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Abstract 

Cardiovascular disease (CVD) is one of the leading causes of morbidity and 

mortality. The literature supports a series of established risk factors for CVD: 

age, gender, family history of CVD, ethnicity (un-modifiable); and high blood 

pressure, blood cholesterol, TGs, LDL, diabetes, pre-diabetes, obesity, smoking, 

physical inactivity, stress and  unhealthy diet (modifiable). High blood pressure 

(hypertension) shares many of these risk factors. However, much of the 

variance/risk in both conditions cannot be explained. This has led to a search for 

novel risk factors, including insulin resistance and subclinical inflammation, the 

significance of which at present are controversial, particularly in relation to 

hypertension. There are also ethnic differences in the incidence, prevalence, 

risk factors and progression of cardiovascular disease. In some populations CVD 

occurs at an earlier age and progresses more rapidly.   

In this thesis I worked on two datasets in relation to hypertension, 

cardiovascular disease and their risk factors: (i) the RISC (Relationship between 

Insulin Sensitivity and Cardiovascular disease) study (chapters 2, 3, 5 and 6); and 

(ii) routinely-collected national data in Scotland via the SDRN (Scottish Diabetes 

Research Network) and SCI-Diabetes (chapter 2 and 7). Work on data from the 

RISC cohort focused on the relation between clamp-measured insulin sensitivity 

(its unique feature), inflammatory markers and hypertension; the SDRN work 

addressed ethnic differences in relation to diabetes and CVD.  

The first study (Chapter 3) examined the importance of insulin 

sensitivity/resistance in the development of hypertension and change in blood 

pressure over three years of follow-up in the healthy European (EU) RISC 

population. Systolic BP (SBP) was higher at baseline in insulin resistant (IR) 

women. There was no difference in BP in relation to IR in men. After adjustment 

for age, BMI, baseline BP and other covariates, low insulin sensitivity (M/I) 

predicted a longitudinal rise in SBP in women but not men, and SBP over time 

did not increase in insulin sensitive women.  

The second study (Chapter 4) was a systematic review of the relationships 

between two markers of low grade inflammation (IL-6 and CRP) and 

BP/hypertension, considering the roles of adiposity and insulin resistance.  
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The systematic review showed evidence of considerable variation in the 

relationships amongst low grade inflammation, adiposity, insulin resistance and 

the development of hypertension. There appeared to be a positive association in 

the literature between CRP and DBP in younger individuals, although none of the 

studies were adjusted for insulin sensitivity determined by clamp technique.  

This association was further explored using RISC study data in Chapter 5 with 

stratification by sex and adjusting for clamp-derived insulin sensitivity.  

The third study (Chapter 5) examined the relationship of inflammatory markers 

with the development of hypertension and change in blood pressure over three 

years in the same healthy European population and whether any relationship was 

independent of clamp-measured insulin sensitivity (IS). High sensitivity C 

reactive protein (hsCRP) predicted prospective change in diastolic BP 

independent of insulin sensitivity and BMI whereas IL-6 had no relation with BP 

(both systolic and diastolic) or the incidence of hypertension.  

The fourth study (Chapter 6) evaluated all available predictors of BP rise over 

time (both systolic and diastolic) in a healthy EU population; moreover the 

significance of different predictors was examined within subgroups defined by 

age and sex.  This analysis showed that baseline BP was the principal 

determinant of follow-up BP in all age and sex groups.  Obesity was the second 

most important predictor (BMI in adults aged 30-44 years; percent change in BMI 

in middle age people aged 45-60 years). Lifestyle factors influenced BP via their 

effect on BMI. People who maintained their BMI during the three year follow-up 

did not exhibit a rise in BP (whether systolic or diastolic). Other important 

predictors identified in this analysis were insulin sensitivity in middle aged 

women and hsCRP in adult men.  

The fifth study (chapter 7) evaluated the role of ethnicity in the development of 

cardiovascular disease in people with type 2 diabetes living in Scotland. Over a 

follow-up of seven years, Pakistani people had increased risk of CVD and Chinese 

people had decreased risk of CVD as compared to White population. Pakistanis 

had an increased risk of CVD at a younger age independent of other conventional 

risk factors.  
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In summary, insulin sensitivity and inflammation influence blood pressure, but 

their role is not generalised across different age and sex groups. BMI and change 

in BMI are important predictors of follow-up BP in adults and middle age healthy 

people, supporting a role for maintenance of BMI in preserving cardiovascular 

health. In addition to the known ethnic differences in the development of 

diabetes, I identified ethnic differences in the development of CVD. 
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1 Introduction 

In this thesis I present work evaluating the relationships between cardiovascular 

disease (including hypertension) and novel risk factors including insulin 

resistance, inflammation, weight change and ethnicity. Special emphasis is given 

to the influence of age and sex on these associations in order to examine the 

hypothesis that these relationships differ in men and women and through 

different periods of life. The introduction comprises four Parts. In the first, I 

discuss the epidemiology of cardiovascular disease and its major risk factors 

focusing on hypertension, obesity and diabetes. As vascular (macro- and 

microvascular) dysfunction is an early step in the initiation of cardiovascular 

disease, its physiology and different mechanisms of vascular dysfunction are 

discussed in the second Part. In the third Part I discuss novel risk factors 

including insulin resistance and inflammation. The final Part covers the influence 

of age, sex and ethnicity on cardiovascular risk.  

Part 1 

1.1 Cardiovascular disease- epidemiology 

Non-communicable diseases (NCD) were responsible for two-thirds of all deaths 

globally in 2011, a 7 % increase from 2000 (60% in 2000) (1). The four main NCDs 

are cardiovascular disease (CVD), cancer, diabetes and chronic lung disease, 

with CVD causing most deaths (2). CVD includes coronary heart disease (heart 

attacks), cerebrovascular disease (stroke), peripheral arterial/vascular disease, 

rheumatic heart disease, congenital heart disease and heart failure.  

About 30% of all global deaths in 2008 were from CVD alone, approximating 17.3 

million (2). Within deaths due to CVD, an estimated 7.3 million were due to 

coronary heart disease and 6.2 million were due to stroke (3). It is projected 

that the number of people dying from CVD (mainly heart disease and stroke) will 

increase to reach 23.3 million by 2030 (2;4). CVD is projected to remain the 

single leading cause of death in future (4). 
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1.1.1 Disease load in middle and low income countries 

About 80% of CVD deaths occur in low and middle-income countries (1) and occur 

almost equally in men and women (2).  People living in these countries have a 

greater exposure to risk factors; in addition, they have poorer access to 

prevention programmes than people in high-income countries. Early detection 

services are fewer and they have less access to effective and equitable health 

care services. As a result many people die at a younger (productive) age: this 

places a heavy burden on the economies of low and middle income countries. 

Among NCD, CVD and diabetes are estimated to reduce Gross Domestic Product 

(GDP) by around 6.8% in these countries (2).   

In certain low and middle income countries, current health expenditure on CVD 

alone accounts for 20% of total health expenditure. It is projected that over the 

period 2011-2025 the cumulative lost output in low- and middle-income 

countries associated with non-communicable diseases will be US$ 7.28 trillion 

(3.76 trillion for CVD alone) (5). The current annual loss due to NCD in low to 

middle income countries is approximately US$ 500 billion and CVD including 

hypertension accounts for nearly half of the cost (1). 

1.1.2 Hypertension- epidemiology 

High blood pressure or hypertension (HTN) already affects one billion people 

worldwide and is a major risk factor for heart attacks and strokes (6). About 9.4 

million deaths each year (around 16.5% of all deaths) can be attributed to 

hypertension (7). Deaths due to hypertension mainly include deaths due to 

strokes (51%) and deaths due to coronary heart disease (45%) (6).  

In 2008 the global prevalence of hypertension in adults (aged 25 and over) was 

approximately 40%. It affected around 600 million people in 1980 rising to 1 

billion in 2008 (2).The prevalence of HTN is highest in the African region at 46% 

of adults aged over 25 years and lowest at 35% in the Americas. Global 

prevalence of HTN is low (35%) in high-income countries, while high (40%) in low 

and middle income countries (2). Due to the weak health systems in those 

countries, many cases remain undiagnosed and untreated or have uncontrolled 

HTN.   
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1.1.3 Obesity- epidemiology 

According to WHO, in 2014, more than 1.9 billion people (18 years and older) 

were overweight [Body mass index (BMI) between 25-30] and among these over 

600 million were obese (BMI 30 or more) (8). Of the global adult population, 39% 

(38% men and 40% women) were overweight and 13 % (11% men and 15% women) 

were obese in 2014. The prevalence of obesity has more than doubled between 

1980 and 2014. Moreover, 42 million children under the age of 5 are now 

overweight or obese (8).  

Obesity was once considered a problem of high income countries but is now also 

on the rise in low and middle income countries, particularly due to urbanisation. 

Urbanisation leads to decrease in physical activity and increase in BMI and upper 

body adiposity. Moreover in developing countries, the rate of increase of  

childhood overweight and obesity has been more than 30% higher than that of  

developed countries (8). The most likely cause of this may be poor nutrition in 

the pre-natal, infant and toddler periods. Many children are exposed to food 

which is low in quality: high-fat, high-sugar, high-salt, energy-dense, and 

micronutrient-poor foods (8).  

Worldwide, overweight and obesity are thought to be responsible for at least 2.8 

million deaths each year as well as an estimated 35.8 million (2.3%) of global 

disability-adjusted life years (DALY) (9). The prevalence of overweight and 

obesity is highest in the WHO regions of the Americas (62% for overweight in 

both sexes, and 26% for obesity) and lowest in South East Asia (14% overweight in 

both sexes and 3% for obesity). Women are more likely to be obese than men in 

all the WHO regions,, especially in Africa, the Eastern Mediterranean and South 

East Asia [where prevalence of obesity in women is double that of men] (9). 

Obesity is associated with insulin resistance and associated adverse metabolic 

effects on blood pressure and lipids. 

1.1.4 Diabetes- epidemiology (incidence, current load, projected 
load) 

347 million people worldwide have diabetes (10).  According to the WHO 

prediction, it will be the 7th leading cause of death in 2030 (11). In 2004, an 

estimated 3.4 million people died from complications related to diabetes 
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mellitus (12). More than 80% of deaths due to diabetes or its consequences occur 

in low- and middle-income countries (4). 

Part 2 

1.2 Anatomy and physiology of blood vessels 

Blood vessels consist of layers (also called tunicae) from inner to outer; intima, 

media and adventitia (externa). The arterial intima consists of a single layer of 

endothelial cells (ECs) that is in contact with blood and underlying layer of 

smooth muscle cells. The internal elastic lamina (membrane) separates intima 

from media. The capillaries only contain single layer of EC. The medial layer 

consists of concentric layers of elastic lamina interspersed with smooth muscle 

cells and collagen (13). The smooth muscle cells within the vessel wall are called 

vascular smooth muscle cells (VSMC). The adventitial or outermost layer is rich 

in collagen, fibroblasts, dendritic cells, mast cells, macrophages, lymphocytes 

and adipocytes. The adventitia also contains nerve endings and microvessels. 

Healthy large arteries have a high elastin: collagen ratio. The extracellular 

matrix (ECM) is an important factor modulating vascular stiffness. Other 

important factors regulating vascular stiffness come from ECs, VSMC  and 

adventitia (e.g. cytokines and inflammatory signals) (13). Small and large vessels 

are discussed in Section 1.3. ECs are directly in contact with circulating blood 

and have a crucial role in regulating vascular physiology in states of health by 

releasing substances with potent anti-thrombotic properties (see below Section 

1.2.1). They are particularly vulnerable to damage by molecules in the blood and 

can sense and respond to metabolic alterations either directly or by transmitting 

reactive signals to nearby cells, such as VSMC (13).  

1.2.1 Endothelial function and dysfunction: 

The vascular endothelium is a single layer of endothelial cells forming an 

interface between circulating blood and the vessel wall. The endothelium is 

continuously exposed to shear forces generated by blood flow and has an 

essential role in the maintenance of vascular integrity. Laminar blood flow 

stimulates the release of endothelial-derived nitric oxide (NO) which in turn 

stimulates anti-atherosclerotic and anti-thrombotic pathways (14;15). NO is 
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released in response to shear stress and is the major vasodilator and pro-

angiogenic factor. It regulates local vascular tone and blood pressure as well as 

stimulating the release of vascular endothelial growth factor (which plays a key 

role in angiogenesis and vascular remodelling). In addition NO also have anti-

inflammatory, anti-atherogenic and antithrombotic properties which can be 

demonstrated by its ability to inhibit endothelial leukocyte adhesion, platelet 

aggregation and smooth muscle cell proliferation and migration (16;17).  

Endothelial function can be evaluated by measuring NO dependent vasodilation 

when stimulated by pharmacological (after acetylcholine perfusion) or 

mechanical (flow-mediated vasodilation) mechanisms (18). Loss of NO dependent 

vasodilation is a feature of endothelial dysfunction (17). Endothelial dysfunction 

(ED) may be the earliest vascular manifestation of macro and microvascular 

dysfunction (18;19). Loss of endothelial derived NO leads to ECs apoptosis; 

combined with reduced angiogenesis, the result can be microvascular 

rarefaction (20-22). Rarefaction is abnormally low spatial density of microvessels 

(see below Sections 1.3.3.1 and 1.3.7.4). Likewise impaired endothelium-

dependent coronary vasoreactivity (characterized by vasoconstrictor response to 

acetylcholine infusion- normally vasodilator response) appears to be an 

independent predictor of atherosclerotic disease progression and cardiovascular 

events (19).  

Different cardiovascular risk factors cumulatively generate a pro-oxidative 

environment which leads to endothelial dysfunction. Reactive oxygen species 

switch the endothelial anti-inflammatory/ NO donor response into a pro-

inflammatory response, with hydrogen peroxide accumulation, abnormal redox 

signalling (23) and decreased NO bioavailability. Endothelial dysfunction is also 

associated with leukocyte adhesion and accumulation in the intima of the 

vascular wall (17).  These mechanisms related to endothelial dysfunction will be 

discussed in more detail below in the sections of obesity, insulin resistance, 

inflammation and immunity (Section 1.7.4).  

1.2.2 Mitochondria and endothelial function 

This thesis does not contain data on mitochondrial function or structure but, as 

these subcellular organelles play an important role in determining endothelial 
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and vascular function, their role will be considered here in relation to the other 

phenotypes discussed (endothelial dysfunction, obesity, diabetes, hypertension, 

atherosclerosis). Mitochondria are considered to be the major intracellular 

source of reactive oxygen species (ROS) and ROS is involved in the pathology of 

endothelial dysfunction. Mitochondrion-mediated endothelial dysfunction has 

been linked to a variety of disease states, including hypertension, diabetes 

mellitus, atherosclerosis, coronary artery disease, and hypercholesterolemia 

(24).  

The mitochondrial content of ECs is small in comparison to other body cells with 

higher energy requirements (e.g. muscles) (25) and ECs obtain most of their 

energy from the anaerobic glycolytic metabolism of glucose (25). The main 

function of the mitochondria in ECs is unlikely to be energy production but 

rather as signalling organelles which orchestrate cellular function and 

homeostasis (26). Mitochondria are an important Ca2+ buffering system within 

ECs and work with the endoplasmic reticulum to maintain cellular Ca2+ 

homeostasis (25). Internal metabolic disturbances (e.g. hypertension, diabetes) 

are associated with mitochondrial damage, which in turn produce excessive ROS 

and accelerate EC senescence, death and dysfunction. As EC serve as the first 

barrier of the vascular system, dysfunction contributes to the development of 

nearly all vascular diseases including essential hypertension, pulmonary 

hypertension, and atherosclerosis (27). 

1.2.2.1 Mitochondrial content and dynamics in endothelial cells 

The mitochondrial content of any cell is very important for its cellular functions 

and is critically regulated. The mitochondrial content in turn depends on the 

balance between mitochondrial biogenesis and mitophagy (28). Mitophagy is the 

selective degradation of defective mitochondria by the process of autophagy 

(self-eating). Whenever there is damage to mitochondria, it is followed by a 

mitochondrial fusion and fission process, which then generate functionally 

normal (healthy) and damaged mitochondria. Healthy mitochondria re-enter 

fusion cycles and perform physiological functions in cell. The damaged daughter 

mitochondriae still produce mitochondrial ROS and are depolarized and undergo 

mitophagy (28). If this normal mitochondrial life cycle (biogenesis and 

mitophagy) is disturbed, there are detrimental consequences on cellular 
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bioenergetics which contribute to endothelial dysfunction and the pathogenesis 

of cardiovascular diseases (29). Ageing is associated with inhibition of 

mitochondrial biogenesis in vascular ECs. Moreover, impaired mitophagy is one 

of the contributing factors in the pathogenesis of vascular diseases including 

diabetes mellitus, atherosclerosis, and hypertensive heart diseases (25). The 

Mitochondria are involved in cellular necrosis but EC necrosis remains elusive 

(24). Mitochondrial damage has been shown to be involved in endothelial 

dysfunction as improvement of mitochondrial dysfunction prevents endothelial 

dysfunction (30) (see section 1.7.5.1) and  evidence that endothelial dysfunction 

leads to mitochondrial dysfunction is still lacking.  

1.2.2.2 Mitochondrial reactive oxygen species (ROS) in endothelial cells 

Mitochondria are an important source of cellular ROS but also serve as an 

important ROS buffering system. Mitochondria can sense toxic signals such as 

infectious agents or cholesterol crystals and generate mitochondrial ROS. Risk 

factors including ageing, hypercholesterolemia, hyperglycaemia, smoking, 

infections and hypoxia alter mitochondrial membrane potential (ψm) which then 

triggers excess mitochondrial ROS production (25). In healthy humans, cellular 

mitochondrial ROS production is tightly regulated: manganese superoxide 

dismutase (MnSOD) in mitochondria is rapidly inducible and buffers the ROS in 

the mitochondria matrix by converting superoxide to H2O2 (25). CuZnSOD is 

another superoxide dismutase which buffers superoxide in the intermembranous 

space, cytoplasm and extracellular space. H2O2 thus produced is metabolised 

locally by antioxidant enzymes such as catalase and peroxidases (28). 

Under physiological conditions, concentrations of mitochondrial ROS are low. 

However, these are critical signalling molecules for normal cellular metabolism 

(31). Mitochondrial ROS are involved in the body’s response to hypoxia, 

autophagy, immunity, differentiation, and longevity (31). However, if 

mitochondrial ROS production is significantly increased and exceeds the 

buffering capacity of MnSOD, free ROS causes oxidative damage and cellular 

dysfunction. Free superoxide anions in the matrix are highly reactive and can 

damage mitochondrial DNA, lipids, and proteins. Mitochondrial ROS can also 

damage some complexes of the electron transport chain, further exacerbating 

mitochondrial ROS production and setting up a positive feedback loop that 
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contributes to the severity of endothelial dysfunction and the pathogenesis of 

vascular diseases (31).  

In health and in the early stages of vascular diseases, cellular repair mechanisms 

may replace damaged mitochondria or their components and maintain normal 

mitochondrial function. However, if these quality control and repair mechanisms 

are impaired (e.g. due to ageing or diabetes), dysfunctional mitochondria may 

be retained and continue producing excess ROS and further exacerbate vascular 

diseases (32;33). It has been reported that many vascular diseases are 

accompanied by elevated mitochondrial ROS levels, but the underlying 

pathological mechanisms are complex (34). One of the mechanisms by which 

mitochondrial ROS participates in endothelial dysfunction and vascular diseases 

is by uncoupling the endothelial NO synthase (eNOS) which results in a 

subsequent decrease in the production of NO. Another mechanism is that O2− 

reacts with NO to form peroxynitrite (ONOO−), which together with ROS 

production leads to mitochondrial dysfunction. Reaction with O2- decreases 

available NO, resulting in eNOS uncoupling. This further decreases NO 

production, further promoting pre-existing oxidative stress, and exacerbating 

endothelial dysfunction and vascular diseases (35). In addition increased 

angiotensin II (secondary to activation of renin-angiotensin system in 

hypertensive patients) activates endothelial NADPH oxidase leading to oxidative 

stress and ROS generation which combines with NO to form peroxynitrite (36) 

further enhancing the destructive process. 

1.2.2.3 Mitochondrial regulation of endothelial senescence, apoptosis, and 
mitophagy 

Mitochondrial dysfunction, reduced mitochondrial mass, somatic mtDNA 

mutations and respiratory (electron transport) chain dysfunction are strongly 

associated with EC senescence (37;38). Damaged mitochondria produce 

excessive superoxide and H2O2, which are major determinants of telomere 

length shortening and associated telomere dependent senescence (39). 

Moreover, in senescent ECs, the mitochondrial antioxidant- MnSOD is 

significantly down regulated; further impairing ROS buffering capacity of 

mitochondria (40;41). Similarly in cell culture models of senescence in ECs, 

mitochondrial dynamics are impaired along with loss of ψm. In contrast, 



Chapter 1 

9 
 

improved mitochondrial fitness, as manifested by higher ψm, increased ATP 

production, and decreased damage to mtDNA was associated with prolonged 

lifespan of cultured ECs (42).  

1.3 Macro- and microvascular alterations  

Hypertension and diabetes are a complex chronic systemic disorder exhibiting 

both functional and structural alterations in macrovascular and microvascular 

circulation.  

1.3.1 Macrovascular disease  

Macrovascular disease is a disease of any large blood vessels in the body, 

including aorta, coronary arteries and sizable arteries in the brain and the limbs. 

It is associated with development of cerebrovascular disease (stroke, transient 

ischemic attacks), coronary artery disease (myocardial infarction, angina), and 

peripheral vascular disease. The key features of macrovascular disease are 

arterial stiffening, disturbed wave reflection and altered central to peripheral 

pulse pressure amplification (16;43;44).  

In health, the heart pumps blood into the aorta which stretches to accommodate 

the blood and reduce or “damp” the pulsatility of ventricular ejection. The 

elastic recoil of the aorta then pumps blood back into the peripheral circulation 

as a steady (continuous) flow and limits the pulsatile strain imposed to the 

peripheral microcirculation. The physiological ageing process and other 

metabolic insults (hyperglycaemia, dyslipidaemia) are associated with structural 

and functional changes of the aortic wall leading to aortic stiffness. Structural 

changes include increase in collagen and elastin content and alterations of 

elastin fibres resulting in increased arterial wall thickness. It is also associated 

with inflammation, VSMC alterations (hypertrophy, phenotype modulation) and 

increased endothelial permeability, along with diffusion of macromolecules 

within the arterial wall (45). Elevated wall tensile stress (in hypertension) also 

causes smooth muscle cells to undergo hypertrophy and change from the 

physiological contractile phenotype to a secretory and proliferating phenotype. 

This structural modification in large arteries maintains the wall tensile stress 



Chapter 1 

10 
 

roughly at its baseline values but is possible only at the expense of increased 

arterial wall thickness, leading to increased vascular stiffness (46). 

Increased aortic stiffness leads to increased pulse wave velocity. The central 

pressure waveform is composed by an early systolic peak and a subsequent peak 

in diastole due to the return of the reflected wave coming from the peripheral 

vessels. Due to aortic stiffness and increased pulse wave velocity there is 

amplification of the primary wave in systole rather than diastole leading to an 

increase of central systolic and pulse pressures which in turn is closely related to 

target organ damage.  

1.3.2 Arterial stiffness 

Arterial stiffness collectively accounts for distensibility, elasticity and 

compliance of the arterial vascular system. It describes the reduced capability of 

an artery to expand and contract in response to pressure changes. Arterial 

stiffness is a very important independent (beyond classical cardiovascular risk 

factors) risk factor for the progression of cardiovascular and chronic kidney 

disease (CKD) and an independent predictor of cardiovascular events (47;48). 

Arterial stiffness increases with ageing, however, the process is accelerated in 

the presence of obesity and diabetes and occurs at earlier ages if these 

conditions coexist (48;49). Age-related stiffness is associated with intimal 

thickening with marked increase in intimal to medial thickness ratio (50). Within 

the medial layer there is fragmentation and depletion of arterial elastin coupled 

with deposition of matrix metallo-proteins and collagen (51;52). The dominance 

of collagen content is associated with increased non-enzymatic cross-linkages 

between collagen structures (53). VSMC in the medial layer also undergo intrinsic 

stiffness with ageing (49;54;55) and hypertension (49;54;55). 

Arterial stiffness is also associated with insulin resistance and activation of the 

renin-angiotensin aldosterone system (RAAS) in obesity (56;57), even in obese 

children (58). It is present in conditions such as hyperglycaemia of diabetes even 

in the absence of insulin resistance (56;59). It is also seen in pre hypertensive 

subjects and in normotensive subjects predisposed to develop hypertension (60). 

Obese individuals are likely to have aortic stiffness independent of BP. Both 

obesity and arterial stiffness are also independent factors for left ventricular 
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diastolic dysfunction (heart failure with preserved ejection fraction) which is in 

turn related to CVD (57;61;62). Similarly insulin resistance is associated with 

diastolic dysfunction (obesity cardiomyopathy), independent of hypertension or 

heart disease (63), explaining the fact that arterial stiffness alone even without 

hypertension is a cardiovascular risk factor 

1.3.2.1 Aortic stiffness as a predictor of incident hypertension and CVD 

Liao et al. demonstrated in the Atherosclerosis Risk in Communities (ARIC) Study 

that arterial stiffness and elasticity were independent predictors of incident 

hypertension in normotensive participants over a 6-year mean follow-up (64). 

They also showed that, each standard deviation decrease in elasticity was 

associated with a 15% increase in developing hypertension (64). Later, in the 

Baltimore Longitudinal Study of Ageing, carotid-femoral pulse wave velocity was 

demonstrated as an independent predictor of longitudinal increase in SBP and 

the development of hypertension in individuals followed up for more than 4 

years (65). More recently Kaess et al. have suggested that aortic stiffness is a 

precursor of future altered systolic haemodynamic load and incident 

hypertension (66).  

Aside from the effect of hypertension, the main factors causing aortic wall 

alterations include age-related modifications, epigenetic factors, nutritional 

habits and pathological processes associated with diabetes, metabolic syndrome 

and chronic renal insufficiency (67). Ageing is a major predictor of aortic 

stiffness and a determinant of pulse wave velocity progression in both 

hypertensive and normotensive individuals (68). It  is also associated with 

decrease and fragmentation of elastin fibres, increase in collagen content, 

diffuse intimal thickening, VSMC hyperplasia, increased extracellular matrix and 

luminal enlargement of the aorta (69;70). In addition, the activated RAAS effects 

arterial wall remodelling via direct inflammatory and pro-fibrotic actions of Ang 

II and aldosterone on vascular cells. Moreover, genome wide association studies 

have demonstrated that the genes related to the RAAS were also associated with 

arterial stiffness (71). In summary, physiological age-related modifications of the 

aortic wall likely account for the higher prevalence of isolated systolic 

hypertension (ISH) among older adults (72). The measurement of aortic stiffness 

improves cardiovascular disease risk prediction and may avoid patients being 
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mistakenly classified as at low or moderate risk, when they actually have a high 

aortic stiffness placing them within a higher-risk group (47;73). A recent 

individual participant meta-analysis showed that consideration of arterial 

stiffness improves model fit and reclassifies risk for future cardiovascular events 

in models that include standard vascular risk factors (74). 

1.3.2.2 Measurement of arterial stiffness 

In clinical settings the evaluation of arterial stiffness is accomplished by: 1) 

measurement of arterial compliance and distensibility by ultrasound, 2) 

measuring the velocity of the pressure wave travelling between two arterial 

segments (pulse wave velocity or PWV) and 3) measuring the augmentation 

pressure divided by blood pressure (augmentation index) (48;51). PWV is closely 

associated with arterial wall stiffness whereas augmentation index is related to 

arterial wall stiffness and also wave reflection. Moreover, augmentation index is 

also related to coronary artery flow (51). The wave reflection is dependent on 

peripheral resistance and is also affected by heart rate variation (48;51) (also 

see Section1.3.7). The carotid-femoral pulse wave velocity (the gold standard 

non-invasive measurement for aortic stiffness) is also used to determine 

subclinical target organ damage and risk assessment in hypertensive patients 

(75). In addition augmentation index  In vitro measurement of tissue and cell 

stiffness is done by use of atomic force microscopy and complimented by 

confocal imaging (49).  

1.3.3 Microvascular disease  

Microvascular disease (micro-angiopathy) associated with diabetes affects 

arteries, arterioles, venules and capillaries resulting in diabetic retinopathy, 

nephropathy and neuropathy. The key features of microvascular disease include 

altered wall-to-lumen ratio of larger arterioles, vasomotor tone abnormalities 

and network rarefaction, decreased vasodilation reserve, disturbed tissue 

perfusion and susceptibility to ischaemia (16;76).  

Arterioles or resistance arterioles are one of the most important components of 

the microcirculatory network which supplies the micronutrients and removes by-

products from the tissues. The main physiological inherent response mechanism 
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is by a myogenic (smooth muscle) reduction in lumen diameter (77). This smooth 

muscle contraction controls tissue perfusion and organ function via three main 

mechanisms: 1) protecting capillaries from damaging blood pressure increase, 2) 

regulating the nutritive role of the vascular network within tissues in response to 

variations in demand, and 3) determining local and systemic peripheral vascular 

resistance (78). Any alteration in resistance arterioles may have consequences 

for tissue perfusion, metabolism, susceptibility to ischaemia, or blood pressure 

(78;79). The skin capillaries are considered a surrogate marker of systemic 

microvascular function and resistance and reflect microvascular network in 

different vascular beds (79-81). 

1.3.3.1 Microvascular alterations in hypertensive patients  

In resistance arterioles there is no remodelling in the absence of an increase in 

wall tensile stress. However, increase in blood pressure induces local 

vasoconstriction by increasing myogenic tone and thus maintaining the arteriolar 

wall tensile stress at normal or even lower values to protect downstream 

capillaries (82;83). Chronic high blood pressure is associated with structural and 

functional alteration of micro vessels. In the beginning, increased myogenic tone 

and arteriolar vasoconstriction promote functional rarefaction (increased 

number of non-perfused micro-vessels) which progresses to structural 

rarefaction (anatomical disappearance of non-perfused vessels) if the pathology 

persists (77;83). Serne et al. evaluated the relative contribution of functional 

and structural rarefaction in never treated patients with essential hypertension 

and normotensive controls. They showed that at the most, 62% of rarefaction 

was explained by structural defects, with at least 38% explained by functional 

defects (84). Loss of shear stress in non-perfused micro-vessels leads to 

decreased NO production, promoting ECs apoptosis and structural rarefaction 

(see above Section 1.2.1)(20-22). This micro-vascular damage is a predictor of 

long term cardiovascular events. Interestingly, the Framingham score for 

cardiovascular risk in hypertensive patients, whether treated or not, appears to 

be negatively correlated to skin capillary density (85).  

Structural changes are characterized by a decrease in lumen and an increase in 

media-to-lumen ratio and are an independent (i.e. independent of blood 

pressure itself) predictor of cardiovascular events in hypertensive patients 
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(86;87). They may also have prognostic significance: reduction of media-to-

lumen ratio in larger subcutaneous arterioles has been used to evaluate the 

effectiveness of antihypertensive treatment over and above blood pressure 

reduction (88).    

1.3.4 Association between macro and microvascular alterations  

Macro and microvascular alterations are inter-correlated. Aortic stiffening leads 

to increased pulse wave velocity and premature reflected waves with enhanced 

central pulse and elevated systolic pressure. This leads to change of steady 

continuous flow towards a more pulsatile flow in peripheral vessels resulting in 

peripheral tissue microcirculatory damage (89). Similarly aortic stiffness is 

associated with increased peripheral vascular resistance (90). Conversely, 

increased peripheral resistance leads to chronic elevated blood pressure (91), a 

major determinant of aortic stiffness. Similarly in hypertensive patients, 

increased media-to-lumen ratio of subcutaneous arterioles is positively 

correlated with carotid-femoral pulse wave velocity independently of age and 

mean blood pressure (92).  

The capillaries are the smallest blood vessels and constitute the major part of 

the vascular structure: if spread out on a horizontal surface, the endothelial 

surface area (500-700 square meters) is almost the size of a football field (93); 

explaining a larger effect on BP by slight alteration of micro vessels. 

Microcirculatory functional or structural alteration possibly enhances the 

phenomenon of reflected pressure waves and in turn contributes to an increase 

in central systolic and pulse pressure (92). Alterations in the adventitial 

microvascular network in the wall of conduit artery may result in a  mismatch 

between supply and metabolic demand, further accentuating large artery 

disease (94). It has also been suggested that microcirculatory alterations may 

precede larger artery dysfunction and atherosclerosis and represent an indirect 

marker of large vessel dysfunction (95). Structural rarefaction and remodelling 

of the micro vessels explains the long-term elevation of systemic vascular 

resistance and enhanced wave reflection, both of which contribute to aortic wall 

stiffness (90;92;96;97). This “vicious circle” accounts for the inter correlation 

between macro and microvascular alterations leading to difficult blood pressure 

control and antihypertensive treatment resistance (see Figure 1.1) 
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Figure 1.1 Cyclical association between macro and microvascular dysfunction and its 
association with obesity and raised BP. 
 

1.3.5 Possible mechanism in relation to hypertension   

Aortic stiffness and large vessel disease are related to hypertension in 

epidemiological studies. Nonetheless, the relationship is complex and unclear in 

terms of cause and effect i.e. whether aortic stiffness causes HTN, high blood 

pressure leads to aortic stiffness, or the relationship is bidirectional. The reason 

for this uncertainty may be that multiple factors are potentially implicated in 

the pathophysiology of hypertension, including genetic, epigenetic 

(environmental, nutritional) and metabolic factors as well as ageing. On the 

other hand, both observational and experimental evidence suggest that 

alteration in the microvascular circulation precedes and even predicts incident 

hypertension (77;78). A plausible mechanism may be that a cumulative 

metabolic burden and chronic oxidative stress lead to chronic endothelial injury 

and activation which promotes structural and functional alterations in the 

microvascular circulation (16), with subsequent effects on macrovasculature.  
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1.3.6 Hypertension associated structural changes in vasculature  

Hypertension leads to increased pressure on the vessel wall (tensile stress) (see 

Section 1.3.1) which is the most important determinant of vascular adaptive 

remodelling. Remodelling depends on the original vessel structure and its 

location within the vascular tree. It may vary from myogenic constriction to 

structural changes such as medial hypertrophy (and increased wall-to-lumen 

ratio). In large arteries (including the aorta and others conduit arteries), there is 

an increase in wall thickness to maintain wall tensile stress constant as it is 

exposed to increased pressure (43). Larger arterioles (100–300 µm) undergo a 

combination of growth (leading to wall hypertrophy) and myogenic tone (lumen 

reduction) (44). Small resistance arterioles (<100 µm) undergo inward 

remodelling without growth. The inherent myogenic response reduces vascular 

lumen and normalizes wall tensile stress (76). These control mechanisms protect 

fragile capillaries from excessive pressure but in chronic hypertensive disease 

are associated with a reduction in mean blood flow which may result in a 

mismatch with local tissue metabolic demands.  

Thus, structural and functional alterations in both macro and microvascular 

circulations appear to be common precursors leading to target organ damage in 

hypertensive patients (16).  

1.3.6.1 Vascular remodelling – Mechanism  

ECs sense any type of vascular injury (eg. pulmonary or arterial hypertension, 

hyperlipidaemia) and transmit signals to the medial VSMCs which promote the 

inflammatory response. This is followed by accumulation of VSMC in the intimal 

layer forming a “neointima” - this is associated with an increase in the width of 

the tunica media leading to increased vascular resistance and therefore raised 

BP. The VSMC phenotype is adaptable to the environment and may change from 

contractile to a synthetic state and may also migrate in response to 

environmental stimuli. In addition, VSMC progenitor cells from the circulation or 

the adventitia can be recruited to the neointima, where they adopt a VSMC 

phenotype. Moreover, fibroblasts and vascular stem cells from the adventitia can 

migrate into neointima and differentiate into VSMC (98). 
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Atherosclerosis is also associated with vascular remodelling (by activating ECs 

and VSMC) but is additionally accompanied by endothelial accumulation of 

modified lipoproteins which accentuate the inflammatory response, especially 

characterised by recruitment of monocytes and macrophages (98). CVD events 

due to hypertension or atherosclerosis are usually associated with injury to the 

large arteries of the brain, heart or kidney. Structural and functional changes of 

the arterial wall media (hypertrophy, ECM, calcium deposits) and of the vascular 

endothelium (imbalance of vasodilation and vasoconstriction) (see above Section 

1.3.2) combined with increased vascular tone ultimately lead to a reduction of 

lumen diameter, elasticity and increased stiffness of vessels. This change in 

elasticity is responsible for an increase in aortic systolic pressure and a relative 

decrease in aortic diastolic pressure, leading to increased afterload on the 

heart, causing ventricular hypertrophy (99;100). Arterial remodelling also 

includes arterial calcification which is discussed below (Section 1.7.8) 

Hypertension-associated brain vascular remodelling is also related to cognitive 

decline and dementia (in addition to stroke); lowering BP reduces the risk of 

stroke-related cognitive decline or dementia (101). Tzourio C et al. recently 

reviewed the evidence, that hypertension has a stronger impact on the brain 

especially in middle age, and BP in middle age (not in old age) is a risk factor for 

dementia (102). The benefits of controlling BP in patients with history of stroke 

or transient ischemic attack were evaluated in more than 6000 patients in the 

Perindopril Protection Against Recurrent Stroke Study (PROGRESS) trial. It 

clearly showed that the risk of post-stroke dementia was decreased by one third 

and the risk of post-stroke severe cognitive decline was almost halved by 

lowering BP with angiotensin converting enzyme inhibitors (ACE) or diuretics 

(101). Similarly the Framingham Heart Study also showed that cognitive function 

and visuomotor skills are related to midlife arterial BP (103). 

1.3.7 Prehypertension and hypertension 

The JNC-7 guidelines defined prehypertensive individuals as those having systolic 

BP: 120-139 mm Hg or diastolic BP 80-89 mm Hg and advised health-promoting 

lifestyle modifications in prehypertension to prevent the progressive rise in 

blood pressure and CVD (104). It is acknowledged that more recent JNC-8 

guidelines do not define hypertension and prehypertension but instead define 

thresholds for pharmacologic treatment (105). Prehypertension is associated 
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with increased stiffness of large to middle-sized arteries which is then associated 

with hypertension and increased risk of CVD. Tomiyama et al. compared arterial 

stiffness (measured by brachial-ankle PWV) in 1349 Prehypertensive and 984 

normotensive people, reporting arterial stiffness to be increased in 

prehypertensives. This was the case even after adjustment for potentially 

confounding variables, including age, sex and mean BP (106). Similarly a review 

of seven longitudinal studies showed that measures of arterial stiffness are 

independent risk factors for the development of hypertension (106). In another 

prospective study, 777 middle-aged Japanese men with prehypertension were 

successfully followed up for 3 years for the development of hypertension (107). 

Despite evidence of “tracking” (i.e. subjects with higher BP at the start of the 

follow-up period also had higher BP at the end of the follow-up period), higher 

brachial-ankle PWV values at baseline were independently  associated with the 

risk of new onset of hypertension even after adjustment for major confounders 

and baseline BP(107).  

Apart from prehypertensives, Najjar et al. (65) demonstrated that higher 

carotid-femoral PWV (arterial stiffness) was also an independent risk factor for 

new-onset hypertension in normotensive subjects. Increased arterial stiffness 

has also been reported in hypertensive children (108). Tomiyama et al. 

evaluated change in arterial stiffness in normotensive and prehypertensive 

people over a follow up period of 5-6 years (109): they found that change in 

brachial-ankle PWV during the study period was higher in prehypertensive 

subjects (n=550) than in those with persistent normal blood pressure (n= 612) 

(109).   

Thus, prehypertension is a risk factor for arterial stiffness, while increased 

arterial stiffness contributes to elevation of BP. Some more mechanistic detail is 

given below.  

1.3.7.1 Mechanism of increased arterial stiffness contribution to the 
development of hypertension 

The medial layer of the aorta is enriched with elastic fibres which are 

responsible for its elasticity. With each cardiac contraction, the systolic pressure 

of blood is dampened by the aorta due to its elasticity. This cushioning effect of 
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the aorta attenuates the pressure wave (energy) as it is propagated to the 

peripheral organs (110-113). Increased arterial stiffness reduces this 

“cushioning” effect and exaggerates the propagated pressure energy wave to 

peripheral vessels causing microvascular damage, especially in blood-flow-rich 

organs, such as the brain and kidney (110-113). Tomiyama et al. demonstrated in 

a middle aged cohort, that over six years of follow up, increased stiffness of 

large arteries as measured by brachial-ankle PWV was an independent risk factor 

for progression of the renal function impairment (estimated glomerular filtration 

rate- eGFR). In addition to this renal dysfunction, increased arterial stiffness 

also predicted increased peripheral vascular resistance and increase in BP (114). 

Thus, arterial stiffness related microvascular alteration increases peripheral 

vascular resistance, which may lead to development of hypertension (see Section 

1.3.3).  

1.3.7.2 Mechanism of prehypertension contribution to arterial stiffness 

The changes associated with increased tensile stress on the vascular wall 

include, VSMC hypertrophy, fatigue and degradation of elastic fibres, increase in 

the collagen content and increase in inflammation (115;116). In turn, these 

changes induce medial layer hypertrophy along with neointima formation in the 

arterial wall. Cumulatively, all these changes decrease elasticity and/or increase 

arterial stiffness (see Section 1.3.6) (115;116). The increase in BP in 

prehypertension also augments the age-associated increase in arterial stiffness 

(109), and is also associated with increased arterial stiffness in old age (109). 

Antihypertensive medications reduce arterial stiffness along with reduction in 

BP; especially, drugs blocking the RAAS. The TROPHY study was a landmark trial 

showing the importance of controlling BP in prehypertension range. It 

demonstrated that a two year treatment of prehypertension with Candesartan 

(an angiotensin receptor blocker-ARB) reduced the risk of development of 

hypertension over an additional two years (117). Another provocative finding 

from TROPHY trial was that the rate of development of hypertension was 13.6% 

in candesartan group and 40.4% in placebo group after 2 years. Candesartan 

treatment was stopped after two years, and at the end of four years, the rate of 

incident hypertension was less in Candesartan group (53.2% vs placebo 63%) 

(117). This can be taken to show the importance of controlling or maintaining BP 
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in prehypertension range as it has the potential to rapidly progress to 

hypertension.  

As mentioned earlier (Section 1.3.7.1), elevated BP and arterial stiffness may 

aggravate each other, establishing a positive feedback loop; conversely, 

improving one abnormality may prove beneficial for the other (Figure 1.1).  

1.3.7.3 Barker hypothesis 

Low birth weight is a recognized risk factor for the development of hypertension 

and also CVD (118;119). Low birth weight is associated with structural and 

functional changes in the vasculature, which are then implicated in the 

development of CVD in adult life. Low birth weight is associated with reduced 

renal mass, and some studies have also shown its association with a reduced 

capillary network in peripheral organs (118;119). Both reduced renal mass and 

reduced capillary network may act to elevate BP. Mori et al. also showed 

increased aortic stiffness in new-born infants that were born small for 

gestational age (120). In addition low birth weight is also associated with raised 

fasting plasma cortisol concentration in adult life and suggests involvement of 

hypothalamic-pituitary-adrenal axis as the link between low birth weight and 

raised BP in adult life (121). In summary both hypertension and increased 

arterial stiffness are more likely to occur in low birth weight infants. 

Another possible mechanism in relation to birth weight is the changes in 

microcirculation. The primary evidence comes from the work of Barker et al. 

who found that BP and the risk of hypertension among middle aged 

(approximately 50 years) men and women was predicted by a combination of 

their birth weight and placental weight (122). The highest BP levels were found 

among people who had been small babies with large placentas, and they 

suggested that reduced blood flow in the trunk of a foetus that is small in 

relation to its placenta could lead to reduced microcirculatory growth (122). 

Another proposition is that a primary deficit in the development of the 

microcirculation could have led to impaired growth of the foetus. The reduced 

microcirculatory growth in a foetus due to any mechanism may predispose the 

person to the development hypertension in later life. 
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Similarly examination of men and women in different UK populations which had 

low growth rates up to the age of one year; were associated with increased 

prevalence of known risk factors for CVD, including BP, blood glucose, insulin, 

fibrinogen, factor VII, apolipoprotein B; along with increased death rates from 

CVD (123).  

1.3.7.4 A “vicious cycle” in hypertension 

The microvascular abnormalities have been shown to both result from and 

contribute to hypertension. A “vicious cycle” may exist in which the 

microcirculation maintains or even exaggerates an initial increase in BP. Delano 

et al. described the pressure changes from central to peripheral circulation and 

have indicated that as much as 70% to 90% of the systemic pressure is delivered 

to the microcirculation in many skeletal muscles (124). Moreover Pries et al 

(125) showed that almost all the contribution in decreasing intravascular 

pressure before delivery to peripheral tissues was by micro vessels with a 

diameter of 100µm or less. An increase in BP might raise microvascular 

resistance which may lead to a further elevation of BP. Pries and colleagues 

(125;126) used computer simulation techniques to study the long term effects of 

increased BP and blood flow on the resistance and structural adaptation of 

microvascular circulation. They showed that a small increase in pressure can 

lead to larger structural increases in pressure and flow resistance by a 

mechanism involving the tendency of vessels to reduce their luminal diameter in 

response to increased intraluminal pressure (125;126). 

On the other hand, microvascular abnormalities might initiate the pathogenic 

sequence in primary hypertension by increasing peripheral vascular resistance. 

Increased peripheral resistance to blood flow raises central pressure in the aorta 

and large arteries, ultimately increasing vascular stiffness in large vessels as 

they are exposed to higher pressure. From this perspective primary hypertension 

may be seen as a developmental abnormality of the microcirculation. 

Microvascular rarefaction reduces the vessel surface area available for oxygen 

delivery and also increases the diffusional distance between vessels and their 

target cells. If there is progression in rarefaction, it will result in tissue 

ischaemia which may be responsible for much of the end organ damage 

associated with hypertension (77).  
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Part 3 

1.4 Blood pressure/hypertension 

The heart pumps oxygenated blood to all parts of the body in blood vessels. High 

blood pressure (BP) is a condition of increased arterial tone. Under these 

conditions, the heart has to perform increased work leading to hypertrophy and 

ischaemia, infarction and ultimately heart failure (6).  

Hypertension is one of the important factors causing atherosclerosis (narrowing 

of the blood vessels). Hypertension is responsible for multiple target organ 

damage through atherosclerotic macro- and micro-angiopathy. Atherosclerosis 

results in decrease blood supply to target organs and is responsible for ischaemic 

stroke, myocardial infarction, peripheral vascular disease, and cardiac failure 

(127). It has been recorded that 60% of all stroke patients have a past medical 

history of arterial hypertension (128;129).  

Blood vessels may develop aneurysms and weak spots due to high pressure, 

making them more likely to block or rupture. Hypertension can also lead to 

kidney failure, blindness, rupture of blood vessels (in other areas) and cognitive 

impairment (6) 

1.4.1 Normal BP and hypertension 

Blood pressure, measured in millimetres of mercury (mm Hg), is recorded as the 

systolic blood pressure (SBP) [maximum pressure during contraction of the left 

ventricle (systole)] and diastolic blood pressure (DBP) [minimum pressure 

recorded in blood vessels during ventricular relaxation (diastole)]. According to 

the US Eighth Joint National Committee (JNC 8) evidence-based guideline for the 

management of high blood pressure in adults (age <60 years), normal adult BP is 

defined as a systolic blood pressure of <140 mm Hg and a diastolic blood 

pressure of <90 mm Hg (105). 

Hypertension is defined as a SBP equal to or above 140 mm Hg and/or diastolic 

blood pressure equal to or above 90 mm Hg (105). Normal levels of both systolic 

and diastolic blood pressure are crucial for the efficient function of vital organs 

such as the heart, brain and kidneys and to prevent them from damage (6).  
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1.4.1.1 Physiology 

The product of normal cardiac output (CO) and total peripheral resistance (TPR) 

determines the arterial BP. These two principal determinants are influenced by 

many physiological and pathological determinants. CO depends primarily on 

heart rate and stroke volume. The systemic vascular resistance is influenced by 

multiple vasoactive mechanisms under the control of local, regional, and 

systemic neural, humoral and renal factors (130).  

1.4.1.2 Pathophysiology 

Chronic increases in arterial BP may result from combinations of inappropriate 

levels of CO and TPR. In hypertension an abnormal factor perturbs either one or 

both of CO and TPR and appropriate compensatory mechanisms that could 

normalize the changes in TPR and/or CO to return BP to normal range are 

ineffective. 

A high CO and a normal or low TPR normally occurs in early phase diabetes 

mellitus, patients needing dialysis and hyperdynamic or hyperadrenergic 

hypertension usually seen in youth. A high TPR and low or normal CO mostly 

occur in accelerated or malignant hypertension or hypertension in the elderly. A 

high CO and a high TPR pattern is normally present in renovascular hypertension 

(6;130).  

1.4.2 Factors influencing blood pressure/hypertension 

There are many factors influencing BP and the development of hypertension. 

The following is a brief description of the factors influencing BP but their 

detailed discussion in relation to hypertension, endothelial dysfunction and 

macro and microvascular dysfunction is explained in the relevant sections (see 

Sections 1.2 and 1.3).  

1.4.2.1 Role of genes 

Multiple genes along with involvement of multiple environmental factors 

determine susceptibility to develop primary HTN (131). The role of genes in the 

development of hypertension varies according to race and population  and the 

variance explained may be as low as 15–20% to as high as 65-70% (132). It has 
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also been observed that a child with a family history of hypertension 

(hypertension in one or both parents, and/or a sibling with HTN), has up to four 

times increased chance of developing HTN as an adult (133;134). Gene-

environment interaction is such that the same genotypic susceptibility to HTN 

may manifest as normal BP (normotensive) in one environment, and hypertensive 

in another (135). Genetic factors may play a role in the development of HTN 

early in life but when it develops before the age of 40 years it is important to 

exclude secondary causes such as kidney disease, endocrine disease and vascular 

malformations (6).  

1.4.2.2 Role of environment 

Genetic variance is presumed to have a weak effect on BP but may produce 

substantial hypertension in the presence of the necessary environmental 

conditions (136). Key environmental factors include geographical area, diet, 

physical activity, psychosocial stress, socioeconomic status, alcohol intake, 

smoking, obesity and other life style factors (135). Obesity, inflammation and 

insulin resistance are important factors related to HTN and will be discussed in 

detail. 

1.4.2.3 Age 

HTN is uncommon in children and young adults but its prevalence increases with 

age, approaching 65% at age 65 years and 75% at 75 years(135). The risk of HTN 

increases with age is attributable at least in part to stiffening of blood vessels 

(see Section 1.8). Progression of arterial stiffness can be slowed by healthy living 

(physical activity, smoking), including healthy eating and reducing salt intake in 

the diet (6).  

1.4.2.4 Weight/BMI 

Obesity is one of the most important risk factor for phenotypic expression of 

HTN. There is a strong positive correlation between body fat and BP with obesity 

and HTN frequently co-existing (137). Weight gain and especially obesity is a 

consistent predictor of subsequent development of hypertension (138).  
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Various mechanisms by which obesity plays a role in the development of HTN 

(135) are shown in Table 1.1 but will be discussed in detail in Section 1.7. 

Table 1.1 Mechanisms by which obesity promotes development of hypertension 

1. Activation of sympathetic nerve activity leading to renal sodium 

retention. 

2. Hyperleptinemia: also stimulates sympathetic  nervous system (SNS) 

3. Hyperinsulinaemia: also stimulates SNS 

4. Increased Angiotensin II (Ang II) 

5. Increased Aldosterone: salt and fluid retention, also stimulates Ang II 

6. Perirenal Fat: fat surrounding the kidneys raises intra-renal pressure 

 

1.4.2.5 Autonomic Nervous System (ANS) 

Numerous studies have documented that in essential hypertension, the 

Sympathetic Nervous system (SNS) is hyperactive particularly in patients who are 

young or borderline hypertensive (139). Moreover, many people newly diagnosed 

with hypertension have increased plasma nor-epinephrine (NE) levels with 

increased heart rate. The effects of SNS stimulation are peripheral 

vasoconstriction, release of NE from the adrenals, an increase in heart rate and 

an increase in systemic BP. Other effects of increased SNS stimulation are 

myocardial hypertrophy, vascular smooth muscle hypertrophy leading to vascular 

stiffness and reduced arterial distensibility and compliance (140). The renal SNS 

directly stimulates sodium reabsorption and renin release from the 

juxtaglomerular apparatus which ultimately leads to activation of the renin 

angiotensin system (140;141).  

Autonomic Nervous System and vascular disease  

Cardiovascular risk factors like diabetes, hypertension, hyperlipidaemia and 

smoking impair endothelial function from the luminal side of the vessel (142) 

whereas the autonomic nervous system (ANS) is considered to affect the 

endothelial function from outside of vessel. ANS innervation and control of 

vascular structure and tone, are complex as both the sympathetic (adrenergic) 

and the parasympathetic (cholinergic) nervous systems innervate blood vessel 

walls and regulate wall tension (143;144). The sympathetic nerve fibres are 
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found in the tunica media whereas cholinergic nerve endings are found both in 

the muscular and endothelial layers. Endothelial muscarinic (M) 3 receptors are 

coupled to the formation of NO and cause vasodilation. However, the M3 and M2 

receptors on smooth muscle cause contraction when formation of NO is blocked. 

Imbalance of ANS affects vascular function and structure and hence becomes a 

cardiovascular risk factor (145). Increased sympathetic activity increases 

peripheral vasoconstriction and reduces venous capacitance and renal sodium 

and water excretion; all leading to sustained increase in blood pressure (146), 

and may contribute to the pathologic process of hypertension. Similarly ANS 

dysfunction has been associated with the development of diabetes in healthy 

adults and also increases the risk of atherosclerosis progression (147). Obesity is 

also associated with central stimulation of the SNS by reactive oxygen species. 

The levels of oxidative stress markers within the brain are raised in obesity and 

may be a cause of increased sympathetic tone leading to hypertension in high fat 

fed animals (148). 

Endothelial function and ANS 

Gamboa, et al. investigated the endothelial NO and ANS derived NO relationship 

in normotensive subjects and found that endothelial NO is the most potent 

metabolic determinant of BP. Endothelial NO was responsible for tonically 

restraining BP by approximately 30mmHg in normotensive state (149), However 

the impairment of endothelial NO availability was insufficient to raise BP and 

the ANS pathway was considered to be critical for the early development of 

hypertension (150).  

Some studies ascribe a physiologically relevant role for neuronal nitric oxide 

synthase (nNOS), as NO produced is involved in smooth muscle cell relaxation 

(144), hence playing a role in the modulation of systemic arterial pressure (151). 

Moreover ANS denervation alters normal endothelial function in animal studies 

(152). Similarly in hypertensive patients, ANS modulation by alpha 2 

adrenoreceptor agonists has been shown to improve endothelial dysfunction 

(153). These animal and human findings suggest a contribution of sympathetic 

nervous tone on the maintenance of basal vascular function. When sympathetic 

activity is exaggerated, it modifies the normal endothelial function by increasing 

immune-reactivity of ECs and also promotes the uptake of low-density 
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lipoprotein cholesterol (LDL) by ECs (154;155). Hijmering, et al. also 

demonstrated that vascular flow-mediated dilation responses were impaired by 

sympathetic stimulation (via an alpha-adrenergic mechanism) (156) Similarly 

anxiety has been shown to be associated with endothelial dysfunction (157). 

Ghiadoni, et al. also reported that acute mental stress induced transient (lasting 

up to 4 hours) endothelial dysfunction, accompanied by increase in heart rate, 

blood pressure and salivary cortisol (158).  

It should be noted that vascular function may also modulate ANS, although the 

mechanisms by which NO modulates neuronal activity are still unclear. It has 

been shown that NO alters neuronal responses to excitatory amino acids (159). 

Similarly within the central nervous system NO acts as a sympatho-inhibitory 

substance (160). Animal studies have shown that after induction of diabetes in 

rats, there was reduction in nerve blood flow causing endoneurial hypoxia (161) 

and it has been proposed that diabetes induced endothelial dysfunction and 

reduced NO may be responsible for this reduction in blood flow.  

The inter-related mechanisms are complex: some factors (e.g. NO, reactive 

oxygen species (ROS), endothelin, and the RAAS) appear to influence both ANS 

and vascular function. ROS and Ang II affect both systems, perhaps explaining 

the basal physiological interrelationship between vascular function and the ANS.  

Similarly, inflammation also explains some of the interactions between 

endothelial function and the ANS. Parasympathetic stimulation reduces the 

inflammatory response, whereas, sympathetic activation increases the 

production of inflammatory cells (162). In addition, inflammation also impairs 

endothelial function (163).  

1.4.2.6 The renin angiotensin aldosterone system (RAAS) 

The renin angiotensin aldosterone system is one of the most important 

mechanisms in the regulation of blood volume and pressure. Angiotensinogen is a 

protein substrate produced by the liver which is cleaved by renin (a proteolytic 

enzyme released from kidney) to form Angiotensin I. Angiotensin I does not have 

any vascular effects, but in the presence of angiotensin converting enzymes 

(ACEs), is converted to Angiotensin II (Ang II). Most angiotensin I is converted to 

Ang II during its passage through the pulmonary circulation (164).  
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Ang II is a potently vaso-active compound and acts through multiple mechanisms 

in different organs. Increases in Ang II lead to stimulation of vascular smooth 

muscle contraction and hypertrophy, increased cardiac contractility, stimulation 

of the SNS (in both central and peripheral nervous system), increased thirst and 

vasopressin release (also stimulation of aldosterone synthesis). In the kidneys, 

Ang II causes vasoconstriction, a decrease in blood flow, and an increase in 

vascular resistance. It also increases sodium re-absorption, both directly and by 

increasing aldosterone secretion. Ang II also increases the generation of reactive 

oxygen species in the vasculature and aggravates the atherosclerotic process 

(165). The detailed role of RAAS in altering vascular system is discussed in 

Section 1.7.4.7 

1.4.2.7 The kidneys and primary hypertension 

One of the main steps in development of hypertension is impairment of renal 

sodium excretion. A genetic reduction in the number of nephrons may be the 

initiating event but over time hyper-filtration and increased glomerular pressure 

limit capacity to excrete salt (166). Moreover with ageing, the degree to which 

BP is sensitive to a dietary sodium load increases, such that, by 70 years of age 

almost all patients with hypertension are salt sensitive (167;168). Salt sensitivity 

can be assessed formally as described by Sharma using the change in BP in 

response to a low salt diet (169). Those who are sensitive to salt are more likely 

to have high BP than those who are resistant to salt (167).  

1.4.2.8 Nephron number and blood pressure 

In healthy humans the nephron number at birth ranges from 250 000 per kidney 

to as high as 1,800,000 (170). It has been shown that kidney size and nephron 

number per kidney at birth are closely related to birth weight (see Section 

1.3.7.3) which is in turn associated with increased risk for developing adult 

metabolic syndrome and obesity (171;172). The number of nephrons is directly 

correlated with birth weight and inversely correlated with age, blood pressure in 

adult life, glomerulosclerosis and cortical fibrosis (171;173). In this regard, it can 

be hypothesized that individuals endowed at birth with a greater number of 

nephrons are more resistant to the deleterious effects of obesity and other 

factors than those with a smaller number. 
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1.4.2.9 Mitochondrial dysfunction in hypertension 

Hypertension is strongly associated with oxidative stress, endothelial 

dysfunction, and increased vascular resistance as a consequence of elevated 

levels of ROS and nitrogen species. As mitochondrial dysfunction precedes 

endothelial dysfunction (see Section 1.2.2 and Figure 1.7), it might have a role 

in hypertension. Jin et al showed in a Korean population that age-dependent 

polymorphisms in the mitochondria shaping gene, OPA1 correlated with blood 

pressure and hypertension (174). Similarly Wang et al. showed that 

mitochondrial dysfunction caused by mitochondrial tRNAlle 4263A>G mutation 

was involved in hypertension (175). Puddu et al. also proposed that increased 

mROS generation in situations of metabolic disturbance, might trigger 

endothelial dysfunction, possibly contributing to the development of 

hypertension (176). Similarly nicotinamide adenine dinucleotide phosphate-

oxidase 2 (NADPH oxidase 2 or Nox2) and Ang II elevates mROS production and 

endothelial dysfunction (177). In contrast, Nox2 depletion in gp91phox knockout 

mice inhibits Ang-II-induced cellular mROS and attenuates hypertension (178). 

The mitochondria specific antioxidant enzymes (eg. thioredoxin 2) also 

attenuate Ang-II-induced hypertension (179). Moreover, transgenic mice 

overexpressing mitochondria MnSOD also attenuates Ang-II induced hypertension 

(180). The eNOS and associated NO production are crucial for endothelial 

function, but direct association of mitochondria with eNOS uncoupling (observed 

in hypertension) remains elusive.  

1.4.2.10 Hypertension and other cardiovascular risk factors  

The association of hypertension with insulin resistance, inflammation and 

obesity is explained in detail in the relevant sections (Sections 1.5, 1.6 and 1.7). 

1.4.3 Renal pathway for the development of hypertension 
(impaired natriuresis) 

In the normal kidneys norepinephrine (NE) and Ang II have sodium retaining 

properties. The increase in BP due to these or any other agents results in a 

physiological pressure natriuresis with sodium loss and a return to a normal or 

low blood volume state (181). Similarly, increased salt intake (sodium loading) is 

likely to increase renal blood flow (182) but brisk and exaggerated natriuresis 
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will normalise BP (183). Another important process is renal autoregulation. With 

increase in BP, the afferent arteriole and interlobular artery vasoconstrict; 

secondary to a myogenic reflex and by tubulo-glomerular feedback. This 

prevents the transmission of high pressure distally to the sensitive structures in 

the glomerulus and peri-tubular capillaries (135). 

In the early phases of hypertension, the increase in BP may be in the 

prehypertension range and intermittent. At this stage variability may be higher 

than in normotensive individuals.  During this phase hypertension is salt resistant 

and the pressure natriuresis system is intact (181). Intermittent activation of the 

SNS and RAAS eventually results in permanent injury which leads to impairment 

of salt excretion. The vasoconstriction of afferent arterioles (renal 

autoregulation) in response to Ang II and NE gradually leads to the development 

of pre-glomerular arteriolopathy; arteriolosclerosis of the afferent arterioles is 

the classic renal biopsy finding in HTN patients (184).  

Permanent or irreversible injury to the kidneys occurs via two main mechanisms.  

 The development of arteriosclerosis and the deposition of extracellular matrix 

within the arterioles decrease compliance and they lose the autoregulatory 

response (185;186). As a consequence increase in pressure is transmitted distally 

and leads to glomerular damage (sclerosis) and tubulointerstitial injury. 

