot spots of alignment did indeed exist for fibroblasts, Figure 3.13, which was not 

observed for the other cell types. 

 

Figure 3.12 Three cell types (hTERT fibroblasts, MDCK epithelial cells and LE2 endothelial 

cells) were cultured on the dual microgradient surface, exhibiting distinct morphologies and 

growth characteristics depending on groove pitch and depth (a-i). Heatmaps in the 
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rightmost column indicate that average density across the full gradient platform had 

localised hotspots of MDCK and LE2 growth, with a more even distribution of hTERTs. 

Representative images (a-i) are taken from the locations indicated on heatmaps. 

Presenting continuous variation of two surface parameters allows not only the 

optimal property for a given feature to be extrapolated, but also the interplay between two 

parameters and its effect on cellular response can be examined in greater depth. It is clear, 

based on Figure 3.12, that a specific combination of feature pitch and depth is required in 

order to stimulate the fastest response towards a conformal epithelial/endothelial cell sheet. 

Whilst a groove with pitch in the 70 µm range is effective where the corresponding groove 

depth is between 400 and 600 nm, deeper or shallower grooves of the same pitch do not 

elicit the same preferential response. These results suggest that excessive groove depth 

may present an obstacle which the cell cannot negotiate, preventing cells crossing grooves 

to form a cell sheet. On the other hand, grooves which are too shallow provide no guidance 

to cell orientation, failing to cluster attached cells together and encourage an increase in 

signalling and tissue formation. Therefore the hot spot is thought to represent an ideal 

combination of groove pitch and groove depth, bringing cells close together to form 

characteristic ‗cobblestone‘ sheets without depriving them of sufficient surface area to 

proliferate freely. 

3.7 Cell alignment on a microgroove gradient 

Further substrates were seeded and cultured, followed by immunostaining for F-

actin and DNA, to allow investigation of their morphological response in more detail, 

Figure 3.13. The orientation and maturation of focal adhesions have been demonstrated as 

a key factor in cellular interaction with planar substrate.[104] Whilst the total surface area 

presented to the cell has been suggested as a driving factor in cellular response to 

nanostructured topographies, i.e. pillars and pits,[36] it is likely that a different mechanism 

governs response to microstructured grooves – i.e. not all topographical stimuli are created 

equal. It was observed that depths as shallow as 50 nm induce fibroblast alignment to the 

groove axis. This is in keeping with previously reported data which suggested a structure 

height of only 20 nm was enough to impact upon the development of focal adhesions, 

whilst lower depths are considered too shallow to impact significantly on cellular 

response.[105] In regions where the spacing between grooves is narrow this leads to 
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extension of the cell into a polarised morphology; an ideal response in the formation of 

strong connective tissue and muscle.  

A microscope fitted with a scanning stage was used to collect data from dual 

gradient assays in a multi-well plate format, for subsequent processing in CellProfiler. It is 

essential that high density assays such as this are coupled with high-content imaging 

techniques in order to fully utilise the vast quantity of data they provide from a single 

sample. Heat maps were created detailing cellular response across the dual gradient 

topography in terms of orientation. The expectation being that epithelial/endothelial cell 

sheets would show no specific orientation whilst fibroblast/myoblast cells would show 

areas of increased polarisation in line with previous studies performed on grooved 

substrata.  Figure 3.13 shows fibroblast cells were readily polarised as groove depth 

increases, and that the narrowest groove pitch provided the highest level of orientation to 

the groove direction. An ellipse was defined around the cell‘s actin network, and the angle 

of the ellipse major axis compared to the groove direction. Where this angle was within 

+/- 15 degrees the cell was considered to have aligned to the microtopography. Alignment 

of fibroblasts and other cells associated with connective tissue is seen as a gold standard 

for applications in the targeted repair of strong, functional tissue[90], [92], [106]. When 

compared to the random alignment of cells on non-structured regions of the sample, 

grooves with a depth in excess of 500 nm, and a pitch below 50 µm show a marked 

increase in alignment. Figure 3.13 C&D show the standard deviation of cellular orientation 

across the sample topography – indicating that the response observed here is statistically 

significant across both groove depth and pitch. 
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Figure 3.13 Cellular alignment on the dual gradient topography as a fraction of the total 

number of cells. A) a heatmap of fibroblast alignment as a function of groove pitch and 

depth, with pitch increasing vertically and depth increasing horizontally. B) endothelial cell 

alignment. Corresponding cross sections of the heat map data are plotted (C&D) showing 

the alignment as groove depth increases for three chosen groove pitch values with inset 

images showing representative morphology at depths of 100 nm, 550 nm and 950 nm. 

Statistically significant increases in cellular alignment (p<0.1) are indicated for 8 μm versus   

5μm ( † ), 8 μm vs 100 μm (∗), and 50 μm vs 100 μm (&), n=6. 

 Alignment of cells to the groove axis differs drastically for each cell type. Whilst fibroblasts 

appear to require only an interface, i.e. alignment to deep grooves which are much wider 

than individual cells, endothelial alignment is only increased in locations where the cell is 

fully confined by grooves – with contact guidance[27], [107] forcing the cell to conform to 

the narrow space available. Increased ratios of aligned cells after a given groove depth at all 
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groove pitches for fibroblast cells indicate a necessary threshold of groove depth to drive 

alignment, but that only a single interface is required. 

3.8 Conclusions 

Fabrication and application of a simple assay format has been demonstrated, 

allowing the high-content analysis of cellular response to continuous variation of groove 

pitch and depth. Specific regions of the sample prompted a cellular response which was 

selective, based on the cell type screened – highlighting the variation in cellular behaviour 

and the power of microtopographies in guiding these responses. Similar cell lines - MDCK 

and LE2 - displayed a common response to varied groove depths and pitch, whilst a 

fibroblast cell line showed a drastic difference in response, also indicating optimal surface 

properties existed within the parameter space. Such cell specific responses to the same 

topography highlight the need for varied solutions to biomaterial interface problems where 

multiple cell types are present, and the potential to guide complex biological systems with 

relatively simple topographical cues. 

Cellular response was analysed for 88 different combinations of groove pitch and 

depth on a single sample, and quantified in terms of cellular alignment to the microgroove 

axis along with cell density after 72h culture. Mass replication of the dual gradient assay 

readily allows its application to further studies, and the investigation of a host of other 

effects and cellular responses induced by variation of the depth and pitch and 

microgrooves. These disposable polycarbonate parts offer a low cost, efficient, and 

information rich method to further our understanding of the relationships between cell 

behaviour and multiple surface properties.  

Beyond direct etching into substrates through plasma polymer sacrificial etch 

masks, a tandem etching process has also been demonstrated which is capable of 

amplifying a gradient of film thickness 50 fold into a silicon substrate. This novel 

fabrication method makes use of the selective etching of first an intermediate oxide layer 

before transfer into the silicon substrate, making the fabrication of micron range depth 

gradients for future studies relatively simple. The 0 – 1000 nm gradient of groove depth 

demonstrated here could also have been fabricated in only two etch steps, rather than the 5 

cycles of ppHex deposition and etching that were required using a direct etch process. 
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4 Label free segmentation of co-cultured cells on 

a nanotopographical gradient 

Background: Cell response 

to micro- and nanofabricated 

surfaces for biomedical 

applications is often screened 

using monocultures, however 

there are very few monocultures 

in vivo. New methods are 

required to facilitate more 

representative in vitro studies. 

Results: Label free analysis was demonstrated of two cell types in co-culture on nanopillar 

gradient surfaces. Using this technique, the two cell types could be distinguished from fluorescence 

microscopy data captured as linear arrays along the nanopillar height gradient. This removed any 

need for cell type specific labelling, with a demonstrated segmentation accuracy of 84%. Culture 

on nanopillars induced a spatial re-organisation of the two cell types which appears to be driven by 

the surface structure. Results correlate with earlier work which was carried out on a different 

polymer – indicating that the effect is not material specific. The open source software used for 

automated measurement and classification of cells provided a rich dataset of almost 200 metrics per 

cell, approaching single cell resolution on a gradient topography spanning 9 mm. Further analysis 

of this large dataset by principal component analysis revealed that nanopillar arrays modify 

different aspects of fibroblast and endothelial morphology. This goes some way to explaining 

their differing response to the same surface. 

Conclusions: Co-cultures can be accurately segmented into their constituent cell types using a 

machine learning approach based on cell morphology. Fibroblast and endothelial cell behaviour is 

directly regulated by nanopillar height, exhibiting a varied response as pillar height increases. 

Experimental: 
   Length scale:  nanometres (100 nm diameter pillars, height ranging from < 5 nm to 150 nm)   

   Cell type:        human fibroblast (hTERT-BJ1), rat endothelial (LE2) 

   Analysis:        10x immunofluorescence images with single cell resolution 

   Dataset:          3 channel fluorescence, image scan across gradient, triplicate samples 

 

Output: 
This work was published in Nano Letters [44]. 
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4.1 Introduction  

Systematic studies of nanotopography and cell response have typically been limited 

to single cell types and a small set of topographical variations. This chapter demonstrates a 

radical expansion of experimental throughput using automated detection, measurement and 

classification of co-cultured cells on a nanopillar array where feature height changes 

continuously from planar to 250 nm over 9mm. Individual cells are identified and 

characterized by more than 200 descriptors, which are used to construct a set of rules for 

label free segmentation into individual cell types. Using this approach, label free 

segmentation with 84% confidence is demonstrated across large image datasets, allowing 

the suggestion of optimized surface parameters for nanostructuring of implant devices such 

as vascular stents. 

Functional tissue rarely exists as a homogeneous population of cells[108], [109]. 

With this in mind, it is of critical importance that when screening novel biomedical 

materials[110], topographies[46] and drug targets[7] in vitro, researchers have the ability 

to utilize heterogeneous populations of cells and so develop real biological context[111], 

[112]. Cell type specific antibody staining, for example using cluster of differentiation 

(CD) markers, or pre-loading of tracker dyes into subpopulations, is the standard means of 

segmenting co-cultures at the image analysis stage. This, however, wastes a full 

fluorescent channel which might be better used to co-stain for other cellular responses such 

as metabolomic activity[113] and stem cell differentiation[35]. Manual segmentation by 

visual inspection is possible to an extent,  

Figure 4.1, although as datasets increase in size this becomes a significant 

limitation to experimental throughput and the bias of the individual undertaking the 

analysis becomes increasingly problematic. 

Rapid micrograph analysis and machine learning techniques are now accessible 

with relative ease thanks to the open source CellProfiler[115] and CellProfiler 

Analyst[116] software suites respectively, with other tools also available[117], [118]. 

These methods of automated image analysis can generate large multivariate datasets from 

microscopy data, whereas previous analyses were predominantly subjective. Such datasets 

have been demonstrated in training a machine learning algorithm to detect 15 
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morphological changes in RNA interference screens[119]. This method can be applied to 

the label free segmentation of co-cultures, allowing more detailed analysis of in vitro 

models of in vivo systems – moving forward from narrow studies using cultures of single 

cell types. 

Developing methods to allow for the simple analysis of co-cultures and beyond will 

greatly increase the yield from a single experiment, whilst also providing a more 

biologically relevant picture of cell response. When coupled with arrayed surface 

features[22], [46], [120], or continuous gradients in which features are varied over a 

millimetre or centimetre scale[47], [84], a truer picture of the interplay between cell type 

and surface structure is created. This chapter presents a novel method for fabrication and 

mass replication of substrates with a continuous gradient of feature height, in this case 

nanopillars. On this nanopillar gradient topography, Figure 4.3, a new technique is 

demonstrated for the rapid and efficient segmentation of diverse cell populations without 

the need for extra labelling steps, by processing cell morphology and cytoskeletal structure 

with machine learning algorithms. The relative response, morphological characteristics, 

and abundance of each cell type may then be related to the underlying topography at that 

point, and this insight applied to the design of future tissue engineering constructs such as 

cardiovascular stents[121].  

Figure 4.1 Challenges associated with 

manual segmentation of co-cultures arise 

from the diversity of phenotypes on display 

across a single cell type. On a flat surface, 

fibroblasts a & e can display drastically 

different morphologies. Endothelial cells b, c 

& d also display a broad variation in 

appearance.  In this instance, only the 

difference in the structure of uropodia 

(arrows) indicates that d & e are different cell 

types. Manual classification of large 

numbers of images containing many cells is 

therefore both time consuming and prone to 

a level of subjective error.  

 

100 µm 
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Regular arrays of nanoscale pillars have previously been  to influence the adhesion, 

proliferation and differentiation of a range of cell types[35], [122]. It has been shown 

previously that regular nanopillar arrays can have a cell selective influence on different cell 

types, Figure 4.2. Arrays of 110 nm tall pillars were shown to enhance endothelial 

attachment and proliferation, whilst inhibiting fibroblast proliferation, when cultured 

separately on polycaprolactone (PCL) [36]. It is known that the depth or height of patterns 

have significant influence on cell adhesion[123], and thus producing a sample with a 

continuous variation in height over a long distance (1 cm or more) will allow for rapid 

investigation of optimal parameters for substrate driven cell separation. In addition, a 

simple and effective method of co-culture analysis allows the effect of nanotopographical 

stimulation on the two cell types to be confirmed in a more realistic representation of the in 

vivo environment. 

 

 

 

A smooth gradient of nanopillar height was realised by sacrificial etching of plasma 

polymerized hexane (ppHex) gradient, as described in Chapter 3. In this case, rather than 

initially transferring a micropattern onto silicon, a pattern of nanodots was defined on 

quartz as a replica of the previous work by Casedrova et al in 2009. The nanopattern 

defined in aluminium, and the superimposed gradient defined in ppHex, were transferred to 

the substrate using a standard RIE processes for quartz: CHF3/Ar (Oxford Instruments 80+ 

Fibroblast Endothelial 

Figure 4.2 Regular arrays of nanopillars, with a pitch of 300 nm, pillar height of 100 nm and 

pillar diameter of 100 nm drive two distinct behaviours in fibroblast and endothelial cells. 

Substrates were fabricated by embossing PCL films to create patterned and flat areas on a 

substrate. Separate culture of fibroblast and endothelial cells showed that the nanopillar array 

repelled fibroblasts, whereas endothelial cells exhibited enhanced proliferation. Figure adapted 

from Csaderova et al. 2010. 

nano 

flat 

nano 

e f 
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RIE)). The etch was timed to stop shortly after all the plasma polymer material had been 

etched. Multiple etch runs were carried out, which resulted in some heterogeneity in the 

pillar height gradient, as can be seen in Figure 4.3. 

Nanostructured samples were created in high volume with high fidelity to the 

original master by injection moulding of polystyrene (PS)[74], [124]–[126]. The gradient 

of nanopillars height was further enhanced during the injection moulding process due to 

stretching of the nanopillars structures as the part is ejected from the mould. The 

characteristics of this stretching effect are reported in more detail by Pedersen et al, using 

the nanopillars gradient as a tool to quantify the level of stretching under various 

processing conditions[99]. 

