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Summary 

Stroke is currently one of the leading causes of death and disability worldwide. Despite recent 

advances in the treatment of stroke there is a major unmet clinical need for novel therapeutics 

for intervention. miRNAs are small coding RNAs which act to post-transcriptionally inhibit 

expression of genes. Emerging evidence has supported the view that miRNAs play an important 

role in the development and progression of ischaemic stroke, although understanding remains 

relatively poor.  This research uses several models to investigate the effects of miRNAs in the 

context of stroke in vivo and in vitro, as well as assessment of patient serum samples in order to 

identify biomarkers for stroke. miR-29b was found to be significantly upregulated in SHRSP rat 

brain peri-infarct at 72h following stroke, and downregulated in ischaemic core at 24h and 72h 

following stroke, whilst miR-29c was significantly downregulated in remainder tissue at 24h 

following stroke and in infarct at 72h following stroke. The upreglation of miR-29b at 72h 

corresponded to a significant downregulation of miR-29 target genes MMP2, MMP9 and TGF-β1 

in peri-infarct tissue at 72h following stroke. Modulation of miR-29b and miR-29c was achieved in 

a rat neuronal cell line but suppression of genes of interest was not observed following oxygen 

glucose deprivation. Several candidate miRNAs were then identified by microRNA Openarray 

analysis in stroke patient serum samples. Validation of these miRNAs was not demonstrated in 

the population studied, but assessment of these miRNAs in rat serum and isolated exosomes 

demonstrated that several of these miRNAs were significantly altered in SHRSP rats following 

stroke. Finally miR-21 was demonstrated to be significantly upregulated in SHRSP rat peri-infarct 

following stroke. This was associated with a change in miR-21 localization as determined by in situ 

hybridization. Modulation of miR-21 via the use of CAG-miR-21 mice demonstrated no difference 

in infarct size as measured by T2-weighted MRI scan nor was any difference present in behavioural 

tests versus wild type. KO of miR-21 resulted in a reduction of survival rate compared with wild 

type.  

This thesis demonstrates that miR-29 and miR-21 are modulated following stroke in animal 

models, and these are potential candidates for therapeutic intervention in the future. Analysis of 

clinical samples has illustrated difficulties in the identification of serum miRNA profiles and 

suggests that looking at the exosomal component of serum may provide better information 

regarding miRNA profiles after stroke.  
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Chapter 1 - Introduction  
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1.1 Epidemiology of Stroke 

Stroke remains one of the major causes of mortality and is one of the leading causes of 

adult disability worldwide (Adamson et al. 2004). The burden that this places on public 

healthcare services, not to mention the severe negative effects of the affected individuals 

quality of life, cannot be overstated. Some of the most up to date important demographic 

information can be found in the 2014 update Executive Summary: Heart Disease and 

Stroke Statistics published by the American Heart Association. In this document it is 

stated that some of the biggest risk factors for the development of stroke are high blood 

pressure, smoking, lack of physical exercise and sedentary lifestyle (Go et al. 2014). These 

have long been known to be the major underlying causative factors of all cardiovascular 

disease. However, incidence of these risk factors continue to rise as the world increasingly 

adopts what has been referred to as the ‘western lifestyle’.  Although there has been a 

total decrease in mortality as a result of stroke by 22.8% when comparing death rates in 

2010 to those of 2000, this does not reflect a decrease in stroke incidence, or morbidity. 

In effect more people are surviving stroke with worse clinical outcomes. This is a worst 

case scenario for stroke medicine and reflects the urgent need for improved therapeutics. 

Every year, around 15 million people will suffer from a stroke globally. It is estimated that 

every two seconds, somebody has a stroke, every six seconds someone dies of a stroke 

and every six seconds somebody will become permanently disabled due to stroke (“The 

Facts Behind ‘1 in 6’ - World Stroke Campaign” 2015). As of 2012, stroke remains the 

second leading cause of mortality worldwide, second only to ischaemic heart disease 

(Figure 1.1)(Stroke Association 2015). 
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Figure 1.1– Top 10 leading causes of death worldwide (Stroke Association 2015) 

 

Whilst stroke is a problem throughout the world, it is a major health concern in the UK 

due to the burden placed on the healthcare service. Within the UK stroke is most 

prevalent in the central belt/west coast of Scotland (Figure 1.2)(British Heart Foundation 

2009). 
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Figure 1.2 – Age-standardised death rates per 100,000 by quintile  for every region in the UK (British 
Heart Foundation 2009). 

1.2 History of Stroke 

Although stroke currently poses a major burden on the landscape of modern public 

health knowledge of the disease is ancient. In one of the earliest medical documents, 'the 

Edwin Smith papyrus' which was written around 3000BC; Imhotep, the founder of 

Egyptian medicine described patients exhibiting symptoms of stroke (Greer 2008; 

Breasted 1930). In the pre-modern era stroke continued to affect many people, but 

understanding of the causes eluded doctors, whilst even the concept of a cure was 

inconceivable. It wasn't until the 1600s that Thomas Willis described, in detail, the arterial 

supply of the brain (Symonds 1955). In addition to his identification of the 'circle of Willis' 

he coined the term 'apoplexy' to refer to stroke. Understanding of the disease continued 

to improve and in the 1800s Matthew and Cruveilhier created several illustrations of 

apoplectic lesions. The esteemed Virchow introduced the concept of 'Virchow's triad' and 

in doing so became the first person to report that thromboembolism could be a cause of 
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vascular occlusion (Schiller 1970). The next major development in the understanding of 

stroke biology occurred in the 1900s when Charles Foix correlated lesion localization with 

clinical symptoms resulting in increased clinical interest in the disease (Caplan 1990). This 

foundation in anatomical localization of lesions laid the groundwork in constructing maps 

that can be used today by medical imaging to identify cerebrovascular lesions which are 

causative or potentially causative of a stroke. 

The defining point of modern stroke history occurred in the 1960s. C. Miller Fisher 

produced detailed descriptions of stroke pathophysiology of many subtypes of the 

disease including lacunar strokes (Fisher 1969), carotid artery disease (Fisher 1969), 

transient ischaemic attacks (Fisher 1962) and intracerebral haemorrhage (Fisher et al. 

1965). His student, Louis Caplan established one of the first stroke registry databases to 

collect and analyze important clinical data regarding the disease (Mohr et al. 1978). This 

rather prescient move was an early attempt in the true application of 'evidence based 

medicine' to stroke. The term 'Risk factors' was developed by Thomas Dawbee to indicate 

environmental conditions that could contribute to the development of cardiovascular 

disease in 1961 (Kannel et al. 1961). Following this, the Framingham heart study 

demonstrated a link between cardiovascular disease and stroke (Wolf et al. 1991). Risk 

factors of cardiovascular diseases and stroke continued to be refined as biological 

understanding of disease processes improved, whilst identification of novel risk factors 

also shed light on pathways involved in disease development. Mounting evidence 

supporting the use of preventative measures to reduce stroke risk accumulated and led to 

the concept of stroke prevention by the use of antihypertensive and antithrombotic 

agents (Hillen et al. 2000).  

Rapid progress in the understanding of stroke has occurred over the last 60 years, 

including major improvements in the understanding of molecular mechanisms underlying 

stroke and improved medical imaging technologies for diagnostic purposes, but the single 

greatest coup achieved by medical professionals in the battle to beat stroke so far has 

been the successful introduction of intravascular recombinant tissue-Plasminogen 

Activator (TPA) (Werner Hacke et al. 1995) (Adeoyle et al. 2011). Provided the patient can 

be successfully diagnosed in the sub-acute period following stroke TPA can be 

administered for the purpose of thrombolysis (Hacke et al. 2008). Another recent 

development which has had a major impact on the goal of stroke medicine is the concept 
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of penumbra (Astrup et al. 1981). This is a region of the brain where obstruction of blood 

flow exists, but cell death has not yet occurred. It is this region of the brain which can 

potentially be rescued by thrombolytic therapy. Recent developments in stroke research 

have focused on neuroprotection (Majid 2014), improving upon existing thrombolytics 

(Hacke et al. 2005) or increasing implementation of the drug in patients who do not meet 

the approved therapeutic criteria (Simon et al. 2004), the development of specialised 

stroke units in hospitals for acute stroke care, mechanical thrombectomy (Fransen et al. 

2014), and finally the use of gene and/or cell therapy to promote regeneration and 

recovery of damaged brain tissue (Fisher et al. 2007). 

1.3 Classifications of stroke 

Stroke has a variety of different subtypes, each of which manifests in the clinic slightly 

differently, and will benefit from different treatment strategies. As our understanding of 

stroke improves, so will the clinical ability to base treatment on physiological 

measurements of penumbra instead of relatively arbitrary criteria such as time since 

stroke. Basing clinical intervention strategies on this information will result in 

considerable improvements in the treatment of stroke. 

The two main types of stroke are Haemorrhagic and Ischaemic stroke. 

1.3.1 Haemorrhagic Stroke 

Haemorrhagic stroke occurs following the breakdown of the vascular wall resulting in the 

flow of blood into the brain parenchyma or meninges, this accounts for approximately 13% 

of all stroke cases. Haemorrhagic stroke can be further subdivided based on location of 

the site of bleeding. Subarachnoid haemorrhage occurs when bleeding is located in the 

subarachnoid meningeal space between the arachnoid and the  pial membranes 

Intracerebral haemorrhage refers to when the bleeding occurs in the brain 

parenchyma(“Hemorrhagic Strokes” 2014).  

This type of stroke can also be classified based on the type of vascular pathologies which 

result in the onset of the injury. An aneurysm results when a region of the vasculature 

forms a balloon-like bulge. This region of vasculature displays weakened structural 

properties and if left untreated can rupture, resulting in haemorrhage.  The other 

vasculopathy which can result in onset of haemorrhagic stroke is the presence of 
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arteriovenous malformation; this is when the cerebrovasculature develops abnormally. 

These anatomical variations can have compromised structural integrity, resulting in 

rupture and the onset of stroke (Parmet et al. 2004). 

It is also possible for cerebrovascular haemorrhage to occur following traumatic brain 

injury, although most of the stroke literature focuses on non-traumatic haemorrhagic 

injury (Liu et al. 1999). 

1.3.2 Ischaemic Stroke 

Ischaemic stroke accounts for the vast majority of stroke cases (Adams et al. 1993). For 

this reason it is the most widely studied. Ischaemic stroke occurs when an obstruction 

becomes present in some region of the cerebrovasculature, this obstruction prevents 

blood flow to regions of the brain distal to the site of blockage resulting in hypoxic injury 

(Bornstein 2009). Ischaemic stroke can be said to be thrombotic or embolic (del Zoppo et 

al. 1992). Both of these types of stroke can result due to atherosclerosis (Chambless et al. 

2000). Atherosclerosis is a vascular pathology where fatty deposits accumulate in the 

arteries forming plaques. If an atherosclerotic plaque destabilises, this may form a 

thrombus. If a sufficiently large thrombus is formed in the cerebrovasculature, blood flow 

may be occluded locally resulting in ischaemia. This is referred to as a thrombotic stroke. 

If a piece of thrombus or unstable atherosclerotic plaque breaks free and travels in the 

circulation, it can translocate into the cerebrovasculature causing occlusion and resulting 

in ischaemic injury. This type of stroke is classified as embolic. The most common 

presentation of embolic stroke is cardioembolic, caused by cardiac arrhythmia which 

results in the formation of a clot in the atria of the heart, which then moves towards the 

brain resulting in ischaemic injury (“Ischemic Strokes” 2014).  

One of the major problems in the treatment of stroke is that the diagnostic criteria refer 

not to one disease, but a multitude of differential clinical phenotypes. In order to better 

understand the disease and generate more specific treatments much work has been done 

on improving descriptions of clinical phenotype of stroke. The TOAST (trial of ORG 10172 

in acute stroke treatment) classification was one such organized attempt at a formal 

definition of stroke subtypes for the purpose of guiding stroke research (Adams et al. 

1993), another scale of stroke assessment being the National Institutes of Health Stroke 

Scale (NIHSS) which characterises severity of stroke based on a score determined by 
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clinicians based on a number of different criteria assessing sensorimotor deficits and 

reduction in cognitive function (Brott et al. 1989).  

As with haemorrhagic stroke, ischaemic stroke can also be subdivided based on site of 

ischaemia.  This was not possible in the early days of stroke medicine, but with the advent 

of sophisticated medical imaging such as CT scans it became possible to pinpoint the 

location of the insult with some degree of accuracy. The most widely implemented 

system of stroke subtype identification is by TOAST (Trial of Org 1072 in Acute Stroke 

Treatment) classification. These criteria (Table 1.1) were determined in 1993 by the Trial 

of Org 10172 in Acute Stroke Treatment. These criteria were subsequently assessed in 

several clinical trials and provide an effective means of assessing stroke phenotype in 

patients (Adams et al. 1993).  

Although the TOAST classification is informative for clinicians, it is dependent upon 

baseline CT scans which are often inconclusive. In an effort to overcome some of the 

caveats associated with use of the TOAST classification system, in 2005 the Causative 

Classification System (CCS) project was launched (Ay et al. 2005). As an alternative to 

TOAST classification the CCS utilized an array of different diagnostic systems (diffusion-

weighted MRI, CT/MRI angiography, Echocardiography and Holter monitoring) in order to 

conclude the cause of stroke. Due to the increased requirement for clinical assessment in 

what is an extremely time-sensitive disease, implementation of this system has not been 

as widespread as that of the TOAST classification system (Ay et al. 2005). A recent 

comparison of the two classification systems found there to be “excellent agreement” 

between both classification systems, but failed to demonstrate in improvement in the 

reduction of patients assigned a diagnosis of unclassified (Lanfranconi and Markus, 2013). 

More recently two additional systems of classification have been developed: 

Atherosclerosis, Small-Vessel Disease, Cardiac Source, Other Cause (ASCO) system 

(Amarenco et al. 2009) and the Chinese Ischaemic Stroke Subclassification (CISS) system 

(Gao et al. 2011) . Each of these has potential advantages over the other more traditional 

methods; however their usefulness remains to be demonstrated by reliability and validity 

data. 
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Table 1.1 - Characteristics of major etiologic classification systems for ischaemic stroke (P.-H. Chen et al. 

2012) 

 

1.4 Therapeutic Challenges of Stroke  

It is undeniable that stroke is currently one of the biggest medical issues worldwide, yet 

we are presented with a relatively poorly funded area of disease research and a major 

unmet clinical need for interventions (British Heart Foundation 2009; Stroke Association 

2015). Why is this? The reasons that stroke presents such a challenge to modern 

medicine are many-fold. Arguably the most important [definitely the most aggressively 

championed] is the factor of time in the treatment of the disease. If stroke cannot be 

successfully diagnosed within 3.5-4.5h of the onset of symptoms to the potential for 
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improve clinical outcome of the affected individual becomes limited. In this case the 

treatment of stroke becomes primarily an issue of care; ensuring the highest quality of 

life for the effected individual; ensuring that they have the highest degree of 

independence and dignity possible. Admission to specialised stroke hospital units upon 

stroke onset can significantly improve the chance of improved outcomes 

(Trialists’Collaboration 1997; Trialists’Collaboration 2001).  

Another major hindrance in the treatment of stroke is successful application of 

thrombolytic therapeutics to stroke affected individuals. Only a minority of stroke 

patients qualify for this treatment, and of the few who qualify, even less receive it (Albers 

et al. 2011). Even if patients receive tPA, it is not always effective (Bhatia et al. 2010). It is 

for this reason that much of the clinical research of today is focussed on maximising the 

number of individuals who receive thrombolytic therapeutics, whilst minimizing the 

negative outcomes associated with haemorrhagic transformation (Fisher et al. 2007). The 

penumbra is of key importance during the acute phase following stroke and it is believed 

that by improving speed and quality of stroke diagnostics, the decision whether to move 

forward with thrombolytic treatment could be based on molecular measurements on 

which tissue is still alive rather than a relatively arbitrary time period. This would promote 

the advancement towards personalised medicine and maximize beneficial therapeutic 

outcomes. 

In order to overcome some of the multitude of problems associated with clinical stroke 

research (predominantly problems regarding differences in stroke phenotypes in patients 

and the degree to which in vitro and in vivo models of disease directly translated to 

human disease) several initiatives have been imposed in order to establish standard 

practices of research, to identify priorities of stroke research and to overcome some of 

the technical issues posed by such studies. Perhaps the most widely cited instance of such 

a framework is the guidelines proposed through Stroke Treatment Academic Industry 

Roundtable (STAIR), this is an invitation only conference which assembles leading 

scientists, clinicians and government officials involved with stroke in order to discuss the 

best strategies and practices for stroke research and treatment. (Fisher et al. 2009) 
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 1.5 Pathophysiology of Stroke 

Stroke refers to a collection of heterogeneous diseases. Although at the macroscopic level 

there are considerable differences between each of these manifestations of the condition, 

at the molecular level there is considerable consistency with regards to the cell signaling 

pathways involved. Stoke pathophysiology tends to follow a set sequence of events which 

have varying impact at different times following onset of symptoms (Figure 1.3)(Dirnagl et 

al. 1999). Novel treatments have been developed based on observations made in 

molecular changes following stroke both in clinical settings as well as pre-clinical models 

(Mergenthaler et al. 2004). These novel treatments have been explored experimentally, 

but not yet clinically proven. 

 

Figure 1.3 – Timeline of pathological events following ischaemic stroke. – The progression of stroke 
pathology follows a series of distinct events each with differing impact. The first stage of stroke pathology 
involves peri-infarct depolarizations and excitotoxicity which occurs acutely after injury. This is followed by 
a prolonged period of inflammation which occurs over a period of days(Dirnagl et al. 1999) 

1.5.1 Penumbra 

The concept of penumbra (Astrup et al. 1981) has become increasingly important recently 

in informing clinical interventions for stroke. Following occlusion of the vasculature there 

is necrosis of the adjacent brain tissue as a result of ischaemia. The penumbra is the 

region of tissue surrounding the evolving lesion supplied by the occluded vessel which is 

potentially salvageable if adequate treatment is received. There has been an attempt 

towards identifying the penumbra through use of perfusion-diffusion mismatch MRI 

imaging (Fisher and Bastan 2012) as it has been observed that there are cases in which 

patients may benefit from pharmacological interventions beyond the FDA approved time 

scale (Donnan et al. 2009; Davis et al. 2008). 
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1.5.2 Excitotoxicity 

Excitotoxicity is a glutamate- mediated form of neuronal cell death which occurs following 

ischaemic injury (Lai et al. 2013). Interest in excitotoxicity began after the initial 

observation that monosodium glutamate was neurotoxic (Olney 1969). Subsequent 

studies identified the essential importance of excitotoxicity in stroke pathogenesis and 

several treatments have been developed with an aim to target specific aspects of this 

pathway (Asoh et al. 2002). Under normal physiological conditions glutamate is the major 

excitatory neurotransmitter and glutamatergic signaling is necessary for a diverse range 

of aspects of normal brain development and function including neuronal growth (Mattson 

et al. 1988), axonal guidance and synaptic plasticity (Abbott and Nelson 2000). Several 

glutamate receptor subtypes exist in the brain. The N-Methyl D-Aspartate receptor 

(NMDAR) is of particular interest in the context of stroke (Lees 1997). These receptors act 

as a sensor detecting levels of extracellular glutamate and processes these signals 

accordingly (Lai et al. 2013). Following ischaemic injury there is a profound increase in 

extracellular glutamate levels in the brain, this results in an influx of calcium ions through 

ionotropic receptors and release of calcium from intracellular stores. Increased 

intracellular calcium release results in the activation of a plethora of cell death signaling 

proteins which act to promote neuronal cell death. 

1.5.3 Free Radicals 

Following ischaemic injury there is an increase in free radical production in the brain 

resulting in oxidative stress (Radak et al. 2013). Generation of free radicals occurs 

predominantly as a result of reperfusion injury (Nour et al. 2013). A variety of different 

reactive oxygen species (ROS) are responsible for oxidative stress induced damage 

including superoxide, hydrogen peroxide and hydroxyl radicals. These reactive oxygen 

species are highly reactive and act to damage DNA in the nucleus of effected tissue, this 

in turn perturbs the normal functioning of the cellular machinery and triggers apoptotic 

signaling cascades. Oxidative stress is particularly harmful in the context of 

cerebrovascular injury as levels of endogenous antioxidant enzymes (such as superoxide 

dismutase) and antioxidant vitamins (such as α-tocopherol) are present at insufficient 

levels to ameliorate the increased oxidant production following stroke (Lo et al. 2003). 
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The brain is incredibly sensitive to oxidative damage as a result of reactive oxygen species 

due to a number of factors including the high basal aerobic respiration rate, high levels of 

peroxidisable lipids and abundant presence of iron which may act as a pro-oxidant during 

stress (Shirley et al. 2014). Primarily, the reactive oxygen species produced in the brain 

arise as a result of the mitochondrial respiratory chain, NAPDH oxidases and oxidase 

(Kahles and Brandes 2012; Sanderson et al. 2013; Vergeade et al. 2010). Under healthy 

conditions, superoxide is produced by mitochondrial metabolism as a byproduct of ATP 

generation. This superoxide is subsequently converted to hydrogen peroxide by 

superoxide dismutase before it is exported to cellular cytoplasm where it acts as an 

intracellular messenger (Rice 2011). Following stroke, oxygen levels are depleted prior to 

glucose driving a switch towards anaerobic respiration (Liu et al. 2004), this results in 

production of lactate acid and H+ build up in mitochondria. Subsequently there is reversal 

of the H+ uniporter on the mitochondrial membrane which results in H+ accumulation in 

the cytosol (Ying et al. 1999). This acidic environment promotes oxidation as the positive 

hydrogen ions react with superoxide in order to produce hydrogen peroxide or hydroxyl 

ions. Superoxide may also react with nitric oxide producing the oxidant peroxynitrite and 

depleting cellular nitric oxide stocks. Glutamatergic signaling which occurs following 

stroke promotes increased intracellular production of nitric oxide, which contributes 

further to oxidant production.  Peroxynitrite ions also promote apoptosis in the canonical 

fashion (Stanika et al. 2012). Following recanalization of the ischaemic brain after stroke 

the patient is subject to a well-documented reperfusion injury. Following recovery from 

ischaemia the mitochondrial respiratory chain is restored, this results in reversal of 

complex I of the chain and a subsequent overproduction of superoxide (Yamato et al. 

2003; Peters et al. 1998; Chen et al. 2008). Additionally, as well as production of reactive 

oxygen species, nicotinamide adenine dinucleotide phosphate-oxidases (NOXs) make a 

considerable contribution to ROS production in the context of stroke. The role of these 

molecules is most prevalent in the reperfusion injury. Nox family contains seven members 

with NOX2, NOX3 and NOX4 displaying characteristic high levels of expression in the 

central nervous system. Under normal physiological conditions NOX proteins generate 

reactive oxygen species necessary for cellular function, but in ischaemic disease they 

produce an abundance of reactive oxygen species which contribute to pathological 

oxidative stress (Chen et al. 2009; Bokoch and Knaus 2003).  Nox1 is of particular interest 

in the context of stroke. Nox1 is abundantly expressed in the cerebrovasculature 
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compared to other isoforms of NADPH oxidases suggesting potential functional relevance 

in the context of stroke (Ago et al. 2005). Knockout of Nox1 was found to reduce cerebral 

edema and infarct volume in mice subjected to 60 minutes of ischaemia with 23 hour of 

recovery. This was associated with improvements in the integrity of the Blood-Brain 

barrier (Kahles et al. 2010). It should be noted however, that other in other studies into 

transient and permanent cerebral ischaemia, ablation of Nox1 does not confer protection 

meaning that further studies are necessary to better characterise the role of this enzyme 

in ischaemia-reperfusion injury (Kahles et al. 2010; Vallet et al. 2005; Kleinschnitz et al. 

2010). Suppression of Nox1 expression via the use of adeno-associated virus-mediated 

transduction of shRNA was recently demonstrated to have protective effects in the peri-

infarct region of rats subjected to a transient 60 minutes of ischaemia (Choi et al. 2015).  

Xanthine oxidase is an enzyme which promotes oxidation of hypoxanthine to convert it to 

xanthine, as well as oxidation of xanthine to uric acid. Under ischaemic conditions 

adenosine triphosphate is catabolized to hypoxanthine and xanthine oxidase is activated. 

When reperfusion occurs, the accumulated hypoxanthine and xanthine react with 

xanthine oxidase in order to produce reactive oxygen species superoxide and hydrogen 

peroxide (Granger et al. 1981; Parks and Granger 1986). Whilst xanthine oxidase catalyses 

the oxidation of hypoxanthine to xanthine producing superoxide (Ardan et al. 2004), 

xanthine dehydrogenase acts on the same substrates to produce NADH instead of O2- . 

Due to the importance of ROS in stroke xanthine is of more interest in this context, but it 

is worth bearing in mind that xanthine dehydrogenase may be irreversibly converted to 

xanthine oxidase (Engerson et al. 1987). 

Succinate is another player contributing to oxidative stress in the context of reperfusion 

injury. Under normal physiological conditions, succinate is an intermediary in the citric 

acid cycle of the mitochondria. However, following ischaemic injury there is an 

accumulation due to reversal of succinate dehydrogenase driven by excessive fumarate 

production from purine nucleotide breakdown. During reperfusion the accumulated 

succinate undergoes rapid reoxidization by succinate dehydrogenase. This results in the 

production of reactive oxygen species (Chouchani et al. 2014).  
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1.5.4 Inflammation 

The glutamate mediated increase in intracellular calcium results in the promotion of 

several pathways relating to inflammation. Inflammatory transcription factors such as HIF 

(Mojsilovic-Petrovic et al. 2007), Stat3 (Suzuki et al. 2001) and NF-κB (Harari and Liao 

2010) are activated following injury. Following this, several mediators of inflammation are 

upregulated and endothelial adhesion markers are expressed. These changes result in the 

recruitment of inflammatory cell types such as macrophages and monocytes which are 

recruited to the brain and this serves to contribute to the ischaemic damage worsening 

phenotype (Kochanek and Hallenbeck 1992). 

In the early stages following obstruction of the cerebrovasculature by stroke, there is 

activation of proinflammatory signalling due to translocation of the adhesion molecule p-

selectin in the membranes of endothelial cells and activated platelets which have been 

subjected to oxidative stress (Peerschke et al. 2010; Pinsky et al. 1996; Yilmaz and 

Granger 2010). Additionally, thrombin which is generated by activated platelets promotes 

the conversion of fibrinogen to fibrin. Accumulating fibrin acts to trap additional platelet 

cells and leukocytes resulting in clot formation which can in turn lead to further occlusion 

and exacerbation of ischaemic damage (del Zoppo et al. 1991). 

Located within the brain parenchyma, microglia are responsible for the generation and 

release of the majority of inflammatory mediators in the brain. After onset of cerebral 

ischaemia there is an increase in extracellular levels of ATP and UTP in the parenchymal 

tissue of the brain occurring in response to excitotoxicity, oedema and membranous 

degradation of neuronal cells (Melani et al. 2005). The increased concentration of ATP in 

the extracellular space results in the activation of P2X7 receptors on the surface of the 

microglia, stimulating further release of additional pro-inflammatory factors such as NO, 

reactive oxygen species and cytokines (Korcok et al. 2004). 

In the absence of pathological physiology, cell-cell communication within the brain acts to 

establish and maintain polarisation and quiescence of microglia. For instance, CD200 is a 

protein expressed on neuronal membranes which associates with the corresponding 

CD200R receptor on microglia. When this protein interacts with the equivalent receptor 

the effect is promotion of the resting phenotype (Lyons et al. 2007). Following ischaemic 

injury there is a deficiency in expressed levels of this protein which results in microglial 
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activation. Similarly, Fractalkine (CX3CL1) interacts with a microglial receptor CX3CR1 

which allows for cellular quiescence under normal conditions, but during stroke 

diminished interactions occur  due to matrix breakdown and microglia become activated 

promoting inflammation (Dénes et al. 2008). 

Later on in the progression of ischaemic stroke, multiple molecular signals produced from 

the digestion of matrix proteins are released from dead cells. These proteins are called 

danger-associated molecular pattern molecules (DAMPs) (Chen and Nuñez 2010). DAMPs 

bind to toll-like and scavenger receptors on several cells in the neurovascular unit acting 

to stimulate release of additional pro-inflammatory signalling molecules like IL-6 and TNF 

via NFκB activation (Marsh et al 2009). DAMPs also result in the priming of dendritic cells 

for antigen presentation. This interaction illustrated the main cross over between innate 

and adaptive immunity after stroke.  Despite the fact that the traditional view that the 

role of the immune system in response to ischaemic stroke emphasises the importance of 

infiltration of inflammatory signals from the circulation to the brain parenchyma, 

chemical signals from located in the parenchyma locally at the site of ischaemia are 

equally important, and that there are complex feedback loops based upon interaction 

between these two limbs of the immune response (Shirley et al. 2014). 

1.5.5 Apoptosis 

Following the initial bout of necrosis there is a second wave of cell death which occurs in 

the brain over 2-3 days following cerebrovascular injury. This phenomenon is referred to 

as delayed neuronal death (Kirino 2000; Nitatori et al. 1995). This postponed period of 

apoptotic cell death is of particular interest to stroke researchers as it provides an array 

of druggable targets for clinical interventions for stroke beyond the therapeutic window 

of traditional thrombolytic therapy . The main mechanism by which delayed neuronal 

death occurs is glutamate-calcium mediated excitotoxcitiy as described previously (Kirino 

2000). Apoptosis pathways can be classed as intrinsic (Figure 1.4) and extrinsic pathways 

(Figure 1.5) (Broughton et al. 2009).  
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Figure 1.4 – Intrinsic apoptotic pathway – Cerebral ischaemia results in an influx of Ca
2+

 ions into neurons, 

this results in activation of calpains which in turn drive apoptosis pathways. There is also resultant 

generation of free radicals in the brain in the form of O2
-  

ions which react with DNA causing damage and 

promoting apoptosis.(Broughton, Reutens, and Sobey 2009). 

The most widely studied receptor which mediates post-ischaemic apoptosis is the NMDA 

receptor (Ikonomidou et al. 1999; Yu et al. 1999). Following stimulation by increased 

levels of glutamate there is an influx of calcium into neuronal cytoplasm. This results in an 

activation of calpain which mediates the cleavage of Bcl-2 interacting domain (BID) to an 

active form (tBID) (Raynaud and Marcilhac 2006). Activated BID translocates to the 

mitochondria and promotes cell death. Following the opening of mitochondrial pores 

apoptosis-inducing factor (AIF) and Cytochrome C (CytC) are released. CytC binds to 

Procaspase 9 promoting activation of the apoptosome. Procaspase-9 matures to form 

Caspase-9 which then cleaves Caspase-3, the cleaved caspase-3 is able to enter the 

nucleus where it promotes apoptosis. Another mechanism by which apoptosis occurs it 

via the caspase-independent translocation of apoptosis inducing factor (AIF) to the 

nucleus where it promotes apoptosis (Daugas et al. 2000). 
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Extrinsic mechanisms of apoptosis result as a result of stimulation of plasma membrane 

death receptors from the tumour necrosis factor receptor including Fas and TNFR-1 

(Fulda and Debatin 2006; Beurel and Jope 2006). Once death receptors are activated, 

cleavage of procaspase-8 is initiated to form caspase-8. The activated caspase-8 is then 

released into the cytoplasm promoting cleavage of caspase-3 ultimately resulting in 

apoptosis (Broughton et al. 2009).   

Figure 1.5– Extrinsic apoptotic pathway – Cerebral ischaemia results in the activation of transcription 

factors such as Forkhead1 which increase FasL expression. These ligands bind to Fas receptors and promote 

apoptosis via caspase activity (Adapted from Broughton, Reutens, and Sobey 2009). 

 

1.6 Thrombolytic Therapy for Stroke 

Currently the only clinically approved pharmacological treatment for ischaemic stroke is 

recombinant tissue plasminogen activator (rTPA) or Alteplase (Figure 1.6) (Hacke et al. 

2008). Plasminogen activator is a molecule produced endogenously as part of the intrinsic 

thrombolytic pathways which regulate blood clot removal. The peptide was first 
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developed for thrombolytic treatment of Myocardial Infarction and was originally 

approved by the FDA for treatment of this disease (Rogers et al. 1987). Following the 

success of this treatment in context of another ischaemic disease, clinical researchers 

sought to determine whether this treatment could be of use in the treatment of 

ischaemic stroke. 

 

Figure 1.6 - Pathway regulating fibrin degradation – Tissue plasminogen activator acts to convert 
plasminogen into plasmin, this promotes the cleavage of fibrin to produce fibrin degradation products. In 
the context of stroke this results in the breakdown of clots with  more specificity than traditional 
thrombolytics (Schäfer and Werner 2008) 

 

Given that one of the complications associated with untreated stroke is haemorrhagic 

transformation and that haemorrhage is one of the potential side effects observed 

following Alteplase administration; great care was taken in order to ensure that the risks 

for patients were minimized (Adeoye et al. 2011). 