Renal injury by ischaemia is caused by pre-glomerular arteriopathy. With 

increased BP and arteriosclerosis of the afferent arteriole, the arteriolar lumen 

becomes progressively smaller and finally collapses, leading to distal glomerular 

and peritubular ischaemia.  Ischaemia leads to infiltration of T cells, 

macrophages and other inflammatory cells, increase in reactive oxidants and 

local inflammatory markers further increasing renal vasoconstriction (187;188). 

This leads to a reduction in sodium filtration (by reducing cortical filtration 

coefficient and glomerular filtration rate) and increased renin and Ang II, which 

further increase tubular reabsorption of sodium, leading to increased BP. As a 

consequence, blood volume and pressure increase, increasing renal perfusion 

pressure. Sodium handling return towards normal, but all at the expense of a 

shift in pressure natriuresis and an increase in systemic BP (189).  
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In summary, HTN may shift from a salt resistant, renin-dependent type to a salt-

sensitive, volume-dependent type in time (135). This is consistent with ageing 

(190) and obesity (191), in which there is a progressive increase in salt 

sensitivity.  

Explained above is the renal pathway for the development of hypertension. 

Hypertension is a dynamic condition and involves many other risk factors 

including, ageing, autonomic nervous system, obesity, diabetes, vascular 

stiffness and calcification, RAAS, insulin resistance and immunity. The role of 

each factor in the development of hypertension will be explained in the relevant 

sections and at the end a unifying mechanism correlating all the risk factors will 

be explained.  

1.5 Insulin resistance 

Insulin resistance (IR) is a state in which the body has an impaired response to 

the normal actions of the hormone, including transport of circulating glucose 

into cells. This contributes to the development of hyperglycaemia and type 2 

diabetes (T2DM). β-cells in the pancreas subsequently increase their production 

of insulin, further contributing to hyperinsulinaemia (192).  

1.5.1 Explanation 

Insulin is an anabolic hormone produced by the β-cells of the pancreas which has 

many functions in the regulation of carbohydrate, lipid and protein metabolism. 

As well as regulating glucose transport into muscle, insulin decreases hepatic 

glucose production.  When this function is impaired in insulin resistant states, 

excess glucose is produced contributing to hyperglycaemia. In fat cells, insulin 

increases uptake of circulating lipoproteins from blood and decreases hydrolysis 

of stored triglycerides. Insulin resistance thus causes reduced uptake and 

increased mobilization of lipids, leading to elevated concentrations of free fatty 

acids in blood. Glucose transported into the cells is used to generate energy and 

excess is stored as glycogen in liver and muscle cells, and as triglycerides in fat 

cells. In summary, reduced muscle glucose uptake, increased hepatic glucose 

production, and elevated blood fatty-acid concentration all contribute to 

elevated blood glucose levels (hyperglycaemia) (193). 
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When hyperglycaemia is sensed by β-cells, additional insulin is secreted causing 

hyperinsulinaemia. Hyperglycaemia and hyperinsulinaemia are major 

components of the metabolic syndrome (194). When the pancreas does not 

produce sufficient insulin to compensate for the high blood glucose and insulin 

resistance, blood glucose concentrations increase further, leading to T2DM 

(193). 

1.5.2 Mechanism of diabetes 

Insulin sensitivity is determined by genetic and lifestyle factors, including those 

associated with obesity. Increased insulin resistance, whether genetic or 

environmental, causes hyperinsulinaemia (192;195), the latter expedites the 

development of fatty liver and ectopic fat deposition (195). As glucose 

utilization decreases in muscle, it is redirected to the liver where it is stored as 

fat. This creates hepatic insulin resistance and triggers a fatty liver vicious cycle 

(195).  

During positive energy balance fat will accumulate in the liver and this 

accumulation is promoted by insulin. An individual with a degree of muscle 

insulin resistance, if prone to more energy intake; will accumulate liver fat more 

readily than others (195). As liver fat increases it leads to: 1) hepatic insulin 

resistance, 2) increased hepatic glucose production, as the liver becomes less 

sensitive to suppression by insulin, 3) a rise in plasma glucose; further increasing 

hyperinsulinaemia, and 4) additional hepatic fat deposition; exacerbated by 

raised plasma glucose and portal hyperinsulinaemia. The increase in insulin and 

glucose leading to fatty liver will from a positive feedback loop (195).  

Increased fat in the liver will increase secretion of triacylglycerols (TGs) from 

liver into blood; these accumulate in ectopic sites including pancreatic islets. 

The ectopic fat and raised plasma glucose attenuates β-cell insulin secretion in 

response to ingested glucose; further raising plasma glucose. These processes 

further impair insulin release from β-cells and promote cell death, ultimately 

leading to clinical diabetes (195). Early intervention reversing energy balance 

(by low calorie diet or bariatric surgery) may prevent β-cell death and reverse 

fatty liver.  
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In conclusion, insulin resistance is a complex phenotype and involves cross-talk 

between tissues including muscle, liver and pancreas.  Ectopic fat deposition in 

the liver underlies the defect of hepatic insulin resistance and fat deposition in 

islets forms the basis of β-cell dysfunction. All of these effects can be reversed 

early in the course of diabetes by hypoenergetic (low calorie diet) feeding 

conditions (195).  

 

Figure 1.2 The twin vicious cycles of type 2 diabetes. 
Redrawn with permission from Taylor R, Diabetologia 2008 (195) 
HGP= Hepatic glucose production, VLDL= Very low density lipoprotein 

1.5.3 Relation with hypertension 

Hyperinsulinaemia  and underlying insulin resistance have been associated with 

essential hypertension independently of weight or body mass index (196) but 

their exact role in pathophysiology remains unclear. Allerman Y et al 

demonstrated in 1993 that Insulin resistance and hyperinsulinaemia exist in 

normotensive, first-degree relatives of patients with essential hypertension 

(197), suggesting that the link may be causal.  
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However, the relationships between obesity and both insulin resistance and HTN 

complicates the analysis. The association between IR and HTN is not strong if 

compared to the relation between IR and dyslipidaemia, as only about 50% of 

hypertensive subjects are insulin-resistant (198). 

The role of endothelial dysfunction in the link between HTN and IR further opens 

another avenue, that defective vasodilation actually produces insulin resistance. 

Normal blood flow may be required in some tissues for optimal glucose uptake 

and defective arteriolar vasodilatation is a characteristic of insulin resistant 

individuals.  For example, the Heart Outcomes Prevention Evaluation (HOPE) 

Study showed that treatment with the angiotensin-converting enzyme inhibitor 

ramipril was associated with a reduced incidence of diabetes; one interpretation 

of this finding was that inhibiting vasoconstriction improved muscle blood flow, 

enhancing  insulin sensitivity and thereby improving tissue glucose uptake(199).  

It is well know that hyperinsulinaemia increases renal sodium and water 

retention (200), but it is still not clear how often volume-dependent 

hypertension is present in IR individuals and people with T2DM. The sympathetic 

nervous system is overactive in obese and IR individuals (201), but it is not 

known if this is the primary event or the result of IR.  

The Insulin Resistance Atherosclerosis Study (IRAS) also showed that, insulin 

resistance was significantly associated with hypertension in non-Hispanic whites 

(NHW) and Hispanics (H), but not African Americans (AA). It also showed that 

neither insulin resistance nor hyperinsulinaemia was related to HTN or BP in 

patients with T2DM (202).  

In conclusion, the relation between insulin resistance and hypertension is still 

controversial as it varies by ethnicity and disease. Moreover it is still under 

debate whether impaired vasodilatation in association with HTN is a cause or an 

effect of insulin resistance.  

1.5.4 Effect of insulin/ insulin resistance on vasculature  

Insulin resistance and hyperinsulinaemia are known to play major roles in the 

pathophysiology of obesity and diabetes but beyond these classic targets also 
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affect cardiovascular tissue; contributing to hypertension and atherosclerosis. 

Abnormalities in vasodilation and blood flow have been suggested as a 

mechanism linking hypertension and insulin resistance. In the 1990s, Baron et al 

identified a vasodilator effect of insulin in human skeletal muscle (203) which is 

impaired in insulin-resistant states including obesity and T2DM (204). Within the 

vessels, insulin has an important role in vasodilation but several factors affect 

vascular reactivity independent of insulin including catecholamines, glucagon-

like protein-1 (GLP-1) and RAAS. Attenuation of the vasodilator action of insulin 

may be more relevant to the pathophysiology of hypertension than to that of 

diabetes (205). It has also been suggested that resistance to the vascular effects 

of insulin may contribute to the pathogenesis of CVD (206) and may play a role in 

increased rates of CVD in T2DM (207).  

The vasodilatory effects of insulin are mediated at least in part by endothelial 

release of nitric oxide; moreover, blocking nitric oxide production can induce 

insulin resistance in vivo by preventing insulin-mediated vasodilation in skeletal 

muscle and thereby reducing glucose uptake (208).  Thus, insulin may enhance 

its own delivery and that of its substrates to relevant capillary beds. In addition, 

endothelial dysfunction, characterized by reduced nitric oxide production and 

exaggerated release of endothelin, is also a feature of insulin resistant states 

(209).  

Normal insulin signalling in endothelial cells is thought to involve activation of 

phosphoinositide 3-kinase (PI3k), insulin receptor substrate 1 (IRS-1) and 

mitogen-activated protein kinases (MAPK) pathways; endothelial insulin 

sensitivity is a balance between the vasculoprotective PI3K pathway and the 

proatherogenic MAPK pathway (210). Insulin induces release of NO (through IRS-

1/PI3K pathway), which decreases vascular tone, VSMC proliferation, adhesion of 

inflammatory cells and platelet aggregation to EC (211). Blockade of the PI3K 

pathway induces insulin resistance in cultured ECs and results in blunted 

production of NO with increased expression of pro-atherosclerotic molecules 

(212). The PI3K pathway shares common signalling elements with those utilized 

by insulin to upregulate glucose transport in metabolic target tissues including 

muscle (211). Moreover, insulin regulates production of prostaglandins and 

endothelium derived hyperpolarizing factors (211). The MAPK pathway mainly 

acts via endothelin (211), and results in mitogenic and proatherosclerotic 
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responses in the vascular wall (210). The excess of endothelin and its actions 

appears to contribute to insulin resistance in human obesity (211). ET-1 also 

causes vasoconstriction, increase oxidative stress, and promote cell growth and 

mitogenesis in VSMCs (213). Spontaneously hypertensive rats exhibiting vascular 

insulin resistance also showed decreased insulin-stimulated NO production and 

enhanced ET-1 secretion (214). 

Clark et al explained that insulin (via NO release) regulates capillary recruitment 

and perfusion by affecting pre-capillary resistance vessels (215) and insulin 

resistance is associated with impaired capillary recruitment and altered skeletal 

muscle perfusion. Vincent et al. demonstrated in rats that the onset of the acute 

vascular action of insulin precedes the induction of glucose uptake (216), 

consistent with the notion that the vascular effects of insulin are primary and do 

not arise as a consequence of changes in cellular metabolism. In keeping with 

suggestion, abnormal vasoreactivity has been demonstrated in human studies 

comparing lean and obese subjects. After a mixed meal, lean humans exhibited 

increased brachial blood flow and forearm microvascular recruitment, whereas 

obese subjects have a blunted response despite hyperinsulinaemic conditions 

(217;218). This blunted response was related to insulin resistance and associated 

endothelial dysfunction (211). Both obesity and T2DM are associated with 

abnormal vasoreactivity (204). Hyperinsulinaemia has also shown its contribution 

in vascular stiffness. In lean and insulin sensitive individuals, insulin reduces 

central arterial stiffness before it exerts its slow vasodilatory effect on 

peripheral small vessels. In contrast, in obese individuals, its effect on arterial 

stiffness is severely blunted and this attenuation correlates with the degree of 

obesity (219). It is thought that post receptor abnormalities causing resistance to 

insulin-mediated glucose uptake in metabolic tissues also cause resistance to 

insulin-mediated vasodilation in vascular tissues (see below Section 1.5.4.1) 

In summary, insulin stimulates vasodilation in insulin sensitive states, but may 

promote vasoconstriction and vascular proliferation in insulin resistant states 

(211) 
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1.5.4.1 Actions of insulin in skeletal muscle vasculature 

Insulin serves two main functions in the skeletal muscle: 1) vasodilation and 

capillary recruitment; 2) glucose uptake (220). The skeletal muscles receives 

0.03–0.04 mL/min of blood flow per gram of tissue in resting (Non-exercising) 

conditions (221), but exercise initiation increases blood flow up to 100-fold 

(222). The capillary recruitment in the skeletal muscle during resting and 

exercising state is determined by vasomotor changes in the terminal arterioles 

(221). During exercise oxygen is depleted and it initiates an ascending 

vasodilation response which extends from the contracting skeletal muscle 

arterioles to the proximal large arteries, resulting in increased blood flow (223). 

This ascending vasodilation response also depends on an intact and normal 

functioning endothelium. Capillary recruitment is crucial for the normal 

metabolic effects of insulin in skeletal muscles, (224) and clinical conditions 

characterized by insulin resistance such as obesity and T2DM demonstrate 

impaired capillary recruitment (225). Insulin increases the blood flow and in this 

way also regulates its own delivery to the tissues (221). However, the tissue 

extraction of insulin declines to approximately 7% at higher insulin concentration 

(~250 pmol/l), indicating that delivery alone may not be a critical rate-

determining step (221) 

In lean, insulin-sensitive humans insulin increases whole-limb blood flow in a 

dose dependent manner and is also associated with increased skeletal muscle 

glucose uptake (226). The effects of increase in blood flow are largely 

dependent on increased NO production (224), as it is blunted by eNOS inhibition 

(208). The decreased blood flow due to eNOS inhibition of NO, also results in 

impaired insulin-mediated skeletal muscle glucose uptake (203). The capillary 

recruitment increases delivery of insulin to the skeletal muscle along with 

increasing the endothelial surface available for nutrient exchange (227). The 

insulin-mediated increases in microvascular blood flow and microvascular 

recruitment  precedes the increase in total-limb blood flow caused by insulin 

(228). In contrast, bradykinin (a vasodilator) infusion increased limb blood flow 

but did not increase insulin-mediated glucose uptake by skeletal muscle (229) 

suggesting that only increasing flow alone does not increase glucose disposal at 

the same time (205). Therefore, insulin is essential for both capillary 

recruitment and glucose disposal, although without capillary recruitment glucose 
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disposal will not increase as peripheral insulin delivery depends on capillary 

recruitment.  

1.5.4.2 Vascular insulin resistance: evidence from transgenic models 

Endothelial insulin receptor (IR) knock out (KO) leads to impaired eNOS and ET1 

expression (230). Similarly utilizing a transgenic mouse with endothelium 

overexpression of a dominant negative mutant human IR containing a mutation 

in the tyrosine kinase domain (ESMIRO) demonstrated decreased vasodilation in 

response to insulin and acetylcholine with blunting of insulin-induced eNOS 

phosphorylation (231). However, ESMIRO mice exhibited preserved whole body 

insulin sensitivity and were normotensive (231). This study suggested that 

haemodynamic factors may play a relatively small role in the pathogenesis of 

insulin resistance and several human studies also support this interpretation 

(205). In ESMIRO mice, the changes above were also accompanied by increased 

ROS production in vessels from the Nox2 isoform of NADPH oxidase. Furthermore 

inhibition of Nox2 under insulin-resistant conditions led to improvement in Ach-

mediated vasodilation and decreased ROS production (232). The IR KO in mice 

also accelerated atherosclerosis (233)  

1.5.4.3 Lipotoxicity and insulin resistance 

Lipotoxicity is a common finding in both obesity and T2DM and its deleterious 

effects have been studied in both humans and animals. Intravenous infusion of 

lipids and heparin in rodents decreased muscle glucose uptake and blunted 

insulin-mediated microvascular recruitment in skeletal muscle (234).  Similarly, 

lipid infusion in healthy humans increased insulin resistance and decreased 

forearm microvascular recruitment (235). Increased plasma lipids increase 

intracellular production of diacylglycerol (DAG) and ceramides (236) which then 

activates protein kinase C (PKC) (236). PKC is known to inhibit the vascular 

effects of insulin (237). Tabit et al. also showed that PKC expression was 

markedly increased in ECs of T2DM patients (238) and that a PKC inhibitor 

restored eNOS activation by insulin (238). In insulin-resistant Zucker fatty rats, 

PKC activation was associated with decreased Akt-dependent eNOS activation 

(237) and treatment with a PKC inhibitor (ruboxistaurin) restored the insulin-

induced eNOS activation (237).  
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Lipotoxicity also induces inflammation within the vascular cells. Jang et al. 

showed that vascular cultured ECs exposure to palmitate results in activation of 

pro-inflammatory molecules through activation of Toll-like receptor 2 (TLR2). 

TLR2 knockdown ameliorated these inflammatory effects and also protected 

mice from whole body and endothelium insulin resistance in spite of high fat 

feeding (239).  

1.6 Inflammation 

Inflammation is a non-specific immune response that occurs in reaction to any 

type of bodily injury. Inflammation can be classified as either acute or chronic.  

Acute inflammation is the initial response of the body to harmful stimuli 

(infection, tissue injury, neoplastic growth, or immunological disorders) and is 

characterized by increased movement of plasma and leukocytes 

(especially neutrophils and macrophages) from the blood into the injured tissues 

to limit injury or aid healing (240;241). Acute inflammation is also characterised 

as acute phase reaction (APR), which is beneficial in restoring disturbed 

physiological homeostasis (240). There is also induction of acute phase proteins 

(like C-reactive protein- CRP) which are mostly synthesized in the liver. Their 

production is stimulated by cytokines including interleukin 6 (IL-6) and tumour 

necrosis factor (TNF-α) (242;243). Other metabolic processes accompanying the 

APR include increased hepatic glycogenesis and glucose synthesis, reduced 

glucose uptake in muscles, increased insulin secretion and insulin resistance 

(244).  

Acute inflammation is a self-limiting process but in some disorders the 

inflammatory process becomes continuous and chronic inflammation develops. 

Prolonged or chronic inflammation is characterized by simultaneous destruction 

and healing of tissue via the inflammatory process. It leads to replacement of 

the type of cells present at the site of inflammation. It is characterised by 

infiltration of T lymphocytes and plasma cells. Macrophages play a central role 

in chronic inflammation and contribute to the final step of fibrosis leading to 

loss of tissue (241). Research in recent years has implicated inflammation as a 

key pathogenic mechanism in the initiation and progress of many cardiovascular 
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risk factors (including physiological ageing) and diseases including obesity, 

diabetes, atherosclerosis and coronary heart disease (245).   

1.6.1 Inflammation related vascular changes in ageing and CV 
risk 

Chronic inflammation is strongly associated with arterial ageing and occurs in 

the absence of any microorganisms and with little or no white blood cell 

infiltration (246). Phenotypic shifts in arterial ECs and VSMCs during the ageing 

process, promote pathogenic inflammation (247-250). Most of the changes in the 

vessel wall during ageing are also associated with inflammation including; 

endothelial disruption, enhanced VSMC migration and proliferation and matrix 

calcification/amyloidosis/glycation (246). Vascular inflammation is also related 

to the pathogenesis of hypertension and atherosclerosis. Age-associated arterial 

pro-inflammation is to some extent modifiable and may have the potential to 

ameliorate or retard age-associated arterial diseases. The transcription and 

activity of ACE1 and chymase (both increasing Ang II production) increases with 

age (251). This leads to increased Ang II in older arteries (30 months old rats) 

(252) and is also associated with up regulation of AT1 receptor expression in old 

coronary arteries (246;252).  

Ageing is also associated with increased aldosterone/mineralocorticoid receptor 

(MR) signalling and increased sensitivity of MR to aldosterone thus increasing MR 

activity (252;253), promoting a pro-inflammatory phenotype via an extracellular 

signal-regulated kinase 1/2/mitogen-activated protein kinase/epidermal growth 

factor receptor (ERK/MAPK/EGFR)-dependent pathway (253). Moreover 

aldosterone mediated increase in the expression of EGFR in VSMCs also 

reinforces the inflammatory effects (253).   

In contrast, the key defence system of antioxidant enzymes protecting against 

the cytotoxic effects of oxidative stress is downregulated with age. This is due 

to the inactivation of transcription factors of detoxifying and antioxidant genes 

by ROS in the vasculature of older animals (254). Similarly levels of the 

antioxidant enzymes like glutathione are reduced in old age as compared with 

young animals (254).  
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The relationship between inflammation and endothelial dysfunction explained 

above is biologically plausible but does not confirm causality. Chronic low grade 

inflammation promotes cellular and biochemical changes in vessel wall which 

favour endothelial dysfunction (246). Low grade inflammation also decreases 

basal NO production promoting increased expression of cell-surface adhesion 

molecules for leucocytes and platelets, promoting interaction between these 

cells and the vascular endothelium, and inducing pro-coagulant activity (255). In 

addition TNF-α (a pro-inflammatory factor) has been shown to reduce the half-

life of the mRNA encoding endothelial NO synthase (256). Cumulatively these 

changes may cause endothelial dysfunction and increase the likelihood of 

vasospasm, thrombosis and vessel occlusion (255).  

1.6.1.1 Inflammation and phenotypic shift of vascular cells in ageing 

Low grade chronic inflammation has been suggested as the key to most of the 

age-related alterations in arterial structure and function such as diffuse intima-

medial thickening, increased stiffening and VSMC migration, proliferation and 

senescence (246). Many characteristics of vascular ageing like endothelial 

dysfunction, oxidative stress and increased apoptosis can be reproduced by 

recombinant TNF-α and chronic infusion of Ang II (246;252). These pro-

inflammatory molecules increases activity of pro-inflammatory molecules, for 

example, MMP-2, MCP-1, TGF- β1, NADPH oxidase and calpain-1, affecting the 

arterial wall cells and matrix and leading to adverse arterial restructuring 

(246;252). Continuous ACE inhibition, AT1 blockade and/or inhibition of MMPs 

from an early age delays the progression of age-associated aortic remodelling in 

animal models, by markedly inhibiting the pro-inflammatory molecules (246). 

Age-related vascular changes involve inflammation as an intermediary step.  The 

phenotypic shift in different vascular cells will be discussed in relation to both 

ageing and inflammation in the following section.  

Endothelial cells 

Cellular senescence is a condition in which the cell is metabolically active but 

loses the ability to proliferate. With each cell division the telomere length is 

shortened until a critical length is exceeded, at which cell signalling is triggered 
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for the arrest of cell proliferation and start of senescence and apoptosis (257). 

Telomere dysfunction and endothelial senescence are related to increased ROS, 

decreased NO, and increased production of pro-inflammatory molecules (258). 

The senescent endothelial cells impact negatively on neighbouring cells; further 

enhancing endothelial dysfunction (258).  

In vitro, the number of cellular replications is correlated with a decrease in NO 

synthase and an increase in the number of monocytes adhering to the ECs (257). 

Ageing also increases the sensitivity of the endothelium to apoptotic stimuli. 

Oxidized LDL also increase the inflammatory activity more than three times in 

old cells as compared to young cells (259). 

ECs are in direct contact with the blood and carry the components of the pro-

inflammatory burden that originates within the circulation. The Ang II, MCP-1, 

and MFG-E8 inflammatory load is increased in ECs isolated from the vessels of 

older animals (246;258). This pro-inflammatory state enhances ROS generation, 

which damages endothelial mitochondrial DNA and also interferes with the 

mitochondrial life cycle (246-250). All of these mechanisms initiate, and also 

promote EC senescence and apoptosis (247-250). MMPs break down the ECM 

ultimately damaging basement membrane and old enlarged ECs are likely to 

detach from the damaged basement membrane (247-250). The disrupted 

basement membrane is more likely to recruit and also concentrate the 

inflammatory factors such as Ang II and MFGE8, which form a local inflammatory 

focus that disturbs EC (247;248). The pro-inflammation and associated cellular 

and micro environmental changes lead to endothelial dysfunction and are also 

the perpetrators of enhanced permeability, infiltration, pro-thrombosis or 

coagulation within the vessel wall (247;248). 

Telomerase transfection (introducing nucleic acids into cells) which stabilises 

the expression of telomerase in EC, induces a younger EC phenotype with an 

increase of NO synthase and higher NO activity (257). Ageing and endothelial 

dysfunction are also associated with a reduction of vascular expression of Sirtuin 

(SIRT), with lower SIRT1 lead to a reduction in the capacity for vascular repair in 

the elderly. SIRT1 is a key sensor system for regulating EC survival, proliferation 

and senescence and may possess beneficial effects against ageing-related 

diseases (260). 
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Vascular smooth muscle cells (VSMC) 

Old VSMCs (i.e. isolated from older animals) lose their contractile function and 

instead become stiffened and develop heterogeneous phenotypes within the 

arterial wall. In addition to change in phenotype VSMC also have changes in 

other characteristics such as pro-inflammatory secretion, senescence, 

proliferation, migration, and ECM deposition (247-250).  

Senescence and secretion  

In arteries from older animals, both proliferative and senescent VSMC subsets 

coexist. When old VSMC enter an irreversible growth arrest, it is known as 

cellular senescence (246). Ang II is known to play a role in VSMC senescence 

through induction of stress induced premature senescence (SIPS) or telomere 

shortening (261;262). Both SIPS and progressive telomere shortening 

consequently leads to activation of the DNA damage machinery and p53 enzymes 

(261-263). Ageing changes the VSMC phenotype from contractile to secretory and 

VSMC derived from arteries of old non-human primates show increased 

expression of the age-associated arterial secretory phenotype (AAASP) (247;264). 

The AAASP in old cells is associated with increased secretion of IL-1β, IL-6, MCP-

1, and TNF-α (264). Similar to the AAASP of old untreated cells, young VSMCs 

when treated with Ang II, also secrete a large amount of pro-inflammatory 

factors, including MFG-E8 (247;265). The AAASP likely delivers signals to the 

neighbouring VSMC (in a paracrine/juxtacrine manner), enhancing the 

phenotypic shift with ageing (246). 

Proliferation 

VSMC proliferation increases with age and has been proposed to be due to 

imbalance of calcium homeostasis or platelet derived growth factor (PDGF) gene 

over-expression (266). Moreover, old cultured VSMCs have an increased 

replication rate compared to young cells (267). Old cultured VSMCs have a 

greater percentage of cells in the S and G2/M phases, and a lower percentage in 

the G0/G1 phase of the cellular life cycle, compared to young cells (267). MFG-

E8 increases in vessels with age and by Ang II, and triggers phosphorylation of 

ERK1/2 which enhances proliferation signalling in young cultured VSMCs. In 
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contrast MFG-E8 silencing, or the blockade of ERK1/2 phosphorylation in young 

cells reduces inflammation and decelerates the cell cycle S phase, conferring a 

reduction in proliferative capacity (267). Oxidative stress and sympathetic 

activity increases with age and both might play an important role in modification 

and proliferation of the muscle (258;268).  

Migration/invasion 

The migration/invasion of medial VSMC, into the arterial intima is a key cellular 

event in age-associated diffuse intimal thickening. Old VSMC cease to interact 

normally with the ECM due to changes in ECM composition or due to change in 

the expression of integrins (269). In addition, the capacity of invasion of VSMC 

increases many fold with ageing and has also been demonstrated in cultured old 

VSMC, via increased activation of MMP-2/-9 (247-250;270). Similarly exposure of 

cultured young VSMCs to Ang II, MFG-E8, calpain-1, PDGF-bb, or MCP-1 enhances 

invasive capacity to levels observed in untreated old cells (246;271;272). MFG-E8 

silencing RNA considerably reduces the expression of MCP-1, PDGF, and the PDGF 

receptor and also reduces VSMC invasion capacity (265;267). Collectively MFGE8 

inhibition can be used in future as a target to reduce proliferation and invasion 

of VSMC. 

1.6.1.2 Changes in the vascular extracellular matrix (ECM) with ageing 

The ECM is a complex mixture of structural proteins and glycoproteins, including 

collagens, elastins, fibronectins, and proteoglycans. Its main function is to 

provide and maintain the structural framework which is essential for the 

functional properties of the vessel wall. The maintenance of three dimensional 

organization of the ECM contents especially elastin, collagens, proteoglycans and 

structural glycoproteins are essential for optimal vascular functions (273). In 

healthy (uninjured) vessels some proteases are constitutively expressed but their 

activity is controlled by inhibitors and balance is maintained. This balance is lost 

due to ageing and other vascular pathologies and there is induction of matrix 

metalloproteinase gene expression, activation of zymogens and secretion of 

enzymes by inflammatory cells (273). VSMCs have the ability to respond to these 

injurious stimuli and synthesize ECM (including collagen types I, II and III) and 

protease inhibitors but the three dimensional organization of the newly 
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synthesized ECM is never functionally optimal (273-275). In old VSMC, MMP-2-

activated TGF-b1 signalling is involved in the increased collagen I, II, and III 

production (274;275). In contrast some pathological conditions overcome the 

VSMC response and the quantity of ECM decreases (273).  

1.6.2 Role of Inflammation in hypertension 

Elevated blood pressure is known to be pro-inflammatory and prothrombotic. 

There is evidence of upregulation of local and systemic inflammatory mediators 

including cytokines, tissue factor (TF), components of the renin-angiotensin 

system (RAS), endothelial adhesion molecules and chemokines (276-278). Attica 

et al demonstrated that prehypertensive subjects had 31% higher CRP levels than 

normotensive controls (279), and the same was observed in the Third National 

Health and Nutrition Examination Survey (NHANES III) (280). In the Framingham 

offspring study serum CRP levels were higher in non-hypertensive children of 

hypertensive parents compared with offspring of parents without hypertension 

(281).  

The association of chronic low grade inflammation with HTN is widely 

documented in experimental and clinical results and inflammatory activation is 

implicated in the development of the cardiovascular consequences of HTN.  

However, it is remains unclear whether inflammation is a pathogenetic inducer 

of HTN or whether HTN precedes the inflammatory events of atherosclerosis 

(282) .  

1.6.3 Role of inflammation in atherosclerosis and cardiovascular 
disease 

Inflammation has been clearly linked with atherosclerosis over the past 2 

decades (283;284). Inflammation is involved in initiation, growth and rupture of 

atherosclerotic plaque regardless of the initial stimulus (285;286). The 

established risk factors for promoting atherosclerosis are cigarette smoking, 

hypertension, atherogenic lipoproteins and hyperglycaemia. These give rise to a 

variety of stimuli that elicit secretion of leukocyte soluble adhesion molecules, 

which facilitate the attachment of monocytes to ECs as well as chemotactic 

factors which facilitate migration of monocytes into the subintimal space. These 

monocytes are transformed into macrophages which take up lipoproteins to form 
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fatty streaks. Additional injurious stimuli may continue the attraction and 

accumulation of macrophages, activated T cells and mast cells within the 

growing atherosclerotic lesion. Oxidized low-density lipoproteins (LDL) and many 

other factors contribute to loss of smooth muscle cells through apoptosis in the 

atherosclerotic plaque cap. Activated macrophages also secrete 

metalloproteinases and other connective tissue enzymes which may break down 

collagen, weakening the cap and making it prone to rupture. The disruption of 

the atherosclerotic plaque exposes the plaque core to arterial blood and induces 

thrombosis. In summary, nearly all the steps in atherogenesis are believed to 

involve cytokines, other bioactive molecules, and cells that are characteristic of 

inflammation (287).  

The arterial ageing process is connected with hypertension and atherosclerosis 

at the molecular and cellular levels because all the three process exhibit the 

same structural and functional characteristics (246). The similarities between 

ageing, hypertension and atherosclerosis in relation to inflammation are shown 

in Table 1.2 and the common pathway is shown in Figure 1.3. 
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Table 1.2 Molecular and cellular remodelling in Ageing, hypertension, atherosclerosis and 
Angiotensin II signalling 

  Ageing 
>56 

HTN Ather Ang II 
signalling 

Inflammatory 
molecules 

Local Ang II ↑ ↑ ↑ ↑ 

MMPs ↑ ↑ ↑ ↑ 

Calpain-1 ↑ ↑ ↑ ↑ 

MCP-1/CCR2 ↑ ↑ ↑ ↑ 

TGF-β1 ↑ ↑ ↑ ↑ 

NADPH oxidase ↑ ↑ ? ↑ 

NO bioavailability ↓ ↓ ↓ ↓ 

TNF-α ↑ ↑ ↑ ↑ 

ICAM ↑ ↑ ↑ ↑ 

MFG-E8 ↑ ↑ ↑ ↑ 

PDGF ↑ ↑ ↑ ↑ 

Cellular 
matrix 
structure and 
function 

EC dysfunction ↑ ↑ ↑ ↑ 

Diffuse IMT ↑ ↑ ↑ ↑ 

Stiffness ↑ ↑ ↑ ↑ 

Matrix ↑ ↑ ↑ ↑ 

Calcification ↑ ↑ ↑ ↑ 

FN/Collagen ↑ ↑ ? ↑ 

VSMC migration ↑ ↑ ↑ ↑ 

VSMC proliferation ↑ ↑ ↑ ↑ 

Hypertension prevalence ↑ ↑ ? ↑ 

Atherosclerosis prevalence ↑ ? ↑ ↑ 
Symbols and abbreviations: ↑= increase, ↓= decrease, Ang II= Angiotensin II, Ather= 
atherosclerosis, CCR2= C-C chemokine receptor type 2, EC= endothelial cell, FN= 
fibronectin, HTN= hypertension, ICAM= intercellular adhesion molecule; IMT= intima-media 
thickening, MCP-1= monocyte chemo-attractant protein-1, MFG-E8= milk fat globule 
epidermal growth factor-8, MMPs= matrix metalloproteases, NO= nitric oxide, PDGF= 
platelet-derived growth factor, TGF-b1= transforming growth factor b1, TNF-α = tumor 
necrosis factor α, VSMC= vascular smooth muscle cell.  
Adapted with permission from Wang M 2014 (246) 
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Figure 1.3 Age associated pro-inflammatory arterial remodelling and development of 
hypertension and atherosclerosis. 
Reproduced with permission from Wang et al. 2014 (246).  
Abbreviations: AAASP= age-associated arterial secretory phenotype, ACE = angiotensin 
converting enzyme, Ang II= angiotensin II, AT1R= angiotensin II type 1 receptor, AGE= 
advanced glycation end products, ECM= extracellular matrix, ET-1= endothelin-1, ETA= 
endothelin-1 receptor A, Ets-1= v-ets erythroblastosis virus E26 oncogene homolog 1, LAP= 
latency-associated peptide, LTBP-1= latent transforming growth factor (TGF)-binding 
protein-1 (LTBP-1), MCP-1= monocyte chemo attractant protein-1, MFG-E8= milk fat globule 
epidermal growth factor-8, MMP= matrix metalloprotease, MR= 
aldosterone/mineralocorticoid receptor, NF- kB= nuclear factor k light-chain-enhancer of 
activated B cells, Nrf-2= NF-E2-related factor 2, NO= nitric oxide, PAI= plasminogen 
activator inhibitor, PDGF= platelet-derived growth factor, RAGE= receptor for AGE, ROS= 
reactive oxygen species, TGF- b1= transforming growth factor b1, t-PA/u-PA= tissue-
type/plasminogen-type plasminogen activators and VMSC= vascular smooth muscle cell 
 

1.6.4 Hypertension and immune system 

This thesis does not contain direct measurements of the immune system in 

relation to blood pressure and hypertension. However, it contains two chapters 

which focus on biomarkers of inflammation. The role of immunity in relation to 

hypertension is therefore briefly described below.  



Chapter 1 

49 
 

The role of the immune-inflammatory component in the pathogenesis of 

hypertension is underappreciated. Innate and adaptive immune cell infiltration 

is continuously found in the kidney, vessel wall and perivascular adipose tissue 

(PVAT), along with the more conventional inflammation and ROS in 

hypertensives (288-290). T effector lymphocytes appear to play a key role in the 

development of hypertension (289) and also exaggerate the inflammatory 

response by their interaction with innate cells (288). In contrast, T regulatory 

lymphocytes (Tregs) limit the innate and adaptive immune responses and 

neutralise the elevation of BP and associated kidney and vascular damage (288).  

1.6.4.1 T-lymphocyte subsets 

T lymphocytes are characterised by the presence of the T-cell receptor (TCR) 

complex containing two TCR chains (α and β), a CD3 co-receptor and a ζ-chain 

accessory molecule. During development in the lymphoid tissues, CD3+ T 

lymphocytes mature into the active forms: CD4+ or CD8+ cells. These 

immunocompetent T cells require two signals for activation: 1) recognition of an 

antigenic peptide (via TCR) presented by antigen-presenting cells (APC) via their 

major histocompatibility complex (MHC) class II molecules, 2) generation of a co-

stimulatory signal, that is the interaction between B7 ligands (CD80 and CD86) 

on APC with the T-cell co-receptor CD28 (291). Upon activation, the naive CD4+ 

T helper (Th) cells differentiate into Th1, Th2 and Th17 effector cells, each 

producing its own panel of cytokines which then mediate separate functions 

(292). Th1 cells secrete interferon (IFN)-γ, interleukin 2(IL-2), and tumor 

necrosis factor (TNF)-β and play roles in cell-mediated defence against 

intracellular microorganisms as well as involvement in hypertension. Th2 cells 

produce IL-4, IL-5, IL-10, and IL-13, which assist in B-cell activation and also 

suppress cell-mediated immunity. Th17 cells secrete IL-17 and IL-22 and 

participate in defence against extracellular bacteria and fungi. CD4+ cells can 

also differentiate into T regulatory lymphocytes (Tregs) which regulate and can 

suppress innate and adaptive responses to autoantigens, alloantigens, tumor 

antigens, and infectious agents (292). Tregs have an important role in the 

maintenance of immunologic self-tolerance, immune homeostasis and anti-

inflammatory effects by producing IL-10 (292-294). The body response in 

production of Th1, Th17 or Th2 and Treg depend on the stimulus, environment 

and other cytokines. For example Treg and Th17 are derived from the same 
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precursor but their quantity within the cells depends upon the amount of IL-6 

(295). CD8+ T effectors differentiate into cytotoxic (Tc) cells that secrete 

perforin, granzyme B, IFN-γ, and TNF-α and may play a role in hypertension 

(293). 

1.6.4.2 T-effector lymphocytes in hypertension 

Guzik et al. exposed C57BL/6 mice lacking recombination activating gene-1 

(Rag1−/−), which are deficient in mature T and B cells (296), to Ang II infusion or 

desoxycorticosterone acetate (DOCA)-salt hypertension. These mice exhibited 

protection from the development of hypertension and vascular oxidative stress. 

Moreover, adoptive transfer of T cells (but not of B cells) in these mice restored 

the hypertensive phenotype. This restoration of hypertension was also 

dependent upon Ang II type 1a receptors (AT1aR), suggesting that T-cell AT1aR 

activation and NADPH oxidase-dependent ROS formation also play important 

roles in hypertension (296). The Rag1−/− mice also showed blunted adventitial 

collagen deposition and aortic stiffening in response to Ang II; this was restored 

on adoptive transfer of T-cells (297). Interestingly, this vascular remodelling was 

not achieved through adoptive transfer of CD4+ or CD8+ T-cells alone, indicating 

that a combination of both CD4+ and CD8+ T-cells was required (297). In 

contrast, immunosuppressive therapy has been shown to prevent BP elevation in 

experimental models of hypertension. For example, mycophenolate mofetil, a 

compound which depletes B and T cells, protects against hypertension and 

development of renal disease. Activated T cells increase TNF-α and treatment 

with the TNF-α antagonist, etanercept prevents Ang II-induced BP and increased 

in ROS (298). Crowley et al. used severe combined immunodeficiency (SCID) 

mice which also lack lymphocyte immune responses (299). On Ang II infusion 

these mice did not develop hypertension, cardiac hypertrophy or renal injury. 

These protective effects may be due to enhanced production of NO, 

prostaglandin E2 and prostacyclin via stimulation of eNOS and COX-2 dependent 

pathways (299). Senchenkova et al. studied Ang II induced arteriolar thrombosis 

in cremaster arterioles of different mice models. The thrombosis response was 

found to be greater in wild-type mice compared with Rag1−/−, CD4+ T-cell- or 

Nox2 (gp91phox)-deficient (Cybb−/−) mice, whereas CD8+ T-cell-deficient mice 

exhibited an intermediate phenotype (300). Moreover, adoptive transfer of wild-

type or Cybb−/− T cells into Rag1−/− restored the pro-thrombic effects of Ang II. 
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This suggests greater contribution of CD4+ T cells compared to CD8+ T 

lymphocytes (300). The respective roles and amount of contribution by CD4+ and 

CD8+ T lymphocytes in hypertension are still under investigation and relevance in 

humans may be demonstrated by studies in pre-eclampsia (301;302). Recently 

Youn et al. (303) showed that T-lymphocytes from patients with hypertension 

had increased immunosenescent pro-inflammatory cytotoxic CD8 + T-cells, which 

were associated with loss of CD28 and the presence of CD57. The loss of CD28 

occurs in ageing associated hypertension. These T-cells also secreted the pro-

inflammatory and BP increasing factors: perforins, granzyme B, IFN-γ and TNFα. 

Moreover, circulating levels of C-X-C chemokine receptor type 3 chemokines 

were also found to be higher in hypertensive patients (303), suggesting a role of 

T-lymphocyte-dependent inflammation in human hypertension.  

1.6.4.3 Alteration of Th1/Th2 balance in hypertension 

Ang II infusion is associated with a shift of T cells balance towards a pro-

inflammatory state with an increase in Th1 and decrease in Th2-mediated 

responses (304;305). As outlined above, the Th1 response is characterised by 

increased production of IFN-γ (304;305), while increase in IL-4 production is a 

hallmark of the Th2-mediated response (304). The effects of Ang II can be 

blocked by AT1aR antagonists independently of haemodynamic responses to Ang 

II (304). Lozovoy et al. (306) recently compared Th1/Th2 ratio in patients with 

SLE (active and non-active) with controls. They showed that Th1/Th2 ratio 

exhibited by IL-12/IL-4 ratio, IL-12/IL-10 ratio, IFN-γ/IL-10 and IFN-γ/IL-4 ratio 

was raised in patients with active SLE compared to non-active SLE or controls. 

Patients with a higher Th1/Th2 ratio had a higher probability of developing 

hypertension (306). However this may not apply directly to people with 

connective tissue diseases.  

1.6.4.4 Role of Th17 cells in hypertension 

Th17 cells mainly secrete IL-17 which, as outlined above, are associated with 

Ang II induced hypertension, inflammation and vascular dysfunction. Madhur et 

al. (307) demonstrated that IL17a KO mice (IL-17a−/−) receiving chronic infusion 

of Ang II exhibited a blunted BP response, preserved vascular function, 

decreased ROS production, and decreased aortic T-cell infiltration. Moreover, 
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these IL-17a−/− mice were protected against aortic collagen deposition and 

vascular stiffening (297;307). Nguyen et al. also showed that giving IL-17 infusion 

to C57BL/6 mice significantly increased SBP and decreased aortic NO-dependent 

relaxation (308). Similarly Amador et al. showed that treatment of DOCA-salt 

hypertensive rats with an anti-IL-17 antibody reduced arterial hypertension, 

expression of profibrotic and pro-inflammatory mediators as well as collagen 

deposits in the heart and kidney (309). These effects of IL-17 are thought to be 

due to activation of RhoA/Rho-kinase and also lead to endothelial dysfunction 

(309). Reduced uterine perfusion pressure (RUPP) rats (a model of pre-

eclampsia) have also been shown to exhibit lower levels of Tregs and higher 

levels of Th17 cells (302). The adoptive transfer of CD4+ T cells from pregnant 

RUPP rats, into normal pregnant rats induced a significant increase in BP and 

inflammatory markers. Furthermore administration of IL-17 soluble receptor C in 

RUPP rats reduced circulating Th17 cells along with decrease in ROS and 

hypertension (301). 

1.6.4.5 Role of the co-stimulation in activation of T effector lymphocytes 

Hypertension is associated with activation of T effector lymphocytes suggesting 

a role of APCs in antigen presentation. Ang II induced hypertension is also 

associated with increased expression of activated (CD86+) dendritic cells in 

secondary lymphatic tissues. Vinh et al. demonstrated that preventing T-cell co-

stimulation either pharmacologically, using a CTLA4-Ig (which blocks CD28 

interactions with B7 ligands), or by genetic deletion of B7 ligands in mice 

prevented Ang II induced hypertension, inflammation, ROS increase and T cell 

activation (310). The CTLA4-Ig also reversed the Ang II and DOCA-salt induced 

hypertension (310). 

1.6.4.6 Role of the central nervous system (CNS) 

The CNS may influence the pathophysiology of hypertension by modulating 

innate and adaptive immune responses. Ang II administration into the lateral 

cerebral ventricles was associated with increased expression of pro-

inflammatory splenic cytokines, such as IL-1β and IL-6 (311). Furthermore these 

responses were abolished by splenic sympathetic denervation, suggesting 

involvement of ANS in this peripheral response. Similarly, lesions anterior and 
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ventral to the third ventricle in mice are known to disrupt signals from the 

subfornical organ to the hypothalamus (312). This intervention prevents most 

forms of experimental hypertension as well as blunting T-cell activation and 

vascular infiltration of leucocytes (312). Cre/Lox-mediated deletion of 

extracellular SOD in the circumventricular organs of mice increases oxidative 

stress and elevated sympathetic outflow. This leads to a slight increase in 

baseline BP and exaggerates hypertension induced by low dose Ang II (313). 

Similarly T-cell activation was increased in SOD3 KO mice infused with a low 

dose of Ang II (289). In contrast, intracerebroventricular injections of an 

adenovirus encoding for cytoplasmic SOD reported a blunting of Ang II-induced 

hypertension in C57Bl/6 mice (314).  

1.6.4.7 T regulatory (Treg) lymphocytes in hypertension 

The Treg lymphocytes are involved in regulating innate and passive immunity. 

Barhoumi et al. and showed that adoptive transfer of Tregs in C57Bl/6 mice 

blunted Ang II-induced hypertension, endothelial dysfunction, circulating pro-

inflammatory cytokines, vascular oxidative stress and stiffness, aortic 

macrophage and T-cell infiltration (315;316). Similarly Kasal et al. suggested 

protective effects of Tregs adoptive transfer in a model of aldosterone-induced 

hypertension (317). Kavakan et al. further showed that the preventive effects of 

adoptive transfer of Tregs on Ang II induced cardiac hypertrophy and fibrosis, 

TNF-α expression and immune cell infiltration were independent of BP lowering 

(318). Matrougui et al. also reported similar findings i.e. reduction in BP 

elevation, macrophage activation and infiltration into coronary arterioles and 

the heart, local TNF-α release, and coronary arteriolar endothelial dysfunction 

when C57Bl/6 mice received intraperitoneal injections of Tregs (316).  

Most Treg effects are mediated by production of IL-10 which decreases 

inflammation and oxidative stress in the development of hypertension. The 

protective role of IL10 is illustrated by exacerbation of Ang II-induced 

endothelial dysfunction and hypertension in IL 10 KO mice (IL 10−/−) (319). In 

addition, transfer of Tregs (isolated from control mice) into hypertensive IL 

10−/− mice reduced SBP and NADPH oxidase activity along with improvement of 

endothelium-dependent relaxation in resistance arteries (320).  
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In conclusion, T effector and T regulator subsets of lymphocytes play an opposite 

role in hypertension. Moerover, any stimulus causing CNS stimulation can 

increase sympathetic outflow resulting in mild BP elevation (in prehypertension 

range). This modest pressure elevation brings about an inflammatory response, 

likely by generating neoantigens that activate T cells (289). This inflammatory 

response also leads to entry of effector-like T cells into the perivascular fat and 

the kidney; cause tissue injury (289) and formation of damage-associated 

molecular patterns (DAMPs) (288;321). Activation of innate APCs by DAMPs, or by 

pathogen-associated molecular patterns (PAMPs) generated in response to low-

grade infection (321), and direct stimulation by CNS, may be the cause of 

activation of CD4+ and CD8+cells which differentiate towards pro-inflammatory 

Th1/Th17 phenotypes (304). The Th1 and Th17 effector lymphocytes produce 

pro-inflammatory mediators, including ROS, IFN-γ, TNF-α, and IL-17, to promote 

low-grade inflammation, contributing to the progression of hypertension 

(296;304;305;307;308). Tregs on the other hand, counteract progression of 

hypertension by suppressing innate and adaptive immune responses, perhaps by 

secreting IL-10 (315-320;322).  

1.7 Obesity 

Obesity or “adiposity” is the excessive deposition of fat in adipose and other 

tissues of the body. The main cause of adiposity is imbalance between energy 

intake and output, i.e. calorie intake exceeds calorie expenditure with the 

excess stored as “fats”. Adipocytes are present throughout the body: their main 

function is to store energy in the form of fat (neutral triglycerides), along with 

providing insulation and mechanical support. When needed, fats provide the 

energy for most body organs, including liver, muscle and heart. Adipose tissue 

not merely works as an energy store but is also an important component of 

metabolic control as an endocrine organ. Due to its size, adipose tissue can be 

considered one of the largest endocrine organs. Obesity is associated with an 

increase in both adipocytes number and size (323).  

1.7.1 Normal adipose tissue function 

Normal adipose tissue contains mature adipocytes. Other cell types present 

include pericytes, ECs, monocytes, macrophages, pluripotent stem cells 
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(including preadipocytes) and fibroblasts. When food is scarce or energy 

requirement increases, lipid reserves are released for providing energy. 

Adipocytes contain enzymes “lipases” which breakdown stored triglycerides into 

glycerol and free fatty acids (FFA) and release them into the blood, from where 

FFAs are transported to organs including liver and muscle for oxidation and 

generation of energy. Glycerol and FFAs can be re-esterified in adipocytes so 

their level is closely regulated. Adipocytes also respond to hormonal (insulin) 

and sympathetic stimulation. As an endocrine organ, adipose tissue secretes 

several hormones and cytokines commonly called adipokines or adipocytokines. 

These adipokines have effects on multiple biological systems, including energy 

homeostasis (lipid and carbohydrate metabolism, thermogenesis, appetite), the 

immune system, blood pressure, angiogenesis and reproductive function (323). 

The role of adipose tissue in glucose homeostasis has been demonstrated in 

adipose specific GLUT4 knockout mice in which disruption of insulin-stimulated 

glucose uptake caused peripheral insulin resistance and glucose intolerance even 

without alteration in adipose tissue mass (324). In non-obese physiology, 

cytokines make surplus fuel readily available for use by activated immune cells 

during infection and/or inflammation. The cytokines, adiponectin and leptin 

promote insulin-stimulated lipogenesis leading to triglyceride accumulation and 

adipose expansibility. They also have insulin sensitising actions and promote fuel 

oxidation in muscle and protect non-adipose tissue from accumulating lipids 

(325). Leptin is involved in regulation of appetite, resting metabolism and 

fertility (326). Other important adipokines are TNF-α and IL-6 in inflammation, 

plasminogen activator inhibitor-1 in coagulation (325). Adipose tissue also 

produces angiotensinogen (AGT) and angiotensin-converting enzyme (ACE) under 

physiological conditions (327).  

1.7.2 Obesity and adipose tissue dysfunction 

With positive energy balance, extra energy is stored in adipose tissue with 

development of new adipocytes and growth of mature adipocytes.  The genetic 

profile of an individual determines the storage capacity of adipose tissue; when 

the storage capacity fails to cope with excessive demand then adipose tissue 

becomes dysfunctional. Adipose tissue dysfunction is associated with overweight 

and obesity and also alters adipokine production with increased production of 
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leptin, TNF-α and IL-6 but decreased adiponectin. It is characterized by 

hypertrophied adipocytes and infiltration by macrophages (325).   

In obesity, chronic increase in pro-inflammatory adipokines impairs whole body 

energy balance with loss of the normal response to fluctuations in nutritional 

status (328). Increased secretion of TNF-α impairs insulin sensitivity, inhibits 

adipocyte differentiation, promotes lipid mobilization in mature adipocytes and 

alters production of other adipokines (329). This limits adipose tissue lipid 

storage capacity and contributes to obesity associated hyperlipidemia and 

lipotoxicity in other organs such as muscles, liver and β-cells (329). Reduction in 

leptin and adiponectin and their decreased activity contributes to impaired 

adipose tissue expansion while accumulating lipids in non-adipose tissue (323). 

Decrease in adiponectin also adds to insulin resistance as adiponectin receptors 

on liver and muscle cells mediate β-oxidation of fatty acids, glucose uptake, 

gluconeogenesis and peroxisome proliferator activated receptor-γ activation 

(325;330). 

1.7.3 Obesity related hypertension 

The Framingham heart study implicated obesity as a contributory factor in 60%–

70% of essential hypertension (331). Obese individuals have a 3.5-fold increase in 

the likelihood of developing hypertension (332). Increased risk starts from a 

young age and even obesity acquired during childhood is a predictor of 

hypertension in adulthood (333;334). Severely obese but normotensive children 

were also reported to have dilation (without arterial wall hypertrophy) and 

increased stiffness of the carotid artery (335). Similarly Rocchini et al. 

demonstrated decreased maximal blood flow and increased structural vascular 

resistance in the fore arm of obese adolescents but these changes were partially 

reversed with weight loss (336). Wildman et al. evaluated the age-related 

association between obesity and arterial PWV. They clearly showed that being 

overweight or obese even in young age, around 30, is significantly associated 

with increased arterial PWV. However this association of PWV with obesity 

appeared to plateau after 60 years of age with obesity not being associated with 

any further increases in vascular stiffness in elderly patients (337). This may 

suggest a reduced input of obesity on PWV with age, but could also suggest a 

“ceiling” effect due to limitations of the technique.  
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Figure 1.4 Mean PWV by BMI categories. 
Modified from Wildman et al. 2003) (337) 
Normal weight (BMI <25), overweight (25> BMI <30) and obese (BMI> 30) subjects. Mean 
values were adjusted for age, sex, SBP and race. 
 

Gosmanov et al. showed the effects of fat load (both oral and intravenous) in 

normotensive but obese individuals (338). They suggested that both bolus oral 

ingestion and/or the intravenous infusion of fat resulted in a significant rise in 

SBP, attenuated endothelial function (assessed by flow mediated dilatation), 

increased oxidative stress and also activated the sympathetic nervous system 

(338). Moreover 10 weeks of high fat diet in obesity-prone rats was associated 

with hypertrophy of the aorta, accompanied by elevated plasma renin activity, 

glomerulosclerosis and the development of hypertension (339). Similarly high 

salt diet in obese rats (diet induced) accelerated the development of 

hypertension along with a significant increase in superoxide levels within aortic 

rings (340). These studies show that obese people are highly prone to 

development of hypertension and any additional load of fat diet, salt intake or 

other stress may exhibit the clinical picture of hypertension.  

1.7.4 Mechanism of obesity related disorders (inflammation, 
insulin resistance and hypertension) 

The cellular mechanisms linking obesity to disorders like insulin resistance, 

inflammation, and hypertension are explained below. 
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1.7.4.1 Normal intracellular Signalling 

Insulin stimulates the uptake of glucose in skeletal muscles and adipose tissue 

through stimulation of phosphatidylinositol (PI3) kinase dependent signalling 

pathways. This pathway involves the insulin receptor, insulin receptor substrate 

1 (IRS-1), PI3- kinase, phosphoinositide-dependent kinase 1 (PDK- 1), and protein 

kinase B (Akt) (341). The vasodilator action of insulin is classically thought to 

operate via PI3-kinase dependent stimulation of Akt which directly increases 

endothelial NO synthase (eNOS) activity, leading to increase in NO production 

(341;342) (Figure 1.5). Insulin also has vasoconstrictor effects which are mainly 

mediated by the vasoconstrictor peptide endothelin-1 (ET-1) (341). ET-1 is 

produced within the vascular endothelium through stimulation of the 

intracellular MAP-kinase signalling pathway (343). Thus insulin has both 

vasodilator and vasoconstrictor effects within the endothelium which 

counterbalance each other. In normal homeostasis state, the net result is either 

neutral or vasodilatation.  

 

Figure 1.5 Mechanisms of insulin-mediated nitric oxide and endothelin 1 production in 
endothelial cells. 
Modified from Jonk et al. 2007 (344). 
ALDO= aldosterone, Ang II= angiotensin II, PI3K= phosphoinositide 3-kinase, S6k1= 
Ribosomal protein S6 kinase beta-1, MAPK= Mitogen-activated protein kinases, mTOR= 
mammalian target of rapamycin, MR= mineralocorticoid receptor, ET-1= endothelin 1, Akt= 



Chapter 1 

59 
 

Protein kinase B, eNOS= endothelila nitric oxide synthase, TNF-α= Tumour necrosis factor 
alpha, IRS1= Insulin receptor substrate 1, Ser= serine   
 

1.7.4.2 Possible mechanisms for obesity associated micro vascular 
dysfunction 

Elevation of circulating free fatty acid levels in obesity (secondary to insulin 

resistance and increased lipolysis) induces serine phosphorylation of IRS-1 which 

interferes with the normal insulin-receptor mediated phosphorylation of IRS-1, 

thus impairing activation of PI3-kinase (345). Obesity thus disturbs normal 

intracellular signalling through multiple mechanisms resulting in obesity 

associated microvascular dysfunction. For example, there is increased 

production of reactive oxygen species (ROS) which decreases the bioavailability 

of NO via reduced NO production and direct inactivation of NO by superoxide 

(O2
- ) (346;347) (see Figures 1.5 and 1.6). Obesity also leads to reduced 

expression and activity of eNOS in muscle and kidney (348-352), resulting in 

blunted NO production. Lastly, the intracellular insulin signalling transduction 

pathway is also impaired (353). In contrast the insulin-mediated vasoconstrictor 

pathway remains intact or only selectively impaired in obesity. Thus, there is an 

imbalance between NO and ET-1 production, shifting the vascular reaction from 

vasodilatation towards vasoconstriction (344).  As a consequence of these 

cellular defects insulin-mediated endothelium-derived vasodilatation is blunted 

in obesity.  

These effects have been demonstrated in human studies in which obese, 

hypertensive individuals exhibited insulin-induced vasoconstriction and increased 

ET-1 dependent vasoconstrictor tone as well as decreased NO-dependent 

vasodilator tone (354;355). This microvascular dysfunction may contribute to 

obesity-associated insulin resistance and hypertension. Changes in vascular 

stiffness, calcification, mitochondrial function, cytokine and inflammatory 

system activation are explained in detail in the relevant sections (see Sections 

1.2, 1.3 and 1.6).  

As well as an increased production of free fatty acids (FFA) (356), obese 

individuals also exhibit increased circulating levels of leptin, resistin, TNF-α, IL-6 

and angiotensinogen (357-359). It has been shown that FFA and TNF-α elevation 

impair insulin sensitivity and increase blood pressure (360). Along with that the 
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production of adiponectin, an anti-inflammatory adipokine, is reduced (361). All 

these are discussed as follows 

1.7.4.3 Free fatty acids (FFA) 

Fatty acids exposure in humans leads to endothelial dysfunction exhibited as 

reduction in endothelium dependent vasodilatation (362;363). De Jongh et al 

demonstrated the effect of FFA elevation (by intravenous lipid plus heparin 

infusion) in lean subjects. It resulted in impairment of basal and insulin-induced 

skin capillary recruitment and endothelium-dependent vasodilatation along with 

reduced glucose uptake (360). It was also shown  that lowering FFA in obese 

women leads to improvement in basal and insulin mediated skin capillary 

recruitment and also increased glucose uptake (360).  

The mechanisms by which circulating FFAs impair basal and insulin-mediated 

effects on micro vascular function are not completely understood. However it 

has been shown that elevation of FFA interferes with insulin-induced activation 

of PI3-kinase in human muscle (345;353;364) and in cultured cells (365;366) 

(Figure 1.5). In addition FFA elevation increases ROS production (367) and 

increases the release of vasoconstrictor ET-1, both of which cause endothelial 

dysfunction (356).  

1.7.4.4 Tumour necrosis factor-α (TNF-α)  

Obesity increases the release of TNF-α which then impairs the balance between 

endothelial-derived vasodilator and vasoconstrictor substances. It decreases 

expression of eNOS (352;368), increases expression of ET-1(73) and inhibits IRS-1 

phosphorylation (359;369) in human ECs. In vascular smooth muscle cells and 

also endothelium it directly activates NADPH oxidase and increase ROS 

production (370;371) (Figure 1.5). Besides these direct effects, TNF-α also 

stimulates lipolysis and increases FFA in plasma. In vivo rat studies show that 

acute administration of TNF-α inhibits insulin mediated increase in femoral 

blood flow and muscle capillary recruitment thus potentially contributing to 

insulin resistance (372). In humans, weight loss has been shown to result in a 

significant improvement of endothelial function and was closely correlated with 

a reduction in TNF-α (373).  
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1.7.4.5 Leptin 

The hormone leptin is released from adipocytes; its concentration rises with 

increasing percentage of body fat (358). Increased leptin levels in obesity have 

been shown to increase ROS production in endothelial cells (358). More detail of 

leptin related vascular dysfunction is discussed in detail in Section: 1.7.6 

1.7.4.6 Adiponectin  

Adiponectin is also released from adipocytes; its concentration is inversely 

related to body fat (361). Adiponectin activates tyrosine phosphorylation of IRS-1 

and other molecules in the insulin signalling cascade, enhancing glucose uptake 

and endothelium-dependent relaxation (374). The role of adiponectin in obesity 

is explained in detail in the Section: 1.7.6 

1.7.4.7 The renin-angiotensin-aldosterone system (RAAS) 

The involvement of the kidneys in obesity-related hypertension is highlighted by 

three main factors, including increased activity of the renal SNS, activation of 

the RAAS and deposition of intrarenal fat causing physical compression of the 

kidneys and ECM modifications (375). In addition to the conventional circulating 

RAAS, RAAS components have been detected in tissues such as heart, brain, 

kidney, vasculature, immune cells and adipose tissue (376-381). Obesity causes 

increased activation of the RAAS, both systemically and within adipose tissue; 

the latter can generate Ang II (342;382). 

Most of the effects of RAAS occur via production and activation of Ang II which 

signals through G protein coupled membrane-bound type 1 and type 2 receptors 

(AT1R and AT2R) (383). At the cellular level Ang II stimulates phosphorylation of 

IRS-1 (211), which interferes with the normal insulin-dependent activation of 

PI3-kinase, resulting in decreased glucose uptake and NO synthesis (211). Ang II 

is a well-known stimulant of reactive oxygen species (ROS) production which 

decreases cellular level of NO (384-387) and this ROS production was reduced by 

ARB (388;389). Ang II also stimulates the production of ET-1 in the endothelium 

(390;391) and causes the release of other inflammatory cytokines like TNF-α 

(392;393).   
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In normal weight healthy people, infusion of Ang II causes a redirection of blood 

flow between different vascular beds. This redistribution, increases total muscle 

blood flow and capillary recruitment, which as a result increases insulin induced 

glucose uptake (394;395). In obese people, it has been suggested that the RAAS 

seems to have opposite effects and decreases insulin induced glucose uptake, 

and also contributes to obesity associated hypertension (396;397). In animal 

models Ang II induced hypertension was associated with endothelial dysfunction 

(384) and chronic administration of Ang II caused insulin resistance in muscle and 

adipose tissue (385;386); conversely blocking the RAAS decreased insulin 

resistance in muscle of diabetic mice (389).  