 

 

 

Figure 4.3 Depth profile of quartz master, injection moulding inlay replica and the final 

injection moulded part in polystyrene, accompanied by selected AFM scans of features at 

the shallow, a, medium, b, and tall, c, region of the sample. Top right: representative SEM 

image of nanopillars with a height of 140 nm. Bottom right: histogram of height data taken 

from AFM image showing two peaks, which were used to determine pillar height across 

AFM images. 
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4.2 Methods 

4.2.1 Electron beam lithography 

 

Figure 4.4 Fabrication process for nanopit and nanopillar arrays 

Poly(methyl methacrylate) (PMMA) resist was used for all electron beam 

lithography (EBL), at various thicknesses from 100 nm to over 500 nm to create features 

from 50 nm to 2 µm in size. The most commonly fabricated structures were nanopits and 

nanopillars with diameters around 100 nm, on quartz substrates. The fabrication of both 

these pattern types is similar, as detailed in Figure 4.4. Nanopit samples were fabricated by 

direct etching of a single PMMA mask layer into quartz, which was later removed in 

acetone. Nanopillars used a hard etch mask, which was realised by evaporation through 
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holes in a resist bi-layer. A lower molecular weight PMMA layer under the patterning 

layer is overexposed compared to the patterning layer. This creates an undercut profile, 

meaning that after evaporation of the hard metal etch mask the solvent used to remove the 

resist layer can readily access it without evaporated metal forming a barrier. The gradient 

of nanopillar height used in this chapter was fabricated by Dr Rasmus Pedersen. 

4.2.2 Injection moulding inlay fabrication 

Polymer inlays were created for mass replication of micro- and nanotopographies 

by injection moulding. After fluorination of the quartz stamp to prevent sticking, a 

Cirlex™ piece coated with 30 µm of SU8 3050 by a standard spin recipe was placed on top 

and the two sandwiched together at 95°C for 15 min, imprinting the inverse pattern into the 

SU8. In the case of transparent quartz substrates, a 3W UV LED emitting at 365 nm was 

used to cure the SU-8 resist by exposure for 2 min and a post exposure bake at 95°C for 10 

min. After imprinting, Cirlex™ inlays were hard baked at 190°C for two hours to fully 

harden the SU-8 resist. 

 

Figure 4.5 Fabricating inlays for injection moulding. After fabrication of micro- or 

nanostructures on quartz substrates, the pattern is transferred into an SU-8 layer on a 

Cirlex™ substrate by UV-imprint (1-3).  
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4.2.3 Co-culture labelling 

Before combining the two cell populations, the endothelial cells were incubated in 

suspension with 5 µM green CellTracker
TM

 dye (Molecular Probes, UK) added to the 

media for 30 min at 37ºC as per manufacturers specifications. The suspended cells were 

washed by spinning down and resuspension in media three times to ensure complete 

removal of excess tracker dye from the cell suspension which may have been taken up by 

fibroblast upon mixing. This membrane permeable non-fluorescent dye is taken up by the 

cells and cleaved by common cellular processes, becoming a cell-impermeable fluorescent 

tracker.  The intensity of endothelial tracker dye reduced with proliferation and there was 

some uptake of tracker dye by fibroblasts, presumably due to membrane-membrane contact 

and blebbing during mitosis and cell locomotion[127]. Across the full dataset the mean 

intensity of tracker dye was 5 times higher in LE2 cells versus hTERT cells after 96 hours, 

allowing a robust determination of cell type with minimal false positives. Positive controls 

conducted as monocultures which were then combined after the same time period 

confirmed that the dye remained 97% accurate in labelling the endothelial cells after 96 

hours. As fixation using a formaldehyde crosslinking agent works by forming a methylene 

bridge between reactive groups which are commonly nitrogen based, the CellTracker dye 

within the endothelial cells was retained after fixation. The intracellular reactions which 

transform the glutathione-reactive dye into a cell impermeable fluorescent molecule 

include the addition of functional groups which react with aldehyde fixatives, meaning that 

the fluorescent probes are bound upon fixation. 

4.2.4 Data acquisition – immunofluorescence 

After seeding, the cells were allowed to settle and attach before being moved to an 

incubator set at 37ºC in a 5% CO2 atmosphere. Fresh media was added to culture dishes 

daily, and total culture time was 96 h. After this culture period, cells were fixed in 10% 

(w/v) formaldehyde solution at 37ºC for 10 min, followed by permeabilization at room 

temperature for 5 min and nonspecific blocking in 1% (w/v) PBS/BSA for 10 min. F-actin 

fibers and DNA were stained using phalloidin-rhodamine (Life Technologies) and 

Vectashield DAPI mounting fluid respectively. 
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Images of the cultured samples were acquired as a linear scan of 18 contiguous 

locations across the gradient topography – 4 on the flat substrate, 10 across the pillar 

gradient and a further 4 on the flat substrate, Figure 4.6. Three fluorescent channels were 

automatically captured for processing using an Olympus CX41 upright microscope 

equipped with a Prior motorized stage and 10X objective, camera acquisition and stage 

were operated by ImageProPlus (Media Cybernetics, UK). A total of 216 locations were 

captured, comprising 12 linear scans across 3 substrates, as described in Figure 4.6. These 

Images were analysed using CellProfiler to detect individual cells using the DNA and 

cytoskeleton stain. The intensity of CellTracker staining was also measured to act as a 

positive control classification of the full dataset into fibroblast and endothelial cells – 

against which to compare machine learning classification based on the nucleus and 

cytoskeleton alone. 

 

Figure 4.6 Schematic of scanning strategy across the nanopillar gradient. Each 18 image 

scan consisted of 4 images on the flat region adjacent to the short pillar region, followed by 

10 contiguous images across the rising pillar gradient, and a further 4 images on the flat 

area adjacent to the tall nanopillars region. 

Processing of the full dataset took approximately 2 hours on an Intel® Core™ i7 

2600 CPU @ 2.4 GHz with 16Gb DDR2 RAM using a custom CellProfiler image 

processing pipeline. In total, over 10,000 individual cells were detected across the 216 

image dataset, measuring 137 distinct attributes of each cell comprising information on cell 
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size, shape, cytoskeletal texture, intensity and location relative to other cells. The data was 

then transferred into CellProfiler Analyst, which provides a simple to use classifier tool, 

discerning the difference between the two cell types based solely on ‗cytoprofile‘ 

measurements. Initially, data was quantised into discrete measurements of individual 

images, which had a frame width of 900 µm, giving 10 datapoints across the 9 mm 

gradient. After image processing, a centroid value for each detected cell allowed absolute 

cell location on the pattern to be determined, increasing resolution to 20 points after 

binning data into 450 µm sections.  

4.3 Analysing morphometric data 

Automated measurement and quantification of microscopy data has developed at a 

rapid pace over the past decade thanks to the availability of improved digital cameras, 

automated microscopes and stages, and more generally thanks to the increase in computing 

power available to laboratories in standard desktop machines. Researchers who previously 

found themselves scoring histology slides by eye can now acquire and process huge image 

datasets in a single day. Interpretation of these often complex multivariate datasets can 

present a challenge, as users either cycle through measurements to find ‗favourable‘ 

metrics of cell response to a surface, or become overwhelmed by the sheer quantity. 

Techniques and strategies for visualisation of multivariate data have been presented and 

documented in the literature – and often require a departure from common graphing 

methods as multivariate datasets with over three dimensions are incompatible[128]. 

Geometric projection techniques such as parallel coordinate systems, treillis displays, 

hyperboxes and scatterplot matrixes all allow trends and correlations to materialise for 

visual presentation of data. Icon based schemes such as Chernoff faces and radar/star plots 

can be used to encode classes of measurement within a larger structure – with trends 

appearing as changes in shape. Pixel based systems are also useful, wherein each variable 

is assigned to a pixel within a larger area. These are particularly amenable to data acquired 

from pixel type experimental systems such as arrays of surface properties.  

Figure 4.7 shows a scatterplot matrix extracted from a co-culture of fibroblast and 

endothelial cells on a nanotopographical gradient. 18 images were acquired across the 

gradient, containing both fibroblast cells and also endothelial cells which had been pre-
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labelled with a CellTracker dye to allow for determination of cell type and therefore 

relative response and abundance across the gradient.  

This plot shows average per-image values for 6 different measurements in triplicate 

images across the gradient. Images of fixed samples were processed using CellProfiler to 

detect cell shape and measure intensity of the cytoskeleton and tracker dye. Stark trends 

are apparent, some of which are expected and some of which can be used to interpret the 

response of these two cell types. Firstly, the intensity of the tracker dye is distinct enough 

to allow for classification into cell type based on this value alone, as described in 

section 4.2.3. The average cell area of the two cell types is spread with no apparent 

distinction between the two, despite the classic morphologies shown in Figure 4.1, 

implying that endothelial cells should be comparatively smaller than fibroblasts. As the 

underlying nanotopography can impact on cell area, this may explain the lack of distinction 

as the substrate is influencing cell area. 

The angular second moment (ASM) is a measure of local uniformity within a 

specified window – 10 pixels by 10 pixels in this case. Low values of ASM indicate that 

there are prominent textural features in the object, such as sharply contrasting bands of 

actin. This results in a clear grouping of fibroblast and endothelial cell values in Figure 4.7 

as the well spread fibroblast phenotype with defined actin cytoskeleton is drastically 

different from the endothelial morphology. Variance – which is a measure of the grey tone 

variance of the actin channel, also shows a higher value for the more distinct fibroblast 

cytoskeleton. The difference in morphology is also borne out in the measure of cell 

compactness, which is the variance of the radial distance of a cell from the centroid divided 

by the area – i.e. how regular is the cell shape. Well spread fibroblasts have numerous 

angular protrusions, as seen in Figure 4.1, leading to higher values of compactness. 
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The data can be segmented still further to delineate the underlying topography at each 

datapoint, revealing changes in cell morphology as a function of nanopillar height, and 

adding clear trends to the data: 

 

Figure 4.7 Scattermatrix of the full co-culture dataset, including grouping by location on the 

gradient sample. Fibroblasts (rings) and Endothelial cells (circles) have been colour coded 

based on their substrate location. A distinction is made between the flat surface adjacent to 

tall pillars and the flat surface adjacent to short pillars. 6 measurements are plotted against 

one another: intensity of CellTracker dye, cell area, integrated edge intensity (sum of pixels 

around the cell edge), variance of the cell cytoskeleton intensity, and cell compactness (a 

measure of cell shape and irregularity). Diagonal shows histograms of the total population 

(both cell types) in grey, along with individual distributions for each cell type. 

In Figure 4.7, the nanopillar gradient substrate was divided into five sections – 

short (5-70 nm), medium (70-170 nm) and tall (170-250 nm) pillars, as well as two flat 

regions adjacent to either the tall or short region of the pillar array. It would be possible to 

increase the number of bins to 20, 30 or even 40; however the ability to represent such a 

large number of data points on a single plot limits the quantisation of the gradient data.  
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Explaining the apparent uniformity of cell area seen in the total population 

histograms (grey bars), when the plot is segmented into pillar height and the histogram is 

divided into cell type as above, we see that there are in fact two peaks for fibroblast area. 

The lower peak is composed of fibroblasts on medium and tall pillars, indicating a strong 

substrate driven effect on fibroblast morphology which forces them into an atypical 

phenotype. Endothelial cell area, on the other hand, appears to have a single peak across all 

pillar heights. 

4.4 Machine learning & data processing 

Machine learning based classification of cell types within the co-culture applied to 

screening cell response across the high-content nanopillar gradient topography, ranging 

from a planar surface to a regular array of 250 nm high pillars. Having shown previously 

that regular nanopillar arrays can exert a cell specific effect on proliferation and adhesion 

[36], this gradient topography was devised as a means of finding the ‗optimal‘ pillar height 

for enhanced endothelial response in a co-culture environment under substrate driven cell 

separation.  

Using the CellProfiler Analyst classifier tool, 400 randomly selected cells were 

sorted by visual inspection of tracker dye intensity as fibroblasts or endothelia. Images of 

both cell types in mono-culture were also used to similar effect. This training set was used 

to generate a set of rules for segmentation of the images using the tracker probe 

information. The rules created by the machine learning algorithm focused on a threshold 

intensity of the tracker dye within the detected cell shape, as was anticipated, to determine 

cell type. The full dataset was classified using these rules, with 20 random images selected 

(approx. 800 cells) and inspected with no visible mis-classifications, Figure 4.8c. To 

determine the experimental error which may be induced by poor retention of the tracker 

dye, monocultures were processed under the same conditions. An accuracy of 97% after 

96h culture indicated minimal levels of mis-classification due to poor dye uptake by the 

endothelial cells or poor retention due to loss of cytoplasm/blebbing.  

Using the Baysian classifier provided by cell profiler analyst, the dataset of 

fluorescent images containing two cell types across the nanopillar gradient was segmented 

into two groups – one for cells classified as endothelial and one for cells classified as 
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fibroblast. Comparing the intensity of tracker dye with the cell structure based 

classification indicated that approximately 84% of cells were correctly classified. The mis-

classification of 16% of cells may be a result of atypical phenotypes being displayed by 

either cell type, such as cells which were undergoing mitosis, had very recently divided, or 

were migrating at the point of fixation. Cells located in close proximity to one another or 

on top of each other also present a source of error for automated analysis.  

 

Figure 4.8 Processing flow for label free segmentation of co-cultured cells. The 

morphometric profile of cells (b) can be used to determine cell type. When compared to 

tracking cell type with a direct probe (c) this is approximately 84% accurate, with some mis-

classifications (d). 

In Figure 4.8 (a) 3 channel images are acquired after staining for DNA (DAPI-

blue), the actin cytoskeleton (rhodamine phalloidin – red) and a tracking dye preloaded 

into one cell type (CellTracker – green). (b) the CellProfiler software suite preforms 

automated counting and detection of cells in each image (thousands can be run as a batch 

operation). Cells touching the image periphery are excluded as the data for the full cell has 

not been acquired. After detection, the cells are measured for up to 500 morphological 

traits. These include structural metrics such as area/perimeter/shape – as well as textural 

and intensity measurements of the cytoskeletal stain and also any tertiary protein staining 

50 µm 
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or tracker dyes. This generates a dataset containing millions of datapoints which can be 

used to segment the cells into categories for each cell type by a simple measurement of 

tracker dye intensity (c) or without the tracker dye by using the full cytoprofile in a 

machine learning driven classifier (d). Arrows in (c) and (d) indicate misclassification of 

cells where the less robust machine learning classification is used. 

Figure 4.9a shows immunofluorescence images are captured of co-cultured cells on 

nanopillar substrates; nuclear DNA (DAPI, blue) and cytoskeleton (phalloidin-rhodamine, 

red) are labelled with fluorescent markers. Before the cultures were combined, one cell 

type (LE2 endothelial) was loaded with a CellTracker dye (FITC, green). The CellProfiler 

software suite is used to batch process 216 image sets, measuring 200 distinct attributes of 

10,237 individual cells. The CellProfiler Analyst classifier can then be used to classify 

each cell as belonging to either the endothelial class or the fibroblast class. Using the 

tracker probe intensity to segment images into endothelial (green outline) and fibroblast 

(red outline) yields an accuracy of 97%, as shown in Figure 4.9c. 