To date there have been several trials assessing the safety and efficacy of Alteplase in the 

treatment of ischaemic stroke. Despite the fact that rTPA is widely used, the benefit of 

this treatment and the conditions under which it is beneficial remain under debate. Some 

criticisms have been made of some of these trials due to the involvement of Genetech, 

the company who produces the drug (Lindley et al. 2005).  

The first rTPA for ischaemic stroke study was the NINDS trial which was published in 1995 

(“Tissue Plasminogen Activator for Acute Ischemic Stroke” 1995). The observations made 

during this trial resulted in Alteplase therapy being granted FDA approval for the 

treatment of ischaemic stroke up to 3 hours following onset of symptoms and after 
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confirmation of ischaemic stroke by CT and/or MRI scan and consensus agreement of 

diagnosis by stroke clinicians. 

The second successful Alteplase for ischaemic stroke study was the ECASS III study which 

demonstrated acceptable safety and efficacy when treatment was extended to 4.5h 

(Hacke et al. 2005, 2). Again, it was attempted to treat patients at greater time points  

following stroke in order to ensure that the greatest number of patients who may benefit 

from thrombolytic therapy may receive it. 821 patients were treated with alteplase (418) 

or placebo (403). At 90 days following treatment 52.4% of patients who received 

alteplase demonstrated favourable outcomes versus 45.2 in the placebo group. It was 

however noted that the alteplase treated patients exhibited a higher degree of 

haemorrhagic transformation following treatment (Hacke et al. 2008). Several 

subsequent trials have looked to extend the window of treatment to 6h, as well as 

administering treatment to older patients. The results of these studies are difficult to 

interpret. Whilst those who survive treatment seem to benefit from it, there is a 

significantly increase mortality period in late treated individuals in the first week 

following stroke (Simon et al. 2004; DeMers et al. 2012). 

Some researchers are attempting to improve thrombolytic therapy for ischaemic stroke 

via the development of novel thrombolytic agents. Hoping for improved safety and 

or/efficacy.  Desmoteplase is another, fibrin-specific, thrombolytic compound which has 

been extensively clinically investigated in relation to stroke, the initial desmoteplase in 

acute stroke (DIAS) trial was primarily a safety phase IIb trial which also sought to identify 

sensible doses for treatment of acute ischaemic stroke patients with perfusion-diffusion 

mismatch of MRI from 3 to 9 hours from onset of symptoms. Patients were randomised 

and received 25, 37.5 or 50mg of the drug compared to placebo. It was noted in this trial 

that there was a significant increase in the onset of intracranial haemorrhage in patients 

treated with desmoteplase. In order to address this, dosage was reduced and 

administered based on bodyweight. This trial demonstrated that 54.3% of patients who 

were treated within 3-6h achieved reperfusion and 40% of those treated from 6-9h 

achieved reperfusion associated with improved clinical outcomes (Werner Hacke et al. 

2005). A follow up phase III trial (DIASII) further investigated the compound, looking at 

efficacy from 3-9 of symptom onset. Low NIHSS scores in the recruited patients meant 

that patients recruited had more severe stroke than the previous trial and as such the 
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evidence for efficacy at this time point was unconvincing (Werner Hacke et al. 2009). This 

thrombolytic is currently being investigated in two phase-3 clinical trials (DIAS-3 &DIAS-

4)(Tsivgoulis et al. 2014) 

 

1.7 Mechanical Clot Retrieval 

Inspired by the success of endovascular catheterization based approaches to treating 

coronary artery disease, and also in an effort to circumvent the haemorrhagic side-effects 

of pharmacological thrombolytics, there has been an effort towards implementing 

mechanical clot retrieval in the treatment of ischaemic stroke (figure 1.7).     

 

Figure 1.7 - Solitaire FR clot retrieval device – The solitaire clot retrieval device is one of the clinically 
approved clot retrieval devices on the market. A catheter is advanced to the site of occlusion and a balloon 
is inflated to prevent backflow of blood (which would potentially result in further distal occlusions) a mesh 
net is advanced around the clot and withdrawn to remove the clot. (Covidien 2015)   

 

The principle of these devices is that once the site of the clot is identified, a catheter is 

inserted endovascularly and guided to the site of occlusion. A balloon on the catheter is 

inflated to provide structural support to the vessel and prevent flow disturbing the clot 

during the retrieval process. A wire net is extended from the tip of the catheter and used 

to surround the clot. Once the clot is secure, the catheter is removed and with it the 

source of ischaemia.  
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Though the use of these devices clinically for treatment of stroke has occurred only 

relatively recently, they do appear to offer promise as a therapeutic strategy. One group 

has demonstrated an impressive success rate with the use of the Solitaire FR clot retrieval 

device (Machi et al. 2012) demonstrating that recanalization was successful in 89% of the 

56 patients treated. In this study, use of endovascular thrombectomy was used as a 

second line of treatment following tPA in patients who presented within 4.5h of onset of 

stroke; patients who presented 4.5-6h were treated by thrombectomy alone. Another 

more comprehensive multi-center study assessing efficacy of this device has reported 

similar results (Dávalos et al. 2012). Improvement of clinical outcomes in thrombectomy 

treated patients is greatest in those who were first treated with tPA. These early results 

suggest that there is a place for clot busting devices in the clinic, offered as an adjunct to 

unsuccessful thrombolytic therapy or for patients who do not meet the tPA criteria.  

One of the problems associated with use of this device is that clots may become 

fragmented during retrieval and result in additional embolic ischaemia resulting from 

translocation of the dislocated fragments (Siu et al. 2014). Another issue associated with 

these devices is advancement of the catheter along tortuous regions of the 

cerebrovasculature. It is likely that as use of these devices is increased, refinement in 

design of these devices will result in improved safety and efficacy.  

Another example of the successful implementation of clot retrieval in the clinic can be 

observed in the recent MR CLEAN trial. This randomised controlled multi-centre study 

used combinations of intra-arterial thrombolysis and mechanical clot retrieval with the 

MERCI device in order to attempt to treat 500 patients with ischaemic stroke (Fransen et 

al. 2014). 233 patients received intraarterial treatment, whilst 267 received usual care 

only, it was found that treated patients demonstrated a 13.5% improvement in the rate 

of functional independence versus controls suggesting that this treatment strategy is 

effective in treating proximal intracranial occlusion of the anterior circulation when 

administered within stroke onset (Berkhemer et al. 2015). 

1.8 Neuroprotection 

Whilst the majority of stroke intervention research has focused on thrombosis and 

platelet aggregation other alternative strategies have been considered. The most widely 

studied alternative treatment strategy for intervention in the context of stroke is arguably 
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that of neuroprotection. Virtually no publications relating neuroprotection to stroke exist 

prior to the early 1990s, but in the decade following hundreds of publications have 

entered the scientific literature (Ginsberg 2008). Stroke displays a complex sequence of 

events following onset of stroke. Recanalization in the acute phase following stroke aims 

to mitigate hypoxia-mediated necrosis following ischaemic injury (Rha and Saver 2007). 

Following the initial wave of cell death due to necrosis, there is a second wave of delayed 

neuronal cell death which is regulated by apoptosis and other cell-signalling pathways 

(Kirino 2000). The concept of neuroprotection is that through the use of pharmacological 

agents that target aspects of these cell signalling pathways in the sub-acute phase 

following stroke the extent of injury may be ameliorated  and recovery promoted (Majid 

2014). 

Several drug classes have been assessed for potential usage in stroke treatment targeting 

several different pathways. Many of the pre-clinical studies demonstrated extremely 

promising results, though all failed in subsequent clinical trials. The most high profile 

failure has been that of NXY-059 (disodium 4-[tert-butyliminomethyl] benzene-1,3-

disulfonate N-oxide)(Diener et al. 2008). This compound was derived from a generic 

nitrone spin-trap compound and had demonstrated convincing preclinical 

neuroprotection in models of stroke via reduction in the presence of free radicals. This 

compound was developed by Astra-Zeneca and entered into two phase I/II clinical trials. 

The first of which (SAINT-I)(Saver 2007) yielded positive results whilst the second (SAINT-

2) was negative (Savitz and Schäbitz 2008). This was the closest that a neuroprotectant 

had come to entering clinical practice and the failure to demonstrate efficacy resulted in 

AstraZeneca halting development of the compound. Several reasons have been posited 

for the differences observed between the two trials. The researchers cite methodological 

differences whilst Peter H. Proctor (Proctor and Tamborello 2007) has suggested that the 

neuroprotection observed in the first phase I/II trial was the result of by-products of 

degradation of the notably unstable compound. Following these results, much of the 

industrial funding into stroke therapeutics was diverted elsewhere whilst many clinicians 

have expressed a lack of faith in preclinical research results in general. Following 

improvements which have been made in pre-clinical assessments of stroke therapeutics 

there have been new developments in the potential future use of neuroprotectants as 

new drug candidates are progressing through the clinical trial pipeline.   
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A recent candidate which is being investigated as a potential neuroprotectant for stroke is 

NA-1 (Hill et al. 2012). Increased glutamate release following stroke results in 

excitotoxicity contributing to delayed neuronal death (Choi 1992). This has long been well 

characterised, although several therapies which target this pathway have resulted in 

pathological effects due to the complexities in its mechanistic regulation. The excitotoxic 

effects of excessive glutamate signalling are mediated through its interaction with  NMDA 

and AMPA receptors (Reynolds and Hastings 1995; Soundarapandian et al. 2005). Several 

neuroprotective compounds were assessed in pre-clinical models of stroke. Whilst initial 

evidence from animal models was promising, this failed to translate to clinical trials 

(Ikonomidou and Turski 2002). In addition to the pathogenic effects of these drugs, many 

of the NMDAR-antagonists had considerable psychological side effects which rendered 

this treatment unsuitable. In order to circumvent the negative effects of NMDAR targeted 

therapeutics it was determined that more specific drugs were necessary in order to 

dissect out the beneficial mechanisms from the negative ones. In order to achieve this 

goal, post-synaptic density-95 protein was targeted (Sun 2013). This scaffolding protein 

links NMDARs and effectors like NOS which are involved in the mediation of neurotoxic 

signalling. Fusion of the final 9 C-terminal residues of the NMDA NR2B subunit to the HIV 

Tat protein resulted in the production of a PSD-95 inhibitory molecule with considerable 

specificity and efficacy called NA-1 (Hill et al. 2012). In order to ensure a high degree of 

translation from lab to clinic, consideration of the STAIR guidelines was undertaken (Saver 

et al. 2009a). In addition to the commonly implemented models of stroke it was 

determined that use of higher-primate models was necessary in order to assess the 

efficacy of this group in models which effectively represented human pathology. Use of 

PSD-95 inhibitors in primate models of stroke where occlusion was achieved by use of 

titanium aneurysm clips demonstrated that treatment with NA-1 resulted in a 55% 

reduction in infarct size at 24h and 70% at 30 days determined by T2-weighted MRI (Cook 

et al. 2012). The reduction in infarct size was associated with a functional improvement in 

behavioural measures including nonhuman primate stroke scale (NHPSS) and a 

sensorimotor battery of tasks including the hill and valley task, two-tube task and six-well 

task (Cook et al. 2012). This evidence supported the hypothesis that such a treatment 

would translate well to the clinic. The potential neuroprotective effects of NA-1 were 

addressed by the ENACT trial. In this double-blinded clinical trial patients with intracranial 

aneurysm were treated with the drug following surgical endovascular repair of their 
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aneurysm. Efficacy of the drug was assessed by MRI scan and a follow up clinical 

assessment 30 days following treatment. Of the 92 Patients treated with NA-1 at the end 

of their surgery a significant reduction in the presence of cerebral lesions was present 

(adjusted incidence rate ratio 0·53) when assessed by DWI and FLAIR scans compared to 

93 controls who received placebo (Hill et al. 2012). 

1.9 Stem Cells 

An emerging and exciting future treatment for ischaemic stroke is stem cell based therapy. 

Currently, the focus of stem cell therapeutics is to use the administration of exogenously 

applied cells in order to promote repair and recovery of damaged tissue, although in the 

future stem cell therapy could potentially lead to the regeneration of damaged tissue. 

Historically, it was thought that neuronal cells displayed no regenerative capacity, in 

contrast to most other cell types in the human body. However, following the discovery of 

an endogenous adult stem cell population in the subventricular zone (SVZ) and olfactory 

bulb (Garcia et al. 1995; Kirschenbaum et al. 1999)(Ming and Song 2011) hopes were 

raised with regards to neuroregeneration. Subsequent studies have demonstrated that in 

animal models of stroke there is an increase in proliferation of this cell type. It has been 

suggested that proliferation of this cell population is regulated by a diverse range of cell 

signalling pathways including Notch (Hitoshi et al. 2002), Bone Morphogenetic Protein 

(Temple 2001), Tumour necrosis factor (Widera et al. 2006) and Sonic hedgehog (Lai et al. 

2003). Administration of erythropoietin demonstrated an increase in SVZ stem cell 

proliferation in preclinical models of stroke (Shingo et al. 2001). However, a large clinical 

trial conducted on 522 patients with acute ischaemic stroke demonstrated that patients 

treated with EPO (Erythropoietin, a glycoprotein hormone)  exhibited a higher mortality 

rate than placebo controls with no measurable improvement in phenotype, suggesting no 

efficacy for a potentially dangerous treatment (Ehrenreich et al. 2009). A subsequent  in-

depth analysis of these data has suggested that certain sub-groups in the study, namely 

those who had not received thrombolysis, may have benefitted from EPO as 

demonstrated by a reduction in the presence of circulating markers of damage post-

stroke (Ehrenreich et al. 2011). 

Exogenous neural stem cells may be generated from several sources including embryonic 

stem cells (ESCs), induced pluripotent stem cells (iPSCs) and populations of adult stem 

cells isolated from various different sources (Okita et al. 2007). There are advantages and 
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disadvantages relating to each type of cell, and it is not yet clear which will be the best for 

use in the context of stroke in the future (Kalladka and Muir 2011). iPSC cells have the 

advantage of being allogeneic if taken from the patient’s own tissue, however there are 

issues relating to terratoma formation (Oki et al. 2012). Embryonic stem cells have the 

advantage of pluripotency, but they are also oncogenic and difficult to obtain patient 

matched cell stocks. Adult stem cells can be isolated from bone marrow (haematopoietic 

stem cells) and adipose tissue (adipose tissue derived adult stem cells), these do not 

demonstrate the same degree of potency as ESCs or iPSCs, but it is possible to obtain 

patient specific cell populations, and there is little risk of oncogenesis (Haas et al. 2005).  

 

The only clinical trial for use of stem cells in stroke to date is the PISCES trial, a safety trial 

where  the ReNeuron ReN001 cell line was used  to treat patients 6-24 months following 

the onset of stroke (Smith and Gavins 2012). The ReN001 cell line is a neuronal stem cell 

line immortalised by the fusion transgene c-mycERTAM to allow controlled expansion 

when cultured in the presence of 4-hydroxytamoxifen (Stroemer et al. 2007). This initial 

phase 1 clinical trial sought to determine the safety profile for this cell line and was 

successful in doing so. This trial has been approved for progress in order to determine 

whether efficacy of this treatment merits further research. Initial results have been 

promising and the stroke community awaits further results with anticipation. If functional 

improvement can be demonstrated in the clinic through the use of stem cell therapy, this 

would serve to revolutionise stroke medicine (Smith and Gavins 2012; Kalladka and Muir 

2011).  

1.10 Pre-clinical Models of Stroke 

In order to determine novel potential therapeutic interventions for stroke it is essential to 

assess these treatments in pre-clinical models of stroke. There are several models 

available for such investigation.  

1.10.1 In vitro models. 

In vitro models provide an effective means of which to model mechanisms underlying 

therapeutic interventions in the context of stroke. In vitro models of stroke can utilise a 

variety of tissue sources in order to address specific aspects of the neurovascular unit. 
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Over the course of modern pre-clinical research a diverse landscape of in vitro techniques 

have been developed as researchers strive to identify the best models of stroke (Mehra et 

al. 2012). Currently there is no ‘gold standard’ for cell culture-based assessment of stroke 

interventions as every method is a trade-off between different strengths and weaknesses. 

The major advantages of these models are the low cost, and less ethical issues resulting 

from a reduction in the numbers of animals used. There is an increase in throughput due 

to the reduction in time it takes to perform a single experiment as well as the ability to 

perform multiple biological repeats in tandem. The biggest criticisms that may be levied 

at these models relate to the fact that they are not a true representation of what happens 

in the whole system of a stroke in situ.  

Sources of tissue that are commonly implemented in vitro include primary cell cultures of 

neuronal cells (Goldberg and Choi 1993), organotypic cell cultures (Vornov et al. 1994) 

and entire slice sections of the brain (Dong et al. 1988). Ischaemic insult can be modelled 

by oxygen glucose deprivation followed by reoxygenation. Cells are placed in low-glucose 

serum free media and incubated in a hypoxic chamber for a pre-defined length of time 

before complete media is re-introduced and allowed to recover under normoxic 

conditions (Ord et al. 2013). This is widely used by stroke researchers as it is analogous to 

the ischaemia-reperfusion injury present in in vivo models of stroke. The neurovascular 

unit demonstrates considerable complexity with regards to the presence of highly 

heterotypic cell populations as well as a sophisticated cytoarchitecture. Neuronal, 

astrocytic, microglial and endothelial cells may all be assessed in vitro separately or in co-

culture models. It is likely that moving forward in vivo models will be necessary to 

conduct experiments in combination with in vitro models of new therapies in order to 

ensure maximal translation of stroke research from bench to bedside. 

1.10.2 In vivo models. 

In order to assess stroke interventions, prior to the commencement of clinical trials it is 

necessary to obtain robust pre-clinical data in animal models of stroke (Albers et al. 2011). 

Earlier research made extensive use of cats, dogs (Corkill et al. 1978; Purdy et al. 1989) 

and non-human primates (Moseley et al. 1975; Laurent et al. 1975; Tranmer et al. 1992). 

However, due to animal costs and ethical issues associated with use of these mammals, 

most modern research is conducted in rodent models; primarily rats and mice. These 
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models can be subdivided into models of global ischaemia and models of focal ischaemia 

(Hunter et al. 1995). Global ischaemia is achieved by a temporary complete occlusion of 

cerebral blood flow followed by a period of reperfusion. This can be achieved by transient 

occlusion of both common carotid arteries with or without permanent occlusion of 

vertebral arteries. Global occlusion models of cerebral infarction results in the production 

of large reproducible infarcts due to selective and delayed neuronal cell death induced 

predominantly by apoptosis, however this model is criticized as being closer to the clinical 

manifestation of cardiac arrest than ischaemic stroke (Small and Buchan 2000). As a result 

of this, the focal ischaemia models are most commonly implemented today (Hossmann 

2012). Focal ischaemia is achieved by occlusion of one of the terminal branches supplying 

the cerebrum. In the past the anterior cerebral artery was frequently occluded (Freemon 

1971), however cerebral infarction following anterior cerebral artery occlusion is not 

commonly seen in the clinic. The most frequently occurring ischaemic stroke observed in 

the clinic is a result of occlusion of the left middle cerebral artery (Longa et al. 1989). For 

this reason middle cerebral artery occlusion models of stroke are the most commonly 

studied today (Macrae 2011). Both transient (tMCAO) and permanent (pMCAO) middle 

cerebral artery occlusions are studied by this model, transient occlusions allow for 

reperfusion into the brain and are representative of strokes where recanalization has 

been achieved. The monofilament model of tMCAO is the most frequently implemented. 

The advantages of this model include relative ease of use versus other models of stroke; 

however variation in infarct size with this model may be a problem. Whilst some groups 

preserve circulation in all arteries, others permanently occlude some branches by 

cauterization. Sealing blood vessels results in a worsened phenotype following stroke and 

also may influence variability in stroke size. For example, it has been demonstrated that 

permanent occlusion of the pterygopalatine artery alongside MCAO results in less 

variability than when this vessel is preserved (Chen et al. 2008).  

Another model of stroke which is commonly implemented is the distal diathermy model 

of stroke which is reported to exhibit a higher degree of reproducibility (Tamura et al. 

1981). Following anaesthesia, the surface of the cerebrum is exposed by cranioectomy. 

The middle cerebral artery is then occluded by cauterization by diathermy forceps. This 

model has been demonstrated to produce less variation in infarct size, but the surgical 

technique is more challenging to perform and reperfusion is not possible.   
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The embolic model of stroke is achieved by taking a blood sample from the subject animal 

and allowing it to clot, before injecting the clot back into the circulation to block the 

middle cerebral artery. This model is closer to that observed in the clinic due to the 

involvement of cell signalling events relating to embolus presence. However, this model is 

considerably more variable than other models (Hashimoto et al. 2010a).  

Whilst the majority of research has been conducted in rodent models due to ethical 

issues and financial restraints, it is likely that to ensure maximal translation of stroke 

research pre-clinical trials in higher primates will be necessary. Each of the models and 

variations of these models has strengths and weaknesses; Employment of multiple 

models to assess potential therapeutic interventions will also be beneficial offering 

additional confidence for translation. The Multicentre Preclinical Animal Research Team 

(Multi-PART)  is an initiative which is seeking to achieve this goal by international 

collaboration in order to establish and implement a platform for international multicentre 

stroke trials using randomized clinical trial design and a multi-centre, multi-model 

paradigm (“Welcome to Multi-PART” 2015). 

There are many strengths and weaknesses of the animal stroke models versus in vitro 

techniques. The major strength of in vivo research over Petri dish based assays is that 

assessment of a complete physiological system of a living organism is a more accurate 

simulation of clinical stroke than a single cell. It also allows for assessment of more 

relevant physiological measures of stroke (i.e. lesion volume). Different animal models 

exist and each presents advantages and disadvantages. Non-human primates are arguably 

the closest organism to humans to study, but present the greatest ethical concerns 

regarding animal research. Rodents are the primarily used animals in early stage pre-

clinical research. Whilst it is difficult to assess higher brain functions in rodent models, at 

the molecular level there is great similarity in the central nervous system across mammals. 

Different methods of stroke induction present different volumes of stroke, reproducibility 

and technical challenges. It is less technically challenging to modulate genes in mice than 

rats due to reduced amount of drug/viral vector/RNA mimic used, and the availability of 

transgenic mice, whilst the rat model benefits from less challenging surgery and greater 

reproducibility (Young et al. 2013; Gluck et al. 2002). 

Using these models new and potentially revolutionary therapeutics can continue to be 

investigated by stroke researchers. Gene therapies in particular have hitherto untapped 
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potential, and within this class, non-coding RNAs remain one of the least understood 

therapeutics with arguably the most potential. 

1.11 MicroRNAs 

There was a time following the discovery of DNA, but preceding the complete sequencing 

of the genome that all DNA was responsible for coding a protein. Today this is still 

referred to as the ‘central dogma’ of molecular biology (Crick 1970). However, following 

the sequencing of many genomes (including that of the human) geneticists were faced 

with a very puzzling phenomena: only a tiny percentage of a genome was responsible for 

coding genes in humans (Venter et al. 2001). Initially this non-coding DNA which 

accounted for 98% of the human genome (versus the 2% of junk DNA in bacterial 

genomes) was deemed to be nothing more than an evolutionary artefact. However, 

several inquisitive minds started interrogating the mysterious genomic sequences and 

illuminated an entire microcosm of biology previously unknown to mankind (Doolittle 

2013). The initial reasoning behind the human genome project was that ‘if all diseases are 

genetic in nature’ and ‘we understand all of the genes’ it would only be a matter of time 

before all diseases were understood and eventually cured. The truth was much less 

promising, though arguably much more interesting. There a whole host of types of non-

coding RNAs, with novel functions being discovered every day, but my thesis is focussed 

on the class which arguably presents the greatest potential for medical interventions.  

1.12 History 

miRNAs are small non-coding molecules which act to post-transcriptionally inhibit 

expression of other genes. In that respect they are similar to the synthetic small 

interfering (siRNAs). The main difference (other than the fact that they are endogenously 

produced) is that whilst a single siRNA will act upon a single gene transcript, a single 

miRNA can potentially act upon thousands of different gene transcripts. Several other 

types of non coding RNAs exist which perform a variety of different functional roles in the 

regulation of gene expression including long non-coding RNAs, small nucleolar RNAs 

(snoRNAs), extracellular RNAs (exRNAs) and Piwi-interacting RNAs (piRNAs) which 

perform a diverse range of functions pertaining to the regulation of transcription and 

post-translational modification of gene products. Due to the relatively recent discovery of 
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these classes of RNA and the complexity of the operations they are involved in 

understanding in this area remains in its infancy (Morris 2012).  

Whilst the first miRNA was described in Caenorhabditis elegans in 1993 (Lee et al. 1993), 

it was not until much later that the significance of this discovery was realised. The first 

miRNA discovered was initially named lin-4 and in 1993 it was described as interacting 

with a target gene lin-14 preventing translation to protein (Lee et al.  1993; Wightman et 

al. 1993). This was initially thought to be an unusual occurrence and was not considered 

much. This was the case until the discovery and description of let-7 (again in C. 

elegans)(Shabalina and Koonin 2008).It wasn’t until this discovery that interest in post-

transcriptional inhibition of gene expression by non-coding RNAs became more widely 

studied. A great deal of the recent progress in the understanding of epigenetic modes of 

control in the organism have been driven by the findings of the Human Genome project 

(Lander et al. 2001; Venter et al. 2001). Identification of large regions of highly conserved 

non-coding DNA sequences challenged the long-standing central dogma of molecular 

biology (Crick 1970). As it became apparent that there was considerably more complexity 

involved in the molecular mechanisms underlying life than was previously thought, 

interest in the epigenetic mechanisms of control became widely studied (Wolffe and 

Matzke 1999). Subsequently miRNAs were identified and described as being present in all 

eukaryotic organisms (Appasani 2008). The genetic age and relative simplicity of this class 

of genes raises some interesting philosophical questions about the evolution of life 

(Shabalina and Koonin 2008; Demongeot and Moreira 2007). But more interesting still are 

the questions miRNAs pose for modern medicine. As stated previously, a single miRNA 

can potentially act on thousands of transcripts, in many cases this single microRNA will 

inhibit several molecules in a single signalling pathway (Papagiannakopoulos et al. 2008). 

Therefore by modulation of a single miRNA species using pharmacological agents, the 

clinician could achieve potent modulation of entire pathways. As this form of regulation 

evolved, it could be argued that the effects of miRNA modulation would be synergistic 

and less prone to negative side-effects. It is for these reasons that proponents of miRNA-

based medicines believe that RNA inhibition pathway (RNAi) based technologies are some 

of the most exciting novel therapeutic agents in development today (Nana-Sinkam and 

Croce 2012; Carmeliet and Jain 2011; Jamaluddin et al. 2011; Brown and Naldini 2009). 
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1.13 miRNA Biogenesis 

The biogenesis of miRNAs involves synchronised activity of several aspects of cellular 

machinery and enzymatic reactions to take the miRNA from initial transcription through 

to ultimate inhibition of target transcripts (Figure 1.8). The initial step in the canonical 

process occurs when a pri-miRNA sequence is transcribed by RNA polymerase II (Cai et al. 

2004). miRNA structure differs greatly between individual miRNAs across the genome. 

The miRNA can exist on its own, or with other miRNAs as part of a cluster. Following 

transcription of the pri-miRNA sequence, it becomes recognised and cleaved by the 

RNAse III-like enzyme Drosha (Lee et al. 2002) which is associated with the protein Pasha 

(Gregory et al. 2004). The double stranded pri-miRNA sequence which has been 

processed by the Drosha-Pasha complex is translocated from the nucleus into the 

cytoplasm via Exportin 5 (Bohnsack et al 2004). After it has been exported, the pre-miRNA 

sequence is cleaved by Dicer (another RNAse III-like enzyme) after which it forms a 

complex with RISC-loading complex subunit TARBP2. This results in the generation of a 

double stranded sequence ~22-23 bp in length. Traditionally the strands have been 

termed the active messenger strand (which is active and binds to target transcripts) and 

the passive guide strand (which is thought to degrade without any additional effects). This 

double stranded miRNA has a 3’ 2 bp overhang and a 5’ hydroxyl group (Grishok et al. 

2001; Hutvágner et al. 2001). Following this cleavage the now mature miRNA sequence is 

loaded into an argonaute protein (generally Ago2). This protein-RNA complex then 

becomes associated with other aspects of the RNA-induced silencing complex (RISC), after 

which it associates with downstream target transcripts and can effect post-transcriptional 

inhibition of gene expression. Generally, only one strand of the miRNA duplex is able to 

associate with target transcripts (Matranga et al. 2005).Differences have been described 

in miRNA processing between vertebrate and invertebrate organisms relating to the 

function of Ago2 (Chendrimada et al. 2005; Jagannath and Wood 2009). It is unclear what 

differences in processing, if any, exist between mammalian species (Yoda et al. 2010). 

Suppression of target transcripts is mediated by interaction of a short 2-7 nucleotide 

sequence with a complementary sequence in the 3’ Untranslated region of the target 

gene (Bartel 2009). In the case of a perfect match this can signal for degradation of the 

transcript, or else simply inhibition of translation (Huntzinger and Izaurralde 2011; Krol et 

al. 2010) (Figure 1.8). 
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Whilst the conventional wisdom of miRNA biology suggests that generally the 3’ strand of 

the sequence is the messenger strand and the 5’ sequence is the passenger strand, this is 

not always the case.  There is also evidence which suggests that the active strand of a 

single miRNA can vary depending on cell type. For example, in one form of gastric cancer 

it was demonstrated that for some miRNAs the 3’ strand was the active strand whilst the 

5’ strand was sometimes the active strand comparing healthy to cancerous cells (Li et al. 

2012). A pertinent example of the passenger strand importance relating to cardiovascular 

biology is the discovery that miR-21* is the active form of the miRNA in exosomes derived 

from cardiac fibroblasts and that these miR-21 passenger strands mediate cardiac 

hypertrophy (Bang et al. 2014). This aspect of miRNA biology is little studied and in most 

cases remains poorly understood.  

As more groups assess the complex role of miRNAs in health and disease, understanding 

of the cellular machinery which regulates these processes will also improve. Generally 

miRNAs are thought to be processed in the aforementioned ‘canonical’ process but 

emerging evidence is detailing instances where certain miRNAs under certain conditions 

can undergo ‘non-canonical’ processing. For example, if a miRNA exists in its own intron it 

can use the gene’s intron splicing machinery to process itself (Okamura et al. 2007), whilst 

in some cases the Dicer slicing step can be performed directly by Ago2 (Cheloufi et al. 

2010; Cifuentes et al. 2010). It is unclear in which context non-canonical processing of 

miRNA activity will be functionally significant. 
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Figure 1.8 - miRNA biogenesis pathway (van Rooij and Kauppinen 2014) – miRNAs located in the genome 
in intergenic, intronic or polycistronic regions. Following transcription by the appropriate transcription 
factor the initial pri-miRNA sequence is transcribed. The pri-miRNA is then cleaved by Drosha to form the 
pre-miRNA sequence which is then exported from the nucleus to the cytoplasm via exportin-5. Following 
this, the pre-miRNA is cleaved by Dicer to form the mature miRNA sequence, Ago then promotes the 
dissociation of the two miRNA strands which then go on to interact with target transcripts via association 
with the RISC complex. 

1.14 Therapeutic Applications 

Following the identification of miRNAs, the description of the essential importance in 

many cellular pathways and their implication in several diseases, RNAi has become a 

widely studied avenue for potential novel gene therapies (Appasani 2008). The 

miRNAome offers thousands of miRNAs as potential agents of therapeutic modulation 

which potentially act on millions of genes (Jamaluddin et al. 2011). Traditionally gene 

therapy involves the modulation of a single gene to achieve increased or suppressed 

levels of a single protein. Whilst research in this field is ongoing, it remains to be widely 

implemented in clinical practice. One of the proposed difficulties of gene therapies is that 
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complex diseases are generally not regulated by a single gene. The added advantage of 

miRNA as a platform for gene therapy is that modulation of a single RNA sequence can 

effect a synchronized modulation in a variety of target genes. For example, miR-29 cluster 

members have been shown to interact with several aspects of the TGF-β signalling 

pathway including fibrogenic proteins such as collagen, fibrin and elastin (Zhou et al. 

2012; Van Rooij et al. 2008). It has been demonstrated in vivo that miR-29 is a potent 

inhibitor of pro-fibrotic pathways and this may be of benefit in the treatment of fibrotic 

diseases (Kriegel et al. 2012; Cushing et al. 2011). 