In humans it has been shown that Ang II subtype 1 (AT1) receptor blockers (ARB) 

and angiotensin-converting enzyme (ACE) inhibitors decrease the risk of new-

onset diabetes mellitus in hypertensive patients by about 25% (398) and enhance 

blood flow in peripheral tissues such as skeletal muscle (399;400). A study in 

humans demonstrated that a FFA induced impairment in the endothelial function 

was completely prevented by a single dose of either an ARB or an ACE, which 

suggests RAS involvement in FFA induced endothelial dysfunction (363). In 

contrast to these effects, a reduction in body weight reduced RAS activity in 

both plasma and adipose tissue and was associated with a decrease in BP 

(397;401).  

Obesity and RAAS modulation of skeletal muscle microvasculature 

The RAAS has been ascribed both beneficial and deleterious effects but in 

overweight, obesity and T2DM there is inappropriate activation of the RAAS, 

which plays an important role in the modulation of the skeletal muscle 

vasculature by promoting fibrosis, remodelling, proliferation, migration, and 

hypertrophy (206;211;402-404). 

Within the vessel wall, AT1R activation increases oxidative stress and promotes 

vasoconstriction and remodelling (405). In the EC, AT1R activation leads to 

increased activity of the nicotinamide adenine dinucleotide phosphate (NADPH) 

oxidase, enhanced production of ROS, and uncoupling of eNOS (383). eNOS 

uncoupling in turn decreases bioavailable NO (403). Moreover, in EC Ang II also 

interferes with insulin-stimulated eNOS activation (via decreased Ser1177 
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phosphorylation) and consequently diminishes NO production via the mammalian 

target of rapamycin/p70S6 kinase 1 pathway (mTOR/S6K1) (406). AT1R signalling 

has been shown to impair endothelial-mediated vasorelaxation (211;220), insulin 

sensitivity and glucose uptake in cultured myotubules (407). The increase in ROS 

due to ATR1 signalling promotes the serine phosphorylation of IRS and reduces 

insulin metabolic signalling. Impaired insulin signalling in turn attenuates 

activation of eNOS, increases destruction of NO, and increases intracellular 

calcium and calcium sensitization in VSMC (206;211;402) 

In contrast, AT2R activation antagonises the deleterious effects of AT1R 

signalling by causing vasodilation (408). The vasodilation by AT2R signalling 

results from activation of the bradykinin and NO system (409). In insulin 

resistance and diabetes this AT2R mediated dilatation is reduced due to 

increased ROS. However, treatment with an AT1R blocker in hypertensive 

diabetic persons for 1 year resulted in increased AT2R expression and enhanced 

vasodilatory response (410). Similarly, weight loss due to caloric restriction and 

exercise in overweight and obese adults also improved endothelial function, NO 

availability, and vascular dilatation (411;412). 

ATR1 blockers (irbesartan) were also associated with improvement in endothelial 

function, inflammation, oxidative stress and flow mediated dilatation in people 

with metabolic syndrome (407). Similarly AT1R blockade with losartan resulted 

in increased blood flow and glucose extraction and these effects were abolished 

by the NO inhibitor NG-nitro- l-arginine methyl ester (l-NAME). In contrast, AT2R 

blockade decreased microvascular blood flow by 80%, along with a decrease in 

glucose extraction. (413). AT2R antagonism was also associated with 

development of whole body insulin resistance and attenuation of 

microvasculature recruitment. All of these ATR2 blockade related changes were 

paralleled by a decrease in plasma NO and skeletal muscle eNOS activation 

(414).  

Plasma aldosterone levels are also elevated in the setting of IR and obesity (404) 

and impair insulin sensitivity in healthy humans (415). Aldosterone reduces IRS-1 

levels in VSMCs (416) and also increases the proteasomal degradation of IRS-1 by 

a ROS mediated mechanism in vessels (417) leading to insulin resistance (through 

PI3K–Akt pathway). In contrast MR blockade and  use of antioxidants and Src 
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inhibition reduces vascular dysfunction (418). Tissue effects of aldosterone are 

also important and are discussed below 

Role of tissue RAAS in the development of endothelial dysfunction and 

arterial stiffness  

Inappropriate activation of RAAS is now acknowledged as an important 

determinant of endothelial dysfunction, arterial stiffness, and progression to 

CVD and CKD (56;59;376;419;420). The role and significance of local RAAS is not 

completely understood but increased expression of RAAS has been detected in 

vascular tissues in animal models of obesity (421;422), and its expression in 

vascular tissue was modified by insulin (421;423) which favours its role in 

modulating endothelial dysfunction and arterial stiffness. In obesity and diabetes 

there is evidence suggesting inappropriate activation of RAAS which is associated 

with immune and inflammatory responses (424-426). There is increased secretion 

of cytokines by dysfunctional visceral adipocytes, leading to activation of the 

vascular RAAS (56;424;425). In addition, there is increased oxidative stress and a 

decrease in the level of interleukin (IL)10 which cause increased expression of 

Ang II type 1 (AT1) receptor and impaired function of T regulatory cells 

(424;425;427). Therefore, inappropriate activation of RAAS causes cytokine 

imbalance, which in turn activates vascular RAAS resulting in a feed forward 

loop of RAAS activation in obesity and diabetes (424;425;428).  

Visceral adiposity (429) and waist to hip ratio (430) correlate directly with 

plasma aldosterone levels . Increased aldosterone in obesity raises ROS which 

further stimulate MR receptors which produce more ROS, i.e. a further feed 

forward cycle (431). Moreover, Aldosterone also decreases endothelial glucose 6 

phosphate dehydrogenase (G6PD) activity, a main source of intracellular NADPH. 

NADPH in turn functions to limit ROS activity (432). Aldosterone also increases 

the expression of TNF-α from macrophages which further contribute to increase 

in ROS. In keeping with these mechanisms, blockade of the MR receptor with 

eplerenone leads to a reduction of ROS and increased levels of adiponectin in 

obese and diabetic mice (433) 

In premenopausal women oestrogen has a cardioprotective effect but this effect 

is lost in the setting of obesity and diabetes (434;435). Oestrogen modulates 
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both Ang II signalling and inflammatory responses by suppressing actions of Ang II 

by inhibiting the expression of AT1 (436;437). However, this protective effect of 

oestrogen is lost in obese premenopausal women suggesting the loss of inhibition 

of AT1 expression (438) 

Cellular and molecular mechanisms underlying vascular RAAS-mediated 

endothelial dysfunction, and arterial stiffness in physiological ageing, and 

pathological obesity and diabetes are not well understood. It has been 

demonstrated that Ang II and aldosterone increase serine phosphorylation of IRS-

1 and impair insulin signalling (63;406;423) but the role of mammalian target of 

rapamycin (mTOR)/S6 kinase (S6K) mediated IRS-1 serine phosphorylation in ECs 

are not well characterized. Kim et al. recently showed that Ang II treatment 

activated tissue RAAS which increased serine phosphorylation of IRS-1 and 

decreased phosphorylation of eNOS (406). Moreover, rapamycin, an inhibitor of 

(mTOR) activation attenuated the effects of Ang II on IRS-1 and eNOS and lead to 

NO-dependent arteriole vasodilation (406).  

The precise role of aldosterone in endothelial function is not directly and fully 

elucidated, but blocking the mineralocorticoid receptor (MR) improves 

endothelial function (63;439-442) and reduces inflammation and vascular 

stiffness (439;441-443). Aldosterone levels are correlated with BMI and insulin 

resistance in normotensive subjects (444) and primary hyperaldosteronism is 

associated with insulin resistance (445). However, spironolactone (a MR blocker) 

raises HbA1c, Ang II and cortisol (in spite of decreasing BP) in people with T2DM 

and hypertension (446). Spironolactone also did not improve endothelial function 

in people with T2DM (446). Aldosterone has shown to increase epithelial Na + 

channel expression on the ECs surface which is correlated with ECs stiffness 

(447). The EC stiffness is associated with a reduction in NO release (447) and so 

aldosterone may have some role in vascular stiffness. In addition aldosterone has 

been shown to contribute significantly to target organ injury that include 

atherosclerosis, myocardial hypertrophy, fibrosis, heart failure, and kidney 

disease (448). 

Increased sodium reabsorption is a major contributor in development of 

hypertension and both AngII and aldosterone have a direct action on kidneys to 
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increase sodium reabsorption. These results suggest the role of tissue RAAS in 

vascular endothelial functions and are shown in Figures 1.5 and 1.6. 

 

Figure 1.6 Mechanism of obesity induced hypertension,  
Redrawn with permission from Kotsis et al. 2010 (449). 
Mechanisms involved in the pathogenesis of obesity-induced hypertension. Ang II, 
angiotensin II; ALD, aldosterone; IL-6, interleukin-6; IL-1β, interleukin-1β; TNFα, tumour 
necrosis factor-α; CRP, C-reactive protein; ROS, reactive oxygen species; FFAs, free-fatty 
acids; NO, nitric oxide; ET-1, endothelin-1; RAS, renin–angiotensin system; SNS, 
sympathetic nervous system. 
 

1.7.5 Mitochondrial dysfunction in obesity and T2DM 

Skeletal muscle metabolism and mitochondrial function are also impaired in 

obesity. Skeletal muscle from obese people exhibits increased fatty acid uptake, 

lipid accumulation and oxidative stress (450;451). Fatty acids are degraded 

within cells to diacyglycerol and ceramide, which are associated with impaired 

insulin sensitivity in this tissue (452;453). One of the contributing factors in lipid 

accumulation and oxidative stress is the reduction of fatty acid (FA) oxidation in 

obesity and T2DM (454;455). However, later studies have demonstrated that FA 

oxidation is either moderately increased or not different compared to lean 

controls in both rodent and human studies (456;457). The differences in 

mitochondrial oxidation in different studies may be due to the differences in 
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cellular mitochondrial content (456;458). Studies comparing skeletal muscle 

mitochondrial content of obese and T2DM vs lean individuals show it to be 

reduced in both obese and T2DM patients (459) i.e. reduced mitochondrial mass 

may be responsible for mitochondrial dysfunction. Similarly levels of 

mitochondrial proteins and their genes are also reduced in skeletal muscle in 

obesity and T2DM (460;461).  

Apart from reduction in oxidation, FA oxidation is incomplete in obesity (462), 

and also after having a high fat diet in obese rodents and humans (462-464). 

Incomplete FA oxidation is associated with accumulation of by-products of 

metabolism, namely acylcarnitines and other short chain fatty acids which are 

proposed to cause mitochondrial dysfunction and insulin resistance (463;464). 

Moreover the activity of ETC in mitochondria is also reduced in obese individuals 

with T2DM as compared to lean controls (459). 

Type II glycolytic fibres have a reduced capacity to oxidise fat (465) and to 

counter oxidative stress (466), and possibly contribute to increased oxidative 

stress. In the skeletal muscles of individuals with diabetes, type IIx glycolytic 

fibre expression is higher (467). Similarly the weight gain response to 

overfeeding is associated with type IIa fibre expression (468). Fibre type 

expression may play an important role in skeletal muscle function and weight 

loss success in obesity.  

Mitochondrial morphology is also changed in obesity and T2DM. Higher rates of 

mitochondrial fission are implicated in the development of diabetic neuropathy 

(469;470). In fasting and stress conditions mitochondria are elongated, whereas 

obesity and high fed state is associated with shorter and rounder mitochondria. 

In addition increases in mitochondrial fission proteins dynamin-related protein 1 

and fission protein 1 have been observed in the skeletal muscle of ob/ob and 

high-fat fed mice, and palmitate-treated C2C12 cells (471). Smaller, rounded 

mitochondria and a fragmented mitochondrial network are associated with a 

reduction of the fusion protein, mitofusin-1 in skeletal muscle of obese rodents 

and humans (472). In addition, lower levels of the fusion proteins mitofusin 1 

and optic atrophy 1 have also been observed in the individuals with T2DM (473). 
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Lower mitochondrial capacity in obesity and T2DM is not irreversible as 

mitochondrial capacity can be restored. Due to the hypothesis that 

mitochondrial dysfunction could be secondary to excess lipid accumulation in 

skeletal muscle, weight loss was initially tested as a strategy but with negative 

results (474). Toledo et al. compared the relative contribution of weight loss 

versus weight loss combined with exercise training. They showed that both 

groups experienced a comparable degree of weight and fat mass loss along with 

improvement in insulin sensitivity. However, improvement in mitochondrial 

content and ETC activity was only observed in the combined training group 

(475). Others have also shown improvement of mitochondrial content and 

activity with exercise training in insulin-resistant subjects with and without 

T2DM (476;477). These effects of exercise are not triggered by amelioration of 

the insulin resistant state or a reduction in intra myocellular lipid content, but 

are more likely due to an increase in contractile activity induced by exercise 

(474). 

1.7.5.1 Mitochondrial dysfunction in atherosclerosis 

Atherosclerosis begins with the recruitment of inflammatory cells to the intima 

and endothelial dysfunction is frequently involved in atherosclerosis (see Section 

1.2.2). Elevation of endothelial mitochondrial ROS (mROS) initially leads to 

endothelial dysfunction and apoptosis and later enhanced inflammation – a 

dominant feature of atherosclerosis. Moreover EC are more sensitive to ROS as 

compared to VSMC (33). The increase in mROS is in response to many 

atherosclerosis inducers, including hypertension, hyperglycemia, ox-LDL and TG. 

For example, exposure of ECs to free fatty acids, levels of which are upregulated 

in patients with metabolic syndrome, increases mROS (478;479).  

In samples from human atherosclerotic plaque , mitochondrial DNA damage is 

increased, probably because of proximity to the electron transport chain and the 

relative lack of mtDNA repair mechanisms (32). The resulting mitochondrial 

mutations may lead to increased production of ROS and may initiate a cycle of 

positive feedback. Increased DNA damage and failure of DNA repair cause 

defects in cell proliferation, apoptosis, and mitochondrial dysfunction which 

concomitantly lead to ketosis, hyperlipidemia, and increased fat storage further 

promoting atherosclerosis and the metabolic syndrome. Recently Yu et al. 
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showed that mitochondrial DNA damage can promote atherosclerosis 

independently of ROS, through its effects on VSMC and monocytes and is 

associated with higher risk plaques in human (34).  

In summary, mitochondrial dysfunction is involved in atherosclerosis by impairing 

endothelial function but its independent role in atherosclerosis still needs to be 

evaluated.  

 

Figure 1.7 Proposed relationship between mitochondrial dysfunction, endothelial 
dysfunction and hypertension. Adapted from Tang et al 2014 (24). 
 

1.7.6 Role of perivascular adipose tissue in relation to obesity 
related hypertension 

Most of the arteries and veins with an internal diameter >100 μm are invested 

with a layer of perivascular adipose tissue (PVAT).  Comprising adipocytes, 

inflammatory cells, and stem cells it is mostly found in the coronary arteries, 

aorta, and the micro vascular beds of the mesentery, muscle, and kidney (480). 

On stimulation, PVAT release a single or a combination of factors (acting in a 

paracrine and vasocrine fashion) and this release may depend on the stimulus 
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applied, the vascular bed examined, and the phenotypic state of the fat. 

Vasocrine signalling is said to occur when cytokine accesses the nutritive 

vascular tree to inhibit insulin-mediated capillary recruitment (480). Healthy 

PVAT exerts an anti-contractile effect on adjacent small vessels when it is 

stimulated (481). This anti-contractile effect operates by both endothelium 

dependent and independent mechanisms (482) but the exact mechanism is still 

under study. PVAT secretes a number of molecules and the ones with 

vasorelaxant properties include, adiponectin, angiotensin 1–7 (Ang1–7), nitric 

oxide (NO), leptin, and palmitic acid methyl ester (PAME).  

Adiponectin is one of the most abundant adipokines and has significant 

vasorelaxant effect on small arteries. It can reverse endothelial dysfunction in 

diet-induced obese rats via the 5’-adenosine monophosphate activated protein 

kinase (AMPK)-eNOS pathway (483). Human studies have shown its levels to be 

low in hypertension, and antihypertensive therapy increases adiponectin levels 

(484). The adiponectin released from PVAT serves as an adipose tissue derived 

relaxant factor and modulates the tone of the adjacent vessel (485). Greenstein 

et al. demonstrated in humans that blocking the adiponectin receptor type-1 

abolishes PVAT anti-contractile effect on adjacent small arteries from healthy 

human tissue (486).  

Angiotensin 1–7 is also secreted from PVAT and exert anti-contractile effects. It 

stimulates the release of endothelial NO, thus activating calcium dependent 

potassium channels (43) in arteries and voltage dependent potassium channels in 

veins (487). Similarly Ang 1–7 receptor antagonists have been shown to attenuate 

PVAT anti contractile function (488). Ang 1–7 has also been shown to affect AT2 

and Mas receptors and can decrease the nerve stimulated overflow of 

noradrenaline (489), and this property can be further explored for therapeutic 

use as obesity also increase SNS outflow.  

Leptin is secreted from white adipose tissue and its plasma levels are increased 

in obesity. It acts centrally on the hypothalamus to reduce appetite and also 

increases SNS activity (490). Locally, in healthy conditions, it has a direct 

endothelial NO dependent vasorelaxant effect. It is proposed to play a major 

role in pathophysiology of obesity related hypertension as it has been shown that 

leptin deficient ob/ob mice remain normotensive in spite of developing severe 
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obesity (491). An acute rise in leptin does not significantly affect BP despite SNS 

activation and may be due to its stimulation of endothelial NO (492). However, 

chronic infusion of leptin for 7 days (similar to chronically raised leptin in 

obesity) lead to increase in BP and hearty rate, possibly through decreases NO 

bioavailability (493). So in obesity, the vasopressor effects of leptin become 

more apparent. 

PVAT damage is characterised as a disturbance in the normal metabolic and 

vasoactive function of adipocytes surrounding the blood vessels. In obesity, the 

anti-contractile function of PVAT is either attenuated or completely lost. The 

most likely factors responsible for the loss of anti-contractile effect include; 

oxidative stress, inflammation, adipokine dysregulation and increased SNS 

action. Sympathomimetic stimulation of β3-adrenoreceptors on adipocytes leads 

to the activation of PKG and increases the bioavailability of adiponectin 

ultimately reducing vascular tone. Obesity as well as metabolic syndrome is 

associated with a loss of PVAT mediated anti-contractile function. In these 

conditions, fat cells undergo hypertrophy and there is clear evidence of local 

inflammation (486), and also reduction in bioavailability of adiponectin (486). 

Greenstein et al. have shown that incubation of healthy PVAT with TNF-α and IL-

6 leads to significant attenuation of PVAT anti-contractile function, similar to 

that observed in obese people (486).  

Obesity is associated with increased macrophage recruitment in adipose tissue. 

These macrophages secrete a number of inflammatory cytokines including TNF-

α, IL-6, and also produce free radicals such as the superoxide anion. Moreover, 

different adipose tissue depots have unique inflammatory profiles. In comparison 

with subcutaneous and visceral fat, PVAT from murine aortic arch expresses 

lower levels of adipocyte associated genes. However, two weeks of high-fat 

feeding up regulates pro-inflammatory genes (494). Furthermore, visceral 

adipose tissue as compared to subcutaneous fat exhibits a higher inflammatory 

profile with a higher macrophage content (495). This may explain why 

hypertension is more strongly related to central obesity than to BMI (496). 

Grant (497) has suggested a phylogenetic basis for this on the basis that humans 

did not historically have access to abundant availability of food. So development 

of peripheral insulin resistance with decreased glucose utilization and deposition 
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of fat in existing fat cells helped to preserve energy stores in anticipation of 

periods of starvation. At the time of food shortage, this fat was used. Yudkin et 

al (480) proposed that obesity-induced production of pro-inflammatory cytokines 

by PVAT might cause low-grade inflammation which then impairs normal 

functioning of vessels. This impaired vascular function may be the link between 

arterial function and insulin resistance and make type II diabetes mellitus a 

vascular disease. The vasoconstriction will decrease glucose uptake into skeletal 

muscle and will be followed by insulin resistance.   

1.7.6.1 Bariatric surgery and hypertension   

Bariatric surgery is growing in popularity as a method for weight loss in 

comparison to diet control and exercise. A systematic review evaluated data of 

16,867 patients, 49% of whom had hypertension before the operation. 34 months 

follow-up showed that hypertension had either improved or completely resolved 

in 68% of cases (498). Similarly another review (of 18 studies) evaluating 

bariatric surgery outcomes, demonstrated an increase in serum adiponectin 

levels by nearly 70% in patients after gastric bypass, and by 36% post gastric 

banding procedures. Moreover the greatest increase in adiponectin was achieved 

after loss of at least 35% of the original body weight (499). There was a strong 

correlation between percentage increase in adiponectin levels and percentage 

decrease in BMI (499). 

In contrast weight loss by liposuction did not increase adiponectin or improve 

insulin resistance (500). This difference in metabolic results between bariatric 

surgery and liposuction is likely due to the differing qualities of adipose tissue 

depots, with visceral fat exhibiting a more inflammatory profile as compared 

with subcutaneous fat (501).  

Bariatric surgery has also been shown to improve the inflammatory profile of 

obese individuals as it significantly decreases the expression of IL-6 and TNF-α 

mRNA in subcutaneous adipose tissue. In addition to increasing adiponectin 

levels, it also increases expression of adiponectin receptors (502;503). 

Aghamohammadzadeh et al. recently evaluated change in PVAT structure and 

function before and six months after bariatric surgery. Before intervention, 

gluteal artery PVAT had evidence of adipocyte hypertrophy and inflammation 
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with increased cell adhesion molecules (CAMs) and a complete loss of PVAT-

mediated anti-contractile function (504). Six months after surgery, there was a 

significant decrease in BMI, insulin resistance, and BP. Although patients 

remained morbidly obese, adipocyte hypertrophy had been completely reversed 

along with the disappearance of CAMs and inflammation. PVAT anti-contractile 

activity was restored and adiponectin bioavailability was also improved (504). 

The significant degree of weight loss, improvements in adipokine expression, 

decrease in inflammation, increase in insulin sensitivity and resolution or 

improvement in diabetes status (505), makes bariatric surgery an invaluable 

procedure for obese people although in individual cases the risks need to be 

considered in the context of the potential benefits.   

1.7.6.2 PVAT changes in obesity 

In white adipose tissue of lean and healthy animals, macrophages constitute 10% 

to 15% of stromal cells and express markers that link them with the phenotype of 

alternatively activated macrophages. The latter are critical for maintaining 

insulin sensitivity in adipocytes, through the production of IL-10. In obesity, 

Ly6chi monocytes are recruited, which increases macrophage content to 46% to 

60% and induce the CAM inflammatory phenotype that promotes insulin 

resistance (506;507). In obesity, adipocytes also hypertrophy and  release 

chemokines, such as CCL2, CCCL5, and CCL8; further exacerbating the process 

(506). Studies of human PVAT from obese individuals and adipocytes from animal 

models of obesity and diabetes mellitus show evidence of adipocyte hypertrophy 

and low grade inflammation (508).  

The central role of inflammation in loss of PVAT anti-contractile function was 

shown by Withers et al. in mouse models (509). In mice deficient of macrophage 

CD11b-diptheria toxin receptor, there was no loss of PVAT mediated anti-

contractile activity when pro-inflammatory stimuli, such as hypoxia, were 

applied to small arteries surrounded by PVAT (509).  

Norepinephrine constricts the small arteries and the anti-contractile activity of 

PVAT is lost (486;510). However, this constriction can be fully restored in vitro 

using a combination of catalase and dismutase giving an indication of 

inflammation and ROS production in PVAT. It was also associated with reduced 
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NO bioavailability and uncoupling of NO synthase (511).  Likewise, antagonism of 

TNF-α using preincubation with infliximab in the organ bath or aldosterone 

antagonism by spironolactone and eplerenone can restore normal PVAT anti-

contractile function (486;509). Aldosterone antagonists also restore the hypoxia 

induced loss of PVAT function suggesting a role of oxidative stress (509).  

1.7.7 Role of chemokines in hypertension 

Chemokines are low molecular weight proteins of the cytokine family which 

participate in the inflammatory reactions within the vascular wall. They are 

called chemoattractant due to the ability to activate and control leukocyte 

(monocytes and macrophages) migration. They also play an important role in the 

development of endothelial dysfunction and hypertension. Other vascular 

functions of chemokines include: VSMC proliferation, angiogenesis, 

hematopoiesis, embryogenesis, organogenesis, maturation of dendritic cells, 

tumour growth, tumour metastasis, autoimmune and inflammatory processes, 

promotion of cancer cell growth and increased severity of hypertension 

complications such as atherosclerosis, hypertensive heart disease and 

hypertensive nephrosclerosis (17;512-515). 

Chemokines control inflammation in the vascular walls and have a role in 

hypertension as inhibition of inflammation and oxidative stress results in a 

decrease in blood pressure (516). The chemokines playing some role in the 

pathogenesis of hypertension include monocyte chemoattractant protein-1 (MCP-

1, CCL2), interferon inducible protein (IP-10, CXCL10) interleukin-8 (IL-8; 

CXCL8), Gro-α (growth-related oncogene), CXCL1/RaNTeS (CCL5)/CCR5 and 

fractalkine (CX3CL1)/CX3CR1. 

1.7.7.1 Chemokines and endothelial dysfunction 

Chemokines disturb the normal vascular homeostasis both by increasing 

inflammation and oxidative stress and by impairing the protective factors. They 

are involved in migration and adhesion of mononuclear leukocytes, increasing 

inflammation and ROS in the vascular wall and increasing ET1 and plasminogen 

activation inhibitor 1 (PaI-1) in ECs (517;518). All of these factors lead to 

endothelial dysfunction and development of hypertension. Chemokines also 
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increase the proliferation of VSMC and so involved in the pathogenesis of 

hypertension, atherosclerosis and cardiovascular disease (512;513;515).  

1.7.8 Vascular calcification 

Vascular calcification is characterised by the extracellular deposition of calcium 

in the vascular wall. It is a complex biological process that is based on a 

continuous balance between promoting and inhibiting factors (519;520). Cell 

types potentially involved in calcium deposition with the vessel wall include 

VSMCs (521), interstitial valve cells (522), circulating osteoprogenitor cells (523) 

and mesenchymal pluripotent cells (524).  

1.7.8.1 Types of vascular calcification 

Two main types of extracellular vascular calcification are recognized, intimal 

and medial (122). Intimal calcification is primarily associated with 

atherosclerosis and appears as punctate and disorganized mineral deposition in 

the intima. Intimal calcification forms an important part of atherosclerotic 

plaques, which mainly constitute VSMCs, lipids, macrophages, connective tissue, 

and necrotic debris (525). 

Coronary artery calcification is very important in the development of CVD and 

predominantly affects the intima (526). A major complication of atherosclerosis 

is plaque rupture followed by serious sequelae including myocardial infarction 

(MI) and stroke. Although the role of plaque rupture is certain, the direct 

contribution of calcification to plaque rupture is still unclear as recent studies 

suggest that the distribution of calcification, rather than its mere presence, may 

predispose to plaque rupture. It has been found that diffuse and speckled micro 

calcium deposits (spotty calcification) are associated with greater risk of plaque 

rupture (527;528). Hypertension is an independent risk factor for the 

development of atherosclerosis and is also associated with acute plaque rupture; 

by increasing the pulsatile mechanical stress on plaques (529).  

Medial calcification is predominantly associated with ageing, diabetes mellitus, 

hypertension and uraemia, and morphologically appears as organized mineral 

deposition along the elastic lamellae of media. Medial calcification and 

hypertension are very closely linked and are proposed to potentiate each other 
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as BP stress on vascular walls promotes calcification (530). Medial calcification 

decreases vascular elasticity and increases stiffness which accelerates pulse 

wave velocity and contributes to increases in BP (531;532). Patients with 

resistant hypertension also have exaggerated arterial stiffness and calcification 

(533). Apart from other factors arterial calcification is independently associated 

with arterial stiffness. This association between arterial calcification and 

arterial stiffness is mainly due to medial calcification as intimal calcification 

(atherosclerosis) has only a modest association with arterial stiffness (534).  

Vascular calcification is quantified by non-contrast computed tomography (CT). 

It is a sensitive method of measuring total vessel calcium content but is not 

specific as it does not distinguish between intimal and medial mineralization 

(529).  

1.7.8.2 Calcification and VSMCs 

Vascular calcification is now recognized as an active and regulated process and 

has similarities with developmental osteogenesis. VSMCs are the chief 

modulators and orchestrator of vascular calcification. In response to stress 

stimuli or any damage signals (such as hyperphosphatemia, oxidative stress and 

inflammation) VSMCs change their phenotype (as a repair mechanism) and 

transforms to an osteogenic/calcifying phenotype and are then called calcifying 

vascular cells (CVCs) (535;536). This VSMC modification is also accompanied by 

increase in inflammatory cytokines and oxidized lipids along with mineral 

imbalance (530). Moreover, VSMC phenotypic transformation is also accompanied 

by the secretion of micro vesicles (MVs) which are integral to calcification 

process (537). Osteogenic VSMCs have the capacity to secrete an osteoid-like 

matrix which can calcify (529). The release of MVs by VSMC is one of the earliest 

events in calcification. Researchers have identified two populations of MVs: 1) 

relatively large apoptotic bodies (200–800 nm) derived from dying cells, and 2) 

smaller MVs (50–150 nm) released by living VSMCs, particularly in response to 

calcium stress; both furnishing nucleation site for crystals (537).  

Potent inhibitors of calcification, such as matrix GLA protein (MGP) and 

inorganic pyrophosphate (PPi), are locally produced (by vascular cells) and 

expressed in the arterial wall and prevent mineralization of elastic lamellae 
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(538) and also prevent differentiation of VSMC into chondrogenic cells. It is 

plausible that the differentiation of vascular cells into a chondro/osteoblast-like 

phenotype is accompanied by reduced production of calcification inhibitors by 

these modified cells themselves or the ‘adjacent’ vascular elements; as 

calcification inhibitors are expressed differentially in calcified arterial walls as 

compared to healthy artery walls (539). In the absence of calcification 

inhibitors, MVs form the nidus for nucleation of mineral calcium, by providing a 

micro-environment which raises the calcium:phosphate product above the 

threshold for precipitation (537;540). In non-stress state, these inhibitors are 

loaded into MVs and inhibit calcification, but are differentially expressed in 

calcified MVs; favouring calcification (537). Under conditions of acute stress, 

VSMC release MVs as an initial adaptive response to prevent cell death by 

removing excess calcium, which is bound by the inhibitors in the MVs. These are 

then deposited in the ECM. However, in the presence of prolonged stress (e.g. 

mineral imbalance) this adaptive mechanism becomes overwhelmed and 

calcification ensues (537). 

Extracellular space calcium is elevated in people with chronic renal failure and 

in atherosclerosis plaques (at sites of cell death and necrosis), however, in 

hypertension there is intracellular calcium overload (541). Mechanistically 

calcium promotes the loss of inhibitors such as MGP from MVs, and also exposes 

the calcium binding protein annexin A6 together with phosphatidylserine (PSer) 

on the surface of MVs; forming a complex. This complex is highly efficient at 

nucleating hydroxyapatite, thus enabling MVs to seed extracellular matrix 

calcification in the vessel wall (541;542). In vitro studies have suggested that 

calcium channel blockers may prevent calcification by preventing MVs from 

mineralizing (543). Similarly animal models of medial calcification have 

demonstrated that various anti-hypertensive therapies (diuretics, calcium 

channel blockers, ARBs and endothelin receptor antagonists) can reduce pulse 

wave velocity and slow or prevent medial calcification (544-547) but their 

efficacy in humans still needs further work. Both calcification and hypertension 

are related to each other and may influence each other as shown in Figure 1.8    

and explained below. 
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Figure 1.8 The cyclical association of vascular calcification, arterial stiffness, 
atherosclerosis and hypertension. 
Redrawn and modified with permission from Jeffcoate et al. 2009 (548)  
Red coloured compounds are calcification inhibitors. MSC= mesenchymal stem cells, 
VSMC= vascular smooth muscle cells, CVC= calcifying vascular cells, MV= micro-vesicles, 
OPG= osteoprotegerin, NO=Nitric oxide , BMPs= Bone morphogenetic protein, Cbfa1= 
Transcription factor core-binding protein, ROS= reactive oxygen species, RANKL/RANK= 
Receptor activator for nuclear factor κB/ Receptor activator for nuclear factor κB ligand, 
PTH= parathyroid hormone, CaPO4= calcium phosphate. 
 

1.7.8.3 Hypertensive remodelling causing calcification   

Hypertension is associated with remodelling of the arterial wall mainly 

characterised by changes in composition and quantity of ECM, along with 

proliferation/differentiation of VSMC (321;549;550). Elastic fibres are an 

important constituent of aorta and large and medium sized arteries. They are 

composed of an elastin core which is surrounded by fibrillin rich microfibrils 

(551). The elastic properties of large conduit arteries are determined by the 

presence as well as special arrangement of elastic fibres; organized in 

concentric rings of fenestrated lamellae intercalated with aligned VSMCs (116). 

However, increased pressure on elastic fibres (e.g. hypertension) can induce 

quantitative and qualitative changes in the elastic fibre organization. Increased 

BP increases elastin production and deposition in vascular wall (552). Increased 
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pressure causes fatigue and damage to elastic fibres, leading to fragmentation 

and generation of elastin degradation products (EDPs) (116). EDPs are endowed 

with chemotactic activity and also have proliferative and migratory effects on 

VSMCs (553). Hypertension is also associated with increased deposition of several 

ECM components, including collagen, fibronectin and proteoglycans by vascular 

cells especially VSMC (116;552). Adijiang et al showed the effect of high BP in 

calcification by exposing Dahl salt-sensitive hypertensive rats to a uremic 

(indoxyl sulfate) toxin; and this accelerated vascular calcification (554). In 

contrast exposure of normotensive rats to the same uremic toxin did not induce 

calcium deposition (554). It is suggested that hypertension-associated changes in 

ECM and vascular cells might create an environment which is prone to calcium 

deposition, and calcification is accelerated in the presence of noxious or pro-

calcification mediators.  

EDPs are represented as a preferential site for hydroxyapatite crystal nucleation 

(555); they also induce phenotypic transition of VSMC toward an osteoblast-like 

profile and amplify phosphate driven calcium deposition (556-558). EDPs also 

promote the release of metalloproteinases (MMPs), through interaction with 

specific receptors (556;557). During early hypertension MMP activation helps to 

limit the pulse pressure rise by increasing vascular compliance (559), however, 

MMP accumulation amplifies ECM damage, including elastin degradation and 

elastin calcification. Moreover, blockade of MMPs prevents the calcification of 

elastin (560-562). 

Elastic fibres are composed of several microfibrillar molecules including the 

latent transforming growth factor-β (TGFβ) binding proteins and these 

contribute to formation of TGFβ large latent complex (LLC) (563). LLC interacts 

with ECM components and in response to any insult (including MMP), converts 

from latent TGFβ to active TGFβ (563). During hypertensive remodelling active 

TGFβ is known to drive the synthetic and proliferative response of vascular cells 

(564). TGFB has also been shown to be involved in the osteogenic differentiation 

of VSMC in synergy with other procalcific mediators, including EDPs (556;565).  

VSMCs also produce type I collagen during hypertensive remodelling (552). Type 

1 collagen represents an ideal matrix for apatite crystal nucleation and 

propagation. In vitro studies have shown that it is produced by calcifying VSMC, 
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and on exogenous administration it facilitates matrix calcification along with 

collagen and fibronectin (566;567). Increased type I collagen production has 

been also documented in senescent VSMCs (568). Moreover, it provides the 

matrix for MV driven calcification (569) and also acts as modulator of VSMC 

differentiation into osteoblast-like cells (567;570). Type 1 collagen gene deletion 

leads to significant reduction in calcium deposition (568). Similarly its receptor 

gene [discoidin domain receptor-1 (DDR1)] deletion was also associated with 

significant reduction in vascular calcification (570). VSMCs deficient for DDR1 

show reduced ability of osteogenic differentiation and also express higher level 

of the calcification inhibitors such as ENPP1 (570). Arterial proteoglycan content 

(including chondroitin sulfate, biglycan and decorin) increases during 

hypertension (571) and they are also associated with increased vascular 

calcification (565;572).  

In summary, hypertensive remodelling of the large arteries is characterised by 

changes in vascular cells and ECM composition that might create a favourable 

environment for the initiation and propagation of calcium deposition.  

1.7.8.4 Aortic calcification causing systolic hypertension 

Ageing is associated with progressive increase in stiffening of aorta and other 

large arterial conduits. The structural modifications of the vascular wall in 

ageing are similar to hypertension in several ways. Ageing of the large arteries is 

characterized by progressive collagen accumulation along with fracture and 

disorganisation of elastic lamellae (111). The net effect of the imbalance of 

collagen and elastin in ageing is a progressive reduction in vascular elasticity and 

compliance. This change in vascular elasticity and compliance explains the age 

associated rise in SBP, the fall in DBP and the acceleration of the pulse wave 

velocity (PWV) as observed in the elderly. Moreover, increased stiffness may 

result in returning of the aortic reflected wave during the systolic period, 

further increasing the left ventricular load, favouring cardiac hypertrophy and 

susceptibility to MI (111;532).  

Vascular calcification is associated with arterial rigidity which in turn is 

responsible for the mechanical abnormalities and cardiac consequences 

associated with vascular stiffening (532). As mentioned above, vascular 
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calcification can be both intimal and medial, and both types increase vascular 

rigidity. However, the relative contribution of each in arterial stiffening is still 

unknown as the available CT imaging technique does not differentiate between 

the two types.  

Through the experimental generation of medial calcification (elastocalcinosis) in 

thoracic and abdominal aorta in rats was associated with accelerated PWV, 

increased SBP and augmented PP (531;545;547;573). These changes were similar 

to those observed in isolated systolic hypertension (ISH), and were also 

accompanied by a significant increase in left ventricular mass (573).  

In human studies, vascular calcification and associated vascular stiffness has 

mostly been shown in patients with chronic kidney disease (CKD). Population 

studies clearly showed that the amount of aortic calcification in CKD patients 

was positively correlated with PWV (574;575). It has also been shown that both 

PWV and the extent of arterial calcium deposition are predictive of future CVD 

mortality (576;577). The Twins UK cohort of middle aged women with normal 

kidney functions also showed that aortic calcification was significantly 

correlated with carotid femoral PWV. This positive correlation remained 

significant even after adjustment for age, mean arterial pressure (MAP), glucose, 

heart rate and menopausal status (578). More recently, Sekikawa et al. also 

confirmed these findings in a multi-ethnic cohort of 906 middle-aged men 

without history of any CVD. They showed that carotid femoral PWV was 

positively and significantly correlated with the amount of calcium deposits in the 

aorta observed between the aortic arch and the iliac bifurcation. This 

correlation was also independent of the effect of age, BMI, MAP, smoking, 

diabetes and medications (579).  

The association between hypertension and aortic calcification had been reported 

previously (580;581). Recently McEniery et al. (533) confirmed that increased 

aortic calcium deposition was accompanied by higher aortic PWV in a group of 

healthy individuals. This link was independent of age and MAP and mainly 

observed between PWV and the calcification of the abdominal aortic tract. Along 

with aortic PWV, peripheral PP was also positively associated with aortic calcium 

deposition in any vascular site (abdominal, ascending and descending aorta). 

Considering all the factors together in a multivariate analysis, they found that 
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the presence of aortic calcification was independently associated only with age, 

aortic PWV and calcium phosphate product. When they compared normotensive 

people with those with ISH, they found that hypertensive individuals exhibited 

higher aortic PWV along with increased calcification of abdominal and 

descending thoracic aorta. Moreover, patients with resistant ISH had an even 

higher amount of aortic calcification (533).  More recently Jensky et al. (582) 

investigated the association of individual BP parameters (SBP, DBP and PP) with 

the extent of calcification in different vascular segments. Calcification in all the 

large and medium sized arteries (except for the iliac and subclavian arteries) 

was significantly associated with SBP and PP, with the latter showing an even 

stronger association (582). They also found that in older people (<60 years), 

differences in arterial calcification between hypertensive and normotensive 

individuals were more pronounced (582). As the studies examining direct 

relationship (533;582) were cross sectional and not longitudinal, causal 

relationship between aortic calcification and BP cannot be confirmed. However, 

findings from these studies strongly suggest a significant association between 

calcification and ISH, SBP and PP. Moreover, exhibition of higher aortic calcium 

accumulation in patients with resistant ISH (533) also underscores the possibility 

of a contribution in the pathophysiology.  

In humans, three monogenic diseases are characterized by extensive and 

premature onset of arterial calcification. These conditions are 1 ) Generalized 

arterial calcification of infancy (GACI), associated with mutations in the ENPP1 

gene (583), 2) Pseudoxanthoma elasticum (PXE), which results from mutations in 

the ABCC6 gene (584) and 3) arterial calcification and distal joint calcification 

(ACDC), which is caused by CD73 deficiency (mutations in the NT5E gene) (585). 

Patients affected by GACI and PXE exhibit diffuse calcific deposits in the medial 

layer of large arteries, whereas calcification in patients with ACDC is mainly 

restricted to lower limbs vessels. Both GACI and PXE are characterized by severe 

increase in arterial BP and development of renovascular hypertension (586).  

In summary, in vitro, animal and human data supports the role of vascular 

calcification in the generation of arterial stiffness and subsequent increase in 

SBP and PP but more work is needed to confirm the independent causal 

association. 
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1.8 Ageing, vascular changes and CV risk 

Ageing is often considered to be a progressive deterioration of biological 

functions  and structure after the organism has attained its maximal 

reproductive competence (587). In particular vascular ageing is associated with 

both structural and functional changes taking place in endothelium, VSMC and 

the vascular ECM and characteristic alterations are increased arterial stiffness, 

dilation of central elastic arteries and endothelial dysfunction (588). Vascular 

ageing is closely associated with cardiovascular disease (589). However it can 

also be argued that ageing is mainly determined by the number of diseases by 

which it is accompanied(590). 

The following are important changes taking place within vessel wall.  

1.8.1 Ageing associated changes in vascular cells 

Ageing related changes in vascular cells exhibit the same characteristics as in 

low grade chronic inflammation and often involve inflammation as an 

intermediary step. Many characteristics of vascular ageing like endothelial 

dysfunction, oxidative stress and increased apoptosis can be reproduced by 

recombinant TNF-α and chronic infusion of Ang II; both of these induce 

inflammation within the vascular wall. The detailed functional and structural 

changes in different vascular cells and matrix observed in association with 

inflammation are explained in Section 1.6.1.1  

1.8.2 The enhancement of oxidative stress  

Reactive oxygen and nitrogen species are essential signalling molecules involved 

in maintaining vascular homeostasis, but are also important contributors to the 

ageing process (591). Age-dependent increase in ROS disturbs the nitric oxide 

(NO) signalling and associated functions. ROS also alters and activates 

prostaglandin metabolism, and promotes oxidative posttranslational protein 

modifications which in turn interfere with vascular and cell signalling pathways 

leading to vascular dysfunction. In the initial stages compensatory mechanisms 

are activated to cope with this age-induced oxidative stress, but become 

counterproductive with time. This results in irreversible oxidative modifications 

of vascular structures (591;592). It has been suggested that in ageing there is a 
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reduction in the number of mitochondria and an increase in the generation of 

dysfunctional proteins, which leads to an increase in superoxide production 

(258). Mitochondrial oxidative stress and mitochondrial damage and biogenesis 

are also thought to play a central role in cardiac and vascular ageing (37). 

1.8.3 The reduction of NO bioavailability 

NO is synthesized from l-arginine through the action of NO synthase (NOS) (258). 

Reduction in NO levels in the vessel may be due to 1) a deficiency in NOS 

substrates and cofactors; 2) increase in endogenous eNOS inhibitors; 3) 

decreased activity or expression of eNOS; and 4) augmented NO scavenging due 

to oxidative stress (589). ROS such as superoxide anions either degrade NO or 

quench it by forming peroxynitrite (ONOO−). With age there is increased 

expression and enhanced activity (due to S nitrosylation) of the enzyme arginase 

which degrades l-arginine; the substrate for the formation of NO (258).  

Both human and animal studies show that NO production decreases with age 

(593) and as NO is one of the most important signalling molecules in our body, 

its loss marks the beginning of many disease processes. Moreover clinical studies 

also provide evidence that decreased or insufficient NO is associated with all 

major cardiovascular risk factors, such as hyperlipidaemia, diabetes, 

hypertension (593).  

1.8.4 Imbalance in the production of vasoconstrictor/ vasodilator 
factors and vascular response 

During ageing there is a decrease in the NO or the endothelium derived 

hyperpolarizing factor (EDHF) induced vasodilation but an increase in 

vasoconstriction induced by cyclooxygenase products, such as thromboxane A2 

(TXA2) (594). These may also be involved in reduction of the vasodilator 

response to agonists in resistance and capacitance arteries. Ageing is also 

associated with increased plasma concentrations of ET-1 and endothelin 

converting enzyme-1 (ECE-1) mRNA(258). There is also evidence of increased 

vascular expression of Ang II and ACE with ageing and it is a known fact that Ang 

II is a potent inducer of endothelial dysfunction and vascular oxidative stress 

(258). Ang II acting through AT1 also increases oxidant damage to mitochondria 

and affects mitochondrial function. In contrast, inhibition of Ang II activity by 
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targeted disruption of the Ang II type 1A receptor (AT1A) in mice was associated 

with prolongation of life span (595;596). Age-related decline in EDHF (a 

vasodilator) can be linked to an up-regulation of RAAS, since chronic ACE 

inhibition or AT1 receptor blockade, recovered EDHF-mediated responses in 

arteries from old rats (597).  

Taking together; decrease in NO, increased ROS, and lower levels of antioxidants 

impair the vasodilatory response (258). The formation and accumulation of 

advanced glycation end-products (AGEs) with age and hyperglycaemia also 

induces fibrosis and remodelling in VSMC further accentuating the dysfunction, 

and impairing vasodilation (598). 

1.8.5 Impaired angiogenesis 

Angiogenesis is an essential adaptive response to physiological stress and is also 

an endogenous repair mechanism after vascular injury. In old age both impaired 

angiogenesis and endothelial dysfunction are present and likely contribute to the 

increased prevalence of cardiovascular diseases in the elderly (599).  

1.8.6 Arterial stiffness during ageing 

Arterial stiffness describes the reduced capability of an artery to expand and 

contract in response to pressure changes. It increases with ageing, however, the 

process is accelerated in the presence of obesity and diabetes and occurs at 

earlier ages if these conditions coexist. This is explained above in the context of 

aortic and arterial stiffness; Section 1.3.2 

1.8.7 Ageing, insulin resistance, hypertension and diabetes 

Arterial endothelium-dependent relaxation is diminished during ageing in both 

normotensive and hypertensive rats (600;601). This reduced response can be due 

to: 1) an impairment of either the generation (synthesis or release) of relaxant 

factors; 2) an impairment of the cellular response to them during ageing; 3) both 

1 and 2. During the late stages of ageing in SHR, there is reduction in NO 

production, NO bioavailability (due to ROS) and also decreased VSMC response to 

NO (258). 
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Insulin resistance is associated with both ageing and vascular malfunction. The 

prevalence of T2DM increases with age: almost 20% of people over age 65 have 

diabetes (602). Moreover insulin resistance is the most important predictor and 

cause of T2DM. In addition there are twice as many hypertensive patients among 

type 2 diabetics subjects (603). Both ageing and insulin resistance interact with 

each other to increase sympathetic tone and may alter vascular responses to 

insulin. Insulin within physiological limits causes vasodilation in young adults but 

may cause vasoconstriction in healthy elderly individuals (604). This may further 

potentiate insulin resistance in the elderly (604). Another proposed mechanism 

of insulin induced vasoconstriction is through production and release of ET-1, 

which may contribute to hypertension (258). 

From another perspective, hypertension also leads to insulin resistance by a 

number of mechanisms including stimulation of AT1 receptor, which then 

interferes with the insulin signalling pathways and also decreases NO production 

(258). In addition, patients with essential hypertension are more prone to 

develop diabetes as compared to normotensive subjects. This tendency may be 

due to decreased ability of insulin to promote relaxation and glucose transport 

in vascular and skeletal muscle tissue.  

1.8.8 Effect of drugs and lifestyle on vascular remodelling with 
ageing 

Amongst the many properties of NO (see Section 1.2.1), it has been shown to 

activate telomerase in ECs, delaying senescence (257;258). Any strategies to 

diagnose and treat NO insufficiency may therefore be considered as potential 

therapies to prevent ECs senescence associated with ageing.  

To date no genetic or molecular solutions exist to slow the progression or 

reverse cardiovascular ageing but exercise has been shown to decreases the 

progression of arterial stiffness and improves endothelial function in skeletal 

muscle (605) promoting vasodilatation (268). Exercise also lowers BP and heart 

rate, thereby reducing the vascular shear stress and slowing vascular and 

myocardial remodelling (268). In terms of drug treatment, ACEi or AT1-blockers 

and calcium channel blockers have also been shown to reduce pulse wave 

reflection and improve endothelial function (258). Wray et al. have shown acute 
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reversal of endothelial dysfunction in the elderly after oral administration of an 

antioxidant cocktail (vitamin C + vitamin E + lipoic acid) (606); this requires 

further evaluation and for long term effects.  

 In women, oestrogen replacement therapy in older (> 60 years) postmenopausal 

women is not currently thought to be associated with cardiovascular benefit 

(607). The proposed reason is the “Timing Hypothesis,” which states that 

oestrogen mediated vascular benefits occur only before the detrimental effects 

of ageing are established i.e. it may require to be commenced prior to the age 

of 60 years (607). Similarly lipid-lowering and aspirin therapy have not been 

conclusively shown to significantly reduce CVD in older women (608). However, 

the Danish Osteoporosis Study (DOPS), which is the only prospective 

longitudinal randomized trial conducted specifically in women less than 60 

years of age (average age = 50), showed that hormone replacement therapy 

started early in postmenopausal women significantly reduced the risk of the 

combined endpoint of mortality, myocardial infarction, or heart failure without 

increasing risk of breast cancer or stroke (609).   

1.8.8.1 Anti-inflammatory drugs 

Ageing is a state of low grade chronic inflammation and anti-inflammatory and 

antioxidant agents have been shown to have useful effects in the elderly. Aspirin 

has a potent antioxidant effect, diminishing lipoperoxidation levels, reducing 

ROS and inhibiting NOX in ECs (258;610;611). Salsalate, which is closely related 

to aspirin, has been shown to decrease blood glucose, C peptide, insulin 

clearance, free fatty acids, NF-κB activity and triglycerides (610;612). Despite 

these effects, anti-inflammatory drugs increase BP, probably through inhibition 

of prostaglandin synthesis (610;613). Inhibition of prostaglandin action might 

also cause salt and water retention. Despite the apparently beneficial properties 

of aspirin and salsalate in small studies, they can only be recommended for use 

in patients at high risk owing to adverse effects including GI haemorrhage 

(611;614) 

The following table shows mechanistic similarities between arterial ageing, 

hypertension and atherosclerosis. Ageing is not a disease but is of course highly 

associated with many disease processes.   
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1.9 Unifying mechanism for the development of 
hypertension 

The following figure indicates the inter-related mechanisms contributing to the 

development of hypertension. Genetic predisposition may act through increasing 

renin, insulin resistance, hyperinsulinaemia and an enhanced sympathetic 

response.  These result in a shift of the renal function curve towards sodium and 

water retention. The increase in BP in turn also leads to increasing vascular 

stiffness, calcification, generation of ROS, inflammation, stimulation of RAAS 

and immune mechanisms. It also accentuates impairments of vascular function 

associated with ageing, obesity, diabetes, CKD and insulin resistance. In 

conclusion, these processes are self-perpetuating and may amplify each other in 

their deleterious effects on the vasculature. On the other hand treating one 

condition may also lead to improvement in others. 

 

Figure 1.9 Contribution of different mechanisms in the development of hypertension 
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1.10 Diabetes mellitus 

Diabetes is a chronic disease that occurs either when β-cells in pancreas do not 

produce enough insulin or when the body cannot effectively use the insulin it 

produces. Hyperglycaemia (raised blood sugar) is a common outcome of 

uncontrolled diabetes and over time leads to serious damage to many of the 

body's systems, especially blood vessels, heart and nerves (12). 

Type 1 diabetes 

Type 1 diabetes (previously known as insulin dependent, juvenile or childhood 

onset diabetes) is characterized by deficient insulin production and requires 

daily administration of insulin. A series of functional defects in the β-cells, 

immune system, bone marrow and thymus collectively contribute to the 

pathophysiology of type 1 diabetes (615). However, it is not preventable with 

current knowledge. 

Type 2 diabetes 

Type 2 diabetes (formerly called non-insulin dependent or adult onset) is 

associated with insulin resistance (particularly hepatic) as well as with β-cell 

dysfunction (see Section 1.5)(616). T2DM comprises 90% of people with diabetes 

around the world (12). 

1.10.1 Mechanism of CVD in diabetes 

Type 2 diabetes is associated with an increased risk of premature mortality from 

vascular causes (617). It is estimated that people with T2DM have double the risk 

for an incident vascular event compared to people without T2DM (618). Diabetes 

leads to elevation of many cardiovascular (CV) risk factors including 

hyperglycaemia, insulin resistance or deficiency, free fatty acidaemia, 

sympathetic stimulation, hypertension, hyperlipidaemia, and inflammation. 

Hyperglycaemia is also an important factor and produces tissue damage via a 

number of pathways, including the aldose reduction pathway, advanced 

glycation end product (AGE) pathway, reactive oxygen intermediate pathway, 

and protein kinase (PKC) pathway (619). In spite of the close association 

between diabetes and the development of CVD, intensive management of 
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glycaemic control is only of limited benefit in decreasing CVD risk. In contrast, 

control of other risk factors, such as hypertension and hypercholesterolemia has 

marked benefits in terms of reducing rates of CVD (620).  The reason that 

glucose-lowering is less effective in type 2 than in type 1 for reducing CVD may 

actually be because lipids and BP are just as important hallmarks of the 

condition as glucose, even though we diagnose it using glucose levels. 

Diabetes is associated with both vascular and autonomic nervous system (ANS) 

dysfunction. Both these mechanisms generally co-exist in the setting of 

diabetes, and also progress simultaneously. The possible interrelationship 

between vascular and autonomic dysfunction may also impact on the 

pathological process of organ damage in diabetes. Meyer et al. studied the 

relationship between ANS and vascular function and compared T2DM patients 

with controls (621). Patients with T2DM had arterial dysfunction with increased 

PWV, carotid intima media thickness (cIMT), and reduced systemic arterial 

compliance. Vascular dysfunction correlated with hyperinsulinaemia and 

autonomic neuropathy as assessed by heart rate variability during breathing and 

postural manoeuvres (621). Similarly hypertension has been implicated as a 

strong risk factor for distal polyneuropathy observed in T2DM (622). Moreover 

treatment with ACE inhibitors has been shown to be associated with an 

improvement of nerve conduction velocity in distal symmetrical polyneuropathy 

(623). The Atherosclerosis Risk In Communities (ARIC) study also demonstrated 

an independent association of impaired cardiac autonomic control with the 

development of ischemic heart disease among individuals with diabetes (624).  

In diabetes, insulin resistance within the cardiovascular system is associated 

with chronic low-grade inflammation, increased oxidative stress, lipotoxicity, 

and activation of the RAAS (402). These conditions promote serine 

phosphorylation of different insulin signalling molecules such as IRS-1 and the 

impairment of the normal tyrosine phosphorylation cascade (625), thus impairing 

insulin metabolic signalling.  

1.10.1.1 Endothelial dysfunction in diabetes 

Endothelial dysfunction is considered one of the important mechanisms in CV 

complications and is impaired from the onset of diabetes. It is still unclear 
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whether endothelial dysfunction is primarily caused by diabetes or other factors 

(626). Proposed mechanisms for diabetes related endothelial dysfunction are as 

follows:   

1. Hyperglycaemia leads to increased intracellular glucose concentration 

within ECs causing structural changes in ECs in the form of increased 

deposition of collagen and fibronectin. It also decreases endothelial 

proliferation, NO production and increased apoptosis (627;628).  

2. Hyperglycaemia alters EC function indirectly by the alteration of growth 

and vascular factors in other cells (629) 

3. Other associated metabolic alterations (dyslipidaemia, hypertension and 

inflammation) also cause endothelial dysfunction (630).  

1.10.1.2 Diabetes induced mitochondrial dysfunction and vascular 
disease 

Diabetes-associated hyperglycaemia affects mitochondria in ECs; mitochondrial 

dysfunction plays a central role in endothelial dysfunction in T2DM (631). 

Hyperglycemia induced mitochondrial dysfunction cause vascular dysfunction 

through at least three pathways: mROS production, apoptosis and damage 

memory. 

Mitochondrial dysfunction in T2DM is evident from lower mitochondrial O2 

consumption, ψm, GSH/GSSG ratio, and higher mROS production (632). 

Hyperglycaemia increases ROS production by the mitochondrial electron 

transport chain causing vascular damage (633;634), whereas activation of AMPK 

reduces hyperglycaemia-induced mitochondrial ROS production  and promotes 

mitochondrial biogenesis in ECs (635). Recently, Li et al. also showed that 

endothelium-selective activation of AMPK prevents diabetes-induced impairment 

in vascular function and favours reendothelialization (636).  

Hyperglycaemia induces EC apoptosis, and in addition to elevated mROS, 

mitochondrial membrane depolarization is also implicated in hyperglycaemia-

induced apoptosis of human aortic ECs (637). 
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The existence of persistent vascular damage and poorer CVD outcomes in people 

with diabetes despite apparently good glycaemic control can be regarded as a 

paradox. However, the average level of glycaemic control since the time of 

diagnosis is much more important than the current level of control: the concept 

of glycaemic memory can be demonstrated and appears to contribute to 

prevention of CVD over long durations of follow-up (638-640). The mitochondrial 

ROS-driven hyperglycaemic stress is remembered in the vasculature even after 

glucose normalization and promotes vascular dysfunction. The mitochondrial 

adaptor protein p66Shc has a critical role in the hyperglycaemic memory. When 

EC from human aorta and aortas of diabetic mice were exposed to high glucose, 

the activation of p66Shc by protein kinase C β II (PKCβII) persisted even after 

achievement of normoglycaemia. Persistent p66Shc up regulation and 

mitochondrial translocation are associated with continued ROS production, 

reduced NO bioavailability, and EC apoptosis. After achievement of 

normoglycaemia, in vitro and in vivo gene silencing of p66Shc, blunted ROS 

production, restored endothelium dependent dilatation and attenuated 

apoptosis (641).  

In summary, hyperglycaemia upregulates mROS production, impairs ROS 

buffering system, damages mitochondrial DNA, alters mitochondrial membrane 

potential and finally impairs the balance between anti-apoptotic and pro-

apoptotic pathways; all leading to endothelial and vascular dysfunction. 
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Figure 1.10 The toxins and signalling pathways contributing to hyperglycaemia’s adverse 
effects for complications (642) 
Redrawn with permission from Scott JA, Annals of the New York Academy of Sciences, 
2004 
 

Part 4 

1.11 Age-related changes in body composition 

Cardiovascular risk factors are positively correlated with obesity, abdominal 

obesity and visceral adipose tissue and negatively with fat free mass or lean 

mass (643;644). During the normal process of ageing there is a change in body 

composition; increasing fat mass and decreasing fat free mass or lean body mass 

(645-648). Kyle et al. has demonstrated in a population of 5225 healthy white 

people that fat free mass in men peaked at 35-44 years whereas in females this 

occurred at 45 to 54 years (decreasing in both genders afterwards). Fat mass 

remained stable until the age of 44 in females and 54 in males and then 

increased with age in both genders (649). Thus weight in healthy young people is 

due to both fat mass and fat free mass, but fat mass dominates in the older 

population (649). Similarly Sylvia et al. have shown in an Austrian population of 

513 women and 412 men between age range of 19- 92 years (mean ± SD 51.7 ± 
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15.2) that in both sexes there is an increase in fat mass and decrease in lean 

body mass with increasing age (648). The steep increase/decrease is within the 

age range of 40-49 years in women and between 50-59 years in men (648). In 

relation to additional adiposity measures, Nassis and Geladas reported in 441 

healthy Greek women that BMI, fat mass, waist to hip ratio and skin fold 

thickness, all started increasing from the age of 50 (steep increase)(650). 

Similarly Jackson et al. reported in 7265 American men that fat free mass 

increased until the age of 47 years and then declined afterwards, whereas fat 

mass increased from 20 to 96 years. They also reported that even if BMI remains 

the same with age, the proportions of fat mass and fat free mass change over 

time (647). Ito et al. reported differences in increasing fat mass in relation to 

age. In 2411 Japanese people, they showed that LBM remained constant until the 

fifth decade and then decreased in both sexes. For fat mass there was a linear 

increase in females while in males there was a curvilinear pattern with peak in 

40-50 years (646). Moreover, Kuk et al also demonstrated that WC and VAT are 

age dependent in 483 white American and Canadian population (651). Table 1.7 

and Figure 1.12 shows the age-related changes in fat mass and fat free mass in 

males and females in different ethnic population.   

  



Chapter 1 

95 
 

Table 1.3 Age-related differences in body composition and cardiovascular risk factors 

Author N Male/ 
female 

Ethnicity Age 
range 

Fat mass 
Increase 

FFM peak 
age 

cross sectional 

Kyle UG et 
al. 
2001(649) 

5225 2735/ 
2490 

White 
(Western 
European
) 

15-98 Progressed 
between 15-98 
years 

M: 35-44, 
F: 45-54 

Sylvia 2010 
(648) 

925 412/ 
513 

Austrian  19-92 Gradual ↑ in 
both but slope 
↑ in F: 40-49 
and M: 50-59 

M: 50-59, 
F: 40-49 

Chittawatan
arat K et al. 
2011 (645) 

2324 1000/ 
1324 

Thai  18-60+ M & F: 55 -60  M: 50,  
F: 40 

Nassi GP 
2003 (650) 

441 441 
women 

Greece  18-69 F: 50 (peak) Remain 
unchange
d 

Henche SA 
et al. 2007 
(652) 

1113 397/ 
716 

Spain 0-80 M: ↑ from 50 
F: ↑ from 36 

M: 40-45 
F: 40 

Ito H et al. 
2001 (646) 

2411 625/ 
1786 

Japanese 20-79 M:  peak 40-50 
F: linear ↑ 
through life 

M & F: 40   

Larsson I et 
al. 2004 
(653) 

1135 524/ 
611 

Swedish 37-61 M & F: Linear ↑ 
in both 

M: 51 
F: 46 

Longitudinal 

Jackson AS 
2012 (647) 

7265 7265 
men 

USA 20-96 ↑ from 20- 80 M: 47 

N= no of people, FFM= fat free mass, F= female, M= male 
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a)  

 
b)  

 
Figure 1.11 Changes in fat and fat free mass with age 
Adapted from Sylvia 2010 (648). 
 