This generates a set of 50 rules to classify cells based morphology (i.e. aspect ratio, 

area, perimeter, nucleus size) and also the organization of the cytoskeleton (i.e. radial 

distribution of actin intensity, actin texture). Visual observation of the cells did indeed 

indicate, that size and cytoskeletal organization are valid methods of distinguishing 

between the two, and a human may draw on these factors. However, when human 

classification is compared to rules generated by a machine learning algorithm it is clearly 

impractical for a human to consider 50 rules when classifying each cell; reinforcing the 

power of this new methodology.  
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Figure 4.9 Comparison of various segmentation strategies for analysing a co-culture of 

endothelial and fibroblast cells. Accuracy of automated classification based on tracker 

probe intensity is given as a percentage of cells in monoculture which were above a set 

threshold of tracker intensity. All other hit rates are given as a percentage relative to tracker 

classification of co-cultured cells. 

An accuracy of 83.9% can be achieved using only the cytoskeleton stain, i.e. shape, 

staining intensity, texture, radial distribution and cell neighbours. e) changing the feature 

sets available to the machine learning algorithm in creating classification rules has an 

impact on accuracy – offering insight into the dominant features which enable correct 

classification. A simple filter which divides the co-culture by a cell area threshold is less 

than 70% accurate, due to the heterogeneity of cell size in the dataset. 

The rules of the classifier themselves indicate the relative weight of each 

measurement value in determining the classification of an unknown cell. Statistically, 

using hundreds of measurements of multiple types (i.e. area, shape, intensity, texture) was 

no more reliable in classifying cells than using only data from certain measurement classes, 

Figure 4.9. Classification based on the full scope of over 300 measurements is no more 

effective than using only metrics of cell area or cytoskeletal staining intensity. Other 

measurement classes such as the number of neighbours, radial distribution of cytoskeletal 

staining and cytoskeletal texture are approximately as effective as simply applying a 

threshold to the distribution of cell area values at approximately 65% accuracy. This is not 

to say that there is no discriminative data contained in each of these measurement classes. 
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It is more likely that the training set employed in this experiment did not encompass the 

true variation in phenotype of both the fibroblast and endothelial cells. Furthermore, it is 

also possible that the true variation in phenotype could not be adequately encompassed 

within only 50 classifier rules. Any manner of classification based on automated 

measurement is more effective than human classification, which was no better than random 

in a group of 10 researchers. 

To better determine the accuracy of human classification of co-culture datasets, two 

interactive 'classification‘ exercises were performed with a group of researchers with 

various backgrounds, Figure 4.11. After a brief training period in which images of typical 

phenotypes were presented, participants were shown a series of randomly selected images 

from a co-culture dataset and asked to label each cell as either fibroblast or endothelial. In 

a group of 10 researchers, of which half considered themselves to be trained biologists, the 

scoring across the pool was no better than random. This reinforces the need for automated 

segmentation of co-culture datasets without the introduction of bias from users. The full 

image set which was used to assess human scoring is included in the appendix. 

 

Figure 4.10 Classification of co-cultures by eye is ineffective due to the broad range of 

phenotypes on show. Participants with a background in biology, who are more experienced 

in interpreting fluorescent images, had a lower average accuracy than those without any 

background in biology. 
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A confusion matrix, outlining the ability of automated co-culture segmentation to 

distinguish between two and three cell types, is shown in Table 4.1. The higher rate of 

error in fibroblast classification may be attributed to the inherent difficulty in cell detection 

from image based screens – their tendency to interact by climbing on top of other cells can 

lead to spurious detection of cell boundaries. Endothelial cells, however, tend not to grow 

above a monolayer and to form a ‗cobblestone‘ layer which is more readily segmented into 

individual cells. A third cell type was introduced with minimal mis-classification. 

  Machine Learning Classification  

Total 

Cells 

Fibroblast 

(hTERT) 

Endothelial 

(LE2) 

Osteosarcoma 

(MG63) 

Hit Rate 
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Fibroblast 

(hTERT) 

5972 5362 610 - 89.7 % 

Endothelial 

(LE2) 

4265 1043 3222 - 75.5 % 

Osteosarcoma 

(MG63) 

468 4 23 441 94.2 % 

Table 4.1 Confusion matrix of ML classification showing three cell types classified using 

CPA. 

After initial seeding of the two cell types at an even density across the 

nanotopographical gradient, the ratio of endothelial to fibroblast cells varied over time as a 

function of the underlying and local topographical motifs. Cells were fixed after 96 h 

culture, resulting in a final distribution of cells which was a combination of proliferation 

and migration – which have both been shown to be influenced by nanotopographical 

stimulation. The number of fibroblasts was found to fall steadily with increasing nanopillar 

height, whilst there was a moderate increase in the abundance of endothelial cells with 

increasing pillar height – although endothelial cell numbers also fell away at extreme pillar 

heights.  
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Figure 4.11 Response of fibroblast (hTERT-BJ1) and endothelial (LE2) cells in co-culture to 

a gradient of nanopillar height is shown. The ratio of endothelial / fibroblast cells after 96h 

culture was calculated by (a) direct labelling of the sub-populations with CellTracker probes 

and (b) applying machine learning to cell morphology and nucleus data to predict cell type – 

greyscale background gradient represents increasing pillar height from left to right with 

dashed line indicating the nanopillar-flat boundary. Statistically, each data point was 

compared to the ‘baseline’ flat region, *p<0.01, **p<0.001.  Images c, d, e show cellular 

response at various points across the nanogradient sample, f. From this analysis, it appears 

that nanopillar height in excess of approximately 75 nm is sufficient to induce a statistically 

significant change in the ratio of endothelial / fibroblast cell, however as pillar height 

increases the average number of cells per image fell. 

The average major axis length of endothelial and fibroblast cells was 54.9 µm and 

72.8 µm respectively, giving a nominal local gradient in pillar height of 1.53 nm and 2.02 

nm across the 9 mm surface gradient. This did not appear to be locally steep enough to 

drive any directed cell migration. A steeper local gradient of pillar height may have led to 
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directed migration (i.e. polarisation) from tall to short, however there was no statistical 

variation in cell orientation which may have indicated directed migration on this 

topography.  

Comparison of the ratio of endothelial to fibroblast cells as pillar height increases 

suggests that there is a height at which the cell selective response of the topography is 

‗switched on‘ and a statistically significant change in the ratio is observed. At the same 

time, a reduction in the total cell number is also observed as pillar height increases which 

is not exclusive to the fibroblast population, Figure 4.11a,b. This apparent repellent effect 

of tall nanopillars on both endothelial and fibroblast cells leads to a conclusion that to 

maximize cell number with the lowest possible ratio of endothelial / fibroblast cells, a 

pillar height of approximately 75 nm is recommended. This is a promising result, which 

may be practically applied to the design of cell culture dishes to reduce fibroblast 

contamination in primary endothelial cultures, and to attempt to prevent restenosis of 

cardiovascular stents, where the potential of the nanotopography to expedite in situ 

enothelialization may offer considerable benefits in terms of implant success. 

 

Figure 4.12 Nanopillar array with a gradient of feature height from left to right. Nanopillars 

effectively drive separation of two cell types, with endothelial cells remaining and 

proliferating on the nanopillar array, whilst fibroblast cells have migrated away to the flat 
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region adjacent to the array. Characteristic endothelial cell morphology is visible on the 

structured region and also on the flat surface, whereas the well spread fibroblast 

morphology is only visible on the flat area. 

In the data set of 10,237 cells, 1,653 cells were miss-classified. This amounts to a 

success rate of 83.9% in the classification of co-cultures by machine learning algorithm, 

which may be open to improvement through further optimization. Analysis of cell response 

to the variation in nanopillar height by fluorescent tracker, Figure 4.11a, or machine 

learning, Figure 4.11a, yield the same interpretation of the data in terms of optimal pillar 

height – indicating that automatic cell type segmentation of co-culture images by machine 

learning is a viable alternative to fluorescent tracking or antibody staining. Applying this 

simple and rapid co-culture segmentation technique to gradient and arrayed surface 

features or chemistries can allow the screening of potential solutions in a context which is 

closer to the target in vivo system. Large area reorganisation of the two cell populations 

into superstructures is possible through patterning of nanopillar arrays, and applications 

may make use of multiple pillar heights to tune response, Figure 4.12. 

4.5 Principal component analysis 

Automated detection and measurement of cells cultured on structured surfaces was 

initially approached as a means of quantifying a single feature, i.e. alignment to the 

microgroove gradient detailed in Chapter 3. Moving on from there, this chapter has 

demonstrated the use automated detection to measure the morphological profile of cells.   

The volume of information which is produced by CellProfiler analysis of fluorescent 

datasets requires a new way of extrapolating the true changes in cell morphology rather 

than the standard approach of looking at a single feature – i.e. area, perimeter, orientation, 

and others. This requires the implementation of data analysis techniques such as principal 

component analysis (PCA) to fully understand the source of variance in the dataset, which 

may be compounded across many features.  The CPA classifier is trained by the user, who 

selects cells of each type by visual inspection and classifies them accordingly. A 

sufficiently large training set of approximately 200 examples per phenotype is required to 

generate a robust set of rules that are capable of accurately classifying unknown cells into 

either group. There is, therefore, an element of intrinsic bias introduced if pure training sets 

are not available.  
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PCA is a multivariate analysis technique which reduces the dimensionality of large 

datasets, and so is well suited to the analysis and interpretation of the large measurement 

datasets produced by processing immunofluorescence images with CellProfiler. With over 

200 measurements recorded for each cell, and thousands of cells per 

measurement/experimental condition. The variation in the dataset is reduced into principal 

components which describe as much of the true variance of the dataset in as few variables 

as possible. The dataset, containing measurements in a broad range of units with differing 

levels of variance, must be standardised to prepare it for PCA. Each variable in the data 

matrix was divided by the standard deviation of that variable across the dataset – thus 

centring the data around zero and allowing PCA to find the correlation between 

measurements (Appendix C). 
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Figure 4.13 Loading plots showing the relative impact of different measurement classes on 

the first two principal components. These two components define over 50% of the total 

variance in the dataset, which is composed of 137 measurements per cell – collectively 

referred to as the cell ‘cytoprofile’. Here, measurements are displayed in subgroups relating 

to their type, i.e. measurements of intensity, texture, shape, distribution and area.  

Loading plots show the relationship between variables in the multivariate dataset 

and the subspace variables – i.e. the principal components. Figure 4.13 plots the 

relationship of the 137 variables per cell which were used to perform principal component 

analysis. These are coloured by groupings based on the measurement class, using custom 

MATLAB® code to generate the plot. The first two principal components, which define 

over 60% of the variance of the dataset in this case (see Figure 4.14) are a combination of 
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these 137 measurements, with the relative weight of a single measurement on a given 

component defined by the vector length and location in the loading plot. Grouping of 

measurement types in regions of the plot is apparent, with intensity measurements grouped 

in the upper left quadrant, and radial distribution measurements grouped in the lower left. 

These are measurements of the cytoskeletal intensity and distribution within the cell, and 

so indicate that the impact of nanopillar substrates has a direct effect on the organisation of 

both fibroblast and endothelial cell structure.  

 

Figure 4.14 Variance explained by the first 10 principal components of fibroblast and 

endothelial cells on a nanopillar gradient. 

PCA was performed on this segmented dataset in MATLAB®. The code used has 

been included in an appendix to this thesis. A total of 137 measurements were included, 

with both cell types extracted from the co-culture dataset using the intensity of tracker dye 

to segment the dataset (97% accurate). 80% of the total variance in the dataset was 

explained by the first 10 principal components, with the endothelial subset proving to be 

less dimensional as it was more readily explained in fewer components, as seen in Figure 

4.14 above. The first two principal components accounted for 50% and 58% of the 

variance seen in fibroblast and endothelial populations respectively. 
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Figure 4.15 PCA scatter plot for fibroblast and endothelial cell phenotype on nanopillar 

gradient array with gradient spatial resolution of 450 µm. 

Figure 4.15 shows the fibroblast and endothelial cell morphologies, as described by 

the first two principal components of the dataset. Datapoints have been colour coded to 

correspond to the underlying topography, with each point being a 450 µm wide section of 

the sample. The most striking aspect of Figure 4.15 is the separation of fibroblast 

datapoints which define cells on the flat regions on either side of the gradient array. Data 

from the flat region nearest the short end of the pillar gradient (+) differs starkly from data 

acquired on the flat region adjacent to the tall end of the pillar gradient (○). This is a 
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surprising result, as one might expect the morphology of cells on the same surface to be 

equal. In fact, as nanopillar height increases from short to tall (green-blue-red-black) 

similar pillar heights are clustered together. Endothelial cells do not show any distinction 

between flat regions depending on the height of adjacent pillars, with the data instead 

clustering in three broad categories of flat, short and tall pillars: 

 

Figure 4.16 Endothelial cells on the nanopillar gradient array separate into three distinct 

clusters after PCA – indicating a change in phenotype which is linked to nanopillar height. 

Datapoints are circled to highlight their separation, this delineation does not represent any 

statistical analysis of their proximity. 
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Figure 4.17 Fibroblast cell morphology appears to group into distinct regions depending on 

cell location with respect to nearby pillar height. Datapoints are circled to highlight their 

separation, this delineation does not represent any statistical analysis of their proximity. 

In Figures 4.17-4.18, the resolution of analysis has been increased, making use of 

the same dataset presented in Figure 4.7. Absolute cell locations on the gradient were 

calculated, allowing cells to be segmented into a range of 20 bins along the length of the 

nannopillar gradient. These bins were evenly spaced in 450 µm increments along the 9 mm 

height gradient, and each bin was correlated with a nanopillar height acquired by AFM. 

Division of the dataset into still smaller bins is possible, however 20 were deemed 

appropriate to limit the complexity of visualisation. Using 450 µm bins gives a nominal 

gradient of pillar height within each datapoint of 12.5 nm. 

4.6 Conclusions 

Building on previous work using nanopillar arrays in PCL substrates, this work 

combined both cell types in a single experiment – yielding results which correlate with the 

previously reported data. Using a new platform of nanopillar gradient arrays, the further 

development of high-content screening methods reported here results in a drastic 

improvement in experimental throughput on a single sample. Rather than screening two 

cell types on multiple samples with different topographical features, a single experiment 
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can now capture the response of multiple cell types across the full range of nanopillar 

heights from flat to over 250 nm, Figure 4.18. The key benefit is that the gradient array 

platform is fabricated by a single etch step, whereas masters for fabricating a range of 

individual samples would each require separate etch cycles for each desired depth. In this 

case, nanopillar heights between chosen values would have been excluded from the sample 

set, whereas with a continuous gradient the full sample space can be explored. Further to 

this, co-cultures were used instead of separate monocultures – better reflecting the 

applications of engineered surfaces in which multiple cell types are present and all must be 

‗guided‘ towards a desired response. The use of machine learning techniques to segment 

these two cell types on a single sample has added potential benefits as it removes the need 

to use a fluorescent channel to label each cell type individually. This allows for more 

information to be garnered from a single sample, by also labelling for a protein of interest 

or cellular structure. 