There are however, several caveats and potential pitfalls associated with RNAi based 

treatments (Castanotto and Rossi 2009). And it is for this reason that preclinical 

researchers need to ensure that we have a thorough, robust understanding of the 

mechanisms underlying the changes we observe before we try and take these treatments 

to clinic.  Despite considerable scepticism from some contingents of the biomedical 

community, miRNA research continues to be translated towards the clinic with 

expediency. For example, Miravirsen (a miR-122 inhibitor) is currently undergoing Phase 

IIa clinical trials for the treatment of Hepatitis C Virus (Gebert et al. 2014; Janssen et al. 

2013). Although this breakthrough may not at first seem to have direct implications in the 

use of miRNA therapeutics in the context of cardiovascular disease, the legal framework 

being develop and precedents set in getting this drug licensed for patient use will remove 

many of the obstacles in getting new drugs to market, whilst setting industry standards 

that subsequent studies can benefit from (Thum 2012). 

1.15 Achieving miRNA Modulation. 

There are a number of strategies which can be implemented in order to achieve 

therapeutic modulation of miRNA expression in vivo in preclinical models of disease with 

each of the associated technologies presenting different strengths and challenges. 

Though none of these strategies have yet made it into routine clinical practice, it is 

unlikely that one platform will be equally effective in all tissues and all disease states. For 

this reason it is likely that in the future such treatments will be tailored to the specific 

needs of the patient.  
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1.15.1 Viral-mediated miRNA Delivery 

Perhaps the most efficient mode of miRNA transduction in vivo would be through the use 

of viral vectors (Yao et al 2011). Taking advantage of millions of years of genetic evolution 

viral vectors use the patient’s own cellular machinery to transcribe and deliver a 

therapeutic payload. In the context of miRNA therapeutics this will either be the desired 

miRNA sequence, or a complementary miRNA inhibitory sequence. Viral vectors are 

based on several different commonly found viruses including adenovirus, lentivirus and 

others.  

Adenoviral vectors are the most widely studied of the viral vectors and are based on the 

‘common cold’ virus. In this class of viral vectors several different serotypes exist which 

account for differences in stimulation of the immune response as well as tissue specificity 

(Douglas et al. 1996).  

57 different serotypes of adenovirus exist in humans meaning that there is a variety of 

vectors in this class that can be utilized in the treatment of disease (Buckwalter et al. 

2012). If a patient has not been previously exposed to a given serotype, their immune 

system can be said to be ‘naïve’ to this serotype (Janeway et al. 2001). This means that 

there will be less of an immune response assisting the clinician in delivering the genetic 

payload. If the patient’s immune system recognizes the serotype of the viral vector there 

will be a greater inflammatory response resulting in additional undesirable side effects 

and an increase in the required dose of viral vector required to treat the disease (Stolberg 

1999).  

An important concept in understanding viral gene therapy is trophicity. This refers to the 

tissue specificity of any given virus. Adenovirus is hepatotrophic meaning that it is highly 

active in the liver resulting in hepatotoxic effects (Mowa et al 2010). Ongoing research in 

the field of viral gene therapy is looking to identify serotypes with desirable trophicity, or 

to modify capsid proteins on the surface of the virus to modify trophicity (Everett et al. 

2003; Shayakhmetov et al. 2005; Koizumi et al. 2007).    

Lentiviral vectors are another widely utilized technology for gene modulation although 

they are unlikely to be used in clinical practice (Yi et al. 2005). Lentiviral vectors are based 

upon the retrovirus HIV-1 (Zufferey et al. 1997). The biggest advantage of the lentiviral 

vector is the high efficiency which exists, which results in a requirement for less virus to 
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be produced as well as less immune response from the recipient organism. Although 

modification of the viral genome has nullified the virus’ ability to reproduce or mutate, 

the retroviral nature of the vector means that the therapeutic gene integrates with the 

host genome. Preservation of the transgenic sequence upon cellular division means that 

the modification of gene expression is potentially permanent. Another issue associated 

with the use of lentiviral vectors is that it is often not possible to predict the site of 

genomic integration. It is possible that integration of the transgene at a specific region 

may interfere with normal genetic regulation of the organism and promote oncogenesis 

or the development of some other undesirable pathology (Kay et al. 2001).   

It is also possible to use viral vectors based on viruses from other species of animals. For 

instance canine adenovirus is a contender for use as a viral vector in the treatment of 

neurological diseases (Klonjkowski et al. 1997). As this virus predominantly infects dogs, 

many humans remain immunologically naïve to the virus. The other major advantage of 

this viral vector is that it displays marked neurological trophicity, using retrograde 

transport to enter the brain (Peltékian et al. 2002),successful delivery of pharmacological 

agents to the brain remains a major hurdle for researchers trying to treat disorders of the 

brain. 

Another widely studied class of viral vectors is the class adeno-associated virus. This viral 

class results in no known diseases in humans, and the reduced immune response renders 

this vector highly desirable for use in the clinical arena as they are very successful for 

brain delivery (Murlidharan et al. 2014).  

Due to the considerable cost of producing GMP compatible viral vectors as well as 

immunogenicity, despite the considerable advantage of the potent modulation viral 

vectors remain perhaps the least likely miRNA based treatment to enter routine clinical 

practice (Meyer and Finer 2001). 

1.15.2 miR mimics 

Another potential strategy for modulation of miRNA employs the use of miRNA mimics or 

miRNA inhibitors (van Rooij and Kauppinen 2014). These are short nucleotide sequences 

which imitate the miRNA in situ, but contain a modified nucleotide backbone which acts 

to inhibit degradation of these molecules. Though the transduction efficiency of using 

miRNA mimics would be greatly reduced in comparison to viral vectors, they may benefit 
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from circumvention of the immune system side effects and the regulatory aspects 

associated with implementation of viral vectors in humans (Castanotto and Rossi 2009). 

The goal of covalent modification of the synthetic miRNA mimics is to promote stability of 

the structure and to allow for cellular uptake of the construct (Lennox and Behlke 2011). 

In some cases the passenger strand is modified in order to prevent interaction with the 

RNA-induced silencing complex (RISC), whilst in other cases it is left unmodified in order 

to allow for rapid degradation (Chen et al. 2008). There are several different types of 

covalent modification available in the construction of synthetic miRNA mimics (Figure 1.9), 

although this is limited somewhat by the necessity for these sequences to interact 

normally with the RISC proteins. 

 

Figure 1.9 - Backbone modifications available for miRNA mimics –several different covalent modifications 
exist for the backbone of synthetic miRNA sequences. Each has its own characteristic effects on binding 
affinity and persistence in the system (van Rooij and Kauppinen 2014). 

Another challenge associated with miRNA mimics is that of tissue specificity (Lagos-

Quintana et al. 2002). Current technology means that it is not possible to direct 

expression to specific tissues with synthetic miRNA mimics as is possible with viral vectors. 

In clinical practice this would likely mean that administration of a mimic would result in 

considerable negative off target effects. Recent studies have suggested that in the future 

it may be possible to improve delivery of synthetic miRNA mimics through the use of 

microvesicles such as exosomes (Marcus and Leonard 2013; Lee et al 2012).  
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1.16 miRNAs in Cardiovascular Disease 

Following the initial discovery and description of miRNA function there has been 

increased interest in the role that these molecules play in cardiovascular disease. The 

importance of miRNAs in the cardiovascular system relates to development and function 

of the heart, vasculature and other associated cell types (Urbich et al. 2008). 

Characterization studies conducted on cultured human endothelial cells have identified a 

variety of miRNAs which are specific to this cell type including let-7b, miR-16, miR-23a, 

miR-29, miR-100, miR-221, miR-222 and others (Suárez et al. 2007; Kuehbacher et al. 

2007; Poliseno et al. 2006).  Additionally, it has been determined that microRNAs play an 

essential role in the specification of cardiovascular cell lineage in the development of 

vertebrate organisms. The fundamental importance of miRNA biology in the development 

of the cardiovascular system was initially identified by experiments modulating genes 

responsible for miRNA processing. Ablation of Dicer activity in mice through the use of 

transgenic animals demonstrates that this mutation is not compatible for life. Dicer-

knockout results in embryonic mortality during gestation between E12.5 and E14.5 due to 

defects on vasculogenesis (Yang et al. 2005). This observation was supported by similar 

findings in transgenic zebrafish deficient in Dicer (Giraldez et al. 2005).Abrogation of 

Drosha in HeLa cells demonstrated an accumulation of pri-miRNA  transcripts and 

reduction of mature miRNA sequences in the cell resulting from a failure of miRNA 

maturation (Lee et al. 2003). Despite the perturbation which arises as a result of Drosha 

inhibition, the effects on endothelium were less pronounced than those seen following 

Dicer modulation (Kuehbacher et al. 2007). Although these experiments demonstrate the 

importance of miRNA activity in cardiovascular development, they offered little insight 

into the specifics regarding which miRNAs are responsible for the effect, and through 

modulation of which signalling pathways. Subsequent studies have sought to identify the 

specific mechanisms of individual miRNAs which mediate this. One example of this is the 

observation that miR-126 is abundantly expressed in Flk1+ haematopoetic progenitor cells 

(Ivey et al. 2008). Futher evidence demonstrating the importance of miRNAs in 

cardiovascular function was demonstration that In vitro inhibition of let-7f and miR-27b 

promoted in vitro angiogenesis (Kuehbacher et al. 2007).  

Although identification of abundant miRNAs in specific cell types is informative in 

identifying potentially important candidates in cellular function, it doesn’t tell the whole 
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story. Relatively lower abundance miRNAs may be modulated in certain disease states 

resulting in differential effects following environmental insults. In disease states 

cardiovascular tissue is subjected to a range of different stress stimuli such as hypoxia, 

inflammation, shear-stress and other factors. miR-130a is an example of one such miRNA. 

Expressed at low levels in quiescent Human umbilical vein endothelial cells (HUVEC), 

there is a potent upregulation following exposure to foetal bovine serum which partially 

mediates angiogenic effects (Chen and Gorski 2008). Under these conditions miR-130a 

acts to post-transcriptionally inhibit expression of GAX and HoxA5 which ultimately 

results in pro-angiogenic effects through depression of proliferative, migration and tube 

formation pathways (Chen and Gorski 2008). Cancer studies have suggested that HIF-1α is 

a transcription factor responsible for promoting miRNA expression under hypoxic 

conditions and it is likely that this will be involved in changes observed in cardiovascular 

tissue in the context of ischemic cardiovascular diseases (Kulshreshtha et al. 2007). 

In addition to the proangiogenic miRNAs, several miRNAs have been identified as 

inhibiting angiogenesis. Collectively the pro- and anti- angiogenic miRNAs have been 

referred to as ‘angiomirs’ (Wang and Olson 2009). Of the abundantly expressed miRNAs 

in HUVEC cells both miR-221 and miR-222 have been observed to play an important role 

in the inhibition of angiogenesis. For both of these miRNAs the anti-angiogenic effects are 

mediated by inhibition of c-kit. Some of the anti-angiogenic effects of miR-221/miR-222 

are also partially mediated by the indirect inhibition of endothelial nitric oxide synthase. 

Nitric Oxide activity is important in the regulation of several aspects of endothelial cell 

growth, migration and remodelling. Additionally, miR-221/miR-222 have been found to 

modulate expression other miRNAs, several of which are predicted to interact with the 

3’UTR of c-kit demonstrating that these miRNAs may share similar functions (Figure 1.10).  
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Figure 1.10 -Angiomirs - Diagram illustrating angiomirs and their mechanisms of action (S. Wang and Olson 
2009) 

 

1.17 miRNAs in ischaemic injury 

The most common type of ischaemic disease is acute myocardial infarction and this is the 

leading cause of mortality and morbidity worldwide. This occurs when the coronary 

arteries supplying the heart become occluded either by embolus or thrombus formation. 

Due to the similarity in underlying causes many of the pathways underlying the 

pathogenesis of this disease can be assumed to display a great deal of overlap with stroke 

biology. Initial evidence regarding the importance of miRNAs in the development and 

progression of acute myocardial infarction (AMI) occurred following the identification of 

characteristic miRNA expression profiles in the border region of infarcted heart at 3 and 

14 days following injury. Specific note was made of miR-29 which was downregulated 

following injury thus contributing to the post-injury development of cardiac fibrosis 

mediated through the TGF-β mediated pathway (Van Rooij et al. 2008). Others have 

assessed the role of miR-21 in acute myocardial infarction following observations that 

expression levels of this miRNA are perturbed following myocardial ischaemia. Promotion 

of miR-21 expression in the heart through the use of adenoviral vectors significantly 

reduced the size of myocardial infarct at 24h following experimentally induced acute 

myocardial infarction. Assessment of miR-21 target genes suggested partial mediation of 

the protective effect of miR-21 expression by modulation of PDCD4 and the downstream 
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molecule AP-1 (Cheng et al. 2010). More recently other miRNAs have been demonstrated 

to play an important role in the pathology of myocardial infarction such as miR-499. in 

vitro apoptosis mediated by hydrogen peroxide exposure in rat neonatal cardiomyocytes 

was abrogated by promotion of miR-499 expression. This protective effect was mediated 

by the modulation of several proapoptotic genes including Pdcd4, Pacs2 and Dyrk2 (Wang 

et al. 2014). Although the H2O2 stimulation of apoptosis is not a direct model of 

myocardial infarction, there is a profound production of free radicals following ischaemic 

injury which result in the generation of harmful metabolites such as hydrogen peroxide 

which means that this model is useful in characterizing mechanistic effects of some of the 

apoptotic pathways relevant to myocardial infarction.  Another study demonstrated that 

in vitro and in vivo modulation of miR-99a in models of myocardial infarction 

demonstrated a functional improvement following injury, mechanistic analysis suggesting 

that this effect was partially mediated through modulation of mTOR. Emerging evidence 

has implicated a myriad of different miRNAs as being potential therapeutic targets in the 

treatment of myocardial infarction (Li et al. 2014). However, it remains unclear which of 

these (if any) will successfully make the translation to clinical practice. In addition to the 

potential therapeutic potential of miRNAs themselves, each of these studies is providing 

new information regarding the underlying molecular mechanisms with respect to the 

pathology of cardiac ischaemia and this will contribute to improved understanding of the 

disease in the future. miR-210 has been demonstrated to play an important role in 

ischaemic disease following the observation that it is upregulated in HUVEC cells 

following hypoxic challenge. In vitro modulation of miR-210 aided in the dissection of the 

molecular mechanisms at play here, demonstrating that upregulation of miR-210 

promotes angiogenesis via tube formation and migration pathways partially mediated 

through the regulation of EphrinA3 (Fasanaro et al. 2008). 

In addition to the functional assessment of miRNA modulation on the development of 

myocardial infarction, some groups have begun to study circulating levels of miRNAs as a 

biomarker for the disease. One study identified a significant increase in circulating levels 

of miR-133, miR-1291 and miR-663b in myocardial infarction patients versus healthy 

controls (Peng et al. 2014) whilst another identified an association with miR-328 and miR-

134 levels which was associated with an increased risk of death and/or heart failure (He 

et al. 2014). It is unclear why observations in the modulated miRNAs differ between 

studies, but this may be an effect due to differences in the genetic background, or 
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demographics of the populations studied. The use of circulating miRNA biomarkers 

remains in its infancy. In order for this technology to enter the clinic it will be necessary to 

demonstrate that these biomarkers yield useful diagnostic and prognostic information to 

clinicians to a better degree of sophistication than traditional risk factors. 

1.18 miRNAs in Stroke 

There are many similarities in the underlying mechanisms governing ischaemic disease 

across the circulatory system as the fundamental signalling pathways regulating 

respiration are largely similar across tissue types. Ischaemic stroke presents considerable 

differences from the rest of the systemic circulation due to the specialised cell types in 

the central nervous system and complex interactions which exist between cells in the 

neurovascular unit.  

Initial preclinical studies identifying the importance of miRNAs in stroke have 

demonstrated a myriad of different miRNAs to be altered in many different models of 

stroke. Adult male spontaneously hypertensive rats that were subjected to transient 

middle cerebral artery occlusion demonstrated alteration of several miRNAs at time 

points from 3h to 3 days of recovery. miR-140, miR-145 and miR-331 were observed to 

increase progressively with time following injury (Dharap and Bowen 2009, 2009). Follow 

up studies sought to investigate the role of miRNAs in ischaemic preconditioning as it has 

been shown that periods of mild exposure to ischaemia prior to a stroke event can have 

protective effects. Following a sub-lethal preconditioning period induced in mice, where 

the middle cerebral artery was occluded for either 15 or 120 minutes, expression levels of 

several miRNAs were assessed at 3 hours following recovery. After it was noted that miR-

200 and miR-182 family members were significantly upregulated, functional assessment 

of manipulating these miRNAs was investigated by transfecting synthetic mimics into 

Neuro-2a cells prior to hypoxic challenge. miR-200b, miR-200c and miR-429 were shown 

to have neuroprotective effects via targeting of prolyl hydroxylase 2 (Lee et al. 2010). 

Further evidence for the usefulness of miRNAs as therapeutics for stroke can be found in 

experimental work where miR-181 levels were successfully modulated in astrocytic cell 

cultures. MiR-181 interacts with several aspects of the Bcl-2 protein family and directly 

inhibits the anti-apoptotic ligands Bcl-2 and Mcl-1 in vitro meaning that increased 

expression of miR-181 results in a more severe phenotype (Ouyan et al. 2012). Following 
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up this work, inhibition and overexpression of miR-181 was performed in vivo in a mouse 

transient middle cerebral artery occlusion model of stroke. It was shown that whilst 

overexpression of miR-181 in vivo exacerbated injury, inhibition resulted in a reduction of 

the damage caused. This was associated with increased levels of binding immunoglobulin 

protein (GRP-78) a HSP70 molecular chaperone which is targeted by miR-181. In C6 cells 

transfected with miR-181, the toxic effects were abrogated if GRP78 levels were 

maintained suggesting that this is a major mechanism whereby miR-181 effects stroke is 

by  GRP78 inhibition (Ouyang et al. 2012). 

After observing that miR-497 was significantly upregulated in the brain following 

experimental stroke, one group assessed its therapeutic potential. Ablation of miR-497 

expression attenuates oxygen-glucose deprivation induced neuronal loss, whilst 

overexpression of miR-497 exacerbates this. miR-497 has been shown to bind directly to 

the 3’UTR region of bcl-2/-w genes. It was observed that there was a corresponding 

increase in bcl-2/-w protein levels in the ischaemic region of the brain following knockout 

of miR-497 and this was associated with a reduction in infarct size and improvements in 

neurological outcomes (Yin et al. 2010). 

Further evidence of the importance of miRNAs comes from the observation that miR-15a 

is upregulated in an oxygen glucose deprivation model of stroke. miR-15a is upregulated 

by PPARδ which in turn acts on bcl-2. miR-15a is pathological in the context of stroke. It 

inhibits bcl-2 expression and results in cerebral vascular endothelial cell death which is a 

major event in the breakdown of the blood-brain barrier (Yin et al. 2010). 

Investigation into the role of miRNAs in stroke remains in its infancy and as such the 

literature pertaining to this is comparatively limited compared to other disease areas. In 

recent years there has been growing interest in the role of miRNAs in stroke and the body 

of literature on this subject will continue to grow improving understanding of its nuances 

for the stroke research community. 

Several miRNAs have been demonstrated to play an important role in stroke etiology, 

though to date none has definitively been shown to therapeutically improve outcomes 

when post-stroke treatment is administered despite considerable evidence 

demonstrating proof-of-concept. In addition to the miRNAs mentioned here, work has 
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been done on identifying the roles for miR-21 and miR-29 in stroke. These will be 

discussed in depth in subsequent chapters.  

1.19 miRNAs in neurological disorders 

The development of the central nervous system is a complex process requiring precise 

control of gene expression to specify cell fate decisions which result in the generation of 

the mature brain. It is likely that several miRNAs are integral to the healthy development 

of the central nervous system, but as research into this area is still in its infancy the 

specifics remain poorly understood. However, some progress has been made (Follert et al. 

2014). miR-9 is a highly abundant brain miRNA which acts to modulate Nuclear receptor 

subfamily 2 group E member 1 (TLX) expression, this is important in the context of brain 

development as it inhibits the proliferation of neural stem cells and promotes 

differentiation to neural cell types (Zhao et al. 2009). Later during cortical development 

TLX expression is modulated by miR-137 via the transcriptional co-repressor LSD1 (Sun et 

al. 2011).  One of the most abundant microRNAs expressed in brain tissue is miR-124. This 

plays an important role in the development of the brain through a zinc finger protein 

called RE1-silencing transcription factor which again leads to neuronal differentiation 

(Visvanathan et al. 2007). As it has been demonstrated that miRNA expression levels play 

an essential role in the normal development of the central nervous system, it can also be 

expected that perturbations in levels of specific miRNAs may be observed under certain 

pathological conditions and contribute to the development of disease. A recent 

comprehensive review summarises many of the findings relating to microRNA biomarkers 

for central nervous system diseases (Rao et al. 2013) Several sources of RNA have been 

assessed with regards to identification of biomarkers, but from a practical clinical 

perspective the most useful sources are bodily fluids as it is generally not advisable, or 

even possible to obtain biopsy tissue from the central nervous system. One of the 

landmark studies assessing miRNA biomarkers in the context of CNS diseases was a study 

analysing levels of miRNA expression levels of peripheral blood mononuclear cells 

between Alzheimer’s disease (AD) patients versus healthy controls. This study 

demonstrated that there was  a significant upregulation of both miR-34a and miR-181b in 

Alzheimer’s Disease (Schipper et al. 2007). If these biomarkers can be validated as being 

specific to AD patients this would be a major coup for clinical researchers as currently 

diagnosis of AD is based on relatively subjective psychological testing which does not 
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effectively differentiate between this and other causes of dementia. Although currently 

no miRNA biomarker is routinely implemented in clinical practice, progress is being made 

with respect to a number of other challenging neurological diseases including 

schizophrenia (Lai et al. 2011) and Parkinson’s disease (Martins et al. 2011) amongst 

others. Successful implementation of miRNA biomarkers indicative of central nervous 

system pathologies will facilitate clinical interventions by offering information to clinicians 

allowing them to identify disease at earlier stages and ultimately improve the quality of 

treatment received by the patients. Ultimately it will be possible to utilize miR modulation 

as a means of gene therapy in order to treat neurological diseases, as with cardiovascular 

medicine. However this is a long way off. Research in this area currently remains in the 

early stages of pre-clinical investigation.   For example, several studies have identified 

miRNAs (including miR-7 and miR-153) as modulating expression of α-synuclein. This 

protein is of great interest in the context of Parkinson’s disease as it forms fibrillary 

aggregates which accumulate to form Lewy bodies which contribute to 

neurodegeneration. It may be possible to use miRNA modulation to limit the rate of α-

synuclein production and aggregation in order to slow or even halt progression of the 

disease (Ma et al. 2013). Another recent example of the ongoing preclinical research into 

central nervous system diseases can be observed with respect to Alzheimer’s disease. 

miR-922 has been demonstrated to post-transcriptionally inhibit expression levels of 

UCHL1 which is associated with an increase in levels of phosphorylated tau proteins. Thus 

this study suggests that in patients with Alzheimer’s disease, inhibition of miR-922 may 

act to prevent the progression of tauopathies and abrogate progression of the disease.  
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1.20 Hypothesis 

miRNAs are modulated following stroke in response to ischaemic injury, this is 

functionally relevant in stroke pathophysiology and modulation of miR-21 and/or miR-29 

will be effective targets for therapeutic injury in order to mitigate damage and promote 

recovery. 

1.21 Aims 

To characterise expression of specific miRNAs in experimental models of stroke. 

To modulate specific miRNAs in cell culture models of hypoxic-reoxygenation injury. 

To determine changes in target genes of specific miRNAs associated with miRNA 

modulation. 

To characterise serum miRNA expression in a human patient population following stroke. 

To modulate miR-21 in vivo through the use of transgenic animals. The role of miR-21 in 

stroke will then be assessed by subjecting these animals to the tMCAO model of stroke 

followed by investigation of physiological measures of stroke and behavioural testing. 
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Chapter 2 - Methods  
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2 Methods 

2.1 Cell Culture 

All tissue culture work was performed using a biological safety class II vertical laminar 

flow cabinet in sterile conditions. Cell lines were maintained in the appropriate media 

(Table 2.1) and incubated at 37oC in a 5% CO2 atmosphere unless otherwise stated.  

2.1.1 Cell lines and Media conditions 

Cell Line Description Cell Culture Medium  

B50 (Sigma-Aldrich) Immortalised neurons 

from rat brain 

Dulbecco’s Modified Eagle’s 

medium (DMEM)/low glucose 

with no phenol red (Gibco, 

Paisley, UK) supplemented with 

10% (v/v) foetal calf serum 

(FCS), 1% (v/v) penicillin, 

100ug/ml streptomycin and 

2mM L-glutamine 

GPNT (Sigma-Aldrich) Immortalised rat 

cerebral endothelial cell 

line 

Hams-F10 nutrient mixture 

(Gibco, Paisley UK) 

supplemented with 10% FCS, 

2ng/ml basic fibroblast growth 

factor, 80µg/ml Heparin, 2mM 

L-Glutamine, 100U/ml Penicillin 

and 100µg/ml Streptomycin 

293T (Sigma-Aldrich) 

 

Immortalised human 

embryonic kidney cell line 

Dulbecco’s Modified Eagle’s 

medium (DMEM) (Gibco, 

Paisley, UK) supplemented with 

10% (v/v) foetal calf serum 

(FCS), 1% (v/v) penicillin, 

100ug/ml streptomycin and 

2mM L-glutamine 

Table 2.1 – Cell lines used and media used. 
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2.1.2 Maintenance of Established Cell Lines 

Cells were grown in monolayers on appropriate plastic ware/glassware and media was 

refreshed every 2-4 days as necessary. Cells were observed twice daily in order to ensure 

that they demonstrated healthy phenotype and absence of microbial contamination. Cells 

were routinely passaged at approximately 80% confluency in order to maintain cells in 

exponential phase of growth as this is optimal for cell culture conditions.  In order to 

passage cells, they were initially twice washed with sterile PBS to remove improperly 

adherent cells and any debris that may be present in flask. Cells were then incubated in 

the presence of trypsin-EDTA (Gibco, Paisley, UK) for 5 min at 37oC or until cells appear to 

dissociate. Once cells have been sufficiently trypsinised one volume of complete media 

was added to neutralize the action of trypsin-EDTA. Cells were pelleted by centrifugation 

at 1500rpm for 5 min before resuspension in complete media for passaging or plating. 

Before plating, cells were counted using a haemocytometer to ensure the required 

seeding density was observed.  

2.1.3 Cryo-preservation and Recovery of Cultured Cell Lines 

Recovery - Cells were placed in liquid nitrogen for long term storage. Cryovials containing 

desired cells were removed from cold storage and allowed to defrost at room 

temperature. Once cells are thawed, they were resuspended in a volume of media in 

order to neutralize DMSO (which is toxic). Cells were spun down at 1500rpm for 5 

minutes and resuspended in pre-warmed media before being seeded in a T150cm3 flask. 

Cryopreservation – In order to ensure that adequate numbers of low passage cells were 

available for experimentation it was necessary to freeze down excess cells regularly. In 

order to do this, cells were trypsinized as described previously and resuspended in 5mls 

of complete media supplemented with 10% dimethyl sulphoxide (DMSO) per T150cm3 

flask. Following this,1ml of cell suspension was aliquoted into cryo-preservation vials and 

cooled at a constant -1oC/min to -80oC using isopropanol. Frozen vials were stored 

indefinitely in liquid nitrogen. In order to ensure that future researchers faced ease of 

location of cryopreserved cells up to date detailed records of the contents of the liquid 

nitrogen storage were maintained.  
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2.2 General Molecular Biology Techniques 

2.2.1 Preparation of Plasmid DNA 

An ampicillin (100µg/ml) containing Luria base (LB) agar plate (0.5g/l, sodium chloride; 

10g/l, tryptone; 5g/l Yeast extract; and 15 g/l agar) was streaked with bacteria containing 

the plasmid DNA to be amplified from a glycerol stock and incubated inverted overnight 

at 37oC. A single colony was then picked from the plate and used to inoculate a starter 

culture of 10 ml Luria broth (LB) containing ampicillin (100ug/ml). The starter culture was 

incubated in an orbital shaker for 8h at 37oC at 180rpm. The cloudy starter culture was 

either taken for mini-prep extraction or then added to 500ml of LB with ampicillin 

(100ug/ml) in a 2l flask and incubated in an orbital shaker overnight at 37oC at 180rpm for 

a maxi-prep. The bacterial cells were harvested by centrifugation at 6000g for 15min at 

4oC. Glycerol stocks of positive colonies were produced by mixing 150ul sterile glycerol 

with 850ul of culture and vortexing before stroking at -80oC  

2.2.2 Small-scale Isolation of Plasmid DNA (Miniprep) 

Plasmid DNA was isolated from e. coli using the QIAGEN Miniprep Kit. Bacterial cells from 

starter cultures were harvested by centrifugation at 6000g for 15min at 4oC, and the 

pellet resuspended in 300ul lysis buffer P1. 250ul buffer P2 was added and solution mixed 

thoroughly by inversion. 250ul buffer N3 was added, mixed immediately by inversion (4-6 

times), and mixture was centrifuged at 13000rpm for 10min. Supernatant was applied to 

the QIAprep spin column then washed by addition of 750ul buffer PE followed by 

centrifugation at 13000g for 60 seconds. The flow through was discarded and DNA was 

eluted in 30ul dH2O. 

2.2.3 Large-scale Isolation of Plasmid DNA (MAXIPREP) 

The plasmid DNA was extracted from the bacteria using the Plasmid Maxi Kit (QIAGEN, 

Crawley, UK) as per manufacturer’s instructions. Briefly, the bacterial pellet was 

resuspended in 10ml of the lysis Buffer P1. Buffer P1 contains Tris and EDTA. EDTA 

chelates divalent metals (primarily magnesium and calcium). Removal of these cations 

destabilises the cell membrane, producing lysis of the bacterial cells, and also inhibits 
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DNases. In addition, P1 also contained RNAse A (a ribonuclease to degrade RNA). 10ml of 

Buffer P2 was added, the solution mixed thoroughly by inverting 4-6 times incubated at 

room temperature for 5 min. Buffer P2 contains sodium hydroxide and SDS. SDS is a 

detergent that disrupts the phospholipids of the cell membrane and sodium hydroxide 

disrupts the cell walls. This results in release of plasmid DNA and sheared cellular DNA 

from the cells. Sodium hydroxide also denatures the DNA, producing linearization of 

cellular DNA. 10ml of Buffer P3 was added (chilled to 4oC), the solution mixed thoroughly 

but inverting 4-6 times and incubated on ice for 20 min. Buffer P3 is a neutralisation 

buffer containing potassium acetate and SDS). The solution was then centrifuged at 

20000g for 30min at 4oC and the supernatant containing the plasmid DNA was removed. 

A QIAGEN-tip 500 was equilibrated by addition of 10ml buffer QBT and the column 

allowed to empty by gravity flow. The supernatant was applied to the anion-exchange 

QIAGEN-tip and allowed to enter the resin by gravity flow, where the plasmid DNA 

selectively binds under low-salt and pH conditions. The QIAGEN-tip was washed twice 

with 30ml Buffer QC, a medium-salt wash to remove RNA, proteins, metabolites and 

other low-molecular weight impurities. The plasmid DNA was then eluted from the 

QIAGEN-tip by addition of 15ml Buffer QF, a high-salt buffer. As DNA is negatively charged, 

the addition of salt masks the charges and allows DNA to precipitate. The plasmid DNA 

was then concentrated and desalted but isopropanol precipitation. 10.5ml of isopropanol 

was added to the plasmid DNA and subsequently removed, and the pellet washed by 

additional 70% (v/v) ethanol and air-dried for 5-10 min. The dried plasmid DNA was re-

dissolved in 100ul dH2O before quantification of yield by NanoDropTM 

 

2.2.4 Cloning 

pMA-T constructs containing either miR-29b2 (Figure 2.1) or miR-29c (Figure 2.2) were 

purchased from Geneart.  

MiR-29b2 Stem loop sequence 

Forward 

5’ AAGCTT GGATCC ACCATGG 
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CTTCTGGAAGCTGGTTTCACATGGTGGCTTAGATTTTTCCATCTTTGTATCTAGCACCATTTGAAAT

CAGTGTTTTAGGAG 

TAG TTTTTT CTCGAG GATATC 3’ 

MiR-29c Stem loop sequence. 