1.11.1 Age, body composition and inflammatory markers 

The concentration of inflammatory markers also changes (increases) with age. In 

addition to increasing adiposity with age, ageing is also associated with 

redistribution in the pattern of obesity; decrease in subcutaneous adipose tissue 

(SAT) and increase in visceral adipose tissue (VAT) (651). Cartier et al. reported 
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that in a French- Canadian male cohort VAT increased with age along with 

increases in inflammatory markers CRP, IL-6 and TNF-α. This may have been 

related to increases in VAT and not age as differences in inflammatory markers 

between young and middle age (< and > 40 years) were eliminated after 

adjustment for VAT (654).  

1.11.2 Age, body composition and autonomic nervous 
system (ANS) 

With increasing age there are alterations in ANS responses which may be 

associated with changes in body composition and change in distribution of fat. 

Christou et al. demonstrated that ANS responses like baroreflex sensitivity and 

heart rate variability were significantly different in younger and older men. The 

univariate effect of age was abolished after adjustment for total and abdominal 

body fat and abdominal-to-peripheral body fat distribution(655). This effect of 

adiposity, especially VAT on ANS was also observed in young men (656) and 

young women (657). Obesity causes depression of parasympathetic nervous 

system activity manifested as a decrease in heart rate variability (HRV); this is 

accompanied by over-reaction of sympathetic nervous system on exercise 

(handgrip) causing raised BP (657).   

1.11.3 Sex-related differences in body composition and 
cardiovascular risk factors 

Henche et al. compared 113 Spanish males and females from age 0-80, and 

showed that all measures of adiposity (fat mass, LBM, trunk/legs fat mass)  are 

different between the sexes from ages 10 to 75 years (652). Similar differences 

were also reported in fat mass, fat free mass, waist circumference and 

centralized fat distribution in 1135 Swedish males and females (653). In addition 

Kuk et al. demonstrated that for the same WC females have more adipose tissue, 

although with increasing WC this difference diminishes (651). Sex differences 

will also be explained below (Section 1.12) 
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1.11.4 Menopausal effects on body composition and 
cardiovascular risk factors 

In a study of 316 Chinese women aged 40-59 years, Chen et al. showed no effect 

of different menstrual status (pre or post menopause) on BMI, body weight and 

waist circumference(658).  In contrast, Diebert et al. reported higher BMI, fat 

mass, WC, SBP, TG and glucose in postmenopausal women. However, this was 

without adjustment for age (659). Douchi et al. also demonstrated that ageing 

made a more significant contribution than menopause  to changes in body 

composition, especially truncal obesity, in 642 Japanese women (aged 20-53) 

(660). In keeping with these findings, Aloia et al. additionally showed the effect 

of HRT in a randomised control trial over three years in 118 American women, 

reporting that fat mass increased and lean body mass decreased after 

menopause but HRT had no positive effect (661). Moreover, Douchi et al also 

demonstrated in a study of 365 pre and 201 postmenopausal Japanese women 

(aged 20-70 yrs) that lean mass and bone mineral density (BMD) were inversely 

correlated with age and that fat mass and truncal obesity were positively 

correlated with age (662). 

From twin study data, Schousboe et al. conclude the that adult adiposity 

phenotype is highly heritable; however, with advancing age, the importance of 

environmental factors increases while the genetic influence decreases (663). 

1.12 Sex differences 

Sex differences in lean muscle mass, visceral adiposity, insulin sensitivity, the 

impact of ageing, menopausal transition, and altered susceptibility to free fatty 

acid are well described in humans (664). Similarly the influence of sex on the 

clinical expression and pathophysiology of obesity and other cardiovascular risk 

factors and disease has been well studied but will be reviewed briefly here  

1.12.1 Sex differences in prevalence of dysglycaemia 

As discussed above, in healthy people, the fasting blood glucose concentration 

depends on basal secretion of insulin and insulin sensitivity of the liver, limiting 

hepatic glucose output. Similarly after taking a meal or ingestion of a 

carbohydrate load there is surge of insulin secretion from pancreatic β-cells 
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which enhances glucose uptake in insulin sensitive liver and muscle. Impaired 

fasting glucose (IFG) mainly depends on the basal secretion of insulin while 

impaired glucose tolerance (IGT) is associated with peripheral insulin resistance 

at the skeletal muscle level, where most postprandial glucose disposal occurs. 

IGT is considerably more prevalent than IFG (665).  

IFG is 1.5-3 times more common in men than in women in nearly all age groups, 

but up to 7–8 times higher in older men (50–70 years). However, the prevalence 

of IGT is higher in women albeit with minor ethnic differences (665). 

1.12.2 Sex differences in body fat distribution, adipose size 
and function 

Around half a century ago when describing adipose tissue accrual in the upper 

body, men were described as having android obesity (trunk and abdomen)  and 

women gynoid obesity (hips and thighs)  (666). Men have twice as much visceral 

adipose tissue (VAT) as premenopausal women, (667) even though women have 

higher total body fat, BMI, and abdominal subcutaneous adipose tissue (SAT) 

(668). In men VAT is linked to total body fat and increases with weight gain 

while in women VAT is less associated with total adiposity (668). Similarly for 

the same waist circumference, men have more VAT than women (651). It has 

been demonstrated that when obese people lose weight, men lose relatively 

more VAT then women even if both have similar weight loss (669).  Therefore, 

men have potentially greater improvements in metabolic profile than women, 

even with similar levels of weight loss.  

Obese women accumulate more fat in the gluteofemoral region than their leaner 

counterparts, but this is not the case in men (670). During weight gain, lower 

body adipose tissue tends to expand via adipocyte hyperplasia in women but via 

adipocyte hypertrophy in men.  Moreover, lower-body SAT adipocytes of women 

tend to be larger than men but the sex differences in abdominal SAT adipocyte 

size are less marked (670;671). Irrespective of obesity level, adipocyte size is an 

important determinant of adipocyte function and metabolic activity (adipokine 

secretion), and larger adipocytes have higher basal and stimulated rates of 

lipolysis. Larger adipocytes predominantly secrete pro-inflammatory adipokines 

(672).  
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Leptin expression is greater in subcutaneous than in visceral adipocytes and as 

women have more subcutaneous fat than men, so leptin signalling and effects 

are different in males and females (673), also explained in Section 1.7.6 

As well as being released by the ovaries, oestrogen is produced through 

peripheral aromatization in fat and other tissues in both sexes. It plays a role in 

cell proliferation, differentiation, and homeostasis (674;675). Oestrogen has 

multiple effects in different body systems. Some important functions of 

oestrogen include: 

(a) Anorexigenic action (decrease in appetite) via the central nervous system. 

(b) Increased glucose transport in skeletal muscles.  

(c) Prevention of visceral fat accumulation  

(d) Decreased lipogenic activity of lipoprotein lipase in adipose tissue, and  

(e) Anti apoptotic effects on pancreatic β-cells (674).   

After the menopause there is alteration in partitioning of fat with a preferential 

increase in visceral adiposity (676). Due to these metabolic, hormonal and fat 

partitioning changes, many mechanisms may contribute to the development of 

HTN including endothelial dysfunction, activation of the RAS, activation of the 

sympathetic nervous systems, oxidative stress, and increased pro inflammatory 

mediators (664). However, for incidence of CVD, a recent meta-analysis of five 

prospective cohorts (showing sex stratified results), did not show any sex related 

difference in incidence of CVD in people with metabolic syndrome (664). 

1.13 Ethnicity and diabetes  

South Asians have differences in cardiovascular (CV) risk factors and diabetes as 

compared to Europeans and other ethnicities (677).  In the 2011 UK (NICE) 

guidelines, the reason for the fourfold or even higher risk of diabetes in South 

Asians as compared to Europeans is attributed to weight, diet and physical 

activity (678). However, epidemiological findings are different; Bangladeshis in 

the UK have lower weight (and BMI) than White, Indians or Pakistanis yet have 
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the highest rate of type 2 diabetes (679;680). Similarly, consumption of fruit and 

vegetables by Bangladeshi people is similar to the general population (as is fat 

consumption) yet there is a higher prevalence of diabetes (680;681). South 

Asians have low muscle mass (682), especially in buttocks and legs (683). This 

phenotype is insulin resistant and is characterized by reduced total body 

capacity for oxidation and this insulin resistance is not associated with lipid 

content of the muscle (683;684). In South Asians excess energy (from higher 

caloric intake) in the form of fat is stored in the truncal and deep subcutaneous 

tissues which are highly active and lead to derangements in metabolic profile 

(685). Excess fat is also stored in ectopic fat depots intra abdominally, and in 

the liver, pancreas and around the heart (686). In Europeans excess fat (energy 

from caloric intake) is principally deposited in superficial subcutaneous 

compartments, especially those in lower limbs. Fat in these superficial 

subcutaneous compartments is either neutral or even protective in relation to 

cardiovascular and metabolic outcomes (687-690). Several theories and 

mechanisms are proposed for the ethnic differences in early development or 

higher prevalence of diabetes and are summarised below.  

1.13.1 Birth and early life 

At birth, South Asians babies are smaller in size than European babies but even 

then have more fat mass (and lower muscle mass) than Europeans (691). Smaller 

babies have fewer β-cells in pancreatic islets  (692). This may be a consequence 

of intrauterine programming (Barker hypothesis- Section 1.3.7.3) 

1.13.2 Childhood and early adulthood 

Size at birth is not a problem in itself but in later life the mismatch between 

phenotype at birth and later phenotype is manifested as a higher level of 

subcutaneous truncal fat (693). In adult life small babies have comparatively 

large, metabolically active adipocytes (686;694).   

South Asian children in UK, along with their parents have low physical activity 

compared to Europeans (695). As leisure time activity or exercise is determined 

by cultural factors and resistant to change (696), a sedentary lifestyle is passing 

between generations.  
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1.13.3 Metabolic changes in later adulthood and middle and 
old age 

Nair demonstrated that mitochondria in South Asians have different oxidative 

phosphorylation capacity, and convert more energy from calories ingested into 

ATP (and thereafter) with less heat generated (697;698). In addition, the energy 

requirement of South Asians is less, due to lower lean mass and more adipose 

tissue given that adipose tissue is metabolically less active than muscles.  The 

combination of all of these factors, i.e. efficient mitochondria, less lean mass, 

lower metabolic rate, truncal and liver fat deposition and insulin resistance 

render South Asians more prone to the adverse effects of excess energy intake 

(677). These effects (of excess energy intake) therefore occur in South Asians at 

a lower BMI compared to Europeans. It has also been demonstrated clinically 

that, to achieve the metabolic profile of a European origin person with a BMI of 

approximately 30 kg/m2, a South Asian person needs a BMI as low as 22 kg/m2 

(699-701). The recent International Diabetes Federation (IDF) has defined 

central obesity according to ethnicity keeping in regard the ethnic distribution of 

fat. For SA women, the cut-off for waist circumference is the same as for EU 

women (≥80 cm), but for SA men the cut point is lower than for their EU 

counterparts (≥90 cm versus ≥94 cm) (702). 

Clinically overt diabetes develops at the time of β-cell failure in the pancreas. 

There are also many postulated mechanisms for early β-cell failure in South 

Asians, for example: a low volume of pancreatic β-cells islets at birth (due to 

genetic or developmental reason); and a high rate of β-cell apoptosis (due to 

genetically low resistance to insult or ectopic fat and other metabolic stresses). 

Increased workload on these cells due to insulin resistance may lead to early β-

cell exhaustion (195) (see Section 1.5.2 above).  

1.13.4 Ethnicity and CVD  

1.13.4.1 CVD in South Asians 

Coronary heart disease (CHD) mortality is 90% greater in SA than in EU 

individuals and this increase is not explained by CV risk factors like smoking, 

hypertension, hypercholesterolaemia and features of the insulin resistance 

syndrome (703). CHD risk is high in young Asian men (704;705) and sex-related 



Chapter 1 

103 
 

differences in CHD risk are also less marked in Asians (705;706). The Study of 

Health Assessment and Risk Evaluation (SHARE) also reported that SA had higher 

prevalence of carotid atherosclerosis and associated CVD compared to EU and 

Chinese individuals (707). In the INTERHEART study, it was demonstrated that at 

the time of their first heart attack SA were younger (median age 52 years) than 

the overall population (median age 58 years), or EU population (median age 62 

years) (708). 

1.13.4.2 Risk Factors in South Asians; conventional and novel  

South Asians (SA) have a less favourable metabolic profile than Europeans (EU) 

as has been shown in the Southall study (709). It showed that among men with 

similar BMI (mean BMI: SA 25.7 kg/m2; EU 25.9 kg/m2), SA compared with EU 

men had higher diabetes prevalence (20% versus 5%), fasting insulin levels (9.8 

mU/L versus 7.2 mU/L), insulin levels after glucose load (41 mU/L versus 19 

mU/L), systolic blood pressure (126mmHg versus 121 mmHg), waist/hip ratio 

(0.98 versus 0.94) and triglyceride (TG) levels (fasting: 1.73 mmol/L versus 1.48 

mmol/L) and lower high-density lipoprotein-cholesterol (HDL-C) levels (1.16 

mmol/L versus 1.25 mmol/L). Furthermore, the prevalence of metabolic 

syndrome was higher in SA (46.3 %) than EU (18.8 %) according to WHO definition 

(710). SA develop diabetes at a younger age (46 years versus 57 years) and at 

lower BMI (28.7 kg/m2 versus 29.9 kg/m2) than EU (711). In addition it has also 

been shown that total caloric intake is higher in immigrant SA (712).    

1.13.4.3 Physical activity  

Fischbacher et al reported in a systematic review of 17 UK studies, that SA had a 

substantially lower level of physical activity and fitness than the local white 

population. The difference was even greater in women for all types of activities: 

sports, cycling and heavy manual work (713).    

1.13.4.4 Vascular factors  

Plasminogen activator inhibitor 1 (PAI-1)  

Plasminogen activator inhibitor 1 (PAI-1) is a prothrombotic factor released by 

the endothelium and also adipose tissue. Its physiological role is inhibition of 
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fibrinolysis (degradation of blood clots). SA have been shown to have increased 

levels of prothrombotic factors including PAI-1 and fibrinogen compared with 

Europeans (707;714). PAI-1 is an independent predictor of diabetes and also 

plays a role in the development of vascular disease in people with insulin 

resistance (715).  

Homocysteine  

Homocysteine is linked with development of endothelial dysfunction and 

atherosclerosis and its concentration is higher in SA men compared with EU 

(716). 

Lipoprotein (a)  

Lipoprotein (a) is a genetically determined factor: a meta-analysis of 67 

prospective studies show a clear association of lipoprotein (a) with increased risk 

of CHD (717). SA show increased circulating lipoprotein (a) levels compared to 

Europeans (712;718).  

Adiponectin 

As discussed in Sections 1.7.1, 1.7.2, 1.7.4.6 and 1.7.6, adiponectin has 

beneficial effects in glucose and lipid metabolism and also protect against 

vascular and metabolic dysfunction via anti-inflammatory pathways (719;720). 

People with central obesity have low adiponectin levels (719) and its levels are 

also reduced in type 2 diabetes (720). SA have significantly low levels of 

adiponectin compared to EU matched for age and BMI (721). 

CRP  

SA have higher CRP levels compared to EU and CRP levels are more closely 

associated with visceral adiposity and insulin resistance. The difference was 

even higher in women (722;723).  
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1.13.4.5 Early development of risk factors 

Yajnik et al reported that SA babies were small but had more central obesity 

measured by subscapular skinfold thickness and this subscapular skinfold was 

better preserved than triceps skinfold thickness further augmenting the central 

adiposity tendency present at birth (691). Similarly cord blood leptin 

concentration, a reflection of percent body fat mass, was higher in SA babies 

even when adjusted for the difference in weight (691). Circulating Insulin 

concentration was also higher at birth in SA babies demonstrating an insulin 

resistant phenotype at birth (691). Similarly, immigrant SA children (around 10 

years of age) were more insulin resistant than EU children (724). Din JN et al 

demonstrated increased pulse wave velocity (PWV) in healthy young SA men. 

PWV is an index of arterial stiffness and a marker of cardiovascular events (725).  

1.13.4.6 Role of immigration 

Immigration may also have an effect and is associated with atherosclerosis (726) 

and CVD (727). This may be related to dietary changes towards high calorie and 

refined diets which are very common in immigrants (728). 

1.13.4.7 CVD in Other Ethnic Groups  

African/ Caribbeans  

It was reported in the Southall study that African/ Caribbean people had higher 

BP (128mmHg versus 121 mmHg) and greater prevalence of diabetes (15% 

compared with 5% in Europeans).  However, they had healthier (less 

atherogenic) lipid profile than Eu, HDL-C (e.g. 1.37 mmol/L versus 1.25 mmol/L, 

respectively) and triglyceride levels lower (1.09 mmol/L versus 1.48 mmol/L) 

(709). CHD mortality was almost similar in African-American and White men (224 

versus 236 per 100,000), but stroke mortality was much greater in African 

American men (89 versus 62 per 100,000) and women (76 versus 58 per 100,000) 

compared with white (729).  
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Chinese  

People of Chinese ethnicity have a favourable risk factor profile with lower rates 

of smoking and obesity, and lower levels of total and LDL cholesterol, but have 

higher BP levels (730). It has been reported that Chinese men have a lower 

prevalence of CHD (4.9%) as compared to EU men (16.6%) (730), but the 

incidence of stroke is higher in the Chinese as compared to EU population (731).  

Conclusion 

These data suggest that there is a higher prevalence of metabolic derangements, 

diabetes, higher CV risk factors and cardiovascular disease among South Asians. 

Unhealthy CV risk factors are present at birth and are exacerbated more easily 

with obesity or other factors and there is also a culturally-determined trend 

towards physical inactivity and higher sedentary behaviour. The results from the 

INTERHEART study showed that smoking, hypertension, diabetes, dyslipidaemia 

and obesity accounted for 80% of the population risk of CHD in all ethnic groups 

and across all geographical regions.  It also showed that 80% of the risk of CHD 

can be reduced by being physically active, consuming fruits and vegetables, 

moderate amount of alcohol intake and decreasing and/or stopping smoking 

(708).  It is suggested that within population risk is determined mainly by 

environmental factors, while between-population risk (ethnic difference in risk) 

is determined by a larger genetic element (732). So within populations, 

ethnicity-specific guidelines on primary and secondary prevention of CVD may be 

an appropriate solution.  

1.13.5 Is the ethnic difference in CVD explained by diabetes?  

It is well known that type 2 diabetes is one of the most important risk factors in 

relation to CVD (733). In many large prospective studies it has been shown that 

there is two to threefold increase risk of CVD in people with diabetes (734-736). 

Ethnic variation in prevalence of diabetes (736) and poor CVD outcomes in some 

ethnic groups has also been well documented (708;734). Ethnic variation in 

glucose control in people with diabetes (734) has been described in the 

literature but after the diagnosis of diabetes management of blood glucose 

(although the main pathology determining diabetes) is not a potent method of 
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reducing CVD risk (640;737). Tanika NK et al demonstrated in a systematic 

review of five trials indicating that intensive glucose control mildly reduced the 

CVD risk (relative risk [RR], 0.90 [95% CI, 0.83 to 0.98) but did not reduce the 

risk for cardiovascular death or all-cause mortality (although increasing the risk 

of severe hypoglycaemia) (738).  Overall the available literature is controversial 

regarding the relation of ethnic variation in diabetes and related glucose control 

with cardiovascular disease outcomes.  Further evaluation of risk of CVD is 

needed in different ethnicities irrespective of diabetes, glucose control or 

duration of diabetes.   

1.14 Summary of the introduction 

Cardiovascular disease is the leading cause of death worldwide.  Its prevalence is 

decreasing in developed or high income countries potentially as a result of 

better health facilities, prevention programmes and screening. However it is on 

the rise in the low and middle income countries in which the majority of the 

world’s population resides. Many cardiovascular risk factors have been studied 

for decades but the absolute risk of a particular individual for developing CVD 

cannot be predicted with accuracy. This has led to a search for novel risk factors 

and further study of the mechanisms of diseases in an effort to optimise 

prevention and management strategies.  

Hypertension is a well-known risk factor for coronary heart disease and also 

cerebrovascular disease. The association of insulin resistance and inflammation 

with the development of hypertension remains controversial despite a large 

number of studies. Although many animal studies suggest a causal association of 

inflammation with hypertension, few human epidemiological studies have 

supported this finding. It remains uncertain whether inflammation is an inducer 

of high BP or is merely a step in the pathological process towards developing 

hypertension – similar questions apply for insulin resistance. Similarly, it is still 

debated whether impaired vasodilatation associated with hypertension, is a 

cause or an effect of insulin resistance.  

When considering ethnicity, the relative contribution of cardiovascular risk 

factors in the development of CVD is different in different ethnic groups. South 

Asians develop diabetes and CVD early while others (Chinese and African 



Chapter 1 

108 
 

Caribbeans) have a greater incidence of stroke as compared to CHD. The effect 

of intense glucose control in reducing the incidence of CVD is limited.  

In this thesis, I have therefore evaluated CV risk factors in a healthy population 

(RISC) and a diabetic (SDRN) population to examine their inter-relationships. In 

particular, I focused on whether the various risk factors behave differently in 

different groups defined by age, sex and ethnicity.   

1.15 Aims and Objectives 

In this thesis I aimed to evaluate the associations amongst novel cardiovascular 

risk markers (insulin resistance, inflammation) and traditional cardiovascular risk 

factors (hypertension, obesity) as well as evaluating the independent role of 

ethnicity in relation to cardiovascular complications in T2DM. 

There were five specific objectives: 

1. To evaluate insulin sensitivity as an independent longitudinal predictor of 

BP rise in healthy adults in a healthy European population. 

Hypothesis: insulin resistance is an independent predictor of BP rise and/ 

or incident hypertension 

2. To conduct a systematic review of the relationships between two markers 

of low grade inflammation (IL-6 and CRP) and BP/hypertension, 

considering the roles of adiposity and insulin resistance.  

Hypothesis: low grade inflammation is associated with BP and incident 

hypertension independently of adiposity and insulin resistance 

3. To evaluate low grade inflammation as an independent predictor of BP 

rise in a healthy European population well-characterised for insulin 

sensitivity. 

Hypothesis: low grade inflammation is associated with BP rise and/ or 

incident hypertension independently of adiposity and insulin resistance. 
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4. To determine the main predictors of change over time in systolic and 

diastolic BP in different age and sex groups in healthy adults.  

Hypothesis: Predictors of systolic and diastolic BP change over time differ 

according to age, sex and body composition. 

5. To evaluate the role of ethnicity in the development of cardiovascular 

disease in relation to the control and duration of diabetes. 

Hypothesis: Ethnicity is an independent risk factor for cardiovascular 
disease 
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2 Methods  
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Basis for measurements of the cardiovascular risk 
factors 

The methodological background including measurement of obesity, insulin 

resistance, inflammation and diabetes are explained and critically appraised, 

along with potential alternative measurement options. This section includes 

detailed aspects of the measurement of body composition, insulin resistance and 

inflammatory markers in relation to the RISC cohort and the SDRN cohort. The 

relationship of these measures with cardiovascular risk is also summarised. The 

cohort specific methods will be discussed in the relevant section below.  

2.1 Measurement of obesity  

The most common measurements used for measuring adiposity or body fat mass 

are indirect and include body mass index (BMI), waist circumference (WC), and 

waist-to-hip ratio (WHR). More complex ways of measuring adiposity are 

laborious and costly and so less commonly used for population studies: including 

skin fold thickness, bioelectrical impedance, underwater weighing (hydrostatic 

weighing), dual-energy x-ray absorptiometry (DXA), magnetic resonance imaging 

(MRI), computed tomography (CT), whole body air displacement 

plethysmography (ADP) and isotope dilution. Some of the measures are briefly 

discussed below: 

2.1.1 Body mass index 

BMI is the most widely used measure of obesity and is used for screening of 

individual and also population studies (due to cost effectiveness). It is calculated 

by a simple formula; weight in kilograms (kg) divided by the square of individual 

height in meters (kg/m2).  Standardized cut-off points have been developed by 

the World Health Organization (WHO) and are used by various national and 

international organisations (739) (Table 1.3). The National Health Service (NHS), 

in the United Kingdom also recommends using the same WHO BMI cut-offs to 

identify those needing interventions. 
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Table 2.1 Body Mass Index category for adults 

Classification BMI range (kg/m2) 

Underweight <18.5 

Normal-weight 18.5 to 24.9 

Overweight 25 to 29.9 

Obese ≥30 

Class I 30 to 34.9 

Class II 35 to 39.9 

Class III ≥40 

South Asian populations are more prone towards obesity related diseases and so 

additional intermediate cut-off points are suggested in this population group for 

labelling risk; 23.0 kg/m2 and 27.5 kg/m2 for increased risk and higher risk 

respectively (740).  

The main advantage of BMI is that only height and weight is required for 

calculation and the same cut-off can be applied to all ages and both genders. In 

children and adolescents, BMI calculation method is same as for adults but age 

and sex specific percentiles are used to determine cut-offs. BMI has been used 

for decades and across the globe and so provides opportunities to compare it 

over time and between different populations. BMI within the normal limits is 

ideal and both underweight and overweight to obese have increased morbidity 

and mortality (741). Despite its usefulness, BMI is based on simple weight 

measurement and does not differentiate between fat and lean mass (742). BMI 

only categorises individuals as normal, overweight or obese and this can be 

misleading particularly in the case of athletes and body builders who have a high 

lean body mass. Similarly women and old people may have same BMI but are 

likely to have more body fat as compared to men and young people. However, 

misclassified individuals are relatively uncommon at a population level as BMI 

correlates well with the direct measure of body fat at population level (743) and 

so is still used extensively in research and at population level.  

2.1.2 Waist circumference (WC) 

WC is the most widely used measurement of central adiposity as it is strongly 

correlated with central or abdominal fat mass (744). It is a very easy and cheap 

method and can be easily assessed with a normal inelastic measuring tape. It is 
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measured between the two bony landmarks i.e. mid-way between the lower 

border of last palpable rib and the upper border of the iliac crest in standing 

position and at the end of a gentle expiration (745). The WHO has recommended 

sex-specific thresholds for WC which have been adopted by many national and 

international organizations for community and clinical settings (Table 1.4).  

Table 2.2 Waist circumference categories 

Classification Men Women 

Normal-weight <94 cm <80 cm 

Overweight 94 cm to 102 cm 80-88 cm 

Obese >102 cm >88 cm 

 

For Chinese and South Asian adults, lower thresholds of <90 cm and <80 cm are 

recommended for men and women respectively (746). Several studies have 

shown that BMI is not a good estimate for central adiposity and is the reason why 

WC has gained a considerable attention as a complementary or alternative 

anthropometric measure to BMI (747). WC use in children is limited due to non-

availability of recommended cut-offs. In addition its use is challenging in some 

populations as it requires physical contact and also lifting the shirt of the 

participants. Training of staff is also required to ensure accurate measurements 

between the two bones and at the end of expiration; both can change the 

results. WC is widely used but not as commonly as BMI, particularly in population 

studies.  

2.1.3 Waist-to-hip ratio (WHR) 

WHR is the second most widely used measure of central adiposity after WC, and 

is shown to be significantly correlated with abdominal fat (745). WHR is an 

indirect estimate of abdominal and hip fat mass; the latter being representative 

of subcutaneous (less morbid) fat. In contrast to WC it requires two 

measurements; waist and hip circumference. Hip circumference is measured at 

the widest part of the buttocks (at the level of the greater trochanter) using a 

stretch resistant measuring tape. Both measurements should be done in a 

relaxed standing position with feet together, and at the end of gentle 

expiration. Two measurements should be taken and in the case of one 
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centimetre difference, the mean should be calculated. The WHO recommended 

sex-specific thresholds of WHR are given below (Table 1.5).  

Table 2.3 Waist-to-hip-ratio categories  

Classification Men Women 

Normal-weight <0.94 <0.80 

Overweight 0.94 to 0.99 0.80-0.84 

Obese ≥1 ≥0.85 

  

South Asians and other ethnic groups have different BMI cut-offs, similarly the 

cut-offs for threshold of high risk WHR for the South Asian ethnic groups is <0.90 

for men and <0.80 for women (748). As compared to BMI, central obesity is a 

stronger predictor of adverse outcomes (749). Recent studies showed that WHR 

was more strongly associated with CVD than BMI and WC (750;751). Although WC 

is strongly associated with diabetes (752), WHR is a stronger predictor of 

myocardial infarction compared to other measures (753). Recently Huxley et al. 

compared BMI, WC and waist hip ratio as predictors of CV risk (diabetes, 

hypertension and dyslipidaemia). They showed in both men and women that 

measures of central obesity were superior to BMI as discriminators of 

cardiovascular risk factors, although the differences were small and unlikely to 

be of clinical relevance (754). Moreover South Asian (SA) have higher prevalence 

of type 2 diabetes and CVD at lower BMI. Moreover, SA have lower BMI’s at a 

given percentage of body fat compared with Europeans (754). WHR has certain 

limitations, 1) the need for two measurements thereby increasing the chance of 

measurement error, 2) expression of the result as a ratio which may be more 

difficult to interpret, 3) the need for physical contact and training. In addition 

fewer studies are available for ethnic groups other than White and so is difficult 

to derive ethnic-specific cut-offs. Moreover, due to less literature reference 

percentiles for use in children is still not recommended by WHO, although 

different population specific percentiles are available (755).   

2.1.4 Direct and other measures of adiposity 

2.1.4.1 Skin fold thickness 

A special calliper can be used to measure subcutaneous body fat. The skin fold 

thickness is measured by pinching the skin at a number of predefined points on 
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the body, such as upper arm, trunk, and thighs (756). The recorded 

measurements are then compared with age-sex-specific charts. 

2.1.4.2 Underwater Weighing 

Underwater weighing is the gold standard method of directly measuring body 

fat. Participants are weighed in air and then weighed again after they are 

submerged in a specialized tank in a laboratory setting. This procedure is based 

on Archimedes Principle; where density of different body components (fat mass, 

lean mass) is compared with the density of water. Individuals with high fat mass 

weigh less inside the water compared to those with a high lean mass. In addition 

residual lung volume is also calculated in maximal inhalation and about 100 cc of 

air is estimated as air trapped in the intestines (757;758). All these values are 

then put in the following equation to calculate body density 

Density of body=                                        density of water * weight of body____________________                                                                                      

 (Weight of body –weight of immersed body)- density of water*(residual lung vol + 100cc) 

 

2.1.4.3 Whole body air displacement plethysmography (ADP) 

Air displacement plethysmography (ADP) measures body composition using the 

same principles as underwater weighing except with air instead of water. 

Subjects are asked to remove clothes and enter a sealed chamber that measures 

their body volume through the displacement of air in the chamber. The body 

volume is combined with body mass to determine body density. The ADP uses 

known equations to estimates the percentage of body fat and lean body mass by 

using the previously calculated body volume, mass and density. ADP is a very 

fast, simple and non-invasive technique and does not uses x-rays and so is 

preferred over DEXA and underwater weighing where available. In addition the 

acceptance of ADP is also high (100%) as compared to underwater weighing 

(69%), despite both giving almost identical results (759;760). ADP measurements 

are extremely reproducible, making them ideal for monitoring pharmaceutical 

therapy, nutritional or exercise intervention, or sports training. However ADP 

was not a feasible option for use in the RISC study due to the cost of the 

equipment for each centre in a multicentre study.  
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2.1.4.4 Bioelectrical impedance or bioimpedance 

Bioelectrical Impedance Analysis (BIA) using a variety of proprietary devices is 

one of the most reliable and accessible methods of screening body fat and 

composition in clinical settings.  As such it was measured in participants of the 

RISC study in all study centres using the Tanita bioimpedance balance (a 

machine was purchased for each centre) (see Chapter 2, Section 2.1.6). In BIA, a 

person’s height, age, gender and weight and other physical characteristics such 

as body type, physical activity level, ethnicity, etc. are first entered. Subjects 

are asked to have only a light meal at least one hour before and to void their 

bladder before the start of the measurements. More sophisticated methods are 

also available: in these, the person is asked to lie down and electrodes are 

attached to various parts of the body. If in the standing position, the 

measurements are done after a period of at least 10 min standing upright to 

minimize potential errors from acute shifts in fluid distribution. Weight is 

calculated and recorded by the balance. A small and safe electric signal (usually 

a 50 kHz, 500 μA current) is passed thorough the body and the impedance or 

resistance to the signal is recorded as it travels through the water that is found 

in body tissues. Every measurement is taken in duplicate and averaged unless 

the difference in two measurements was greater than 10 Ohms. The basis of BIA 

is that the greater the amount of water in a person's body, the easier it is for the 

current to pass through it. The more muscle a person has, the more water their 

body contains and so offers less resistance or impedance. In contrast, more fat a 

person has; less water is present, hence resistance is higher. BIA is a safe 

method and the electric signals passed cannot be felt at all either by an adult or 

a child (761;762). 

Along with the body fat and body fat% BIA can be used for other measures 

including; body water %, muscle mass, physique rating, daily caloric intake 

(DCI), basal metabolic rate (BMR), metabolic age, visceral fat and bone mass 

(761-763). BIA has many advantages including being non-invasive, relatively 

inexpensive, portable, whilst not involving exposure to ionizing radiation and low 

between-observer variation. BIA can be done in healthy people or in chronic 

disease which have the validated BIA equations available. However, its use is not 

recommended in people at extremes of BMI ranges and in subjects with 

abnormal hydration (762).  
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BIA is also the preferred method for monitoring changes in body composition (fat 

mass and fat free mass) with time if they have normal hydration and BMI 

between 16-34 kg/m2. Studies suggest that BIA gives good results in individuals 

with stable water and electrolyte balance as abnormal hydration and 

electrolytes facilitate the flow of electric current. It is also complex to develop 

algorithms and equations in these abnormal hydration conditions (761;762). It 

has been suggested by some studies to use segmental or multi-frequency BIA or 

bioelectrical impedance spectroscopy in conditions of abnormal hydration, but 

these techniques require further research (761;762).  Abnormal hydration 

conditions include: oedema, ascites, patients undergoing dialysis, kidney 

disease, liver pathology, cardiac disease, large volume intravenous fluids, 

diuretic therapy, post major surgery, patient in intensive care and pregnancy. 

Hypothyroid patients due to increased skin thickness and patients with any 

orthopaedic implants may also register inaccurate results and should not 

undergo BIA.  

2.1.4.5 Imaging Methods  

These are the ideal methods and their main advantage is accuracy and detailed 

body composition. Dual-energy x-ray absorptiometry (DEXA) uses low dose x-ray 

to record fat distribution in the body. It also calculates bone mineral density and 

muscle mass. The DEXA technique is based on the attenuation properties of 

bone, lean and fat tissues at two different x-rays energies. It measures directly 

the lean and fat mass and bone mineral content. The bone mass added to lean 

mass constitutes the fat free mass. DEXA usually takes 5 minutes to complete 

(764;765). Isotope dilution is another method where participants drink isotope-

labelled water and then their body fat is calculated by analysing for isotope 

levels. Computerized tomography (CT) and magnetic resonance imaging (MRI) 

are the two other frequently used measures and can directly measure body fat 

mass in different parts of the body. Some of the limitations of imaging methods 

include: price, use of ionizing radiation, time, and suitability for serial 

measurements; these factors influence choice of method for large population 

studies. However they are mostly used in clinical settings or for validating other 

methods of body composition measurement. In general no agreed cut-offs are 

available for body fat percentage (BF%) but the routine values in men are; 

normal weight (<18%), overweight (18-25%) and obese (>25%). Similarly in 
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women the BF% values are; normal weight <25%, overweight 25-32% and obese 

>32%. 

2.1.5 Comparison of imaging techniques and BIA  

A lot of work has been done to compare BIA with imaging techniques with the 

main advantage that BIA is inexpensive and easy to use. It has been shown that 

BIA is significantly correlated with imaging techniques but it slightly over or 

underestimates different components of body composition when using different 

apparatus, subjects or body conditions (763;766;767).  

Wang et al recently compared four and two limb BIA with DEXA and MRI for 

measuring body composition. They showed that both four and two limb BIA were 

significantly correlated (r= 0.7- 0.9) to both DEXA and MRI. The BIA 

underestimated body fat percentage, whereas the measurements for fat free 

mass were in close limits to DEXA and MRI (768). Similarly Pateyjohns et al. (769) 

compared BIA using three different methods (and three different machines) 

against DXA. Validity of BIA against DEXA was assessed using linear regression 

and limits of agreement analysis. BIA methods showed good correlation but poor 

agreement with DEXA in overweight and obese men (769) and in Hispanic 

diabetic people (770). In contrast Lloret et al demonstrated that BIA 

overestimated fat mass and fat mass % as compared to DEXA (771).  

Boneva-Asiova et al. compared BIA and DEXA measurements in different BMI and 

sex categories. They showed that both measurements were highly correlated. 

However, in lean participants BIA tended to give lower values for fat mass and 

fat percentage, while higher values for fat free mas as compared to DEXA. This 

trend was reversed with higher BMI (>35). In addition the correlations between 

BIA and DEXA tended to decrease with increasing BMI. Moreover the agreement 

between the two methods was better in men as compared to women (763). The 

segmental BIA tends to underestimate muscle mass in men and to overestimate 

in women; with reverse for fat mass (767). 

In summary, BMI is the anthropometric measure of choice for most large 

population studies in spite of being a surrogate marker body fat as it measures 

weight and height. There is a chance that BMI might give misleading results with 
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increasing age (772), different ethnic groups (773), sportsmen and women (774),  

and weight loss with enhancing physical activity (775). It is suggested that 

combining BMI with WC or WHR might produces more informative results (643). 

The next inexpensive and easy option is the BIA, which can also be used for 

following up or monitoring prognosis. DEXA or MRI should be used in clinical or 

research settings due to their high cost and expertise required.  

2.2 Measurement of Insulin Sensitivity/Resistance 

Insulin sensitivity can be estimated by several biological measurements. It 

ranges from a single fasting blood sample for simple indices like HOMA or 

QUICKI, to a research setting for performing the hyperinsulinaemic- euglycaemic 

clamp test. The choice of method depends on the study requirement, available 

resources and choice of information (either global, muscle or liver insulin 

sensitivity) (776).  

Table 2.4 Methods of measuring insulin resistance 
 

Directly measuring insulin 

sensitivity tests 

Simple surrogate indices of insulin sensitivity 

Indices derived from 

OGTT values 

Indices derived from 

fasting values 

Hyperinsulinaemic euglycaemic 

glucose clamp (777)  

Insulin suppression test (778) 

Minimal model analysis of 

frequently sampled intravenous 

glucose tolerance test (779) 

ISI Belfiore (780) 

ISI Cederholm (781) 

ISI Gutt (782) 

ISI Matsuda (783) 

ISI Stumvoll (784) 

OGIS (785) 

SIisOGTT (786)  

Insulin (120 min) 

Glucose (120 min) 

Homoeostasis model 

assessment (HOMA) 

(787) 

Quantitative insulin-

sensitivity check index 

(QUICKI) (788)  

Revised QUICKI (789) 

FIRI (790) 

I0/G0 (791) 

G0/I0 (792) 

BW, body weight; Imean, mean insulin during OGTT; Gmean, mean glucose during OGTT, 
G0=fasting glucose, I0= Fasting insulin, ISI= insulin sensitivity index 
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2.2.1 Hyperinsulinaemic–euglycaemic glucose clamp 

The hyperinsulinaemic–euglycaemic glucose clamp (HEC) is widely accepted as 

the gold standard procedure for the assessment of insulin sensitivity. It 

comprises: 1) a constant intravenous infusion of insulin to create a state of 

exogenous hyperinsulinaemia, and 2) a variable glucose infusion to maintain 

euglycaemic (777). For blood glucose measurement, arterialized blood is 

obtained by either arterial catheterization or via retrograde cannulation of a 

wrist vein warmed with a heating pad; warming opens up of arteriovenous 

anastomoses as is required for blood glucose measurement. Although HEC 

performed using venous, 'arterialized' venous, or capillary euglycaemia appear to 

be almost equally useful for the determination of insulin sensitivity (793). 

Glucose levels are maintained at 80–90 mg/dL (or 4.5–5.00 mmol/L) by 

monitoring the glucose level every 5 or 10 min at the bedside.  Euglycaemia is 

maintained by adjusting the infusion rate of a 20% dextrose solution. The clamp 

test lasts for two to three hours.  

The constant insulin infusion produces a plateau of insulin concentration 

sufficiently above fasting levels to suppress hepatic glucose production (HGP), 

which increases glucose disposal in skeletal muscle and adipose tissue. As the 

HGP is suppressed, the rate of glucose infusion approximates the rate of glucose 

uptake into peripheral tissues, or insulin sensitivity: the more sensitive the 

tissues the more glucose is required and vice versa. The glucose infusion rate 

(GIR) during the last 30 min of the clamp adjusted for a space correction is 

known as "M" or glucose metabolised.  This can be adjusted for the achieved 

level of plasma insulin concentration at steady state (M/I). M is expressed in 

mg/kg body weight/min. As most of the glucose uptake occurs in muscle and 

only a small proportion in adipose tissue, expressing M in mg/kg/min could 

overestimate insulin resistance in obese subjects (as they have more fat mass) 

(794). M can therefore also be normalized for lean body mass (mg/kgLBM/min) in 

order to give a value for insulin sensitivity independent of body mass index 

(BMI). 

The validity of the HEC clamp depends on the complete suppression of HGP by 

insulin. If HGP is not suppressed, glucose will be released from liver and M 

underestimates GIR. Suppression of HGP is achieved with an insulin infusion rate 
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of 40–60 mU/m2/min in non-obese non-diabetic subjects (777). In some 

situations (overweight, obesity or type 2 diabetes) where HGP is not totally 

inhibited by such an infusion rate, a higher rate of insulin infusion (≥80 

mU/m2/min) is used to ensure HGP suppression (795). 

Although the  HEC clamp test is the reference method and generates valuable 

information it has some disadvantages: (1) it requires two intravenous catheters 

and calibrated pumps; (2) online glucose-level determination; (3) requires 

trained staff; and (4) time-consuming (lasts 2-3 hours), thereby precluding 

widespread use in large cohorts (794).  

2.2.1.1 Potential errors in insulin sensitivity estimation by HEC 

During HEC, the aim of insulin infusion is to completely suppress HGP which 

enable an accurate estimation of peripheral insulin sensitivity. If a 

disproportionately low dose of insulin is administered, it leads to incomplete 

suppression of HGP and will lead to the underestimation of insulin sensitivity. 

Likewise, overweight and diabetic individuals need higher insulin doses to 

suppress hepatic glucose production (777;796), and if the same dose of insulin is 

used for healthy, normal weight, obese and type 2 diabetic individuals, then for 

some people insulin sensitivity will be underestimated.  

Another assumption of HEC is a steady state glucose infusion but it has been 

noted that in some studies that the amount of infused glucose continues to rise 

even at the end of the examination (797;798), indicating that the same 

participant may exhibit better insulin sensitivity during a longer duration HEC 

compared to a shorter duration clamp. It has also been noted that within the 

same individual glucose infusion rate is higher at the second examination than at 

the first (797). One possible explanation is that attending the second 

examination may be associated with lower stress than the first attendance, and 

we know that stress leads to release of corticosteroid hormones which decrease 

insulin sensitivity.  

2.2.2 Insulin suppression test  

The insulin suppression test (IST) is another direct method of measuring insulin 

sensitivity. After an overnight fast, somatostatin (250 µg/h) is infused 
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(intravenously) to suppress the endogenous production of insulin. 

Simultaneously, glucose (6 mg/kg body weight/min) and insulin (50 mU/min) are 

infused over first 150 min of the test at a constant rate. For the first two and 

half hours, glucose and insulin are determined every 30 minutes and for the last 

30 minutes (150 to 180 min) glucose and insulin are evaluated every 10 minutes. 

The tissue insulin sensitivity is estimated by the steady-state plasma glucose 

(SSPG) concentration obtained during the last 30 min of infusion and the higher 

the SSPG concentration, the more insulin-resistant the individual is (778).  

As described with HEC, the IST is difficult to apply in large epidemiological 

studies as it needs more time and labour. Moreover, in insulin-sensitive subjects 

there is a risk of hypoglycaemia and in people with type 2 diabetes, IST can 

provoke glycosuria. Glycosuria in turn can lead to underestimation of insulin 

resistance by SSPG (778). 

2.2.3 Minimal model analysis of frequently sampled intravenous 
glucose tolerance test (FSIVGTT) 

This is an indirect measurement of insulin sensitivity and is based on glucose and 

insulin values obtained during a frequently sampled intravenous glucose 

tolerance test. It uses a mathematical model that uses both insulin and glucose 

values. The minimal model uses the dynamics of increasing insulin and 

decreasing glucose concentration to obtain two different indices; 1) SiMM 

(insulin sensitivity index) and 2) SgMM (glucose effectiveness index) (779) 

The SiMM index provides information on peripheral and liver insulin sensitivity. It 

shows the link between insulin level and disappearance of glucose from plasma. 

In contrast, the SgMM provides information on the effects of glucose on its own 

disappearance independent of any insulin variation. The minimal model also 

gives values of early and late phase insulin secretion (779).  

The minimal model is a complex test with duration of three to four hours, 

requiring frequent blood sampling and also specific software is needed for 

analysis (779). Regarding the efficacy, the ‘standard’ minimal model test is less 

reliable in people who have major insulin resistance and/or impaired insulin 

secretion, such as people having T2DM. In these people a ‘modified’ minimal 

model test is used which requires exogenous insulin infusion (799).   

The methods described above are complex, time consuming, costly, need 
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specialist staff and are not easily performed in large populations, thus surrogate 

indices have been developed for assessment of insulin sensitivity/resistance and 

are used in studies containing large cohorts. 

2.2.4 Surrogate indicators of insulin sensitivity/resistance 

2.2.4.1 Indices derived from OGTT values 

The oral glucose tolerance test (OGTT) is widely used in clinical settings for the 

diagnosis of impaired glucose tolerance (IGT) and T2DM. A fasting blood sample 

is taken for blood glucose and insulin. The individual is then given an oral 

glucose load (75 g) at time 0 min and then blood samples are taken every 30 

minutes up to two hours. For the clinical diagnosis of IGT and T2DM, fasting and 

two hour post load glucose values are sufficient. However, for the assessment of 

insulin sensitivity or secretion, additional samples for both plasma insulin and 

glucose obtained every 30 min following an oral glucose load (75 g) are required 

(783). Surrogate indices derived from the OGTT use plasma glucose and insulin 

values during the OGTT, into mathematical equations for evaluating insulin 

sensitivity. Some of the indices additionally use other parameters like weight, 

BMI and glucose volume of distribution (780;783;784;800).  

Some of the indices are described in detail below along with their mathematical 

formula; most of them are also validated against HEC. 

The Matsuda index 

This was first described in 1999 by Matsuda and DeFronzo in subjects with a wide 

range of glucose tolerance from normal glucose tolerance (NGT) to T2DM. The 

following formula was used: 

Whole body insulin sensitivity (IS) =  10,000/square root of [fasting glucose X 

fasting insulin] X [mean glucose X mean insulin during OGTT]) (783) 

The Matsuda index was positively correlated with HEC (r = 0.73, P < 0.001). The 

basis of this index was that fasting glucose and insulin values mainly reflect 

hepatic insulin sensitivity, whereas mean OGTT values reflect insulin sensitivity 

in peripheral skeletal muscle (783). The same group has recently modified the 
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Matsuda index and have proposed different formulas for more specific evaluation 

of hepatic and muscle insulin resistance (801). 

Hepatic insulin sensitivity is equal to the product of total area under curve (AUC) 

for glucose and insulin during the first 30 min of the OGTT  

IS = (glucose(0-30) [AUC] X insulin(0-30) [AUC]) (801).  

It is strongly positively correlated with hepatic insulin resistance index (fasting 

plasma insulin X basal endogenous glucose production) (r = 0.64, P < 0.0001). 

The formula for muscle insulin sensitivity is the rate of decay of plasma glucose 

concentration from its peak value to the lowest value during the OGTT divided 

by the mean plasma insulin concentration  

IS = (dG/dt divided by MPI) (801) 

Where dG/dt is the rate of change in plasma glucose from its peak to its nadir 

and MPI is mean plasma insulin concentration during OGTT. It is also strongly 

correlated with muscle insulin sensitivity measured with HEC (P = 0.78, P < 

0.0001). 

The Stumvoll index 

This was first described by Stumvoll and colleagues in 2000. Its equation was 

developed from a multiple linear regression model evaluating the effect of 

different demographic and OGTT parameters.  

Stumvoll ISI = 0.226 − 0.0032 × BMI − 0.0000645 × I120 − 0.00375 × G90 (784) 

Where I120 = plasma insulin at 120 min, G90 = blood glucose at 90 min 

It is highly correlated with metabolic clearance of glucose (r = 0.80, P <0.001) 

and insulin sensitivity index (r = 0.79, P <0.001) (784).  
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The Belfiore index 

Belfiore et al. proposed a formula in 1998, which had very high correlation (r= 

0.99, P= <0.01) with HEC. In contrast to clamp performed under artificially 

induced steady state (sustained hyperinsulinaemia, suppression of FFA, etc.), 

this index was obtained under physiological conditions with hormonal and 

metabolic variables unmodified and is more convenient in clinical setting to 

assess whole body insulin sensitivity. It uses the area under the curve (AUC) of 

insulin and glucose during a two hour OGTT (780).   

Belfiore ISI = 2/[(AUC insulin + AUC glucose) + 1] (780) 

(AUC glucose = 0.25 × G0 + 0.5 × G30 + 0.5 × G60 + 0.5 × G90 + 0.25 × G120) 

(AUC insulin = 0.25 × I0 + 0.5 × I30 + 0.5 × I60 + 0.5 × I90 + 0.25 × I120) 

Where 0, 30, 60, 90 and 120 are blood glucose and insulin concentration at fasting (0 

min), 30, 60, 90 and 120 minutes of OGTT.  

The OGIS index 

The oral glucose insulin sensitivity (OGIS) index was developed by Mari et al. in 

2001. It is complex in comparison to other OGTT derived indices as it requires 

the use of two primary formulas that have to be incorporated into a third one. 

Furthermore, the final calculation requires the incorporation of six parameters; 

weight, height, oral glucose dose, blood glucose (at 0, 90 and 120 min), blood 

insulin (at 0 and 90 min) and body surface area (BSA). From these six parameters 

glucose dose per m2 BSA and two other calculations are done. Finally glucose 

dose per m2 BSA and the two calculations are entered into the final formula to 

calculate OGIS. These calculations also vary depending on the duration of the 

OGTT (2 or 3 h) and the units used to express glycaemia (mg/dL or mmol/L). 

However, OGIS can be easily calculated using a calculator available through the 

website (http://webmet.pd.cnr.it/ogis/), or excel sheet downloaded through 

the website which contains all the calculations and formulas (785). OGIS is well-

correlated with M as measured by HEC as shown by Otten et al. in a meta- 

analysis of 7 studies (r= 0.70, p= <0.001) (802). 

http://webmet.pd.cnr.it/ogis/
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2.2.5 Indices derived from fasting values 

Fasting can be thought of as a steady state of the body in which blood glucose is 

tightly maintained between normal values as a result of the effect of insulin on 

HGP, which equals whole body glucose disposal. In healthy conditions blood 

glucose will remain almost constant and plasma insulin levels will vary according 

to the degree of insulin resistance of the body. Under fasting conditions, glucose 

utilization is mainly cerebral which is non-insulin dependent. It is a very simple 

and cost effective way to determine insulin sensitivity, but it mainly represents 

hepatic insulin sensitivity. Peripheral insulin resistance and hepatic insulin 

resistance are closely related to each other and this may be the reason why 

fasting indices have been validated against the HEC, which more specifically 

measures muscle insulin sensitivity. The clamp technique can also be used to 

measure hepatic insulin sensitivity but then requires labelled glucose, which 

makes the test more complicated and costly (776). Another difference from the 

clamp technique is the use of arterialized blood for blood glucose estimation in 

clamp techniques whereas arterialized sampling is never done in clinical practice 

for calculation of fasting indices.  However, the insulin resistance values 

obtained from arterialized or venous blood are roughly comparable (793). 

Many surrogate indices are based on fasting measures and among them most 

common and widely used are homoeostasis model assessment (HOMA) and 

quantitative insulin-sensitivity check index (QUICKI).  

2.2.5.1 Homoeostasis model assessment (HOMA) 

Homoeostasis model assessment (HOMA) has been widely used as an estimate of 

insulin sensitivity in cross-sectional, longitudinal and prospective studies over 

the last 3 decades (803). It is one of most widely used surrogate measures of 

insulin sensitivity and is based on simple fasting measurements of insulin and 

glucose.  

HOMA= [fasting insulin (µU/mL)] × [fasting glucose (mmol/L)] (787) 

22.5 

The denominator effectively standardizes  insulin and glucose to a normal fasting 

levels [insulin 5µU/mL ; glucose 4.5 mmol/L](787). HOMA demonstrates 
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reasonable correlations (Pearson r = 0.6-0.7) with the HEC clamp results in 

several populations and has proved useful in large epidemiological studies. 

Additionally, an index of β-cell function (HOMA-B) can also be derived which 

reflects insulin secretion (787). The HOMA software has been recently updated 

and is currently called HOMA-%S; is available on the Oxford University website 

(www.dtu.ox.ac.uk/homacalculator/index.php). HOMA-%S allows the estimation of 

insulin sensitivity (%S) and steady-state β-cell function (%B) as a percentage of a 

normal reference population. 

Due to the pulsatile secretion of insulin it is recommended to take a mean of 

three samples for computation of HOMA (787) but a single sample also provides 

similar results in large datasets (804). Nevertheless, for one individual or a small 

sample, the use of the mean insulin concentration from three samples is 

preferable as the use of a single sample results in intra subject coefficients of 

variation that are higher than when three samples are used (804). 

As healthy subjects maintain fasting glucose with little variability, HOMA 

performance is weaker in clinically healthy populations.  As fasting glucose and 

insulin concentrations depend on many physiological processes other than insulin 

sensitivity (glucose absorption, β-cell function, insulin clearance), direct 

measures like HEC clamp are the preferred technique if feasible (787).  

2.2.5.2 Quantitative insulin sensitivity check index (QUICKI)  

This is based on the same principal as HOMA but is inverse logarithm of the 

fasting glucose and insulin values 

QUICKI = 1/(log G0 + log I0) (788) 

Where G0 and I0 are fasting glucose and insulin respectively. 

The effectiveness of QUICKI in estimating insulin sensitivity was evaluated in a 

heterogeneous population of non-obese, obese and type 2 diabetic people. In a 

recent meta- analysis QUICKI showed good correlation with HEC (Pooled r= 0.61, 

p <0.05) (802). The fasting insulin distribution is not linear and log 

transformation improves its linear correlation with HEC. Similarly the log 

transformation of HOMA also improves its linear correlation with HEC (776). 

http://www.dtu.ox.ac.uk/homacalculator/index.php
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Fasting sample derived indices show weaker correlation in healthy individuals. 

This may be due to the fact that in healthy people fasting glucose and insulin 

values are maintained within narrow ranges, despite having different levels of 

insulin sensitivity. It further suggests that small, but clinically relevant, 

variations in insulin sensitivity may be overlooked by simple fasting indices and 

needs direct measures like HEC to detect these changes (776). To address this 

issue new indices have been developed and some of them have included other 

body parameters like BMI and Lipids.  

2.2.5.3 Revised QUICKI 

Perseghin et al. (789) modified the QUICKI formula by adding the log of the 

fasting value of non-esterified fatty acids (NEFA).  

Revised QUICKI = 1/(log G0 + log I0 + log NEFA) (789) 

The principle behind addition of NEFA was that insulin inhibits lipolysis at lower 

levels as compared to the levels required to effect glucose metabolism. Thus, 

fasting NEFA concentrations can reflect insulin resistance (by estimating the 

anti-lipolytic effect of insulin) earlier than do fasting glucose values. This 

improved its correlation with HEC and in a recent meta- analysis comparing 

correlations of OGTT and fasting based indices with HEC, the revised QUICKI had 

almost same correlations as the OGTT based measures (802). In addition the 

correlation with HEC were high (r= 0.68, p= <0.05) in healthy subjects as well as 

T2DM (802). Despite improving the fasting based index, revised QUICKI added 

NEFA to the formula and so required an additional biochemical measure, in 

addition to glucose and insulin. The NEFA concentrations may also be affected 

by dietary interventions and weight loss (802).   

2.2.5.4 The Disse index 

This index was developed by Disse et al. in 2008 by using multiple forward 

regression analysis. They found that fasting insulin, NEFA and the HDL 

cholesterol/total cholesterol ratio explained 53% of the variation of insulin 

sensitivity and were included in the Disse index (805) 
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Disse index = 12 × [2.5 × (HDL-cholesterol (mmol/L)/total cholesterol (mmol/L)) 

- NEFA (mmol/lL)] – Insulin (IU/mlmL) (805) 

 

The Disse index was highly correlated with HEC (r = 0.79, P < 0.001) (805) and 

can be used in healthy, overweight, obese and T2DM people (776).  

2.2.6 Rationale behind surrogate measurement of insulin 
sensitivity 

2.2.6.1 Basis for surrogate measurement of insulin sensitivity 

The two most important components of insulin sensitivity are glucose clearance 

in peripheral (mainly muscles) tissues (i.e. peripheral insulin sensitivity) and 

insulin mediated suppression of hepatic glucose production (i.e. hepatic insulin 

sensitivity) (802). The HEC mainly measures muscle insulin sensitivity, fasting 

indices mainly measure hepatic insulin sensitivity and the OGTT-based indices 

measure both types of insulin sensitivity (783;801). The reason behind moderate 

to high correlations (r>0.5) of fasting surrogate measures with the HEC is that, in 

most people, hepatic insulin sensitivity is closely related to peripheral insulin 

sensitivity (801). OGTT based surrogate markers are based on changes in insulin 

and glucose during the OGTT and incorporate both peripheral and hepatic insulin 

sensitivity. During the first hour of OGTT, changes in hepatic glucose production 

are dominant, while peripheral glucose uptake is best measured during the 

second hour (801).  

Measurement of insulin resistance is very complex when considering whole body 

glucose metabolism. The surrogate markers are based on blood levels of glucose, 

insulin and/or non- esterified fatty acids (NEFA), which in turn are influenced by 

following important biological processes: dietary glucose absorption, renal 

glucose loss, insulin clearance, lipolysis, lipids re- esterification, hepatic glucose 

production, insulin secretion rate, β-cell glucose sensitivity, muscle cells or 

peripheral insulin sensitivity and muscle cells activity or glucose utilization. Each 

of these components influences circulating glucose and insulin concentrations 

and at any moment of blood sampling; the blood glucose and insulin level are 

the product of all of these components.  
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Resistance to insulin-mediated peripheral glucose disposal or insulin resistance 

(measured by HEC) is just one component of glucose metabolism and refers 

mainly to muscle cells. Hepatic insulin sensitivity or hepatic glucose production 

is largely suppressed during the clamp procedure and so the term insulin 

sensitivity in this context refers mainly to muscles glucose disposal. The 

measurement of interest when measuring insulin sensitivity is only muscle cells 

insulin sensitivity and not the combined effect of all measurements and thus 

surrogate markers can only provide an approximation of a true value.  

Although OGTT derived indices take at least 2-3 hours, they have the additional 

advantage of evaluating other parameters apart from insulin sensitivity, such as 

glucose tolerance and insulin secretion.  

The HEC is considered the gold standard for measuring peripheral insulin 

sensitivity as it is not influenced by changing glucose and insulin levels (and the 

factors influencing blood glucose and insulin), the hepatic insulin extraction or 

clearance, β-cells insulin secretion and feedback mechanism between glucose 

and insulin (777).  

2.2.6.2 Correlations between surrogate markers and HEC in relation to blood 
glucose status 

Surrogate measures of insulin sensitivity exhibit weaker correlations with the 

HEC in healthy normal weight individuals as compared to people having insulin 

resistance (776). This finding is further supported by a recent meta-analysis 

showing that surrogate measures like Matsuda, Stumvoll MCR, Stumvoll ISI and 

revised QUICKI were more strongly correlated with HEC in individuals with IGT 

than in those with NGT or type 2 diabetic patients (802). However OGIS, QUICKI 

and HOMA showed almost equal correlations in individuals with NGT, IGT and 

type 2 diabetes (802). 

The strength of the correlations between HEC and surrogate measures in 

individuals with different levels of insulin sensitivity (NGT, IGT and T2DM) 

depends on the insulin dose used during the clamp (806). Lower insulin doses 

show strong correlations for healthy NGT people, and higher insulin doses show 

higher correlation for insulin resistant individuals (802). The studies of fasting 

surrogate measures showing higher correlations with HEC in which low dose 
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insulin is used, may be due to the fact that it may be measuring hepatic insulin 

sensitivity instead of peripheral glucose uptake (807) as low dose insulin does 

not suppress HGP. In OGTT based surrogate measures insulin levels around 120 

min exhibit a strong correlation with HEC in a healthy population, but not in a 

population with diabetes as it is strongly influenced by islet dysfunction (802). 

2.2.6.3 Other potential errors associated with surrogate measures 

In a healthy individual fasting glucose is tightly regulated by other factors apart 

from insulin sensitivity, such as islet cells function and insulin release and HGP. 

So there will be minimal variation in fasting glucose in healthy subjects with 

various degrees of insulin sensitivity. In addition insulin levels at any point are 

also regulated by β-cell insulin secretion and insulin clearance by liver; in 

addition to insulin sensitivity (802). On the other hand measuring insulin 

concentration is one of the most important components of many surrogate 

indices but there are several sources of error in insulin measurement. Some 

insulin assays show cross reactivity with pro-insulin and partially processed 

proinsulin products: this can be a source of error when using some 

radioimmunoassys.  Newer and more specific assays have reduced this cross 

reactivity (808). Another issue with inulin assays is that many show more 

variability at low insulin levels and may be a possible cause of lower correlation 

coefficients in healthy individuals vs type 2 diabetic patients (806). The OGTT 

based surrogate markers are also influenced by inter individual variability of 

gastric emptying, glucose absorption, insulin secretion and incretin hormones 

(802). 