 

Figure 4.18 Gradient platforms offer a drastic increase in the yield from a single experiment. 

Multiple samples are required in conventional experiments, left, each with a unique surface 

property. Combining this variation onto a single sample, right, simplifies experiments. 

Further progress in automated detection of cell type also allows co-cultures on a single 

sample. 

An accuracy of >84% was demonstrated using a new label free segmentation 

technique of co-cultures, which leaves room for improvement when compared to cell type 

specific labelling.  
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Lateral resolution on the gradient was considered, in terms of the analysis method 

and also the data processing involved. Full sample imaging on a flatbed scanner showed 

the global density of cells, whilst tiled brightfield images improved resolution and allowed 

for quantitative investigation of relative cell densities of two cell types. The main dataset 

was acquired as immunofluorescent images of the cell nucleus, cytoskeleton, and a 

CellTracker dye. After initial analysis on a per-image basis, in which the frame size was 

approximately 0.9 mm across, the lateral resolution was improved by dissecting images 

into two halves of 450 µm each. This yielded more detail in the difference in cell response 

across the gradient. Automated cell detection and measurement makes it possible to 

continue this improvement in resolution to single cells, relating a given cell phenotype to 

its underlying nanopillar height and this may provide still more information on the 

changing phenotype across the nanopillar gradient array.  

This stepwise increase in resolution appears to show that biological systems are 

acutely sensitive to variations in the topographical substratum on which they find 

themselves – from the broad system down to the single cell. Chapter 6 looks at this idea in 

greater detail, investigating whether subcellular structures can sense and adjust themselves 

in response to changes in topography within a single cell. 
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5 Uniform cell seeder 

Background: Cell seeding on tissue culture 

plastic or patterned substrates is done by hand – 

often giving an irregular spread of cells across the 

culture area due to a lack of control of the seeding 

space and volume. High-content screening arrays 

and gradients demand that cells are evenly 

distributed to yield reliable results. A device was 

designed and tested to address the issue of 

inhomogeneous cell seeding in cell culture studies 

on 2D screening platforms.  

Results: Custom tooling was fabricated by 

CNC milling of aluminium to create uniform cell seeder devices by injection moulding. This 

fabrication route is ideal for this type of disposable labwear. Seeding cells at various densities on 

both patterned and blank injection moulded substrates, along with 12- and 6-well plates showed a 

drastic improvement in seeding uniformity across the culture area.  

Conclusion: Standard seeding methods introduce experimental errors through variation in local 

cell density. The device fabricated here effectively standardises the seeding process – removing a 

source of experimental error and improving repeatability between experiments, users, and labs. 

Cell coverage and response on gradient topographies could be interpreted properly thanks to even 

distribution at the point of seeding. Furthermore, the impact of variation in local cell density on 

stem cell differentiation was demonstrated – showing that within individual wells of a multiwell 

plate there were disparities in marker expression which could be homogenised using the uniform 

cell seeder. This shows that the device has applications in broader cell culture use, and is not 

limited in its applications to high-content screening platforms. 

Experimental:  

   Length scale:  millimetre scale cell culture vessels 

   Cell type:        rat endothelial (LE2), human embryonic stem cells (hES) 

   Analysis:        10x immunofluorescence image arrays  

   Dataset:          3 fluorescence channels, image arrays of samples (well plates/injection moulded)
 

 

Output: 
An international patent on the technology was filed in May 2014. A paper presenting this work is 

currently in preparation. All work in collaboration with Camilla Holzmann Rasmussen, PhD 

student at Novo Nordisk and the Technical University, Denmark. 
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5.1 Introduction 

Biological experiments involving  cell culture, from biomaterial testing [1], [110], 

[129], [130] to drug discovery[7], [131] often begin with cells being seeded onto a flat 

substrate to form a two-dimensional culture. This is the foundation on which the 

experiment as a whole is built, and is therefore arguably one of the most critical steps. 

Common practice for this crucial step often varies between disciplines, laboratory‘s, 

individual researchers, and even from day to day. Suggested protocols exist, however these 

recommended methods by no means eliminate user dependence [132]. Such user 

dependence can in turn introduce huge variability to the results and mean others struggle to 

reproduce the work. There is a growing concern in the scientific community regarding the 

reproducibility of high profile work[133]
,
[134], and as such a method for the 

standardisation and deskilling of a key part of cell culture studies is of critical importance. 

This compliments published methods for statistical analysis and data presentation, towards 

a more consistent experimental process across cell biology studies. The manner in which 

almost all researchers seed cells onto a flat surface can be roughly categorised into two 

methods. Either a droplet of fluid is placed on the substrate, and the vessel back filled with 

culture media after a period of attachment, or the substrate is immersed in culture media, 

with a concentrated cell suspension then pipetted over the substrate in as even a manner as 

possible.  The literature also suffers from the confusion of listing cell seeding densities in 

either ml
-1

 or cm
-2

. 

Uneven seeding arises using these methods due to three factors – the macro scale 

turbulent flow of cell seeding suspension as it is added to the well, disturbing the cell 

suspension as plates are moved to the incubator, and also to a lesser extent the meniscus 

which forms around the wall of the culture plate.  The impact of the meniscus becomes 

more prominent as the culture vessel becomes smaller, i.e. 96 well plates. 

The problems associated with uneven cell seeding are aparent in the volume of 

forum posts (e.g. at researchgate.net) from students looking for help in improving their 

seeding, after struggling with experimental variability. Studies investigating the otimal 

means of cell seeding have sought to identify the source of uneven cell distribution[135]. 

The direct impact of cell seeding practices on the behaviour of osteogenic cells on titanium 

fibre meshes has also been demonstrated[132], so there is a clear need for improvement. 
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Cell seeding approaching a ‗perfect‘ distribution has been demonstrated using microfluidic 

channels in which the cell suspension is delivered to the surface under laminar flow 

conditions (i.e. no turbulence)[136], however outwith the context of microfluidic studies 

there remains a need to improve the efficiency of cell seeding. Whilst broader 

investigations into the impact of cell seeding have attempted to resolve the issues, the 

proposed solution was still a cumbersome 

microchannel approach, which is incompatible 

with large area culture and time consuming to 

implement[137]. 

 The injection moulded slide shown in 

Figure 5.1 has an array of nanopatterns across the 

surface in a 5 x 2 configuration of squares. Cells 

were seeded using standard seeding techniques by 

a post-doc with no affiliation to this project. The deficiencies in this seeding method are 

evident, with a central aggregation of cells and sparse coverage in outer regions. Cells were 

allowed to attach in the flow hood for 30 min before the slides were moved to the 

incubator. After 6h the cells were fixed in PFA and stained with Coomassie blue. It is clear 

that seeding array slides in this manner leaves experimental results prone to error and 

misinterpretation. 

 

Figure 5.2 Cell seeding methods can be divided into three categories; pipetting of a single 

droplet of cell suspension onto the surface (A), filling the culture vessel with media and 

Figure 5.1 The problem of uneven cell 

seeding. Pattern arrays are seeded 

with varied concentrations of cells. 
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 m
m
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pipetting a concentrated cell suspension into the fluid (B), and the method presented here – 

a rigid surface placed 1mm above the surface which confines the cell seeding volume in a 

defined volume across the full sample (C). Movement to the incubator for culture (D) 

represents a critical step, whereby redistribution of unattached cells due to flow within the 

well causes uneven distribution, generally in the centre of the well due to centrifugal flow. 

Final analysis of results (E) is therefore affected by this uneven distribution in the plate – 

leading to increased experimental error. 

Comparison of three common seeding techniques has shown a widespread variation 

in homogeneity, both between methods and also between users. Seeding cells as a sessile 

drop onto surfaces results in a much higher density in the centre of the drop compared with 

the periphery. Essentially, the distribution conforms to the shape of the cell suspension 

media at the time of seeding, Figure 5.2. To that end, the device presented here uses 

capillary force to hold the cell suspension 1 mm above the substrate across the whole 

substrate area. 

An uneven initial seeding will create local cell densities across a well or an assay, 

Figure 5.2. Several studies have shown that the cell density affects cellular behaviour due 

to cell-cell communication, cell shape and mechanical coupling between cells and the 

extracellular matrix[138]–[140]. The commitment and differentiation of stem cells is, in 

particular, highly regulated by cell density [141].  One study showed that the initial seeding 

density of human embryonic stem cells plays a crucial role for germ layer speciation and 

affects the later commitment towards pancreatic progenitors[142]. Therefore, it is evident 

that cell culture studies must be built on a foundation of even seeding density across the 

full sample space. Issues with uneven seeding also arise in the case of array and screening 

platforms, whereby a disparity in  cell density may introduce noise and variability – 

leaving the assays open to errors [139], [141]–[143]. Moreover, uneven seeding can skew 

results when conducting biomolecular assays across an entire well, Figure 5.3. Testing cell 

response to drug targets, hypoxic conditions or temperature variation in a culture vessel 

with uneven cell distribution yields a result which is a combination of the experimental 

stimulus and an average of cell response in various microenvironments caused by uneven 

seeding. 
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Figure 5.3 Local cell densities influence cell behaviour through cell-cell communication - 

both chemical and mechanical. One may envision three terminal cell differentiation states 

(green/pink/blue) arising from three different seeding densities across a single well. Any 

further study of cell response to a novel biomaterial or structured surface then becomes a 

study of a mixed population, unbeknownst to the user. 

Frequently, studies investigate the control of cell behaviour by modulating small 

microenvironments[144], [145]. This seeding technique which allows the precise 

homogeneous control of the cell microenvironment across millimetre length scales – 

yielding improvements in attachment efficiency, differentiation potential and final 

experimental outcomes. Local density has been shown to influence the lineage 

commitment of various stem cell types, for example three distinct seeding densities may 

exist in a single well due to uneven seeding distribution, Figure 5.3. Lu et al reported a 

divergence in lineage commitment which was dependent on density[138]. 
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5.2 Methods 

5.2.1 Device fabrication 

The uniform cell seeder (UCS) required fabrication at an entirely different length 

scale as compared to the work of Chapters 3 & 4. It was evident that the UCS could be a 

simple piece of disposable labware, and therefore a mass fabrication route was used to 

make the device available to as many collaborators as possible. Injection moulding of 

thousands of UCS devices for distribution alongside injection moulded micro- and 

nanopatterns was seen as a means of improving experimental consistency across users and 

labs alongside other benefits of homogeneous cell seeding. A custom inlay was milled 

from aluminium on a CNC machine, however the tooling design and operation is not 

covered in this thesis. 

Figure 5.4 Injection moulded 

UCS devices. Three feet hold 

the device 1 mm above the 

surface to be seeded (yellow 

arrows) whilst an inlet allows 

for the injection of cell 

suspension (red arrows) 

UCS devices were injection moulded in polycarbonate, as a square of plastic with 

three feet which create a constant 1 mm gap between the surface and the UCS, Figure 5.4. 

An injection hole was included to allow cell suspension to be added. Studies in 12-well 

plates required a circular seeder geometry 

which could not be injection moulded using 

the tooling available. A set of 12 seeders 

were individually machined from a 3mm 

polycarbonate sheet. Spacers of 0.5 mm 

width which held the device 1 mm above the 

well surface were included around the 

circumference of the device, Figure 5.5. 

Figure 5.5 UCS devices were machined from 

polycarbonate for use in 12-well plates. 

10 mm 

10 mm 
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5.2.2 Cell seeding 

Human fibroblast cells (hTERT-BJ1) were suspended in DMEM media at a 

concentration of 50x10
4
 cells per ml. Cells were seeded onto planar tissue culture surfaces 

at three different seeding densities by three methods; 

I. Droplet seeding, whereby a concentrated droplet of cell suspension is placed in the 

centre of the well. The cells were allowed to attach at room temperature for 1 – 2 

hours before the well was backfilled with media. [Figure 5.2A] 

II. Open seeding, whereby the well was filled with 2ml of culture media, and a 

concentrated cell suspension pipetted into the media. [Figure 5.2B] 

III. Controlled seeding, by placing a UCS device in the well, and filling the fluid cavity 

with cell suspension through a filling hole. [Figure 5.2C] 

 

Substrates were left stationary for 10 min, before being moved to an incubator for a 

further 50 min. They were then fixed using 4% paraformaldehyde at 37C for 10 min, and 

stained with Coomassie blue for 5 mins before washing 3 times in 1X PBS. Inspection 

revealed that in this timeframe, cells had been given enough time to attach to the surface 

without fully spreading or beginning to migrate. Fixing at this time point gives a realistic 

snapshot of cell distribution on the surface after seeding. Array images were acquired using 

an Olympus CX41 upright microscope equipped with a Prior motorized stage and 10x 

objective. Automated scanning and acquisition across the surface was driven by 

ImageProPlus (Media Cybernetics, UK) to capture a contiguous array of at least 5 separate 

samples for all cell seeding methods outlined above. These images were analysed using the 

CellProfiler software suite (Broad Institute, Harvard, USA) to automatically detect and 

count cells in each frame.  

 

Figure 5.6 The uniform cell seeder is filled by injecting cell suspension through a hole in the 

lid. It sits on the surface with spacer feet creating a fluid shaping volume which is a defined 

height across the sample - therefore homogenising cell density. 
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5.3 Cell seeding accuracy and its implications in vitro  

 

Figure 5.7 Common sample seeding methodologies distribute cells across injection 

moulded samples in a heterogeneous manner which is undesirable. Controlled seeding 

using the UCS device results in a drastic improvement in the uniformity of cell distribution 

on the substrate – as evidenced by the lack of cell density ‘hot spots’ in summed images of 

10 samples (rightmost images).  

Figure 5.7 shows the variation in cell density which results from the seeding 

methods outlined in Figure 5.2. Droplet seeding creates a dome of fluid which is higher in 

the centre than at the edges – as cells settle out of suspension the greater volume in the 

centre results in a greater concentration in the centre. In the case of the three samples 

shown above, a single sample has both sparsely populated and fully confluent regions 

within 6 h of seeding. Similarly, using the open seeding method does not distribute cells 

evenly. In this case, where the substrate is submerged in culture media and a concentrated 

seeding suspension is pipetted onto it, the location of droplets influences density across the 
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substrate. Not only are their confluent and sparse regions on a single sample, but the target 

seeding concentration is missed as cells settle in the culture vessel rather than on the 

sample. 

Qualitative analysis of cell seeding was carried out to identify problems with the 

current methods used in virtually all cell seeding studies. In order to compare samples and 

methods, a model for ‗perfect‘ cell seeding is proposed as one in which cells are 

equidistant in the 2D space as they settle onto the surface and attach, Figure 5.8.   

 

Figure 5.8 The 'quality' of cell seeding on a surface can be quantified in terms of the total 

number of cells, their distribution across the surface, and the inter-cell spacing. Equidistant 

cells across a millimetre scale culture vessel is deemed to represent ‘ideal’ seeding, 

whereby there are no large scale changes in cell distribution derived from variation from 

experiment to experiment (i.e. how quickly was the dish moved, was it accidentally 

knocked). 