Forward 

5’ AAGCTT GGATCC ACCATGG 

ATCTCTTACACAGGCTGACCGATTTCTCCTGGTGTTCAGAGTCTGTTTTTGTCTAGCACCATTTGAA

ATCGGTTATGATGTAGGGGGA 

TAG TTTTTT CTCGAG GATATC 3’ 

10µg of each miR construct was subjected to restriction digest by EcoRV and HindIII at 

37oC overnight for ligation into linearized pcDNA3.1(+) backbone (Figure 2.3). pcDNA3.1(+) 

backbone was linearized by EcoRV, HindIII double digest. Digested pcDNA3.1(+) was 

dephosphorylated using the NEB Antarctic Phosphatase enzyme (NEB) in order to reduce 

autoligation.  

pSFFV (pHR'SIN-cPPT-SFFV-MCS-WPRE) (Figure 2.4) backbone was linearized by Xho1, 

BamHI double digest at 37oC overnight. Digested pSFFV was dephosphorylated using 

Antarctic Phosphatase (NEB) in order to reduce autoligation. The dephosphorlyation 

reaction was incubated at 37oC for 15mins, enzyme was inactivated by incubation at 65oC 

for 15mins.  

Digests were run on a 2% agarose gel at 100V for 35 minutes. Bands were visualised on an 

ultraviolet lamp and excised by scalpel. Gel extraction was performed by Qiaquick gel 

extraction kit (QIAGEN). 
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.  

Figure 2.1 - Geneart miR-29b2 plasmid vector map – Illustration of the pv-miR-29b construct used in 
cloning with restriction sites of interest labelled. 

 

 

Figure 2.2 - Geneart miR-29c plasmid vector map - Illustration of the pv-miR-29c construct used in cloning 
with restriction sites of interest labelled. 
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Figure 2.3 - pcDNA3.1(+) vector map -  Illustration of the pcDNA plasmid used as a backbone in cloning with 
restriction sites of interest labelled. 

 

 

Figure 2.4 - pSFFV vector map - Illustration of the pSFFV plasmid used as a backbone in cloning with 
restriction sites of interest labelled. 
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2.2.5 Enzymatic Digestion of Cloning Vectors 

Digestion of pSFFV and pcDNA3.1 backbones was achieved by restriction digest enzyme 

digestion. In each case a double digest was performed BamHI-HF and Xho1 for pSFFV, 

whilst EcoRV and HindIII-HF was used for pcDNA3.1. Reactions were incubated at 37oC 

overnight. Successful digestion was confirmed by running products of reaction on a 1% 

agarose gel containing ethidium bromide and visualised by ultra-violet (UV) light. 

2.2.6 Dephosphorlyation of Digests 

In order to minimize the risk of autoligation, linearized backbones were 

dephosphorylated by use of Antarctic phosphate enzyme. A reaction was prepared using 

optimized concentrations of digest, enzyme and buffer. This reaction mix was incubated 

at 37oC for 15minutes, followed by a 65oC incubation for 15 minutes to terminate the 

reaction.   

2.2.7 Extraction of DNA Digest Products from Agarose Gel 

DNA fragment of interest was excised under UV light with a clean sharp scalpel. Gel slice 

was weighed in a colourless tube and 3 volumes of buffer QG was added per 1 volume of 

gel (100mg gel ~100ul).  Gel was incubated in buffer QG at 50oC for 10 minutes until gel 

slice had completely dissolved. Following dissolution the mixture had turned a yellow 

colour indicative of pH necessary to proceed. 1 volume of isopropanol was added and the 

sample was thoroughly mixed by vortex. DNA was allowed to bind to QIAquick column 

membrane by centrifugation at top speed for 1 min. Eluent was discarded. DNA was then 

subjected to a wash with buffer PE followed by elution in 30ul of buffer EB. Purified DNA 

was then ready for downstream applications. 

2.2.8 Ligation 

Ligation reactions were performed at a range of molar ratios using T4 DNA Ligase (NEB) as 

per manufacturer’s instructions. Digested insert and dephosphorylated linearized 
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backbone were combined and reactions were incubated at 16oC overnight. Ligations 

containing backbone alone or insert alone were used as controls to identify background 

autoligation. Ligation products were transformed into top 10 competent E. coli by heat 

shock.  

2.2.9 E. coli Transformation 

Top 10 competent E. coli was defrosted on ice, and incubated for 30 minutes with ligation 

products and then heat shocked in a water bath at 42oC for 30 seconds. This was cooled 

on ice for 2 minutes, and then incubated at 37oC with SOC medium for 1h.  E. coli was 

plated on agar plates containing 100μg/ml ampicillin and incubated at 37oC overnight.  

2.2.10 Sequencing of plasmid 

Plasmid identity was confirmed by sequencing using BigDye Terminator v3.1 Cycle 

Sequencing Kit as per manufacturer’s protocol. Primers were used to sequence across the 

pcDNA3.1or pSFFV as appropriate. Monoclonal colonies were selected from agar plates 

and DNA was extracted using the QIAGEN Miniprep kit as per manufacturer’s instructions. 

The desired clones were then amplified using the QIAGEN Maxiprep kit. 

2.2.11 Production of miRNA containing constructs by cloning  

In order to produce vectors containing miR-29b2 and miR-29c the pcDNA3.1(+) backbone 

was used (Figure 2.5). Both pcDNA3.1(+) and miR-29x inserts were linearised by double 

digest using EcoRV and HindIII (Figure 2.7, 2.8). Following digestion, pcDNA3.1 backbone 

was dephosphorylated to reduce the risk of auto-ligation during the subsequent ligation 

reaction. For production of the lentiviral construct, the pSFFV backbone (Figure 2.6) was 

linearised by XhoI, BamHI double digest (Figure 2.7). Backbone was again linearised by 

dephosphorylation reaction to prevent autoligation. Following ligation reactions 

competent e. coli were transformed and DNA extracted using minipreps for several clones 

of each construct. Cloned plasmids were validated by sequencing across region of interest.  
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Figure 2.5 – Illustration of cloning strategy for production of miRNA-29x containing pcDNA plasmid. - miR-
29x (miR-29b2 or miR-29c) was ligated out of the pMA vector by double digest with EcoRV and HindIII. 
pcDNA3.1(+) was linearised by double digest with EcoRV and HindIII. Resultant products of double digestion 
were recombined using DNA ligase to form desired construct. 
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Figure 2.6 - Illustration of cloning strategy for production of miRNA-29x containing pSFFV plasmid. - miR-
29x (either miR-29b2 or miR-29c) was ligated out of the pMA vector by double digest with xhoI and BamHI. 
pSFFV was linearised by double digest with xhoI and BamHI. Resultant products of double digestion were 
recombined using DNA ligase to form desired construct. 
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Figure 2.7 – Linearization of plasmid - pSFFV and pcDNA3.1 were linearised by double digestion with 

Xho1/BamHI or EcoRV/HindIII, respectively. The products of these double digests were run on agarose gel. 

Bands were visualised under ultraviolet light and bands of appropriate size were excised and DNA isolated 

by gel band extraction.1kBP ladder on left-hand side for reference. 
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Figure 2.8 – Digestion of miRNA insert - 10µg of each miRNA construct were digested by appropriate 

restriction enzymes (Xho1/BamHI for construction of the pSFFV plasmid and EcoRV/HindIII for construction 

of the pcDNA3/1 plasmid) to isolate the miRNA sequence from the pMA vector. The resultant digests were 

run on a 2% (w/v) agarose gel containing ethidium bromide and visualized under ultraviolet light before 

excision for purification.100bp ladder on left-hand side for reference. 

 

2.2.12 Extraction of RNA 

RNA was extracted from cells, tissue and serum using appropriate manufacturer’s 

protocols using the QIAGEN miRNEasy miRNA extraction kit (QIAGEN, Crawley, UK). Cells 

and/or tissue were homogenized by incubation in presence of QIAzol followed by 

mechanical disruption by pipetting up and down or placement in a Qiagen tissue 

homogenizer as appropriate. Following homogenization, 140µl chloroform was added, 

mixture mixed thoroughly by vortex and samples spun at >10000rpm at 4oC for 15 

minutes.  The aqueous layer was removed and placed in a fresh RNAse free tube. RNA 

was precipitated by addition of ethanol and application to spin column. If necessary, 

samples were treated with DNase (See section DNase Treatment of RNA). Columns then 

underwent a series of washes to remove impurities before being eluted in 30ul of H2O. 

RNA was stored at -80oC. RNA obtained from cells and tissue were DNase treated to 

remove genomic DNA, but this was not necessary in serum samples. RNA extractions 

were performed in fume hood in order to prevent exposure to toxic chemicals.  The 

quantity of RNA in each sample was quantified by NanoDropTM (ND-100 

spectrophotometer [Labtech International, Ringmer, UK]). 

 

2.2.13 DNase Treatment of RNA 

DNase digestion was necessary before analysis of RNA by qPCR in order to remove 

genomic DNA contaminants which would be detected during qPCR and potentially 

confound results. DNase treatment was performed by incubation of samples in on-
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column DNase digestion set (Sigma-Aldrich) according to manufacturer’s protocol. For 

each sample 10µl of DNase I stock solution was mixed with 70µl Buffer RDD, applied to 

column and allowed to incubate at room temperature for 15 minutes.  This step was 

performed during the first column wash of the miRNEasy protocol. Following DNAse 

treatment the miRNeasy wash protocol was continued. 

2.2.14 cDNA Synthesis  

500ng of RNA was used to synthesise cDNA using the Applied Biosystems TaqMan 

Reverse Transcription kit. For each reaction a mastermix was prepared containing 2µl of 

10x buffer, 4.4µl of 25mM MgSO4, 4µl of dTNPs, 1µl of Random hexamers, 0.4µl RNAse 

inhibitor and 0.5µl of Multiscribe Reverse Transcriptase. 500ng of RNA was loaded per 

reaction. Reverse transcription was achieved by incubating reactions at 16oC for 

30minutes, followed by 42oC for 30 minutes and 85oC for 5 minutes before storing 

samples at 4oC or -20oC for long term storage. 

2.2.15 cDNA Synthesis for miRNA 

For miRNA analysis: RNA was diluted to a concentration of 2ng/μl. Reverse transcription 

was performed using the TaqMan miRNA Reverse Transcription Assay as per 

manufacturers protocol. 5ng of RNA was used per reaction. For each reaction a 

mastermix was prepared containing 0.15µL of 100mM dNTPs (with dTTP), 1µl of 50U/µl 

Multiscribe Reverse Transcriptase at 0.19µl 20U/µl RNAse inhibitor and 4.16µl of 

Nuclease-free Water.  Reverse transcription was performed for appropriate miRNA 

transcripts and rat U87 or human RNU48 depending on which reference gene was 

relevant for the cell types used.  Exogenous reference genes used were determined based 

on previous experimental data in the lab which has demonstrated that these genes 

remain expressed at a constant level consistently. Serum samples were spiked by a 

known concentration of c.elegansmiRNA-39 for use as reference gene during qPCR 

analysis.  

Following reverse transcription, qPCR was performed using the appropriate TaqMan 

probes and TaqMan Universal II Mastermix as per manufacturer’s protocol.  
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2.2.16 qRT-PCR  

TaqManTM qRT-PCR (Applied Biosystems, ABI Prism 7900HT Sequence Detection System) 

was used to quantify the relative concentration of mRNA present in both cells and tissue. 

This quantitative measurement is based on the detection of a fluorescent signal produced 

proportionally during amplification of a PCR product. The amount of fluorescence 

released during the amplification cycle is proportional to the amount of product 

generated in each cycle and can be measured directly. Acquisition of data occurred when 

PCR amplification was in the exponential phase. The TaqMan detection system (Applied 

Biosystems, Warrington, UK). The reaction was initiated by heating the reaction mixtures 

at 95oC for 10 minutes followed by 40 cycles of 95oC for 15 seconds, followed by 60oC for 

1 minute.  Relative expression was calculated following normalisation to an appropriate 

housekeeper using the ΔΔCt method. Analysis of qPCR was predominantly performed by 

Microsoft Excel and statistical analysis was performed in Graphpad Prism where 

necessary. 

2.2.17 Extraction of Genomic DNA for Genotyping 

Extraction of genomic DNA for genotyping was achieved by using the Invitrogen Pureline 

Genomic DNA mini extraction kit. Mouse ear clips or tail tips were homogenized by 

incubation at 55oC overnight in Homogenization buffer with Proteinase K. Homogenized 

tissue was clarified by spinning at >10000rpm for 3 minutes. Lysate was transferred to a 

new tube and precipitated in a mixture of genomic lysis/binding buffer and 100% ethanol. 

Sample was treated with RNAse to remove transcript copies from sample. Solution was 

applied to a spin column and spun at >10000rpm to allow sample to bind membrane. 

Following a series of washes to remove impurities, sample was eluted for subsequent 

analysis. All handling of DNA was performed in a laminar flow fume hood in order to 

minimize risk of contamination of samples with atmospheric GFP.  
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2.3 In vitro assays 

2.3.1 Hypoxic Challenge 

Medium on transfected cells was replaced by serum free media; cells were then placed in 

a hypoxic incubator (1% O2, 5% CO2 and balance N2) and incubated for 9h. Cells were then 

placed under normoxic conditions in full serum media to recover for 24h before 

harvesting. 

2.3.2 Transfection with siPort 

24-hours prior to transfection cells were seeded in 12-well plate at a density of 4x104 

cells/well and allowed to recover in normal media conditions. 

 

siPORT™ NeoFX™ Transfection Agent was diluted in Opti-MEM medium (3μL siPORT up to 

50μl media per well) and incubated at room temperature for 10 minutes.  Ambion® 

miRNA Mimic or Cy3-labelled scrambled control (Life Technologies) was diluted to desired 

concentration in Opti-MEM medium (up to 50μL media per well). siPORT and RNA were 

mixed in 1:1 ratio and allowed to complex at room temperature for 30mins.  Cells were 

then washed with PBS and 100μl of RNA:transfection reagent complex was added to each 

well.  

Cells were incubated at 37oC for 48h to achieve transfection before being subjected to 

further experiments (i.e. Hypoxic challenge). 

 

2.4 Viral Vectors 

2.4.1 Production of Lentiviral Vectors 

Lentivirus was produced by triple transfection of 293T cell with a packaging plasmid 

(pCMVΔ8.74), a plasmid which produces vesicular stomatitis virus envelope (VSVg)(pMDG) 

(Plasmid Factory, Bielefeld, Germany), and an expression plasmid (pHR’SIN-cPPT-SFFV-

eGFP-WPRE) containing the gene of interest (Obtained from Prof. Adrian Thrasher, 

Institute of Child Health, University College London, London, UK). Polyethylenimine (PEI, 

Sigma-Aldrich) was utilised as a transfection reagent. 293T Cells were seeded in T150cm3 
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flasks 24h prior to transfection at a confluence of 70%. Per flask 17.5µg envelope plasmid, 

32.5g packaging plasmid and 50µg of expression plasmid were added to 5ml OptiMEM I 

reduced serum media with GlutaMax I. This mixture was filtered through a sterile 0.22µM 

filter and combined with 5ml filtered OptiMEM containing PEI. Solutions were combined 

and allowed to incubate at room temperature for 20 minutes to allow formation of 

polyplexes. Media was aspirated from cells and cells were subsequently washed with PBS 

before incubation with transfection reagents. Supernatant was harvested at 48 and 72h. 

Lentivirus was concentrated by ultracentrifugation or 45mins at 23000rpm, 4oC, before 

being resuspended in OptiMEM and aliquoted into eppendorphs before being stored at -

80oC. 

2.4.2 Lentiviral vector titration 

293T cells were plated in a 12-well plate at a density of 5x104 cells/well 24 hours prior to 

transduction. Cells were then transduced with serial dilutions of the unknown 

concentration lentivirus ranging from 10-2 to 10-6 and incubated for 72h. DNA was 

harvested and qPCR performed. Original titre of lentiviral infectious units was calculated 

by counting the copy number of transgenic inserts present in the transduced cells.  

To determine the molecular weight of the expression plasmid in Daltons the length of the 

construct in base pairs (bp) was multiplied by 330x2nt/bp. Daltons gives the molecular 

weight of the construct in g/mol.  The mass of one copy of plasmid was calculated by 

dividing the mass of plasmid in g/mol by Avagadro’s constant to obtain g/molecule. The 

copy number of plasmid/ml was calculated by dividing the concentration of plasmid in 

g/ml by the mass in g/molecule. A top standard was prepared to desired concentration 

and serial dilutions were used to prepare subsequent standards. 

2.4.3 Viral Transduction Assay 

Cells were seeded at in a 12-well plate at a density of 5x104 cells/well 24h prior to 

transduction. Following this, the media was replaced and the desired Multiplicity of 

infection (MOI, virus particles per cell) of GFP virus was added. For lentiviral titration 

MOIs of 10, 25, 50 and 100 vp/cell were used. For Adenovirus MOIs of 5000, 10000 and 

20000vp/cell were used.   
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2.4.4 Transfection of 293T cells 

In order to assess transduction of pcDNA constructs 293T cells were transfected using 

Lipofectamine reagent as per manufacturer’s protocol. Cells were seeded at 70% 

confluence in a 12-well plate and allowed to recover for 24h. Subsequently, 1µg of 

plasmid DNA was allowed to complex with 5µl of Lipofectamine reagent per well in 

optiMEM. Cells were then washed with PBS and incubated with the complexed DNA for 

24h before replenishing cells with complete media.  Cells were harvested with QIAzol at 

72h hours for RNA extraction and qPCR analysis. 

2.5 In vivo 

All in vivo experiments were carried out with ethical approval and under authentication 

granted under the Animals (Scientific Procedures) Act 1986.  

Transgenic animals were bred under licence PPL 60/4286 or PPL  60/4429. 

Animals were housed under controlled environmental conditions. Temperature was 

maintained at ambient (15-25oC) temperature with 12h light/ dark cycles. Animals were 

fed standard chow (rat and mouse No.1 maintenance diet, Special diet services) and 

water was provided ad libitinum. 

Aseptic surgical conditions were used at all times whilst animals were on procedure. 

2.5.1 Rat & Mouse Strains 

2.5.2 Rat 

2.5.3 SHRSP  

Stroke- Prone spontaneously hypertensive rats are an inbred strain of animals based on a 

Wistar-Kyoto background. These animals demonstrate many physiological markers of 

cardiovascular disease and were used to introduce comorbidity to the study of stroke. 

Animals were maintained in house by selective brother-sister mating and routine lab 

microsatellite screening was used to confirm homozygosity of all loci within a random 

group from each strain. 16-week old  male rats were used throughout weighing ~290-

310g 



67 
 

2.5.4 Mouse 

2.5.5 ICR (CD-1®)  

Male ICR outbred mice were bought from Harlan at the desired weight (25g) and allowed 

1 week locally to acclimatize before being placed on procedure. 

2.5.6 CAG-miR-21 (or littermate WT) 

Mice overexpressing miR-21from a mixed genetic background of B6/C3/F1 were obtained 

via collaboration with Mark Hatley at St. Jude USA. A local colony which had been set up 

previously meant that the animals used were bred in house and males were placed on 

procedure when they weighed 25-30g. Heterozygosity for transgene was determined by 

PCR of GFP. 

2.5.7 miR-21 KO (or littermate WT) 

Mice deficient for miR-21 from a mixed genetic background of S129/C57 were obtained 

through collaboration with Cheryl Nolen/Rhonda Bassel-Duby Department of Molecular 

Biology, UT Southwestern Medical Center at Dallas TX. A local colony which had 

previously been set up meant that animals used were bred in house and males were 

placed on procedure when they weighed 25-30g. Genotype was determined by PCR of 

miR-21 flanking region. 

2.5.8 Genotyping of CAG-miR-21 mice (Memphis colony) 

Ear clips and/or tail tips were obtained from Memphis colony mouse pups. Genomic DNA 

was extracted from tissue using the Purelink Genomic DNA mini extraction kit. Ear clips 

were suspended in a lysis mix containing 1ml of Lysis Buffer and 10µl of Proteinase K and 

incubated at 55oC overnight until tissue was fully lysed. 5µl of RNase A was added to the 

lysate and the samples were incubated at room temperature for 5 minutes. DNA was 

precipitated by addition of 200µl of 100% ethanol and bound to the spin column by 

centrifugation at 10000g for 1 minute at room temperature. Eluent was discarded and 

spin column placed in a new collection tube. The spin column was washed with 500µl of 

Wash Buffer 1 by centrifugation at 10000g for 1 minute at room temperature before a 

second wash with Wash Buffer 2 by centrifugation at 10000g for 3 minutes at room 

temperature. Spin columns were then transferred to nuclease free eppendorph tubes and 
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DNA was eluted by centrifugation at 10000g for 1 minute. PCR was then performed on 

extracted DNA using GoTaq PCR Mastermix and primers specific for GFP tag (EGFP 

Primers Fwd 5’- TCT TCT TCA AGG ACG ACG GCA ACT -3’, Rev 5’ – TGT GGC GGA TCT TGA 

AGT TCA CCT -3’). For each reaction a mastermix was prepared containing 5µl 5X Flexi 

Buffer, 1µl 10mM dNTPs, 2µl MgCl2, 1µl 10µM primer mix. 0.25µl GoTaq Flexi Polymerase 

and 14.75µl dH2O. Amplification of transcript of interest was achieved by heating samples 

at 95oC for 2 minutes, followed by 32 cycles of 95oC for 30 seconds, 60oC for 30 seconds 

and 72oC for 60 seconds. The reaction was then terminated by heating at 72oC for 5 

minutes and reaction products were then stored at 4oC or -20oC as required. PCR 

products were run on a 2% (w/v)agarose gel containing ethidium bromide at 90V for 20 

minutes before being visualised on the Bio-Radgel viewer. Genotype was determined by 

absence or presence of specific 216bp GFP band on gel (Figure 2.7). 

 

Figure 2.9 - Example of miR-21 Memphis Genotyping Products run on agarose gel- The band on the left is a 
100bp ladder, the middle band is indicative of the primer-dimer formation present in the wild-type animals 
whilst the band on the right is a doublet with characteristic band at 216bp indicating presence of transgene. 

 

2.5.9 Genotyping of miR-21 KO mice 

Ear clips and/or tail tips were obtained from miR-21 KO colony mouse pups. Genomic 

DNA was extracted from tissue using the Invitrogen Pureline Genomic DNA mini 

extraction kit. PCR was then performed using GoTaq PCR Mastermix and primers specific 

for miR-21 region of genome (miR21PrimersFwd 5’- GGG CGT CGA CCC GGC TTT AAC AGG 

TG-3’, Rev 5’ –GGG CGT CGA CGA TAC TGC TGC TGT TAC CAA G-3’). For each sample a 

mastermix was prepared containing 5µl Gotaq Flexi Buffer, 3µl 25mM MgCl2, 0.5µl of 

10mM dNTPs, 1ul of 10µM miR-21 Fwd Primer, 1µl of 10µM miR-21 Rev Primer, 0.125 

GoTaq Flexi Polymerase and 12.875µl dH2O. Amplification of the transcript of interest was 

achieved by heating the reaction mixture at 95oC for 2 minutes, followed by 35 cycles of 

95oC for 15 seconds, 62.3oC for 35 seconds and 72oC for 30 seconds. The reaction was 
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then terminated by heating at 72oC for 5 minutes and reaction products were then stored 

at 4oC or -20oC as required. PCR products were run on a 2% agarose(w/v) gel containing 

ethidium bromide at 140V for 30 minutes before being visualised on the Bio-Rad gel 

viewer. Genotype was determined by size of specific band on gel. KO allele 330bp, Wild 

Type allele 469bp (Figure 2.8). 

 

Figure 2.10 - Example of miR-21 KO Genotyping Products run on agarose gel. Left band is 100bp ladder, 
Middle band is the 330bp KO band whilst the band on the right is the larger 416bp band. 

 

2.5.10 Temperature Monitoring 

Throughout surgical procedures, body temperature was monitored using a rectal 

thermometer probe and kept within physiological limits (37.5±1 oC) using a heat lamp. 

Swabs were implemented as a form of insulation to prevent injury from direct heat 

exposure. 

2.5.11 Blood Pressure measurement by tail-cuff plethysmography 

Animals were placed in box and body temperature was raised by use of heat lamp. Once 

animals were sufficiently warmed they were removed from box, wrapped in cloth 

restraint and blood pressure was measured via tail cuff plethysmography. Whilst 

undergoing plethysmography mice were kept on heat mat to ensure that vasodilatation 

was maintained in order to facilitate recordings of accurate blood pressures. Several 

readings were taken from each animal in order to ensure accurate readings of blood 

pressure were obtained. Following acquisition of five consistent readings an average 

systolic blood pressure was calculated. Average heart rate (bpm) was also measured 

through the use of this device.   
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2.5.12 Study Design 

Studies were randomised and blinded where possible, to prevent bias in animal selection 

and data analysis. All data analysis was performed under blinded conditions in 

accordance with the most recent pre-clinical STAIR guidelines (S.T.A.I.R 2009). For the 

mouse study n=12 was indicated by power calculation to observe a 20% change in infarct 

size using variability recorded by pilot study. 

2.5.13 Anaesthesia  

Anaesthesia was induced in 16-week old SHRSP rats with 5% isoflurane in 1.5l oxygen 

before intubation. To achieve intubation rats were rendered unconscious in induction box 

then transferred to surgical platform, held in place by a suture around their teeth. A lamp 

was shone upon the throat to illuminate the oesophagal-tracheal junction. The rats 

mouth was held open with a custom made speculum and once the tracheal opening was 

visible, care was taken to advance the ventilation tube along the trachea. Upon intubation 

isoflurane was reduced to 2.5% (in 300ml oxygen). Ventilation was maintained at a rate of 

67 breaths per minute. After ensuring animal was sufficiently anaesthetized a rectal 

thermometer was inserted to observe body temperature which was maintained at 37±1oC 

using a heat lamp.  

Anaesthesia was induced in 25-30g mice with 5% isoflurane in 1.5l oxygen before being 

transferred to a face mask. Upon induction isoflurane was reduced to 2.5% (in 300ml 

oxygen). Anaesthesia was maintained in mice on face mask. After ensuring animal was 

sufficiently anaesthetized a rectal thermometer was inserted to observe body 

temperature which was maintained at 37±0.5oC using a heat lamp.  

 

2.5.14 Pre-stroke Stereotactic Surgery 

Prior to tMCAO in rats, hemicraniectomy was performed as the associated durotomy 

greatly reduces mortality rate following ischemic injury (Ord et al. 2012). Rat was 

prepared for surgery as described above and placed in a prone position on a stereotactic 

scaffold. The rat’s head was secured in place using the stereotactic scaffold’s ear bars. 
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Once securely in place, an incision was made along the midline of the skull, periosteum 

was removed from the surgical area with cotton buds. Retractors were used to keep 

surgical area open as required. A burr hole was made posterolateral to the bregma using 

a bone micro-drill. Bone was pierced using forceps ensuring that the dura mater was 

pierced. The burr hole was subsequently sealed using dental cement (Prontolute, Wright 

Cottrell) and allowed to set. The surgical area was then sutured and the rat was allowed 

to recover.  

2.5.15 Transient Middle Cerebral Artery (tMCAO) model of stroke 

2.5.16 Rats 

4 days after burr hole surgery the rat was prepared for surgery as described above and 

transient middle cerebral artery occlusion was performed (tMCAO). This method of 

tMCAO is a modified version of Longa and colleagues (Longa et al. 1980). Under an 

operating microscope (M651, Leica Microsystems, UK). An incision was made on the left 

side of the rat lateral to the midline, superficial to the carotid artery bifurcation. Branches 

of the carotid artery were surgically isolated. The occipital artery was cauterized. All other 

carotid branches except the middle cerebral artery were temporarily ligated using 5/0 silk 

suture. Once ligations were in place and adequate tension was placed on the vessels an 

incision was made in the common carotid artery. A silicon coated mono-filament 0.37mm 

in diameter (Doccol Corporation, USA) was then advanced 22mm along the internal 

carotid artery to block the origin of the middle cerebral artery and left in place for 45 

minutes, animals remained anaesthetised for the duration of the procedure (Figure  2.11). 
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Figure 2.11 - Illustration of vascular ligations for transient middle cerebral artery occlusion – A silicone 

coated monofilament was advanced 22mm along the common carotid artery to temporarily block the origin 

of the middle cerebral artery. 

 

Following occlusion the filament was removed, the incision was cauterized, and 

temporary ligations removed. After ensuring the structural integrity of the vessel the 

surgical area was cleaned with saline and sutured. 2mls of subcutaneous saline was 

administered and the rat was allowed to recover for 3h, 24h, 48h or 72h.  

 

2.5.17 Mice  

Mice were not subjected to hemicraniectomy as rats were, but tMCAO surgery in this 

animal is identical in principle, albeit on a smaller scale. Under an operating microscope 

and incision is made along the midline of the neck. All branches of the carotid were 

surgically isolated and temporarily ligated with 6/0 silk suture. A Doccol monofilament of 

diameter 0.23mm was advanced 10mm from the bifurcation of the common carotid. 

Occlusion was maintained for 45mins and mice were allowed to recover for 72h. 
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2.5.18 MRI quantification of infarct size 

Infarct size was quantified in mice through T2-weighted MRI imaging. Light anaesthesia 

was induced and animals were placed in core of Bruker Pharmascan. Temperature and 

respiration rate were monitored for duration of procedure. Body temperature was 

maintained in scanner through use of a heat jacket. Anaesthesia was achieved as 

described in section 2.6.16 and the procedure typically lasted no longer than an hour. 

Images obtained by MRI were analysed by Spin and ImageJ as required. Scale was set on 

2dseq files. In order to calculate infarct size, the area of each hemisphere was measured 

followed by the area of the site of lesion. 15 coronal sections were used to determine the 

infarct volume. Volume of lesion was determined as being the area of the lesion across 

the length of the brain. Lesion size was calculated as the infarct as a percentage of total 

ipsilateral hemisphere normalized to the contralateral hemisphere in order to account for 

swelling/oedema (Figure 2.12). 
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Figure 2.12 - Representative image demonstrating method of quantification for one slice of brain. (A) 
Ipsilateral hemisphere area is measured, followed by (B) Contralateral hemisphere and finally (C) infarcted 
region. 

 

2.5.19 Transcardiac perfusion 

After the assigned recovery period each animal was anaesthetized before perfusion 

fixation under physiological pressure. Animals were induced as described previously and 

terminated by exsanguination by perfusion via the heart of heparinized saline, once 

exsanguination was complete animals were fixed using paraformaldehyde (PFA). 

Chemical fixation is a the common method used to preserve tissue and results in less 

distortion of the tissue than methods such as fresh, freezing or heat based techniques. 

Fixation with 4% PFA maintains cellular definition of the tissue and, if carried out carefully, 

will produce few artefacts. Furthermore it is possible to perform in situ hybridization for 

miRNAs on tissue which has been paraffin embedded following PFA fixation, which is very 

attractive for miRNA research.  
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Animals were anaesthetised as described previously. Animals were placed on a facemask 

in the supine position, limbs were held in place by tape. Once sufficient level of 

anaesthesia was achieved an incision was made in the thorax at the level of the xiphhoid 

process. Thorax was then dissected superiorly along the ribcage in order to isolate the 

heart. Once the heart was isolated and pericardium removed a blunt cannula was 

inserted into the apex of the heart and advanced into the aorta. Saline was used to 

perfuse the systemic circulation following incision in the left atria allowing for adequate 

circulation. Once fluid leaving the atria is transparent, this means that the animal is 

sufficiently perfused. Following this perfusion by 4% PFA in saline was performed until 

rigor mortis sets in.  

2.5.20 India ink staining of cerebrovasculature 

Animals were euthanized by perfusion with PBS as described previously. Animals were 

then perfused with a mixture of 2.5% (v/v) India ink in 10% (w/v) porcine gelatine. Stained 

cerebrovasculature was then photographed with a digital camera and the gross anatomy 

described accordingly.  

 

2.5.21 Behavioural Testing 

All behavioural testing was carried out in a dedicated mouse behavioural testing room in 

the Veterinary Research Facility (VRF). Each animal was trained on the neurological 

assessments prior to middle cerebral artery occlusion (MCAO) to ensure that animals had 

familiarity with each test from the outset in order to ensure greater reproducibility. 

Following training, animals were assessed on a single occasion 3-4 days prior to 

experimental stroke in order to ascertain a baseline score. Animals on procedure were 

then subsequently assessed at 24h, 48h and 72h before sacrifice.  

In order to determine sensorimotor deficit the Garcia 18-point neuroscore was 

implemented as described elsewhere (Table 2.2)(Garcia et al. 1995). 
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2.5.22 - 18-point Garcia Neuroscore 

Test 0 1 2 3 Score 
Spontaneous activity 

(in cage for 5 min) 
Note: normal movement 
is for rat to approach all 
sides therefore a score of 
3 should indicate this 
behaviour. 

No Movement Barely Moves Moves but does 
not approach at 
least 3 sides of 
cage 

Moves and 
approaches all 
sides of cage 

 

Symmetry of 
movements (four 

limbs) 

Right side: no 
movement 

Right side: slight 
movement and 
splays to side a 
lot resulting in 
sideways 
movement. 