Closing the discussion, surrogate markers have an importance in large scale 

studies and can be used in place of HEC when it is desired to check insulin 

sensitivity at one point in time. However, surrogate markers are less reliable for 

analysing change in insulin sensitivity in response to metabolic factors or the 

relationship of insulin sensitivity with other risk factors (inflammation, BP, 

hypertension etc). The main reason why surrogate markers are not used in 

mechanistic and physiological studies is that their validity is dependent upon 

intact function of other biological processes; normal pancreatic βcell function, 

normal liver glucose and fat metabolism and normal insulin clearance.  
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For measuring insulin sensitivity surrogate markers depend upon detecting 

insulin and glucose concentration. The glucose concentration can be low or high 

depending on many factors specially β-cell insulin secretion. In insulin resistant 

states, if β-cells are functioning normally they will secrete extra insulin to 

compensate for insulin resistance leading to ‘compensatory hyperinsulinaemia’. 

This is true for obese insulin resistant people having normal blood glucose. On 

the other side some people have weak or more prone β-cells of pancreas and 

develop dysfunction with slight metabolic stress and may show abnormal plasma 

glucose in insulin sensitive or mild insulin resistant individual. In HEC, 

physiological feedback between glucose and insulin concentrations is disrupted 

and HEC is not influenced by β-cell insulin secretion capacity and insulin 

clearance etc (802). 

In a recent meta- analysis comparing correlations of all surrogate markers with 

HEC, Otten et al found that the OGTT-based surrogate measures (Stumvoll 

metabolic clearance rate r=0.70, OGIS r=0.70, the Matsuda index r=0.67, the 

Stumvoll insulin sensitivity index r=0.67) had highest correlation with HEC. The 

non-OGTT surrogate measure which exhibited the highest correlation coefficient 

with HEC was ‘revised QUICKI’ r=0.68) (802). It was further concluded that 

surrogate indices derived from fasting measurements, are valid measures of 

insulin resistance, and that OGTT with multiple sampling is not necessary for 

estimating insulin sensitivity in both clinical and epidemiological studies (802). 
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Figure 2.1 Basis of surrogate markers of insulin sensitivity and hyperinsulinaemic 
euglycaemic clamp 
Reproduced with permission from Petrie JR 2014 (809).  
Whole body glucose metabolism, blood glucose, insulin levels and peripheral insulin 
sensitivity in relation to measurement of insulin sensitivity.  
 

2.2.7 Comparison of surrogate measures with HEC in relation to 
other disease factors 

Literature shows that HOMA-IR and other surrogate measures are significantly 

correlated to Insulin sensitivity determined by the HEC (Pearson r values 0.6–0.7) 

(802;810). When examining the relation of other factors (inflammation, blood 

pressure, hypertension and different drugs) with insulin sensitivity, surrogate 

estimates of insulin sensitivity can lead to conclusions that are totally different 

from those based on the results of HEC.  

In an observational prospective cohort, Arnlov et al showed that women had 

lower BMI, lower fasting insulin and glucose and lower HOMA-IR as compared to 

men. However, insulin sensitivity (determined by ISI index) was same in both 

genders (811). In keeping with this, in a randomised trial of the effect of 

salsalate compared with placebo on insulin sensitivity, Goldfine et al showed 
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that there was no improvement in insulin sensitivity (determined by HEC) by 

salsalates (610). An additional finding in their results was the decrease in fasting 

plasma glucose and insulin concentration by salsalates, which determine HOMA-

IR. Although HOMA-IR was not reported in the results but it is clear from the 

formula (fasting glucose × fasting insulin/22.5) that it had decreased. In 

conventional terms a decrease in HOMA-IR would be interpreted as improvement 

of insulin sensitivity, but direct measurement of insulin sensitivity by HEC 

showed that there was no change after salsalate administration (610). HOMA-IR 

relies on fasting insulin levels for determination and any drug or mechanism 

influencing insulin’s pancreatic β-cell secretion or clearance will directly affect 

HOMA-IR and will influence the relation, e.g. salsalates have been reported to 

decrease insulin clearance.  

In keeping with the argument Pisprasert et al demonstrated in their study of 

normo- glycaemic people that African Americans were more insulin resistant 

than European Americans as assessed by a number of surrogate estimates of 

insulin action. Surrogate estimates used by them ranged from ones based on 

fasting plasma glucose and insulin concentrations (HOMA-IR and QUICKI) to ones 

using insulin and glucose concentrations resulting from an OGTT (Matsuda index 

and Stumvoll index). However, in the same study no difference in insulin 

sensitivity could be found in the two ethnic groups when a hyperinsulinemic 

euglycaemic clamp was performed (810). They also showed that race and gender 

affected the relationship of surrogate markers with HEC as in African Americans 

males HOMA-IR was not related to HEC but Matsuda index and SIISOGTT were 

significantly correlated. These findings further support that HEC is the gold 

standard, and surrogate markers may be used with caution.  

2.3 Measurement of markers of Inflammation  

Acute phase reactants; interleukin-6 (IL-6) and C-reactive protein (CRP) are 

increased during acute and chronic inflammation and are the most studied and 

widely used markers of inflammation. 
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2.3.1 C-reactive protein (CRP) 

C-reactive protein (CRP) can be measured in blood and has been used as an 

indicator of acute inflammation for decades. Macrophages and adipose cells 

secrete factors (interleukin-6) which cause synthesis of CRP in the liver. In 

physiological states, CRP binds to phosphocholine expressed on the surface of 

dead or dying cells and bacteria in order to activate the complement system. 

This facilitates phagocytosis by macrophages and ultimately clears the body of 

necrotic and apoptotic cells (812).  

More recently, inflammatory markers have received attention for their ability to 

predict CVD risk (287). Among these, CRP is one of the more powerful with a 

recent meta-analysis showing that for every 1-standard deviation (SD) increase 

in CRP, vascular risk (adjusted for age and sex) increases by more than 60% 

(813). CRP is stable in plasma or whole blood at 4 and 21 degrees C for at least 

three days and for several years at -80C. Moreover, it is stable after five freeze-

thaw cycles and is therefore a stable marker of inflammation (814).  

A review of the literature indicates that CRP levels in blood are influenced by a 

number of environmental and lifestyle factors including age, gender, cholesterol 

level, body mass index, blood pressure, insulin resistance, smoking and sleep 

deprivation(815). There is also genetic variation in CRP levels (816). Several 

single-nucleotide polymorphisms (SNPs) in the CRP gene have been shown to 

directly influence steady state CRP levels in blood and are inherited independent 

of the above risk factors (816;817) with effects across the lifespan.  Earlier 

studies showed conflicting result with regard to the relationship between serum 

CRP and SNPs with cardiovascular risk (816;817) but more recent larger studies 

have been consistent in showing no association between serum CRP as 

determined by Mendelian randomization and CVD (especially hypertension) (818-

820), casting some doubt on the causality of the association.  

In animal studies it has been reported that chronic elevation of CRP is associated 

with a greater risk of hypertension. Vongpatanasin et al reported that Ang II 

leads to exaggerated blood pressure elevation in CRP transgenic mice, and this 

response was reversed  by a nitric oxide (NO) donor, indicating a role for NO 

deficiency in the process (821). Schwartz et al also showed in mice that CRP 
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downregulates endothelial NO synthase (eNOS) and attenuates re 

endothelialization (822). Other in vitro and animal studies also show inhibition 

of (eNOS) and impaired endothelial vasoreactivity following CRP administration 

(823). In rats, delivery of adeno- associated virus overexpression of CRP (AAV-

hCRP) increased BP and impaired vasoreactivity (824;825), as well as increasing 

oxidative stress, expression of angiotensin 1 receptors and endothelin-1. The 

same genetic manipulation also decreased expression of eNOS and impaired 

endothelium dependent vaso-relaxation (824;825). These experimental 

observations suggest that CRP may have physiologically-relevant biological 

activity at least in animals. 

However, there are many discrepancies between human and animal studies in 

relation to CRP. For example, statins have been shown to decrease BP without 

lowering CRP in mice (825). However in humans, statins lower CRP (826) but do 

not affect BP (827). Nevertheless, some epidemiological studies support a 

relationship between high levels of CRP and hypertension (827).  

So even if animal studies show a causal association between CRP and the 

development of HTN (824;825), the evidence of a causal association in humans is 

not strong (818-820;828). It remains uncertain whether CRP might increase BP 

directly or via some other mechanism (e.g. obesity, insulin resistance) or 

whether both are affected by some other feature of the metabolic syndrome 

(829). CRP is unlikely to be on the causal pathway in relation to development of 

hypertension, but rather a risk marker for chronic low grade inflammation.  

2.3.2 Interleukin-6 (IL-6) 

IL-6 is a cytokine released from a number of cells ranging from adipocytes, 

skeletal muscle cells, monocytes, lymphocytes etc. IL-6 acts both as a pro-

inflammatory and anti-inflammatory cytokine. The main anti-inflammatory 

effects are the release of  IL-1ra, IL-10 and sTNF-R (830). The pro-inflammatory 

effects of IL-6 are through expansion and activation of T cells, differentiation of 

B cells, and the induction of acute-phase reactants by hepatocytes (831). Serum 

samples of IL-6 can be stored at -20oC for several years and are not significantly 

altered by repeated freeze-thaw cycles (832); it is therefore a stable marker of 

inflammation. 
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In disease states, IL-6 is released in response to tumour necrosis alpha (TNF-α) 

and has pro-inflammatory actions.  It is raised to chronically high levels which 

have pro-inflammatory and damaging effects (833).  However, it can also be 

released physiologically during exercise (in a TNF-- independent manner ) 

which can have protective and anti-inflammatory effects (830). Skeletal muscle-

derived IL-6 is beneficial in modulating glucose and fatty acid metabolism during 

exercise. It stimulates adipose tissue lipolysis, fat utilization and has positive 

effects on pancreatic β-cells function, contributing to improved glycaemia 

following exercise (833;834).  

Healthy adipose tissue is populated with 5–10% macrophages but this 

macrophage infiltration increases up to 60% in obesity (507). Activated 

macrophages release TNF-α and IL-6 resulting in insulin resistance (835). Obesity 

leads to activation of inflammatory pathways in all insulin target tissues, 

including fat, liver and muscle, signifying a role for inflammation in driving the 

pathogenesis of systemic insulin resistance (831). Proposed mechanisms leading 

to inflammation in obesity include oxidative stress, lipotoxicity, glucotoxicity, 

endoplasmic reticulum stress, hypoxia, amyloid and lipid deposition (831). 

There is therefore considerable evidence that IL6 secretion promotes insulin 

resistance and that its concentration is elevated in obesity and type 2 diabetes 

mellitus (836). Moreover, in a study in a non-diabetic Caucasian population, 

Succurro et al found that increased IL6 levels were related to an increased risk 

of developing insulin resistance (837). However, there are also studies which 

question this finding.  When muscle cells are treated with IL-6 in vitro there was 

increased glucose uptake and translocation of glucose transporter GLUT4 - an 

insulin-sensitising action (830). Carey et al also found that IL-6 was not elevated 

in lean subjects with insulin resistance and suggested that fat mass was the 

proximal cause for raised IL6 in T2DM (836). In keeping with this suggestion, an 

epidemiological study suggested that IL-6 lost its association with insulin 

resistance after adjustment for BMI and waist-to-hip ratio; however, the 

majority of participants were men so the results cannot be generalized (838). 

Contradicting these results, Andreozzi et al found a negative correlation 

between IL-6 and clamp-derived insulin stimulated glucose disposal (M). The 

correlation remained significant even after adjustment for age, sex, BMI and 
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free fatty acids (839). In another study, IL-6 also correlated negatively with the 

Insulin sensitivity index (840). Given these uncertainties, further investigation is 

required in well–characterised human cohorts. 

2.4 Measurement of diabetes 

2.4.1 Blood glucose 

Blood glucose is the traditional method used for diagnosis of diabetes. It is also 

used for monitoring of diabetes. WHO criteria for the diagnosis of diabetes is 

fasting plasma glucose of  ≥ 7.0 mmol/L (126mg/dl) or a venous plasma glucose 2 

hour after ingestion of 75 gram oral glucose load of ≥ 11.1 mmol/L (200 mg/dl) 

(841).  

2.4.2 HbA1c 

From 2011, WHO also recommended use of HbA1c as a diagnostic test for 

diabetes. An HbA1c of 48 mmol/mol (6.5%) is the cut off for diagnosing diabetes. 

However, a value of less than 48 mmol/mol (6.5%) does not exclude diabetes 

diagnosed using blood glucose tests (fasting or two hour post prandial) (842).  

HbA1c is used both as a screening and diagnostic test for T2DM and for 

monitoring of both types 1 and 2 diabetes. Advantages of using HbA1c over 

plasma glucose levels are as follows: 1). No requirement for fasting; 2) longer 

term glycaemia information compared to plasma glucose; 3) standardized and 

reliable laboratory methods; (843).  
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2.5 Relationship between Insulin Sensitivity and 
Cardiovascular disease- RISC study 

The RISC study (Relationship between Insulin Sensitivity and Cardiovascular 

disease) is a large euglycaemic clamp-based prospective study of the association 

between insulin resistance and cardiovascular risk (844). There are 21 RISC 

centres, 19 of which are recruiting centres (two are data management, analysis 

and modelling) across 14 countries in Europe (Austria, Denmark, Finland, France, 

Germany, Greece, The Netherlands, Ireland, Italy, Sweden, Spain, Switzerland, 

United Kingdom and Serbia). 

2.5.1 Objectives 

The three principal objectives of the RISC study were: 

1. To establish whether insulin resistance predicts deterioration of CVD risk 

markers: diabetes, obesity, hypertension, dyslipidemia, atherosclerosis 

and CVD.  

2. To determine genetic and environmental contributions to insulin 

resistance and CVD.  

3. To develop a method based on mathematical modelling to identify insulin 

resistant subjects in clinical practice 
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Figure 2.2 Schema of the main Objectives of the RISC study 
At baseline the main objective was to examine the associations amongst genes, 
environmental factors and insulin resistance (IR). At 3 year follow-up the key objective was 
to analyse the longitudinal relationship between IR and cardiovascular risk factors (e.g. 
hypertension, diabetes, atherosclerosis, dyslipidaemia) and markers (carotid IMT) taking 
into account potential confounding factors. The 10 year follow-up objective is to test the 
hypothesis that IR is related to CVD. Solid lines= established relationship; dashed lines = 
hypothesized relationship. The red boxes are the objectives of Chapters 3, 5 and 6. Bold and 
red are the major potentially confounding factors considered in the Results chapters. 

FM= fat mass, FFM= fat free mass, DM= diabetes mellitus, HTN= hypertension, cIMT= carotid 
intima media thickness, CVD= cardiovascular disease 

2.5.2 Ethical considerations 

The protocol was approved by local ethics committees at each recruiting centre 

before the study commenced. Volunteers were invited from the local population 

and were given detailed written information as well as an oral explanation of the 

study and protocols. Written consent was obtained from each participant and 

separate consent was obtained for the genetic analyses. All clinical assessments 

were conducted according to the principles of the Declaration of Helsinki.  

2.5.3 Protocol and methodology 

RISC is a prospective (3- and 10-year follow up), observational, cohort study of 

healthy people. Participants were recruited from the local population, according 
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to specific inclusion criteria (Table 2.1). Initially 1563 people were screened 

based on the inclusion criteria and underwent physical examination, local blood 

screening and an oral glucose tolerance test. Of these, 1384 participants met the 

eligibility criteria and underwent a hyperinsulinaemic euglycaemic clamp 

procedure (see Section 2.2.1) to measure insulin resistance. 32 individuals were 

then excluded following quality control checks. The final cohort consists of 1352 

individuals whose baseline clamp studies were considered suitable for analysis. 

Baseline examinations began in June 2002 and continued through spring 2004. 

Table 2.5 Inclusion and exclusion Criteria for the RISC (Relationship between Insulin 
Sensitivity and Cardiovascular disease) study (844) 

Inclusion criteria 

clinically healthy 
aged between 30 and 60 years 
available for follow-up in the next 10 years 

Initial exclusion criteria 

treatment for obesity, hypertension, lipid disorders, diabetes 
pregnancy 
cardiovascular disease 
weight change 5 kg or more in last month 
steroid treatment 
chronic lung disease 
cancer (in last 5 years) 
kidney failure, kidney dialysis or transplant 
recent major surgery 
seizure disorder or epilepsy 
inability to give informed consent 

Exclusion criteria after clinical examinations 

systolic/diastolic blood pressure ≥140/90 mmHg or treatment 
fasting plasma glucose ≥7.0 mmol/l (126 mg/dl) or treatment 
2h plasma glucose ≥11.1 mmol/l (200 mg/dl) or treatment 
total cholesterol ≥7.8 mmol/l (300 mg/dl) or treatment 
triglycerides ≥4.6 mmol/l (400 mg/dl) or treatment 
ECG abnormalities 
acute myocardial ischaemia injury or pericarditis 
poor ultrasound imaging of carotid artery 
 

2.5.4 Lifestyle and medical history questionnaire 

Information was collected on lifestyle and medical history using questionnaires. 

Information about personal medical history and family history of CVD, stroke, 

hypertension and diabetes in first-degree relatives, as well as information on 

body shape of family members, smoking and alcohol habits, and physical activity 

was recorded. Study nurses collected information about smoking habits via a 

standard Case Report Form. The modified versions of the Rose questionnaire for 
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angina (845) and the Edinburgh claudication questionnaire (846) were used for 

exclusion. The questionnaires were prepared in English and translated into 11 

other languages. All questionnaires were independently back-translated into 

English to ensure accuracy. 

2.5.5 Physical examinations 

Height: Measured with a standard clinic ruler (stadiometer). Participants were 

without shoes with head in the Frankfort (horizontal) plane and feet/ankles 

were together. 

Waist circumference: Measured on bare skin (not over clothes), at the smallest 

point between costal margins and iliac crests. 

Hip circumference: Measured at level of the greater trochanters. If greater 

trochanters were not palpable then measurement of the largest gluteal 

circumference was taken. 

Thigh circumference: Circumference around the right thigh, just below the 

gluteal fold. Participant stands with both feet (slightly apart) flat on the floor.  

See Section 2.1 for detailed appraisal of body mass index, waist circumference, 

waist hip ratio and other measures of obesity.  

2.5.6 Body composition: 

Body weight, BMI, percent body fat and fat-free mass were evaluated by the 

TANITA bioimpedance balance (Tanita International Division, UK). Participants 

were weighed in the fasting state, dressed in light clothes, with empty bladder 

and bare feet (no lotion, cream, powder etc.) (847). Digital print-out was 

obtained of body weight, impedance, total body water, fat mass and fat-free 

mass (for detailed appraisal see Introduction Sections 1.11.4 and 1.11.5) 

2.5.7 Biological samples 

Standardised procedures for the drawing, centrifugation, freezing, transport and 

storage of blood, plasma, serum and urine samples were observed to ensure 
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quality. Central laboratories were asked to report and mark samples, if they 

were not received in good condition. Collected blood was separated into plasma 

and serum, aliquoted and stored at -20°C for glucose, and -80°C for lipids and 

NEFA. Serum aliquots were stored at -80°C for insulin and C-peptide; urine 

samples are stored at -20°C. All samples were transported on dry ice at pre-

arranged intervals to central laboratories. 

Fasting blood samples of glucose were taken for exclusion criteria (Table 2.1) 

before and during a 75 g oral glucose tolerance test (OGTT). Samples were also 

taken for central analysis of glucose, insulin and C-peptide (see Section 2.1.12). 

Extra aliquots of serum and plasma from the OGTT and clamp were stored for 

future analyses of inflammatory markers, haemostatic factors and other 

research questions. 

2.5.8 Euglycaemic hyperinsulinaemic clamp and related data 

The clamp main procedure and basis are explained in Section 2.2.1 

Insulin sensitivity was measured using a standardised hyperinsulinemic 

euglycaemic clamp technique following central training of site staff (844). 

Target plasma glucose concentration was between 4.5 and 5.5 mmol/l; insulin 

was infused at a rate of 240 pmol·min−1·m−2. Serum glucose was measured at 5 

to 10 min intervals to ensure it remained within 0.8mmol/l (±15%) of target 

glucose concentration.  

Data from each clamp study was assessed for quality control criteria on receipt 

in the project office (sent by fax following clamp). When clamp quality was 

considered, not only the CV is important but also the time course of the glucose 

and glucose infusion data. To ensure safety and consistent quality, feedback was 

provided for each clamp. Data from each clamp is stored in graphic form on the 

EGIR website (www.EGIR.org). 

For quality control the acceptable glucose concentration was within 0.8mmol/l 

(15%) of target glucose level (4.5-5.5 mmol.l).   

- Values >15% above target level were provisionally acceptable: 
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- If a blood glucose value was above the mean by < 1.5 mmol/l 

 and – at time 120 minutes blood glucose was < 5.5 mmol/l 

 and – this was not due to stress but due to an error of infusion rate 

- Values >15% below target level were acceptable if: 

 the blood glucose value was >3.5 mmol/l (hormonal response) 

 The plasma glucose at 120 min was between 4.5 and 5.5 mmol/l 

Recruiting centres were alerted about non-acceptability and advised to repeat 

the clamp if possible. If repetition was not possible, the data were ‘flagged’ for 

later analysis with one flag graded “minor deviation” and two flags “serious 

deviation”.  The former signified that only one ‘expert’ had reported a problem 

with the clamp’ while the latter meant that two had found problems. 180 

clamps were flagged: 117 flag 1, 63 flag 2. 

Upon receipt of clamp data, automatic flags were generated by a mathematical 

quality control procedure with the following criteria: hypoglycaemia (less than 

3.5 and 3.0), hyperglycaemia (more than 120% of fasting), failed achievement of 

target glucose and glucose variability greater than 15%. All flags were confirmed 

by visual inspection of the graphs. During interim analysis it was observed that 

the hypo- and hyper-glycaemias did not really affect the clamp data (in terms of 

systematic trends in means or in correlations) therefore it was decided to 

elevate the threshold for the “flagged” clamp studies. Clamps were examined by 

two experts independently blinded to clinical data. Ultimately, clamps were 

flagged only when both experts considered that the procedure was affected by 

serious problems of quality.  

Mean glucose infusion rate: The steady-state period (for calculation of insulin 

sensitivity) was between 80 to 120 min (G80 and G120) and expressed in mg.min-

1.kg(LBM)-1. Less than 40 individuals had missing local values for G120 or G80; 

these values were interpolated from adjacent values.   
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The glucose infusion rate (M value) was expressed in mg.min-1.lbm (kg)-1, with 

lean body mass (lbm) measured using a TANITA bioimpedance balance. Insulin 

sensitivity was expressed as M/I (mol·min-1·kgffm-1·nM-1) i.e. the M value 

divided by the achieved steady state insulin concentration. As the distribution of 

this variable (M/I) was skewed, a logarithmic transformation was undertaken 

prior to use in regression and other analyses using parametric statistical tests 

[Log (M/I)]. 

2.5.9 Measures of physical activity 

Accelerometry has been used in many cohorts and trials as a measure of physical 

activity (848). In the RISC study, physical activity was measured objectively by a 

small single-axis accelerometer (Actigraph, AM7164-2.2; Computer Science and 

Applications, Pensacola, Florida, USA). The Actigraph is a small (43 g) single-

channel recording accelerometer capable of continuous data collection for up to 

22 days. The acceleration signal was digitized with 10 samples per second and 

registered as counts over 1-min intervals (849). Participants were asked to wear 

the device for up to 8 days on a belt in the small of the back, from waking to 

bedtime except during water-based activities.  Participants actually wore the 

accelerometer for an average of 5.7 days (median 6 days) (849). 

2.5.9.1 Comments 

Data was analysed for participants with at least 3 days of data, including days 

when the device was worn for more than 10 h. It was assumed that the device 

was not worn if there were 60 consecutive min with no counts. Accelerometer 

data were processed with custom software developed for this project using SAS 

version 9 for cleaning for outlying values. Data were also checked for spurious 

recording: high counts >20,000 counts/min or repeated counts (850). The 

following are the major summary measures provided by the software:  

Total activity: average number of counts per minute when accelerometer was 

worn 

Intensity of activity: on days when accelerometer was worn, participants were 

classified as having 
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1) Some vigorous activity (>5,724 counts/min for at least 10 consecutive min),  

2) Some moderate activity (1,952–5,724 counts/min for at least 10 consecutive 

min), or  

3) Neither moderate nor vigorous activity on any day (851) 

percent time sedentary: <100 counts/min when accelerometer worn (852) 

percent time in light activity: not inactive nor in moderate or vigorous activity. 

2.5.10 Carotid artery intima media thickness (cIMT) 

Ultrasonographic measurement of cIMT has been evaluated in many large trials 

as a reliable measurement of measuring subclinical and clinical atherosclerosis 

(853;854). Carotid arteries were investigated by high-resolution ultrasonography. 

Image acquisition and IMT measurement were made according to the 

Atherosclerosis Risk in Communities (ARIC) study protocol (855). Carotid images 

were obtained in each centre, with the participant supine with neck slightly 

extended and head rotated contra laterally to the side. Longitudinal B-mode 

image was obtained of the distal 10 mm of right and left common carotid 

arteries, carotid bifurcation, and internal carotid artery from anterior, lateral 

and posterior angles. Whole imaging procedure was recorded on super VHS 

videotape. IMT measurement was performed in a centralized reading centre 

(Pisa) by a single reader blinded to clinical data, using a high resolution video 

recorder (Panasonic AG-MD830) coupled with the computer-driven image analysis 

system MIP (Medical    Image Processing; Institute of Clinical Physiology, CNR, 

Pisa, Italy) (856). IMT was measured by bow compasses in digitized zoomed 

diastolic frames of each carotid segment at 5 different points and the average 

was calculated for each segment. For statistical analysis IMT in all 12 carotid 

segments were averaged (mean IMT).  

Sonographers attended a training course, following which they sent five 

ultrasound scans for accreditation and quality control to the reading centre 

before undertaking actual RISC recordings. Different machines were used in each 

centre, but final cIMT was calculated by a single reader (blinded to clinical 
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data). Moreover the same machine was used for baseline and three year follow-

up scans at each centres. Equipment for IMT ultrasound in 19 centres: Toshiba 

Power vision, Siemens Elegra, Acuson Sequoia, ATL / Philips HDI 5000, Esaote 

MEGAS, Acuson Aspen 128 XP, Aplio, Toshiba, 5000 HDI, Toshiba SSA 270, Philips 

Sonos 4500, Agilent Sonos 5500, with 7.5 MHz linear transducer. 

2.5.10.1 Power calculations 

The primary endpoint was progression of atherosclerosis (see page ….) as 

measured by the change in cIMT. The secondary endpoints were the change in 

CVD risk factors (e.g. blood pressure, lipids, glucose metabolism and body 

composition).  

From published studies (857;858), this change is at least 0.01 mm over 1 year, 

with a standard deviation of 0.06 mm. Over the initial follow-up of 3 years, a 

mean change of at least 0.03 mm and standard deviation below 0.11 mm was 

estimated. To detect a difference of 0.03 mm in the mean cIMT between the 

insulin resistant subjects (in the lower 20% of the insulin sensitivity distribution) 

and the remainder of the population, with an alpha error = 0.05 and 

power=0.80; 1500 subjects will be adequate for a two-sided test and 1200 

subjects for a one-sided test (in the case of drop outs). The secondary endpoint 

(BP, lipids, glucose metabolism and body composition) requires fewer subjects 

than 200.  

2.5.11 Lipids and NEFA 

Non-esterified fatty acids (NEFA) analysis was carried out using Randox 

enzymatic kit - Cat. No. FA115. The analyser used was Hitachi Modular P unit 

and CV was less than 5%. 

Total cholesterol was measured by Roche Cholesterol Method for Modular 

systems which uses enzymatic colourimetric test and CV was less than 2%. 

LDL cholesterol calculated by the Friedwald formula (859) 

HDL cholesterol was analysed by Roche HDL 2nd Gen Method for Modular systems 

which uses homogeneous enzymatic colourimetric test and CV was less than 2%. 
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Triglycerides were measured by Roche Triglyceride Method For Modular systems 

which uses enzymatic colourimetric test and CV was less than 2%. 

Expected values according to NCEP: Normal range: less than 2.3 mmol/l (N.B. If 

the free glycerol is taken into account, then 0.11 mmol/l must be subtracted 

from the TG value obtained.) 

2.5.12 Glucose, plasma insulin, C-peptide and pro-insulin 

Glucose was measured by Cobas Integra, Roche which uses Glucose Oxidase 

Technique and CV was less than 2%.  

Coefficient of variation 

Control Mean mmol/l Within assay 
variation % CV 

Between assay 
variation % CV 

Total variation 
% CV 

1 5.38 1.8 2.1 2.9 
 

Insulin, proinsulin and C-peptide were measured by Auto DELFIA Insulin kit, 

Wallac Oy, Turku, Finland which uses two-sited, time-resolved 

fluoroimmunoassay using monoclonal antibodies.  

Normal range: insulin 12-77 pmol/l, proinsulin 2-23 pmol/l, C-peptide 130-760 

pmol/l. 

Sensitivity: insulin 1-2, proinsulin 0.3, C-peptide 5 pmol/l. 

Oral glucose tolerance test (OGTT) was carried out according to a standardised 

protocol with 75g glucose monohydrate solution. 

2.5.13 Plasma hsCRP 

Levels of hsCRP were quantified by commercially available monoclonal 

antibodies (R&D Systems, Abingdon, UK) on a clinically validated automated 

platform: c311 (Roche, Burgess Hill, UK). In short, wells were coated with 0.1μg 

anti-CRP antibody (MAB17071, R&D Systems) in 100 μl 1.5 mM KH2PO4, 8.1 mM 

Na2HPO4, 137 mM NaCl, 2.7 mM KCl, pH 7.4 (PBS) overnight 

protein-binding sites were blocked with 40 mmol/l phosphate buffer, 5% 

Tween20 and 25 μM EDTA for 1 h at room temperature and washed in PBS 
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containing 0.05% Tween 20 (PBS/Tw). Recombinant human CRP (1707-CR, R&D 

Systems) in the range from 25 to 0.19 ng/ml was used as standard and samples 

were diluted 100 fold in PBS/Tw containing 0.1% BSA and incubated overnight at 

-CRP 

antibody (BAM17072, R&D System) in 100 μl PBS/Tw for 2h at room temperature. 

The wells were washed and subsequently incubated with 10 ng Eu3+-labelled 

streptavidin (Perkin Elmer, Life Sciences, Turku, Finland) in 100 μl PBS/Tw 

containing 25 μM EDTA for 1 h at room temperature. After wash, bound 

europium was detected by the addition of 200 μl of enhancement solution 

(Perkin Elmer), 5 min of vigorous shaking and reading the time resolved 

fluorescence on a DELFIA fluorometer (Victor3, Perkin Elmer). The limit of 

detection was 0.15 mg/l. The intra- and inter-assay variations (%CV) were below 

5 and 10%, respectively 

2.5.14 Interleukin- 6 

IL-6 was measured by human IL-6 Quantikine high sensitivity commercial ELISA 

(R&D systems, Oxon, UK). Briefly, a microplate pre-coated with capture 

antibody is provided. Plasma was added and IL-6 present is bound by the 

immobilized antibody. Unbound materials are washed away. A second Alkaline 

Phosphatase (AP)-labelled antibody (detection antibody) is added which binds to 

the captured IL-6 and any unbound detection antibody is washed away. NADPH 

substrate solution is added and a rose colour develops. Plates are NOT washed 

after this step. Amplifier solution is added and the rose colour deepens to a red 

colour, in proportion to the amount of IL-6 present in the sample. Stop solution 

is added (colour remains red) and the absorbance of the colour at 490 nm is 

measured. The intra- and inter-assay variations (%CV) were below 10%.  

2.5.15 Current Medication 

Participants were requested to bring prescriptions and containers for prescribed 

and not prescribed (vitamins, homeopathy etc) drugs. For all medicines, generic 

and commercial name and strength were recorded as well as the reason for the 

medication. Medication for diabetes, obesity, hypertension, dyslipidaemia was 

the exclusion criteria. 
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The generic name of the drug was obtained for each medicine and was entered 

into the WHO website http://www.whocc.no/atcddd/. When more than one 

code was available, the commercial name of the drugs as well as its route of 

administration was also noted. 

All prescriptions of oestrogen monotherapy, a combination of oestrogen and 

progestogen or progestogen alone were considered to be on hormone 

replacement therapy.  

2.5.16 Menopause 

Women were classified as postmenopausal if their last menstrual period was 

more than 12 months prior to baseline measurements. 

 

2.5.17 Blood Pressure 

Outer garments were removed to expose left or non-dominant arm. Participants 

were seated and rested for at least 5 min before recording. No exertion, physical 

exercise, eating, smoking or exposure to cold for at least 30 min before 

recording was confirmed from each participant. Arm should rest comfortably on 

table, elbow level with the heart and upper arm at an angle of about 40 degrees 

to the trunk. Blood pressure was measured in triplicate following five minutes’ 

rest at each visit by OMRON 705CP (Omron Healthcare GmbH, Hamburg, 

Germany) using a standard protocol: the median of these readings was used in 

this analysis for both baseline and follow-up examinations.  

Hypertension: Median systolic BP (SBP) ≥ 140 mmHg and/or median diastolic BP 

(DBP) ≥ 90 mmHg at follow-up was taken to indicate hypertension (104;860). 

Participants who had been started on antihypertensive treatment in routine care 

(n=40) were classified as hypertensive.   

2.5.17.1 Modification of BP by treatment of hypertension at follow-up 

The method of Cui et al was used to estimate numerical BP values for individuals 

who had been commenced on antihypertensive medication between baseline and 

follow-up.(861),(862). For SBP, 10 mmHG was added to the value at follow-up 

and for DBP; 5 mmHG was added.  
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2.5.18 Follow up 

Annual telephone follow-up by study nurses recorded changes in addresses, 

medication or medical treatment and also schedule examinations for follow-up.  

After three years selected examinations were repeated: progression to diabetes 

was assessed by OGTT; obesity was measured by standard criteria of BMI; blood 

pressure for development of hypertension and standard anthropometric 

measures. Ankle: brachial pressure index was measured for progression of 

peripheral artery disease. Blood examinations were done for lipids, renal and 

liver markers. The lifestyle questionnaire was repeated to record changes in 

medical status, smoking and alcohol habits and prescribed and non-prescribed 

medication. Hospital records with a diagnosis of CVD were reviewed.  

2.5.19 Data analysis and management 

Study documentation can be accessed from the EGIR website (password 

protected), where recruitment information is updated weekly. Data were 

entered into the program Epi Info 2002 (Centres for Disease Control, Atlanta, 

Georgia, USA) at the recruiting centres and sent by e-mail as an Excel file to the 

coordinating office or via the website data transfer system. Data are maintained 

centrally on a computer with restricted access and with back-up.  

The participant’s name and address is kept only at the recruiting centre and 

identification documents of the participant are stored separately from the study 

data. Data are identifiable only by a 9-digit code and the coordinating centre 

only receives the coded information. Identification codes are used only as long 

as necessary to maintain confidentiality. 

Local laboratory normal ranges were collected for each of the 19 recruiting 

centres. Laboratory data for each centre was compared to local range and any 

out of range data had to be accompanied by an explanation of clinical 

significance before the data were accepted into the database. 

2.5.20 Distinguishing features of RISC study 

The main strengths of the RISC Study are:  
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(i) A large sample of healthy Europeans,  

(ii) Gold-standard methodology for measurement of insulin sensitivity and 

cIMT,  

(iii) State-of-the-art measurement of physical activity,  

(iv) Availability of DNA samples,  

(v) Centralised laboratory assays,  

(vi) Centralised continuous quality control of data. 

2.5.21 Follow-up and Inclusion in Study/Analysis 

Of the 1352 healthy individuals followed after baseline examination, 1073 (587 

women and 486 men) had complete data at three year follow up after exclusion 

of those who had developed diabetes and/or symptomatic cardiovascular disease 

(n=21).  

2.6 Scottish Diabetes Research Network dataset- SDRN 
study 

2.6.1 Introduction 

Insulin resistance, blood pressure, inflammation and hypertension are all 

cardiovascular risk factors (863) and it will be demonstrated in chapters 3, 4, 5 

and 6 that insulin resistance and inflammation have independent relation with 

BP. BMI and change in BMI are also related to all other CV risk factors. So the 

first four results chapters show that cardiovascular risk factors are interrelated 

to each other. As the RISC population was healthy at baseline with no chronic 

condition, there were only three people who developed CVD and 21 people who 

developed diabetes in three years. This means that we could not examine the 

relationship of baseline factors to incident CVD in this dataset.  

In addition to the risk factors studied in RISC dataset, ethnicity and diabetes are 

also very important CV risk factors. Moreover it has been shown that ethnicity 

and diabetes are also very closely linked to insulin resistance, blood pressure, 

anthropometric measures and lifestyle factors. To study the independent 

relation of these outcomes with cardiovascular disease I was fortunate to have 

access to another dataset from the Scottish Diabetes Research Network (SDRN) 

epidemiology group. This is one of the largest population based dataset available 
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internationally for non-intrusive anonymised epidemiological research in 

diabetes.  

2.6.2 Methods  

In 2014 the population of Scotland was 5,254,800 of whom  258,570 were 

recorded as having a diagnosis of  diabetes (864). Population-based data are 

available for people with diagnosed diabetes in Scotland in the Scottish Care 

Information-Diabetes (SCI-Diabetes) dataset (previously known as SCI-DC), an 

electronic patient record of National Health Service (NHS) Scotland patients with 

diabetes. For the purpose of this study an extract of SCI-Diabetes data until 

31/12/2011 were linked to Scottish Morbidity Records (SMR01) and National 

Records of Scotland for mortality provided by the National Records of Scotland. 

Data were also linked to The Scottish Index of Multiple Deprivation (SIMD) - 2012 

data set. All of these are explained in detail below. 

2.6.2.1 Scottish Care Information – Diabetes (SCI- Diabetes)  

SCI – Diabetes is one of the world’s best electronic patient record systems (SCI- 

Diabetes) for people having diabetes. Scottish Diabetes framework was launched 

in 2001 to shape diabetes care in Scotland. It was identified that information 

technology system is the best way to manage an integrated diabetes care and 

Scottish Care Information – Diabetes Collaboration (SCI-DC) Project was started. 

From 2002 SCI- DC has been successfully operating. In 2011 SCI- diabetes (Phase 

III development of SCI-DC) was started in Western Isles and is now implemented 

in all health boards of Scotland (864).  

SCI- Diabetes is an integrated diabetes system which is not only an electronic 

database of patients with diabetes but also has clinical and speciality modules 

for paediatrics, Podiatry, diabetes specialist nursing and dietetics. (See 

http://www.sci-diabetes.scot.nhs.uk/ for more information) (864). 

Key Features and Benefits of SCI- Diabetes (865): 

  

http://www.sci-diabetes.scot.nhs.uk/
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SCI- Diabetes features and benefits; modified from the SCI-DC website (865). 

 A single shared electronic 
record 
 

Available regardless of geographical boundaries 
and patient location 

Cross boundary support 
 

Patients record available to all providing 
treatment 

Real time data entry 
 

Data entered will be available immediately 
Can be used to determine cost of treatment 
Shows strategic department usage for service 
audit 

Full patient contact record and 
record of care 

Can be used to determine cost of contact 
 

Reduced Health Board cost to 
support service 
 

No clinical system to host or technically support 
Current estimated cost of the systems is £4 per 
patient, this is forecast to be reduced to £2 a 
patient by the end of the current project 
Training of Clinical staff will be easier and more 
cost effective with a single system 
Less duplication 
Greater confidence in data being held 
Facility to flag erroneous data 
Reduction of potential data transcription errors 
through reduced interface requirements 

Greater range of information 
held in a fully integrated 
diabetes patient record 

A single point of data entry across primary and 
secondary care providers reducing data 
duplication and transfer (SCI-DC Back-
Population) 

Improved functionality through 
convergence of existing SCI-
DC systems onto a common 
and sustainable technical 
platform 

Reduction in data interface and transfer; 
Additional data held (Ulcer Management, 
Dietetics, etc) 
No need for paper trail between Primary and 
Secondary care and other specialists. 

Register will continue to 
underpin national programmes 
and surveys 
 

Diabetes Retinal Screening Programme 
Scottish Diabetes Survey (Scotland has an 
international reputation for having some of the 
best data of diabetes anywhere in the world. 
SCI-DC has allowed us to demonstrate year on 
year improvements in the quality of diabetes 
care) 
Scottish Foot Framework support 
SIGN Clinical guidelines support 

 
All of the above contribute in giving SCI- Diabetes an international reputation, as 

one of the best data base of diabetes anywhere in the world.  
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2.6.2.2 The Scottish Index of Multiple Deprivation (SIMD)  

SIMD is the Scottish Government's official tool for identifying deprivation and 

aspects of deprivation in all areas of Scotland. It divides Scotland into 6505 small 

areas called datazones, each containing 350 households or 800 people on 

average.  It considers several different aspects of deprivation like employment, 

current income, other financial resources, health, education, skills and training, 

physical environment, social relations and social capita, geographic access to 

services, crime and housing. It combines them into a single index and provides a 

relative ranking for each datazone from 1 (most deprived) to 6,505 (least 

deprived). It gives an overall picture in addition to individual aspects of 

deprivation for each area. By identifying small areas where there are 

concentrations of multiple deprivations, the SIMD can be used to target policies 

and resources at the places with greatest need (866).  

Quintiles of the index are defined at a national level, and Q1 and Q5 were used 

to identify the most affluent and most deprived quintiles, respectively. An area-

based measure of Socio Economic Status (SES) quintile was assigned to individual 

people with diabetes on the basis of where they live by using the Scottish Index 

of Multiple Deprivation (SIMD) 2012. Hence the SES quintiles are: 

1 = Most Affluent  

2 = Affluent 

3 = Middle 

4 = Deprived 

5 = Most deprived 

(See http://www.scotland.gov.uk/Topics/Statistics/SIMD/ for more information) 

(866) 

2.6.2.3 Scottish Morbidity Records (SMR01) 

SMR01 is an episode-based patient record relating to all inpatients and day cases 

discharged from non-obstetric and non-psychiatric specialties, also excluding 

geriatric long stay. Data collected include patient identifiable and demographic 

http://www.scotland.gov.uk/Topics/Statistics/SIMD/
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details, episode management details and general clinical information (867). 

Currently diagnoses are recorded using the International Classification of 

Diseases-10 (ICD-10) classification and operations are recorded using the OPCS 

Classification of Interventions and Procedures version 4 (OPCS-4). The 

Information Services Division (ISD) Scotland, Data Quality Assurance (DQA) team 

assesses the accuracy rate and quality of SMR01. For quality assessment, a 

sample of episodes is extracted from the national database for the hospitals; 

which are to be assessed. DQA staff compares data from the sample against 

information held in medical records for the relevant episode. For ischemic heart 

disease the accuracy, sensitivity and completeness of SMR01 in the 2012 report 

were 97.3%, 94.8% and 97.4% respectively (868). For cerebrovascular disease the 

accuracy, sensitivity and completeness were 94.5%, 98.9% and 100% respectively 

(868). The detailed methodology of quality assessment can be found at 

http://www.isdscotland.org/Products-and-Services/Data-Quality/Methodology/. 

Inpatients: are patients who occupy an available staffed bed in a hospital and 

remains there overnight; OR - at admission, is expected to remain overnight but 

is discharged earlier. Discharges include transfers-out and deaths. Haemodialysis 

patients are excluded from this category.  

Day Case: is a patient who makes a planned attendance to a specialty for 

clinical care and is seen by a doctor or dentist or nurse and requires the use of a 

bed or trolley in lieu of a bed. The patient is not expected to, and does not, 

remain overnight. Many of these patients require anaesthesia. 

From 1980 to March 1996 ICD9 classification was used, but from April 1996 

onwards ICD10 classification is used in SMR01 (867). 

2.6.2.4 Variables included in SCI-DC 

ID, date of admission, year of admission, date of discharge, year of discharge, 

continuous in patient stay, marital status, ethnic group, health board of 

treatment, speciality, speciality area code, clinical facility start date, clinical 

facility end date, patient category, admission date, waiting list type, admission 

type, admission reason, admission/transfer from, discharge date, discharge 

type, discharge/transfer to, diagnosis 1, diagnosis 2, diagnosis 3, diagnosis 4, 

http://www.isdscotland.org/Products-and-Services/Data-Quality/Methodology/
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diagnosis 5, diagnosis 6, main operation A, main operation B, main operation 

date, other operation 1A, other operation 1B, date of other operation 1, other 

operation 3-A, other operation 3-B, date of other operation 3, inpatient day case 

marker, old speciality code, old type of admission code, waiting time code, SE 

urban rural code 2004, SIMD Score, SIMD Scotland quintile, SIMD Scotland decile, 

SIMD health board quintile, SIMD health board decile, SIMD top 15% marker, SIMD 

bottom 15% marker, carstairs 2001 score, carstairs 2001 Scotland quintile, 

carstairs 2001 Scotland decile, carstairs 2001 health board quintile, carstairs 

2001 health board decile, carstairs 1991 score, carstairs 1991 quintile, carstairs 

1991 decile, carstairs 1991 category, electoral ward, UK Parliamentary 

constituency, Scottish Parliamentary constituency, local government district, 

council area, age in Years, age in months, days waiting, length of stay, body 

mass index, systolic blood pressure, diastolic blood pressure, renal failure, 

HbA1c, high density lipoprotein, low density lipoprotein, total cholesterol, 

triglycerides, smoking history, year of diabetes diagnosis, socio economic status, 

anti-diabetic drug group.  

2.6.2.5 International Classification of Diseases (ICD) 

ICD is the international standard for defining and reporting disease, disorders, 

injuries and other health conditions. It allows the countries to compare and 

share health information using a common language. Information recording is very 

comprehensive and covers all conditions and classifications and is easy to 

retrieve, analyse and share. ICD is used as a diagnostic classification standard for 

all clinical and research purposes and is used for mortality and morbidity 

statistics, injuries, symptoms, reasons for encounter, factors that influence 

health status, external causes of disease and also incidence and prevalence of 

disease (869).  

ICD is used as a tool in epidemiology, health management, clinical settings, 

reimbursement and resource allocation, policy making and insurance. WHO was 

entrusted with ICD in 1948 and ICD-10 has been used since 1990. ICD-11 

development is currently in progress and will be completed in 2015. ICD-10 is 

available in the six official languages of WHO (English, Russian, Chinese, Spanish, 

French and Arabic) as well as in 36 other languages. ICD-10 Version: 2010 

(International Statistical Classification of Diseases and Related Health Problems 
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10th Revision) is available online 

(http://apps.who.int/classifications/icd10/browse/2010/en) (869).  

2.6.2.6 Mortality  

For mortality the SCI-Diabetes extract was linked to National Records of Scotland 

for mortality provided by the General Register Office for Scotland for getting 

date and cause of death (both 1a and 1b on death certificate). Data were also 

matched with SMR01.  

2.6.2.7 Type of diabetes  

The type of diabetes was based on the type of diabetes assigned by the clinician. 

In case of any coding errors it was further refined by an algorithm using age at 

diagnosis and use and timing of treatment with oral hypoglycaemic agents and 

insulin (870). Diabetes was wrongly diagnosed in 365 people (0.1% of total), and 

so the diagnosis has been clinically revised and taken off from the register and 

were removed from analysis 

2.6.2.8 Ethnicity 

Ethnicity information was obtained from SCI-Diabetes based on the fact that 

people with diabetes are asked to identify their ethnic group from a standard list 

used in the 2001 Census in Scotland (734). Census Form of Scotland used for 

defining ethnicity is attached as Appendix C. The following classification was 

used for this analysis. 

White: Includes Scottish, English, Welsh, Northern Irish, British, Irish, Gypsy 

Traveller, Polish and any other white 

Multiple: Any mixed background or multiple ethnic 

Indian: Indian, Indian Scottish or Indian British.  

Other Asian: Other Asian, Asian Scottish or Asian British, Bangladeshi, 

Bangladeshi Scottish or Bangladeshi British 

Pakistani: Pakistani, Pakistani Scottish or Pakistani British 

http://apps.who.int/classifications/icd10/browse/2010/en
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Chinese: Chinese, Chinese Scottish or Chinese British 

African Caribbean: African, Caribbean, Black, Other African Caribbean or Black,  

Other Ethnic: Arabs 

2.6.2.9 Data storage and Ethical Approval:  

A research database containing anonymous data was used for analysis. Data were 

stored in the Department of Biostatistics, University of Glasgow and used for 

analysis in the Cardiovascular Research Centre, through a secure virtual private 

network (VPN). Approval for the linkage and analysis was obtained from SCI- 

Diabetes steering committee, the Scottish multicentre research ethics 

committee, the Privacy Advisory Committee of NHS - National Services Scotland 

(NSS), and the Caldicott guardians of all 14 Health Boards in Scotland; PAC 

Approval – 33/11 and MREC-Reference: 11/AL/0225.  

2.6.2.10 Data Clean up  

Implausible values were removed from the data at SCI- Diabetes research 

database. Following were the coding and boundaries used for cleaning the data.   

Note that the bounds were kept deliberately very broad- seeking only to remove 

impossible values.  

Date of Birth: 1900 < value < 31st December 2011 

Sex: 0 = unknown; 1 = male; 2 = female; 9 = not specified 

Ethnic groups: 0 = scottish; 1 = carribean; 2 = african; 3 = indian; 4 = pakistani; 

5 = bangladeshi; 6 = chinese; 29 = unknown; 30 = any other ethnic origin; 31 = 

irish; 32 =  other british; 33 = any other white background; 34 = any other black 

background; 35 = any other asian background; 36 = any other mixed background; 

40 = not known; 50 = not disclosed 

Date of diabetes diagnosis: 1900 < value < 31st December 2011 

Fasting Venous Plasma Glucose at Diagnosis (mmol/L): bounds: 0.5 <value <100 
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2Hour Venous Plasma Glucose at Diagnosis (mmol/L): bounds: 0.5 <value <100 

Random Venous Plasma Glucose at Diagnosis (mmol/L): bounds: 0.5 <value 

<100 

Type of Diabetes: 0 = not diabetic; 1 = type 1; 2 = type 2; 3 = impaired glucose 

tolerance; 4 = impaired fasting tolerance; 5 = gestational; 6 = maturity onset 

diabetes of the young; 7 = stress event; 8 = other diabetes mellitus; 9 = type 

unknown; 10 = diabetes resolved 

Patient Weight (Kg): bounds: 40 < value < 300 

Patient HEIGHT (meter): bounds: 1 < value < 3 

Body Mass Index (BMI): bounds: 14 < value < 75 

Patient Smoking Status: 0 = unknown; 1 = current; 2 = ex; 3 = never 

Systolic Blood Pressure (mmHg): bounds: 80 < value < 400 

Diastolic Blood Pressure (mmHg): bounds: 40 < value < 300 

Serum Creatinine (μmol/l): bounds: 40 < value < 1999 

Serum Total Cholesterol (mmol/L): bounds: 2 < value < 50 

Serum HDL Cholesterol (mmol/L): bounds: 0.5 < value < 5 

Triglycerides (mmol/L): bounds: 0.5 < value < 100 

Glycated Haemoglobin (HbA1c) (%): bounds: 4 < value < 30 

Blood Glucose (mmol/L): bounds: 3 < value < 100 

Myocardial Infarctions: bounds: value < 15 

Stroke: bounds: value < 15 
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2.6.2.11 Preparation of data for analysis 

The following steps were applied to clean data before analysis 

Sex: Unknown and not specified were removed. Females were coded= 0 and 

males = 1. 

Ethnic groups: Ethnic groups were merged and the detail is written in the 

Section; Ethnicity 

BMI: BMI values were removed from the analysis if they were <14 (n= 1) and ≥ 52 

(n=89).  

Blood Pressure: BP values were not considered for five people whose DBP was 

more than SBP. For SBP; values less than 80mmHG and values more than 

260mmHg were removed (n=11). For DBP; values less than 40mmHg and more 

than 140mmHg were removed (n= 8). Both the SBP and DBP show trend of 

terminal digit preference (also shown in histogram of Figure 2.1) 

Total cholesterol: total cholesterol levels were not considered if it were more 

than 30µmol/L (n= 29 excluded). 

LDL-c: LDL values more than 7mmol/L were removed from analysis (n=10 

excluded). 

Triglycerides: TG values more than 30 mmol/L were excluded from the analysis 

(n= 47 excluded) 

HbA1c: values more than 20% were excluded (n= 5) 

Creatinine: values more than 500μmol/l were excluded from analysis (n= 49 

excluded) 

Duration of diabetes: People who were diagnosed diabetes at the time of first 

CVD event (n=12) were excluded from the analysis. 



Chapter 2 

162 
 

2.6.2.12 Selection of cohort  

Inclusion: Only people with Type 2 diabetes having follow-up data (either 

hospital admission or any data for outpatient clinical visits) between Jan 2005 – 

December 2011 and available ethnicity data were included in the study. Patients 

having no follow-up data for clinical variables after 2005 (n=4557, 1.6%) were 

excluded with the assumption that they may have left the area (Figure 7.2) 

Exclusion: People with other types of diabetes, missing type of diabetes or who 

developed type 2 diabetes before age of 17 (n = 109) were excluded from 

analysis. Children aged <17 were excluded as the SCI- Diabetes system is used 

mainly for adults and has less complete coverage in the paediatric population 

Patients with missing ethnicity data (n=67,994, 24%) were also excluded from 

the main analysis. Patients with inconsistent data (n=12) were also excluded- 

i.e. dates of examination after date of death. 

Entry Date: For the analysis, entry date was taken as 1st Jan 2005 or the date of 

diabetes diagnosis if later 

Exit date: was recorded as 31st Dec 2011 or date of 1st CVD event or death if 

earlier 

Follow-up time: exit date – entry date.  

2.6.2.13 Prevalent CVD at baseline  

Prevalent CVD was defined as hospital admission for CVD (using codes above and 

equivalent ICD9 codes for earlier data) in retrospective data to 1992 with similar 

“lookback” time for the different ethnic groups. Lookback time is the time in 

years (retrospective) between entry date and date of CVD incidence. The 

lookback time for different ethnic groups was e.g. White: mean±SD 4.7±2.8 

years, Multiple Ethnic: 4.9±3.0, Indian: 4.6±2.5, Other Asian: 4.7±2.3, Pakistani: 

4.2±2.6 years, African-Caribbean: 4.2±2.8 years and Other Ethnic: 4.7±2.7. 
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2.6.2.14 Population used in analysis  

After following the exclusion criteria above and also excluding the people with 

prevalent CVD, a total of 121,523 people who did not have any history of CVD at 

baseline were followed for development of CVD.  

2.6.2.15 Incident CVD events  

Incident CVD events (cardiovascular and cerebrovascular) were obtained from 

SMR-01 records using the ICD 10 codes: I20–I25, I60–69 (excluding I62 and I68). A 

person was labelled as having an event if he or she experienced the event 

between 1 Jan 2005 and 31 Dec 2011. Details of ICD 10 codes used in analysis are 

attached as Appendix C. Individuals with stable angina are not included in this 

category. Other people who may have been missed would be of old age. 

2.6.2.16 Confounding Variables  

Age of diabetes diagnosis: Calculated as date of diabetes diagnosis – Date of 

birth 

Age at baseline: Calculated as entry date – Date of birth 

Anthropometric and other variables: For baseline anthropometric and 

biochemical measures (BMI, BP, total cholesterol, HDL-c, LDL-c, triglycerides, 

HbA1c, creatinine), the values nearest to the entry date (and within past 9 

months) were obtained. Following preference was used to obtain the value. 

1 = same day as opening date. 

2 = up to 90 days (3 months) 

3 = 91 – 180 days (4-6 months) 

4 = 181 – 270 days (7-9 months) 
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3 Euglycaemic clamp insulin sensitivity and 
longitudinal systolic blood pressure: role of 
gender  
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3.1 Introduction 

A relationship between insulin resistance, hyperinsulinaemia and blood 

pressure/hypertension was suggested nearly three decades ago (196) but the 

nature of this relationship and its pathophysiological basis remains unclear. Most 

(871-884) but not all studies (885-889) have reported a relationship between 

insulin resistance and future BP rise and/or the development of hypertension. 

The majority of studies demonstrating this relationship have used surrogate 

markers for measuring insulin sensitivity.  The few which used direct measures 

of insulin sensitivity have been either small (890), or cross-sectional(202;891). As 

explained in the Introduction (Section 2.2.6 and 2.2.7), these surrogate 

measures are critically dependent on insulin immunoassays.  They correlate with 

clamp-measured insulin sensitivity (892) but do not take account of body mass or 

body composition.  

The hyperinsulinaemic euglycaemic clamp (HEC) technique, is the gold standard 

for the assessment of insulin sensitivity(776) but as it is an invasive and labour-

intensive procedure, it has not been applied in adequately-sized cohorts for 

evaluating the risk of developing hypertension. In this chapter I analysed HEC 

data from the large healthy RISC cohort to evaluate the hypothesis that insulin 

sensitivity is an independent predictor of BP rise or development of 

hypertension. In addition, I examined whether sex influenced this relationship. 

3.2 Statistical analysis 

Distribution of all continuous variables was checked at baseline and year 3 

follow-up: age, height, waist, hip, waist, BMI,  fat free mass, fat mass, SBP, 

DBP, Percent change in BMI, Glucose, LDL, total cholesterol, HDL, triglycerides 

(TG), insulin sensitivity (M/I), alcohol intake and physical activity (Appendix A: 

Figure 1.1-1.6). All variables exhibited a normal distribution except for TG, 

alcohol intake, physical activity, hsCRP and IL-6 which were log transformed for 

analysis (Appendix A: Figure 1.6 and 1.7). The histogram for fat free mass at 

baseline and year 3 showed two peaks (Appendix A: Figure 1.3): on further 

investigation, it was found that this reflected differences in fat free mass 

between males and females (Appendix A: Figure 1.3). Log M/I showed a 

significant negative linear correlation with systolic BP at year 3 (r= -0.207, p 
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=<0.001) (Appendix A: Table 1.1). Further exploration revealed a significant 

gender*log M/I interaction term for SBP at Year 3 in pooled regression with all of 

the data (p=0.003). This effect of gender on the relationship of insulin sensitivity 

and SBP was also apparent in scatterplot showing a negative linear relationship 

in females only (Appendix A: Figure 1.8). The analysis in this chapter was 

therefore conducted separately by gender owing to this finding of a significant 

interaction term in the early analyses. The correlation matrix for the different 

measures in participants of the RISC cohort is shown in Appendix A- Table 9.1.  

Baseline measurements are shown in Table 3.1 and 3.2, with univariate Pearson 

correlation coefficients between change in systolic and diastolic BP and other 

covariates in Table 3.3. Multiple linear regression analysis was used to determine 

whether insulin sensitivity (M/I) predicted systolic and/ or diastolic BP at three 

years with covariates including age, recruitment centre (using indicator 

variables), baseline BP, BMI, change in BMI, blood glucose, lipid profile and 

lifestyle factors.  Given that baseline BP and change in BP are usually highly 

correlated, the relationship between log M/I and systolic BP at Year 3 adjusted 

for baseline systolic BP was used, in preference to the unadjusted relationship 

with change in systolic BP. 

The quadratic term (LogM/I* LogM/I) was used to check the linearity of the 

association between BP and M/I in both genders. The relationship was linear for 

both SBP and DBP after adjustment for centre only or centre and age. -

coefficients for insulin sensitivity are shown along with R² for the coefficient of 

determination for the model. Due to multicollinearity of waist, fat mass and 

weight with BMI (r > 0.7 for all correlations), only BMI was used in regression 

models. However multiple regression analysis was repeated by substituting waist 

for BMI. Multiple regression was also used to check the contribution of M/I in the 

model in predicting risk. Binary logistic regression was used to assess prediction 

of hypertension defined according to ESH/ JNCVII as ≥140/≥90 mmHg (104;860) 

(or by its treatment). Odds ratios (OR) with 95% confidence intervals (CI) are 

shown as the odds of developing hypertension in relation to M/I.  

Change in BP between baseline and the follow-up examination was then 

evaluated in relation to baseline insulin sensitivity. The M/I was used as a 

continuous variable in all the correlation and regression analyses. Insulin 
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sensitivity was then split into tertiles in order to visually inspect the relationship 

with change in BP.  

ANOVA was used to examine change in BP across sex-specific tertiles of baseline 

insulin sensitivity with Tukey post hoc testing (corrected for multiple 

comparisons) to examine changes between tertiles. Change in BP between 

baseline and follow-up was compared within each tertile of insulin sensitivity 

using paired t-tests. SPSS version 18 was used in all analyses. 

3.3 Results 

At three years, BP had reached a diagnostic threshold for hypertension in 11.6% 

of all participants (n=125; 75 men, 50 women). A further 4.3% (n=46; 23 men, 23 

women) had been commenced on antihypertensive treatment in routine care i.e. 

16.0% (n= 171; 98 men, 73 women) had developed incident hypertension.    

Mean age in both males and females was approximately 44 years. SBP, DBP, 

waist, weight, BMI, fat free mass, glucose, LDL, TG and alcohol intake were 

significantly higher in men compared with women (Table 3.1). However, men 

had lower insulin sensitivity (M/I) (112 vs 141) and less fat mass (18.6 vs 22.7) 

than women. Smoking rates and physical activity levels were similar in men and 

women (Table 3.1). Insulin concentrations achieved at steady state in the clamp 

procedures (mean±SD) were 416±111 pmol/L in men and 406±112 pmol/L in 

women.Except for lean body (fat free) mass, anthropometric measures increased 

over three years of follow-up for the whole cohort and also in males and females 

when considered separately (Table 3.2). Although SBP, DBP, weight and BMI 

decreased in a few individuals; mean BP and BMI increased over three years.  

In univariate analyses (Table 3.3), change in both systolic and diastolic BP 

correlated in the expected manner with baseline values in both genders. Change 

in both systolic and diastolic BP from baseline was correlated with insulin 

sensitivity (log M/I) in women (r= -0.132 for SBP) but not in men (r=-0.054 for 

SBP).  Weight correlated with change in diastolic but not systolic BP in both 

genders.  Other correlations were of borderline statistical significance.   



Chapter 3 

168 
 

When key covariates (including recruitment centre, age, baseline systolic BP, 

BMI, change in BMI, lipid profile, smoking status, and fasting glucose) were 

included in multiple regression analyses (Table 3.4), low insulin sensitivity (log 

M/I) significantly and independently predicted systolic BP at three years in 

women ( = -0.214, P<0.001) but not in men. However, no relationship between 

M/I and SBP was detected in males, even in univariate analyses. Following 

adjustment for baseline DBP, Insulin sensitivity did not predict longitudinal DBP 

rise after adjustment for BMI in either males or females (Table 3.5). When 

regression analyses were repeated substituting waist for BMI, results were very 

similar. There was no relationship between insulin sensitivity and systolic BP in 

either gender when HOMA was substituted for LogM/I as an independent 

variable.  

Pearson correlation and multiple regression analyses showed significant 

relationships between insulin resistance and BP to be present only in females. 