The accuracy of a given cell seeding technique was defined in terms of the 

consistency of the local microenvironment across a 12 well plate (20 mm diameter, 

3.14cm
2
). Defining this as the number of cells within a radius of 150 μm, large image 

arrays were captured across multiple wells and culture conditions to understand the seeding 

distribution resulting from each method. Controlled seeding carried out using the UCS 

provided more consistent seeding in terms of the local microenvironment surrounding each 

cell – with a significant reduction in the standard deviation of local cell numbers. 
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Figure 5.9 Cells can be more accurately seeded with the UCS device when compared to 

standard seeding without in open wells. A narrower distribution of local cell density values 

is evident for all seeding densities when cells are seeded using the UCS (dashed lines). 

Standard seeding methods yield a broad distribution across the full culture space (solid 

lines). 

Other metrics of cell seeding accuracy may be considered, such as the nearest 

neighbour to a given cell, and the number of neighbours within an area. The dataset 

consisted of over 500,000 cells seeded using the three methods outlined. The number of 

cells within a 150 µm radius of each cell is shown for three seeding densities in Figure 5.9, 

seeded both with and without the UCS device. It is clear that sharper peaks for dashed lines 

(in which the UCS was used) indicate that across the cell culture area, it was more likely 

for a given cell to have a consistent number of other cells in its local microenvironment. 

Using the UCS, a consistently spaced cell culture can be seeded onto the 

material/array/surface of interest – meaning experiments are more reproducible and may be 

more reliably compared. Seeding which matched the ideal model presented in Figure 5.8 

would be a sharp peak, as all cells find themselves surrounded by an equal number of 

neighbours in their local microenvironment. 

10k cm
-2

 WITHOUT 

10k cm
-2

 WITH 

20k cm
-2

 WITHOUT 

20k cm
-2

 WITH 

40k cm
-2

 WITHOUT 

40k cm
-2

 WITH 

 



106 

 

 

Figure 5.10 Improvements in cell seeding performance are quantifiable in terms of the cell 

density across a full culture vessel and also in terms of the distance to each cell's nearest 

neighbour. As a ratio of target seeding versus actual seeding, the UCS is more accurate 

compared to droplet seeding and open seeding. Bars show the standard deviation.  Data 

from over 500,000 cells, p<0.005 student’s t-test. 

Normalising cell density data allows comparison of seeding which is independent 

of the quantity of cells being seeded – therefore allowing a general comparison of existing 

techniques to the UCS device. Figure 5.10 compares three methods of seeding on injection 

moulded samples, which are 21 mm x 21 mm polycarbonate squares. These were seeded 

with cells in a 6-well plate using either the UCS device, a sessile droplet of concentrated 

cell suspension, or by immersing the sample in media and pipetting a cell suspension over 

it. Both the actual cell density per image and also the nearest cell neighbour are plotted as a 

ratio of actual to target. In both metrics, the UCS yields a reduction in standard deviation, 

and resulting seeding is close to the target value. Open seeding, in which the sample is 

submerged in media before seeding, has the least cells which actually adhere – and these 

can often be found in the bottom of the well after the experiment is over. When working 

with rare/valuable populations of genetically modified cells or primary explants, the UCS 

offers the ability to accurately seed cells in the desired location with minimal wastage to 

the culture vessel. 

The UCS therefore addresses a fundamental issue with gradient and array 

platforms. It homogenises cell density across the surface, which is of vital importance if 

the surface contains its own variation in surface properties. These screening platforms can 

only be reliably used with even seeding, and the UCS enables that. 

Droplet     UCS      Open Droplet     UCS      Open 
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Figure 5.11 Use of the UCS device leads to a marked improvement in the uniformity of cell 

seeding. Seeding uniformity is shown as a function of local cell populations - each cell is 

coloured based on the number of neighbours within a 150 µm radius – the more consistent 

the colouring the more even the seeding. 

The UCS device addresses the problems of homogeneous cell seeding  by confining 

the seeding suspension above the substrate - yielding a consistent fluid volume and 

therefore a more consistent cell density from edge to edge. To ensure that the 

inhomogeneous seeding artefacts were not the result of a single persons poor technique, at 

least 5 other users have been enlisted who all report improved cell seeding distribution. 

Figure 5.11 shows human embryonic stem cells, seeded in a 6-well plate by a collaborator 

in Denmark (Camilla Rasmussen, Novo Nordisk & DTU, Denmark). Montage images were 

captured of the full well after staining the cells for nuclear DNA, and processed using 

CellProfiler to measure the local density as a function of cell count within 150 µm radius 

of each individual cell. This demonstrates control of the cell microenvironment across a 

millimetre scale culture vessel by using the UCS device. 
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5.4 Cell seeding timescales 

The methods for seeding cells on patterned surfaces generally involve a period in 

which the cells are allowed to ‗settle‘ on the lab bench before the culture vessel is moved 

to the incubator. This is done to minimise fluid flow which may re-distribute cells in an 

uneven manner, either in a central clump or around the outsides of the vessel. A 

microscope was equipped with a modified illumination setup to show cells as they 

approach the surface – similar to interference reflection microscopy. A 10 mm thick glass 

plate was illuminated from the side with white LEDs, Figure 5.12. As cells settle to the 

surface they couple light out perpendicularly and into the objective. This revealed that after 

only 5 minutes the majority of cells are settled on the surface, Figure 5.13. Using the UCS 

device removes any need to allow this settlement to take place in the cell culture hood. 

After filling the device with fluid the samples can be transferred immediately to the 

incubator. 

 

Figure 5.12 Microscopy setup for imaging the 

settle time of cells onto a flat surface. 

Illumination from the side is coupled out into the 

objective when cells settle to within a few 

hundred nanometres of the glass plate. Light 

(arrows) is supplied by LEDs from the side of the 

plate. 
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Figure 5.13 After initial seeding, it takes approximately 5 minutes for the majority of cells to 

settle to the surface when seeding is performed using a 1 mm high UCS. Top: settlement of 

cells onto a surface over 10 minutes. An improvised microscope setup was used to 

illuminate only cells which were touching the surface; bottom images show the settlement 

over time. 

As the UCS device holds the cell suspension fluid in place over the surface, moving the 

sample after seeding results in little or no fluid flow and therefore little or no redistribution 

of cells. This is the case as long as the sample container is kept flat, with surface tension 

maintaining a well-defined fluid volume above the sample. Taking into account that the 

settlement of cells from solution appears to reach a steady state after only 5 minutes, it is 

recommended that substrates require no longer than 10 minutes stationary time in the flow 

hood after seeding. Some user protocols involve leaving seeded substrates/arrays/scaffolds 

out at room temperature for up to an hour to allow for initial attachment. Bearing the data 

presented in Figure 5.13 in mind, this can be reduced to 10 min using the UCS with no 

redistribution. 

 

1 mm 
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5.5 Improving stem cell differentiation through homogeneous 

seeding 

Whilst the UCS was designed to address the problem of uneven seeding across 

array and gradient substrates, there are also profound implications for the in vitro culture of 

cell types which are sensitive to local density[141]–[143], [146]. Reports in the literature 

indicate that local cell density in the microenvironment plays a critical in differentiation 

behaviour. Therefore, the insights into the quality of standard seeding techniques presented 

here indicate that researchers are introducing variations in cell density within multiwall 

plates as standard practice. In the case of hES cells used to generate insulin producing cells 

for implantation in the treatment of type I diabetes, the literature indicates that the 

production of pancreatic progenitor cells expressing the marker PDX.1 is density 

dependent[147]. In collaboration with Camilla Rasmussen, (Novo Nordisk & DTU, 

Denmark) hES cells were differentiated towards the definitive endoderm using a patented 

protocol from Novo Nordisk, then replated at various densities both with and without the 

UCS device. 
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Figure 5.14 hES cells seeded with the UCS device at a concentration of 100k cells per well 

after initial differentiation to the definitive endoderm using a proprietary protocol developed 

by Novo Nordisk.  

Example montages of cell coverage using standard open seeding and the UCS are 

shown in Figure 5.14. Total cell coverage directly after seeding is shown by the DAPI 

channel, which demonstrates the inherent problem of uneven distribution using standard 

open seeding methods. Fixation and staining for Nkx6.1, a marker for differentiation to the 

target state of the pancreatic endoderm, demonstrates that discrepancies in seeding 

uniformity manifest themselves as discrepancies in differentiation efficiency. 
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Figure 5.15 Montages of 21mm diameter wells, seeded at various densities both with and 

without the UCS device. Cells were fixed and stained for Nkx6.1, which indicates 

commitment to the pancreatic endoderm (cells were re-seeded seeded after differentiation 

to the definitive endoderm). Central aggregation of cells when seeded without the UCS 

appears to yield more positive cells at lower densities, and also shows an artefact in the 

centre of the well at higher densities.  
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Figure 5.16 Cluster size after differentiation using open seeding (without the UCS) and the 

UCS device to control cell seeding. Full well montages (top) show the inhomogeneous 

distribution of Nkx6.1 positive cells at low seeding densities, which is less pronounced at 

higher densities. Seeding artefacts are visible in the well centre for both seeding methods. 

Histograms of Nkx6.1 positive colony size (bottom) show a drastic reduction in 

differentiation efficiency using the UCS, whereas both seeding methods are comparable for 

higher seeding densities. 

Experiments conducted with collaborators in Denmark indicate that in the case of 

their system, involving the differentiation of hES cells to beta cells for implantation in the 

treatment of diabetes, the UCS device has an effect on cell differentiation efficiency[142]. 

Using the UCS to homogenise cell distribution at low densities inhibits differentiation, 
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with less cells appearing positive for the marker Nkx6.1. This marries well with the 

opinion of the literature that there is a minimum cell density required for differentiation of 

these cell types[147]. In fact, the inhomogeneous seeding achieved by standard methods 

may in fact mask issues with cell seeding density – providing local areas of high density 

which produce at least some differentiated cells. In instances where, after initial 

differentiation, positive cells are automatically separated by fluorescence activated cell 

sorting (FACS), or other cell sorting methods, the yield may be sufficient to enable the 

studies at hand. This result, however, suggests that after optimisation of seeding density, a 

vast improvement in differentiation efficiency could be achieved simply by even 

distribution of cells across the culture area.  

5.6 Conclusions 

Cell seeding density plays a critical role in the outcome of cell culture experiments. 

Standard seeding methods in large culture vessels (12 & 6 well plates, culture flasks etc) 

do not provide a homogeneous distribution of cells on the culture surface. This results in 

local variations in cell density which affects the global outcome of an experiment – 

hampering accuracy and subsequent reproducibility. A simple methodology by which the 

uniformity of cell seeding across large culture areas can be drastically improved has been 

developed. By containing the cell seeding suspension in a defined space above the culture 

substrate, local fluctuations in cell density are minimised. Seeding efficiency, as defined by 

the homogeneity of intercellular spacing, was improved by a factor of 10. It is, of course, 

not entirely surprising that changes in cell density affect the behaviour of stem cells as they 

differentiate. It is, however, alarming to see the discrepancy in differentiation profiles 

within individual wells even across a single experiment. The UCS device represents an 

improvement on existing laboratory practices which is simple to implement, and based on 

the work presented in this chapter may have a profound impact on the reproducibility of 

certain cell culture studies. 

The UCS described in this chapter addresses a fundamental problem in the use of 

high-content screening studies (i.e. array and gradient platforms) by ensuring that upon 

seeding, cells are distributed across the sample in a homogeneous manner. This allows us 

to ‗trust‘ that changes in cell density and behaviour are the result of surface driven effects, 

rather than spurious seeding artefacts.  
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A quantifiable improvement in the quality of cell seeding has been demonstrated, 

effectively homogenising seeding protocols across users, experiments and samples. The 

variation in seeded cell density on injection moulded array samples, and also in multiwell 

plates, has been demonstrated as flawed in multiple users work. Reducing the standard 

deviation of local cell density by a factor of almost 5 on injection moulded samples allows 

for increased confidence in experimental results. This has led to a direct improvement in 

the reliability of studies on gradient substrates fabricated in this thesis, and represents a 

potentially valuable tool for other high-content screening systems moving forward.  

Furthermore, experiments were undertaken in collaboration with Novo Nordisk, 

Denmark, to elucidate the possible effect of cell seeding uniformity on their work with the 

differentiation of human embryonic stem cells to beta cells for the treatment of diabetes. 

Initial results indicate that the differentiation profile within 12-well plates depends on the 

seeding method. Variation in density across the surface of the well leads to a variation in 

positive differentiation of hES cells. Work is ongoing to confirm the quantitative change in 

differentiation yield using standard seeding approaches and the UCS.  
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6 Imaging the nanoscale architecture of focal 

adhesions 

Background: 
Extensive work since the 1980‘s has demonstrated cell 

behaviour on patterned substrates, including this thesis, 

without necessarily understanding how topography drives cell 

behaviour. Nanopitted arrays are one of the most interesting 

substrates – appearing to drive the differentiation of 

mesenchymal stem cells with subtle variation in geometry. 

This chapter employs new microscopy techniques to provide a 

more detailed look at just how cells interact with precisely 

ordered and disordered nanostructures. 

Results: 
Correlative microscopy was used to combine super-resolution microscopy with scanning electron 

microscopy – revealing changes in focal adhesion structure which were dependent on the 

underlying surface topography. New methods were developed for sample processing: preparation 

for immunofluorescence microscopy followed by further preparation for electron microscopy, 

along with the challenge of registration of images from two microscopes on a single image. It was 

revealed for the first time that cells build their focal adhesions around and in-between nanopit 

arrays, leading to a change in structure within single adhesions. A correlation between adhesion 

orientation and the symmetry of the topographies further reinforced this. 

Conclusions: 
Focal adhesions have heterogeneous nanoscale architecture within the complex which is clearly 

guided by the symmetry and order of underlying nanopit topography. These changes in adhesion 

architecture are assumed to modulate the cellular mechanosensing of the surface properties – 

explaining why mesenchymal stem cells respond as though they are on a stiff/soft substrate when 

cultured on different nanopatterns. 

Experimental 
Length scale:  nanometres (100 nm features, <30 nm resolution) 

Cell type:        mouse embryonic fibroblast (MEF) 

Analysis:        200x immunofluorescence images 

Dataset:          Correlative fluorescence and SEM of single cells – 5 substrate topographies 

 

Output: 
Further work is required to correlate the nanoscale architecture of focal adhesions to cellular 

mechanosensing. If a direct link can be found, a high impact publication is likely. 
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6.1 Introduction 

Whilst it has been demonstrated that nanotopographical cues embedded in a surface 

can have a profound effect on cell response, the mechanisms by which these cues are 

translated into the presentation of a given phenotype are largely unknown[6], [148]–[150]. 

This thesis has already demonstrated that groove depth in the submicron range has a 

threshold of action, and also that a simple nanotopographical surface array can have a 

powerful and profoundly different impact on different cell types. 