Right side: moves 
slower & splays 
to side. General 
movement still 
forward 

Both sides:  
Move 
symmetrically 

 

Symmetry of 
forelimbs 

(outstretching to 
bench-top while held 

by tail) 
 

Right side: no 
movement, no 
outreaching 

Right side: 
slight 
movement to 
outreach: 
Attempts to 
place right 
forelimb but 
often left 
hanging. 

Right side: moves 
& outreaches less 
than left side: 
Contact with 
both forelimbs 
but less able with 
right resulting in 
missing bench-
top 

Symmetrical 
outreach: no 
preference 
given to left or 
right forelimb in 
making contact 
with bench-top 

 

Reaction to touch on 
either side of trunk 

Note: Start with gentle 
touch on right side then 
left. If equal, score =3. If 
no response right, 
increase force of stimulus 
on right to determine if 
weak or no response. 

 No response 
on right side 

Weak response 
on right side 

Symmetrical 
response 

 

Response to 
vibrissae touch 

Note: as with trunk start 
with gentle touch on 
extremities of whiskers 
(right then left) and move 
inwards if no response on 
right side. 

 

 No response 
on right side 

Weak response 
on right side 

 Symmetrical 
response 

 

Climbing wall of wire 
Cage 

Note: If right side is weak 
they tend to attempt 
climb and then turn to 
left side and not move. 

 Fails to climb Right side is weak Normal 
Climbing 

 

 

Table 2.2 – Neuroscore Criteria – This is the scoring system which was implemented in order to assess 

sensorimotor ability of mice on procedure(Garcia et al. 1995)  
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2.5.23 Ladder Rung Walking Test 

In order to quantify sensorimotor deficits following stroke, mice were analysed using 

ladder rung walking test (Metz and Whishaw 2009a) (Figure 2.13). Animals were required 

to walk along a horizontal ladder between two sheets of Perspex. The spacing of the 

rungs was altered regularly in order to ensure that animals were not successfully placing 

feet as a result of memory.  Mouse were allowed three trials each of which were filmed. 

Data was collected from all animals at baseline prior to experimental stroke then again at 

24h, 48h and 72h after they were placed on procedure. Video footage was then analysed 

in VLC media player in order to count errant footfalls as a percentage of steps taken.  

 

Figure 2.13- Ladder Rung Walking Test was used to measure sensorimotor deficit pre and post-stroke. 
Mouse was placed into ladder rung apparatus at one end (right side of image) and allowed to traverse the 
ladder until it exited the ladder on the other end (left side of image). This was taken to be one run of the 
ladder. 

2.6 Patient Study 

2.6.1 Patient Recruitment  

55 stroke patients and 20 stroke mimics were recruited as study participants from 

February 2012 to March 2013 from the Western Infirmary Acute Stroke Unit in Glasgow. 

All participants gave written informed consent and the study was approved by the 

Scotland A Research Ethics Committee. After consent, patients had a baseline 48hours, 

Day 7, 1 month, and 3 months assessment. At each of these, a clinical assessment was 

performed and peripheral blood samples were taken. The day 7 blood samples were 

analysed in the original population. Upon the addition of further subjects, day 7 and 

1month blood samples were analysed. At the baseline visit, a cardiovascular history was 

taken (including past medical); a record of current medications kept, and investigations 
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planned and under-went were noted. At each visit stroke severity was measured using 

the National Institutes of Health Stroke Scale (NIHSS) and at 1 and 3 months, outcomes 

were measured using the modified Rankin scale Score (mRS: a global disability measure), 

the Barthel Index (B.I. – measures ability to complete activities of daily living), and the 

Stroke Impact Scale (SIS: a measure of the strokes effect on the patients quality of life). All 

participants were placed into 3 diagnostic categories, viz. Definite Ischaemic Stroke, 

Possible Ischaemic Stroke, and Non-stroke. To place patients in these categories senior 

stroke physicians carried out extensive assessments including complete medical histories, 

systemic examinations and received assistance from investigations: carotid doppler, ECG, 

CT/MRI, angiography, echocardiograms, and cardiac monitors. If there was any ambiguity 

with regards to which group each patient belonged to, other expert opinions were sought. 

Definite stroke patients were further categorised according to the internationally 

recognised TOAST criteria: large-artery, cardioembolism, small-vessel, indeterminate, and 

undetermined aetiology (Adams et al. 1993b)[Adams 1993]. Stroke mimic patients were 

used as a control group. These were patients who presented at clinic with symptoms of 

stroke, but upon medical imaging and consensus by stroke clinicians were determined to 

have a differential diagnosis (i.e. TIA, migraine etc.). 

2.6.2 Sample Collection  

Blood from patients was withdrawn before being centrifuged at 3000xg for 15 minutes to 

isolate serum. This isolated serum was then extracted and aliquots were stored in 

eppendorf tubes -20oC prior to RNA extraction. 

2.6.3 Applied Biosystems miRNA OpenArray 

In order to identify candidate miRNAs for validation from the human population the 

miRNA OpenArray platform was used. Due to low RNA yield from serum RNA extractions 

the low sample input optimized protocol was used 

(https://tools.lifetechnologies.com/content/sfs/brochures/cms_097637.pdf). RNA was 

quantified by Nanodrop and of each sample was used to prepare the reverse 

transcription reaction. Samples and reagents were kept on ice at all times to preserve 

integrity of RNA and enzymes. 
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A Mastermix was prepared for all samples prepared with 10% excess to account for any 

potential pipetting error. For each reaction 0.75µl of 10X Megaplex RT Primers, 0.15µl of 

100mM dNTPS with dTTP, 1.50µl of 50U/µl Multiscribe Reverse Transcriptase, 0.75µl of 

10X RT Buffer, 0.9µl of 25mM MgCl2, 0.09µl of 20U/µl RNAse inhibitor and 0.35µl of 

Nuclease-free water were prepared. Two RT reactions were prepared per sample, one for 

use with Pool A primers, and the other with Pool B primers. Samples were added to a 96-

well plate and subjected to reverse transcription reaction by 40 cycles of heating at 16oC 

for 2 minutes, 42oC for 1 minute and 50oC for 1 second, followed by deactivation of 

enzymes by heating at 85oC for 5 minutes before finally storing the reaction products at 

4oC. After reverse transcription of samples, sensitivity for lower abundance miRNAs was 

increased by performing a pre-amplification reaction for all miRNAs in cDNA. A Mastermix 

was prepared for each sample containing 20µl of 2X TaqMan Preamp Mastermix, 4 µl 10X 

Megaplex PreAmp Primers and 8.5 µl Nuclease-free water. 32.5µl of this mastermix was 

added to 7.5µl of RT reaction to give a final volume of 40µl. Reactions were prepared for 

all samples and added to a 96-well plate for preamplification. The preamplification 

reaction was achieved by heating at 95oC for 10 minutes, followed by 55oC for 2 minutes 

and 72oC for 2 minutes. The reaction then underwent 16 cycles of 95oC for 15 seconds 

followed by 60oC for 4 minutes. The reaction was terminated by heating at 99.9oC for 10 

minutes and products were then stored at 4oC. Prior to commencement of qPCR reactions 

each amplified sample was diluted 1:20 by taking 3µl of the preamp mix and adding  57µl 

of 0.1xTE buffer.  In order to prepare qPCR reactions PCR Master Mix was added to each 

well. For each primer pool set 5µl of reaction mixture was added to an OpenArray 384-

well sample plate from which it was loaded to an OpenArray card by use of the 

OpenArray Accufill system. After reactions were run on the OpenArray cards data was 

then analysed by DataAssist software or Microsoft Excel as appropriate (Figure 2.14). 

 

Figure 2.14 - Workflow of Openarray system – RNA is isolated from samples before reverse transcription, 
preamplification and finally qPCR. 
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2.6.4 Exosome isolation and quantification 

Exosomes were isolated from serum using the Invitrogen total exosome isolation kit and 

counted by nanosight. Serum samples were thawed and kept on ice whilst in use. 

Samples were centrifuged at 2000xg for 5 minutes in order to ensure no particulates were 

present in sample. Following this, 100µl of the sample was transferred to a fresh tube and 

20µl of exosome isolation reagent added. This mixture was vortexed to ensure that the 

solution was homogenous. Samples were incubated at 4oC for 30 minutes to precipitate 

out exosomes. Following this samples were placed in centrifuge and spun at 10000xg for 

10 minutes at room temperature. Supernatant was aspirated and discarded and 

subsequently exosomal pellet was resuspended in PBS for downstream analysis. miRNAs 

were extracted from the isolated exosomes and analysed by qPCR. Some of the candidate 

microRNAs identified by OpenArray were analysed in exosomal RNA in comparison with 

total RNA.  

2.7 Histology 

2.7.1 Processing and Embedding 

Brains were cut into approximately 7 (~ 2 mm) coronal slices using a matrix (Harvard 

Apparatus, UK) placed in individual cassettes in a tissue processor (Shandon Excelsior, 

Thermo Scientific), and dehydrated through a serial alcohol gradient and xylene before 

embedding in paraffin wax ready for subsequent histological analysis. Conditions for 

embedding were as follows: 

1. 70 % (v/v) EtOH 2 h 

2. 80 % (v/v) EtOH  3 h 

3. 95 % (v/v) EtOH 4 h 

4. 100 % (v/v) EtOH (1)  4 h 

5. 100 % (v/v) EtOH (2)  5 h 

6. 100 % EtOH (3)  5 h 
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7. 100 % EtOH (4)  6 h 

8. 50 % EtOH / 50 % Xylene (v/v) 4 h 

9. Xylene (1) 5 h 

10. Xylene (2) 5 h 

11. Wax (1)  5 h 

12. Wax (2)  5 h 

13. Wax (3)  6 h 

2.7.2 Sectioning of Tissue 

Serial 6 µm sections of paraffin embedded brains were cut on a manual rotary microtome 

(RM2235, Leica) at 7 pre-determined coronal levels, throughout the middle cerebral 

artery territory, and collected onto poly-L-lysine coated slides (Starfrost® Adhesive 

Microscope Slides). Three slides were obtained from each level with three or four 

sections on each slide. Sections were baked on to slides at 60 °C for 4 h followed by 40 °C 

overnight. Once slides were prepared, they were stored at room temperature until 

required for histological analysis. 

2.7.3 In situ hybridisation for miRNA expression 

Paraffin embedded rat brain sections were dewaxed in Histoclear and rehydrated by 

immersion along a decreasing alcohol gradient. Sections were unmasked by boiling in 

10mM citric saline buffer, pH 6. Slides were subsequently immersed in 0.2M hydrochloric 

acid for 20 minutes before incubation in 0.3% triton-X at room temperature for 15 

minutes. Following this sections were incubated at 37oC with 0.5U of proteinase K for 15 

minutes.  Sections were refixed in 4% paraformaldehyde before incubation in 

hybridization buffer. After being allowed to equilibrate with hybridization buffer sections 

were hybridized using double-labelled LNA in situ probes and incubated at appropriate 

temperature overnight (58oC for Scrambled control, 52oC for miR-29b, miR-29c and 51oC 

for miR-21). Sections were subjected to a series of stringency washes using decreasing 

concentrations of Saline sodium citrate (SSC) buffer in order to reduce non-specific 

binding of probe before finally being incubated at 4oC overnight using an anti-digoxigenin 
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AP fab antibody. The following day non-specific binding of antibody was removed by 

multiple washes with PBS and Alkaline Phospate (AP) buffer. Finally MiR expression was 

visualised by staining with Anti-Digoxigenin-AP. Precipitation was allowed to occur over a 

48h period. Sections were mounted using Histoclear taking care to ensure that no water 

was present under coverslip (Figure 2.15). For the duration of the in situ protocol it was of 

upmost importance to use sterile technique as even the slightest presence of RNAse will 

result in failure of the protocol. When possible positive controls were employed to 

validate that the protocol had worked even if staining in experimental samples was not 

observed. Scrambled-probe negatives were used for every experimental sample to ensure 

that staining observed was miRNA specific.  

 

Figure 2.15 - Illustration of Anti-Digoxigenin-AP antibody binding to DIG conjugated oligonucleotide 
probe (Exiqon 2011). 

2.7.4 Immunohistochemistry 

6µm paraffin embedded brain sections were dewaxed in Histoclear and rehydrated by 

immersion along a decreasingly concentrated alcohol gradient. Once rehydrated antigen 

retrieval was performed by boiling samples in citrate buffer (10mM, pH 6) for 15 minutes. 

Slides were then cooled in water and washed 3x5 minutes in TBS. Sections were then 

blocked by TBS+0.05% (v/v) Tween-20 (TBS-T) + 15% (v/v)goat serum. After blocking, 

sections were incubated with primary antibody or appropriate IgG control. 

Hexaribonucleotide Binding Protein-3 (NeuN) at a concentration of 5ug/ml and Glial 

Fibrillary Acidic Protein (GFAP) at a concentration of 7.25ug/ml. Slides were incubated 

with primary antibody at 4oC overnight, corresponding samples were incubated with the 

same concentration of IgG overnight to confirm specificity of antibody binding. The 

following day, sections were washed 3x5 minutes with TBST-T before being incubated in a 

1:500 concentration of the appropriate secondary antibody in TBS-T+15% (v/v) goat 

serum 2h at room temperature. Following incubation with secondary, slides were washed 
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3x5minutes with TBS and mounted with DAPI prolong gold. Slides were visualised by 

confocal microscopy. 

2.7.5 Haematoxylin & Eosin staining 

6µM paraffin-embedded sections from perfusion fixed brain were rehydrated by moving 

down an alcohol gradient. Paraffin was removed from sections by to sequential washes in 

Histoclear for 7 minutes. This was followed by washing in 100% ethanol for 7 minutes, 95% 

ethanol for 7 minutes, 70% ethanol for 7 minutes and finally water for 7 minutes to 

rehydrate the sections. Sections were then stained by incubation in Haematoxylin at 

room temperature for 2 minutes, followed by a 5 minute wash under running tap water. 

Slides were dipped into 70% ethanol three times prior to staining with Eosin for 5 minutes 

followed by a 3 minute wash under running tap water. Sections were dehydrated again by 

running them up a concentration gradient of ethanol: Two 7 minute washes of 95% 

ethanol, followed by 7 minutes in 100% alcohol. Slides then undergo two washes in 

Histoclear before being mounted using Histomount. Slides were then viewed using bright-

field microscopy.  

2.8 Solutions 

0.1% DEPC water (1L) was prepared by adding 1ml of DEPC per 1l of distilled water. The 

prepared solution was incubated at room temperature prior to autoclaving.  5l of DEPC 

water was prepared before starting an in situ run. 

 

10x PBS (DEPC-treated) (1l) was prepared by dissolving  80g NaCl, 2g KCl, 14.4g 

Na2PO4(Na2HPO4) and 2.4g KH4PO4 and made up to around 800mls with DEPC-treated 

water. NaOH was added to the solution until a  of pH 7.4 was obtained. The solution was 

then autoclaved and diluted to 1x prior to use as required. 

 

1M sodium citrate buffer was prepared by dissolving 14.705g of sodium citrate 

(molecular weight = 294.10g) into around 40mls of DEPC-treated water in a falcon tube. 

NaOH was added to obtain a pH of 6 and the solution was made up to 50mls. Sodium 

citrate buffer was diluted to 10mM with DEPC-treated water prior to use as required. 



84 
 

 

0.2M HCl was prepared by adding 8.58ml of 11.64M HCl(density – 1.18 or 36%)  to a 

500ml bottle and made up to 500ml with DEPC-treated water. 

A 1M stock of Tris buffer was prepared by dissolving 24.228g of Tris-HCl in 200ml of 

DEPC-treated water. NaOH was added to the solution until a pH of 9.5 was obtained. The 

solution was then autoclaved and diluted to 0.1M with DEPC-treated water as required.   

 

Hybridization buffer was prepared by adding 25ml formamide, 10ml of 20x SSC, 2.5ml of 

50x Denhart's solution, 5ml of 2.5mg/ml salmon sperm DNA, 3ml of 10mg/ml yeast 

transfer RNA,  500ul of 2.5% SDS and 500ul of 10% DIG blocking reagent to  3.5ml DEPC-

treated H2O. Hybridization buffer was aliquoted into 1.5ml Eppendorph tubes and stored 

at -20oC. 

 

2M Tetramisole Hydrochloride (mwt= 240.75g ) was prepared by dissolving 0.481g in 1ml 

of 1xPBS before being aliquoted and stored at -20oC. This solution was diluted to 2mM 

when needed. 

 

10x Blocking reagent was prepared by dissolving 10g blocking reagent in 100ml maleic 

acid before being autoclaved and transferred into 5ml aliquots before being stored at -

20oC. Blocking reagent was diluted to 1x with DEPC-PBS when needed and fresh FCS 

added. 

PFA was prepared in a fume hood by  weighing out 4g of paraformaldehyde into a glass 

jar. 100ml of DEPC-PBS was added to the powder and the mixture was heated at 50oC in a 

water bath until fully dissolved. PFA was then aliquoted and stored at -20oC 

AP Buffer (500ml) was prepared of 0.1M  Tris HCl (6.57g), 0.15M NaCl (4.38g), 5mM 

MgCl2  (2.5ml of 1M MgCl2) and 0.05%-1% TWEEN-20 (250ul) to a bottle before adding 

NaOH until a pH of 9.5 was obtained.  
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2.9 Statistical Analysis 

2.9.1 In vitro 

All in vitro results are expressed as mean ±standard error of the mean (±SEM). In vitro 

experiments were performed in triplicate on at least three independent occasions and 

analysis was by unpaired Student’s t-test. In the case of multiple comparisons repeated 

measures ANOVA was used with Bonferroni’s post test. A p-value of less than 0.05 was 

considered to be significant. 

2.9.2 In vivo 

In vivo experiments were performed with at least 12 mice in each the transgenic study. 

Comparison between the groups was performed by repeated measures analysis of 

variance (ANOVA), as described previously (Davidson et al., 1995) with Bonferroni’s post-

test. A p-value of less than 0.05 was considered to be significant 

2.9.3 Human Study 

Clinical data is presented as raw Ct values when normalization to reference gene was not 

possible or mean RQ±RQMax/Min. Statistical analysis was performed by unpaired 

Student's t-test taking a p-value of less than 0.05 to be statistically significant. Number of 

patients required for the study was determined by discussion with clinicians and 

statisticians who performed a power calculation in order to ensure that this study was 

appropriately powered. 
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Chapter 3 – the Role of miR-29 in Ischaemic Stroke  
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3.1 Introduction 

3.1.1 The miR-29 cluster  

The miR-29 cluster is comprised of 4 species located across two chromosomes (Figure 3.1). 

The first discovered member of the miR-29 family was miR-29a which was discovered in 

mice following screening experiments to search for short non-coding RNAs in Drosophila 

melanogaster (Lagos-Quintana et al. 2001). As miRNAs are named based on the order in 

which they were discovered, miR-29 is amongst the first to be studied and has been 

widely investigated. Following the discovery of miR-29a, two distinct isoforms were 

subsequently identified: miR-29b (Dostie et al. 2003) and miR-29c (Lagos-Quintana et al. 

2002). Both miR-29b1 and miR-29a are produced from a single primary transcript and 

processed from the intronic sequence from a locus located on chromosome 7q32 which is 

located adjacent to the common fragile site FRA7H (Mishmar et al. 1998; Schneider et al. 

2007) and separated by 652 bases (Wang et al. 2013), whilst miR-29b2 and miR-29c are 

transcribed from chromosome 1, locus site 1q32 where they are separated by 507 bases 

(Garzon et al. 2009).miR-29b1 and miR-29b2 are isoforms of each other in that they have 

an identical sequence to each other. Although the other members of the cluster differ in 

terms of sequence, they all share an identical seed sequence. As the seed sequence is the 

region of the mature miRNA that binds target transcripts, we can expect that the targets 

of all 4 types of miR-29 will have identical targets. Differences occur with regards to 

transcription, cleavage and processing of each of the miRNA (Noetel et al. 2012). Across 

the literature we can see that fold changes vary for miR-29 subtypes in response to 

different stimulus (Chung et al. 2013; Maegdefessel et al. 2014; He et al. 2013; Wang et al. 

2013). It has also been observed that these miRNAs degrade at different rates. A 

relatively rapid rate of decay is observed for miR-29b compared to the other two family 

members. This has been proposed to be a result of the uracil rich region towards the end 

of the sequence (Kriegel et al. 2012). The miR-29 cluster is highly conserved across 

species suggesting fundamental importance in all organisms. It is possible that the 

complex, multiple mechanisms which regulate expression of this miRNA protect the 

organism against negative effects which may arise as a result of some single aberrant 

mutation. 
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Figure 3.1 - miR-29 family members - chromosomal location and mature sequence with seed sequence 
highlighted (Noetel et al. 2012). 

3.1.2 miR-29 in disease 

Several groups have identified miR-29 cluster members as being dysregulated in a variety 

of diseases and disease models (Kriegel et al. 2012, Wang et al. 2013). Following this, 

there has been a great effort in order to identify underlying mechanisms with a view to 

developing novel therapeutics.  

As is often the case with disease studies for novel genes, initial medical research 

regarding miR-29 was conducted in the context of cancer. Many studies in several forms 

of the disease have identified differential regulation of miR-29 family members (Castilla et 

al. 2011; Li et al. 2011; Zhao et al. 2010; Calin et al. 2005; Iorio et al. 2005) although these 

studies indicated that it was highly likely that miR-29 is functionally involved in the 

pathogenesis and progression of cancers, no evidence was presented to delineate the 

mechanisms by which this may occur.  

It has been demonstrated that following myocardial infarction, there is a downregulation 

in miR-29 expression in the infarcted region. Following in vivo inhibition of miR-29 an 

increase in several members of the collagen protein family were observed (Van Rooij et al. 

2008). Post-infarct fibrosis is associated with negative clinical outcomes in patients as 

scarring of the myocardium results in a decline in healthy cardiac function. This group 

went on to demonstrate through the use of 3’UTR mutants that COL1A1, COL2A2, 

COL3A1, FBN and ELN1 all directly interact with the seed sequence of miR-29 cluster 

members (Van Rooij et al. 2008).  

Others have also focused on the potent fibrotic effects of miR-29 cluster members in 

renal disease. For example, it has been demonstrated that miR-29 is a potent modulator 

of TGF-β mediated fibrosis in a manner similar to what was observed in the context of 
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myocardial infarction (Ramdas et al. 2013).  Following ischaemic stroke, the brain 

undergoes a period of glial scarring, which is largely mediated through the TGF-β 

signalling pathway (Silver and Miller 2004). It does remain to be demonstrated what role 

miR-29 plays in glial scarring (if any), though it may be hypothesized that one might 

expect this strong pro-fibrotic modulator to play a role in this process under some 

conditions. 

 

3.1.3 The role of miR-29 in Stroke 

The miRNA-29 cluster has recently been implicated as playing a potential role in the 

development and progression of cardiovascular disease, although to date there is still 

considerable work to be done in improving understanding of the role it plays in stroke. 

Initial evidence of an important role for the miR-29 cluster in stroke comes from an 

experiment performed in vivo. Transient middle cerebral artery occlusion (tMCAO) was 

induced in Sprague-Dawley rats and changes in the miRNAome were assessed by 

microarray. At time points 24h and 48h post-tMCAO there was an approximate 40 fold 

decrease in expression of miR-29b and miR-29c (Jeyaseelan et al. 2008a). A similar 

phenomenon was observed in spontaneously hypertensive rats following stroke, 

attenuation was observed at all time points in this study, but the reduction in miR-29 

expression was most pronounced at 12h and 24h post-tMCAO (Dharap and Bowen 2009).  

A peripheral blood miRNA screen conducted on patients between the ages of 18 and 49 

years demonstrated that miRNA expression profile can be used to identify stroke 

subtypes. Several miRNA species were found to be differentially regulated when 

compared to age matched ‘healthy’ controls. The miR-29 cluster was found to be 

expressed highest in patients with large artery occlusion stroke. This provided early 

clinically based evidence for the prospective role of the miR-29 cluster in ischaemic stroke 

(Tan et al. 2009).  

It has been suggested that upregulation of Hepatocyte growth factor (HGF) promotes 

recovery from stroke by long term neuroprotection and neuroregeneration (Hayashi et al. 

2001). Others have demonstrated that the beneficial effects of HGF activity occur via miR-

29 mediated reduction in collagen expression in hepatic stellate cells (Kwiecinski et al. 
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2011). Although this has not been addressed directly in the neurovascular unit, the 

aforementioned observations provide indirect evidence in support of the potential 

therapeutic use for miR-29 modulation following stroke. The potent fibrotic effects of the 

miR-29 cluster can also be expected to play an important role in the neurovascular unit 

following stroke. miR-29b has also been demonstrated to promote apoptosis in neuronal 

cells following hypoxic insult in vitro due to its interaction with the Bcl2 pathway 

demonstrating the potential functional significance in stroke (Shi et al. 2012). Whilst 

several cancer publications implicate these miRNAs as playing an important role in cell 

cycle and apoptosis; the relationship between the miR-29 cluster and these pathways 

remains unstudied in stroke but one would expect there to be importance, especially 

when considering aspects of the disease such as delayed neuronal death and 

neurodegeneration. 

It was hypothesized based on the reported experimental observations that miR-29 

dysregulation occurs following ischaemic stroke and that this modulation impacts upon 

subsequent pathophysiology.  

 

3.1.4 Hypothesis 

miRNA-29 is altered in the context of stroke and this is functionally important. 

 

3.1.5 Aims 

Characterization of miR-29b and miR-29c expression in SHRSP brain tissue following 

stroke by qPCR and in situ hybridization. 

Assessment of changes in miR-29 targets in SHRSP brain tissue following stroke by qPCR. 

Modulation of miR-29b and miR-29c in vitro and assessment of target genes in a hypoxic 

challenge experiment. 
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3.2 Results 

3.2.2 Overexpression of miRNA using pcDNA plasmid  

In order to validate that cloned vectors could achieve overexpression of desired miRNAs, 

293T cells were transfected with the miRNA containing plasmids. Transfection reagent 

only (lipofectamine) and transfection with pcDNA3.1(+)-GFP were utilized as negative 

controls. No change in miR-29 expression levels was observed between non-treated 

controls, lipofectamine only control and pcDNA3.1(+)-GFP control. However, a significant 

upregulation in miR-29b was present in cells transfected with pcDNA-miR-29b and a 

significant upregulation of miR-29c was observed in cells transfected with pcDNA-miR-29c. 

Transfection efficiency was determined to be approximately 70% by looking at GFP 

transfected cells under a fluorescent microscope (Figure 3.2). 

 

3.2.3 Viral Titration in B50 and GPNT cells  

In order to determine what the optimal transduction efficiency in cell types of interest; a 

viral titration was performed with several viral vectors. Lenti-GFP was effective at 

transducing cells at all MOI attempted (Figure 3.3). Maximal transduction of B50 cells 

appeared to occur when MOI = 50. GPNT cells were also treated with lenti-GFP, although 

no transduction was observed at any concentration of virus (data not shown). 

Ad5-GFP was also assessed as a potential vector for transduction of miRNA. This vector 

does not appear to be effective at transducing B50 cells, whereas there is considerable 

transduction at all MOI attempted in GPNT cells. Maximal transduction appears to occur 

at an MOI of 10000. (Figure 3.4) 

Due to unexpected problems regarding the efficacy of available viral vectors in cell types 

of interest (B50 and GPNT cells), as well as the considerable time and resources taken to 

produce these vectors, subsequent modulations were achieved by transfection of cells 

with commercially available miRNA mimics. This will be discussed in depth later. 
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Figure 3.2 – pcDNA3.1(+) Transfection –293T cells were transfected with 2.5µg of DNA in 3.75µl 

lipofectamine with a transfection efficiency of approximately 70% (A). Levels of (B) miR29b2 and (C) miR29c 

were determined using TaqMan RT-PCR using specific miR probes and normalized to RNU48. RQ is 

presented relative to untreated control. n=3, data presented as mean RQ ±RQmax/min,  *=p<0.05 Student’s 

two tailed t-test. 
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Figure 3.3 – Lentiviral Transduction Assay – Representative black &white  images ofB50 cells transduced by 

lentiviral particles expressing GFP at increasing concentrations of lentiviral vector. n=3 
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Figure 3.4 – Adenoviral Transduction Assay – Representative images of GPNT cells transduced by 

adenoviral vectors expressing GFP at increasing concentrations of Ad5 viral vector. n=3 
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3.2.4 miR-29b/c expression in infarcted rat brain as determined by qPCR 

analysis  

In order to determine whether or not there was an endogenous change in the level of 

miR-29 expression following ischaemic stroke, qPCR analysis of infarcted rat brain was 

conducted at 24h and 72h following tMCAO (45mins) in SHRSP. SHRSP rats were used as 

opposed to the more widely used strains as this inbred population displays the kind of 

comorbidity present in human stroke and therefore this model can be expected to be 

more translatable to human stroke. The infarct was identified as a region of 

hyperintensity on  T2-diffusion weighted MRI and the brain was dissected into regions of 

infarct, peri-infarct and border (Fig 3.5). For miR-29b (Figure 3.6) no difference in 

expression was observed between stroke and sham controls in the un-infarcted border 

tissue. However, a significant upregulation in miR-29b was evident in peri-infarct tissue at 

72h following stroke. Mir-29b was significantly downregulated in the infarct region at 24h 

and 72h following stroke. All qPCR was normalized to U87. 

MiR-29c was determined to be significantly downregulated in border tissue at 24h 

following stroke (Figure 3.7). No difference was observed in miR-29c expression in peri-

infarct tissue at either time point following stroke. Finally, a significant decrease was 

observed in miR-29c in the infarct region at 72h following stroke.   
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Figure 3.5 MRI Demarcation of Infarct, Peri-Infarct and Remainder tissue - T2-weighted MRI images across 
8 coronal levels within MCA territory demonstrating the region of infarct [within bold red line], peri-infarct 
[between bold and dotted red lines] and border [between dotted red line and midline of brain at 72h after 
tMCAO (45 mins) in SHRSP. (Image courtesy of Dr. Emily Ord) 
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Figure 3.6 - qPCR analysis of rat brain tissue for expression of miR-29b at 24h and 72h following stroke. 
Infarct, Peri-infarct and Border regions were defined by MRI. Expression is significantly (*, p<0.05) 
decreased in the infarct region at both 24h and 72h following stroke. Expression is significantly increased at 
72h in the peri-infarct tissue. Data are presented as RQ (±RQMax/Min) normalized to U87, n=4.  Statistical 
analysis was conducted by two-tailed unpaired Student’s t-test. 
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3.2.5 Localization of miR-29b and miR-29c in peri-infarct region of stroke 

brain.  

A characteristic pattern of mRNA-29 expression can be observed on in situ hybridization 

stained rat brain sections in the absence of stroke. The purple staining is indicative of 

miRNA presence. Localization of miR-29b appears similar to that of miR-29c. In the 

images presented (Figure 3.8) it appears that there may be a higher expression level of 

29b to 29c. However, as this was not reflected in the Ct values of the qPCR data and as 

ISH is not a quantitative measure of expression this cannot be assumed.  

Anatomically both miRNAs appeared are most abundant in cell bodies of pyramidal 

neurons of the hippocampus and cortical layers II/III. It is unclear whether or not this is 

functionally significant or merely reflective of the fact that there are more nuclei present 

in this region when compared with the axonal projections present in surrounding non-

stained tissue. Identification of the location of miR-29 expression will be important to 

fully understand the role that this miRNA plays in specific cell types in specific regions of 

the brain. This will guide researchers when considering whether to target therapeutic 

interventions to specific cell types. Another aspect that will need to be considered is that 

different pathways will need to be targeted for therapy in different cell types. Whilst 

overexpression of miR-29c may be protective in neurons, it may have iatrogenic effects in 

astrocytes for example. This aspect of miRNA activity in the neurovascular unit remains 

almost unexplored.  
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Figure 3.7 qPCR analysis of rat brain tissue for expression of miR-29c at 24h and 72h following stroke. 
Infarct, Peri-infarct and Border regions were defined by T2 MRI. Expression of miR-29c was measured in 
Border region, Peri-infarct and Infarcted region at 24h and 72h following stroke. Data are presented as RQ 
(±RQMax/Min) normalized to RNU48, n=4. Statistical analysis was conducted by two-tailed unpaired 
Student’s t-test, * p< 0.05. 
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Figure 3.8 – Localization of miR-29 in brain tissue - miR-29b, miR-29c and Scrambled in situ hybridization 
for miRNA expression in paraffin embedded rat brain sections at the level of the dorsal hippocampus at 3 & 
24h following tMCAO. Scale bar 100µm. 
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3.2.6 Analysis of validated miR-29 cluster targets in rat peri-infarct tissue 

by qPCR  

In order to ascertain whether there was any complementary difference in miR-29 targets 

qPCR was performed in the same tissue used to analyze endogenous changes in 

expression levels (Figure 3.9). MMP2, MMP9 and TGFβ1 are all significantly 

downregulated in the peri-infarct region at 72h following stroke indicating that these 

genes may be under the regulation of miR-29b under these conditions. Col3A1, Col11A1, 

HDAC2, HDAC4 and Bcl2 were also assessed, but no significant difference was observed. 
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Figure 3.9– Expression of miR-29 targets in rat brain tissue at 72h post stroke - qPCR of miR-29 targets in 
peri-infarct rat brain tissue at 72h following stroke. All values are presented as RQ (+RQMax,-RQMin) 
normalized to GAPDH, n=4. (* - p<0.05 as determined by two-tailed unpaired Student’s t-test)  
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3.2.7 Inhibition of miR-29b and miR-29c with anti-miRs and Overexpression 

with miRNA mimics 

Modulation of miR-29 species was attempted through the use of commercially available 

miRNA oligonucleotides transfected into B50 cells which were subsequently subjected to 

hypoxic challenge. No changes were observed in expression levels of miR-29b or miR-29c 

at any concentration of negative control transfection. Significant upregulation of miR-29b 

was observed at all concentrations of miR-29b mimic used, with the transduction being 

most prominent with a 60-fold increase in expression of miR-29b following administration 

of 100nM of mimic (Figure 3.10).  

miR-29c was significantly upregulated at all concentrations of miR-29c mimic 

administered, with the upregulation most profound ~20-fold at 100nM (Figure 3.10). 