For the purposes of visual inspection and presentation, baseline and follow-up 

SBP were expressed according to sex-specific tertiles of insulin sensitivity (Figure 

3.1). M/I tertiles were as follows, for men:  low 16.2-90.8; intermediate 90.8-

137; high 137-454 mol·min-1·kgffm-1·nM-1, and for women: low 21.4-120.2; 

intermediate 120.2-173.8; high 173.8-977.2 mol·min-1·kgffm-1·nM-1. There were 

no differences between tertiles amongst men; mean (SD) [123±11 (low); 121±11 

(intermediate); 123±10 mmHg (high)].  However, women with low baseline M/I 

had higher baseline systolic BP: 117±13 mmHg (low), 111±12 mmHg 

(intermediate), 114±12 mmHg (high) [low vs intermediate, 6.0 (95% CI 3.0, 

9.0) mmHg, P<0.001; low vs high 3.0 (95% CI -0.1, 5.9) mmHg, P=0.06].   

Over three years of follow-up, SBP increased from baseline in all tertiles for men 

(P<0.05) (Figure 3.1). In women, SBP rose in those with low and intermediate 

M/I (P<0.05), but no change was observed in the high insulin sensitivity tertile 

(114±12 vs 114±14 mmHg; P=0.791, 0.2 (95% CI -1.8, 1.4)). Comparing 

unadjusted 3 year SBP between insulin sensitivity tertiles within each gender 

(Tukey post hoc testing), no statistically significant differences were observed in 

men: [127±13 (low); 126±13 (intermediate), 126±14 mmHg (high)].  However, in 

women 3 year SBP in the low M/I tertile (12116 mmHg) was significantly higher 

than in the intermediate (11616 mHg) (P=0.001, 5.6 (95% CI 1.93, 9.26)) and 
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high (11414 mmHg) M/I tertiles [P=<0.001, 7.1 (95% CI 3.47, 10.79)]. Test for 

trend for three year SBP across the M/I tertiles was significant in women 

(p<0.001) but not in men (p=0.307). When these analyses were repeated 

excluding individuals on antihypertensive treatment (as a sensitivity analysis), 

similar results were obtained.  

 As log M/I was a significant predictor for SBP rise only in females, its specific 

contribution was further explored: this showed that it explained only 0.4 to 0.5 

% of the variance of the combined model; shown in model 5 and 6 (Table 3.6). 

The test for trend across the M/I tertiles was significant for the development of 

hypertension in women (p<0.01) but not in men (p=0.260). In terms of odds 

ratios, unadjusted M/I was associated with a lower risk of developing 

hypertension in total [p<0.001, OR= 0.201 (95% CI 0.09, 0.43)] and in females 

[p<0.001, OR= 0.106 (95% CI 0.03, 0.36)]. However, following adjustment for 

baseline SBP, age and BMI, there was no longer a significant association in either 

gender or in the total population (Table 3.7). This was the case whether M/I was 

used as either a continuous or categorical variable.  
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Table 3.1 Baseline characteristics of men and women in the RISC Study 

 Men Women P 

(n=486) (n=587) 

Age (years) 43.8 ±8.5 44.9 ±8.0 0.04 

Systolic BP (mmHg) 126 ±14 117 ±16 <0.001 

Diastolic BP (mmHg) 77 ±7 73 ±8 <0.001 

Waist (cm) 93 ±10 81 ±11 <0.001 

Weight (Kg) 83.4 ±12.3 67.5 ±12.0 <0.001 

BMI (Kg/m²) 26.2 ±3.4 24.8 ±4.2 <0.001 

Fat Free Mass (Kg) 64.8 ±7.0 44.8 ±4.3 <0.001 

Fat Mass (Kg) 18.6 ±7.6 22.7 ±9.0 <0.001 

Glucose (mmol/L) 5.2 ±0.5 5.0 ±0.5 <0.001 

Total Cholesterol (mmol/L) 4.9 ±0.9 4.8 ±0.9 0.03 

LDL Cholesterol (mmol/L) 3.1 ±0.8 2.8 ±0.8 <0.001 

HDL Cholesterol (mmol/L) 1.3 ±0.3 1.6 ±0.4 <0.001 

Triglycerides (mmol/L)* 1.12 [1.07-1.17] 0.86 [0.83-0.89] <0.001 

Clamp Insulin Sensitivity (M/I) * 112 [107-117] 141 [135-148] <0.001 

Smoker (%) 26 26 0.91 

Alcohol grams/week* 81 [76-89] 47 [43-50] <0.001 

Phys. Activity (Counts per min)*  339 [316-355] 324 [316-339] 0.43 

Menopause (Y/N) - 153/ 434 - 

Creatinine µmol/L 75 ±12 59 ±12 <0.001 

eGFR (ml/min/ 1.73m2)  110 ±29.5 107 ±36.5 0.17 

Data shown are as mean ± standard deviation (SD), or geometric means and confidence 
intervals [CI]. BP= blood pressure, BMI= body mass index, HDL= high density lipoprotein, 
LDL= low density lipoprotein, eGFR= estimated glomerular filtration rate 
*log-transformed for analysis  
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Table 3.2 Baseline and three year follow-up measures in the RISC cohort 

 Total (n=1073) Men (n=486) Women (n=587) 

Y0 Y3 Y0 Y3 Y0 Y3 

Systolic BP 

(mmHg) 

118± 12*** 121±15*** 122± 10*** 126± 13*** 114± 13*** 117± 16*** 

Diastolic BP 

(mmHg) 

75±8*** 76 ±9*** 76±7*** 79±9*** 73±8*** 74±9*** 

Waist (cm) 87 ±12*** 88±13*** 93±10*** 95±11*** 81±11*** 82±12*** 

Weight (Kg) 74.7±14.5*** 75.7±15.3*** 83.4±12.3*** 84.5±13.2*** 67.5± 12*** 68.4±12.9*** 

BMI (Kg/m²) 25.4±3.9*** 25.8±4.2*** 26.2± 3.4*** 26.5± 3.7*** 24.8± 4.2*** 25.2± 4.5*** 

Fat free 

Mass(Kg) 

53.9±11.5 53.8±11.7 64.8±7 64.7±7.4 44.8±4.3 44.7±4.9 

Fat Mass 

(Kg) 

20.8±8.6*** 21.9±9.5*** 18.6±7.6*** 19.8±8.9*** 22.7±9*** 23.6±9.7*** 

Values are mean ± SD. Y0= Baseline (year 0), Y3= 3 year follow-up. T test for comparison 
between baseline and three year follow-up.  ***p<0.001  
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Table 3.3  Pearson correlation (r) between baseline characteristics and change (Δ) in 
systolic and diastolic BP over three years  

Characteristic ΔSBP ΔDBP 

Male Female Male Female 

r r r r 

Insulin Sensitivity (log M/I) -.054 -.132** -.045 -.110** 

Age (years) .162*** .027 .074 -.068 

Baseline Systolic BP (mm Hg) -.293*** -.273*** -.162*** -.163*** 

Baseline Diastolic BP (mmHg) -.293*** -.196*** -.340*** -.339*** 

Waist (cm) .056 .055 .067 .008 

Weight (Kg) .077 .073 .113* .134** 

BMI (Kg/m²) .034 .081* .086 .100* 

Fat Free Mass (Kg) .092 .050 .079 .162*** 

Fat Mass (Kg) .040* .074 .110* .103* 

Glucose (mmol/L) -.008 .016 -.005 -.037 

Total Cholesterol (mmol/L) .029 .076 -.041 -.012 

LDL Cholesterol (mmol/L) .061 .080 -.044 -.017 

HDL Cholesterol (mmol/L) -.153** -.009 -.100* -.007 

TG (mmol/L) .075 .016 .058 .006 

Smoker (%) .019 -.004 -.010 -.022 

Alcohol (g/week)  .021 .044 .012 .057 

Physical Activity  

(Counts per minute worn)  
-.014 .000 -.024 -.103* 

Creatinine µmol/L -.041 -.031 .052 .080 

eGFR (ml/min/ 1.73m2)  .055 .030 -.035 -.067 

     

 *p<0.05, **p<0.01, ***p<0.001. M/I used as a continuous variable   
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Table 3.4 Standardised beta coefficients for predicting systolic BP at three year follow-up 
from log M/I as independent variable (with various adjustment factors)  

Model Adjustment factors 
Men (n=486) Women (n=587) 

R2 Beta P R2 Beta P 

1 Unadjusted 0.005 -0.069 0.13 0.046 -0.214 <0.001 

2 Centre & Age 0.147 -0.049 0.30 0.250 -0.194 <0.001 

3 Model 2 + baseline systolic BP 0.365 -0.034 0.40 0.466 -0.121 <0.001 

4 Model 3 + BMI 0.368 -0.007 0.87 0.474 -0.081 0.03 

5 Model 4 + %change BMI 0.385 -0.003 0.95 0.481 -0.078 0.03 

6 Model 5 + baseline eGFR 0.386 -0.004 0.94 0.481 -0.077 0.04 

7 Model 6 +  glucose, Chol, 

LDL, HDL, log TG 

0.397 0.030 0.54 0.486 0.073 0.05 

8 Model 7 + baseline HRT & OCP use 0.397 0.030 0.54 0.488 -0.079 0.04 

9 Model 8 + smoking 0.398 0.031 0.52 0.488 0.079 0.04 

10 Model 9 + phys. Activity 0.396 0.026 0.68 0.482 -0.086 0.09 

11 Model 10 + log Alcohol 0.396 0.026 0.69 0.483 -0.088 0.13 

M/I used as a continuous variable 

 

Table 3.5 Standardised beta coefficients for predicting diastolic BP at three year follow-up 
from log M/I as an independent variable (with various adjustment factors) 

Model Adjustment factors 
Men (n=486) Women (n=587) 

R2 Beta P R2 Beta P 

1 Unadjusted 0.029 -.169 <0.001 0.045 -.213 <0.001 

2 Centre & Age .202 -.126 .01 .214 -.185 <0.001 

3 Model 2 + baseline diastolic BP .368 -.043 .30 .446 -.100 <0.01 

4 Model 3 + BMI .380 .005 .90 .463 -.042 .26 

5 Model 4 + %change BMI .399 .010 .82 .477 -.038 .30 

6 Model 5 + baseline eGFR .399 .011 .81 .477 -.041 .26 

7 Model 6 +  glucose, Chol, 

LDL, HDL, log TG 

.408 .044 .37 .482 -.038 .32 

8 Model 7 + baseline HRT & OCP use .408 .044 .37 .483 -.042 .27 

9 Model 8 + smoking .409 .047 .33 .483 -.043 .27 

10 Model 9 + phys. activity .409 .047 .45 .483 -.025 .61 

11 Model 10 + log Alcohol .410 .048 .46 .483 -.028 .63 

M/I used as a continuous variable 
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Figure:  3.1 Unadjusted systolic BP (meanSEM) at baseline and three year follow up in men 
(upper panel) and women (lower panel) by tertiles of baseline insulin sensitivity. 
Values inside the base are of BP in mmHg. Comparison between tertiles by ANOVA with 
Tukey post hoc testing with 95% confidence intervals for the difference in means between 
tertiles. Differences in means between baseline and 3 year follow-up SBP by paired sample t 
tests.  

BPY0 = baseline systolic BP, BPY3 = systolic BP at three years (meanSEM),  
†= P<0.05, ** = P<0.01, ***= P<0.001, NS= not significant.   

M/I tertile range; Men: low 16.2-90.8; intermediate 90.8-137; high 137-454 mol·min-1·kgffm-

1·nM-1, and Women: low 21.4-120.2; intermediate 120.2-173.8; high 173.8-977.2 mol·min-
1·kgffm-1·nM-1 
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Table 3.6 Estimation of contribution of insulin sensitivity in prediction of SBP in females 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

  Baseline 

SBP 

Model 1 

+ Age 

Model 2 

+ BMI 

Model 3 + % 

change BMI 

Model 3 + 

Log M/I 

Model 4 + 

Log M/I 

Model 

R2 

.435 .454 .469 .477 .474 .481 

Model R
2
 calculated by multiple regression. Each subsequent model shows increase in R

2
 

with addition of another variable. Log M/I contributed only 0.5% in model 5 (∆R
2
= 0.474- 

0.469) and 0.4% in model 6 (∆R
2
= 0.481- 0.477). M/I used as a continuous variable 

 

Table 3.7 Odds Ratio of Log M/I for the development of hypertension in total, male and 
female population 

  Total  Males Females 

Model Adjustment factor OR P OR P OR P 

1 Unadjusted .201 <.001 .474 .156 .106 <.001 

2 Centre & Age .229 <.001 .509 .243 .122 .002 

3 Model 2 + baseline SBP .396 .038 .509 .253 .236 .050 

4 Model 3 + BMI .594 .284 .588 .416 .535 .434 

5 Model 4 + %change BMI .590 .283 .577 .405 .516 .413 

6 Model 5 +  glucose, Chol, LDL, HDL, 

log TG 

.545 .266 .629 .545 .427 .329 

7 Model 6 + baseline HRT & OCP use + 

smoking + phys. Activity + log Alcohol 

1.45 .690 2.08 .569 .239 .445 

OR = odds ratio, M/I used as a continuous variable. BP= blood pressure, BMI= body mass 
index, HDL= high density lipoprotein, LDL= low density lipoprotein, Chol= cholesterol, TG= 
triglycerides, HRT= hormone replacement therapy, OCP= oral contraceptive pills and Phys= 
physical. 

3.4 Discussion 

In this analysis of 1,073 healthy European adults, low insulin sensitivity measured 

using a robust and standardised euglycaemic clamp technique predicted rise in 

systolic BP at three years in women but not in men. Systolic BP was higher at 

baseline in women with low insulin sensitivity than it was in those with 

intermediate or high insulin sensitivity. It increased over three years in all 

groups studied except women with high baseline insulin sensitivity. Insulin 

sensitivity predicted change in systolic BP independently of key covariates 

(including age, baseline BP, BMI and change in BMI) in women only. As the 



Chapter 3 

176 
 

overall contribution in prediction was minimal, this observation is of mechanistic 

rather than clinical relevance. The findings of the study therefore offer new 

insights into the relationships between metabolic factors and BP by gender, 

clarifying and extending cross-sectional data previously reported from the RISC 

cohort (893). In general they imply a less important role for insulin resistance in 

the pathogenesis of hypertension than has been suggested by previous 

investigators. However, the duration of follow-up was short and only 16% of 

individuals in the cohort developed incident hypertension: ideally longer follow-

up is required. 

The most comprehensive previous study on this topic was the Framingham 

Offspring study in which insulin sensitivity was assessed in 1,933 healthy adults 

using an insulin sensitivity index based on fasting and post-load insulin and 

glucose levels.(811). In this report, insulin sensitivity (expressed categorically in 

sex-specific quartiles and stratified by age) was independently associated with 

BP over time in younger, leaner individuals of both genders but not in those who 

were older, overweight or obese.   

A unique feature of the present analysis is that it is based on data from a large 

number of individuals undergoing a standard euglycaemic clamp. Insulin 

sensitivity was directly derived from the glucose infusion rate during steady 

state euglycaemia adjusted only for centrally- measured insulin concentrations 

and lean body mass measured using a standard device.   

Only two previous investigations into the longitudinal relationship between 

insulin sensitivity and BP in adults have incorporated direct measures of insulin 

sensitivity (882;890), and only one used the euglycaemic clamp.  One of these 

studies, was relatively small (n=54) and in men only: no effect was 

demonstrated.(890)  The other used a modified frequently-sampled intravenous 

glucose tolerance test in a tri-ethnic population (n=840) and reported a modest 

protective association of insulin sensitivity on the risk of hypertension (882).   

Other longitudinal studies reporting a relationship between insulin sensitivity 

and BP (872-884) have been based on surrogate measures of insulin resistance 

including either fasting insulin (872-877;879;883;884) or fasting insulin and 

glucose concentrations (HOMA) (880;881). They have been conducted in a variety 



Chapter 3 

177 
 

of populations [Scandinavian(873;877;884); Mexican-American(878;879); 

Japanese individuals(875;876)] with some including only men 

(872;873;881;887;890) but none only women.  Some studies of reasonable size 

and duration have reported no relationship between insulin sensitivity and BP 

(871;885;886;888;889) after adjustment for baseline BP and weight/ adiposity, 

although it is difficult to interpret from some studies whether data were 

examined separately by gender.  

Validation studies of HOMA against clamp insulin sensitivity report Pearson r 

values of between 0.5 and 0.6 but are based on small numbers of participants 

pooled for gender (782;892). On average, women have a lower percentage of 

lean body mass compared with men.  Therefore, in the presence of intact β-cell 

function a given absolute value of fasting insulin (or HOMA) in women reflects a 

greater level of tissue insulin resistance than in men.  Women in the 

Framingham Offspring cohort had (on average) lower BMI and lower fasting 

insulin than men, but a similar insulin sensitivity index. If BP tracking over time 

is related to tissue rather than whole body insulin sensitivity, euglycaemic clamp 

data are likely to be more precise by gender than indices based on fasting 

insulin.  Differences in the relationships among insulin sensitivity and BP 

according to gender may reflect higher fat mass as a percentage of body weight 

in women, particularly with ageing (648).   

In summary, these prospective data from the Europe-wide RISC cohort of healthy 

adults indicate that low insulin sensitivity measured using the euglycaemic 

clamp technique is an independent predictor of longitudinal change in BP over 

time in women but not in men. Women with high insulin sensitivity may be 

protected against rise in systolic BP over time. The physiological basis for the 

gender difference I report in the RISC cohort and its implications for the role of 

insulin resistance in the pathophysiology of hypertension remain uncertain.  

Further insights may be gained by further follow up of the cohort.  

The strengths, limitations and final conclusion are discussed in the final 

discussion (chapter 8) 
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4 Systematic review: relationship between CRP/IL-
6 and blood pressure 
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4.1 Introduction 

Obesity (894), inflammatory markers (895;896), insulin resistance (196), family 

history and race (2;897) have been associated with blood pressure and the 

development of hypertension. Some studies show independent relationships 

between CRP, IL-6 and BP, while others show more complex relationships 

amongst the risk factors. The relationship between BMI or obesity with BP is the 

most studied pathway and has been demonstrated in many large studies 

(894;898).Holland et al showed over a long follow-up of 36 years (n= 3332) that 

BMI was directly related to BP from childhood to adult age (899) and the 

associations of weight/BMI and weight change with BP/hypertension have also 

been shown in many studies (900-903). Similarly weight loss achieved through 

bariatric surgery in morbidly obese patients results in a decrease in BP along 

with resolution or improvement of hypertension in 60-80% of cases (904-906) 

The relationship between CRP and CVD (MI and stroke) has been reviewed above 

(see Section 1.6.3 and 1.13.1), however, the relationship between inflammatory 

markers and the development of hypertension is more controversial. 

Inflammatory markers have been associated with the development of 

hypertension in studies published over the last two decades (895;896). Some 

epidemiological studies support a relationship between high levels of CRP and 

hypertension (827). However, the evidence of a causal association in humans is 

not strong (818-820;828). It remains uncertain whether CRP or another related 

inflammatory mediator e.g. IL-6 could increase BP directly, whether the 

relationship is mediated by some other mechanism (e.g. obesity, insulin 

resistance) or whether both are affected by some other feature of the metabolic 

syndrome; e.g. insulin resistance (829). The association of chronic low grade 

inflammation with HTN is widely documented in experimental and clinical 

results and inflammatory activation is implicated in the development of the 

cardiovascular consequences of HTN.  However, it still remains unclear whether 

inflammation is a pathogenic inducer of HTN or whether HTN precedes the 

inflammatory events of atherosclerosis (282) (reverse causality).  

As discussed in Chapter 3, insulin resistance (IR) has an association with rise of 

BP over time which may have some pathophysiological relevance to the 

development of hypertension (196;811;871;882;883). This association is weaker 
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than that between IR and dyslipidaemia: for example, only about 50% of 

hypertensive subjects are insulin-resistant (198). Insulin resistance is also 

related to obesity (907) and inflammation (908). My aim in this Chapter was 

therefore to conduct a systematic review of the evidence linking inflammatory 

markers (CRP and IL-6) with blood pressure and the development of hypertension 

independent of insulin resistance. Both CRP and IL-6 were evaluated instead of 

only one marker as a check of internal validity i.e. if a relationship was shown 

with both markers it would provide reassurance of a robust relationship.  

  

    

Hypothesis: low grade inflammation is associated with BP and incident 

hypertension independently of adiposity and insulin resistance 

4.2 Objectives/Outcome: 

To evaluate the relationships between IL-6 and CRP with BP (SBP and DBP) and 

hypertension:  

Primary: are these relationships independent of insulin resistance? 

Secondary: are these relationships independent of BMI and adiposity?  
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Tertiary:  Do age and sex play a role in these relationships? 

Search Strategy and Selection Criteria 

A systematic review of published studies was conducted in accordance with the 

Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) 

guidelines (http://www.prisma-statement.org/). Searches were conducted of 

PubMed (Medline), Embase, Web of Science using MeSH terms and text words as 

follows: “hypertension OR high blood pressure OR blood pressure”; and “C-

Reactive protein OR C Reactive protein OR high sensitivity C-reactive protein OR 

Interleukin 6 OR IL-6.” Each term or text word was mapped to a subject heading. 

The last search was under taken on 20 December 2011. Searches were done 

separately in all databases: Medline and Embase were not combined in OVID in 

order to maximise sensitivity.  Searches were conducted separately for CRP and 

IL-6. The reference lists of retrieved articles were manually searched through 

Web of Science.  

Limitations of Search: Search was limited to articles in English and Humans only.  

4.3 Eligibility Criteria 

The studies included in the review were those: 

1. conducted in humans,  

2. written in the English language (as the scientific and technical community 

predominantly uses English as its common language and limited 

information can be extracted from papers in other languages),   

3. containing original research data, i.e., not a review, abstract, editorial, 

letter, commentary or duplicate publication.  

4. with study designs including observational (both cross sectional (CS) and 

longitudinal), case control studies and randomised control trials (RCT). 

Longitudinal studies included both prospective and retrospective studies.  

http://www.prisma-statement.org/
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5. evaluating only healthy people (including hypertensives) and also if the 

population had less than 20% diabetic people and the analysis were 

adjusted for blood glucose or diabetes.  

6. including only adult populations.  

7. analysing blood or serum levels of CRP and IL-6 (not tissue levels or 

genetic polymorphisms). 

8. stating clear definition/values of SBP, DBP, Change in SBP, change in DBP 

and hypertension. Hypertension was defined by SBP, DBP or use of anti-

hypertensive medication.  

9. with results expressed as correlations, beta coefficient of regression, odds 

ratio (OR), risk ratio (RR), Prevalence ratio (PR), hazards ratio (HR) or 

relative risk (RR).  

Exclusion Criteria 

Studies were excluded if cohorts only included children or young adults (age less 

than 20 years), included pregnant women only, included those on hormone 

replacement therapy (HRT) (>50%), had a high prevalence of type 2 diabetes 

people (more than 20%) or used CRP assays which were not characterised by high 

sensitivity. Studies were also excluded if only univariable association was 

reported or in multivariate if the relation was not adjusted for BMI or any other 

body adiposity measures like weight, waist circumference, waist hip ratio, fat 

mass, fat free mass etc. The following acute or chronic conditions which may 

interfere with inflammatory markers were excluded: 

Acute Conditions:  

Acute aortic dissection 

Acute bacterial infection, pneumonia 

Chronic disease Conditions: 

Myocarditis, cardiomyopathy 

Hypertension with diastolic dysfunction 

Atrial fibrillation, arrhythmia 
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Chronic obstructive pulmonary disease (COPD) 

Diabetes mellitus with complications like nephropathy, retinopathy, neuropathy, 

ketoacidosis, diabetic foot,  

People with type 1 diabetes 

All people with type 2 diabetes 

Women having gestational diabetes 

Chronic kidney disease 

Kidney dysfunction 

Sepsis with or without septic shock 

Any type of transplant; renal, liver 

People undergone any type of cardiac procedure like coronary angioplasty, 

coronary artery bypass graft (CABG) 

Organ failure for example heart, kidney and liver 

Sleep disorders, also including sleep deprivation 

Sleep apnoea or obstructive sleep apnoea 

Angina, Myocardial infarction or any other ischemic heart disease 

Pulmonary hypertension 

Stroke; both ischemic and haemorrhagic 

Hormonal problems like hyperaldosteronism, hypothyroidism, hyperthyroidism 

(Graves’ disease), pheochromocytoma, Cushing’s disease 

Chronic inflammatory conditions like Rheumatoid Arthritis (RA), Systemic lupus 

erythematosus (SLE) 

Mental conditions like bipolar disorders, depression and any other stress related 

disorder, Alzheimer disease, fibromyalgia  

Brain White or Grey matter lesion 

Kawasaki disease 

Dyslipidaemia like hypertriglyceridemia, Apo lipoprotein abnormalities 

Gestational hypertension, pre-eclampsia or eclampsia 

Any type of surgery e.g. abdominal, periodontal, cardiac,  

Morbid obesity i.e. BMI >= 35 

Patients undergoing dialysis like blood, peritoneum 

Cirrhosis of liver 

Structural abnormalities of heart; atrial septal defect, valvular abnormalities 

and aortic aneurysm 
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4.4 Data Collection and Critical Appraisal 

Two individuals (Muhammad Omar Malik (MOM) and Zia-ul-Haq (ZH) 

independently marked the title of each article for eligibility criteria and to 

exclude those that were clearly not relevant. All disagreements were resolved 

by discussion. Abstracts of the remaining articles were then reviewed to 

eliminate those that did not meet the inclusion criteria. The full text of the 

remaining articles was appraised independently and compared afterwards. 

Disagreements were found for three articles and resolved by consensus.  

The following information was extracted for each relevant study: (1) study type 

(CS, longitudinal, case control); (2) region and country; (3) year published; (4) 

ethnic group; (5) number of individuals in the population; (6) age range and 

mean/median age of participants; (7) sex distribution; (8) outcome variable 

[SBP, DBP, change in SBP (∆SBP), change in DBP (∆DBP), hypertension (HTN)]; (9) 

inflammatory marker (CRP or IL-6); (10), inflammatory marker used as a 

continuous or categorical variable; (11) assay used for measurement of 

inflammatory marker; (12) adjusted for measure of insulin sensitivity (HOMA-IR, 

insulin, fasting insulin); (13) measure of adiposity (BMI, weight, fat mass etc.); 

(14) effect sizes (β, OR, RR, PR, or HR); and (15) lists of variables for which 

statistical adjustment was performed.  

The data collection form is shown in Appendix B 

4.5 Results 

Searches for CRP and IL-6 were conducted separately.  

For CRP, 7072 potentially relevant studies were initially retrieved (See Figure 

4.1). Duplicate studies (n=1392) were removed with the help of Reference 

Manager software with the following preference: Medline, Embase and Web of 

Knowledge. After removal of duplicates 5748 studies were screened by scanning 

the titles; from which 4709 were excluded. The abstracts of the remaining 1039 

were reviewed to eliminate any that did not meet the inclusion criteria (876 

removed). The remaining 163 articles were appraised. This led to a further 

exclusion of 121 articles that did not meet our eligibility criteria (chronic 
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disease, diabetes, crude assay, unclear or no direct relation, not adjusted for 

adiposity, children, review and letter to editor, commentary).  

For IL-6, 1902 potentially relevant studies were retrieved (see Figure 4.2). 

Duplicate studies were removed with the help of Reference Manger software 

with the following preference hierarchy: Medline, Embase, then Web of 

Knowledge. After removal of duplicates 1529 studies were screened by scanning 

the titles; from which 927 were excluded. The abstracts of the remaining 602 

were reviewed to eliminate any that did not meet the inclusion criteria (544 

removed). The remaining 58 articles were appraised. This led to a further 

exclusion of 45 articles that did not meet our eligibility criteria (diabetes, 

unclear or no direct relation, not adjusted for adiposity, children, review and 

letter to editor, commentary or editorial). The search details are also attached 

as Appendix B. 

42 studies were identified in relation to CRP and 13 were identified in relation to 

IL-6. For the purposes of presentation, the relationship between inflammatory 

markers and blood pressure (both SBP and DBP) and the relationship with 

hypertension per se are shown in separate tables. In addition, results are 

presented in separate tables for cross sectional, longitudinal and case control 

studies and also whether adjusted for insulin sensitivity or not.  

In total, eight studies were identified which included a measurement of insulin 

sensitivity and also evaluated the relationship between CRP with BP as an 

outcome variable; for hypertension as an outcome there were only three such 

studies. In the case of IL-6 only two studies were identified in which data were 

adjusted for IR (one for BP and one for hypertension). The sample size of studies 

for CRP ranged from n= 95 to n=16966, and for IL-6 sample size ranged from 

n=196 to n=3543. The mean age range for studies evaluating CRP was 31-76 years 

and the mean age range in IL-6 studies was from 40-60 years. Regarding sex 

distribution, five studies were of female-only populations while three were of 

male-only populations. The case control studies for both CRP and IL-6 were all 

conducted in females.  

CRP-Cross sectional studies 
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Seven cross sectional studies were identified showing relationships between CRP 

and BP, adjusting for a measure of insulin sensitivity (Table 4.1): five reported 

significant association with SBP and two detected no relationship. The negative 

(showing no association of SBP) studies (909;910) were conducted in a 

predominantly male population (>50% population). In addition both of these 

showed significant relation of DBP with CRP. For DBP, of 6 studies, 4 showed 

significant associations and two did not.  

In cross sectional analysis, CRP was positively associated with development of 

hypertension after adjusting for a measure of insulin sensitivity (Table 4.2). 

In cross sectional studies not considering insulin sensitivity, SBP was associated 

with CRP in half of the studies (7/14), while DBP was not related to CRP in any 

of the studies (0/10) (Table 4.3). Within the same group of studies; larger 

cohorts (>1000 people) also showed that SBP was related to CRP in 2 out of 5 

studies (Table 4.3).   

Table 4.4 shows the relation of CRP with the development of hypertension, not 

accounting for insulin sensitivity. Out of the 11 studies identified only 5 showed 

a relationship with CRP. There was no ethnic, age, sex and size of cohort pattern 

in the studies showing relation with CRP and hypertension. 

CRP-Longitudinal Studies 

Only one longitudinal study (911) evaluated the relation of CRP (categorical) 

with BP and hypertension; also adjusting for insulin sensitivity (Table 4.5 and 

4.6). It showed no relation of CRP with BP but there was a significant relation 

with hypertension over a 10 year of follow-up. However, the same study showed 

the relation to be significant for both SBP and DBP in cross sectional analysis; for 

both males and females.   

Two studies evaluated the effect of CRP on longitudinal prediction of BP (not 

adjusting for insulin sensitivity) and only one showed significant relation with 

SBP but none with DBP (Table 4.7). Out of the eight longitudinal studies 

evaluating the association of CRP with the development of hypertension (not 

adjusting for insulin sensitivity), six presented significant association while two 
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had negative results (Table 4.8). No influence of age, sex, ethnicity and size was 

seen on this relation with hypertension.  

CRP-Case control studies 

Two case control studies were identified and both of them did not show any 

relation of CRP with longitudinal development of hypertension in females (Table 

4.9).  

IL-6- Cross sectional studies 

The relation of IL-6 with BP and hypertension is shown in Tables 4.10- 4.15. Only 

one study was identified: with no relation of IL-6 with BP when adjusting for 

HOMA-IR (Table 4.10). However, the development of hypertension was related to 

IL-6 in females only independently of insulin resistance (Table 4.11). All (3/3) 

cross sectional studies evaluating association of IL-6 with SBP and DBP showed 

significant association (Table 4.12). Similarly IL-6 was related to hypertension 

development in cross sectional analysis (Table 4.13).  

IL-6-longitudinal studies 

In longitudinal analysis IL-6 was related to development of hypertension over a 5 

year of follow-up (Table 4.14).  

IL-6- Case Control studies 

Both the case control studies did not show any relation with HTN in females, 

over a long follow-up (Table 4.15).  

4.5.1 Influence of age and sex in relation of CRP with BP 

Another angle of viewing these studies was to check if age and sex influenced 

the relationship of inflammatory markers with BP and hypertension. We only 

reviewed CRP relations as studies with IL-6 measurement were few. For age, we 

separated the studies with mean age less than 50 (younger group), and more 

than equal to 50 (older group).  
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4.5.1.1 For DBP 

Younger group: All studies which adjusted for insulin sensitivity (n=3) showed a 

significant relationship between CRP and DBP ((909;910;912)).  These studies 

included both sexes but with a higher proportion of males. The studies in this 

group which did not adjust for insulin sensitivity showed no relation between 

CRP and DBP (913-917).  

Older group: No studies in this group reported a relationship between CRP and 

DBP except for Cheung et al. (911). However, Cheung et al. showed a 

relationship only in cross sectional analysis (and not in an accompanying 10 year 

longitudinal analysis) (911). In summary DBP, was associated with CRP in a 

younger population with male predominance when analysis was adjusted for 

insulin sensitivity.  

4.5.1.2 For SBP 

Younger group: Considering the three studies which also adjusted for insulin 

sensitivity (909;910;912), only one reported a significant relationship between 

SBP and CRP (912). These studies (showing no relationship) were of 

predominantly male populations. Among the studies in the younger group that 

were not adjusted for insulin sensitivity, four showed a significant relationship 

with CRP (913;916-918), while two showed none (914;915). No sex pattern was 

obvious in these relationships.  

Older group: Considering the studies which adjusted for insulin sensitivity, all 

four cross sectional studies showed a significant relationship with CRP (911;919-

921); only the longitudinal study did not show an association (911). Again, there 

was no obvious difference according to sex. Three cross sectional studies which 

did not adjust for insulin sensitivity showed a relationship with CRP (922-924). 

However, five cross sectional (925-929) and one longitudinal (930) studies (not 

adjusting for insulin sensitivity) did not show any relation with CRP. No sex 

association was seen in these relations.   
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Figure 4.1 PRISMA flowchart of CRP search 
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Figure 4.2 PRISMA flowchart of IL-6 search 
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4.5.2 C reactive protein and BP/Hypertension 

Table 4.1  Relationship of CRP with Blood pressure, adjusted for insulin sensitivity in Cross sectional studies 

Author year 
Race/ 

country 
Sample 

size 
sex 

Age 
range/ 
mean 

Outcome 
variable 

Sig Ass Adjusted for 
Stats 
used 

Assay Adj IS 

CRP as Continuous 

Festa A 
(919) 

2000 
Multiethnic/ 

USA 
1008 

43% 
male 

40-69/ 
55 

SBP/DBP Yes/No 
age, sex, clinic, Eth, 

Smok, BMI, F glucose, F 
insulin, ISI,  proinsulin 

Beta 
ultrasensitive 
competitive 

immunoassay 

ISI 
(MINMOD) 

Yamada S 
(920) 

2001 
Japanes/ 

Japan 
6107 

37% 
male

s 

≥30/ 
55.5 

SBP Yes 

age, SBP, T Chol, HDL, 
TG, Glucose, BMI, 

fibrinogen, Smok, insulin, 
WHR 

OR 
particle enhanced 

nephelometry 
insulin 

Aldaghri 
NM (910) 

2010 
Arabs/ 

Saudi Arabia 
330 

56% 
Male

s 
48 

SBP, 
DBP 

NO (in all F 
& M gps), 
Yes (in IR 

males only) 

age, BMI, WC, glucose, 
insulin, HOMA-IR, HDL, , 
LDL, TG, T Chol, CRP, 

TNF-α 

Beta Elisa HOMA IR 

Kawamoto 
R (921) 

2011 
Japanese/ 

Japan 
1919 

43% 
Male

s 

20-89/ 
62 

SBP/DBP 
Yes 

women/No 

Age, BMI, Smok, alcohol, 
Hx of CVD, anti HTN Rx, 
TG, HDL, LDL, statins, 
uric acid, F glucose, F 
insulin, adiponectin, 

antiDM Rx 

Beta nephelometer 
Fasting 
insulin 

Labonte 
ME (912) 

2012 
Caucasians/ 

Canada 
801 

46% 
male

s 
36 

SBP, 
DBP 

Yes, Yes Age, sex, WC, smoking OR 
hsCRP-

nephelometer 
Insulin 

CRP as Categorical 

Cheung 
BMY (911) 

2012 
Chinese/ 

Hong Kong 
1925 

46% 
male

s 

25-74/ 
54 

ΔSBP/
ΔDBP 

Yes/Yes 

Age, sex, BMI, TG, HDL, 
glucose, HOMA-IR, 

Smok, Hx of CV disease, 
BP, Rx of 

hypercholesterolemia 

OR sandwich ELISA HOMA-IR 

Bautista 
LE (909) 

2004 
Caucasians/ 

USA 
904 

86% 
male

s 

39-50/ 
43.1 

SBP/D
BP 

No/Yes 
sex, BMI, insulin, Eth, 

family Hx 
Beta 

immunoturbidimetric 
latex agglutination 

method 

serum 
insulin levels 
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Table 4.2 Relationship of CRP with hypertension, adjusted for insulin sensitivity in Cross sectional studies 

Author year 
Race/ 

country 
Sample 

size 
sex 

Age 
range/ 
mean 

Outcome 
variable 

Sig 
Ass 

Adjusted for 
Stats 
used 

Assay Adj IS 

CRP as Categorical 

LI 
Hongmei 

(931) 
2012 

Mangolian/ 
Japanese 

2553 
41% 

males 
45 HTN Yes 

age, sex, familoy history, 
smoking, alcohol, overweight, TG 

OR immunoturbidimetry HOMA IR 

Bautista 
LE (909) 

2004 
Caucasians/ 

USA 
904 

86% 
males 

39-50/ 43.1 HTN Yes sex, BMI, insulin, Eth, family Hx OR 
immunoturbidimetric 
latex agglutination 

method 

serum insulin 
levels 

 
Following abbreviations will be used in the following tables also.  
F= females, M= Males, Eth= ethnicity, BMI= body mass index, T Chol= total cholesterol, SBP= systolic blood pressure, DBP= diastolic blood pressure, F= 
fasting, HDL= high density lipoprotein, LDL= low density lipoprotein, TG= triglyceride, Smok= smoking, WC= waist circumference, WHR= waist hip ratio, 
Hx= history, Rx= treatment, DM= diabetes, HRT= hormone replacement therapy, SES= socio economic status, Phy Act= physical activity, alcohol= 
consumption of alcohol, CRP= C reactive protein, IL-6= interleukin 6, TNFα= Tumour necrosis factor-alpha, HTN= hypertension, CAF= central abdominal 
fat, apo= apolipoprotein, Edu= education, HOMA-IR= homeostasis model for assessment of insulin resistance, ISI= insulin sensitivity index,  
RR= Relative risk, OR= Logistic regression (odds ratio), HR= Hazard ratio, Beta= Multiple regression (Beta), c=categorical (both CRP and BP), Corr= 
Correlation, PR= Prevalence ratio, g= genes related to hypertension 
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Table 4.3 Relationship of CRP with Blood pressure, not adjusted for insulin sensitivity in Cross sectional studies 

Author year 
Race 

country 
Sample 

size 
sex 

Age 
range/ 
mean 

Outcome 
variable 

Sig Ass Adjusted for 
Stats 
used 

Assay 

CRP as Continuous 

Onat A (925) 2001 
Turkish/ 
Turkey 

1046 
50% 

males 
≥30/51 SBP/DBP No/No 

age, sex, clinic, Eth, Smok, 
BMI, DBP, SBP, F glucose, 

income 
Beta 

particle enhanced 
immunonephelome

try 

Bermedez 
Edmund A (922) 

2002 
Caucasians/ 

USA 
340 

100% 
females 

60 SBP Yes 
age, BMI, smoking, Alcohol, 
DM, Exercise, HRT, HDL, T 

chol 
Beta 

hsCRP-BN II 
analyzer 

Schillaci G (913) 2003 
Caucasians/ 

USA 
135 

44% 
males 

47 SBP, DBP Yes, NO 
age, sex, Smok, BMI, T 

Chol, LDL, HDL, TG, heart 
rate 

Beta hs nephelometer 

Greenfield JR 
(926) 

2004 
Caucasians/ 

UK 
194 

100% 
females 

57 SBP, DBP NO, NO 
CAF, TG, apo B, HRT, LDL, 

HDL, apo A1, Phy Act, 
alcohol 

Corr for 
SBP, 

Beta for 
DBP 

hs automated 
microplate capture 

enzyme 
immunoassay 

Schutte AE (914) 2006 
African and 
Caucasian/ 
South Africa 

217 
100% 

females 
31 SBP, DBP NO, NO age, BMI, WC Corr 

hs 
immunochemistry 

Wong LYF (923) 2007 
Hong Kong 
Chinese/ 

China 
502 

53% 
mlaes 

55 SBP Yes age, WC, LDL Beta hs ELISA 

Sung SH (927) 2008 
Chinese/ 
Taiwan 

2045 
34% 

males 
56 SBP, DBP NO, NO Age, sex, BMI, WC 

Beta, 
OR 

Particle enhanced 
immunoturbidimetr

y 
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Asferg Camilla 
(928) 

2009 
Danish/ 

Denmark 
487 

48% 
males 

36-80/ 62 SBP/DBP No/No 

age, sex, DM, T Chol, HDL, 

TG, glucose, HbA1c, WC, 

BMI, WHR, creatinine, 

fibrinogen, alcohol, Smok, Phy 

Act 

Beta 
nephelometric 

assay 

Torun D (915) 2012 
Turkish/ 
Turkey 

95 
43% 

males 
37-69/ 48 SBP/DBP No/No 

BMI, fibrinogen, urinary 
albumin, Lt ventricular mass 

index 
Beta 

Nephelometric 
method 

CRP as Categorical 

Abramson JL 
(916) 

2002 
Caucasians/ 

USA 
9867 

51% 
males 

38 SBP, DBP Yes, NO 
age, sex, race, Edu, T Chol, 
BMI, WHR, Smok, alcohol, 

Phy Act, anti HTN Rx 
OR 

latex enhanced 
nephelometry 

Niu Kaijun (924) 2005 
Japanese/ 

Japan 
643 

49% 
males 

76 SBP YEs 

age, sex, BMI, Smok, DM, HDL, 
hypercholesterolemia, gout, 

Hx of CVD, alcohol 
Beta 

hs 
immunotechnique 

Davey Smith G 
(929) 

2005 
British/ 

UK 
3529 

100% 
Females 

60-79/ 69 
ΔSBP/ΔDB

P 
No/No 

Age, BMI, Phy Act, Smok, 
DM, alcohol, HRT, Family 

Hx of CVD, TG, HDL, 
Height, WHR, FEV1, SES. 

OR 
hs 

immunonephelome
tric assay 

Sorensen MV 
(918) 

2006 
Siberian/ 
Siberia 

265 
33% 

males 
45 SBP 

Yes 
males 
only 

age, WC, smoking 
ANCOV

A 

hs 
immunoturbidimetr

ic 

King Dana E 
(917) 

2004 
Caucasians/ 

USA 
16966 

43% 
males 

40 SBP, DBP Yes, NO 
age, sex, Eth, Smok, BMI, Phy 

Act, Rx, DM 
OR-c hs nephelometer 
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Table 4.4 Relationship of CRP with hypertension, not adjusted for insulin sensitivity in Cross sectional studies 

Author year 
Race 

country 
Sample 

size 
sex 

Age 
range/ 
mean 

Outcome 
variable 

Sig 
Ass 

Adjusted for 
Stats 
used 

Assay 

CRP as Continuous 

Sung SH (927) 2008 
Chinese/ 
Taiwan 

2045 
34% 

males 
56 HTN No Age, sex, BMI, WC OR 

Particle enhanced 
immunoturbidimetry 

Chamarthi B 
(932) 

2011 
Multiethnic/ 
USA and 
France 

581 
50% 

males 
44 HTN No age, BMI, sex, Eth OR 

hsCRP enzyme linked 
assay 

Wang Guiyan 
(933) 

2011 
Mangolians/ 

China 
2589 

41% 
males 

47 HTN Yes 

Age, sex, BMI, WHR, F 
Glucose, Smok, alcohol, 

LDL, T chol, TG and family 
Hx 

OR immunoturbidimetry 

CRP as Categorical 

Niu Kaijun 
(924) 

2005 
Japanese/ 

Japan 
643 

49% 
males 

76 HTN Yes 
age, sex, BMI, Smok, DM, 

HDL, hypercholesterolemia, 
gout, Hx of CVD, alcohol 

OR hs immunotechnique 

Davey Smith G 
(929) 

2005 
British/ 

UK 
3529 

100% 
Females 

60-79/ 
69 

HTN no 

Age, BMI, Phy Act, Smok, 
DM, alcohol, HRT, Family Hx 

of CVD, TG, HDL, Height, 
WHR, FEV1, SES. 

OR 
hs 

immunonephelometric 
assay 
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Lakoski SG 
(934) 

2005 
Caucasians/ 

USA 
6814 

50% 
males 

45-84/ 
63 

HTN yes 

age, sex, BMI, LDL, HDL, 
DM, Phy Act, Smok, alcohol, 
use of HMG-CoA reductase 
inhibitors, oestrogen Rx and 

aspirin 

OR hs nephelometer 

Bautista LE 
(935) 

2005 
Caucasians/ 

Colombia 
196 

37% 
males 

30-64/ 
44 

HTN No 
Age, sex, BMI, family Hx, 

other inf marker (CRP, IL6 or 
TNFα) 

PR High Sen ELISA 

Imatoh Takuya 
(936) 

2007 
Japanese/ 

Japan 
249 

100% 
males 

23-70/ 
58 

HTN No age, BMI, Smok, alcohol, OR 
hs 

immunonephelometric 
assay 

Xu Tan (937) 2008 
Chinese/ 

China 
1529 

47% 
males 

30-84/ 
50 

HTN Yes 
Overweight, alcohol, Family 

Hx 
OR immunoturbidimetry 

Huffman FG 
(938) 

2009 
Cubans/ 

USA 
161 

34% 
males 

62 HTN No 

age, sex, BMI, Smok, 
cholesterol Rx, 

antiinflammatory Rx, family 
Hx of DM and CVD 

OR immulite method 

Komurcu BE 
(939) 

2009 
Turkish/ 
Turkey 

1987 
49% 

males 
54.3 HTN yes 

Age, BMI, Smok, glucose, 
menopausal status 

OR. 
CRP-g 

particle enhanced 
immuno nephelometry 
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Table 4.5 Relationship of CRP with Blood pressure, adjusted for insulin sensitivity in longitudinal studies 

Author year 
Race/ 

country 
Sample 

size 
sex 

Age 
range/ 
mean 

Outcome 
variable 

Sig 
Ass 

Adjusted for 
FU 
Yr 

Stats 
used 

Assay Adj IS 

Cheung 
BMY 
(911) 

2012 
Chinese/ 

Hong 
Kong 

1115 
44% 

males 
25-74/ 

50 
ΔSBP/ΔDB

P 
No/No 

Age, sex, BMI, TG, HDL, glucose, 
HOMA-IR, Smok, Hx of CV disease, 

BP, Rx of hypercholesterolemia 
10 OR 

sandwich 
ELISA 

HOMA-IR 

CRP was used as categorical variable 
 

Table 4.6 Relationship of CRP with hypertension, adjusted for insulin sensitivity in longitudinal studies 

Author year 
Race/ 

country 
Sample 

size 
sex 

Age 
range/ 
mean 

Outcome 
variable 

Sig 
Ass 

Adjusted for 
FU 
Yr 

Stats 
used 

Assay Adj IS 

Cheung 
BMY 
(911) 

2012 
Chinese/ 

Hong 
Kong 

1115 
44% 

males 
25-74/ 

50 
HTN Yes 

Age, sex, BMI, TG, HDL, glucose, 
HOMA-IR, Smok, Hx of CV disease, 

BP, Rx of hypercholesterolemia 
10 OR 

sandwich 
ELISA 

HOMA-IR 

CRP was used as categorical varibale 
 

Table 4.7 Relationship of CRP with Blood pressure, not adjusted for insulin sensitivity in longitudinal studies 

Author year 
Race/ 

country 
Sample 

size 
sex 

Age 
range/ 
mean 

Outcome 
variable 

Sig Ass Adjusted for 
FU 
Yr 

Stats 
used 

Assay 

CRP as continuous 

Lieb 
Wolfgang 

(930) 
2008 

Caucasians/ 
USA 

1029 
46% 

males 
54 ΔSBP Yes 

Age, sex, BMI, SBP, DBP, 
total:HDL cholesterol ratio, TG, 
lipid lowering Rx, HRT, Smok 

4 Beta nephelometer 

Lakoski SG 
(940) 

2006 
White, African 

American/ 
USA 

5115 
50% 

males 
32 

ΔSBP/ 
ΔDBP 

No/No 

age, Eth, BMI, Smok, alcohol , 
LDL, HDL, Hx of DM, cholesterol-

lowering medication, Phy Act, 
clinical site 

7 Beta hs CRP 
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Table 4.8 Relationship of CRP with hypertension, not adjusted for insulin sensitivity in longitudinal studies 

Author year 
Race/ 

country 
Sample 

size 
sex 

Age 
range/ 
mean 

Outcome 
variable 

Sig 
Ass 

Adjusted for 
FU 
Yr 

Stats 
used 

Assay 

CRP as continuous 

Wang TJ 
(941) 

2007 
Caucasians/ 

USA 
1456 

42% 
males 

56 HTN Yes 

age, sex, BMI, % weight 
change, DM, Smok, SBP, 

DBP, serum creatinine, PAI-1 
and UACR 

3 OR hs nephelometer 

Dauphinot V 
(942) 

2009 
French/ 
France 

160 
35% 

males 
≥65/ 65.6 HTN yes 

CRP, change in CRP, BMI, 
24 hr Sys ABPM(ambulatory 
BP measurement), change in 

24 hr sys ABPM 

2 OR 
turbidimetric 

immunoassay 

Mattace Raso 
(943) 

2010 
Caucasians/ 
Netherland 

1637 
41% 

males 
64 HTN Yes 

age, Sex, SBP, BMI, T chol, 
HDL, DM, Smok, Leucocyte 

count 
12 OR 

infrred particle 
immunoassay 

Pitsavos C 
(944) 

2008 
Caucasians/ 

Attica-Greece 
782 

54% 
males 

45 HTN Yes 
Age, sex, Edu, WC, SBP, T 

chol, Phy Act 
5 OR 

particle 
enhanced 

immunonephelo
metry 

CRP as categorical 

Sesso HD 
(895) 

2003 
Caucasians/ 

USA 
11605 

100% 
females 

≥45/ 53.7 HTN Yes 

Age, Rx assigned (aspirin), 
BMI, Smok, Phy Act, alcohol, 

Family Hx, DM, 
Cholesterolemia 

7.8 RR hs assay 
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Niskanen L 
(896) 

2004 
Caucasians/ 

Finland 
379 

100% 
males 

50 HTN Yes 
Age, BMI, WC, Lipid profile, 

Glucose, Smok, Phy Act 
11 OR 

immunometric 
assay 

Lakoski SG 
(940) 

2006 
White, African 

American/ 
USA 

5115 
50% 

males 
32 HTN No 

age, Eth, BMI, Smok, alcohol 
, LDL, HDL, Hx of DM, 
cholesterol-lowering 

medication, Phy Act, clinical 
site 

7 OR hs CRP 

Lakoski SG 
(945) 

2011 
Multiethnic/ 

USA 
3543 

49% 
males 

45-84/ 60 HTN No 
age, BMI, Eth, Smok, DM, 

statin use, aspirin use, 
alcohol, study site 

5 HR 
BNII 

Nephelometer 

 

Table 4.9 Relationship of CRP with hypertension, not adjusted for insulin sensitivity in Case Control Studies 

Author year 
Race/ 

country 
Sample 

size 
sex 

Age 
range/ 
mean 

Outcome 
variable 

Sig 
Ass 

Adjusted for 
FU 
Yr 

Stats 
used 

Assay 

CRP as continuous 

Wang Lu 
(946) 

2011 
White and 

Black/ 
USA 

800 HTN, 
800 control 

100% 
females 

60 HTN No 
age, BMI, clinical centre, and 

time of enrollment, Smok, 
alcohol, Phy Act, HRT use 

5.9 RR 
ultrasensitive 
immunotech 

CRP as categorical 

Sesso HD 
(947) 

2007 
Caucasian

s/ 
USA 

400 cases, 
400 control 

100% 
females 

45+/ 
54.5 

HTN No 
BMI, Smok, alcohol, Phy Act, 
menopausal status, family Hx 

10 RR 
High 

sensitive 
assay 

Both studies were prospective  
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4.5.3 Interleukin-6 and BP/Hypertension 

Table 4.10 Relationship of IL-6 with blood pressure, adjusted for insulin sensitivity in Cross sectional studies 

Author year 
Race/ 

country 
Sample 

size 
sex 

Age 
range/ 
mean 

Outcome 
variable 

Sig Ass Adjusted for 
Stats 
used 

Assay Adj IS 

Aldadhri 
NM(910) 

2010 
Arabs/ 
Saudi 
Arabia 

330 
56% 

Males 
48 SBP, DBP 

NO, NO (in 
all M & F 

gps) 

age, BMI, WC, glucose, 
insulin, HOMA-IR, HDL, LDL, 

TG, T Chol, CRP, TNF-α 
Beta Elisa 

HOMA 
IR 

 

Table 4.11 Relationship of IL-6 with hypertension, adjusted for insulin sensitivity in Cross sectional studies 

Author year 
Race 

country 
Sample 

size 
sex 

Age 
range/ 
mean 

Outcome 
variable 

Sig Ass Adjusted for 
Stats 
used 

Assay Adj IS 

Cheung 
BMY 
(948) 

2011 
Chinese/ 

Hong Kong 
831 

50% 
males 

55 HTN yes (in F) 
Age, BMI, glucose, 

HOMA IR, sex, Smok 
OR ELISA HOMA-IR 

 

Table 4.12 Relationship of IL-6 with blood pressure, not adjusted for insulin sensitivity in Cross sectional studies 

Author year 
Race 

country 
Sample 

size 
sex 

Age 
range/ 
mean 

Outcome 
variable 

Sig Ass Adjusted for 
Stats 
used 

Assay 

IL-6 as continuous 

Fernandez-
Real JM 

(949) 
2001 

Caucasians/ 
Spain 

228 
58% 

males 
40 

SBP, 
DBP 

Yes, Yes (in total, 
females and non-

smokers only) 
BMI or fat mass Beta 

Immunoa
ssay 
Elisa 

Bermedez 
Edmund A 

(922) 
2002 

Caucasians/ 
Usa 

340 
100% 

females 
60 SBP Yes 

age, BMI, Smok, alcohol, DM, Phy 
Act, HRT, HDL, T chol 

Beta ELISA 
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Chae CU 
(950) 

2001 
Caucasians/ 

USA 
587 

100% 
males 

59.2 
SBP

c
/ 

DBP
c
 

Yes/Yes 
age, Hx of DM, high cholesterol, 
alcohol, family Hx of MI, aspirin 

use, Smok, Phy Act, BMI 
Beta ELISA 

c
=BP used as a categorical variable 

 

Table 4.13 Relationship of IL-6 with hypertension, not adjusted for insulin sensitivity in Cross sectional studies 

Author year 
Race/ 

Country 
Sample 

size 
sex 

Age range/ 
mean 

Outcome 
variable 

Sig Ass Adjusted for 
Stats 
used 

Assay 

IL-6 as continuous 

Chamarthi B 
(932) 

2011 
Caucasians/ 

USA and 
France 

581 
50 % 
males 

45 HTN Yes age, BMI, sex, Eth OR ELISA 

IL-6 as categorical 

Bautista LE 
(935) 

2005 
Caucasians/ 

Colombia 
196 

37 % 
male 

30-64/44 HTN Yes 
Age, sex, BMI, family Hx, other inf 

marker (CRP, IL6 or TNFα) 
PR 

High Sen 
ELISA 

 

Table 4.14 Relationship of IL-6 with hypertension, not adjusted for insulin sensitivity in longitudinal studies 

Author year 
Race 

country 
Sample size sex 

Age 
range/ 
mean 

Outcome 
variable 

Sig 
Ass 

Adjusted for 
FU 
Yr 

Stats 
used 

Assay 

Lakoski SG 
(945) 

2011 
Multi-ethnic/ 

USA 
3543 

49% 
males 

45-84/ 
60 

HTN Yes 
age, BMI, sex, Eth, Smok, DM, 
statin use, aspirin use, alcohol 

use, MESA study site 
5 HR 

ultrasen
sitive 
ELISA 

Study was prospective, CRP was used as a categorical variable 
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Table 4.15 Relationship of IL-6 with hypertension, not adjusted for insulin sensitivity in case control studies 

Author year 
Race/ 

country 
Sample 

size 
sex 

Age 
range/ 
mean 

Outcome 
variable 

Sig 
Ass 

Adjusted for 
FU 
Yr 

Stats 
used 

Assay 

CRP as continuous 

Wang Lu 
(946) 

2011 
White and 

Black/ 
USA 

800 HTN, 
800 control 

100% 
females 

60 HTN No 
age, BMI, clinical centre, 
time of enrollment, Smok, 

alcohol, Phy Act, HRT 
5.9 RR ELISA 

CRP as Categorical 

Sesso HD 
(947) 

2007 
Caucasians/ 

USA 
400 cases, 
400 control 

100% 
females 

45+/ 
54.5 

HTN No 
BMI, Smok, alcohol, Phy 
Act, menopausal status, 

family Hx 
10 RR ELISA 

Both studies were prospective 
 
Abreviations: 
F= females, M= Males, Eth= ethnicity, BMI= body mass index, T Chol= total cholesterol, SBP= systolic blood pressure, DBP= diastolic blood pressure, F= 
fasting, HDL= high density lipoprotein, LDL= low density lipoprotein, TG= triglyceride, Smok= smoking, WC= waist circumference, WHR= waist hip ratio, 
Hx= history, Rx= treatment, DM= diabetes, HRT= hormone replacement therapy, SES= socio economic status, Phy Act= physical activity, alcohol= 
consumption of alcohol, CRP= C reactive protein, IL-6= interleukin 6, TNFα= Tumour necrosis factor-alpha, HTN= hypertension, CAF= central abdominal 
fat, apo= apolipoprotein, Edu= education, HOMA-IR= homeostasis model for assessment of insulin resistance, ISI= insulin sensitivity index,  
RR= Relative risk, OR= Logistic regression (odds ratio), HR= Hazard ratio, Beta= Multiple regression (Beta), c=categorical (both CRP and BP), Corr= 
Correlation, PR= Prevalence ratio, g= genes related to hypertension
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4.6 Discussion 

In this systematic review, I examined relationships between inflammatory 

markers (CRP and IL-6) and blood pressure (systolic BP, diastolic BP and the 

development of hypertension) focusing on studies which also measured insulin 

sensitivity and adiposity. 

Adipose tissue dysfunction is associated with overweight and obesity and also 

alters adipokine production resulting in increased production of leptin, TNF-α 

and IL-6 but decreased adiponectin. It is characterized by hypertrophied 

adipocytes and infiltration by macrophages (325). Healthy adipose tissue is 

populated with 5–10% macrophages but this macrophage infiltration increases up 

to 60% in obesity (507). Inflamed macrophages release TNF-α and IL-6 which 

have been shown to impair insulin sensitivity and increase blood pressure 

(360;835). Obesity leads to activation of inflammatory pathways in all insulin 

target tissues, including fat, liver and muscle, signifying a role for inflammation 

in driving the pathogenesis of systemic insulin resistance (831). Proposed 

mechanisms leading to inflammation in obesity include oxidative stress, 

lipotoxicity (increased free fatty acids), glucotoxicity, endoplasmic reticulum 

stress, hypoxia, amyloid and lipid deposition (831). Decrease in adiponectin (an 

anti-inflammatory adipokine) also adds to insulin resistance as adiponectin 

receptors on liver and muscle cells mediate β-oxidation of fatty acids, glucose 

uptake, gluconeogenesis and peroxisome proliferator activated receptor-γ 

activation (325;330). 

Insulin resistance may have a biological relationship with inflammation: for 

example, insulin sensitising agents have been shown to reduce serum levels of 

inflammatory markers, and a decrease in IR (as measured by HOMA) causes a 

decrease in inflammation (908;951). Conversely, some anti-inflammatory agents 

(salsalates) have been shown to improve glucose utilization and insulin 

sensitivity in euglycaemic hyperinsulinaemic clamp studies (612). Salsalates also 

improve glycaemia in patients with type 2 diabetes (952).  

From the analysis in the present Chapter, it is clear that these relationships have 

been evaluated in many studies, including large cohorts, but the cumulative 

evidence is not supportive of a robust and consistent relationship. There is a 
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weak evidence of a relationship between CRP and BP (as a continuous variable) 

in cross sectional studies but few longitudinal studies are available for 

evaluation. However, there is evidence for an association between CRP and 

hypertension per se (as a categorical variable) not only in some cross sectional 

reports but also in some longitudinal cohort studies.  

In the present review, more studies reported a significant relationship between 

CRP and BP/hypertension when analyses were adjusted for insulin sensitivity 

(and not just adiposity). However, none of the studies measured insulin 

sensitivity by the gold standard euglycaemic clamp technique.  

Although fewer studies are available considering IL-6 as an inflammatory marker, 

all cross sectional and longitudinal studies except one (910) showed that IL-6 

was associated with SBP, DBP and HTN. This relationship was not affected by 

age, sex, ethnicity or the size of the cohort. However, both case control studies 

did not show any relationship between IL-6 and hypertension. 

The studies reviewed were clearly heterogeneous in terms of ethnicity, age, sex 

distribution and sample size; however, none of these factors had a profound 

impact on the relationship between inflammatory markers and BP/ 

hypertension. There was less heterogeneity in relation to the outcome variable: 

BP or ∆BP as continuous variables or presence or absence of hypertension as a 

categorical variable. Only one study used categorical BP as an outcome variable 

(950). The inflammatory markers (both CRP and IL-6) were used both as a 

continuous or categorical variable but this did not have a substantial effect and 

both had similar results. 

Considering sample size and the relationship between CRP and SBP, large studies 

by Yamada et al (n=6107) (920) and King et al (n=16966) (917) showed a 

relationship; however, this was not the case in other large studies by Sung 

(n=2045) (927) and Davey et al (n=3529) (929). Similarly for HTN, Wang et al 

(n=2589 (933) and Lakoski et al (n= 6814) (934) showed a relationship between 

CRP and HTN but this was not demonstrated by Davey et al (n=3529) (929) and 

Sung et al (n=2045) (927). In relation to sex, only three studies specifically 

showed a significant positive relationship between CRP and BP/HTN in females 

(895;921;922) and only two studies showed a relationship between CRP and 
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BP/HTN in males (896;910); all these studies had a small sample size (< n= 400) 

except for two; Sesso et al. (n=11605) (895) and Kawamoto et al. (n= 1097) 

(921). Most of the studies did not show results stratified by males and females 

and so the type of relationship in each sex cannot be determined from pooled 

population results. For those studies that were positive, it is not clear whether 

the results were significant in either sex when considered separately.  