The key issues standing in the way of developing a deeper understanding of these 

cell-surface interactions are imposed by both the complexity of biological systems, and 

also the limitations of microscopy techniques available to researchers. Many of the 

intricate cellular activities which are thought to modulate the cell-substrate interface exist 

at length scales unresolvable using light microscopy. The so called Abbe limit [151] 

defines the smallest resolvable distance, d, at a given wavelength,     as being          

for optics with a high numerical aperture (NA) of 1.4. This was refined some years later by 

Lord Rayleigh to             [152]. The Rayleigh criterion states that two point 

sources are resolvable if the peak of one diffraction pattern is as far away as the first 

minium in the airy pattern created by the diffraction in optical system. In practice, this 

gives a diffraction limited resolution of 200 nm using an ideally configured optical 

microscopy system. Techniques making use of methods other than light such as scanning 

electron microscopy (SEM) offer improved resolution, but are incompatible with the 

analysis of live biological samples. 

 There is a constant push in the biological sciences to increase resolution and delve 

deeper into the inner workings of the body. Since Hooke first described cells in 1665 new 

tools and techniques have been developed to understand the constituent parts which work 

together to give us the human body as we know it. From that first rudimentary microscope, 

350 years of progress have given us exquisitely high NA objectives and cooled EMCCD 

cameras capable of high frame rate acquisition with low noise levels and high sensitivity.  

In recent years, the Abbe limit itself has been comprehensively broken – or rather, 

circumvented, by a wave of new super-resolution microscopy techniques capable of 

resolving features only tens of nanometres apart. These techniques can be divided into two 
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categories – those which use structured illumination to restrict the sample area which 

receives excitation light, and those which rely on the stochastic behaviour of fluorescent 

molecules to subsequently extrapolate and model the probable position of individual 

molecules within an image. This new wave of techniques is described in depth in the 

literature[153]–[155], and has already offered ground-breaking insight into the nanoscopic 

behaviour of cells[156] as they interface with surfaces in vitro. The ingenuity of leading 

researchers in the field shows no sign of abatement, with new microscopy techniques 

capable of increasing spatiotemporal resolution being reported every few years [157]. 

 

Figure 6.1 Standard resolution fluorescent 

micrograph of a cell in which the focal adhesion 

protein paxillin has been labelled. A super-

resolution reconstruction of a small region of 

interest is outlined in yellow. Processing this 

higher resolution area took approximately 5 

days on a high performance cluster computing 

system (Columbia University, NYC). 

 

Whilst exhibiting a different morphology in vitro as compared to in vivo, focal 

adhesion complexes have been shown to be involved in the modification of cell 

behaviour in response to a topographical surface cues[158]. These complexes are the 

focal point of cell-surface contact, and are met by dense actin bundles through which 

inter cellular tension is generated[77]. An understanding of how nanotopographical 

stimulation affects cellular response might lead to the ability to target surfaces 

towards certain behaviours – such as the formation of bone[35] or the maintenance 

of a stem cell phenotype[38]. 

Standard microscopy techniques which are diffraction limited do not necessarily 

lend themselves to the observation of important cellular mechanisms – and are particularly 

unsuited to observing structural changes in cell apparatus as a result of nanopatterned 

substrates. For example, what appears to be a wide adhesion which is 2 µm across may 

actually be only 0.5 µm wide, or composed of many smaller subunits rather than existing 

as one large complex. Super-resolution techniques have already been shown to bring a new 

5 µm 
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understanding of focal adhesion architecture on patterned substrates. Rather than 

topographical patterning, chemical patterning of fibronectin was used to investigate the 

resolution of focal adhesions[159]. Constricting the available area of ECM protein, and 

therefore limiting the number of integrin binding sites, forced adhesions to conform to the 

nanoscale patterns – with the vinculin pair distance (i.e. the centre-centre spacing between 

vinculin molecules) correlating with pattern dimensions. These patterns are on the same 

length scale as the nanopit arrays which show a modulation of MSC focal adhesions, and 

ultimately differentiation. Results from previous publications in Figure 6.2 demonstrate 

that modifying the structure at the nanoscale allows the modification of a cells focal 

adhesion composition, which translates into modified mechanosensing of the surface 

– driving cell behaviour.  

 

 

 

 

 

 

Figure 6.2 Adhesion, tension and phenotype. Figure adapted from Tsimbouri et al. Focal 

adhesions are longer on disordered nanopit arrays as compared to flat and ordered 

surfaces. This corresponds to higher levels of p-myosin expression, which is indicative of 

greater intracellular tension. Cells on ordered and disordered surfaces also show inverted 

profiles for markers of oestrogenic differentiation (both RUNX2 and pRUNX2 on NSQ 

surface) and markers of stem cell quiescence (STRO1 on SQ surface). This points to a 

change in the mechanical sensing of a surface, which is dependent on pattern geometry. 
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6.2 Methods 

To investigate the impact of nanopit array geometry on cell adhesion, new array 

substrates were fabricated. Combinations of disordered and ordered dots with various 

periods were fabricated by electron beam lithography (EBL), followed by replication in 

polycarbonate my injection moulding. Lithography was carried out using the methods 

outlined in 4.2.1 and 4.2.2. 

6.2.1 Data acquisition - super-resolution imaging 

Super-resolution imaging of focal adhesions on nanopatterned surfaces was carried 

out using a stochastic reconstruction technique called 3B[155], [160]. This technique has 

been used to demonstrate spatial resolution approaching 10 nm on a conventional 

microscope using a high sensitivity camera, making it ideal for investigating the interaction 

and organisational response of cellular structures such as FAs to nanoscale surface 

features.  

3B is a localisation microscopy analysis method which creates reconstructions of 

fluorophores point locations from sequential image datasets. Fluorescent molecules do not 

emit a steady stream of light, rather they emit photons sequentially as energy is absorbed 

and emitted. 3B provides a route to super-resolved microscopy avoiding the high 

equipment costs commonly associated with high resolution microscopy. Bespoke 

microscope configurations and light sources are required for techniques such as Stimulated 

emission depletion (STED), saturated structured illumination (SSIM), photoactivated 

localization microscopy (PALM), and stochastic optical reconstruction microscopy 

(STORM)[153], [161], [162]. 
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Figure 6.3 ThreeB super-resolution microscopy. A) integration of 200 frame dataset. B) 

dataset bleaching profile over time. C) iterative process can begin with one of  two initial 

distributions, both converging on approximately equal images. D) where ROIs are too small 

and fluorophores overlapping artefacts can occur. E) integration of 200 frame dataset, F) 

ThreeB reconstruction of highlighted ROI. 
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ThreeB imaging uses a time series of, e.g. 200 images, to estimate the location of 

individual fluorescent molecules based on intermittent stochastic bleaching and blinking 

events. It allows the reconstruction of images with sub diffraction resolution on a standard 

fluorescent microscope. The key requirement is that the camera used for acquisition be 

capable of frame rates which are on the same order as the intermittent blinking and 

bleaching of the fluorophores. Common CCD cameras are not currently sensitive enough 

at the required frame rates; nominal frame rates of 50 Hz are required. Cooled EMCCD 

cameras, and the new generation of sCMOS[163] cameras must be coupled with high NA 

objectives to produce sensitive imaging with small pixel sizes. Image reconstruction takes 

100+ hours for a 2 µm x 2 µm square on a high spec desktop computer, meaning that 

access to high power computing facilities is essential for post processing of acquired data. 

Figure 6.3 C outlines the iterative process by which the ThreeB algorithm estimates 

the location of individual fluorophores within a fluorescent time series. The intermittent 

bleaching and blinking of individual sources within the diffraction limit is used to predict 

their centroid, offering resolution well below the classical ‗limit‘ for an optical microscope. 

6.2.2 Secondary fixation for electron microscopy 

The fixation process used for immunofluorescence microscopy is deliberately 

‗light‘ so as to minimise cross-linking of proteins of interest. Aggressive cross linking by 

any fixative obscures epitope targets onto which the antibodies used to label cell structures 

bind. In fact, some target proteins are incompatible with fixation by formaldehyde and 

require the use of dehydrating alcohol fixations. Rather than cross linking, fixation in 

alcohol causes the coagulation and precipitation of protein structures with no cross linking, 

however carbohydrates and lipids are not fixed. Formaldehyde fixation reacts primarily 

with proteins, forming a methylene bridge (-CH2-) between reactive atoms (primarily 

nitrogen). Molecules such as carbohydrates, nucleic acids and lipids are thought to be 

encapsulated in the cross linked mesh at forms as formaldehyde binds proteins together. 

For microscopy techniques which use electron beams under high vacuum conditions, such 

as SEM, a higher level of cross linking is required. The reasons for this are twofold: 

imaging under high vacuum is only possible with dehydrated samples and contrast is 

improved through the increased density after harsh fixation.  
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For correlative microscopy studies on injection moulded plastic samples, cells were 

initially fixed for immunolabeling in 4% formaldehyde at room temperature for 5 min. 

This allowed for staining of focal adhesion complexes and the actin cytoskeleton with 

primary antibodies against FA proteins and a fluorescently conjugated phalloidin molecule 

respectively. Cells were mounted in a solution containing 10mM β-mercaptoethanol 

(BME), a reducing agent which induces bleaching and blinking of fluorophores. Modern 

fluorophores such as the Alexa series (life technologies) are so robust that they bleach too 

slowly for the ThreeB super-resolution technique and are so stable that they offer very little 

information in the way of blinking events. 

 

Figure 6.4 Secondary fixation before SEM is essential for correlative microscopy studies. 

Contrast is poor when samples are dehydrated directly after fluorescent microscopy (A-C). 

D) Secondary fixation with gluteraldehyde drastically improves contrast, revealing cellular 

interactions with surface features down to nanometre resolution. 

The key to stochastic super-resolution techniques is that individual bleaching and 

blinking events occur in fluorophores which are separated by distances below the 

diffraction limit. If both fluorophores were to emit a constant stream of photons in sync 
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with each other they would be impossible to distinguish. However, as fluorophores 

undergo bleaching and blinking events and effectively turn on and off, analysis of 

sequential image frames can reveal their location. 

6.3 Correlative light electron microscopy (CLEM) 

Here, ThreeB super-resolution imaging[155] has been combined with SEM on 

substrates designed to investigate the impact of nanoscale features on cell response. 

Correlative microscopy combining these two imaging modes has already been used to 

reveal new structural of specific proteins in their cellular context[164]–[166]. It has been 

shown previously that nanoscale pits arranged with differing order and geometry can 

induce osteogenic differentiation[35] or retention of stem cell phenotype[38] in human 

mesenchymal stem cells (hMSC). The mechanism by which this happens remains 

unknown, however the prevailing consensus is that the structured substrate influences the 

cells mechanical interpretation of the surface. Experiments using hMSC cells in which β1 

integrins were blocked and subsequently recovered showed that changes in the metabolic 

profile of cells were effectively switched on and off as integrins were masked,  
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Figure 6.5 Cells were cultured on substrate which combined stripes of ordered and 

disordered nanopits. Both patterns are composed of nanodots which are 100 nm wide, 

100nm deep pits with a nominal pitch of 300 nm. The ordered square array (SQ) has a 

constant centre-centre pitch of 300nm. In the disordered ‘Near Square’ (NSQ) each 

individual pit is offset by a random amount within a range of +/- 50 nm in both the x and y 

directions. These two patterns are highlighted in green boxes above. Other spacings were 

also included, with a total of 47 combinations of symmetries and stripe widths. 

Figure 6.5 shows disordered and ordered dots arranged in 600nm wide horizontal 

stripes across the substrate. This gives interspersed regions of order and disorder in the 

substrate, to determine the impact of subtle changes in nanoscale symmetry and disorder 

on focal adhesion (FA) structure locally within a single adhesion. 

Having previously shown that these surfaces modulate FA length and area [79], 

there may be two possible types of interaction between the FA and the nanopits: 

i. ECM proteins accumulate within the nanopits, providing sites for integrin binding 

and leading to nucleation of FAs from these pits 
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ii. The difference in height between the pit and the surface cannot be bridged by 

developing FAs, and sufficient protein cannot be recruited to fill the pits. This 

presents an obstacle which forces the FA to develop in an asymmetrical manner.  

Previous work reporting that FAs are composed of a 40 nm thick ‗core‘ of plaque 

proteins suggests that the nanofeatures of 100 nm depth are sufficient to prevent 

propagation of adhesions across them.  

 

 

 

 

 

 

Figure 6.6 Low magnification SEM of Mouse Embryonic Fibroblast (MEF) cell on a 

nanopitted polycarbonate surface as described above. Overlaid onto the SEM in green is a 

widefield fluorescence image of the same cell, immunolabelled with paxillin.  
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The fluorescent overlay in Figure 6.6 was captured with a 100x objective as a time 

series of 200 images, each with an exposure time of 20 ms (4 seconds total acquisition 

time) – the image stack was averaged before alignment by hand on the SEM micrograph. 

The yellow outline denotes the area in which a ThreeB reconstruction was performed, 

which generates a super-resolution image based on the bleaching and blinking of 

fluorophores over the 200 frames sequence. 100nm polystyrene beads were added to the 

sample after fixation to act as fiducial markers, allowing correlation of the two images. 

These can be seen as small white spheres on the SEM image, and as a larger green blur on 

the fluorescent image – indicated by white arrows. The red arrow indicates a fiducial 

marker which appears to have been washed away during sample preparation for SEM 

imaging – this is concerning in that it shows the fiducial markers are not immobilised in 

place, rather adsorbed to the surface.  

The sample is fixed in formaldehyde for fluorescence microscopy following a 

standard protocol and imaged wet in buffer solution (containing a reducing agent to induce 

further blinking in the fluorophore). It is then re-fixed in gluteraldehyde before dehydration 

in an alcohol gradient and finally dried in a critical point drier. A 5nm layer of gold-

palladium is sputter coated before SEM imaging. A minimum of three fiducials are 

required to reliably calculate image scale, rotation and tilt differences when combining 

both fluorescent and SEM images. However, due to the apparent propensity of the markers 

used here to become dislodged during processing, it is suggested that at least 5-10 are used 

in order to detect any displaced fiducials and discard them accordingly. Functionalised 

fiducials (e.g. with a protein could be used in the hope that the gluteraldehyde fixation step 

adheres them to the surface. 

In order to investigate the interaction of the focal adhesion structures with 

nanopatterned surfaces, it is essential to have a combined surface and cell image – i.e. 

SEM and fluorescent micrograph overlay. 
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Figure 6.7 Super-resolution 

reconstruction of area of interest. 

Focal adhesions are broader at the 

proximal side, and appear to 

concentrate at the distal side.  

 

 

 

Figure 6.8 Correlated super-resolution image of paxillin and SEM of cell on nanostructured 

surface. Narrow focal adhesions navigate between nanopits, propagating at angles where 

obstructions are minimised, with bends and kinks in structure to work around nanofeatures. 

Alternating ordered and disordered patterns appear to force adhesions to divert more 

strongly from a linear path. White arrows indicate a transition from disorder to order 

accompanied by a pronounced bend in the FA before continuing towards the centre of the 

cell. 
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Whilst generally straight and appearing to lie in between nanopits, the focal 

adhesion can be seen to ‗kink‘ in disordered regions where the symmetry of the square 

array is disrupted (white arrows). Otherwise, it proceeds along the angles of symmetry 

within the array. It appears that, rather than the pits providing a nucleation site in which 

proteins accumulate, they restrict and constrain FA growth into the flat regions of the 

sample.  