These results definitively demonstrate that it is possible to significantly upregulate miR-

29b and miR-29c in B50 cells with Ambion miRVANA miRNA mimics. 

Transcriptional expression levels of several miR-29 cluster targets was assessed following 

modulation of these miRNAs. HDAC2, HDAC4, MMP2, Col11A1, Bcl2 expression levels 

were measured by qPCR however, no difference in expression was observed. MMP9 was 

found to be increased following transfection with miR-29b but not with miR-29c whilst 

Col3A1 expression was found to be elevated after transfection with both miR-29b and 

miR-29c. This is not consistent with what would be expected to be seen if gene regulation 

was being controlled by the miRNAs of interest in these cells under these conditions 

(Figure 3.11).  
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Figure 3.10 - Validation of miR-29 overexpression by pre miR mimics – qPCR was performed in B50 cells 
which had been transfected using siPORT transfection reagent. Concentrations of miR-29b and miR-29c 
from 10nM-100mM as well as Cy3-labelled negative control were applied to cells before expression levels 
were determined. All data normalized to relative Cy3 concentration and presented as mean 
RQ±RQmax/RQmin, n=3. Significance determined by one way ANOVA and Tukey’s post hoc analysis *=p< 
0.05. 
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Figure 3.11 – Expression of miR-29 Targets -  Transcriptional expression of miR-29 cluster targets in hypoxic 
B50 cells transfected with 100nm of relevant mimic or concentration matched cy3 negative control. miR-
29b transfection corresponded with a significant increase in MMP9 expression whilst Col3A1 expression 
was determined to be significantly increased following transfection by both miR-29b and miR-29c. n=3 Data 
are presented as mean RQ±RQMax/Min. Significance determined by one way ANOVA with Tukey's post hoc 
analysis *=p<0.05  
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3.3 Discussion 

 

MiR-29 modulation was assessed in several brain regions of spontaneously hypertensive 

stroke prone rat at two time points following stroke. Specifically miR-29b was 

upregulated at 72h following stroke and downregulated in infarcted tissue at both 24h 

and 72h. miR-29c was decreased in border tissue at 24h following stroke and in infarcted 

tissue at 72h following stroke. Reciprocal changes in expression of target genes: MMP2, 

MMP9 and TGFβ1 were observed at 72h following stroke. These reflect what would be 

expected if these genes were under control by miR-29 family members. 

Initially, the aim was to clone miR-29b and miR-29c into the pSFFV to produce lentiviral 

vectors for the purposes of transducing miRNAs in cells used. Considerable difficulties 

were encountered during cloning which were never fully understood. Viral vectors 

assessed by cell titration assays were also incompatible with some of the cell types being 

used. For these reasons, and because reproducible high levels of transduction were 

attainable using commercially available miRNA mimics subsequent experiments focussed 

on the use of miRNA mimics. There are advantages and disadvantages to both platforms 

from a clinical perspective. The greatest advantages of viral vectors is that, when 

successful, they offer the greatest transduction efficiency and allow the transgene to be 

expressed only in desired cell types through the use of conditional expressers. Viral 

vectors suffer from being considerably more expensive to produce, having to comply with 

a more rigorous set of rules when being considered for human use and having to consider 

the complexities of the human immune system as well as the disease being studied. 

miRNA mimics are less expensive, but do not allow for conditional expression and have 

less transduction efficiency. 

It remains to be determined whether the change in miR-29 expression following cerebral 

ischaemia is damaging or beneficial. Recent research has demonstrated that miR-29 

species are potent inhibitors of TGF-β mediated fibrosis (Van Rooij et al. 2008). Glial scar 

formation following stroke is a factor in the loss of cognitive function following stroke. 

Therefore, inhibiting expression of  fibrotic proteins may potentially limit the extent to 

which pathological glial scar tissue is formed, and may reduce the loss of cognitive 
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function. TGF-β signaling is of importance for neuronal cell survival (Silver and Miller 

2004; Badan et al. 2003). Recently it has been suggested that in vitro upregulation of miR-

29 promotes cell death following hypoxic challenge (Shi et al. 2012; Khanna et al. 2013). 

However, this group also suggests that miR-29b is upregulated in vivo following transient 

middle cerebral artery occlusion which is antithetical to the rest of the scientific literature 

in this respect (Shi et al. 2012).  

3.3.1 miR-29 expression in vivo 

For miR-29b no change in expression was observed at the border region at the 24h and 

72h time points. A significant upregulation of miR-29b was present in peri-infarct tissue at 

72h following stroke, whilst miR-29b was downregulated within the infarct at both times.  

For miR-29c a significant downregulation was observed in the border zone at 24h 

following MCA occlusion. No differences were observed for miR-29c expression at either 

time point relevant to sham in the peri-infarct region. However, there was a significant 

decrease in miR-29c expression within the infarct at 72h following stroke.  

In order to identify associations with these miRNAs and their targets, qPCR was also 

performed on several coding genes. These were selected based upon candidates assessed 

elsewhere in the literature. MMP2, MMP9 and TGFβ1 were all found to be significantly 

downregulated at the transcriptomic level in the peri-infarct region at 72h following 

stoke. This implies that MMP2, MMP9 and TGFβ1 may be repressed by miR-29b during 

stroke. It is likely that these changes would be beneficial in the context of this disease 

(Krupinski et al. 1996; Zhao et al. 2010). 

Lower levels of MMPs in the acute phase following stroke will result in less blood-brain 

barrier breakdown and act to limit evolution of the infarct (Asahi et al. 2001; Rosenberg, 

Estrada, and Dencoff 1998). TGFBβ1 signaling plays an important role in glial scar 

formation and the reduction here may also correspond to a reduction in the size of 

ischemic lesion. It should be noted that MMPs expressed in the more chronic phase of 

stroke aids angiogenesis and other repair mechanisms meaning that suppression of 

MMPs in the longer term may have negative effects on recovery (Arai et al. 2009). As this 

study only assessed outcomes up to 72h following stroke, only the acute role of MMPs 

has been considered however, it goes without saying that the biphasic nature of these 
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enzymes in stroke would need to be considered when targeting this pathway 

therapeutically in the clinical setting. 

The evidence presented here shows correlation between directional change in miRNAs 

and corresponding changes in target transcripts. This is suggests miR-29 may be 

modulating these genes, but direct interaction between the miRNA seed sequence and 

target transcripts would have to be demonstrated to state this conclusively. Further 

experiments would be required to demonstrate definitively that these genes are 

interacting, and it will be important to demonstrate that changes in gene expression are 

reflected at the protein level also.  

The fold changes which have been found to occur in miR-29b/c expression following 

stroke are relatively modest and it is unclear whether this would be sufficient to achieve 

physiological effects due to the modulation of downstream genes. It is very challenging to 

ascertain the fold miRNA changes in human brain tissue due to stroke as biological 

samples for this type of experiment are not readily variable. Several miR-29 targets were 

assessed, and some of these were found to be altered in a manner consistent with miRNA 

regulation, although 3'UTR mutation experiments would be necessary on follow up to 

determine conclusively that these miRNAs are responsible for this modulation.  It may 

have been preferable to conduct a screen experiment to assess the whole of the 

transcriptome as it is quite likely that many miR-29 targets which are modulated following 

stroke have been missed in this study, however there are considerable challenges 

associated with such transcriptomic experiments. Another aspect of this investigation 

that would benefit from follow up would be assessment of miRNA gene targets at the 

protein level to confirm than changes in transcriptional expression is reflected at the 

protein level. 

3.3.2 miR-29 modulation in vitro 

I have conclusively demonstrated that transfection of both miR-29b and miR-29c can be 

achieved via use of the pcDNA3.1(+) cloned constructs. Following this considerable 

difficulties were encountered when cloning SFFV-miR-29b constructs. I have noted that 

there is a region of TTTTTT in the miR-29b sequence and suspect that this may result in 

some unexpected secondary structure which results in some unusual enzymatic activity.  
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Although, I was able to produce lentivirus containing both miR-29b and miR-29c 

eventually, I was unable to observe any transduction in infected cells. Taking into 

consideration these technical issues and given the availability of commercially produced 

miRNA mimics which have been found to substantially upregulate expression of miRNAs 

in vivo, it was decided that the miRNA mimic approach would be used in subsequent in 

vitro experimentation. Advantages here consist of improved reproducibility and reduced 

preparation time (as viruses do not have to be generated & titred). The disadvantages of 

the miRNA mimic strategy are that it renders us unable to take advantage of the 

sophisticated viral machinery which can be used to ensure specificity and high efficacy of 

miRNA treatment. Nevertheless, upon transfection with both miR-29b and miR-29c 

mimics a marked increase in expression was observed in transfected cells. There were 

also significant differences in some of the miR-29 cluster targets, but they were being 

modulated in the opposite direction of what would be expected given that they are under 

regulation by these miRNAs under these conditions. It is possible that some counter-

regulatory mechanisms are in place which results in the differences observed. Another 

consideration which should be made is that the single time point approach offers only a 

‘snapshot’ and effects may be present at other time points. It would have been preferable 

to look at multiple time points to obtain a more detailed understanding of longitudinal 

changes in gene expression following stroke, but due to limitations in resources, these 

were the only time points assessed. Another caveat in these experiments is that only a 

small number of all potential targets of the miRNA of interest have been investigated. A 

transcriptomic approach may provide a path of least resistance towards identifying 

mechanisms, although, there are considerable technical issues associated with such an 

endeavour. Only one dose of miRNA mimic was attempted in this study when assessing 

changes in target transcripts. The dose of 30nm was selected as it achieved maximal 

modulation, it could be suggested that the lack of expected changes in target genes may 

be due to counter regulatory mechanisms which are responding to modulation of  miR-29 

beyond normal physiological parameters. This was considered during planning of the 

experiment, and it was determined that simulating a physiological change might not have 

sufficiently perturbed the system enough to effectively modulate target genes. It is 

possible that other miR-29 targets have been modulated, but the strategy of selecting 

candidate targets has failed to identify them in this study. 
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Following completion of my miR-29 experiments, two groups have published research on 

the role of miR-29 species in the context of stroke. It will be useful to consider their 

results and how they relate to observations made in my study. Loss of miR-29b following 

acute ischemic stroke has been shown to contribute to neural cell death and infarct size 

(Khanna et al. 2013). Assessment of their in vivo data shows that a comparison has been 

made between the infarcted region and non-infarcted region in mice to observe this 

downregulation in vivo. This is consistent with my observations for rat infarct. However, 

this study makes no attempt to identify changes in the peri-infarct region. It is possible 

that by the time these researchers have measured miRNA expression in the infarcted 

region post-mortality RNA degradation is already underway. In order to determine the 

effects of miR-29b in vivo, they pre-treated the mice with a miR-29b mimic and found 

that this significantly reduced infarct size.  

 

This demonstrates the potential therapeutic applications of this miRNA in the context of 

stroke and suggests that increase in miR-29b expression in the peri-infarct region that I 

have observed at 72h following stroke may be part of the organism’s intrinsic response to 

protect itself from injury. Again, in keeping with the STAIR guidelines, Khanna et al. have 

also attempted to address differences in the sensorimotor function in mice treated with 

the miR-29b mimic using the open field test (Khanna et al. 2013). A marked improvement 

was observed in the behaviour of the mice at 48h following stroke for the treated group 

versus control. Despite the accumulating data regarding the role of miR-29 cluster 

members in stroke, the mechanisms whereby these microRNAs are having an effect 

remain poorly understood. Much of this opacity relates to the complexity of the disease 

and technical limitations faced when interrogating our disease models. Perhaps success in 

the marketplace for other miRNA based therapeutics will increase industrial interest in 

these treatments.  Further experimentation will result in improved understanding of the 

role of miR-29 in stroke and we may one day see a treatment based on this miRNA enter 

the clinic. 
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Chapter 4 – Modulation of serum miRNA 

levels in response to ischaemic stroke. 
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4.1 Introduction 

Stroke must be accurately diagnosed swiftly following onset of symptoms and this is the 

reasons for many of the outstanding challenges in treating it. Such diagnosis is often 

clinically challenging despite ongoing advances in improved practices in stroke medicine. 

A secondary, ongoing challenge that is faced following the resolution for stroke is that it is 

impossible for clinicians to predict the extent of patient recovery, which patients will 

respond to the administered treatment, and knowledge of patient’s quality of life 

following recovery.  

4.1.1 miRNAs as novel biomarkers for Stroke? 

In order to address at challenges associated with stroke, the development of novel 

biomarkers of ischaemic stroke will be helpful. A biomarker, or biological marker for a 

disease is a clinically measurable indicator of some aspect of a disease. The most widely 

used biomarkers for stroke in the clinic are the presence of risk factors such as 

hypertension or obesity, whilst these provide essential information to clinicians they are 

imprecise and unable to accurately predict stroke onset as well as predict disease 

progression. Recently there has been increasing interest in the identification of novel 

molecular biomarkers for cardiovascular diseases with C-reactive protein being arguably 

the most successful candidate so far. Most miRNA research to date has focussed on the 

role of intracellular RNAi, although there is increasing interest in the biology of circulating 

serum miRNA (Clancy et al. 2014; Qing et al. 2014). Whilst the discovery of the serum 

component of the miRNAome has functional implications for the role of miRNA-mediated 

intercellular signalling; it may also have diagnostic use as a clinical blood based biomarker. 

Ideally miRNA biomarkers will be successfully able to aid in earlier detection of stroke risk, 

as well as allowing for risk stratification and identification of patients who will benefit 

most from interventions. 

Although only a relatively new contender in the arena of modern medicine, it has been 

demonstrated that there are abundant levels of many miRNAs circulating in the human 

blood (Gilad et al. 2008). It doesn’t take long for one to reach the conclusion that if these 

molecules are present in the circulation, and important in the onset and development of 

disease, that they may also be able to inform clinical practice as biomarkers. Currently 

there is no common clinically implemented miRNA based biomarker for any disease. That 
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said, there is a great interest in the development of such a biomarker in many different 

diseases. 

The first studies which demonstrated that circulating miRNAs were indicative of disease 

states occurred in 2008. One such study demonstrated that miR-21 expression levels 

were elevated in patients with B-cell lymphoma. Subsequently, several studies were 

conducted which developed miRNA expression levels for many different kinds of cancer 

(Lawrie et al. 2008).  

 

One of the first studies examining differential expression of microRNAs in response to 

stroke was a study conducted on Sprague Dawley rats which were subjected to transient 

middle cerebral artery occlusion (tMCAO) and allowed to recover for 24 or 48h. Whole 

brain lysates as well as serum were subjected to microRNA screen in order to identify 

miRNAs which were differentially regulated (Jeyaseelan et al. 2008).   

Subsequently, a similar though more sophisticated study followed up on this by assessing 

miRNA expression levels at several time points following stroke resulting in a more 

detailed description of changes which may occur following ischaemia (Dharap and Bowen 

2009). Spontaneously hypertensive rats were subjected to tMCAO and allowed to recover 

for a range of time points from 3h to 3 days. However, only brain tissue was assessed in 

this study. Again, several microRNAs were found to be differentially regulated post-

ischaemia. There is considerable overlap between brain microRNA modulation from both 

the Dharap and Jeyaseelan studies (Dharap and Bowen 2009; Jeyaseelan et al. 2008a), 

although slightly different models were used in each case. Dharap et al. identify several 

potential targets of the microRNAs modulated, many of these candidates are proteins 

known to be of functional importance in the pathophysiology of stroke. However, none of 

these targets were assessed in this study (Dharap and Bowen 2009). This study was 

followed up by another assessing the differential expression of microRNAs in response to 

sub lethal ischaemic preconditioning (Dharap and Vemuganti 2010). These animal studies 

provide invaluable information about the pathogenesis of stroke as it allows for 

sophisticated modelling of acute genetic changes following cerebral ischemia. For 

translation to the clinic, it is necessary to study microRNA changes in a human population 

of stroke patients. 
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The first instance of a group assessing serum miRNA expression levels in a human 

population occurred in 2009. Specifically this study looked at the miRNAome in young 

stroke patients (18-49) years compared with age matched healthy controls. Analysis of 

miRNA expression levels demonstrate that it was possible to identify TOAST classification 

subtypes of patients and distinguish these from healthy controls. However, this study 

demonstrated proof of principle that it is possible to use circulating miRNA levels as a 

biomarker for cerebral ischaemia (Tan et al. 2009). This study was followed up in 2013 by 

another investigation which sought to identify miRNA expression profiles in low/no-risk 

stroke patients in order to differentiate them from patients exhibiting traditional risk 

factors for stroke. Again, it was demonstrated that it is possible to do so and that 

molecular mechanisms underlying stroke pathology may differ significantly from more 

traditional clinical manifestations of the disease (Tan et al. 2013). One study sought to 

assess dysregulation in serum miRNAs in the context of intracerebral haemorrhagic (ICH) 

stroke. Comparisons were made between 16 ischaemic stroke patients, 15 ICH patients 

and 8 healthy controls and 30 miRNAs were determined to be significantly dysregulated. 

Subsequent replication of these findings in a validation population support the validity of 

the original observations (Guo et al. 2013). Additional evidence supporting the hypothesis 

that miRNAs are modulated in serum following stroke comes from a clinical study in 

which plasma miRNA expression levels were measured at 24h, 1 week, 4 weeks, 24 weeks 

and 48 weeks following symptom onset compared with 50 healthy controls. In this study, 

both miR-30a and miR-126 were found to be significantly downregulated at all time 

points following stroke until 24 weeks, whilst let-7b was lower in patients with large-

vessel atherosclerosis than healthy volunteers and higher in patients with other forms of 

stroke until 24 weeks (Long et al. 2013). 

4.1.2 Exosomal miRNAs 

Recently there has been increasing interest in the functional role of circulating miRNAs 

(Hsu et al. 2014; Sun et al. 2014; Grasso et al. 2014). Initially these miRNAs were thought 

to be a fingerprint generated by RNA released from lysed cells. However, it has been 

observed that there is active export of miRNAs into vesicles such as microparticles or 

exosomes. Vesicular RNA is responsible for intercellular communication of miRNA activity 

(Valadi et al. 2007) and emerging evidence suggests that this may be of essential 

functional importance in a variety of contexts. Exosomes are small (30-120nm) molecules 
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comprised of a membrane bilayer which are constructed intracellularly before being 

released into the extracellular space. These exosomes contain a variety of lipid, protein 

and genetic molecules which act on a plethora of targets which vary between cells and 

disease states (van Niel et al. 2006; Simons and Raposo 2009). Exosomes are released 

from cells via fusion of a multivesicular body with the plasma membrane. Following 

invagination of an endosome with a myriad of molecules for exportation the fusion occurs 

and the exosome is released into the extracellular space. Several proteins present on 

exosomal membranes are commonly found to be characteristic of released exosomes 

including CD9, CD63, CD81 and HSP70. Currently the functional significance of these 

proteins remains to be elucidated, but it is likely that these proteins are involved in 

adherence and incorporation of exosomes into target cells (Rayner and Hennessy 2013). 

There are a variety of different vesicular molecules other than exosomes. These molecule 

classes are generally defined based on diameter of cell and include microvesicles, 

microparticles, ectosomes, shedding vesicles and apoptotic bodies (Figure 4.1) (Raposo 

and Stoorvogel 2013). 
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Figure 4.1 - Schematic of protein and RNA transfer of vesicular protein and RNA. Membrane-associated 
(triangles) and transmembrane proteins (rectangles) and RNAs (curved symbols) are selectively 
incorporated into the microvesicles and exosomes budding from the plasma membrane (Raposo and 
Stoorvogel 2013). 

 

To date, little evidence exists which assesses the importance of vesicular RNA in the 

context of stroke. Isolation of microvesicles from plasma in one stroke study has  

demonstrated that miRNAs assessed were present solely in microvesicles of plasma 

samples, however following onset of stroke miRNAs  present outside of vesicles in plasma 

increase. It is possible that expression profiles of miRNAs differ depending on whether 

they are located within exosomes, or free floating in serum in other cases also.  This 

information may provide a clue as to the role of specific miRNAs in the context of 

ischemic stroke. 

 

4.1.3 Hypotheses  

miRNAs are differentially expressed in serum following stroke. Characteristic miRNA 

profiles may be used to better phenotype stroke patients  
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Serum miRNAs are located in excreted exosomes and may play an important functional 

role following stroke. 

4.1.4 Aims  

Candidate miRNAs were identified by miRNA Openarray experiment in a cohort of stroke 

patients and stroke mimic controls. 

Candidate miRNAs were assessed for validation in a larger population of patients using 

qPCR. 

miRNA expression levels were assessed in exosomes isolated from serum samples.  
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4.2 Results 

4.2.1 Patient Demographics 

In order to identify candidate miRNAs for assessment 75 patients (55 stroke, 20 stroke 

mimics) were recruited over a period of several months. Stroke mimics were patients who 

presented at clinic with stroke symptoms, but were determined to have a differential 

diagnosis following medical imaging and consensus of stroke clinicians. Serum samples 

were collected initially within 48h of the onset of stroke symptoms, then longitudinal 

samples were collected from these same patients at 7 days, 1 month and 3 months. In 

order to minimize the potential for confounding factors relating to differences in 

demographics between stroke patients and stroke mimic control patients, selection of 

patient samples for study were matched as closely as possible for age, gender and 

medical history (Table 4.1) with no statistically significant difference between the groups 

at baseline.  
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  Stroke Non-Stroke p-value 

Numbers (per diagnostic category) 55 (73.33%) 20 (26.67%)   

Age (mean) 
65.36 (SD 
14.01) 

57.41 (SD 
14.01)   

Variable (no. Per diagnostic group)       

Male 35 11 0.726 

Female 20 9   

Smokers 19 7 0.727 

Ex-Smoker 9 4 0.644 

Previous TIA 7 4 0.556 

Type 1 Diabetes 3 0   

Type 2 Diabetes 7 1   

Hyperlipidaemia 14 2 0.556 

Atrial Fibrillation 9 1   

Atrial Fibrillation (on Admission) 8 9 0.213 

Family History 9 2 0.508 

Hypertension 20 3 0.336 

Antiplatlet 17 4 0.277 

Anticoagulant 2 1 - 

Statin 21 5 0.718 

BP Treatment 22 5 0.65 

ACE Inhibitor 8 2   

ARB 3 0   

Calcium Channel Blocker 7 2 - 

Beta-Blocker 10 3 - 

Thaizide 6 1 0.808 

Spironolactone 0 0 - 

Loop Diuretic 6 1   

Alpha Blocker 1 0 - 

Insulin 3 0   

Oral Hypoglycaemic Drugs 4 0 0.494 

Table 4.1 –Summary of population demographic information of study  population. 

 

4.2.2 miRNA Openarray Experiment to Identify Candidate miRNAs for 

Validation 

miRNA expression levels were determined in the screened population by miRNA 

Openarray analysis. 16 stroke patients and 14 non-stroke patients were selected from the 

population for an initial screening experiment to identify candidate miRNAs of interest. 

Following an initial PCR preamplification run to amplify all RNA present, qPCR was 
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performed for every miRNA present on the card. Of the 738 genes measured 96 were 

detected in >70% of samples. Several reference genes were included on the Openarray 

cards in order to determine an appropriate control for the population of samples being 

analyzed. However, none of these reference genes was ubiquitously detectable in every 

patient sample, whilst variation in expression levels was too great between patients for 

any gene to be assessed.  For this reason raw Ct values were analysed. T-test analysis was 

conducted on raw Ct values between stroke and non-stroke samples and 15 miRNAs 

candidates were identified for subsequent validation in the total patient population 

(Table 4.2, Figure 4.2). 
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miRNA Non-stroke (Ct value), n=16 Stroke (Ct value) n=14 p-value 

 miR-19b  20 (16-22)  17 (14-17)  0.029  

 miR-20b  27 (25-29)  25 (23-27)  0.020  

 miR-21  23 (20-26)  21 (19-24)  0.048  

 miR-25  24 (21-26)  21 (18-21)  0.028  

 miR-27a  26 (22-31)  24 (20-25)  0.009  

 miR-93  25 (23-28)  23 (18-25)  0.004  

 miR-106a  21 (17-23)  18 (16-23)  0.014  

 miR-139-5p  25 (22-29)  24 (22-25)  0.029  

 miR-331  25 (21-30)  23 (19-26)  0.013  

 miR-374  27 (22-27)  24 (20-26)  0.020  

 miR-376c  31 (25-33)  28 (14-30)  0.028  

 miR-532-3p  30 (26-33)  27 (24-31)  0.008  

 miR-573-3p  25 (23-30)  23 (21-26  0.026  

 miR-590-5p  26 (23-28)  24 (21-25)  0.017  

 miR-885-5p  26 (23-30)  24 (11-26)  0.018  

Table 4.2 – Most significant hits to come out of the OpenArray miRNA assay experiment at 48h post 
stroke. The first column indicates the name of the miRNA, followed by mean and range of Ct values for non-
stroke and stroke patients. The final column is a p-value from a Student’s t-test comparing the two. 
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Figure 4.2 – Comparison of miRNA expression levels between stroke and non stroke patients in pilot 
population at 48h post-stroke – Data are presented as scatter plots indicating raw Ct values for each 
patient in the pilot study. Student’s two-tailed t-test. p<0.05. non-stroke n=16, stroke n=14 
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Due to the fact that the Openarray experiment employed a pre-amplification step, it was 

deemed necessary to perform a qPCR validation on the OpenArray population (n=30) 

samples prior to including all validation patient samples in order to ascertain whether the 

candidate miRNAs were detectable in the absence of a preamplification PCR step. These 

candidate miRNAs were subjected to qPCR and whilst there was a reduction in the level of 

the transcript present for all genes in all samples as would be expected without 

preamplification, the higher Ct values were still within the range of accurate detection by 

qPCR. As no endogenous control was identified by the Openarray experiment, samples 

were spiked with a known concentration (5ng) of c. elegans miR-39 to act as a reference 

gene for normalization (Figure 4.3).  

qPCR of non-amplified serum samples demonstrated consistent results between the 

Openarray and qPCR techniques, demonstrating that there was an increase in expression 

levels for all of the miRNAs identified by the original Openarray experiment in stroke 

patients versus controls. With the exception of miR-885 and miR-27a all of the top hits 

from the array were detected as significantly dysregulated (Table 4.3). Of the candidate 

miRNAs identified, several belonged to the miR-17/92 cluster or associated paralogs 

(Figure 4.4). 
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Figure 4.3 – Validation of OpenArray results in non-amplified samples from pilot population at 48h post-
stroke - c. elegans miR-39 spiked human serum samples from the pilot patient population were analyzed by 
qPCR. Upregulation of candidate miRNAs identified by the OpenArray remain significant. (*=p<0.05, 
Student’s unpaired two tailed t-test n=5) 
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non-stroke 

(Ct) 

Stroke 

(Ct) 

p-

value 

 

miR Fold Change (Non-stroke vs. Stroke) p-value 

 miR-19b  8.20 0.02 

 miR-21 4.78 0.0007 

miR-24 6.46 0.001 

 miR-25  4.05 0.009 

 miR-27a  4.54 0.09 

 miR-93  10.77 0.03 

miR-331 5.43 0.0006 

miR-374 3.96 0.02 

miR-590 7.91 0.006 

miR-885 2.43 0.07 

 

Table 4.3 – Summary of pilot population qPCR normalized to c-elegans spike without preamplification 
step used in initial OpenArray experiment. – data are presented as fold change between non stroke and 
stroke patients with p-value as determined by Student’s unpaired two-tailed t-test n=5. 
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Figure 4.4 - Diagram illustrating the genomic location and identity of miR-17-92 miRNAs and associated 
paralogs. - miRNAs which were identified by the OpenArray experiment are highlighted in red. miR-17 seed 
sequence is illustrated for miR-17 family members.(Olive, Jiang, and He 2010) 

 

4.2.3 Validation Population 

Patients were recruited over a period of months and serum was harvested. 20 non-stroke 

subjects and 55 stroke patients were assessed in all. This cohort included the patients 

used for assessment of potential candidate by the OpenArray experiment described 

above. Again, care was taken to minimize potential confounding factors relating to 

differences in patient demographics by ensuring the population was matched so that no 

significant difference occurred between the two groups at baseline (table 4.1). 

Extensive demographic data were obtained about the patients by the clinical researchers 

(Table 4.1) and there was no significant difference between groups with relation to the 

sex ratio, or age, medication, blood pressure, body weight and whether patients smoked 

or not. It is important to assess all of these aspects of patient phenotype as factors such 

as medication being used, and co morbidity from other diseases may all influence 

expression levels of miRNAs. The lack of significant difference between patient groups 

assures us that any difference in miRNA expression that may be observed in this study is 

as a result of stroke pathology and not any other confounding factor. Intragroup 

variability regarding differences in patient phenotype, treatment and comorbidity 
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accounts for much of the variation within a group and this variation necessitates a greater 

number of patients to achieve sufficient statistical power. In order to ensure that our 

study was appropriately power, a statistician was consulted and power calculation 

performed. Thus assured that the population we had access to offered sufficient power to 

perform our experiment qPCR of the full validation contingent proceeded. No 

endogenous control was identified by the earlier OpenArray experiment, so samples were 

post-extraction spiked with a known mass (5ng) of c. elegans miR-39. This was used to 

normalize miRNA Ct values to in order to account for variation from pipetting error etc. 

No difference was observed at 48h for miR-19b, -20b, -21, -27a, -93, -106a, -139, -331, -

374, -532, -590, -885 when assessed by qPCR (Figure 4.5). In most cases there does not 

appear to be a great deal of variability in expression levels within groups and no 

significant difference was present between groups. 

As mentioned earlier, clinical researchers have indicated the importance of differences in 

clinical phenotype in the manifestation of stroke, the differences this may make to 

therapeutic interventions used and also the effect that this will have on severity of 

patient outcomes. Bearing this in mind it was considered useful to do some post-hoc 

breakdown of the stroke patient group by TOAST classification stroke subtype (Figure 4.6). 

This analysis, though by no means definitive, may help to identify relationships that we 

are currently missing due to heterogeneity of disease subtypes in our stroke population. 

Upon analysis by TOAST classification subtype, no differences were observed between 

stroke patients of any subtype and non-stroke controls (Figure 4.7).  

Post-hoc analysis of miRNA expression by TOAST classification yielded no new significance, 

but it did appear that there was a trend towards higher expression in the Large Artery 

stroke subtype for several miRNAs including the 17-92 cluster members mentioned 

previously (Figure 4.4). When considering post-hoc analysis it is important to remember 

that any significance observed here would not be conclusive and require further 

experimental observation to test novel hypotheses generated by such and analysis, 

another consideration is that the reduction in group sizes as a result of the 

subclassification breakdown makes the study presented here considerably underpowered. 