Regarding age, the relationship varied in younger and older individuals. For DBP, 

there was a relationship with CRP in younger and predominantly male 

populations following adjustment for insulin sensitivity. For SBP, some studies 

showed a relationship between CRP and SBP in older populations but this was not 

robust. Taking age and sex together, the studies I reviewed were not conclusive 

overall but it would be valuable if future studies consistently reported results 

stratified by sex and age.  

Considering heterogeneity in the results, one possible approach was to meta-

analyse by age categories. However, this was not possible as the age distribution 

was wide in most of the studies (from around 20-89 years) with only one study 

(909) clearly showing a younger age distribution (age range 39-50); other studies 

documenting younger mean age did not clearly state age distribution. Similarly, 

meta-analysis by sex was also not possible as only a few studies reported sex 

stratified results, which were also heterogeneous in outcome (SBP, DBP and 

hypertension) and study type (cross sectional, longitudinal or case control). This 

analysis did not provide any robust findings: individual participant data meta- 

analysis might provide some evidence but would depend upon obtaining the 

original datasets from the authors of all the published papers.  

The relationship between BMI and BP or HTN has been demonstrated in many 

studies and is widely accepted (899-906). One explanation for the findings may 

be that the chain of causation between obesity and high BP involves both 

inflammation and insulin resistance, and not inflammation alone. This argument 

is supported by the trials (953-955) in which insulin sensitizers lowered BP and 

also affected CRP: Sanchez et al. showed that telmisartan (an angiotensin 

receptor blocker which also decreases insulin resistance through partial agonist 

effect on peroxisome proliferators-activated receptor-γ) reduced BP as well as 

CRP and HOMA-IR (954). In addition Chujo et al. showed that telmisartan 
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reduced BP, HOMA-IR, IL-6 and CRP despite no change in BMI (953). Similarly 

Yano et al compared Valsartan (an angiotensin receptor blocker without insulin 

sensitising action) with telmisartan and showed that both drugs lowered BP, but 

only telmisartan additionally lowered CRP and microalbuminuria in and 

increased adiponectin (955).  

In summary, this systematic review showed evidence of considerable variation in 

the relationships amongst low grade inflammation, adiposity, insulin resistance 

and the development of hypertension. However, CRP and DBP appear to be 

associated in younger age. It appears from the literature that inflammation and 

insulin resistance are closely related, with evidence that reducing inflammation 

lowers insulin resistance and that insulin sensitisation can decrease low grade 

inflammation. From a clinical perspective, given the knowledge that obesity 

increases insulin resistance, low grade chronic inflammation and BP, it makes 

sense to focus on weight reduction when designing interventions to improve 

cardio metabolic health (rather than specifically targeting inflammation).   

Decreasing BMI by bariatric surgery (904-906) or very low caloric diet (VLCD) 

(956) decreases both inflammatory markers and insulin resistance: these effects 

are sustained provided weight loss is maintained. If inflammation or insulin 

resistance is decreased without decreasing BMI, the effect on BP may be only 

short-term.   
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5 Inflammatory markers, blood pressure, incident 
hypertension and insulin resistance in a healthy 
European population – RISC study.  
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5.1 Introduction 

As seen in chapter 3, and as has reported in the literature, insulin resistance (IR) 

has been associated with a rise in BP over time which may be relevant to the 

development of hypertension, particularly in women (196;811;871;882;883). 

However, insulin resistance is also related to obesity (907) and inflammation 

(908). In chapter 3 it is also the case that insulin sensitivity was related to BP 

when estimated by HEC, but not when estimated by HOMA. This gives an 

indication that surrogate markers may lack sensitivity for assessing relationships 

between IR and different biomarkers or pathways. Mendelian randomisation can 

be used to determine the causality or otherwise of specific hormones and 

mediators in the pathogenesis of disease. This approach has been used for CRP 

as gene variants have been identified which link with blood CRP concentration. A 

Mendelian randomisation meta-analysis of four CRP single nucleotide 

polymorphisms (SNP) showed them to be related to concentration of CRP but not 

to BP or cardiovascular disease (723), suggesting that any relationship between 

inflammatory markers and BP/hypertension is unlikely to be causal. However 

mechanistic links between insulin resistance, inflammation, obesity, and blood 

pressure remain poorly understood and requires further exploration. 

The systematic review in chapter 4 showed no clear evidence of a significant 

independent relationship between inflammatory markers and BP/hypertension in 

studies which adjusted for insulin sensitivity and markers of adiposity. However, 

these studies were either small or used surrogate markers of insulin sensitivity. 

These findings identified the need for a large study in this area using the 

hyperinsulinaemic euglycaemic clamp technique, the acknowledged gold 

standard for the assessment of insulin sensitivity (IS) (776). Chapter 4 also 

identified the importance of age and sex stratification. Therefore, in this 

chapter I have evaluated the relation between inflammatory markers (hsCRP and 

IL-6) and hypertension/BP in the RISC cohort, which is well-characterised for 

insulin sensitivity and obesity. The objective was to examine the effect of age 

and sex on any relationship, given their effects on body composition and 

especially fat mass (which in turn is related to vascular pathophysiology). 
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5.2 Methods 

The methods for the RISC study were as in Chapter 2 above.  

Of the total 1,563 participants, 946 (502 women and 444 men) had complete 

data at the three year follow up for inflammatory markers and so were included 

in the study. Individuals with hsCRP more than 10 mg/L at baseline (n=19) were 

excluded in order to avoid overestimating long term exposure to low grade 

inflammation. HsCRP levels in healthy people are less than 10mg/L and levels 

more than 10mg/L are likely to suggest a possible acute phase response 

(957;958): CRP returns to normal quickly after the acute phase reaction subsides 

(957). Women taking oral contraceptive pills (OCPs) or on hormone replacement 

therapy (HRT) were also excluded from the analysis (n= 45). It has been shown 

that young, healthy, fertile, non-obese women taking OCPs have 4 times higher 

odds of having a high CRP (> 3mg/L) as compared to non-OCP users 

(959).Moreover HRT are also shown to increase CRP (960). 

5.2.1 Statistical Analysis 

In the Introduction (Section 1.11), I have reviewed the evidence that changes in 

body composition take place around 40-45 years of age across different ethnic 

populations and that sex (Section 1.12) has a strong impact on this change. 

Gender and age interactions with change in BP over 3 years as the dependent 

variable were checked for hs-CRP and IL-6 as follows: gender*log(hs-CRP), 

age*log(hs-CRP), gender*log(IL-6) and age*log(IL-6). Taking p<0.10 for 

significance, given the limited statistical power of interaction terms (961), the 

age interaction term (*CRP) for ΔDBP (p= 0.069) was significant in pooled 

analysis. The data were therefore split by median age of the RISC cohort (<45 

years; ≥45 years) for further DBP-CRP analysis. The Framingham Predictors study 

showed that young age and male sex are predictors of isolated diastolic 

hypertension, and that older age and female sex are predictors of isolated 

systolic hypertension (72). In view of this finding from the literature, I 

conducted exploratory analysis for the interaction term age*log(hs-CRP) in males 

only and found it to be significant for ΔDBP (p=0.012).  
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The quadratic terms of hs-CRP and IL-6 were used to check the linearity of 

association with BP, and hs-CRP and IL-6 data met the assumptions for linear 

analysis (962). Baseline measurements were compared by t-test and chi–square 

(²) according to hypertensive status at the three year follow-up. Multiple linear 

regression analysis was used to determine whether baseline hs-CRP and IL-6 

predicted change in BP at three years, including covariates at baseline: age, 

recruitment centre (using indicator variables), systolic/diastolic blood pressure, 

BMI, change in BMI, as well as log M/I with subsequent adjustment for blood 

glucose, lipid profile and lifestyle factors. Binary logistic regression was used to 

assess prediction of hypertension from hs-CRP and IL-6 as continuous variable. A 

test for trend was used to analyse the development of hypertension across 

tertiles of CRP and IL-6 at baseline. SPSS version 18 was used for all analyses. 

5.3 Results 

At three years, median BP had reached a diagnostic threshold for hypertension in 

12.1% of all participants (n=114; 70 men, 44 women); a further 4.2% (n=40; 21 

men, 19 women) had been commenced on antihypertensive treatment in routine 

care i.e. a total of 16.3 % (n= 154; 91 men, 63 women) with incident 

hypertension.    

Table 5.1 shows the baseline characteristics according to hypertension status at 

follow-up. Almost all were different between normotensives and hypertensives 

except IL-6, alcohol intake and smoking status. Insulin sensitivity was higher in 

those who remained normotensive, whereas hsCRP and IL-6 were lower. Weight, 

BMI, fat mass and fat free mass were all significantly lower in the normotensive 

group.  

Table 5.2 shows that baseline CRP predicted unadjusted ΔSBP (β = 0.071, P = 

0.031), but not following adjustment for BMI and other variables. Table 5.3 

shows the prediction of ΔDBP (β = .113, P = 0.001) by CRP: β-values were 

significant after adjustment for BMI, insulin sensitivity (IR) and other variables.  

When the cohort was split by median age (45 years), CRP was a predictor for 

ΔDBP in younger adults (β = 0.171 and p = <0.001) but not those who were 

middle-aged (age≥45, β= 0.049, p = 0.298). The relation in younger adults 

remained significant following adjustment for BMI, IR, lipid profile and life style 
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factors. In younger males CRP predicted ΔDBP (β = 0.263, p = <0.001) and it 

remained significant after adjustment for all the confounding variables (Table 

5.4). Hs-CRP neither predicted ΔDBP in younger and older females, nor predicted 

ΔSBP in younger and older females (Framingham predictors) after adjustment for 

BMI. IL-6 predicted ΔSBP in univariate analysis (β = 0.077, p = 0.019) but not in 

multivariate analysis with adjustment. IL-6 did not predict change in DBP 

(ΔDBP)( Table 5.5). 

As hs-CRP was a significant predictor for only DBP and in young age (≤44 years), 

its specific contribution in explaining the variance was further explored. It 

showed that hs-CRP explained 1.3-1.8 % of the variance; this is shown in model 3 

for the whole population and also for the males only (Table 5.7). The main 

contributors to prediction of risk were baseline DBP and BMI.  

Test for trend for the development of hypertension across tertiles of baseline 

CRP and IL-6 (used as a categorical variable) was significant (p<0.001, p = 0.009 

respectively, unadjusted data) as shown in Figure: 5.1. However, when using 

logistic regression, hs-CRP and IL-6 (used as continuous variable) were not 

significant predictors of hypertension following adjustment for baseline BP 

and/or BMI (Table 5.6)  



Chapter 5 

212 
 

Table 5.1 Baseline Characteristics according to hypertension status at follow-up 

 Total (946) 
Normotensives 

(792) 

Hypertensives 

(154) 
P 

Age (years) 44.4 ± 8.3 43.9 ± 8.2 47.3 ± 8.2 <0.001 

Sex n (% males) 445 (47) 353 (45) 91 (59) <0.01 

Systolic BP (mmHg) 118 ±13 116 ± 12 128 ± 10 <0.001 

Diastolic BP (mmHg) 74 ± 8 73 ± 8 80 ± 7 <0.001 

BMI (Kg/m²) 25.4 ± 3.9 25.0 ± 3.7 27.2 ± 4.1 <0.001 

Weight (Kg) 74.7 ± 14.4 73.5 ± 14 81.2 ± 14.2 <0.001 

Fat Free Mass (Kg) 54.2 ± 11.5 53.5 ± 11.4 57.7 ± 11.8 <0.001 

Fat Mass (Kg) 20.6 ± 8.5 20.0 ± 8.1 23.5 ± 9.5 <0.001 

Clamp Insulin 

Sensitivity (M/I) * 
127.8 ± 1.6 131.2 ± 1.6 111.5 ± 1.7 <0.001 

CRP (mg/L) 0.7 ± 3.2 0.6 ± 3.2 0.9 ± 3.2 <0.01 

IL6 (pg/ml) 0.8 ± 1.9 0.8 ± 1.9 0.9 ± 1.8 0.05 

Glucose (mmol/L) 5.1 ± 0.5 5.0  ± 0.5 5.2  ± 0.5 0.01 

Total Cholesterol 

(mmol/L) 
4.9 ± 0.9 4.8  ± 0.9 5.1 ± 0.9 <0.01 

LDL Cholesterol 

(mmol/L) 
3.0 ± 8 2.9  ± 0.8 3.2 ± 0.8 <0.01 

HDL Cholesterol 

(mmol/L) 
1.4 ± 0.4 1.4  ± 0.4 1.3  ± 0.4 0.01 

Triglycerides (mmol/L)* 1.0 ± 1.6 1.1 ± 1.7 1.1 ± 1.9 <0.01 

Family Hx of HTN n(%) 409 (44) 329 (42) 80 (53) 0.01 

Alcohol grams/week* 62.4 ± 2.5 62.1 ± 2.4 63.9 ± 2.6 0.75 

Smoker n(%) 241 (26) 202 (26) 39 (26) 0.35 

Phys. Activity (Counts 

per min)* 
330.2 ± 1.6 335.8 ± 1.5 301.7 ± 1.7 0.03 
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Table 5.2 Beta coefficients for predicting change in SBP (ΔSBP) over 3 years from log hs-
CRP as independent variable, with various adjustment factors 

Model Independent: CRP Dependent: ΔSBP (946) 

Total population (946) 

 Adjustment factors R2 Beta P 

1 - .005 .071 .03 

2 Centre & Age .111 .047 .15 

3 Model 2 + baseline SBP .191 .088 <0.01 

4 Model 3 + BMI .201 .049 .14 

5 Model 4 + % change BMI .216 .043 .19 

6 Model 5+ Log M/I .219 .038 .26 

7 Model 6 + Glucose, LDL, HDL ,Chol, TG .223 .037 .27 

8 Model 7 + Family Hx .225 .038 .25 

9 Model 8 + Log Alcohol .227 .041 .26 

10 Model 9 + smoking .227 .041 .26 

11 Model 10 + physical activity .224 .041 .37 

12 Model 11+ IL6 .224 .045 .35 
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Table 5.3 Beta coefficients for predicting change in DBP (ΔDBP) over 3 years from log hs-
CRP as independent variable, with various adjustment factors 

All by 

gender 
Independent: CRP Dependent: ΔDBP Dependent: ΔDBP 

  

Total population 

(946) 
Age ≤ 44 (482) Age ≥ 45 (462) 

Model Adjustment factors R2 Beta P R2 Beta P R2 Beta P 

1 - .013 .113 <0.01 .029 .171 <.001 .002 .049 .30 

2 Centre & Age .148 .094 <0.01 .170 .136 <0.01 .157 .038 .40 

3 
Model 2 + baseline 

DBP 
.270 .135 <.001 .303 .180 <.001 .268 .080 .06 

4 Model 3 + BMI .286 .086 <0.01 .326 .123 <0.01 .276 .043 .35 

5 
Model 4 + % 

change BMI 
.302 .079 .01 .329 .118 <0.01 .319 .038 .39 

6 Model 5+ Log M/I .303 .077 .01 .329 .117 <0.01 .319 .038 .40 

7 
Model 6 + Glucose, 

LDL, HDL ,Chol, TG 
.306 .076 .02 .341 .118 <0.01 .330 .040 .37 

8 
Model 7 + Family 

Hx 
.308 .077 .02 .342 .119 <0.01 .332 .040 .37 

9 
Model 8+ Log 

Alcohol 
.309 .079 .02 .347 .129 <0.01 .332 .040 .41 

10 Model 9 + smoking .309 .079 .02 .349 .126 .01 .333 .041 .41 

11 
Model 10 + Physical 

Activity 
.308 .080 .06 .357 .131 .04 - - - 

12 Model 11+ IL6 .309 .088 .05 .357 .132 .05 .335 .059 .26 
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Table 5.4 Beta coefficients for predicting ΔDBP over 3 years from log hs-CRP as 
independent variable in males only, with various adjustment factors 

Males Independent: CRP 

 

Dependent: ΔDBP 

Age ≤ 44 Age ≥ 45 

Model Adjustment factors R2 Beta P R2 Beta P 

1 - .069 .263 <.001 .000 .006 .94 

2 Centre & Age .180 .189 <0.01 .202 .030 .69 

3 Model 2 + baseline DBP .312 .176 <0.01 .306 .043 .53 

4 Model 3 + BMI .327 .137 .03 .307 .026 .72 

5 Model 4 + % change BMI .333 .128 .04 .334 .021 .77 

6 Model 5+ Log M/I .333 .128 .04 .336 .026 .73 

7 
Model 6 + Glucose, LDL, HDL 

,Chol, TG 

.355 .140 .03 .363 .036 .64 

8 Model 7 + Family Hx .357 .141 .03 .366 .036 .64 

9 Model 8+ Log Alcohol .370 .154 .03 .382 .033 .68 

10 Model 9 + smoking .370 .155 .02 .382 .033 .68 

11 Model 10 + Physical Activity - - - - - - 

12 Model 11+ IL6 .371 .170 .02 .397 .089 .29 
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Table 5.5 Beta coefficients for predicting ΔSBP and ΔDBP over 3 years from log IL-6 as 
independent variable, with various adjustment factors 

All by 

gender 

Independent: IL-6 

 
Dependent: ΔSBP Dependent: ΔDBP 

Model Adjustment factors R2 Beta P R2 Beta P 

1 - .006 .077 .02 .001 .029 .37 

2 Centre & Age .110 .027 .40 .140 .018 .58 

3 Model 2 + baseline BP .186 .046 .14 .255 .055 .07 

4 Model 3 + BMI .199 .013 .70 .280 .011 .71 

5 Model 4 + % change BMI .214 .004 .91 .297 .002 .96 

6 Model 5+ Log M/I .218 -.002 .96 .298 .000 1.0 

7 
Model 6 + Glucose, LDL, 

HDL ,Chol, TG 
.222 -.005 .88 .301 .000 1.0 

8 Model 7 + Family Hx .224 -.006 .85 .303 -.001 .97 

9 Model 8+ Log Alcohol .226 -.006 .86 .304 -.001 .98 

10 Model 9+ smoking .226 -.006 .86 .304 -.001 .97 

11 Model 10 + physical activity .222 .003 .94 .303 .002 .96 
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Table 5.6 Odds Ratio (CI) of hs-CRP and IL-6 for development of hypertension in total 
population 

 Univariate Model 1 Model 2 Model 3 

hsCRP 1.81(1.27,2.59)** 1.19 (0.77, 1.84) 1.13 (0.72, 1.76) 0.69 (0.31, 1.52) 

IL6 1.76 (0.99, 3.15) 0.88 (0.42, 1.85) 0.80 (0.37, 1.72) 0.27 (0.07, 1.05) 

**= p <0.01, 
Model 1: Adjusted for age baseline BP, BMI. 
Model 2: Adjusted for Model 1 + % change in BMI and insulin sensitivity (M/I). 
Model 3: Adjusted for model 2 + glucose, total cholesterol, LDL, HDL, TG, family history, 
alcohol intake, smoking and physical activity 
 

Table 5.7 Estimation of contribution of hs-CRP in prediction of DBP in < 45 years age: total 
population and males only 

 Model 1 Model 2 Model 3 Model 4 Model 5 

 Baseline 

DBP 

Model 1 + 

BMI 

Model 2 + 

Log hs-CRP 

Model 3 + 

Age 

Model 4 + % 

change BMI 

Total  R2 .264 .308 .321 .326 .329 

Males R2 .261 .295 .313 .327 .333 

Model R
2
 calculated by multiple regression. Each subsequent model shows increase in R

2
 

with addition of another variable. Hs-CRP contributed only 1.3 % in model 3 (∆R
2
= 0.321-

0.308) in total population, and 1.8 % in model 3 (∆R
2
= 0.313- 0.295) in males. Addition of age 

and % change in BMI contributed minimally to the model.  

 

Table 5.8 Differences in BMI, fat free mass and fat mass by age 

 Total population Males Females 

 Age≤ 

44 

Age≥ 

45 

P Age≤ 

44 

Age≥ 

45 

P Age≤ 

44 

Age≥ 

45 

P 

BMI(kg/m2) 25.1 25.7 0.02 26.0 26.1 0.70 24.2 25.4 <0.01 

Fat free 

mass(Kg) 
55.8 52.4 <.001 66.2 62.9 <.001 45.2 44.4 0.05 

Fat mass 

(Kg) 
19.4 21.8 <.001 17.7 19.0 0.05 21 24 <.001 
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a) 

 

b) 

 

Figure:  5.1 Trend test for development of hypertension over three years in the whole RISC 
population by a) CRP; and b) IL-6 (unadjusted analyses).  
**= P <.01, *** = P <.001 
 

5.4 Discussion 

In this longitudinal study of an initially healthy population, I found that hs-CRP 

predicted change in DBP (ΔDBP) over three years independently of obesity and 

clamp-derived insulin sensitivity. The relationship was most evident in younger 
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adults (age <45) rather than in middle aged participants (age ≥ 45) and in males. 

The present analysis showed that hs-CRP explained 1.3-1.8 % of the variance in 

predicting DBP in younger (<44 years) individuals. There was no relationship 

between CRP or IL-6 and change in SBP (ΔSBP). Neither CRP nor IL-6 predicted 

the development of hypertension after adjustment for BMI. 

Many cross sectional studies have reported the relationship between 

inflammatory markers and BP (909;915;919;921;963-966) or hypertension 

(935;937;963;965). Cheung BMY et al reported a relationship between IL-6 and 

hypertension in a cross sectional analysis but when evaluated longitudinally 

within the same population over 10 years of follow-up this was not detected 

(948). Other longitudinal studies assessing the relationship between IL6 and 

hypertension used trend analysis (945;947) and only one study adjusted for 

insulin resistance by using HOMA-IR (948). Most of the longitudinal studies 

reporting the relation of CRP with hypertension used trend test analysis or CRP 

as a categorical variable (895;896;947;967). Eight longitudinal studies used 

multivariate logistic regression (Table 5.8) but only one study additionally 

adjusted for insulin sensitivity by HOMA-IR (911). None of these studies adjusted 

for IS measured using the clamp method.  

In many studies, the relationship between hypertension and inflammatory 

markers was only significant when examined using test for trend. The same was 

true in our data in that the test for trend was significant for both CRP and IL-6 

using unadjusted data; however, when evaluated using multivariate logistic 

regression with development of hypertension over three years as the (binary) 

outcome variable, the relationship was no longer significant. However, one 

limitation in our cohort is that relatively few participants developed 

hypertension (n = 154) and follow-up was short (three years). It will be 

interesting to examine the relationship over 10 years of follow-up (currently in 

progress).  

The relationship between CRP and DBP was significant in the RISC study only in 

younger individuals, particularly males. As discussed in Chapter 4, CRP was 

related to DBP in previous studies of younger (<50 years) populations 

(909;910;912), but these studies did not present results stratified by sex, or use 

clamp-derived measurements of IS. Here I have shown the results in younger 
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population and males only. Only one longitudinal study showed contrasting 

results of CRP and DBP relation; the CARDIA study (940). The CARDIA cohort age 

range was 18-36 years (mean age 32 years), did not adjust for IR and also did not 

show sex stratified results (940). I excluded patients with CRP > 10mg/L but 

some studies reporting a negative relationship used CRP values as high as 50 or 

100 mg/L (929;965). 

No clear relationship between inflammatory markers and SBP was shown in any 

group defined by age or sex, consistent with the review of the literature 

presented in Chapter 4: here I have also shown in the RISC cohort that after 

adjusting for IS by clamp, there was no significant relation of SBP with CRP or IL-

6 in any age or sex group.  

Aggregating the findings of Chapters 4 and 5, I have shown evidence from the 

literature and the RISC cohort that CRP may be statistically related to rise in 

DBP over time in younger age groups and particularly in males. However, this 

finding is of limited clinical significance and should be confirmed in other 

studies. Inflammatory markers are significantly related to obesity, and their 

levels are dependent on the amount of fat mass in the body. When fat mass is 

low, as in young males, a small influence of inflammatory markers on BP over 

time may be easier to detect. In keeping with this notion, in older individuals 

(and females) with higher fat mass, the influence of fat mass itself may be 

dominant over any effect of inflammatory markers. Thus, higher fat mass may 

confound any direct relationship between CRP and BP.  

An increase in fat mass and a decrease in lean body mass with age has been 

reported in many studies; see Section 1.11 (645;648). I also compared fat free 

mass, fat mass and BMI between younger adults and middle aged groups (in total 

and sex stratified population) and there was a significant increase in fat mass 

and BMI and decrease in fat free mass (Table 5.8). Khera et al. evaluated sex 

differences in the relationship between CRP and body fat in adults to middle 

aged population (30-65 years) (968). They found that BMI and total fat mass 

were higher in women and total fat mass had a positive and a steeper slope 

association with CRP in women. Moreover, CRP increased to a greater degree 

with increasing truncal, intraperitoneal or subcutaneous fat in women as 
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compared to men. Fat distribution (truncal/lower body) was also strongly 

associated with CRP in women (968).  

In mechanistic terms, a rise in DBP can be attributed either to cardiac or 

vascular causes. Cardiac causes manifest as impairment of relaxation of the left 

ventricle, leading to raised pressure during diastole. Diastolic BP reflects the 

systemic resistance offered by small arterioles and diastolic hypertension relates 

to arteriolar vasoconstriction (130). In blood vessels, endothelial dysfunction 

leads to reduction in nitric oxide (NO) bioavailability which increase peripheral 

resistance and rise in diastolic BP (969). The latter mechanism seems more likely 

to be relevant in younger adults (970;971). In the Framingham Heart Study it was 

reported that predictors of isolated diastolic hypertension (IDH) were young age 

and male sex (72). It should be noted that 82.5% of persons with IDH developed 

new onset systolic diastolic hypertension (SDH) during the ensuing 10 years (72). 

It has been reported that increased arterial stiffness or vascular resistance in 

people of age <50 is more closely related to DBP than SBP (970;971).  

CRP is an inflammatory marker and inflammation has been shown to be 

associated with endothelial dysfunction, vascular hypertrophy, increase in 

angiotensin II and vasoconstriction leading to hypertension (282). Previous 

studies have reported that increased CRP alters endothelial dysfunction leading 

to hypertension (969;972;973), however this may not be a direct mechanism. 

Bhagat and Vallance demonstrated that inflammatory cytokines disturb 

endothelium dependent venous relaxation in humans due to impaired production 

of nitric oxide and prostacyclins (974). In addition, Guan et al demonstrated that 

chronic in vivo increase in CRP, as mediated by C-reactive protein gene delivery 

in rats, decreases vessel relaxation and NO production and increases vessel 

elastance and BP (975). In contrast, recent studies in humans did not show a pro-

inflammatory role of CRP (976).  

Recently Mark Pepys group showed that infusion of pharmaceutical grade natural 

human CRP is neither pro-inflammatory nor pro-atherogenic in healthy humans 

(976). The authors reported no changes in neutrophils, platelet counts heart rate 

and BP. However the same group has showed pro-inflammatory role of CRP in 

individuals with pre-existing tissue damage. They showed the effects in rat 

models of acute myocardial infarction (977) and stroke (978). The proposed 
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mechanism is that human CRP binds avidly to the dead and damaged cells and 

activates the classic complement pathway; triggering increased inflammation 

and further exacerbating tissue damage. As a limitation to this analysis it should 

be noted that circulating CRP may only be a crude marker of low grade 

inflammation at tissue level. However, as already noted, CRP was chosen for this 

analysis as it is a stable protein which is routinely analysed at reasonable cost in 

stored samples.  

In conclusion, genetic epidemiology (mandelian randomisation) and human 

experimental studies do not support a causal association of CRP with BP or 

hypertension in healthy animals and humans. However, in the presence of any 

tissue damage due to obesity, ageing, prehypertension or any other chronic 

inflammatory condition there are data to suggest that CRP may enhance lesion 

severity (979). Body adiposity and its change is significantly correlated (r= >0.5) 

with CRP and change in CRP (980). Higher fat mass as in females and older 

individuals may confound the relationship between CRP and DBP. However CRP 

can contribute to prediction of rise in diastolic BP in healthy younger males with 

lower fat mass.  

 

Figure: 5.1 Proposed link between obesity, inflammation and blood pressure. 
 

In summary, this study showed a statistical (if not clinically important) 

relationship between CRP and DBP in sex and age stratified and clamp adjusted 

data in a large European cohort.  More studies would be required to examine this 

relationship in other ethnic groups.  



Chapter 6 

223 
 

6 Predictors for follow-up BP in healthy European 
population – Role of sex and age 
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6.1 Introduction 

Worldwide, there are 9.4 million deaths per year due to complications of 

hypertension (981). A number of anthropometric, metabolic, inflammatory, 

lifestyle and genetic factors have been linked with BP and hypertension in many 

studies. Some studies show independent relationships of these factors with BP 

and have proposed different underlying mechanisms. The relationship between 

weight, BMI or obesity and BP is the most studied and has been demonstrated in 

many large studies (894;898). Moreover, inflammatory markers (895;896), insulin 

resistance (196), family history and race (2;897) have been associated with the 

development of hypertension. Some of these studies have demonstrated 

independent relationships between lifestyle factors and BP (982;983) while 

others have shown that these are attenuated following adjustment for weight 

and/or BMI (984;985). In chapter 3 and 5, we found the association of risk 

factors with BP/hypertension to be different in different sex and age groups. As 

explained in Chapter 5, the Framingham study has also reported different gender 

and age associations with the development of isolated systolic (females, older 

age and increase in BMI) or diastolic (males, younger age and baseline BMI) 

hypertension (72). The different association of risk factors with hypertension 

may be due to sex related differences in body composition and also change in 

body composition with age (see Introduction Section 1.11, 1.12 and Chapter 5). 

Therefore, in the present chapter I have used the RISC cohort to explore which 

risk factors have an independent relationship with rise in blood pressure over 

time and to what extent their effect is mediated by associated phenotypes. All 

phenotypes were measured using standardized techniques with strict quality 

control (see Chapter 2) and were entered together into the analysis. I 

investigated differences in predictors of BP rise, according to age, gender and 

menopausal status with the hypothesis that Predictors for systolic and diastolic 

BP change with age and sex in relation to ageing and age related changes in 

body composition.  

6.2 Methods 

The methods of the RISC study were as described in Chapters 2 and 5. 
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6.2.1 Statistical Analysis 

Altogether, 16 anthropometric and life style factors  (baseline BP, age, BMI, 

percent change in BMI, log M/I, glucose, LDL cholesterol, HDL cholesterol, TG, 

IL-6, CRP, family history of hypertension, physical activity, smoking and alcohol 

intake) previously linked with blood pressure and hypertension in  the literature 

were included in this analysis. Only BMI was used as a measure of adiposity in 

regression models to avoid multicollinearity as correlation (Pearson's r) with 

waist circumference (r= 0.775), weight (r=0.803), hip (r=0.726) and fat 

mass(r=0.820) was high. Data were split according to gender, age and 

menopausal status to find the predictors within each sex and age range as well 

as according to menopausal status. As explained in Chapter 5 methods, the data 

were split by median age of our RISC cohort [<45 years (adults); >45 years 

(middle-aged)] for the analysis. The following age and sex interaction terms 

were checked in relation to BP: BMI*Age (p = 0.007), percent change in BMI*Age 

(p = 0.082), log CRP*sex (p = 0.039), log Alcohol*Sex (p = <.001), log M/I*Sex (p = 

<.001).  

Multiple regression and stepwise multivariate regression were performed within 

all groups to identify significant associations with follow-up BP. The variables 

segregated through stepwise regression were again used in multivariate linear 

regression to derive regression equations for each category. Each age and sex 

group has two models; FM (full model) containing all the variables and SM 

(selective model) containing only significant variables identified from the full 

model and stepwise regression. R2 and adjusted R2 are compared for both models 

in order to demonstrate the utility of the selective model. 

Significant predictors were further evaluated by t test, chi-square and trend test 

for their influence on follow-up BP. Differences in baseline measurements 

between males and females were assessed by t-test (or Chi-square for 

categorical variables).  

6.3 Results 

Table 6.1 shows the baseline characteristics of whole population and also males 

and females separately. SBP and DBP values were in the optimal range in 
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females and normal in males according to JNC 6 guidelines (986). There were 

significant differences in all measurements between males and females except 

for total cholesterol, hs-CRP, IL-6, physical activity count and smoking status. 

Table 6.2 shows the significant predictors of SBP Y3 and DBP Y3 from stepwise 

regression. Baseline BP is significant in all the models. Percent change in BMI 

was a significant predictor of SBP and DBP at the year 3 follow up in the whole 

population and within all males and all females. In subgroups defined by age and 

menopausal status, percent change in BMI was a significant predictor in middle 

aged (both males and females) and postmenopausal groups. However, baseline 

BMI was a significant predictor in adults (both males and females) and 

premenopausal females. Alcohol intake and hs-CRP were predictors of BP rise in 

males only while insulin sensitivity was a predictor of BP rise in females only.  

Tables 6.3, 6.4, 6.5, 6.6 and 6.7 show individual predictors of year 3 BP (both 

SBP and DBP) in different sex and age groups. Each group shows results for two 

models; FM (full model) and SM (selective model) as explained in the methods. 

Table 6.3 shows predictors of year 3 SBP in the whole population and within 

males and females respectively. Baseline SBP, age and percent change in BMI 

were significant predictors in all models. However, BMI per se was not a 

significant predictor in males. Insulin sensitivity (M/I) was a significant predictor 

in females only.  

Table 6.4 shows that baseline DBP, BMI and percent change in BMI were 

significant predictors of year 3 DBP in all models. Age was a significant predictor 

in FM but had no role in SM. Hs-CRP was a significant predictor in total SM 

independent of other adjustment variables as seen in the previous chapter.  

Table 6.5 and 6.6 show predictors of SBP and DBP in females by age and 

menopausal status subgroups. In all these groups baseline BP was a significant 

predictor for follow-up BP. BMI per se was a significant predictor in younger and 

premenopausal females, whereas percent change in BMI was significant in 

middle aged and post-menopausal females. M/I was a significant predictor for 

SBP Y3 only in middle aged females. Other significant predictors were 

cholesterol (SBP Y3) in premenopausal and smoking (DBP Y3) in younger females.  
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Table 6.7 shows that baseline BP was a significant predictor in all models (SBP 

and DBP). BMI was significant (for DBP Y3) only in younger males. Percent 

change in BMI was significant for both SBP and DBP in middle aged males. 

Alcohol intake was a significant predictor for DBP Y3 but having different 

associations in the age groups; positive in younger and negative in older. For DBP 

Y3 hs-CRP was a significant predictor in younger males only. Age was associated 

with SBP Y3 in middle aged males only. 

Figure 6.1 shows the development of hypertension across SBP categories (986) at 

baseline; Optimal (≤119), Normal (120-129), High Normal (≥130). Development of 

hypertension was frequent in the high normal and normal groups compared to 

the optimal group, as baseline BP was most significant predictor in all the 

models.   

I then undertook an exploratory analysis within the optimal BP group [according 

to JNC 6: (986)] for change in BP/development of hypertension in order to test 

the predictors derived in the wider population. Within the optimal group, I 

compared participants according to hypertensive status at follow-up (Table 6.8). 

Even within this subgroup, almost all anthropometric measurements were 

significantly different between those who remained normotensive and those who 

later developed hypertension. This signifies the importance of BMI, waist, 

weight, fat and fat free mass in addition to baseline BP as predictors of BP rise 

over time and the development of hypertension. In addition insulin sensitivity 

was lower, and per cent change in BMI, CRP and IL-6 were higher in those group 

who developed hypertension 

As baseline BMI and percent change in BMI appeared to behave differently as 

predictors in the above analyses, I plotted the distribution of BMI across tertiles 

of % change in BMI tertiles (Figure 6.2). This allows easy visualisation of the 

finding that % change in BMI is not simply a function of baseline BMI. Each 

category of change in BMI had almost equal percentage of Obese, overweight 

and normal BMI people.  

Percent change in BMI was a significant predictor of both SBP and DBP in all 

middle aged groups and so its relation with change in BP was further explored. 

For presentation purpose, change in BMI was stratified into tertiles. Change in 
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BP (both SBP and DBP) from baseline to year 3 according to tertiles of percent 

change in BMI (Figure 6.3), and according to decrease or increase in weight 

(Figure 6.4) was calculated in both sexes. There was no change in either SBP or 

DBP if BMI remained stable or decreased in either sex. Baseline BP was higher or 

the same in the lower tertile as compared to mid and high tertiles. However 3 

year SBP and DBP were higher in the mid and high tertiles in both sexes, 

signifying a consistent role for change in BMI in addition to baseline BP.  

In Tables 6.5, 6.6 and 6.7, percent change in BMI was a significant predictor of 

SBP and DBP in middle aged groups, but BMI per se did not show any 

relationship; contrary to the usual finding of a relation of BMI with 

BP/hypertension. We replaced baseline BMI with BMI at year 3 in all the models 

to check if percent change in BMI was still a significant predictor. It showed that 

3 year SBP and DBP were more strongly related to percent change in BMI in 

comparison to baseline or 3 year BMI in middle aged population.   
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Table 6.1 Baseline Characteristics of RISC population and comparison between males and 
females. 

 Total (946) Male (444) Female (502) P 

Baseline SBP (mmHg) 118.0 ±12.5 122.4 ±10.5 114.1 ±12.8 <0.001 

Baseline DBP (mmHg) 74.4 ± 8.0 76.4 ± 7.4 72.7 ± 8.0 <0.001 

Male % 47 - -  

Age (years) 44.4 ± 8.3 43.8 ± 8.6 45.0 ± 7.9 .03 

BMI 25.4 ± 3.9 26.0 ± 3.3 24.8 ± 4.2 <0.001 

Waist (cm) 87.0 ± 12.2 93.2 ± 9.6 81.4 ± 11.5 <0.001 

Weight (Kg) 74.7 ± 14.4 83.0 ± 12.0 67.4 ± 12.1 <0.001 

Glucose (mmol/L) 5.1 ± 0.5 5.2 ± 0.5 5.0 ± 0.5 <0.001 

Total Cholesterol (mmol/L) 4.9 ± 0.9 4.9 ± 0.9 4.8 ± 0.9 0.07 

HDL Cholesterol (mmol/L) 1.4 ± 0.4 1.3 ± 0.3 1.6 ± 0.4 <.001 

LDL Cholesterol (mmol/L) 3.0 ± 0.8 3.1 ± 0.8 2.8 ± 0.8 <.001 

Triglycerides (mmol/L)* 1.0 (0.9, 1.0) 1.1 (1.1, 1.2) 0.9 (0.8, 0.9) <.001 

Clamp Insulin Sensitivity 

(M/I)* 

127.8 (123.9, 

131.9) 

112.6 (107.5, 

118) 

142.8 (137.2, 

148.6) 
<.001 

CRP (mg/L)* 0.7 (0.6, 0.7) 0.7 (0.6, 0.8) 0.6 (0.5, 0.7) 0.10 

IL6 (pg/ml)* 0.8 (0.8, 0.8) 0.8 (0.8, 0.9) 0.8 (0.7, 0.8) 0.16 

Alcohol grams/week* 62 (59, 66) 82 (75, 89) 47 (43, 51) <.001 

Family History of 

Hypertension % 
44 39 49 <0.01 

Phys. Activity (Counts per 

min)* 
330 (319, 342) 333 (316, 351) 328 (313, 344) 0.68 

Smoker % 26 27 25 0.81 

*= Log transformed for analysis; values are geometric means (CI)
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Table 6.2 Significant predictors of SBP and DBP according to stepwise regression in the total population and within groups according to , sex, age and 
menopausal status  

SBP at year 3 DBP at year 3 

Total Population Total population 

Baseline SBP Baseline DBP 

BMI BMI 

Age % Change in BMI 

% Change in BMI Hs-CRP 

  

Males Females Males Females 

Baseline SBP Baseline SBP Baseline DBP Baseline DBP 

Age Age BMI BMI 

% Change in BMI % Change in BMI % Change in BMI % Change in BMI 

 BMI   

 LogMI   

     

Adults(Age≤44) 
Middle 

age(Age≥45) 
Adults(Age≤44) 

Middle 
age(Age≥45) 

Adults(Age≤44) 
Middle 

age(Age≥45) 
Adults(Age≤44) 

Middle 
age(Age≥45) 

Baseline SBP Baseline SBP Baseline SBP Baseline SBP Baseline DBP Baseline DBP Baseline DBP Baseline DBP 

TG 
% Change in 

BMI 
BMI LogM/I Hs-CRP Alcohol BMI BMI 

 Age  % Change in BMI Alcohol 
% Change in 

BMI 
Smoker % Change in BMI 

    BMI    

        

  Premenopausal Postmenopausal   Premenopausal Postmenopausal 

  Baseline SBP Baseline SBP   Baseline DBP Baseline DBP 

  BMI % Change in BMI   BMI % Change in BMI 

  Cholesterol      
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Table 6.3 Models for predicting follow-up SBP 

Dependent: SBP at year 3  

 Total (n=946) Males (n=444) Females (n=502) 

Model FM SM FM SM FM SM 

Model R2 0.465 .458 0.398 .378 0.482 .471 

Model Adjusted R2 0.428 .446 0.310 .350 0.434 .447 

 Beta Beta Beta Beta Beta Beta 

Age .119** .123*** .180** .152*** .120* .151*** 

BMI .063 .115*** .050  .098 .115** 

% Change in BMI .104** .108*** .123* .121** .088* .100** 

Log M/I -.050  .037  -.081 -.083* 

Glucose .024  -.055  .019  

Cholesterol .163  .654  .195  

HDL -.099  -.302  -.014  

LDL -.100  -.523  -.132  

Log TG -.050  -.218  -.028  

Log Alcohol intake .043  -.013  .043  

Log hs-CRP .037  .045  .065  

Log IL-6 -.009  -.048  .005  

Family History of 

Hypertension 

.029  .069  .032  

Log Physical activity .043  .049  

  Smoker .007  .015  -.004  

Baseline SBP .519*** .537*** .484*** .502*** .471*** .483*** 

FM= full model, SM= selective model. P = <.05*, p=<0.01**, p=<.001***  
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Table 6.4 Models for predicting follow-up DBP 

Dependent: DBP at year 3 

 
Total (n=946) Males (n=444) Females (n=502) 

Model FM SM FM SM FM SM 

Model R2 0.473 .464 0.425 .393 0.491 .478 

Model Adjusted R2 0.437 451 0.341 .365 0.444 .456 

 
Beta Beta Beta Beta Beta Beta 

Age .082* 
 

.146* 
 

.047 
 

BMI .124** .142*** .113 .144*** .155** .190*** 

% Change in BMI .112** .114*** .109* .117** .115** .121*** 

Log M/I .001 
 

.053 
 

-.037 
 

Glucose .000 
 

-.037 
 

-.021 
 

Cholesterol .259 
 

.618 
 

-.003 
 

HDL -.128 
 

-.263 
 

.061 
 

LDL -.248 
 

-.562 
 

-.001 
 

Log TG -.050 
 

-.177 
 

.029 
 

Log Alcohol intake .040 
 

.010 
 

.029 
 

Log hs-CRP .076 .073** .106 
 

.067 
 

Log IL-6 -.021 
 

-.071 
 

.015 
 

Family History of 

Hypertension 
.038 

 
.063 

 
.038 

 

Log Physical activity -.024 
 

.014 
   

Smoker .005 
 

-.005 
 

.025 
 

Baseline DBP .478*** .498*** .442*** .436*** .494*** .519*** 

FM= full model, SM= selective model. P = <.05*, p=<0.01**, p=<.001*** 
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Table 6.5 Models for predicting follow-up SBP in females by age and menopausal status 

Dependent: SBP at year 3 in females 

 
Age≤44 (n=239) Age≥45 (n=263) Premenopausal (n=378) Postmenopausal (n=124) 

Model FM SM FM SM FM SM FM SM 

Model R2 0.543 .495 0.465 .437 0.503 .477 0.484 .437 

Model Adjusted R2 0.440 .451 0.365 .393 0.439 .447 0.234 .352 

 
Beta Beta Beta Beta Beta Beta Beta Beta 

Age .064 
 

.074 
 

.092 
 

.185 
 

BMI .136 .193** .049 
 

.104 .171*** .104 
 

% Change in BMI .028 
 

.137* .145** .004 
 

.237* .206** 

Log M/I .006 
 

-.139 -.149** -.073 
 

-.016 
 

Glucose -.029 
 

.051 
 

.020 
 

-.010 
 

Cholesterol -1.171 
 

.530 
 

.696 .135** -.305 
 

HDL .612 
 

-.187 
 

-.254 
 

.304 
 

LDL 1.166 
 

-.500 
 

-.548 
 

.221 
 

Log TG .235 
 

-.076 
 

-.163 
 

.191 
 

Log Alcohol intake .005 
 

.094 
 

.045 
 

.010 
 

Log hs-CRP .120 
 

.062 
 

.090 
 

.063 
 

Log IL-6 .065 
 

-.036 
 

.025 
 

-.044 
 

Family History of Hypertension .063 
 

-.015 
 

.067 
 

.034 
 

Smoker .100 
 

-.028 
 

-.002 
 

-.072 
 

Baseline SBP .504*** .498*** .464*** .508*** .448*** .477*** .494*** .568*** 

FM= full model, SM= selective model. P = <.05*, p=<0.01**, p=<.001*** 
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Table 6.6 Models for predicting follow-up DBP in females by age and menopausal status 

Dependent: DBP at year 3 in females 

 
Age≤44 (n=239) Age≥45 (n=263) Premenopausal (n=378) Postmenopausal (n=124) 

Model FM SM FM SM FM SM FM SM 

Model R
2
 0.517 .484 0.539 .518 0.511 .487 0.545 .506 

Model Adjusted R
2
 0.408 .436 0.453 480 0.448 .459 0.325 .431 

 
Beta Beta Beta Beta Beta Beta Beta Beta 

Age -.001 
 

.056  .019 
 

.052 
 

BMI .188* .204*** .106 .151** .154* .203*** .135 
 

% Change in BMI .025 
 

.190** .204*** .032 
 

.280** .275*** 

Log M/I .015 
 

-.061  -.026 
 

-.012 
 

Glucose -.046 
 

.013  -.037 
 

.027 
 

Cholesterol -1.050 
 

-.113  .175 
 

-.663 
 

HDL .564 
 

.089  -.044 
 

.512 
 

LDL 1.044 
 

.011  -.131 
 

.542 
 

Log TG .226 
 

.096  -.022 
 

.256 
 

Log Alcohol intake -.069 
 

.107  .027 
 

.069 
 

Log hs-CRP .099 
 

.058  .098 
 

.028 
 

Log IL-6 .049 
 

-.003  .032 
 

-.050 
 

Family History of 

Hypertension 
.045 

 
.012  .074 

 
-.022 

 

Smoker .141* .105* -.007  .042 
 

-.044 
 

Baseline DBP .468*** .488*** .499*** .531*** .467*** .493*** .526*** .562*** 

FM= full model, SM= selective model. P = <.05*, p=<0.01**, p=<.001***
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Table 6.7 Models for predicting follow-up SBP and DBP in males by age- 

 
SBP Y3 in males DBP Y3 in males 

 
Age≤44 (n=244) Age≥45 (n=200) 

Age≤44 

(n=244) 
Age≥45 (n=200) 

Model FM SM FM SM FM SM FM SM 

Model R2 0.418 .384 0.480 .431 0.442 .406 0.507 .460 

Model 

Adjusted R2 
0.318 .335 0.369 .371 0.346 .344 0.402 .396 

 
Beta Beta Beta Beta Beta Beta Beta Beta 

Age .086 
 

.130* .126* .109 
 

.082  

BMI .047 
 

.023  .124 .158* .074  

% Change in 

BMI 
.106 

 
.164* .156** .074 

 
.167* .160** 

Log M/I .014 
 

.056  .062 
 

.030  

Glucose -.002 
 

-.092  .028 
 

-.047  

Cholesterol -.311 
 

1.554  .341 
 

1.115  

HDL .044 
 

-.649  -.098 
 

-.569  

LDL .313 
 

-1.399  -.298 
 

-1.087  

Log TG .227 .180** -.610*  .005 
 

-.467  

Log Alcohol 

intake 
.065 

 
-.149*  .130 .146* -.141* -.136* 

Log hs-CRP .073 
 

.050  .156* .152* .078  

Log IL-6 -.064 
 

-.081  -.036 
 

-.143  

Family 

History of 

Hypertension 

.082 
 

.058  .053 
 

.045  

Smoker .021 
 

.053  -.016 
 

.010  

Baseline BP .491*** .525*** .502*** .502*** .408*** .410*** .505*** .499*** 

FM= full model, SM= selective model. P = <.05*, p=<0.01**, p=<.001*** 
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Figure:  6.1 Development of hypertension across BP categories at baseline.  
Values according to % of normotensives and hypertensives. Groups compared by Chi-
square and trend test across the categories.  p=<.001*** 
Optimal (≤119), Normal (120-129), High Normal (≥130) 
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Table 6.8 Comparison of baseline measurements according to hypertension status at 3 year 
follow-up within the optimal BP group (n=490) at baseline 

 

Normotensive 

(n=463) 

Hypertensive 

(n=27) P 

 
Mean ± SD Mean ± SD 

Baseline SBP (mmHg) 108.2 ± 8.2 111.4 ± 7.4 0.05 

Baseline DBP (mmHg) 69.4 ± 6.4 73.5 ± 6.9 <0.01 

Males n (%) 154 (33) 16 (59) <0.01 

Age (Years) 43.3 ± 8.0 48.1 ± 6.5 <0.01 

BMI 24.3 ± 3.5 27.0 ± 3.7 <0.01 

Waist (cm) 82.8 ± 11.6 94.1 ± 13.4 <0.01 

Weight (Kg) 69.9 ± 12.7 79.4 ± 13.9 <0.01 

Fat mass (Kg) 19.3 ± 7.7 22.1 ± 8.3 0.06 

Fat free mass (Kg) 50.6 ± 10.1 57.3 ± 12.1 <0.01 

Clamp Insulin Sensitivity (M/I)* 138.0 (132.5, 143.9) 108.4 (89.5, 131.4)  0.01 

% Change in BMI 1.5 ± 6.3 3.5 ± 5.4 0.11 

CRP (mg/L)* 0.6 (0.5, 0.6) 0.9 (0.5, 1.5) 0.08 

IL6 (pg/ml)* 0.7 (0.7, 0.8) 1.0 (0.8, 1.2) 0.04 

Alcohol grams/week* 57 (52, 62) 53 (35, 80) 0.70 

Physical activity (counts per 

minute)* 
338 (322, 355) 374 (289, 485) 0.39 

Family history of HTN n (%) 184 (41) 14 (54) 0.19 

Smoking status n (%) 134 (30) 8 (31) 0.92 

*= Log transformed for analysis; values are geometric means (CI) 
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a) 

 

b) 

 

Figure:  6.2 Distribution of BMI groups across % change in BMI tertiles in people having 
optimal BP at baseline. a) in males, b) in females
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 Males Female 

SBP 
mmHg 

  

DBP 
mmHg 

  

Figure:  6.3 Change in SBP and DBP across % change in BMI (tertiles) in males and females. T test for comparison between baseline and three year follow-
up BP. p=<0.01**, p=<.001*** 
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 Males Female 

SBP 
mmHg 

  

DBP 
mmHg 

  

Figure 6.4 Change in SBP and DBP according to decrease or increase in weight over 3 years in males and females. T test for comparison between baseline 
and three year follow-up BP. p= <0.05, p=<0.01**, p=<.001*** 
↑= Increase, ↓= decrease, Wt= weight. In males: ↓= range of decrease in weight (kg); -14.40 to -0.10 and ↑= range of increase in weight (kg); 0.10 to 3.30 
In females: ↓= range of decrease in weight (kg); -15.5 to -0.10 and ↑= range of increase in weight (kg); 0.10 to 3.50 
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6.4 Discussion 

Baseline BP at all ages and in both sexes is the most important predictor for 

future or follow-up BP. In the younger age group (30-44 years), baseline BMI per 

se was the second most important predictor. However, in middle age, change in 

BMI (expressed as a percentage of the baseline value) was found to be more 

important. Similar findings of the role of weight and weight change in 

development (894;987;988) or resolution/improvement of hypertension have 

been demonstrated previously (906). The other important finding is that 

increasing BMI in middle age is associated with a rise in BP independent of the 

baseline or present state of BMI i.e. whether one is normal, overweight or obese. 

Conversely only 2-3% increase in weight was associated with a rise in BP, even in 

middle aged people with normal BMI. Taken with the findings from the 

literature, these results permit speculation that in middle age hypertension 

might best be prevented by avoiding an increase in BMI.  

I entered all measured variables in the models to identify these effects and then 

identified key contributing variables using stepwise regression. This analysis 

showed that a selective model could be developed which explained a similar 

proportion of the variance (in terms of adjusted R2) as a full model. To account 

for data stratification, age and sex interaction were checked for significant 

variables: these analyses demonstrated that factors predicting BP were different 

within the subgroups defined by age and sex.  

Baseline SBP and DBP were significant predictors of follow up BP in all age, sex 

and menopausal status groups: a higher baseline BP gives a higher follow-up BP 

(i.e. BP "tracking"). Prehypertension has been associated with arterial stiffness, 

and increased arterial stiffness is associated with hypertension and increased 

risk of CVD (106). Tomiyama et al. showed in a large longitudinal study that the 

change of the arterial stiffness (brachial-ankle PWV) during 6 years was higher in 

the prehypertensive subjects than in those with persistent normal blood pressure 

(109). It has also been shown that recovery from hypertension after weight loss 

surgery depends on preoperative SBP (989). In conclusion baseline BP through 

“tracking phenomenon” and arterial stiffness leads to development of 

hypertension. The TROPHY study showed that controlling BP in pre-hypertensive 

stage prevents the development of hypertension (117). More recently Zoungas et 
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al. also showed that intensive BP control decreases death from cardiovascular 

disease (990).  

The associations of weight/BMI and weight change with BP/hypertension have 

been shown in many studies (900-903). Mendelian randomization in relation to 

the FTO gene also demonstrates a relationship between BMI and both SBP and 

DBP (894). Holland et al showed over follow-up of 36 years that BMI was directly 

related to BP from childhood to adult age. They also showed that adult age BP 

was more closely related to current BMI than childhood BMI (899). Similar 

findings were also provided by Petkeviciene et al from a 35 year follow-up study 

which showed that change in BMI from childhood (age10-12) to middle age (age 

48-49) was a significant predictor of the development of hypertension (childhood 

BMI was not a significant predictor) (991). In this study, people who developed 

hypertension in middle age experienced a greater increase in BMI over 35 years 

than people who remained normotensive (991). Similar findings of increase in 

BMI in middle age predicting hypertension were also reported in Isfahan Cohort 

Study (992). Wills et al have showed similar findings in a British cohort of 3035 

males and females which demonstrated that becoming overweight in early adult 

life leads to higher SBP and DBP in midlife (988).  

Diet and exercise have previously been linked with change in BP (983;993;994). 

In our study we did not collect dietary/nutritional information. However, there 

was no significant contribution of the lifestyle factors measured (smoking, 

alcohol intake and physical activity) following adjustment for BMI and percent 

change in BMI. This was also the case in the National Runners Health survey, USA 

(985) which evaluated the role of weight and increase in weight on development 

of hypertension in lean physically active individuals (n = 34661). It was 

demonstrated that higher body weight or increase in weight was associated with 

an increase in the risk of hypertension with no advantage of having previously 

been lean in either sex. It was also shown that in middle age, the odds of 

developing hypertension are significantly related to current BMI and not to adult 

age BMI (985). Similar findings were reported in a recent study in which Masuo et 

al showed that reduction of BMI by diet or exercise (or a combination of diet and 

exercise) leads to decrease in BP in obese hypertensive men. In this study, 

reduction of fat mass, insulin resistance (HOMA-IR) or plasma nor-epinephrine 

(NE) alone did not decrease BP. However when lifestyle modifications were 



Chapter 6 

243 
 

sufficient to decrease BMI, then BP did decrease (even when there was no 

change in WHR or HOMA-IR) (995). Similarly Obarnazek E et al showed that the 

effect of lifestyle factors was attenuated after considering weight change (984). 

My analysis is in accordance with these studies in predicting that lifestyle factors 

per se do not influence BP directly but rather via altering BMI in young people 

and percent change in BMI in middle aged people. 

The analysis presented in this chapter suggests that change in BMI predicts BP in 

middle age. There is support from the literature for this proposition: studies 

performed in middle aged populations (40-60 years of age) also show a 

relationship between weight gain and increase in BP or development of 

hypertension (902;903;987;996;997). Conversely, weight loss achieved through 

bariatric surgery in morbidly obese patients results in a decrease in BP along 

with 60-80% resolution or improvement of hypertension (904-906). Bariatric 

surgery- related weight loss increases adiponectin and expression of adiponectin 

receptors (502;998). The increase in adiponectin is strongly correlated with 

percentage decrease in BMI (499). Bariatric surgery also improves the 

inflammatory profile of obese individuals by decreasing expression of IL-6 and 

TNF-α mRNA (502;998), along with restoring perivascular adipose tissue (PVAT) 

anti-contractile activity (504). However, it should be noted that in some studies 

this improvement in hypertension is not sustained at long term post operation 

follow-up (8-10 years) of these patients (999;1000). Kuller LH et al also reported 

that weight loss through lifestyle intervention had beneficial effects on BP for 

the first 18 months but the improvement was not sustained in long term follow-

up over 4 years (982). All of the studies which showed long term attenuation of 

the beneficial effects on BP and hypertension of weight loss (982;999;1000) have 

one common feature: after initial weight loss and decrease in BP, there was an 

increase in weight over the follow-up time. On the other hand, studies in which 

initial weight loss was maintained after lifestyle or surgical intervention showed 

that the beneficial effects of intervention on BP and resolution/improvement of 

hypertension were still present even after 10 years of follow-up (902;989;1001-

1003).  

It has been documented previously that surgical intervention did not correct 

hypertension in older patients (989): the longer that obesity and hypertension 

persist the more permanent the accompanying functional and structural changes 
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(1001;1004). Chronic high blood pressure is associated with structural and 

functional alteration (rarefactions) of micro vessels. In the beginning micro 

vascular rarefaction is mostly functional, but progresses to structural rarefaction 

with persistent high BP (also see Sections 1.3.3.1 and 1.3.7.4). It has been shown 

in never treated patients of essential hypertension that 62% of rarefaction was 

explained by structural defects, and 38% was explained by functional defects 

(84). In addition it has been demonstrated both clinically and experimentally 

that obesity induces renal haemodynamic changes (glomerular hyperperfusion 

and hyperfiltration) which lead to proteinuria, glomerulosclerosis and 

progressive renal failure. The renal modifications due to high BP and chronic 

kidney disease (CKD) do not reverse completely as some changes lead to 

apoptosis, nephron loss and fibrosis (185-188). 

The other important finding is that avoiding an increase in BMI in middle age 

prevents rise in BP, independent of current BMI and the baseline state of BMI; 

whether one is normal, overweight or obese. There are two plausible 

explanations for these findings; the obesity paradox, and physiological changes 

in body composition with ageing. The “obesity paradox” is a term used to 

summarise observation of lower CVD related mortality in people who are 

overweight or obese in comparison to normal BMI people. Uretsky et al have 

shown that CVD associated mortality was 30% less in overweight and obese 

patients (1005). The same finding was also reported in a recent meta-analysis of 

26 studies (1006). Niedziela et al. reported that one of the reasons of obesity 

paradox may be that obese people were young as compared to older normal 

weight people (1006). In addition Carnethon et al. also showed that onset of 

diabetes at a young age occurs mostly in obese people, in contrast to the 

situation in older individuals (1007). The effect of ageing may have a stronger 

impact than obesity alone. It has been shown that ageing itself is a pro-

inflammatory state.  

In middle age health is threatened by two important physiological changes: 

ageing and change in body composition. These changes in body composition 

occur even without a change in diet and lifestyle (645-648;650;651). The British 

birth cohort study showed that participants who were in the normal range of BMI 

until the age of 43 years had a rise in BMI after 43. There was also an increase in 

BMI after age 43 in people who were already overweight (988). Thus, basal 
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metabolic rate slows down and the hormonal changes responsible for this; result 

in weight gain. For those who maintain weight this is a physiological transition of 

body composition; but for those who gain weight the fat mass can disturb 

metabolic balance and lead to obesity-related vascular dysfunction and rise in 

BP. It can be speculated that if metabolism and body composition are in 

homeostasis with current BMI (whether normal, overweight or obese) and 

maintains the BMI, the pro-inflammatory component caused by change in BMI 

will be absent; ageing-related inflammation will still be present. When the pro-

inflammatory stimulus of increasing BMI is superimposed on normal ageing, it 

will accentuate age-related inflammation and lead to increase in BP. 

Concluding, it could be proposed that obesity per se is relatively harmless, at 

least in cardiovascular terms. It becomes more harmful when associated with 

chronic low-grade inflammation. Recent results from the 1946 British birth 

cohort also show that reduction of BMI was associated with decreases in cIMT 

and improvements in cardiovascular risk profile (1008). 

It is proposed on the basis of the present analysis of the RISC cohort that 

maintaining BMI in middle age (or early intervention if BMI is increased) can 

prevent rise in BP. Mechanistically, control of weight can prevent the initiation 

of early structural changes in the kidneys and vascular system. This finding is in 

keeping with previously published literature. Strength of this study is the 

availability of data for percent change in BMI which take into accounts the 

baseline BMI. For example, a 3 kg increase in weight will have different effects 

in people with different baseline BMI and is equivalent to a 14% increase in a 

person with a BMI = 21.5 kg/m2 (3/21.5 * 100) but only a 10.4% increase in a 

person with a BMI = 29 (3/29 * 100) kg/m2. Thus even when a person gains 

weight (e.g. from BMI 21.5-24.5) within the normal range, there will be a higher 

risk of rise in BP as percent change in BMI is more (14%).  

These prospective data from the Europe-wide RISC cohort of healthy adults 

indicate that BP depends on BMI in adult age and change in BMI in middle age in 

both men and women. This age associated differences in predictors need to be 

confirmed in larger studies and have the potential of clinical significance. 

People who maintain their BMI in middle age are protected from increase in both 

SBP and DBP over 3 years. Percent change in BMI over time is a useful marker for 
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monitoring/assessing cardiovascular risk and the effectiveness of lifestyle (diet, 

exercise) and other (drugs, surgery) interventions.  

The strengths, limitations and final conclusion are discussed in the final 

discussion (chapter 8) 
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7 Ethnicity and risk of cardiovascular disease 
(CVD): 4.8 year follow-up of patients with Type 2 
diabetes living in Scotland  
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7.1 Introduction 

For detailed methodology see Chapter 2 (Section 2.6) 

Type 2 diabetes (T2DM) is associated with increased risk of premature mortality 

with vascular death, the most common cause for mortality (617). More than 60% 

of people with type 2 diabetes die of cardiovascular diseases (CVD) such as MI or 

stroke (1009). In developed countries, the rate of cardiovascular deaths is 

decreasing, but for people of South Asian origin living in those countries the rate 

is stable (1010) or even increasing when compared to White populations living in 

those countries (1011;1012).   