 

 

 

Although the navigation of cellular processes inbetween nanopit structures has been 

shown previously by SEM imaging [167], [168] the orientation of cellular focal adhesions 

in relation to nanopit arrays has not been visualised. Super-resolution imaging of the 

protein structures which interface with the nanostructured substrate offer the first 

opportunity to observe the cell-nanopit interaction rather than simply the guidance of 

protrusions by the topography as seen above. This has profound impact on our potential 

understanding of how the nanotopography induced changes in adhesion structure affect 

cellular mechanosensing and so drive cell behaviour. 

Figure 6.9 High magnification SEM images of fillopodial extensions on nanopit arrays. Here, 

it is evident that cellular protrusions ‘navigate’ between nanopits, extending through the flat 

region between features. 
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Figure 6.10 Focal adhesion orientation on nanopit arrays. Adhesions extend in between 

nanopits at approximately 45º. Here, a regular array with pitch of 300 nm has been overlaid 

onto a super-resolution reconstruction of paxillin labelled focal adhesion complex. As the 

nanostructures cannot be observed in brightfield or fluorescence, there is no means of 

aligning the grid to the true underlying structure. 

Alignment of focal adhesions at the nanoscale is clear, as can be seen in Figure 

6.10. This was surprising as previous work looking at adhesion orientation with respect to 

nanopatterned surfaces found no apparent guidance in FA angle. Investigation with super-

resolution microscopy, however, reveals that adhesions are constructed from narrow 

subunits, and indeed appear to conform to the underlying topography.  

6.4 Quantification of adhesion geometry on nanopatterns 

Clear morphological differences in nanoscale adhesion geometry on nanopitted 

substrates can be seen in the correlative microscopy study presented earlier in this chapter. 

The outstanding question is how best to interpret this data, and discover what it might tell 

us about the manner in which cells sense, understand, and react to their environment. 

Nanopatterned surfaces are a relatively new technology, but papers have demonstrated 

their use as a system for indirect control or guidance of cell behaviour in studies of 

biochemical processes. Tsimbouri et al described a ‗plasticity‘ system whereby ordered 
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and disordered surfaces were used to guide cell behaviour, followed by the investigation of 

cell-ECM interactions such as the role of β1 integrins in MSC differentiation[79]. 

The body of work produced on these surfaces, looking at cell response when 

cultured on nanopatterns with different levels of disorder, has found a marked difference in 

functional response. This is accompanied by clear differences in cell morphology such as 

spreading profiles and focal adhesion distribution. The differentiation profile of MSCs on 

nanopatterned polymer substrates matches that which one might expect if they were grown 

in induction media to force differentiation, or on a substrate whose mechanical properties 

were matched to that of the in vivo environment - i.e. on soft substrates with a similar 

Young‘s modulus to brain tissue drive neuronal differentiation [169]. 

This raises an interesting question: are these surfaces and materials synonymous? 

Nanopitted arrays provide a physical cue which, through super-resolution 

microscopy, this thesis has shown causes a distinct change in focal adhesion geometry. It is 

not known how this difference in structural organisation of the focal adhesion affects the 

function of the macromolecular complex. Due to the complexity of focal adhesion protein 

plaques – which have over 100 proteins associated with them – classical microscopy 

techniques have fallen short of better defining the interplay of proteins in these highly 

heterogeneous structures. Super-resolution microscopy of focal adhesions on ordered and 

disordered nanopit arrays has revealed a stark contrast in the sub-diffraction morphology of 

these adhesions. Classification by length clearly misrepresents the true mechanical 

‗foothold‘ of a cell on its culture substrate. Adhesions which appear to be equal in length at 

standard epifluorescent magnifications may be distinctly unequal in strength. 
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Figure 6.11 Line scan across super-resolution reconstruction of focal adhesions on 

disordered nanopit array. Adhesion formation is quantised spatially into the regions 

between nanopits. What appears to be a single adhesion (A) is revealed to be two separate 

structures with a pitch of approximately 300 nm 

Correlative microscopy of FAs on nanopit arrays answers a question that could not 

be addressed by conventional microscopy techniques – that of how the cell actually 

interacts with the nanostructured surface. Do proteins accumulate within the nanopits, 

providing nucleation points for FA formation and growth, or do the pits present obstacles 

which ‗guide‘ FA growth by limiting the degrees of freedom for extension. With no 

discernible alignment of FAs when cells are cultured on these patterns which have only 

two or three degrees of symmetry, it is clear that the effect is not as simple or broadly 

global as aligning FAs to the array axis. Studies of focal adhesion orientation show 

minimal correlation in angular alignment.  

 

Figure 6.12 Possible avenues of FA propagation from a central point in a square nanopit 

array (100 nm diameter pits, 300 nm pitch). Blue arrows represent propagation routes. Red 

dots represent pits which block/interfere with those routes. Green dots in (B) are randomly 

displaced in such a manner as to allow the route of propagation to continue whilst red dots 
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are displaced but still block the FA path. Here, we can see how displacements in the pattern 

may allow for larger FAs versus on highly ordered patterns. 

 

Figure 6.13 Focal adhesions were quanitified by generating a manual overlay on fluorescent 

micrographs captured at 40x. Original images (left) were loaded in ImageJ and an overlay 

created (right) which was then analysed. 

Both ordered or disordered square arrays offer two clear axes of propagation 

perpendicular to one another, Figure 6.12. Linear propagation in any axis other than 

horizontal or vertical is only possible for approximately 1 µm in either direction before a 

nanopit (red) interrupts the path. If, as shown in Figure 6.8, mature FAs must circumvent 

nanopits, then this places an intrinsic limit on the distribution and size of focal adhesions 

on highly ordered nanopattern arrays. This may go some way to explaining the well 

documented non-adhesive properties of regular nanopattern arrays for certain cell 

types[170]. 

 

Figure 6.14 The geometrical arrangement of nanopit arrays directly influences the size of 

focal adhesions. Differences in adhesion length are statistically significant between 

surfaces (p<0.001 by One Way ANOVA). Bars show SEM. 

FX      FA     SMA 
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Cells cultured on four different injection moulded surfaces were fixed 24h after 

plating and immunolabelled for paxillin and actin. The FAs were classified as described by 

Biggs et al in 2007 into three categories of focal complexes (FX) < 2 µm, focal adhesions 

(FA) of 2 – 5 µm in length, and super-mature adhesions (SMA) which were 

> 5 µm[168][167]. Classification was carried out in ImageJ by tracing over adhesions in a 

series of blind images. Differences in focal adhesion size were statistically significant 

across all four surfaces employed (P < 0.001). This is apparent from the distribution of 

focal adhesions presented in Figure 6.14, showing a reduction in adhesion number per cell 

on ordered arrays (HEX and SQ) whilst showing a shift towards longer adhesions on the 

disordered nanopit arrays (NSQ). All three nanopit arrays supported a higher number of 

FA and SMA as a proportion of the total adhesions per cell. In the case of NSQ surfaces, 

few FX were identified, with almost 50% of adhesions being classified as SMAs. 

 

Figure 6.15 Focal adhesions orientate to the underlying nanotopography. Orientation to the 

horizontal axis was measured for at least 500 MEF adhesions on each surface type stained 
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for paxillin. These were classified into 5º bins from 0º to 180º. Differences in adhesion 

orientation are statistically significant between surfaces (p<0.001 by One Way ANOVA). 

Orientation of MF cells to the underlying nanotopography is not immediately 

apparent on inspection of immunofluorescent image datasets, which one might attribute to 

the variety and heterogeneity of cell morphology. In the case of microscale topographies 

such as grooves cellular alignment is clear even at low magnifications, as in Figure 3.12. 

Focal adhesions do not immediately appear aligned to any axes of the underlying 

nanotopography either. A simple hypothesis as to why there is no alignment may be that 

100 nm diameter nanopits are relatively small compared to focal adhesion plaques, and 

therefore a microscale influence may not manifest itself. There are, however, statistically 

significant patterns which emerge in adhesion alignment upon closer inspection.  

Cells growing on a flat surface would be expected to show no alignment of cell 

body, focal adhesions, or any other subcellular structure – with orientation being random 

as the sample size increases. Figure 6.15 shows two regions of FA orientation – up to 90º 

alignment is high, and from 90º to 180º alignment is low. The low sample size (n = 10 per 

surface) may contribute to the weighting in favour of angles between 0º and 90º.  Patterned 

surfaces, however, show a level of alignment which can be related back to the actual 

nanopit array geometry. Hexagonally packed patterns have three orders of symmetry, 

whereas square and near-square patterns only have two. This appears to correlate with the 

number of peaks in FA alignment shown in Figure 6.15. For the hexagonally packed array, 

we see two clear peaks, and another spanning from 180º back to 0º. This may show a 

tendency to align to the clear path in between pits, however the peaks themselves do not 

fall at 0 º, 60 º, and 120 º.  
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Figure 6.16 Classification of FA orientation at standard magnifications (A) is prone to error. 

Upon closer inspection (B-D) what appears to be a vertical adhesion is composed of short 

sub-micron sections which intersect at 60° angles(E&F). This fits the proposed model of 

adhesions propagating between pillars/pits (G&H). Super-resolution imaging confirms the 

nanoscopic structure – again reinforcing that adhesions are built in the free space between 

pits.  

Classification of adhesion phenotype has been shown via a multitude of methods in 

the literature, across a variety of magnifications and levels of detail. Figure 6.16 raises the 

question of whether the nature of an adhesion can truly be determined at standard 

magnifications. Kinking of the FA highlighted in Figure 6.16E gives rise to a disparity in 

both length and orientation when observed at different magnifications. Firstly, this 

adhesion was classified as being orientated near-vertical at an angle of 87° when in fact, it 

appears to be composed of sub-micron sections creating a ‗zig-zag‘ pattern. This FA 

complex has a nanoscale orientation of both 60° and 120°, however its microscale 

orientation averages to approximately 90°. Secondly, the adhesion length and area which 

are commonly used as metrics of a cells FA profile differ at the nanoscale. The zig-zag 

geometry means that the true length of the adhesion is nearly 15% greater than would be 

measured from tip to tip. Finally, the contribution of diffraction blur to the percieved 

adhesion area may inflate measurements by as much as 200%. In this instance, the 

adhesion is confined to the area between nanopits arranged in a hexagonal array.The 
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nanopit spacing from edge to edge is approximately 200 nm – and correlative microscopy 

images suggest that adhesions are confined to this space. Imaging adhesions on a widefield 

system lacks the resolution to distinguish the true width of adhesions, and often makes 

parallel adhesions appear as a single entity and single adhesions appear to be a micron 

wide or more. This argument is reinfoced by the comparisson in Figure 6.11 of FA 

intensity profiles in widefield and super-resolution microscopy. 

6.5 Conclusions 

At the nanoscale, focal adhesions appear to be continuous within the resolution 

confinements of the techniques used here. Of course, the adhesions themselves are 

composed of a family of proteins and are therefore expected to be partially quantised at the 

molecular level. Further investigation with improved spatial resolution looking at multiple 

adhesion components is required to determine if there is any spatial heterogeneity or 

defined reorganisation of macromolecular protein complexes by the nanotopography.  

This work has revealed and reinforced the importance of understanding the 

limitations of experimental methods. Previous work at standard resolutions found no 

correlation between the nanopatterns orientation and adhesion orientation – however on 

inspection with super-resolved microscopy it is clear that what appears to be a randomly 

orientated adhesion at standard resolution is actually a series of short, sub-micron 

adhesions which are highly ordered to the topography. 

Numerous studies in the literature have investigated the impact of protein 

patterning on focal adhesion architecture – and as more super-resolved microscopy 

techniques become available, the level of detail being observed is increasing. The results in 

this chapter demonstrate that the architecture of focal adhesions can be modulated by 

simple arrays of nanopits on a polymer surface. Correlation in the distribution of focal 

adhesions on these nanopit arrays across multiple materials (PCL[36] and PC[44] as 

described in Chapter  4) and cell types (MSC[38], [79] and MEF as shown in this chapter) 

indicate that the modulation of FA structure by nanopatterned substrates is well conserved 

– possibly working through the fundamental building blocks of cellular mechanosensing. 

The use of a new cell type to investigate changes in the focal adhesion population within a 

cell reinforces that this is a topographically driven effect and may have applications across 
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a variety of cell types and materials – providing a versatile new tool in the design of a host 

of biomedical interfaces. With others having demonstrated the use of such surfaces to 

create a ‗plasticity system‘ for studies of osteogenesis in hMSCs, there is surely scope to 

develop further defined stimulus to a host of relevant biological systems for more detailed 

studies in cancer, developmental biology and biomaterials.  

Due to the differences in fabrication methods of nanopit and nanopillars substrates, 

it was not possible to use a consistent polarity of nanaofeatures throughout the features. 

Due to the demanding requirements of super resolution microscopy, substrates with 

nanopits were used to investigate the nanoscale geometry of focal adhesions – the 

fabrication process yields substrates which are flatter and therefore easier to use with high 

power, short working distance objectives. Moving forward, a comparison of the impact of 

nanopits and nanopillars is essential to define whether these are two different stimuli, or 

similar in their effect on cellular substructures. 
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7 Conclusion & discussion 

New fabrication processes for creating gradients of feature height/depth have been 

developed which are applicable to both nanoscale and microscale ranges. These are 

realised by etching through plasma polymer gradient films, and the behaviour of such films 

as sacrificial etch masks has been characterised against both silicon and quartz substrates. 

A single deposition and etch step is capable of producing gradients up to 1 µm in depth, 

whereas a tandem etch through an intermediate oxide layer offers the potential of 

height/depth gradients spanning tens of microns. These new gradient topographies, 

exhibiting exquisite resolution in all dimensions, have been demonstrated as effective 

screening platforms to elucidate the drivers and nature of cell response to micro- and 

nanostructured surfaces. High volume, high fidelity replication of gradient topographies 

was realised by injection moulding in biocompatible polymers such as polycarbonate and 

polystyrene.  

Cell response to these high-content screening platforms was investigated. 

Fibroblast and endothelial cells displayed unique modes of response on a gradient of 

microgroove depth and width – allowing the identification of the minimal effective groove 

depth to drive fibroblast alignment. Alignment dropped below 30% for groove depths 

under 500 nm, and was at its most pronounced as groove pitch was reduced to 5 µm. In 

contrast, endothelial cells showed little or no alignment to the groove axis, but did 

proliferate more rapidly towards forming a characteristic cobblestone layer at groove 

depths below 500 nm and with groove pitches above 70 µm. The response of these cell 

types was also investigated on a gradient of nanopillar height, in a geometrical 

configuration which had been shown to deplete fibroblast populations and enhance 

endothelial cell proliferation. A new method was developed for the label free segmentation 

of a co-culture of these two cell types with an accuracy of 84%, allowing investigation of 

the simultaneous behaviour of these cell types on the nanostructured substrate. In this more 

relevant culture model, the response was found to be similar in nature to the earlier work – 

in that fibroblast populations are depleted on nanopillars whilst endothelial cells are 

enriched. The gradient of height also showed that at pillar heights over 150 nm, endothelial 

cells were also inhibited, suggesting an optimal pillar height of 75 nm to combine the two 

effects. 
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A device was devised, designed, fabricated and patented to allow for the uniform 

seeding of cells across the gradient screening platforms being developed. This device 

reduces the standard deviation of local cell density by an order of magnitude – ensuring 

that gradient surfaces can be seeded uniformly and the cell response more reliably 

analysed. The device also has broader applications in cell culture studies. It offers the 

chance to homogenise cell seeding between experiments, users and laboratories – going 

some way to tackling the problems introduced by the currently varied seeding methods. 