In order to conclusively determine whether there are differences in miRNA expression 

between stroke subtypes, a much larger study will need to be conducted. 
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Figure 4.5 – Summary of qPCR validation data for several of the candidate miRNAs assessed. In this graph, 
expression has been normalized in all samples to the spiked c. elegans miR-39 mimic. – Data are 
represented as mean RQ (stroke compared to non-stroke) normalized to c. elegansmiR-39 (cel-39) spike 
±RQmax/RQmin. No significant differences were observed. (Non stroke  n=20, Stroke n=55) 
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Figure 4.6 - Pie chart illustrating the breakdown of the validation population by stroke subtype. 
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Figure 4.7 – Expression of miRNAs in stroke patients divided by TOAST classification - miRNA expression in 
validation population measured by qPCR normalized to c. elegans miR-39 spike. – Data are presented as 
RQ±RQmax/RQmin compared to non-stroke (normalized to c. elegansmiR-39 spike). (Non stroke n=19, 
Large Artery n=10, Small vessel n=17, Cardioembolic n=16, Unclassified n=12)  
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4.2.4 Serum Exosomes 

As several recent publications have emphasized the importance of miRNA biology in 

exosomal mediated transport of RNAi signaling, some preliminary work was conducted in 

order to identify differences in expression between exosomal expression and total serum 

expression of miRNAs. If found to be most abundant within a vesicle, credence would be 

lent to the idea that a particular miRNA may have a functional role. 

Using the Nanosight to count number of exosomes (particles from 30-120nm), no 

significance was observed between non stroke and stroke patients (Figure 4.8). 

Preliminary analysis suggested that qPCR analysis on RNA extracted from isolated 

exosomes yielded better signal than that from total serum RNA. Ideally, it would have 

been beneficial to assess all of the candidate miRNAs in isolated exosomes from all 

patients. However, due to limited resources this was not possible. In order to obtain more 

evidence supporting the importance of exosomal miRNAs in circulating serum several of 

the candidate miRNAs from the earlier study (section 4.2.3) were assessed by qPCR. miR-

19b, -93, -106a and -139 all display a similar trend towards increased expression in stroke 

patients versus control seen in the serum RNA, but this did not reach significance. (Figure 

4.9). 
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Figure 4.8 -Exosomal analysis – (A) Number of exosomes in each sample was measured by nanosight.. The 
horizontal bar in the graph represents the mean, whilst the squares/triangles indicate individual samples. (B) 
Image illustrating individual exosomes as viewed on nanosight.  Non-stroke n=12, Stroke n=14. 

  

B 

A 
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Figure 4.9 – miRNA expression in human serum exosomes - Expression of microRNAs in exosomal RNA 
measured by qPCR, relative to non stroke normalized to c. elegans miR-39 spike (cel-39). Data are 
presented RQ±RQmax/RQmin. Non stroke n=12, Stroke n=14 per group. Trends of differential expression 
for miR-19b, -93, -139 and -106abut the observed increase in expression in the stroke group did not reach 
statistical significance . 
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Several of the candidate miRNAs which were identified as being differentially regulated in 

the clinical population were also assessed in rat serum in order to ascertain whether 

there were any similarities in expression. Serum obtained from 16-week old SHRSP rats at 

72h post tMCAO was compared to matched sham animals. A significant increase was 

observed following experimental stroke for many of these miRNAs consistent with what 

was observed in the human population. miR-19b demonstrated a significant ~7-fold 

increase in serum and a ~5-fold increase in exosomes in samples obtained from stroke 

animals at 24h versus sham.  This increased to ~15-fold in serum at 72h but remained at 

~5-fold in exosomes at the corresponding time point. miR-93 demonstrated no significant 

difference between stroke and sham groups in serum nor exosomes at 24h whilst at 72h 

there is a non-significant 3-fold increase in the stroke serum (p=0.076) versus control and 

a significant 30-fold increase in exosomes (p=0.005) obtained at this time point. No 

difference was observed in miR-106a serum at either time point, although a significant 

~3-fold increase was evident at 24h (p=0.03) which increased to ~5-fold by 72h (p=0.005). 

Finally, no significant difference was present at either time point in the exosomal miR-532 

levels (at 24h a ~2-fold increase with a p-value of 0.06 is present) whilst in the serum a 

significant ~4-fold increase is present at 24h (p=0.05), rising to ~8-fold by 72h (p=0.006) 

(Figure 4.10).  
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Figure 4.10 -Comparison of expression of miR-19, -93, -106a and -532 in rat serum and exosomes isolated 
from rat serum. Data are presented as RQ±RQmax/RQmin n=4 per group There was a significant increase in 
expression for several of the miR-17-92 cluster and associated paralogs, which appears more profound in 
the isolated exosomes. miR-532was significantly higher in rat serum following stroke, although this 
significancewas lost when assessing total serum. (*=p<0.05, ** =p<0.005 Students two tailed t-test). n=4 
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4.3 Discussion 

The miRNA OpenArray conducted found 15 miRNAs to be upregulated in a sample 

population following stroke compared to a stroke mimic group. Initial screening for 

miRNA biomarkers in our pilot population looked promising but when assessed in a larger 

population for validation, the candidate miRNAs did not demonstrate significant 

differences between groups. Post-hoc analysis of candidate miRNA expression levels 

yielded no significant differences although there was a trend towards differences 

between TOAST classification subtypes of stroke from non stroke controls. Large artery 

stroke consistently demonstrated a trend towards increased expression versus non-stroke 

for miR-19, -21, -93, -331, 374, -590-5p and -885, whilst there was a trend towards higher 

levels of expression for miR-27a in the cardioembolic stroke patients versus non-stroke 

controls. No differences were observed in the number of exosomes present in the 

samples between patients, but assessment of the candidate miRNAs present in validation 

population exosomes demonstrated that these miRNAs were concentrated in the 

exosomes in many cases.  

A few other groups have started to consider the potential use of circulating miRNA 

profiles in the context of stroke, and the findings are discussed in context with my own 

data here; 

An early paper on the subject performed a screen on a population of young (18-48) stroke 

patients in order to identify differences in miRNA expression profile. Serum was collected 

between 6 and 18 months following stroke. Presence of stroke was confirmed via CT or 

MRI imaging of the brain. Traditional cardiovascular risk factors were measured, and 

medical history and demographic information was collected. Patients were also subjected 

to neurological assessment and subgrouped based on the TOAST classification system. Of 

the 836 microRNAs evaluated, 157 were differentially regulated across the stroke samples 

and subtypes. 138 of these microRNAs were highly expressed in stroke, the remaining 19 

were downregulated versus healthy controls. Observations in the microarray were 

validated by qPCR for selected miRNAs. This study has demonstrated in this population 

that different stroke subtypes can be identified, by characteristic miRNA expression 

profiles. Principal component analysis (PCA) resulted in the identification of discrete 

populations of patients in each of the stroke subtypes. Stroke outcome was assessed 
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using the modified Rankin Scale (mRS). A threshold score of >2 was defined as a patient 

with good “outcome”, whilst <2 was designated as having “poor outcome”. Again PCA 

analysis resulted in the classification of discrete populations of good and poor outcome, it 

is also possible to identify stroke subtypes based on miRNA profiles. This demonstrates 

the first evidence that microRNAs has the potential to be used as a biomarker for the 

assessment of stroke in a human population. The biggest caveat in this paper is the small 

sample size of patients used, and the lack of information regarding statistical 

methodology (Significance is listed as being determined by one way ANOVA, although no 

mention of false discovery rate is mentioned). Interestingly, in this study several members 

of the 17-92 cluster are observed as being differentially expressed (miR-17, -19a, -19b, -

20a, -106b). In their next study none of the 17-92 cluster were indicated as differentiating 

low risk stroke patients from those who presented with traditional risk factors ( Tan et al. 

2013). It is possible that the lack of significance observed in my study with respect to 

these candidates may be due to greater than expected underlying variation in the human 

population used. Emerging preclinical evidence suggests that this family of miRNAs may 

be a potential therapeutic target in the field of therapeutic neuroregeneration (Li et al. 

2012), therefore these candidates warrant further investigation. 

The expression levels of miR-21, miR-221 and miR-145 (all previously implicated in 

cardiovascular disease) were assessed in the serum of a population of 167 stroke patients, 

and 66 patients with carotid atherosclerosis in order to determine whether these miRNAs 

could act as biomarkers of stroke. Whilst miR-145 was not present in sufficiently 

detectable levels, both miR-21 and miR-221 were significantly upregulated in stroke 

patients compared to atherosclerotic patients. Each of these miRNAs was determined to 

be an independent predictor of stroke. miR-21is one of the candidate miRNA assessed in 

this study. Whilst expression was significantly higher in the stroke patients of the original 

pilot population this was not maintained when assessed in the larger validation 

population. The Tsai study had a larger group size than my study imparting greater 

statistical power, and the use of healthy controls in this study can be expected to account 

for a larger difference between stroke and non-stroke groups (Tsai et al. 2013).  

One group interested in serum miRNA biomarkers for stroke assessed expression of miR-

30a, miR-126 and let-7b in a population of stroke patients (n=97) versus healthy controls 

(n=50) (Long et al. 2013). In this study longitudinal samples were collected at 24h, 1 week, 
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4 weeks, 24 weeks and 48 weeks following onset of symptoms. These miRNAs were 

selected for study by this group as they had been previously implicated in pre-clinical 

models of stroke as well as being involved in other vascular diseases (Jeyaseelan et al. 

2008b; Tan et al. 2009; Zhao et al. 2013). Both miR-30a and miR-126 were significantly 

downregulated at 24h versus healthy controls, but by 48 weeks, expression levels had 

increased to levels seen in healthy controls for all TOAST classification subtypes. Let-7b 

demonstrates a similar pattern of expression in patients with large artery stroke, but this 

was different in all other stroke subtypes. For small artery, cardioembolic and 

undetermined stroke, there was a progressive increase in expression levels which peaked 

at 1 week before reducing and reaching basal levels by 48 weeks. 

 

I have demonstrated a lack of significant difference between expression levels in the 

validation population of this study despite robust results in the initial pilot population. 

Taking the candidates identified in the original population and testing them in a new 

population is an essential aspect of biomarker development. Tan et al. neglected to do 

this and it is likely that these miRNA biomarkers would not stand up to such rigorous 

validation (Tan et al. 2009). It is possible that at later time points (7 days, 1 month, 3 

months) differences may become apparent.  

Another consideration which must be made regarding published studies and my own data   

is that assessment of miRNA profiles was conducted following stroke. As a result of this it 

is not possible to determine whether the miRNAs identified have predictive potential in 

the identification of at risk individuals, pre-ischaemic event. The ideal stroke biomarker 

experiment would be a prospective longitudinal study where serum samples are taken 

prior to stroke and then again post-stroke as this would potentially result in the 

identification of predictive miRNA profiles which could be used to identify at-risk 

individuals.  

Quantification of circulating miRNA levels is still a relatively new technique and no gold 

standard exists for assessment of circulating levels. There are several different techniques 

which can be utilized in order to assess miRNA expression levels and ways in which 

recorded data can be normalized. By far the most commonly used technique for 

circulating miRNA quantification is quantitative PCR. There are challenges associated with 

this however. For example, there is no universally accepted reference gene for 
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normalization. The most effective way to normalized serum miRNA would be to identify 

miRNA which display minimal variation between samples and to use this as the 

“housekeeper”, although this requires costly experimentation and it may not be possible 

due to prohibitive expense and limited availability of sample (Jarry et al. 2014).The 

OpenArray that was conducted in this study contained several genes recommended as 

being potential reference genes, but none of these was consistently expressed across all 

samples. An alternative to using an internal control is to employ an external control. RNA 

from another species is spiked into each sample at a known concentration. The spike can 

either be added to sample prior to RNA extraction, post RNA extraction or spikes can be 

added both before and after extraction. There are advantages to each approach. 

However, due to the low yield from serum RNA extractions and variability in 

concentration of RNA between samples it was decided that post-extraction spike was the 

most appropriate approach in this study 

Circulating miRNA is potentially more useful than large RNA molecules as a biomarker due 

to increased robustness. RNA is notoriously sensitive to degradation, which makes it 

difficult to work with. However, miRNAs remain detectable following several freeze thaw 

cycles. Several hypotheses existed attempting to explain the reason for miRNA durability, 

the most popular initially being the association of RNA with DNA protecting the molecules 

from degradation by RNAse and DNAse. However, in actuality miRNAs are protected by 

forming complexes with lipid molecules (El-Hefnawy et al. 2004). 

Assessment of candidate miRNAs in rat serum demonstrated a significant upregulation 

was evident for several miRNAs at 24h (miR-19b, miR-532) and 72h (miR-532) following 

tMCAO whilst significant upregulation of exosomal miRNA expression was observed for 

several miRNAs at 24h (miR-19b, -106a) and 72h (miR-19b, -93, -106a).miR-19b is in the 

18-family whilst miR-93 and miR-106a are in the 17 family (Olive et al. 2010). These 

miRNAs have been previously implicated in regulation of angiogenesis and expansion of 

hematopoietic stem cell populations (Li et al. 2012) and it is possible that this is being 

mediated by these miRNA containing exosomes. Comparisons of miRNA expression levels 

between serum and exosome samples at a given time point suggests that miR-19b, miR-

93 and miR-106a are localized to the exosomes. This is of particular interest as these 

miRNAs are all related and their presence in the exosomes hints at functional importance 

as these miRNAs will be effectively transfected into other cells where the miRNAs may 
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exert post-transcriptional inhibition on target genes. miR-17-92 cluster members have 

been identified as being upregulated in several forms of cancer and act to promote cell 

proliferation and inhibit apoptosis (Mendell 2008). In cancer, this is negative and 

contributes to pathogenesis (O’Donnell et al. 2005) whilst in the context of injury this is 

likely to contribute to mitigation of deleterious effects of the environmental insult whilst 

promoting regeneration (Chen et al. 2013). Comparison of serum and exosomal 

expression levels for miR-532 suggests that this miRNA is predominantly expressed in the 

serum and is of relatively low abundance in the exosomes. It is difficult to hypothesize the 

importance of this as all of the current literature  investigating miR-532 are associations, 

(Hall et al. 2014; Qin et al. 2014; Dmitriev et al. 2013; Kanaan et al. 2013; Sasaki et al. 

2013; Lu et al. 2005) and to date no publications exist describing functional effects of 

modulation. One of these studies described miR-532 as being enriched in axonal 

preparations and fluorescent in situ hybridization identified the localization of this miRNA 

in granules in distal axons and growth cones indicating that this miRNA may play an 

essential role in the development and/or function of specific types of neuronal tissue 

(Sasaki et al. 2013).. This means that this miRNA may be of potential significance in the 

context of stroke, especially when considered in combination with the rat serum 

experiments performed in this study  

 

Following the development of accurate miRNA expression profiles relevant to stroke 

there are many challenges that will face clinicians trying to implement the technology. 

Perhaps the most notable challenge would be with respect to the use of diagnostic 

miRNA profiles in the acute phase following stroke. Currently, there is a major time 

constraint on application of stroke therapy and increased time taken for diagnosis will 

increase time until treatment meaning that the more diagnostics that are conducted will 

potentially reduce the number of patients who benefit from therapeutic intervention. 

Recombinant tPA therapy which is used for thrombolysis of stroke causing clots and 

recanalization of the patient must be administered within 4.5h of stroke symptom onset 

(Wahlgren et al. 2008), the time window for thrombectomy is of a similar duration 

(Castaño et al. 2010). These are the only therapies which have been shown to have a 

significant improvement on clinical outcomes in acute ischaemic stroke treatment. 

Currently the technology used for quantification of miRNAs is PCR based. In practice this 



141 
 

means that RNA has to be extracted from serum samples following collection from the 

patient (this takes approximately 1-2 hours) followed by a qPCR reaction (this takes 

approximately 1 hour to set up and 2 hours to run, followed by time for analysis which is 

also a time consuming procedure).  The logistics of miRNA analysis means that results 

cannot be obtained from a patient until several hours from presentation at clinic; this 

means that miRNA expression profiles are unlikely to be implemented in clinical practice 

for diagnosis during the acute phase of stroke. Currently, several groups are working on 

developing non-PCR based methods for analysis of circulating miRNAs which may be 

more useful in the clinic. The ideal platform for point of care analysis of miRNA expression 

levels would be a device similar to the blood glucose detectors which are widely 

implemented at the moment. Luis Vaca’s group is developing one such device which used 

isothermal PCR in order to detect miRNA expression. Isothermal PCR uses an enzyme 

which has DNA displacement properties, removing the need for temperature cycling and 

thus reducing energy requirements of the device increasing portability. It is also 

theoretically possible to use microarrays to measure miRNA expression levels. This 

technology utilizes hybridization of RNA sequences to fluorescently labeled RNA 

sequences immobilized on a surface; this technique is an effective though expensive way 

to analyze large numbers of genes in a single reaction. However, it is not possible to 

detect miRNA expression levels in serum samples without prior amplification(Vaca 2014). 

Another consideration to make regarding the usefulness of serum miRNA as biomarkers is 

the effect of haemolysis on miRNA content. It was noted during extraction of RNA from 

the serum samples that varying degrees of haemolysis were present in some of the 

samples (indicated by pink hue of solution as opposed to expected yellow). As the serum 

was isolated by centrifugation there was the potential for rupture of erythrocytes, 

releasing intracellular miRNAs into the extracellular space. Several miRNAs are known to 

be enriched in erythrocytes including miR-21 and miR-106a which were identified in this 

study (Kirschner et al. 2011; Kirschner et al. 2013). Differing degrees of haemolysis 

between samples will result in increased intra group variability and may partially account 

for the lack of significance in the stroke study population compared to the non-stroke 

group.   

Perhaps the greatest setback faced in this study was the inability to obtain the number of 

patient samples required according to power calculation. Utilization of the stroke mimic 
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group as opposed to a healthy control was a strength of the study as it ensured that the 

phenotype of the patient presenting at clinic in our control group was closer to that of a 

stroke patient. However, it also meant that the number of the stroke mimics who 

presented at the clinic became a limiting factor in terms of the numbers in the study.  

Although there are several technical challenges to be overcome before circulating 

miRNAs become utilized in clinical practice, the benefits from them will be great. 

Specifically these profiles may allow prediction of clinical outcomes following stroke, or 

identifying individuals who may benefit from particular treatments. Use of exosomes as a 

vector for miRNA based gene therapy also may be of great benefit in the future.  
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Chapter 5 – the role of miR-21 in Stroke  
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5.1 Introduction 

5.1.1 miR-21 Background 

miRNA-21 is one of the first discovered microRNAs and as a result, one of the most widely 

studied miRNAs.  It has been implicated with importance in a variety of different 

pathological states including cancer and cardiovascular disease (Krichevsky and Gabriely 

2009). MiR-21 is a highly conserved miRNA reflecting its fundamental importance in 

mammalian biology, it is located in the intronic region of the TMEM49 gene located on 

the plus strand of chromosome 17q23.2 where it displays some overlap with the coding 

region of the gene VMP01 (Fujita et al. 2008). Despite this overlap the pri-miR-21 

transcript is transcribed independently from an intronic promoter region. Emerging 

evidence suggests a protective role for miR-21 in neuronal cultures in in vitro models of 

stroke (Ziu et al. 2011; Buller et al. 2010), whilst primary cerebral endothelial cells benefit 

from miR-21 overexpression in vitro by promotion of angiogenesis (Guduric‐Fuchs et al. 

2012).  

miR-21 is abundantly expressed in several tissues of different organ systems including the 

heart, spleen, small intestine and colon (Lagos-Quintana et al. 2002). Initial research into 

the role of miR-21 in disease states focussed on cancer biology, these studies 

demonstrating that miR-21 has pro-oncogenic effects leading to it being defined as an 

‘oncomir’. The potential oncogenic role of miR-21 was identified following observation of 

elevated levels in high grade glioma samples which was demonstrated to inhibit apoptosis 

in vitro (Chan et al. 2005). It has been suggested that there are complex mechanisms 

underlying the pathological effects of miR-21 upregulation whereby the net effect is to 

inhibit apoptosis and promote proliferation via the inhibition of multiple gene targets 

(Krichevsky and Gabriely 2009). 

5.1.2 miR-21 and Cardiovascular Disease 

In addition to the considerable volume of cancer research pertaining to miR-21 there has 

recently been increasing interest in the role that it may play in cardiovascular disease. In 

theory, inhibition of apoptosis and promotion of proliferation could be desirable for the 

administration of regenerative medicine to the cardiovascular system assuming that the 

right conditions can be created in order to promote the restoration of damaged or 
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diseased tissue to a stable healthy state (Han et al. 2011). Several miRNAs have been 

identified as being upregulated during cardiac hypertrophy, with miR-21 consistently 

implicated across research produced by several groups (Sayed et al. 2007; van Rooij et al. 

2006; Cheng et al. 2007; Tatsuguchi et al. 2007).The role that miR-21 plays in this 

condition remains elusive as miR-21 transgenic animals display no apparent differences in 

cardiac morphology, and both display similar responses when subjected to pressure 

overload hypertrophy (Sayed et al. 2010; Thum et al. 2008). Though the upregulation of 

miR-21 is global during cardiac hypertrophy, the increase is most profound in 

myofibroblasts. This is at least partially mediated through targeting and suppression of 

sprouty1, enhancing erk1/2 phosphorylation and myofibroblast survival (Thum et al. 

2008). It is likely that changes in these genes contribute to fibrosis generally observed 

during cardiac hypertrophy. However, studies which have attempted to modulate miR-21 

activity via the use of genomic ablation of miR-21 in transgenic mice or knockdown by 

LNA miRNA inhibitors had no impact on cardiac hypertrophy resulting from pressure 

overload, Angiotensin II, Calcineurin or infarction(Patrick et al. 2010). 

5.1.3 Evidence implicating the importance of miR-21 in Stroke 

Initial evidence supporting the importance of miRNA activity in relation to stroke was 

obtained from experimental stroke models. Whilst several miRNAs were observed to be 

differentially regulated in response to tMCAO in vivo, miR-21 was not reported as being 

altered (Jeyaseelan et al. 2008a; Dharap and Bowen 2009).  Although initial studies did 

not implicate miR-21 in stroke, induction of stroke in Wistar Kyoto rats by embolic model 

resulted in a marked upregulation of miR-21 as measured by in situ hybridization and 

qPCR (Buller et al. 2010). Primary neuronal cultures were derived from these animals and 

in vitro analysis demonstrated that the miR-21 upregulation was neuroprotective and 

that this was at least partially mediated by inhibition of an apoptosis promoting tumour 

necrosis-α family member, FASLG (Buller et al. 2010). Other evidence supporting the 

importance of miR-21 in neurological injury, as well as suggestion of its therapeutic 

potential was demonstrated in a model of spinal cord injury in mice. Following induction 

of injury, an upregulation of miR-21 in the central nervous system was observed 

displaying a similar pattern to what was observed in response to embolic stroke. 

Modulation of miR-21 expression in astrocytes via the use of transgenic animals 

demonstrated that miR-21 expression was protective following spinal cord injury through 
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its interaction with fibrotic targets in the cell signalling pathway promoting optimal 

resolution of glial scar (Bhalala et al. 2012). 

Additional support for the potential importance of miR-21 in relation to stroke comes 

from data present in the clinical literature. miR-21 was one of several miRNAs to be 

upgregulated in the serum of young stroke patients versus healthy controls and was 

identified via pathway analysis to play an important role in vascular remodelling as well as 

having been previously demonstrated to show aberrant expression in cardiac diseases (K. 

S. Tan et al. 2009). This observation has been replicated by other researchers in other 

populations of stroke patients supporting the validity of its use as a potential biomarker 

as well as providing rationale for studying its functional role in the pathophysiology of 

stroke (Tsai et al. 2013). 

 

5.1.4 Hypothesis 

miR-21 plays a functional role in stroke pathology and modulation of this miRNA may be 

of therapeutic benefit in models of stroke. 

5.1.5 Aims 

Characterization of miR-21 post-stroke in SHRSP rats by qPCR and in situ hybridization of 

this miRNA and qPCR analysis of target genes. 

Establishment of mouse in vivo tMCAO model of stroke and assessment of infarct size by 

MRI and behavioural testing. 

Baseline characterization of miR-21 transgenics and miR-21 knockouts and subsequent 

assessment of differences between these animals and corresponding controls following 

stroke. 
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5.2 Results 

5.2.1 Quantification and Characterization of miR-21 expression following 

stroke 

Male SHRSP rats, aged 16-weeks and weighing 290-300g were subjected to 45 minute 

transient middle cerebral artery occlusion and allowed to recover. MRI was used to 

identify region of infarct, peri-infarct and remainder prior to RNA being extracted from 

each region (Figure 3.5). 

Earlier, miR-29b and miR-29c were assessed in this tissue and miR-29b was determined to 

be significantly upregulated in peri-infarct tissue at 72h post stroke (Figure 3.6).  

Mir-21 expression levels were quantified by qPCR at 24h and 72h following stroke in the 

peri-infarct region. No significant difference in expression was observed at 24h in the 

ipsilateral or contralateral regions of the brain compared to time-matched sham control 

animals. There was a significant increase in miR-21 expression levels globally at 72h 

following stroke (p<0.05, Student’s two-tailed t-test)(Figure 5.1).  
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Figure 5.1 – MiR-21 Expression is increased in peri-infarct tissue - qPCR of lysates for miR-21 expression in 
the peri-infarct region and corresponding contralateral region. Data presented as RQ compared to time-
matched sham.  Expression normalized to U87 (Data are presented as mean RQ ±RQmax/RQmin, 
n=6 ,*=p<0.05, student’s two-tailed t-test).   
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5.2.2 Mouse tMCAO Pilot Study 

In order to determine the variability and infarct size of the mouse tMCAO model of stroke, 

a pilot study was conducted. Male ICR mice were subjected to stroke (n=8) or sham 

surgery (n=3). Stroked animals were assessed by T2-weighted MRI scan at 72h post-stroke 

(Figure 5.2). A significant behavioural deficit was measured by Garcia neuroscore and 

Ladder test at all time points longitudinally following stroke. No deficit was observed in 

the sham controls (Figure 5.3). 
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Figure 5.2 – Infarct Volume in Pilot Study - (A) Representative stack images of T2-weighted scan of stroked 
mouse at 72h post-stroke with infarct identified as region of hyperintensity.(B) Volume of infarct 
determined using ImageJ (n=8). Data are presented as mean ±SEM 

B 

A 
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Figure 5.3 – Induction of stroke results in a measurable cognitive deficit - Behavioural measures assessed 
longitudinally demonstrate a significant deficit following stroke in (A) Garcia Neuroscore and (B) Footfalls 
during Ladder test (Data are displayed at mean ±SEM, Stroke n=8, Sham n=3, p<0.05 repeated measures 
ANOVA was used with Bonferroni’s post hoc test). 

  

A 

B 
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5.2.3 Memphis CAG-MiR-21 Mouse Study 

miR-21 expression was measured in brains from the Memphis CAG-miR-21 mouse colony 

to determine basal expression levels. A significant ~6-fold increase was present in whole 

brain lysates of heterozygous mice versus wild type (p<0.05, t-test)(Figure 5.4). No 

diference was observed in blood pressure at baseline between wild type and transgenic 

mice as determined by plethysmography (Figure 5.5). There are considerable limitations 

associated with the use of tail cuff plethysmography, specifically the blood pressures 

observed in this study are higher than would be expected under normal physiological 

conditions. This is due to the mice becoming stressed whilst they are restrained. Attempts 

were made to habituate mice to the tail cuff procedure, but no reduction in blood 

pressure was observed. Further assessment of blood pressure would have to be 

performed by more sophisticated measures such as radiotelemetry to determine the 

blood pressure accurately. This study was looking to see whether a difference existed 

between groups to account for any changes in infarct volume after stroke. 

Radiotelemetry would also allow for post-stroke measurement of blood pressure which 

would arguably be the more important time to assess this. In order to ascertain whether 

any changes in the gross anatomy of the cerebrovasculature were present animals were 

perfused with gelatin/indian ink solution in order to visualize the communicating 

branches of the circle of Willis. No difference was observed between wild type and 

heterozygous mice indicating that there are no major differences in the 

cerebrovasculature as both groups displayed a complete circle of Willis (n=4) (Figure 5.6, 

3.11). Mouse body mass was significantly lower in wild type mice versus transgenics at all 

time points during procedure (Figure 5.7), there was no difference in percentage weight 

lost between groups indicating that the difference in weight is indicative only of mouse 

mass at commencement of procedure and not related to differences in animal welfare. 
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Figure 5.4 – Basal miR-21 levels in transgenic mice  - qPCR was performed on mouse whole brain lysates to 
identify the difference of miR-21 expression between wild type and heterozygous Memphis CAG-miR-21 
mice. Expression is presented as RQ relative to wild type and was normalized to U6. (data are presented as 
mean RQ ±RQmax/RQmin, n=3, p<0.05, Student’s two-tailed t-test).  
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Figure 5.5- Basal Blood Pressure –Blood pressure was observed in wild-type and heterozygous mice in the 

CAG-miR-21 colony was measured by tail cuff plethysmography. Data are presented as mean systolic blood 

pressure ±sem. 
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Figure 5.6 - miR-21 Memphis mice display normal circle of Willis anatomy - Indian ink/Gelatine perfusion 
of mouse brains used to identify branches of the circle of Willis comparison of MiR 21 Memphis wild type 
and heterozygous animals. Circle of Willis indicated by red arrow. 
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Stroke was induced using the same conditions and primary outcome measurements as 

the pilot study in heterozygous and wild type mice. Infarct size was quantified by T2-

weighted MRI scan at 72h following stroke. No difference was observed in infarct volume 

between groups (Figure 5.8). No difference was observed in neuroscore or foot faults on 

the ladder test between groups (Figure 5.9). A trend towards improved survival was 

present in the heterozygous mice versus Memphis mice, but this was non-significant 

(Figure 5.10).  

Following stroke miR-21 expression levels were measured to ensure that the 

overexpression of miR-21 observed at basal levels (Figure 5.11) persisted following 

tMCAO.  A significant ~6-fold upregulation versus wild type animals was observed. miR-21 

raw Ct values were plotted against infarct size for each animal in order to determine 

whether there was any relationship between infarct size and miR-21 expression levels. No 

correlation was observed between infarct size and miR-21 expression levels. Not all 

animals assessed by MRI/neuroscore are presented in this figure as some animals were 

fixed for histological analysis and therefore tissue was not available for qPCR (Figure 5.11).  

Two wild type mice and three transgenic mice were lost on the table, either due to 

susceptibility to anaesthetic, or because damage in vascular integrity as a result of surgery 

that could lead to bleeds post-recovery necessitated sacrifice instead of recovery. Post-

surgery 3 wild type animals died due to large infarct at ~24h post recovery. 
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Figure 5.7– Mouse Body Mass During Procedure – Body mass was measured daily whilst animals were on 
procedure. (p<0.05, two way ANOVA with Bonferroni post hoc test, wild type n=6, transgenic n=8. 
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Figure 5.8 – Comparison of infarct size between wild type and miR-21 Memphis mice - (A)Representative 
stack of infarct from miR-21 Memphis mouse determined by T2-weighted image  at 72h post-stroke (B) 
Infarct size measured from MRI comparison of wild type (n=6) to transgenic (n=8). Data are displayed as 
mean infarct size corrected for oedema ±SEM) 
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Figure 5.9 - Comparison of behavioural deficit between miR-21 memphis and wild type mice - Behavioural 
measures assessed longitudinally between CAG-miR-21 and wild type mice by (A) Garcia neuroscore 
following stroke and (B) Ladder Test. Data are displayed as mean score ±SEM, WT n=6. CAG-miR-21 n=8. 

  



160 
 

 

 

 

Figure 5.10 –Mortality rate of miR-21 Memphis and wild type mice – Mortality rate illustrated by Kaplan-
Meier Survival following experimental stroke. WT n=9, CAG-miR-21 n=8 
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Figure 5.11– Assessment of miR-21 expression with relation to infarct size -(A) miR-21 expression in 
ipsilateral hemispheric brain lysates at 72h following stroke. Expression was normalized to U6. (data are 
presented as mean RQ ±RQmax/RQmin, p<0.05, Student’s two-tailed t-test). (B) Raw Ct values for miR-21 
correlated against infarct volume. WT n=3, het n=4 
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5.2.4 MiR-21 KO Study 

In order to determine the effects of miR-21 knockout on infarct size of the mouse tMCAO 

model of stroke. Male miR-21KO or wild type controls mice were subjected to stroke. 

Stroked animals were assessed by T2-weighted MRI scan at 72h post-stroke. This study 

had to be terminated early due to an unacceptably high mortality rate which occurred 

within 24h. No evidence of haemorrhage was observed.  

 

Kaplan-Meier Survival analysis conducted after the study was terminated demonstrated 

there was a significant increase in mortality of miR-21 homozygous KO versus wild type 

(Figure 5.12). 
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Figure 5.12 – Mortality rate of miR-21 KO and wild type mice - A significant increase in post-stroke 
mortality was observed in themiR-21 KO group versus wild type (WT n=4, KO n=5 p<0.05 when assessed by 
Log-rank (Mantel-Cox) test and Gehan-Breslow-Wilcoxon test and fisher's exact test). 

 

  

* 
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Following cessation of the 72h miR-21 KO mouse study a subsequent study was conducted taking 

the endpoint as 4 hours. The increased mortality rate suggested that there was physiological 

effects of miR-21 KO in stroke. Since all mortality occurred within 24h of procedure it was 

determined that it may be beneficial to look for differences in ischaemic damage acutely at 4h 

following stroke. 