South Asians are at an increased risk of CVD (1013). Cardiovascular risk factors 

are increased with higher waist hip ratio (1014;1015), increased risk of diabetes 

(10), with earlier onset (711;1016) and greater likelihood of suboptimal 

glycaemic control (734;1017) than white populations. In the UK the substantially 

higher rate of CVD in South Asians is in part explained by higher rates of diabetes 

(709). At the same time within the population with diabetes, the rate of 

coronary heart disease (CHD) deaths remained double than that in White, an 

increase which was not explained by conventional risk factors- albeit with 

relatively small numbers (311 South Asians, 51 deaths) (1014). In addition, South 

Asians are considered a single group in most of the studies (709;1014), despite 

the fact that ethnic differences in risk of CVD within South Asians countries have 

been reported (679;1012;1018-1020).  

Here I use a large prospective cohort of people with clinically diagnosed 

diabetes to examine whether there is an ethnic difference in rates of CVD, and if 

so whether this is independent or explained by onset, duration and severity of 

diabetes or conventional CVD risk factors.  
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Figure 7.1 Relationship between ethnicity and cardiovascular disease in people with type 2 
diabetes 
Ethnicity influences many cardiovascular risk factors and also development of CVD. We 
checked if ethnicity independently (i.e. not confounded by other CV risk factors) influences 
occurrence of CVD (thick dashed line). Another objective was to check if the effect of other 
CV risk factors was influenced by ethnicity. Solid lines= established relationship, dashed 
lines = ambiguous relationship, red lines= relationships checked in this chapter, purple 
blocks= data available, grey blocks= plausible associations but data not available. Age Diag 
DM= age of diabetes diagnosis, HTN= hypertension, DM= diabetes, SES= socio economic 
status 
 

7.1.1 Statistical Analysis 

All data analyses were performed using STATA 12. 

7.1.1.1 Normality  

Normality was checked for all continuous variables: age at baseline, age at 

diabetes diagnosis, BP, BMI, HBA1c, total cholesterol, HDL-c, LDL-c and 

creatinine (Appendix C: Figure 2.1 and 2.2). All variables were normally 

distributed except for triglycerides (TG) and duration of diabetes which were log 

transformed for analysis (Appendix C: Figure 2.3).  

In univariate analysis continuous variables were compared across different 

ethnic groups by ANOVA with Bonferroni adjustment. Categorical variables 
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(incident CVD event, gender, baseline renal impairment, smoking, diabetes 

treatment, hypertension treatment, high cholesterol treatment and socio-

economic status (SES)) were compared across different ethnic groups by chi 

square test. Logistic regression was used for individual group comparison with 

White as the reference category. Where previously recorded as percentage, 

HbA1c was expressed as IFCC units. 

7.1.1.2 Survival analysis  

A Cox proportional-hazards regression model was used to examine  the 

relationship of ethnicity and CVD incidence expressed  as Hazard ratios (HR) with 

corresponding 95% confidence interval (CI) with and without  adjustment  for  

other covariates  [age, sex, HbA1c, duration of diabetes, socioeconomic status, 

severe renal impairment (defined as serum creatinine ≥200µmol/L), cholesterol 

lowering treatment (defined as drug use with British National Formulary-BNF 

code 02.12), antihypertensive treatment (defined as drug use with BNF code 

02.05), smoking status, BMI, BP (both systolic and diastolic), total cholesterol 

and HDL-c]. To explore the effects of residual BP and cholesterol on CVD risk, 

both BP and cholesterol levels were added in the same model along with 

hypertension and cholesterol lowering treatment. Cox regression was performed, 

both by including and excluding BP and cholesterol in the model. The 

proportional hazards model carries the assumption that hazards in different 

groups (ethnic groups in our study) are proportional over time (i.e. constant 

relative hazards). Survival in the different groups is illustrated by minus log-log 

plot, Kaplan–Meier and predicted survival plot and also by using Schoenfeld 

residuals (Appendix C: Figures 2.4 -2.7). For clarity, groups with smaller numbers 

of participants (Chinese, Other Asian, African- Caribbean and Other Ethnic) were 

not shown in some log- log and predicted survival plots (Appendix C: 2.5 and 

2.7). To check for multicollinearity, we plotted a correlation matrix of all the 

variables used in the SDRN dataset (Appendix C: Table 2.1). Due to 

multicollinearity with age (0.90, p= <.001), age of diabetes diagnosis was 

omitted from Cox-regression (Appendix C: Table 2.1).  
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7.1.1.3 Ethnicity Interaction with cardiovascular risk factors  

To further explore potential effects of ethnicity on the relationship of known 

cardiovascular risk factors to CVD events, separate models incorporating 

interaction terms (sex, HbA1c, hypertension treatment, cholesterol treatment, 

total cholesterol, renal impairment, smoking, age, age at diagnosis and diabetes 

treatment) were examined.  

7.2 Results 

The differences in anthropometric and metabolic variables, and risk factors, 

between different ethnic groups are shown in Table 7.1. White, Multiple Ethnic 

and Chinese were older at baseline and when their diabetes was diagnosed. By 

contrast, Pakistanis, African-Caribbean and Other Asian were younger at baseline 

and their diabetes was diagnosed at a younger age. Pakistanis, Other Asian and 

Chinese had lower BP, BMI and total cholesterol than White. Pakistanis and 

African Caribbean had the highest HbA1c in the groups. White and Multiple 

Ethnic had the highest percentage of ever smokers and of being on anti-

hypertensive treatment. Pakistanis, Indian and Chinese had the highest mean 

duration of diabetes at baseline (Table 7.1). Socioeconomic distribution was also 

different in different ethnic groups, with people of African-Caribbean origin 

having the highest percentage (41%) of most deprived people and Indian’s having 

the highest percentage (31%) of the most affluent group. White individuals 

formed the highest percentage of the population (94.2%) at baseline (Table 1). 

For those excluded from the analysis due to existing CVD the ethnicity 

distribution was similar to those included i.e. White (95.2%), multiple Ethnic 

(2%), Indian (0.5%), Other Asian (0.14%), Pakistani (1.54%), Chinese (0.17%), 

African Caribbean (0.10%) and Other Ethnic (0.28%).  

In total, 16,265 (13.4%) patients developed CVD in the follow-up period (Table 

1.2). Incidence of new CVD events was less in Indians (74 events, 9.3 % of 

Indians), Other Asians (27, 8.5 %), Chinese (35, 9 %) and Afrcan-Caribbean (24, 8 

%) as compared to White (15394, 13.4%), Pakistanis (290, 13%) and Multiple 

Ethnic (358, 14%). Follow-up duration was slightly different in the ethnic groups 

with Pakistanis (5.2), Indians (5.2) and Chinese (5.3) the highest. The differences 

in events per 1000 person years follow-up and duration of diabetes until the end 
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of follow-up are shown in Table 7.2. Notably, Pakistanis (63 years) and Other 

Asians (64 years) were almost nine years younger when they had a CVD event as 

compared to White (72 years) (Table 7.2). In keeping with this, for the same age 

and age of diagnosis, Pakistanis had a higher incidence of CVD events as 

compared to White and Chinese (Figure 7.3).  

In the univariate (unadjusted) model the risk of having a CVD event was less in 

all ethnic groups in comparison to White, except Other Ethnic group (HR 1.01, CI 

0.79- 1.29). After adjustment for age and sex, risk of CVD was increased in 

Pakistanis (HR= 1.31, CI 1.17-1.47, p=<0.01) and decreased in Chinese (HR= 0.66, 

CI 0.47-0.92, p=0.01) as compared to White. Adjustment for other cardiovascular 

risk factors made little difference to the estimate of hazard ratio for Pakistanis:  

after inclusion of all relevant risk factors Pakistanis remained at higher CVD risk 

(HR=1.45, CI 1.14–1.85, p=<0.01)(Table 7.3), but the results for Chinese origin 

and other ethnic groups were no longer significant (Table 7.3). The Risk of CVD 

was also significant in Pakistani males (HR= 1.33, CI 1.01-1.75, p=0.04) and 

females (HR=1.67, CI 1.25-2.24, p=<0.01) (Table 7.4). The main finding (HR 

significant for Pakistani population only) remained unchanged whether or not BP 

was included in the model. Findings were similar for total cholesterol and 

cholesterol lowering treatment. In addition removing both blood pressure and 

total cholesterol did not change the main finding. 

None of the CV risk factors had significant interactions with ethnicity (sex 

p=0.67, hypertension treatment p=0.23, high cholesterol treatment p=0.47, total 

cholesterol p=0.90, HbA1c p=0.39, renal impairment p=0.35, smoking p=0.36, 

age p=0.44, age of diabetes onset p=0.14 and diabetes treatment p=0.79).   

Smoking, renal failure, treatment for hypertension and high cholesterol had 

increased HR for CVD event with renal failure having highest risk [HR (CI) 

1.46(1.62, 1.83)] (Table 7.5). More affluent socio economic class was associated 

with lower risk of CVD event (most affluent 0.81 vs. most deprived 1.0).  

For a given quintile of HbA1c, people of Pakistani origin had higher odds for the 

development of CVD compared to White. Similarly Pakistanis had higher odds for 

CVD in almost all the socio economic status categories as compared to White 

(Figure 7.4). Odds ratios for the development CVD in relation to development of 
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renal failure, hypertension and high cholesterol are shown in Figure 7.5. It also 

shows higher odds for Pakistanis compared to white.  

CVD morbidity in different ethnic groups was also explored and it revealed that 

Other Asians and Pakistanis had the highest percentage of Ischemic heart 

disease. Whereas African Caribbean and Chinese had the highest rate for 

cerebrovascular disease (Table 7.6). In total 17,637 people died during the 

follow-up and deaths due to CVD were 3,722 (21% of total deaths). The number 

of deaths due to CVD and other causes according to different ethnic groups is 

shown in Table 7.6.   
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Figure 7.2 CVD in People with type 2 diabetes in Scotland: Numbers of patients excluded 
CVD= cardiovascular disease, DM= diabetes mellitus, MODY = Maturity onset diabetes of 
the young.  

All patients in dataset from 1997 

to 2011 (n=283616) 
 

Death before 1/1/05 (n=32241) 

No data after 1/1/05 (n= 4557) 

Follow-up data until  

31 Dec 2011 (n=246818) 
 

Other diabetes or not diabetes  
(Type 1 DM n= 20253 

MODY =123 
Other DM = 532 

Impaired glucose tolerance =8 

Diabetes resolved = 365) 

Missing Type of DM data  

(n= 564) 

Type 2 DM with follow-up data 

(n=224973) 
 

() 

Missing ethnicity data  

(n=67994) 
 

() 

Type 2 DM with follow-up and  

ethnicity data (n=156979) 
 

() 

CVD at baseline (n=35456) 

No CVD at baseline (n=121523) 
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Table 7.1 Baseline measures and risk factors by ethnic group. 

Variable (n=) White(114450) Multiple Eth (2
554) 

Indian (797) Other Asian (3
19) 

Pakistani (2249) Chinese (387) African Carr (3
01) 

Other Eth (466) P 

N =121535 (% of total) 114450(94.2) 2554 (2.1) 797 (0.7) 319 (0.3) 2249 (1.9) 387 (0.4) 301 (0.3) 466 (0.4)  

N % males (121523) 59469 (52) 1274(49.9)
b
 464(58.2)

b
 167(52.3) 1157(51.5) 194(50.1) 157(52.2) 251 (53.9) 0.01 

Age at baseline (YR) (121476) 63.3± 12.6 64.0± 12.9 56.2± 2.8
a
 52.5±11.8

a
 53.8±12.0

a
 61.7±12.8 51.8±13.0

a
 57.6±14.0

a
 <.001 

Age at DM diagnosis (Yr) (121476) 59.3± 12.7 60.2± 13.2
a
 51.2±12.2

a
 48.7±11.2

a
 48.8±11.6

a
 56.7±12.7

a
 48.5±12.2

a
 54.1±13.6

a
 <.001 

BP baseline mmHg(64160) 141/79 140/79 136/79
a
 131/78

a
 134/79

a
 135/77

a
 140/82 139/79 <.001 

BMI (per kg/m2) (85720) 31.8± 6.6 31.8± 6.7 28.8± 5.2
a
 28.7± 5.2

a
 30.2± 5.8

a
 26.0± 3.9

a
 31.1± 6.8 30.2± 6.2

a
 <.001 

Total Cholesterol (mmol/L)(90839) 5.0± 1.4 5.1± 1.4 4.9± 1.2 4.9± 1.1 4.9± 1.6 4.7± 1.0
a
 5.0± 1.3 5.0± 1.2 <.001 

HDL-c (mmol/L) (61525) 1.3± 0.4 1.3± 0.4 1.3± 0.4 1.2± 0.3 1.3± 0.4 1.3± 0.4 1.3± 0.4 1.3± 0.5 0.08 

LDL-c (mmol/L) (18988) 2.8± 1.0 2.8± 1.0 2.8± 1.0 2.8± 1.1 2.9± 0.9 2.7± 1.0 2.8± 1.1 2.8± 1.0 0.656 

TG (mmol/L) (36343)
c
 2.11(2.10-2.12) 2.05(1.99-2.12) 1.93(1.78-2.09) 2.01(1.79-2.27) 2.00(1.91-2.10) 1.74(1.55-1.97)

a
 

1.74(1.52-1.98) 2.12(1.93-2.32) <.001 

Creatinine (μmol/l) (91612) 91.0± 32.7 91.2± 30.9 86.9± 24.0 82.0±19.3
a
 83.3±37.0

a
 93.2± 37.0 89.0± 23.8 86.4± 22.8 <.001 

Duration of DM at Base (Yr) (121476)
c
 4.14(4.10-4.17) 4.13(3.90-4.38) 4.80(4.32-5.32) 4.20(3.51-5.01) 4.75(4.45-5.07)

a
 4.72(4.07-5.47) 3.93(3.14-4.93) 3.78(3.25-4.41) <.001 

HBA1c % (mmol/mol) (79508) 7.8±1.8(61.75) 7.7±1.8(60.66) 8.0±1.7(63.94) 7.8±1.7(61.75) 8.5±2.0(69.41)
a
 7.8±1.6(61.75) 8.4±2.1(68.31)

a
 8.0±1.8(63.94) <.001 

Renal impairment (91612) 601 (0.7) 9 (0.4) 2 (0.4) 0 (0) 11 (0.7) 8 (3)
b
 1 (0.5) 1 (0.3) 0.001 

Ever Smokers N(%) (121355) 83189 (72.8) 1983(77.7)
b
 386(48.4)

b
 164(51.6)

b
 1084 (48.2)

b
 186(48.3)

b
 142(47.2)

b
 287(61.6)

b
 <.001 
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Diabetes treatmen
t (63704) 

Diet 8144 (13.6) 195 (13.4) 40 (9.1) 16 (10.5) 71 (5.5) 25 (12.1) 4 (2.9) 22 (8.9) <.001 

Biguanide alone 34270 (57.3) 562 (38.5) 291 (66) 89 (58.6) 863 (66.7) 126 (61.2) 89 (64.5) 155 (62.8) 

Other AD Drugs 6972 (11.7) 103 (7.1) 34 (7.7) 16 (10.5) 110 (8.5) 31 (15.1) 13 (9.4) 29 (11.7) 

Insulin 10381 (17.4) 600 (41.1)
b
 76 (17.2) 31 (20.4) 249(19.3)

b
 24 (11.6) 32 (23.2)

b
 41 (16.6) 

Hypertension treatment (121523) 55943 (48.9) 1206 (47.2) 361(45.3)
b
 94 (29.5)

b
 986(43.8)

b
 177 (45.7) 100(33.2)

b
 178(38.2)

b
 <.001 

High Cholesterol treatment (121523) 66938 (58.5) 1453 (56.9) 477 (59.8) 138(43.3)
b
 1333(59.2) 219 (56.6) 123(40.9)

b
 252 (54.1) <.001 

SIMD quintile (12
1276) 

Most deprived (5) 31955 (28) 318 (12.5) 105 (13.2) 70 (22) 484 (21.6) 73 (18.9) 123 (41) 129 (27.8) <.001 

Deprived 26277 (23) 540 (21.2) 147 (18.5) 72 (22.6) 575 (25.7) 76 (19.6) 53 (17.7) 77 (16.6) 

Middle 22094 (19.3) 647 (25.4) 125 (15.7) 44 (13.8) 385 (17.2) 72 (18.6) 40 (13.3) 77 (16.6) 

Affluent 18548 (16.2) 595 (23.3) 170 (21.4) 54 (17) 367 (16.4) 63 (16.3) 37 (12.3) 77 (16.6) 

Most Affluent (1) 15347 (13.4) 450 (17.6)
b
 248(31.2)

b
 78 (24.5)

b
 430 (19.2)

b
 103(26.6)

b
 47 (15.7)

b
 104(22.4)

b
 

Values are n (%age). For age, BP, BMI, HbA1c, cholesterol, and creatinine; values are mean (SD). For TG and duration of diabetes values are geometric mean 
(Confidence interval-CI). 
CVD = Cardio vascular disease, DM = Diabetes Mellitus, AD = anti-diabetic, SES = Socio-economic status. P = p value for ANOVA (continuous variable) or Chi 
square test (categorical variable) a = p <.05 for the post hoc (Bonferroni) difference between white and other ethnicities. b = p <.05 for the logistic regression 
comparison of ethnicities with white as reference category. c= log transformed for analysis.  
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Table 7.2 Cardiovascular disease events: Percent of events, average follow-up time, duration of diabetes and age at events by Ethnicity. 

 White(114450) 
Multiple Eth (2

554) 
Indian (797) 

Other Asian (3

19) 
Pakistani (2249) 

Chinese (38

7) 

African Carr (3

01) 

Other Eth (4

66) 
P 

CVD events (% in group) 15394 (13.4) 358 (14) 74 (9.3)
 b
 27 (8.5)

 b
 290 (12.9) 35 (9)

 b
 24 (8)

 b
 63 (13.5) <.001 

Follow-up (Yr) 4.8 4.8 5.2
a
 5.0 5.2

a
 5.3

a
 4.6 4.8 <.001 

Events per 1000 person 

Years follow-up 
27.92 29.17 17.88 17.00 24.81 16.98 17.39 28.13  

Duration of DM (Yr)
c
 6.02(5.98-6.05) 5.83(5.61-6.07) 7.17(6.73-7.64)

a
 5.72(5.09-6.43) 6.98(6.69-7.28)

a
 

7.34(6.70-8.

05)
a
 

5.04(4.50-5.65) 
5.53(5.03-6.0

7) 
<.001 

Age at CVD event (Yr) 71.6±11.2 72.4±11.2 67.9±10.9 63.7±10.8
a
 62.8±11.5

a
 69.6±12.1 69±11.4 68.7±12.3 <.001 

 Yr = Years. p value shows ANOVA for the difference between White and other ethnicities. a = p <.05 for the post hoc (Bonferroni) difference between white and 
other ethnicities. b = p <.05 for the logistic regression comparison of ethnicities with white as reference category. c= log transformed for analysis and values are 
geometric mean (CI). 
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Table 7.3 Cardiovascular disease events: Hazard ratios (Confidence Intervals) for time to first CVD event (Fatal and non-fatal) by ethnicity with White as reference 
group, up to 7 years follow-up in people with type 2 diabetes. 

 Multiple Eth Indian Other Asian Pakistani Chinese African Carr Other Eth 

Unadjusted 1.04(0.93-1.15) 0.63(0.50-0.79)
a
 0.61(0.42-0.89)

 a
 0.88(0.79-0.99)

 a
 0.61(0.44-0.85)

 a
 0.63(0.42-0.94)

 a
 1.01(0.79-1.29) 

Adjusted for: Age 0.99(0.89-1.10) 0.84(0.67-1.06) 0.93(0.64-1.36) 1.30(1.16-1.46)
 a
 0.66(0.47-0.91)

 a
 0.98(0.66-1.46) 1.20(0.94-1.54) 

Age and sex (model 1) 1.0(0.90-1.11) 0.83(0.66-1.04) 0.93(0.64-1.36) 1.31(1.17-1.47)
a
 0.66(0.47-0.92)

a
 0.97(0.65-1.45) 1.22(0.95-1.56) 

Model 1+ duration of DM 0.98(0.88-1.09) 0.95(0.76-1.20) 1.00(0.69-1.47) 1.56(1.39-1.75)
a
 0.74(0.53-1.03) 1.00(0.67-1.49) 1.20(0.94-1.54) 

Model 1 + Ever Smoke 0.98(0.88-1.09) 0.88(0.70-1.10) 0.98(0.67-1.42) 1.38(1.23-1.55)
a
 0.68(0.48-0.95)

a
 1.03(0.69-1.53) 1.24(0.97-1.59) 

Model 1 + Renal Imp 0.99(0.88-1.12) 0.76(0.57-1.01) 0.98(0.63-1.54) 1.28(1.12-1.47)
a
 0.55(0.36-0.84)

a
 1.08(0.68-1.71) 1.20(0.90-1.62) 

Model 1 + SES 1.03(0.93-1.15) 0.89(0.71-1.12) 0.94(0.64-1.38) 1.35(1.20-1.52)
a
 0.68(0.49-0.95)

a
 0.97(0.65-1.45) 1.24(0.96-1.59) 

Model 1 + HTN Rx 1.00(0.90-1.12) 0.84(0.67-1.05) 0.99(0.68-1.44) 1.33(1.19-1.50)
a
 0.67(0.48-0.94)

a
 0.99(0.66-1.48) 1.26(0.98-1.62) 

Model 1 + T Chol Rx 1.00(0.90-1.11) 0.83(0.66-1.04) 0.97(0.67-1.42) 1.32(1.17-1.48)
a
 0.66(0.47-0.92)

a
 1.01(0.67-1.50) 1.23(0.96-1.58) 

Model 1 + HbA1c 1.02(0.90-1.16) 0.72(0.54-0.97)
a
 0.89(0.55-1.44) 1.24(1.08-1.42)

a
 0.57(0.38-0.85)

a
 1.00(0.61-1.64) 1.31(0.98-1.75) 

Model 1 + BMI 1.01(0.89-1.13) 0.71(0.53-0.96)
a
 0.82(0.49-1.36) 1.31(1.14-1.50)

a
 0.58(0.38-0.88)

a
 0.90(0.54-1.50) 1.26(0.93-1.69) 

Model 1 + T Chol 0.99(0.87-1.12) 0.68(0.51-0.90)
a
 0.97(0.62-1.52) 1.34(1.18-1.53)

a
 0.59(0.39-0.89)

a
 0.94(0.57-1.53) 1.24(0.92-1.67) 

Model 1 + HDL 0.92(0.79-1.07) 0.66(0.46-0.95)
a
 0.85(0.48-1.50) 1.33(1.13-1.56)

a
 0.41(0.22-0.77)

a
 1.49(0.91-2.44) 1.11(0.76-1.64) 

Model 1 + SBP 1.04(0.88-1.21) 0.73(0.55-0.96)
a
 0.94(0.58-1.51) 1.26(1.10-1.44)

a
 0.63(0.42-0.93)

a
 0.98(0.60-1.61) 1.22(0.91-1.65) 

Model 1 + Drugs 0.93(0.82-1.05) 0.80(0.60-1.07) 1.10(0.70-1.73) 1.18(1.02-1.37)
a
 0.60(0.38-0.94)

a
 0.90(0.54-1.50) 1.10(0.80-1.52) 

Model 1 + All
b
 0.91(0.67-1.23) 0.91(0.55-1.51) 0.89(0.37-2.15) 1.45(1.14-1.85)

a
 0.58(0.24-1.40) 1.25(0.62-2.51) 1.34(0.76-2.36) 

DM= diabetes, HTN= hypertension, Rx=treatment, T Chol= total cholesterol. a = p <.05, b = Model adjusted for age, sex, HbA1c, diabetes treatment/drugs, duration 
of diabetes, socioeconomic status, renal failure, cholesterol lowering treatment, antihypertensive treatment, smoking, BMI, BP, total cholesterol, HDL. 
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Table 7.4 Cardiovascular disease events: Hazard ratios (Confidence Intervals) for time to first CVD event (Fatal and non-fatal) by ethnicity and gender with White 
as reference group, during 7 years follow-up in people with type 2 diabetes.  

 Multiple Eth Indian Other Asian Pakistani Chinese African Carr Other Eth 

Female 

Unadjusted 0.95(0.81-1.11) 0.71(0.50-1.00)a 0.55(0.31-1.00)a 0.85(0.71-1.01) 0.57(0.35-0.93)a 0.91(0.55-1.51) 0.76(0.51-1.15) 

Adjusted for age  0.91(0.78-1.07) 1.01(0.72-1.43) 0.94(0.52-1.70) 1.36(1.14-1.62)a 0.62(0.38-1.01) 1.68(1.01-2.79)a 0.87(0.58-1.32) 

Adjusted for all 0.89(0.60-1.31) 0.83(0.41-1.66) 0.91(0.29-2.84) 1.67(1.25-2.24)a 0.47(0.15-1.47) 1.81(0.86-3.81) 0.91(0.38-2.19) 

Male 

Unadjusted 1.13(0.98-1.30) 0.58(0.42-0.78)a 0.66(0.41-1.08) 0.92(0.79-1.08) 0.65(0.42-1.03) 0.41(0.22-0.80)a 1.24(0.91-1.69) 

Adjusted for age  1.07(0.93-1.23) 0.73(0.53-0.99)a 0.93(0.57-1.52) 1.28(1.09-1.49)a 0.70(0.44-1.09) 0.57(0.30-1.10) 1.57(1.15-2.15)a 

Adjusted for allb 1.11(0.80-1.54) 0.90(0.52-1.55) 0.84(0.31-2.24) 1.33(1.01-1.75)a 0.50(0.19-1.32) 0.79(0.25-2.45) 2.07(1.22-3.49)a 

a = p <.05, b = Model adjusted for age, HbA1c, diabetes treatment/drugs, duration of diabetes, socioeconomic status, renal failure, cholesterol lowering treatment, 
antihypertensive treatment, smoking, BMI, BP, total cholesterol, HDL 
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Table 7.5 Hazard Ratios for CVD event in population with no CVD at baseline 

 
Model A 

P value 
Model B 

P value 
HR (95%CI) HR (95%CI) 

Age of DM diagnosis (years): 1.03 (1.03- 1.03) <0.001 0.93 (0.92- 0.93) <0.001 

Age at baseline (years): 1.04 (1.04- 1.05) <0.001 1.12 (1.12- 1.13) <0.001 

Sex m vs F 1.09 (1.06- 1.13) <0.001 1.14 (1.08- 1.20) <0.001 

Ever Smoked 1.31 (1.26- 1.36) <0.001 1.24 (1.17- 1.33) <0.001 

Renal impairement 2.67 (2.30- 3.09) <0.001 1.46 (1.62- 1.83) 
 

<0.01 

SES: Most deprived (Ref)  

Deprived 0.94 (0.90- 0.98) <0.01 0.91 (0.84- 0.97) 0.01 

Middle 0.93 (0.89- 0.98) <0.01 0.91 (0.84- 0.98) 0.02 

Affluent 0.88 (0.84- 0.93) <0.001 0.91 (0.84- 0.99) 0.02 

Most Affluent 0.82 (0.78- 0.86) <0.001 0.81 (0.74- 0.88) <0.001 

Anti-hypertensive Rx 1.64 (1.58- 1.69) <0.001 1.44 (1.35- 1.55) <0.001 

Cholesterol lowering Rx 1.34 (1.29- 1.39) <0.001 1.26 (1.17- 1.36) <0.001 

HBA1c 1.02 (0.97- 1.08) 0.41 1.06 (1.04- 1.08) <0.001 

BMI 0.98 (0.97- 0.98) <0.001 1.01 (1.00- 1.01) <0.01 

Total Cholesterol 0.91 (0.90- 0.93) <0.001 0.99 (0.97- 1.01) 0.20 

HDL 1.02 (0.97- 1.08) 0.41 0.90 (0.83- 0.96) <0.01 

SBP 1.00 (1.00- 1.01) <0.001 1.00 (1.00- 1.00) 0.08 

Model A: Univariate (unadjusted),  
Model B: adjusted for ethnicity, duration of diabetes and all others in the model.  
Reference Categories: Sex: female = 0 and male = 1, ever smoked = 1, SES: 1 = most 
deprived & 5 = most affluent, antihypertensive treatment = 1, Cholesterol lowering treatment 
= 1, Rx = treatment 
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Table 7.6 Types of cardiovascular diseases and mortality in different ethnic groups during the follow-up 

 White Multiple Eth Indian Other Asian Pakistani Chinese African Carr Other Eth Total 

CVD morbidity 

Angina 2,826(18) 75(21) 12(16) 6(22) 61(21) 3(9) 4(17) 4(6) 2,991(18) 

MI 1,774(12) 47(13) 5(7) 4(15) 37(13) 2(6) 2(8) 8(13) 1,879(12) 

Other IHD 6,206(40) 140(39) 38(52) 14(52) 136(47) 19(54) 5(21) 34(54) 6,592(40) 

Peripheral VD 238(2) 3(1) 1(1) 0 4(1) 0 0 0 246(2) 

Cerebral Haemorrhage 288(2) 10(3) 0 0 6(2) 3(9) 1(4) 2(3) 310(2) 

Cerebral Infarction 1,412(9) 36(10) 8(11) 1(4) 19(7) 4(11) 5(21) 3(5) 1,488(9) 

Unspecified Stroke 966(6) 22(6) 4(5) 1(4) 12(4) 2(6) 5(21) 5(8) 1,017(6) 

Other Cerebro VD 1,551(10) 22(6) 5(7) 1(4) 15(5) 1(3) 2(8) 6(10) 1,603(10) 

Sequelae of Cerebro VD 133(1) 3(1) 1(1) 0 0 1(3) 0 1(2) 139(1) 

Total 15,394 358 74 27 290 35 24 63 16,265 

Mortality 

CVD 3,582(21) 71(21) 18(31) 4(33) 27(21) 10(25) 5(28) 5(12) 3,722(21) 

Other causes 13,418(79) 265(79) 40(69) 8(67) 104(79) 30(75) 13(72) 37(88) 13,915(79) 

Total  17,000 336 58 12 131 40 18 42 17,637 

          
Values are n (%) within each ethnic group. MI= Myocardial infarction, IHD= Ischemic heart disease, VD= vascular disease, CVD= cardiovascular disease.
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 1 
a) 

 
b) 

 

Figure 7.3 Incidence of CVD per 1000 person years in age and age of diabetes diagnosis 2 
categories 3 
Incidence of CVD/1000 person years in (a) Baseline age categories, (b) Age of diabetes 4 
diagnosis categories. 5 
  6 
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 1 
a) 

 
b) 

 

Figure 7.4 Odds ratios for development of CVD in HbA1c Quintiles and SES categories 2 
Odds ratios for development of CVD with White as Reference in HbA1c Quintiles (a), SES 3 
categories (b). All analysis were adjusted for age at baseline. Pak = Pakistani. * = P <0.05 for 4 
the difference in odds from White.  5 
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a) 

 
b) 

 
c)  

 

Figure 7.5 Odds ratios for development of CVD with White as Reference in people 1 
developing renal failure or hypertension or on treatment for high cholesterol 2 
Odds ratios for development of CVD with Normal White as Reference in renal failure (a), 3 
hypertension treatment (b), and treatment for high cholesterol (c). All analysis were 4 
adjusted for age at baseline. Norm = Normal, Pak = Pakistani, Ren F = Renal impairment, 5 
HTN = Treatment for hypertension, Chol = Cholesterol lowering treatment. * = P <0.05 for the 6 
difference in odds from Normal White. 7 
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7.3 Discussion 1 

In this analysis, we demonstrate increased CVD risk in Pakistanis compared to 2 

White individuals with type 2 diabetes living in Scotland.  Similar findings have 3 

previously been reported in the general population (727;1021;1022); here we 4 

show this for the first time in a population with diabetes and demonstrate that 5 

the excess risk persists even after statistical adjustment for BMI, metabolic, 6 

lifestyle, socioeconomic and disease factors. Independent of the effect of age 7 

and age of diabetes diagnosis, rates of CVD differed in the various ethnic groups. 8 

Once they had developed diabetes, those of Pakistani origin had an increased 9 

rate of CVD at all ages compared to White and Chinese individuals with diabetes. 10 

Within the same age category, Pakistanis had an increased risk of CVD relative to 11 

the white population (HR=1.45, CI 1.14–1.85, p=0.002) and this was apparent at 12 

all age groups over the age of 41 (Figure 1.3). Also Pakistanis with diabetes 13 

appear to have an incidence of CVD comparable to White or Chinese people 10 14 

years older.  15 

Cardiovascular disease is one of the leading causes of death in people with type 16 

2 diabetes and more than 60% of people with type 2 diabetes die of CVD (MI or 17 

stroke) (1009). Differences in diabetes incidence rates (1014;1016;1023) and CVD 18 

rates (1014;1022;1024) have been evaluated in many studies. Ethnic differences 19 

in age of diabetes diagnosis (711;1016;1025), diabetes prevalence (679;1014), 20 

HbA1c levels (1026;1027) , body composition (712;1014;1015), smoking 21 

(1026;1028), physical activity (713;1016;1029) and diet (1013;1030) have all 22 

been reported previously. Many studies have also reported effects of 23 

socioeconomic status on DM (1031;1032) and CVD incidence (1033). The present 24 

study adds to this literature in showing an increased risk of CVD in Pakistanis 25 

after full adjustment for duration of diabetes and socioeconomic status (SES). 26 

The increased risk of CVD by ethnicity in Pakistanis was not dependent on known 27 

risk factors as most of the cardiovascular risk factors (BP, BMI, total cholesterol, 28 

TG, creatinine, smoking status and hypertension) were indicative of lower risk 29 

compared to levels found in White people. In addition we also show that 30 

increased risk is not accounted for by an increased effect of risk factors in the 31 

Pakistani group as none of the CV risk factors had significant interaction with 32 

ethnicity.  33 
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A number of studies have observed differing rates of T2DM and CVD development 1 

in differing environments and ethnicities. There are a number of potential 2 

explanations including the thrifty genotype, thrifty phenotype, fetal insulin 3 

hypothesis and overflow hypothesis. South Asians are proposed to have “thrifty 4 

genotype” which states that their predisposition to diabetes may have evolved 5 

as an adaptive trait in certain environmental conditions but later turned 6 

disadvantageous due to change in lifestyle (sedentariness and excess of food) 7 

(1034). The increased prevalence of IR in SA is also associated with thrifty 8 

genotype (691). The fetal insulin hypothesis states that common genetic factors 9 

are related to growth of the fetus (birth weight), adult insulin resistance and to 10 

the risk of diabetes and other vascular disease in later life (1035). To date no 11 

clear genetic differences have been found between SA and Caucasians 12 

(683;1034). However, an exceptionally high percentage of positive family history 13 

of type 2 diabetes in SA makes it likely that there may be an excess of risk 14 

alleles in SA. Another proposed mechanism is the “thrifty phenotype” which 15 

states that a disadvantageous intrauterine environment induces thrifty 16 

mechanisms that set the body’s metabolism to cope with potential future food 17 

shortage (1034). This change is beneficial for early survival but increases the risk 18 

of diabetes in nutrient rich environment. This is evidenced by low birth weight in 19 

SA and later increased weight gain in childhood (691;1036). The potential 20 

importance of low birth weight is further supported by the work of Bergvall et 21 

al. who showed in both monozygotic and dizygotic twins that birth weight was 22 

independently associated with development of hypertension; independent of 23 

genetic factors, environmental factors and adult life risk factors (including BMI) 24 

(1037). It further support the concept that the link between low birth weight 25 

and later disease development as an environmental rather than genetic factor. 26 

Finally with regard to birth weight others have examined whether low birth 27 

weight explains ethnic differences. A recent study by Nightingale et al. suggests 28 

that birth weight was inversely related to insulin, glycaemia and urate. They 29 

further showed that birth weight was lower in SA and African-Caribbean as 30 

compared to Europeans, however, birth weight did not explain the ethnic 31 

differences in risk markers for diabetes and CVD (1038).  32 

Beyond these hypotheses a number of mechanistic explanations have been made 33 

for the increased propensity of SA to metabolic disease. These include the 34 
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“overflow hypothesis”. This states that when superficial subcutaneous adipose 1 

compartment is less well developed, it results in earlier expansion of the 2 

secondary compartments (deep subcutaneous and visceral adipose tissues) 3 

(1034). It has been shown that SA have higher levels of deep subcutaneous and 4 

visceral adipose tissues (686;687). These deep adipose compartments are shown 5 

to be metabolically more active and may contribute to diabetes and also 6 

increase cardiovascular risk (686;687). SA have also been shown to have more 7 

efficient mitochondria; producing more energy and generating less heat 8 

(697;698). This adaptation is useful in hot climates and periods of starvation, 9 

however, it is disadvantageous in environment of excess food and low physical 10 

activity. Another important difference in SA is the presence of less lean or 11 

muscle mass as compared to White (682;683;686). This difference is also present 12 

in healthy young SA men compared with BMI matched White (686;1034). 13 

Moreover, low muscle mass is also associated with reduced insulin sensitivity 14 

(694). In spite of IR, the muscle oxidative capacity and expression of oxidative 15 

and lipid metabolism genes in SA is not different from Whites (683;1034). 16 

Muscles are the main energy organs for glucose disposal and also the main 17 

energy using organs. Low muscle mass in SA may have metabolic effects but this 18 

hypothesis need further exploration as limited studies are available.   19 

South Asians are considered a single group in most studies, and here we report a 20 

significant difference only in Pakistanis. Importantly people of Pakistani origin 21 

were different in a number of key characteristics. Previous work from our group 22 

has shown that Pakistanis living in Scotland have higher average levels of 23 

glycaemia and higher levels of social deprivation than Indians (734). When 24 

Pakistanis were compared with Indians in our cohort, they were younger at 25 

baseline (53.8±12 vs Indians 56.2±13 years, p= <.001), younger at diabetes 26 

diagnosis (48.8±11.6 vs Indians 51.2±12.2 years, p= <.001), had higher BMI (30.2 27 

vs 28.8, p= <.001), lower BP (134/78 vs 137/79, p=0.04), higher HbA1c % (8.5 vs 28 

8.0, p=<.001), lower creatinine (83.3 vs 87 µmol/L, p=0.04) and lower SES 29 

(p=<.001). These findings are consistent with a number of previous studies, but 30 

none of these specifically examined CVD and its risk factors according to 31 

ethnicity in a large population of individuals with type 2 diabetes (1012;1018-32 

1020). It was noteworthy that following adjustment for all of these factors in 33 

Cox regression, increased risk was demonstrated only in Pakistanis. However, not 34 
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all previously-published studies have been consistent with our findings: four 1 

reported similar or lower prevalence of CVD in Pakistanis or South Asians with 2 

diabetes as compared to White. One of these was longitudinal but had a very 3 

small South Asian sample size of 86 patients (1039). The other three were cross 4 

sectional (1018;1026;1029) and two of these reported pooled data on South 5 

Asians rather than the individual ethnicities group (1026;1029).  6 

Pakistanis and Indians are not reported to vary greatly in their genetic makeup 7 

and so the differences in cardiovascular risk reported here must be interpreted 8 

with caution. It has been reported that South Asians are more likely to have 9 

cardiovascular risk factor (BMI, HbA1c, BP, hypertension and retinopathy) 10 

evaluation and access to primary care as compared to White people (1017) but 11 

to date we are not aware of any such differences having been reported between 12 

Pakistanis and Indians in Scotland. Our data show that Indians are less deprived 13 

than Pakistanis and it has been reported recently that SES evaluation measures 14 

are inconsistent across different ethnic and sex groups (1020) and may be a 15 

possible reason for the difference. There may be differences in access to 16 

healthcare, compliance with medication, improvement of cardiovascular risk 17 

factors over time and other health behaviours. These factors could in theory 18 

explain some of the differences we observed in rates of cardiovascular disease 19 

between Indians and Pakistanis which generates an important hypothesis for 20 

future work. 21 

The population we studied included a much smaller group of individuals of 22 

Chinese origin. Our finding of a decreased risk of CVD in Chinese individuals with 23 

type 2 diabetes is also in keeping with the literature in the general population 24 

(730;1040) 25 

7.3.1 Strengths and Limitations 26 

Our study is one of the largest longitudinal studies of people with type 2 27 

diabetes (n=121,523) free of CVD at baseline and followed for an average of 4.8 28 

years for the development of CVD. Other studies reporting ethnic differences 29 

were conducted in the general population and used diabetes as an adjustment 30 

factor (727;1014;1021;1022) rather than investigating ethnic differences among 31 

people with diabetes. Studies performed in people with type 2 diabetes, were 32 
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small to modest cohort studies (n=4974) (711;1016;1026;1039;1041;1042); or 1 

combined different ethnic groups (Pakistani, Indian, Bangladeshi and Sri Lankan) 2 

as one group of South Asians (1014;1016;1022;1024;1026;1039;1042). In order to 3 

avoid missing differential effects within this group, and because of the much 4 

larger size of our sample of people with type 2 diabetes we were able to 5 

evaluate the ethnic groups Pakistani, Indian, and Other Asians separately, rather 6 

than merging them into one group of South Asians. This was justified by the 7 

existing literature showing differences between separate ethnic groups in the 8 

general population (679;1012;1018;1019;1024). Most of the ethnic groups in our 9 

cohort comprised participants from one country of origin, except for Other 10 

Asians (which included Bangladeshi), and African and Caribbean blacks which 11 

were combined due to the relatively small sample size in these groups.  12 

Strengths of this study include the population-based nature of the electronic 13 

record of diagnosed diabetes in Scotland. SCI-Diabetes has many distinguishing 14 

features such as a single shared electronic record, real time data entry (updated 15 

immediately), over 99% completeness along with patient contact and care 16 

record. SES was assessed on an area-based measure and considers several 17 

different aspects of deprivation such as employment, income, health, education, 18 

skills and training, geographic access to services, crime and housing. Individual-19 

based measures for SES were not available but each individual area assessed 20 

using SIMD was small (median, 800 people). Patients were asked to identify their 21 

ethnic group from a standard list used in the 2001 Census in Scotland (734), 22 

which is well tested over the years and has been shown to be acceptable for use 23 

in the general population.  24 

One of the main limitations of our study is that 67,994 people (24% of total) had 25 

missing ethnicity information. There is a potential for bias here: for example if 26 

those who were most healthy were less likely to be in contact with medical 27 

services and in turn not have ethnicity coding. In addition, if this group remained 28 

disease free then the cardiovascular risk in our results may be an overestimate. 29 

To examine this we explored this missing ethnicity group and it revealed that 30 

50,410 were free of CVD at baseline and 7810 (15.5%) developed CVD in the 31 

follow-up period giving a rate similar to that in those with known ethnicity 32 

(13.4%). We excluded the people having a prior CVD event. In keeping with our 33 

results showing a higher CVD risk in Pakistanis, there was a possibility that we 34 
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may have excluded more Pakistanis as having prevalent CVD. So our results may 1 

be an underestimate of the actual cardiovascular risk. To address this, the 2 

percentage of each ethnic group was checked in the prevalent CVD group and 3 

was found to be similar to the people included in the analysis. 4 

Another limitation was that we were unable to adjust our models for physical 5 

activity, diet and family history of DM and CVD (which are known to vary by 6 

ethnicity) (728;1013;1029). At the same time the effects of many of these 7 

factors may act through BMI, BP, total cholesterol, HDL-c, hypertension, and age 8 

of diabetes diagnosis, which we have adjusted for in the analysis. CVD events 9 

were coded using ICD-10 codes recorded by, record linkage to Scottish Morbidity 10 

Records (SMR01). Smoking was coded as “never smoked” and “ever smoked” and 11 

a larger effect of smoking may have been found with a more granular measure.  12 

In our study, we have not checked for genetic and birth weight differences 13 

between different ethnic groups as these are not available from routine data in 14 

SCI-Diabetes. We did not check for the differences in central and peripheral 15 

obesity, mitochondrial oxidative capacity, fat and fat free mass in different 16 

ethnic groups and so cannot confirm the findings in our data. In addition, we did 17 

not check for time-dependent differences in healthcare, compliance with 18 

medication, deterioration/improvement of risk factors in different ethnic 19 

groups. All of these data could further augment the findings reported here. 20 

Another important issue is the extent to which our data are generalizable to 21 

other populations.  We have stressed that considering people of South Asian 22 

origin as a single group may miss important detail. It is not possible to know 23 

whether the increased risk we have observed in those of Pakistani origin living in 24 

Scotland would be shared by people of Pakistani origin living in other countries, 25 

and therefore whether it might be explained by genetic differences, the 26 

particular characteristics of people of Pakistani origin migrating to Scotland, 27 

environmental factors or a combination of these factors.     28 
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7.3.2 Potential limitations of secondary analysis of electronic 1 

database 2 

Listed below are the potential limitations of secondary analysis of electronic 3 

databases mentioned in the literature (1043;1044) and which were checked in 4 

our dataset and analysis.  5 

Non generalizability: Some secondary analyses do not include whole population 6 

data and include selective health care facilities or over represent some data 7 

(e.g. younger physicians’ data). SCI-Diabetes includes all health care facilities, 8 

GP practices and is now implemented in all health boards of Scotland. The 9 

Scottish population consists of people from different ethnicities, with different 10 

immigration status (new immigrant to 2nd and 3rd generation immigrant) and also 11 

have different cultural and social habits, and life style. However the climate, 12 

lifestyle, working hours, food availability, health care facilities, education, 13 

employment and other facilities are same in all Scotland and in different 14 

ethnicities. These population characteristics are similar to the population 15 

characteristics in other parts of UK, western European countries and some states 16 

of America and Canada, and thus can generalized to those parts of the world; or 17 

study planned to confirm the findings. These findings cannot be generalized to 18 

the people living in countries like Pakistan, India, Bangladesh etc; due to 19 

different population and environmental characteristics.  20 

Data Quality: the data quality is affected by incorrect coding, missing data, 21 

abnormal or unrealistic values and incomplete data base. In SMR-01 the ICD-10 22 

codes are used for CVD. For the prevalent CVD we checked the hospital 23 

admissions for CVD using ICD- 10 codes but as the SMR-01 started using ICD-10 24 

codes from April 1996, and our look back period was up to 1992 so we used 25 

equivalent ICD- 9 codes. About 67,994 people (24% of total) had missing ethnicity 26 

information and are discussed in detail in the limitations of discussion. The data 27 

were complete (almost 100%) for most of the variables like age, sex, age of 28 

diabetes diagnosis, duration of diabetes, ever smoking status, treatment for 29 

hypertension, cholesterol lowering drugs and SIMD. Data were not complete (50-30 

75 %) at baseline for some of the variables like BMI, BP, total cholesterol, 31 

creatinine, HbA1c, treatment for diabetes and HDL cholesterol. Missing data 32 

were not imputed from values after the date of diabetes diagnosis.  33 
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Diagnosis of diabetes: Some patients can be misdiagnosed with diabetes in 1 

databases from population studies. In SDRN, general practitioners (GP) make the 2 

diagnosis (this is at a clinical level and patients are therefore informed). 3 

Diagnosis is based on fasting glucose and HbA1c with OGTT at times for 4 

confirmation. Patients are added to the database only once their diabetes is 5 

confirmed. In our dataset only 365 people (0.1% of total) appeared to have been 6 

wrongly diagnosed and the diagnosis was clinically revised. After revision of 7 

diagnosis, these individuals were removed from the analysis (Figure 7.1). Data in 8 

SCI-diabetes is routinely validated for irregularities. Cross referencing of 9 

diabetes diagnosis coding between routine hospital discharge information 10 

(SMR01) and SCI-DC in 2008 showed that 0.6% of total diabetes cases were not 11 

found in SCI-DC (1045). However, at present SCI-Diabetes includes all health 12 

boards of Scotland, including GP practices and also including adjacent isles. 13 

Type of diabetes: Most diabetes diagnoses in adults are treated as type 2, but in 14 

general practice it is not always easy to distinguish type 1 from type 2 diabetes, 15 

especially in new onset diabetes. In our analysis type of diabetes was assigned 16 

by the clinician and was also confirmed by an algorithm using age at diagnosis 17 

and use and timing of treatment with oral hypoglycaemic agents and insulin. 18 

Details of the other forms of diabetes are shown in Figure 7.1. 19 

Follow-up: In longitudinal analysis, some of the people do not have a follow-up 20 

data and if this proportion is large, it may affect data quality and influence 21 

results. In our analysis n= 4557, 1.6% of total population did not had follow- up 22 

data and were excluded from the analysis with the assumption that they may 23 

have left the area. This assumption was made as it is unlikely for a person with 24 

diagnosed diabetes and registered in SDRN to have no data for any clinical 25 

variable in 7 years of follow- up (2005-2012).  26 

Disease documentation: Coding for some complications of diabetes (e.g. 27 

retinopathy) is still variable and depends on free- text comments and different 28 

codes. In our analysis we used ICD-10 codes for CVD which have been validated 29 

in many studies. See Appendix C for details of ICD codes used in this study.  30 
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7.3.3 Conclusion 1 

Pakistani ethnicity is an independent risk factor for CV disease among people 2 

with type 2 diabetes.  Our finding confirms and extends existing literature 3 

demonstrating that some ethnic groups (especially South Asians) are at higher 4 

risk of CVD.  This is reflected in some (1046-1048) but not all (1049;1050) 5 

guidelines targeting cardiovascular risk; only one currently advises recording of 6 

ethnicity but does not recommend  different specific treatment or prevention 7 

strategies (1048).  The QRISK2 risk calculator (http://www.qrisk.org/index.php) 8 

already considers Pakistani, Indians and other groups separately. As those of 9 

Pakistani origin had an earlier age of onset of diabetes and poorer metabolic 10 

control but apparently similar control of other risk factors such as blood 11 

pressure, cholesterol and smoking, we suggest that programs designed to 12 

prevent or delay onset of diabetes in this group might be of particular 13 

importance. 14 

http://www.qrisk.org/index.php
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8 Conclusion/future recommendations 
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My thesis analysed the inter-relationships amongst obesity, insulin resistance, 

inflammation, and ethnicity in relation to the pathogenesis and progression of 

cardiovascular disease and diabetes. CV risk factors play common roles in 

populations across groups defined by age and sex but also have subtly different 

implications within genders and at different times in the lifespan. I have 

discussed the conclusions specific to each chapter in the relevant sections; I 

focus here on the overall conclusions, mechanisms, limitations and 

recommendations.  

In this thesis I have been fortunate to work with two quite different data sets. 

Both are observational, with no study intervention. There are a variety of 

differences in that RISC study data result from an independent scientific project 

whereas SDRN data are routinely generated (anonymised) from care activity 

within the National Health Service. Taken together there are different strengths 

and weaknesses. Notably both are longitudinal studies and not randomised 

controlled trials (RCT). Clearly, RCTs are considered the gold standard for 

establishing causal linkage and so the relationships found should be considered 

“hypothesis–generating” rather than definitive experiments. One of the points of 

strength is that both are human studies. 

The RISC cohort constitutes a healthy population (by selection) with no chronic 

disease (high BP, hyperglycaemia, cardiovascular disease, cancer and any 

chronic diseases): thus disease-associated pathophysiological changes are 

absent. RISC is a scientific study; therefore more able to control and standardise 

study procedures and protocols. However, in this study design there will be 

fewer major end points (MI or stroke) in follow-up. The RISC cohort age range is 

between 30-60 years. Most conditions (e.g. diabetes, hypertension and CVD) are 

acquired in this age, or at least the pathology (disease process) starts in this 

age. Studying risk factors in a healthy population is interesting and can give 

insights into how diseases develop and which factors are involved. Thus the RISC 

study is well-placed to investigate how body anthropometric measures and their 

changes over time (age, BMI, physical activity, BP etc.) are related to the 

metabolic parameters in the blood (including M/I, CRP, IL-6, lipids). It is also 

useful for studying the early development of atherosclerosis (cIMT), diabetes and 

change in BP (hypertension). However as the individuals recruited were healthy 

at baseline and there was a maximum age limit at entry of 60 years, only 21 
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people developed diabetes and/or symptomatic cardiovascular disease in three 

years. This indicates that a much longer follow-up (10-15 years) will be required 

to evaluate cardiovascular events and outcomes.  

The main shortcoming of the RISC dataset is that it derives from a relatively 

small and selected cohort of consented individuals (inevitable given the invasive 

nature of assessments and strict quality control). The level of data collection is 

appropriate for a cohort study but more intense and invasive than could be 

applied to a clinical population like that of the SDRN. For example, the use of a 

gold standard assessment of insulin sensitivity by clamp technique while highly 

informative in RISC is not practical in a population or large cohort. The RISC 

population is not truly population-based so the results may not all be 

generalizable to a wider population. The RISC cohort is a healthy population; 

this is strength in some respects, particularly for physiological investigation, but 

it is also a limitation for studies intending to investigate disease processes. Both 

approaches (selected cohort/ healthy population) have limitations when results 

are applied to the general population; some members will have the disease 

processes in question at any one time point.  

As only European centres were included with almost all Caucasian population the 

findings cannot be generalized to other ethnic groups. However, they can be 

used as a template for designing a study in a different population. Another 

limitation of RISC is the absence of dietary history and socioeconomic status in 

the analysis, the latter being an important cardiovascular risk factor.  

By contrast, the SDRN cohort is a large population-based cohort with no obvious 

bias; a major strength of the study. It reflects real clinical practice, i.e. if we 

detect an increase in risk of MI in people of Pakistani origin; it is a potential 

clinical issue. However as it is a large cohort, measures like insulin sensitivity, 

CRP, IL-6, cIMT, physical activity have not been assessed. More notably in 

comparison to the RISC cohort, the SDRN cohort is a disease cohort with all 

members having type 2 diabetes and some additionally having hypertension or 

kidney disease. As there is no maximum age limit restriction it is a good cohort 

in which to examine incident cardiovascular disease as an outcome. As SDRN is a 

population cohort with people from other ethnic groups, its results are 

generalizable to other parts of UK and Europe. However the results of ethnic 
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groups other than White cannot be applied in the country of origin due to 

different environmental and other conditions.  

Medical knowledge is derived from different types of studies, giving different 

types of information, complementing each other in drawing a conclusion.  Here I 

was able to utilise two different cohorts with different characteristics resulting 

in different types of information. The findings do not add enough information to 

influence clinical management, but do add to available knowledge of 

cardiovascular risk and identify new areas for future work.  

The economic and other (social, psychological) burden of disease is not due to 

CVD alone but also due to risk factors like obesity, diabetes and hypertension. 

Over the past century, researchers have worked to find the main pathology 

linking all of these diseases and risk factors, but to date have reached no 

conclusive answer. The main management strategies are to control obesity and 

modify lifestyle to prevent/delay the development of disease and/or to control 

progression of disease and associated complications. Regarding prevention of 

disease, the first step is to find the appropriate relationship between predictors 

and outcome. The next step is to check if the predictor is causally related to the 

disease and if modifying the predictor alters the disease pathway or progress. 

For example the Diabetes Prevention Programme (DPP) trial showed that 

lifestyle changes and treatment with metformin both reduced the development 

of type 2 diabetes in a high risk group (1051).  

Risk scores are algorithms used to estimate the 10-year cardiovascular risk of an 

individual. Many have been developed to categorise people in low, medium or 

high risk categories in relation to development of CVD – for example, 

Framingham and QRISK scores. Currently the Framingham score 

(http://cvdrisk.nhlbi.nih.gov/) includes age, total cholesterol, smoking status, 

HDL and SBP. The QRISK score (http://www.qrisk.org/index.php) additionally 

includes BMI, ethnicity, measures of deprivation, family history, chronic kidney 

disease, rheumatoid arthritis, atrial fibrillation, diabetes and treatment for 

hypertension. These risk scores are not definitive as the QRISK2 algorithm 

explains 43% of risk variation in women, 38% in men; the modified Framingham 

risk score explains 39% in women and 35% in men (1052). Moreover, there is still 

a discrepancy between different scores, in terms of whether people are 

http://www.qrisk.org/index.php
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classified as high or low risk (1052). Many novel CVD risk factors like insulin 

resistance, CRP, IL-6, fibrinogen, augmentation index, pulse wave velocity, 

lipoprotein (a), homocysteine, small dense LDL-c, urinary albumin to creatinine 

ratio, renin, B type natriuretic peptide and testosterone levels have been 

studied in the last three decades to find out if they improve risk prediction. 

Moreover, there has been a lot of work to evaluate if blocking or modifying any 

risk factor may prevent or delay cardiovascular complication. Some drugs have 

been found to result in significant improvements: ARBs, ACEIs and statins. Some 

newer work is focusing on nutrition-based interventions: e.g. antioxidants, 

vitamins and minerals.  

As the existing risk factors fall some way short of explaining all of the risk of 

CVD, I have further examined other novel risk factors. In the RISC chapters I 

examined whether insulin sensitivity and inflammation make independent 

statistical contributions to the change of BP or the development of hypertension. 

The results showed that both add very little to predicting risk in the presence of 

the important risk factors. This is in keeping with results on several other risk 

factors: a recently-published study suggested that CRP improves risk 

classification by only 1.52%; the main contributors are of course conventional 

risk factors: age, sex, smoking status, BP, history of diabetes, cholesterol and 

HDL levels (1053). Insulin resistance and inflammation are not generalized 

predictors in all age and sex groups and are of limited utility in clinical practice. 

However, we found that the associations of these risk factors does change with 

age and is also different in different age groups. The data from my thesis suggest 

that it is not sufficiently important routinely to measure insulin sensitivity 

particularly given the expertise required, labour and cost for assessment.   

I found a relationship between CRP and diastolic BP in an adult population.  It 

should be noted that this is not sufficient evidence to recommend routine 

measurement of CRP in all young people. Moreover, I identified percentage 

change in BMI to be strongly linked to both systolic as well as diastolic BP, 

suggesting that risk of hypertension may increase even if a person gains weight 

within the normal range. The importance of change in BMI was apparent in all 

BMI categories, from healthy to obese. Furthermore, percentage change in BMI 

appeared to be more important than BMI as a predictor of BP rise in middle-aged 

individuals.  
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Considering CRP, BMI category and percent change in BMI together; a possible 

explanation for the influence of modest rises in weight on blood pressure is as 

follows. I found that there was no change in BP (SBP and DBP) if a participant 

maintained or decreased his weight, even if they were overweight or obese. In 

contrast only 2-3% increase in weight was associated with a rise in BP, even in 

middle aged people with normal BMI. This may be due to the apparent metabolic 

health of these overweight and obese people: their adipose tissue is not causing 

chronic inflammation. When there is any increase in adipose tissue (BMI), it 

disturbs homeostatic balance and leads to chronic low grade inflammation, 

which then influences BP. CRP is a marker of chronic low-grade inflammation: it 

may not in itself be pathological (976) but it can at least flag the existence of 

other ongoing inflammatory conditions. Summing-up, it can be easily evaluated 

if change in BMI is additionally linked with change/rise in CRP. In clinical settings 

measurement of CRP is costly and involves sampling, transportation and analysis. 

In contrast, change in BMI can be easily monitored in GP settings and can be 

easily done at routine visit. The recent follow-up results of the DPP study show 

similar findings i.e. that participants who maintain long term weight loss over 

two years have a reduced risk of developing diabetes as compared to people who 

regained weight or undergo weight cycling (1054). Similar to the DPP study, 

change in BMI is an excellent potential risk factor in the development of 

hypertension and can easily be explored in larger/populations and other cohorts 

as it does not require any laboratory test or special skills.  

In most of the groups I studied, adjustment for BMI weakened the relationship 

between insulin resistance, inflammation and BP. Awareness of BMI should 

continue as a main focus of future disease management and planning worldwide. 

This supports the obvious public health message that all individuals (regardless 

of age and sex) should aim to control body weight within healthy limits.  

I studied the importance of the predictors in relation to hypertension, but not 

the relationships amongst these factors and atherosclerosis (owing to the short 

duration of the follow up). Atherosclerosis is a key step in the development of 

cardiovascular disease and can be assessed in vivo by measurement of carotid-

intima media thickness (cIMT). All of the risk factors I have studied in relation to 

age and sex stratified groups could be studied in relation to cIMT/atherosclerosis 
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once further follow of the RISC cohort is available (as is now ongoing in many 

centres). 

The evaluation of ethnicity I conducted in Chapter 7 shows it to be an important 

risk factor which can be explored further and with the potential to be included 

in risk scores. South Asians are more likely to have cardiovascular risk factor 

(BMI, HbA1c, BP, hypertension and retinopathy) evaluation and access to primary 

care as compared to White (1017). I found that despite having almost similar 

blood pressure, cholesterol and smoking, Pakistanis still had an earlier age of 

onset of diabetes and poorer metabolic control. To date, no current 

management guidelines consider specific treatment for different ethnic groups; 

this is an important area of work for the future. I have not checked for 

differences in access to healthcare, adherence to medication, improvement of 

cardiovascular risk factors over time and other health behaviours between 

Pakistanis and White. These factors could in theory explain some of the 

differences and generates important hypotheses for future work.  

In my study, the ethnic groups (other than White) were population-based but 

few in number; more studies should be planned with larger ethnic minority 

groups from developed countries. Most developed countries have different 

climate, culture, food, working hour and leisure activities compared with 

developing countries. Many ethnic minorities in developed countries are from 

developing countries: studies should be planned within developing countries to 

evaluate the association and impact of risk factors in these environmental 

settings. Moreover, type 2 diabetes occurs more frequently in children and young 

adults of ethnic minority groups as compared to White. The relation of this early 

development of diabetes with cardiovascular disease needs evaluation. 

Sex differences in relation to socioeconomic status (SES), diet and physical 

activity have been identified previously. These sex differences are also present 

in ethnic minority groups. I identified some areas for future work in relation to 

this finding. The role of socio economic status in cardiovascular outcomes in 

people with diabetes should be evaluated along with consideration of sex. This 

relation should also be checked in different ethnic groups. 



Chapter 8 

281 
 

With the development of diabetes there is persistent vascular damage in spite of 

intensive glycaemic control. One of the proposed mechanisms is the concept of 

glycaemic memory (641). SDRN is a population cohort with age of diabetes 

diagnosis has been documented. A potential area for study is evaluation of age 

of diabetes diagnosis with cardiovascular disease outcome in people with type 2 

diabetes taking account of previous control of the condition.   

In summary this thesis showed that the relationships of insulin resistance, 

inflammation and measures of body composition with CV risk vary in different 

age and sex groups. Insulin resistance and inflammation add very little to 

prediction of risk in presence of important risk factors. In contrast, we showed 

that change in weight (BMI) and ethnicity are important independent (of other 

major CV risk factors) predictors of CV risk and can be a useful addition to the 

available risk scores.   
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