Alongside collaborators, the effect of homogeneous seeding on stem cell differentiation 

was assessed. 

Finally, the true ability of a cell to sense nanotopographical structures was 

investigated using super-resolution microscopy. Array substrates were fabricated with 

subtle variations in nanopatterns geometry. It was found that focal adhesions exhibit 

nanoscale architecture in response to their underlying surface – and that heterogeneity in 

the surface patterning and geometry is reflected in adhesions which have modified 

structure at the nanoscale.  Observation using super-resolution microscopy also revealed 

the geometry of focal adhesions with respect to the underlying nanotopography. Adhesion 

proteins do not co-localise or aggregate within nanopits, but rather the adhesions appear to 

navigate their way between pits, and are composed of many small adhesive units. This 

presents a stark contrast with the adhesion morphology perceived at standard resolutions – 

meaning that comparisons of focal contact area, length and size are unsuitable at standard 

resolution. In fact, adhesions were constrained and could be no wider than the 200 nm 

space between nanopit features used in this thesis. 

Taken as a whole this thesis represents a stepwise analysis of cell response to 

engineered surfaces environments, developing new methods for fabrication, use, and 

analysis of high-content screening platforms. This has revealed the nanoscale sensitivity of 

cells to engineered culture substrates. Broad analysis across millimetre scale gradients 

showed re-organisation of cell populations in accordance with the underlying topography, 

whilst super-resolution imaging revealed that nanopatterned substrates affect the very 

shape of subcellular components with differences in architecture within single focal 

adhesion complexes. 
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Appendix A: immunohistochemistry protocol 

  

 

• Remove media from substrate 

• Rinse substrate in 1x PBS 

• Fix cells in 10% formaldehyde/PBS at 37°C for 10 min 

• Rinse twice in 1x PBS 

• Permeablise cell membrane in 0.1% Triton-X/PBS at 4°C for 10 min 

• Incubate substrate in 1% BSA/PBS (blocking buffer) 4°C for 1 hour 

• Incubate with primary antibody at 1:500 dilution in PBS at 4°C overnight 

• Wash three times with 1% Tween-20/PBS on shaker set to slow swirl for 5 min 

• Incubate with secondary antibody (1:500 concentration in PBS) 4°C for 1 hour 

• Wash three times with 1% Tween-20/PBS on shaker set to slow swirl for 5 min 

• Store in PBS or mount sample on microscope slide using mounting medium 
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Appendix B: plasma chamber operation protocol 

1. Turn on the support PC. 

2. Turn on the LAF cupboard (two switches at the top middle of the cupboard) 

3. Vent chamber using filtered vent valve. Close valve again after chamber is fully vented 

4. Check precursor liquid level. Change if necessary. 

5. Turn on thickness monitor and verify correct settings and operation. 

6. Open chamber and place sample on the plastic support. Close chamber and cage door. 

7. Turn on pump. 

8. Open isolation valve, and pump down chamber. 

1. Chamber usually pumps to at least 0.04 mbar.  

2. While pumping, open the plasmachamber log spreadsheet and the labview control 

    system. Begin filling out the required information. 

9. Close isolation valve and vent chamber. Pump down again. 

10. When chamber pressure reaches below 0.05 mbar, begin filling the nitrogen trap with LN2 

11. Pressure should further decrease, usually to at least 0.01 mbar. 

12. Open the monomer valve - pressure in the chamber will rise. 

13. Use the isolation valve to control chamber pressure to around 0.2 mbar. 

14. Refill LN2 in trap and wait for five minutes. 

15. Turn on RF power unit. Adjust power setting to required value (dial reads in 1/1000 of max 

power (300 W). If using pulsed deposition, set function generator. Reset QCM. 

1. Pressure in the chamber will likely rise. Adjust isolation valve again to stabilize at 

    desired operating pressure. 

2. Adjust Load/Tune dials on the matching unit to minimize reflected power, if possible. 

3. Verify that plasma is ignited properly (you may wish to turn off the room lights if  

    plasma is dim) 

4. Under NO CIRCUMSTANCES can the cage doors be open while the RF power is on. 

5. Remember to fill out logsheet. 

16. Wait for the desired process time, or until the thickness monitor displays the desired value. 

17. Stop Labview logging. Turn off RF power and the unit. Close monomer valve. Fully open 

isolation valve. Turn off thickness monitor 

18. Perform two pump/vent cycles as during pumpdown. 

19. After the second pumpdown, close isolation valve fully and turn off pump. Vent chamber 

and close vent valve. Open chamber and remove sample. Close door. 

20. Remove the LN2 trap and place in LAF cabinet. Check nitrogen trap o-ring for any 

particulates and clean with IPA if necessary. 

1. NOTE: Hexane is relatively harmless, and it is sufficient to remove the insert and take it 

directly to the LAF cabinet. For more hazardous precursors, the entire nitrogen trap 

should be removed from the pump line and the insert removed once inside the LAF 

cabinet. 

21. Turn off support PC 

22. After at least 4 hours, and no later than the day after deposition, return to the chamber and 

replace the LN2 trap. 

23. Perform a single pumpdown, close isolation valve and turn off pump. 

24. Turn off LAF cabinet.  
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Appendix C: PCA code 

A basic outline of code that one may use to setup and begin to process a multivatriate 

microscopy dataset obtained using CellProfiler in MATLAB®. 

 
%load in data - don't bother if it already exists (saves a few seconds) 
if exist('a','var') 
    disp('variable called input already exists, using existing variable') 
else 
    [a,id]=xlsread('nanogradclas_double.csv'); 

     
end     

     
%only keep top row of id column and from 10 onwards 
id = id(1,10:end); 
%exclude meaningless columns 
data=a(:,10:end); 
%extract gradient position from each cell measurement 
pos=a(:,5); 
%how many unique positions on the gradient are there? This unfortunately 
%assumes that there will be a cell in every possible sub division... 
scans = length(unique(a(:,7))); 
positions = length(unique(pos)); 

  
%extract cell type (1 =end, 2 = fib), then generate positions of each 

cell 
%class in dataset 
cellid=a(:,9); 
idfib=find(cellid==2); 
idend=find(cellid==1); 

  
%isolate data for each individual cell type 
datafib=data(idfib,:); 
dataend=data(idend,:); 

  
posend=a(idend,5); 
posfib=a(idfib,5); 

  
%Counting cells% 
 numfib=zeros(1,positions); 

  
for n=1:positions 
    numfib(n)=length(find(posfib==n)); 
end 

  
numend=zeros(1,positions); 

  
for n=1:positions 
    numend(n) = length(find(posend==n)); 
end 

  
%Measuring cell area% 
areafib=zeros(1,positions); 
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for n=1:positions 
    areafib(n)=mean(datafib(posfib==n,1)); 
end 

  
areaend= zeros(1,positions); 
for n=1:positions 
    areaend(n)=mean(dataend(posend==n,1)); 
end 
close 

  
%PCA analysis% 

  
%setup figure 
h=figure; 
set(h,'name','fibroblast biplot') 
%find standard deviation of each column of fibroblast data 
stdrfib = std(datafib); 
%divide through data by stdev of each column. repmat just arrays the 

stdev 
%data into a big matrix that matches data 
srfib = datafib./repmat(stdrfib,length(datafib),1); 

  

  
%perform actual PCA - generating the loadings(coefficients), scores and 

variances  
[coefsfib,scoresfib,variancesfib] = princomp(srfib); 
biplot(coefsfib(:,1:2), 'scores',scoresfib(:,1:2)) 

  
%================================================% 

  
%setup figure 
h=figure; 
set(h,'name','endothelial biplot') 
stdrend = std(dataend); 
srend = dataend./repmat(stdrend,length(dataend),1); 
[coefsend,scoresend,variancesend] = princomp(srend); 
biplot(coefsend(:,1:2), 'scores',scoresend(:,1:2)) 

  
%chuck these figures out 
close all 

  
%Fibroblast analysis% 
h=figure; 
set(h,'name','fibroblast') 

  
subplot(2,2,1) 
biplot(coefsfib(:,1:2), 'scores',scoresfib(:,1:2)) 

  
subplot(2,2,2) 
plotyy(1:positions,areafib,1:positions,numfib);legend('Area','number'); 

  
subplot(2,2,3) 
plot(scoresfib(:,1),scoresfib(:,2),'.',scoresfib(posfib==3,1),scoresfib(p

osfib==3,2),'r.') 
title('pos 3') 

  
subplot(2,2,4) 
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plot(scoresfib(:,1),scoresfib(:,2),'.',scoresfib(posfib==11,1),scoresfib(

posfib==11,2),'r.') 
title('pos 11') 

  

  
%Endothelial analysis% 
h=figure; 
set(h,'name','endothelial') 

  

  
subplot(2,2,1) 
biplot(coefsend(:,1:2), 'scores',scoresend(:,1:2)) 

  
subplot(2,2,2) 
plotyy(1:positions,areaend,1:positions,numend);legend('Area','number'); 

  
subplot(2,2,3) 
plot(scoresend(:,1),scoresend(:,2),'.',scoresend(posend==3,1),scoresend(p

osend==3,2),'r.') 
title('pos 3') 

  
subplot(2,2,4) 
plot(scoresend(:,1),scoresend(:,2),'.',scoresend(posend==11,1),scoresend(

posend==11,2),'r.') 
title('pos 11') 

   
%% 
%load feature labels  

  
h=figure; 
set(h,'name','fibroblast and features') 
biplot(coefsfib(:,1:2), 'scores',scoresfib(:,1:2),'varlabels',id) 

  
h=figure; 
set(h,'name','endothelial and features') 
biplot(coefsend(:,1:2), 'scores',scoresend(:,1:2),'varlabels',id) 

  

  
idimg=a(:,1); 

  
%% Averaging the data per image%% 

  
dataavgfib=mean(data(idimg==1&cellid==2,:)); 

  
for n=2:(scans*positions) 

     
    %when there is only one cell, it averages the row and makes array 

size 
    %missmatch 
    next = mean(data(idimg==n&cellid==2,:)); 
    if (length(next)==1) 
        next = data(idimg==n&cellid==2,:); 
    end; 
    dataavgfib=[dataavgfib; next]; 
end 

  
dataavgend=mean(data(idimg==1&cellid==1,:)); 
if (length(dataavgend)==1) 
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        dataavgend=data(idimg==1&cellid==1,:); 
    end; 

     

  

  
for n=2:(scans*positions) 

     
    next = mean(data(idimg==n&cellid==1,:)); 
    if (length(next)==1) 
        next = data(idimg==n&cellid==1,:); 
    end; 

     
    dataavgend=[dataavgend; next]; 
end 

  

  
%% Analysis %% 
h=figure; 
set(h,'name','all features') 
plot(scoresfib(:,1),scoresfib(:,2),'.',scoresfib(1:24:396,1),scoresfib(1:

24:396,2),'ro') 
plot(scoresfib(:,1),scoresfib(:,2),'.',scoresfib(23:36:396,1),scoresfib(2

3:36:396,2),'ro',scoresfib(3:36:396,1),scoresfib(3:36:396,2),'ks') 
biplot(coefsfib(:,1:2), 'scores',scoresfib(:,1:2),'varlabels',id) 

  
%% Averaging the data per position%% 

  
dataavgfib=mean(data(pos==1&cellid==2,:)); 
for n=2:positions 
    dataavgfib=[dataavgfib; mean(data(pos==n&cellid==2,:))]; 
end 

  
dataavgend=mean(data(pos==1&cellid==1,:)); 
for n=2:positions 
    dataavgend=[dataavgend; mean(data(pos==n&cellid==1,:))]; 
end 

  

  
%PCA analysis% 
stdravgfib = std(dataavgfib); 
sravgfib = dataavgfib./repmat(stdravgfib,positions,1); 
[coefsavgfib,scoresavgfib,variancesavgfib,t2] = princomp(sravgfib); 
biplot(coefsavgfib(:,1:2), 'scores',scoresavgfib(:,1:2),'varlabels',id) 

  
h=figure; 
set(h,'name','avg per position') 
stdravgend = std(dataavgend); 
sravgend = dataavgend./repmat(stdravgend,positions,1); 
[coefsavgend,scoresavgend,variancesavgend,t2] = princomp(sravgend); 
biplot(coefsavgend(:,1:2), 'scores',scoresavgend(:,1:2),'varlabels',id) 

  

  
spanFigures 
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Appendix D: manual classification exercise 

Classification exercise which was conducted with a group of researchers. Source 

images of fibroblast and endothelial cells in co-culture were shown, with participants asked 

to classify them by cell type. Sample size was 50 cells, obtained from randomly selected 

images. The following table shows the blind test images (red: actin, blue: DAPI) and also 

the overlay of CellTracker intensity (green) which was pre-loaded into only endothelial 

cells. 

Source Image Image w/ CellTracker 

 

 

  

50 µm 
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Appendix D: reagents 

1X staining buffer ThreeB ‘blinking’ buffer 

1%          BSA 

20mM     Tris-base 

155mM   NaCl 

2mM       EGTA 

2mM       MgCl2 

 

i.e. to make 1L 

2.4228g Tris Base 

9.0582g NaCl 

0.4060g MgCl2 

0.7607g EGTA 

 

Correct pH to 7.5 

 

 100mM        2-mercaptoethanol (BME) 

i.e. to make 1.41 ml 

 

1.4 ml   1X PBS 

10 µl     14.3M BME 

 

NB: Modern dyes are too stable, blinking 

and bleaching too slowly or sparsely. The 

3B super-resolution technique requires that 

Alexa family dyes are mounted in a 

reducing agent to induce bleaching and 

blinking – yielding the information 

necessary for reconstruction of a super-

resolved image. Fluorescent proteins such 

as GFP fluoresce in a different manner, 

which produces a blinking effect beaning 

they can be used as is. 

 

DMEM  

71%      Dulbecco‘s modified Eagles medium (DMEM) (Sigma, UK) 

17.5%   Medium 199 (Sigma, UK) 

9%        foetal calf serum (FCS) (Life Technologies, UK) 

1.6%     200mM L-glutamine (Life Technologies, UK)  

0.9%     100mM sodium pyruvate (Life Technologies, UK) 

HAMS 

92.4%   HAMS F10 medium (Sigma Aldrich, UK) 

3%        foetal bovine serum (FBS) 

2.9%     antibiotic mixture 

0.8%     ITS liquid media supplement (Sigma Aldrich, UK)  

0.9%     sodium bicarbonate (Sigma Aldrich, UK) 
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