DWI scans were taken to measure ischaemic damage as T2 scans are unable to detect damage at 

this time point. Technical problems with the scan meant that there was not enough contrast 

between the ischaemic damage region and surrounding tissue to accurately estimate size of 

ischaemic region (Figure 5.13). 

In order to assess any differences in the blood-brain barrier integrity following ischaemic stroke 

gadolinium contrast agent was administered via a tail vein cannula and mouse was scanned to 

determine whether gadolinium entered the cerebral parenchyma. Technical difficulties 

successfully administering contrast agent meant that sufficient data was not obtained to conduct 

a quantitative analysis of this (Figure 5.14, Figure 5.15).    
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Figure 5.13 – Infarct at 4h post-stroke as measured by DWI MRI scan -  Representative images from one 
animal demonstrating the data obtained by DWI scan. 

CAG-miR-21 

WT 
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Figure 5.14 - MRI scan to assess blood-brain barrier integrity – Pre-administration of Gadolinium contrast 
via the tail vein and imaged by MRI in order to obtain a baseline image for analysis. identify whether 
breakdown of the blood-brain barrier was present. 
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Figure 5.15 –MRI scan of brain following contrast agent administration – Gadolinium contrast agent was 
administered via the tail vein and brain imaged by MRI in order to identify whether breakdown of the 
blood-brain barrier was present. Gadolinium shows up on scan as intense white. 
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5.3 Discussion 

 

In order to test the hypothesis regarding the function of miR-21 in ischaemic stroke a 

number of experiments were conducted. miR-21 was demonstrated to be upregulated 

after stroke by performing qPCR on peri-infarct tissue isolated from aged SHRSP rats 

subjected to tMCAO stroke.  In situ hybridization data supported this observation and 

demonstrated that there was a characteristic change in localization of miR-21 expression. 

Subsequent studies sought to investigate the effects of modulating miR-21 assessing 

change in both directions via the use of overexpressing and knockout transgenic mice. 

Measurement of blood pressure and characterization of cerebrovascular anatomy 

demonstrated no basal differences between transgenic and wild type animals other than 

the differential expression of the miRNA of interest. Following the commencement of the 

transgenic overexpression study, no difference was observed in infarct size or behavioural 

measurements between overexpression and wild type controls. Subsequent experimental 

work on the miR-21 KO strain had to be terminated early due to a high mortality rate. 

Mortality in the miR-21 KO experiment occurred exclusively in the KO group and was 

significant, suggesting that miR-21 KO worsens pathology of stroke. 

 
Alteration in miR-21 expression and localization in SHRSP rats following stroke displays 

characteristic differences. Immunohistological evidence was generated which suggests 

that expression of miR-21 is located in neuronal nuclei of pyramidal neurons in the non-

infarcted brain tissue whilst there is an apparent localization of miR-21 to invading 

astrocytes in infarcted tissue. Although evidence exists demonstrating an upregulation of 

miR-21 following stroke in rats, this is the first time that a significant upregulation of miR-

21 has been described in peri-infarct tissue following ischaemic stroke in co-morbid rats 

(Buller et al. 2010). Taken together, the combination of the immunohistochemistry and in 

situ data analysed with consideration to the global increase in miR-21 expression 

observed by TaqMan does seem to indicate that the increased levels of miR-21 are due to 

invasion by infiltrating cell populations. Other cells that will be present at 72 hours 

following stroke such as macrophages (Chiba and Umegaki 2013) were not assessed in 

this study and it is possible that these cell types will also express miR-21. Interestingly 

similar changes have been described by others in mice following spinal cord injury and 
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overexpression of miR-21 by astrocytes was determined to be protective in the 

prevention of the breakdown of the blood-brain barrier (Bhalala et al. 2012). It has also 

been demonstrated that there is a significant upregulation of miR-21 expression following 

traumatic brain injury in mice (Redell, Zhao, and Dash 2011).Although this diseases and 

models are considerably different from stroke, one might expect that these fundamental 

cell pathways which regulate response to cellular injury in the central nervous system 

could exhibit a great deal of mechanistic overlap at the molecular level. Ideally, for the co-

localization experiments both the in situ and immunohistochemistry would be conducted 

on the same section instead of serial sections to improve resolution and confidence that 

the same cell was being assessed in analysis (it would also remove the challenge of trying 

to locate identical regions of the brain on two different slides under a confocal 

microscope). However, due to the fact that the in situ platform employed used a dye and 

the immunohistochemistry used fluorophores this was not possible at this time.  

To date only one paper exists which has described a difference in MiR-21 expression level 

stroke (Buller et al. 2010), in situ hybridization of post-stroke brains determined there to 

be an upregulation of miR-21 following stroke in WKY rats. There are several 

methodological differences between this study and the one conducted here. The greatest 

difference is the use of WKY instead of SHRSP rats, SHRSP rats exhibit co-morbidities 

associated with stroke and are therefore considered to be more clinically relevant. The 

other major methodological difference is that whilst this study has employed the filament 

model of stroke, Buller et al. have used the embolic model of stroke by administering a 

blood clot generated ex vivo. This model, though not as widely studied as the tMCAO 

filament model is considered to be more clinically relevant as it is a better representation 

of what happens in humans (Hashimoto et al. 2010b). Whilst the work described here 

used the time points 24h and 72h for assessments of phenotype, Buller et al. have looked 

at 48h and 7 days. Despite these considerable differences between these studies, their 

findings are consistent with regards to expression levels of miR-21.There is also some 

evidence demonstrating differential expression in serum following stroke. One study 

suggested that miR-21 expression was higher in serum of stroke patients than healthy 

controls (Tsai et al. 2013), whilst another demonstrated a downregulation in plasma 

expression levels (Zhou and Zhang 2014). The contradictory evidence regarding the 

direction of miR-21 change in these human studies is disconcerting and likely has arisen 
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as a result of differential underlying genetics in the groups used for the two studies as has 

been discussed earlier in this thesis. 

Differences in localization of miR-21 following stroke as determined by in situ 

hybridization offers some insight regarding the function of this miRNA in the context of 

disease. Loss of neuronal expression in the infarcted region is most likely a feature of cell 

death in this region. Whilst the speckling pattern observed in the parenchyma was 

probably due to infiltration by invading astrocytic cells and inflammatory cells such as 

macrophages.  

Perhaps the most notable aspect of the differential localization following stroke is the 

increased expression present in the endothelium of the cerebral microvasculature, this 

has not been previously described in the context of stroke. Promotion of miR-21 was 

observed in vitro in endothelial cells following induction of shear stress(Weber et al. 

2010). Subsequent studies have identified modulation of miR-21 expression in the 

systemic circulation following vascular injury (Urbich et al. 2008). Further investigation 

will be necessary to determine the functional significance of the increased endothelial 

miR-21 in the cerebrovasculature following stroke. However, other evidence assessing the 

function of miR-21 in primary retinal endothelium following stroke suggests that this 

miRNA promotes angiogenesis (Guduric‐Fuchs et al. 2012). 

Following characterization of miR-21 changes in the rat, it was deemed necessary to 

achieve experimental modulation of miR-21 in models of stroke in order to assess its 

potential use therapeutically. Initially consideration was given to use of viral vectors or 

miRNA mimics. However, due to technical challenges with both vector generation and 

robust modulation of miRNA expression, transgenic animals were decided upon as being 

the best strategy for manipulation. As miR-21 transgenic rats do not currently exist, it was 

necessary to translate this research into the mouse model of stroke. MRI imaging of 

infarct size was decided upon as being the primary measure of outcome and in keeping 

with the STAIR guidelines (Saver et al. 2009b) behavioural testing was also incorporated. 

For this experiment the Garcia neuroscore (Garcia et al. 1995) and rung ladder test(Metz 

and Whishaw 2009b) were used.  

Following establishment of the mouse transient middle cerebral artery occlusion in the 

pilot study there was an assessment of the effect of increasing miR-21 expression in the 
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transgenic animals in the Memphis colony with relation to stroke. There is a 6 fold 

upregulation in the basal levels in heterozygotes versus the wild type mice. This is larger 

than the post-ischaemic 2 fold upregulation observed in the rats and can be expected to 

exhibit a physiological effect. Ultimately no difference was observed in infarct size 

between groups. Variability within each group may be a contributing factor to the lack of 

difference observed. A brief survey of the literature illustrates that variability is different 

between studies (Casals et al. 2011). Some of this occurs as a result of variation in the 

genetic background in a colony, some as a result of the specific technique used(Connolly 

Jr et al. 1996). Every methods section identified which employed tMCAO in mice stated 

that the monofilament should be advanced 9-10mm (regardless of strain used) meaning 

that there is immediately a 10% measurement error with regards to the filament alone, 

before taking into consideration the anatomical variations present in the animals; it was 

often not possible to advance the filament even 9mm from the bifurcation of the 

common carotid without risking rupture of the cerebrovasculature so in many cases the 

filament was advanced until it was met with resistance. Many researchers permanently 

ligate all branches of the common carotid artery with the exception of the internal carotid 

(Chiang et al. 2011), but in this study flow through the circle of Willis has been maintained 

in an attempt to mitigate the severity of the procedure. A recent study demonstrated that 

permanent occlusion of the pterygopalatine artery in mice (something not usually 

performed) resulted in a statistically significant reduction in infarct variability (Chen et al. 

2008). It is difficult to make direct comparisons between techniques performed by others 

due to differences in strains used and intrastrain differences between institutes resulting 

from genetic drift, but it is likely that permanent ligation of common carotid branches 

may result in less variability. Whilst the permanent ligation of these vessels would likely 

reduce variability across the group (Chen et al. 2008) it would result in increased severity 

for each individual animal. Branches of the carotid were all ligated temporarily so that as 

much normal blood flow as possible could be retained following recovery. This results in 

less severe phenotype thus complying with the ‘Refinement’ aspect of the Home Office’s 

3Rs policy (Russell et al. 1959). 

In an ideal world it would have been beneficial to optimize the stroke procedure in the 

mouse assessing relationship between infarct size and variables such as distance of 

advancement of filament and occlusion times in order to identify whether it was possible 

to obtain a smaller, more consistent infarct. The strokes observed here are quite large 
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and relative to size of brain, much larger than what is observed in humans in clinical 

practice. It is possible that although no difference in infarct size is seen upon resolution at 

72 hours that a difference in sensorimotor deficit may exist between groups. I have 

assessed behaviour out to 72 hours, but it is possible that the animals are still recovering 

from anaesthetic etc. and this results in a non-stroke related reduction in sensorimotor 

function. Ideally, behavioural testing should be conducted at longer time points such as 1 

week following stroke. However, it was not possible to take the experiment out to this 

point due to time constraints, limited resources and concerns regarding mortality/animal 

welfare. 

Additional animals were required to conform to the numbers determined by power 

calculation. 6 and 8 mice were used in each group instead of the suggested 12 and 12. 

Some mice were lost as a result of the procedure and before they were replaced by 

additional animals an interim analysis was conducted on data already generated in order 

to see whether the addition of these animals would support the hypothesis. However, 

due to the lack of difference in the mean infarct size between groups it was determined 

that the hypothesis would not have been supported by the inclusion of these additional 

animals. 

It was considered that the reason for the lack of difference observed between the 

heterozygous and wild-type Memphis animals was that a potent increase in miR-21 was 

evident in the transgenic animals at baseline; this may be lost following the 

transcriptional upregulation which occurs following stroke. In order to determine 

whether this was the case or not qPCR was performed and the 6-fold higher level of miR-

21 expression persisted in the Memphis animals at 72 hours following stroke suggesting 

that this was not the case. 

Baseline blood pressure was also assessed, the hypothesis being that if any differences in 

infarct size were observed following stroke, it would be necessary to determine that there 

was no difference in blood pressure or cerebral blood flow, as differences here could 

account for differential phenotype as the result of traditional physiological risk factors as 

opposed to anything really interesting at the molecular level involving miRNA biology. Tail 

cuff plethysmography of mice demonstrated there to be no difference in blood pressure 

between groups.  
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Unfortunately, the miR-21 KO study using these conditions had to be terminated early as 

a result of a mortality rate exceeding that expected within limit of licence, although the 

mortality occurred exclusively in the KO group. This is promising as it demonstrates that 

miR-21 plays a role in vivo following stroke. It is possible that the lack of effect seen in the 

Memphis experiment is due to the miRNA not being expressed highly enough, or counter 

regulatory effects may be in place negating the effects of overexpression. 

MiR-21 has previously been observed as being upregulated in the smooth muscle cell 

layer of atherosclerotic vessels (Raitoharju et al. 2011; Wang et al. 2011). Investigation 

into miR-21 function in vascular smooth muscle cells has been conducted in vivo by 

performing vein graft transplantation using in pigs and mice. in situ hybridization has 

demonstrated that there is little no expression of miR-21 in the smooth muscle cell layer 

of ungrafted saphenic veins, but porcine vein grafts demonstrated expression in the 

adventitial medial and neointimal layers at both 7 and 28 days post-surgery. Mice 

demonstrated a similar pattern of expression in vein grafts and co-localization 

immunohistochemistry experiments demonstrated that the cells expressing miR-21 were 

smooth muscle and macrophages. Ablation of miR-21 in mice which were subjected to 

vein grafting demonstrated attenuation of neo-intimal formation suggesting that miR-21 

plays a role in post grafting pathology, suggesting that therapeutic modulation of this 

miRNA may be an effective clinical strategy in the treatment of vascular disease 

(McDonald et al. 2013). Studies in pulmonary arterial hypertension have demonstrated 

that miR-21 is expressed abundantly in endothelial cells of the pulmonary circulatory 

system. In the context of pulmonary arterial hypertension, miR-21 inhibits expression of 

PDCD4 attenuating caspase 3 mediated apoptosis and mitigating pathology of this disease 

(White et al. 2014). This is somewhat consistent with observations made in this thesis 

regarding vascular localization of miR-21 expression, and whilst the evidence presented 

regarding the therapeutic potential of miR-21 in the context of stroke it remains a 

candidate for further investigation. 

Following the termination of the miR-21 KO study taken to 72h and the indication that 

knockout did seem to worsen phenotype by increasing mortality, the remaining miR-21 

KO mice were assessed with a 4h end point. Whilst this has resulted in a reduction of 

mortality to well within acceptable limits in order to identify whether differences in 

infarct size are present DWI scans were utilised. No difference was observed in infarct size 
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between groups. The numbers of animals used in this study were considerably less than 

those used in the original miR-21 Memphis study and there are also technical challenges 

regarding the quality and resolution of the DWI scan versus the T2-weighted scan. Taking 

these two factors into consideration alongside the increased mortality in the miR-21 KO 

animals at 72h following stroke, I am not convinced that the absence of evidence in 

relation to the primary outcomes hypothesised is evidence of absence of effects of the 

gene. 

Injection of contrast agent in order to identify differences in blood-brain barrier integrity 

could also be performed in attempt to analyse blood-brain barrier at the physiological 

level. If any difference could have been demonstrated between miR-21 KO and wild type 

mice, this could account for the difference in mortality rate observed between the two 

groups. One would expect that if blood-brain barrier is effected by miR-21 expression in 

this strain of animals as is described elsewhere (Bhalala et al. 2012) that a reduction in 

BBB integrity would result in a more severe stroke phenotype including higher rate of 

mortality. In order to assess this gadolinium contrast agent was administered to 

anaesthetized mouse and visualised by MRI, this is quite technically challenging. 

Following the induction of anaesthesia the mouse is heated to ensure vasodilation is 

present (mice can become quite cold acutely following recovery from stroke surgery and 

vasodilated vessels are extremely difficult to visualize/cannulate). Location of the tail vein 

was identified by surface anatomy, this was made more challenging by the brown 

pigment of the mice used. Following identification of the desired vessels the mouse tail 

vein was cannulated. Successful cannulation was confirmed by allowing blood to flow 

back along the cannula. Once confirmed a solution of heparinised saline is added to the 

cannula to prevent coagulation of blood in the line. The mouse was first scanned by DWI 

scan as infarct size was the primary outcome measurement being made during this study, 

and due to the time taken for this as well as the agitation of the mouse as it was 

transported from theatre to the bore of the scanner the line often became blocked or 

displaced. It was not apparent whether this was the case or not until the contrast agent 

was administered and the brain imaged. This technique is performed with much greater 

success in the rat due to the difference in size, although the reason that this was not 

performed for my study was due to the inability to modulated miRNA expression in the 

rat at the time experimental work was performed. 
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The behavioural assessments used in this study are commonly implemented in stroke 

literature due to the limited speciality equipment needed to perform them, but they are 

by no means the best. The Garcia neuroscore is likely to be a highly subjective measure of 

sensorimotor deficit and if the researcher knows the identity of the experimental groups 

being used this makes it extremely prone to bias. For this reason it is of great importance 

that the researcher remains blinded to the identity of the subjects in a study. Great care 

was taken during this study to ensure that I was blinded to animal genotype until it was 

time to analyse my data, which increases the integrity of these studies. There were also 

challenges associated with the use of the ladder test. Prior to commencement of the 

study each mouse was subjected to multiple trials on the run in order to train them to 

perform the task effectively. Although, animals did generally perform well from the first 

trial, following stroke the majority of them really struggled. Several of them required 

encouragement to traverse the ladder which was not desirable for this experiment. It is 

unclear whether the lack of ability to independently finish the ladder test post-infarct 

relates to the severity of the stroke or from the subjects still being under the influence of 

anaesthetic and/or the effects of acute inflammatory response following stroke.  

As I have described, there are many variables which could be modified in this 

experimental procedure including distance of filament advancement, type of stroke 

model (tMCAO, Embolic, Temura), time of occlusion, recovery time points, and 

measurements made. The reason MRI quantification of infarct is more desirable is that it 

allows for measurements of infarct size to be made. Another major consideration is that 

only one miRNA was assessed in vivo and although preliminary data did appear to support 

the hypothesis it was by no means conclusive. The support for the hypothesis from the 

literature largely comes from studies which have assessed different diseases, different 

models and different tissues/cell types making it difficult to draw parallels effectively. This 

is indicative of an open question present in miRNA research today: is it better to pick 

candidate genes and targets which have been validated in the context of other diseases 

and to study them in the context of your disease of interest? Or is it better to perform 

screens for miRNAs and targets in your own models in order to identify genes and targets 

of interest? Each presents its own respective benefits and setbacks. For this in vivo study 

the former option was selected. This reduced the initial costs to identify the genes being 

studied, but in retrospect, this may not have been the correct miRNA to study in this 

model.  Whilst conducting screens specific to disease models may result in improved 
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candidate selection, these experiments may  be prohibitively expensive and by no means 

guarantee robust data generation. For example, the signal from abundantly expressed 

genes may act to mask changes which occur in less abundant transcripts. With regards to 

miRNA expression and cell signalling it is often the lower abundance genes which are the 

most interesting, especially when these molecules are at the apex of hierarchical cell-

signalling cascades. A target specific approach would identify small changes and low 

abundance transcripts accurately, whilst they may be passed over as candidates for 

further analysis by the initial array experiments.  

Another improvement that could have been to the study was to have achieved the 

modulation in vivo through use of pharmacological agents. Initially the plan was to 

generate canine adenovirus containing miRNAs of interest to take advantage of its 

neurotrophic behaviour. However, this approach was discarded due to cloning problems 

which created issues with regards to generation of vectors and issues regarding 

downregulation of the CAR receptor which resulted in the reduction of transduction 

efficiency of the vectors in vivo. Subsequently modulation of miRNAs through the use of 

mimics was attempted. This is more desirable from a translational perspective as this 

approach frees the researcher from all of the challenges posed when getting a viral vector 

to clinical trials as well as bringing a viral vector based therapeutic to market. Initial in 

vitro work was very promising in terms of promoting modulations in miR-21 expression 

levels. However, no changes were observed in target genes assessed in keeping with what 

would be expected given that targets were modulated by this miRNA in this model under 

these conditions. This lack of identified mRNA modulation following miRNA modulation is 

a problem frequently encountered by those investigating miRNAs, it is possible that other 

targets not assessed in this study are being modulated and they have been missed. Either 

way, this demonstrates the importance of looking for changes at the protein level as even 

in cases where there is no measurable difference in mRNA expression levels following 

miRNA inhibition, there can still be post-transcriptional inhibition of translation. Initial in 

vivo experiments in rats suggested that conducting these experiments would not be 

possible with the doses being used. For this reason the in vivo aspect of this project was 

translated into mice due to the availability of transgenics.  Use of transgenics has 

demonstrated that it is possible to get reliable modulation of miRNA expression even 

following stroke, but it does come with some caveats.  
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Chapter 6 – General Discussion 
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6 Conclusions 

During this doctoral work, the involvement of miRNAs in stroke has been investigated in 

several different contexts through the use of in vitro and in vivo preclinical models, as well 

as in patient serum samples. This work was conducted with the underlying philosophy of 

translational medicine which seeks to ensure optimal transmission of findings from basic 

research for maximal benefit in the practice of clinical medicine.  

Despite recent advances in the understanding of underlying stroke pathophysiology as 

well as promising new developments in the ability of clinicians to effectively treat stroke it 

remains one of the leading health problems in the western world today. Until recently, 

the only clinically approved treatment for stroke was thrombolysis by alteplase at 4.5h 

following stroke (Hacke et al. 2008). Due to the narrow therapeutic window of 

effectiveness for this treatment a minority of patients benefitted from this treatment. 

More recently experimental stroke research has been focused on the neuroprotection 

strategy, the field suffering from some high profile failures, most notably NXY-059 (Diener 

et al. 2008b). The most recent clinical research demonstrating efficaciousness relies on a 

combination of mechanical thrombectomy and thrombolysis: The results of the MR 

CLEAN trial were recently presented at the World Stroke Conference in Istanbul and met 

with a standing ovation from the audience (Donnan 2015). Whilst the ongoing 

progression in the advancement of stroke interventions by the refinement of existing 

treatments as well as the introduction of new ones will improve the lives of many, there is 

still much to be done before stroke can be effectively treated.  

miRNAs are short non-coding RNA molecules which act to post-transcriptionally inhibit 

expression of a myriad of different proteins. Given that a single miRNA can modulate 

multiple aspects of a single pathway, miRNAs can act as potent modulators of these 

pathways. Irrevocable evidence supports the fundamental importance in normal cellular 

biology, as well as the pathogenic (and potentially therapeutic) effects of miRNA 

perturbations.  There is great interest in the modulation of miRNAs for therapeutic 

purposes and novel experimental therapeutics are emerging with increasing frequency. 

Arguably the miR-based treatment closest to common clinical practice is Miravirsen, a 

LNA inhibitor of miR-122 for the treatment of Hepatitis C virus (Janssen et al. 2013). It will 

be interesting to see how these treatments fare as they pass through the system of 
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clinical trials as the success of miRNA based treatments in other diseases can only be 

propitious for miRNA in stroke research.  

Previous research in this group, as well as others have implicated the importance of miR-

29 cluster members in stroke after noting that its expression was dysregulated following 

cerebral ischaemia. In order to verify that the endogenous changes in miR-29 cluster 

expression levels were reproducible in this lab qPCR was performed on rat brain tissue 

from SHRSP rats subjected to tMCAO. miR-29b was found to be significantly 

downregulated in ischaemic core at 24 and 72h, whilst it was significantly upregulated in 

peri-infarct tissue at 72h only versus time-matched sham control. Whilst miR-29c was 

downregulated in the remainder tissue at 24h and infarct core at 72h only. Description in 

temporal changes in miR-29 expression at the transcriptomic level was supported by 

identification of its spatial location by in situ hybridization. However, no notable changes 

in localization were observed.  The greatest strength of the rat characterization versus 

other similar research is that the brain studied has been assessed on subdivisions looking 

at ischaemic core, peri-infarct region and remainder tissue. Much of the brain miRNA 

expression data to date looks only at whole hemispheric lysates. Molecular regulation of 

gene expression is not homogenous throughout the brain and different pathways are 

being modulated in different regions depending on whether cell death has occurred, 

whether it is a region of evolving infarct, or whether it is remainder tissue. This approach 

offers greater resolution and thus improved understanding of what is occurring in the 

brain. Ideally it would be informative to further distinguish miRNA activity based on cell 

type (neurons, astrocytes, cerebrovascular endothelium etc.) but this is currently too 

technically challenging to perform effectively. Another improvement that could be made 

to this study would be the assessment of additional acute time points as this would allow 

for improved temporal resolution and better understanding of how miRNAs  alter with 

time. 

In order to further investigate the potential manner in which the miR-29 cluster is 

involved in stroke pathophysiology several target transcripts were assessed. The miR-29 

family has been relatively well described as a potent modulator of fibrosis in the context 

of other diseases as such several members of the TGF signaling family were assessed in 

addition to other genes widely studied in the context of stroke as well as being miR-29 

targets. Of those selected and studied, MMP2, MMP9 and TGFβ-1 were found to be 
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significantly downregulated which would be consistent with an increase in miR-29 family 

member expression assuming that these genes are under control by miR-29b in this 

context.  In order to definitively confirm the interactions between these genes in this 

tissue further experimentation (such as co-immunoprecipitation) would have to be 

performed, or modulation of miR-29b would have t o be implemented in this model in 

order to see if changes in these target genes could be achieved. It is also quite likely that 

many miR-29 target transcripts are modulated in this model which have been missed due 

to the manner in which targets were selected. A transcriptomic analysis would potentially 

identify additional gene candidates. Ultimately, from a clinical perspective the 

physiological effects of modulating these miRNAs in the context of stroke will be more 

informative that descriptive studies of the mechanisms of miRNAs  in response to stroke 

in untreated animals, although in depth understanding  of these mechanisms will be 

essential if such a treatment is to be brought into the clinic. Such studies will have to be 

conducted after a candidate miRNA has demonstrated improvements in reducing infarct, 

improving sensorimotor function, promoting synaptic plasticity and/or promoting 

regeneration. 

Following up the miR-29 aspect of this project, in vivo hypoxic challenge was 

implemented in a rat neuronal cell line in which miR-29b and miR-29c were modulated by 

use of miR mimics and anti-miRs. Whilst there was a failure to demonstrate miR 

suppression by anti-miR, there was a potent upregulation of both miR-29b and miR-29c. 

No corresponding downregulation of the miR-29 family member targets assessed was 

observed. However, MMP9 was significantly upregulated following transfection with miR-

29b and Col3A1 was significantly upregulated with transfection of both miR-29b and miR-

29c. The lack of gene inhibition at the transcript level is not conclusive, and it is possible 

that changes not apparent at the transcriptional level may be present at the protein level. 

Likewise it is possible that the gene targets assessed are not under miR-29 regulation in 

this model. The upregulation in MMP9 and Col3A1 may be due unknown complex 

regulatory feedback mechanisms although further experimentation would be necessary 

to confirm or deny this.  The lack of cohesion between these observations and published 

literature on the subject is most likely down to differences in the models used.  

The next aspect of this research was to attempt to develop a serum miRNA biomarker for 

stroke patients. Identification of candidate miRNAs of interest, serum obtained from 30 
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(16 non-stroke, 14 stroke) patients was subjected to Openarray miRNA analysis. From this 

initial study miR-19b, -20b, -21, -25, -27a, -93, -106a, -139-5p, -331, -374, -376c, -532, -

573, -590, -885 were selected for further investigation. Validation of these candidates was 

attempted in serum obtained from 75 patients (20 non-stroke, 55 stroke) however no 

significance was observed between the two groups. Post-hoc analysis of stroke patients 

by TOAST subclassification was implemented in order to ascertain whether any difference 

may be present between subtypes of stroke. Again, no significance was observed. The 

biggest strength of this study in comparison to the literature was the use of stroke mimics 

as opposed to healthy controls however, this placed a limitation on the number of 

controls that were available for recruitment. Another likely source for the lack of 

significance observed is due to greater inter-subject variability of miRNA expression and 

smaller magnitude of changes in miR expression than was anticipated when the 

experiment was designed. Following this, exosomes were isolated from patient serum 

and subjected to qPCR analysis to determine whether any changes may be present in 

exosomes, but whilst the data benefited from a reduction in variability no significance 

was observed. Analysis of expression of miR-19b, -93, -106a and -532 in rat serum and 

isolated exosomes demonstrated significant differences illustrating that changes here 

were observable in experimental models used.  The greatest strength of this study versus 

what has been published in the literature is the use of stroke mimics. Frequently, when a 

molecular biomarker for disease is identified by a study like this it will not remain a valid 

biomarker when subject to further scrutiny. This is often because the initial studies have 

used healthy controls and the difference in expression of such a genetic biomarker 

between an at-risk population and disease population is less than that observed between 

the disease population and a healthy population. Future work on this is seeking to 

increase patient numbers to improve the power of the study further and will look 

specifically assess miRNA expression levels in serum exosomes as the data obtained from 

such studies is more robust, less variable and more interesting from a functional 

perspective. 

The final aspect of this project looked at the effects of in vivo modulation of miR-21 in the 

context of stroke via the use of transgenic mice. Modulation of miRNAs in experimental 

stroke models is most desirable after onset of stroke as this is of most clinical relevance. 

Modulation of miRNAs post-stroke presents considerable technical issues. For this reason 

the use of transgenic mice was decided upon in order to identify whether miR modulation 
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could result in improvements of stroke phenotype in physiological and behavioural 

measurements. miR-21 was selected due to evidence in the literature which has 

implicated the importance of miR-21 in the context of several cardiovascular diseases 

including stroke.  

Initial experimental work sought to describe basal expression of miR-21 and differences 

which occur following experimental stroke. qPCR analysis of miR-21 expression in rat 

brain tissue demonstrated that there was a significant increase in expression in the peri-

infarct region of the brain versus sham control as well as the corresponding contralateral 

region at 72h following stroke. Localization of miR-21 expression at this time point as 

determined by in situ hybridization demonstrated that there was a characteristic change 

in localization associated with the global increase in expression. Of most interest was the 

induction of miR-21 expression in cerebral microvasculature following injury. Co-

localization by immunohistochemistry demonstrated that some of the miR-21 expressing 

cells which become apparent in infracted tissue may be astrocytic in origin. 

After demonstrating that miR-21 expression was altered following stroke, the role was 

assessed by comparing infarct size as well as behavioural measurements in miR-21 

overexpressing CAG-miR-21 mice versus wild type control. In order to ensure that any 

differences physiology following stroke was not due to underlying phenotype some 

characterization of the mouse colony was conducted.  Anatomical variation of circle of 

Willis anatomy was determined by histological analysis of the vasculature by India ink 

staining and found there to be no difference between transgenic and wild type animals.  

Measurement of blood pressure by tail cuff plethysmography demonstrated no difference.  

No significant difference in stroke volume or neurological deficit was apparent between 

the transgenic animals and wild type controls. This may be due to the infarct size in this 

model being too large to achieve a measurable improvement in lesion size by modulation 

of genes, or it may also be the case that the increase in miR-21 expression is beneficial for 

some cell types and detrimental in others, these effects negating each other. It may also 

be the case that the level of modulation may not be optimal to achieve therapeutic 

effects. Subsequently a similar study was conducted in homozygous miR-21 KO mice and 

found there to be a significant increase in mortality rate suggesting that miR-21 KO 

worsens stroke pathology.  This study was terminated early due to a mortality rate 

beyond what was allowed on license. In order to obtain further clarification regarding the 
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effects of miR-21 KO on stroke, a final study looked to assess the size of stroke at 4h by 

DWI scan. However, due to technical issues these data were inconclusive.  In order to 

better assess the effects of miR-21 modulation in these mice it would be beneficial to 

optimize the tMCAO protocol to reduce infarct size and ensure that it is localized to the 

cortex as this is more clinically relevant and it may be easier to identify improvements in 

infarct volume and behaviour with a less severe stroke. Use of an alternative stroke 

model in these mice might be permissible to achieve this.  

The work presented in this thesis, along with the literature on miRNAs and stroke 

represent a mere scratch on the surface of what remains to be done with respect to our 

understanding of the role small non-coding RNAs play in cerebral ischaemia. Although the 

hypotheses put forth in this work have not been supported fully by the data, this work 

has laid foundations whereupon further research will build moving forward. Ideally 

assessment of miRNAs in stroke would involve a large multi-center multi-model study 

which systematically works through a large array of different miRNAs. Primary outcomes 

measured would be physiological and behavioural measurements of stroke, whilst 

secondary outcomes would seek to identify underlying mechanisms by which specific 

miRNAs are having these effects by transcriptomic and proteomic analysis. It may also be 

the case that a cocktail of multiple miRNAs may have improved effects over individual 

species, whilst the targeting of miRNA modulation to specific cell types will also be 

desirable in order to attain more sophisticated targeting of treatments. Further research 

in this area will serve to improve the options available to patients in the movement 

towards personalized medicine.  
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